WorldWideScience

Sample records for ozone o3 mixing

  1. Convection links biomass burning to increased tropical ozone: However, models will tend to overpredict O3

    Science.gov (United States)

    Chatfield, Robert B.; Delany, Anthony C.

    1990-10-01

    Biomass burning throughout the inhabited portions of the tropics generates precursors which lead to significant local atmospheric ozone pollution. Several simulations show how this smog could be only an easily observed, local manifestation of a much broader increase in tropospheric ozone. We illustrate basic processes with a one-dimensional time-dependent model that is closer to true meteorological motions than commonly used eddy diffusion models. Its application to a representative region of South America gives reasonable simulations of the local pollutants measured there. Three illustrative simulations indicate the importance of dilution, principally due to vertical transport, in increasing the efficiency of ozone production, possibly enough for high ozone to be apparent on a very large, intercontinental scale. In the first, cook-then-mix, simulation the nitrogen oxides and other burning-produced pollutants are confined to a persistently subsident fair weather boundary layer for several days, and the resultant ozone is found to have only a transient influence on the whole column of tropospheric ozone. In the second, mix-then-cook, simulation the effect of typical cumulonimbus convection, which vents an actively polluted boundary layer, is to make a persistent increase in the tropical ozone column. Such a broadly increased ozone column is observed over the the populated "continental" portion of the tropics. A third simulation averages all emission, transport, and deposition parameters, representing one column in a global tropospheric model that does not simulate individual weather events. This "oversmoothing" simulation produces 60% more ozone than observed or otherwise modeled. Qualitatively similar overprediction is suggested for all models which average significantly in time or space, as all need do. Clearly, simulating these O3 levels will depend sensitively on knowledge of the timing of emissions and transport.

  2. Validation of MIPAS IMK/IAA V5R_O3_224 ozone profiles

    Directory of Open Access Journals (Sweden)

    A. Laeng

    2014-11-01

    Full Text Available We present the results of an extensive validation program of the most recent version of ozone vertical profiles retrieved with the IMK/IAA (Institute for Meteorology and Climate Research/Instituto de Astrofísica de Andalucía MIPAS (Michelson Interferometer for Passive Atmospheric Sounding research level 2 processor from version 5 spectral level 1 data. The time period covered corresponds to the reduced spectral resolution period of the MIPAS instrument, i.e., January 2005–April 2012. The comparison with satellite instruments includes all post-2005 satellite limb and occultation sensors that have measured the vertical profiles of tropospheric and stratospheric ozone: ACE-FTS, GOMOS, HALOE, HIRDLS, MLS, OSIRIS, POAM, SAGE II, SCIAMACHY, SMILES, and SMR. In addition, balloon-borne MkIV solar occultation measurements and ground-based Umkehr measurements have been included, as well as two nadir sensors: IASI and SBUV. For each reference data set, bias determination and precision assessment are performed. Better agreement with reference instruments than for the previous data version, V5R_O3_220 (Laeng et al., 2014, is found: the known high bias around the ozone vmr (volume mixing ratio peak is significantly reduced and the vertical resolution at 35 km has been improved. The agreement with limb and solar occultation reference instruments that have a known small bias vs. ozonesondes is within 7% in the lower and middle stratosphere and 5% in the upper troposphere. Around the ozone vmr peak, the agreement with most of the satellite reference instruments is within 5%; this bias is as low as 3% for ACE-FTS, MLS, OSIRIS, POAM and SBUV.

  3. Effect of ozone concentration on silicon surface passivation by atomic layer deposited Al2O3

    International Nuclear Information System (INIS)

    Gastrow, Guillaume von; Li, Shuo; Putkonen, Matti; Laitinen, Mikko; Sajavaara, Timo; Savin, Hele

    2015-01-01

    Highlights: • The ALD Al 2 O 3 passivation quality can be controlled by the ozone concentration. • Ozone concentration affects the Si/Al 2 O 3 interface charge and defect density. • A surface recombination velocity of 7 cm/s is reached combining ozone and water ALD. • Carbon and hydrogen concentrations correlate with the surface passivation quality. - Abstract: We study the impact of ozone-based Al 2 O 3 Atomic Layer Deposition (ALD) on the surface passivation quality of crystalline silicon. We show that the passivation quality strongly depends on the ozone concentration: the higher ozone concentration results in lower interface defect density and thereby improved passivation. In contrast to previous studies, our results reveal that too high interface hydrogen content can be detrimental to the passivation. The interface hydrogen concentration can be optimized by the ozone-based process; however, the use of pure ozone increases the harmful carbon concentration in the film. Here we demonstrate that low carbon and optimal hydrogen concentration can be achieved by a single process combining the water- and ozone-based reactions. This process results in an interface defect density of 2 × 10 11 eV −1 cm −2 , and maximum surface recombination velocities of 7.1 cm/s and 10 cm/s, after annealing and after an additional firing at 800 °C, respectively. In addition, our results suggest that the effective oxide charge density can be optimized in a simple way by varying the ozone concentration and by injecting water to the ozone process.

  4. Inhaled ozone (O3)-induces changes in serum metabolomic and liver transcriptomic profiles in rats

    International Nuclear Information System (INIS)

    Miller, Desinia B.; Karoly, Edward D.; Jones, Jan C.; Ward, William O.; Vallanat, Beena D.; Andrews, Debora L.; Schladweiler, Mette C.; Snow, Samantha J.; Bass, Virginia L.; Richards, Judy E.; Ghio, Andrew J.; Cascio, Wayne E.; Ledbetter, Allen D.; Kodavanti, Urmila P.

    2015-01-01

    Air pollution has been linked to increased incidence of diabetes. Recently, we showed that ozone (O 3 ) induces glucose intolerance, and increases serum leptin and epinephrine in Brown Norway rats. In this study, we hypothesized that O 3 exposure will cause systemic changes in metabolic homeostasis and that serum metabolomic and liver transcriptomic profiling will provide mechanistic insights. In the first experiment, male Wistar Kyoto (WKY) rats were exposed to filtered air (FA) or O 3 at 0.25, 0.50, or 1.0 ppm, 6 h/day for two days to establish concentration-related effects on glucose tolerance and lung injury. In a second experiment, rats were exposed to FA or 1.0 ppm O 3 , 6 h/day for either one or two consecutive days, and systemic metabolic responses were determined immediately after or 18 h post-exposure. O 3 increased serum glucose and leptin on day 1. Glucose intolerance persisted through two days of exposure but reversed 18 h-post second exposure. O 3 increased circulating metabolites of glycolysis, long-chain free fatty acids, branched-chain amino acids and cholesterol, while 1,5-anhydroglucitol, bile acids and metabolites of TCA cycle were decreased, indicating impaired glycemic control, proteolysis and lipolysis. Liver gene expression increased for markers of glycolysis, TCA cycle and gluconeogenesis, and decreased for markers of steroid and fat biosynthesis. Genes involved in apoptosis and mitochondrial function were also impacted by O 3 . In conclusion, short-term O 3 exposure induces global metabolic derangement involving glucose, lipid, and amino acid metabolism, typical of a stress–response. It remains to be examined if these alterations contribute to insulin resistance upon chronic exposure. - Highlights: • Ozone, an ubiquitous air pollutant induces acute systemic metabolic derangement. • Serum metabolomic approach provides novel insights in ozone-induced changes. • Ozone exposure induces leptinemia, hyperglycemia, and glucose intolerance

  5. Detoxification and repair process of ozone injury: From O3 uptake to gene expression adjustment

    International Nuclear Information System (INIS)

    Castagna, A.; Ranieri, A.

    2009-01-01

    Plants react to O 3 threat by setting up a variety of defensive strategies involving the co-ordinated modulation of stress perception, signalling and metabolic responses. Although stomata largely controls O 3 uptake, differences in O 3 tolerance cannot always be ascribed to changes in stomatal conductance but cell protective and repair processes should be taken into account. O 3 -driven ROS production in the apoplast induces a secondary, active, self-propagating generation of ROS, whose levels must be finely tuned, by many enzymatic and non-enzymatic antioxidant systems, to induce gene activation without determining uncontrolled cell death. Additional signalling molecules, as ethylene, jasmonic and salicylic acid are also crucial to determine the spreading and the containment of leaf lesions. The main recent results obtained on O 3 sensing, signal transduction, ROS formation and detoxification mechanisms are here discussed. - A dissection of the complex network of interacting mechanisms which determine the cell fate under ozone stress.

  6. SPIROMETRIC RESPONSE TO OZONE (O3) IN YOUNG ADULTS AS A FUNCTION OF BODY MAASS INDEX (BMI)

    Science.gov (United States)

    Recent studies in murine models of obesity have shown enhanced responsiveness to ozone in obese vs. lean mice. To assess whether previous human ozone exposure data from our laboratory support an effect of BMI on the spirometric response to ozone we analyzed the post-O3 percent de...

  7. Synthesis of MoO3 nanoparticles for azo dye degradation by catalytic ozonation

    International Nuclear Information System (INIS)

    Manivel, Arumugam; Lee, Gang-Juan; Chen, Chin-Yi; Chen, Jing-Heng; Ma, Shih-Hsin; Horng, Tzzy-Leng; Wu, Jerry J.

    2015-01-01

    Highlights: • Synthesis of one-dimensional MoO 3 nanostructures using hydrothermal, microwave, and sonochemical methods. • Sonochemical synthesized MoO 3 presents the best efficiency for the dye removal by catalytic ozonation. • Efficient environmental remediation process. - Abstract: One-dimensional molybdenum trioxide nanostructures were prepared in three different approaches, including thermal, microwave, and sonochemical methods. The physicochemical properties of the obtained MoO 3 nanoparticles were investigated by diffused reflectance spectroscopy, X-ray diffraction analysis, field emission scanning electron microscopy, high resolution transmission electron microscopy, and Brunauer–Emmett–Teller surface area analysis. Among the methods as investigated, sonochemical synthesis gave well-dispersed fine MoO 3 nanoparticles compared with the other approaches. All the synthesized MoO 3 nanostructures were examined for the catalytic ozonation to degrade azo dye in aqueous environment. Different performances were obtained for the catalyst prepared in different methods and the catalytic efficiencies were found to be the order of sonochemical, microwave, and then thermal methods. The sonochemical MoO 3 catalyst allowed the total dye removal within 20 min and its good performance was justified according to their higher surface area with higher number of active sites that provide effective dye interaction for better degradation

  8. Sex differences in diet and inhaled ozone (O3) induced metabolic impairment

    Science.gov (United States)

    APS 2015 abstract Sex differences in diet and inhaled ozone (O3) induced metabolic impairment U.P. Kodavanti1, V.L. Bass2, M.C. Schladweiler1, C.J. Gordon3, K.A. Jarema1, P. Phillips1, A.D. Ledbetter1, D.B. Miller4, S. Snow5, J.E. Richards1. 1 EPHD, NHEERL, USEPA, Research Triang...

  9. Inhaled ozone (O3)-induces changes in serum metabolomic and liver transcriptomic profiles in rats☆

    Science.gov (United States)

    Miller, Desinia B.; Karoly, Edward D.; Jones, Jan C.; Ward, William O.; Vallanat, Beena D.; Andrews, Debora L.; Schladweiler, Mette C.; Snow, Samantha J.; Bass, Virginia L.; Richards, Judy E.; Ghio, Andrew J.; Cascio, Wayne E.; Ledbetter, Allen D.; Kodavanti, Urmila P.

    2016-01-01

    Air pollution has been linked to increased incidence of diabetes. Recently, we showed that ozone (O3) induces glucose intolerance, and increases serum leptin and epinephrine in Brown Norway rats. In this study, we hypothesized that O3 exposure will cause systemic changes in metabolic homeostasis and that serum metabolomic and liver transcriptomic profiling will provide mechanistic insights. In the first experiment, male Wistar Kyoto (WKY) rats were exposed to filtered air (FA) or O3 at 0.25, 0.50, or 1.0 ppm, 6 h/day for two days to establish concentration-related effects on glucose tolerance and lung injury. In a second experiment, rats were exposed to FA or 1.0 ppm O3, 6 h/day for either one or two consecutive days, and systemic metabolic responses were determined immediately after or 18 h post-exposure. O3 increased serum glucose and leptin on day 1. Glucose intolerance persisted through two days of exposure but reversed 18 h-post second exposure. O3 increased circulating metabolites of glycolysis, long-chain free fatty acids, branched-chain amino acids and cholesterol, while 1,5-anhydroglucitol, bile acids and metabolites of TCA cycle were decreased, indicating impaired glycemic control, proteolysis and lipolysis. Liver gene expression increased for markers of glycolysis, TCA cycle and gluconeogenesis, and decreased for markers of steroid and fat biosynthesis. Genes involved in apoptosis and mitochondrial function were also impacted by O3. In conclusion, short-term O3 exposure induces global metabolic derangement involving glucose, lipid, and amino acid metabolism, typical of a stress–response. It remains to be examined if these alterations contribute to insulin resistance upon chronic exposure. PMID:25838073

  10. What is Eating Ozone? Thermal Reactions between SO2 And O3: Implications for Icy Environments

    Science.gov (United States)

    Loeffler, Mark J.; Hudson, Reggie L.

    2016-01-01

    Laboratory studies are presented, showing for the first time that thermally driven reactions in solid H2O+SO2+O3 mixtures can occur below 150 K, with the main sulfur-containing product being bisulfate (HSO4(-)). Using a technique not previously applied to the low-temperature kinetics of either interstellar or solar system ice analogs, we estimate an activation energy of 32 kJ per mol for HSO4(-) formation. These results show that at the temperatures of the Jovian satellites, SO2 and O3 will efficiently react making detection of these molecules in the same vicinity unlikely. Our results also explain why O3 has not been detected on Callisto and why the SO2 concentration on Callisto appears to be highest on that world's leading hemisphere. Furthermore, our results predict that the SO2 concentration on Ganymede will be lowest in the trailing hemisphere, where the concentration of O3 is the highest. Our work suggests that thermal reactions in ices play a much more important role in surface and sub-surface chemistry than generally appreciated, possibly explaining the low abundance of sulfur-containing molecules and the lack of ozone observed in comets and interstellar ices.

  11. Yttrium aluminum garnet (YAG) obtained by rare-earth mixed oxide (RE2O3)

    International Nuclear Information System (INIS)

    Castro, D.F.; Daguano, J.K.M.F.; Rodrigues Junior, D.; Suzuki, P.A.; Silva, O.M.M.

    2010-01-01

    In this work, the substitution of commercial Y 2 O 3 by a rare earth mixed oxide, RE 2 O 3 , to form Yttrium aluminum Garnet-Y 3 Al 5 O 12 , was investigated. Al 2 O 3 :Y 2 O 3 and Al 2 O 3 :RE 2 O 3 powder-mixtures, in a molar ratio of 60:40, were milled and subsequently cold uniaxially-pressed. Compacts were sintered at 1000, 1400 or 1600 deg C, for 120 minutes. RE 2 O 3 oxide was characterized by high-resolution synchrotron X-ray diffraction (HRXRD) and compared to Y 2 O 3 . X-ray diffraction pattern of the RE 2 O 3 indicates a true solid solution formation. Rietveld refinement of the sintered YAG and (RE)AG reveled a similar crystal structure to the YAGs obtained by the use of Al 2 O 3 -Y 2 O 3 or Al 2 O 3 -RE 2 O 3 respectively. Microstructural analysis of both, YAG or (RE)AG, revealed similar grain sizes of about 2.5 μm besides mechanical properties, with hardness of 400HV and fracture toughness of 3.8MPa.m1/2. It could be, thus, demonstrated that pure Y 2 O 3 can be substituted by the rare-earth solid solution, RE 2 O 3 , in the formation YAGs, presenting similar microstructural and mechanical properties. (author)

  12. Degradation mechanism of alachlor during direct ozonation and O(3)/H(2)O(2) advanced oxidation process.

    Science.gov (United States)

    Qiang, Zhimin; Liu, Chao; Dong, Bingzhi; Zhang, Yalei

    2010-01-01

    The degradation of alachlor by direct ozonation and advanced oxidation process O(3)/H(2)O(2) was investigated in this study with focus on identification of degradation byproducts. The second-order reaction rate constant between ozone and alachlor was determined to be 2.5+/-0.1M(-1)s(-1) at pH 7.0 and 20 degrees C. Twelve and eight high-molecular-weight byproducts (with the benzene ring intact) from alachlor degradation were identified during direct ozonation and O(3)/H(2)O(2), respectively. The common degradation byproducts included N-(2,6-diethylphenyl)-methyleneamine, 8-ethyl-3,4-dihydro-quinoline, 8-ethyl-quinoline, 1-chloroacetyl-2-hydro-3-ketone-7-acetyl-indole, 2-chloro-2',6'-diacetyl-N-(methoxymethyl)acetanilide, 2-chloro-2'-acetyl-6'-ethyl-N-(methoxymethyl)-acetanilide, and two hydroxylated alachlor isomers. In direct ozonation, four more byproducts were also identified including 1-chloroacetyl-2,3-dihydro-7-ethyl-indole, 2-chloro-2',6'-ethyl-acetanilide, 2-chloro-2',6'-acetyl-acetanilide and 2-chloro-2'-ethyl-6'-acetyl-N-(methoxymethyl)-acetanilide. Degradation of alachlor by O(3) and O(3)/H(2)O(2) also led to the formation of low-molecular-weight byproducts including formic, acetic, propionic, monochloroacetic and oxalic acids as well as chloride ion (only detected in O(3)/H(2)O(2)). Nitrite and nitrate formation was negligible. Alachlor degradation occurred via oxidation of the arylethyl group, N-dealkylation, cyclization and cleavage of benzene ring. After O(3) or O(3)/H(2)O(2) treatment, the toxicity of alachlor solution examined by the Daphnia magna bioassay was slightly reduced. 2009 Elsevier Ltd. All rights reserved.

  13. OZONE PRODUCTION EFFICIENCY AND NOX DEPLETION IN AN URBAN PLUME: INTERPRETATION OF FIELD OBSERVATIONS AND IMPLICATIONS FOR EVALUATING O3-NOX-VOC SENSITIVITY

    Science.gov (United States)

    Ozone production efficiency (OPE) can be defined as the number of ozone (O3) molecules photochemically produced by a molecule of NOx (NO + NO2) before it is lost from the NOx - O3 cycle. Here, we consider observational and modeling techniques to evaluate various operational defi...

  14. Uptake of ozone to mixed sodium bromide/ citric acid solutions

    Science.gov (United States)

    Lee, Ming-Tao; Steimle, Emilie; Bartels-Rausch, Thorsten; Kato, Shunsuke; Lampimäki, Markus; Brown, Matthew; van Bokhoven, Jeroen; Nolting, Frithjof; Kleibert, Armin; Türler, Andreas; Ammann, Markus

    2013-04-01

    Sea-salt solution - air interfaces play an important role in the chemistry of the marine boundary layer. The reaction of ozone (O3) with bromide is of interest in the context of formation of photolabile halogens (Br2, BrCl) in the marine boundary layer. Recent experiments have suggested that the bromide oxidation rate is related to the surface concentration of bromide [1] and inversely related to the gas phase concentration of O3, an indication for a precursor mediated reaction at the surface [2]. So far, the effect of organics (such as those occurring at the ocean surface or in marine aerosols) on the reaction of O3 with bromide aerosols has not been studied yet. In our study we investigate the uptake kinetics of O3 to a mixed solution of sodium bromide (NaBr) and citric acid (CA), which represents highly oxidized organic compounds present in the environment, with a well-established coated wall flow tube technique, which leads to exposure of the film to O3 allowing the heterogeneous reactions to take place and the loss of O3 being measured. The results indicate that the uptake of O3 to the films with the higher bromide concentrations (0.34M and 4M) is independent of the gas phase concentration and roughly consistent with uptake limited by reaction in the bulk. For the lower bromide concentration (84mM), however, we observe a trend of the uptake coefficient to decrease with increasing O3 concentration, indicating an increasing importance of a surface reaction. In an attempt to constrain the kinetic data, we employed X-ray photoelectron spectroscopy (XPS) to get insight into the surface composition of the aqueous solution - air interface. Previous XPS studies have shown that halide ion concentrations are enhanced at the aqueous solution air interface [3-4], which likely promotes the surface reactions of bromide or iodide with O3. A first XPS study of ternary solutions of KI with butanol indicated the importance of specific interactions of the cation with the alcohol

  15. Synthesis, characterization and photocatalysis enhancement of Eu2O3-ZnO mixed oxide nanoparticles

    Science.gov (United States)

    Mohamed, W. S.; Abu-Dief, Ahmed M.

    2018-05-01

    Pure ZnO nanoparticles (NPs) and mixed Eu2O3 and ZnO NPs with different Eu2O3 ratios (5%, 10%, and 15%) were synthesized by a precipitation method under optimum conditions. The synthesized samples were characterized by means of X-ray diffraction, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy, transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, and UV-vis diffuse reflectance spectroscopy. The as-synthesized ZnO NPs exhibit high phase purity and a highly crystalline wurtzite ZnO structure. The mixed Eu2O3 and ZnO NPs exhibit a Eu2O3 zinc blend phase in addition to the wurtzite phase of pure ZnO, confirming the high purity and good crystallinity of the as-synthesized samples. The high-purity formation of ZnO and Eu2O3 phases was confirmed by FTIR and Raman spectra. Microstructural analysis by SEM and TEM confirmed the sphere-like morphology with different particle sizes (29-40 nm) of the as-synthesized samples. The photocatalytic activities of pure ZnO NPs and mixed Eu2O3 and ZnO NPs for the degradation of methylene blue were evaluated under ultraviolet (UV) irradiation. The results show that Eu2O3 plays an important role in the enhancement of the photocatalytic properties of ZnO NPs. We found that mixed 5% Eu2O3 and ZnO NPs exhibit the highest photocatalytic activity (degradation efficiency of 96.5% after 180 min of UV irradiation) as compared with pure ZnO NPs (degradation efficiency of 80.3% after 180 min of UV irradiation). The increased photocatalytic activity of the optimum mixed Eu2O3 and ZnO NPs is due to the high crystallinity, high surface area with small particle size, and narrow energy gap.

  16. Effects of UV-Ozone Treatment on Sensing Behaviours of EGFETs with Al2O3 Sensing Film

    Directory of Open Access Journals (Sweden)

    Cuiling Sun

    2017-12-01

    Full Text Available The effects of UV-ozone (UVO treatment on the sensing behaviours of extended-gate field-effect transistors (EGFETs that use Al2O3 as the sensing film have been investigated. The Al2O3 sensing films are UVO-treated with various duration times and the corresponding EGFET sensing behaviours, such as sensitivity, hysteresis, and long-term stability, are electrically evaluated under various measurement conditions. Physical analysis is also performed to characterize the surface conditions of the UVO-treated sensing films using X-ray photoelectron spectroscopy and atomic force microscopy. It is found that UVO treatment effectively reduces the buried sites in the Al2O3 sensing film and subsequently results in reduced hysteresis and improved long-term stability of EGFET. Meanwhile, the observed slightly smoother Al2O3 film surface post UVO treatment corresponds to decreased surface sites and slightly reduced pH sensitivity of the Al2O3 film. The sensitivity degradation is found to be monotonically correlated with the UVO treatment time. A treatment time of 10 min is found to yield an excellent performance trade-off: clearly improved long-term stability and reduced hysteresis at the cost of negligible sensitivity reduction. These results suggest that UVO treatment is a simple and facile method to improve the overall sensing performance of the EGFETs with an Al2O3 sensing film.

  17. Comparison of pharmaceutical abatement in various water matrices by conventional ozonation, peroxone (O3/H2O2), and an electro-peroxone process.

    Science.gov (United States)

    Wang, Huijiao; Zhan, Juhong; Yao, Weikun; Wang, Bin; Deng, Shubo; Huang, Jun; Yu, Gang; Wang, Yujue

    2018-03-01

    Pharmaceutical abatement in a groundwater (GW), surface water (SW), and secondary effluent (SE) by conventional ozonation, the conventional peroxone (O 3 /H 2 O 2 ), and the electro-peroxone (E-peroxone) processes was compared in batch tests. SE had significantly more fast-reacting dissolved organic matter (DOM) moieties than GW and SW. Therefore, O 3 decomposed much faster in SE than in GW and SW. At specific ozone doses of 0.5-1.5 mg O 3 /mg dissolved organic carbon (DOC), the application of O 3 /H 2 O 2 and E-peroxone process (by adding external H 2 O 2 stocks or in-situ generating H 2 O 2 from cathodic O 2 reduction during ozonation) similarly enhanced the OH yield from O 3 decomposition by ∼5-12% and 5-7% in GW and SW, respectively, compared to conventional ozonation. In contrast, due to the slower reaction kinetics of O 3 with H 2 O 2 than O 3 with fast-reacting DOM moieties, the addition or electro-generation of H 2 O 2 hardly increased the OH yield (<4% increases) in SE. Corresponding to the changes in the OH yields, the abatement efficiencies of ozone-resistant pharmaceuticals (ibuprofen and clofibric acid) increased evidently in GW (up to ∼14-18% at a specific ozone dose of 1.5 mg O 3 /mg DOC), moderately in SW (up to 6-10% at 0.5 mg O 3 /mg DOC), and negligibly in SE during the O 3 /H 2 O 2 and E-peroxone treatment compared to conventional ozonation. These results indicate that similar to the conventional O 3 /H 2 O 2 process, the E-peroxone process can more pronouncedly enhance O 3 transformation to OH, and thus increase the abatement efficiency of ozone-resistant pharmaceuticals in water matrices exerting relatively high ozone stability (e.g., groundwater and surface water with low DOM contents). Therefore, by installing electrodes in existing ozone reactors, the E-peroxone process may provide a convenient way to enhance pharmaceutical abatement in drinking water applications, where groundwater and surface water with low DOM contents are used as

  18. Urban Summertime Ozone of China: Peak Ozone Hour and Nighttime Mixing

    Science.gov (United States)

    Qu, H.; Wang, Y.; Zhang, R.

    2017-12-01

    We investigate the observed diurnal cycle of summertime ozone in the cities of China using a regional chemical transport model. The simulated daytime ozone is in general agreement with the observations. Model simulations suggest that the ozone peak time and peak concentration are a function of NOx (NO + NO2) and volatile organic compound (VOC) emissions. The differences between simulated and observed ozone peak time and peak concentration in some regions can be applied to understand biases in the emission inventories. For example, the VOCs emissions are underestimated over the Pearl River Delta (PRD) region, and either NOx emissions are underestimated or VOC emissions are overestimated over the Yangtze River Delta (YRD) regions. In contrast to the general good daytime ozone simulations, the simulated nighttime ozone has a large low bias of up to 40 ppbv. Nighttime ozone in urban areas is sensitive to the nocturnal boundary-layer mixing, and enhanced nighttime mixing (from the surface to 200-500 m) is necessary for the model to reproduce the observed level of ozone.

  19. Percutaneous intradiscal ozone (O3)-injection: an experimental study in canines

    International Nuclear Information System (INIS)

    Yu Zhijian; He Xiaofeng; Chen Yong; Zeng Qingle; Liu Chihong; Zhao Zhongqing; Lu Yong; Li Yanhao

    2002-01-01

    Objective: To evaluate the influence of ozone on normal nucleus pulpous and the safety of intradiscal ozone-injection for the treatment of herniated lumbar disc. Methods: Ozone was injected into selected lumbar discs (3 ml) and the para-spinal space (7 ml) with 20 G Chiba needle under fluoroscopy in five canines. The ozone concentration was 30 μg/ml and 50 μg/ml respectively. Two discs were selected for each concentration. Total 20 discs were injected. Three of the canines were given one-time ozone-injection and were sacrificed for pathology one week, one month and two months respectively after the procedure, and the other two canines were given two-time ozone-injection and were sacrificed one month and two months respectively after the procedure. The specimens including nucleus pulpous, end-plate, spinal cord, nerve root, and greater psoas muscle were observed macroscopically and microscopically. Results: No serious behavior abnormalities were observed in all animals. The atrophy of nucleus pulpous could be observed one month after ozone-injection due to significant reduction of water and extensive proliferation of collagenous fiber. The influence on the atrophy of nucleus pulpous demonstrated no apparent difference between the selected two concentrations of ozone, but was more apparent with two-time injection than that with one-time injection. The end-plates increased slightly or moderately in thickness in 16 simples and a few of fibers in greater psoas muscle suffered slight atrophy in 5 samples. Conclusion: It is suggested that percutaneous intradiscal ozone-injection is a safe method, and can cause gradual atrophy of nucleus pulpous. This study provides the evidence of the feasibility and value of this procedure's application in clinics

  20. O3, CH4, CO2, CO, NO2 and NMHC aircraft measurements in the Uinta Basin oil and gas region under low and high ozone conditions in winter 2012 and 2013

    Directory of Open Access Journals (Sweden)

    S. J. Oltmans

    2016-10-01

    Full Text Available Abstract Instrumented aircraft measuring air composition in the Uinta Basin, Utah, during February 2012 and January-February 2013 documented dramatically different atmospheric ozone (O3 mole fractions. In 2012 O3 remained near levels of ∼40 ppb in a well-mixed 500–1000 m deep boundary layer while in 2013, O3 mole fractions >140 ppb were measured in a shallow (∼200 m boundary layer. In contrast to 2012 when mole fractions of emissions from oil and gas production such as methane (CH4, non-methane hydrocarbons (NMHCs and combustion products such as carbon dioxide (CO2 were moderately elevated, in winter 2013 very high mole fractions were observed. Snow cover in 2013 helped produce and maintain strong temperature inversions that capped a shallow cold pool layer. In 2012, O3 and CH4 and associated NMHCs mole fractions were not closely related. In 2013, O3 mole fractions were correlated with CH4 and a suite of NMHCs identifying the gas field as the primary source of the O3 precursor NMHC emissions. In 2013 there was a strong positive correlation between CH4 and CO2 suggesting combustion from oil and natural gas processing activities. The presence of O3 precursor NMHCs through the depth of the boundary layer in 2013 led to O3 production throughout the layer. In 2013, O3 mole fractions increased over the course of the week-long episodes indicating O3 photochemical production was larger than dilution and deposition rates, while CH4 mole fractions began to level off after 3 days indicative of some air being mixed out of the boundary layer. The plume of a coal-fired power plant located east of the main gas field was not an important contributor to O3 or O3 precursors in the boundary layer in 2013.

  1. Comparison of Efficiencies and Mechanisms of Catalytic Ozonation of Recalcitrant Petroleum Refinery Wastewater by Ce, Mg, and Ce-Mg Oxides Loaded Al2O3

    Directory of Open Access Journals (Sweden)

    Chunmao Chen

    2017-02-01

    Full Text Available The use of catalytic ozonation processes (COPs for the advanced treatment of recalcitrant petroleum refinery wastewater (RPRW is rapidly expanding. In this study, magnesium (Mg, cerium (Ce, and Mg-Ce oxide-loaded alumina (Al2O3 were developed as cost efficient catalysts for ozonation treatment of RPRW, having performance metrics that meet new discharge standards. Interactions between the metal oxides and the Al2O3 support influence the catalytic properties, as well as the efficiency and mechanism. Mg-Ce/Al2O3 (Mg-Ce/Al2O3-COP reduced the chemical oxygen demand by 4.7%, 4.1%, 6.0%, and 17.5% relative to Mg/Al2O3-COP, Ce/Al2O3-COP, Al2O3-COP, and single ozonation, respectively. The loaded composite metal oxides significantly increased the hydroxyl radical-mediated oxidation. Surface hydroxyl groups (–OHs are the dominant catalytic active sites on Al2O3. These active surface –OHs along with the deposited metal oxides (Mg2+ and/or Ce4+ increased the catalytic activity. The Mg-Ce/Al2O3 catalyst can be economically produced, has high efficiency, and is stable under acidic and alkaline conditions.

  2. Temporal multiscaling characteristics of particulate matter PM 10 and ground-level ozone O3 concentrations in Caribbean region

    Science.gov (United States)

    Plocoste, Thomas; Calif, Rudy; Jacoby-Koaly, Sandra

    2017-11-01

    A good knowledge of the intermittency of atmospheric pollutants is crucial for air pollution management. We consider here particulate matter PM 10 and ground-level ozone O3 time series in Guadeloupe archipelago which experiments a tropical and humid climate in the Caribbean zone. The aim of this paper is to study their scaling statistics in the framework of fully developed turbulence and Kolmogorov's theory. Firstly, we estimate their Fourier power spectra and consider their scaling properties in the physical space. The power spectra computed follows a power law behavior for both considered pollutants. Thereafter we study the scaling behavior of PM 10 and O3 time series. Contrary to numerous studies where the multifractal detrended fluctuation analysis is frequently applied, here, the classical structure function analysis is used to extract the scaling exponent or multifractal spectrum ζ(q) ; this function provides a full characterization of a process at all intensities and all scales. The obtained results show that PM 10 and O3 possess intermittent and multifractal properties. The singularity spectrum MS(α) also confirms both pollutants multifractal features. The originality of this work comes from a statistical modeling performed on ζ(q) and MS(α) by a lognormal model to compute the intermittency parameter μ. By contrast with PM 10 which mainly depends on puffs of Saharan dust (synoptic-scale), O3 is more intermittent due to variability of its local precursors. The results presented in this paper can help to better understand the mechanisms governing the dynamics of PM 10 and O3 in Caribbean islands context.

  3. OZONE PRECURSORS, SOURCE REGIONS, AND O(3) FORMATION DURING THE TEXAQS 2000 STUDY

    International Nuclear Information System (INIS)

    DAUM, P.H.; KLEINMAN, L.I.; BRECHTEL, F.; LEE, Y.N.; NUNNERMACKER, L.J.; SPRINGSTON, S.R.; WEINSTEIN-LLOYD, J.

    2001-01-01

    The DOE G-1 aircraft made flights on 14 days during the TexAQS 2000 study. On 7 of those days, the aircraft encountered highly localized plumes exhibiting O(sub 3) concentrations in excess of 150 ppb; on some days, peak O(sub 3) concentrations were in excess of 200 ppb. These ozone plumes were rapidly formed with an efficiency (O(sub 3) per NO(sub x) molecule consumed) much higher (7-20) than observed in other urban areas (3-4), and were frequently associated with high concentrations ( and gt;20 ppb) of secondary hydrocarbon species such as formaldehyde. Back trajectory analysis showed that the plumes were invariably associated with emissions from one or more of the large industrial complexes clustered about the Houston Ship Channel and Galveston Bay. Very high hydrocarbon reactivities were found in the vicinity of these facilities during morning flights. These hydrocarbon reactivities, in combination with local NO(sub x) emissions, were large enough to support instantaneous O(sub 3) production rates as high as 200 ppb/h. It is hypothesized that the combination of nitrogen oxides and hydrocarbon emissions emanating from this complex of industries provided a potent mixture of chemicals that caused the rapid formation of very high concentrations of ozone which, depending on the prevailing meteorology, could cause exceedance of the NAAQS ozone standard anywhere in the Houston metropolitan area

  4. A method for the estimation of the enthalpy of formation of mixed oxides in Al2O3-Ln2O3 systems

    International Nuclear Information System (INIS)

    Vonka, P.; Leitner, J.

    2009-01-01

    A new method is proposed for the estimation of the enthalpy of formation (Δ ox H) of various Al 2 O 3 -Ln 2 O 3 mixed oxides from the constituent binary oxides. Our method is based on Pauling's concept of electronegativity and, in particular, on the relation between the enthalpy of formation of a binary oxide and the difference between the electronegativities of the oxide-forming element and oxygen. This relation is extended to mixed oxides with a simple formula given for the calculation of Δ ox H. The parameters of this equation were fitted using published experimental values of Δ ox H derived from high-temperature oxide melt solution calorimetry. Using our proposed method, we obtained a standard deviation (σ) of 4.87 kJ mol -1 for this data set. Taking into account regularities within the lanthanide series, we then estimated the Δ ox H values for Al 2 O 3 -Ln 2 O 3 mixed oxides. The values estimated using our method were compared with those obtained by Aronson's and Zhuang's empirical methods, both of which give significantly poorer results. - Graphical abstract: Enthalpy of formation of Ln-Al-O oxides from the constituent binary ones.

  5. Removal of diethyl phthalate from water solution by adsorption, photo-oxidation, ozonation and advanced oxidation process (UV/H2O2, O3/H2O2 and O3/activated carbon)

    International Nuclear Information System (INIS)

    Medellin-Castillo, Nahum A.; Ocampo-Pérez, Raúl; Leyva-Ramos, Roberto; Sanchez-Polo, Manuel; Rivera-Utrilla, José; Méndez-Díaz, José D.

    2013-01-01

    The objective of this work was to compare the effectiveness of conventional technologies (adsorption on activated carbon, AC, and ozonation) and technologies based on advanced oxidation processes, AOPs, (UV/H 2 O 2 , O 3 /AC, O 3 /H 2 O 2 ) to remove phthalates from aqueous solution (ultrapure water, surface water and wastewater). Diethyl phthalate (DEP) was chosen as a model pollutant because of its high water solubility (1080 mg/L at 293 K) and toxicity. The activated carbons showed a high adsorption capacity to adsorb DEP in aqueous solution (up to 858 mg/g), besides the adsorption mechanism of DEP on activated carbon is governed by dispersive interactions between π electrons of its aromatic ring with π electrons of the carbon graphene planes. The photodegration process showed that the pH solution does not significantly affect the degradation kinetics of DEP and the first-order kinetic model satisfactorily fitted the experimental data. It was observed that the rate of decomposition of DEP with the O 3 /H 2 O 2 and O 3 /AC systems is faster than that with only O 3 . The technologies based on AOPs (UV/H 2 O 2 , O 3 /H 2 O 2 , O 3 /AC) significantly improve the degradation of DEP compared to conventional technologies (O 3 , UV). AC adsorption, UV/H 2 O 2 , O 3 /H 2 O 2 , and O 3 /AC showed a high yield to remove DEP; however, the disadvantage of AC adsorption is its much longer time to reach maximum removal. The best system to treat water (ultrapure and natural) polluted with DEP is the O 3 /AC one since it achieved the highest DEP degradation and TOC removal, as well as the lower water toxicity. -- Highlights: ► Activated carbons showed a high adsorption capacity (up to 858 mg/g) to remove DEP. ► The pH solution did not significantly affect the photodegradation kinetics of DEP. ► The O 3 /H 2 O 2 and O 3 /AC systems were more efficient than O 3 to degrade DEP. ► The generation of HO • from O 3 was enhanced by ACs, mainly by those of basic nature. ► O

  6. Acute Ozone (O3) Exposure Accelerates Diet-Induced Pulmonary Injury and Metabolic Alterations in a Rat Model of Type II Diabetes

    Science.gov (United States)

    Abstract for Society of Toxicology, March 22-25, 2015, San Diego, CAAcute Ozone (O3) Exposure Accelerates Diet-Induced Pulmonary Injury and Metabolic Alterations in a Rat Model of Type II DiabetesS.J. Snow1,3, D. Miller2, V. Bass2, M. Schladweiler3, A. Ledbetter3, J. Richards3, C...

  7. Band-Bending of Ga-Polar GaN Interfaced with Al2O3 through Ultraviolet/Ozone Treatment.

    Science.gov (United States)

    Kim, Kwangeun; Ryu, Jae Ha; Kim, Jisoo; Cho, Sang June; Liu, Dong; Park, Jeongpil; Lee, In-Kyu; Moody, Baxter; Zhou, Weidong; Albrecht, John; Ma, Zhenqiang

    2017-05-24

    Understanding the band bending at the interface of GaN/dielectric under different surface treatment conditions is critically important for device design, device performance, and device reliability. The effects of ultraviolet/ozone (UV/O 3 ) treatment of the GaN surface on the energy band bending of atomic-layer-deposition (ALD) Al 2 O 3 coated Ga-polar GaN were studied. The UV/O 3 treatment and post-ALD anneal can be used to effectively vary the band bending, the valence band offset, conduction band offset, and the interface dipole at the Al 2 O 3 /GaN interfaces. The UV/O 3 treatment increases the surface energy of the Ga-polar GaN, improves the uniformity of Al 2 O 3 deposition, and changes the amount of trapped charges in the ALD layer. The positively charged surface states formed by the UV/O 3 treatment-induced surface factors externally screen the effect of polarization charges in the GaN, in effect, determining the eventual energy band bending at the Al 2 O 3 /GaN interfaces. An optimal UV/O 3 treatment condition also exists for realizing the "best" interface conditions. The study of UV/O 3 treatment effect on the band alignments at the dielectric/III-nitride interfaces will be valuable for applications of transistors, light-emitting diodes, and photovoltaics.

  8. Dynamics of nitrogen oxides and ozone above and within a mixed hardwood forest in northern Michigan

    Directory of Open Access Journals (Sweden)

    B. Seok

    2013-08-01

    Full Text Available The dynamic behavior of nitrogen oxides (NOx = NO + NO2 and ozone (O3 above and within the canopy at the University of Michigan Biological Station AmeriFlux (UMBS Flux site was investigated by continuous multi-height vertical gradient measurements during the summer and the fall of 2008. A daily maximum in nitric oxide (NO mixing ratios was consistently observed during the morning hours between 06:00 and 09:00 EST above the canopy. Daily NO maxima ranged between 0.1 and 2 ppbv (with a median of 0.3 ppbv, which were 2 to 20 times above the atmospheric background. The sources and causes of the morning NO maximum were evaluated using NOx and O3 measurements and synoptic and micrometeorological data. Numerical simulations with a multi-layer canopy-exchange model were done to further support this analysis. The observations indicated that the morning NO maximum was caused by the photolysis of NO2 from non-local air masses, which were transported into the canopy from aloft during the morning breakup of the nocturnal boundary layer. The analysis of simulated process tendencies indicated that the downward turbulent transport of NOx into the canopy compensates for the removal of NOx through chemistry and dry deposition. The sensitivity of NOx and O3 concentrations to soil and foliage NOx emissions was also assessed with the model. Uncertainties associated with the emissions of NOx from the soil or from leaf-surface nitrate photolysis did not explain the observed diurnal behavior in NOx (and O3 and, in particular, the morning peak in NOx mixing ratios. However, a ~30% increase in early morning NOx and NO peak mixing ratios was simulated when a foliage exchange NO2 compensation point was considered. This increase suggests the potential importance of leaf-level, bidirectional exchange of NO2 in understanding the observed temporal variability in NOx at UMBS.

  9. Insights into the Electronic Structure of Ozone and Sulfur Dioxide from Generalized Valence Bond Theory: Bonding in O3 and SO2.

    Science.gov (United States)

    Takeshita, Tyler Y; Lindquist, Beth A; Dunning, Thom H

    2015-07-16

    There are many well-known differences in the physical and chemical properties of ozone (O3) and sulfur dioxide (SO2). O3 has longer and weaker bonds than O2, whereas SO2 has shorter and stronger bonds than SO. The O-O2 bond is dramatically weaker than the O-SO bond, and the singlet-triplet gap in SO2 is more than double that in O3. In addition, O3 is a very reactive species, while SO2 is far less so. These disparities have been attributed to variations in the amount of diradical character in the two molecules. In this work, we use generalized valence bond (GVB) theory to characterize the electronic structure of ozone and sulfur dioxide, showing O3 does indeed possess significant diradical character, whereas SO2 is effectively a closed shell molecule. The GVB results provide critical insights into the genesis of the observed difference in these two isoelectronic species. SO2 possesses a recoupled pair bond dyad in the a"(π) system, resulting in SO double bonds. The π system of O3, on the other hand, has a lone pair on the central oxygen atom plus a pair of electrons in orbitals on the terminal oxygen atoms that give rise to a relatively weak π interaction.

  10. OMI/Aura Ozone (O3) Total Column 1-Orbit L2 Swath 13x24 km V003 NRT

    Data.gov (United States)

    National Aeronautics and Space Administration — The OMI/Aura Level-2 Total Column Ozone Data Product OMTO3 Near Real Time data is made available from the OMI SIPS NASA for the public access. The Ozone Monitoring...

  11. Mixed Matrix Carbon Molecular Sieve and Alumina (CMS-Al2O3) Membranes.

    Science.gov (United States)

    Song, Yingjun; Wang, David K; Birkett, Greg; Martens, Wayde; Duke, Mikel C; Smart, Simon; Diniz da Costa, João C

    2016-07-29

    This work shows mixed matrix inorganic membranes prepared by the vacuum-assisted impregnation method, where phenolic resin precursors filled the pore of α-alumina substrates. Upon carbonisation, the phenolic resin decomposed into several fragments derived from the backbone of the resin matrix. The final stages of decomposition (>650 °C) led to a formation of carbon molecular sieve (CMS) structures, reaching the lowest average pore sizes of ~5 Å at carbonisation temperatures of 700 °C. The combination of vacuum-assisted impregnation and carbonisation led to the formation of mixed matrix of CMS and α-alumina particles (CMS-Al2O3) in a single membrane. These membranes were tested for pervaporative desalination and gave very high water fluxes of up to 25 kg m(-2) h(-1) for seawater (NaCl 3.5 wt%) at 75 °C. Salt rejection was also very high varying between 93-99% depending on temperature and feed salt concentration. Interestingly, the water fluxes remained almost constant and were not affected as feed salt concentration increased from 0.3, 1 and 3.5 wt%.

  12. Comparative studies on the degradation of aqueous 2-chloroaniline by O3 as well as by UV-light and γ-rays in the presence of ozone

    International Nuclear Information System (INIS)

    Winarno, Ermin Katrin; Getoff, Nikola

    2002-01-01

    Chlorinated anilines are frequently used in the industry as starting materials for chemical synthesis. Hence, such compounds can occur as pollutants in waste waters. In the present study 2-chloroaniline (2-ClA) was selected as the representative model for this class of compounds. The objectives of the work concerned 2-ClA degradation in water by ozonation as well as by photolysis (UV-light of 254 nm) and radiolysis (γ-rays) in the presence of ozone. In all three series of experiments, the same amount ozone was passed through the 2-ClA solution at pH=6.9 during the treatment. The degradation process was followed as a function of the action time and by chemical analysis of the major products. Based on the actinometry of the monochromatic UV-light (λ=254 nm, E=4.88 eV/hν) and dosimetry data, the obtained degradation yields and products by the three series of experiments are compared. It was established that the synergic effect of γ-rays and ozone leads to the most efficient degradation of 2-ClA, followed by UV/O 3 -combination and pure ozonation. The same sequence is also observed by cleavage of the Cl-atom. The formation of the other major products: ammonia, formaldehyde, oxalic acid and the total yield of carboxylic acids depend on the media. Probable reaction mechanisms are suggested for explanation of the experimental results

  13. OMI/Aura Ozone (O3) Total Column 1-Orbit L2 Swath 13x24 km V003

    Data.gov (United States)

    National Aeronautics and Space Administration — The OMI/Aura Level-2 Total Column Ozone Data Product OMTO3 (Version 003) is made available (http://disc.gsfc.nasa.gov/Aura/OMI/omto3_v003.shtml) from the NASA...

  14. Dry deposition of O_3 and SO_2 estimated from gradient measurements above a temperate mixed forest

    International Nuclear Information System (INIS)

    Wu, Zhiyong; Staebler, Ralf; Vet, Robert; Zhang, Leiming

    2016-01-01

    Vertical profiles of O_3 and SO_2 concentrations were monitored at the Borden Forest site in southern Ontario, Canada from May 2008 to April 2013. A modified gradient method (MGM) was applied to estimate O_3 and SO_2 dry deposition fluxes using concentration gradients between a level above and a level below the canopy top. The calculated five-year mean (median) dry deposition velocity (V_d) were 0.35 (0.27) and 0.59 (0.54) cm s"−"1, respectively, for O_3 and SO_2. V_d(O_3) exhibited large seasonal variations with the highest monthly mean of 0.68 cm s"−"1 in August and the lowest of 0.09 cm s"−"1 in February. In contrast, seasonal variations of V_d(SO_2) were smaller with monthly means ranging from 0.48 (May) to 0.81 cm s"−"1 (December). The different seasonal variations between O_3 and SO_2 were caused by the enhanced SO_2 uptake by snow surfaces in winter. Diurnal variations showed a peak value of V_d in early morning in summer months for both O_3 and SO_2. Canopy wetness increased the non-stomatal uptake of O_3 while decreasing the stomatal uptake. This also applied to SO_2, but additional factors such as surface acidity also played an important role on the overall uptake. - Highlights: • Application of a modified gradient-method for quantifying dry deposition is demonstrated. • A five-year dry deposition database is developed for O_3 and SO_2 over a mixed forest. • Canopy wetness enhances non-stomatal O_3 uptake while inhibits stomatal uptake. • High surface acidity reduces SO_2 dry deposition. - Capsule: A five-year dataset of O_3 and SO_2 dry deposition velocities was generated from concentration gradient measurement data using a modified gradient method.

  15. Explanation for the temperature dependence of plasma frequencies in SrTiO3 using mixed-polaron theory

    International Nuclear Information System (INIS)

    Eagles, D.M.; Georgiev, M.; Petrova, P.C.

    1996-01-01

    A theory of mixed polarons is used to interpret the published experimental results of Gervais et al. on temperature-dependent plasma frequencies in Nb-doped SrTiO 3 . For given polaron masses before mixing, the appropriate average mixed-polaron mass at any temperature T depends on two quantities, δ and b, which are measures of the separation between the bottoms of large and nearly small polaron bands before mixing and of a mixing matrix element; δ and b are assumed to have arbitrary linear dependences on T, probably related to a T dependence of the bare mass, and a term quadratic in T is included in δ, determined from the T dependence of large-polaron binding energies. Including a constraint on the ratio δ/|b| at low T from known masses from specific-heat data, satisfactory agreement is obtained with masses determined from plasma frequencies. This gives further support for the theory of mixed polarons in SrTiO 3 in addition to that already published. copyright 1996 The American Physical Society

  16. Efficiency of Ciprofloxacin (CIP Removal from Pharmaceutical Effluents Using the Ozone/Persulfate(O3/PS Process

    Directory of Open Access Journals (Sweden)

    Alirezi Rahmani

    2016-03-01

    Full Text Available A newly emerging environmental problem is the discharge of pharmaceutical effluents containing antibiotic compounds. Compared to common methods, the ozone/persulfate process is a novel measure for treating persistent pollutants. This process is highly efficient in removing pollutants by using the free radicals of sulfates as powerful oxidants. In this study, a semi-continuous reactor with a useful volume of 1 L was used to evaluate the performance of the ozone/persulfate process in treating the ciprofloxacin antibiotic at concentrations from 10 to 100 mg/L in the presence of 0 to 15 mM of persulfate in 30 min. The results showed that under the optimized operating conditions of pH = 3, persulfate dose = 10 mM, ozone dose = 1 g/h, and an initial antibiotic concentration of 10 mg/L, this method was capable of removing 96% of the contaminant. Moreover, the efficiency of the process was found to be a function of experimental conditions. Based on the results of this study, it may be concluded that the ozone/persulfate process can be considered as an appropriate process for treating persistent and non-biodegradable pollutants.

  17. OMI/Aura Ozone (O3) Profile 1-Orbit L2 Swath 13x48km V003

    Data.gov (United States)

    National Aeronautics and Space Administration — The OMI/Aura Level-2 Ozone Profile data product OMO3PR (Version 003) is now available ( http://disc.gsfc.nasa.gov/Aura/OMI/omo3pr_v003.shtml ) from the NASA Goddard...

  18. Assessment of Ga2O3 technology

    Science.gov (United States)

    2016-09-15

    this article has given the emerging technology of GaN a valuable push in term of encouragement to stay with it while the painful technology development...Ga2O3 α-Ga2O3 β-Ga2O3 β-Ga2O3 β-Ga2O3 poly - Ga2O3 β-Ga2O3 Epi-layer Growth Method MBE (ozone) MBE (ozone) MBE (ozone) Mist-CVD MBE (ozone... pains to treat the wafer surface with BCl3 RIE to create charges at the interface. The gate contact was also barely a Schottky contact evidenced by

  19. Application of silver vanadate solid electrolyte mixed with Al2O3 in Ag/I2 batteries

    International Nuclear Information System (INIS)

    Abdul Karim bin Arof.

    1993-01-01

    The glassy silver vanadate electrolyte of the composition 70AgI-20Ag20-10V205 was added with Al2O3 in varying percentages to form several physical mixtures that will be used to fabricate several solid stare electrochemical cells in order to study the influence of the dispersoid on the silver vanadate cells internal resistance and lifetime of the silver vanadate cells. The internal resistance of the cells increased on addition of Al2O3 but the cell with the mixture of Al2O3 and electrolyte in the weight ratio 2:3 has the lowest internal resistance. The increase in the internal resistance of the cell is attributed to the insulating nature of Al2O3. Although the internal resistance of the cell increased, it was observed that the time needed for the cell potential to drop to 400 mV at a constant discharge current of 30 uA increase in discharge lifetime was also observed when a second cell of the same mixed electrolyte constituents was discharged at 40 uA current drain. We have attempted to explain the increase in discharge lifetime in terms of the space charge layer developed between the insulator and the ionic conductor which results in a dipole region across which a potential difference is developed. This potential difference is responsible in prolonging the discharge lifetime of the cells

  20. Ozone distribution and phytotoxic potential in mixed conifer forests of the San Bernardino Mountains, southern California

    International Nuclear Information System (INIS)

    Bytnerowicz, Andrzej; Arbaugh, Michael; Schilling, Susan; Fraczek, Witold; Alexander, Diane

    2008-01-01

    In the San Bernardino Mountains of southern California, ozone (O 3 ) concentrations have been elevated since the 1950s with peaks reaching 600 ppb and summer seasonal averages >100 ppb in the 1970s. During that period increased mortality of ponderosa and Jeffrey pines occurred. Between the late 1970s and late1990s, O 3 concentrations decreased with peaks ∼180 ppb and ∼60 ppb seasonal averages. However, since the late 1990s concentrations have not changed. Monitoring during summers of 2002-2006 showed that O 3 concentrations (2-week averages) for individual years were much higher in western sites (58-69 ppb) than eastern sites (44-50 ppb). Potential O 3 phytotoxicity measured as various exposure indices was very high, reaching SUM00 - 173.5 ppm h, SUM60 - 112.7 ppm h, W126 - 98.3 ppm h, and AOT40 - 75 ppm h, representing the highest values reported for mountain areas in North America and Europe. - Although peak ozone concentrations have greatly decreased in the San Bernardino Mountains, very high ozone phytotoxic potential remains

  1. Mixed deterministic statistical modelling of regional ozone air pollution

    KAUST Repository

    Kalenderski, Stoitchko; Steyn, Douw G.

    2011-01-01

    formalism, and explicitly accounts for advection of pollutants, using the advection equation. We apply the model to a specific case of regional ozone pollution-the Lower Fraser valley of British Columbia, Canada. As a predictive tool, we demonstrate

  2. A simple dissolved metals mixing method to produce high-purity MgTiO3 nanocrystals

    International Nuclear Information System (INIS)

    Pratapa, Suminar; Baqiya, Malik A.; Istianah,; Lestari, Rina; Angela, Riyan

    2014-01-01

    A simple dissolved metals mixing method has been effectively used to produce high-purity MgTiO 3 (MT) nanocrystals. The method involves the mixing of independently dissolved magnesium and titanium metal powders in hydrochloric acid followed by calcination. The phase purity and nanocrystallinity were determined by making use of laboratory x-ray diffraction data, to which Rietveld-based analyses were performed. Results showed that the method yielded only one type magnesium titanate powders, i.e. MgTiO 3 , with no Mg 2 TiO 4 or MgTi 2 O 5 phases. The presence of residual rutile or periclase was controlled by adding excessive Mg up to 5% (mol) in the stoichiometric mixing. The method also resulted in MT nanocrystals with estimated average crystallite size of 76±2 nm after calcination at 600°C and 150±4 nm (at 800°C). A transmission electron micrograph confirmed the formation of the nanocrystallites

  3. Mixed conductivity in La(Ga,Mg,NbO3-δ Perovskites

    Directory of Open Access Journals (Sweden)

    Marques, F. M. B.

    1999-12-01

    Full Text Available Solid-solution formation has been found in the perovskite-type system LaGa0.85-xMg0.15(Nb0.33Mg0.66xO3-δ (x = 0 - 0.20. Increasing dopant concentration leads to lower oxygen ionic conductivity and, at temperatures above 1000 K, higher p-type electronic conductivity. Oxygen-ion transference numbers in air were determined to vary in the range 0.78 to 0.96, decreasing with increasing x and temperature. Thermal expansion coefficients of ceramic samples of LaGa0.85-xMg0.15(Nb0.33Mg0.66xO3-δ were calculated in a temperature range of 300 to 1100 K to be essentially independent of composition, varying in the range (10.0 ± 0.2 x 10-6 K-1. Values of the activation energy for the total electrical conductivity in air are 104-106 kJ/mol in the temperature range 670 - 1000 K and 67 - 76 kJ/mol in the temperature range 1000 - 1200 K. The method of synthesis was found to affect both the symmetry of the perovskite unit cell and phase composition. The presence of second phases led to a dramatic decrease in conductivity.Se ha encontrado la formación de una solución sólida en el sistema LaGa0.85-xMg0.15(Nb0.33Mg0.66xO3-δ (x = 0 - 0.20. Un aumento de la concentración de dopante lleva a una menor conductividad iónica de oxígeno y a temperaturas superiores a 1000 K, una mayor conductividad electrónica de tipo p. El número de transferencia del ión oxígeno en aire fue determinado y varía en el rango 0.78 a 0.96 disminuyendo con el aumento de x y de la temperatura. El coeficiente de expansión térmico de las muestras cerámicas de LaGa0.85-xMg0.15(Nb0.33Mg0.66xO3-δ fue calculado en el rango de temperatura de 300 a 1100 k siendo independiente de la composición, y variando en el rango (10.0 ± 0.2 x 10-6 K-1. Los valores de la energía de activación para la conductividad eléctrica total en aire son 104-106 KJ/mol en el rango de temperatura 670-1000 K y 67-76 kJ/mol en el rango de temperaturas 1000-1200 K. Se encontró que el método de síntesis afecta

  4. Estimated SAGE II ozone mixing ratios in early 1993 and comparisons with Stratospheric Photochemistry, Aerosols and Dynamic Expedition measurements

    Science.gov (United States)

    Yue, G. K.; Veiga, R. E.; Poole, L. R.; Zawodny, J. M.; Proffitt, M. H.

    1994-01-01

    An empirical time-series model for estimating ozone mixing ratios based on Stratospheric Aerosols and Gas Experiment II (SAGE II) monthly mean ozone data for the period October 1984 through June 1991 has been developed. The modeling results for ozone mixing ratios in the 10- to 30- km region in early months of 1993 are presented. In situ ozone profiles obtained by a dual-beam UV-absorption ozone photometer during the Stratospheric Photochemistry, Aerosols and Dynamics Expedition (SPADE) campaign, May 1-14, 1993, are compared with the model results. With the exception of two profiles at altitudes below 16 km, ozone mixing ratios derived by the model and measured by the ozone photometer are in relatively good agreement within their individual uncertainties. The identified discrepancies in the two profiles are discussed.

  5. Analysis Influence of Mixing Gd2O3 in the Silicide Fuel Element to Core Excess Reactivity of RSG-GAS

    International Nuclear Information System (INIS)

    Susilo, Jati

    2004-01-01

    Gadolinium (Gd 2 O 3 ) is a burnable poison material mixed in the pin fuel element of the LWR core used to decrease core excess reactivity. In this research, analysis influence of mixing Gd 2 O 3 in the silicide fuel element to excess reactivity of the RSG-GAS core had been done. Equivalent cell of the equilibrium core developed by L.E.Strawbridge from Westing House Co. burn-up calculation has been done using SRAC-PIJ computer code achieve infinite multiplication factor (k x ). Value of Gd 2 O 3 concentration in the fuel element (pcm) showed by mass ratio of Gd 2 O 3 (gram) to that U 3 Si 2 (gram) times 10 5 , that is 0 pcm ∼ 100 pcm. From the calculation results analysis showed that Gd 2 O 3 concentration added should be considered. because a large number of Gd 2 O 3 will result in not achieving criticality at the Beginning Of Cycle. The maximum concentration of Gd 2 O 3 for RSG-GAS equilibrium fueled silicide 2.96 grU/cc is 80 pcm or 52.02 mgram/fuel plate. Maximum reduction of core excess reactivity due to mixing of Gd 2 O 3 in the RSG-GAS silicide fuels was around 1.502 %Δk/k, and hence not achieving the standard nominal excess reactivity for RSG-GAS core using high density of U 3 Si 2 -Al fuel. (author)

  6. Emission sources of non-methane volatile organic compounds (NMVOCs) and their contribution to photochemical ozone (O3) formation at an urban atmosphere in western India.

    Science.gov (United States)

    Yadav, R.; Sahu, L. K.; Tripathi, N.; Pal, D.

    2017-12-01

    Atmospheric non-methane volatile organic compounds (NMVOCs) were measured at a sampling site in Udaipur city of western India during 2015 to recognize their pollution levels, variation characteristics, sources and photochemical reactivity. The samples were analyzed for NMVOCs using a Gas Chromatograph equipped with Flame Ionization Detector (GC/FID) and Thermal Desorption (TD) system. The main focus on understand the sources responsible for NMVOC emissions, and evaluating the role of the identified sources towards ozone formation. Hourly variations of various NMVOC species indicate that VOCs mixing ratios were influenced by photochemical removal with OH radicals for reactive species, secondary formation for oxygenated VOCs. In general, higher mixing ratios were observed during winter/pre-monsoon and lower levels during the monsoon season due to the seasonal change in meteorological, transport path of air parcel and boundary layer conditions. The high levels of propane (C3H8) and butane (C4H10) show the dominance of LPG over the study location. The correlation coefficients of typical NMVOC pairs (ethylene/propylene, propylene/isoprene, and ethane/propane) depicted that vehicular emission and natural gas leakages were important sources for atmospheric hydrocarbons in Udaipur. Based on the annual data, PMF analysis suggest the source factors namely biomass burning/ bio-fuel, automobile exhaust, Industrial/ natural gas/power plant emissions, petrol/Diesel, gasoline evaporation, and use of liquid petroleum gas (LPG) contribute to NMVOCs loading. The propylene-equivalent and ozone formation potential of NMVOCs have also been calculated in order to find out their OH reactivity and contribution to the photochemical ozone formation.

  7. Electrical properties of GaN-based metal-insulator-semiconductor structures with Al2O3 deposited by atomic layer deposition using water and ozone as the oxygen precursors

    Science.gov (United States)

    Kubo, Toshiharu; Freedsman, Joseph J.; Iwata, Yasuhiro; Egawa, Takashi

    2014-04-01

    Al2O3 deposited by atomic layer deposition (ALD) was used as an insulator in metal-insulator-semiconductor (MIS) structures for GaN-based MIS-devices. As the oxygen precursors for the ALD process, water (H2O), ozone (O3), and both H2O and O3 were used. The chemical characteristics of the ALD-Al2O3 surfaces were investigated by x-ray photoelectron spectroscopy. After fabrication of MIS-diodes and MIS-high-electron-mobility transistors (MIS-HEMTs) with the ALD-Al2O3, their electrical properties were evaluated by current-voltage (I-V) and capacitance-voltage (C-V) measurements. The threshold voltage of the C-V curves for MIS-diodes indicated that the fixed charge in the Al2O3 layer is decreased when using both H2O and O3 as the oxygen precursors. Furthermore, MIS-HEMTs with the H2O + O3-based Al2O3 showed good dc I-V characteristics without post-deposition annealing of the ALD-Al2O3, and the drain leakage current in the off-state region was suppressed by seven orders of magnitude.

  8. Mixed deterministic statistical modelling of regional ozone air pollution

    KAUST Repository

    Kalenderski, Stoitchko

    2011-03-17

    We develop a physically motivated statistical model for regional ozone air pollution by separating the ground-level pollutant concentration field into three components, namely: transport, local production and large-scale mean trend mostly dominated by emission rates. The model is novel in the field of environmental spatial statistics in that it is a combined deterministic-statistical model, which gives a new perspective to the modelling of air pollution. The model is presented in a Bayesian hierarchical formalism, and explicitly accounts for advection of pollutants, using the advection equation. We apply the model to a specific case of regional ozone pollution-the Lower Fraser valley of British Columbia, Canada. As a predictive tool, we demonstrate that the model vastly outperforms existing, simpler modelling approaches. Our study highlights the importance of simultaneously considering different aspects of an air pollution problem as well as taking into account the physical bases that govern the processes of interest. © 2011 John Wiley & Sons, Ltd..

  9. Ordered Fe(II)Ti(IV)O3 Mixed Monolayer Oxide on Rutile TiO2(011).

    Science.gov (United States)

    Halpegamage, Sandamali; Ding, Pan; Gong, Xue-Qing; Batzill, Matthias

    2015-08-25

    Oxide monolayers supported or intermixed with an oxide support are potential nanocatalysts whose properties are determined by the interplay with the support. For fundamental studies of monolayer oxides on metal oxide supports, well-defined systems are needed, but so far, the synthesis of monolayer oxides with long-range order on single-crystal oxide surfaces is rare. Here, we show by a combination of scanning tunneling microscopy, photoemission spectroscopy, and density functional theory (DFT)-based computational analysis that the rutile TiO2(011) surface supports the formation of an ordered mixed FeTiO3 monolayer. Deposition of iron in a slightly oxidizing atmosphere (10(-8) Torr O2) and annealing to 300 °C results in a well-ordered surface structure with Fe in a 2+ charge state and Ti in a 4+ charge states. Low-energy ion scattering suggests that the cation surface composition is close to half Fe and half Ti. This surface is stable in ultrahigh vacuum to annealing temperatures of 300 °C before the iron is reduced. DFT simulations confirm that a surface structure with coverage of 50% FeO units is stable and forms an ordered structure. Although distinct from known bulk phases of the iron-titanium oxide systems, the FeTiO3 monolayer exhibits some resemblance to the ilmenite structure, which may suggest that a variety of different mixed oxide phases (of systems that exist in a bulk ilmenite phase) may be synthesized in this way on the rutile TiO2(011) substrate.

  10. Interaction-induced partitioning and magnetization jumps in the mixed-spin oxide FeTiO3-Fe2O3.

    Science.gov (United States)

    Charilaou, M; Sahu, K K; Zhao, S; Löffler, J F; Gehring, A U

    2011-07-29

    In this study we report on jumps in the magnetic moment of the hemo-ilmenite solid solution (x)FeTiO(3)-(1-x)Fe(2)O(3) above Fe(III) percolation at low temperature (T<3 K). The first jumps appear at 2.5 K, one at each side of the magnetization loop, and their number increases with decreasing temperature and reaches 5 at T=0.5 K. The jumps occur after field reversal from a saturated state and are symmetrical in the trigger field and intensity with respect to the field axis. Moreover, an increase of the sample temperature by 2.8% at T=2.0 K indicates the energy released after the ignition of the magnetization jump, as the spin-currents generated by the event are dissipated in the lattice. The magnetization jumps are further investigated by Monte Carlo simulations, which show that these effects are a result of magnetic interaction-induced partitioning on a sublattice level. © 2011 American Physical Society

  11. Engineering Mixed Ionic Electronic Conduction in La 0.8 Sr 0.2 MnO 3+ δ Nanostructures through Fast Grain Boundary Oxygen Diffusivity

    KAUST Repository

    Saranya, Aruppukottai M.; Pla, Dolors; Morata, Alex; Cavallaro, Andrea; Canales-Vá zquez, Jesú s; Kilner, John A.; Burriel, Mó nica; Tarancó n, Albert

    2015-01-01

    to implement in nanostructures. Here, an artificial mixed ionic electronic conducting oxide is fabricated by grain boundary (GB) engineering thin films of La0.8Sr0.2MnO3+δ. This electronic conductor is converted into a good mixed ionic electronic conductor

  12. Turbulent mixing and removal of ozone within an Amazon rainforest canopy

    Science.gov (United States)

    Freire, L. S.; Gerken, T.; Ruiz-Plancarte, J.; Wei, D.; Fuentes, J. D.; Katul, G. G.; Dias, N. L.; Acevedo, O. C.; Chamecki, M.

    2017-03-01

    Simultaneous profiles of turbulence statistics and mean ozone mixing ratio are used to establish a relation between eddy diffusivity and ozone mixing within the Amazon forest. A one-dimensional diffusion model is proposed and used to infer mixing time scales from the eddy diffusivity profiles. Data and model results indicate that during daytime conditions, the upper (lower) half of the canopy is well (partially) mixed most of the time and that most of the vertical extent of the forest can be mixed in less than an hour. During nighttime, most of the canopy is predominantly poorly mixed, except for periods with bursts of intermittent turbulence. Even though turbulence is faster than chemistry during daytime, both processes have comparable time scales in the lower canopy layers during nighttime conditions. Nonchemical loss time scales (associated with stomatal uptake and dry deposition) for the entire forest are comparable to turbulent mixing time scale in the lower canopy during the day and in the entire canopy during the night, indicating a tight coupling between turbulent transport and dry deposition and stomatal uptake processes. Because of the significant time of day and height variability of the turbulent mixing time scale inside the canopy, it is important to take it into account when studying chemical and biophysical processes happening in the forest environment. The method proposed here to estimate turbulent mixing time scales is a reliable alternative to currently used models, especially for situations in which the vertical distribution of the time scale is relevant.

  13. OMI/Aura Ozone(O3) Total Column 1-Orbit L2 Swath 13x24 km V003 (OMTO3) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — The Aura Ozone Monitoring Instrument (OMI) Level-2 Total Column Ozone Data Product OMTO3 (Version 003) is available from the NASA Goddard Earth Sciences Data and...

  14. Synergy effects in mixed Bi2O3, MoO3 and V2O5 catalysts for selective oxidation of propylene

    DEFF Research Database (Denmark)

    Nguyen, Tien The; Le, Thang Minh; Truong, Duc Duc

    2012-01-01

    % Bi2Mo3O12 and 78.57 mol% BiVO4), corresponding to the compound Bi1-x/3V1-xMoxO4 with x = 0.45 (Bi0.85V0.55Mo0.45O4), exhibited the highest activity for the selective oxidation of propylene to acrolein. The mixed sample prepared chemically by a sol–gel method possessed higher activity than...

  15. Chronic drought stress reduced but not protected Shantung maple (Acer truncatum Bunge) from adverse effects of ozone (O3) on growth and physiology in the suburb of Beijing, China

    International Nuclear Information System (INIS)

    Li, Li; Manning, William J.; Tong, Lei; Wang, Xiaoke

    2015-01-01

    A two-year experiment exposing Acer truncatum Bunge seedlings to elevated ozone (O 3 ) concentrations above ambient air (AO) and drought stress (DS) was carried out using open-top chambers (OTCs) in a suburb of Beijing in north China in 2012–2013. The results suggested that AO and DS had both significantly reduced leaf mass area (LMA), stomatal conductance (Gs), light saturated photosynthetic rate (A sat ) as well as above and below ground biomass at the end of the experiment. It appeared that while drought stress mitigated the expression of foliar injury, LMA, leaf photosynthetic pigments, height growth and basal diameter, due to limited carbon fixation, the O 3 – induced reductions in A sat , Gs and total biomass were enhanced 23.7%. 15.5% and 8.1% respectively. These data suggest that when the whole plant was considered that drought under the conditions of this experiment did not protect the Shantung maple seedlings from the effects of O 3 . - Highlights: • The response of Acer truncatum Bunge to drought and ozone was investigated. • Drought could mitigate the foliage injury and leaf photosynthetic pigments. • The O 3 -induced reductions in Asat, Gs and total biomass were enhanced by drought. - Drought didn't protect Shantung maple from O 3 effects but rather cause more reductions in biomass

  16. The decomposition of mixed oxide Ag2Cu2O3: Structural features and the catalytic properties in CO and C2H4 oxidation

    Science.gov (United States)

    Svintsitskiy, Dmitry A.; Kardash, Tatyana Yu.; Slavinskaya, Elena M.; Stonkus, Olga A.; Koscheev, Sergei V.; Boronin, Andrei I.

    2018-01-01

    The mixed silver-copper oxide Ag2Cu2O3 with a paramelaconite crystal structure is a promising material for catalytic applications. The as-prepared sample of Ag2Cu2O3 consisted of brick-like particles extended along the [001] direction. A combination of physicochemical techniques such as TEM, XPS and XRD was applied to investigate the structural features of this mixed silver-copper oxide. The thermal stability of Ag2Cu2O3 was investigated using in situ XRD under different reaction conditions, including a catalytic CO + O2 mixture. The first step of Ag2Cu2O3 decomposition was accompanied by the appearance of ensembles consisting of silver nanoparticles with sizes of 5-15 nm. Silver nanoparticles were strongly oriented to each other and to the surface of the initial Ag2Cu2O3 bricks. Based on the XRD data, it was shown that the release of silver occurred along the a and b axes of the paramelaconite structure. Partial decomposition of Ag2Cu2O3 accompanied by the formation of silver nanoparticles was observed during prolonged air storage under ambient conditions. The high reactivity is discussed as a reason for spontaneous decomposition during Ag2Cu2O3 storage. The full decomposition of the mixed oxide into metallic silver and copper (II) oxide took place at temperatures higher than 300 °C regardless of the nature of the reaction medium (helium, air, CO + O2). Catalytic properties of partially and fully decomposed samples of mixed silver-copper oxide were measured in low-temperature CO oxidation and C2H4 epoxidation reactions.

  17. Responses of hybrid poplar clones and red maple seedlings to ambient O3 under differing light within a mixed hardwood forest

    International Nuclear Information System (INIS)

    Wei, C.; Skelly, J.M.; Pennypacker, S.P.; Ferdinand, J.A.; Savage, J.E.; Stevenson, R.E.; Davis, D.D.

    2004-01-01

    The responses of ramets of hybrid poplar (Populus spp.) (HP) clones NE388 and NE359, and seedlings of red maple (Acer rubrum, L.) to ambient ozone (O 3 ) were studied during May-September of 2000 and 2001 under natural forest conditions and differing natural sunlight exposures (sun, partial shade and full shade). Ambient O 3 concentrations at the study site reached hourly peaks of 109 and 98 ppb in 2000 and 2001, respectively. Monthly 12-h average O 3 concentrations ranged from 32.3 to 52.9 ppb. Weekly 12-h average photosynthetically active radiation (PAR) within the sun, partial shade and full shade plots ranged from 200 to 750, 50 to 180, and 25 to 75 μmol m -2 s -1 , respectively. Ambient O 3 exposure induced visible foliar symptoms on HP NE388 and NE359 in both growing seasons, with more severe injury observed on NE388 than on NE359. Slight foliar symptoms were observed on red maple seedlings during the 2001growing season. Percentage of total leaf area affected (%LAA) was positively correlated with cumulative O 3 exposures. More severe foliar injury was observed on plants grown within the full shade and partial shade plots than those observed on plants grown within the sun plot. Lower light availability within the partial shade and full shade plots significantly decreased net photosynthetic rate (Pn) and stomatal conductance (g wv ). The reductions in Pn were greater than reductions in g wv , which resulted in greater O 3 uptake per unit Pn in plants grown within the partial shade and full shade plots. Greater O 3 uptake per unit Pn was consistently associated with more severe visible foliar injury in all species and/or clones regardless of differences in shade tolerance. These studies suggest that plant physiological responses to O 3 exposure are likely complicated due to multiple factors under natural forest conditions. - Under natural forest conditions and ambient O 3 exposures, available light plays a significant role in determining O 3 uptake and

  18. Model of daytime emissions of electronically-vibrationally excited products of O3 and O2 photolysis: application to ozone retrieval

    Directory of Open Access Journals (Sweden)

    V. A. Yankovsky

    2006-11-01

    Full Text Available The traditional kinetics of electronically excited products of O3 and O2 photolysis is supplemented with the processes of the energy transfer between electronically-vibrationally excited levels O2(a1Δg, v and O2(b1Σ+g, v, excited atomic oxygen O(1D, and the O2 molecules in the ground electronic state O2(X3Σg−, v. In contrast to the previous models of kinetics of O2(a1Δg and O2 (b1Σ+g, our model takes into consideration the following basic facts: first, photolysis of O3 and O2 and the processes of energy exchange between the metastable products of photolysis involve generation of oxygen molecules on highly excited vibrational levels in all considered electronic states – b1Σ+g, a1Δg and X3Σg−; second, the absorption of solar radiation not only leads to populating the electronic states on vibrational levels with vibrational quantum number v equal to 0 – O2(b1Σ+g, v=0 (at 762 nm and O2(a1Δg, v=0 (at 1.27 µm, but also leads to populating the excited electronic–vibrational states O2(b1Σ+g, v=1 and O2(b1Σ+g, v=2 (at 689 nm and 629 nm. The proposed model allows one to calculate not only the vertical profiles of the O2(a1Δg, v=0 and O2(b1Σg, v=0 concentrations, but also the profiles of [O2(a1Δg, v≤5], [O2 (b1Σ+g , v=1, 2] and O2(X3Σg−, v=1–35. In the altitude range 60–125 km, consideration of the electronic-vibrational kinetics significantly changes the calculated concentrations of the metastable oxygen molecules and reduces the discrepancy between the altitude profiles of ozone concentrations retrieved from the 762-nm and 1.27-µm emissions measured simultaneously.

  19. O3 and NOx Exchange

    NARCIS (Netherlands)

    Loubet, B.; Castell, J.F.; Laville, P.; Personne, E.; Tuzet, A.; Ammann, C.; Emberson, L.; Ganzeveld, L.; Kowalski, A.S.; Merbold, L.; Stella, P.; Tuovinen, J.P.

    2015-01-01

    This discussion was based on the background document “Review on modelling atmosphere-biosphere exchange of Ozone and Nitrogen oxides”, which reviews the processes contributing to biosphere-atmosphere exchange of O3 and NOx, including stomatal and non-stomatal exchange of O3 and NO, NO2.

  20. Enhanced Ga2O3-photocatalyzed and photochemical degradation of the Fipronil insecticide by UVC irradiation in mixed aqueous/organic media under an inert atmosphere.

    Science.gov (United States)

    Hidaka, Hisao; Tsukamoto, Tohru; Mitsutsuka, Yoshihiro; Oyama, Toshiyuki; Serpone, Nick

    2015-05-01

    Agrochemicals such as the insecticide Fipronil that bear fluoro groups are generally fat-soluble and nearly insoluble in water, so that their photodegradation in a heterogeneous aqueous gallium oxide dispersion presents some challenges. This article examined the photodegradation of this insecticide by solubilizing it through the addition of organic solvents (EtOH, MeOH, THF, 1,4-dioxane and ethylene glycol) to an aqueous medium and then subjecting the insecticide to 254 nm UVC radiation under photocatalytically inert (Ga2O3/N2) and air-equilibrated (Ga2O3/O2) conditions, as well as photochemically in the absence of Ga2O3 but also under inert and air-equilibrated conditions. Defluorination, dechlorination, desulfonation and denitridation of Fipronil were examined in mixed aqueous/organic media (10, 25 and 50 vol% in organic solvent). After 3 h of UVC irradiation (50 vol% mixed media) defluorination with Ga2O3/N2 was ∼65% greater than in aqueous media, and ca. 80% greater than the direct photolysis of Fipronil under inert (N2) conditions; under air-equilibrated conditions both Ga2O3-photocatalyzed and photochemical defluorination were significantly lower than in aqueous media. Dechlorination of Fipronil was ∼160% (Ga2O3/N2) and 140% (photochemically, N2) greater than in aqueous media; under air-equilibrated conditions, both photocatalyzed and photochemical formation of Cl(-) ions in mixed media fell rather short relative to aqueous media. The photocatalyzed (Ga2O3/N2) and photochemical (N2) conversion of the sulfur group in Fipronil to SO4(2(-)) ions was ca. 20% and 30% greater, respectively, in mixed media, while under air-equilibrated conditions photocatalyzed desulfonation was nearly twofold less than in the aqueous phase; direct photolysis showed little variations in mixed media. Denitridation of the nitrogens in Fipronil occurred mostly through the formation of ammonia (as NH4(+)) under all conditions with negligible quantities of NO3(-); again mixed media

  1. Steam reforming of ethanol over Co3O4–Fe2O3 mixed oxides

    KAUST Repository

    Abdelkader, A.; Daly, H.; Saih, Y.; Morgan, K.; Mohamed, M.A.; Halawy, S.A.; Hardacre, C.

    2013-01-01

    solvent/dispersing agent. The catalysts were studied in the steam reforming of ethanol to investigate the effect of the partial substitution of Co3O4 with Fe2O 3 on the catalytic behaviour. The reforming activity over Fe 2O3, while initially high

  2. Production and study of mixed Al-Al2O3 thin films for passive electronic circuits

    International Nuclear Information System (INIS)

    Pruniaux, B.

    1966-09-01

    A new vacuum deposition process, named reactive evaporation, is used to realize passive thin film circuits. Using aluminium, oxidized at various steps in its vapor phase, we obtain: - Al-Al 2 O 3 cermet resistors (R □ = 10000 Ω □ , CTR 2 O 3 capacitors (C □ = 60000 pf/cm 2 , tg δ [fr

  3. Effect of operational and water quality parameters on conventional ozonation and the advanced oxidation process O3/H2O2: Kinetics of micropollutant abatement, transformation product and bromate formation in a surface water.

    Science.gov (United States)

    Bourgin, Marc; Borowska, Ewa; Helbing, Jakob; Hollender, Juliane; Kaiser, Hans-Peter; Kienle, Cornelia; McArdell, Christa S; Simon, Eszter; von Gunten, Urs

    2017-10-01

    The efficiency of ozone-based processes under various conditions was studied for the treatment of a surface water (Lake Zürich water, Switzerland) spiked with 19 micropollutants (pharmaceuticals, pesticides, industrial chemical, X-ray contrast medium, sweetener) each at 1 μg L -1 . Two pilot-scale ozonation reactors (4-5 m 3  h -1 ), a 4-chamber reactor and a tubular reactor, were investigated by either conventional ozonation and/or the advanced oxidation process (AOP) O 3 /H 2 O 2 . The effects of selected operational parameters, such as ozone dose (0.5-3 mg L -1 ) and H 2 O 2 dose (O 3 :H 2 O 2  = 1:3-3:1 (mass ratio)), and selected water quality parameters, such as pH (6.5-8.5) and initial bromide concentration (15-200 μg L -1 ), on micropollutant abatement and bromate formation were investigated. Under the studied conditions, compounds with high second-order rate constants k O3 >10 4  M -1  s -1 for their reaction with ozone were well abated (>90%) even for the lowest ozone dose of 0.5 mg L -1 . Conversely, the abatement efficiency of sucralose, which only reacts with hydroxyl radicals (OH), varied between 19 and 90%. Generally, the abatement efficiency increased with higher ozone doses and higher pH and lower bromide concentrations. H 2 O 2 addition accelerated the ozone conversion to OH, which enables a faster abatement of ozone-resistant micropollutants. Interestingly, the abatement of micropollutants decreased with higher bromide concentrations during conventional ozonation due to competitive ozone-consuming reactions, except for lamotrigine, due to the suspected reaction of HOBr/OBr - with the primary amine moieties. In addition to the abatement of micropollutants, the evolution of the two main transformation products (TPs) of hydrochlorothiazide (HCTZ) and tramadol (TRA), chlorothiazide (CTZ) and tramadol N-oxide (TRA-NOX), respectively, was assessed by chemical analysis and kinetic modeling. Both selected TPs were quickly formed initially

  4. Dry deposition of O3 and SO2 estimated from gradient measurements above a temperate mixed forest.

    Science.gov (United States)

    Wu, Zhiyong; Staebler, Ralf; Vet, Robert; Zhang, Leiming

    2016-03-01

    Vertical profiles of O3 and SO2 concentrations were monitored at the Borden Forest site in southern Ontario, Canada from May 2008 to April 2013. A modified gradient method (MGM) was applied to estimate O3 and SO2 dry deposition fluxes using concentration gradients between a level above and a level below the canopy top. The calculated five-year mean (median) dry deposition velocity (Vd) were 0.35 (0.27) and 0.59 (0.54) cm s(-1), respectively, for O3 and SO2. Vd(O3) exhibited large seasonal variations with the highest monthly mean of 0.68 cm s(-1) in August and the lowest of 0.09 cm s(-1) in February. In contrast, seasonal variations of Vd(SO2) were smaller with monthly means ranging from 0.48 (May) to 0.81 cm s(-1) (December). The different seasonal variations between O3 and SO2 were caused by the enhanced SO2 uptake by snow surfaces in winter. Diurnal variations showed a peak value of Vd in early morning in summer months for both O3 and SO2. Canopy wetness increased the non-stomatal uptake of O3 while decreasing the stomatal uptake. This also applied to SO2, but additional factors such as surface acidity also played an important role on the overall uptake. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  5. Synthesis of nanostructured mixed oxide CeO2-Mn2O3 and investigation of their sorption ability for arsenic, ammoniac, iron, manganese

    International Nuclear Information System (INIS)

    Luu Minh Dai; Dao Ngoc Nhiem; Duong Thi Lim

    2012-01-01

    The nanostrutured mixed oxide CeO 2 -Mn 2 O 3 have been synthesised at low temperature (350 o C) by the combustion of gel prepared from polyvinyl alcohol (PVA), Ce (NO 3 ) 4 and Mn(No 3 ) 3 , CeO 2 -Mn 2 O 3 characterizations were examined by X-ray diffraction (XRD), scanning electron microscopy (SEM) and BET (Brunauce-Emmet-Teller) measurements. The phase of CeO 2 -Mn 2 O 3 , with large specific surface ares 65.3 m 2 /g was obtained at 350 o C for 2 hours. The nanostructured CeO 2 -Mn 2 O 3 has been investigated for removing iron, manganese, arsenic and ammoniac from water. The sorption characteristics of the nanostrutured CeO 2 -Mn 2 O 3 for AS(V), NH4 + , Fe(III), Mn(II) according to the langmuir isotherm. The sorption capacities of nanostrutured CeO 2 -Mn 2 O 3 are 57.10 mg As(V)g; 154.54 mg NH4 + /g; 72.97 mg Fe(III)/g; 60.27 Mn(II) / g. (author)

  6. Antibacterial activity against Escherichia coli and characterization of ZnO and ZnO–Al2O3 mixed oxide nanoparticles

    Directory of Open Access Journals (Sweden)

    Ertan Şahin

    2017-02-01

    Full Text Available In order to achieve better antibacterial water insoluble nanoparticles (Nanoparticles of ZnO and ZnO–Al2O3 were studied. ZnO–Al2O3 mixed oxide nanoparticles were produced from a solution containing Zn(AC2⋅2H2O and AlCl3 by Solvothermal method. The calcination process of the ZnO–Al2O3 composite nanoparticles brought forth polycrystalline one phase ZnO–Al2O3 nanoparticles of 30–50 nm in diameters. ZnO and ZnO–Al2O3 were crystallized into würtzite and rock salt structures, respectively. The structural properties of this sample were analyzed by XRD and compared with bulk case of these samples. Antibacterial effectiveness of the ZnO and ZnO–Al2O3 nanoparticles were tested against general Escherichia coli (E. coli ATCC 25922 and E. coli O157:H7 by measuring the growth through optical density and digital counting of live–dead cells. Minimum inhibitory concentration values against four representative bacteria along with E. coli O157:H7 were also obtained.

  7. Ozone mixing ratios inside tropical deep convective clouds from OMI satellite measurements

    Directory of Open Access Journals (Sweden)

    J. R. Ziemke

    2009-01-01

    Full Text Available We have developed a new technique for estimating ozone mixing ratio inside deep convective clouds. The technique uses the concept of an optical centroid cloud pressure that is indicative of the photon path inside clouds. Radiative transfer calculations based on realistic cloud vertical structure as provided by CloudSat radar data show that because deep convective clouds are optically thin near the top, photons can penetrate significantly inside the cloud. This photon penetration coupled with in-cloud scattering produces optical centroid pressures that are hundreds of hPa inside the cloud. We combine measured column ozone and the optical centroid cloud pressure derived using the effects of rotational-Raman scattering to estimate O3 mixing ratio in the upper regions of deep convective clouds. The data are obtained from the Ozone Monitoring Instrument (OMI onboard NASA's Aura satellite. Our results show that low O3 concentrations in these clouds are a common occurrence throughout much of the tropical Pacific. Ozonesonde measurements in the tropics following convective activity also show very low concentrations of O3 in the upper troposphere. These low amounts are attributed to vertical injection of ozone poor oceanic boundary layer air during convection into the upper troposphere followed by convective outflow. Over South America and Africa, O3 mixing ratios inside deep convective clouds often exceed 50 ppbv which are comparable to mean background (cloud-free amounts and are consistent with higher concentrations of injected boundary layer/lower tropospheric O3 relative to the remote Pacific. The Atlantic region in general also consists of higher amounts of O3 precursors due to both biomass burning and lightning. Assuming that O3 is well mixed (i.e., constant mixing ratio with height up to the tropopause, we can estimate the stratospheric column O3 over

  8. Steam reforming of ethanol over Co3O4–Fe2O3 mixed oxides

    KAUST Repository

    Abdelkader, A.

    2013-05-03

    Co3O4, Fe2O3 and a mixture of the two oxides Co-Fe (molar ratio of Co3O4/Fe 2O3 = 0.67 and atomic ratio of Co/Fe = 1) were prepared by the calcination of cobalt oxalate and/or iron oxalate salts at 500 C for 2 h in static air using water as a solvent/dispersing agent. The catalysts were studied in the steam reforming of ethanol to investigate the effect of the partial substitution of Co3O4 with Fe2O 3 on the catalytic behaviour. The reforming activity over Fe 2O3, while initially high, underwent fast deactivation. In comparison, over the Co-Fe catalyst both the H2 yield and stability were higher than that found over the pure Co3O4 or Fe 2O3 catalysts. DRIFTS-MS studies under the reaction feed highlighted that the Co-Fe catalyst had increased amounts of adsorbed OH/water; similar to Fe2O3. Increasing the amount of reactive species (water/OH species) adsorbed on the Co-Fe catalyst surface is proposed to facilitate the steam reforming reaction rather than decomposition reactions reducing by-product formation and providing a higher H2 yield. © Copyright © 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

  9. Influence of stratospheric airmasses on tropospheric vertical O3 columns based on GOME (Global Ozone Monitoring Experiment measurements and backtrajectory calculation over the Pacific

    Directory of Open Access Journals (Sweden)

    A. Ladstätter-Weißenmayer

    2004-01-01

    Full Text Available Satellite based GOME (Global Ozone Measuring experiment data are used to characterize the amount of tropospheric ozone over the tropical Pacific. Tropospheric ozone was determined from GOME data using the Tropospheric Excess Method (TEM. In the tropical Pacific a significant seasonal variation is detected. Tropospheric excess ozone is enhanced during the biomass burning season from September to November due to outflow from the continents. In September 1999 GOME data reveal an episode of increased excess ozone columns over Tahiti (18.0° S; 149.0° W (Eastern Pacific compared to Am. Samoa (14.23° S; 170.56° W and Fiji (18.13° S; 178.40° E, both situated in the Western Pacific. Backtrajectory calculations show that none of the airmasses arriving over the three locations experienced anthropogenic pollution (e. g. biomass burning. Consequently other sources of ozone have to be considered. One possible process leading to an increase of tropospheric ozone is stratosphere-troposphere-exchange. An analysis of the potential vorticity along trajectories arriving above each of the locations reveals that airmasses at Tahiti are subject to enhanced stratospheric influence, compared to Am. Samoa and Fiji. As a result this study shows clear incidents of transport of airmasses from the stratosphere into the troposphere.

  10. Study of UO2-10WT%Gd2O3 fuel pellets obtained by seeding method using AUC co-precipitation and mechanical mixing processes

    International Nuclear Information System (INIS)

    Lima, M.M.F.; Ferraz, W.B.A.; Santos, M.M. dos; Pinto, L.C.M.; Santos, A.

    2008-01-01

    The use of gadolinium and uranium mixed oxide as a nuclear fuel aims to obtain a fuel with a performance better than that of UO 2 fuel. In this work, seeding method was used to improve ionic diffusivity during sintering to produce high density pellets containing coarse grains by co-precipitation and mechanical mixing processes. Sintered UO 2 -10 wt% Gd 2 O 3 pellets were obtained using the reference processes with 2 wt% and 5 wt% UO 2 seeds with two granulometries, less than 20 μm and between 20 and 38 μm. Characterisation was carried out by chemical analysis, surface area, X-ray diffraction, SEM, WDS, image analysis, and densitometry. The seeding method using mechanical mixing process was more effective than the co-precipitation method. Furthermore, mechanical mixing process resulted in an increase in density of UO 2 -10wt% Gd 2 O 3 with seeds in relation to that of UO 2 -10wt% Gd 2 O 3 without seeds. (author)

  11. Molecular storage of ozone in a clathrate hydrate: an attempt at preserving ozone at high concentrations.

    Directory of Open Access Journals (Sweden)

    Takahiro Nakajima

    Full Text Available This paper reports an experimental study of the formation of a mixed O(3+ O(2+ CO(2 hydrate and its frozen storage under atmospheric pressure, which aimed to establish a hydrate-based technology for preserving ozone (O(3, a chemically unstable substance, for various industrial, medical and consumer uses. By improving the experimental technique that we recently devised for forming an O(3+ O(2+ CO(2 hydrate, we succeeded in significantly increasing the fraction of ozone contained in the hydrate. For a hydrate formed at a system pressure of 3.0 MPa, the mass fraction of ozone was initially about 0.9%; and even after a 20-day storage at -25°C and atmospheric pressure, it was still about 0.6%. These results support the prospect of establishing an economical, safe, and easy-to-handle ozone-preservation technology of practical use.

  12. Atomic-Scale Structure of Al2O3-ZrO2 Mixed Oxides Prepared by Laser Ablation

    International Nuclear Information System (INIS)

    Yang Xiuchun; Dubiel, M.; Hofmeister, H.; Riehemann, W.

    2007-01-01

    By means of x-ray diffractometry (XRD) and X-ray absorption fine structure spectroscopy, the phase composition and atomic structure of laser evaporated ZrO2 and ZrO2-Al2O3 nanopowders have been studied. The results indicate that pure ZrO2 exists in the form of tetragonal structure, Al2O3 doped ZrO2 nanoparticles, however, have cubic structure. Compared to bulk tetragonal ZrO2, pure tetragonal ZrO2 nanoparticles have a shorter Zr-O- and Zr-Zr shell, indicating that the lattice contracts with decreasing particle size. For Al2O3 doped ZrO2 solid solution, the distances of first Zr-O and Zr-Zr (Al) coordination decrease with increasing solid solubility. The disorder degree of the ZrO2 lattice increases with increasing solid solubility. The coevaporated ZrO2-Al2O3 is quickly solidified into amorphous phase when it is ablated in a higher pressure. The amorphous phase contains Zr-O-Zr (Al) clusters and has shorter Zr-O distance and tower Zr-O coordination number

  13. Enhanced Light Stability of InGaZnO Thin-Film Transistors by Atomic-Layer-Deposited Y2O3 with Ozone.

    Science.gov (United States)

    Jung, Hanearl; Kim, Woo-Hee; Park, Bo-Eun; Woo, Whang Je; Oh, Il-Kwon; Lee, Su Jeong; Kim, Yun Cheol; Myoung, Jae-Min; Gatineau, Satoko; Dussarrat, Christian; Kim, Hyungjun

    2018-01-17

    We report the effect of Y 2 O 3 passivation by atomic layer deposition (ALD) using various oxidants, such as H 2 O, O 2 plasma, and O 3 , on In-Ga-Zn-O thin-film transistors (IGZO TFTs). A large negative shift in the threshold voltage (V th ) was observed in the case of the TFT subjected to the H 2 O-ALD Y 2 O 3 process; this shift was caused by a donor effect of negatively charged chemisorbed H 2 O molecules. In addition, degradation of the IGZO TFT device performance after the O 2 plasma-ALD Y 2 O 3 process (field-effect mobility (μ) = 8.7 cm 2 /(V·s), subthreshold swing (SS) = 0.77 V/dec, and V th = 3.7 V) was observed, which was attributed to plasma damage on the IGZO surface adversely affecting the stability of the TFT under light illumination. In contrast, the O 3 -ALD Y 2 O 3 process led to enhanced device stability under light illumination (ΔV th = -1 V after 3 h of illumination) by passivating the subgap defect states in the IGZO surface region. In addition, TFTs with a thicker IGZO film (55 nm, which was the optimum thickness under the current investigation) showed more stable device performance than TFTs with a thinner IGZO film (30 nm) (ΔV th = -0.4 V after 3 h of light illumination) by triggering the recombination of holes diffusing from the IGZO surface to the insulator-channel interface. Therefore, we envisioned that the O 3 -ALD Y 2 O 3 passivation layer suggested in this paper can improve the photostability of TFTs under light illumination.

  14. Thermoluminescence induced by UV radiation in ZrO2-La2O3 and ZrO2-CeO2 mixed systems

    International Nuclear Information System (INIS)

    Estrada G, R.; Salas C, P.; Mendoza A, D.; Gonzalez, P.R.

    2002-01-01

    Nowadays, the development of catalytic materials by means of pure or mixed oxides mainly as TiO 2 , Al 2 O 3 , ZrO 2 , La 2 O 3 and CeO 2 used as support or active phases, are widely used in oxidation-reduction reactions in the chemical industry and in petroleum refining processes. the cerium and lanthanum oxides in zircon, have been studied recently in processes for reduction of pollutant gases (SO x , NO x , etc.). They result very interesting for resolving the problems of environmental pollution. Moreover, it has been observed that some of these materials are highly sensitive to ultraviolet radiation (UV), characteristic that can be took in advantage for detecting this type of radiation. In this work the preliminary obtained results on the thermoluminescent response (Tl) induced by the UV radiation in ZrO 2 -La 2 O 3 and ZrO 2 -CeO 2 mixed systems obtained by the sol-gel method are presented. The results show that the first system has a high sensitivity to UV radiation with a Tl curve composed by three peaks, two ones of greater intensity located in 70 and 140 Centigrade degrees. Likewise it was observed that for both materials, the peak located at low temperature is fadeout in few minutes after irradiation, while that the second one peak presented very good stability, resulting promising for dosimetric applications in UV radiation fields. (Author)

  15. OMI/Aura Ozone (O3) DOAS Total Column Daily L2 Global 0.25 deg Lat/Lon Grid V003

    Data.gov (United States)

    National Aeronautics and Space Administration — The OMI/Aura Level-2G Total Column Ozone Data Product OMDOAO3G (Version 003) is now available ( http://disc.gsfc.nasa.gov/Aura/OMI/omdoao3g_v003.shtml ) from the...

  16. OMI/Aura Ozone (O3) Total Column Daily L2 Global 0.25 deg Lat/Lon Grid V003

    Data.gov (United States)

    National Aeronautics and Space Administration — The OMI/Aura Level-2G Total Column Ozone Data Product OMTO3G (Version 003) is made available ( http://disc.gsfc.nasa.gov/Aura/OMI/omto3g_v003.shtml ) from the NASA...

  17. Relationship Between Column-Density and Surface Mixing Ratio: Statistical Analysis of O3 and NO2 Data from the July 2011 Maryland DISCOVER-AQ Mission

    Science.gov (United States)

    Flynn, Clare; Pickering, Kenneth E.; Crawford, James H.; Lamsol, Lok; Krotkov, Nickolay; Herman, Jay; Weinheimer, Andrew; Chen, Gao; Liu, Xiong; Szykman, James; hide

    2014-01-01

    To investigate the ability of column (or partial column) information to represent surface air quality, results of linear regression analyses between surface mixing ratio data and column abundances for O3 and NO2 are presented for the July 2011 Maryland deployment of the DISCOVER-AQ mission. Data collected by the P-3B aircraft, ground-based Pandora spectrometers, Aura/OMI satellite instrument, and simulations for July 2011 from the CMAQ air quality model during this deployment provide a large and varied data set, allowing this problem to be approached from multiple perspectives. O3 columns typically exhibited a statistically significant and high degree of correlation with surface data (R(sup 2) > 0.64) in the P- 3B data set, a moderate degree of correlation (0.16 analysis.

  18. Characterization of Mixed xWO3(1-xY2O3 Nanoparticle Thick Film for Gas Sensing Application

    Directory of Open Access Journals (Sweden)

    M. H. Shahrokh Abadi

    2010-05-01

    Full Text Available Microstructural, topology, inner morphology, and gas-sensitivity of mixed xWO3(1-xY2O3 nanoparticles (x = 1, 0.95, 0.9, 0.85, 0.8 thick-film semiconductor gas sensors were studied. The surface topography and inner morphological properties of the mixed powder and sensing film were characterized with X-ray diffraction (XRD, atomic force microscopy (AFM, transmission electron microscopy (TEM, and scanning electron microscopy (SEM. Also, gas sensitivity properties of the printed films were evaluated in the presence of methane (CH4 and butane (C4H10 at up to 500 °C operating temperature of the sensor. The results show that the doping agent can modify some structural properties and gas sensitivity of the mixed powder.

  19. The effect of B_2O_3 flux on growth NLBCO superconductor by solid state reaction and wet-mixing methods

    International Nuclear Information System (INIS)

    Suharta, W. G.; Wendri, N.; Ratini, N.; Suarbawa, K. N.

    2016-01-01

    The synthesis of B_2O_3 flux substituted NLBCO superconductor NdBa_1_._7_5La_0_._2_5Cu_3O_7_-_∂ has been done using solid state reaction and wet-mixing methods in order to obtain homogeneous crystals and single phase. From DTA/TGA characteritations showed the synthesis process by wet-mixing requires a lower temperature than the solid state reaction in growing the superconductor NdBa_1_._7_5La_0_._2_5Cu_3O_7_-_∂. Therefore, in this research NdBa_1_._7_5La_0_._2_5Cu_3O_7_-_∂ sample calcinated at 650°C for wet-mixing method and 820°C for solid state reaction methods. The all samples was sintered at 950°C for ten hours. Crystallinity of the sample was confirmed using X-ray techniques and generally obtained sharp peaks that indicates the sample already well crystallized. Search match analyses for diffraction data gave weight fractions of impurity phase of the solid state reaction method higher than wet-mixing method. In this research showed decreasing the price of the lattice parameter about 1% with the addition of B_2O_3 flux for the both synthesis process and 2% of wet mixing process for all samples. Characterization using scanning electron microscopy (SEM) showed the distribution of crystal zise for wet-mixing method more homogeneous than solid state reaction method, with he grain size of samples is around 150–250 nm. The results of vibrating sample magnetometer (VSM) showed the paramagnetic properties for all samples.

  20. Emergence of Griffiths phase and glassy mixed phase in Sm0.5Ca0.5MnO3 nanomanganites

    International Nuclear Information System (INIS)

    Giri, S.K.; Yusuf, S.M.; Mukadam, M.D.; Nath, T.K.

    2014-01-01

    Graphical abstract: A detailed investigation on the effect of grain size on formation of Griffiths phase, and glassy mixed phase in CE-type antiferromagnetic Sm 0.5 Ca 0.5 MnO 3 manganite are carried out. A rigorous measurement of linear and non-linear ac magnetic susceptibilities, time dependent relaxation and aging phenomena in Sm 0.5 Ca 0.5 MnO 3 nanomanganite confirm the existence of a glassy mixed phase in the low temperature regime. The signature of Griffiths phase in nanosized manganite has been confirmed from the detailed ac and dc magnetization studies. The existence of Griffiths phase is verified through the anomalous behavior of the low field temperature dependent an inverse ac and dc magnetic susceptibility. Based on experimental results, the glassy phase of nanomanganites has been attributed to the phase separation effect and interaction between the ferromagnetic clusters. A phenomenological core/shell model has also been proposed based on the surface disorder to explain the observed Griffiths phase in these nanosized manganites. Fig. 1: (Left) The plot of inverse of ac susceptibility χ ac -1 measured at f = 1 Hz and H ac = 2 Oe as a function of temperature for S750 sample. Inset shows the same for S550 sample. (Right) A schematic of the proposed model to describe the magnetic state of the Sm 0.5 Ca 0.5 MnO 3 system at different average sizes. Highlights: • Effect of grain size on Griffiths phase and glassy mixed phase is discussed. • GP is confirmed by dc, linear and non-linear ac magnetization in nanomanganites. • Glassy mixed phase is discussed by time dependent relaxation and aging phenomena. • The existence of GP is verified through an inverse ac and dc magnetic susceptibility. • A phenomenological core/shell model has been proposed based on surface disorder. -- Abstract: A detailed investigation on the effect of grain size on formation of Griffiths phase (GP), and glassy mixed phase in CE-type antiferromagnetic Sm 0.5 Ca 0.5 MnO 3

  1. Spectroscopic studies of ozone in cryosolutions: FT-IR spectra of 16O3 in liquid nitrogen, oxygen, argon and krypton

    Science.gov (United States)

    Bulanin, Kirill M.; Bulanin, Michael O.; Rudakova, Aida V.; Kolomijtsova, Tatiana D.; Shchepkin, Dmitrij N.

    2018-03-01

    We have measured and interpreted the IR spectra of ozone dissolved in liquid nitrogen, oxygen, argon, and krypton in the 650-4700 cm-1 spectral region at 79-117 K. Frequency shifts, band intensities and bandshapes of 22 spectral features of soluted ozone were analyzed. The bands of the A1 symmetry have a complex contour and possess an excess intensity with respect to the value of the purely vibrational transition moment. It was found that this effect is related to the manifestation of the Coriolis interaction. The bandshape distortion manifests itself as an additional intensity from the side of the B1 symmetry band being an intensity source in the case of the Coriolis interaction.

  2. Chronic drought stress reduced but not protected Shantung maple (Acer truncatum Bunge) from adverse effects of ozone (O3) on growth and physiology in the suburb of Beijing, China.

    Science.gov (United States)

    Li, Li; Manning, William J; Tong, Lei; Wang, Xiaoke

    2015-06-01

    A two-year experiment exposing Acer truncatum Bunge seedlings to elevated ozone (O3) concentrations above ambient air (AO) and drought stress (DS) was carried out using open-top chambers (OTCs) in a suburb of Beijing in north China in 2012-2013. The results suggested that AO and DS had both significantly reduced leaf mass area (LMA), stomatal conductance (Gs), light saturated photosynthetic rate (Asat) as well as above and below ground biomass at the end of the experiment. It appeared that while drought stress mitigated the expression of foliar injury, LMA, leaf photosynthetic pigments, height growth and basal diameter, due to limited carbon fixation, the O3 - induced reductions in Asat, Gs and total biomass were enhanced 23.7%. 15.5% and 8.1% respectively. These data suggest that when the whole plant was considered that drought under the conditions of this experiment did not protect the Shantung maple seedlings from the effects of O3. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Engineering Mixed Ionic Electronic Conduction in La 0.8 Sr 0.2 MnO 3+ δ Nanostructures through Fast Grain Boundary Oxygen Diffusivity

    KAUST Repository

    Saranya, Aruppukottai M.

    2015-04-09

    © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Nanoionics has become an increasingly promising field for the future development of advanced energy conversion and storage devices, such as batteries, fuel cells, and supercapacitors. Particularly, nanostructured materials offer unique properties or combinations of properties as electrodes and electrolytes in a range of energy devices. However, the enhancement of the mass transport properties at the nanoscale has often been found to be difficult to implement in nanostructures. Here, an artificial mixed ionic electronic conducting oxide is fabricated by grain boundary (GB) engineering thin films of La0.8Sr0.2MnO3+δ. This electronic conductor is converted into a good mixed ionic electronic conductor by synthesizing a nanostructure with high density of vertically aligned GBs with high concentration of strain-induced defects. Since this type of GBs present a remarkable enhancement of their oxide-ion mass transport properties (of up to six orders of magnitude at 773 K), it is possible to tailor the electrical nature of the whole material by nanoengineering, especially at low temperatures. The presented results lead to fundamental insights into oxygen diffusion along GBs and to the application of these engineered nanomaterials in new advanced solid state ionics devices such are micro-solid oxide fuel cells or resistive switching memories. An electronic conductor such as La0.8Sr0.2MnO3+δ is converted into a good mixed ionic electronic conductor by synthesizing a nanostructure with excellent electronic and oxygen mass transport properties. Oxygen diffusion highways are created by promoting a high concentration of strain-induced defects in the grain boundary region. This novel strategy opens the way for synthesizing new families of artificial mixed ionic-electronic conductors by design.

  4. MHD mixed convection in a vertical annulus filled with Al2O3–water nanofluid considering nanoparticle migration

    International Nuclear Information System (INIS)

    Malvandi, A.; Safaei, M.R.; Kaffash, M.H.; Ganji, D.D.

    2015-01-01

    In the current study, an MHD mixed convection of alumina/water nanofluid inside a vertical annular pipe is investigated theoretically. The model used for the nanofluid mixture involves Brownian motion and thermophoretic diffusivities in order to take into account the effects of nanoparticle migration. Since the thermophoresis is the main mechanism of the nanoparticle migration, different temperature gradients have been imposed using the asymmetric heating. Considering hydrodynamically and thermally fully developed flow, the governing equations have been reduced to two-point ordinary boundary value differential equations and they have been solved numerically. It is revealed that the imposed thermal asymmetry would change the direction of nanoparticle migration and distorts the velocity, temperature and nanoparticle concentration profiles. Moreover, it is shown that the advantage of nanofluids in heat transfer enhancement is reduced in the presence of a magnetic field. - Highlights: • MHD mixed convection of alumina/water nanofluid inside a vertical annulus. • The effects of nanoparticle migration on rheological and thermophysical characteristics. • The effects of asymmetric heating on nanoparticle migration. • The effects of asymmetric heating on the heat transfer enhancement. • Inclusion of nanoparticles in presence of a magnetic field has a negative effect on performance

  5. Mixed-Alkali Effect in Li2O-Na2O-K2O-B2O3 Glasses: Infrared and Optical Absorption Studies

    Science.gov (United States)

    Samee, M. A.; Edukondalu, A.; Ahmmad, Shaik Kareem; Taqiullah, Sair Md.; Rahman, Syed

    2013-08-01

    The mixed-alkali effect (MAE) has been investigated in the glass system (40 - x)Li2O- xNa2O-10K2O-50B2O3 (0 mol% ≤ x ≤ 40 mol%) through density, modulated differential scanning calorimetry (DSC), and optical absorption studies. From the absorption studies, the values of the optical band gap ( E opt) for direct transition and Urbach energy (Δ E) have been evaluated. The values of E opt and Δ E show nonlinear behavior with the compositional parameter. The density and glass-transition temperature of the present glasses also show nonlinear variation, supporting the existence of MAE. The infrared (IR) spectra of the glasses reveal the presence of three- and four-coordinated boron atoms. The specific vibrations of Li-O, Na-O, and K-O bonds were observed in the present IR study.

  6. Seasonal patterns of ascorbate in the needles of Scots Pine (Pinus sylvestris L.) trees: Correlation analyses with atmospheric O3 and NO2 gas mixing ratios and meteorological parameters

    International Nuclear Information System (INIS)

    Haberer, Kristine; Jaeger, Lutz; Rennenberg, Heinz

    2006-01-01

    In the present field study the role of ascorbate in scavenging the harmful atmospheric trace gases O 3 and NO 2 was examined. For this purpose ascorbate contents were determined in needles of adult Scots pine trees (Pinus sylvestris L.) during three consecutive years. Ascorbate contents were correlated with ambient tropospheric O 3 and NO 2 concentrations and with meteorological parameters. The results showed a strong correlation of atmospheric O 3 but not of atmospheric NO 2 concentrations with the apoplastic content of ascorbate during the seasonal course. Ascorbate contents in needle extracts did not correlate with ambient trace gas concentrations. In the apoplastic space, but not in needle extracts ascorbate contents correlate highly significantly with global radiation. From these results it is assumed that apoplastic ascorbate in Scots pine needles is adapted to the actual atmospheric O 3 concentration to mediate immediate detoxification of O 3 , while the atmospheric O 3 concentration itself is largely dependent on light intensity. - Contents of apoplastic but not symplastic ascorbate correlate significantly with atmospheric ozone concentrations

  7. Evaluating A Priori Ozone Profile Information Used in TEMPO Tropospheric Ozone Retrievals

    Science.gov (United States)

    Johnson, Matthew S.; Sullivan, John T.; Liu, Xiong; Newchurch, Mike; Kuang, Shi; McGee, Thomas J.; Langford, Andrew O'Neil; Senff, Christoph J.; Leblanc, Thierry; Berkoff, Timothy; hide

    2016-01-01

    Ozone (O3) is a greenhouse gas and toxic pollutant which plays a major role in air quality. Typically, monitoring of surface air quality and O3 mixing ratios is primarily conducted using in situ measurement networks. This is partially due to high-quality information related to air quality being limited from space-borne platforms due to coarse spatial resolution, limited temporal frequency, and minimal sensitivity to lower tropospheric and surface-level O3. The Tropospheric Emissions: Monitoring of Pollution (TEMPO) satellite is designed to address these limitations of current space-based platforms and to improve our ability to monitor North American air quality. TEMPO will provide hourly data of total column and vertical profiles of O3 with high spatial resolution to be used as a near-real-time air quality product. TEMPO O3 retrievals will apply the Smithsonian Astrophysical Observatory profile algorithm developed based on work from GOME, GOME-2, and OMI. This algorithm uses a priori O3 profile information from a climatological data-base developed from long-term ozone-sonde measurements (tropopause-based (TB) O3 climatology). It has been shown that satellite O3 retrievals are sensitive to a priori O3 profiles and covariance matrices. During this work we investigate the climatological data to be used in TEMPO algorithms (TB O3) and simulated data from the NASA GMAO Goddard Earth Observing System (GEOS-5) Forward Processing (FP) near-real-time (NRT) model products. These two data products will be evaluated with ground-based lidar data from the Tropospheric Ozone Lidar Network (TOLNet) at various locations of the US. This study evaluates the TB climatology, GEOS-5 climatology, and 3-hourly GEOS-5 data compared to lower tropospheric observations to demonstrate the accuracy of a priori information to potentially be used in TEMPO O3 algorithms. Here we present our initial analysis and the theoretical impact on TEMPO retrievals in the lower troposphere.

  8. Evaluating A Priori Ozone Profile Information Used in TEMPO Tropospheric Ozone Retrievals

    Science.gov (United States)

    Johnson, M. S.; Sullivan, J. T.; Liu, X.; Newchurch, M.; Kuang, S.; McGee, T. J.; Langford, A. O.; Senff, C. J.; Leblanc, T.; Berkoff, T.; Gronoff, G.; Chen, G.; Strawbridge, K. B.

    2016-12-01

    Ozone (O3) is a greenhouse gas and toxic pollutant which plays a major role in air quality. Typically, monitoring of surface air quality and O3 mixing ratios is primarily conducted using in situ measurement networks. This is partially due to high-quality information related to air quality being limited from space-borne platforms due to coarse spatial resolution, limited temporal frequency, and minimal sensitivity to lower tropospheric and surface-level O3. The Tropospheric Emissions: Monitoring of Pollution (TEMPO) satellite is designed to address these limitations of current space-based platforms and to improve our ability to monitor North American air quality. TEMPO will provide hourly data of total column and vertical profiles of O3 with high spatial resolution to be used as a near-real-time air quality product. TEMPO O3 retrievals will apply the Smithsonian Astrophysical Observatory profile algorithm developed based on work from GOME, GOME-2, and OMI. This algorithm uses a priori O3 profile information from a climatological data-base developed from long-term ozone-sonde measurements (tropopause-based (TB) O3 climatology). It has been shown that satellite O3 retrievals are sensitive to a priori O3 profiles and covariance matrices. During this work we investigate the climatological data to be used in TEMPO algorithms (TB O3) and simulated data from the NASA GMAO Goddard Earth Observing System (GEOS-5) Forward Processing (FP) near-real-time (NRT) model products. These two data products will be evaluated with ground-based lidar data from the Tropospheric Ozone Lidar Network (TOLNet) at various locations of the US. This study evaluates the TB climatology, GEOS-5 climatology, and 3-hourly GEOS-5 data compared to lower tropospheric observations to demonstrate the accuracy of a priori information to potentially be used in TEMPO O3 algorithms. Here we present our initial analysis and the theoretical impact on TEMPO retrievals in the lower troposphere.

  9. Ozone depletion in the interstitial air of the seasonal snowpack in northern Japan

    Directory of Open Access Journals (Sweden)

    Momoko Nakayama

    2015-02-01

    Full Text Available To examine the behaviour of ozone (O3 in the seasonal snowpack, measurements were taken of O3 and CO2 in the interstitial air on Rishiri Island, which is located in northern Japan, during the 2010/11 winter season. Exhibiting variation on timescales ranging from several minutes to several days, the atmospheric O3 in the surface air generally increased from December (38 ppb to April (52 ppb. The ozone mixing ratio sharply decreased below the snow surface. Whereas the CO2 data in the interstitial air indicated that a rapid exchange between the snow and the atmosphere occurred intermittently, the O3 mixing ratio remained low and constant (<5 ppb in the snowpack interior. The vertical profile of the O3 mixing ratio indicates that the e-folding lifetime of the O3 loss reaction was 5.0±2.3 minutes during the day and 10.0±6.3 minutes at night, suggesting photochemical O3 depletion occurred during the daytime. Kinetic experiments using ambient (maritime air and snow indicate that the photochemical O3 loss is proportional to the solar radiation and that the O3 loss rate decreases as dawn approaches during the night. The result of the kinetic experiments using artificial O3 in the pure air and snow suggests the important role of gaseous species in the ambient air towards O3 depletion.

  10. Testing of models of stomatal ozone fluxes with field measurements in a mixed Mediterranean forest

    Czech Academy of Sciences Publication Activity Database

    Fares, S.; Matteucci, G.; Mugnozza, S.; Morani, A.; Calfapietra, Carlo; Salvatori, E.; Fusaro, L.; Manes, F.; Loreto, F.

    2013-01-01

    Roč. 67, MAR (2013), s. 242-251 ISSN 1352-2310 Institutional support: RVO:67179843 Keywords : Ozone fluxes * Stomatal conductance models * GPP * Mediterranean forest Subject RIV: EH - Ecology, Behaviour Impact factor: 3.062, year: 2013

  11. Defect formation in LaGa(Mg,Ni)O3-δ : A statistical thermodynamic analysis validated by mixed conductivity and magnetic susceptibility measurements

    Science.gov (United States)

    Naumovich, E. N.; Kharton, V. V.; Yaremchenko, A. A.; Patrakeev, M. V.; Kellerman, D. G.; Logvinovich, D. I.; Kozhevnikov, V. L.

    2006-08-01

    A statistical thermodynamic approach to analyze defect thermodynamics in strongly nonideal solid solutions was proposed and validated by a case study focused on the oxygen intercalation processes in mixed-conducting LaGa0.65Mg0.15Ni0.20O3-δ perovskite. The oxygen nonstoichiometry of Ni-doped lanthanum gallate, measured by coulometric titration and thermogravimetric analysis at 923-1223K in the oxygen partial pressure range 5×10-5to0.9atm , indicates the coexistence of Ni2+ , Ni3+ , and Ni4+ oxidation states. The formation of tetravalent nickel was also confirmed by the magnetic susceptibility data at 77-600K , and by the analysis of p -type electronic conductivity and Seebeck coefficient as function of the oxygen pressure at 1023-1223K . The oxygen thermodynamics and the partial ionic and hole conductivities are strongly affected by the point-defect interactions, primarily the Coulombic repulsion between oxygen vacancies and/or electron holes and the vacancy association with Mg2+ cations. These factors can be analyzed by introducing the defect interaction energy in the concentration-dependent part of defect chemical potentials expressed by the discrete Fermi-Dirac distribution, and taking into account the probabilities of local configurations calculated via binomial distributions.

  12. Mixed Convection of Variable Properties Al2O3-EG-Water Nanofluid in a Two-Dimensional Lid-Driven Enclosure

    Directory of Open Access Journals (Sweden)

    G.A. Sheikhzadeh

    2013-07-01

    Full Text Available In this paper, mixed convection of Al2O3-EG-Water nanofluid in a square lid-driven enclosure is investigated numerically. The focus of this study is on the effects of variable thermophysical properties of the nanofluid on the heat transfer characteristics. The top moving and the bottom stationary horizontal walls are insulated, while the vertical walls are kept at different constant temperatures. The study is carried out for Richardson numbers of 0.01–1000, the solid volume fractions of 0–0.05 and the Grashof number of 104. The transport equations are solved numerically with a finite volume approach using the SIMPLER algorithm. The results show that the Nusselt number is mainly affected by the viscosity, density and conductivity variations. For low Richardson numbers, although viscosity increases by increasing the nanoparticles volume fraction, due to high intensity convection of enhanced conductivity nanofluid, the average Nusselt number increases for both constant and variable cases. However, for high Richardson numbers, as the volume fraction of nanoparticles increases heat transfer enhancement occurs for the constant properties cases but deterioration in heat transfer occurs for the variable properties cases. The distinction is due to underestimation of viscosity of the nanofluid by the constant viscosity model in the constant properties cases and states important effects of temperature dependency of thermophysical properties, in particular the viscosity distribution in the domain.

  13. Impact of the Manaus urban plume on trace gas mixing ratios near the surface in the Amazon Basin: Implications for the NO-NO2-O-3 photostationary state and peroxy radical levels

    NARCIS (Netherlands)

    Trebs, I.; Mayol-Bracero, O.L.; Pauliquevis, T.; Kuhn, U.; Sander, R.; Ganzeveld, L.N.; Meixner, F.X.; Kesselmeier, J.; Artaxo, P.; Andreae, M.O.

    2012-01-01

    We measured the mixing ratios of NO, NO2, O-3, and volatile organic carbon as well as the aerosol light-scattering coefficient on a boat platform cruising on rivers downwind of the city of Manaus (Amazonas State, Brazil) in July 2001 (Large-Scale Biosphere-Atmosphere Experiment in

  14. Artificial O3 formation during fireworks

    Science.gov (United States)

    Fiedrich, M.; Kurtenbach, R.; Wiesen, P.; Kleffmann, J.

    2017-09-01

    In several previous studies emission of ozone (O3) during fireworks has been reported, which was attributed to either photolysis of molecular oxygen (O2) or nitrogen dioxide (NO2) by short/near UV radiation emitted during the high-temperature combustion of fireworks. In contrast, in the present study no O3 formation was observed using a selective O3-LOPAP instrument during the combustion of pyrotechnical material in the laboratory, while a standard O3 monitor using UV absorption showed extremely high O3 signals. The artificial O3 response of the standard O3 monitor was caused by known interferences associated with high levels of co-emitted VOCs and could also be confirmed in field measurements during New Year's Eve in the city of Wuppertal, Germany. The present results help to explain unreasonably high ozone levels documented during ambient fireworks, which are in contradiction to the fast titration of O3 by nitrogen monoxide (NO) in the night-time atmosphere.

  15. Ozone deposition in relation to canopy physiology in a mixed conifer forest in Denmark

    DEFF Research Database (Denmark)

    Ro-Poulsen, H.; Mikkelsen, Teis Nørgaard; Hovmand, M.F.

    1998-01-01

    In this study CO(2) and H(2)O flux measurements made above a spruce forest was compared with the ozone flux to the canopy during growing season 1995. The fluxes were determined by micro meteorological gradient methods using a 36-m tall meteorological mast. The trees were about 12 m high and air s...

  16. Carbon doped lanthanum aluminate (LaAlO3:C) UV thermoluminescent properties synthesized by solid state reaction with three different mixing methodologies

    International Nuclear Information System (INIS)

    Alves, N.

    2017-01-01

    In this work we discuss the thermoluminescent (TL) response for LaAlO 3 :C crystals grown by using three different combinations of Al 2 O 3 , La 2 O 3 and carbon atoms during the synthesis process. Recently, LaAlO 3 single crystals, co-doped with Ce 3+ and Dy 3+ rare earth trivalent ions and grown under hydrothermal conditions, have been reported to show high thermoluminescent response (TL) when exposed to low levels of ultraviolet radiation (UVR). However, undoped LaAlO 3 synthesized by solid state reaction method from the 1:1 mixture of aluminum and lanthanum oxide under reducing atmosphere revealed to have still higher thermoluminescent sensitivity to UV photon fields than the co-doped with Ce 3+ and Dy 3+ . It is well known that carbon doped aluminum oxide monocrystals have excellent TL and photoluminescent response properties for X-rays, UV and gamma radiation fields. Thus, we conducted three different syntheses of LaAlO 3 by the solid state reaction method, doping the mixture with carbon. The lanthanum aluminate polycrystals were synthesized from the 1:1 mixture of aluminum and lanthanum oxide, adding 0.1wt.% carbon and annealed at 1700°C for two hours in hydrogen atmosphere. The X-ray diffraction analysis revealed the formation of rhombohedral LaAlO 3 crystallographic phase, however a small percentage (15%) of Al 2 O 3 has been also identified. The UV-Vis absorbance spectra were obtained and F and F + - center were ascribed. The UV irradiations were carried out using a commercial 8W UV lamp. Thermoluminescence measurements were performed at a Harshaw 4500 TL reader. All compositions investigated have shown high TL sensitivity to UVR. (author)

  17. Epitaxial growth of mixed conducting layered Ruddlesden–Popper Lan+1NinO3n+1 (n = 1, 2 and 3) phases by pulsed laser deposition

    International Nuclear Information System (INIS)

    Wu, Kuan-Ting; Soh, Yeong-Ah; Skinner, Stephen J.

    2013-01-01

    Graphical abstract: - Highlights: • High quality epitaxial thin films of layered Ruddlesden–Popper nickelates were prepared. • For the first time this has been achieved by the PLD process. • n = 1, 2 and 3 films were successfully deposited on SrTiO 3 and NdGaO 3 substrates. • c-Axis oriented films were confirmed by XRD analysis. • In-plane and out-of-plane strain effects on lattice are discussed. - Abstract: Layered Ruddlesden–Popper phases of composition La n+1 Ni n O 3n+1 (n = 1, 2 and 3) have been epitaxially grown on SrTiO 3 (0 0 1) or NdGaO 3 (1 1 0) single crystal substrates using the pulsed laser deposition technique. X-ray diffraction analyses (θ/2θ, rocking curves, and φ-scans) and atomic force microscopy confirms the high-quality growth of the series of films with low surface roughness values (less than 1 nm). In particular, epitaxial growth of the higher order phases (n = 2 and 3) of lanthanum nickelate have been demonstrated for the first time

  18. Noy -, N2o-, and O3-measurements In The Ut/ls-region During Spurt: Correlation-analyses and Implications For Transport and Mixing Processes

    Science.gov (United States)

    Hegglin, M.; Fischer, H.; Hoor, P.; Beuermann, J.; Brunner, D.; Peter, T.

    In the framework of SPURT we perform airborne in situ measurements of a variety of long-lived trace gases in order to investigate the role of dynamical and chemi- cal processes shaping the structure of the tropopause region. NOy is measured by chemiluminescence reaction of NO and O3, after reducing NOy species to NO by an externally mounted catalytic converter. N2O is measured by a Tunable Diode Laser Absorption Spectroscopy (TDLAS), O3 with help of an UV absorption photometer. Two short measurement campaigns were carried out with a Learjet in autumn 2001 and winter 2002. Individual flights were conducted in wide North-South cuts between 78 deg N (Spitzbergen) and 28 deg S (Tenerife). In this contribution, first results will be presented including observations obtained from a flight through a spectacularly deep stratospheric intrusion with potentially significant troposphere/stratosphere ex- change. The effect of the STE on tracer-tracer correlations such as NOy-O3, O3-N2O, and NOy-N2O will be evaluated. The results will be compared with known correla- tions and also with analyses of backward-trajectories, showing the strong influence of air mass origin on the correlations obtained.

  19. Combined use of O3/H2O2 and O3/Mn2+ in flotation of dairy wastewater

    Directory of Open Access Journals (Sweden)

    Marta Cristina Silva Carvalho

    2018-05-01

    Full Text Available This work investigated the degradation of organic matter present in synthetic dairy wastewater by the combination of ozonation (ozone (O3/hydrogen peroxide (H2O2 and catalytic ozonation (ozone (O3/manganese (Mn2+ associated with dispersed air flotation process. The effect of independent factors such as O3 concentration, pH and H2O2 and Mn2+ concentration was evaluated. For the flotation/O3/H2O2 treatment, the significant variables (p ≤ 0.05 were: O3 concentration (linear and quadratic effect, H2O2 concentration linear and quadratic effect, pH values (linear and quadratic effect and interaction O3 concentration versus pH. For catalytic ozonation, it was observed that the significant variable was the linear effect of O3 concentration. According to the desirability function, it was concluded that the optimal condition for the treatment of flotation/O3/H2O2 can be obtained in acidic solution using O3 concentrations greater than 42.9 mg L-1 combined with higher concentrations of H2O2 to 1071.5 mg L-1. On other hand, at pH values higher than 9.0, the addition of O3 may be neglected when using higher concentrations than 1071.5 mg L-1 of H2O2. For flotation/ozonation catalyzed by Mn2+, it was observed that metal addition did not affect treatment, resulting in an optimum condition: 53.8 mg L-1 of O3 and pH 3.6.

  20. Mixed Alkali Effect in (40-x)K2O-xLi2O-10Na2O-50B2O3 Glasses - Physical and Optical Absorption Studies

    Science.gov (United States)

    Samee, M. A.; Ahmmad, Shaikh Kareem; Taqiullah, Sair. Md.; Edukondalu, A.; Bale, Shashidhar; Rahman, Syed

    So far only a handful of publications have been concerned with the study of the mixed alkali effect in borate glasses containing three types of alkali ions. In the present work, the mixed alkali effect (MAE) has been investigated in the glass system (40-x) K2O-x Li2O -10Na2O-50B2O3.(0≤x≤40 mol%) through density and modulated DSC studies. The density and glass transition temperature of the present glasses varies non-linearly exhibiting mixed alkali effect. We report the mixed alkali effect in the present glasses through optical properties. From the absorption edge studies, the various values of optical band gap (Eo) and Urbach energy (ΔE) have been evaluated. The values of Eo and ΔE show non-linear behavior with compositional parameter showing the mixed alkali effect. The band gap energy based average electronic polarizability of oxide ions αO2-(Eo), optical basicity A(Eo), and Yamashita-Kurosawa’s interaction parameter A(Eo) have been examined to check the correlations among them and bonding character. Based on good correlation among electronic polarizability of oxide ions, optical basicity and interaction parameter, the present K2O- Li2O-Na2O-B2O3 glasses are classified as normal ionic (basic) oxides.

  1. O3 Nanoparticles

    KAUST Repository

    Wang, Juan; Li, Yangyang; Deng, Lin; Wei, Nini; Weng, Yakui; Dong, Shuai; Qi, Dianpeng; Qiu, Jun; Chen, Xiaodong; Wu, Tao

    2016-01-01

    Ti2O3 nanoparticles with high performance of photothermal conversion are demonstrated for the first time. Benefiting from the nanosize and narrow-bandgap features, the Ti2O3 nanoparticles possess strong light absorption and nearly 100% internal

  2. Total column density variations of ozone (O3 O3 O3) in presence of ...

    Indian Academy of Sciences (India)

    −3). In case of O4, an absorbance of. O2–O2 by Greenblatt et al (1990) is calculated as absorbance A is given by: A = σ[O2]2 l,. (2) where l is the optical path length (cm), [O2] is the concentration of oxygen (molecules cm. −3), σ is the absorption cross section with the unit of cm5 molecule. −2. The absorption cross sections of.

  3. O3 Nanoparticles

    KAUST Repository

    Wang, Juan

    2016-11-16

    Ti2O3 nanoparticles with high performance of photothermal conversion are demonstrated for the first time. Benefiting from the nanosize and narrow-bandgap features, the Ti2O3 nanoparticles possess strong light absorption and nearly 100% internal solar–thermal conversion efficiency. Furthermore, Ti2O3 nanoparticle-based thin film shows potential use in seawater desalination and purification.

  4. Observation-based modelling and analysis of O3 Production in the Seoul Metropolitan Area during KORUS-AQ

    Science.gov (United States)

    Schroeder, J.; Crawford, J. H.; Fried, A.; Weinheimer, A. J.; Blake, D. R.; Blake, N. J.; Wisthaler, A.; Lee, G.; Ahn, J. Y.

    2017-12-01

    The Seoul Metropolitan Area (SMA) has a population of 24 million and frequently experiences unhealthy levels of ozone (O3). In this work, data from the Korea-United States Air Quality Study (KORUS-AQ, May 2 - June 11, 2016) were used to constrain a 0-D photochemical box model, allowing for calculation of key photochemical parameters related to O3 chemistry in the SMA. During KORUS-AQ, the NASA DC-8 flew 20 research flights over the Korean Peninsula. Routine overflights of the SMA in the morning, midday, and afternoon allowed for evaluation of diurnal photochemical tendencies in both the urban core of Seoul and surrounding areas. During KORUS-AQ, the SMA experienced 39 days where the max 8-hour O3 exceeded the Korean AQS value of 60 ppbv. Box model calculations constrained with high-frequency data from the DC-8 show that rates of net O3 production (P(O3)) in urban Seoul were similar to outlying metropolitan areas across all times of day, with the highest median values occurring around midday in both cases ( 15 ppbv/hr). Although mixing ratios of key ozone precursors such as NOx and reactive VOCs were substantially higher in urban Seoul than outlying areas, net P(O3) was sustained across the region due to non-linearities in O3 chemistry. Box model calculations show that urban Seoul was strongly radical-limited, while outlying areas were either slightly NOx-limited or near the `transition' area. This suggests that P(O3) can be mitigated in urban Seoul by reducing VOC emissions, but regional air quality would benefit from reductions in both NOx and VOCs. Box model simulations of the response of P(O3) to omitting select VOCs suggest that reactive aromatics - particularly toluene, which had a median mixing ratio of 2 ppbv across SMA - contributed most to radical abundances ( 60%) and P(O3), and reductions in aromatic emissions would be most effective towards reducing P(O3). Biogenics and light alkenes account for 25% and 10% of radical abundances in the SMA, respectively

  5. Quantifying the Impact of Tropospheric Ozone on Crops Productivity at regional scale using JULES-crop

    Science.gov (United States)

    Leung, F.

    2016-12-01

    Tropospheric ozone (O3) is the third most important anthropogenic greenhouse gas. It is causing significant crop production losses. Currently, O3 concentrations are projected to increase globally, which could have a significant impact on food security. The Joint UK Land Environment Simulator modified to include crops (JULES-crop) is used here to quantify the impacts of tropospheric O3 on crop production at the regional scale until 2100. We evaluate JULES-crop against the Soybean Free-Air-Concentration-Enrichment (SoyFACE) experiment in Illinois, USA. Experimental data from SoyFACE and various literature sources is used to calibrate the parameters for soybean and ozone damage parameters in soybean in JULES-crop. The calibrated model is then applied for a transient factorial set of JULES-crop simulations over 1960-2005. Simulated yield changes are attributed to individual environmental drivers, CO2, O3 and climate change, across regions and for different crops. A mixed scenario of RCP 2.6 and RCP 8.5 climatology and ozone are simulated to explore the implication of policy. The overall findings are that regions with high ozone concentration such as China and India suffer the most from ozone damage, soybean is more sensitive to O3 than other crops. JULES-crop predicts CO2 fertilisation would increase the productivity of vegetation. This effect, however, is masked by the negative impacts of tropospheric O3. Using data from FAO and JULES-crop estimated that ozone damage cost around 55.4 Billion USD per year on soybean. Irrigation improves the simulation of rice only, and it increases the relative ozone damage because drought can reduce the ozone from entering the plant stomata. RCP 8.5 scenario results in a high yield for all crops mainly due to the CO2 fertilisation effect. Mixed climate scenarios simulations suggest that RCP 8.5 CO2 concentration and RCP 2.6 O3 concentration result in the highest yield. Further works such as more crop FACE-O3 experiments and more Crop

  6. Magnetic properties of mixed valence La2/3Sr1/3Mn1−xTxO3 (T ...

    Indian Academy of Sciences (India)

    (T = Fe,Cr) manganites obtained by Pechini method. I BETANCOURT. ∗ ... structure. Keywords. Mixed valence manganites; magnetic manganites; magnetocaloric effect; Pechini method. 1. ..... IB thanks for financial support from research grant.

  7. Ground-level O3 pollution and its impacts on food crops in China: A review

    International Nuclear Information System (INIS)

    Feng, Zhaozhong; Hu, Enzhu; Wang, Xiaoke; Jiang, Lijun; Liu, Xuejun

    2015-01-01

    Ground-level ozone (O 3 ) pollution has become one of the top environmental issues in China, especially in those economically vibrant and densely populated regions. In this paper, we reviewed studies on the O 3 concentration observation and O 3 effects on food crops throughout China. Data from 118 O 3 monitoring sites reported in the literature show that the variability of O 3 concentration is a function of geographic location. The impacts of O 3 on food crops (wheat and rice) were studied at five sites, equipped with Open Top Chamber or O 3 -FACE (free-air O 3 concentration enrichment) system. Based on exposure concentration and stomatal O 3 flux–response relationships obtained from the O 3 -FACE experimental results in China, we found that throughout China current and future O 3 levels induce wheat yield loss by 6.4–14.9% and 14.8–23.0% respectively. Some policies to reduce ozone pollution and impacts are suggested. - Highlights: • Ozone concentrations are increasing in most of regions of China. • Ozone has caused high yield loss of food crops in China. • More species and local varieties should be investigated for ozone sensitivity. • Developing the air quality standards for crops is required in China. • More air quality stations in the rural are needed. - Ground-level ozone is one of the most serious environmental pollutants for food production in China

  8. Effect of composition on properties of In2O3-Ga2O3 thin films

    Science.gov (United States)

    Demin, I. E.; Kozlov, A. G.

    2017-06-01

    The In2O3-Ga2O3 mixed oxide polycrystalline thin films with various ratios of components were obtained by pulsed laser deposition. The effect of films composition on surface morphology, electrophysical and gas sensing properties and energies of adsorption and desorption of combustible gases was studied. The films with50%In2O3-50%Ga2O3 composition showed maximum gas response (˜25 times) combined with minimum optimal working temperature (˜530 °C) as compared with the other films. The optical transmittance of the films in visible range was investigated. For 50%In2O3-50%Ga2O3 films, the transmittance is higher in comparison with the other films. The explanation of the dependency of films behaviors on their composition was presented.The In2O3-Ga2O3 films were assumed to have perspectives as gas sensing material for semiconducting gas sensors.

  9. Regional and hemispheric influences on temporal variability in baseline carbon monoxide and ozone over the Northeast US

    Science.gov (United States)

    Interannual variability in baseline carbon monoxide (CO) and ozone (O3), defined as mixing ratios under minimal influence of recent and local emissions, was studied for seven rural sites in the Northeast US over 2001–2010. Annual baseline CO exhibited statistically signific...

  10. Trends of Ozone in Switzerland since 1992 (TROZOS)

    International Nuclear Information System (INIS)

    Ordonez, C.; Mathis, H.; Furger, M.; Prevot, A.S.H.

    2004-07-01

    This work reports on the trends of the daily afternoon (noon to midnight) maximum ozone concentrations at 15 of the 16 stations of the Swiss air quality monitoring network (NABEL) during the period 1992-2002. The use of numerous meteorological parameters and additional data allowed a detailed seasonal analysis of the influence of the weather on the ozone maxima at the different stations. An analysis of covariance (ANCOVA) was performed separately for each station and season in order to detect the parameters which best explain the variability of the daily ozone maximum concentrations. During the warm seasons (summer and spring) the most explanatory parameters are those related to the ozone production, in particular the afternoon temperature. In winter, the most explanatory variables are the ones influencing the vertical mixing and thus the ozone destruction by titration with NO and dry deposition, like the afternoon global radiation. The trends of both the measured and meteorologically corrected ozone maxima were calculated. The year-to-year variability in the ozone maxima was lowered by a factor of 3 by the meteorological correction. Significantly positive trends of corrected ozone maxima of 0.3 - 1.1 ppb/year were found at the low altitude stations in winter and autumn as well as at Lausanne - urban station - in all the seasons, mainly due to the lower loss of ozone by reaction with NO as a consequence of the decreased emissions of primary pollutants during the 90s. This could be partially confirmed by the lower trends of O X (sum O 3 of and NO 2 ) maxima compared to the trends in ozone maxima. The absence of negative trends of the median or mean ozone maxima north of the Alps in summer suggests that the decrease in the emissions of ozone precursors did not have a strong impact on the afternoon maximum ozone concentrations during the last decade. In contrast to the project TOSS (Trends of Ozone in Southern Switzerland), no significantly negative trends of ozone

  11. Effect of Mixed Glass Former on Ionic Conductivity of Silver Boro Tungstate glass system x[0.75AgI:0.25AgCl]: (1-x) [Ag2O-{B2O3:WO3}

    Science.gov (United States)

    Dehariya, Harsha; Kumar, R.; Polu, A. R.

    2012-05-01

    The idea to explore new 'Superionic Electrolytes', "Fast ionic conductors" is due to their tremendous potential applications in solid state electrochemical devices viz. solid state batteries, fuel cells, sensors, super capacitors. Superionic glasses have attracted great deal of attention due to their several advantageous over their crystalline counterparts such as high ionic conductivity, easy preparation, wide selection of compositions, isotropic properties and high stability etc [4-7]. Large numbers of silver ion based glasses have been reported in the literature for the glassy system of AgI:Ag2O: MxOy (MxOy = B2O3, SiO2, P2O5, GeO2, V2O5, As2O5, CrO3, SeO2, MoO3 & TeO3 etc many of them shows high silver ion conductivity [8]. Ion transport behavior of Silver Boro Tungstate glass system x[0.75AgI:0.25AgCl]: (1-x) [Ag2O{B2O3:WO3}], where 0 <= x <= 1 in molar wt% prepared by melt quench technique were reported. The new host [0.75AgI:0.25AgCl] was used as a better alternate in place of conventional host salt AgI. Conductivity measurement were carried out on this glass system as a function of frequency from 50 Hz to 5 MHz, over a temperature range of 27°C to 200°C, for different compositions by Impedance spectroscopy. The composition 0.7[0.75AgI:0.25AgCl]: 0.3[Ag2O{B2O3:WO3}] shows the highest conductivity of the order of σrt ~ 2.76 × 10-2 S/cm, referred to as the Optimum Conducting Composition (OCC). The enhancement in the conductivity has been obtained by mixed former effect. XRD result shows that the system is completely amorphous. Temperature dependence of conductivity of all compositions were studied & reported. Activation energies (Ea) were also evaluated from the slope of .Log(σ) vs 1000/T, Arrhenius plots.

  12. Effect of Mixed Glass Former on Ionic Conductivity of Silver Boron Tungstate glass system x[0.75AgI:0.25AgCl]: (1-x) [Ag2O-(B2O3:WO3)

    International Nuclear Information System (INIS)

    Dehariya, Harsha; Kumar, R; Polu, A R

    2012-01-01

    The idea to explore new 'Superionic Electrolytes', 'Fast ionic conductors' is due to their tremendous potential applications in solid state electrochemical devices viz. solid state batteries, fuel cells, sensors, super capacitors. Superionic glasses have attracted great deal of attention due to their several advantageous over their crystalline counterparts such as high ionic conductivity, easy preparation, wide selection of compositions, isotropic properties and high stability etc [4-7]. Large numbers of silver ion based glasses have been reported in the literature for the glassy system of AgI:Ag2O: MxOy (MxOy = B2O3, SiO2, P2O5, GeO2, V2O5, As2O5, CrO3, SeO2, MoO3 and TeO3 etc many of them shows high silver ion conductivity [8]. Ion transport behavior of Silver Boro Tungstate glass system x[0.75AgI:0.25AgCl]: (1-x) [Ag2O(B2O3:WO3)], where 0 ≤ x ≤ 1 in molar wt% prepared by melt quench technique were reported. The new host [0.75AgI:0.25AgCl] was used as a better alternate in place of conventional host salt AgI. Conductivity measurement were carried out on this glass system as a function of frequency from 50 Hz to 5 MHz, over a temperature range of 27 C to 200 C, for different compositions by Impedance spectroscopy. The composition 0.7[0.75AgI:0.25AgCl]: 0.3[Ag2O(B2O3:WO3)] shows the highest conductivity of the order of σrt ∼ 2.76x10-2 S/cm, referred to as the Optimum Conducting Composition (OCC). The enhancement in the conductivity has been obtained by mixed former effect. XRD result shows that the system is completely amorphous. Temperature dependence of conductivity of all compositions were studied and reported. Activation energies (Ea) were also evaluated from the slope of .Log(σ) vs 1000/T, Arrhenius plots.

  13. Ketoprofen removal by O3 and O3/UV processes: Kinetics, transformation products and ecotoxicity

    International Nuclear Information System (INIS)

    Illés, Erzsébet; Szabó, Emese; Takács, Erzsébet; Wojnárovits, László; Dombi, András; Gajda-Schrantz, Krisztina

    2014-01-01

    Ozonation (O 3 ) and its combination with ultraviolet radiation (O 3 /UV) were used to decompose ketoprofen (KET). Depending on the initial KET concentration, fourteen to fifty time's faster KET degradation was achieved using combined O 3 /UV method compared to simple ozonation. Using both methods, formation of four major aromatic transformation products were observed: 3-(1-hydroxyethyl)benzophenone, 3-(1-hydroperoxyethyl) benzophenone, 1-(3-benzoylphenyl) ethanone and 3-ethylbenzophenone. In the combined treatment the degradation was mainly due to the direct effect of UV light, however, towards the end of the treatment, O 3 highly contributed to the mineralization of small carboxylic acids. High (∼ 90%) mineralization degree was achieved using the O 3 /UV method. Toxicity tests performed using representatives of three trophic levels of the aquatic ecosystems (producers, consumers and decomposers) Pseudokirchneriella subcapitata green algae, Daphnia magna zooplanktons and Vibrio fischeri bacteria showed that under the used experimental conditions the transformation products have significantly higher toxicity towards all the test organisms, than KET itself. The bacteria and the zooplanktons showed higher tolerance to the formed products than algae. The measured toxicity correlates well with the concentration of the aromatic transformation products, therefore longer treatments than needed for complete degradation of KET are strongly suggested, in order to avoid possible impact of aromatic transformation products on the aquatic ecosystem. - Highlights: • Ketoprofen degradation is significantly faster using O 3 /UV compared to ozonation. • The presence of O 3 enhances the overall mineralization. • Formation of four major aromatic by-products was observed. • The main step in the decomposition is the decarboxylation. • Degradation products have higher toxicity than ketoprofen itself

  14. Observation of enhanced ozone in an electrically active storm over Socorro, NM: Implications for ozone production from corona discharges

    Science.gov (United States)

    Minschwaner, K.; Kalnajs, L. E.; Dubey, M. K.; Avallone, L. M.; Sawaengphokai, P. C.; Edens, H. E.; Winn, W. P.

    2008-09-01

    Enhancements in ozone were observed between about 3 and 10 km altitude within an electrically active storm in central New Mexico. Measurements from satellite sensors and ground-based radar show cloud top pressures between 300 and 150 mb in the vicinity of an ozonesonde launched from Socorro, NM, and heavy precipitation with radar reflectivities exceeding 50 dBZ. Data from a lightning mapping array and a surface electric field mill show a large amount of electrical activity within this thunderstorm. The observed ozone enhancements are large (50% above the mean) and could have resulted from a number of possible processes, including the advection of polluted air from the urban environments of El Paso and Juarez, photochemical production by lightning-generated NOx from aged thunderstorm outflow, downward mixing of stratospheric air, or local production from within the thunderstorm. We find that a large fraction of the ozone enhancement is consistent with local production from corona discharges, either from cloud particles or by corona associated with lightning. The implied global source of ozone from thunderstorm corona discharge is estimated to be 110 Tg O3 a-1 with a range between 40 and 180 Tg O3 a-1. This value is about 21% as large as the estimated ozone production rate from lightning NOx, and about 3% as large as the total chemical production rate of tropospheric ozone. Thus while the estimated corona-induced production of ozone may be significant on local scales, it is unlikely to be as important to the global ozone budget as other sources.

  15. Fluxes of ozone and Biogenic Volatile Organic Compounds in a mixed Mediterranean forest over a transition period between summer and fall

    Science.gov (United States)

    Fares, S.; Schnitzhofer, R.; Hansel, A.; Petersson, F.; Matteucci, G.; Scarascia Mugnozza, G.; Jiang, X.; Guenther, A. B.; Loreto, F.

    2012-12-01

    Mediterranean plant ecosystems are exposed to abiotic stressors that may be exacerbated by climate change dynamics. Moreover, plants need now to cope with increasing anthropogenic pressures, often associated with expanding impacts of urbanization. Anthropogenic stressors include harmful gases (e.g. ozone,) that are transported from anthropogenic pollution sources to the vegetation. They may alter ecophysiology and compromise metabolism of Mediterranean plants. A disproportionate number of Mediterranean ecosystems, many dominated by forest trees, are being transformed into "urban or pre-urban forests". This is in particular the case for Castelporziano Estate, a 6,000 ha Mediterranean forest located just 25 km from Rome downtown at the coast of the Mediterranean Sea. In September 2011 an intensive field campaign was performed in Castelporziano to investigate ozone deposition and biogenic emissions of volatile organic compounds (BVOC) from a mixed Mediterranean forest, mainly composed by Quercus suber, Quercus ilex, Pinus pinea. Measurements were performed at canopy level with fast real-time instruments (a fast ozone analyzer and a Proton Transfer Reaction-Time of Flight Mass Spectrometer) that allowed eddy covariant flux measurements of ozone and BVOC. In the transitional period from a warm and dry summer to a wet and moderately cool fall we typically observed tropospheric ozone volume mixing ratios (VMR) of 60 ppb at around noon, with high deposition fluxes (up to -10 nmol m-2 s-1) into the forest canopy. Canopy models were used to to calculate that up to 90% of ozone uptake can be attributed to non-stomatal sinks, suggesting that chemical reactions between ozone and reactive BVOC may have played an important role. The concentrations of reactive isoprenoids (e.g. sesquiterpenes) were indeed observed to decrease during the central hours of the day, in coincidence with increased ozone concentrations. Concentrations and fluxes of isoprenoid-ozone

  16. Why are models unable to reproduce multi-decadal trends in lower tropospheric baseline ozone levels?

    Science.gov (United States)

    Hu, L.; Liu, J.; Mickley, L. J.; Strahan, S. E.; Steenrod, S.

    2017-12-01

    Assessments of tropospheric ozone radiative forcing rely on accurate model simulations. Parrish et al (2014) found that three chemistry-climate models (CCMs) overestimate present-day O3 mixing ratios and capture only 50% of the observed O3 increase over the last five decades at 12 baseline sites in the northern mid-latitudes, indicating large uncertainties in our understanding of the ozone trends and their implications for radiative forcing. Here we present comparisons of outputs from two chemical transport models (CTMs) - GEOS-Chem and the Global Modeling Initiative model - with O3 observations from the same sites and from the global ozonesonde network. Both CTMs are driven by reanalysis meteorological data (MERRA or MERRA2) and thus are expected to be different in atmospheric transport processes relative to those freely running CCMs. We test whether recent model developments leading to more active ozone chemistry affect the computed ozone sensitivity to perturbations in emissions. Preliminary results suggest these CTMs can reproduce present-day ozone levels but fail to capture the multi-decadal trend since 1980. Both models yield widespread overpredictions of free tropospheric ozone in the 1980s. Sensitivity studies in GEOS-Chem suggest that the model estimate of natural background ozone is too high. We discuss factors that contribute to the variability and trends of tropospheric ozone over the last 30 years, with a focus on intermodel differences in spatial resolution and in the representation of stratospheric chemistry, stratosphere-troposphere exchange, halogen chemistry, and biogenic VOC emissions and chemistry. We also discuss uncertainty in the historical emission inventories used in models, and how these affect the simulated ozone trends.

  17. Synthesis and properties of γ-Ga2O3-Al2O3 solid solutions

    Science.gov (United States)

    Afonasenko, T. N.; Leont'eva, N. N.; Talzi, V. P.; Smirnova, N. S.; Savel'eva, G. G.; Shilova, A. V.; Tsyrul'nikov, P. G.

    2017-10-01

    The textural and structural properties of mixed oxides Ga2O3-Al2O3, obtained via impregnating γ-Al2O3 with a solution of Ga(NO3)3 and subsequent heat treatment, are studied. According to the results from X-ray powder diffraction, gallium ions are incorporated into the structure of aluminum oxide to form a solid solution of spinel-type γ-Ga2O3-Al2O3 up to a Ga2O3 content of 50 wt % of the total weight of the sample, accompanied by a reduction in the specific surface area, volume, and average pore diameter. It is concluded that when the Ga2O3 content exceeds 50 wt %, the β-Ga2O3 phase is observed along with γ-Ga2O3-Al2O3 solid solution. 71Ga and 27Al NMR spectroscopy shows that gallium replaces aluminum atoms from the tetrahedral position to the octahedral coordination in the structure of γ-Ga2O3-Al2O3.

  18. O3 stars

    International Nuclear Information System (INIS)

    Walborn, N.R.

    1982-01-01

    A brief review of the 10 known objects in this earliest spectral class is presented. Two new members are included: HD 64568 in NGC 2467 (Puppis OB2), which provides the first example of an O3 V((f*)) spectrum; and Sk -67 0 22 in the Large Magellanic Cloud, which is intermediate between types O3 If* and WN6-A. In addition, the spectrum of HDE 269810 in the LMC is reclassified as the first of type O3 III (f*). The absolute visual magnitudes of these stars are rediscussed

  19. UV Fourier transform measurements of tropospheric O3, NO2, SO2, benzene, and toluene

    International Nuclear Information System (INIS)

    Vandaele, A.C.; Tsouli, A.; Carleer, M.; Colin, R.

    2002-01-01

    Using the differential optical absorption spectroscopy (DOAS) technique and a Fourier transform spectrometer, NO 2 , SO 2 , O 3 , benzene, and toluene were measured during three measurement campaigns held in Brussels in 1995, 1996, and 1997. The O 3 concentrations could be explained as the results of the local photochemistry and the dynamical properties of the mixing layer. NO 2 concentrations were anti-correlated to the O 3 concentrations, is expected. SO 2 also showed a pronounced dependence on car traffic. Average benzene and toluene concentrations were, respectively 1.7 ppb and between 4.4 and 6.6 pbb, but high values of toluene up to 98.8 ppb were observed. SO 2 concentrations and to a lesser extent, those of NO 2 and O 3 , were dependent on the wind direction. Ozone in Brussels has been found to be influenced by the meteorological conditions prevailing in central Europe. Comparisons with other measurements have shown that O 3 and SO 2 data are in general in good agreement, but our NO 2 concentrations seem to be generally higher. (author)

  20. Combining sap flow and eddy covariance approaches to derive stomatal and non-stomatal O3 fluxes in a forest stand

    International Nuclear Information System (INIS)

    Nunn, A.J.; Cieslik, S.; Metzger, U.; Wieser, G.; Matyssek, R.

    2010-01-01

    Stomatal O 3 fluxes to a mixed beech/spruce stand (Fagus sylvatica/Picea abies) in Central Europe were determined using two different approaches. The sap flow technique yielded the tree-level transpiration, whereas the eddy covariance method provided the stand-level evapotranspiration. Both data were then converted into stomatal ozone fluxes, exemplifying this novel concept for July 2007. Sap flow-based stomatal O 3 flux was 33% of the total O 3 flux, whereas derivation from evapotranspiration rates in combination with the Penman-Monteith algorithm amounted to 47%. In addition to this proportional difference, the sap flow-based assessment yielded lower levels of stomatal O 3 flux and reflected stomatal regulation rather than O 3 exposure, paralleling the daily courses of canopy conductance for water vapor and eddy covariance-based total stand-level O 3 flux. The demonstrated combination of sap flow and eddy covariance approaches supports the development of O 3 risk assessment in forests from O 3 exposure towards flux-based concepts. - Combined tree sap flow and eddy covariance-based methodologies yield stomatal O 3 flux as 33% in total stand flux.

  1. Growth and nutritive quality of Poa pratensis as influenced by ozone and competition

    International Nuclear Information System (INIS)

    Bender, J.; Muntifering, R.B.; Lin, J.C.; Weigel, H.J.

    2006-01-01

    Interspecific plant competition has been hypothesized to alter effects of early-season ozone (O 3 ) stress. A phytometer-based approach was utilized to investigate O 3 effects on growth and nutritive quality of Poa pratensis grown in monoculture and in mixed cultures with four competitor-plant species (Anthoxanthum odoratum, Achillea millefolium, Rumex acetosa and Veronica chamaedrys). Mesocosms were exposed during April/May 2000-2002 to charcoal-filtered air + 25 ppb O 3 (control) or non-filtered air + 50 ppb O 3 (elevated O 3 ). Biomass production was not affected by O 3 , but foliar injury symptoms were observed in May 2002. Early-season O 3 exposure decreased relative food value of P. pratensis by an average of 8%, which is sufficient to have nutritional implications for its utilization by herbivores. However, forage quality response to O 3 was not changed by interspecific competition. Lack of injury and nutritive quality response in P. pratensis harvested in September may reflect recovery from early-season O 3 exposure. - Early-season O 3 exposure decreased nutritive quality of Poa pratensis, and nutritive quality response to O 3 was not altered by interspecific competition

  2. Regional and local meteorology influences high-resolution tropospheric ozone concentration in the Los Angeles Basin

    Science.gov (United States)

    Koutzoukis, S.; Jenerette, D.; Chandler, M.; Wang, J.; Ge, C.; Ripplinger, J.

    2017-12-01

    Urban air quality and climate directly affect resident health. The Los Angeles (LA) Basin is a highly populated metropolitan area, with widespread point sources of ozone (O3) precursors (NOx , Volatile Organic Compounds, CO) from fossil fuel combustion. The LA basin exists on a coast-to-mountain gradient, with increasing temperatures towards the Transverse Ranges, which rise to 1700m. Frequently not compliant with 8-hour O3 standards, the LA and South Coast Air Basins are designated as severe and extreme non-attainment areas. Summer weather in the LA basin is characterized by a persistent high pressure system, creating an inversion that traps air pollutants, including O3 precursors, coupled with physical geography that blocks prevailing upper atmosphere air flow. These interactions make neighborhood-level O3 levels more variable than common regional models. Over the summer of 2017, we investigated the importance of local meteorology, wind patterns and air temperature, in transporting and mixing ozone precursors from point sources along the coast-to-mountain gradient. We deployed a network of six EPA federal equivalent method ozone and meteorological sensors in three campaigns in the LA basin along the coast-to-mountain transect. Each campaign, we collaborated with citizen scientists to deploy three sensor stations in two, 4 km2 quadrats, for a total of six high-resolution 4 km2 pixels. O3 concentrations vary greatly along the transect. At the coastal sites, daily O3 ranges from 0ppm to 60ppm and the range increases at the inland sites, to 100ppm. At all sites, there was a positive relationship between wind speed, air temperature, and O3 concentration, with increasing correlation inland. The Pearson correlation coefficient between wind speed and O3 concentration doubles from the coast to inland, and triples between air temperature and O3. The site-specific relationships between O3 and wind direction and temperature vary, suggesting neighborhood-effects from local

  3. Frictional properties of CeO$_{2}$-Al$_{2}$O$_{3}$-ZrO$_{2}$ plasma-sprayed film under mixed and boundary lubricating conditions

    CERN Document Server

    Kita, H; Osumi, K; 10.2109/jcersj.112.615

    2004-01-01

    In order to find a counterpart for reducing the frictional coefficient of Al/sub 2/O/sub 3/-ZrO/sub 2/-CeO/sub 2/ plasma-sprayed film, the sliding properties in mixed and boundary lubricating conditions was investigated. It was found that combination of a CrN- coated cast iron pin and an Al/sub 2/O/sub 3/-ZrO/sub 2/-CeO/sub 2/ plasma sprayed plate provided the lowest frictional coefficient among several combinations chosen from practical materials. The coefficient of friction was much lower than that of the materials combination widely used for piston ring and cylinder liner. It was inferred that the combination of a pin made of hard materials with high density, a smooth surface such as CrN-coated cast iron and a porous plate can reduce the frictional coefficient because less sliding resistance is implemented and porosity retains oil.

  4. Evaluation of the Community Multiscale Air Quality Model for Simulating Winter Ozone Formation in the Uinta Basin

    Science.gov (United States)

    Matichuk, Rebecca; Tonnesen, Gail; Luecken, Deborah; Gilliam, Rob; Napelenok, Sergey L.; Baker, Kirk R.; Schwede, Donna; Murphy, Ben; Helmig, Detlev; Lyman, Seth N.; Roselle, Shawn

    2017-12-01

    The Weather Research and Forecasting (WRF) and Community Multiscale Air Quality (CMAQ) models were used to simulate a 10 day high-ozone episode observed during the 2013 Uinta Basin Winter Ozone Study (UBWOS). The baseline model had a large negative bias when compared to ozone (O3) and volatile organic compound (VOC) measurements across the basin. Contrary to other wintertime Uinta Basin studies, predicted nitrogen oxides (NOx) were typically low compared to measurements. Increases to oil and gas VOC emissions resulted in O3 predictions closer to observations, and nighttime O3 improved when reducing the deposition velocity for all chemical species. Vertical structures of these pollutants were similar to observations on multiple days. However, the predicted surface layer VOC mixing ratios were generally found to be underestimated during the day and overestimated at night. While temperature profiles compared well to observations, WRF was found to have a warm temperature bias and too low nighttime mixing heights. Analyses of more realistic snow heat capacity in WRF to account for the warm bias and vertical mixing resulted in improved temperature profiles, although the improved temperature profiles seldom resulted in improved O3 profiles. While additional work is needed to investigate meteorological impacts, results suggest that the uncertainty in the oil and gas emissions contributes more to the underestimation of O3. Further, model adjustments based on a single site may not be suitable across all sites within the basin.

  5. Optimization of Maghemite (γ-Fe2O3) Nano-Powder Mixed micro-EDM of CoCrMo with Multiple Responses Using Gray Relational Analysis (GRA)

    Science.gov (United States)

    Mejid Elsiti, Nagwa; Noordin, M. Y.; Idris, Ani; Saed Majeed, Faraj

    2017-10-01

    This paper presents an optimization of process parameters of Micro-Electrical Discharge Machining (EDM) process with (γ-Fe2O3) nano-powder mixed dielectric using multi-response optimization Grey Relational Analysis (GRA) method instead of single response optimization. These parameters were optimized based on 2-Level factorial design combined with Grey Relational Analysis. The machining parameters such as peak current, gap voltage, and pulse on time were chosen for experimentation. The performance characteristics chosen for this study are material removal rate (MRR), tool wear rate (TWR), Taper and Overcut. Experiments were conducted using electrolyte copper as the tool and CoCrMo as the workpiece. Experimental results have been improved through this approach.

  6. Seasonal ozone uptake by a warm-temperate mixed deciduous and evergreen broadleaf forest in western Japan estimated by the Penman–Monteith approach combined with a photosynthesis-dependent stomatal model

    International Nuclear Information System (INIS)

    Kitao, Mitsutoshi; Komatsu, Masabumi; Hoshika, Yasutomo; Yazaki, Kenichi; Yoshimura, Kenichi; Fujii, Saori; Miyama, Takafumi; Kominami, Yuji

    2014-01-01

    Canopy-level stomatal conductance over a warm-temperate mixed deciduous and evergreen broadleaf forest in Japan was estimated by the Penman–Monteith approach, as compensated by a semi-empirical photosynthesis-dependent stomatal model, where photosynthesis, relative humidity, and CO 2 concentration were assumed to regulate stomatal conductance. This approach, using eddy covariance data and routine meteorological observations at a flux tower site, permits the continuous estimation of canopy-level O 3 uptake, even when the Penman–Monteith approach is unavailable (i.e. in case of direct evaporation from soil or wet leaves). Distortion was observed between the AOT40 exposure index and O 3 uptake through stomata, as AOT40 peaked in April, but with O 3 uptake occurring in July. Thus, leaf pre-maturation in the predominant deciduous broadleaf tree species (Quercus serrata) might suppress O 3 uptake in springtime, even when the highest O 3 concentrations were observed. -- Highlights: • We estimate canopy-level O 3 uptake in a warm-temperate mixed forest in Japan. • The Penman–Monteith approach is compensated by a photosynthesis-dependent model. • Stomatal conductance can be estimated, even in a partly-opened or wet canopy. • The estimated O 3 dose peaks in summer though O 3 exposure peaks in spring. -- Estimation of seasonal O 3 uptake over a mixed-temperate forest compensated by a photosynthesis-dependent stomatal model

  7. Influence of corona discharge on the ozone budget in the tropical free troposphere: a case study of deep convection during GABRIEL

    Science.gov (United States)

    Bozem, H.; Fischer, H.; Gurk, C.; Schiller, C. L.; Parchatka, U.; Koenigstedt, R.; Stickler, A.; Martinez, M.; Harder, H.; Kubistin, D.; Williams, J.; Eerdekens, G.; Lelieveld, J.

    2014-09-01

    Convective redistribution of ozone and its precursors between the boundary layer (BL) and the free troposphere (FT) influences photochemistry, in particular in the middle and upper troposphere (UT). We present a case study of convective transport during the GABRIEL campaign over the tropical rain forest in Suriname in October 2005. During one measurement flight the inflow and outflow regions of a cumulonimbus cloud (Cb) have been characterized. We identified a distinct layer between 9 and 11 km altitude with enhanced mixing ratios of CO, O3, HOx, acetone and acetonitrile. The elevated O3 contradicts the expectation that convective transport brings low-ozone air from the boundary layer to the outflow region. Entrainment of ozone-rich air is estimated to account for 62% (range: 33-91%) of the observed O3. Ozone is enhanced by only 5-6% by photochemical production in the outflow due to enhanced NO from lightning, based on model calculations using observations including the first reported HOx measurements over the tropical rainforest. The "excess" ozone in the outflow is most probably due to direct production by corona discharge associated with lightning. We deduce a production rate of 5.12 × 1028 molecules O3 flash-1 (range: 9.89 × 1026-9.82 × 1028 molecules O3 flash-1), which is at the upper limit of the range reported previously.

  8. An Assessment of Ground Level and Free Tropospheric Ozone Over California and Nevada

    Science.gov (United States)

    Yates, E. L.; Johnson, M. S.; Iraci, L. T.; Ryoo, J.-M.; Pierce, R. B.; Cullis, P. D.; Gore, W.; Ives, M. A.; Johnson, B. J.; Leblanc, T.; Marrero, J. E.; Sterling, C. W.; Tanaka, T.

    2017-09-01

    Increasing free tropospheric ozone (O3), combined with the high elevation and often deep boundary layers at western U.S. surface stations, poses challenges in attaining the more stringent 70 ppb O3 National Ambient Air Quality Standard. As such, use of observational data to identify sources and mechanisms that contribute to surface O3 is increasingly important. This work analyzes surface and vertical O3 observations over California and Nevada from 1995 to 2015. Over this period, the number of high O3 events (95th percentile) at the U.S. Environmental Protection Agency Clean Air Status and Trends Network (CASTNET) sites has decreased during summer, as a result of decreasing U.S. emissions. In contrast, an increase in springtime 5th percentile O3 indicates a general increase of baseline O3. During 2012 there was a peak in exceedances and in the average spring-summer O3 mixing ratios at CASTNET sites. Goddard Earth Observing System-Chem results show that the surface O3 attributable to transport from the upper troposphere and stratosphere was increased in 2013 compared to 2012, highlighting the importance of measurements aloft. Vertical O3 measurements from aircraft, ozonesondes, and lidar show distinct seasonal trends, with a high percentage of elevated O3 laminae (O3 > 70 ppb, 3-8 km) during spring and summer. Analysis of the timing of high O3 surface events and correlation between surface and vertical O3 data is used to discuss varying sources of western U.S. surface O3.

  9. Slow electrons kill the ozone

    International Nuclear Information System (INIS)

    Maerk, T.

    2001-01-01

    A new method and apparatus (Trochoidal electron monochromator) to study the interactions of electrons with atoms, molecules and clusters was developed. Two applications are briefly reported: a) the ozone destruction in the atmosphere is caused by different reasons, a new mechanism is proposed, that slow thermal electrons are self added to the ozone molecule (O 3 ) with a high frequency, then O 3 is destroyed ( O 3 + e - → O - + O 2 ); b) another application is the study of the binding energy of the football molecule C60. (nevyjel)

  10. Heterogeneous ozonation reactions of PAHs and fatty acid methyl esters in biodiesel particulate matter

    Science.gov (United States)

    Kasumba, John; Holmén, Britt A.

    2018-02-01

    Numerous studies have examined the oxidation of PAHs found in diesel particulate matter (PM) by ozone, but no studies have investigated the ozone oxidation of biodiesel exhaust PM. Fatty acid methyl esters (FAMEs), found in high abundance in biodiesel PM, can potentially alter the kinetics of the reactions between atmospheric oxidants such as ozone and particle-phase PAHs. In this study, the heterogeneous reactivity of 16 EPA PAHs upon 24 h exposure to 0.4 ppm ozone in the presence (PAH + FAMES) and absence (PAH-only) of FAMEs was investigated at room temperature and 50% relative humidity. The ozone-reactivity of the PAHs detected in 20% biodiesel (B20) exhaust PM was also investigated. In the absence of FAMEs, the pseudo-first order ozone reaction rate constant, kO 3 , of PAHs varied from 0.086 ± 0.030 hr-1 (chrysene) to 0.184 ± 0.078 hr-1 (anthracene). In the presence of FAMEs, kO 3 of the PAHs varied between 0.013 ± 0.012 hr-1 (benzo[b]fluoranthene) and 0.168 ± 0.028 hr-1 (benzo[a]pyrene), and with the exception of benzo[a]pyrene, the kO 3 of PAHs were 1.2-8 times lower compared to those obtained during the PAH-only ozone exposure. Only one PAH, benzo[a]pyrene (BaP), did not show a significant change in kO3 with addition of FAMEs. Phenanthrene, fluoranthene, and pyrene, the only PAHs detected in the B20 PM, had kO 3 values about 4 times lower in B20 PM than those obtained when spiked PAHs-only were exposed to ozone. The kO 3 values of phenanthrene and fluoranthene in the B20 PM were 2 times higher than rates obtained when the PAH mix was exposed to ozone in the presence of the FAMEs. In contrast, pyrene's kO 3 in the B20 PM was about 2 times lower than that obtained for the PAH + FAMEs exposure. Observed differences in PAH behavior demonstrate individual PAH heterogeneous reactivity with gas-phase ozone is sensitive to PAH (vapor pressure, solubility/sorption to matrix components, chemical reactivity) as well as substrate properties (PAH and O3 diffusivity

  11. Ozone Formation Induced by the Impact of Reactive Bromine and Iodine Species on Photochemistry in a Polluted Marine Environment.

    Science.gov (United States)

    Shechner, M; Tas, E

    2017-12-19

    Reactive iodine and bromine species (RIS and RBS, respectively) are known for altering atmospheric chemistry and causing sharp tropospheric ozone (O 3 ) depletion in polar regions and significant O 3 reduction in the marine boundary layer (MBL). Here we use measurement-based modeling to show that, unexpectedly, both RIS and RBS can lead to enhanced O 3 formation in a polluted marine environment under volatile organic compound (VOC)-limited conditions associated with high nitrogen oxide (NO X = [NO] + [NO 2 ]) concentrations. Under these conditions, the daily average O 3 mixing ratio increased to ∼44 and ∼28% for BrO and IO mixing ratios of up to ∼6.8 and 4.7 ppt, respectively. The increase in the level of O 3 was partially induced by enhanced ClNO 3 formation for higher Br 2 and I 2 emission flux. The increase in the level of O 3 was associated with an increased mixing ratio of hydroperoxyl radical to hydroxyl radical ([HO 2 ]/[OH]) and increased [NO 2 ]/[NO] with higher levels of RBS and/or RIS. NO X -rich conditions are typical of the polluted MBL, near coastlines and ship plumes. Considering that O 3 is toxic to humans, plants, and animals and is a greenhouse gas, our findings call for adequate updating of local and regional air-quality models with the effects of activities of RBS and RIS on O 3 mixing ratios in the polluted MBL.

  12. Convective lofting links Indian Ocean air pollution to paradoxical South Atlantic ozone maxima

    Science.gov (United States)

    Chatfield, R. B.; Guan, H.; Thompson, A. M.; Witte, J. C.

    2005-01-01

    We describe a broad resolution of the Atlantic Parado concerning the seasonal and geographic distribution, of tropical tropospheric ozone. We highlight periods of significant maximum tropospheric O3 for Jan.- April, 1999, exploiting satellite estimates and SHADOZ (Southern Hemisphere Additional Ozonesondes). Trajectory analyses connecting sondes and Total Tropospheric Ozone (TTO) maps suggest a complex influence from the Indian Ocean: beginning with mixed combustion sources, then low level transport, cumulonimbus venting, possible stratospheric input, and finally high-level transport to the west, with possible mixing over Africa. For the Jan.-March highest column-O3 periods in the Atlantic, distinct sounding peaks trace to specific NO sources, especially lightning, while in the same episodes, recurring every 20-50 days, more diffuse buildups of Indian-to-Atlantic pollution make important contributions.

  13. Near-ground ozone source attributions and outflow in central eastern China during MTX2006

    Science.gov (United States)

    Li, J.; Wang, Z.; Akimoto, H.; Yamaji, K.; Takigawa, M.; Pochanart, P.; Liu, Y.; Tanimoto, H.; Kanaya, Y.

    2008-12-01

    A 3-D regional chemical transport model, the Nested Air Quality Prediction Model System (NAQPMS), with an on-line tracer tagging module was used to study the source of the near-ground (pollutants, and it captured highly polluted and clean cases well. The simulated near-ground ozone level over CEC was 60-85 ppbv (parts per billion by volume), which was higher than values in Japan and over the North Pacific (20-50 ppbv). The simulated tagged tracer data indicated that the regional-scale transport of chemically produced ozone over other areas in CEC contributed to the greatest fraction (49%) of the near-ground mean ozone at Mt. Tai in June; in situ photochemistry contributed only 12%. Due to high anthropogenic and biomass burning emissions that occurred in the southern part of the CEC, the contribution to ground ozone levels from this area played the most important role (32.4 ppbv, 37.9% of total ozone) in the monthly mean ozone concentration at Mt. Tai; values reached 59 ppbv (62%) on 6-7 June 2006. The monthly mean horizontal distribution of chemically produced ozone from various ozone production regions indicated that photochemical reactions controlled the spatial distribution of O3 over CEC. The regional-scale transport of pollutants also played an important role in the spatial and temporal distribution of ozone over CEC. Chemically produced ozone from the southern part of the study region can be transported northeastwardly to the northern rim of CEC; the mean contribution was 5-10 ppbv, and it reached 25 ppbv during high ozone events. Studies of the outflow of CEC ozone and its precursors, as well as their influences and contributions to the ozone level over adjacent regions/countries, revealed that the contribution of CEC ozone to mean ozone mixing ratios over the Korean Peninsula and Japan was 5-15 ppbv, of which about half was due to the direct transport of ozone from CEC and half was produced locally by ozone precursors transported from CEC.

  14. Surface ozone in the Colorado northern Front Range and the influence of oil and gas development during FRAPPE/DISCOVER-AQ in summer 2014

    Directory of Open Access Journals (Sweden)

    L. C. Cheadle

    2017-11-01

    Full Text Available High mixing ratios of ozone (O3 in the northern Front Range (NFR of Colorado are not limited to the urban Denver area but were also observed in rural areas where oil and gas activity is the primary source of O3 precursors. On individual days, oil and gas O3 precursors can contribute in excess of 30 ppb to O3 growth and can lead to exceedances of the EPA O3 National Ambient Air Quality Standard. Data used in this study were gathered from continuous surface O3 monitors for June–August 2013–2015 as well as additional flask measurements and mobile laboratories that were part of the FRAPPE/DISCOVER-AQ field campaign of July–August 2014. Overall observed O3 levels during the summer of 2014 were lower than in 2013, likely due to cooler and damper weather than an average summer. This study determined the median hourly surface O3 mixing ratio in the NFR on summer days with limited photochemical production to be approximately 45–55 ppb. Mobile laboratory and flask data collected on three days provide representative case studies of different O3 formation environments in and around Greeley, Colorado. Observations of several gases (including methane, ethane, CO, nitrous oxide along with O3 are used to identify sources of O3 precursor emissions. A July 23 survey demonstrated low O3 (45–60 ppb while August 3 and August 13 surveys recorded O3 levels of 75–80 ppb or more. August 3 exemplifies influence of moderate urban and high oil and gas O3 precursor emissions. August 13 demonstrates high oil and gas emissions, low agricultural emissions, and CO measurements that were well correlated with ethane from oil and gas, suggesting an oil and gas related activity as a NOx and O3 precursor source. Low isoprene levels indicated that they were not a significant contributor to O3 precursors measured during the case studies.

  15. Study of a Mixed Alkaline–Earth Effect on Some Properties of Glasses of the CaO-MgO-Al2O3-SiO2 System

    Directory of Open Access Journals (Sweden)

    Valle-Fuentes, J. F.

    2007-06-01

    Full Text Available In the present work, we studied a “Mixed Alkaline–Earth Effect”, i.e. the non-linear behaviour showed by the glass transition temperature as well as by the compressive strength of glasses of the CaO-MgO-Al2O3-SiO2 system, when a part of the CaO contained in them was substituted by a BaO/SrO mixture, in variable molar proportions. An important factor for the occurrence of this phenomenon was the difference in atomic weight, ionic radii and field strength of the Ba2+ and Sr2+ ions in comparison with those corresponding to the Ca2+ ion. Another factor considered was the likely occurrence of a microphase separation caused by the addition of BaO and/or SrO, together with the presence of F- and Mg2+ in the glasses. Other glass properties studied as a function of the CaO substitution level were density, glass molar volume, oxygen molar volume, packing fraction, and chemical resistance in neutral, basic and acidic aqueous media. In general, the structural reinforcement of the glass network caused by the partial substitution of CaO by a BaO/SrO mixture was accompanied by an improvement in the alkaline resistance of the materials, which were found to be suitable for applications in corrosive environments, especially in basic media. Keywords: Mixed alkaline–earth effect; CaO-MgO-Al2O3-SiO2 system; glass properties.En el presente trabajo, se estudia el comportamiento no lineal mostrado por la temperatura de transición vítrea y por la resistencia a la compresión de vidrios del sistema CaO-MgO-Al2O3-SiO2, cuando una parte del CaO contenido en los mismos es sustituido por una mezcla de BaO/SrO, en relación molar variable. Factores importantes para que se de este comportamiento son la diferencia entre pesos atómicos, radios iónicos e intensidad de campo de los iones Ba2+ y Sr2+ y los del propio ión Ca2+. Otro factor considerado ha sido la probable existencia de una separación de microfases originada por la adición de BaO y/o SrO, junto con la

  16. Investigation of phase relationships in subsolidus region of Ln2O3-MoO3-B2O3 systems

    International Nuclear Information System (INIS)

    Lysanova, C.V.; Dzhurinskij, B.F.; Komova, M.G.; Tananaev, I.V.

    1983-01-01

    Phase formation in subsolidus region of Ln 2 O 3 -MoO 3 B 2 O 3 systems (Ln-La, Nd) is studied. Three compounds with mixed oxyanions-boratomolybdates of LnMoBO 6 composition (Ln-La, Ce, Pr, Nd), Ln 2 MoB 2 O 9 (Ln-La, Ce, Pr, Nd, Sm, EU, Gde Tb) Ln 6 Mo 3 B 4 0 24 (Ln-Pr, Nd) are revealed and described

  17. WRF-Chem simulated surface ozone over south Asia during the pre-monsoon: effects of emission inventories and chemical mechanisms

    Directory of Open Access Journals (Sweden)

    A. Sharma

    2017-12-01

    Full Text Available We evaluate numerical simulations of surface ozone mixing ratios over the south Asian region during the pre-monsoon season, employing three different emission inventories in the Weather Research and Forecasting model with Chemistry (WRF-Chem with the second-generation Regional Acid Deposition Model (RADM2 chemical mechanism: the Emissions Database for Global Atmospheric Research – Hemispheric Transport of Air Pollution (EDGAR-HTAP, the Intercontinental Chemical Transport Experiment phase B (INTEX-B and the Southeast Asia Composition, Cloud, Climate Coupling Regional Study (SEAC4RS. Evaluation of diurnal variability in modelled ozone compared to observational data from 15 monitoring stations across south Asia shows the model ability to reproduce the clean, rural and polluted urban conditions over this region. In contrast to the diurnal average, the modelled ozone mixing ratios during noontime, i.e. hours of intense photochemistry (11:30–16:30 IST – Indian Standard Time – UTC +5:30, are found to differ among the three inventories. This suggests that evaluations of the modelled ozone limited to 24 h average are insufficient to assess uncertainties associated with ozone buildup. HTAP generally shows 10–30 ppbv higher noontime ozone mixing ratios than SEAC4RS and INTEX-B, especially over the north-west Indo-Gangetic Plain (IGP, central India and southern India. The HTAP simulation repeated with the alternative Model for Ozone and Related Chemical Tracers (MOZART chemical mechanism showed even more strongly enhanced surface ozone mixing ratios due to vertical mixing of enhanced ozone that has been produced aloft. Our study indicates the need to also evaluate the O3 precursors across a network of stations and the development of high-resolution regional inventories for the anthropogenic emissions over south Asia accounting for year-to-year changes to further reduce uncertainties in modelled ozone over this region.

  18. WRF-Chem simulated surface ozone over south Asia during the pre-monsoon: effects of emission inventories and chemical mechanisms

    Science.gov (United States)

    Sharma, Amit; Ojha, Narendra; Pozzer, Andrea; Mar, Kathleen A.; Beig, Gufran; Lelieveld, Jos; Gunthe, Sachin S.

    2017-12-01

    We evaluate numerical simulations of surface ozone mixing ratios over the south Asian region during the pre-monsoon season, employing three different emission inventories in the Weather Research and Forecasting model with Chemistry (WRF-Chem) with the second-generation Regional Acid Deposition Model (RADM2) chemical mechanism: the Emissions Database for Global Atmospheric Research - Hemispheric Transport of Air Pollution (EDGAR-HTAP), the Intercontinental Chemical Transport Experiment phase B (INTEX-B) and the Southeast Asia Composition, Cloud, Climate Coupling Regional Study (SEAC4RS). Evaluation of diurnal variability in modelled ozone compared to observational data from 15 monitoring stations across south Asia shows the model ability to reproduce the clean, rural and polluted urban conditions over this region. In contrast to the diurnal average, the modelled ozone mixing ratios during noontime, i.e. hours of intense photochemistry (11:30-16:30 IST - Indian Standard Time - UTC +5:30), are found to differ among the three inventories. This suggests that evaluations of the modelled ozone limited to 24 h average are insufficient to assess uncertainties associated with ozone buildup. HTAP generally shows 10-30 ppbv higher noontime ozone mixing ratios than SEAC4RS and INTEX-B, especially over the north-west Indo-Gangetic Plain (IGP), central India and southern India. The HTAP simulation repeated with the alternative Model for Ozone and Related Chemical Tracers (MOZART) chemical mechanism showed even more strongly enhanced surface ozone mixing ratios due to vertical mixing of enhanced ozone that has been produced aloft. Our study indicates the need to also evaluate the O3 precursors across a network of stations and the development of high-resolution regional inventories for the anthropogenic emissions over south Asia accounting for year-to-year changes to further reduce uncertainties in modelled ozone over this region.

  19. Ozone response to emission reductions in the southeastern United States

    Science.gov (United States)

    Blanchard, Charles L.; Hidy, George M.

    2018-06-01

    Ozone (O3) formation in the southeastern US is studied in relation to nitrogen oxide (NOx) emissions using long-term (1990s-2015) surface measurements of the Southeastern Aerosol Research and Characterization (SEARCH) network, U.S. Environmental Protection Agency (EPA) O3 measurements, and EPA Clean Air Status and Trends Network (CASTNET) nitrate deposition data. Annual fourth-highest daily peak 8 h O3 mixing ratios at EPA monitoring sites in Georgia, Alabama, and Mississippi exhibit statistically significant (p total oxidized nitrogen (NOy) mixing ratios at SEARCH sites declined in proportion to NOx emission reductions. CASTNET data show declining wet and dry nitrate deposition since the late 1990s, with total (wet plus dry) nitrate deposition fluxes decreasing linearly in proportion to reductions of NOx emissions by ˜ 60 % in Alabama and Georgia. Annual nitrate deposition rates at Georgia and Alabama CASTNET sites correspond to 30 % of Georgia emission rates and 36 % of Alabama emission rates, respectively. The fraction of NOx emissions lost to deposition has not changed. SEARCH and CASTNET sites exhibit downward trends in mean annual nitric acid (HNO3) concentrations. Observed relationships of O3 to NOz (NOy-NOx) support past model predictions of increases in cycling of NO and increasing responsiveness of O3 to NOx. The study data provide a long-term record that can be used to examine the accuracy of process relationships embedded in modeling efforts. Quantifying observed O3 trends and relating them to reductions in ambient NOy species concentrations offers key insights into processes of general relevance to air quality management and provides important information supporting strategies for reducing O3 mixing ratios.

  20. Experimental and numerical investigations on the temperature distribution in PVD AlTiN coated and uncoated Al2O3/TiCN mixed ceramic cutting tools in hard turning of AISI 52100 steel

    Science.gov (United States)

    Sateesh Kumar, Ch; Patel, Saroj Kumar; Das, Anshuman

    2018-03-01

    Temperature generation in cutting tools is one of the major causes of tool failure especially during hard machining where machining forces are quite high resulting in elevated temperatures. Thus, the present work investigates the temperature generation during hard machining of AISI 52100 steel (62 HRC hardness) with uncoated and PVD AlTiN coated Al2O3/TiCN mixed ceramic cutting tools. The experiments were performed on a heavy duty lathe machine with both coated and uncoated cutting tools under dry cutting environment. The temperature of the cutting zone was measured using an infrared thermometer and a finite element model has been adopted to predict the temperature distribution in cutting tools during machining for comparative assessment with the measured temperature. The experimental and numerical results revealed a significant reduction of cutting zone temperature during machining with PVD AlTiN coated cutting tools when compared to uncoated cutting tools during each experimental run. The main reason for decrease in temperature for AlTiN coated tools is the lower coefficient of friction offered by the coating material which allows the free flow of the chips on the rake surface when compared with uncoated cutting tools. Further, the superior wear behaviour of AlTiN coating resulted in reduction of cutting temperature.

  1. Quenching of I(2P1/2) by O3 and O(3P).

    Science.gov (United States)

    Azyazov, Valeriy N; Antonov, Ivan O; Heaven, Michael C

    2007-04-26

    Oxygen-iodine lasers that utilize electrical or microwave discharges to produce singlet oxygen are currently being developed. The discharge generators differ from conventional chemical singlet oxygen generators in that they produce significant amounts of atomic oxygen. Post-discharge chemistry includes channels that lead to the formation of ozone. Consequently, removal of I(2P1/2) by O atoms and O3 may impact the efficiency of discharge driven iodine lasers. In the present study, we have measured the rate constants for quenching of I(2P1/2) by O(3P) atoms and O3 using pulsed laser photolysis techniques. The rate constant for quenching by O3, (1.8 +/- 0.4) x 10(-12) cm3 s-1, was found to be a factor of 5 smaller than the literature value. The rate constant for quenching by O(3P) was (1.2 +/- 0.2) x 10(-11) cm3 s-1.

  2. Influence of corona discharge on the ozone budget in the tropical free troposphere: a case study of deep convection during GABRIEL

    Science.gov (United States)

    Bozem, H.; Fischer, H.; Gurk, C.; Schiller, C. L.; Parchatka, U.; Koenigstedt, R.; Stickler, A.; Martinez, M.; Harder, H.; Kubistin, D.; Williams, J.; Eerdekens, G.; Lelieveld, J.

    2014-02-01

    Convective redistribution of ozone and its precursors between the boundary layer (BL) and the free troposphere (FT) influences photochemistry, in particular that of the middle and upper troposphere (UT). We present a case study of convective transport during the GABRIEL campaign over the tropical rain forest in Suriname in October 2005. During a measurement flight on 12 October the inflow and outflow regions of a cumulonimbus cloud (Cb) have been characterized, providing evidence of convective transport. We identified a distinct layer between 9 and 11 km altitude with enhanced mixing ratios of CO, O3, HOx, acetone and acetonitrile. The elevated O3 contradicts the expectation that convective transport brings low ozone air from the boundary layer to the outflow region. The enhanced mixing ratio of ozone in the outflow was mainly of dynamical origin. Entrainment of ozone rich air at the outflow level into the convective outflow accounts for 62% (range: 33-91%) of the observed O3. Ozone is enhanced by only 5-6% by photochemical production in the outflow due to enhanced NO from lightning, based on steady state model calculations, using in-situ observations including the first reported HOx measurements over the tropical rainforest. The "excess" ozone in the outflow is most probably due to direct production by corona discharge associated with lightning. We deduce a production rate of 5.12 × 1028 molecules O3 flash-1 (range: 9.89 × 1026-9.82 × 1028 molecules O3 flash-1), which is at the upper limit of the range of the values reported previously.

  3. Photochemical smog effects in mixed conifer forests along a natural gradient of ozone and nitrogen deposition in the San Bernardino Mountains.

    Science.gov (United States)

    Arbaugh, Michael; Bytnerowicz, Andrzej; Grulke, Nancy; Fenn, Mark; Poth, Mark; Temple, Patrick; Miller, Paul

    2003-06-01

    Toxic effects of photochemical smog on ponderosa and Jeffrey pines in the San Bernardino Mountains were discovered in the 1950s. It was revealed that ozone is the main cause of foliar injury manifested as chlorotic mottle and premature needle senescence. Various morphological, physiological and biochemical alterations in the affected plants have been reported over a period of about 40 years of multidisciplinary research. Recently, the focus of research has shifted from studying the effects of ozone to multiple pollutant effects. Recent studies have indicated that the combination of ozone and nitrogen may alter biomass allocation in pines towards that of deciduous trees, accelerate litter accumulation, and increase carbon sequestration rates in heavily polluted forests. Further study of the effects of multiple pollutants, and their long-term consequences on the mixed conifer ecosystem, cannot be adequately done using the original San Bernardino Mountains Air Pollution Gradient network. To correct deficiencies in the design, the new site network is being configured for long-term studies on multiple air pollutant concentrations and deposition, physiological and biochemical changes in trees, growth and composition of over-story species, biogeochemical cycling including carbon cycling and sequestration, water quality, and biodiversity of forest ecosystems. Eleven sites have been re-established. A comparison of 1974 stand composition with data from 2000 stand composition indicate that significant changes in species composition have occurred at some sites with less change at other sites. Moist, high-pollution sites have experienced the greatest amount of forest change, while dryer low-pollution sites have experienced the least amount of stand change. In general, ponderosa pine had the lowest basal area increases and the highest mortality across the San Bernardino Mountains.

  4. Ozone climatology over western Mediterranean Sea

    International Nuclear Information System (INIS)

    Pibiri, G.; Randaccio, P.; Serra, A.; Sollai, A.

    1984-01-01

    A preliminary climatology of atmospheric ozone over Western Mediterranean Sea is given by analysis of the upper observations of O 3 carried out at Cagliari-Elmas station from 1968 to 1976. Some peculiarities are here illustrated and discussed

  5. Limitations of ozone data assimilation with adjustment of NOx emissions: mixed effects on NO2 forecasts over Beijing and surrounding areas

    Directory of Open Access Journals (Sweden)

    X. Tang

    2016-05-01

    Full Text Available This study investigates a cross-variable ozone data assimilation (DA method based on an ensemble Kalman filter (EnKF that has been used in the companion study to improve ozone forecasts over Beijing and surrounding areas. The main purpose is to delve into the impacts of the cross-variable adjustment of nitrogen oxide (NOx emissions on the nitrogen dioxide (NO2 forecasts over this region during the 2008 Beijing Olympic Games. A mixed effect on the NO2 forecasts was observed through application of the cross-variable assimilation approach in the real-data assimilation (RDA experiments. The method improved the NO2 forecasts over almost half of the urban sites with reductions of the root mean square errors (RMSEs by 15–36 % in contrast to big increases of the RMSEs over other urban stations by 56–239 %. Over the urban stations with negative DA impacts, improvement of the NO2 forecasts (with 7 % reduction of the RMSEs was noticed at night and in the morning versus significant deterioration during daytime (with 190 % increase of the RMSEs, suggesting that the negative data assimilation impacts mainly occurred during daytime. Ideal-data assimilation (IDA experiments with a box model and the same cross-variable assimilation method confirmed the mixed effects found in the RDA experiments. In the same way, NOx emission estimation was improved at night and in the morning even under large biases in the prior emission, while it deteriorated during daytime (except for the case of minor errors in the prior emission. The mixed effects observed in the cross-variable data assimilation, i.e., positive data assimilation impacts on NO2 forecasts over some urban sites, negative data assimilation impacts over the other urban sites, and weak data assimilation impacts over suburban sites, highlighted the limitations of the EnKF under strong nonlinear relationships between chemical variables. Under strong nonlinearity between daytime ozone concentrations and

  6. Physiological and biochemical stress responses in grassland species are influenced by both early-season ozone exposure and interspecific competition

    International Nuclear Information System (INIS)

    Scebba, Francesca; Canaccini, Francesca; Castagna, Antonella; Bender, Juergen; Weigel, Hans-Joachim; Ranieri, Annamaria

    2006-01-01

    The effects of two-year early season ozone exposure on physiological and biochemical stress response were investigated in model plant communities. Achillea millefolium and Veronica chamaedrys target plants were grown in monocultures and in mixed cultures with Poa pratensis (phytometer) and exposed in open-top chambers over two years for five weeks to charcoal-filtered (CF) air plus 25 nl l -1 O 3 (control) and non-filtered (NF) air plus 50 nl l -1 O 3 . Significant O 3 effects were detected in different physiological and biochemical parameters, evidencing interspecific differences in metabolic stress responses and a strong influence of the competition factor. O 3 induced strong oxidative effects in Achillea irrespective to the different growth modality. Veronica showed less O 3 -induced effects in monoculture than when grown in competition with the phytometer. Poa exhibited a different behaviour against O 3 depending on the species in competition, showing an overall higher sensitivity to O 3 when in mixture with Achillea. - The competition between species modulates the ozone effect in a short-term

  7. Ozone and ozone injury on plants in and around Beijing, China

    International Nuclear Information System (INIS)

    Wan, Wuxing; Manning, W.J.; Wang, Xiaoke; Zhang, Hongxing; Sun, Xu; Zhang, Qianqian

    2014-01-01

    Ozone (O 3 ) levels were assessed for the first time with passive samplers at 10 sites in and around Beijing in summer 2012. Average O 3 concentrations were higher at locations around Beijing than in the city center. Levels varied with site locations and ranged from 22.5 to 48.1 ppb and were highest at three locations. Hourly O 3 concentrations exceeded 40 ppb for 128 h and 80 ppb for 17 h from 2 to 9 in August at one site, where it had a real-time O 3 analyzer. Extensive foliar O 3 injury was found on 19 species of native and cultivated trees, shrubs, and herbs at 6 of the 10 study sites and the other 2 sites without passive sampler. This is the first report of O 3 foliar injury in and around Beijing. Our results warrant an extensive program of O 3 monitoring and foliar O 3 injury assessment in and around Beijing. - Highlights: • Plants have been threatened by high O 3 concentration in and around Beijing, China. • 19 plant species are reported as obvious ambient O 3 injury symptoms in Beijing. • The O 3 injury symptoms occur more often where ambient O 3 concentration is higher. • The results warrant more extensive and long-term study of ambient O 3 in China. - First report of ozone incidence and ozone injury on plants in and around Beijing, China

  8. Ozone air pollution in the Ukrainian Carpathian Mountains and Kiev region

    Science.gov (United States)

    Oleg Blum; Andrzej Bytnerowicz; William Manning; Ludmila Popovicheva

    1998-01-01

    Ambient concentrations of ozone (O3) were measured at five highland forest locations in the Ukrainian Carpathians and in two lowland locations in the Kiev region during August to September 1995 by using O3 passive samplers. The ozone passive samplers were calibrated against a Thermo Environmental Model 49 ozone monitor...

  9. Retrieval and satellite intercomparison of O3 measurements from ground-based FTIR Spectrometer at Equatorial Station: Addis Ababa, Ethiopia

    Directory of Open Access Journals (Sweden)

    T. von Clarmann

    2013-02-01

    Full Text Available Since May 2009, high-resolution Fourier Transform Infrared (FTIR solar absorption spectra have been recorded at Addis Ababa (9.01° N latitude, 38.76° E longitude, 2443 m altitude above sea level, Ethiopia. The vertical profiles and total column amounts of ozone (O3 are deduced from the spectra by using the retrieval code PROFFIT (V9.5 and regularly determined instrumental line shape (ILS. A detailed error analysis of the O3 retrieval is performed. Averaging kernels of the target gas shows that the major contribution to the retrieved information comes from the measurement. The degrees of freedom for signals is found to be 2.1 on average for the retrieval of O3 from the observed FTIR spectra. The ozone Volume Mixing Ratio (VMR profiles and column amounts retrieved from FTIR spectra are compared with the coincident satellite observations of Microwave Limb Sounding (MLS, Michelson Interferometer for Passive Atmospheric Sounding (MIPAS, Tropospheric Emission Spectrometer (TES, Ozone Monitoring Instrument (OMI, Atmospheric Infrared Sounding (AIRS and Global Ozone Monitoring Experiment (GOME-2 instruments. The mean relative differences in ozone profiles of FTIR from MLS and MIPAS are generally lower than 15% within the altitude range of 27 to 36 km, whereas difference from TES is lower than 1%. Comparisons of measurements of column amounts from the satellite and the ground-based FTIR show very good agreement as exhibited by relative differences within +0.2% to +2.8% for FTIR versus MLS and GOME-2; and −0.9 to −9.0% for FTIR versus OMI, TES and AIRS. The corresponding standard deviations are within 2.0 to 2.8% for FTIR versus MLS and GOME-2 comparisons whereas that of FTIR versus OMI, TES and AIRS are within 3.5 to 7.3%. Thus, the retrieved O3 VMR and column amounts from a tropical site, Addis Ababa, is found to exhibit very good agreement with all coincident satellite observations over an approximate 3-yr period.

  10. Characteristics of surface ozone and nitrogen oxides at urban, suburban and rural sites in Ningbo, China

    Science.gov (United States)

    Tong, Lei; Zhang, Huiling; Yu, Jie; He, Mengmeng; Xu, Nengbin; Zhang, Jingjing; Qian, Feizhong; Feng, Jiayong; Xiao, Hang

    2017-05-01

    Surface ozone (O3) is a harmful air pollutant that has attracted growing concern in China. In this study, the mixing ratios of O3 and nitrogen oxides (NOx) at three different sites (urban, suburban and rural) of Ningbo were continuously measured to investigate the spatiotemporal characteristics of O3 and its relationships with environmental variables. The diurnal O3 variations were characterized by afternoon maxima (38.7-53.1 ppb on annual average) and early morning minima (11.7-26.2 ppb) at all the three sites. Two seasonal peaks of O3 were observed in spring (April or May) and autumn (October) with minima being observed in winter (December). NOx levels showed generally opposite variations to that of O3 with diurnal and seasonal maxima occurring in morning/evening rush-hours and in winter, respectively. As to the inter-annual variations of air pollutants, generally decreasing and increasing trends were observed in NO and O3 levels, respectively, from 2012 to 2015 at both urban and suburban sites. O3 levels were positively correlated with temperature but negatively correlated with relative humidity and NOx levels. Significant differences in O3 levels were observed for different wind speeds and wind directions (p variation, higher levels of O3 were observed at the suburban and rural sites where less O3 was depleted by NO titration. In contrast, the urban site exhibited lower O3 but higher NOx levels due to the influence of traffic emissions. Larger amplitudes of diurnal and monthly O3 variations were observed at the suburban site than those at the urban and rural sites. In general, the O3 levels at the non-urban sites were more affected by the background transport, while both the local and regional contributions played roles in urban O3 variations. The annual average O3 mixing ratios (22.7-37.7 ppb) in Ningbo were generally similar to those of other regions around the world. However, the recommended air quality standards for O3 were often exceeded during warm

  11. Constructing Ozone Profile Climatologies with Self-Organizing Maps: Illustrations with CONUS Ozonesonde Data

    Science.gov (United States)

    Thompson, A. M.; Stauffer, R. M.; Young, G. S.

    2015-12-01

    Ozone (O3) trends analysis is typically performed with monthly or seasonal averages. Although this approach works well for stratospheric or total O3, uncertainties in tropospheric O3 amounts may be large due to rapid meteorological changes near the tropopause and in the lower free troposphere (LFT) where pollution has a days-weeks lifetime. We use self-organizing maps (SOM), a clustering technique, as an alternative for creating tropospheric climatologies from O3 soundings. In a previous study of 900 tropical ozonesondes, clusters representing >40% of profiles deviated > 1-sigma from mean O­3. Here SOM are based on 15 years of data from four sites in the contiguous US (CONUS; Boulder, CO; Huntsville, AL; Trinidad Head, CA; Wallops Island, VA). Ozone profiles from 2 - 12 km are used to evaluate the impact of tropopause variability on climatology; 2 - 6 km O3 profile segments are used for the LFT. Near-tropopause O­3 is twice the mean O­3 mixing ratio in three clusters of 2 - 12 km O3, representing > 15% of profiles at each site. Large mid and lower-tropospheric O3 deviations from monthly means are found in clusters of both 2 - 12 and 2 - 6 km O3. Positive offsets result from pollution and stratosphere-to-troposphere exchange. In the LFT the lowest tropospheric O3 is associated with subtropical air. Some clusters include profiles with common seasonality but other factors, e.g., tropopause height or LFT column amount, characterize other SOM nodes. Thus, as for tropical profiles, CONUS O­3 averages can be a poor choice for a climatology.

  12. ELEVATED CO2 AND O3 EFFECTS ON FINE-ROOT SURVIVORSHIP IN PONDEROSA PINE MESOCOSMS

    Science.gov (United States)

    Atmospheric carbon dioxide (CO2) and ozone (O3) concentrations are rising, which may have opposing effects on tree C balance and allocation to fine roots. More information is needed on interactive CO2 and O3 effects on roots, particularly fine-root life span, a critical demograph...

  13. Elevated CO2 or O3 effects on fine-root survivorship in ponderosa pine

    Science.gov (United States)

    Atmospheric carbon dioxide (CO2) and ozone (O3) concentrations are rising, which may have opposing effects on tree C balance and allocation to fine roots. More information is needed on interactive CO2 and O3 effects on roots, particularly fine-root life span, a critical demograp...

  14. UASB reactor effluent disinfection by ozone and chlorine

    NARCIS (Netherlands)

    Ribeiro da Silvia, G.H.; Bruning, H.; Gerrity, D.; Daniel, L.A.

    2015-01-01

    This research studied the sequential ozone and chlorine process with respect to, the inactivation of indicator bacteria and the formation of ozone disinfection byproducts in sanitary wastewater effluent. The applied ozone doses were 5, 8 and 10 mg.O3.L-1, followed by chlorine doses of 10, 20 and 30

  15. Importance of A Priori Vertical Ozone Profiles for TEMPO Air Quality Retrievals

    Science.gov (United States)

    Johnson, M. S.; Sullivan, J. T.; Liu, X.; Zoogman, P.; Newchurch, M.; Kuang, S.; McGee, T. J.; Leblanc, T.

    2017-12-01

    Ozone (O3) is a toxic pollutant which plays a major role in air quality. Typically, monitoring of surface air quality and O3 mixing ratios is conducted using in situ measurement networks. This is partially due to high-quality information related to air quality being limited from space-borne platforms due to coarse spatial resolution, limited temporal frequency, and minimal sensitivity to lower tropospheric and surface-level O3. The Tropospheric Emissions: Monitoring of Pollution (TEMPO) satellite is designed to address the limitations of current space-based platforms and to improve our ability to monitor North American air quality. TEMPO will provide hourly data of total column and vertical profiles of O3 with high spatial resolution to be used as a near-real-time air quality product. TEMPO O3 retrievals will apply the Smithsonian Astrophysical Observatory profile algorithm developed based on work from GOME, GOME-2, and OMI. This algorithm is suggested to use a priori O3 profile information from a climatological data-base developed from long-term ozone-sonde measurements (tropopause-based (TB-Clim) O3 climatology). This study evaluates the TB-Clim dataset and model simulated O3 profiles, which could potentially serve as a priori O3 profile information in TEMPO retrievals, from near-real-time data assimilation model products (NASA GMAO's operational GEOS-5 FP model and reanalysis data from MERRA2) and a full chemical transport model (CTM), GEOS-Chem. In this study, vertical profile products are evaluated with surface (0-2 km) and tropospheric (0-10 km) TOLNet observations and the theoretical impact of individual a priori profile sources on the accuracy of TEMPO O3 retrievals in the troposphere and at the surface are presented. Results indicate that while the TB-Clim climatological dataset can replicate seasonally-averaged tropospheric O3 profiles, model-simulated profiles from a full CTM resulted in more accurate tropospheric and surface-level O3 retrievals from

  16. Nocturnal surface ozone enhancement over Portugal during winter: Influence of different atmospheric conditions

    KAUST Repository

    Kulkarni, Pavan S.

    2016-09-24

    Four distinct nocturnal surface ozone (NSO) enhancement events were observed, with NSO concentration exceeding 80μg/m3, at multiple ozone (O3) monitoring stations (32 sites) in January, November and December between year 2000–2010, in Portugal. The reasonable explanation for the observed bimodal pattern of surface ozone with enhanced NSO concentration during nighttime has to be transport processes, as the surface ozone production ceases at nighttime. Simultaneous measurements of O3 at multiple stations during the study period in Portugal suggest that horizontal advection alone cannot explain the observed NSO enhancement. Thus, detailed analysis of the atmospheric conditions, simulated with the Weather Research and Forecasting (WRF) model, were performed to evaluate the atmospheric mechanisms responsible for NSO enhancement in the region. Simulations revealed that each event occurred as a result of one or the combination of different atmospheric processes such as, passage of a cold front followed by a subsidence zone; passage of a moving surface trough, with associated strong horizontal wind speed and vertical shear; combination of vertical and horizontal transport at the synoptic scale; formation of a low level jet with associated vertical mixing below the jet stream. The study confirmed that large-scale flow pattern resulting in enhanced vertical mixing in the nocturnal boundary layer, plays a key role in the NSO enhancement events, which frequently occur over Portugal during winter months. © 2016 Elsevier Ltd

  17. Nocturnal surface ozone enhancement over Portugal during winter: Influence of different atmospheric conditions

    KAUST Repository

    Kulkarni, Pavan S.; Dasari, Hari Prasad; Sharma, Ashish; Bortoli, D.; Salgado, Rui; Silva, A.M.

    2016-01-01

    Four distinct nocturnal surface ozone (NSO) enhancement events were observed, with NSO concentration exceeding 80μg/m3, at multiple ozone (O3) monitoring stations (32 sites) in January, November and December between year 2000–2010, in Portugal. The reasonable explanation for the observed bimodal pattern of surface ozone with enhanced NSO concentration during nighttime has to be transport processes, as the surface ozone production ceases at nighttime. Simultaneous measurements of O3 at multiple stations during the study period in Portugal suggest that horizontal advection alone cannot explain the observed NSO enhancement. Thus, detailed analysis of the atmospheric conditions, simulated with the Weather Research and Forecasting (WRF) model, were performed to evaluate the atmospheric mechanisms responsible for NSO enhancement in the region. Simulations revealed that each event occurred as a result of one or the combination of different atmospheric processes such as, passage of a cold front followed by a subsidence zone; passage of a moving surface trough, with associated strong horizontal wind speed and vertical shear; combination of vertical and horizontal transport at the synoptic scale; formation of a low level jet with associated vertical mixing below the jet stream. The study confirmed that large-scale flow pattern resulting in enhanced vertical mixing in the nocturnal boundary layer, plays a key role in the NSO enhancement events, which frequently occur over Portugal during winter months. © 2016 Elsevier Ltd

  18. Characterising the three-dimensional ozone distribution of a tidally locked Earth-like planet

    Science.gov (United States)

    Proedrou, Elisavet; Hocke, Klemens

    2016-06-01

    We simulate the 3D ozone distribution of a tidally locked Earth-like exoplanet using the high-resolution, 3D chemistry-climate model CESM1(WACCM) and study how the ozone layer of a tidally locked Earth (TLE) (Ω _{TLE}= 1/365 days) differs from that of our present-day Earth (PDE) (Ω _{PDE}= 1/1 day). The middle atmosphere reaches a steady state asymptotically within the first 80 days of the simulation. An upwelling, centred on the subsolar point, is present on the day side while a downwelling, centred on the antisolar point, is present on the night side. In the mesosphere, we find similar global ozone distributions for the TLE and the PDE, with decreased ozone on the day side and enhanced ozone on the night side. In the lower mesosphere, a jet stream transitions into a large-scale vortex around a low-pressure system, located at low latitudes of the TLE night side. In the middle stratosphere, the concentration of odd oxygen is approximately equal to that of the ozone [({O}x) ≈ ({O}3)]. At these altitudes, the lifetime of odd oxygen is ˜16 h and the transport processes significantly contribute to the global distribution of stratospheric ozone. Compared to the PDE, where the strong Coriolis force acts as a mixing barrier between low and high latitudes, the transport processes of the TLE are governed by jet streams variable in the zonal and meridional directions. In the middle stratosphere of the TLE, we find high ozone values on the day side, due to the increased production of atomic oxygen on the day side, where it immediately recombines with molecular oxygen to form ozone. In contrast, the ozone is depleted on the night side, due to changes in the solar radiation distribution and the presence of a downwelling. As a result of the reduced Coriolis force, the tropical and extratropical air masses are well mixed and the global temperature distribution of the TLE stratosphere has smaller horizontal gradients than the PDE. Compared to the PDE, the total ozone column

  19. DO3SE model applicability and O3 flux performance compared to AOT40 for an O3-sensitive tropical tree species (Psidium guajava L. 'Paluma').

    Science.gov (United States)

    Assis, Pedro I L S; Alonso, Rocío; Meirelles, Sérgio T; Moraes, Regina M

    2015-07-01

    Phytotoxic ozone (O3) levels have been recorded in the Metropolitan Region of São Paulo (MRSP). Flux-based critical levels for O3 through stomata have been adopted for some northern hemisphere species, showing better accuracy than with accumulated ozone exposure above a threshold of 40 ppb (AOT40). In Brazil, critical levels for vegetation protection against O3 adverse effects do not exist. The study aimed to investigate the applicability of O3 deposition model (Deposition of Ozone for Stomatal Exchange (DO3SE)) to an O3-sensitive tropical tree species (Psidium guajava L. 'Paluma') under the MRSP environmental conditions, which are very unstable, and to assess the performance of O3 flux and AOT40 in relation to O3-induced leaf injuries. Stomatal conductance (g s) parameterization for 'Paluma' was carried out and used to calculate different rate thresholds (from 0 to 5 nmol O3 m(-2) projected leaf area (PLA) s(-1)) for the phytotoxic ozone dose (POD). The model performance was assessed through the relationship between the measured and modeled g sto. Leaf injuries were analyzed and associated with POD and AOT40. The model performance was satisfactory and significant (R (2) = 0.56; P < 0.0001; root-mean-square error (RMSE) = 116). As already expected, high AOT40 values did not result in high POD values. Although high POD values do not always account for more injuries, POD0 showed better performance than did AOT40 and other different rate thresholds for POD. Further investigation is necessary to improve our model and also to check if there is a critical level of ozone in which leaf injuries arise. The conclusion is that the DO3SE model for 'Paluma' is applicable in the MRSP as well as in temperate regions and may contribute to future directives.

  20. Ozone response to emission reductions in the southeastern United States

    Directory of Open Access Journals (Sweden)

    C. L. Blanchard

    2018-06-01

    Full Text Available Ozone (O3 formation in the southeastern US is studied in relation to nitrogen oxide (NOx emissions using long-term (1990s–2015 surface measurements of the Southeastern Aerosol Research and Characterization (SEARCH network, U.S. Environmental Protection Agency (EPA O3 measurements, and EPA Clean Air Status and Trends Network (CASTNET nitrate deposition data. Annual fourth-highest daily peak 8 h O3 mixing ratios at EPA monitoring sites in Georgia, Alabama, and Mississippi exhibit statistically significant (p  <  0.0001 linear correlations with annual NOx emissions in those states between 1996 and 2015. The annual fourth-highest daily peak 8 h O3 mixing ratios declined toward values of ∼ 45–50 ppbv and monthly O3 maxima decreased at rates averaging ∼ 1–1.5 ppbv yr−1. Mean annual total oxidized nitrogen (NOy mixing ratios at SEARCH sites declined in proportion to NOx emission reductions. CASTNET data show declining wet and dry nitrate deposition since the late 1990s, with total (wet plus dry nitrate deposition fluxes decreasing linearly in proportion to reductions of NOx emissions by ∼ 60 % in Alabama and Georgia. Annual nitrate deposition rates at Georgia and Alabama CASTNET sites correspond to 30 % of Georgia emission rates and 36 % of Alabama emission rates, respectively. The fraction of NOx emissions lost to deposition has not changed. SEARCH and CASTNET sites exhibit downward trends in mean annual nitric acid (HNO3 concentrations. Observed relationships of O3 to NOz (NOy–NOx support past model predictions of increases in cycling of NO and increasing responsiveness of O3 to NOx. The study data provide a long-term record that can be used to examine the accuracy of process relationships embedded in modeling efforts. Quantifying observed O3 trends and relating them to reductions in ambient NOy species concentrations offers key insights into processes of general relevance to air quality management and

  1. Ozone autohaemotherapy protects against ketamine hydrochloride ...

    African Journals Online (AJOL)

    Ozone is currently under scrutiny because of various claims of beneficial effect in disease. In order to shed some light on this we assessed the acute and chronic effect of O3 autohaemotherapy (AHT) on liver and muscle damage in baboons. Five percent of the total blood volume of a baboon was treated with O2 and O3.

  2. DNA damage in Populus tremuloides clones exposed to elevated O3

    International Nuclear Information System (INIS)

    Tai, Helen H.; Percy, Kevin E.; Karnosky, David F.

    2010-01-01

    The effects of elevated concentrations of atmospheric tropospheric ozone (O 3 ) on DNA damage in five trembling aspen (Populus tremuloides Michx.) clones growing in a free-air enrichment experiment in the presence and absence of elevated concentrations of carbon dioxide (CO 2 ) were examined. Growing season mean hourly O 3 concentrations were 36.3 and 47.3 ppb for ambient and elevated O 3 plots, respectively. The 4th highest daily maximum 8-h ambient and elevated O 3 concentrations were 79 and 89 ppb, respectively. Elevated CO 2 averaged 524 ppm (+150 ppm) over the growing season. Exposure to O 3 and CO 2 in combination with O 3 increased DNA damage levels above background as measured by the comet assay. Ozone-tolerant clones 271 and 8L showed the highest levels of DNA damage under elevated O 3 compared with ambient air; whereas less tolerant clone 216 and sensitive clones 42E and 259 had comparably lower levels of DNA damage with no significant differences between elevated O 3 and ambient air. Clone 8L was demonstrated to have the highest level of excision DNA repair. In addition, clone 271 had the highest level of oxidative damage as measured by lipid peroxidation. The results suggest that variation in cellular responses to DNA damage between aspen clones may contribute to O 3 tolerance or sensitivity. - Ozone tolerant clones and sensitive Populus tremuloides clones show differences in DNA damage and repair.

  3. Impacts of the East Asian monsoon on lower tropospheric ozone over coastal South China

    International Nuclear Information System (INIS)

    Zhou, Derong; Ding, Aijun; Mao, Huiting; Fu, Congbin; Ding, Ke; Zhang, Yang; Liu, Jane; Wang, Tao; Chan, L Y; Lu, An; Hao, Nan

    2013-01-01

    The impact of the East Asian monsoon (EAM) on climatology and interannual variability of tropospheric ozone (O 3 ) over the coastal South China was investigated by analyzing 11 years of ozonesonde data over Hong Kong with the aid of Lagrangian dispersion modeling of carbon monoxide and calculation of an EAM index. It was found that the seasonal cycle of O 3 in the lower troposphere is highly related to the EAM over the study region. Ozone enhancements in the free troposphere are associated with the monsoon-induced transport of pollutants of continental anthropogenic and biomass burning origins. Lower tropospheric O 3 levels showed high interannual variability, with an annual averaged amplitude up to 61% of averaged concentrations in the boundary layer (0–1 km altitudes) and 49% below 3 km altitude. In spring and autumn, the interannual variability in boundary layer O 3 levels was predominately influenced by the EAM intensity, with high O 3 mixing ratios associated with northeasterly circulation anomalies. (letter)

  4. Global sensitivity analysis of GEOS-Chem modeled ozone and hydrogen oxides during the INTEX campaigns

    Directory of Open Access Journals (Sweden)

    K. E. Christian

    2018-02-01

    Full Text Available Making sense of modeled atmospheric composition requires not only comparison to in situ measurements but also knowing and quantifying the sensitivity of the model to its input factors. Using a global sensitivity method involving the simultaneous perturbation of many chemical transport model input factors, we find the model uncertainty for ozone (O3, hydroxyl radical (OH, and hydroperoxyl radical (HO2 mixing ratios, and apportion this uncertainty to specific model inputs for the DC-8 flight tracks corresponding to the NASA Intercontinental Chemical Transport Experiment (INTEX campaigns of 2004 and 2006. In general, when uncertainties in modeled and measured quantities are accounted for, we find agreement between modeled and measured oxidant mixing ratios with the exception of ozone during the Houston flights of the INTEX-B campaign and HO2 for the flights over the northernmost Pacific Ocean during INTEX-B. For ozone and OH, modeled mixing ratios were most sensitive to a bevy of emissions, notably lightning NOx, various surface NOx sources, and isoprene. HO2 mixing ratios were most sensitive to CO and isoprene emissions as well as the aerosol uptake of HO2. With ozone and OH being generally overpredicted by the model, we find better agreement between modeled and measured vertical profiles when reducing NOx emissions from surface as well as lightning sources.

  5. Evaluation and Comparison of Chemiluminescence and UV Photometric Methods for Measuring Ozone Concentrations in Ambient Air

    Science.gov (United States)

    The current Federal Reference Method (FRM) for measuring concentrations of ozone in ambient air is based on the dry, gas-phase, chemiluminescence reaction between ethylene (C2H4) and any ozone (O3) that may be p...

  6. Diagnostic Evaluation of Ozone Production and Horizontal Transport in a Regional Photochemical Air Quality Modeling System

    Science.gov (United States)

    A diagnostic model evaluation effort has been performed to focus on photochemical ozone formation and the horizontal transport process since they strongly impact the temporal evolution and spatial distribution of ozone (O3) within the lower troposphere. Results from th...

  7. Characteristics of episodes with extremely low ozone values in the northern middle latitudes 1957−2000

    Directory of Open Access Journals (Sweden)

    D. S. Balis

    Full Text Available A number of episodes are observed when the total ozone for 2 to 3 days has fallen below 220 matm-cm in the northern mid- and polar latitudes in autumn. The occurrences of such episodes represent ozone deviations of about one-third from the pre-1976 Oct-Nov-Dec monthly mean! By using primarily quality checked Dobson data, a clear identification was made of more than three dozen short spells with extremely low ozone in the 1957–1978 period. In the following twenty-two years (1979–2000, using mainly TOMS data, one can identify ~ 46 cases with ozone values falling below 220 matm-cm for longer than 1 day, with each time over an area greater than 500,000 km2 . The Ozone Mass Deficiency (O3MD from the pre-1976 average ozone values over the affected area was ~2.8 Mt per day, i.e. four to seven times greater than it would be, assuming only a long-term trend in the Oct-Nov-Dec period. The Extremely Low Ozone (ELO3 events on the day of their appearance over the N. Atlantic/European region contribute to the O3MD by representing 16% of the deficiency due to the Oct-Nov trend in the entire 40–65° N latitudinal belt. The O3MD of the greater pool with low ozone (here taken as <260 matm-cm surrounding the area of the lowest events could contribute on the day of their appearance in Oct-Nov up to 60% and in December, ~30% to the deficiency due to the trend over the entire 40–65° N belt. Analysis of synoptic charts, supported by a backward trajectory on the isentropic surfaces 350 and 380 K, shows that in most of the events, subtropical air masses with low ozone content were transported from the Atlantic toward the UK, Scandinavia, and in many cases, further to the western sub-polar regions of Russia. This transport was sometimes combined with upward motions above a tropospheric anticyclone which lifted low ozone mixing ratios to higher altitudes. The ELO3 events cause a significant deficiency above the tropopause where, in general, the subtropical air is

  8. Nd2(SeO3)2(SeO4) . 2H2O - a mixed-valence compound containing selenium in the oxidation states +IV and +VI

    International Nuclear Information System (INIS)

    Berdonosov, P.S.; Dityat'yev, O.A.; Dolgikh, V.A.; Schmidt, P.; Ruck, Michael; Lightfoot, P.

    2004-01-01

    Pale pink crystals of Nd 2 (SeO 3 ) 2 (SeO 4 ) . 2H 2 O were synthesized under hydrothermal conditions from H 2 SeO 3 and Nd 2 O 3 at about 200 C. X-ray diffraction on powder and single-crystals revealed that the compound crystallizes with the monoclinic space group C 2/c (a = 12.276(1) A, b = 7.0783(5) A, c = 13.329(1) A, β = 104.276(7) ). The crystal structure of Nd 2 (SeO 3 ) 2 (SeO 4 ) . 2H 2 O is an ordered variant of the corresponding erbium compound. Eight oxygen atoms coordinate the Nd III atom in the shape of a bi-capped trigonal prism. The oxygen atoms are part of pyramidal (Se IV O 3 ) 2- groups, (Se VI O 4 ) 2- tetrahedra and water molecules. The [NdO 8 ] polyhedra share edges to form chains oriented along [010]. The selenate ions link these chains into layers parallel to (001). The layers are interconnected by the selenite ions into a three-dimensional framework. The dehydration of Nd 2 (SeO 3 ) 2 (SeO 4 ) . 2H 2 O starts at 260 C. The thermal decomposition into Nd 2 SeO 5 , SeO 2 and O 2 at 680 C is followed by further loss of SeO 2 leaving cubic Nd 2 O 3 . (Abstract Copyright [2004], Wiley Periodicals, Inc.) [de

  9. Convective Lofting Links Indian Ocean Air Pollution to Recurrent South Atlantic Ozone Maxima

    Science.gov (United States)

    Chatfield, R. B.; Guan, H.; Thompson, A. M.; Witte, J.

    2003-12-01

    We extend on our analysis of equatorial tropospheric ozone to illustrate the contributions of South Asian pollution export in forming episodes of high O3 over the Atlantic Ocean. We amplify on an earlier description of a broad resolution of the "Atlantic Paradox," for the Jan-Feb-March period, which included initial indications of a very long-distance contribution from South Asia. The approach has been to describe typical periods of significant maximum and minimum tropospheric ozone for early 1999, exploiting TOMS tropospheric ozone estimates jointly with characteristic features of the SHADOZ (Southern Hemisphere Additional Ozonesondes) ozone soundings. Further investigation of the Total Tropospheric Ozone (TTO) record for all of 1999 suggests that there are repeated periods of very long-distance Asian influence crossing Africa, with an apparent effect on those portions of the Atlantic Equatorial troposphere which are downwind. Trajectory analyses suggest that the pattern over the Indian Ocean is complex: a sequence invoving multiple or mixed combustion sources, low level transport, cumulonimbus venting, and high-level transport to the west seem to be indicated by the TTO record. Biomass burning, fossil and biofuel combustion, and lighting seem to all contribute. For the Atlantic, burning and lighting on adjacent continents as well as episodes of this cross-Africa long-distance transport are all linked in a coordinated seasonal march: all are related by movement of the sun. However, interseasonal tropical variability related to the Madden-Julian oscillation allows intermittent ozone buildups that depart from the seasonal norm.

  10. Winter- and summertime continental influences on tropospheric O3 and CO observed by TES over the western North Atlantic Ocean

    Directory of Open Access Journals (Sweden)

    R. Talbot

    2010-04-01

    Full Text Available The distributions of tropospheric ozone (O3 and carbon monoxide (CO, and the synoptic factors regulating these distributions over the western North Atlantic Ocean during winter and summer were investigated using profile retrievals from the Tropospheric Emission Spectrometer (TES for 2004–2006. Seasonal composites of TES retrievals, reprocessed to remove the influence of the a priori on geographical and seasonal structure, exhibited strong seasonal differences. At the 681 hPa level during winter months of December, January and February (DJF the composite O3 mixing ratios were uniformly low (~45 ppbv, but continental export was evident in a channel of enhanced CO (100–110 ppbv flowing eastward from the US coast. In summer months June, July, and August (JJA O3 mixing ratios were variable (45–65 ppbv and generally higher due to increased photochemical production. The summer distribution also featured a channel of enhanced CO (95–105 ppbv flowing northeastward around an anticyclone and exiting the continent over the Canadian Maritimes around 50° N. Offshore O3-CO slopes were generally 0.15–0.20 mol mol−1 in JJA, indicative of photochemical O3 production. Composites for 4 predominant synoptic patterns or map types in DJF suggested that export to the lower free troposphere (681 hPa level was enhanced by the warm conveyor belt airstream of mid-latitude cyclones while stratospheric intrusions increased TES O3 levels at 316 hPa. A major finding in the DJF data was that offshore 681 hPa CO mixing ratios behind cold fronts could be enhanced up to >150 ppbv likely by lofting from the surface via shallow convection resulting from rapid destabilization of cold air flowing over much warmer ocean waters. In JJA composites for 3 map types showed that the general export pattern of the seasonal composites was associated with a synoptic pattern featuring the Bermuda High. However, weak cyclones and frontal troughs could enhance offshore 681 hPa CO

  11. The protective effect of plasma antioxidants during ozone ...

    African Journals Online (AJOL)

    Ozone (O3) therapy forms part of a group of complementary and alternative medical therapies and is gaining more and more interest worldwide. There is, however, some concern regarding O3-toxicity and uncertainty about the effectiveness of O3-therapy. In this study we investigated the possible protective effects of the ...

  12. Two-phase ozonation of chlorinated organics

    International Nuclear Information System (INIS)

    Bhattacharyya, D.; Freshour, A.; West, D.

    1995-01-01

    In the last few years the amount of research being conducted in the field of single-phase ozonation has grown extensively. However, traditional aqueous-phase ozonation systems are limited by a lack of selective oxidation potential, low ozone solubility in water, and slow intermediate decomposition rates. Furthermore, ozone may decompose before it can be utilized for pollutant destruction since ozone can be highly unstable in aqueous solutions. Naturally occurring compounds such as NaHCO 3 also affect ozone reactions by inhibiting the formation of OH-free radicals. To compensate for these factors, excess ozone is typically supplied to a reactor. Since ozone generation requires considerable electric power consumption (16 - 24 kWh/kg of O 3 ), attempts to enhance the ozone utilization rate and stability should lead to more efficient application of this process to hazardous waste treatment. To improve the process, ozonation may be more efficiently carried out in a two-phase system consisting of an inert solvent (saturated with O 3 ) contacted with an aqueous phase containing pollutants. The non-aqueous phase must meet the following criteria: (1) non-toxic, (2) very low vapor pressure, (3) high density (for ease of separation), (4) complete insolubility in water, (5) reusability, (6) selective pollutant extractability, (7) high oxidant solubility, and (8) extended O 3 stability. Previously published studies (1) have indicated that a number of fluorinated hydrocarbon compounds fit these criteria. For this project, FC40 (a product of 3M Co.) was chosen due to its low vapor pressure (3 mm Hg) and high specific gravity (1.9). The primary advantages of the FC40 solvent are that it is non-toxic, reusable, has an ozone solubility 10 times that of water, and that 85 % of the ozone remains in the solvent even after 2 hours. This novel two-phase process has been utilized to study the rapid destruction of organic chlorine compounds and organic mixtures

  13. Products of BVOC oxidation: ozone and organic aerosols

    Science.gov (United States)

    Wildt, Jürgen; Andres, Stefanie; Carriero, Giulia; Ehn, Mikael; Fares, Silvano; Hoffmann, Thorsten; Hacker, Lina; Kiendler-Scharr, Astrid; Kleist, Einhard; Paoletti, Elena; Pullinen, Iida; Rohrer, Franz; Rudich, Yinon; Springer, Monika; Tillmann, Ralf; Wahner, Andreas; Wu, Cheng; Mentel, Thomas

    2015-04-01

    Biogenic Volatile Organic Compounds (BVOC) are important precursors in photochemical O3 and secondary organic aerosol (SOA) formation. We conducted a series of laboratory experiments with OH-induced oxidation of monoterpenes to elucidate pathways and efficiencies of O3 and SOA formation. At high NOx conditions ([BVOC] / [NOx] monoterpene mixes emitted from different plant species we observed increasing ozone formation with increasing [NOX]. Between 2 and 3 O3-molecules were formed from 1 monoterpene when ozone formation was BVOC limited. Under such high NOX conditions, new particle formation was suppressed. Increasing [BVOC] / [NOX] ratios caused increasing efficiency of new particle formation indicating that peroxy radicals are the key intermediates in both, photochemical ozone- and new particle formation. The classical chemistry of peroxy radicals is well established (e.g. Master Chemical Mechanism). Peroxy radicals are produced by addition of molecular oxygen to the alkyl radical formed after OH attack at the BVOC. They either react with NO which leads to ozone formation or they react with other peroxy radicals and form chemically stable products (hydroperoxides, alkoholes and ketones). Much less knowledge exists on such reactions for Highly Oxidized Peroxy Radicals, (HOPR). Such HOPR were observed during ozonolysis of several volatiles and, in case of monoterpenes as precursors, they can contain more than 12 Oxygen atoms (Mentel et al., 2015). Although the OH-initiated formation of HOPR is yet not fully understood, their basic gas phase reactions seem to follow classical photochemical rules. In reactions with NO they can act as precursor for O3 and in reactions with other HOPR or with classical less oxidized peroxy radicals they can form highly oxidized stable products and alkoxy radicals. In addition, HOPR-HOPR reactions lead to the formation of dimers that, in case of monoterpenes as reactants, consist of a skeleton with 20 carbon atoms. These dimers seem to

  14. Residential indoor air quality guideline : ozone

    International Nuclear Information System (INIS)

    2010-01-01

    Ozone (O 3 ) is a colourless gas that reacts rapidly on surfaces and with other constituents in the air. Sources of indoor O 3 include devices sold as home air cleaners, and some types of office equipment. Outdoor O 3 is also an important contributor to indoor levels of O 3 , depending on the air exchange rate with indoor environments. This residential indoor air quality guideline examined factors that affect the introduction, dispersion and removal of O 3 indoors. The health effects of prolonged exposure to O 3 were discussed, and studies conducted to evaluate the population health impacts of O 3 were reviewed. The studies demonstrated that there is a significant association between ambient O 3 and adverse health impacts. Exposure guidelines for residential indoor air quality were discussed. 14 refs.

  15. Generation and Reduction of NOx on Air-Fed Ozonizers

    Science.gov (United States)

    Ehara, Yoshiyasu; Amemiya, Yusuke; Yamamoto, Toshiaki

    A generation and reduction of NOx on air-fed ozonizers using a ferroelectric packed bed reactor have been experimentally investigated. The reactors packed with CaTiO3, SrTiO3 and BaTiO3 pellets are examined for ozone generation. An ac voltage is applied to the reactor to generate partial discharge. Ozone concentration and the different nitrogen oxides at downstream of the packed bed reactor were measured with UV absorption ozone monitor and a Fourier transform infrared spectroscope respectively. The dielectric constant of packed ferroelectric pellets influences the discharge characteristic, ozone and NOx generations are varied by the dielectric constant value. Focusing on a discharge pulse current and maximum discharge magnitude, the ferroelectric packed bed plasma reactors have been evaluated on nitrogen oxide and ozone generated concentrations.

  16. A regional scale model for ozone in the United States with subgrid representation of urban and power plant plumes

    International Nuclear Information System (INIS)

    Sillman, S.; Logan, J.A.; Wofsy, S.C.

    1990-01-01

    A new approach to modeling regional air chemistry is presented for application to industrialized regions such as the continental US. Rural chemistry and transport are simulated using a coarse grid, while chemistry and transport in urban and power plant plumes are represented by detailed subgrid models. Emissions from urban and power plant sources are processed in generalized plumes where chemistry and dilution proceed for 8-12 hours before mixing with air in a large resolution element. A realistic fraction of pollutants reacts under high-NO x conditions, and NO x is removed significantly before dispersal. Results from this model are compared with results from grid odels that do not distinguish plumes and with observational data defining regional ozone distributions. Grid models with coarse resolution are found to artificially disperse NO x over rural areas, therefore overestimating rural levels of both NO x and O 3 . Regional net ozone production is too high in coarse grid models, because production of O 3 is more efficient per molecule of NO x in the low-concentration regime of rural areas than in heavily polluted plumes from major emission sources. Ozone levels simulated by this model are shown to agree with observations in urban plumes and in rural regions. The model reproduces accurately average regional and peak ozone concentrations observed during a 4-day ozone episode. Computational costs for the model are reduced 25-to 100-fold as compared to fine-mesh models

  17. Millimeter wave spectroscopic measurements of stratospheric and mesospheric constituents over the Italian Alps: stratospheric ozone

    Directory of Open Access Journals (Sweden)

    V. Romaniello

    2007-06-01

    Full Text Available Measurements of rotational lines emitted by middle atmospheric trace gases have been carried out from the Alpine station of Testa Grigia (45.9°N, 7.7°E, elev. 3500 m by means of a Ground-Based Millimeter-wave Spectrometer (GBMS. Observations of species such as O3, HNO3, CO, N2O, HCN, and HDO took place during 4 winter periods, from February 2004 to March 2007, for a total of 116 days of measurements grouped in about 18 field campaigns. By studying the pressure-broadened shape of emission lines the vertical distribution of the observed constituents is retrieved within an altitude range of ?17-75 km, constrained by the 600 MHz pass band and the 65 kHz spectral resolution of the back-end spectrometer. This work discusses the behavior of stratospheric O3 during the entire period of operation at Testa Grigia. Mid-latitude O3 columnar content as estimated using GBMS measurements can vary by large amounts over a period of very few days, with the largest variations observed in December 2005, February 2006, and March 2006, confirming that the northern winter of 2005-2006 was characterized by a particularly intense planetary wave activity. The largest rapid variation from maximum to minimum O3 column values over Testa Grigia took place in December 2006 and reached a relative value of 72% with respect to the average column content for that period. During most GBMS observation times much of the variability is concentrated in the column below 20 km, with tropospheric weather systems and advection of tropical tropospheric air into the lower stratosphere over Testa Grigia having a large impact on the observed variations in column contents. Nonetheless, a wide variability is also found in middle stratospheric GBMS O3 measurements, as expected for mid-latitude ozone. We find that O3 mixing ratios at ?32 km are very well correlated with the solar illumination experienced by air masses over the previous ?15 days, showing that already at 32 km

  18. Dobson spectrophotometer ozone measurements during international ozone rocketsonde intercomparison

    Science.gov (United States)

    Parsons, C. L.

    1980-01-01

    Measurements of the total ozone content of the atmosphere, made with seven ground based instruments at a site near Wallops Island, Virginia, are discussed in terms for serving as control values with which the rocketborne sensor data products can be compared. These products are profiles of O3 concentration with altitude. By integrating over the range of altitudes from the surface to the rocket apogee and by appropriately estimating the residual ozone amount from apogee to the top of the atmosphere, a total ozone amount can be computed from the profiles that can be directly compared with the ground based instrumentation results. Dobson spectrophotometers were used for two of the ground-based instruments. Preliminary data collected during the IORI from Dobson spectrophotometers 72 and 38 are presented. The agreement between the two and the variability of total ozone overburden through the experiment period are discussed.

  19. A pervasive role for biomass burning in tropical high ozone/low water structures

    Science.gov (United States)

    Anderson, Daniel C.; Nicely, Julie M.; Salawitch, Ross J.; Canty, Timothy P.; Dickerson, Russell R.; Hanisco, Thomas F.; Wolfe, Glenn M.; Apel, Eric C.; Atlas, Elliot; Bannan, Thomas; Bauguitte, Stephane; Blake, Nicola J.; Bresch, James F.; Campos, Teresa L.; Carpenter, Lucy J.; Cohen, Mark D.; Evans, Mathew; Fernandez, Rafael P.; Kahn, Brian H.; Kinnison, Douglas E.; Hall, Samuel R.; Harris, Neil R. P.; Hornbrook, Rebecca S.; Lamarque, Jean-Francois; Le Breton, Michael; Lee, James D.; Percival, Carl; Pfister, Leonhard; Pierce, R. Bradley; Riemer, Daniel D.; Saiz-Lopez, Alfonso; Stunder, Barbara J. B.; Thompson, Anne M.; Ullmann, Kirk; Vaughan, Adam; Weinheimer, Andrew J.

    2016-01-01

    Air parcels with mixing ratios of high O3 and low H2O (HOLW) are common features in the tropical western Pacific (TWP) mid-troposphere (300-700 hPa). Here, using data collected during aircraft sampling of the TWP in winter 2014, we find strong, positive correlations of O3 with multiple biomass burning tracers in these HOLW structures. Ozone levels in these structures are about a factor of three larger than background. Models, satellite data and aircraft observations are used to show fires in tropical Africa and Southeast Asia are the dominant source of high O3 and that low H2O results from large-scale descent within the tropical troposphere. Previous explanations that attribute HOLW structures to transport from the stratosphere or mid-latitude troposphere are inconsistent with our observations. This study suggest a larger role for biomass burning in the radiative forcing of climate in the remote TWP than is commonly appreciated.

  20. Determination of oxygen nonstoichiometry and diffusivity in mixed conducting oxides by oxygen Coulometric titration. II. Oxygen nonstoichiometry and defect model for La0.8Sr0.2CoO3-d

    NARCIS (Netherlands)

    Lankhorst, M.H.R.; Lankhorst, M.H.R.; Bouwmeester, Henricus J.M.

    1997-01-01

    The oxygen nonstoichiometry of La0.8Sr0.2CoO3-delta has been determined as a function of oxygen partial pressure and temperature using a high-temperature coulometric titration cell. For each measured value of the oxygen chemical potential, the oxygen nonstoichiometry is found to be nearly

  1. Electron attachment to molecules and clusters of atmospheric relevance: oxygen and ozone

    International Nuclear Information System (INIS)

    Matejcik, S.; Cicman, P.; Skalny, J.; Kiendler, A.; Stampfli, P.; Maerk, T.D.; Illenberger, E.; Chu, Y.; Stamatovic, A.

    1996-01-01

    Highly monochromatized electrons are used in a crossed beams experiment to investigate electron attachment to oxygen clusters (O 2 )-n at electron energies from approximately zero eV up to 2 eV. At energies close to zero the attachment cross section for the reaction (O 2 ) n + e → O 2 - varies inversely with the electron energy, indicative of s-wave electron capture to (O 2 ) n . Peaks in the attachment cross section present at higher energies can be ascribed to vibrational levels of the oxygen anion. The vibrational spacings observed can be quantitatively accounted for. In addition electron attachment to ozone and mixed oxygen/ozone clusters has been studied in the energy range up to 4 eV. Absolute attachment cross sections for both fragment ions anions, O - and O 2 - , from ozone could be deduced. Moreover, despite the initially large excess of oxygen molecules in the neutral oxygen/ozone clusters the dominant attachment products are un-dissociated cluster ions (O 3 ) m - including the O 3 - monomer while oxygen cluster ions (O 2 ) n appear with comparatively low intensity. (authors)

  2. Atmospheric photochemical reactivity and ozone production at two sites in Hong Kong: Application of a Master Chemical Mechanism-photochemical box model

    Science.gov (United States)

    Ling, Z. H.; Guo, H.; Lam, S. H. M.; Saunders, S. M.; Wang, T.

    2014-09-01

    A photochemical box model incorporating the Master Chemical Mechanism (v3.2), constrained with a full suite of measurements, was developed to investigate the photochemical reactivity of volatile organic compounds at a semirural site (Mount Tai Mo Shan (TMS)) and an urban site (Tsuen Wan (TW)) in Hong Kong. The levels of ozone (O3) and its precursors, and the magnitudes of the reactivity of O3 precursors, revealed significant differences in the photochemistry at the two sites. Simulated peak hydroperoxyl radical (HO2) mixing ratios were similar at TW and TMS (p = 0.05), while the simulated hydroxyl radical (OH) mixing ratios were much higher at TW (p TMS, but at TW, both HCHO and O3 photolyses were found to be major contributors. By contrast, radical-radical reactions governed HOx radical losses at TMS, while at TW, the OH + NO2 reaction was found to dominate in the morning and the radical-radical reactions at noon. Overall, the conversion of NO to NO2 by HO2 dictated the O3 production at the two sites, while O3 destruction was dominated by the OH + NO2 reaction at TW, and at TMS, O3 photolysis and the O3 + HO2 reaction were the major mechanisms. The longer OH chain length at TMS indicated that more O3 was produced for each radical that was generated at this site.

  3. Exploring the roles of temperature and NOx on ozone production in the Sacramento urban plume

    Science.gov (United States)

    Lafranchi, B. W.; Cohen, R. C.

    2009-12-01

    We investigate the role of temperature and NOx (NOx = NO+NO2) on ozone (O3) production in the Sacramento urban plume over a stretch of seven years (2001-2007) using data collected at UC Blodgett Forest Research Station (a forested site in the Sierra Nevadas about 80 km downwind of Sacramento, CA) and at a series of California Air Resources Board (CARB) sites along the Sacramento-Blodgett transect. The consistent daytime wind patterns between the Central Valley of California and the foothills of the Sierra Nevada mountains permits the assumption of plume transport from downtown Sacramento, over the CARB monitoring sites in the eastern suburbs, and past the Blodgett Forest research site. While NOx emissions are limited primarily to the urban and suburban regions of the transect, biogenic volatile organic compound (VOC) emissions are significant throughout the transect, thus there is a fast transition from VOC-limited to NOx-limited as the plume travels away from the urban center, and we have the opportunity to analyze the differences in ozone production across these two chemical regimes. For this analysis, the Sacramento-Blodgett transect is separated into three segments: urban, suburban, and rural, defined by the locations of selected monitoring sites. Ozone concentrations across each segment are controlled by chemical production (Pchem) and loss (Lchem), deposition to surfaces (Ldep), and mixing with background air (Lmix). At an assumed deposition rate, mixing rate, and background O3 concentration, the net chemical flux of ozone (Pchem - Lchem) can be inferred from differences in ozone concentrations between adjacent monitoring sites. We show that ozone production rates, in general, increase with temperature. We also show that decreases in NOx emissions over the period from 2001-2007 have been effective at reducing ozone production at all points along the transect, but only on days where temperatures are highest. At low temperatures, this decrease is less apparent

  4. Mid-latitude Ozone Depletion Events Caused by Halogens from the Great Salt Lake in Utah

    Science.gov (United States)

    Fibiger, D. L.; Goldberger, L.; Womack, C.; McDuffie, E. E.; Dube, W. P.; Franchin, A.; Middlebrook, A. M.; Thornton, J. A.; Brown, S. S.

    2017-12-01

    Halogens are highly reactive chemicals and play an important role in atmospheric chemistry. They can be involved in many cycles which influence the oxidizing capacity of the atmosphere, including through destruction of ozone (O3). While the influence of halogens on O3 is well documented in the arctic, there are very few observations of O3 depletion driven by halogens in the mid-latitudes. To date, the most comprehensive study observed co-occurring plumes of BrO and depleted O3 near the Dead Sea in 1997. During the Utah Wintertime Fine Particulate Study (UWFPS) in winter 2017, simultaneous measurements of a comprehensive suite of halogen measurements by I- chemical ionization mass spectrometry and O3 from cavity ring-down spectroscopy, both at 1-second time resolution, were taken on a NOAA Twin Otter Aircraft over the Great Salt Lake and in the surrounding valleys. Many O3 depletion events were observed over the lake with O3 values sometimes below the instrument detection limit of 0.5 ppbv. Corresponding increases in BrO and/or ClO were observed. Many of these events were caused by extremely high levels of halogens (up to 1 ppmv Cl2) emitted from the U.S. Magnesium plant on the edge of the lake. The O3 depletion caused by U.S. Magnesium was usually isolated to a distinct vertical layer, but in other cases O3 depletion was vertically mixed and the origin of halogen activation was not immediately clear. The most complete O3 depletion was observed over the lake, but there were smaller events of a few ppbv observed in the adjacent valleys, including the highly populated Salt Lake Valley, with corresponding plumes of BrO and ClO, due to transport from the lake. Additionally, meteorology played a role in the observed O3 depletion. The strongest O3 depletion was observed during inversion events, when there is a low boundary layer and little mixing out of the air above the lake. During non-inversion conditions, only small depletions were observed, covering a much smaller

  5. A revised global ozone dry deposition estimate based on a new two-layer parameterisation for air-sea exchange and the multi-year MACC composition reanalysis

    Science.gov (United States)

    Luhar, Ashok K.; Woodhouse, Matthew T.; Galbally, Ian E.

    2018-03-01

    Dry deposition at the Earth's surface is an important sink of atmospheric ozone. Currently, dry deposition of ozone to the ocean surface in atmospheric chemistry models has the largest uncertainty compared to deposition to other surface types, with implications for global tropospheric ozone budget and associated radiative forcing. Most global models assume that the dominant term of surface resistance in the parameterisation of ozone dry deposition velocity at the oceanic surface is constant. There have been recent mechanistic parameterisations for air-sea exchange that account for the simultaneous waterside processes of ozone solubility, molecular diffusion, turbulent transfer, and first-order chemical reaction of ozone with dissolved iodide and other compounds, but there are questions about their performance and consistency. We present a new two-layer parameterisation scheme for the oceanic surface resistance by making the following realistic assumptions: (a) the thickness of the top water layer is of the order of a reaction-diffusion length scale (a few micrometres) within which ozone loss is dominated by chemical reaction and the influence of waterside turbulent transfer is negligible; (b) in the water layer below, both chemical reaction and waterside turbulent transfer act together and are accounted for; and (c) chemical reactivity is present through the depth of the oceanic mixing layer. The new parameterisation has been evaluated against dry deposition velocities from recent open-ocean measurements. It is found that the inclusion of only the aqueous iodide-ozone reaction satisfactorily describes the measurements. In order to better quantify the global dry deposition loss and its interannual variability, modelled 3-hourly ozone deposition velocities are combined with the 3-hourly MACC (Monitoring Atmospheric Composition and Climate) reanalysis ozone for the years 2003-2012. The resulting ozone dry deposition is found to be 98.4 ± 30.0 Tg O3 yr-1 for the ocean

  6. Identification of volatile organic compounds in suburban Bangkok, Thailand and their potential for ozone formation

    Science.gov (United States)

    Suthawaree, Jeeranut; Tajima, Yosuke; Khunchornyakong, Alisa; Kato, Shungo; Sharp, Alice; Kajii, Yoshizumi

    2012-02-01

    Measurement of Volatile Organic Compound (VOC) was carried out in suburban Bangkok during July 2-8, 2008. Analysis was performed using GC-FID and GC-MS. High mixing ratios of VOCs detected during the morning and evening are most likely due to vehicular emissions. Averaged VOC mixing ratios revealed distinct difference between mixing ratios of weekdays and weekend, which the latter were found to be lower. The most abundance species were propane and toluene. Ratios of benzene over toluene suggested that additional toluene mixing ratios was owing to industrial emission, which was particularly larger during weekdays. Comparison between C2Cl4 and CH3Cl mixing ratios obtained for suburban Tokyo reveal a relatively lower influence of biomass burning than suburban Bangkok. Elucidating by Ozone Formation Potential, toluene was found to contribute the most to O3 production followed by ethylene, m-,p-xylene, and propylene.

  7. Ozone impacts on cotton: towards an integrated mechanism

    International Nuclear Information System (INIS)

    Grantz, D.A.

    2003-01-01

    Vegetation removes tropospheric ozone (O 3 ) mainly through uptake by stomata. O 3 reduces growth, photosynthesis, and carbohydrate allocation. Effects on mesophyll photosynthesis, may reducing carbohydrate source strength and, indirectly, carbohydrate translocation. Alternatively direct translocation, itself, could explain all of these observations. O 3 -reduced root proliferation inhibits exploitation of soil resources and interferes with underground carbon sequestration. Simulations with cotton suggest O 3 -disrupted root development could indirectly reduce shoot photosynthesis. Strong evidence for O 3 impacts on both carbon assimilation and carbon translocation exists, but data determining the primacy of direct or indirect O 3 effects on either or both processes remain inconclusive. Pholoem loading may be particularly sensitive to O 3 . Further research on metabolic feedback control of carbon assimilation and phloem loading activity as affected by O 3 exposure is required. - Ozone impacts on Pima cotton are reviewed to evaluate the possibility that a direct effect on carbohydrate translocation could mediate the suite of symptoms observed

  8. Ozone kinetics in low-pressure discharges: vibrationally excited ozone and molecule formation on surfaces

    Science.gov (United States)

    Marinov, Daniil; Guerra, Vasco; Guaitella, Olivier; Booth, Jean-Paul; Rousseau, Antoine

    2013-10-01

    A combined experimental and modeling investigation of the ozone kinetics in the afterglow of pulsed direct current discharges in oxygen is carried out. The discharge is generated in a cylindrical silica tube of radius 1 cm, with short pulse durations between 0.5 and 2 ms, pressures in the range 1-5 Torr and discharge currents ˜40-120 mA. Time-resolved absolute concentrations of ground-state atoms and ozone molecules were measured simultaneously in situ, by two-photon absorption laser-induced fluorescence and ultraviolet absorption, respectively. The experiments were complemented by a self-consistent model developed to interpret the results and, in particular, to evaluate the roles of vibrationally excited ozone and of ozone formation on surfaces. It is found that vibrationally excited ozone, O_3^{*} , plays an important role in the ozone kinetics, leading to a decrease in the ozone concentration and an increase in its formation time. In turn, the kinetics of O_3^{*} is strongly coupled with those of atomic oxygen and O2(a 1Δg) metastables. Ozone formation at the wall does not contribute significantly to the total ozone production under the present conditions. Upper limits for the effective heterogeneous recombination probability of O atoms into ozone are established.

  9. Ozone kinetics in low-pressure discharges: vibrationally excited ozone and molecule formation on surfaces

    International Nuclear Information System (INIS)

    Marinov, Daniil; Guaitella, Olivier; Booth, Jean-Paul; Rousseau, Antoine; Guerra, Vasco

    2013-01-01

    A combined experimental and modeling investigation of the ozone kinetics in the afterglow of pulsed direct current discharges in oxygen is carried out. The discharge is generated in a cylindrical silica tube of radius 1 cm, with short pulse durations between 0.5 and 2 ms, pressures in the range 1–5 Torr and discharge currents ∼40–120 mA. Time-resolved absolute concentrations of ground-state atoms and ozone molecules were measured simultaneously in situ, by two-photon absorption laser-induced fluorescence and ultraviolet absorption, respectively. The experiments were complemented by a self-consistent model developed to interpret the results and, in particular, to evaluate the roles of vibrationally excited ozone and of ozone formation on surfaces. It is found that vibrationally excited ozone, O 3 * , plays an important role in the ozone kinetics, leading to a decrease in the ozone concentration and an increase in its formation time. In turn, the kinetics of O 3 * is strongly coupled with those of atomic oxygen and O 2 (a 1 Δ g ) metastables. Ozone formation at the wall does not contribute significantly to the total ozone production under the present conditions. Upper limits for the effective heterogeneous recombination probability of O atoms into ozone are established. (paper)

  10. Extended networks, porous sheets, and chiral frameworks. Thorium materials containing mixed geometry anions: Structures and properties of Th(SeO3)(SeO4), Th(IO3)2(SeO4)(H2O)3.H2O, and Th(CrO4)(IO3)2

    International Nuclear Information System (INIS)

    Sullens, Tyler A.; Almond, Philip M.; Byrd, Jessica A.; Beitz, James V.; Bray, Travis H.; Albrecht-Schmitt, Thomas E.

    2006-01-01

    Three novel Th(IV) compounds containing heavy oxoanions, Th(SeO 3 )(SeO 4 ) (1), Th(IO 3 ) 2 (SeO 4 )(H 2 O) 3 .H 2 O (2), and Th(CrO 4 )(IO 3 ) 2 (3), have been synthesized under mild hydrothermal conditions. Each of these three distinct structures contain trigonal pyramidal and tetrahedral oxoanions. Compound 1 adopts a three-dimensional structure formed from ThO 9 tricapped trigonal prisms, trigonal pyramidal selenite, SeO 3 2- , anions containing Se(IV), and tetrahedral selenate, SeO 4 2- , anions containing Se(VI). The structure of 2 contains two-dimensional porous sheets and occluded water molecules. The Th centers are found as isolated ThO 9 tricapped trigonal prisms and are bound by four trigonal pyramidal iodate anions, two tetrahedral selenate anions, and three coordinating water molecules. In the structure of 3, the Th(IV) cations are found as ThO 9 tricapped trigonal prisms. Each Th center is bound by six IO 3 1- anions and three CrO 4 2- anions forming a chiral three-dimensional structure. Second-harmonic generation of 532nm light from 1064nm radiation by a polycrystalline sample of 3 was observed. Crystallographic data (193K, MoKα, λ=0.71073): 1; monoclinic, P2 1 /c; a=7.0351(5)A, b=9.5259(7)A, c=9.0266(7)A, β=103.128(1), Z=4, R(F)=2.47% for 91 parameters with 1462 reflections with I>2σ(I); 2, monoclinic, P2 1 /n, a=7.4889(9)A, b=8.002(1)A, c=20.165(3)A, β=100.142(2), Z=4, R(F)=4.71% for 158 parameters with 2934 reflections with I>2σ(I); 3, orthorhombic, P2 1 2 1 2 1 , a=7.3672(5)A, b=9.3617(6)A, c=11.9201(7)A, Z=4, R(F)=2.04% for 129 parameters with 2035 reflections with I>2σ(I)

  11. Towards positive feedbacks between vegetation and tropospheric O3

    Science.gov (United States)

    VanLoocke, A. D.; Bernacchi, C. J.; Ainsworth, E. A.; Betzelberger, A. M.

    2011-12-01

    The concentration of tropospheric ozone ([O3]) has approximately doubled since 1900 and is projected to continue increasing. The extent of this increase depends strongly on the emission of ozone precursors as well as changing temperature and humidity. The responses of vegetation to O3 may also have the potential to positively feedback on regional climate and on the cycle of O3 formation and destruction. Plant productivity is linked to feedbacks in the climate indirectly through the carbon cycle as well as directly through the partitioning of radiation into sensible and latent heat fluxes. In the troposphere, O3 reduces plant productivity, an effect that is pronounced in soybean, the 4th most important food crop in the world. The soybean-maize agro-ecosystem is the largest ecosystem in the contiguous U.S., therefore changes in productivity and water use by soybean under increasing [O3] could impact the regional climate and hydrologic cycle in Midwestern U.S. with feedback effects on tropospheric O3 production and cycling. To assess the response to increasing [O3], soybeans were grown under open-air agricultural conditions at the SoyFACE research facility. During the 2009 growing season, eight 20 m diameter plots were exposed to different [O3] ranging from 40 to 200 ppb. Measurements of leaf-level gas exchange were made on four dates throughout the growing season and non-destructive measurements of Leaf Area Index were made weekly. Canopy latent and sensible heat fluxes were measured continuously throughout the growing season (day of year 197-245) using a residual energy balance micrometeorological technique. Results show that as [O3] increased, rates of photosynthesis and stomatal conductance decreased. Productivity, (i.e. seed yield) decreased by over 60% from 40 to 200 ppb while canopy evapotranspiration decreased by 30%. Sensible heat flux increased by 30%, while the growing season average canopy temperatures increased by 1 °C and with peak increases of 2

  12. Photochemical production of ozone in Beijing during the 2008 Olympic Games

    Science.gov (United States)

    Chou, C. C.-K.; Tsai, C.-Y.; Chang, C.-C.; Lin, P.-H.; Liu, S. C.; Zhu, T.

    2011-09-01

    As a part of the CAREBeijing-2008 campaign, observations of O3, oxides of nitrogen (NOx and NOy), CO, and hydrocarbons (NMHCs) were carried out at the air quality observatory of the Peking University in Beijing, China during August 2008, including the period of the 29th Summer Olympic Games. The measurements were compared with those of the CAREBeijing-2006 campaign to evaluate the effectiveness of the air pollution control measures, which were conducted for improving the air quality in Beijing during the Olympics. The results indicate that significant reduction in the emissions of primary air pollutants had been achieved; the monthly averaged mixing ratios of NOx, NOy, CO, and NMHCs decreased by 42.2, 56.5, 27.8, and 49.7 %, respectively. In contrast to the primary pollutants, the averaged mixing ratio of O3 increased by 42.2 %. Nevertheless, it was revealed that the ambient levels of total oxidant (Ox = O3+NO2+1.5 NOz) and NOz were reduced by 21.3 and 77.4 %, respectively. The contradictions between O3 and Ox were further examined in two case studies. Ozone production rates of 30-70 ppbv h-1 and OPEx of ~8 mole mole-1 were observed on a clear-sky day in spite of the reduced levels of precursors. In that case, it was found that the mixing ratio of O3 increased with the increasing NO2/NO ratio, whereas the NOz mixing ratio leveled off when NO2/NO>8. Consequently, the ratio of O3 to NOz increased to above 10, indicating the shift from VOC-sensitive regime to NOx-sensitive regime. However, in the other case, it was found that the O3 production was inhibited significantly due to substantial reduction in the NMHCs. According to the observations, it was suggested that the O3 and/or Ox production rates in Beijing should have been reduced as a result of the reduction in the emissions of precursors during the Olympic period. However, the nighttime O3 levels increased due to a decline in the NO-O3 titration, and the midday O3 peak levels were elevated because of the shift in

  13. Stomatal uptake of O3 in aspen and aspen-birch forests under free-air CO2 and O3 enrichment

    Science.gov (United States)

    Johan Uddling; Alan J. Hogg; Ronald M. Teclaw; Mary Anne. Carroll; David S. Ellsworth

    2010-01-01

    Rising atmospheric carbon dioxide (CO2) may alleviate the toxicological impacts of concurrently rising tropospheric ozone (O3) during the present century if higher CO2 is accompanied by lower stomatal conductance (gs), as assumed by many models. We investigated how elevated...

  14. O3 flux-related responsiveness of photosynthesis, respiration, and stomatal conductance of adult Fagus sylvatica to experimentally enhanced free-air O3 exposure.

    Science.gov (United States)

    Löw, M; Häberle, K-H; Warren, C R; Matyssek, R

    2007-03-01

    Knowledge of responses of photosynthesis, respiration, and stomatal conductance to cumulative ozone uptake (COU) is still scarce, and this is particularly the case for adult trees. The effect of ozone (O(3)) exposure on trees was examined with 60-year-old beech trees (FAGUS SYLVATICA) at a forest site of southern Germany. Trees were exposed to the ambient O(3) regime (1 x O(3)) or an experimentally elevated twice-ambient O(3) regime (2 x O(3)). The elevated 2 x O (3) regime was provided by means of a free-air O(3) canopy exposure system. The hypotheses were tested that (1) gas exchange is negatively affected by O(3) and (2) the effects of O(3) are dose-dependent and thus the sizes of differences between treatments are positively related to COU. Gas exchange (light-saturated CO(2) uptake rate A(max), stomatal conductance g (s), maximum rate of carboxylation Vc (max), ribulose-1,5-bisphosphate turnover limited rate of photosynthesis J (max), CO(2) compensation point CP, apparent quantum yield of net CO(2) uptake AQ, carboxylation efficiency CE, day- and nighttime respiration) and chlorophyll fluorescence (electron transfer rate, ETR) were measured IN SITU on attached sun and shade leaves. Measurements were made periodically throughout the growing seasons of 2003 (an exceptionally dry year) and 2004 (a year with average rainfall). In 2004 Vc(max), J(max), and CE were lower in trees receiving 2 x O(3) compared with the ambient O(3) regime (1 x O(3)). Treatment differences in Vc (max), J (max), CE were rather small in 2004 (i.e., parameter levels were lower by 10 - 30 % in 2 x O(3) than 1 x O(3)) and not significant in 2003. In 2004 COU was positively correlated with the difference between treatments in A (max), g (s), and ETR (i.e., consistent with the dose-dependence of O(3)'s deleterious effects). However, in 2003, differences in A(max), g (s), and ETR between the two O(3) regimes were smaller at the end of the dry summer 2003 (i.e., when COU was greatest). The

  15. Climate Prediction Center (CPC)Stratospheric Monitoring Ozone Blended Analysis

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A 3-D global ozone mixing ratio (ppm) and total column ozone (DU) dataset analyzed from daily Solar Backscatter Ultraviolet Instrument(SBUV/2) and TIROS Operational...

  16. Long-term changes in lower tropospheric baseline ozone concentrations: Comparing chemistry-climate models and observations at northern midlatitudes

    Science.gov (United States)

    Parrish, D. D.; Lamarque, J.-F.; Naik, V.; Horowitz, L.; Shindell, D. T.; Staehelin, J.; Derwent, R.; Cooper, O. R.; Tanimoto, H.; Volz-Thomas, A.; Gilge, S.; Scheel, H.-E.; Steinbacher, M.; Fröhlich, M.

    2014-05-01

    Two recent papers have quantified long-term ozone (O3) changes observed at northern midlatitude sites that are believed to represent baseline (here understood as representative of continental to hemispheric scales) conditions. Three chemistry-climate models (NCAR CAM-chem, GFDL-CM3, and GISS-E2-R) have calculated retrospective tropospheric O3 concentrations as part of the Atmospheric Chemistry and Climate Model Intercomparison Project and Coupled Model Intercomparison Project Phase 5 model intercomparisons. We present an approach for quantitative comparisons of model results with measurements for seasonally averaged O3 concentrations. There is considerable qualitative agreement between the measurements and the models, but there are also substantial and consistent quantitative disagreements. Most notably, models (1) overestimate absolute O3 mixing ratios, on average by 5 to 17 ppbv in the year 2000, (2) capture only 50% of O3 changes observed over the past five to six decades, and little of observed seasonal differences, and (3) capture 25 to 45% of the rate of change of the long-term changes. These disagreements are significant enough to indicate that only limited confidence can be placed on estimates of present-day radiative forcing of tropospheric O3 derived from modeled historic concentration changes and on predicted future O3 concentrations. Evidently our understanding of tropospheric O3, or the incorporation of chemistry and transport processes into current chemical climate models, is incomplete. Modeled O3 trends approximately parallel estimated trends in anthropogenic emissions of NOx, an important O3 precursor, while measured O3 changes increase more rapidly than these emission estimates.

  17. Elevated CO2 and O3t concentrations differentially affect selected groups of the fauna in temperate forest soils

    Science.gov (United States)

    Gladys I. Loranger; Kurt S. Pregitzer; John S. King

    2004-01-01

    Rising atmospheric CO2 concentrations may change soil fauna abundance. How increase of tropospheric ozone (O3t) concentration will modify these responses is still unknown. We have assessed independent and interactive effects of elevated [CO2] and [O3t] on selected groups of soil...

  18. Acute O3 damage on first year coppice sprouts of aspen and maple sprouts in an open-air experiment

    Science.gov (United States)

    Joseph N.T. Darbah; Wendy S. Jones; Andrew J. Burton; John Nagy; Mark E. Kubiske

    2011-01-01

    We studied the effect of high ozone (O3) concentration (110-490 nmol mol-1) on regenerating aspen (Populus tremuloides) and maple (Acer saccharum) trees at an open-air O3 pollution experiment near Rhinelander WI USA. This study is the first of its kind to examine...

  19. The Interaction Between Dynamics and Chemistry of Ozone in the Set-up Phase of the Northern Hemisphere Polar Vortex

    Science.gov (United States)

    Kawa, S. R.; Bevilacqua, R.; Margitan, J. J.; Douglass, A. R.; Schoeberl, M. R.; Hoppel, K.; Sen, B.; Bhartia, P. K. (Technical Monitor)

    2001-01-01

    The morphology and evolution of the stratospheric ozone (O3) distribution at high latitudes in the Northern Hemisphere (NH) are examined for the late summer and fall seasons of 1999. This time period sets the O3 initial condition for the SOLVE/THESEO field mission performed during winter 1999-2000. In situ and satellite data are used along with a three-dimensional model of chemistry and transport (CTM) to determine the key processes that control the distribution of O3 in the lower-to-middle stratosphere. O3 in the vortex at the beginning of the winter season is found to be nearly constant from 500 to above 800 K with a value at 3 ppmv +/- approx. 10%. Values outside the vortex are up to a factor of 2 higher and increase significantly with potential temperature. The seasonal time series of data from POAM shows that relatively low O3 mixing ratios, which characterize the vortex in late fall, are already present at high latitudes at the end of summer before the vortex circulation sets up. Analysis of the CTM output shows that the minimum O3 and increase in variance in late summer are the result of: 1) stirring of polar concentric O3 gradients by nascent wave-driven transport, and 2) an acceleration of net photochemical loss with decreasing solar illumination. The segregation of low O3 mixing ratios into the vortex as the circulation strengthens through the fall suggests a possible feedback role between O3 chemistry and the vortex formation dynamics. Trajectory calculations from O3 sample points early in the fall, however, show only a weak correlation between initial O3 mixing ratio and potential vorticity later in the season consistent with order-of-magnitude calculations for the relative importance of O3 in the fall radiative balance at high latitudes. The possible connection between O3 chemistry and the dynamics of vortex formation does suggest that these feedbacks and sensitivities need to be better understood in order to make confident predictions of the recovery

  20. [Mechanism and performance of styrene oxidation by O3/H2O2].

    Science.gov (United States)

    He, Jue-Cong; Huang, Qian-Ru; Ye, Qi-Hong; Luo, Yu-Wei; Zhang, Zai-Li; Fan, Qing-Juan; Wei, Zai-Shan

    2013-10-01

    It can produce a large number of free radicals in O3/H2O2, system, ozone and free radical coupling oxidation can improve the styrene removal efficiency. Styrene oxidation by O3/H2O2 was investigated. Ozone dosage, residence time, H2o2 volume fraction, spray density and molar ratio of O3/C8H8 on styrene removal were evaluated. The experimental results showed that styrene removal efficiency achieved 85.7%. The optimal residence time, H2O2, volume fraction, spray density and O3/C8H8 molar ratio were 20. 6 s, 10% , 1.72 m3.(m2.h)-1 and 0.46, respectively. The gas-phase degradation intermediate products were benzaldehyde(C6H5CHO) and benzoic acid (C6H5 COOH) , which were identified by means of gas chromatography-mass spectrometry(GC-MS). The degradation mechanism of styrene is presented.

  1. Eurasian continental background and regionally polluted levels of ozone and CO observed in northeast Asia

    Science.gov (United States)

    Pochanart, Pakpong; Kato, Shungo; Katsuno, Takao; Akimoto, Hajime

    The roles of Eurasian/Siberian continental air masses transport and the impact of large-scale East Asian anthropogenic emissions on tropospheric ozone and carbon monoxide levels in northeast Asia were investigated. Seasonal behaviors of O 3 and CO mixing ratios in background continental (BC) air masses and regionally polluted continental (RPC) air masses were identified using trajectory analyses of Eurasian continental air masses and multi-year O 3 and CO data observed at Happo, a mountain site in Japan. RPC air masses show significantly higher O 3 and CO mixing ratios (annual average of 53.9±6.0 and 200±41 ppb, respectively) than BC air masses (44.4±3.6 and 167±17 ppb, respectively). Large scale anthropogenic emissions in East Asia are suggested to contribute about 10 ppb of photochemical O 3 and 32 ppb of CO at Happo. A comparative study of O 3 and CO observed at other sites, i.e., Oki Islands and Mondy in northeast Asia, showed similarities suggesting that O 3 mixing ratios in BC air masses at Happo could be representative for remote northeast Asia. However, CO mixing ratios in BC air masses at Happo are higher than the background level in Siberia. The overestimate is probably related to an increase in the CO baseline gradient between Siberia and the East Asia Pacific rim, and perturbations by sub-grid scale pollution transport and regional-scale boreal forest fires in Siberia when the background continental air masses are transported to Japan.

  2. An ozone episode in the Pearl River Delta: Field observation and model simulation

    Science.gov (United States)

    Jiang, F.; Guo, H.; Wang, T. J.; Cheng, H. R.; Wang, X. M.; Simpson, I. J.; Ding, A. J.; Saunders, S. M.; Lam, S. H. M.; Blake, D. R.

    2010-11-01

    In the fall of 2007 concurrent air sampling field measurements were conducted for the first time in Guangzhou (at Wan Qing Sha (WQS)) and Hong Kong (at Tung Chung (TC)), two cities in the rapidly developing Pearl River Delta region of China that are only 62 km apart. This region is known to suffer from poor air quality, especially during the autumn and winter months, when the prevailing meteorological conditions bring an outflow of continental air to the region. An interesting multiday O3 pollution event (daily maximum O3 > 122 ppbv) was captured during 9-17 November at WQS, while only one O3 episode day (10 November) was observed at TC during this time. The mean O3 mixing ratios at TC and WQS during the episode were 38 ± 3 (mean ± 95% confidence interval) and 51 ± 7 ppbv, respectively, with a mean difference of 13 ppbv and a maximum hourly difference of 150 ppbv. We further divided this event into two periods: 9-11 November as Period 1 and 12-17 November as Period 2. The mixing ratios of O3 and its precursors (NOx and CO) showed significant differences between the two periods at TC. By contrast, no obvious difference was found at WQS, indicating that different air masses arrived at TC for the two periods, as opposed to similar air masses at WQS for both periods. The analysis of VOC ratios and their relationship with O3 revealed strong O3 production at WQS during Period 2, in contrast to relatively weak photochemical O3 formation at TC. The weather conditions implied regional transport of O3 pollution during Period 1 at both sites. Furthermore, a comprehensive air quality model system (Weather Research and Forecasting-Community Multiscale Air Quality model (WRF-CMAQ)) was used to simulate this O3 pollution event. The model system generally reproduced the variations of weather conditions, simulated well the continuous high O3 episode event at WQS, and captured fairly well the elevated O3 mixing ratios in Period 1 and low O3 levels in Period 2 at TC. The modeled

  3. Physiological and biochemical stress responses in grassland species are influenced by both early-season ozone exposure and interspecific competition.

    Science.gov (United States)

    Scebba, Francesca; Canaccini, Francesca; Castagna, Antonella; Bender, Jürgen; Weigel, Hans-Joachim; Ranieri, Annamaria

    2006-08-01

    The effects of two-year early season ozone exposure on physiological and biochemical stress response were investigated in model plant communities. Achillea millefolium and Veronica chamaedrys target plants were grown in monocultures and in mixed cultures with Poa pratensis (phytometer) and exposed in open-top chambers over two years for five weeks to charcoal-filtered (CF) air plus 25 nl l(-1) O3 (control) and non-filtered (NF) air plus 50 nl l(-1) O3. Significant O3 effects were detected in different physiological and biochemical parameters, evidencing interspecific differences in metabolic stress responses and a strong influence of the competition factor. O3 induced strong oxidative effects in Achillea irrespective to the different growth modality. Veronica showed less O3-induced effects in monoculture than when grown in competition with the phytometer. Poa exhibited a different behaviour against O3 depending on the species in competition, showing an overall higher sensitivity to O3 when in mixture with Achillea.

  4. The protective effect of plasma antioxidants during ozone ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-07-18

    Jul 18, 2008 ... In this study we investigated the possible protective effects of the plasma antioxidant defense system during O3-AHT. Venous blood from six ..... immune deficiency syndrome (AIDS), and a rationale for ozone therapy and other ...

  5. Ozone adsorption on carbon nanoparticles

    Science.gov (United States)

    Chassard, Guillaume; Gosselin, Sylvie; Visez, Nicolas; Petitprez, Denis

    2014-05-01

    Carbonaceous particles produced by incomplete combustion or thermal decomposition of hydrocarbons are ubiquitous in the atmosphere. On these particles are adsorbed hundreds of chemical species. Those of great concern to health are polycyclic aromatic hydrocarbons (PAHs). During atmospheric transport, particulate PAHs react with gaseous oxidants. The induced chemical transformations may change toxicity and hygroscopicity of these potentially inhalable particles. The interaction between ozone and carbon particles has been extensively investigated in literature. However ozone adsorption and surface reaction mechanisms are still ambiguous. Some studies described a fast catalytic decomposition of ozone initiated by an atomic oxygen chemisorption followed by a molecular oxygen release [1-3]. Others suggested a reversible ozone adsorption according to Langmuir-type behaviour [4,5]. The aim of this present study is a better understanding of ozone interaction with carbon surfaces. An aerosol of carbon nanoparticles was generated by flowing synthetic air in a glass tube containing pure carbon (primary particles studied. Accordingly to literature, it has been observed that the number of gas-phase ozone molecules lost per unit particle surface area tends towards a plateau for high ozone concentration suggesting a reversible ozone adsorption according to a Langmuir mechanism. We calculated the initial reaction probability between O3 and carbon particles.An initial uptake coefficient of 1.10-4 was obtained. Similar experiments were realized by selecting the particles size with a differential mobility analyser. We observed a strong size-dependent increase in reactivity with the decrease of particles size. This result is relevant for the health issues. Indeed the smallest particles are most likely to penetrate deep into the lungs. Competitive reactions between ozone and other species like H2O or atomic oxygen were also considered. Oxygen atoms were generated by photolysis of O3

  6. Mixed

    Directory of Open Access Journals (Sweden)

    Pau Baya

    2011-05-01

    Full Text Available Remenat (Catalan (Mixed, "revoltillo" (Scrambled in Spanish, is a dish which, in Catalunya, consists of a beaten egg cooked with vegetables or other ingredients, normally prawns or asparagus. It is delicious. Scrambled refers to the action of mixing the beaten egg with other ingredients in a pan, normally using a wooden spoon Thought is frequently an amalgam of past ideas put through a spinner and rhythmically shaken around like a cocktail until a uniform and dense paste is made. This malleable product, rather like a cake mixture can be deformed pulling it out, rolling it around, adapting its shape to the commands of one’s hands or the tool which is being used on it. In the piece Mixed, the contortion of the wood seeks to reproduce the plasticity of this slow heavy movement. Each piece lays itself on the next piece consecutively like a tongue of incandescent lava slowly advancing but with unstoppable inertia.

  7. A comparative analysis of UV nadir-backscatter and infrared limb-emission ozone data assimilation

    Directory of Open Access Journals (Sweden)

    R. Dragani

    2016-07-01

    Full Text Available This paper presents a comparative assessment of ultraviolet nadir-backscatter and infrared limb-emission ozone profile assimilation. The Meteorological Operational Satellite A (MetOp-A Global Ozone Monitoring Experiment 2 (GOME-2 nadir and the ENVISAT Michelson Interferometer for Passive Atmospheric Sounding (MIPAS limb profiles, generated by the ozone consortium of the European Space Agency Climate Change Initiative (ESA O3-CCI, were individually added to a reference set of ozone observations and assimilated in the European Centre for Medium-Range Weather Forecasts (ECMWF data assimilation system (DAS. The two sets of resulting analyses were compared with that from a control experiment, only constrained by the reference dataset, and independent, unassimilated observations. Comparisons with independent observations show that both datasets improve the stratospheric ozone distribution. The changes inferred by the limb-based observations are more localized and, in places, more important than those implied by the nadir profiles, albeit they have a much lower number of observations. A small degradation (up to 0.25 mg kg−1 for GOME-2 and 0.5 mg kg−1 for MIPAS in the mass mixing ratio is found in the tropics between 20 and 30 hPa. In the lowermost troposphere below its vertical coverage, the limb data are found to be able to modify the ozone distribution with changes as large as 60 %. Comparisons of the ozone analyses with sonde data show that at those levels the assimilation of GOME-2 leads to about 1 Dobson Unit (DU smaller root mean square error (RMSE than that of MIPAS. However, the assimilation of MIPAS can still improve the quality of the ozone analyses and – with a reduction in the RMSE of up to about 2 DU – outperform the control experiment thanks to its synergistic assimilation with total-column ozone data within the DAS. High vertical resolution ozone profile observations are essential to accurately monitor and

  8. LANDFILL LEACHATES PRETREATMENT BY OZONATION

    Directory of Open Access Journals (Sweden)

    Jacek Leszczyński

    2016-06-01

    Full Text Available In this paper, the application of ozonation processes for stabilized landfill leachate treatment was investigated. The leachate came from a municipal sanitary landfill located nearby Bielsk Podlaski. The average values of its main parameters were: pH 8.23; COD 870 mgO2/dm3; BOD 90 mgO2/dm3; NH4+ 136.2 mgN/dm3; UV254 absorbance 0.312 and turbidity 14 NTU. The ozone dosages used were in the range of 115.5 to 808.5 mgO3/dm3 of the leachate. The maximum COD, color and UV254 absorbance removal wa.5 mgO3/dm3. After oxidation, the ratio of BOD/COD was increased from 0.1 up to 0.23.

  9. Radiative forcing for changes in tropospheric O3

    International Nuclear Information System (INIS)

    Grossman, A.S.; Wuebbles, D.J.; Grant, K.E.

    1994-06-01

    We have evaluated the radiative forcing for assumed changes in tropospheric O 3 in the 500-1650 cm -1 wavenumber range. The radiative forcing calculations were performed as a function of latitude as well as for a globally and seasonally averaged model atmosphere, both in a clear sky approximation and in a model containing a representative cloud distribution. The scenarios involved radiative forcing calculations for O 3 at normal atmospheric abundance and at a tropospheric abundance depleted by 25 ppbv, at each altitude, for all northern hemisphere latitudes. Normal abundances of H 2 O, CO 2 , CH 4 , and N 2 O were included in the calculations. The IR radiative forcing was calculated using a correlated k-distribution radiative transfer model. The tropospheric radiative forcing values are compared to the IPCC formulae for ozone tropospheric forcing as well as other published values to determine the validity of the correlated k-distribution approach to the radiative forcing calculations. The results for the global average atmosphere show agreement with previous results to the order of 10 percent. We conclude that the O 3 forcing is linear in the background abundance and that the radiative forcing for ozone for the globally averaged atmosphere and the latitude averaged radiative forcing in the clear sky approximation are in agreement to within 10 percent. For the case of an atmosphere in which the tropospheric ozone has been depleted by 25 ppbv at all altitudes in the northern hemisphere, the mid latitude zone contributes ∼50 percent of the forcing, tropic zone contributes ∼37 percent of the forcing and the polar zone contributes ∼13 percent of the total forcing

  10. Ozone concentrations at a selected high-elevation forest site downwind Mexico City

    Science.gov (United States)

    Torres-JArdon, R.

    2013-05-01

    Torres-Jardón, R.*, Rosas-Pérez, I., Granada-Macías, L. M., Ruiz-Suárez, L. G. Centro de Ciencias de la Atmósfera, UNAM, México D. F. México * rtorres@unam.mx For many years, the vegetation of forest species such as Abies religiosa in natural parks located in the southwest mountains of Mexico City has attracted much attention since these parks have been experiencing a severe decline of unclear etiology. The high ozone levels in the area and the observed naked eye macroscopic, histological and cytological injuries on these species, strongly suggest an important contribution of tropospheric ozone to this deterioration process. Apart of historical short monitoring campaigns for measuring ozone levels in these mountains, it is known just a little is known about the present exposure levels at which the local vegetation is exposed. A continuous ozone analyzer has been in operation since 2011 at a high-elevation forest site (Parque Nacional Miguel Hidalgo, PNMH; 3110 m above mean sea level) located downwind of Mexico City Metropolitan Area (MCMA), in order to characterize the local ozone diel amplitude and its seasonal trend, as well as the influence of MCMA on the local O3 concentrations. Hourly average ozone data in PNMH shows that in general, the diel of ozone concentrations in the forest site has a statistical significant correlation with the pattern of ozone levels observed in several monitoring sites (smog receptor sites) within the MCMA, although the high elevation O3 levels are relatively lower than those in the urban area (around 2200 m above mean sea level). It is possible that a part of the oxidants in the air masses are removed by sink deposition processes during the air mass transport across the hills. The diel amplitude of ozone concentrations is small in the cold season, increasing as the seasons advance to June. As in the city, the highest ozone concentrations occur in April or May and the lowest levels during the rainy season, which extends from

  11. A novel tropopause-related climatology of ozone profiles

    NARCIS (Netherlands)

    Sofieva, V.F.; Tamminen, J.; Kyrola, E.; Mielonen, T.; Veefkind, J.P.; Hassler, B.; Bodeker, G.E.

    2014-01-01

    A new ozone climatology, based on ozonesonde and satellite measurements, spanning the altitude region between the earth's surface and ~60 km is presented (TpO3 climatology). This climatology is novel in that the ozone profiles are categorized according to calendar month, latitude and local

  12. NOx and O3 above a tropical rainforest: an analysis with a global and box model

    Directory of Open Access Journals (Sweden)

    C. E. Reeves

    2010-11-01

    Full Text Available A cross-platform field campaign, OP3, was conducted in the state of Sabah in Malaysian Borneo between April and July of 2008. Among the suite of observations recorded, the campaign included measurements of NOx and O3 – crucial outputs of any model chemistry mechanism. We describe the measurements of these species made from both the ground site and aircraft. We then use the output from two resolutions of the chemistry transport model p-TOMCAT to illustrate the ability of a global model chemical mechanism to capture the chemistry at the rainforest site. The basic model performance is good for NOx and poor for ozone. A box model containing the same chemical mechanism is used to explore the results of the global model in more depth and make comparisons between the two. Without some parameterization of the nighttime boundary layer – free troposphere mixing (i.e. the use of a dilution parameter, the box model does not reproduce the observations, pointing to the importance of adequately representing physical processes for comparisons with surface measurements. We conclude with a discussion of box model budget calculations of chemical reaction fluxes, deposition and mixing, and compare these results to output from p-TOMCAT. These show the same chemical mechanism behaves similarly in both models, but that emissions and advection play particularly strong roles in influencing the comparison to surface measurements.

  13. Ozone decomposition

    Directory of Open Access Journals (Sweden)

    Batakliev Todor

    2014-06-01

    Full Text Available Catalytic ozone decomposition is of great significance because ozone is a toxic substance commonly found or generated in human environments (aircraft cabins, offices with photocopiers, laser printers, sterilizers. Considerable work has been done on ozone decomposition reported in the literature. This review provides a comprehensive summary of the literature, concentrating on analysis of the physico-chemical properties, synthesis and catalytic decomposition of ozone. This is supplemented by a review on kinetics and catalyst characterization which ties together the previously reported results. Noble metals and oxides of transition metals have been found to be the most active substances for ozone decomposition. The high price of precious metals stimulated the use of metal oxide catalysts and particularly the catalysts based on manganese oxide. It has been determined that the kinetics of ozone decomposition is of first order importance. A mechanism of the reaction of catalytic ozone decomposition is discussed, based on detailed spectroscopic investigations of the catalytic surface, showing the existence of peroxide and superoxide surface intermediates

  14. Ozone modeling

    Energy Technology Data Exchange (ETDEWEB)

    McIllvaine, C M

    1994-07-01

    Exhaust gases from power plants that burn fossil fuels contain concentrations of sulfur dioxide (SO{sub 2}), nitric oxide (NO), particulate matter, hydrocarbon compounds and trace metals. Estimated emissions from the operation of a hypothetical 500 MW coal-fired power plant are given. Ozone is considered a secondary pollutant, since it is not emitted directly into the atmosphere but is formed from other air pollutants, specifically, nitrogen oxides (NO), and non-methane organic compounds (NMOQ) in the presence of sunlight. (NMOC are sometimes referred to as hydrocarbons, HC, or volatile organic compounds, VOC, and they may or may not include methane). Additionally, ozone formation Alternative is a function of the ratio of NMOC concentrations to NO{sub x} concentrations. A typical ozone isopleth is shown, generated with the Empirical Kinetic Modeling Approach (EKMA) option of the Environmental Protection Agency's (EPA) Ozone Isopleth Plotting Mechanism (OZIPM-4) model. Ozone isopleth diagrams, originally generated with smog chamber data, are more commonly generated with photochemical reaction mechanisms and tested against smog chamber data. The shape of the isopleth curves is a function of the region (i.e. background conditions) where ozone concentrations are simulated. The location of an ozone concentration on the isopleth diagram is defined by the ratio of NMOC and NO{sub x} coordinates of the point, known as the NMOC/NO{sub x} ratio. Results obtained by the described model are presented.

  15. Ozone modeling

    International Nuclear Information System (INIS)

    McIllvaine, C.M.

    1994-01-01

    Exhaust gases from power plants that burn fossil fuels contain concentrations of sulfur dioxide (SO 2 ), nitric oxide (NO), particulate matter, hydrocarbon compounds and trace metals. Estimated emissions from the operation of a hypothetical 500 MW coal-fired power plant are given. Ozone is considered a secondary pollutant, since it is not emitted directly into the atmosphere but is formed from other air pollutants, specifically, nitrogen oxides (NO), and non-methane organic compounds (NMOQ) in the presence of sunlight. (NMOC are sometimes referred to as hydrocarbons, HC, or volatile organic compounds, VOC, and they may or may not include methane). Additionally, ozone formation Alternative is a function of the ratio of NMOC concentrations to NO x concentrations. A typical ozone isopleth is shown, generated with the Empirical Kinetic Modeling Approach (EKMA) option of the Environmental Protection Agency's (EPA) Ozone Isopleth Plotting Mechanism (OZIPM-4) model. Ozone isopleth diagrams, originally generated with smog chamber data, are more commonly generated with photochemical reaction mechanisms and tested against smog chamber data. The shape of the isopleth curves is a function of the region (i.e. background conditions) where ozone concentrations are simulated. The location of an ozone concentration on the isopleth diagram is defined by the ratio of NMOC and NO x coordinates of the point, known as the NMOC/NO x ratio. Results obtained by the described model are presented

  16. Regional-scale modeling of near-ground ozone in the Central East China, source attributions and an assessment of outflow to East Asia The role of regional-scale transport during MTX2006

    Science.gov (United States)

    Li, J.; Wang, Z.; Akimoto, H.; Yamaji, K.; Takigawa, M.; Pochanart, P.; Liu, Y.; Kanaya, Y.

    2008-07-01

    A 3-D regional chemical transport model, the Nested Air Quality Prediction Model System (NAQPMS), with an on-line tracer tagging module was applied to study the source of the near-ground (pollutants. In particular, the model captured highly polluted and clean cases well. The simulated near-ground ozone over CEC is 60 85 ppbv (parts per billion by volume), higher than those (20 50 ppbv) in Japan and over the North Pacific. The simulated tagged tracer indicates that the regional-scale transport of chemically produced ozone over other areas in CEC contributes to the most fractions (49%) of the near-ground mean ozone at Mt. Tai in June, rather than the in-situ photochemistry (12%). Due to high anthropogenic and biomass burning emissions, the contributions of the ground ozone from the southern part of CEC plays the most important role (32.4 ppbv, 37.9% of total ozone) in the monthly mean ozone concentration at Mt. Tai, which even reached 59 ppbv (62%) on 6 7 June 2006. The monthly mean horizontal distribution of chemically produced ozone from various source regions indicates that the spatial distribution of O3 over CEC is controlled by the photochemical reactions. In addition, the regional-scale transport of pollutants also plays an important role in the spatial and temporal distribution of ozone over CEC. The chemically produced ozone from the southern part of the study region can be transported northeastwardly to the northern rim of CEC. The mean contribution is 5 10 ppbv, and it can reach 25 ppbv during high ozone events. This work also studied the outflow of CEC ozone and its precursors, as well as their influences and contributions to the ozone level over adjacent regions/countries. It shows that the contribution of CEC ozone to mean ozone mixing ratios over Korea Peninsula and Japan is 5 15 ppbv, of which about half was due to the direct transport of ozone from CEC and half was contributed by the ozone produced locally by the transported ozone precursors from CEC.

  17. Air quality simulation over South Asia using Hemispheric Transport of Air Pollution version-2 (HTAP-v2) emission inventory and Model for Ozone and Related chemical Tracers (MOZART-4)

    Science.gov (United States)

    Surendran, Divya E.; Ghude, Sachin D.; Beig, G.; Emmons, L. K.; Jena, Chinmay; Kumar, Rajesh; Pfister, G. G.; Chate, D. M.

    2015-12-01

    This study presents the distribution of tropospheric ozone and related species for South Asia using the Model for Ozone and Related chemical Tracers (MOZART-4) and Hemispheric Transport of Air Pollution version-2 (HTAP-v2) emission inventory. The model present-day simulated ozone (O3), carbon monoxide (CO) and nitrogen dioxide (NO2) are evaluated against surface-based, balloon-borne and satellite-based (MOPITT and OMI) observations. The model systematically overestimates surface O3 mixing ratios (range of mean bias about: 1-30 ppbv) at different ground-based measurement sites in India. Comparison between simulated and observed vertical profiles of ozone shows a positive bias from the surface up to 600 hPa and a negative bias above 600 hPa. The simulated seasonal variation in surface CO mixing ratio is consistent with the surface observations, but has a negative bias of about 50-200 ppb which can be attributed to a large part to the coarse model resolution. In contrast to the surface evaluation, the model shows a positive bias of about 15-20 × 1017 molecules/cm2 over South Asia when compared to satellite derived CO columns from the MOPITT instrument. The model also overestimates OMI retrieved tropospheric column NO2 abundance by about 100-250 × 1013 molecules/cm2. A response to 20% reduction in all anthropogenic emissions over South Asia shows a decrease in the anuual mean O3 mixing ratios by about 3-12 ppb, CO by about 10-80 ppb and NOX by about 3-6 ppb at the surface level. During summer monsoon, O3 mixing ratios at 200 hPa show a decrease of about 6-12 ppb over South Asia and about 1-4 ppb over the remote northern hemispheric western Pacific region.

  18. Chemical Evolution of Ozone and Its Precursors in Asian Pacific Rim Outflow During TRACE-P

    Science.gov (United States)

    Hamlin, A.; Crawford, J.; Olson, J.; Pippin, M.; Avery, M.; Sachse, G.; Barrick, J.; Blake, D.; Tan, D.; Sandholm, S.; Kondo, Y.; Singh, H.; Eisele, F.; Zondlo, M.; Flocke, F.; Talbot, R.

    2002-12-01

    During NASA's GTE/TRACE-P (Transport and Chemical Evolution over the Pacific) mission, a widespread stagnant pollution layer was observed between 2 and 4 km over the central Pacific. In this region, high levels of O3 (70~ppbv), CO (210~ppbv), and NOx (130~pptv) were observed. Back trajectories suggest this airmass had been rapidly transported from the Asian coast near the Yellow Sea to the central Pacific where it underwent subsidence. The chemical evolution of ozone and its precursors for this airmass is examined using lagrangian photochemical box model calculations. Simulations are conducted along trajectories which intersect the flight path where predicted mixing ratios are compared to measurements. An analysis of the photochemical processes controlling the cycling of nitrogen oxides and ozone production and destruction during transport will be presented.

  19. A note on structural and dielectric properties of BiFeO3- PbTiO3 and BiFeO3- PbZrO3 composites

    International Nuclear Information System (INIS)

    Satpathy, S. K.; Mohanty, N. K.; Behera, A. K.; Behera, B.; Nayak, P.

    2015-01-01

    The composites of BiFeO 3 -PbTiO 3 (BF-PT) and BiFeO 3 -PbZrO 3 (BF-PZ) were prepared by mixed oxide method. Room temperature X-ray diffraction data confirms the rhombohedral and tetragonal crystal structure respectively. Dielectric constant of BF-PZ is found to give high value compared to BF-PT and hence, there is an increase value of ac conductivity for the former. Both the composites show negative temperature coefficient of resistance (NTCR) behavior. The activation energies of BF-PT and BF-PZ are found to be 0.35 eV and 0.53 eV respectively. The d 33 coefficients are found to be 2.0 and 2.1 pC/N for BF-PT and BF-PZ respectively

  20. Biomarkers of Dose and Effect of inhaled ozone in resting versus exercising human subjects: comparison with resting rats

    Science.gov (United States)

    Background: Human controlled exposure studies have generally focused on subjects exposed to ozone (O3) while exercising while exposures in rats have been done at rest. We exposed resting subjects to labeled O3 (18O3, 0.4 ppm, for 2 hr) and compared O3 dose and effects with our...

  1. A critical review and analysis of the use of exposure- and flux-based ozone indices for predicting vegetation effects

    Science.gov (United States)

    Robert C. Musselman; Allen S. Lefohn; William J. Massman; Robert L. Heath

    2006-01-01

    Early studies of plant response to ozone (O3) utilized concentration-based metrics, primarily by summarizing the commonly monitored hourly average data sets. Research with the O3 concentration parameter led to the recognition that both peak concentrations and cumulative effects are important when relating plant response to O3. The US and Canada currently use O3...

  2. Short-term effects of various ozone metrics on cardiopulmonary function in chronic obstructive pulmonary disease patients: Results from a panel study in Beijing, China.

    Science.gov (United States)

    Li, Hongyu; Wu, Shaowei; Pan, Lu; Xu, Junhui; Shan, Jiao; Yang, Xuan; Dong, Wei; Deng, Furong; Chen, Yahong; Shima, Masayuki; Guo, Xinbiao

    2018-01-01

    Short-term exposure to ambient air pollution has been associated with lower pulmonary function and higher blood pressure (BP). However, controversy remains regarding the relationship between ambient multiple daily ozone (O 3 ) metrics and cardiopulmonary health outcomes, especially in the developing countries. To investigate and compare the short-term effects of various O 3 metrics on pulmonary function, fractional exhaled nitric oxide (FeNO) and BP in a panel study of COPD patients. We measured pulmonary function, FeNO and BP repeatedly in a total of 43 patients with COPD for 215 home visits. Daily hourly ambient O 3 concentrations were obtained from central-monitoring stations close to subject residences. We calculated various O 3 metrics [daily 1-h maximum (O 3 -1 h max), maximum 8-h average (O 3 -8 h max) and 24-h average (O 3 -24 h avg)] based on the hourly data. Daily indoor O 3 concentrations were estimated based on estimated indoor/outdoor O 3 ratios. Linear mixed-effects models were used to estimate associations of various O 3 metrics with cardiopulmonary function variables. An interquartile range (IQR) increase in ambient O 3 -8 h max (80.5 μg/m 3 , 5-d) was associated with a 5.9% (95%CI: -11.0%, -0.7%) reduction in forced expiratory volume in 1 s (FEV 1 ) and a 6.2% (95%CI: -10.9%, -1.5%) reduction in peak expiratory flow (PEF). However, there were no significant negative associations between ambient O 3 -1 h max, O 3 -24 h avg and FEV 1 , PEF. An IQR increase in ambient O 3 -1 h max (85.3 μg/m 3 , 6-d) was associated with a 6.7 mmHg (95%CI: 0.7, 12.7) increase in systolic BP. The estimated indoor O 3 were still significantly associated with reduction of FEV 1 and PEF. No significant associations were found between various O 3 metrics and FeNO. Our results provide clues for the adverse cardiopulmonary effects associated with various O 3 metrics in COPD patients and highlight that O 3 -8 h max was more closely associated with respiratory

  3. Ozone Pollution

    Science.gov (United States)

    Known as tropospheric or ground-level ozone, this gas is harmful to human heath and the environment. Since it forms from emissions of volatile organic compounds (VOCs) and nitrogen oxides (NOx), these pollutants are regulated under air quality standards.

  4. Responses of the lichen Ramalina menziesii Tayl. to ozone fumigations

    Science.gov (United States)

    J. Riddell; T.H. Nash; P. Padgett

    2010-01-01

    Tropospheric ozone (O3) is a strong oxidant, and is known to have serious negative effects on forest health. Lichens have bccn used as biomonitors of the effects of air pollution on forest health for sulfur and nitrogen pollutants. However, effects of O3 on lichens are not well understood, as past fumigation studies and...

  5. Assessment of personal exposure to ozone in asthmatic children residing in Mexico City Evaluación de la exposición personal a ozono en niños asmáticos de la Ciudad de México

    Directory of Open Access Journals (Sweden)

    Matiana Ramírez-Aguilar

    2008-02-01

    Full Text Available OBJECTIVE: A study was conducted to evaluate personal ozone exposure (O3p among asthmatic children residing in Mexico City. MATERIAL AND METHODS: A total of 158 chil-dren were recruited from December 1998 to April 2000. On average, three O3p measurements were obtained per child using passive badges. Time-activity patterns were recorded in a diary. Daily ambient ozone measurements (O3a were obtained from the fixed station, according to children’s residence. Levels of O3a and ozone, weighted by time spent in different micro-environments (O3w, were used as independent variables in order to model O3p concentrations using a mixed-effects model. RESULTS: Mean O3p was 7.8 ppb. The main variables in the model were: time spent indoors, distance between residence and fixed station, follow-up group, and two interaction terms (overall R²=0.50, pOBJETIVO: Realizamos este estudio para evaluar la exposición personal a ozono (O3p en niños asmáticos de la Ciudad de México. MATERIAL Y MÉTODOS: Se incluyeron 158 niños entre diciembre de 1998 y abril de 2000. En promedio se obtuvieron tres mediciones por niño, utilizando filtros pasivos para medir O3p. Se caracterizaron los patrones de actividad y las concentraciones ambientales diarias de ozono (O3a se obtuvieron de estaciones fijas cercanas a la residencia del niño. Los niveles promedio de O3a y las concentraciones ponderadas por el tiempo en diferentes microambientes (O3w fueron usados como variables independientes para modelar las concentraciones de O3p, utilizando modelos de efectos mixtos. RESULTADOS: La media de O3p fue 7.8 ppb. Las principales variables en el modelo fueron: tiempo en exteriores, distancia, periodo de seguimiento y dos términos de interacción (R²=0.50, p<0.05. CONCLUSIONES: Las concentraciones de O3w pueden usarse como "proxi" de O3p, tomando en cuenta patrones de actividad y lugar de residencia.

  6. Revisiting Antarctic Ozone Depletion

    Science.gov (United States)

    Grooß, Jens-Uwe; Tritscher, Ines; Müller, Rolf

    2015-04-01

    Antarctic ozone depletion is known for almost three decades and it has been well settled that it is caused by chlorine catalysed ozone depletion inside the polar vortex. However, there are still some details, which need to be clarified. In particular, there is a current debate on the relative importance of liquid aerosol and crystalline NAT and ice particles for chlorine activation. Particles have a threefold impact on polar chlorine chemistry, temporary removal of HNO3 from the gas-phase (uptake), permanent removal of HNO3 from the atmosphere (denitrification), and chlorine activation through heterogeneous reactions. We have performed simulations with the Chemical Lagrangian Model of the Stratosphere (CLaMS) employing a recently developed algorithm for saturation-dependent NAT nucleation for the Antarctic winters 2011 and 2012. The simulation results are compared with different satellite observations. With the help of these simulations, we investigate the role of the different processes responsible for chlorine activation and ozone depletion. Especially the sensitivity with respect to the particle type has been investigated. If temperatures are artificially forced to only allow cold binary liquid aerosol, the simulation still shows significant chlorine activation and ozone depletion. The results of the 3-D Chemical Transport Model CLaMS simulations differ from purely Lagrangian longtime trajectory box model simulations which indicates the importance of mixing processes.

  7. Stratospheric ozone chemistry in the Antarctic: what determines the lowest ozone values reached and their recovery?

    Directory of Open Access Journals (Sweden)

    J.-U. Grooß

    2011-12-01

    Full Text Available Balloon-borne observations of ozone from the South Pole Station have been reported to reach ozone mixing ratios below the detection limit of about 10 ppbv at the 70 hPa level by late September. After reaching a minimum, ozone mixing ratios increase to above 1 ppmv on the 70 hPa level by late December. While the basic mechanisms causing the ozone hole have been known for more than 20 yr, the detailed chemical processes determining how low the local concentration can fall, and how it recovers from the minimum have not been explored so far. Both of these aspects are investigated here by analysing results from the Chemical Lagrangian Model of the Stratosphere (CLaMS. As ozone falls below about 0.5 ppmv, a balance is maintained by gas phase production of both HCl and HOCl followed by heterogeneous reaction between these two compounds in these simulations. Thereafter, a very rapid, irreversible chlorine deactivation into HCl can occur, either when ozone drops to values low enough for gas phase HCl production to exceed chlorine activation processes or when temperatures increase above the polar stratospheric cloud (PSC threshold. As a consequence, the timing and mixing ratio of the minimum ozone depends sensitively on model parameters, including the ozone initialisation. The subsequent ozone increase between October and December is linked mainly to photochemical ozone production, caused by oxygen photolysis and by the oxidation of carbon monoxide and methane.

  8. Photochemical smog effects in mixed conifer forests along a natural gradient of ozone and nitrogen deposition in the San Bernardino Mountains

    Science.gov (United States)

    Michael Arbaugh; Andrzej Bytnerowicz; Nancy Grulke; Mark Fenn; Mark Poth; Patrick Temple; Paul Miller

    2003-01-01

    Toxic effects of photochemical smog on ponderosa and Jeffrey pines in the San Bernardino Mountains were discovered in the 1950s. It was revealed that ozone is the main cause of foliar injury manifested as chlorotic mottle and premature needle senescence. Various morphological, physiological and biochemical alterations in the affected plants have been reported over a...

  9. Simultaneous improvement of surface quality and productivity using grey relational analysis based Taguchi design for turning couple (AISI D3 steel/ mixed ceramic tool (Al2O3 + TiC

    Directory of Open Access Journals (Sweden)

    Oussama Zerti

    2017-07-01

    Full Text Available Current optimization strategies are based on the increase the productivity and the quality with lower cost in short time. Grey relational analysis “GRA” based on Taguchi design was proposed in this paper for simultaneous improvement of surface quality and productivity. The turning trials based on mixed Taguchi L18 factorial plan were conducted under dry cutting conditions for the machining couple: AISI D3 steel/mixed ceramic inserts (CC650. The machining parameters taken into account during this study are as follow: major cutting edge angle (χr, cutting insert nose radius (r, cutting speed (Vc, feed rate (f, and depth of cut (ap. Significant effects of machining parameters and their interactions were evaluated by the analysis of variance. Through this analysis, it have been found clearly that feed rate and cutting insert nose radius had a big significant effects on surface quality while depth of cut, feed rate followed by cutting speed had a major effect on productivity. The mathematical relationship between the machining parameters and the performance characteristics was formulated by using a linear regression model with interactions. Optimal levels of parametric combination for achieving the higher surface quality with maximum productivity were selected by grey relational analysis which is based on the high value of grey relational grade. Confirmation experiments were carried out to prove the powerful improvement of experimental results and to validate the effectiveness of the multi-optimization technique applied in this paper.

  10. Anaerobic effluent disinfection using ozone: Byproducts formation

    NARCIS (Netherlands)

    Silva, G.H.R.; Daniel, L.A.; Bruning, H.; Rulkens, W.H.

    2010-01-01

    This research was aimed at studying oxidation processes, coliform inactivation effectiveness and disinfection byproducts (DBPs) associated with the disinfection of anaerobic sanitary wastewater effluent with ozone applied at doses of 5.0, 8.0 and 10.0mg O(3)L(-1) for contact times of 5, 10 and 15

  11. Temporal and spatial variability in the aviation NOx-related O3 impact

    International Nuclear Information System (INIS)

    Gilmore, Christopher K; Barrett, Steven R H; Koo, Jamin; Wang, Qiqi

    2013-01-01

    Aviation NO x emissions promote tropospheric ozone formation, which is linked to climate warming and adverse health effects. Modeling studies have quantified the relative impact of aviation NO x on O 3 in large geographic regions. As these studies have applied forward modeling techniques, it has not been possible to attribute O 3 formation to individual flights. Here we apply the adjoint of the global chemistry–transport model GEOS-Chem to assess the temporal and spatial variability in O 3 production due to aviation NO x emissions, which is the first application of an adjoint to this problem. We find that total aviation NO x emitted in October causes 40% more O 3 than in April and that Pacific aviation emissions could cause 4–5 times more tropospheric O 3 per unit NO x than European or North American emissions. Using this sensitivity approach, the O 3 burden attributable to 83 000 unique scheduled civil flights is computed individually. We find that the ten highest total O 3 -producing flights have origins or destinations in New Zealand or Australia. The top ranked O 3 -producing flights normalized by fuel burn cause 157 times more normalized O 3 formation than the bottom ranked ones. These results show significant spatial and temporal heterogeneity in environmental impacts of aviation NO x emissions. (letter)

  12. Pulse radiolytic study of the reaction OH + O3 in aqueous medium

    International Nuclear Information System (INIS)

    Sehested, K.; Holcman, J.; Bjergbakke, E.; Hart, E.J.

    1984-01-01

    In slightly alkaline solution the ozonide radical ion, O 3 - , forms as a product of the hydroxyl radical reaction with ozone. For each O 3 - formed, two O 3 molecules are consumed. In acid solution the product of this reaction is the perhydroxyl radical, HO 2 , formed from one O 3 molecule. Our results are consistent with the gas-phase reaction where the products are HO 2 and O 2 . A rate constant of (1.1 +/- 0.2) x 10 8 dm 3 mol -1 s -1 is found for the reaction OH + O 3 → HO 2 + O 2 . This rate constant was obtained by three systems, by buildup of O 3 - in basic solutions, by competition of the OH radical with the carbonate ion, and directly by O 3 consumption in acid solution. The rate constant for the reaction of HO 2 with O 3 is very low, 4 dm 3 mol -1 s -1 . At pH greater than or equal to 1, HO 2 reacts with O 3 preferentially in its dissociated form, O 2 - . No spectroscopic evidence has been found for the HO 3 and HO 4 free-radical intermediates. 24 references, 4 figures, 2 tables

  13. Characteristics of Surface Ozone in Agra, a Sub-urban site in Indo ...

    Indian Academy of Sciences (India)

    65

    Ozone (O3) is a secondary pollutant which has an important effect on air quality, climate. 49 change and atmospheric chemistry (Solomon et al., 2000; Sitch et al., 2007). Depending on its. 50 location in the atmosphere, O3 can influence human health and climate; in the stratosphere, O3. 51 filters out detrimental ultraviolet ...

  14. Distinct transcriptional profiles of ozone stress in soybean (Glycine max) flowers and pods

    Science.gov (United States)

    Tropospheric ozone (O3) is a secondary air pollutant and anthropogenic greenhouse gas. Concentrations of tropospheric O3 ([O3] have more than doubled since the Industrial Revolution, and are high enough to damage plant productivity. Soybean (Glycine max L. Merr.) is the world's most important legume...

  15. Removal of Ozone by Urban and Peri-Urban Forests: Evidence from Laboratory, Field, and Modeling Approaches

    Science.gov (United States)

    Carlo Calfapietra; Arianna Morani; Gregorio Sgrigna; Sara Di Giovanni; Valerio Muzzini; Emanuele Pallozzi; Gabriele Guidolotti; David Nowak; Silvano Fares

    2016-01-01

    A crucial issue in urban environments is the interaction between urban trees and atmospheric pollution, particularly ozone (O3). Ozone represents one of the most harmful pollutants in urban and peri-urban environments, especially in warm climates. Besides the large interest in reducing anthropogenic and biogenic precursors of O3...

  16. Ozone formation in a transverse-flow gas discharge

    International Nuclear Information System (INIS)

    Baranov, G.A.; Zinchenko, A.K.; Lednev, M.G.

    1994-01-01

    The measurements of the ozone concentration in flows of air and nitrogen-oxygen mixtures under transverse dc discharge are performed using an absorption spectroscopy technique. The mechanism of ozone formation in the discharge is discussed. A simple equation is suggested for the estimation of ozone concentration in the gas mixtures. The influence of water vapor on the kinetics of formation and decay of O 3 molecules is considered. The numerical estimates of the ozone concentration are made using the suggested model of plasma-chemical reactions

  17. Four years of ozone measurements in the Central Amazon - Absorption mechanisms and reactions within the rainforest

    Science.gov (United States)

    Wolff, Stefan; Ganzeveld, Laurens; Tsokankunku, Anywhere; Saturno, Jorge; Souza, Rodrigo; Trebs, Ivonne; Sörgel, Matthias

    2017-04-01

    The ATTO (Amazon Tall Tower Observatory) site (02°08'38.8''S, 58°59'59.5''W) is located in the remote Amazon rainforest, allowing atmospheric and forest studies away from nearby anthropogenic emission sources. Starting with continuous measurements of vertical mixing ratio profiles of H2O, CO2 and O3 in April 2012 at 8 heights between 0.05 m and 80 m above ground, the longest continuous record of near surface O3 in the Amazon rainforest was established. Black carbon (BC), CO and micrometeorological measurements are available for the same period. During intensive campaigns, NOx was measured as well using the same profile system, and therefore several month of parallel NOx measurements are available. This data allows the analyses of diverse patterns regarding emission, deposition, turbulence and chemical reactions of trace gases within and above the rainforest for several rainy and dry seasons. The remote Amazon generally serves as a sink for O3 which is mainly deposited to the canopy. The deposition depends to a large extent on the aperture of the leaf stomata, which is correlated to temperature, humidity, solar radiation and water availability. Comparing these parameters with the in-canopy and above canopy gradients of O3, considering the turbulent conditions and further chemical reactions of O3 with NOx and VOC molecules, we estimated the role of the forest for the removal of ozone from the atmosphere under different meteorological conditions. We applied the Multi-Layer Canopy Chemical Exchange Model - MLC-CHEM to support the analysis of the observed profiles of NOx and O3. Under pristine conditions, the forest soil is the major source for NO emissions, which are directly reacting with O3 molecules, affecting the O3 gradient within the sub-canopy. We have analyzed differences between model and measurements in sub-canopy NO and O3 mixing ratios by the application of different NO soil emission scenarios and by the performance of several sensitivity analyses to

  18. HNbO3 and HTaO3: new cubic perovskites prepared from LiNbO3 and LiTaO3 via ion exchange

    International Nuclear Information System (INIS)

    Rice, C.E.; Jackel, J.L.

    1982-01-01

    The synthesis of HNbO 3 and HTaO 3 from LiNbO 3 via ion exchange in hot aqueous acid solutions is reported. This reaction is accompanied by a topotactic structural transformation from the rhombohedral LiNbO 3 structure to the cubic perovskite structure; cell constants are a = 3.822(1) angstrom for HNbO 3 and 3.810(2) angstrom for HTaO 3 . These new compounds have been characterized by powder X-ray diffraction, thermogravimetric analysis, and solid-state NMR. They are electronic insulators and have low ionic conductivity. Evidence of partially proton-exchange phases Li/sub 1-x/H/sub x/MO 3 was also seen. The possible significance of this ion exchange reaction for devices using LiNbO 3 or LiTaO 3 is discussed

  19. Evidence for photolytic cycle and transport of NO, NO2 and O3 in the urban air of Beograd

    International Nuclear Information System (INIS)

    Stamatovic, A.; Markovic, D.; Milekic, Z.; Novakovic, V.

    1994-01-01

    The first continuous measurements of NO, NO 2 and O 3 concentrations in the urban area of Belgrade were made during the summer-autumn season of 1993. The concentrations of NO and NO 2 have been measured with a Dasibi model 2108 luminescence monitor calibrated via permeation tube. The ozone concentration has been deduced from the total oxidants data obtained from electrochemical cell measurements, calibrated with an ozone generator. Assumed accuracy of both calibration is around 20%. (author)

  20. Are Bavarian Forests (southern Germany) at risk from ground-level ozone? Assessment using exposure and flux based ozone indices

    International Nuclear Information System (INIS)

    Baumgarten, Manuela; Huber, Christian; Bueker, Patrick; Emberson, Lisa; Dietrich, Hans-Peter; Nunn, Angela J.; Heerdt, Christian; Beudert, Burkhard; Matyssek, Rainer

    2009-01-01

    Exposure and flux-based indices of O 3 risk were compared, at 19 forest locations across Bavaria in southern Germany from 2002 to 2005; leaf symptoms on mature beech trees found at these locations were also examined for O 3 injury. O 3 flux modelling was performed using continuously recorded O 3 concentrations in combination with meteorological and soil moisture data collected from Level II forest sites. O 3 measurements at nearby rural open-field sites proved appropriate as surrogates in cases where O 3 data were lacking at forest sites (with altitude-dependent average differences of about 10% between O 3 concentrations). Operational thresholds of biomass loss for both O 3 indices were exceeded at the majority of the forest locations, suggesting similar risk under long-term average climate conditions. However, exposure-based indices estimated higher O 3 risk during dry years as compared to the flux-based approach. In comparison, minor O 3 -like leaf injury symptoms were detected only at a few of the forest sites investigated. Relationships between flux-based risk thresholds and tree response need to be established for mature forest stands for validation of predicted growth reductions under the prevailing O 3 regimes. - Exposure- and flux-based ozone indices suggest Bavarian forests to be at risk from ozone; the flux-based index offers a means of incorporating stand-specific and ecological variables that influence risk.

  1. Spatial-temporal variations in surface ozone over Ushuaia and the Antarctic region: observations from in situ measurements, satellite data, and global models.

    Science.gov (United States)

    Nadzir, Mohd Shahrul Mohd; Ashfold, Matthew J; Khan, Md Firoz; Robinson, Andrew D; Bolas, Conor; Latif, Mohd Talib; Wallis, Benjamin M; Mead, Mohammed Iqbal; Hamid, Haris Hafizal Abdul; Harris, Neil R P; Ramly, Zamzam Tuah Ahmad; Lai, Goh Thian; Liew, Ju Neng; Ahamad, Fatimah; Uning, Royston; Samah, Azizan Abu; Maulud, Khairul Nizam; Suparta, Wayan; Zainudin, Siti Khalijah; Wahab, Muhammad Ikram Abdul; Sahani, Mazrura; Müller, Moritz; Yeok, Foong Swee; Rahman, Nasaruddin Abdul; Mujahid, Aazani; Morris, Kenobi Isima; Sasso, Nicholas Dal

    2018-01-01

    The Antarctic continent is known to be an unpopulated region due to its extreme weather and climate conditions. However, the air quality over this continent can be affected by long-lived anthropogenic pollutants from the mainland. The Argentinian region of Ushuaia is often the main source area of accumulated hazardous gases over the Antarctic Peninsula. The main objective of this study is to report the first in situ observations yet known of surface ozone (O 3 ) over Ushuaia, the Drake Passage, and Coastal Antarctic Peninsula (CAP) on board the RV Australis during the Malaysian Antarctic Scientific Expedition Cruise 2016 (MASEC'16). Hourly O 3 data was measured continuously for 23 days using an EcoTech O 3 analyzer. To understand more about the distribution of surface O 3 over the Antarctic, we present the spatial and temporal of surface O 3 of long-term data (2009-2015) obtained online from the World Meteorology Organization of World Data Centre for greenhouse gases (WMO WDCGG). Furthermore, surface O 3 satellite data from the free online NOAA-Atmospheric Infrared Sounder (AIRS) database and online data assimilation from the European Centre for Medium-Range Weather Forecasts (ECMWF)-Monitoring Atmospheric Composition and Climate (MACC) were used. The data from both online products are compared to document the data sets and to give an indication of its quality towards in situ data. Finally, we used past carbon monoxide (CO) data as a proxy of surface O 3 formation over Ushuaia and the Antarctic region. Our key findings were that the surface O 3 mixing ratio during MASEC'16 increased from a minimum of 5 ppb to ~ 10-13 ppb approaching the Drake Passage and the Coastal Antarctic Peninsula (CAP) region. The anthropogenic and biogenic O 3 precursors from Ushuaia and the marine region influenced the mixing ratio of surface O 3 over the Drake Passage and CAP region. The past data from WDCGG showed that the annual O 3 cycle has a maximum during the winter of 30 to 35

  2. Studies of Eu2O3 - Bi2O3 - B2O3 glasses using Raman and IR spectroscopy

    International Nuclear Information System (INIS)

    Pop, Lidia; Culea, Eugen N.; Bratu, I.

    2004-01-01

    The bismuth borate (3Bi 2 O 3 ·B 2 O 3 ) glasses were prepared with different concentrations of Eu 3+ . The structure of these systems were investigated by Raman and IR spectroscopy. The structural study reveals that the glasses contain BiO 3 , BiO 6 , BO 3 , BO 4 and Eu-O structural units. For the samples with a higher content of Eu 2 O 3 , the spectra became very large indicating a more disordered structure. The hygroscopic character of the 3Bi 2 O 3 ·B 2 O 3 glass matrix and the progressive decrease of this behaviour with increasing the Eu 2 O 3 content was observed. Therefore, we conclude that the europium oxide acts as a network modifier in these glasses. (authors)

  3. Multiferroic BiFeO3-BiMnO3 Nanocheckerboard From First Principles

    OpenAIRE

    Palova, L.; Chandra, P.; Rabe, K. M.

    2010-01-01

    We present a first principles study of an unusual heterostructure, an atomic-scale checkerboard of BiFeO3-BiMnO3, and compare its properties to the two bulk constituent materials, BiFeO3 and BiMnO3. The "nanocheckerboard" is found to have a multiferroic ground state with the desired properties of each constituent: polar and ferrimagnetic due to BiFeO3 and BiMnO3, respectively. The effect of B-site cation ordering on magnetic ordering in the BiFeO3-BiMnO3 system is studied. The checkerboard ge...

  4. Secondary organic aerosol formation by limonene ozonolysis: Parameterizing multi-generational chemistry in ozone- and residence time-limited indoor environments

    Science.gov (United States)

    Waring, Michael S.

    2016-11-01

    Terpene ozonolysis reactions can be a strong source of secondary organic aerosol (SOA) indoors. SOA formation can be parameterized and predicted using the aerosol mass fraction (AMF), also known as the SOA yield, which quantifies the mass ratio of generated SOA to oxidized terpene. Limonene is a monoterpene that is at sufficient concentrations such that it reacts meaningfully with ozone indoors. It has two unsaturated bonds, and the magnitude of the limonene ozonolysis AMF varies by a factor of ∼4 depending on whether one or both of its unsaturated bonds are ozonated, which depends on whether ozone is in excess compared to limonene as well as the available time for reactions indoors. Hence, this study developed a framework to predict the limonene AMF as a function of the ozone [O3] and limonene [lim] concentrations and the air exchange rate (AER, h-1), which is the inverse of the residence time. Empirical AMF data were used to calculate a mixing coefficient, β, that would yield a 'resultant AMF' as the combination of the AMFs due to ozonolysis of one or both of limonene's unsaturated bonds, within the volatility basis set (VBS) organic aerosol framework. Then, β was regressed against predictors of log10([O3]/[lim]) and AER (R2 = 0.74). The β increased as the log10([O3]/[lim]) increased and as AER decreased, having the physical meaning of driving the resultant AMF to the upper AMF condition when both unsaturated bonds of limonene are ozonated. Modeling demonstrates that using the correct resultant AMF to simulate SOA formation owing to limonene ozonolysis is crucial for accurate indoor prediction.

  5. Carbon flux to woody tissues in a beech/spruce forest during summer and in response to chronic O3 exposure

    Science.gov (United States)

    The present study compares the dynamics in carbon (C) allocation of adult deciduous beech (Fagus sylvatica) and evergreen spruce (Picea abies) during summer and in response to seven-year-long exposure with twice-ambient ozone (O3) concentrations (2 × O3). Focus was on the respira...

  6. Effects of 1997-1998 El Nino on Tropospheric Ozone and Water Vapor

    Science.gov (United States)

    Chandra, S.; Ziemke, J. R.; Min, W.; Read, W. G.

    1998-01-01

    This paper analyzes the impact of the 1997-1998 El Nino on tropospheric column ozone and tropospheric water vapor derived respectively from the Total Ozone Mapping Spectrometer (TOMS) on Earth Probe and the Microwave Limb Scanning instrument on the Upper Atmosphere Research Satellite. The 1997-1998 El Nino, characterized by an anomalous increase in sea-surface temperature (SST) across the eastern and central tropical Pacific Ocean, is one of the strongest El Nino Southern Oscillation (ENSO) events of the century, comparable in magnitude to the 1982-1983 episode. The major impact of the SST change has been the shift in the convection pattern from the western to the eastern Pacific affecting the response of rain-producing cumulonimbus. As a result, there has been a significant increase in rainfall over the eastern Pacific and a decrease over the western Pacific and Indonesia. The dryness in the Indonesian region has contributed to large-scale burning by uncontrolled wildfires in the tropical rainforests of Sumatra and Borneo. Our study shows that tropospheric column ozone decreased by 4-8 Dobson units (DU) in the eastern Pacific and increased by about 10-20 DU in the western Pacific largely as a result of the eastward shift of the tropical convective activity as inferred from National Oceanic and Atmospheric Administration (NOAA) outgoing longwave radiation (OLR) data. The effect of this shift is also evident in the upper tropospheric water vapor mixing ratio which varies inversely as ozone (O3). These conclusions are qualitatively consistent with the changes in atmospheric circulation derived from zonal and vertical wind data obtained from the Goddard Earth Observing System data assimilation analyses. The changes in tropospheric column O3 during the course of the 1997-1998 El Nino appear to be caused by a combination of large-scale circulation processes associated with the shift in the tropical convection pattern and surface/boundary layer processes associated with

  7. Comparison of ultraviolet absorbance and NO-chemiluminescence for ozone measurement in wildfire plumes at the Mount Bachelor Observatory

    Science.gov (United States)

    Gao, Honglian; Jaffe, Daniel A.

    2017-10-01

    The goal of this paper is to evaluate the accuracy of the commonly used ozone (O3) instrument (the ultraviolet (UV) photometer) against a Federal Reference Method (Nitric Oxide -chemiluminescence) for ozone measurement in wildfire smoke plumes. We carried out simultaneous ozone measurement with two UV O3 photometers and one nitric oxide-chemiluminescence (NO-CL) ozone detectors during wildfire season (Aug. 1-Sept. 30) in 2015 at the Mount Bachelor Observatory (MBO, 2763 m above mean sea level, Oregon, USA). The UV O3 shows good agreement and excellent correlation to NO-CL O3, with linear regression slopes close to unity and R2 of 0.92 for 1-h average data and R2 of 0.93 for O3 daily maximum 8-h average (MDA8). During this two-month period we identified 35 wildfire events. Ozone enhancements in those wildfire plumes measured by NO-CL O3 and UV O3 monitors also show good agreement and excellent linear correlation, with a slope and R2 of 1.03 and 0.86 for O3 enhancements (ΔO3) and 1.00 and 0.98 for carbon monoxide (CO)-normalized ozone enhancement ratios (ΔO3/ΔCO), respectively. Overall, the UV O3 was found to have a positive bias of 4.7 ± 2.8 ppbv compared to the NO-CL O3. The O3 bias between NO-CL O3 and UV O3 is independent of wildfire plume tracers such as CO, particulate matter (PM1), aerosol scattering, and ultrafine particles. The results demonstrate that the UV O3 absorbance method is reliable, even in highly concentrated wildfire plumes.

  8. Observations of the temperature dependent response of ozone to NOx reductions in the Sacramento, CA urban plume

    Science.gov (United States)

    Lafranchi, B. W.; Goldstein, A. H.; Cohen, R. C.

    2011-07-01

    Observations of NOx in the Sacramento, CA region show that mixing ratios decreased by 30 % between 2001 and 2008. Here we use an observation-based method to quantify net ozone (O3) production rates in the outflow from the Sacramento metropolitan region and examine the O3 decrease resulting from reductions in NOx emissions. This observational method does not rely on assumptions about detailed chemistry of ozone production, rather it is an independent means to verify and test these assumptions. We use an instantaneous steady-state model as well as a detailed 1-D plume model to aid in interpretation of the ozone production inferred from observations. In agreement with the models, the observations show that early in the plume, the NOx dependence for Ox (Ox = O3 + NO2) production is strongly coupled with temperature, suggesting that temperature-dependent biogenic VOC emissions and other temperature-related effects can drive Ox production between NOx-limited and NOx-suppressed regimes. As a result, NOx reductions were found to be most effective at higher temperatures over the 7 year period. We show that violations of the California 1-h O3 standard (90 ppb) in the region have been decreasing linearly with decreases in NOx (at a given temperature) and predict that reductions of NOx concentrations (and presumably emissions) by an additional 30 % (relative to 2007 levels) will eliminate violations of the state 1 h standard in the region. If current trends continue, a 30 % decrease in NOx is expected by 2012, and an end to violations of the 1 h standard in the Sacramento region appears to be imminent.

  9. Twin-cuvette measurement technique for investigation of dry deposition of O3 and PAN to plant leaves under controlled humidity conditions

    Science.gov (United States)

    Sun, Shang; Moravek, Alexander; von der Heyden, Lisa; Held, Andreas; Sörgel, Matthias; Kesselmeier, Jürgen

    2016-02-01

    We present a dynamic twin-cuvette system for quantifying the trace-gas exchange fluxes between plants and the atmosphere under controlled temperature, light, and humidity conditions. Compared with a single-cuvette system, the twin-cuvette system is insensitive to disturbing background effects such as wall deposition. In combination with a climate chamber, we can perform flux measurements under constant and controllable environmental conditions. With an Automatic Temperature Regulated Air Humidification System (ATRAHS), we are able to regulate the relative humidity inside both cuvettes between 40 and 90 % with a high precision of 0.3 %. Thus, we could demonstrate that for a cuvette system operated with a high flow rate (> 20 L min-1), a temperature-regulated humidification system such as ATRAHS is an accurate method for air humidification of the flushing air. Furthermore, the fully automatic progressive fill-up of ATRAHS based on a floating valve improved the performance of the entire measurement system and prevented data gaps. Two reactive gas species, ozone (O3) and peroxyacetyl nitrate (PAN), were used to demonstrate the quality and performance of the twin-cuvette system. O3 and PAN exchange with Quercus ilex was investigated over a 14 day measurement period under controlled climate chamber conditions. By using O3 mixing ratios between 32 and 105 ppb and PAN mixing ratios between 100 and 350 ppt, a linear dependency of the O3 flux as well as the PAN flux in relation to its ambient mixing ratio could be observed. At relative humidity (RH) of 40 %, the deposition velocity ratio of O3 and PAN was determined to be 0.45. At that humidity, the deposition of O3 to the plant leaves was found to be only controlled by the leaf stomata. For PAN, an additional resistance inhibited the uptake of PAN by the leaves. Furthermore, the formation of water films on the leaf surface of plants inside the chamber could be continuously tracked with our custom built leaf wetness sensors

  10. The Study Into Potential Enhacement Of Metalworking Fluids Biodegradability By The Application Of O3/UV

    Directory of Open Access Journals (Sweden)

    Gerulová Kristína

    2015-06-01

    Full Text Available The increase in mineralization and biodegradability of MWFs by ozone/ultraviolet in comparison with ozone were investigated. Studied were two similar synthetic fluids pre-treated by the combination of the O3/UV advanced oxidative method. Expectations that the pre-treatment could enhance biodegradability of the metalworking fluid were not confirmed. The combined oxidation process at the defined conditions resulted in 1-35 % decrease of the achieved primary degradation level. Samples were prepared from real concentrates and diluted to approximately 350 mg/L of TOC.

  11. Ozone Layer Protection

    Science.gov (United States)

    ... and Research Centers Contact Us Share Ozone Layer Protection The stratospheric ozone layer is Earth’s “sunscreen” – protecting ... GreenChill Partnership Responsible Appliance Disposal (RAD) Program Ozone Protection vs. Ozone Pollution This website addresses stratospheric ozone ...

  12. Growth of soybean at future tropospheric ozone concentrations decreases canopy evapotranspiration and soil water depletion

    International Nuclear Information System (INIS)

    Bernacchi, Carl J.; Leakey, Andrew D.B.; Kimball, Bruce A.; Ort, Donald R.

    2011-01-01

    Tropospheric ozone is increasing in many agricultural regions resulting in decreased stomatal conductance and overall biomass of sensitive crop species. These physiological effects of ozone forecast changes in evapotranspiration and thus in the terrestrial hydrological cycle, particularly in intercontinental interiors. Soybean plots were fumigated with ozone to achieve concentrations above ambient levels over five growing seasons in open-air field conditions. Mean season increases in ozone concentrations ([O 3 ]) varied between growing seasons from 22 to 37% above background concentrations. The objective of this experiment was to examine the effects of future [O 3 ] on crop ecosystem energy fluxes and water use. Elevated [O 3 ] caused decreases in canopy evapotranspiration resulting in decreased water use by as much as 15% in high ozone years and decreased soil water removal. In addition, ozone treatment resulted in increased sensible heat flux in all years indicative of day-time increase in canopy temperature of up to 0.7 deg. C. - Highlights: → Globally, tropospheric ozone is currently and will likely continue to increase into the future. → We examine the impact of elevated ozone on water use by soybean at the SoyFACE research facility. → High ozone grown soybean had reduced rates of evapotranspiration and higher soil moisture. → Increases in ozone have the potential to impact the hydrologic cycle where these crops are grown. - Soybean grown in elevated concentrations of ozone is shown to evapotranspire less water compared with soybean canopies grown under current atmospheric conditions.

  13. Hydrological controls on the tropospheric ozone greenhouse gas effect

    Directory of Open Access Journals (Sweden)

    Le Kuai

    2017-03-01

    Full Text Available The influence of the hydrological cycle in the greenhouse gas (GHG effect of tropospheric ozone (O3 is quantified in terms of the O3longwave radiative effect (LWRE, which is defined as the net reduction of top-of-atmosphere flux due to total tropospheric O3absorption. The O3LWRE derived from the infrared spectral measurements by Aura’s Tropospheric Emission Spectrometer (TES show that the spatiotemporal variation of LWRE is relevant to relative humidity, surface temperature, and tropospheric O3column. The zonally averaged subtropical LWRE is ~0.2 W m-2higher than the zonally averaged tropical LWRE, generally due to lower water vapor concentrations and less cloud coverage at the downward branch of the Hadley cell in the subtropics. The largest values of O3LWRE over the Middle East (>1 W/m2 are further due to large thermal contrasts and tropospheric ozone enhancements from atmospheric circulation and pollution. Conversely, the low O3LWRE over the Inter-Tropical Convergence Zone (on average 0.4 W m-2 is due to strong water vapor absorption and cloudiness, both of which reduce the tropospheric O3absorption in the longwave radiation. These results show that changes in the hydrological cycle due to climate change could affect the magnitude and distribution of ozone radiative forcing.

  14. Issues in Stratospheric Ozone Depletion.

    Science.gov (United States)

    Lloyd, Steven Andrew

    Following the announcement of the discovery of the Antarctic ozone hole in 1985 there have arisen a multitude of questions pertaining to the nature and consequences of polar ozone depletion. This thesis addresses several of these specific questions, using both computer models of chemical kinetics and the Earth's radiation field as well as laboratory kinetic experiments. A coupled chemical kinetic-radiative numerical model was developed to assist in the analysis of in situ field measurements of several radical and neutral species in the polar and mid-latitude lower stratosphere. Modeling was used in the analysis of enhanced polar ClO, mid-latitude diurnal variation of ClO, and simultaneous measurements of OH, HO_2, H_2 O and O_3. Most importantly, such modeling was instrumental in establishing the link between the observed ClO and BrO concentrations in the Antarctic polar vortex and the observed rate of ozone depletion. The principal medical concern of stratospheric ozone depletion is that ozone loss will lead to the enhancement of ground-level UV-B radiation. Global ozone climatology (40^circS to 50^ circN latitude) was incorporated into a radiation field model to calculate the biologically accumulated dosage (BAD) of UV-B radiation, integrated over days, months, and years. The slope of the annual BAD as a function of latitude was found to correspond to epidemiological data for non-melanoma skin cancers for 30^circ -50^circN. Various ozone loss scenarios were investigated. It was found that a small ozone loss in the tropics can provide as much additional biologically effective UV-B as a much larger ozone loss at higher latitudes. Also, for ozone depletions of > 5%, the BAD of UV-B increases exponentially with decreasing ozone levels. An important key player in determining whether polar ozone depletion can propagate into the populated mid-latitudes is chlorine nitrate, ClONO_2 . As yet this molecule is only indirectly accounted for in computer models and field

  15. Ozone production process in pulsed positive dielectric barrier discharge

    Science.gov (United States)

    Ono, Ryo; Oda, Tetsuji

    2007-01-01

    The ozone production process in a pulsed positive dielectric barrier discharge (DBD) is studied by measuring the spatial distribution of ozone density using a two-dimensional laser absorption method. DBD occurs in a 6 mm point-to-plane gap with a 1 mm-thick glass plate placed on the plane electrode. First, the propagation of DBD is observed using a short-gated ICCD camera. It is shown that DBD develops in three phases: primary streamer, secondary streamer and surface discharge phases. Next, the spatial distribution of ozone density is measured. It is shown that ozone is mostly produced in the secondary streamer and surface discharge, while only a small amount of ozone is produced in the primary streamer. The rate coefficient of the ozone production reaction, O + O2 + M → O3 + M, is estimated to be 2.5 × 10-34 cm6 s-1.

  16. Ozone production process in pulsed positive dielectric barrier discharge

    International Nuclear Information System (INIS)

    Ono, Ryo; Oda, Tetsuji

    2007-01-01

    The ozone production process in a pulsed positive dielectric barrier discharge (DBD) is studied by measuring the spatial distribution of ozone density using a two-dimensional laser absorption method. DBD occurs in a 6 mm point-to-plane gap with a 1 mm-thick glass plate placed on the plane electrode. First, the propagation of DBD is observed using a short-gated ICCD camera. It is shown that DBD develops in three phases: primary streamer, secondary streamer and surface discharge phases. Next, the spatial distribution of ozone density is measured. It is shown that ozone is mostly produced in the secondary streamer and surface discharge, while only a small amount of ozone is produced in the primary streamer. The rate coefficient of the ozone production reaction, O + O 2 + M → O 3 + M, is estimated to be 2.5 x 10 -34 cm 6 s -1

  17. Effects of UV/Ag-TiO2/O3 advanced oxidation on unicellular green alga Dunaliella salina: implications for removal of invasive species from ballast water.

    Science.gov (United States)

    Wu, Donghai; You, Hong; Du, Jiaxuan; Chen, Chuan; Jin, Darui

    2011-01-01

    The UV/Ag-TiO2/O3 process was investigated for ballast water treatment using Dunaliella salina as an indicator. Inactivation curves were obtained, and the toxicity of effluent was determined. Compared with individual unit processes using ozone or UV/Ag-TiO2, the inactivation efficiency of D. salina by the combined UV/Ag-TiO2/O3 process was enhanced. The presence of ozone caused an immediate decrease in chlorophyll a (chl-a) concentration. Inactivation efficiency and ch1-a removal efficiency were positively correlated with ozone dose and ultraviolet intensity. The initial total residual oxidant (TRO) concentration of effluent increased with increasing ozone dose, and persistence of TRO resulted in an extended period of toxicity. The results suggest that UV/Ag-TiO2/O3 has potential for ballast water treatment.

  18. modified BiFeO3–BaTiO3

    Indian Academy of Sciences (India)

    based perovskite structures lead- free BiFeO3–BaTiO3 solid solutions are popularly studied due to the high Curie temperature (TC). It was reported that the BiFeO3–BaTiO3 system possessed high piezoelectric. ∗. Author for correspondence ...

  19. Impact of the 2008 Global Recession on Air Quality over the United States: Implications for Surface Ozone Levels from Changes in NOx Emissions

    Science.gov (United States)

    Tong, Daniel; Pan, Li; Chen, Weiwei; Lamsal, Lok; Lee, Pius; Tang, Youhua; Kim, Hyuncheol; Kondragunta, Shobha; Stajner, Ivanka

    2016-01-01

    Satellite and ground observations detected large variability in nitrogen oxides (NOx) during the 2008 economic recession, but the impact of the recession on air quality has not been quantified. This study combines observed NOx trends and a regional chemical transport model to quantify the impact of the recession on surface ozone (O3) levels over the continental United States. The impact is quantified by simulating O3 concentrations under two emission scenarios: business-as-usual (BAU) and recession. In the BAU case, the emission projection from the Cross-State Air Pollution Rule is used to estimate the would-be NOx emission level in 2011. In the recession case, the actual NO2 trends observed from Air Quality System ground monitors and the Ozone Monitoring Instrument on the Aura satellite are used to obtain realistic changes in NOx emissions. The model prediction with the recession effect agrees better with ground O3 observations over time and space than the prediction with the BAU emission. The results show that the recession caused a 12ppbv decrease in surface O3 concentration over the eastern United States, a slight increase (0.51ppbv) over the Rocky Mountain region, and mixed changes in the Pacific West. The gain in air quality benefits during the recession, however, could be quickly offset by the much slower emission reduction rate during the post-recession period.

  20. Measurement of the initial phase of ozone decomposition in water and wastewater by means of a continuous quench-flow system: application to disinfection and pharmaceutical oxidation.

    Science.gov (United States)

    Buffle, Marc-Olivier; Schumacher, Jochen; Salhi, Elisabeth; Jekel, Martin; von Gunten, Urs

    2006-05-01

    Due to a lack of adequate experimental techniques, the kinetics of the first 20s of ozone decomposition in natural water and wastewater is still poorly understood. Introducing a continuous quench-flow system (CQFS), measurements starting 350 ms after ozone addition are presented for the first time. Very high HO. to O3 exposures ratios (Rct=integralHO.dt/integralO3dt) reveal that the first 20s of ozonation present oxidation conditions that are similar to ozone-based advanced oxidation processes (AOP). The oxidation of carbamazepine could be accurately modeled using O3 and HO. exposures measured with CQFS during wastewater ozonation. These results demonstrate the applicability of bench scale determined second-order rate constants for wastewater ozonation. Important degrees of pharmaceutical oxidation and microbial inactivation are predicted, indicating that a significant oxidation potential is available during wastewater ozonation, even when ozone is entirely decomposed in the first 20s.

  1. Solar light-driven photocatalysis using mixed-phase bismuth ferrite (BiFeO3/Bi25FeO40) nanoparticles for remediation of dye-contaminated water: kinetics and comparison with artificial UV and visible light-mediated photocatalysis.

    Science.gov (United States)

    Kalikeri, Shankramma; Shetty Kodialbail, Vidya

    2018-05-01

    Mixed-phase bismuth ferrite (BFO) nanoparticles were prepared by co-precipitation method using potassium hydroxide as the precipitant. X-ray diffractogram (XRD) of the particles showed the formation of mixed-phase BFO nanoparticles containing BiFeO 3 /Bi 25 FeO 40 phases with the crystallite size of 70 nm. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed the formation of quasi-spherical particles. The BFO nanoparticles were uniform sized with narrow size range and with the average hydrodynamic diameter of 76 nm. The band gap energy of 2.2 eV showed its ability to absorb light even in the visible range. Water contaminated with Acid Yellow (AY-17) and Reactive Blue (RB-19) dye was treated by photocatalysis under UV, visible, and solar light irradiation using the BFO nanoparticles. The BFO nanoparticles showed maximum photocatalytical activity under solar light as compared to UV and visible irradiations, and photocatalysis was favored under acidic pH. Complete degradation of AY-17 dyes and around 95% degradation of RB-19 could be achieved under solar light at pH 5. The kinetics of degradation followed the Langmuir-Hinshelhood kinetic model showing that the heterogeneous photocatalysis is adsorption controlled. The findings of this work prove the synthesized BFO nanoparticles as promising photocatalysts for the treatment of dye-contaminated industrial wastewater.

  2. Limitations of the removal of cyanide from coking wastewater by ozonation and by the hydrogen peroxide-ozone process.

    Science.gov (United States)

    Pueyo, N; Miguel, N; Ovelleiro, J L; Ormad, M P

    The purpose of this study is to compare the efficiency of ozonation and the hydrogen peroxide-ozone process for the removal of cyanide from coking wastewater. The most efficient oxidation process is combined with coagulation-flocculation-decantation and lime-soda ash softening pretreatments. The oxidation in aqueous solution and industrial wastewater (at pH 9.5-12.3) by O3 was carried out using a range of concentration of consumed O3 from 10 to 290 mg/L. A molar ratio of H2O2/O3 from 0.1 to 5.2 with different concentrations of O3 constants was used for the H2O2-O3 process. The maximum cyanide removal obtained in coking wastewater was 90% using a mass ratio of O3/CN(-) of 9.5. Using lower concentrations of O3, cyanide is not removed and can even be generated due to the presence of other cyanide precursor organic micropollutants in the industrial matrix. The concentration of O3 is reduced to half for the same cyanide removal efficiency if the pretreatments are applied to reduce the carbonate and bicarbonate ions. The cyanide removal efficiency in coking wastewater is not improved if the O3 is combined with the H2O2. However, the preliminary cyanide removal treatment in aqueous solution showed an increase in the cyanide removal efficiency for the H2O2-O3 process.

  3. Removal of APIs and bacteria from hospital wastewater by MBR plus O(3), O(3) + H(2)O(2), PAC or ClO(2).

    Science.gov (United States)

    Nielsen, U; Hastrup, C; Klausen, M M; Pedersen, B M; Kristensen, G H; Jansen, J L C; Bak, S N; Tuerk, J

    2013-01-01

    The objective of this study has been to develop technologies that can reduce the content of active pharmaceutical ingredients (APIs) and bacteria from hospital wastewater. The results from the laboratory- and pilot-scale testings showed that efficient removal of the vast majority of APIs could be achieved by a membrane bioreactor (MBR) followed by ozone, ozone + hydrogen peroxide or powdered activated carbon (PAC). Chlorine dioxide (ClO(2)) was significantly less effective. MBR + PAC (450 mg/l) was the most efficient technology, while the most cost-efficient technology was MBR + ozone (156 mg O(3)/l applied over 20 min). With MBR an efficient removal of Escherichia coli and enterococci was measured, and no antibiotic resistant bacteria were detected in the effluent. With MBR + ozone and MBR + PAC also the measured effluent concentrations of APIs (e.g. ciprofloxacin, sulfamethoxazole and sulfamethizole) were below available predicted no-effect concentrations (PNEC) for the marine environment without dilution. Iodinated contrast media were also reduced significantly (80-99% for iohexol, iopromide and ioversol and 40-99% for amidotrizoateacid). A full-scale MBR treatment plant with ozone at a hospital with 900 beds is estimated to require an investment cost of €1.6 mill. and an operating cost of €1/m(3) of treated water.

  4. Galactic cosmic rays and tropical ozone asymmetries

    International Nuclear Information System (INIS)

    Kilifarska, Natalya; Bakhmutov, Volodymyr; Melnyk, Galyna

    2017-01-01

    Lower stratospheric ozone O_3 is of special interest to climatic studies due to its direct influence on the tropopause temperature, and correspondingly on Earth’s radiation balance. By reason of the suppressed dissociation of molecular oxygen by solar UV radiation and the long life span of the lower stratospheric O_3 , its temporal variability is usually attributed to atmospheric circulation. Here we report about latitudinal-longitudinal differences in a centennial evolution of the tropical O_3 at 70 hPa. These asymmetries are hardly explicable within the concept of the ozone’s dynamical control alone. Analysis of ozone, energetic particles and the geomagnetic records from the last 111 years has revealed that they all evolve synchronously with time. This coherence motivates us to propose a mechanism explaining the geomagnetic and galactic cosmic ray influence on the near tropopause O_3 , allowing for an understanding of its spatial-temporal variability during the past century. Key words: galactic cosmic rays, asymmetries of tropical ozone distribution, geomagnetic filed

  5. Spin-Orbit Interaction and Kondo Scattering at the PrAlO3/SrTiO3 Interface

    Science.gov (United States)

    Mozaffari, Shirin; Guchhait, Samaresh; Markert, John

    We have investigated the effect of oxygen content, in the PO2 range of 6 ×10-6 - 1 ×10-3 torr, on the spin-orbit (SO) interaction at PrAlO3/SrTiO3 interface. The most-conducting 2-D-like PrAlO3 interfaces were not as conducting as comparable LaAlO3 samples, indicating either a steric or mixed-valent effect. The least-conducting, most oxygenated PrAlO3 interface exhibits hole conductivity, a departure from the typical electron-doped behavior. For 10-5 and 10-4 torr samples, high-temperature metallic behavior is accompanied by an upturn in resistivity at low temperatures, consistent with Kondo scattering theory; analysis gives a Kondo temperature 17 K. The magnetoresistance (MR) for the low PO2-grown samples was modeled with a positive part due to weak anti-localization (WAL) from a strong SO interaction, and a negative part due to the Kondo effect. The variation of MR suggests a strong SO interaction for the 10-5 torr sample with HSO = 1.25 T in both field orientations. The WAL effect is smaller for higher PO2-grown samples, where the high-field MR is dominated by the Kondo effect.

  6. Isotope effects in photo dissociation of ozone with visible light

    Science.gov (United States)

    Früchtl, Marion; Janssen, Christof; Röckmann, Thomas

    2014-05-01

    Ozone (O3) plays a key role for many chemical oxidation processes in the Earth's atmosphere. In these chemical reactions, ozone can transfer oxygen to other trace gases. This is particularly interesting, since O3 has a very peculiar isotope composition. Following the mass dependent fractionation equation δ17O = 0.52 * δ18O, most fractionation processes depend directly on mass. However, O3 shows an offset to the mass dependent fractionation line. Processes, which show such anomalies, are termed mass independent fractionations (MIF). A very well studied example for a chemical reaction that leads to mass independent fractionation is the O3 formation reaction. To what degree O3 destruction reactions need to be considered in order to understand the isotope composition of atmospheric O3 is still not fully understood and an open question within scientific community. We set up new experiments to investigate the isotope effect resulting from photo dissociation of O3 in the Chappuis band (R1). Initial O3 is produced by an electric discharge. After photolysis O3 is collected in a cold trap at the triple point temperature of nitrogen (63K). O3 is then converted to O2 in order to measure the oxygen isotopes of O3 using isotope ratio mass spectrometry. To isolate O3 photo dissociation (R1) from O3 decomposition (R2) and secondary O3 formation (R3), we use varying amounts of carbon monoxide (CO) as O atom quencher (R4). In this way we suppress the O + O3 reaction (R3) and determine the isotope fractionation in R1 and R2 separately. We present first results on the isotope effects in O3 photo dissociation with visible light in the presence of different bath gases. Results are interpreted based on chemical kinetics modeling. (R1) O3 + hυ → O (3P) + O2 (R2) O3 + O (3P) → 2 O2 (R3) O + O2 + M → O3 + M (R4) O (3P) + CO + M → CO2 + M

  7. Ozone visible symptoms and reduced root biomass in the subalpine species Pinus uncinata after two years of free-air ozone fumigation

    International Nuclear Information System (INIS)

    Díaz-de-Quijano, Maria; Schaub, Marcus; Bassin, Seraina; Volk, Matthias; Peñuelas, Josep

    2012-01-01

    Concentrations of ozone often exceed the thresholds of forest protection in the Pyrenees, but the effect of ozone on Pinus uncinata, the dominant species in subalpine forests in this mountainous range, has not yet been studied. We conducted an experiment of free-air ozone fumigation with saplings of P. uncinata fumigated with ambient O 3 (AOT40 May–Oct: 9.2 ppm h), 1.5 × O 3amb (AOT40 May–Oct: 19.2 ppm h), and 1.8 × O 3amb (AOT40 May–Oct: 32.5 ppm h) during two growing seasons. We measured chlorophyll content and fluorescence, visible injury, gas exchange, and above- and below-ground biomass. Increased exposures to ozone led to a higher occurrence and intensity of visible injury from O 3 and a 24–29% reduction of root biomass, which may render trees more susceptible to other stresses such as drought. P. uncinata is thus a species sensitive to O 3 , concentrations of which in the Pyrenees are already likely affecting this species. - Highlights: ► We assessed sensitivity to O 3 in Pinus uncinata using a free-air O 3 fumigation system. ► Occurrence and intensity of visible injury from O 3 correlated with exposure to O 3 . ► Increased O 3 reduced root biomass 24–29%. ► O 3 weakens P. uncinata, making it more susceptible to other stresses. ► Ambient [O 3 ] in the Pyrenees is thus likely to already be affecting P. uncinata stands. - Ozone concentrations similar to those in the Pyrenees affect Pinus uncinata by reducing root biomass and possibly increasing susceptibility to other stresses.

  8. Nanostructured Y2O3

    International Nuclear Information System (INIS)

    Skandan, G.; Hahn, H.; Parker, J.C.

    1991-01-01

    It has been shown that a variety of nanostructured (n-) metal-oxide ceramics such as n-TiO 2 , n-ZrO 2 , n-Al 2 O 3 , n-ZnO and n-MgO can be produced using the inert gas condensation process. Amongst all the nanostructured oxides, the synthesis, microstructure, sintering, and mechanical properties of n-TiO 2 have been studied the most extensively. The gas condensation preparation of nanostructured metal-oxide ceramics involves evaporation of metal nanoparticles, collection and post- oxidation. The original synthesis studies of n-TiO 2 showed that in order to avoid formation of the many low oxidation state oxides in the Ti-O system, the post-oxidation had to be performed by rapidly exposing the Ti nanoparticles to pure oxygen gas. By doing so, the highest oxidation state and the most stable structure, rutile, was obtained. An undesired feature of this step is that the nanoparticles heat up to high temperatures for a brief period of time due to the exothermic nature of the oxidation. As a consequence, the particles with an average size of 12 nm tend to agglomerate into larger structures up to 50 nm. The agglomerated state of the powder is important since it determines the original density and pore size distribution after compaction, as well as the sintering characteristics and final microstructure of the bulk sample. As a consequence of the preparation procedure of n-TiO 2 and the resulting agglomeration, the pore size distribution of n-TiO 2 compacted at room temperature is very wide, with pore sizes ranging from 1 to 200 nm. Nevertheless, the n-TiO 2 sinters at temperatures several hundred degrees lower than conventional coarse grained ceramics. From the previous results on n- TiO 2 it is anticipated that better microstructures and properties can be achieved by reducing the agglomeration of nanostructured powders through a more controlled post- oxidation process

  9. Studies on the Biological Effects of Ozone: 10. Release of Factors from Ozonated Human Platelets

    Directory of Open Access Journals (Sweden)

    G. Valacchi

    1999-01-01

    Full Text Available In a previous work we have shown that heparin, in the presence of ozone (O3, promotes a dose-dependent platelet aggregation, while after Ca2+ chelation with citrate, platelet aggregation is almost negligible. These results led us to think that aggregation may enhance the release of platelet components. We have here shown that indeed significantly higher amount of platelet-derived growth factor (PDGF, transforming growth factor β1 (TGF-β1 and interleukin-8(IL-8 are released in a dose-dependent manner after ozonation of heparinised platelet-rich plasma samples. These findings may explain the enhanced healing of torpid ulcers in patients with chronic limbischemia treated with O3 autohaemoteraphy (O3-AHT.

  10. Fate of return activated sludge after ozonation: an optimization study for sludge disintegration.

    Science.gov (United States)

    Demir, Ozlem; Filibeli, Ayse

    2012-09-01

    The effects of ozonation on sludge disintegration should be investigated before the application of ozone during biological treatment, in order to minimize excess sludge production. In this study, changes in sludge and supernatant after ozonation of return activated sludge were investigated for seven different ozone doses. The optimum ozone dose to avoid inhibition of ozonation and high ozone cost was determined in terms of disintegration degree as 0.05 g O3/gTS. Suspended solid and volatile suspended solid concentrations of sludge decreased by 77.8% and 71.6%, respectively, at the optimum ozone dose. Ozonation significantly decomposed sludge flocs. The release of cell contents was proved by the increase of supernatant total nitrogen (TN) and phosphorus (TP). While TN increased from 7 mg/L to 151 mg/L, TP increased from 8.8 to 33 mg/L at the optimum ozone dose. The dewaterability and filterability characteristics of the ozonated sludge were also examined. Capillary suction time increased with increasing ozone dosage, but specific resistance to filtration increased to a specific value and then decreased dramatically. The particle size distribution changed significantly as a result of floc disruption at an optimum dose of 0.05 gO3/gTS.

  11. Overview of surface ozone variability in East Asia-North Pacific region during IGAC/APARE (1994--1996).

    Science.gov (United States)

    Lam, K S; Wang, T J; Wang, T; Tang, J; Kajii, Y; Liu, C M; Shim, S G

    2004-01-01

    Surface ozone (O3) was measured at Oki Island (Japan), Cheju Island (South Korea), Lanyu Island (Taiwan Province, China), Cape D'Aguilar (Hong Kong SAR) and Lin'an, Longfenshan, Waliguan (China mainland) during January 1994--December 1996 as a component of IGAC/APARE (International Global Atmospheric Chemistry/East Asia-North Pacific Regional Experiment). This paper gave a joint discussion on the observational results at these stations over the study region. Investigations showed that the average of surface O3 mixing ratios at the seven sites are 47.9+/-15.8, 48.1+/-17.9, 30.2+/-16.4, 31.6+/-17.5, 36.3+/-17.5, 34.8+/-11.5 and 48.2+/-9.5 ppbv, respectively. Significant diurnal variations of surface O3 have been observed at Oki, Cheju, D'Aguilar, Lin'an and Longfenshan. Their annual averaged diurnal differences range from 8 to 23 ppbv and differ in each season. Surface O3 at Lanyu and Waliguan do not show strong diurnal variability. Seasonal cycles of surface O3 showed difference at the temperate and the subtropical remote sites. Oki has a summer minimum-spring maximum, while Lanyu has a summer minimum-autumn maximum. The suburban sites at D'Aguilar and Lin'an report high-level O3 in autumn and low level O3 in summer. Surface O3 remains-high in autumn and low in winter at the rural site Longfenshan. For the global background station Waliguan, surface O3 exhibits a broad spring-summer maximum and autumn-winter minimum. The backward air trajectories to these sites have shown different pathways of long-range transport of air pollution from East Asia Continent to North Pacific Ocean. Surface O3 was found to be strongly and positively correlated with CO at Oki and Lanyu, especially in spring and autumn, reflecting the substantial photochemical buildup of O3 on a regional scale. It is believed that the regional sources of pollution in East Asia have enhanced the average surface O3 concentrations in the background atmosphere of North Pacific.

  12. Impact of elevated CO2 and elevated O3 on Beta vulgaris L.: Pigments, metabolites, antioxidants, growth and yield

    International Nuclear Information System (INIS)

    Kumari, Sumita; Agrawal, Madhoolika; Tiwari, Supriya

    2013-01-01

    The present study was conducted to assess morphological, biochemical and yield responses of palak (Beta vulgaris L. cv Allgreen) to ambient and elevated levels of CO 2 and O 3 , alone and in combination. As compared to the plants grown in charcoal filtered air (ACO 2 ), growth and yield of the plants increased under elevated CO 2 (ECO 2 ) and decreased under combination of ECO 2 with elevated O 3 (ECO 2 + EO 3 ), ambient O 3 (ACO 2 + AO 3 ) and elevated O 3 (EO 3 ). Lipid peroxidation, ascorbic acid, catalase and glutathione reductase activities enhanced under all treatments and were highest in EO 3. Foliar starch and organic carbon contents increased under ECO 2 and ECO 2 + EO 3 and reduced under EO 3 and ACO 2 + AO 3. Foliar N content declined in all treatments compared to ACO 2 resulting in alteration of C/N ratio. This study concludes that ambient level of CO 2 is not enough to counteract O 3 impact, but elevated CO 2 has potential to counteract the negative effects of future O 3 level. -- Highlights: ► Elevated CO 2 enhanced the growth and yield of palak. ► Ambient and elevated ozone reduced the growth and yield of the test plant. ► Elevated CO 2 reduced negative effects of elevated O 3 by reducing oxidative stress. ► Higher amelioration was recorded at elevated CO 2 + O 3 compared to ambient CO 2 + O 3 . -- Predicted levels of CO 2 have greater ameliorative potential against negative effects of elevated ozone compared to present day CO 2 against ambient ozone

  13. Growth of Fe2O3 thin films by atomic layer deposition

    International Nuclear Information System (INIS)

    Lie, M.; Fjellvag, H.; Kjekshus, A.

    2005-01-01

    Thin films of α-Fe 2 O 3 (α-Al 2 O 3 -type crystal structure) and γ-Fe 2 O 3 (defect-spinel-type crystal structure) have been grown by the atomic layer deposition (ALD) technique with Fe(thd) 3 (iron derivative of Hthd = 2,2,6,6-tetramethylheptane-3,5-dione) and ozone as precursors. It has been shown that an ALD window exists between 160 and 210 deg. C. The films have been characterized by various techniques and are shown to comprise (001)-oriented columns of α-Fe 2 O 3 with no in-plane orientation when grown on soda-lime-glass and Si(100) substrates. Good quality films have been made with thicknesses ranging from 10 to 130 nm. Films grown on α-Al 2 O 3 (001) and MgO(100) substrates have the α-Fe 2 O 3 and γ-Fe 2 O 3 crystal structure, respectively, and consist of highly oriented columns with in-plane orientations matching those of the substrates

  14. Characterization of tropospheric ozone based on lidar measurement in Hangzhou, East China during the G20 Leaders' Summit

    Science.gov (United States)

    Su, Wenjing; Liu, Cheng; Fan, Guangqiang; Hu, Qihou; Huang, Xin; Dong, Yunsheng; Zhang, Tianshu; Liu, Jianguo

    2017-04-01

    Owing to the G20 (Group of Twenty Finance Ministers and Central Bank Governors) Leaders' Summit (Sep.5th-6th, 2016), a series of strict air quality control measures were implemented in Hangzhou and its surrounding regions from Aug.26th to Sep.6th. A differential absorption lidar was employed to monitor tropospheric ozone in urban Hangzhou during a campaign from Aug. 24th to Sep. 10th, and the satellite-based NO2 VCDs and HCHO VCDs in the troposphere were also retrieved using the Ozone Monitoring Instrument (OMI). During our campaign, six O3 pollution events, which were determined according to the National Ambient Air Quality Standard of China (GB-3095-2012), and two stages with rapid reduction of O3 concentration on Aug. 26th and Sep.4-6th were observed. The temporal variation tendency of O3 concentrations was well reproduced by the Weather Research and Forecasting model coupled with chemistry (WRF-Chem). Typical cases with the abrupt rise and decline of O3 concentrations were analyzed using Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) back trajectory, satellite NO2 and HCHO product and the prediction by WRF-Chem model. The transport from northern cities have an important impact on pollutants observed in Hangzhou, and the chemical sensitivity of O3 production, which were approximately evaluated using the ratio of HCHO VCDs to NO2 VCDs in the troposphere, was turned from a mixed VOC-NOx-limited regime into a NOX-limited regime in Hangzhou due to the strict emission control measures.

  15. Ozonation of piggery wastewater for enhanced removal of contaminants by S. quadricauda and the impact on organic characteristics.

    Science.gov (United States)

    Kim, Hyun-Chul; Choi, Wook Jin; Maeng, Sung Kyu; Kim, Hyung Joo; Kim, Han Soo; Song, Kyung Guen

    2014-05-01

    The feasibility of using ozonation pretreatment was investigated for a better performance of post microalgae-based wastewater remediation when treating piggery effluent which was anaerobically digested and subsequently micro-filtered. Ozonation pretreatment at a dose of 1.1mg-O3 mg-C(-1) or higher significantly improved the transmittance of light illumination through the mixed liquor by decolorizing the piggery effluent as culture media, which resulted in increasing both the productivity of algal biomass and the associated removal of inorganic nutrients from the effluent. Ozonation also converted refractory organic constituents in the piggery effluent to a large number of biodegradable fractions via both partial-mineralization and low-molecularization. These fractions were facilely removed through biological assimilation during the mixotrophic cultivation of a microalga S. quadricauda. The results revealed that ozonation could be one of the most promising strategies for the pretreatment of highly-colored piggery effluent prior to algae-based wastewater treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Sensitivity studies and a simple ozone perturbation experiment with a truncated two-dimensional model of the stratosphere

    Science.gov (United States)

    Stordal, Frode; Garcia, Rolando R.

    1987-01-01

    The 1-1/2-D model of Holton (1986), which is actually a highly truncated two-dimensional model, describes latitudinal variations of tracer mixing ratios in terms of their projections onto second-order Legendre polynomials. The present study extends the work of Holton by including tracers with photochemical production in the stratosphere (O3 and NOy). It also includes latitudinal variations in the photochemical sources and sinks, improving slightly the calculated global mean profiles for the long-lived tracers studied by Holton and improving substantially the latitudinal behavior of ozone. Sensitivity tests of the dynamical parameters in the model are performed, showing that the response of the model to changes in vertical residual meridional winds and horizontal diffusion coefficients is similar to that of a full two-dimensional model. A simple ozone perturbation experiment shows the model's ability to reproduce large-scale latitudinal variations in total ozone column depletions as well as ozone changes in the chemically controlled upper stratosphere.

  17. California Baseline Ozone Transport Study (CABOTS): Ozonesonde Measurements

    Science.gov (United States)

    Eiserloh, A. J., Jr.; Chiao, S.; Spitze, J.; Cauley, S.; Clark, J.; Roberts, M.

    2016-12-01

    Because the EPA recently lowered the ambient air quality standard for the 8-hr average of ozone (O3) to70 ppbv, California must continue to achieve significant reductions in ozone precursor emissions and prepare for new State Implementation Plans (SIP) to demonstrate how ground-level ambient ozone will be reduced below the new health-based standard. Prior studies suggest that background levels of ozone traveling across the Pacific Ocean can significantly influence surface ozone throughout California, particularly during the spring. Evidence has been presented indicating that background levels of ozone continue to increase in the western United States over the recent few decades, implying more ozone exceedances in the future. To better understand the contributions of the external natural and anthropogenic pollution sources as well as atmospheric processes for surface ozone concentrations in California during the spring and summer months, the California Baseline Ozone Transport Study (CABOTS) has been established. One major goal of CABOTS is to implement near daily ozonesonde measurements along the California Coast to quantify background ozone aloft before entering the State during high ozone season. CABOTS has been ongoing from May through August of 2016 launching ozonesondes from Bodega Bay and Half Moon Bay, California. The temporal progression of ozonesonde measurements and subsequent analysis of the data will be discussed with a focus on the contribution of background ozone to surface ozone sites inland as well as likely origins of layers aloft. Comparisons of current ozonesondes versus prior ozonesonde studies of California will also be performed. A few selected cases of high ozone layers moving onshore from different sources will be discussed as well.

  18. Major Upgrades to the AIRS Version-6 Ozone Profile Methodology

    Science.gov (United States)

    Susskind, Joel; Blaisdell, John; Iredell, Lena

    2015-01-01

    This research is a continuation of part of what was shown at the last AIRS Science Team Meeting in the talk Improved Water Vapor and Ozone Profiles in SRT AIRS Version-6.X and the AIRS February 11, 2015 NetMeeting Further improvements in water vapor and ozone profiles compared to Version-6.AIRS Version-6 was finalized in late 2012 and is now operational. Version-6 contained many significant improvements in retrieval methodology compared to Version-5. However, Version-6 retrieval methodology used for the water vapor profile q(p) and ozone profile O3(p) retrievals is basically unchanged from Version-5, or even from Version-4. Subsequent research has made significant improvements in both water vapor and O3 profiles compared to Version-6. This talk will concentrate on O3 profile retrievals. Improvements in water vapor profile retrievals are given in a separate presentation.

  19. Computational analysis of ozonation in bubble columns

    International Nuclear Information System (INIS)

    Quinones-Bolanos, E.; Zhou, H.; Otten, L.

    2002-01-01

    This paper presents a new computational ozonation model based on the principle of computational fluid dynamics along with the kinetics of ozone decay and microbial inactivation to predict the performance of ozone disinfection in fine bubble columns. The model can be represented using a mixture two-phase flow model to simulate the hydrodynamics of the water flow and using two transport equations to track the concentration profiles of ozone and microorganisms along the height of the column, respectively. The applicability of this model was then demonstrated by comparing the simulated ozone concentrations with experimental measurements obtained from a pilot scale fine bubble column. One distinct advantage of this approach is that it does not require the prerequisite assumptions such as plug flow condition, perfect mixing, tanks-in-series, uniform radial or longitudinal dispersion in predicting the performance of disinfection contactors without carrying out expensive and tedious tracer studies. (author)

  20. Observations of NO2 and O3 during thunderstorm activity using visible spectroscopy

    Science.gov (United States)

    Jadhav, D. B.; Londhe, A. L.; Bose, S.

    1996-08-01

    Simultaneous observations for the total column densities of NO2 , O3 and H2O were carried on using the portable Spectrometer (438-450 nm and 400-450 nm) and the visible Spectrometer (544.4-628 nm) during premonsoon thunderstorms and embedded hail storm activity at Pune (18°32’N & 73°51’E), India. These observations confirm the fact that there is an increase in O3 and NO2 column densities during thunderstorms. The increase in O3 was observed following onset of thunderstorm, while the increase in NO2 was observed only after the thunder flashes occur. This implies that the production mechanisms for O3 and NO2 in thunderstorm are different. The observed column density of NO2 value (1 to 3 × 1017molecules · cm-2) during thunderstorm activity is 10 to 30 times higher than the value (1 × 1016molecules · cm-2) of a normal day total column density. The spectrometric observations and observations of thunder flashes by electric field meter showed that 6.4 × 1025molecules / flash of NO2 are produced. The increased total column density of ozone during thunderstorm period is 1.2 times higher than normal (clear) day ozone concentration. The multiple scattering in the clouds is estimated from H2O and O2 absorption bands in the visible spectral region. Considering this effect the calculated amount of ozone added in the global atmosphere due to thunderstorm activity is 0.26 to 0.52 DU, and the annual production of ozone due to thunderstorm activity is of the order of 4.02 × 1037 molecules / year. The annual NO2 production may be of the order of 2.02 × 1035molecules / year.

  1. Post-treatment of Fly Ash by Ozone in a Fixed Bed Reactor

    DEFF Research Database (Denmark)

    Pedersen, Kim Hougaard; Melia, M. C.; Jensen, Anker Degn

    2009-01-01

    to be fast. A kinetic model has been formulated, describing the passivation of carbon, and it includes the stoichiometry of the ozone consumption (0.8 mol of O-3/kg of C) and an ineffective ozone loss caused by catalytic decomposition. The simulated results correlated well with the experimental data....... prevents the AEA to be adsorbed. In the present work, two fly ashes have been ozonated in a fixed bed reactor and the results showed that ozonation is a potential post-treatment method that can lower the AEA requirements of a fly ash up to 6 times. The kinetics of the carbon oxidation by ozone was found...

  2. Phase relations in the SiC-Al2O3-Pr2O3 system

    International Nuclear Information System (INIS)

    Pan, W.; Wu, L.; Jiang, Y.; Huang, Z.

    2016-01-01

    Phase relations in the Si-Al-Pr-O-C system, including the SiC-Al 2 O 3 -Pr 2 O 3 , the Al 2 O 3 -Pr 2 O 3 -SiO 2 and the SiC-Al 2 O 3 -Pr 2 O 3 -SiO 2 subsystems, were determined by means of XRD phase analysis of solid-state-reacted samples fabricated by using SiC, Al 2 O 3 , Pr 2 O 3 and SiO 2 powders as the starting materials. Subsolidus phase diagrams of the systems were presented. Two Pr-aluminates, namely PrAlO 3 (PrAP) and PrAl 11 O 18 (β(Pr) β-Al 2 O 3 type) were formed in the SiC-Al 2 O 3 -Pr 2 O 3 system. SiC was compatible with both of them. Pr-silicates of Pr 2 SiO 5 , Pr 2 Si 2 O 7 and Pr 9.33 Si 6 O 26 (H(Pr) apatite type) were formed owing to presence of SiO 2 impurity in the SiC powder. The presence of the SiO 2 extended the ternary system of SiC-Al 2 O 3 -Pr 2 O 3 into a quaternary system of SiC-Al 2 O 3 -SiO 2 -Pr 2 O 3 (Si-Al-Pr-O-C). SiC was compatible with Al 2 O 3 , Pr 2 O 3 and the Pr-silicates. The effect of SiO 2 on the phase relations and liquid phase sintering of SiC ceramics was discussed.

  3. Caffeine degradation in water by gamma irradiation, ozonation and ozonation/gamma irradiation

    Directory of Open Access Journals (Sweden)

    Torun Murat

    2014-03-01

    Full Text Available Aqueous solutions of caffeine were treated with ozone and gamma irradiation. The amounts of remaining caffeine were determined after solid phase extraction as a function of absorbed dose and ozonation time. In addition to this, some important parameters such as inorganic ions, chemical oxygen demand (COD dissolved oxygen and total acidity changes were followed. Caffeine (50 ppm is found to be completely decomposed at 3.0 kGy and 1.2 kGy doses in the absence of H2O2 and in 1.20 mM H2O2 solutions, respectively. In the case of gamma irradiation after ozonation, 50 ppm caffeine was removed at 0.2 kGy when the solution was ozonized for 100 s at a rate of 10 g O3 h-1 in 400 mL 50 ppm paracetamol solution.

  4. Characteristics of UV-MicroO3 Reactor and Its Application to Microcystins Degradation during Surface Water Treatment

    Directory of Open Access Journals (Sweden)

    Guangcan Zhu

    2015-01-01

    Full Text Available The UV-ozone (UV-O3 process is not widely applied in wastewater and potable water treatment partly for the relatively high cost since complicated UV radiation and ozone generating systems are utilized. The UV-microozone (UV-microO3, a new advanced process that can solve the abovementioned problems, was introduced in this study. The effects of air flux, air pressure, and air humidity on generation and concentration of O3 in UV-microO3 reactor were investigated. The utilization of this UV-microO3 reactor in microcystins (MCs degradation was also carried out. Experimental results indicated that the optimum air flux in the reactor equipped with 37 mm diameter quartz tube was determined to be 18∼25 L/h for efficient O3 generation. The air pressure and humidity in UV-microO3 reactor should be low enough in order to get optimum O3 output. Moreover, microcystin-RR, YR, and LR (MC-RR, MC-YR, and MC-LR could be degraded effectively by UV-microO3 process. The degradation of different MCs was characterized by first-order reaction kinetics. The pseudofirst-order kinetic constants for MC-RR, MC-YR, and MC-LR degradation were 0.0093, 0.0215, and 0.0286 min−1, respectively. Glucose had no influence on MC degradation through UV-microO3. The UV-microO3 process is hence recommended as a suitable advanced treatment method for dissolved MCs degradation.

  5. Advanced treatment of biotreated textile industry wastewater with ozone, virgin/ozonated granular activated carbon and their combination.

    Science.gov (United States)

    Arslan-Alaton, Idil; Seremet, Ozden

    2004-01-01

    Biotreated textile wastewater (CODo = 248 mg L(-1); TOCo = 58 mg L(-1); A620 = 0.007 cm(-1); A525 = 0.181 cm(-1); A436 = 0.198 cm(-1)) was subjected to advanced treatment with ozonation, granular activated carbon (GAC) adsorption in serial and simultaneous applications. Experiments were conducted to investigate the effects of applied ozone dose, ozone absorption rate, specific ozone absorption efficiency, GAC dose, and reaction pH on the treatment performance of the selected tertiary treatment scheme. In separate experiments, the impact of virgin GAC ozonation on its adsorptive capacity for biotreated and biotreated + ozonated textile effluent was also investigated. Ozonation appeared to be more effective for decolorization (kd = 0.15 min(-1) at pH = 3), whereas GAC adsorption yielded higher COD removal rates (54% at pH = 3). It was also found that GAC addition (4 g/L) at pH = 7 and 9 enhanced the COD abatement rate of the ozonation process significantly and that the sequential application of ozonation (at pH = 3-11, 675 mg L(-1) O3) followed by GAC adsorption (at pH = 3-7, 10 g L(-1) GAC) resulted in the highest treatment performances both in terms of color and COD reduction. Simultaneous application of GAC and ozone at acidic and alkaline pH seriously inhibited COD abatement rates as a consequence of competitive adsorption and partial oxidation of textile components and GAC. It could also be established that ozone absorption efficiency decreased after color removal was complete. Ozonation of biotreated textile wastewater with 113 mg L(-1) ozone resulted in an appreciable enhancement of GAC adsorptive capacity in terms of residual color removal. Ozonation of GAC at relatively low doses (= 10.8 mg/g GAC) did not improve its overall adsorption capacity.

  6. Aspen-associated mycorrhizal fungal production and respiration as a function of changing CO2, O3 and climatic variables

    Science.gov (United States)

    Carrie J. Andrew; Linda T.A. van Diepen; R. Michael Miller; Erik A. Lilleskov

    2014-01-01

    The relationships of mycorrhizal fungal respiration and productivity to climate and atmospheric chemistry remain under characterized. We quantified mycorrhizal sporocarp and hyphal respiration, as well as growing season net hyphal production, under ambient and elevated carbon dioxide (CO2) and ozone (O3) in relation to...

  7. EFFECTS OF CO2 AND O3 ON CARBON FLUX FOR PONDEROSA PINE PLANT/LITTER/SOIL SYSTEM

    Science.gov (United States)

    Carbon dioxide (CO2), a main contributor to global climate change, also adds carbon to forests. In contrast, tropospheric ozone (O3) can reduce carbon uptake and increase carbon loss by forests. Thus, the net balance of carbon uptake and loss for forests can be affected by concu...

  8. Effects of genotype, elevated CO2 and elevated O3 on aspen phytochemistry and aspen leaf beetle Chrysomela crotchi performance

    Science.gov (United States)

    Leanne M. Vigue; Richard L. Lindroth

    2010-01-01

    Trembling aspen Populus tremuloides Michaux is an important forest species in the Great Lakes region and displays tremendous genetic variation in foliar chemistry. Elevated carbon dioxide (CO2) and ozone (O3) may also influence phytochemistry and thereby alter the performance of insect herbivores such as...

  9. A depleted ozone layer absorbs less UV-B, cooling the ozone layer, increasing the amount of UV-B observed to reach Earth, heating air by dissociating tropospheric and ground-level ozone, and heating oceans very efficiently by penetrating tens of meters into the mixed layer. UV-B is 48 times more energetic ("hotter") than IR absorbed by greenhouse gases

    Science.gov (United States)

    Ward, P. L.

    2017-12-01

    This new insight into the physics of radiation shows why changes in stratospheric ozone are observed to cause changes in global temperature. By 1970, manufactured CFC gases and ozone depletion began increasing. By 1993, increases in CFCs stopped as mandated by the Montreal Protocol. By 1995, increases in ozone depletion stopped. By 1998, increases in temperature stopped until 2014. Ozone is also depleted by halogen gases emitted from major basaltic lava flows, the largest of which, since 1783, occurred at Bardarbunga in Iceland in 2014, causing 2015 and 2016 to be the hottest years on record. Throughout Earth history, the largest basaltic lava flows were contemporaneous with periods of greatest warming and greatest levels of mass extinctions. Planck's empirical law shows that temperature of matter results from oscillation of all the bonds holding matter together. The higher the temperature, the higher the frequencies and amplitudes of oscillation. Thus, radiation from a nearby hotter body will make the absorbing body hotter than radiation from a cooler body. According to the Planck-Einstein relation, thermal energy (E) in matter and in radiation equals frequency of oscillation (ν) times the Planck constant (h), E=hν—the energy of a frictionless atomic oscillator. Since frequency is observed to be a very broad continuum extending from radio signals through visible light to gamma rays, thermal energy (E=hν) must also be a very broad continuum. Thermal flux cannot be represented properly by a single number of watts per square meter, as commonly assumed throughout the physical sciences, because all frequencies coexist and the number of watts increases with frequency. Thus, UV-B solar radiation is 48 times more energetic than IR terrestrial radiation absorbed by greenhouse gases and can make the absorbing body 48 times hotter. UV-B causes sunburn; no amount of IR can cause sunburn. Furthermore, in a basic experiment, I show that air containing more than 23 times

  10. Ozone uptake by adult urban trees based on sap flow measurement

    International Nuclear Information System (INIS)

    Wang Hua; Zhou Weiqi; Wang Xiaoke; Gao Fuyuan; Zheng Hua; Tong Lei; Ouyang Zhiyun

    2012-01-01

    The O 3 uptake in 17 adult trees of six urban species was evaluated by the sap flow-based approach under free atmospheric conditions. The results showed very large species differences in ground area scaled whole-tree ozone uptake (F O 3 ), with estimates ranging from 0.61 ± 0.07 nmol m −2 s −1 in Robinia pseudoacacia to 4.80 ± 1.04 nmol m −2 s −1 in Magnolia liliiflora. However, average F O 3 by deciduous foliages was not significantly higher than that by evergreen ones (3.13 vs 2.21 nmol m −2 s −1 , p = 0.160). Species of high canopy conductance for O 3 (G O 3 ) took up more O 3 than those of low G O 3 , but that their sensitivity to vapour pressure deficit (D) were also higher, and their F O 3 decreased faster with increasing D, regardless of species. The responses of F O 3 to D and total radiation led to the relative high flux of O 3 uptake, indicating high ozone risk for urban tree species. - Highlights: ► O 3 uptake by urban trees varied considering contrasting species and study period. ►The responses of G O 3 to microclimate lead to relative high O 3 uptake by urban trees. ►Many urban species are susceptible to O 3 damage. ►The annual O 3 uptake in our study is greatly less than that from modeling approaches. ►The difference suggests considering the species-specific flux in O 3 risk assessment. - Sap flow-based O 3 uptake among urban species suggests high capacity and variation of ozone uptake, as well as potentially detrimental effects to urban species.

  11. Prediction of required ozone dosage for pilot recirculating aquaculture systems based on laboratory studies

    DEFF Research Database (Denmark)

    Spiliotopoulou, Aikaterini; Rojas-Tirado, Paula Andrea; Kaarsholm, Kamilla Marie Speht

    2017-01-01

    In recirculating aquaculture systems (RAS), the water quality changes continuously. Organic and inorganic compounds accumulates creating toxic conditions for the farmed organisms. Ozone improves water quality diminishing significantly both bacteria load and dissolved organic matter. However......, in a non-meticulously designed system, residual ozone might reach the culture tanks causing significant harm to cultured species or excess costs. The aim of the study was to predict the suitable ozone dosage in pilot RAS, for water treatment purposes, based on laboratory studies. The ozone effect on water...... quality of freshwater RAS and system’s ozone demand was investigated. Bench-scale ozonation experiments revealed the ozone demand of the system to be 180 mg O3/h. Three different ozone dosages were applied to four replicated systems with fixed feed loading (1.56 kg feed/m3 make up water). Results...

  12. Evaluation of The Surface Ozone Concentrations In Greater Cairo Area With Emphasis On Helwan, Egypt

    International Nuclear Information System (INIS)

    Ramadan, A.; Kandil, A.T.; Abd Elmaged, S.M.; Mubarak, I.

    2011-01-01

    Various biogenic and anthropogenic sources emit huge quantities of surface ozone. The main purpose of this study is to evaluate the surface ozone levels present at Helwan area in order to improve the knowledge and understanding troposphere processes. Surface Ozone has been measured at 2 sites at Helwan; these sites cover the most populated area in Helwan. Ozone concentration is continuously monitored by UV absorption photometry using the equipment O 3 41 M UV Photometric Ozone Analyzer. The daily maximum values of the ozone concentration in the greater Cairo area have approached but did not exceeded the critical levels during the year 2008. Higher ozone concentrations at Helwan are mainly due to the transport of ozone from regions further to the north of greater Cairo and to a lesser extent of ozone locally generated by photochemical smog process. The summer season has the largest diurnal variation, with the tendency of the daily ozone maxima occur in the late afternoon. The night time concentration of ozone was significantly higher at Helwan because there are no fast acting sinks, destroying ozone since the average night time concentration of ozone is maintained at 40 ppb at the site. No correlation between the diurnal total suspended particulate (TSP) matter and the diurnal cumulative ozone concentration was observed during the Khamasin period

  13. Density of Ga2O3 Liquid

    OpenAIRE

    Dingwell, Donald B.

    1992-01-01

    The density of Ga2O3 liquid in equilibrium with air has been measured at 18000 to 19000C using an Ir double-bob Archimedean method. The data yield the following description of the density of Ga2O3 liquid: ρ= 4.8374(84)–0.00065(12)(T −18500C). This density-temperature relationship is compared with the partial molar volume of Ga2O3 in glasses in the systems CaO–Ga2O3–SiO2 and Na2O–Ga2O3–SiO2, corrected to the glass transition temperature using thermal expansivities. The comparison illustrates t...

  14. Bay breeze climatology at two sites along the Chesapeake bay from 1986-2010: Implications for surface ozone.

    Science.gov (United States)

    Stauffer, Ryan M; Thompson, Anne M

    Hourly surface meteorological measurements were coupled with surface ozone (O 3 ) mixing ratio measurements at Hampton, Virginia and Baltimore, Maryland, two sites along the Chesapeake Bay in the Mid-Atlantic United States, to examine the behavior of surface O 3 during bay breeze events and quantify the impact of the bay breeze on local O 3 pollution. Analyses were performed for the months of May through September for the years 1986 to 2010. The years were split into three groups to account for increasingly stringent environmental regulations that reduced regional emissions of nitrogen oxides (NO x ): 1986-1994, 1995-2002, and 2003-2010. Each day in the 25-year record was marked either as a bay breeze day, a non-bay breeze day, or a rainy/cloudy day based on the meteorological data. Mean eight hour (8-h) averaged surface O 3 values during bay breeze events were 3 to 5 parts per billion by volume (ppbv) higher at Hampton and Baltimore than on non-bay breeze days in all year periods. Anomalies from mean surface O 3 were highest in the afternoon at both sites during bay breeze days in the 2003-2010 study period. In conjunction with an overall lowering of baseline O 3 after the 1995-2002 period, the percentage of total exceedances of the Environmental Protection Agency (EPA) 75 ppbv 8-h O 3 standard that occurred on bay breeze days increased at Hampton for 2003-2010, while remaining steady at Baltimore. These results suggest that bay breeze circulations are becoming more important to causing exceedance events at particular sites in the region, and support the hypothesis of Martins et al. (2012) that highly localized meteorology increasingly drives air quality events at Hampton.

  15. Validation of SAGE II ozone measurements

    Science.gov (United States)

    Cunnold, D. M.; Chu, W. P.; Mccormick, M. P.; Veiga, R. E.; Barnes, R. A.

    1989-01-01

    Five ozone profiles from the Stratospheric Aerosol and Gas Experiment (SAGE) II are compared with coincident ozonesonde measurements obtained at Natal, Brazil, and Wallops Island, Virginia. It is shown that the mean difference between all of the measurements is about 1 percent and that the agreement is within 7 percent at altitudes between 20 and 53 km. Good agreement is also found for ozone mixing ratios on pressure surfaces. It is concluded that the SAGE II profiles provide useful ozone information up to about 60 km altitude.

  16. Effect of calcium-ozone treatment on chemical and biological properties of polyethylene terephthalate.

    Science.gov (United States)

    Rashid, Ahmed Nafis; Tsuru, Kanji; Ishikawa, Kunio

    2015-05-01

    Ozone (O3 ) treatment of polyethylene terephthalate (PET) in distilled water was performed in the presence and absence of calcium (Ca(2+) ). PET was oxidized and thus carboxylic and hydroxyl functional groups were introduced on its surface after O3 treatment, regardless of the presence or absence of Ca(2+) . In the case of O3 treatment with Ca(2+) , PET surface was modified with Ca(2+) . Ca(2+) immobilization was confirmed by X-ray photoelectron spectrometric analysis. Hydrophilicity was investigated by measuring contact angles (CA). CA of PET decreased significantly after ozonation. Surface topography of PET before and after ozone treatment was observed by scanning electron microscopy, and showed no morphological changes. In vitro studies showed enhanced rat bone marrow cell responses on the O3 -treated PET surface. Ca(2+) -O3 oxidation at 37°C for 6 h is expected to be an effective method to fabricate PET with good biocompatibility. © 2014 Wiley Periodicals, Inc.

  17. Ozone Production and Control Strategies for Southern Taiwan

    Science.gov (United States)

    Shiu, C.; Liu, S.; Chang, C.; Chen, J.; Chou, C. C.; Lin, C.

    2006-12-01

    An observation-based modeling (OBM) approach is used to estimate the ozone production efficiency and production rate of O3 (P(O3)) in southern Taiwan. The approach can also provide an indirect estimate of the concentration of OH. Measured concentrations of two aromatic hydrocarbons, i.e. ethylbenzene/m,p-xylene, are used to estimate the degree of photochemical processing and the amounts of photochemically consumed NOx and NMHCs. In addition, a one-dimensional (1d) photochemical model is used to compare with the OBM results. The average ozone production efficiency during the field campaign in Kaohsiung-Pingtung area in Fall 2003 is found to be about 5, comparable to previous works. The relationship of P(O3) with NOx is examined in detail and compared to previous studies. The derived OH concentrations from this approach are in fair agreement with values calculated from the 1d photochemical model. The relationship of total oxidants (e.g. O3+NO2) versus initial NOx and NMHCs suggests that reducing NMHCs are more effective in controlling total oxidants than reducing NOx. For O3 control, reducing NMHC is even more effective than NOx due to the NO titration effect. This observation-based approach provides a good alternative for understanding the production of ozone and formulating ozone control strategy in urban and suburban environment without measurements of peroxy radicals.

  18. Low Ozone over Europe Doesn't Mean the Sky Is Falling, Its Actually Rising

    Science.gov (United States)

    Strahan, Susan; Newman, Paul; Steenrod, Stephen

    2016-01-01

    Data Sources: NASA Aura Microwave Limb Sounder (MLS) (O3 profiles and columns), NASA Global Modeling Initiative (GMI) Chemistry and Transport Model (calculated O3depletion), and MERRA Tropopause Heights. Technical Description of Figures: The left graphics show MLS northern hemisphere stratospheric column ozone on Feb. 1, 2016. Very low columns are seen over the UK and Europe (<225 DU, inside dashed circle). The lower graphic shows the GMI-calculated O3 depletion. It's very small, suggesting the low O3 does not indicate significant depletion. The right graphics show how the high tropopause height in this region explains the observed low ozone. The lower panel shows that the high tropopause on Feb. 1 lifts the O3 profile compared to a typical profile found earlier in winter. This motion lifts the profile to lower pressures thus reducing the total column. The GMI Model shows only 4 Dobson Units (DU) of O3 depletion even though the column is more than 100 DU lower than one month earlier. Scientific significant and societal relevance: To quantitatively understand anthropogenic impacts to the stratospheric ozone layer, we must be able to distinguish between low ozone caused by ozone depleting substances and that caused by natural dynamical variability in the atmosphere. Observations and realistic simulations of atmospheric composition are both required in order to separate natural and anthropogenic ozone variability.

  19. Quantifying Ozone Production throughout the Boundary Layer from High Frequency Tethered Profile Measurements during a High Ozone Episode in the Uinta Basin, Utah

    Science.gov (United States)

    Sterling, C. W.; Johnson, B.; Schnell, R. C.; Oltmans, S. J.; Cullis, P.; Hall, E. G.; Jordan, A. F.; Windell, J.; McClure-Begley, A.; Helmig, D.; Petron, G.

    2015-12-01

    During the Uinta Basin Winter Ozone Study (UBWOS) in Jan - Feb 2013, 735 tethered ozonesonde profiles were obtained at 3 sites including during high wintertime photochemical ozone production events that regularly exceeded 125 ppb. High resolution profiles of ozone and temperature with altitude, measured during daylight hours, showed the development of approximately week long high ozone episodes building from background levels of ~40 ppb to >150 ppb. The topography of the basin combined with a strong temperature inversion trapped oil and gas production effluents in the basin and the snow covered surface amplified the sun's radiation driving the photochemical ozone production at rates up to 13 ppb/hour in a cold layer capped at 1600-1700 meters above sea level. Beginning in mid-morning, ozone mixing ratios throughout the cold layer increased until late afternoon. Ozone mixing ratios were generally constant with height indicating that ozone production was nearly uniform throughout the depth of the cold pool. Although there was strong diurnal variation, ozone mixing ratios increased during the day more than decreased during the night, resulting in elevated levels the next morning; an indication that nighttime loss processes did not compensate for daytime production. Even though the 3 tethersonde sites were at elevations differing by as much as 140 m, the top of the high ozone layer was nearly uniform in altitude at the 3 locations. Mobile van surface ozone measurements across the basin confirmed this capped structure of the ozone layer; the vehicle drove out of high ozone mixing ratios at an elevation of ~1900 meters above sea level, above which free tropospheric ozone mixing ratios of ~50 ppb were measured. Exhaust plumes from a coal-fired power plant in the eastern portion of the basin were intercepted by the tethersondes. The structure of the profiles clearly showed that effluents in the plumes were not mixed downward and thus did not contribute precursor nitrogen

  20. Use of fluorescence spectroscopy to control ozone dosage in recirculating aquaculture systems

    DEFF Research Database (Denmark)

    Spiliotopoulou, Aikaterini; Martin, Richard; Pedersen, Lars-Flemming

    2017-01-01

    , in order to optimise ozonation treatment. Water samples from six different Danish facilities (two rearing units from a commercial trout RAS, a commercial eel RAS, a pilot RAS and two marine water aquariums) were treated with different O3 dosages (1.0–20.0 mg/L ozone) in bench-scale experiments, following...

  1. Stability enhancement of ozone-assisted laminar premixed Bunsen flames in nitrogen co-flow

    KAUST Repository

    Vu, Tran Manh; Won, Sanghee; Ombrello, Timothy M.; Cha, Min

    2014-01-01

    Ozone (O3) is known as one of the strongest oxidizers and therefore is widely used in many applications. Typically in the combustion field, a combination of non-thermal plasma and combustion systems have been studied focusing on the effects of ozone

  2. Effect of sequences of ozone and nitrogen dioxide on plant dry ...

    African Journals Online (AJOL)

    Ozone (O3) is the most important gaseous air pollutant in the world because of its adverse effects on vegetation in general and crop plants in particular. Since nitrogen dioxide (NO2) is a precursor of ozone, studying the implication of sequences of these two gases is very important. Hence, the effects of sequences of ...

  3. Impacts of Climate Change on Surface Ozone and Intercontinental Ozone Pollution: A Multi-Model Study

    Science.gov (United States)

    Doherty, R. M.; Wild, O.; Shindell, D. T.; Zeng, G.; MacKenzie, I. A.; Collins, W. J.; Fiore, A. M.; Stevenson, D. S.; Dentener, F. J.; Schultz, M. G.; hide

    2013-01-01

    The impact of climate change between 2000 and 2095 SRES A2 climates on surface ozone (O)3 and on O3 source-receptor (S-R) relationships is quantified using three coupled climate-chemistry models (CCMs). The CCMs exhibit considerable variability in the spatial extent and location of surface O3 increases that occur within parts of high NOx emission source regions (up to 6 ppbv in the annual average and up to 14 ppbv in the season of maximum O3). In these source regions, all three CCMs show a positive relationship between surface O3 change and temperature change. Sensitivity simulations show that a combination of three individual chemical processes-(i) enhanced PAN decomposition, (ii) higher water vapor concentrations, and (iii) enhanced isoprene emission-largely reproduces the global spatial pattern of annual-mean surface O3 response due to climate change (R2 = 0.52). Changes in climate are found to exert a stronger control on the annual-mean surface O3 response through changes in climate-sensitive O3 chemistry than through changes in transport as evaluated from idealized CO-like tracer concentrations. All three CCMs exhibit a similar spatial pattern of annual-mean surface O3 change to 20% regional O3 precursor emission reductions under future climate compared to the same emission reductions applied under present-day climate. The surface O3 response to emission reductions is larger over the source region and smaller downwind in the future than under present-day conditions. All three CCMs show areas within Europe where regional emission reductions larger than 20% are required to compensate climate change impacts on annual-mean surface O3.

  4. Reactions of thiocarbamate, triazine and urea herbicides, RDX and benzenes on EPA Contaminant Candidate List with ozone and with hydroxyl radicals

    Science.gov (United States)

    Second-order rate constants of the direct ozone reactions (kO3,M) and the indirect OH radical reactions (kOH,M) for nine chemicals on the US EPA’s Drinking Water Contaminant Candidate List (CCL) were studied during the ozonation and ozone/hydrogen peroxide a...

  5. Tracer-tracer relations as a tool for research on polar ozone loss

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Rolf

    2010-07-01

    The report includes the following chapters: (1) Introduction: ozone in the atmosphere, anthropogenic influence on the ozone layer, polar stratospheric ozone loss; (2) Tracer-tracer relations in the stratosphere: tracer-tracer relations as a tool in atmospheric research; impact of cosmic-ray-induced heterogeneous chemistry on polar ozone; (3) quantifying polar ozone loss from ozone-tracer relations: principles of tracer-tracer correlation techniques; reference ozone-tracer relations in the early polar vortex; impact of mixing on ozone-tracer relations in the polar vortex; impact of mesospheric intrusions on ozone-tracer relations in the stratospheric polar vortex calculation of chemical ozone loss in the arctic in March 2003 based on ILAS-II measurements; (4) epilogue.

  6. Tropospheric Ozone and Photochemical Smog

    Science.gov (United States)

    Sillman, S.

    2003-12-01

    The question of air quality in polluted regions represents one of the issues of geochemistry with direct implications for human well-being. Human health and well-being, along with the well-being of plants, animals, and agricultural crops, are dependent on the quality of air we breathe. Since the start of the industrial era, air quality has become a matter of major importance, especially in large cities or urbanized regions with heavy automobile traffic and industrial activity.Concern over air quality existed as far back as the 1600s. Originally, polluted air in cities resulted from the burning of wood or coal, largely as a source of heat. The industrial revolution in England saw a great increase in the use of coal in rapidly growing cities, both for industrial use and domestic heating. London suffered from devastating pollution events during the late 1800s and early 1900s, with thousands of excess deaths attributed to air pollution (Brimblecombe, 1987). With increasing use of coal, other instances also occurred in continental Europe and the USA. These events were caused by directly emitted pollutants (primary pollutants), including sulfur dioxide (SO2), carbon monoxide (CO), and particulates. They were especially acute in cities with northerly locations during fall and winter when sunlight is at a minimum. These original pollution events gave rise to the term "smog" (a combination of smoke and fog). Events of this type have become much less severe since the 1950s in Western Europe and the US, as natural gas replaced coal as the primary source of home heating, industrial smokestacks were designed to emit at higher altitudes (where dispersion is more rapid), and industries were required to install pollution control equipment.Beginning in the 1950s, a new type of pollution, photochemical smog, became a major concern. Photochemical smog consists of ozone (O3) and other closely related species ("secondary pollutants") that are produced photochemically from directly

  7. Evolution of subband structure with gate-tuning at LaAlO3/SrTiO3 interfaces

    Science.gov (United States)

    Tang, Lucas; Smink, Sander; van Heeringen, Linde; Geessinck, Jaap; Rana, Abimanuya; Rastogi, Ankur; Maan, Jan Kees; Brinkman, Alexander; Zeitler, Uli; Hilgenkamp, Hans; McCollam, Alix

    The outstanding characteristic of LaAlO3/SrTiO3 heterostructures is the formation of a high mobility 2D electron gas (2DEG) at the interface. The additional presence of superconductivity, magnetism and large spin-orbit coupling in these systems suggests that strong correlations play an important role in the electronic properties, in contrast to conventional semiconductor-based 2DEGs. Knowledge of the electronic bandstructure, and the interdependence of conduction electron density and properties is therefore essential for our understanding of these materials. We present new results of low temperature transport measurements in a high mobility LaAlO3/SrTiO3-based heterostructure, in magnetic fields up to 33 T. Shubnikov de-Haas oscillations are observed, revealing several subbands with different carrier densities. By application of an electric field in the back gate geometry, the Fermi level is tuned and thus we are able to map the smooth evolution of the subbands and their properties with carrier density. These results are in good agreement with recent theoretical work, such that we can disentangle the complex band structure, and quantify aspects such as Rashba spin-splitting and the mixing of orbital character.

  8. Ozone Production Using Pulsed Dielectric Barrier Discharge in Oxygen

    OpenAIRE

    Samaranayake, W. J. M.; Miyahara, Y.; Namihira, T.; Katsuki, S.; Hackam, R.; Akiyama, H.; ナミヒラ, タカオ; カツキ, スナオ; アキヤマ, ヒデノリ; 浪平, 隆男; 勝木, 淳; 秋山, 秀典

    2000-01-01

    The production of ozone was investigated using a dielectric barrier discharge in oxygen, and employing short-duration pulsed power. The dependence of the ozone concentration (parts per million, ppm) and ozone production yield (g(O3)/kWh) on the peak pulsed voltage (17.5 to 57.9 kV) and the pulse repetition rate (25 to 400 pulses/s, pps) were investigated. In the present study, the following parameters were kept constant: a pressure of 1.01×105 Pa, a temperature of 26±4°C a gas flow rate of 3....

  9. Secondary maxima in ozone profiles

    Directory of Open Access Journals (Sweden)

    R. Lemoine

    2004-01-01

    Full Text Available Ozone profiles from balloon soundings as well as SAGEII ozone profiles were used to detect anomalous large ozone concentrations of ozone in the lower stratosphere. These secondary ozone maxima are found to be the result of differential advection of ozone-poor and ozone-rich air associated with Rossby wave breaking events. The frequency and intensity of secondary ozone maxima and their geographical distribution is presented. The occurrence and amplitude of ozone secondary maxima is connected to ozone variability and trend at Uccle and account for a large part of the total ozone and lower stratospheric ozone variability.

  10. Effects of elevated O3 concentration on winter wheat and rice yields in the Yangtze River Delta, China

    International Nuclear Information System (INIS)

    Wang Xiaoke; Zhang Qianqian; Zheng Feixiang; Zheng Qiwei; Yao Fangfang; Chen Zhan; Zhang Weiwei; Hou Peiqiang; Feng Zhaozhong; Song Wenzhi; Feng Zongwei; Lu Fei

    2012-01-01

    The effects of a continuing rise of ambient ozone on crop yield will seriously threaten food security in China. In the Yangtze River Delta, a rapidly developing and seriously air polluted region in China, innovative open-top chambers have been established to fumigate winter wheat and rice in situ with elevated O 3 . Five years of study have shown that the yields of wheat and rice decreased with increasing O 3 concentration. There were significant relationships between the relative yield and AOT40 (accumulated hourly O 3 concentration over 40 ppb) for both winter wheat and rice. Winter wheat was more sensitive to O 3 than rice. O 3 -induced yield declines were attributed primarily to 1000-grain weight and harvest index for winter wheat, and attributed primarily to grain number per panicle and harvest index for rice. Control of ambient O 3 pollution and breeding of O 3 tolerant crops are urgent to guarantee food security in China. - Highlights: ► The wheat and rice response to ozone had been investigated for five years in China. ► There were significant relationships between relative crop yields and AOT40 dose. ► O 3 -induced wheat yield loss was primarily due to 1000-grain weight and harvest index. ► O 3 -induced rice yield loss was primarily due to grains per panicle and harvest index. ► Wheat and rice in this study are more sensitive to O 3 than previous investigations. - The dose–response relationships derived from field fumigation experiments over 5 years can be used to accurately estimate crop losses in China.

  11. Ozone Decomposition on the Surface of Metal Oxide Catalyst

    Directory of Open Access Journals (Sweden)

    Batakliev Todor Todorov

    2014-12-01

    Full Text Available The catalytic decomposition of ozone to molecular oxygen over catalytic mixture containing manganese, copper and nickel oxides was investigated in the present work. The catalytic activity was evaluated on the basis of the decomposition coefficient which is proportional to ozone decomposition rate, and it has been already used in other studies for catalytic activity estimation. The reaction was studied in the presence of thermally modified catalytic samples operating at different temperatures and ozone flow rates. The catalyst changes were followed by kinetic methods, surface measurements, temperature programmed reduction and IR-spectroscopy. The phase composition of the metal oxide catalyst was determined by X-ray diffraction. The catalyst mixture has shown high activity in ozone decomposition at wet and dry O3/O2 gas mixtures. The mechanism of catalytic ozone degradation was suggested.

  12. Heterogeneous oxidation of SO2 by O3-aged black carbon and its dithiothreitol oxidative potential.

    Science.gov (United States)

    Xu, Weiwei; Li, Qian; Shang, Jing; Liu, Jia; Feng, Xiang; Zhu, Tong

    2015-10-01

    Ozone (O3) is an important atmospheric oxidant. Black carbon (BC) particles released into the atmosphere undergo an aging process via O3 oxidation. O3-aged BC particles may change their uptake ability toward trace reducing gases such as SO2 in the atmosphere, leading to different environmental and health effects. In this paper, the heterogeneous reaction process between O3-aged BC and SO2 was explored via in-situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Combined with ion chromatography (IC), DRIFTS was used to qualitatively and quantitatively analyze the sulfate product. The results showed that O3-aged BC had stronger SO2 oxidation ability than fresh BC, and the reactive species/sites generated on the surface had an important role in the oxidation of SO2. Relative humidity or 254nm UV (ultraviolet) light illumination enhanced the oxidation uptake of SO2 on O3-aged BC. The oxidation potentials of the BC particles were detected via dithiothreitol (DTT) assay. The DTT activity over BC was decreased in the process of SO2 reduction, with the consumption of oxidative active sites. Copyright © 2015. Published by Elsevier B.V.

  13. Forecasting and analyzing high O3 time series in educational area through an improved chaotic approach

    Science.gov (United States)

    Hamid, Nor Zila Abd; Adenan, Nur Hamiza; Noorani, Mohd Salmi Md

    2017-08-01

    Forecasting and analyzing the ozone (O3) concentration time series is important because the pollutant is harmful to health. This study is a pilot study for forecasting and analyzing the O3 time series in one of Malaysian educational area namely Shah Alam using chaotic approach. Through this approach, the observed hourly scalar time series is reconstructed into a multi-dimensional phase space, which is then used to forecast the future time series through the local linear approximation method. The main purpose is to forecast the high O3 concentrations. The original method performed poorly but the improved method addressed the weakness thereby enabling the high concentrations to be successfully forecast. The correlation coefficient between the observed and forecasted time series through the improved method is 0.9159 and both the mean absolute error and root mean squared error are low. Thus, the improved method is advantageous. The time series analysis by means of the phase space plot and Cao method identified the presence of low-dimensional chaotic dynamics in the observed O3 time series. Results showed that at least seven factors affect the studied O3 time series, which is consistent with the listed factors from the diurnal variations investigation and the sensitivity analysis from past studies. In conclusion, chaotic approach has been successfully forecast and analyzes the O3 time series in educational area of Shah Alam. These findings are expected to help stakeholders such as Ministry of Education and Department of Environment in having a better air pollution management.

  14. Elevated CO2 and O3 effects on fine-root survivorship in ponderosa pine mesocosms.

    Science.gov (United States)

    Phillips, Donald L; Johnson, Mark G; Tingey, David T; Storm, Marjorie J

    2009-07-01

    Atmospheric carbon dioxide (CO(2)) and ozone (O(3)) concentrations are rising, which may have opposing effects on tree C balance and allocation to fine roots. More information is needed on interactive CO(2) and O(3) effects on roots, particularly fine-root life span, a critical demographic parameter and determinant of soil C and N pools and cycling rates. We conducted a study in which ponderosa pine (Pinus ponderosa) seedlings were exposed to two levels of CO(2) and O(3) in sun-lit controlled-environment mesocosms for 3 years. Minirhizotrons were used to monitor individual fine roots in three soil horizons every 28 days. Proportional hazards regression was used to analyze effects of CO(2), O(3), diameter, depth, and season of root initiation on fine-root survivorship. More fine roots were produced in the elevated CO(2) treatment than in ambient CO(2). Elevated CO(2), increasing root diameter, and increasing root depth all significantly increased fine-root survivorship and median life span. Life span was slightly, but not significantly, lower in elevated O(3), and increased O(3) did not reduce the effect of elevated CO(2). Median life spans varied from 140 to 448 days depending on the season of root initiation. These results indicate the potential for elevated CO(2) to increase the number of fine roots and their residence time in the soil, which is also affected by root diameter, root depth, and phenology.

  15. Tropospheric Ozone as a Short-lived Chemical Climate Forcer

    Science.gov (United States)

    Pickering, Kenneth E.

    2012-01-01

    Tropospheric ozone is the third most important greenhouse gas according to the most recent IPCC assessment. However, tropospheric ozone is highly variable in both space and time. Ozone that is located in the vicinity of the tropopause has the greatest effect on climate forcing. Nitrogen oxides (NOx) are the most important precursors for ozone In most of the troposphere. Therefore, pollution that is lofted upward in thunderstorm updrafts or NOx produced by lightning leads to efficient ozone production in the upper troposphere, where ozone is most important climatically. Global and regional model estimates of the impact of North American pollution and lightning on ozone radiative forcing will be presented. It will be shown that in the Northern Hemisphere summer, the lightning effect on ozone radiative forcing can dominate over that of pollution, and that the radiative forcing signal from North America extends well into Europe and North Africa. An algorithm for predicting lightning flash rates and estimating lightning NOx emissions is being incorporated into the NASA GEOS-5 Chemistry and Climate Model. Changes in flash rates and emissions over an ENSO cycle and in future climates will be assessed, along with the resulting changes in upper tropospheric ozone. Other research on the production of NOx per lightning flash and its distribution in the vertical based on cloud-resolving modeling and satellite observations will be presented. Distributions of NO2 and O3 over the Middle East from the OMI instrument on NASA's Aura satellite will also be shown.

  16. Carbonization kinetics of La2O3-Mo cathode materials

    International Nuclear Information System (INIS)

    Jinshu, W.; Meiling, Z.; Tieyong, Z.; Jiuxing, Z.; Zuoren, N.

    2001-01-01

    The carbonization kinetics of La 2 O 3 -Mo cathode materials has been studied by thermal analysis method. Three-stage model of the carbonization has been presented in this paper. The carbonization rate is initially controlled by chemical reaction, then controlled by chemical reaction mixed with diffusion, finally controlled by diffusion. After the initial experimental data are processed according to this model, the correlation coefficients of the kinetic curves are satisfactory. The apparent activation energy of carbonization of La 2 O 3 -Mo cathode materials has been obtained. At the same time, we have deduced the empirical expressions of the amount of weight increased per unit area after carbonization, temperature and time in the temperature range 1393 K - 1493 K. (author)

  17. Growth of Chironomus dilutus larvae exposed to ozone-treated and untreated oil sands process water

    International Nuclear Information System (INIS)

    Anderson, J.; Wiseman, S.; Franz, E.; Jones, P.; Liber, K.; Giesy, J.; Gamal El-Din, M.; Marin, J.

    2010-01-01

    Oil sand processing operations require large quantities of freshwater and produce large volumes of oil sands process water (OSPW) which must be stored on-site. This presentation reviewed various treatment methods for remediating OSPW in order to eliminate downstream toxicity. Naphthenic acids are the most important target fractions for treatment because they are primarily responsible for the acute toxicity of OSPW. Although ozonation has shown promise for reducing OSPW toxicity, the effects of ozonation on aquatic invertebrates remain unknown. This study investigated the effects of exposure to untreated and ozonated OSPW in Chironomus dilutus larvae. OSPW was treated with either a 50 or 80 mg O 3 /L dose of ozonation. The effects of ozonation levels on C. dilutus survival and growth were examined. The study showed that after a 10-day exposure, there were pronounced effects on survival of larvae exposed to ozone-treated or untreated OSPW. Larvae exposed to OSPW were 64-77 percent smaller than their respective controls, but the mean wet mass of organisms exposed to 50 mg O 3 /L ozonated OSPW was not much different from that of the controls. Larvae exposed to 80 mg O 3 /L ozone-treated OSPW were 40 percent smaller than the freshwater controls, and the mean wet mass was also much larger than the untreated OSPW. It was concluded that the toxicity of OSPW to benthic invertebrates may be reduced by ozone treatment.

  18. Photochemistry and transport of tropospheric ozone and its precursors in urban and remote environments

    Science.gov (United States)

    Anderson, Daniel Craig

    Tropospheric ozone (O3) adversely affects human health, reduces crop yields, and contributes to climate forcing. To limit these effects, the processes controlling O3 abundance as well as that of its precursor molecules must be fully characterized. Here, I examine three facets of O 3 production, both in heavily polluted and remote environments. First, using in situ observations from the DISCOVER-AQ field campaign in the Baltimore/Washington region, I evaluate the emissions of the O 3 precursors CO and NOx (NOx = NO + NO2) in the National Emissions Inventory (NEI). I find that CO/NOx emissions ratios derived from observations are 21% higher than those predicted by the NEI. Comparisons to output from the CMAQ model suggest that CO in the NEI is accurate within 15 +/- 11%, while NOx emissions are overestimated by 51-70%, likely due to errors in mobile sources. These results imply that ambient ozone concentrations will respond more efficiently to NOx controls than current models suggest. I then investigate the source of high O3 and low H2O structures in the Tropical Western Pacific (TWP). A combination of in situ observations, satellite data, and models show that the high O3 results from photochemical production in biomass burning plumes from fires in tropical Southeast Asia and Central Africa; the low relative humidity results from large-scale descent in the tropics. Because these structures have frequently been attributed to mid-latitude pollution, biomass burning in the tropics likely contributes more to the radiative forcing of climate than previously believed. Finally, I evaluate the processes controlling formaldehyde (HCHO) in the TWP. Convective transport of near surface HCHO leads to a 33% increase in upper tropospheric HCHO mixing ratios; convection also likely increases upper tropospheric CH 3OOH to ~230 pptv, enough to maintain background HCHO at ~75 pptv. The long-range transport of polluted air, with NO four times the convectively controlled background

  19. Higher measured than modeled ozone production at increased NOx levels in the Colorado Front Range

    Directory of Open Access Journals (Sweden)

    B. C. Baier

    2017-09-01

    Full Text Available Chemical models must correctly calculate the ozone formation rate, P(O3, to accurately predict ozone levels and to test mitigation strategies. However, air quality models can have large uncertainties in P(O3 calculations, which can create uncertainties in ozone forecasts, especially during the summertime when P(O3 is high. One way to test mechanisms is to compare modeled P(O3 to direct measurements. During summer 2014, the Measurement of Ozone Production Sensor (MOPS directly measured net P(O3 in Golden, CO, approximately 25 km west of Denver along the Colorado Front Range. Net P(O3 was compared to rates calculated by a photochemical box model that was constrained by measurements of other chemical species and that used a lumped chemical mechanism and a more explicit one. Median observed P(O3 was up to a factor of 2 higher than that modeled during early morning hours when nitric oxide (NO levels were high and was similar to modeled P(O3 for the rest of the day. While all interferences and offsets in this new method are not fully understood, simulations of these possible uncertainties cannot explain the observed P(O3 behavior. Modeled and measured P(O3 and peroxy radical (HO2 and RO2 discrepancies observed here are similar to those presented in prior studies. While a missing atmospheric organic peroxy radical source from volatile organic compounds co-emitted with NO could be one plausible solution to the P(O3 discrepancy, such a source has not been identified and does not fully explain the peroxy radical model–data mismatch. If the MOPS accurately depicts atmospheric P(O3, then these results would imply that P(O3 in Golden, CO, would be NOx-sensitive for more of the day than what is calculated by models, extending the NOx-sensitive P(O3 regime from the afternoon further into the morning. These results could affect ozone reduction strategies for the region surrounding Golden and possibly other areas that do not comply with national ozone

  20. Phase equilibria in the system Li2O - MoO3 - Sc2O3

    International Nuclear Information System (INIS)

    Safonov, V.V.; Chaban, N.G.; Porotnikov, N.V.

    1984-01-01

    Using the methods of DTA and X-ray phase analysis, interaction of components in the system Li 2 O-MoO 3 -Sc 2 O 3 in concentration range, adjacent to the vertex of MoO 3 , has been studied. Projection of the Li 2 MoO 4 -MoO 3 -Sc 2 (MoO 4 ) 3 system liquidus on concentrational triangle of the compositions Li 2 O-MoO 3 -Sc 2 O 3 , which consists of the fields of primary separation of Li 2 MoO 4 , Li 2 Mo 5 O 17 , Li 2 Mo 4 O 13 , MoO 3 , Sc 2 (MoO 4 ) 3 , Li 3 Sc(MoO 4 ) 3 and LiSc(MoO 4 ) 2 , is built

  1. Distribution and urban-suburban differences in ground-level ozone and its precursors over Shenyang, China

    Science.gov (United States)

    Liu, Ningwei; Ren, Wanhui; Li, Xiaolan; Ma, Xiaogang; Zhang, Yunhai; Li, Bingkun

    2018-03-01

    Hourly mixing ratio data of ground-level ozone and its main precursors at ambient air quality monitoring sites in Shenyang during 2013-2015 were used to survey spatiotemporal variations in ozone. Then, the transport of ozone and its precursors among urban, suburban, and rural sites was examined. The correlations between ozone and some key meteorological factors were also investigated. Ozone and O x mixing ratios in Shenyang were higher during warm seasons and lower during cold ones, while ozone precursors followed the opposite cycle. Ozone mixing ratios reached maximum and minimum values in the afternoon and morning, respectively, reflecting the significant influence of photochemical production during daytime and depletion via titration during nighttime. Compared to those in downtown Shenyang, ozone mixing ratios were higher and the occurrence of peak values were later in suburban and rural areas downwind of the prevailing wind. The differences were most significant in summer, when the ozone mixing ratios at one suburban downwind site reached a maximum value of 35.6 ppb higher than those at the downtown site. This suggests that photochemical production processes were significant during the transport of ozone precursors, particularly in warm seasons with sufficient sunlight. Temperature, total radiation, and wind speed all displayed positive correlations with ozone concentration, reflecting their important role in accelerating ozone formation. Generally, the correlations between ozone and meteorological factors were slightly stronger at suburban sites than in urban areas, indicating that ozone levels in suburban areas were more sensitive to these meteorological factors.

  2. Mnx/2Nbx/2O3 ceramics

    Indian Academy of Sciences (India)

    Unknown

    Abstract. The paper reports investigations of relative permittivity, εr, electrical conductivity, σ, saturation polarization, Ps, infrared absorption and structural properties of compensating valency substituted BaTiO3. The compositions investigated are BaTi(1–x)Mnx/2Nbx/2O3 for x = 0⋅00; 0⋅025; 0⋅05; 0⋅1; 0⋅2; 0⋅4.

  3. Ozone Transport Aloft Drives Surface Ozone Maxima Across the Mojave Desert

    Science.gov (United States)

    VanCuren, R. A.

    2014-12-01

    A persistent layer of polluted air in the lower free troposphere over the Mojave Desert (California and Nevada) drives spring and summer surface ozone maxima as deep afternoon mixing delivers ozone and ozone precursors to surface measurement sites 200 km or more downwind of the mountains that separate the deserts from the heavily populated coastal areas of California. Pollutants in this elevated layer derive from California source regions (the Los Angeles megacity region and the intensive agricultural region of the San Joaquin Valley), and from long-range transport from Asia. Recognition of this poorly studied persistent layer explains and expands the significance of previously published reports of ozone and other pollutants observed in and over the Mojave Desert, resolves an apparent paradox in the timing of ozone peaks due to transport from the upwind basins, and provides a new perspective on the long-range downwind impacts of megacity pollution plumes.

  4. Photochemical production of ozone and control strategy for Southern Taiwan

    Science.gov (United States)

    Shiu, Chein-Jung; Liu, Shaw Chen; Chang, Chih-Chung; Chen, Jen-Ping; Chou, Charles C. K.; Lin, Chuan-Yao; Young, Chea-Yuan

    An observation-based method (OBM) is developed to evaluate the ozone (O 3) production efficiency (O 3 molecules produced per NO x molecule consumed) and O 3 production rate ( P(O 3)) during a field campaign in southern Taiwan. The method can also provide an estimate of the concentration of OH. A key step in the method is to use observed concentrations of two aromatic hydrocarbons, namely ethylbenzene and m, p-xylene, to estimate the degree of photochemical processing and amounts of photochemically consumed NO x and NMHCs by OH. In addition, total oxidant (O 3+NO 2) instead of O 3 itself turns out to be very useful for representing ozone production in the OBM approach. The average O 3 production efficiency during the field campaign in Fall (2003) is found to be about 10.2±3.9. The relationship of P(O 3) with NO x is examined and compared with a one-dimensional (1D) photochemical model. Values of P(O 3) derived from the OBM are slightly lower than those calculated in the 1D model. However, OH concentrations estimated by the OBM are about a factor of 2 lower than the 1D model. Fresh emissions, which affect the degree of photochemical processing appear to be a major cause of the underestimate. We have developed a three-dimensional (3D) OBM O 3 production diagram that resembles the EKMA ozone isopleth diagram to study the relationship of the total oxidant versus O 3 precursors. The 3D OBM O 3 production diagram suggests that reducing emissions of NMHCs are more effective in controlling O 3 than reducing NO x. However, significant uncertainties remain in the OBM, and considerable more work is required to minimize these uncertainties before a definitive control strategy can be reached. The observation-based approach provides a good alternative to measuring peroxy radicals for evaluating the production of O 3 and formulating O 3 control strategy in urban and suburban environments.

  5. Investigation and control of the {{\\rm{O}}}_{3}- to {NO}-transition in a novel sub-atmospheric pressure dielectric barrier discharge

    Science.gov (United States)

    Bansemer, Robert; Schmidt-Bleker, Ansgar; van Rienen, Ursula; Weltmann, Klaus-Dieter

    2017-06-01

    A novel flow-driven dielectric barrier discharge concept is presented, which uses a Venturi pump to transfer plasma-generated reactive oxygen and nitrogen species from a sub-atmospheric pressure (200{--}600 {mbar}) discharge region to ambient pressure and can be operated with air. By adjusting the working pressure of the device, the plasma chemistry can be tuned continuously from an ozone ({{{O}}}3)-dominated mode to a nitrogen oxides ({{NO}}x)-only mode. The plasma source is characterized focusing on the mechanisms effecting this mode change. The composition of the device’s output gas was determined using Fourier-transform infrared spectroscopy. The results are correlated to measurements of discharge chamber pressure and temperature as well as of input power. It is found that the mode-change temperature can be controlled by the discharge chamber pressure. The source concept is capable of generating an {{NO}}x-dominated plasma chemistry at gas temperatures distinctly below 400 {{K}}. Through mixing of the processed gas stream with a second flow of pressurized air required for the operation of the Venturi pump, the resulting product gas stream remains close to room temperature. A reduced zero-dimensional reaction kinetics model with only seven reactions is capable of describing the observed pressure- and temperature-dependence of the {{{O}}}3 to {{NO}}x mode-change.

  6. Ozone and meteorological boundary-layer conditions at Summit, Greenland, during 3-21 June 2000

    Energy Technology Data Exchange (ETDEWEB)

    Helmig, D.; Boulter, J.; David, D.; Birks, J.W.; Cullen, N.J.; Steffen, K. [University of Colorado, Boulder, CO (United States). Cooperative Institute for Research in Environmental Sciences; Johnson, B.J.; Oltmans, S.J. [National Oceanic and Atmospheric Administration, Boulder, CO (United States). Climate Monitoring and Diagnostics Laboratory

    2002-06-01

    The temporal and spatial distributions of boundary-layer ozone were studied during June 2000 at Summit, Greenland, using surface-level measurements and vertical profiling from a tethered balloon platform. Three weeks of continuous ozone surface data, 133 meteorological vertical profile data and 82 ozone vertical profile data sets were collected from the surface to a maximum altitude of 1400 m above ground. The lower atmosphere at Summit was characterized by the prevalence of strong stable conditions with strong surface temperature inversions. These inversions reversed to neutral to slightly unstable conditions between {approx} 9.00 and 18.00 h local time with the formation of shallow mixing heights of {approx} 70-250 m above the surface. The surface ozone mixing ratio ranged from 39 to 68 ppbv and occasionally had rapid changes of up to 20 ppb in 12 h. The diurnal mean ozone mixing ratio showed diurnal trends indicating meteorological and photochemical controls of surface ozone. Vertical profiles were within the range of 37-76 ppb and showed strong stratification in the lower troposphere. A high correlation of high ozone/low water vapor air masses indicated the transport of high tropospheric/low stratospheric air into the lower boundary layer. An {approx} 0.1-3 ppb decline of the ozone mixing ratio towards the surface was frequently observed within the neutrally stable mixed layer during midday hours. These data suggest that the boundary-layer ozone mixing ratio and ozone depletion and deposition to the snowpack are influenced by the boundary-layer ozone mixing ratio and ozone depletion and deposition to the snowpack are influenced by photochemical processes and/or transport phenomena that follow diurnal dependencies. With 37 ppb of ozone being the lowest mixing ratio measured in all data no evidence was seen for the occurrence of ozone depletion episodes similar to those that have been reported within the boundary layer at coastal Arctic sites during springtime

  7. Development and Application of Binary Suspensions in the Ternary System Cr2O3-TiO2-Al2O3 for S-HVOF Spraying

    Science.gov (United States)

    Potthoff, Annegret; Kratzsch, Robert; Barbosa, Maria; Kulissa, Nick; Kunze, Oliver; Toma, Filofteia-Laura

    2018-04-01

    Compositions in the system Cr2O3-TiO2-Al2O3 are among the most used ceramic materials for thermally sprayed coating solutions. Cr2O3 coatings present good sliding wear resistance; Al2O3 coatings show excellent insulation behavior and TiO2 striking corrosion properties. In order to combine these properties, coatings containing more than one oxide are highly interesting. The conventional spraying process is limited to the availability of binary feedstock powders with defined compositions. The use of suspensions offers the opportunity for tailor-made chemical compositions: within the triangle of Cr2O3-TiO2-Al2O3, each mixture of oxides can be created. Criteria for the selection of raw materials as well as the relevant aspects for the development of binary suspensions in the Cr2O3-TiO2-Al2O3 system to be used as feedstock for thermal spraying are presented. This formulation of binary suspensions required the development of water-based single-oxide suspensions with suitable behavior; otherwise, the interaction between the particles while mixing could lead up to a formation of agglomerates, which affect both the stability of the spray process and the coating properties. For the validation of this formulation procedure, binary Cr2O3-TiO2 and Al2O3-TiO2 suspensions were developed and sprayed using the S-HVOF process. The binary coatings were characterized and discussed in terms of microstructure and microhardness.

  8. Development and Application of Binary Suspensions in the Ternary System Cr2O3-TiO2-Al2O3 for S-HVOF Spraying

    Science.gov (United States)

    Potthoff, Annegret; Kratzsch, Robert; Barbosa, Maria; Kulissa, Nick; Kunze, Oliver; Toma, Filofteia-Laura

    2018-03-01

    Compositions in the system Cr2O3-TiO2-Al2O3 are among the most used ceramic materials for thermally sprayed coating solutions. Cr2O3 coatings present good sliding wear resistance; Al2O3 coatings show excellent insulation behavior and TiO2 striking corrosion properties. In order to combine these properties, coatings containing more than one oxide are highly interesting. The conventional spraying process is limited to the availability of binary feedstock powders with defined compositions. The use of suspensions offers the opportunity for tailor-made chemical compositions: within the triangle of Cr2O3-TiO2-Al2O3, each mixture of oxides can be created. Criteria for the selection of raw materials as well as the relevant aspects for the development of binary suspensions in the Cr2O3-TiO2-Al2O3 system to be used as feedstock for thermal spraying are presented. This formulation of binary suspensions required the development of water-based single-oxide suspensions with suitable behavior; otherwise, the interaction between the particles while mixing could lead up to a formation of agglomerates, which affect both the stability of the spray process and the coating properties. For the validation of this formulation procedure, binary Cr2O3-TiO2 and Al2O3-TiO2 suspensions were developed and sprayed using the S-HVOF process. The binary coatings were characterized and discussed in terms of microstructure and microhardness.

  9. Characteristics of Surface Ozone in Agra, a Sub-urban site in Indo ...

    Indian Academy of Sciences (India)

    65

    Department of Chemistry, Faculty of Science, Dayalbagh Educational Institute, Dayalbagh, Agra. 4. 282110, India ... location in the atmosphere, O3 can influence human health and climate; in the stratosphere, O3. 51 ...... ozone exposure: reconciling science and standard setting in the United States, Europe, and Asia;. 582.

  10. Comparative cardiopulmonary effects of particulate matter- and ozone-enhanced smog atmospheres in mice

    Science.gov (United States)

    This study was conducted to compare the cardiac effects of particulate matter (PM)-enhanced and ozone(O3)-enhanced smog atmospheres in mice. We hypothesized that O3-enhanced smog would cause greater cardiac dysfunction than PM-enhanced smog due to the higher concentrations of irr...

  11. Reclaimed water quality during simulated ozone-managed aquifer recharge hybrid

    KAUST Repository

    Yoon, Min

    2014-06-17

    A synergistic hybrid of two treatment processes, managed aquifer recharge (MAR) combined with ozonation, was proposed for wastewater reclamation and water reuse applications. Batch reactor and soil-column experiments were performed to evaluate reclaimed water quality using various chemical and bacterial analyses. The ozone process was optimized at low ozone dose (0.5 mg O3/mg DOC) based on the control of N-nitrosodimethylamine (<5 ng L-1) and bromate (<10 μg L-1), and applied prior to (i.e., O3-MAR) and after MAR (i.e., MAR-O3). This work demonstrates that effluent organic matter (EfOM) and trace organic contaminants (TOrCs) are effectively removed during the hybrid process of MAR combined ozonation, compared to MAR only. Based on fluorescence excitation-emission matrices analyses, both MAR and ozonation reduce soluble microbial (protein-like) products while only ozonation contributes in reducing humic and fulvic substances. Even at low ozone dose of 0.5 mg O3/mg DOC, the O3-MAR hybrid significantly reduced UV absorbance by ≥2 m-1, BDOC by ≥64 %, and total (Σ) TOrC concentrations by ≥70 % in the effluent water quality. However, no significant improvement (<10 %) in the removal of Σ16 TOrC concentrations was observed for the increased ozone dose at 1.0 mg O3/mg DOC during MAR combined ozonation processes. Overall, O3-MAR was effective by 10-30 % in treating effluent water than MAR based on DOC, UV254 nm EfOM, TOrC and bacterial analyses. In addition, MAR-O3 was better than O3-MAR for the reduction of fluorescence (close MQ), TOrCs (≥74 %) and total bacteria cell concentrations (>3 log reduction). Therefore, implementing MAR prior to ozonation appears to remove the bio-amenable compounds that react rapidly with ozone, thereby reducing oxidant demand and treatment efficiency. © 2014 Springer-Verlag Berlin Heidelberg.

  12. Surface and catalytic properties of MoO3/Al2O3 system doped with Co3O4

    International Nuclear Information System (INIS)

    Zahran, A.A.; Shaheen, W.M.; El-Shobaky, G.A.

    2005-01-01

    Thermal solid-solid interactions in cobalt treated MoO 3 /Al 2 O 3 system were investigated using X-ray powder diffraction. The solids were prepared by wet impregnation method using Al(OH) 3 , ammonium molybdate and cobalt nitrate solutions, drying at 100 deg. C then calcination at 300, 500, 750 and 1000 deg. C. The amount of MoO 3 , was fixed at 16.67 mol% and those of cobalt oxide were varied between 2.04 and 14.29 mol% Co 3 O 4 . Surface and catalytic properties of various solid samples precalcined at 300 and 500 deg. C were studied using nitrogen adsorption at -196 deg. C, conversion of isopropanol at 200-500 deg. C and decomposition of H 2 O 2 at 30-50 deg. C. The results obtained revealed that pure mixed solids precalcined at 300 deg. C consisted of AlOOH and MoO 3 phases. Cobalt oxide-doped samples calcined at the same temperature consisted also of AlOOH, MoO 3 and CoMoO 4 compounds. The rise in calcination temperature to 500 deg. C resulted in complete conversion of AlOOH into very poorly crystalline γ-Al 2 O 3 . The further increase in precalcination temperature to 750 deg. C led to the formation of Al 2 (MoO 4 ) 3 , κ-Al 2 O 3 besides CoMoO 4 and un-reacted portion of Co 3 O 4 in the samples rich in cobalt oxide. Pure MoO 3 /Al 2 O 3 preheated at 1000 deg. C composed of MoO 3 -αAl 2 O 3 solid solution (acquired grey colour). The doped samples consisted of the same solid solution together with CoMoO 4 and CoAl 2 O 4 compounds. The increase in calcination temperature of pure and variously doped solids from 300 to 500 deg. C increased their specific surface areas and total pore volume which suffered a drastic decrease upon heating at 750 deg. C. Doping the investigated system with small amounts of cobalt oxide (2.04 and 4 mol%) followed by heating at 300 and 500 deg. C increased its catalytic activity in H 2 O 2 decomposition. This increase, measured at 300 deg. C, attained 25.4- and 12.9-fold for the solids precalcined at 300 and 500 deg. C, respectively

  13. Spatial clustering and meteorological drivers of summer ozone in Europe

    Science.gov (United States)

    Carro-Calvo, Leopoldo; Ordóñez, Carlos; García-Herrera, Ricardo; Schnell, Jordan L.

    2017-04-01

    We present a regionalization of summer near-surface ozone (O3) in Europe. For this purpose we apply a K-means algorithm on a gridded MDA8 O3 (maximum daily average 8-h ozone) dataset covering a European domain [15° W - 30° E, 35°-70° N] at 1° x 1° horizontal resolution for the 1998-2012 period. This dataset was compiled by merging observations from the European Monitoring and Evaluation Programme (EMEP) and the European Environment Agency's air quality database (AirBase). The K-means method allows identifying sets of different regions where the O3 concentrations present coherent spatiotemporal patterns and are thus expected to be driven by similar meteorological factors. After some testing, 9 regions were selected: the British Isles, North-Central Europe, Northern Scandinavia, the Baltic countries, the Iberian Peninsula, Western Europe, South-Central Europe, Eastern Europe and the Balkans. For each region we examine the synoptic situations associated with elevated ozone extremes (days exceeding the 95th percentile of the summer MDA8 O3 distribution). Our analyses reveal that there are basically two different kinds of regions in Europe: (a) those in the centre and south of the continent where ozone extremes are associated with elevated temperature within the same region and (b) those in northern Europe where ozone extremes are driven by southerly advection of air masses from warmer, more polluted areas. Even when the observed patterns were initially identified only for days registering high O3 extremes, all summer days can be projected on such patterns to identify the main modes of meteorological variability of O3. We have found that such modes are partly responsible for the day-to-day variability in the O3 concentrations and can explain a relatively large fraction (from 44 to 88 %, depending on the region) of the interannual variability of summer mean MDA8 O3 during the period of analysis. On the other hand, some major teleconnection patterns have been tested

  14. The Antarctic ozone hole

    International Nuclear Information System (INIS)

    Jones, Anna E

    2008-01-01

    Since the mid 1970s, the ozone layer over Antarctica has experienced massive destruction during every spring. In this article, we will consider the atmosphere, and what ozone and the ozone layer actually are. We explore the chemistry responsible for the ozone destruction, and learn about why conditions favour ozone destruction over Antarctica. For the historical perspective, the events leading up to the discovery of the 'hole' are presented, as well as the response from the international community and the measures taken to protect the ozone layer now and into the future

  15. Nitrogen oxides and ozone fluxes from an oilseed-rape management cycle: the influence of cattle slurry application

    Science.gov (United States)

    Vuolo, Raffaella M.; Loubet, Benjamin; Mascher, Nicolas; Gueudet, Jean-Christophe; Durand, Brigitte; Laville, Patricia; Zurfluh, Olivier; Ciuraru, Raluca; Stella, Patrick; Trebs, Ivonne

    2017-05-01

    This study reports NO, NO2 and O3 mixing ratios and flux measurements using the eddy covariance method during a 7-month period over an oilseed-rape field, spanning an organic and a mineral fertilisation event. Cumulated NO emissions during the whole period were in agreement with previous studies and showed quite low emissions of 0.26 kg N ha-1 with an emission factor of 0.27 %, estimated as the ratio between total N emitted in the form of NO and total N input. The NO emissions were higher following organic fertilisation in August due to conditions favouring nitrification (soil water content around 20 % and high temperatures), while mineral fertilisation in February did not result in high emissions. The ozone deposition velocity increased significantly after organic fertilisation. The analysis of the chemical and turbulent transport times showed that reactions between NO, NO2 and O3 below the measurement height occurred constantly throughout the 7-month period. Following organic fertilisation, the NO ground fluxes were 30 % larger than the NO fluxes at the measurement height (3.2 m), while the NO2 fluxes switched from deposition to emission during certain periods, being negative at the surface and positive at the measurement height. This phenomenon of apparent NO2 emissions appears to be significant during strong NO emissions and high O3 ambient mixing ratios, even on a bare soil during August.

  16. Use of pulse radiolysis for the study of the chemistry of aqueous ozone and ozonide solutions

    DEFF Research Database (Denmark)

    Sehested, Knud; Holcman, Jerzy; Bjergbakke, Erling

    1986-01-01

    The chemistry of aqeous ozone, O3, and ozonide, O3−, is of great interest from a technological, environmental and scientific point of view. The literature about their aqueous chemistry is extensive, the reaction mechanisms are still not well understood. The ozonide anion is a free radical that is...... reactions and provides kinetic data sufficient for computer simulations of aqueous O3/O3− chemistry.......The chemistry of aqeous ozone, O3, and ozonide, O3−, is of great interest from a technological, environmental and scientific point of view. The literature about their aqueous chemistry is extensive, the reaction mechanisms are still not well understood. The ozonide anion is a free radical...

  17. Ag/α-Fe2O3 hollow microspheres: Preparation and application for hydrogen peroxide detection

    Science.gov (United States)

    Kang, Xinyuan; Wu, Zhiping; Liao, Fang; Zhang, Tingting; Guo, Tingting

    2015-09-01

    In this paper, we demonstrated a simple approach for preparing α-Fe2O3 hollow spheres by mixing ferric nitrate aqueous and glucose in 180 °C. The glucose was found to act as a soft template in the process of α-Fe2O3 hollow spheres formation. Ag/α-Fe2O3 hollow nanocomposite was obtained under UV irradiation without additional reducing agents or initiators. Synthesized Ag/α-Fe2O3 hollow composites exhibited remarkable catalytic performance toward H2O2 reduction. The electrocatalytic activity mechanism of Ag/α-Fe2O3/GCE were discussed toward the reduction of H2O2 in this paper.

  18. Enhanced magnetization in morphologically and magnetically distinct BiFeO3 and La0.7Sr0.3MnO3 composites

    Science.gov (United States)

    Pillai, Shreeja; Reshi, Hilal Ahmad; Bagwaiya, Toshi; Banerjee, Alok; Shelke, Vilas

    2017-09-01

    Nanomaterials exhibit properties different from those of their bulk counterparts. The modified magnetic characteristics of manganite nanoparticles were exploited to improve magnetization in multiferroic BiFeO3 compound. We studied the composite of two morphologically and magnetically distinct compounds BiFeO3 (BFO) and La0.7Sr0.3MnO3 (LSMO). The microcrystalline BiFeO3 sample was prepared by solid state reaction method and the nanocrystalline La0.7Sr0.3MnO3 by sol-gel method. Composites with nominal compositions (1-x)BiFeO3-(x)La0.7Sr0.3MnO3 were prepared by modified solid state reaction method. The phase purity and crystal structures were checked by using X-ray diffraction. The formation of composites with phase separated BFO and LSMO was confirmed using Raman and Fourier Transform Infrared spectroscopy studies. The composite samples showed relatively high value of magnetization with finite coercivity. This improvement in magnetic behavior is ascribed to the coexistence of multiple magnetic orderings in composite samples. We scrutinized the possibility of oxygen vacancy or Fe mixed valency formation in the samples using X-ray photoelectron spectroscopy technique.

  19. Effect of surface modification of BiFeO3 on the dielectric, ferroelectric, magneto-dielectric properties of polyvinylacetate/BiFeO3 nanocomposites

    Directory of Open Access Journals (Sweden)

    O. P. Bajpai

    2014-09-01

    Full Text Available Bismuth ferrite (BiFeO3 is considered as one of the most promising materials in the field of multiferroics. In this work, a simple green route as well as synthetic routes has been used for the preparation of pure phase BiFeO3. An extract of Calotropis Gigantea flower was used as a reaction medium in green route. In each case so formed BiFeO3 particles are of comparable quality. These particles are in the range of 50–60 nm and exhibit mixed morphology (viz., spherical and cubic as confirmed by TEM analysis. These pure phase BiFeO3 nanoparticles were first time surface modified effectively by mean of two silylating agent’s viz., tetraethyl orthosilicate (TEOS and (3-Aminopropyltriethoxysilane (APTES. Modified and unmodified BiFeO3 nanoparticles were efficiently introduced into polyvinylacetate (PVAc matrix. It has been shown that nanocomposite prepared by modified BiFeO3 comprise superior dispersion characteristics, improved ferroelectric properties and favorable magneto-dielectric properties along with excellent wettability in compare to nanocomposite prepared by unmodified BiFeO3. These preliminary results demonstrate possible applications of this type of nanocomposites particularly in the field of multiferroic coating and adhesives.

  20. Aerosol indirect effect on tropospheric ozone via lightning

    Science.gov (United States)

    Yuan, T.; Remer, L. A.; Bian, H.; Ziemke, J. R.; Albrecht, R. I.; Pickering, K. E.; Oreopoulos, L.; Goodman, S. J.; Yu, H.; Allen, D. J.

    2012-12-01

    Tropospheric ozone (O3) is a pollutant and major greenhouse gas and its radiative forcing is still uncertain. The unresolved difference between modeled and observed natural background O3 concentrations is a key source of the uncertainty. Here we demonstrate remarkable sensitivity of lightning activity to aerosol loading with lightning activity increasing more than 30 times per unit of aerosol optical depth over our study area. We provide observational evidence that indicates the observed increase in lightning activity is caused by the influx of aerosols from a volcano. Satellite data analyses suggest O3 is increased as a result of aerosol-induced increase in lightning and lightning produced NOx. Model simulations with prescribed lightning change corroborate the satellite data analysis. This aerosol-O3 connection is achieved via aerosol increasing lightning and thus lightning produced nitrogen oxides. This aerosol-lightning-ozone link provides a potential physical mechanism that may account for a part of the model-observation difference in background O3 concentration. More importantly, O3 production increase from this link is concentrated in the upper troposphere, where O3 is most efficient as a greenhouse gas. Both of these implications suggest a stronger O3 historical radiative forcing. This introduces a new pathway, through which increasing in aerosols from pre-industrial time to present day enhances tropospheric O3 production. Aerosol forcing thus has a warming component via its effect on O3 production. Sensitivity simulations suggest that 4-8% increase of tropospheric ozone, mainly in the tropics, is expected if aerosol-lighting-ozone link is parameterized, depending on the background emission scenario. We note, however, substantial uncertainties remain on the exact magnitude of aerosol effect on tropospheric O3 via lightning. The challenges for obtaining a quantitative global estimate of this effect are also discussed. Our results have significant implications

  1. Revised (Mixed-Effects) Estimation for Forest Burning Emissions of Gases and Smoke, Fire/Emission Factor Typology, and Potential Remote Sensing Classification of Types for Ozone and Black-Carbon Simulation

    Science.gov (United States)

    Chatfield, Robert B.; Segal Rozenhaimer, M.

    2014-01-01

    We summarize recent progress (a) in correcting biomass burning emissions factors deduced from airborne sampling of forest fire plumes, (b) in understanding the variability in reactivity of the fresh plumes sampled in ARCTAS (2008), DC3 (2012), and SEAC4RS (2013) airborne missions, and (c) in a consequent search for remotely sensed quantities that help classify forest-fire plumes. Particle properties, chemical speciation, and smoke radiative properties are related and mutually informative, as pictures below suggest (slopes of lines of same color are similar). (a) Mixed-effects (random-effects) statistical modeling provides estimates of both emission factors and a reasonable description of carbon-burned simultaneously. Different fire plumes will have very different contributions to volatile organic carbon reactivity; this may help explain differences of free NOx(both gas- and particle-phase), and also of ozone production, that have been noted for forest-fire plumes in California. Our evaluations check or correct emission factors based on sequential measurements (e.g., the Normalized Ratio Enhancement and similar methods). We stress the dangers of methods relying on emission-ratios to CO. (b) This work confirms and extends many reports of great situational variability in emissions factors. VOCs vary in OH reactivity and NOx-binding. Reasons for variability are not only fuel composition, fuel condition, etc., but are confused somewhat by rapid transformation and mixing of emissions. We use "unmixing" (distinct from mixed-effects) statistics and compare briefly to approaches like neural nets. We focus on one particularly intense fire the notorious Yosemite Rim Fire of 2013. In some samples, NOx activity was not so suppressed by binding into nitrates as in other fires. While our fire-typing is evolving and subject to debate, the carbon-burned delta(CO2+CO) estimates that arise from mixed effects models, free of confusion by background-CO2 variation, should provide a

  2. Understanding and improving global crop response to ozone pollution

    Science.gov (United States)

    Concentrations of ground-level ozone ([O3]) over much of the Earth’s land surface have more than doubled since pre-industrial times. The air pollutant is highly variable over time and space, which makes it difficult to assess the average agronomic and economic impacts of the pollutant as well as to ...

  3. Ozone exposure affects leaf wettability and tree water balance

    NARCIS (Netherlands)

    Schreuder, M.D.J.; Hove, van L.W.A.; Brewer, C.A.

    2001-01-01

    Relatively little is known about the influences of growing-season background ozone (O3) concentrations on leaf cuticles and foliar water loss. Using fumigation chambers, leaf wettability and foliar water loss were studied in two poplar species, Populus nigra and P. euramericana, and a conifer,

  4. effect of ambient levels of ozone on photosynthetic components

    African Journals Online (AJOL)

    ACSS

    To clarify the long-term effects of ambient levels of tropospheric ozone (O3) on ... (Rubisco), thus contributing to the reduction in net photosynthetic rate at the .... USA). During the measurements, atmospheric. CO2 concentrations, air ...... productivity and implications for climate change. Annual Review of Plant Biology 63:.

  5. Effect of ambient levels of ozone on photosynthetic components and ...

    African Journals Online (AJOL)

    Effect of ambient levels of ozone on photosynthetic components and radical scavenging system in leaves of African cowpea varieties. ... The O3-induced significant reduction in catalase activity was observed in Blackeye at vegetative and reproductive growth stages; and in Asontem at reproductive growth stage. On the other ...

  6. On the impact of temperature on tropospheric ozone concentration ...

    Indian Academy of Sciences (India)

    The influence of temperature on tropospheric ozone (O3)concentrations in urban and photochemically polluted areas in the greater Athens region are investigated in the present study.Hourly values of the ambient air temperature used for studying the urban heat island effect in Athens were recorded at twenty-three ...

  7. Effects of Ozone and Photo‑Activated Disinfection against ...

    African Journals Online (AJOL)

    Objectives: The purpose of this study was to compare the antibacterial effects of gaseous ozone (O3) and photo‑activated disinfection (PAD) methods against Enterococcus faecalis (E. faecalis) biofilms. Materials and Methods: Sixty‑five human mandibular premolars with straight root canals were selected. After root canal ...

  8. Ozone slows stomatal response to light and leaf wounding in a Mediterranean evergreen broadleaf, Arbutus unedo.

    Science.gov (United States)

    Paoletti, Elena

    2005-04-01

    The effect of a 90-d ozone exposure (charcoal-filtered air or 110 nmol mol(-1) O3) on stomatal conductance (gs) was investigated in the Mediterranean evergreen broadleaf Arbutus unedo L. Ozone did not significantly reduce midday steady-state gs compared to controls. However, it slowed stomatal response to abrupt reduction of light intensity and to increasing water stress, applied by severing the leaf midrib. Ozone slowed stomatal closure, rather than aperture. Nevertheless, vein-cutting did not allow ozonated leaves to reach the pre-injury gs levels, like controls did, suggesting re-opening was still, slowly in progress. The sluggish behaviour was recorded 10 days after cessation of O3 exposure ("memory effect") and may affect stomatal control in response to sunflecks and leaf wounding. Mediterranean evergreen broadleaves are regarded as tolerant to O3 exposure. Nevertheless, measurements of steady-state gs at midday may not account for altered stomatal responses to stressors.

  9. Stomatal uptake and stomatal deposition of ozone in isoprene and monoterpene emitting plants.

    Science.gov (United States)

    Fares, S; Loreto, F; Kleist, E; Wildt, J

    2008-01-01

    Volatile isoprenoids were reported to protect plants against ozone. To understand whether this could be the result of a direct scavenging of ozone by these molecules, the stomatal and non-stomatal uptake of ozone was estimated in plants emitting isoprene or monoterpenes. Ozone uptake by holm oak (Quercus ilex, a monoterpene emitter) and black poplar (Populus nigra, an isoprene emitter) was studied in whole plant enclosures (continuously stirred tank reactors, CSTR). The ozone uptake by plants was estimated measuring ozone concentration at the inlet and outlet of the reactors, after correcting for the uptake of the enclosure materials. Destruction of ozone at the cuticle or at the plant stems was found to be negligible compared to the ozone uptake through the stomata. For both plant species, a relationship between stomatal conductance and ozone uptake was found. For the poplar, the measured ozone losses were explained by the uptake of ozone through the stomata only, and ozone destruction by gas phase reactions with isoprene was negligible. For the oak, gas phase reactions of ozone with the monoterpenes emitted by the plants contributed significantly to ozone destruction. This was confirmed by two different experiments showing a) that in cases of high stomatal conductance but under low CO(2) concentration, a reduction of monoterpene emission was still associated with reduced O(3) uptake; and b) that ozone losses due to the gas phase reactions only can be measured when using the exhaust from a plant chamber to determine the gas phase reactivity in an empty reaction chamber. Monoterpenes can therefore relevantly scavenge ozone at leaf level contributing to protection against ozone.

  10. Photochemical age of air pollutants, ozone, and secondary organic aerosol in transboundary air observed on Fukue Island, Nagasaki, Japan

    Science.gov (United States)

    Irei, Satoshi; Takami, Akinori; Sadanaga, Yasuhiro; Nozoe, Susumu; Yonemura, Seiichiro; Bandow, Hiroshi; Yokouchi, Yoko

    2016-04-01

    Study in summer 2002. The similarity may imply the production of similar SOA component, possibly humic-like substances. Meanwhile, the comparison of t[OH] with O3 mixing ratio showed that there was a strong proportional relationship between O3 mixing ratio and t[OH]. A first approximation gave the increasing rate and background mixing ratio of ozone as (3.48 ± 0.06) × 10-7 × [OH] ppbv h-1 and 30.7 ppbv, respectively. The information given here can be used for prediction of secondary pollution magnitude in the outflow from the Asian continent.

  11. Polar boundary layer bromine explosion and ozone depletion events in the chemistry-climate model EMAC v2.52: implementation and evaluation of AirSnow algorithm

    Science.gov (United States)

    Falk, Stefanie; Sinnhuber, Björn-Martin

    2018-03-01

    Ozone depletion events (ODEs) in the polar boundary layer have been observed frequently during springtime. They are related to events of boundary layer enhancement of bromine. Consequently, increased amounts of boundary layer volume mixing ratio (VMR) and vertical column densities (VCDs) of BrO have been observed by in situ observation, ground-based as well as airborne remote sensing, and from satellites. These so-called bromine explosion (BE) events have been discussed serving as a source of tropospheric BrO at high latitudes, which has been underestimated in global models so far. We have implemented a treatment of bromine release and recycling on sea-ice- and snow-covered surfaces in the global chemistry-climate model EMAC (ECHAM/MESSy Atmospheric Chemistry) based on the scheme of Toyota et al. (2011). In this scheme, dry deposition fluxes of HBr, HOBr, and BrNO3 over ice- and snow-covered surfaces are recycled into Br2 fluxes. In addition, dry deposition of O3, dependent on temperature and sunlight, triggers a Br2 release from surfaces associated with first-year sea ice. Many aspects of observed bromine enhancements and associated episodes of near-complete depletion of boundary layer ozone, both in the Arctic and in the Antarctic, are reproduced by this relatively simple approach. We present first results from our global model studies extending over a full annual cycle, including comparisons with Global Ozone Monitoring Experiment (GOME) satellite BrO VCDs and surface ozone observations.

  12. The impact of using different ozone cross sections on ozone profile retrievals from OMI UV measurements

    International Nuclear Information System (INIS)

    Liu, Cheng; Liu, Xiong; Chance, Kelly

    2013-01-01

    We compare three datasets of high-resolution O 3 cross sections and evaluate the effects of using these cross sections on O 3 profile retrievals from OMI UV (270–330 nm) measurements. These O 3 cross sections include Brion–Daumont–Malicet (BDM), Bass–Paur (BP) and a new dataset measured by Serdyuchenko et al. (SGWCB), which is made from measurements at more temperatures and in a wider temperature range than BDM and BP, 193–293 K. Relative to the BDM dataset, the SGWCB data have systematic biases of −2 to +4% for 260–340 nm, and the BP data have smaller biases of 1–2% below 315 nm but larger spiky biases of up to ±6% at longer wavelengths. These datasets show distinctly different temperature dependences. Using different cross sections can significantly affect atmospheric retrievals. Using SGWCB data leads to retrieval failure for almost half of the OMI spatial pixels, producing large negative ozone values that cannot be handled by radiative transfer models and using BP data leads to large fitting residuals over 310–330 nm. Relative to the BDM retrievals, total ozone retrieved using original SGWCB data (with linear temperature interpolation/extrapolation) typically shows negative biases of 5–10 DU; retrieved tropospheric ozone column generally shows negative biases of 5–10 DU and 5–20 DU for parameterized and original SGWCB data, respectively. Compared to BDM retrievals, ozone profiles retrieved with BP/SGWCB data on average show large altitude-dependent oscillating differences of up to ±20–40% biases below ∼20 km with almost opposite bias patterns. Validation with ozonesonde observations demonstrates that the BDM retrievals agree well with ozonesondes, to typically within 10%, while both BP and SGWCB retrievals consistently show large altitude-dependent biases of up to ±20–70% below 20 km. Therefore, we recommend using the BDM dataset for ozone profile retrievals from UV measurements. Its improved performance is likely due to its

  13. Acclimation to Chronic O3 in Field-grown Soybean is Characterized by Increased Levels of TCA Cycle Transcripts and ROS Scavenging Compounds in Addition to Decreased Photosynthetic Capacity

    Science.gov (United States)

    Tropospheric ozone (O3) is a pollutant that is generated by volatile organic compounds, nitrogen oxides and sunlight. When plants take in O3 through stomata, harmful reactive oxygen species (ROS) are produced that induce the production of ROS scavenging antioxidants. Climate change predictions indic...

  14. Solar photolysis of ozone to singlet D oxygen atoms, O(1D)

    International Nuclear Information System (INIS)

    Blackburn, T.E.

    1984-01-01

    Ground level solar photolysis rate coefficients (jO 3 ) were measured for the photolysis of ozone by sunlight, (O 3 + hnu( 2 + O( 1 D)). The O( 1 D) atoms produced react with nitrous oxide (N 2 O) carrier gas to form higher oxides of nitrogen (NOx). Computer model predictions show that these are mainly N 2 O 5 and NO 3 . Seventy five days of data were taken during the summer of 1983, at Ann Arbor, Michigan, and are presented in the appendix. Over 390 clear air jO 3 values are correlated with effective ozone column densities, and 500 nm aerosol optical depths. The solar direct beam component of ozone photolysis was measured for the different aerosol optical depths, over two entire days from sun-up to sun-down. Temperature dependence of jO 3 was measured from 10 0 C to 39 0 C with good agreement to models. Comparison of jO 3 versus global and ultraviolet radiation are made under various ozone column densities and aerosol optical depths. A jO 3 -photometer was built using an interference filter to pass only ozone photolyzing light. Improvements to instrumental parts are shown for balloon and aircraft flyable payloads

  15. Raman spectroscopic study of structure and crystallisation behaviour of MoO3-La2O3-B2O3 and MoO3-ZnO-B2O3 glasses

    Science.gov (United States)

    Aleksandrov, L.; Komatsu, T.; Nagamine, K.; Oishi, K.

    2011-03-01

    In this study, we focus on the structure and crystallization behavior of MoO3-La2O3-B2O3 and MoO3-ZnO-B2O3 glasses. Glasses of both systems were prepared by a melt-quenching method. The thermal stability of the glasses was examined using differential thermal anaysis (DTA) measurements, and the crystalline phases formed by heat treatments were identified by X-ray diffraction (XRD) analysis. Raman scattering spectra at room temperature for the glasses and crystallized samples were measured with a laser microscope operated with an Ar+ (wavelength: 488 nm) laser. DTA measurements indicated that the thermal stability against crystallization of the glasses decreases drastically with increasing MoO3 content. XRD analysis confirmed that crystallization at 600°C for 3 h of glass with the nominal composition of 50MoO3-25La2O3-25B2O3 resulted in the formation of monoclinic LaMoBO6. Crystallization of 50ZnO-xMoO3-(50-x)B2O3 glasses formed triclinic α-ZnMoO4 as an initial crystalline phase. Moreover, for 30 mol% MoO3 glass, transmission electron microscopy observations showed the formation of α-ZnMoO4 nanocrystals with a diameter of ~ 5 nm. Raman bands at 860, 930 and 950 cm-1 suggested that the coordination state of Mo6+ ions in the glasses were mainly (MoO4)2- tetrahedral units. Therefore, MoO3-containing glasses have good potential for optical applications.

  16. Vacancy induced metallicity at the CaHfO3/SrTiO3 interface

    KAUST Repository

    Nazir, Safdar; Pulikkotil, J. J.; Schwingenschlö gl, Udo; Singh, Nirpendra

    2011-01-01

    Density functional theory is used to study the electronic properties of the oxide heterointerfaceCaHfO3/SrTiO3. Structural relaxation is carried out with and without O vacancies. As compared to related interfaces, strongly reduced octahedral distortions are found. Stoichiometric interfaces between the wide band gap insulatorsCaHfO3 and SrTiO3 turn out to exhibit an insulating state. However, interface metallicity is introduced by O vacancies, in agreement with experiment. The reduced octahedral distortions and necessity of O deficiency indicate a less complicated mechanism for the creation of the interfacial electron gas.

  17. Vacancy induced metallicity at the CaHfO3/SrTiO3 interface

    KAUST Repository

    Nazir, Safdar

    2011-03-31

    Density functional theory is used to study the electronic properties of the oxide heterointerfaceCaHfO3/SrTiO3. Structural relaxation is carried out with and without O vacancies. As compared to related interfaces, strongly reduced octahedral distortions are found. Stoichiometric interfaces between the wide band gap insulatorsCaHfO3 and SrTiO3 turn out to exhibit an insulating state. However, interface metallicity is introduced by O vacancies, in agreement with experiment. The reduced octahedral distortions and necessity of O deficiency indicate a less complicated mechanism for the creation of the interfacial electron gas.

  18. Metastable honeycomb SrTiO_3/SrIrO_3 heterostructures

    International Nuclear Information System (INIS)

    Anderson, T. J.; Ryu, S.; Podkaminer, J. P.; Ma, Y.; Eom, C. B.; Zhou, H.; Xie, L.; Irwin, J.; Rzchowski, M. S.; Pan, X. Q.

    2016-01-01

    Recent theory predictions of exotic band topologies in (111) honeycomb perovskite SrIrO_3 layers sandwiched between SrTiO_3 have garnered much attention in the condensed matter physics and materials communities. However, perovskite SrIrO_3 film growth in the (111) direction remains unreported, as efforts to synthesize pure SrIrO_3 on (111) perovskite substrates have yielded films with monoclinic symmetry rather than the perovskite structure required by theory predictions. In this study, we report the synthesis of ultra-thin metastable perovskite SrIrO_3 films capped with SrTiO_3 grown on (111) SrTiO_3 substrates by pulsed laser deposition. The atomic structure of the ultra-thin films was examined with scanning transmission electron microscopy (STEM), which suggests a perovskite layering distinct from the bulk SrIrO_3 monoclinic phase. In-plane 3-fold symmetry for the entire heterostructure was confirmed using synchrotron surface X-ray diffraction to measure symmetry equivalent crystal truncation rods. Our findings demonstrate the ability to stabilize (111) honeycomb perovskite SrIrO_3, which provides an experimental avenue to probe the phenomena predicted for this material system.

  19. The Impact of Iodide-Mediated Ozone Deposition and Halogen Chemistry on Surface Ozone Concentrations Across the Continental United States

    Science.gov (United States)

    The air quality of many large coastal areas in the United States is affected by the confluence of polluted urban and relatively clean marine airmasses, each with distinct atmospheric chemistry. In this context, the role of iodide-mediated ozone (O3) deposition over seawater and m...

  20. GOZCARDS Source Data for Ozone Monthly Zonal Means on a Geodetic Latitude and Pressure Grid V1.01

    Data.gov (United States)

    National Aeronautics and Space Administration — The GOZCARDS Source Data for Ozone Monthly Zonal Averages on a Geodetic Latitude and Pressure Grid product (GozSmlpO3) contains zonal means and related information...

  1. GOZCARDS Merged Data for Ozone Monthly Zonal Means on a Geodetic Latitude and Pressure Grid V1.01

    Data.gov (United States)

    National Aeronautics and Space Administration — The GOZCARDS Merged Data for Ozone Monthly Zonal Averages on a Geodetic Latitude and Pressure Grid product (GozMmlpO3) contains zonal means and related information...

  2. Ozone zonal asymmetry and planetary wave characterization during Antarctic spring

    Directory of Open Access Journals (Sweden)

    I. Ialongo

    2012-03-01

    Full Text Available A large zonal asymmetry of ozone has been observed over Antarctica during winter-spring, when the ozone hole develops. It is caused by a planetary wave-driven displacement of the polar vortex. The total ozone data by OMI (Ozone Monitoring Instrument and the ozone profiles by MLS (Microwave Limb Sounder and GOMOS (Global Ozone Monitoring by Occultation of Stars were analysed to characterize the ozone zonal asymmetry and the wave activity during Antarctic spring. Both total ozone and profile data have shown a persistent zonal asymmetry over the last years, which is usually observed from September to mid-December. The largest amplitudes of planetary waves at 65° S (the perturbations can achieve up to 50% of zonal mean values is observed in October. The wave activity is dominated by the quasi-stationary wave 1 component, while the wave 2 is mainly an eastward travelling wave. Wave numbers 1 and 2 generally explain more than the 90% of the ozone longitudinal variations. Both GOMOS and MLS ozone profile data show that ozone zonal asymmetry covers the whole stratosphere and extends up to the altitudes of 60–65 km. The wave amplitudes in ozone mixing ratio decay with altitude, with maxima (up to 50% below 30 km.

    The characterization of the ozone zonal asymmetry has become important in the climate research. The inclusion of the polar zonal asymmetry in the climate models is essential for an accurate estimation of the future temperature trends. This information might also be important for retrieval algorithms that rely on ozone a priori information.

  3. Attribution of ozone changes to dynamical and chemical processes in CCMs and CTMs

    Directory of Open Access Journals (Sweden)

    H. Garny

    2011-04-01

    Full Text Available Chemistry-climate models (CCMs are commonly used to simulate the past and future development of Earth's ozone layer. The fully coupled chemistry schemes calculate the chemical production and destruction of ozone interactively and ozone is transported by the simulated atmospheric flow. Due to the complexity of the processes acting on ozone it is not straightforward to disentangle the influence of individual processes on the temporal development of ozone concentrations. A method is introduced here that quantifies the influence of chemistry and transport on ozone concentration changes and that is easily implemented in CCMs and chemistry-transport models (CTMs. In this method, ozone tendencies (i.e. the time rate of change of ozone are partitioned into a contribution from ozone production and destruction (chemistry and a contribution from transport of ozone (dynamics. The influence of transport on ozone in a specific region is further divided into export of ozone out of that region and import of ozone from elsewhere into that region. For this purpose, a diagnostic is used that disaggregates the ozone mixing ratio field into 9 separate fields according to in which of 9 predefined regions of the atmosphere the ozone originated. With this diagnostic the ozone mass fluxes between these regions are obtained. Furthermore, this method is used here to attribute long-term changes in ozone to chemistry and transport. The relative change in ozone from one period to another that is due to changes in production or destruction rates, or due to changes in import or export of ozone, are quantified. As such, the diagnostics introduced here can be used to attribute changes in ozone on monthly, interannual and long-term time-scales to the responsible mechanisms. Results from a CCM simulation are shown here as examples, with the main focus of the paper being on introducing the method.

  4. Tropospheric Ozone Pollution from Space: New Views from the TOMS (Total Ozone Mapping Spectrometer) Instrument

    Science.gov (United States)

    Thompson, Anne M.; Hudson, Robert D.; Frolov, Alexander D.; Witte, Jacquelyn C.; Kucsera, Tom L.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    New products from the TOMS (Total Ozone Mapping Spectrometer) >satellite instrument can resolve pollution events in tropical and mid-latitudes, Over the past several years, we have developed tropospheric ozone data sets by two methods. The modified-residual technique [Hudson and Thompson, 1998; Thompson and Hudson, 1999] uses v. 7 TOMS total ozone and is applicable to tropical regimes in which the wave-one pattern in total ozone is observed. The TOMSdirect method [Hudson et at., 2000] represents a new algorithm that uses TOMS radiances to extract tropospheric ozone in regions of constant stratospheric ozone and tropospheric ozone displaying high mixing ratios and variability characteristic of pollution, Absorbing aerosols (dust and smoke; Herman et at., 1997 Hsu et al., 1999), a standard TOMS product, provide transport and/or source marker information to interpret tropospheric ozone. For the Nimbus 7/TOMS observing period (1979-1992), modified-residual TTO (tropical tropospheric ozone) appears as two maps/month at I-degree latitude 2-degree longitude resolution at a homepage and digital data are available (20S to 20N) by ftp at http://metosrv2. umd.edu/tropo/ 14y_data.d. Preliminary modified-residual TTO data from the operational Earth-Probe/TOMS (1996- present) are posted in near-real-time at the same website. Analyses with the new tropospheric ozone and aerosol data are illustrated by the following (I)Signals in tropical tropospheric ozone column and smoke amount during ENSO (El Nino-Southern Oscillation) events, e.g. 1982-1983 and the intense ENSO induced biomass fires of 1997-1998 over the Indonesian region [Thompson et a[, 2000a, Thompson and Hudson, 1999]. (2) Trends in tropospheric ozone and smoke aerosols in various tropical regions (Atlantic, Pacific, Africa, Brazil). No significant trends were found for ozone from1980-1990 [Thompson and Hudson, 19991 although smoke aerosols increased during the period [Hsu et al.,1999]. (3) Temporal and spatial offsets

  5. Effects of ozone exposures on epicuticular wax of ponderosa pine needles

    International Nuclear Information System (INIS)

    Bytnerowicz, A.; Turunen, M.

    1994-01-01

    Two-year-old ponderosa pine (Pinus ponderosa L.) seedlings were exposed during the 1989 and 1990 growing seasons to ozone in open-top chambers placed in a forested location at Shirley Meadow, Greenhorn Mountain Range, Sierra Nevada. The ozone treatments were as follows: charcoal-filtered air (CF); charcoal-filtered air with addition of ambient concentrations of ozone (CF + O 3 ); and charcoal-filtered air with addition of doubled concentrations of ozone (CF + 2 x O 3 ). Ozone effects on ponderosa pine seedlings progressed and accumulated over two seasons of exposure. Throughout the first season, increased visible injury and accelerated senescence of the foliage were noted. Subsequently, during the second season of ozone exposure, various physiological and biochemical changes in the foliage took place. All these changes led to reduced growth and biomass of the seedlings. Epistomatal waxes of needles from the CA + 2 x O 3 treatment had an occluded appearance. This phenomenon may be caused by earlier phenological development of needles from the high-ozone treatments and disturbed development and synthesis of waxes. It may also be caused by chemical degradation of waxes by exposures to high ozone concentrations. (orig.)

  6. Ozone affects pollen viability and NAD(P)H oxidase release from Ambrosia artemisiifolia pollen

    International Nuclear Information System (INIS)

    Pasqualini, Stefania; Tedeschini, Emma; Frenguelli, Giuseppe; Wopfner, Nicole; Ferreira, Fatima; D'Amato, Gennaro; Ederli, Luisa

    2011-01-01

    Air pollution is frequently proposed as a cause of the increased incidence of allergy in industrialised countries. We investigated the impact of ozone (O 3 ) on reactive oxygen species (ROS) and allergen content of ragweed pollen (Ambrosia artemisiifolia). Pollen was exposed to acute O 3 fumigation, with analysis of pollen viability, ROS and nitric oxide (NO) content, activity of nicotinamide adenine dinucleotide phosphate (NAD[P]H) oxidase, and expression of major allergens. There was decreased pollen viability after O 3 fumigation, which indicates damage to the pollen membrane system, although the ROS and NO contents were not changed or were only slightly induced, respectively. Ozone exposure induced a significant enhancement of the ROS-generating enzyme NAD(P)H oxidase. The expression of the allergen Amb a 1 was not affected by O 3 , determined from the mRNA levels of the major allergens. We conclude that O 3 can increase ragweed pollen allergenicity through stimulation of ROS-generating NAD(P)H oxidase. - Highlights: → O 3 reduces the viability of ragweed pollen. → ROS and allergens of ragweed pollen were not affected by O 3 exposure. → O 3 enhances the activity of the ROS-generating enzyme NAD(P)H oxidase. → O 3 increases ragweed pollen allergenicity through NAD(P)H-oxidase stimulation. - This study focuses on the effects of the atmospheric pollutant ozone on ROS content and NAD(P)H oxidase activity of ragweed pollen grains.

  7. Kinetic removal of haloacetonitrile precursors by photo-based advanced oxidation processes (UV/H2O2, UV/O3, and UV/H2O2/O3).

    Science.gov (United States)

    Srithep, Sirinthip; Phattarapattamawong, Songkeart

    2017-06-01

    The objective of the study is to evaluate the performance of conventional treatment process (i.e., coagulation, flocculation, sedimentation and sand filtration) on the removals of haloacetonitrile (HAN) precursors. In addition, the removals of HAN precursors by photo-based advanced oxidation processes (Photo-AOPs) (i.e., UV/H 2 O 2 , UV/O 3 , and UV/H 2 O 2 /O 3 ) are investigated. The conventional treatment process was ineffective to remove HAN precursors. Among Photo-AOPs, the UV/H 2 O 2 /O 3 was the most effective process for removing HAN precursors, followed by UV/H 2 O 2 , and UV/O 3 , respectively. For 20min contact time, the UV/H 2 O 2 /O 3 , UV/H 2 O 2 , and UV/O 3 suppressed the HAN formations by 54, 42, and 27% reduction. Increasing ozone doses from 1 to 5 mgL -1 in UV/O 3 systems slightly improved the removals of HAN precursors. Changes in pH (6-8) were unaffected most of processes (i.e., UV, UV/H 2 O 2 , and UV/H 2 O 2 /O 3 ), except for the UV/O 3 system that its efficiency was low in the weak acid condition. The pseudo first-order kinetic constant for removals of dichloroacetonitrile precursors (k' DCANFP ) by the UV/H 2 O 2 /O 3 , UV/H 2 O 2 and standalone UV systems were 1.4-2.8 orders magnitude higher than the UV/O 3 process. The kinetic degradation of dissolved organic nitrogen (DON) tended to be higher than the k' DCANFP value. This study firstly differentiates the kinetic degradation between DON and HAN precursors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Ozone Antimicrobial Efficacy

    Science.gov (United States)

    Ozone is a potent germicide that has been used extensively for water purification. In Europe, 90 percent of the municipal water systems are treated with ozone, and in France, ozone has been used to treat drinking water since 1903. However, there is limited information on the bioc...

  9. Spatiotemporal modeling of ozone levels in Quebec (Canada): a comparison of kriging, land-use regression (LUR), and combined Bayesian maximum entropy-LUR approaches.

    Science.gov (United States)

    Adam-Poupart, Ariane; Brand, Allan; Fournier, Michel; Jerrett, Michael; Smargiassi, Audrey

    2014-09-01

    Ambient air ozone (O3) is a pulmonary irritant that has been associated with respiratory health effects including increased lung inflammation and permeability, airway hyperreactivity, respiratory symptoms, and decreased lung function. Estimation of O3 exposure is a complex task because the pollutant exhibits complex spatiotemporal patterns. To refine the quality of exposure estimation, various spatiotemporal methods have been developed worldwide. We sought to compare the accuracy of three spatiotemporal models to predict summer ground-level O3 in Quebec, Canada. We developed a land-use mixed-effects regression (LUR) model based on readily available data (air quality and meteorological monitoring data, road networks information, latitude), a Bayesian maximum entropy (BME) model incorporating both O3 monitoring station data and the land-use mixed model outputs (BME-LUR), and a kriging method model based only on available O3 monitoring station data (BME kriging). We performed leave-one-station-out cross-validation and visually assessed the predictive capability of each model by examining the mean temporal and spatial distributions of the average estimated errors. The BME-LUR was the best predictive model (R2 = 0.653) with the lowest root mean-square error (RMSE ;7.06 ppb), followed by the LUR model (R2 = 0.466, RMSE = 8.747) and the BME kriging model (R2 = 0.414, RMSE = 9.164). Our findings suggest that errors of estimation in the interpolation of O3 concentrations with BME can be greatly reduced by incorporating outputs from a LUR model developed with readily available data.

  10. Containerless solidification of BiFeO3 oxide under microgravity

    Science.gov (United States)

    Yu, Jianding; Arai, Yasutomo; Koshikawa, Naokiyo; Ishikawa, Takehito; Yoda, Shinichi

    1999-07-01

    Containerless solidification of BiFeO3 oxide has been carried out under microgravity with Electrostatic Levitation Furnace (ELF) aboard on the sounding rocket (TR-IA). It is a first containerless experiment using ELF under microgravity for studying the solidification of oxide insulator material. Spherical BiFeO3 sample with diameter of 5mm was heated by two lasers in oxygen and nitrogen mixing atmosphere, and the sample position by electrostatic force under pinpoint model and free drift model. In order to compare the solidification behavior in microgravity with on ground, solidification experiments of BiFeO3 in crucible and drop tube were carried out. In crucible experiment, it was very difficult to get single BiFeO3 phase, because segregation of Fe2O3 occured very fast and easily. In drop tube experiment, fine homogeneous BiFeO3 microstructure was obtained in a droplet about 300 μm. It implies that containerless processing can promote the phase selection in solidification. In microgravity experiment, because the heating temperature was lower than that of estimated, the sample was heated into Fe2O3+liquid phase region. Fe2O3 single crystal grew on the surface of the spherical sample, whose sample was clearly different from that observed in ground experiments.

  11. Ozone treatment of textile wastewater relevant to toxic effect elimination in marine environment

    OpenAIRE

    Guendy, H.R.

    2007-01-01

    Ozone is a powerful oxidizing agent. The reaction of ozone with organic compounds in aqueous media has achieved a variety of treatment goals. The advantage of ozonation over the other oxidants is that the degradable products of ozonation are generally non-toxic, its final products are CO2 and H2O, and also the residual O3 in the system changes in few minutes to O2 .Convential treatment of textile wastewater includes various combinations of biological (activated sludge), physical and chemical ...

  12. A high voltage DC switching power supply of corona discharge for ozone tube

    International Nuclear Information System (INIS)

    Ketkaew, Siseerot

    2007-08-01

    Full text: This paper presents a study of design and construction of a high voltage DC switching power supply for corona generating of ozone gas generating. This supply uses fly back converter at 3 k Vdc 30 khz and controls its operation using PWM techniques. I C TL494 is controlled of the switching. The testing of supply by putting high voltage to ozone gas tube at one-hour, the oxygen quantity 21 % of air, which ozone tube model enables ozone gas generating capacity of 95.2 mgO3/hr

  13. Ozone and/or sulfur dioxide effects on tissue permeability of petunia leaves

    Energy Technology Data Exchange (ETDEWEB)

    Elkiey, T.; Ormrod, D.P.

    1979-01-01

    Measurements were made of potassium (K ) and total electrolyte leakage from leaf discs of 42-day old petunia plants exposed to 40 pphm ozone (O3) and/or 80 pphm sulfur dioxide (SO2). In an O3-sensitive cultivar White Cascade, K leakage was not affected by O3 or O3 and SO2 after 4 h exposure, but greatly increased by 4 h day exposure for 4 days to O3, SO2, or O3 and SO2. There was an indication of decreased K leakage from plants exposed for 4 h to SO2. Total electrolyte leakage was greater from leaf discs of White Cascade and White Magic, an intermediate sensitivity cultivar, than for Capri, the least O3-sensitive cultivar, when exposed to O3 for 4 h, while SO2 had little effect on total electrolyte leakage. There was also little effect on total K content of the leaves. 21 references, 2 figures, 1 table.

  14. Impact of wildfires on ozone exceptional events in the Western u.s.

    Science.gov (United States)

    Jaffe, Daniel A; Wigder, Nicole; Downey, Nicole; Pfister, Gabriele; Boynard, Anne; Reid, Stephen B

    2013-10-01

    Wildfires generate substantial emissions of nitrogen oxides (NOx) and volatile organic compounds (VOCs). As such, wildfires contribute to elevated ozone (O3) in the atmosphere. However, there is a large amount of variability in the emissions of O3 precursors and the amount of O3 produced between fires. There is also significant interannual variability as seen in median O3, organic carbon and satellite derived carbon monoxide mixing ratios in the western U.S. To better understand O3 produced from wildfires, we developed a statistical model that estimates the maximum daily 8 h average (MDA8) O3 as a function of several meteorological and temporal variables for three urban areas in the western U.S.: Salt Lake City, UT; Boise, ID; and Reno, NV. The model is developed using data from June-September 2000-2012. For these three locations, the statistical model can explain 60, 52, and 27% of the variability in daily MDA8. The Statistical Model Residual (SMR) can give information on additional sources of O3 that are not explained by the usual meteorological pattern. Several possible O3 sources can explain high SMR values on any given day. We examine several cases with high SMR that are due to wildfire influence. The first case considered is for Reno in June 2008 when the MDA8 reached 82 ppbv. The wildfire influence for this episode is supported by PM concentrations, the known location of wildfires at the time and simulations with the Weather and Research Forecasting Model with Chemistry (WRF-Chem) which indicates transport to Reno from large fires burning in California. The contribution to the MDA8 in Reno from the California wildfires is estimated to be 26 ppbv, based on the SMR, and 60 ppbv, based on WRF-Chem. The WRF-Chem model also indicates an important role for peroxyacetyl nitrate (PAN) in producing O3 during transport from the California wildfires. We hypothesize that enhancements in PAN due to wildfire emissions may lead to regional enhancements in O3 during high

  15. Effects of climate change, CO2 and O3 on wheat productivity in Eastern China, singly and in combination

    Science.gov (United States)

    Tao, Fulu; Feng, Zhaozhong; Tang, Haoye; Chen, Yi; Kobayashi, Kazuhiko

    2017-03-01

    Air pollution and climate change are increasing threats to agricultural production and food security. Extensive studies have focused on the effect of climate change, but the interactive effects of multiple global change factors are poorly understood. Here, we incorporate the interactions between climate change, carbon dioxide (CO2) and ozone (O3) into an eco-physiological mechanistic model based on three years of O3 Free-Air Concentration Elevation (O3-FACE) experiments. We then investigate the effects of climate change, elevated CO2 concentration ([CO2]) and rising O3 concentration ([O3]) on wheat growth and productivity in eastern China in 1996-2005 (2000s) and 2016-2025 (2020s) under two climate change scenarios, singly and in combination. We find the interactive effects of climate change, CO2 and O3 on wheat productivity have spatially explicit patterns; the effect of climate change dominates the general pattern, which is however subject to the large uncertainties of climate change scenarios. Wheat productivity is estimated to increase by 2.8-9.0% due to elevated [CO2] however decline by 2.8-11.7% due to rising [O3] in the 2020s, relative to the 2000s. The combined effects of CO2 and O3 are less than that of O3 only, on average by 4.6-5.2%, however with O3 damage outweighing CO2 benefit in most of the region. This study demonstrates a more biologically meaningful and appropriate approach for assessing the interactive effects of climate change, CO2 and O3 on crop growth and productivity. Our findings promote the understanding on the interactive effects of multiple global change factors across contrasting climate conditions, cast doubt on the potential of CO2 fertilization effect in offsetting possible negative effect of climate change on crop productivity as suggested by many previous studies.

  16. Synthesis and electrical properties of BaBiO3 and high resistivity BaTiO3–BaBiO3 ceramics

    Directory of Open Access Journals (Sweden)

    Nitish Kumar

    2016-12-01

    Full Text Available Ceramics of the composition BaBiO3 (BB were sintered in oxygen to obtain a single phase with monoclinic I2/m symmetry as suggested by high-resolution X-ray diffraction. X-ray photoelectron spectroscopy confirmed the presence of bismuth in two valence states — 3+ and 5+. Optical spectroscopy showed presence of a direct bandgap at ∼ 2.2eV and a possible indirect bandgap at ∼ 0.9eV. This combined with determination of the activation energy for conduction of 0.25eV, as obtained from ac impedance spectroscopy, suggested that a polaron-mediated conduction mechanism was prevalent in BB. The BB ceramics were crushed, mixed with BaTiO3 (BT, and sintered to obtain BT–BB solid solutions. All the ceramics had tetragonal symmetry and exhibited a normal ferroelectric-like dielectric response. Using ac impedance and optical spectroscopy, it was shown that resistivity values of BT–BB were orders of magnitude higher than BT or BB alone, indicating a change in the fundamental defect equilibrium conditions. A shift in the site occupancy of Bi to the A-site is proposed to be the mechanism for the increased electrical resistivity.

  17. Resistance switching at the interface of LaAlO3/SrTiO3

    DEFF Research Database (Denmark)

    Chen, Yunzhong; Zhao, J.L.; Sun, J.R.

    2010-01-01

    At the interface of LaAlO3/SrTiO3 with film thickness of 3 unit cells or greater, a reproducible electric-field-induced bipolar resistance switching of the interfacial conduction is observed on nanometer scale by a biased conducting atomic force microscopy under vacuum environment. The switching ...

  18. Ozone production and hydrocarbon reactivity in Hong Kong, Southern China

    Directory of Open Access Journals (Sweden)

    J. Zhang

    2007-01-01

    Full Text Available Data obtained in Hong Kong during the Hong Kong and the Pearl River Delta (PRD Pilot Air Monitoring Study in autumn 2002 are analyzed to unravel the relationship between ground-level ozone (O3, pollution precursors, and cross-border transport. Ten ozone episodes, during which the hourly O3 concentration exceeded 100 ppbv in 9 cases and 90 ppbv in one case, are subject to detailed analysis, including one case with hourly O3 of 203 ppbv, which is the highest concentration on record to date in Hong Kong. Combined with high-resolution back trajectories, dCO/dNOy (the ratio of enhancement of CO concentration above background to that of NOy is used to define whether O3 is locally or regionally produced. Five out of the ten Hong Kong O3-episodes studied show a "pollution signature" that is indicative of impact from Guangdong Province. Examination of speciated volatile organic compounds (VOCs shows that the reactivity of VOCs is dominated by anthropogenic VOCs, of which the reactive aromatics dominate, in particular xylenes and toluene. Calculations using a photochemical box model indicate that between 50–100% of the O3 increase observed in Hong Kong during the O3 episodes can be explained by photochemical generation within the Hong Kong area, provided that nitrous acid (HONO is present at the concentrations derived from this study. An Observation-Based Model (OBM is used to calculate the sensitivity of the O3 production to changes in the concentrations of the precursor compounds. Generally the production of O3 throughout much of the Hong Kong area is limited by VOCs, while high nitric oxide (NO concentrations suppress O3 concentration.

  19. Spatio-temporal observations of the tertiary ozone maximum

    Directory of Open Access Journals (Sweden)

    V. F. Sofieva

    2009-07-01

    Full Text Available We present spatio-temporal distributions of the tertiary ozone maximum (TOM, based on GOMOS (Global Ozone Monitoring by Occultation of Stars ozone measurements in 2002–2006. The tertiary ozone maximum is typically observed in the high-latitude winter mesosphere at an altitude of ~72 km. Although the explanation for this phenomenon has been found recently – low concentrations of odd-hydrogen cause the subsequent decrease in odd-oxygen losses – models have had significant deviations from existing observations until recently. Good coverage of polar night regions by GOMOS data has allowed for the first time to obtain spatial and temporal observational distributions of night-time ozone mixing ratio in the mesosphere.

    The distributions obtained from GOMOS data have specific features, which are variable from year to year. In particular, due to a long lifetime of ozone in polar night conditions, the downward transport of polar air by the meridional circulation is clearly observed in the tertiary ozone maximum time series. Although the maximum tertiary ozone mixing ratio is achieved close to the polar night terminator (as predicted by the theory, TOM can be observed also at very high latitudes, not only in the beginning and at the end, but also in the middle of winter. We have compared the observational spatio-temporal distributions of the tertiary ozone maximum with that obtained using WACCM (Whole Atmosphere Community Climate Model and found that the specific features are reproduced satisfactorily by the model.

    Since ozone in the mesosphere is very sensitive to HOx concentrations, energetic particle precipitation can significantly modify the shape of the ozone profiles. In particular, GOMOS observations have shown that the tertiary ozone maximum was temporarily destroyed during the January 2005 and December 2006 solar proton events as a result of the HOx enhancement from the increased ionization.

  20. Update of the Polar SWIFT model for polar stratospheric ozone loss (Polar SWIFT version 2)

    Science.gov (United States)

    Wohltmann, Ingo; Lehmann, Ralph; Rex, Markus

    2017-07-01

    The Polar SWIFT model is a fast scheme for calculating the chemistry of stratospheric ozone depletion in polar winter. It is intended for use in global climate models (GCMs) and Earth system models (ESMs) to enable the simulation of mutual interactions between the ozone layer and climate. To date, climate models often use prescribed ozone fields, since a full stratospheric chemistry scheme is computationally very expensive. Polar SWIFT is based on a set of coupled differential equations, which simulate the polar vortex-averaged mixing ratios of the key species involved in polar ozone depletion on a given vertical level. These species are O3, chemically active chlorine (ClOx), HCl, ClONO2 and HNO3. The only external input parameters that drive the model are the fraction of the polar vortex in sunlight and the fraction of the polar vortex below the temperatures necessary for the formation of polar stratospheric clouds. Here, we present an update of the Polar SWIFT model introducing several improvements over the original model formulation. In particular, the model is now trained on vortex-averaged reaction rates of the ATLAS Chemistry and Transport Model, which enables a detailed look at individual processes and an independent validation of the different parameterizations contained in the differential equations. The training of the original Polar SWIFT model was based on fitting complete model runs to satellite observations and did not allow for this. A revised formulation of the system of differential equations is developed, which closely fits vortex-averaged reaction rates from ATLAS that represent the main chemical processes influencing ozone. In addition, a parameterization for the HNO3 change by denitrification is included. The rates of change of the concentrations of the chemical species of the Polar SWIFT model are purely chemical rates of change in the new version, whereas in the original Polar SWIFT model, they included a transport effect caused by the

  1. Thermoluminescence of LaAlO3

    International Nuclear Information System (INIS)

    Morales H, A.; Zarate M, J.; Rivera M, T.; Azorin N, J.

    2015-10-01

    In this paper the thermoluminescent properties of doped lanthanum aluminate (LaAlO 3 ) with dysprosium ion (Dy) were studied. The thermoluminescence characteristics in the samples were obtained using an ultraviolet radiation of 220 nm. The LaAlO 3 :Dy samples were prepared by the modified Pechini method (Spray Dryer). The structural and morphological characterization was obtained by X-ray diffraction (XRD) and scanning electron microscopy (Sem) techniques respectively. The size particle composing the agglomerate was determined by Sem, agglomerated particles composed size of 2μm were observed. The thermoluminescence response of LaAlO 3 :Dy was compared with that obtained with the undoped sample. Thermoluminescence brightness curves of LaAlO 3 :Dy showed a peak centered at 185 grades C. Sensitivity of doped sample was greater, about 100 times compared with the undoped sample. Thermoluminescence response in function of the wavelength showed a maximum at 220 nm. Also the fading in thermoluminescence response was studied. (Author)

  2. Earth's ozone layer

    International Nuclear Information System (INIS)

    Lasa, J.

    1991-01-01

    The paper contain the actual results of investigations of the influence of the human activity on the Earth's ozone layer. History of the ozone measurements and of the changes in its concentrations within the last few years are given. The influence of the trace gases on both local and global ozone concentrations are discussed. The probable changes of the ozone concentrations are presented on the basis of the modelling investigations. The effect of a decrease in global ozone concentration on human health and on biosphere are also presented. (author). 33 refs, 36 figs, 5 tabs

  3. Limited effect of ozone reductions on the 20-year photosynthesis trend at Harvard forest.

    Science.gov (United States)

    Yue, Xu; Keenan, Trevor F; Munger, William; Unger, Nadine

    2016-11-01

    Ozone (O 3 ) damage to leaves can reduce plant photosynthesis, which suggests that declines in ambient O 3 concentrations ([O 3 ]) in the United States may have helped increase gross primary production (GPP) in recent decades. Here, we assess the effect of long-term changes in ambient [O 3 ] using 20 years of observations at Harvard forest. Using artificial neural networks, we found that the effect of the inclusion of [O 3 ] as a predictor was slight, and independent of O 3 concentrations, which suggests limited high-frequency O 3 inhibition of GPP at this site. Simulations with a terrestrial biosphere model, however, suggest an average long-term O 3 inhibition of 10.4% for 1992-2011. A decline of [O 3 ] over the measurement period resulted in moderate predicted GPP trends of 0.02-0.04 μmol C m -2  s -1  yr -1 , which is negligible relative to the total observed GPP trend of 0.41 μmol C m -2  s -1  yr -1 . A similar conclusion is achieved with the widely used AOT40 metric. Combined, our results suggest that ozone reductions at Harvard forest are unlikely to have had a large impact on the photosynthesis trend over the past 20 years. Such limited effects are mainly related to the slow responses of photosynthesis to changes in [O 3 ]. Furthermore, we estimate that 40% of photosynthesis happens in the shade, where stomatal conductance and thus [O 3 ] deposition is lower than for sunlit leaves. This portion of GPP remains unaffected by [O 3 ], thus helping to buffer the changes of total photosynthesis due to varied [O 3 ]. Our analyses suggest that current ozone reductions, although significant, cannot substantially alleviate the damages to forest ecosystems. © 2016 John Wiley & Sons Ltd.

  4. Multi-year assimilation of IASI and MLS ozone retrievals: variability of tropospheric ozone over the tropics in response to ENSO

    Science.gov (United States)

    Peiro, Hélène; Emili, Emanuele; Cariolle, Daniel; Barret, Brice; Le Flochmoën, Eric

    2018-05-01

    The Infrared Atmospheric Sounder Instrument (IASI) allows global coverage with very high spatial resolution and its measurements are promising for long-term ozone monitoring. In this study, Microwave Limb Sounder (MLS) O3 profiles and IASI O3 partial columns (1013.25-345 hPa) are assimilated in a chemistry transport model to produce 6-hourly analyses of tropospheric ozone for 6 years (2008-2013). We have compared and evaluated the IASI-MLS analysis and the MLS analysis to assess the added value of IASI measurements. The global chemical transport model MOCAGE (MOdèle de Chimie Atmosphérique à Grande Echelle) has been used with a linear ozone chemistry scheme and meteorological forcing fields from ERA-Interim (ECMWF global reanalysis) with a horizontal resolution of 2° × 2° and 60 vertical levels. The MLS and IASI O3 retrievals have been assimilated with a 4-D variational algorithm to constrain stratospheric and tropospheric ozone respectively. The ozone analyses are validated against ozone soundings and tropospheric column ozone (TCO) from the OMI-MLS residual method. In addition, an Ozone ENSO Index (OEI) is computed from the analysis to validate the TCO variability during the ENSO events. We show that the assimilation of IASI reproduces the variability of tropospheric ozone well during the period under study. The variability deduced from the IASI-MLS analysis and the OMI-MLS measurements are similar for the period of study. The IASI-MLS analysis can reproduce the extreme oscillation of tropospheric ozone caused by ENSO events over the tropical Pacific Ocean, although a correction is required to reduce a constant bias present in the IASI-MLS analysis.

  5. A Global Ozone Climatology from Ozone Soundings via Trajectory Mapping: A Stratospheric Perspective

    Science.gov (United States)

    Liu, J. J.; Tarasick, D. W.; Fioletov, V. E.; McLinden, C.; Zhao, T.; Gong, S.; Sioris, G.; Jin, J. J.; Liu, G.; Moeini, O.

    2013-01-01

    This study explores a domain-filling trajectory approach to generate a global ozone climatology from sparse ozonesonde data. Global ozone soundings of 51,898 profiles at 116 stations over 44 years (1965-2008) are used, from which forward and backward trajectories are performed for 4 days, driven by a set of meteorological reanalysis data. Ozone mixing ratios of each sounding from the surface to 26 km altitude are assigned to the entire path along the trajectory. The resulting global ozone climatology is archived monthly for five decades from the 1960s to the 2000s with grids of 5 degree 5 degree 1 km (latitude, longitude, and altitude). It is also archived yearly from 1965 to 2008. This climatology is validated at 20 ozonesonde stations by comparing the actual ozone sounding profile with that found through the trajectories, using the ozone soundings at all the stations except one being tested. The two sets of profiles are in good agreement, both individually with correlation coefficients between 0.975 and 0.998 and root mean square (RMS) differences of 87 to 482 ppbv, and overall with a correlation coefficient of 0.991 and an RMS of 224 ppbv. The ozone climatology is also compared with two sets of satellite data, from the Satellite Aerosol and Gas Experiment (SAGE) and the Optical Spectrography and InfraRed Imager System (OSIRIS). Overall, the ozone climatology compares well with SAGE and OSIRIS data by both seasonal and zonal means. The mean difference is generally under 20 above 15 km. The comparison is better in the northern hemisphere, where there are more ozonesonde stations, than in the southern hemisphere; it is also better in the middle and high latitudes than in the tropics, where assimilated winds are imperfect in some regions. This ozone climatology can capture known features in the stratosphere, as well as seasonal and decadal variations of these features. Furthermore, it provides a wealth of detail about longitudinal variations in the stratosphere such

  6. Hydrothermal syntheses and characterization of two layered molybdenum selenites, Rb2(MoO3)3SeO3 and Tl2(MoO3)3SeO3

    International Nuclear Information System (INIS)

    Dussack, L.L.; Harrison, W.T.A.; Jacobson, A.J.

    1996-01-01

    The hydrothermal syntheses of Rb 2 (MoO 3 ) 3 SeO 3 , and Tl 2 (MoO 3 ) 3 SeO 3 are described. These compounds have structures built up from hexagonal-WO 3 -type sheets and are isostructural with the previously reported Cs 2 (MoO 3 ) 3 SeO 3 and (NH 4 ) 2 (MoO 3 ) 3 SeO 3 . Powder X-ray, thermogravimetric, and spectroscopic data are presented and discussed

  7. Epitaxial growth and magnetic properties of ultraviolet transparent Ga2O3/(Ga1−xFex)2O3 multilayer thin films

    Science.gov (United States)

    Guo, Daoyou; An, Yuehua; Cui, Wei; Zhi, Yusong; Zhao, Xiaolong; Lei, Ming; Li, Linghong; Li, Peigang; Wu, Zhenping; Tang, Weihua

    2016-01-01

    Multilayer thin films based on the ferromagnetic and ultraviolet transparent semiconductors may be interesting because their magnetic/electronic/photonic properties can be manipulated by the high energy photons. Herein, the Ga2O3/(Ga1−xFex)2O3 multilayer epitaxial thin films were obtained by alternating depositing of wide band gap Ga2O3 layer and Fe ultrathin layer due to inter diffusion between two layers at high temperature using the laser molecular beam epitaxy technique. The multilayer films exhibits a preferred growth orientation of crystal plane, and the crystal lattice expands as Fe replaces Ga site. Fe ions with a mixed valence of Fe2+ and Fe3+ are stratified distributed in the film and exhibit obvious agglomerated areas. The multilayer films only show a sharp absorption edge at about 250 nm, indicating a high transparency for ultraviolet light. What’s more, the Ga2O3/(Ga1−xFex)2O3 multilayer epitaxial thin films also exhibits room temperature ferromagnetism deriving from the Fe doping Ga2O3. PMID:27121446

  8. Epitaxial growth and magnetic properties of ultraviolet transparent Ga2O3/(Ga1-xFex)2O3 multilayer thin films.

    Science.gov (United States)

    Guo, Daoyou; An, Yuehua; Cui, Wei; Zhi, Yusong; Zhao, Xiaolong; Lei, Ming; Li, Linghong; Li, Peigang; Wu, Zhenping; Tang, Weihua

    2016-04-28

    Multilayer thin films based on the ferromagnetic and ultraviolet transparent semiconductors may be interesting because their magnetic/electronic/photonic properties can be manipulated by the high energy photons. Herein, the Ga2O3/(Ga1-xFex)2O3 multilayer epitaxial thin films were obtained by alternating depositing of wide band gap Ga2O3 layer and Fe ultrathin layer due to inter diffusion between two layers at high temperature using the laser molecular beam epitaxy technique. The multilayer films exhibits a preferred growth orientation of crystal plane, and the crystal lattice expands as Fe replaces Ga site. Fe ions with a mixed valence of Fe(2+) and Fe(3+) are stratified distributed in the film and exhibit obvious agglomerated areas. The multilayer films only show a sharp absorption edge at about 250 nm, indicating a high transparency for ultraviolet light. What's more, the Ga2O3/(Ga1-xFex)2O3 multilayer epitaxial thin films also exhibits room temperature ferromagnetism deriving from the Fe doping Ga2O3.

  9. Optimization of O3 as Pre-Treatment and Chemical Enhanced Backwashing in UF and MF Ceramic Membranes for the Treatment of Secondary Wastewater Effluent and Red Sea Water

    KAUST Repository

    Herrera, Catalina

    2011-12-12

    Ceramic membranes have proven to have many advantages over polymeric membranes. Some of these advantages are: resistance against extreme pH, higher permeate flux, less frequent chemical cleaning, excellent backwash efficiency and longer lifetime. Other main advantage is the use of strong chemical agent such as Ozone (O3), to perform membrane cleaning. Ozone has proven to be a good disinfection agent, deactivating bacteria and viruses. Ozone has high oxidation potential and high reactivity with natural organic matter (NOM). Several studies have shown that combining ozone to MF/UF systems could minimize membrane fouling and getting higher operational fluxes. This work focused on ozone – ceramic membrane filtration for treating wastewater effluent and seawater. Effects of ozone as a pre – treatment or chemical cleaning with ceramic membrane filtration were identified in terms of permeate flux and organic fouling. Ozonation tests were done by adjusting O3 dose with source water, monitoring flux decline and membrane fouling. Backwashing availability and membrane recovery rate were also analyzed. Two types of MF/UF ceramics membranes (AAO and TAMI) were used for this study. When ozone dosage was higher in the source water, membrane filtration improved in performance, resulting in a reduced flux decline. In secondary wastewater effluent, raw source water declined up to 77% of normalized flux, while with O3 as pre – treatment, source water at its higher O3 dose, flux decreased only 33% of normalized flux. For seawater, membrane performance increase from declining to 37% of its final normalized flux to 21%, when O3 as a pre – treatment was used. Membrane recovery rate also improved even with low O3 dose, as an example, with 8 mg/L irreversible fouling decreases from 58% with no ozone addition to 29% for secondary wastewater effluent treatment. For seawater treatment, irreversible fouling decreased from 37% with no ozone addition to 21% at 8 mg/L, proving ozone is a

  10. Vertical and Horizontal Measurements of Ambient Ozone over a Gas and Oil Production Area using a UAV Platform

    Science.gov (United States)

    Jensen, A.; Gowing, I.; Martin, R. S.

    2013-12-01

    upper level excessive winds as the low pressure front approached. However the flight was still able to capture a temperature profile indicating a well-mixed atmosphere below about 300 m AGL, sealed by a definitive inversion layer extending to the top of the measurement profile. The measured O3 profile went from about 140 ppb near the ground to around 60 ppb at the start of the inversion layer, and then remained essentially constant until the top of the elevation profile. The vertical profile late in the morning of the following day (after the front had passed), showed nearly straight vertical profiles of temperature (≈2°C) and ozone (35-50 ppb) up to approximately 2400 m ASL (820 m AGL). The stacked horizontal profiles (1650 and 1750 m ASL) flown immediately after the vertical flight of Feb. 17th showed some differences on the horizontal scale, but it was unclear if these differences were associated with terrain differences (topography dropped rapidly to the south) or locational differences in precursor sources. The UAV measured ozone compared favorably to nearby co-investigators (NOAA/ESRL CSD TOPAZ Lidar and CU/INSTAAR tethered balloon).

  11. Explosion and detonation of ozone in mixtures with carrier gases employed in nuclear technology

    International Nuclear Information System (INIS)

    Weh, M.M.L.

    1988-09-01

    Explosive ozone is known to be formed during low temperature radiolysis of oxygen. Detailed knowledge on the explosion and the detonation of ozone is therefore required for safety considerations of nuclear installations such as proposed for the cryogenic separation of 85 krypton from the head end off gas of a reprocessing plant. The explosion properties of gaseous ozone in mixtures with oxygen, nitrogen, helium, argon, krypton, xenon and difluorodichloromethane were studied by varying the ozone concentration, the initial pressure and the shape of the vessel containing the gas. Detonation velocities were determined for gaseous mixtures of ozone with oxygen, argon, krypton or xenon as functions of the ozone concentration. In addition, the initial pressure was varied for ozone-xenon mixtures. The effect of a packing such as used in the 85 Kr-separation plant 'KRETA' in KfK on ozone-xenon detonation was investigated. In addition, the effect of low amounts of carbon monoxide, methane and nitrogen dioxide on the explosion (O 3 /Ar) and the detonation (O 3 /Xe) of an ozone-noble gas mixture was determined. (orig.) [de

  12. Mechanism for enhanced degradation of clofibric acid in aqueous by catalytic ozonation over MnOx/SBA-15

    International Nuclear Information System (INIS)

    Sun, Qiangqiang; Wang, Yu; Li, Laisheng; Bing, Jishuai; Wang, Yingxin; Yan, Huihua

    2015-01-01

    Highlights: • Clofibric acid (CA) is efficiently mineralized by O 3 /MnO x /SBA-15. • Adsorption of CA and its intermediates on MnO x /SBA-15 is proved unimportant. • Initiation of hydroxyl radicals (·OH) is enhanced in O 3 /MnO x /SBA-15. • Uniformly distributed MnO x accounts for the high activity of MnO x /SBA-15. • Degradation routes of CA in ozonation alone and catalytic ozonation are proposed. - Abstract: Comparative experiments were conducted to investigate the catalytic ability of MnO x /SBA-15 for the ozonation of clofibric acid (CA) and its reaction mechanism. Compared with ozonation alone, the degradation of CA was barely enhanced, while the removal of TOC was significantly improved by catalytic ozonation (O 3 /MnO x /SBA-15). Adsorption of CA and its intermediates by MnO x /SBA-15 was proved unimportant in O 3 /MnO x /SBA-15 due to the insignificant adsorption of CA and little TOC variation after ceasing ozone in stopped-flow experiment. The more remarkably inhibition effect of sodium bisulfite (NaHSO 3 ) on the removal of TOC in catalytic ozonation than in ozonation alone elucidated that MnO x /SBA-15 facilitated the generation of hydroxyl radicals (·OH), which was further verified by electron spin-resonance spectroscopy (ESR). Highly dispersed MnO x on SBA-15 were believed to be the main active component in MnO x /SBA-15. Some intermediates were indentified and different degradation routes of CA were proposed in both ozonation alone and catalytic ozonation. The amounts of small molecular carboxylic acids (i.e., formic acid (FA), acetic acid (AA) and oxalic acid (OA)) generated in catalytic ozonation were lower than in ozonation alone, resulting from the generation of more ·OH

  13. Raman spectra of MgSiO3 . 10% Al2O3-perovskite at various pressures and temperatures

    International Nuclear Information System (INIS)

    Liu Lingun; Irifune, T.

    1995-01-01

    Variations of Raman spectra of MgSiO 3 . 10% Al 2 O 3 -perovskite were investigated up to about 270 kbar at room temperature and in the range 108-425 K at atmospheric pressure. Like MgSiO 3 -perovskite, the Raman frequencies of MgSiO 3 . 10% Al 2 O 3 -perovskite increase nonlinearly with increasing pressure and decrease linearly with increasing temperature within the experimental uncertainties and the range investigated. A comparison of these data with those of MgSiO 3 -perovskite suggests that MgSiO 3 . 10% Al 2 O 3 -perovskite is slightly more compressible than MgSiO 3 -perovskite, and that the volume thermal expansion for MgSiO 3 . 10% Al 2 O 3 -perovskite is also slightly greater than that for MgSiO 3 -perovskite. (orig.)

  14. Raman and Fluorescence Spectroscopy of CeO2, Er2O3, Nd2O3, Tm2O3, Yb2O3, La2O3, and Tb4O7

    Directory of Open Access Journals (Sweden)

    Jianlan Cui

    2015-01-01

    Full Text Available To better understand and ascertain the mechanisms of flotation reagent interaction with rare earth (RE minerals, it is necessary to determine the physical and chemical properties of the constituent components. Seven rare earth oxides (CeO2, Er2O3, Nd2O3, Tm2O3, Yb2O3, La2O3, and Tb4O7 that cover the rare earth elements (REEs from light to heavy REEs have been investigated using Raman spectroscopy. Multiple laser sources (wavelengths of 325 nm, 442 nm, 514 nm, and 632.8 nm for the Raman shift ranges from 100 cm−1 to 5000 cm−1 of these excitations were used for each individual rare earth oxide. Raman shifts and fluorescence emission have been identified. Theoretical energy levels for Er, Nd, and Yb were used for the interpretation of fluorescence emission. The experimental results showed good agreement with the theoretical calculation for Er2O3 and Nd2O3. Additional fluorescence emission was observed with Yb2O3 that did not fit the reported energy level diagram. Tb4O7 was observed undergoing laser induced changes during examination.

  15. (Na, K)NbO3-Based Ceramics for Self-Powered Energy Harvesting Applications.

    Science.gov (United States)

    Kim, Jinhwan; Koh, Jung-Hyuk

    2015-03-01

    Self-powered energy harvesting technologies have been intensively investigated by employ- ing Pb-free piezoelectric materials. One such Pb-free piezoelectric material, the ceramic 0.97(Na0.5K0.5)NbO3-0.03(Bi0.5Na0.5)TiO3, was prepared by employing the conventional mixed oxide method. 0.97(Na0.5K0.5)NbO3-0.03(Bi0.5Na0.5)TiO3 ceramics were prepared and the effect of sintering temperature on the microstructure, piezoelectric and ferroelectric properties were system- atically investigated for energy harvesting applications. The crystal structure of 0.97(Na0.5K0.5)NbO3- 0.03(Bi0.5Na0.5) TiO3 Pb-free piezoelectric ceramics, sintered at temperatures between 1080 °C and 1160 °C, was examined by X-ray diffraction analysis. The dielectric properties of 0.97(Na0.5K0.5)NbO3-0.03(Bi0.5Na0.5)TiO3 ceramics were measured from 1 kHz to 1 MHz for the various sintering temperatures. We expect that optimization of sintering parameters can improve the piezoelectric and ferroelectric properties of 0.97 (Na0.5K0.5)NbO3-0.03(Bi0.5Na0.5)TiO3 ceramics for energy harvesting.

  16. Hydrostatic pressing effect on some properties of Al2O3 and Sc2O3 base ceramics

    International Nuclear Information System (INIS)

    Artemova, K.K.; Rudenko, L.A.; Maslova, G.Ya.; Levkovich, N.A.; Orlova, L.A.

    1981-01-01

    Found is the effect of hydrostatic pressing pressure on some physico-mechanical properties of the ceramic on the Al 2 O 3 and Se 2 O 3 base. Mathematical models, describing dependences of the strength of materials made of Al 2 O 3 and Sc 2 O 3 on sintering conditions and on hydrostatic pressing pressure, are plotted. Production regimes on the Al 2 O 3 and Sc 2 O 3 base ceramics with improved properties are optimized [ru

  17. Chemical quenching of positronium in Fe2O3/Al2O3 catalysts

    International Nuclear Information System (INIS)

    Li, C.; Zhang, H.J.; Chen, Z.Q.

    2010-01-01

    Fe 2 O 3 /Al 2 O 3 catalysts were prepared by solid state reaction method using α-Fe 2 O 3 and γ-Al 2 O 3 nano powders. The microstructure and surface properties of the catalyst were studied using positron lifetime and coincidence Doppler broadening annihilation radiation measurements. The positron lifetime spectrum shows four components. The two long lifetimes τ 3 and τ 4 are attributed to positronium annihilation in two types of pores distributed inside Al 2 O 3 grain and between the grains, respectively. With increasing Fe 2 O 3 content from 3 wt% to 40 wt%, the lifetime τ 3 keeps nearly unchanged, while the longest lifetime τ 4 shows decrease from 96 ns to 64 ns. Its intensity decreases drastically from 24% to less than 8%. The Doppler broadening S parameter shows also a continuous decrease. Further analysis of the Doppler broadening spectra reveals a decrease in the p-Ps intensity with increasing Fe 2 O 3 content, which rules out the possibility of spin-conversion of positronium. Therefore the decrease of τ 4 is most probably due to the chemical quenching reaction of positronium with Fe ions on the surface of the large pores.

  18. Chemical quenching of positronium in Fe 2O 3/Al 2O 3 catalysts

    Science.gov (United States)

    Li, C.; Zhang, H. J.; Chen, Z. Q.

    2010-09-01

    Fe 2O 3/Al 2O 3 catalysts were prepared by solid state reaction method using α-Fe 2O 3 and γ-Al 2O 3 nano powders. The microstructure and surface properties of the catalyst were studied using positron lifetime and coincidence Doppler broadening annihilation radiation measurements. The positron lifetime spectrum shows four components. The two long lifetimes τ3 and τ4 are attributed to positronium annihilation in two types of pores distributed inside Al 2O 3 grain and between the grains, respectively. With increasing Fe 2O 3 content from 3 wt% to 40 wt%, the lifetime τ3 keeps nearly unchanged, while the longest lifetime τ4 shows decrease from 96 ns to 64 ns. Its intensity decreases drastically from 24% to less than 8%. The Doppler broadening S parameter shows also a continuous decrease. Further analysis of the Doppler broadening spectra reveals a decrease in the p-Ps intensity with increasing Fe 2O 3 content, which rules out the possibility of spin-conversion of positronium. Therefore the decrease of τ4 is most probably due to the chemical quenching reaction of positronium with Fe ions on the surface of the large pores.

  19. Neutron irradiation damage in Al2O3 and Y2O3

    International Nuclear Information System (INIS)

    Clinard, F.W. Jr.; Bunch, J.M.; Ranken, W.A.

    1975-01-01

    Two ceramics under consideration for use in fusion reactors, Al 2 O 3 and Y 2 O 3 , were irradiated in the EBR-II fission reactor at 650, 875, and 1025 0 K to fluences between 2 and 6 x 10 21 n/cm 2 (E greater than 0.1 MeV). Samples evaluated include sapphire, Lucalox, alumina, Y 2 O 3 , and Y 2 O 3 -10 percent ZrO 2 (Yttralox). All Al 2 O 3 specimens swelled significantly (1 to 3 percent), with most of the growth observed in sapphire along the c-axis at the higher temperatures. Al 2 O 3 samples irradiated at 875 to 1025 0 K contained a high density of small aligned ''pores''. Irradiated Y 2 O 3 -based ceramics exhibited dimensional stability and a defect content consisting primarily of unresolved damage and/or dislocation loops. The behavior of these ceramics under irradiation is discussed, and the relevance of fission neutron damage studies to fusion reactor applications is considered. (auth)

  20. Nonvolatile Resistive Switching in Pt/LaAlO_{3}/SrTiO_{3} Heterostructures

    Directory of Open Access Journals (Sweden)

    Shuxiang Wu

    2013-12-01

    Full Text Available Resistive switching heterojunctions, which are promising for nonvolatile memory applications, usually share a capacitorlike metal-oxide-metal configuration. Here, we report on the nonvolatile resistive switching in Pt/LaAlO_{3}/SrTiO_{3} heterostructures, where the conducting layer near the LaAlO_{3}/SrTiO_{3} interface serves as the “unconventional” bottom electrode although both oxides are band insulators. Interestingly, the switching between low-resistance and high-resistance states is accompanied by reversible transitions between tunneling and Ohmic characteristics in the current transport perpendicular to the planes of the heterojunctions. We propose that the observed resistive switching is likely caused by the electric-field-induced drift of charged oxygen vacancies across the LaAlO_{3}/SrTiO_{3} interface and the creation of defect-induced gap states within the ultrathin LaAlO_{3} layer. These metal-oxide-oxide heterojunctions with atomically smooth interfaces and defect-controlled transport provide a platform for the development of nonvolatile oxide nanoelectronics that integrate logic and memory devices.

  1. Effect of excess ozone on UV-stimulated tritium oxidation

    International Nuclear Information System (INIS)

    Hasegawa, Kiyoshi; Horii, Kazuhiro; Matsuyama, Masao; Watanabe, Kuniaki.

    1995-01-01

    The authors have reported that the oxidation of tritium is considerably accelerated by irradiating a mixture gas of HT(H 2 )-O 2 with UV-photons, and this UV-stimulated HT oxidation is mainly due to the formation of intermediates such as ozone and activated oxygen species. This suggests that the oxidation will be much more enhanced in the presence of excess ozone in the reaction system. To examine this possibility, effects of the excess ozone on the UV-stimulated HT oxidation was experimentally studied on the one hand, and reaction mechanisms were investigated by developing a computer simulation program applicable to the three-component system of HT(H 2 )-O 2 -O 3 . The formation rate of HTO was measured for gas mixtures consisting of O 2 (75.5 Torr), O 3 (0.5-2% of O 2 ), H 2 (0.1-3% of O 2 ) and HT(H 2 /HT=12000). The experiments showed considerable enhancement of the HTO production rate in the presence of excess ozone by UV-photons from a low pressure mercury lamp(5W). The time course of the reaction was reproduced quite well by computer simulation, indicating that the assumed reaction mechanism is valid. This is also supported by observations that computer simulation reproduced the experimentally observed dependence of ozone decomposition rate on ozone and hydrogen pressures under the UV-irradiation. Those results showed that UV-stimulated HT oxidation was accelerated by about 14000 times in the presence of excess ozone. It strongly suggests that the UV-stimulated oxidation in the presence of excess ozone will be applicable to tritium handling systems as a non-catalytic tritium removal method. (author)

  2. Secondary ozone peaks in the troposphere over the Himalayas

    Directory of Open Access Journals (Sweden)

    N. Ojha

    2017-06-01

    Full Text Available Layers with strongly enhanced ozone concentrations in the middle–upper troposphere, referred to as secondary ozone peaks (SOPs, have been observed in different regions of the world. Here we use the global ECHAM5/MESSy atmospheric chemistry model (EMAC to (i investigate the processes causing SOPs, (ii explore both their frequency of occurrence and seasonality, and (iii assess their effects on the tropospheric ozone budget over the Himalayas. The vertical profiles of potential vorticity (PV and a stratospheric ozone tracer (O3s in EMAC simulations, in conjunction with the structure of SOPs, suggest that SOPs over the Himalayas are formed by stratosphere-to-troposphere transport (STT of ozone. The spatial distribution of O3s further shows that such effects are in general most pronounced in the northern part of India. Model simulated ozone distributions and backward air trajectories show that ozone rich air masses, associated with STT, originate as far as northern Africa and the North Atlantic Ocean, the Middle East, as well as in nearby regions in Afghanistan and Pakistan, and are rapidly (within 2–3 days transported to the Himalayas. Analysis of a 15-year (2000–2014 EMAC simulation shows that the frequency of SOPs is highest during the pre-monsoon season (e.g. 11 % of the time in May, while no intense SOP events are found during the July–October period. The SOPs are estimated to enhance the tropospheric column ozone (TCO over the central Himalayas by up to 21 %.

  3. Towards Isotropic Vortex Pinning in YBCO Films with Double-doping BHO-Y2O3 and BZO-Y2O3 Artificial Pining Centers

    Science.gov (United States)

    Gautam, Bibek; Sebastian, Mary Ann; Chen, Shihong; Haugan, Timothy; Chen, Yanbin; Xing, Zhongwen; Prestigiacomo, Joseph; Osofsky, Mike; Wu, Judy

    2017-12-01

    Strong and isotropic vortex pinning landscape is demanded for high field applications of YaBa2Cu3O7-x (YBCO) epitaxial thin films. Double-doping (DD) of artificial pinning centers (APCs) of mixed morphologies has been identified as a viable approach for this purpose. This work presents a comparative study on the transport critical current density J c (H, θ) of 3.0 vol.%Y2O3+2.0 (or 6.0) vol.% BaZrO3 (BZO DD) and 3.0 vol.%Y2O3+ 2.0 (or 6.0) vol.% BaHfO3 (BHO DD) films. Based on the elastic strain model, BaHfO3 (BHO) nanorods have lower rigidity than their BaZrO3 (BZO) counterparts, which means their c-axis alignment is more susceptible to the local strain generated by the secondary dopant of Y2O3. Considering the increasing strain field with higher BZO (or BHO doping), the higher susceptibility may result in a large portion of the BHO APCs moving away from perfect c-axis alignment and enhancing isotropic pinning with respect to the H orientation. This is confirmed since the BHO DD films illustrate a less pronounced J c peak at H//c-axis and hence more isotropic J c(θ) than their BZO DD counterparts. At 9.0 T, the variation of the J c across the entire θ range (0-90 degree) is less than 18% for the BHO DD film, in contrast to about 100% for the 2.0 vol.% BZO DD counterpart. At the higher BHO concentration of 6.0 vol.%, this higher tunability of the Y2O3 leads to increased ab-plane aligned BHO APCs and hence enhanced J c at H//ab-plane.

  4. High troposphere O3 filament at mid-latitude: a BORTAS campaign case study

    Science.gov (United States)

    Aruffo, Eleonora; Peterson, David; Di Carlo, Piero; Biancofiore, Fabio; Busilacchio, Marcella; Dari Salisburgo, Cesare; Giammaria, Franco; Bauguitte, Stephane; Lee, James; Moller, Sarah; Hopkins, James; Punjabi, Shalini; Lewis, Alistair C.; Palmer, Paul; Hyer, Edward

    2016-04-01

    During a flight (B625, 24 July 2011) of the BORTAS campaign (BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites, Nova Scotia, Canada, July-August 2011), an increase in the ozone (O3) concentrations has been observed at high altitude (about 7.5 Km a.s.l.) correlated with a significant growth of total peroxy nitrates (∑PNs), CO, NO2, NOy, black carbon (BC), isoprene and other species. We will illustrate the data analysis, the Hysplit back trajectories calculation and the analysis of the meteorological/physical conditions occurred during this case study in order to demonstrate that the O3 filament measured at high altitude over the Atlantic Ocean (between Nova Scotia and the Gulf of St. Lawrence) is a consequence of boreal biomass burning fires.

  5. Physiological and foliar injury responses of Prunus serotina, Fraxinus americana, and Acer rubrum seedlings to varying soil moisture and ozone

    International Nuclear Information System (INIS)

    Schaub, M.; Skelly, J.M.; Steiner, K.C.; Davis, D.D.; Pennypacker, S.P.; Zhang, J.; Ferdinand, J.A.; Savage, J.E.; Stevenson, R.E.

    2003-01-01

    High soil water availability favors ozone uptake, increases foliar injury, and exacerbates the negative ozone effect on gas exchange of seedlings of deciduous tree species. - Sixteen black cherry (Prunus serotina, Ehrh.), 10 white ash (Fraxinus americana, L.) and 10 red maple (Acer rubrum, L.) 1-year old seedlings were planted per plot in 1997 on a former nursery bed within 12 open-top chambers and six open plots. Seedlings were exposed to three different ozone scenarios (ambient air: 100% O 3 ; non-filtered air: 98% ambient O 3 ; charcoal-filtered air: 50% ambient O 3 ) within each of two different water regimes (nine plots irrigated, nine plots non-irrigated) during three growing seasons. During the 1998 and 1999 growing season, leaf gas exchange, plant water relations, and foliar injury were measured. Climatic data, ambient- and chamber-ozone-concentrations were monitored. We found that seedlings grown under irrigated conditions had similar (in 1998) but significantly higher gas exchange rates (in 1999) than seedlings grown within non-irrigated plots among similar ozone exposures. Cherry and ash had similar ozone uptake but cherry developed more ozone-induced injury (<34% affected leaf area, LAA) than ash (<5% LAA), while maple rarely showed foliar injury, indicating the species differed in ozone sensitivity. Significantly more severe injury on seedlings grown under irrigated conditions than seedlings grown under non-irrigated conditions demonstrated that soil moisture altered seedling responses to ambient ozone exposures

  6. Porous Na2O-B2O3-Nd2O3 material

    Energy Technology Data Exchange (ETDEWEB)

    De Villiers, D R; Res, M A; Richter, P W

    1986-12-01

    Substitution of SiO2 by Nd2O3 in the sodium borosilicate system produced glasses containing up to 50 mass% Nd2O3. Sodium borate was leached out of some of the materials to produce either a porous Nd2O3-rich glass or a porous glass-ceramic containing NdBO3, depending on the starting material. Surface areas of up to 190 mS g- were measured. Powder X-ray diffraction (XRD) revealed the NdBO3 to be the high-temperature form with low symmetry.

  7. Physiological responses of lichens to factorial fumigations with nitric acid and ozone

    International Nuclear Information System (INIS)

    Riddell, J.; Padgett, P.E.; Nash, T.H.

    2012-01-01

    This paper addresses the effects of gaseous nitric acid (HNO 3 ) and ozone (O 3 ), two important air pollutants, on six lichen species with different morphological, ecological, and biological characteristics. The treatment chambers were set up in a factorial design consisting of control chambers, chambers fumigated with HNO 3 , with O 3 , and with HNO 3 and O 3 , together. Each species showed a different sensitivity to the fumigations, reflecting the physiological variation among species. Our results clearly indicate that HNO 3 is a strong phytotoxin to many lichens, and that O 3 alone has little effect on the measured parameters. The combined fumigation effects of HNO 3 and O 3 were not significantly different from HNO 3 alone. - Highlights: ► We fumigated 6 lichen species with factorial combinations of nitric acid (HNO 3 ) and ozone (O 3 ). ► Some species were highly sensitive to HNO 3 while others were tolerant. ► No species responded significantly to O 3 . ► The combined fumigation effects of HNO 3 and O 3 were not significantly different from HNO 3 alone. ► HNO 3 may play an important role in lichen community composition in areas with high HNO 3 pollution. - Nitric acid can be highly toxic to lichens through several physiological mechanisms. Ozone is relatively non-toxic to fumigated lichens.

  8. Impacts of rising tropospheric ozone on photosynthesis and metabolite levels on field grown soybean.

    Science.gov (United States)

    Sun, Jindong; Feng, Zhaozhong; Ort, Donald R

    2014-09-01

    The response of leaf photosynthesis and metabolite profiles to ozone (O3) exposure ranging from 37 to 116 ppb was investigated in two soybean cultivars Dwight and IA3010 in the field under fully open-air conditions. Leaf photosynthesis, total non-structural carbohydrates (TNC) and total free amino acids (TAA) decreased linearly with increasing O3 levels in both cultivars with average decrease of 7% for an increase in O3 levels by 10 ppb. Ozone interacted with developmental stages and leaf ages, and caused higher damage at later reproductive stages and in older leaves. Ozone affected yield mainly via reduction of maximum rate of Rubisco carboxylation (Vcmax) and maximum rates of electron transport (Jmax) as well as a shorter growing season due to earlier onset of canopy senescence. For all parameters investigated the critical O3 levels (∼50 ppb) for detectable damage fell within O3 levels that occur routinely in soybean fields across the US and elsewhere in the world. Strong correlations were observed in O3-induced changes among yield, photosynthesis, TNC, TAA and many metabolites. The broad range of metabolites that showed O3 dose dependent effect is consistent with multiple interaction loci and thus multiple targets for improving the tolerance of soybean to O3. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. Distinct responses of soil microbial communities to elevated CO2 and O3 in a soybean agro-ecosystem.

    Science.gov (United States)

    He, Zhili; Xiong, Jinbo; Kent, Angela D; Deng, Ye; Xue, Kai; Wang, Gejiao; Wu, Liyou; Van Nostrand, Joy D; Zhou, Jizhong

    2014-03-01

    The concentrations of atmospheric carbon dioxide (CO2) and tropospheric ozone (O3) have been rising due to human activities. However, little is known about how such increases influence soil microbial communities. We hypothesized that elevated CO2 (eCO2) and elevated O3 (eO3) would significantly affect the functional composition, structure and metabolic potential of soil microbial communities, and that various functional groups would respond to such atmospheric changes differentially. To test these hypotheses, we analyzed 96 soil samples from a soybean free-air CO2 enrichment (SoyFACE) experimental site using a comprehensive functional gene microarray (GeoChip 3.0). The results showed the overall functional composition and structure of soil microbial communities shifted under eCO2, eO3 or eCO2+eO3. Key functional genes involved in carbon fixation and degradation, nitrogen fixation, denitrification and methane metabolism were stimulated under eCO2, whereas those involved in N fixation, denitrification and N mineralization were suppressed under eO3, resulting in the fact that the abundance of some eO3-supressed genes was promoted to ambient, or eCO2-induced levels by the interaction of eCO2+eO3. Such effects appeared distinct for each treatment and significantly correlated with soil properties and soybean yield. Overall, our analysis suggests possible mechanisms of microbial responses to global atmospheric change factors through the stimulation of C and N cycling by eCO2, the inhibition of N functional processes by eO3 and the interaction by eCO2 and eO3. This study provides new insights into our understanding of microbial functional processes in response to global atmospheric change in soybean agro-ecosystems.

  10. Synthesis and Characterization of BaFeO3, (Ba,Bi)FeO3, and Related Epitaxial Thin Films and Nanostructures

    Science.gov (United States)

    2009-01-01

    targets were synthesized from BaCO3 (99.997%) and Fe2O3 (99.998%) powders that are crushed and dry-mixed in a high density alumina mortar and pestle set...30 minutes, or dry-mixed a second time with alumina mortar and pestle set. Then the mixed powders were cold pressed into a 1” diameter pellet with...Society of Japan 28, 44 (1970). 19 F. Iga, Y. Nishihara, T. Katayama, K. Murata, and Y. Takeda, Journal of Magnetism and Magnetic Materials 104-07, 1973

  11. Optimization of Industrial Ozone Generation with Pulsed Power

    Science.gov (United States)

    Lopez, Jose; Guerrero, Daniel; Freilich, Alfred; Ramoino, Luca; Seton Hall University Team; Degremont Technologies-Ozonia Team

    2013-09-01

    Ozone (O3) is widely used for applications ranging from various industrial chemical synthesis processes to large-scale water treatment. The consequent surge in world-wide demand has brought about the requirement for ozone generation at the rate of several hundreds grams per kilowatt hour (g/kWh). For many years, ozone has been generated by means of dielectric barrier discharges (DBD), where a high-energy electric field between two electrodes separated by a dielectric and gap containing pure oxygen or air produce various microplasmas. The resultant microplasmas provide sufficient energy to dissociate the oxygen molecules while allowing the proper energetics channels for the formation of ozone. This presentation will review the current power schemes used for large-scale ozone generation and explore the use of high-voltage nanosecond pulses with reduced electric fields. The created microplasmas in a high reduced electric field are expected to be more efficient for ozone generation. This is confirmed with the current results of this work which observed that the efficiency of ozone generation increases by over eight time when the rise time and pulse duration are shortened. Department of Physics, South Orange, NJ, USA.

  12. Development of a portable instrument to measure ozone production rates in the troposphere

    Science.gov (United States)

    Sklaveniti, Sofia; Locoge, Nadine; Stevens, Philip; Kumar, Vinod; Sinha, Vinayak; Dusanter, Sébastien

    2015-04-01

    Ground-level ozone is a key species related to air pollution, causing respiratory problems, damaging crops and forests, and affecting the climate. Our current understanding of the tropospheric ozone-forming chemistry indicates that net ozone production occurs via reactions of peroxy radicals (HO2 + RO2) with NO producing NO2, whose photolysis leads to O3 formation. Production rates of tropospheric ozone, P(O3), depend on concentrations of oxides of nitrogen (NOx = NO + NO2) and Volatile Organic Compounds (V OCs), but also on production rates of ROx radicals (OH + HO2 + RO2). The formation of ozone follows a complex nonlinear chemistry that makes strategies for reducing ozone difficult to implement. In this context, atmospheric chemistry models are used to develop emission regulations, but there are still uncertainties associated with the chemical mechanisms used in these models. Testing the ozone formation chemistry in atmospheric models is needed, in order to ensure the development of effective strategies for ozone reduction. We will present the development of an instrument for direct measurements of ozone production rates (OPR) in ambient air. The OPR instrument is made of three components: (i) two quartz flow tubes to sample ambient air, one exposed to solar radiation and one covered by a UV filter, (ii) a NO2-to-O3 conversion unit, and (iii) an ozone analyzer. The total amount of ozone exiting each flow tube is conserved in the form of Ox = NO2 + O3. Ozone production rates P(O3) are derived from the difference in Ox concentration between the two flow tubes, divided by the exposure time of air inside the flow tubes. We will present studies that were carried out in the laboratory to characterize each part of the instrument and we will discuss the performances of the OPR instrument based on experiments carried out using synthetic air mixtures of known composition (NOx and V OCs). Chemical modeling will also be presented to assess the reliability of ozone

  13. Study on factors affecting sintering density of Gd2O3-UO2 pellets

    International Nuclear Information System (INIS)

    Zhu Shuming; Zou Congpei; Yang Jing; Yang Youqing; Mei Xiaohui

    1996-02-01

    The sintered density of Gd 2 O 3 -UO 2 burnable poison fuel pellets is an important quality index and is one of main QC items. Therefore, the efforts were made to investigate the factors affecting the sintered density of Gd 2 O 3 -UO 2 , that is, the influences of pre-treatment of Gd 2 O 3 powder, additives, mixing methods and time, sintering atmosphere, sintering temperature and time on the final density of Gd 2 O 3 UO 2 pellets contained 0, 3%, 7% and 10% (mass percentage) Gd 2 O 3 . The results show: the pre-treatment is useful for improving the distribution of Gd 2 O 3 ; the additive of ammonium oxalate will effectively adjust the density of pellets; 1750 degree C is the suitable sintering temperature. The proper process parameters have been obtained, and the Gd 2 O 3 -UO 2 pellets prepared for in-pile irradiation test meet the design requirements for the density (93.5%∼96.5% of T.D.), homogeneity, microstructure, etc. (8 refs., 3 figs., 8 tabs.)

  14. Preparation of mullite whiskers reinforced SiC/Al2O3 composites by microwave sintering

    Directory of Open Access Journals (Sweden)

    Wei Li

    2016-12-01

    Full Text Available Mullite whiskers reinforced SiC/Al2O3 composites were prepared by microwave sintering in a microwave chamber with TE666 resonant mode. Original SiC particles were coated with SiO2 using sol-gel processing and mixed with Al2O3 particles. Mullite was formed in the reaction between SiO2 and Al2O3. The isostatically pressed cylindrical pellets were sintered from 1350 °C to 1600 °C for 30 min. Physical and chemical responses were investigated by detecting changes in reflected power during the microwave sintering process. XRD was carried out to characterize the samples and showed that mullite could be formed at 1200 °C. Bridging of mullite whiskers between Al2O3 and SiC particles was observed by SEM and is due to a so-called local hot spot effect, which was the unique feature for microwave sintering. The optimized microwave sintering temperature was 1500 °C corresponding to the maximum amount of mullite whiskers within SiC/Al2O3 composites. The high electro-magnetic field enhanced the decomposition of mullite at higher temperatures above 1550 °C. The mechanical properties of mullite whiskers reinforced SiC/Al2O3 composites are much better than the SiC/Al2O3 composites without mullite whiskers.

  15. Fate of bulk and trace organics during a simulated aquifer recharge and recovery (ARR)-ozone hybrid process

    KAUST Repository

    Yoon, Min

    2013-11-01

    The attenuation of bulk organic matter and trace organic contaminants (TOrCs) was evaluated for various aquifer recharge and recovery (ARR)-ozone (O3) hybrid treatment process combinations using soil-batch reactor and bench-scale ozonation experiments as a proof of concept prior to pilot and/or field studies. In water reclamation and especially potable reuse, refractory bulk organic matter and TOrCs are of potential health concern in recycled waters. In this study, the role of biotransformation of bulk organic matter and TOrCs was investigated considering different simulated treatment combinations, including soil passage (ARR) alone, ARR after ozonation (O3-ARR), and ARR prior to ozonation (ARR-O3). During oxic (aerobic) ARR simulations, soluble microbial-like substances (e.g., higher molecular weight polysaccharides and proteins) were easily removed while (lower molecular weight) humic substances and aromatic organic matter were not efficiently removed. During ARR-ozone treatment simulations, removals of bulk organic matter and TOrCs were rapid and effective compared to ARR alone. A higher reduction of effluent-derived organic matter, including aromatic organic matter and humic substances, was observed in the ARR-O3 hybrid followed by the O3-ARR hybrid. An enhanced attenuation of recalcitrant TOrCs was observed while increasing the ozone dose slightly (O3: DOC=1). TOrC removal efficiency also increased during the post-ozone treatment combination (i.e., ARR-O3). In addition, the carcinogenic wastewater disinfection byproduct N-nitrosodimethylamine (NDMA) was eliminated below the method reporting limit (<5ngL-1) both during ARR treatment alone and the ARR-ozone hybrid. © 2013 Elsevier Ltd.

  16. O(3)-invariant tunneling in general relativity

    International Nuclear Information System (INIS)

    Berezin, V.A.; Tkachev, I.I.; Kuzmin, V.A.; AN SSSR, Moscow. Inst. Yadernykh Issledovanij)

    1987-12-01

    We derived a general formula for the action for any O(3)-invariant tunneling processes in false vacuum decay in general relativity. The general classification of the bubble Euclidean trajectories is elaborated and explicit expressions for bounces for some processes like the vacuum creation of a double bubble, in particular in the vicinity of a black hole; the subbarrier creation of the Einstein-Rosen bridge, creation from nothing of two Minkowski worlds connected by a shell etc., are given. (orig.)

  17. The Study of Electrical Properties for Multilayer La2O3/Al2O3 Dielectric Stacks and LaAlO3 Dielectric Film Deposited by ALD.

    Science.gov (United States)

    Feng, Xing-Yao; Liu, Hong-Xia; Wang, Xing; Zhao, Lu; Fei, Chen-Xi; Liu, He-Lei

    2017-12-01

    The capacitance and leakage current properties of multilayer La 2 O 3 /Al 2 O 3 dielectric stacks and LaAlO 3 dielectric film are investigated in this paper. A clear promotion of capacitance properties is observed for multilayer La 2 O 3 /Al 2 O 3 stacks after post-deposition annealing (PDA) at 800 °C compared with PDA at 600 °C, which indicated the recombination of defects and dangling bonds performs better at the high-k/Si substrate interface for a higher annealing temperature. For LaAlO 3 dielectric film, compared with multilayer La 2 O 3 /Al 2 O 3 dielectric stacks, a clear promotion of trapped charges density (N ot ) and a degradation of interface trap density (D it ) can be obtained simultaneously. In addition, a significant improvement about leakage current property is observed for LaAlO 3 dielectric film compared with multilayer La 2 O 3 /Al 2 O 3 stacks at the same annealing condition. We also noticed that a better breakdown behavior for multilayer La 2 O 3 /Al 2 O 3 stack is achieved after annealing at a higher temperature for its less defects.

  18. Mass spectrometric investigation of the isotopes of ozone in the laboratory and the stratosphere

    International Nuclear Information System (INIS)

    Mauersberger, K.; Morton, J.; Schueler, B.

    1991-01-01

    During the last few years information on the isotope anomalies of ozone has substantially increased. Whenever ozone is formed in a gas phase reaction, an enhancement in its heavy isotopes is found of magnitude 12-14% ( 50 O 3 ) above the statistically expected values. The mass-independent enhancement decreases toward higher pressures and also shows a pronounced temperature dependence. Toward lower temperatures the enhancement becomes less. Studies of all possible ozone isotopes have shown that molecular symmetry plays a major role. Even large enhancements, above the laboratory results, have been occasionally measured in the stratosphere using a number of different experimental techniques. A correlation between very high heavy ozone enhancement (> 30%) and high solar activity may exist. The behavior of ozone isotopes will provide information about the ozone formation process

  19. Preparation of Al2O3/Mo nanocomposite powder via chemical route and spray drying

    International Nuclear Information System (INIS)

    Lo, M.; Cheng, F.; Wei, W.J.

    1996-01-01

    A route to prepare nanometer-sized Mo particulates in Al 2 O 3 was attempted by a combination of solution reactions in molecular scale and forcing precipitation by a spray-drying technique. MoO 3 was first dissolved in ammonia water and then added in the slurry with high purity, submicrometer Al 2 O 3 powder. Mixed suspension was spray-dried, and then the dried granules were reduced by hydrogen gas and further hot-pressing to a bulky composite at various temperatures. Dissolution of Mo oxide, adsorption reactions on alumina surface, and surface potential of alumina particles in homogeneous ammonia suspension were studied. Characterization of the granules, including compactability, flowing properties, surface morphology, grain growth of Mo and Al 2 O 3 , and mixing homogeneity, were examined. Homogeneity of the spray-dried granules was determined by the calculation of mixing index and the observation of the microstructure of sintered body. The existence of intergranular, intragranular, and nanosized Mo particulates within Al 2 O 3 grains was observed by transmission electron microscopy (TEM). All the evidences revealed that homogeneous composites with nanometer-sized Mo had been successfully prepared by this attempt with the proposed chemical route and following spray-drying process. copyright 1996 Materials Research Society

  20. On the use of MOZAIC-IAGOS data to assess the ability of the MACC reanalysis to reproduce the distribution of ozone and CO in the UTLS over Europe

    Directory of Open Access Journals (Sweden)

    Audrey Gaudel

    2015-12-01

    Full Text Available MOZAIC-IAGOS data are used to assess the ability of the MACC reanalysis (REAN to reproduce distributions of ozone (O3 and carbon monoxide (CO, along with vertical and inter-annual variability in the upper troposphere/lower stratosphere region (UTLS over Europe for the period 2003–2010. A control run (CNTRL, without assimilation is compared with the MACC reanalysis (REAN, with assimilation to assess the impact of assimilation. On average over the period, REAN underestimates ozone by 60 ppbv in the lower stratosphere (LS, whilst CO is overestimated by 20 ppbv. In the upper troposphere (UT, ozone is overestimated by 50 ppbv, while CO is partly over or underestimated by up to 20 ppbv. As expected, assimilation generally improves model results but there are some exceptions. Assimilation leads to increased CO mixing ratios in the UT which reduce the biases of the model in this region but the difference in CO mixing ratios between LS and UT has not changed and remains underestimated after assimilation. Therefore, this leads to a significant positive bias of CO in the LS after assimilation. Assimilation improves estimates of the amplitude of the seasonal cycle for both species. Additionally, the observations clearly show a general negative trend of CO in the UT which is rather well reproduced by REAN. However, REAN misses the observed inter-annual variability in summer. The O3–CO correlation in the Ex-UTLS is rather well reproduced by the CNTRL and REAN, although REAN tends to miss the lowest CO mixing ratios for the four seasons and tends to oversample the extra-tropical transition layer (ExTL region in spring. This evaluation stresses the importance of the model gradients for a good description of the mixing in the Ex-UTLS region, which is inherently difficult to observe from satellite instruments.

  1. Schottky contacts to In2O3

    Directory of Open Access Journals (Sweden)

    H. von Wenckstern

    2014-04-01

    Full Text Available n-type binary compound semiconductors such as InN, InAs, or In2O3 are especial because the branch-point energy or charge neutrality level lies within the conduction band. Their tendency to form a surface electron accumulation layer prevents the formation of rectifying Schottky contacts. Utilizing a reactive sputtering process in an oxygen-containing atmosphere, we demonstrate Schottky barrier diodes on indium oxide thin films with rectifying properties being sufficient for space charge layer spectroscopy. Conventional non-reactive sputtering resulted in ohmic contacts. We compare the rectification of Pt, Pd, and Au Schottky contacts on In2O3 and discuss temperature-dependent current-voltage characteristics of Pt/In2O3 in detail. The results substantiate the picture of oxygen vacancies being the source of electrons accumulating at the surface, however, the position of the charge neutrality level and/or the prediction of Schottky barrier heights from it are questioned.

  2. The stratospheric ozone and the ozone layer

    International Nuclear Information System (INIS)

    Zea Mazo, Jorge Anibal; Leon Aristizabal Gloria Esperanza; Eslava Ramirez Jesus Antonio

    2000-01-01

    An overview is presented of the principal characteristics of the stratospheric ozone in the Earth's atmosphere, with particular emphasis on the tropics and the ozone hole over the poles. Some effects produced in the atmosphere as a consequence of the different human activities will be described, and some data on stratospheric ozone will be shown. We point out the existence of a nucleus of least ozone in the tropics, stretching from South America to central Africa, with annual mean values less than 240 DU, a value lower than in the middle latitudes and close to the mean values at the South Pole. The existence of such a minimum is confirmed by mean values from measurements made on satellites or with earthbound instruments, for different sectors in Colombia, like Medellin, Bogota and Leticia

  3. Why variation of ground-level O3 differed during air quality control for APEC and Parade

    Science.gov (United States)

    Xu, R.; Shao, M.; Li, X.

    2017-12-01

    Ozone (O3) is an important photochemical product, which represents the atmospheric oxidants capacity. The increasing ground-level O3 in Beijing attracts people's attention and became an urgent thing to manage in recent years. In the autumn of 2014 and summer of 2015, Asia-Pacific Economic Cooperation (APEC) China 2014 and the 2015 China Victory Day parade (Parade) were held in Beijing. Thus, spell of emission restrictions was conducted for improving the air quality for the two great events, respectively. Previous studies indicated that significant reduction in the emissions of primary anthropogenic pollutants had been achieved, and the monthly averaged concentration of CO, SO2, NOx (NO + NO2) and NMHCs were decreased by 30%-60% for both events. In contrast to the obvious reduction in primary pollutants, O3 increased by 42% in APEC but decreased by 33% in Parade, which was surprising as the control measures are almost the same during the two events. The regional transport from the surrounding areas contributed lot in APEC, and the non-linearity relationship of O3 and its precursors may be another reason. A zero-dimensional box model based on the compact Regional Atmospheric Chemical Mechanism version 2 (RACM 2) was applied to chase down the internal factor to determine the O3 variation. The EKMA plot showed that / was the important role to effect photochemical regime as well as ozone production efficiency. Except that, the influence of NO-O3 titration effect and low photolysis frequencies in autumn also contributed to that. As high / does help O3 control and NOx continues to fall down due to the government policy, reactivity-based regulations for VOC controls are more cost-effective. With source profile and annual PMF analysis of source apportionment by related studies, we suggest solvent use should be focus on involving VOC control.

  4. [Characterizing spatial patterns of NO(x), SO2 and O3 in Pearl River Delta by passive sampling].

    Science.gov (United States)

    Zhao, Yang; Shao, Min; Wang, Chen; Wang, Bo-Guang; Lu, Si-Hua; Zhong, Liu-Ju

    2011-02-01

    Concentrations of NO(x), SO2 and O3 were measured by passive sampling within 200km x 200km grid in Pearl River Delta (PRD). Sampling period was two weeks in November, 2009. Spatial distributions of NO(x), SO2 and O3 were obtained by Kriging interpolation method. The results were compared with emission inventories and modeling results. The transportations of O3 were evaluated by using backward trajectories of air parcels. During the sampling period, the mean concentrations of NO(x), SO2 and O3 were 75.9 microg/m3, 37.3 microg/m3 and 36.2 microg/m3, respectively. And the highest concentrations of NO(x), SO2 and O3 were 195.7 microg/m3, 95.9 microg/m3 and 81.8 microg/m3. Comparing with routine measurements from the regional monitoring network in PRD, the results by passive method were 18.6%, 33.5% and 37.5% lower for NO(x), SO2 and O3, respectively. The spatial patterns demonstrated that higher NO(x) concentrations often appeared in cities such as Guangzhou, Foshan and Shenzhen. SO2 concentrations were higher in west and lower in east. High SO2 concentrations are mainly from emission of power plants and industrial sources. Concentrations of O3 showed the highest levels in the south of PRD. Backward trajectory analysis for higher ozone areas indicated that 53% of the air masses were from the region with high concentration of NO(x). The horizontal transportation caused higher ozone in the south while lower in north in PRD.

  5. Space nuclear power requirements for ozone layer modification

    International Nuclear Information System (INIS)

    Dolan, T.J.

    1991-01-01

    This work estimates the power requirements for using photochemical processes driven by space nuclear power to counteract the Earth's ozone layer depletion. The total quantity of ozone (O 3 ) in the Earth's atmosphere is estimated to be about 4.7 x 10 37 molecules. The ozone production and destruction rates in the stratosphere are both on the order of 4.9 x 10 31 molecules/s, differing by a small fraction so that the net depletion rate is about 0.16 to 0.26% per year. The delivered optical power requirement for offsetting this depletion is estimated to be on the order of 3 GW. If the power were produced by satellite reactors at 800 km altitude (orbit decay time ∼ 300 years), some means of efficient power beaming would be needed to deliver the power to stratospheric levels (10--50 km). Ultraviolet radiation at 140--150 nm could have higher absorption rates in O 2 (leading to production of atomic oxygen, which can combine with O 2 to form O 3 ) than in ozone (leading to photodissociation of O 3 ). Potential radiation sources include H 2 lasers and direct nuclear pumping of ultraviolet fluorescers. 5 refs

  6. Tropospheric O3 compromises net primary production in young stands of trembling aspen, paper birch and sugar maple in response to elevated atmospheric CO2

    Science.gov (United States)

    John S. King; Mark E. Kubiske; Kurt S. Pregitzer; George R. Hendrey; Evan P. McDonald; Christian P. Giardina; Vanessa S. Quinn; David F. Karnosky

    2005-01-01

    Concentrations of atmospheric CO2 and tropospheric ozone (O3) are rising concurrently in the atmosphere, with potentially antagonistic effects on forest net primary production (NPP) and implications for terrestrial carbon sequestration. Using free-air CO2 enrichment (FACE) technology, we exposed north...

  7. Soil respiration, root biomass, and root turnover following long-term exposure of northern forests to elevated atmospheric CO2 and tropospheric O3

    Science.gov (United States)

    Kurt S. Pregitzer; Andrew J. Burton; John S. King; Donald R. Zak

    2008-01-01

    The Rhinelander free-air CO2 enrichment (FACE) experiment is designed to understand ecosystem response to elevated atmospheric carbon dioxide (+CO2) and elevated tropospheric ozone (+O3). The objectives of this study were: to understand how soil respiration responded to the experimental treatments; to...

  8. Tracer measurements in the tropical tropopause layer during the AMMA/SCOUT-O3 aircraft campaign

    Directory of Open Access Journals (Sweden)

    C. D. Homan

    2010-04-01

    Full Text Available We present airborne in situ measurements made during the AMMA (African Monsoon Multidisciplinary Analysis/SCOUT-O3 campaign between 31 July and 17 August 2006 on board the M55 Geophysica aircraft, based in Ouagadougou, Burkina Faso. CO2 and N2O were measured with the High Altitude Gas Analyzer (HAGAR, CO was measured with the Cryogenically Operated Laser Diode (COLD instrument, and O3 with the Fast Ozone ANalyzer (FOZAN.

    We analyse the data obtained during five local flights to study the dominant transport processes controlling the tropical tropopause layer (TTL, here ~350–375 K and lower stratosphere above West-Africa: deep convection up to the level of main convective outflow, overshooting of deep convection, and horizontal inmixing across the subtropical tropopause. Besides, we examine the morphology of the stratospheric subtropical barrier.

    Except for the flight of 13 August, distinct minima in CO2 mixing ratios indicate convective outflow of boundary layer air in the TTL. The CO2 profiles show that the level of main convective outflow was mostly located at potential temperatures between 350 and 360 K, and for 11 August reached up to 370 K.

    While the CO2 minima indicate quite significant convective influence, the O3 profiles suggest that the observed convective signatures were mostly not fresh, but of older origin (several days or more. When compared with the mean O3 profile measured during a previous campaign over Darwin in November 2005, the O3 minimum at the main convective outflow level was less pronounced over Ouagadougou. Furthermore O3 mixing ratios were much higher throughout the whole TTL and, unlike over Darwin, rarely showed low values observed in the regional boundary layer.

    Signatures of irreversible mixing following overshooting of convective air were scarce in the tracer data. Some

  9. Ag+ implantation in Al2O3, LiNbO3 and quartz

    International Nuclear Information System (INIS)

    Rahmani, M.; Townsend, P.D.

    1989-01-01

    Silver implantation in insulators produces colloids whose growth is a function of ion dose, ion energy, implant temperature and crystal orientation. Data for three materials are compared. Colloid growth is favoured by higher energy implants at temperatures where the silver is mobile. Preferential diffusion along the Z axis of Al 2 O 3 , LiNbO 3 and quartz results in a higher fraction of the implanted silver ions appearing in the form of colloids for Y cut crystals than for those of Z cut. Annealing characteristics also show a strong dependence on crystal cut. For the LiNbO 3 the colloids in Z cut crystals anneal most rapidly whereas for Al 2 O 3 those in Y cut material are least stable, their loss being accompanied by a reduction in F centres. (author)

  10. Adsorption heats of olefins on supported MoO3/Al2O3 catalists

    International Nuclear Information System (INIS)

    Grinev, V.E.; Madden, M.; Khalit, V.A.; Aptekar', E.L.; Aldag, A.; Krylov, O.V.

    1983-01-01

    Adsorption heats of C 2 H 4 , C 3 H 6 and C 4 H 8 on supported MoO 3 /Al 2 O 3 catalysts containing 6, 10 and 15 wt. % of MoO 3 at 25, 77 and 195 deg are determimed. Adsorption heat of an olefin increases with a growing length of its carbonic chain. The number of adsorbed olefin molecules grows with an increase in the MoO 3 concentration, while initial adsorption heats decrease. The number of adsorbed olefins is proportional to mean rate of molybdenum reduction in catalysts. Adsorption heats of oxygen on the surface of the catalysts with preliminarily adsorbed olefins are determined. It is shown that adsorption of oxygen and olefins proceeeds both on the same and on different centres of the surface. Mechanisms of surface interactions are discussed

  11. Comparative study of phase structure and dielectric properties for K0.5Bi0.5TiO3-BiAlO3 and LaAlO3-BiAlO3

    International Nuclear Information System (INIS)

    Hou, Yudong; Zheng, Mupeng; Si, Meiju; Cui, Lei; Zhu, Mankang; Yan, Hui

    2013-01-01

    In this work, two perovskite-type compounds, K 0.5 Bi 0.5 TiO 3 and LaAlO 3 , have been selected as host material to incorporate with BiAlO 3 using a solid-state reaction route. The phase evolution and dielectric properties for both systems have been investigated in detail. For the K 0.5 Bi 0.5 TiO 3 -BiAlO 3 system, it is interesting to find that when using Bi 2 O 3 , Al 2 O 3 , K 2 CO 3 , and TiO 2 as starting materials, the formed compounds are K 0.5 Bi 0.5 TiO 3 -K 0.5 Bi 4.5 Ti 4 O 15 and Al 2 O 3 only plays a dopant role. There are two distinct dielectric peaks appearing in the patterns of temperature dependence of dielectric constant, corresponding to the phase-transition points of perovskite-type K 0.5 Bi 0.5 TiO 3 and Aurivillius-type K 0.5 Bi 4.5 Ti 4 O 15 , independently. In comparison, using Bi 2 O 3 , Al 2 O 3 , and La 2 O 3 as starting materials, the pure perovskite phase LaAlO 3 -BiAlO 3 can be obtained. Compared to the inherent paraelectric behavior in LaAlO 3 , the diffuse phase-transition phenomena can be observed in the LaAlO 3 -BiAlO 3 binary system, which corresponds well to the Vogel-Fulcher (VF) relationship. Moreover, compared to pure LaAlO 3 , the synthesized LaAlO 3 -BiAlO 3 compound shows enhanced dielectric properties, which are promising in application as gate dielectric materials. (copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Apparent vanishing of ferroelectricity in nanostructured BiScO3PbTiO3

    OpenAIRE

    Amorín , H; Jiménez , R; Ricote , J; Hungría , T; Castro , A; Algueró , M

    2010-01-01

    Abstract Nanostructured ceramics of high-temperature piezoelectric 0.375BiScO 3 -0.625PbTiO 3 were prepared by spark plasma sintering of nanocrystalline powders obtained by mechanosynthesis. The macroscopic electrical properties were characterized on dense ceramics with decreasing average grain size down to 28 nm. Results indicate that the electric field is screened by the electrically insulating grain boundaries at the nanoscale, which needs to be considered when discussing size effects i...

  13. Changes in leaf area, nitrogen content and canopy photosynthesis in soybean exposed to an ozone concentration gradient

    Science.gov (United States)

    Influences of ozone (O3) on light-saturated rates of photosynthesis in crop leaves have been well documented. To increase our understanding of O3 effects on individual- or stand level productivity, a mechanistic understanding of factors determining canopy photosynthesis is necessary. We used a canop...

  14. Effects of maternal high-fat diet and sedentary lifestyle on susceptibility of adult offspring to ozone exposure in rats

    Science.gov (United States)

    Epidemiological and experimental data suggest that obesity exacerbates the health effects of air pollutants such as ozone (O3). Maternal inactivity and calorically rich diets lead to offspring that show signs of obesity. Exacerbated O3 susceptibility of offspring could thus be m...

  15. Dielectric enhancement of BaTiO3/SrTiO3 superlattices with embedded Ni nanocrystals

    International Nuclear Information System (INIS)

    Xiong Zhengwei; Sun Weiguo; Wang Xuemin; Jiang Fan; Wu Weidong

    2012-01-01

    Highlights: ► The BaTiO 3 /SrTiO 3 superlattices with embedded Ni NCs were successfully fabricated by L-MBE. ► The influence with the various concentrations of Ni nanocrystals embedded in BaTiO 3 /SrTiO 3 superlattices was also discussed. ► The BaTiO 3 /SrTiO 3 superlattices with lower concentration of embedded Ni NCs had higher permittivity and dielectric loss compared with the pure BaTiO 3 /SrTiO 3 superlattices. ► The dielectric enhancement of BaTiO 3 /SrTiO 3 superlattices with embedded Ni NCs was proposed to explained by Drude quasi-free-electron theory. - Abstract: The self-organized Ni nanocrystals (NCs) were embedded in BaTiO 3 /SrTiO 3 superlattices using laser molecular beam epitaxy (L-MBE). The stress of the composite films was increased with the increasing concentration of embedded Ni NCs, as investigation in stress calculation. The influence with the various concentrations of Ni NCs embedded in BaTiO 3 /SrTiO 3 superlattices was also discussed. The internal stress of the films was too strong to epitaxial growth of BaTiO 3 /SrTiO 3 superlattices. Compared with the pure BaTiO 3 /SrTiO 3 superlattices, the BaTiO 3 /SrTiO 3 superlattices with lower concentration of embedded Ni NCs had higher permittivity and dielectric loss. Furthermore, the dielectric enhancement of BaTiO 3 /SrTiO 3 superlattices with embedded Ni NCs was proposed to explained by Drude quasi-free-electron theory.

  16. Surface ozone and NOx trends observed over Kannur, a South Indian coastal location of weak industrial activities

    Science.gov (United States)

    Kumar, Satheesh Mk; T, Nishanth; M, Praseeed K.

    South India is a peninsular region surrounded by the three belts of Arabian Sea, Bay of Bengal and Indian Ocean. Usually, coastal regions experience relatively high air quality compared to that of the interior land masses owing to the abundance of OH over ocean surface which acts as detergent in the atmosphere. Kannur (11.9 N, 75.4E, 5 m AMSL) is a coastal location along the Arabian Sea which is located in the northern district of Kerala State with fairly low industrial activities. A continuous observation of surface ozone (O3), NOx and OX (NO2+ O3) which has been initiated at this coastal site since 2009 reveals the enhancement in the concentrations of these trace species quite significantly. It is observed that surface O3 mixing ratio is increased at a rate of 1.51 ± 0.5 ppbv/year during the four year period from 2009 at Kannur. The enhancement rate in the mixing ratios of NOx is 1.01 ± 0.4 ppbv/year and OX is 1.49±0.42 ppbv/year respectively. The increase of O3 may be attributed due to the increase in methane and non-methane organic emissions from the wet lands and vehicles may enhance O3 production and fairly low rate of change of NO concentration at this site. This paper describes the rate of changes of O3, NOx and OX during the period of observation in detail. Likewise, the increase in nighttime concentrations of O3 and PM10 observed during the festival occasions in the summer month of April in all years is explained. Being a weak industrialized location, the main source of pollution is by vehicular emissions and the increase in these trace gases in the context of rapid enhancement in the number of vehicles is well correlated. These results may be helpful for improving government policies to control the photochemical formation of secondary air pollutants in the rural coastal sites that has a significant influence on the onset of monsoon and the outcome of this study have significant relevance for gradual transformation of pristine locations into polluted

  17. Combination of ozonation and photocatalysis for pharmaceutical wastewater treatment

    Science.gov (United States)

    Ratnawati, Enjarlis, Slamet

    2017-11-01

    The chemical oxygen demand (COD) and phenol removal from pharmaceutical wastewater were investigated using configuration of two circulation batch reactors in a series with ozonation and photocatalytic processes. The ozonation is conducted with O3/granulated activated carbon (O3/GAC), whereas photocatalysis with TiO2 that immobilized on pumice stone (PS-TiO2). The effect of circulation flow rate (10; 12; 15 L/min) and the amount PS-TiO2 (200 g, 250 g, 300 g) were examined. Wastewater of 20 L was circulated pass through the pipe that injected with O3 by the ozone generator, and subsequently flow through two GAC columns, and finally, go through photoreactor that contains photocatalyst PS-TiO2 which equipped with mercury lamp as a photon source. At a time interval, COD and phenol concentration were measured to assess the performance of the process. FESEM imaging confirmed that TiO2 was successfully impregnated on PS, as corroborated by EDX spectra. Meanwhile, degradation process indicated that the combined ozonation and photocatalytic processes (O3/GAC-TiO2) is more efficient compared to the ozonation and photocatalysis alone. For combination process with the circulation flow rate of 10 L/min and 300 g of PS-TiO2,the influent COD of around 1000 ppm are effectively degraded to a final effluent COD of 290 ppm (71% removal) and initial phenol concentration of 4.75 ppm down to 0 ppm for 4 h which this condition fulfill the discharge standards quality. Therefore, this portable prototype reactor is effective that can be used in the pharmaceutical wastewater treatment. For the future, this process condition will be developed for orientation on the industrial applications (portable equipment) since pharmaceutical industries produce wastewater relatively in the small amount.

  18. Ozone therapy in periodontics.

    Science.gov (United States)

    Gupta, G; Mansi, B

    2012-02-22

    Gingival and Periodontal diseases represent a major concern both in dentistry and medicine. The majority of the contributing factors and causes in the etiology of these diseases are reduced or treated with ozone in all its application forms (gas, water, oil). The beneficial biological effects of ozone, its anti-microbial activity, oxidation of bio-molecules precursors and microbial toxins implicated in periodontal diseases and its healing and tissue regeneration properties, make the use of ozone well indicated in all stages of gingival and periodontal diseases. The primary objective of this article is to provide a general review about the clinical applications of ozone in periodontics. The secondary objective is to summarize the available in vitro and in vivo studies in Periodontics in which ozone has been used. This objective would be of importance to future researchers in terms of what has been tried and what the potentials are for the clinical application of ozone in Periodontics.

  19. Magnetostriction of Hexagonal HoMnO3 and YMnO3 Single Crystals

    Science.gov (United States)

    Pavlovskii, N. S.; Dubrovskii, A. A.; Nikitin, S. E.; Semenov, S. V.; Terent'ev, K. Yu.; Shaikhutdinov, K. A.

    2018-03-01

    We report on the magnetostriction of hexagonal HoMnO3 and YMnO3 single crystals in a wide range of applied magnetic fields (up to H = 14 T) at all possible combinations of the mutual orientations of magnetic field H and magnetostriction Δ L/L. The measured Δ L/L( H, T) data agree well with the magnetic phase diagram of the HoMnO3 single crystal reported previously by other authors. It is shown that the nonmonotonic behavior of magnetostriction of the HoMnO3 crystal is caused by the Ho3+ ion; the magnetic moment of the Mn3+ ion parallel to the hexagonal crystal axis. The anomalies established from the magnetostriction measurements of HoMnO3 are consistent with the phase diagram of these compounds. For the isostructural YMnO3 single crystal with a nonmagnetic rare-earth ion, the Δ L/L( H, T) dependences are described well by a conventional quadratic law in a wide temperature range (4-100 K). In addition, the magnetostriction effect is qualitatively estimated with regard to the effect of the crystal electric field on the holmium ion.

  20. Simplified Modeling of Tropospheric Ozone Formation Considering Alternative Fuels Using

    Directory of Open Access Journals (Sweden)

    Leonardo Aragão Ferreira da Silva

    2014-07-01

    Full Text Available Brazilian cities have been constantly exposed to air quality episodes of high ozone concentrations (O3 . Known for not be emitted directly into the environment, O3 is a result of several chemical reactions of other pollutants emitted to atmosphere. The growth of vehicle fleet and government incentives for using alternative fuels like ethanol and Compressed Natural Gas (CNG are changing the Brazilian Metropolitan Areas in terms of acetaldehyde and formaldehyde emissions, Volatile Organic Compounds (VOC's present in the atmosphere and known to act on the kinetics of ozone. Driven by high concentrations of tropospheric ozone in urban/industry centers and its implications for environment and population health, the target of this work is understand the kinetics of ozone formation through the creation of a mathematical model in FORTRAN 90, describing a system of coupled ordinary differential equations able to represent a simplified mechanism of photochemical reactions in the Brazilian Metropolitan Area. Evaluating the concentration results of each pollutant were possible to observe the precursor’s influence on tropospheric ozone formation, which seasons were more conducive to this one and which are the influences of weather conditions on formation of photochemical smog.

  1. Retrieval of daytime [O3] altitude profile from measurements of 1.27 μm O2 emission in the mesosphere: a comparison of methods

    Science.gov (United States)

    Yankovsky, Valentine A.; Manuilova, Rada O.

    2017-11-01

    The altitude profiles of ozone concentration are retrieved from measurements of the volume emission rate in the 1.27 μm oxygen band in the TIMED-SABER experiment. In this study we compare the methods of retrieval of daytime [O3] altitude profile in the framework of two models: electronic-vibrational kinetics and a purely electronic kinetics of excited products of ozone and oxygen photolysis. In order to retrieve the [O3] altitude profile from the measurements of the intensity of the O2 band in the region of 1.27 μm correctly, it is necessary to use the photochemical model of the electronic-vibrational kinetics of excited products of ozone and oxygen photolysis in the mesosphere and lower thermosphere.

  2. Fabrication and Characterization of Micro- and Nano- Gd2O3 Dispersed HDPE/EPM Composites

    International Nuclear Information System (INIS)

    Uhm, Young Rang; Kim, Jae Woo; Jun, Ji Heon; Lee, Sol; Rhee, Chang Kyu

    2010-01-01

    Hydrophobic polymer mixed with Gd 2 O 3 can be used in nuclear industry as a neutron shield because of its neutron attenuating and absorbing property, while it was reported that the smaller particles dispersed polymer composites can enhance radiation shielding efficiency compared to larger particles dispersed ones. However, preparations of such materials are difficult because of the poor dispersion of the fine particles in the polymer matrix. Surface modification of the nanoparticles is therefore required for the homogeneous dispersion of the particles in the polymer matrix. In this study, pulverization of the micro-Gd 2 O 3 particles and simultaneous surface coating of the nanoparticles by polymeric surfactant low density polyethylene (LDPE) were performed by using one-step of high energy wet ball-mill. Dispersion and neutron shielding effect of the nano- and micro-Gd 2 O 3 fillers in mixed polymer of ethylene propylene monomer (EPM) and high density polyethylene (HDPE) were examined

  3. Magnetic and electronic properties of SrMnO3 thin films

    Science.gov (United States)

    Mandal, Arup Kumar; Panchal, Gyanendra; Choudhary, R. J.; Phase, D. M.

    2018-05-01

    Single phase hexagonal bulk SrMnO3 (SMO) was prepared by solid state route and it was used for depositing thin films by pulsed laser deposition (PLD) technique on single crystalline (100) oriented SrTiO3 (STO) substrate. X-ray diffraction shows that the thin film is deposited in cubic SrMnO3 phase. From X-ray absorption at the Mn L edge we observed the mixed valency of Mn (Mn3+& Mn4+) due to strain induced by the lattice mismatching between SMO and STO. Due to this mixed valency of Mn ion in SMO film, the ferromagnetic nature is observed at lower temperature because of double exchange. After post annealing with very low oxygen partial pressure, magnetic and electronic property of SMO films are effectively modified.

  4. Upper-tropospheric CO and O3 budget during the Asian summer monsoon

    Directory of Open Access Journals (Sweden)

    B. Barret

    2016-07-01

    Full Text Available During the Asian summer monsoon, the circulation in the upper troposphere/lower stratosphere (UTLS is dominated by the Asian monsoon anticyclone (AMA. Pollutants convectively uplifted to the upper troposphere are trapped within this anticyclonic circulation that extends from the Pacific Ocean to the Eastern Mediterranean basin. Among the uplifted pollutants are ozone (O3 and its precursors, such as carbon monoxide (CO and nitrogen oxides (NOx. Many studies based on global modeling and satellite data have documented the source regions and transport pathways of primary pollutants (CO, HCN into the AMA. Here, we aim to quantify the O3 budget by taking into consideration anthropogenic and natural sources. We first use CO and O3 data from the MetOp-A/IASI sensor to document their tropospheric distributions over Asia, taking advantage of the useful information they provide on the vertical dimension. These satellite data are used together with MOZAIC tropospheric profiles recorded in India to validate the distributions simulated by the global GEOS-Chem chemistry transport model. Over the Asian region, UTLS monthly CO and O3 distributions from IASI and GEOS-Chem display the same large-scale features. UTLS CO columns from GEOS-Chem are in agreement with IASI, with a low bias of 11 ± 9 % and a correlation coefficient of 0.70. For O3, the model underestimates IASI UTLS columns over Asia by 14 ± 26 % but the correlation between both is high (0.94. GEOS-Chem is further used to quantify the CO and O3 budget through sensitivity simulations. For CO, these simulations confirm that South Asian anthropogenic emissions have a more important impact on enhanced concentrations within the AMA (∼  25 ppbv than East Asian emissions (∼  10 ppbv. The correlation between enhanced emissions over the Indo-Gangetic Plain and monsoon deep convection is responsible for this larger impact. Consistently, South Asian anthropogenic NOx emissions also

  5. Decrease in tropospheric O3 levels in the Northern Hemisphere observed by IASI

    Directory of Open Access Journals (Sweden)

    C. Wespes

    2018-05-01

    Full Text Available In this study, we describe the recent changes in the tropospheric ozone (O3 columns measured by the Infrared Atmospheric Sounding Interferometer (IASI, onboard the Metop satellite, during the first 9 years of operation (January 2008 to May 2017. Using appropriate multivariate regression methods, we differentiate significant linear trends from other sources of O3 variations captured by IASI. The geographical patterns of the adjusted O3 trends are provided and discussed on the global scale. Given the large contribution of the natural variability in comparison with that of the trend (25–85 % vs. 15–50 %, respectively to the total O3 variations, we estimate that additional years of IASI measurements are generally required to detect the estimated O3 trends with high precision. Globally, additional 6 months to 6 years of measurements, depending on the regions and the seasons, are needed to detect a trend of |5| DU decade−1. An exception is interestingly found during summer at mid- and high latitudes of the Northern Hemisphere (NH; ∼ 40 to ∼ 75° N, where the large absolute fitted trend values (∼ |0.5| DU yr−1 on average combined with the small model residuals (∼ 10 % allow for detection of a band-like pattern of significant negative trends. Despite no consensus in terms of tropospheric O3 trends having been reached from the available independent datasets (UV or IR satellites, O3 sondes, aircrafts, ground-based measurements, etc. for the reasons that are discussed in the text, this finding is consistent with the reported decrease in O3 precursor emissions in recent years, especially in Europe and USA. The influence of continental pollution on that latitudinal band is further investigated and supported by the analysis of the O3–CO relationship (in terms of correlation coefficient, regression slope and covariance that we found to be the strongest at northern midlatitudes in summer.

  6. Tropospheric column ozone response to ENSO in GEOS-5 assimilation of OMI and MLS ozone data

    Directory of Open Access Journals (Sweden)

    M. A. Olsen

    2016-06-01

    Full Text Available We use GEOS-5 analyses of Ozone Monitoring Instrument (OMI and Microwave Limb Sounder (MLS ozone observations to investigate the magnitude and spatial distribution of the El Niño Southern Oscillation (ENSO influence on tropospheric column ozone (TCO into the middle latitudes. This study provides the first explicit spatially resolved characterization of the ENSO influence and demonstrates coherent patterns and teleconnections impacting the TCO in the extratropics. The response is evaluated and characterized by both the variance explained and sensitivity of TCO to the Niño 3.4 index. The tropospheric response in the tropics agrees well with previous studies and verifies the analyses. A two-lobed response symmetric about the Equator in the western Pacific/Indonesian region seen in some prior studies and not in others is confirmed here. This two-lobed response is consistent with the large-scale vertical transport. We also find that the large-scale transport in the tropics dominates the response compared to the small-scale convective transport. The ozone response is weaker in the middle latitudes, but a significant explained vari