WorldWideScience

Sample records for ozone increases concentration

  1. Effect of increased carbon dioxide concentrations on stratospheric ozone

    International Nuclear Information System (INIS)

    Boughner, R.E.

    1978-01-01

    During the past several years, much attention has been focused on the destruction of ozone by anthropogenic pollutants such as the nitrogen oxides and chlorofluoromethane. Little or no attention has been given to the influence on ozone of an increased carbon dioxide concentration for which a measurable growth has been observed. Increased carbon dioxide can directly affect ozone by perturbing atmospheric temperatures, which will alter ozone production, whose rate displays a fairly strong temperature dependence. This paper presents one-dimensional model results for the steady state ozone behavior when the CO 2 concentration is twice its ambient level which account for coupling between chemistry and temperature. When the CO 2 level doubled, the total ozone burden increased in relation to the ambient burden by 1.2--2.5%, depending on the vertical diffusion coefficient used. Above 30 km. In this region the relation variations were insensitive to the choice of diffusion coefficient. Below 30 km, ozone concentrations were smaller than the unperturbed values and were sensitive to the vertical diffusion profile in this region (10--30 km). Ozone decreases in the lower stratosphere because of a reduction in ozone-producing solar radiation, which results in smaller downward ozone fluxes from the region at 25--30 km relative to the flux values for the ambient atmosphere. These offsetting changes occurring in the upper and lower stratosphere act to minimize the variation in total ozone

  2. Increase of ozone concentrations, its temperature sensitivity and the precursor factor in South China

    Directory of Open Access Journals (Sweden)

    Y. C. Lee

    2014-08-01

    Full Text Available Concerns have been raised about the possible connections between the local and regional photochemical problem and global warming. The current study assesses the trend of ozone in Hong Kong and the Pearl River Delta (PRD in South China and investigates the interannual changes of sensitivity of ozone to air temperature, as well as the trends in regional precursors. Results reveal, at the three monitoring sites from the mid-1990s to 2010, an increase in the mean ozone concentrations from 1.0 to 1.6 µg m−3 per year. The increase occurred in all seasons, with the highest rate in autumn. This is consistent with trends and temperature anomalies in the region. The increase in the sensitivity of ozone to temperature is clearly evident from the correlation between ozone (OMI [Ozone Monitoring Instrument] column amount and surface air temperature (from the Atmospheric Infrared Sounder displayed in the correlation maps for the PRD during the prominently high ozone period of July–September. It is observed to have increased from 2005 to 2010, the latter being the hottest year on record globally. To verify this temporal change in sensitivity, the ground-level trends of correlation coefficients/regression slopes are analysed. As expected, results reveal a statistically significant upward trend over a 14-year period (1997–2010. While the correlation revealed in the correlation maps is in agreement with the corresponding OMI ozone maps when juxtaposed, temperature sensitivity of surface ozone also shows an association with ozone concentration, with R=0.5. These characteristics of ozone sensitivity are believed to have adverse implications for the region. As shown by ground measurements and/or satellite analyses, the decrease in nitrogen oxides (NO2 and NOx in Hong Kong is not statistically significant while NO2 of the PRD has only very slightly changed. However, carbon dioxide has remarkably declined in the whole region. While these observations concerning

  3. Increasing surface ozone concentrations in the background atmosphere of Southern China, 1994–2007

    Directory of Open Access Journals (Sweden)

    T. Wang

    2009-08-01

    Full Text Available Tropospheric ozone is of great importance with regard to air quality, atmospheric chemistry, and climate change. In this paper we report the first continuous record of surface ozone in the background atmosphere of South China. The data were obtained from 1994 to 2007 at a coastal site in Hong Kong, which is strongly influenced by the outflow of Asian continental air during the winter and the inflow of maritime air from the subtropics in the summer. Three methods are used to derive the rate of change in ozone. A linear fit to the 14-year record shows that the ozone concentration increased by 0.58 ppbv/yr, whereas comparing means in years 1994–2000 and 2001–2007 gives an increase of 0.87 ppbv/yr for a 7-year period. The ozone changes in air masses from various source regions are also examined. Using local wind and carbon monoxide (CO data to filter out local influence, we find that ozone increased by 0.94 ppbv/yr from 1994–2000 to 2001–2007 in air masses from Eastern China, with similar changes in the other two continent-influenced air-mass groups, but no statistically significant change in the marine air. An examination of the nitrogen dioxide (NO2 column obtained from GOME and SCIAMACHY reveals an increase in atmospheric NO2 in China's three fastest developing coastal regions, whereas NO2 in other parts of Asia decreased during the same period, and no obvious trend over the main shipping routes in the South China Sea was indicated. Thus the observed increase in background ozone in Hong Kong is most likely due to the increased emissions of NO2 (and possibly volatile organic compounds (VOCs as well in the upwind coastal regions of mainland China. The CO data at Hok Tsui showed less definitive changes compared to the satellite NO2 column. The increase in background ozone likely made a strong contribution (81% to the rate of increase in "total ozone" at an urban site in Hong Kong

  4. [Ozone concentration distribution of urban].

    Science.gov (United States)

    Yin, Yong-quan; Li, Chang-mei; Ma, Gui-xia; Cui, Zhao-jie

    2004-11-01

    The increase of ozone concentration in urban is one of the most important research topics on environmental science. With the increase of nitrogen oxides and hydrogen-carbon compounds which are exhausted from cars, the ozone concentration in urban is obviously increased on sunlight, and threat of photochemistry smog will be possible. Therefore, it is very important to monitor and study the ozone concentration distribution in urban. The frequency-distribution, diurnal variation and monthly variation of ozone concentration were studied on the campus of Shandong University during six months monitoring. The influence of solar radiation and weather conditions on ozone concentration were discussed. The frequency of ozone concentration less than 200 microg/m3 is 96.88%. The ozone concentration has an obvious diurnal variation. The ozone concentration in the afternoon is higher than in the morning and in the evening. The maximum appears in June, when it is the strong solar radiation and high air-temperature. The weather conditions also influence the ozone concentration. The ozone concentration in clear day is higher than in rainy and cloudy day.

  5. The effect of increased ozone concentrations in the air on selected aspects of rat reproduction.

    Science.gov (United States)

    Jedlińska-Krakowska, M; Gizejewski, Z; Dietrich, G J; Jakubowski, K; Glogowski, J; Penkowski, A

    2006-01-01

    Five-month-old male rates were exposed to 0.5 ppm ozone for 50 days, 5 hours a day. A week before the completion of ozone exposure, a biological test was performed to determine the fertilization rate and the survival rate of newborns in both ozone-exposed and control animals. After 50 days, the rats were sacrificed with an overdose of halotane, and testes were collected to assess the morphology and motility of spermatozoa. Neither the morphology of spermatozoa nor motility parameters determined by the CASA (computer-assisted sperm analysis) system showed statistically significant differences between ozone-exposed and control males. The number of successful matings and the survival rate of newborns per litter within one year postpartum were also similar in both groups. However, sperm concentration was by 17% lower in ozone-exposed rats, compared with the control animals.

  6. OZONE CONCENTRATION ATTRIBUTABLE PREMATURE DEATH IN POLAND

    Directory of Open Access Journals (Sweden)

    Krzysztof Skotak

    2010-03-01

    Full Text Available Ozone in the lower part of the atmosphere (troposphere, strong photochemical oxidant, is not directly emitted to the atmosphere but formed through a series of complex reactions. Ozone concentrations depends on ozone precursors air contamination (mainly nitrogen dioxide and non-methane volatile organic compounds and meteorological conditions (temperature and solar radiation. The main sectors emitted ozone precursors are road transport, power and heat generation plants, household (heating, industry, and petrol storage and distribution. Ozone and some of its precursors are also transported long distances in the atmosphere and are therefore considered a transboundary problem. As a result, the ozone concentrations are often low in busy urban areas and higher in suburban and rural areas. Nowadays, instead of particulate matter, ozone is one of the most widespread global air pollution problems. In and around urban areas, relatively large gradients of ozone can be observed. Because of its high reactivity in elevated concentrations ozone causes serious health problems and damage to ecosystems, agricultural crops and materials. Main ill-health endpoints as a results of ozone concentrations can be characterised as an effect of pulmonary and cardiovascular system, time morbidity and mortality series, development of atherosclerosis and asthma and finally reduction in life expectancy. The associations with increased daily mortality due to ozone concentrations are confirmed by many researches and epidemiological studies. Estimation of the level selected ill-health endpoints (mortality in total and due to cardiovascular and respiratory causes as a result of the short-term ozone exposure in Poland was the main aim of the project. Final results have been done based on estimation method elaborated by WHO, ozone measurements from National Air Quality Monitoring System and statistical information such as mortality rate and populations. All analysis have been done in

  7. Seasonal Changes in Tropospheric Ozone Concentrations over South Korea and Its Link to Ozone Precursors

    Science.gov (United States)

    Jung, H. C.; Moon, B. K.; Wie, J.

    2017-12-01

    Concentration of tropospheric ozone over South Korea has steadily been on the rise in the last decades, mainly due to rapid industrializing and urbanizing in the Eastern Asia. To identify the characteristics of tropospheric ozone in South Korea, we fitted a sine function to the surface ozone concentration data from 2005 to 2014. Based on fitted sine curves, we analyzed the shifts in the dates on which ozone concentration reached its peak in the calendar year. Ozone monitoring sites can be classified into type types: where the highest annual ozone concentration kept occurring sooner (Esites) and those that kept occurring later (Lsites). The seasonal analysis shows that the surface ozone had increased more rapidly in Esites than in Lsites in the past decade during springtime and vice-versa during summertime. We tried to find the reason for the different seasonal trends with the relationship between ozone and ozone precursors. As a result, it was found that the changes in the ground-level ozone concentration in the spring and summer times are considerably influenced by changes in nitrogen dioxide concentration, and this is closely linked to the destruction (production) process of ozone by nitrogen dioxide in spring (summer). The link between tropospheric ozone and nitrogen dioxide discussed in this study will have to be thoroughly examined through climate-chemistry modeling in the future. Acknowledgements This research was supported by the Korea Ministry of Environment (MOE) as "Climate Change Correspondence Program."

  8. Unequivocal detection of ozone recovery in the Antarctic Ozone Hole through significant increases in atmospheric layers with minimum ozone

    Science.gov (United States)

    de Laat, Jos; van Weele, Michiel; van der A, Ronald

    2015-04-01

    An important new landmark in present day ozone research is presented through MLS satellite observations of significant ozone increases during the ozone hole season that are attributed unequivocally to declining ozone depleting substances. For many decades the Antarctic ozone hole has been the prime example of both the detrimental effects of human activities on our environment as well as how to construct effective and successful environmental policies. Nowadays atmospheric concentrations of ozone depleting substances are on the decline and first signs of recovery of stratospheric ozone and ozone in the Antarctic ozone hole have been observed. The claimed detection of significant recovery, however, is still subject of debate. In this talk we will discuss first current uncertainties in the assessment of ozone recovery in the Antarctic ozone hole by using multi-variate regression methods, and, secondly present an alternative approach to identify ozone hole recovery unequivocally. Even though multi-variate regression methods help to reduce uncertainties in estimates of ozone recovery, great care has to be taken in their application due to the existence of uncertainties and degrees of freedom in the choice of independent variables. We show that taking all uncertainties into account in the regressions the formal recovery of ozone in the Antarctic ozone hole cannot be established yet, though is likely before the end of the decade (before 2020). Rather than focusing on time and area averages of total ozone columns or ozone profiles, we argue that the time evolution of the probability distribution of vertically resolved ozone in the Antarctic ozone hole contains a better fingerprint for the detection of ozone recovery in the Antarctic ozone hole. The advantages of this method over more tradition methods of trend analyses based on spatio-temporal average ozone are discussed. The 10-year record of MLS satellite measurements of ozone in the Antarctic ozone hole shows a

  9. Rapid increases in tropospheric ozone production and export from China

    NARCIS (Netherlands)

    Verstraeten, W.W.; Neu, J.L.; Williams, J.E.; Bowman, K.W.; Worden, J.R.; Boersma, K.F.

    2015-01-01

    Rapid population growth and industrialization have driven substantial increases in Asian ozone precursor emissions over the past decade1, with highly uncertain impacts on regional and global tropospheric ozone levels. According to ozonesonde measurements2, 3, tropospheric ozone concentrations at two

  10. Impacts of increasing ozone on Indian plants

    International Nuclear Information System (INIS)

    Oksanen, E.; Pandey, V.; Pandey, A.K.; Keski-Saari, S.; Kontunen-Soppela, S.; Sharma, C.

    2013-01-01

    Increasing anthropogenic and biogenic emissions of precursor compounds have led to high tropospheric ozone concentrations in India particularly in Indo-Gangetic Plains, which is the most fertile and cultivated area of this rapidly developing country. Current ozone risk models, based on European and North American data, provide inaccurate estimations for crop losses in India. During the past decade, several ozone experiments have been conducted with the most important Indian crop species (e.g. wheat, rice, mustard, mung bean). Experimental work started in natural field conditions around Varanasi area in early 2000's, and the use of open top chambers and EDU (ethylene diurea) applications has now facilitated more advanced studies e.g. for intra-species sensitivity screening and mechanisms of tolerance. In this review, we identify and discuss the most important gaps of knowledge and future needs of action, e.g. more systematic nationwide monitoring for precursor and ozone formation over Indian region. -- Tropospheric ozone is an increasing threat to food production in India

  11. Elevated atmospheric ozone increases concentration of insecticidal Bacillus thuringiensis (Bt) Cry1Ac protein in Bt Brassica napus and reduces feeding of a Bt target herbivore on the non-transgenic parent

    International Nuclear Information System (INIS)

    Himanen, Sari J.; Nerg, Anne-Marja; Nissinen, Anne; Stewart, C. Neal; Poppy, Guy M.; Holopainen, Jarmo K.

    2009-01-01

    Sustained cultivation of Bacillus thuringiensis (Bt) transgenic crops requires stable transgene expression under variable abiotic conditions. We studied the interactions of Bt toxin production and chronic ozone exposure in Bt cry1Ac-transgenic oilseed rape and found that the insect resistance trait is robust under ozone elevations. Bt Cry1Ac concentrations were higher in the leaves of Bt oilseed rape grown under elevated ozone compared to control treatment, measured either per leaf fresh weight or per total soluble protein of leaves. The mean relative growth rate of a Bt target herbivore, Plutella xylostella L. larvae was negative on Bt plants in all ozone treatments. On the non-transgenic plants, larval feeding damage was reduced under elevated ozone. Our results indicate the need for monitoring fluctuations in Bt toxin concentrations to reveal the potential of ozone exposure for altering dosing of Bt proteins to target and non-target herbivores in field environments experiencing increasing ozone pollution. - Elevated atmospheric ozone can induce fluctuations in insecticidal protein concentrations in transgenic plants

  12. Elevated atmospheric ozone increases concentration of insecticidal Bacillus thuringiensis (Bt) Cry1Ac protein in Bt Brassica napus and reduces feeding of a Bt target herbivore on the non-transgenic parent

    Energy Technology Data Exchange (ETDEWEB)

    Himanen, Sari J. [University of Kuopio, Department of Environmental Science, P.O. Box 1627, FIN-70211 Kuopio (Finland)], E-mail: sari.himanen@uku.fi; Nerg, Anne-Marja [University of Kuopio, Department of Environmental Science, P.O. Box 1627, FIN-70211 Kuopio (Finland); Nissinen, Anne [University of Kuopio, Department of Environmental Science, P.O. Box 1627, FIN-70211 Kuopio (Finland); MTT Agrifood Research Finland, Plant Protection, FIN-31600 Jokioinen (Finland); Stewart, C. Neal [University of Tennessee, Department of Plant Sciences, Knoxville, TN 37996-4561 (United States); Poppy, Guy M. [University of Southampton, School of Biological Sciences, Southampton SO16 7PX (United Kingdom); Holopainen, Jarmo K. [University of Kuopio, Department of Environmental Science, P.O. Box 1627, FIN-70211 Kuopio (Finland)

    2009-01-15

    Sustained cultivation of Bacillus thuringiensis (Bt) transgenic crops requires stable transgene expression under variable abiotic conditions. We studied the interactions of Bt toxin production and chronic ozone exposure in Bt cry1Ac-transgenic oilseed rape and found that the insect resistance trait is robust under ozone elevations. Bt Cry1Ac concentrations were higher in the leaves of Bt oilseed rape grown under elevated ozone compared to control treatment, measured either per leaf fresh weight or per total soluble protein of leaves. The mean relative growth rate of a Bt target herbivore, Plutella xylostella L. larvae was negative on Bt plants in all ozone treatments. On the non-transgenic plants, larval feeding damage was reduced under elevated ozone. Our results indicate the need for monitoring fluctuations in Bt toxin concentrations to reveal the potential of ozone exposure for altering dosing of Bt proteins to target and non-target herbivores in field environments experiencing increasing ozone pollution. - Elevated atmospheric ozone can induce fluctuations in insecticidal protein concentrations in transgenic plants.

  13. Distribution ozone concentration in Klang Valley using GIS approaches

    Science.gov (United States)

    Sulaiman, A.; Rahman, A. A. Ab; Maulud, K. N. Abdul; Latif, M. T.; Ahmad, F.; Wahid, M. A. Abdul; Ibrahim, M. A.; Halim, N. D. Abdul

    2017-05-01

    Today, ozone has become one of the main air pollutants in Malaysia. The high ozone precursor concentrations have been encouraging the ozone production. The development of the Klang Valley, Malaysia has many types of physical activities such as urban commercial, industrial area, settlement area and others, which has increased the risk of atmospheric pollution. The purpose of this paper is to determine the spatial distribution between types of land use and ozone concentration that are occurred in the year 2014. The study areas for this paper include Shah Alam, Kajang, Petaling Jaya and Port Klang. Distribution of ozone concentration will be showed via spatial analysis tools in Geographic Information Systems (GIS) approached and the types of land use will be extracted using Remote Sensing technique. The result showed 97 ppb (parts-per-billion, 10-9) and 161 ppb recorded at Port Klang and Shah Alam respectively that are mainly represented by the settlement area. Therefore, the physical land use need to be monitor and controlled by the government in order to make sure the ozone production for daily per hour will not exceed the regulation allowed.

  14. Distribution ozone concentration in Klang Valley using GIS approaches

    International Nuclear Information System (INIS)

    Sulaiman, A; Ab Rahman, A A; Abdul Maulud, K N; Abdul Wahid, M A; Ibrahim, M A; Latif, M T; Abdul Halim, N D; Ahmad, F

    2017-01-01

    Today, ozone has become one of the main air pollutants in Malaysia. The high ozone precursor concentrations have been encouraging the ozone production. The development of the Klang Valley, Malaysia has many types of physical activities such as urban commercial, industrial area, settlement area and others, which has increased the risk of atmospheric pollution. The purpose of this paper is to determine the spatial distribution between types of land use and ozone concentration that are occurred in the year 2014. The study areas for this paper include Shah Alam, Kajang, Petaling Jaya and Port Klang. Distribution of ozone concentration will be showed via spatial analysis tools in Geographic Information Systems (GIS) approached and the types of land use will be extracted using Remote Sensing technique. The result showed 97 ppb (parts-per-billion, 10 -9 ) and 161 ppb recorded at Port Klang and Shah Alam respectively that are mainly represented by the settlement area. Therefore, the physical land use need to be monitor and controlled by the government in order to make sure the ozone production for daily per hour will not exceed the regulation allowed. (paper)

  15. Growth of soybean at future tropospheric ozone concentrations decreases canopy evapotranspiration and soil water depletion

    Energy Technology Data Exchange (ETDEWEB)

    Bernacchi, Carl J., E-mail: bernacch@illinois.edu [Global Change and Photosynthesis Research Unit, United States Department of Agriculture Agricultural Research Service, Urbana, IL 61801 (United States); Institute for Genomic Biology and Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Leakey, Andrew D.B. [Institute for Genomic Biology and Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Kimball, Bruce A. [USDA-ARS US Arid-Land Agricultural Research Center, 21881 N. Cardon Lane, Maricopa, AZ 85238 (United States); Ort, Donald R. [Global Change and Photosynthesis Research Unit, United States Department of Agriculture Agricultural Research Service, Urbana, IL 61801 (United States); Institute for Genomic Biology and Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States)

    2011-06-15

    Tropospheric ozone is increasing in many agricultural regions resulting in decreased stomatal conductance and overall biomass of sensitive crop species. These physiological effects of ozone forecast changes in evapotranspiration and thus in the terrestrial hydrological cycle, particularly in intercontinental interiors. Soybean plots were fumigated with ozone to achieve concentrations above ambient levels over five growing seasons in open-air field conditions. Mean season increases in ozone concentrations ([O{sub 3}]) varied between growing seasons from 22 to 37% above background concentrations. The objective of this experiment was to examine the effects of future [O{sub 3}] on crop ecosystem energy fluxes and water use. Elevated [O{sub 3}] caused decreases in canopy evapotranspiration resulting in decreased water use by as much as 15% in high ozone years and decreased soil water removal. In addition, ozone treatment resulted in increased sensible heat flux in all years indicative of day-time increase in canopy temperature of up to 0.7 deg. C. - Highlights: > Globally, tropospheric ozone is currently and will likely continue to increase into the future. > We examine the impact of elevated ozone on water use by soybean at the SoyFACE research facility. > High ozone grown soybean had reduced rates of evapotranspiration and higher soil moisture. > Increases in ozone have the potential to impact the hydrologic cycle where these crops are grown. - Soybean grown in elevated concentrations of ozone is shown to evapotranspire less water compared with soybean canopies grown under current atmospheric conditions.

  16. Growth of soybean at future tropospheric ozone concentrations decreases canopy evapotranspiration and soil water depletion

    International Nuclear Information System (INIS)

    Bernacchi, Carl J.; Leakey, Andrew D.B.; Kimball, Bruce A.; Ort, Donald R.

    2011-01-01

    Tropospheric ozone is increasing in many agricultural regions resulting in decreased stomatal conductance and overall biomass of sensitive crop species. These physiological effects of ozone forecast changes in evapotranspiration and thus in the terrestrial hydrological cycle, particularly in intercontinental interiors. Soybean plots were fumigated with ozone to achieve concentrations above ambient levels over five growing seasons in open-air field conditions. Mean season increases in ozone concentrations ([O 3 ]) varied between growing seasons from 22 to 37% above background concentrations. The objective of this experiment was to examine the effects of future [O 3 ] on crop ecosystem energy fluxes and water use. Elevated [O 3 ] caused decreases in canopy evapotranspiration resulting in decreased water use by as much as 15% in high ozone years and decreased soil water removal. In addition, ozone treatment resulted in increased sensible heat flux in all years indicative of day-time increase in canopy temperature of up to 0.7 deg. C. - Highlights: → Globally, tropospheric ozone is currently and will likely continue to increase into the future. → We examine the impact of elevated ozone on water use by soybean at the SoyFACE research facility. → High ozone grown soybean had reduced rates of evapotranspiration and higher soil moisture. → Increases in ozone have the potential to impact the hydrologic cycle where these crops are grown. - Soybean grown in elevated concentrations of ozone is shown to evapotranspire less water compared with soybean canopies grown under current atmospheric conditions.

  17. Human mortality effects of future concentrations of tropospheric ozone

    International Nuclear Information System (INIS)

    West, J.; Szopa, S.; Hauglustaine, D.A.

    2007-01-01

    Here we explore the effects of projected future changes in global ozone concentrations on premature human mortality, under three scenarios for 2030. We use daily surface ozone concentrations from a global atmospheric transport and chemistry model, and ozone-mortality relationships from daily time-series studies. The population-weighted annual average 8-h daily maximum ozone is projected to increase, relative to the present, in each of ten world regions under the SRES A2 scenario and the current legislation (CLE) scenario, with the largest growth in tropical regions, while decreases are projected in each region in the maximum feasible reduction (MFR) scenario. Emission reductions in the CLE scenario, relative to A2, are estimated to reduce about 190,000 premature human mortalities globally in 2030, with the most avoided mortalities in Africa. The MFR scenario will avoid about 460,000 premature mortalities relative to A2 in 2030, and 270,000 relative to CLE, with the greatest reductions in South Asia. (authors)

  18. Effect of ozone concentration on silicon surface passivation by atomic layer deposited Al2O3

    International Nuclear Information System (INIS)

    Gastrow, Guillaume von; Li, Shuo; Putkonen, Matti; Laitinen, Mikko; Sajavaara, Timo; Savin, Hele

    2015-01-01

    Highlights: • The ALD Al 2 O 3 passivation quality can be controlled by the ozone concentration. • Ozone concentration affects the Si/Al 2 O 3 interface charge and defect density. • A surface recombination velocity of 7 cm/s is reached combining ozone and water ALD. • Carbon and hydrogen concentrations correlate with the surface passivation quality. - Abstract: We study the impact of ozone-based Al 2 O 3 Atomic Layer Deposition (ALD) on the surface passivation quality of crystalline silicon. We show that the passivation quality strongly depends on the ozone concentration: the higher ozone concentration results in lower interface defect density and thereby improved passivation. In contrast to previous studies, our results reveal that too high interface hydrogen content can be detrimental to the passivation. The interface hydrogen concentration can be optimized by the ozone-based process; however, the use of pure ozone increases the harmful carbon concentration in the film. Here we demonstrate that low carbon and optimal hydrogen concentration can be achieved by a single process combining the water- and ozone-based reactions. This process results in an interface defect density of 2 × 10 11 eV −1 cm −2 , and maximum surface recombination velocities of 7.1 cm/s and 10 cm/s, after annealing and after an additional firing at 800 °C, respectively. In addition, our results suggest that the effective oxide charge density can be optimized in a simple way by varying the ozone concentration and by injecting water to the ozone process.

  19. An assessment of ground-level ozone concentrations in the Athabasca oil sands region

    International Nuclear Information System (INIS)

    1997-01-01

    Syncrude and Suncor have plans to develop new oil sands leases and to increase crude oil and bitumen recovery in the Athabasca oil sands region. A first air quality assessment was prepared as part of the Alberta Energy and Utilities Board application, in order to evaluate the emissions and potential impacts associated with the development. The Pembina Institute raised several issues with respect to potential future changes in ambient ozone levels as a result of the Aurora Mine operations. In response to these concerns, another more rigorous assessment was conducted to predict future ground-level ozone concentrations in the Fort McMurray area. This report includes: (1) ambient air quality guidelines for ozone, (2) emissions inventory for dispersion modelling, (3) dispersion modelling methodology, and (4) predicted ambient ozone concentrations. Ground level ozone (O 3 ) concentrations result from anthropogenically produced ozone, and from naturally occurring ozone. Ozone is not directly emitted to the atmosphere from industrial sources, but is formed as a result of chemical reactions between NO x and VOCs, which are emitted from industrial sources within the Athabasca oil sands region. NO x and VOC emissions associated with the Aurora Mine operation are predicted to increase hourly average ozone concentrations in the Fort McMurray area by only 0.001 ppm. 17 refs., 18 tabs., 5 figs

  20. Ozone pollution and ozone biomonitoring in European cities. Part I: Ozone concentrations and cumulative exposure indices at urban and suburban sites

    DEFF Research Database (Denmark)

    Klumpp, A.; Ansel, W.; Klumpp, G.

    2006-01-01

    In the frame of a European research project on air quality in urban agglomerations, data on ozone concentrations from 23 automated urban and suburban monitoring stations in 11 cities from seven countries were analysed and evaluated. Daily and summer mean and maximum concentrations were computed...... based on hourly mean values, and cumulative ozone exposure indices (Accumulated exposure Over a Threshold of 40 ppb (AOT40), AOT20) were calculated. The diurnal profiles showed a characteristic pattern in most city centres, with minimum values in the early morning hours, a strong rise during the morning......, by contrast, maximum values were lower and diurnal variation was much smaller. Based on ozone concentrations as well as on cumulative exposure indices, a clear north-south gradient in ozone pollution, with increasing levels from northern and northwestern sites to central and southern European sites...

  1. Forecasting ozone concentrations in the east of Croatia using ...

    Indian Academy of Sciences (India)

    for urban and another one for rural area in the eastern part of Croatia. ... 2010). Apart from the negative impact on respiratory system, atmo- ..... Figure 3. Daily average ozone concentrations in the rural (Tikveš) and urban (Osijek) areas.

  2. Effect of pulsed corona discharge voltage and feed gas flow rate on dissolved ozone concentration

    Energy Technology Data Exchange (ETDEWEB)

    Prasetyaningrum, A., E-mail: ajiprasetyaningrum@gmail.com; Ratnawati,; Jos, B. [Department of Chemical Engineering, Faculty of Engineering, Diponegoro University Jl. Prof. H. Soedarto Tembalang, Semarang, Central Java, Indonesia, 50276 (Indonesia)

    2015-12-29

    Ozonization is one of the methods extensively used for water purification and degradation of organic materials. Ozone (O{sub 3}) is recognized as a powerful oxidizing agent. Due to its strong oxidability and better environmental friendless, ozone increasing being used in domestic and industrial applications. Current technology in ozone production utilizes several techniques (corona discharge, ultra violet radiation and electrolysis). This experiment aimed to evaluating effect of voltage and gas flow rate on ozone production with corona discharge. The system consists of two net-type stainless steel electrode placed in a dielectric barrier. Three pulsed voltage (20, 30, 40 KV) and flow rate (5, 10, 15 L/min) were prepare for operation variable at high frequency (3.7 kHz) with AC pulsed power supply. The dissolved ozone concentration depends on the applied high-voltage level, gas flow rate and the discharge exposure duration. The ozone concentration increases with decreasing gas flow rate. Dissolved ozone concentrations greater than 200 ppm can be obtained with a minimum voltage 40 kV.

  3. Effect of pulsed corona discharge voltage and feed gas flow rate on dissolved ozone concentration

    International Nuclear Information System (INIS)

    Prasetyaningrum, A.; Ratnawati,; Jos, B.

    2015-01-01

    Ozonization is one of the methods extensively used for water purification and degradation of organic materials. Ozone (O 3 ) is recognized as a powerful oxidizing agent. Due to its strong oxidability and better environmental friendless, ozone increasing being used in domestic and industrial applications. Current technology in ozone production utilizes several techniques (corona discharge, ultra violet radiation and electrolysis). This experiment aimed to evaluating effect of voltage and gas flow rate on ozone production with corona discharge. The system consists of two net-type stainless steel electrode placed in a dielectric barrier. Three pulsed voltage (20, 30, 40 KV) and flow rate (5, 10, 15 L/min) were prepare for operation variable at high frequency (3.7 kHz) with AC pulsed power supply. The dissolved ozone concentration depends on the applied high-voltage level, gas flow rate and the discharge exposure duration. The ozone concentration increases with decreasing gas flow rate. Dissolved ozone concentrations greater than 200 ppm can be obtained with a minimum voltage 40 kV

  4. Effect of pulsed corona discharge voltage and feed gas flow rate on dissolved ozone concentration

    Science.gov (United States)

    Prasetyaningrum, A.; Ratnawati, Jos, B.

    2015-12-01

    Ozonization is one of the methods extensively used for water purification and degradation of organic materials. Ozone (O3) is recognized as a powerful oxidizing agent. Due to its strong oxidability and better environmental friendless, ozone increasing being used in domestic and industrial applications. Current technology in ozone production utilizes several techniques (corona discharge, ultra violet radiation and electrolysis). This experiment aimed to evaluating effect of voltage and gas flow rate on ozone production with corona discharge. The system consists of two net-type stainless steel electrode placed in a dielectric barrier. Three pulsed voltage (20, 30, 40 KV) and flow rate (5, 10, 15 L/min) were prepare for operation variable at high frequency (3.7 kHz) with AC pulsed power supply. The dissolved ozone concentration depends on the applied high-voltage level, gas flow rate and the discharge exposure duration. The ozone concentration increases with decreasing gas flow rate. Dissolved ozone concentrations greater than 200 ppm can be obtained with a minimum voltage 40 kV.

  5. Within season and carry-over effects following exposure of grassland species mixtures to increasing background ozone

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, Felicity, E-mail: fhay@ceh.ac.uk [Centre for Ecology and Hydrology, Environment Centre Wales, Deiniol Road, Bangor, Gwynedd LL57 2UW (United Kingdom); Mills, Gina; Harmens, Harry; Wyness, Kirsten [Centre for Ecology and Hydrology, Environment Centre Wales, Deiniol Road, Bangor, Gwynedd LL57 2UW (United Kingdom)

    2011-10-15

    Few studies have investigated effects of increased background ozone in the absence of episodic peaks, despite a predicted increase throughout the northern hemisphere over the coming decades. In this study Leontodon hispidus was grown with Anthoxanthum odoratum or Dactylis glomerata and exposed in the UK to one of eight background ozone concentrations for 20 weeks in solardomes. Seasonal mean ozone concentrations ranged from 21.4 to 102.5 ppb. Ozone-induced senescence of L. hispidus was enhanced when grown with the more open canopy of A. odoratum compared to the denser growing D. glomerata. There was increased cover with increasing ozone exposure for both A. odoratum and D. glomerata, which resulted in an increase in the grass:Leontodon cover ratio in both community types. Carry-over effects of the ozone exposure were observed, including delayed winter die-back of L. hispidus and acceleration in the progression from flowers to seed-heads in the year following ozone exposure. - Highlights: > Increased background ozone concentrations increased the grass:forb cover ratio. > Competing grass species influenced ozone enhanced senescence of Leontodon hispidus. > Ozone delayed winter die-back of leaves of L. hispidus. > Flowering was accelerated for L. hispidus in the year following ozone exposure. - Increased background ozone enhanced leaf senescence and caused carry-over effects including reduced winter die-back and an acceleration in flowering the next year.

  6. Ozone concentrations and damage for realistic future European climate and air quality scenarios

    Science.gov (United States)

    Hendriks, Carlijn; Forsell, Nicklas; Kiesewetter, Gregor; Schaap, Martijn; Schöpp, Wolfgang

    2016-11-01

    Ground level ozone poses a significant threat to human health from air pollution in the European Union. While anthropogenic emissions of precursor substances (NOx, NMVOC, CH4) are regulated by EU air quality legislation and will decrease further in the future, the emissions of biogenic NMVOC (mainly isoprene) may increase significantly in the coming decades if short-rotation coppice plantations are expanded strongly to meet the increased biofuel demand resulting from the EU decarbonisation targets. This study investigates the competing effects of anticipated trends in land use change, anthropogenic ozone precursor emissions and climate change on European ground level ozone concentrations and related health and environmental impacts until 2050. The work is based on a consistent set of energy consumption scenarios that underlie current EU climate and air quality policy proposals: a current legislation case, and an ambitious decarbonisation case. The Greenhouse Gas-Air Pollution Interactions and Synergies (GAINS) integrated assessment model was used to calculate air pollutant emissions for these scenarios, while land use change because of bioenergy demand was calculated by the Global Biosphere Model (GLOBIOM). These datasets were fed into the chemistry transport model LOTOS-EUROS to calculate the impact on ground level ozone concentrations. Health damage because of high ground level ozone concentrations is projected to decline significantly towards 2030 and 2050 under current climate conditions for both energy scenarios. Damage to plants is also expected to decrease but to a smaller extent. The projected change in anthropogenic ozone precursor emissions is found to have a larger impact on ozone damage than land use change. The increasing effect of a warming climate (+2-5 °C across Europe in summer) on ozone concentrations and associated health damage, however, might be higher than the reduction achieved by cutting back European ozone precursor emissions. Global

  7. Synoptic and meteorological drivers of extreme ozone concentrations over Europe

    Science.gov (United States)

    Otero, Noelia Felipe; Sillmann, Jana; Schnell, Jordan L.; Rust, Henning W.; Butler, Tim

    2016-04-01

    The present work assesses the relationship between local and synoptic meteorological conditions and surface ozone concentration over Europe in spring and summer months, during the period 1998-2012 using a new interpolated data set of observed surface ozone concentrations over the European domain. Along with local meteorological conditions, the influence of large-scale atmospheric circulation on surface ozone is addressed through a set of airflow indices computed with a novel implementation of a grid-by-grid weather type classification across Europe. Drivers of surface ozone over the full distribution of maximum daily 8-hour average values are investigated, along with drivers of the extreme high percentiles and exceedances or air quality guideline thresholds. Three different regression techniques are applied: multiple linear regression to assess the drivers of maximum daily ozone, logistic regression to assess the probability of threshold exceedances and quantile regression to estimate the meteorological influence on extreme values, as represented by the 95th percentile. The relative importance of the input parameters (predictors) is assessed by a backward stepwise regression procedure that allows the identification of the most important predictors in each model. Spatial patterns of model performance exhibit distinct variations between regions. The inclusion of the ozone persistence is particularly relevant over Southern Europe. In general, the best model performance is found over Central Europe, where the maximum temperature plays an important role as a driver of maximum daily ozone as well as its extreme values, especially during warmer months.

  8. Ozone pollution: rising concentrations despite French and EU efforts

    International Nuclear Information System (INIS)

    Ba, M.; Elichegaray, Ch.

    2003-11-01

    Ozone is the main indicator of photochemical pollution which is caused by a complex combination of primary pollutants formed by chemical reactions in the troposphere, in the presence of sunlight. These primary pollutants, otherwise known as precursors of ozone (nitrogen oxides, volatile organic compounds and carbon monoxide), are emitted both by natural sources and human activities. In urban areas, during the summer months, ozone is often the main cause of deterioration in air quality. Directive 2002/3/EC relating to ozone in ambient air entered into force on 9 September 2003, superseding the first ozone Directive (92/72/CE) of 21 September 1992. In the last 10 years, monitoring of ozone pollution has considerably progressed in France (the number of analysers has increased tenfold). Emissions of the ozone precursors fell significantly (-27%) between 1990 and 2000 in France as a result of combined efforts in all sectors of activity. However, between 1994 and 2002, ozone levels remained above the information threshold for the protection of human health and vegetation on average more than 100 days a year in rural areas and over 40 days a year in urban and peri-urban areas. Efforts undertaken both in France and other European countries aim to improve the situation and ensure compliance with the requirements of Directive 2002/3/EC. (author)

  9. Fine root dynamics of mature European beech (Fagus sylvatica L.) as influenced by elevated ozone concentrations

    International Nuclear Information System (INIS)

    Mainiero, Raphael; Kazda, Marian; Haeberle, Karl-Heinz; Nikolova, Petia Simeonova; Matyssek, Rainer

    2009-01-01

    Fine root dynamics (diameter < 1 mm) in mature Fagus sylvatica, with the canopies exposed to ambient or twice-ambient ozone concentrations, were investigated throughout 2004. The focus was on the seasonal timing and extent of fine root dynamics (growth, mortality) in relation to the soil environment (water content, temperature). Under ambient ozone concentrations, a significant relationship was found between fine root turnover and soil environmental changes indicating accelerated fine root turnover under favourable soil conditions. In contrast, under elevated ozone, this relationship vanished as the result of an altered temporal pattern of fine root growth. Fine root survival and turnover rate did not differ significantly between the different ozone regimes, although a delay in current-year fine root shedding was found under the elevated ozone concentrations. The data indicate that increasing tropospheric ozone levels can alter the timing of fine root turnover in mature F. sylvatica but do not affect the turnover rate. - Doubling of ozone concentrations in mature European beech affected the seasonal timing of fine root turnover rather than the turnover rate.

  10. Estimating changes in urban ozone concentrations due to life cycle emissions from hydrogen transportation systems

    Science.gov (United States)

    Wang, Guihua; Ogden, Joan M.; Chang, Daniel P. Y.

    Hydrogen has been proposed as a low polluting alternative transportation fuel that could help improve urban air quality. This paper examines the potential impact of introducing a hydrogen-based transportation system on urban ambient ozone concentrations. This paper considers two scenarios, where significant numbers of new hydrogen vehicles are added to a constant number of gasoline vehicles. In our scenarios hydrogen fuel cell vehicles (HFCVs) are introduced in Sacramento, California at market penetrations of 9% and 20%. From a life cycle analysis (LCA) perspective, considering all the emissions involved in producing, transporting, and using hydrogen, this research compares three hypothetical natural gas to hydrogen pathways: (1) on-site hydrogen production; (2) central hydrogen production with pipeline delivery; and (3) central hydrogen production with liquid hydrogen truck delivery. Using a regression model, this research shows that the daily maximum temperature correlates well with atmospheric ozone formation. However, increases in initial VOC and NO x concentrations do not necessarily increase the peak ozone concentration, and may even cause it to decrease. It is found that ozone formation is generally limited by NO x in the summer and is mostly limited by VOC in the fall in Sacramento. Of the three hydrogen pathways, the truck delivery pathway contributes the most to ozone precursor emissions. Ozone precursor emissions from the truck pathway at 9% market penetration can cause additional 3-h average VOC (or NO x) concentrations up to approximately 0.05% (or 1%) of current pollution levels, and at 20% market penetration up to approximately 0.1% (or 2%) of current pollution levels. However, all of the hydrogen pathways would result in very small (either negative or positive) changes in ozone air quality. In some cases they will result in worse ozone air quality (mostly in July, August, and September), and in some cases they will result in better ozone air quality

  11. Estimating changes in urban ozone concentrations due to life cycle emissions from hydrogen transportation systems

    International Nuclear Information System (INIS)

    Guihua Wang; Ogden, Joan M.; Chang, Daniel P.Y.

    2007-01-01

    Hydrogen has been proposed as a low polluting alternative transportation fuel that could help improve urban air quality. This paper examines the potential impact of introducing a hydrogen-based transportation system on urban ambient ozone concentrations. This paper considers two scenarios, where significant numbers of new hydrogen vehicles are added to a constant number of gasoline vehicles. In our scenarios hydrogen fuel cell vehicles (HFCVs) are introduced in Sacramento, California at market penetrations of 9% and 20%. From a life cycle analysis (LCA) perspective, considering all the emissions involved in producing, transporting, and using hydrogen, this research compares three hypothetical natural gas to hydrogen pathways: (1) on-site hydrogen production; (2) central hydrogen production with pipeline delivery; and (3) central hydrogen production with liquid hydrogen truck delivery. Using a regression model, this research shows that the daily maximum temperature correlates well with atmospheric ozone formation. However, increases in initial VOC and NO x concentrations do not necessarily increase the peak ozone concentration, and may even cause it to decrease. It is found that ozone formation is generally limited by NO x in the summer and is mostly limited by VOC in the fall in Sacramento. Of the three hydrogen pathways, the truck delivery pathway contributes the most to ozone precursor emissions. Ozone precursor emissions from the truck pathway at 9% market penetration can cause additional 3-h average VOC (or NO x ) concentrations up to approximately 0.05% (or 1%) of current pollution levels, and at 20% market penetration up to approximately 0.1% (or 2%) of current pollution levels. However, all of the hydrogen pathways would result in very small (either negative or positive) changes in ozone air quality. In some cases they will result in worse ozone air quality (mostly in July, August, and September), and in some cases they will result in better ozone air

  12. Measures of ozone concentrations using passive sampling in forests of South Western Europe

    Energy Technology Data Exchange (ETDEWEB)

    Sanz, M.J. [Fundacion CEAM, Charles R. Darwin 14, Parc Tecnologic, E-46980 Paterna, Valencia (Spain)]. E-mail: mjose@ceam.es; Calatayud, V. [Fundacion CEAM, Charles R. Darwin 14, Parc Tecnologic, E-46980 Paterna, Valencia (Spain); Sanchez-Pena, G. [Servicio de Proteccion de los Montes contra Agentes Nocivos, Direccion General para la Biodiversidad, Ministerio de Medio Ambiente, Gran Via de San Francisco, 4, E-28005, Madrid (Spain)

    2007-02-15

    Ambient ozone concentrations were measured with passive samplers in the framework of the EU and UN/ECE Level II forest monitoring programme. Data from France, Italy, Luxembourg, Spain and Switzerland are reported for 2000-2002, covering the period from April to September. The number of plots increased from 67 in 2000 to 83 in 2002. The year 2001 experienced the highest ozone concentrations, reflecting more stable summer meteorological conditions. Average 6-month ozone concentrations above 45 ppb were measured this year in 40.3% of the plots, in contrast with the less than 21% measured in the other 2 years. Gradients of increasing ozone levels were observed from North to South and with altitude. Comments are made on the regional trends and on the time frame of the higher ozone episodes. Also, some recommendations enabling a better comparison between plots are provided. - Ozone concentrations in forested areas of SW Europe during the period 2000-2002 showed highest values in 2001, as well as a tendency to increase towards the South and with altitude.

  13. Measures of ozone concentrations using passive sampling in forests of South Western Europe

    International Nuclear Information System (INIS)

    Sanz, M.J.; Calatayud, V.; Sanchez-Pena, G.

    2007-01-01

    Ambient ozone concentrations were measured with passive samplers in the framework of the EU and UN/ECE Level II forest monitoring programme. Data from France, Italy, Luxembourg, Spain and Switzerland are reported for 2000-2002, covering the period from April to September. The number of plots increased from 67 in 2000 to 83 in 2002. The year 2001 experienced the highest ozone concentrations, reflecting more stable summer meteorological conditions. Average 6-month ozone concentrations above 45 ppb were measured this year in 40.3% of the plots, in contrast with the less than 21% measured in the other 2 years. Gradients of increasing ozone levels were observed from North to South and with altitude. Comments are made on the regional trends and on the time frame of the higher ozone episodes. Also, some recommendations enabling a better comparison between plots are provided. - Ozone concentrations in forested areas of SW Europe during the period 2000-2002 showed highest values in 2001, as well as a tendency to increase towards the South and with altitude

  14. Investigating the effect of gas flow rate, inlet ozone concentration and relative humidity on the efficacy of catalytic ozonation process in the removal of xylene from waste airstream

    Directory of Open Access Journals (Sweden)

    H.R. MokaramI

    2010-10-01

    Full Text Available Background and aimsThe catalytic ozonation is an efficient process for the degradation of volatile organic compounds from contaminated air stream. This study was aimed at investigating the efficacy of catalytic ozonation process in removal of xylene from the polluted air stream andthe influence of retention time (gas flow rate, inlet ozone dose and relative humidity on this performanceMethodsthe catalytic ozonation of xylene was conducted using a bench scale set-up consisted of a syringe pump,an air pump, an ozone generator, and a glass reactor packed with activated carbon. Several experimental run was defined to investigate the influence of the selectedoperational variables.ResultsThe results indicated that the efficiency of catalytic ozonation was greater than that of single adsorption in removal of xylene under similar inlet concentration and relative humidity. We found a significant catalytic effect for activated carbon when used in combination with ozonation process, leading to improvement of xylene removal percentage. In addition, the elimination capacity of the system improved with the increase of inlet ozone dose as well as gas flow rate. The relative humidity showed a positive effect of the xylene removal at the range of 5 to 50%, while the higher humidity (more than 50% resulted in reduction of the performance.ConclusionThe findings of the present work revealed that the catalytic ozonation process can be an efficient technique for treating the air streams containing industrial concentrations of xylene. Furthermore, there is a practical potential to retrofit the present adsorption systems intothe catalytic ozonation simply by coupling them with the ozonation system. the catalytic ozonation of xylene was conducted using a bench scale set-up consisted of a syringe pump,an air pump, an ozone generator, and a glass reactor packed with activated carbon. Several experimental run was defined to investigate the influence of the selected

  15. Influence of wildfires on the variability and trend of ozone concentrations in the U.S. Intermountain West

    Science.gov (United States)

    Lu, Xiao; Zhang, Lin; Zhao, Yuanhong; Yue, Xu

    2016-04-01

    Wildfires are important sources of ozone by emitting large amounts of NOx and NMVOC, main ozone precursors at both global and regional scales. Their influences on ozone in the U.S. Intermountain West have recently received much interest because surface ozone concentrations over that region showed an increasing trend in the past two decades likely due to increasing wildfire emissions in a warming climate. Here we use the Lagrangian particle dispersion model (FLEXPART) as well as the GEOS-Chem chemical transport model to estimate wildfires' contribution on summer (June, July and August; JJA) ozone concentration variations, trends, and extremely high ozone events over the US Intermountain West for the past 22 years (1989-2010). We combine the resident time estimated from the FLEXPART 5-day backward trajectories and a high-resolution fire inventory to define a fire index representing the impact of wildfires on ozone concentration at a particular site for each day of summers 1989-2010. Over 26,000 FLEXPART back-trajectories are conducted for the whole time period and for 13 CASTNet surface monitoring sites. We build a stepwise multiple linear regression (SMLR) model of daily ozone concentrations using fire index and other meteorological variables for each site. The SMLR models explain 53% of the ozone variations (ranging from 12% to 68% for each site). We show that ozone produced from wildfires (calculated from SMLR model) are of high variability at daily scale (ranging from 0.1 ppbv to 20.7 ppbv), but are averaged to lower values of about 0.25-3.5 ppbv for summer mean. We estimate that wildfires magnify inter-annual variations of the regional mean summer ozone for about 32%, compared to the result with wildfires impact excluded from the SMLR model. Wildfire ozone enhancements increase at a rate of 0.04 ppbv per year, accouting for about 20% of the regional summer ozone trend during 1989-2010. Removing wildfires' impact would reduce 35% (46%) of the high-ozone days with

  16. Molecular storage of ozone in a clathrate hydrate: an attempt at preserving ozone at high concentrations.

    Directory of Open Access Journals (Sweden)

    Takahiro Nakajima

    Full Text Available This paper reports an experimental study of the formation of a mixed O(3+ O(2+ CO(2 hydrate and its frozen storage under atmospheric pressure, which aimed to establish a hydrate-based technology for preserving ozone (O(3, a chemically unstable substance, for various industrial, medical and consumer uses. By improving the experimental technique that we recently devised for forming an O(3+ O(2+ CO(2 hydrate, we succeeded in significantly increasing the fraction of ozone contained in the hydrate. For a hydrate formed at a system pressure of 3.0 MPa, the mass fraction of ozone was initially about 0.9%; and even after a 20-day storage at -25°C and atmospheric pressure, it was still about 0.6%. These results support the prospect of establishing an economical, safe, and easy-to-handle ozone-preservation technology of practical use.

  17. The predicted impact of VOCs from Marijuana cultivation operations on ozone concentrations in great Denver, CO.

    Science.gov (United States)

    Wang, C. T.; Vizuete, W.; Wiedinmyer, C.; Ashworth, K.

    2016-12-01

    Colorado is the first the marijuana legal states in the United States since 2014. As a result, thousands of legal Marijuana cultivation operations are at great Denver area now. Those Marijuana cultivation operations could be the potential to release a lot of biogenic VOCs, such as monoterpene(C10H16), alpha-pinene, and D-limonene. Those alkene species could rapidly increase the peroxy radicals and chemical reactions in the atmosphere, especially in the urban area which belong to VOC-limited ozone regime. These emissions will increase the ozone in Denver city, where is ozone non-attainment area. Some previous research explained the marijuana smoke and indoor air quality (Martyny, Serrano, Schaeffer, & Van Dyke, 2013) and the smell of marijuana chemical compounds(Rice & Koziel, 2015). However, there have been no studies discuss on identifying and assessing emission rate from marijuana and how those species impact on atmospheric chemistry and ozone concentration, and the marijuana emissions have been not considered in the national emission inventory, either. This research will use air quality model to identify the possibility of ozone impact by marijuana cultivation emission. The Comprehensive Air Quality Model with Extensions, CAMx, are applied for this research to identify the impact of ozone concentration. This model is government regulatory model based on the Three-State Air Quality Modeling Study (3SAQS), which developed by UNC-Chapel Hill and ENVIRON in 2012. This model is used for evaluation and regulate the ozone impact in ozone non-attainment area, Denver city. The details of the 3SAQS model setup and protocol can be found in the 3SAQS report(UNC-IE, 2013). For the marijuana emission study scenarios, we assumed the monoterpene (C10H16) is the only emission species in air quality model and identify the ozone change in the model by the different quantity of emission rate from marijuana cultivation operations.

  18. Serum lipid and lipoprotein concentrations following exposure to ozone

    Energy Technology Data Exchange (ETDEWEB)

    Vaughan, W J; Adamson, G L; Lindgren, F T; Schooley, J.C.

    1984-07-01

    The effects of exposure to ozone (O/sub 3/) on concentrations of serum lipids and lipoproteins were investigated. Male and female guinea pigs were exposed to O/sub 3/ at 1 ppm for two weeks. Serum concentrations of cholesterol, triglycerides, low density (LDL) and very low density (VLDL) lipoproteins were elevated after O/sub 3/ exposure, particularly in males. During O/sub 3/ exposure the food intake per day decreased (for a constant body weight), suggesting that metabolic rate and possibly basal metabolic rate was lower. Lung wet weights increased during O/sub 3/ exposure by 87% for males and 45% for females. When individual lung weight/body weight ratios were correlated with cholesterol and LDL values from the same animal, a high correlation is found for males (r . 0.81, P less than 0.05), suggesting that there may be a relationship between lipoprotein elevations and lung damage for males. Because elevated concentrations of lipids and lipoproteins in humans increase the risk of coronary heart disease (CHD), the lipoprotein results suggest that an epidemiological study of the incidence of CHD with metropolitan O/sub 3/ levels may be warranted.

  19. On the impact of temperature on tropospheric ozone concentration ...

    Indian Academy of Sciences (India)

    The influence of temperature on tropospheric ozone (O3)concentrations in urban and photochemically polluted areas in the greater Athens region are investigated in the present study.Hourly values of the ambient air temperature used for studying the urban heat island effect in Athens were recorded at twenty-three ...

  20. Near-ambient ozone concentrations reduce the vigor of Betula and Populus species in Finland.

    Science.gov (United States)

    Oksanen, Elina; Manninen, Sirkku; Vapaavuori, Elina; Holopainen, Toini

    2009-12-01

    In this review the main growth responses of Finnish birch (Betula pendula, B. pubescens) and aspen species (Populus tremula and P. tremuloides x P. tremula) are correlated with ozone exposure, indicated as the AOT40 value. Data are derived from 23 different laboratory, open-top chamber, and free-air fumigation experiments. Our results indicate that these tree species are sensitive to increasing ozone concentrations, though high intraspecific variation exists. The roots are the most vulnerable targets in both genera. These growth reductions, determined from trees grown under optimal nutrient and water supply, were generally accompanied by increased visible foliar injuries, carbon allocation toward defensive compounds, reduced carbohydrate contents of leaves, impaired photosynthesis processes, disturbances in stomatal function, and earlier autumn senescence. Because both genera have shown complex ozone defense and response mechanisms, which are modified by variable environmental conditions, a mechanistically based approach is necessary for accurate ozone risk assessment.

  1. Ozone concentrations in the Brazilian Amazonia during BASE-A

    International Nuclear Information System (INIS)

    Setzer, A.W.; Kirchhoff, V.W.J.H.; Pereira, M.C.

    1991-01-01

    During the Biomass Burning Airborne and Spaceborne Experiment--Amazonia, thermal images of fires were made with the Advanced Very High Resolution Radiometer (AVHRR) on board meteorological NOAA series satellites. The results of ozone measurements made on board the Brazilian Institute for Space Research (INPE) airplane during September of 1989 are presented and analyzed in relation to the temporal and geographical location of fires detected before and during the sampling. Results show that on a synoptic scale, concentrations of ozone rise sharply in regions of more intense burning

  2. Principal Component Analysis of Chlorophyll Content in Tobacco, Bean and Petunia Plants Exposed to Different Tropospheric Ozone Concentrations

    Science.gov (United States)

    Borowiak, Klaudia; Zbierska, Janina; Budka, Anna; Kayzer, Dariusz

    2014-06-01

    Three plant species were assessed in this study - ozone-sensitive and -resistant tobacco, ozone-sensitive petunia and bean. Plants were exposed to ambient air conditions for several weeks in two sites differing in tropospheric ozone concentrations in the growing season of 2009. Every week chlorophyll contents were analysed. Cumulative ozone effects on the chlorophyll content in relation to other meteorological parameters were evaluated using principal component analysis, while the relation between certain days of measurements of the plants were analysed using multivariate analysis of variance. Results revealed variability between plant species response. However, some similarities were noted. Positive relations of all chlorophyll forms to cumulative ozone concentration (AOT 40) were found for all the plant species that were examined. The chlorophyll b/a ratio revealed an opposite position to ozone concentration only in the ozone-resistant tobacco cultivar. In all the plant species the highest average chlorophyll content was noted after the 7th day of the experiment. Afterwards, the plants usually revealed various responses. Ozone-sensitive tobacco revealed decrease of chlorophyll content, and after few weeks of decline again an increase was observed. Probably, due to the accommodation for the stress factor. While during first three weeks relatively high levels of chlorophyll contents were noted in ozone-resistant tobacco. Petunia revealed a slow decrease of chlorophyll content and the lowest values at the end of the experiment. A comparison between the plant species revealed the highest level of chlorophyll contents in ozone-resistant tobacco.

  3. Mexico City ozone concentrations as a function of readily-available meteorological parameters

    International Nuclear Information System (INIS)

    Brown, M.J.

    1994-01-01

    Daily maximum ozone concentrations measured at four sites within the Mexico City basin during the winter months are plotted as functions of different meteorological parameters that are routinely measured at surface stations. We found that ozone concentrations are most strongly correlated to the increase in daytime temperature and the maximum daytime wind speed. We also discovered that high ozone values at the sites in the southern end of the basin occur when winds come out of the northeast. In contrast, wind direction was found to be uncorrelated with high ozone values at the northern sites. From straightforward combinations of the meteorological variables, we derived some simple rules for estimating lower and upper bounds on the ozone concentration. Scatter in the data was too long to give significance to best-fit equations and statistics. Additionally, a small rawinsonde data set was used to investigate ozone's dependence on boundary-layer height and near-surface temperature gradient. Results were inconclusive, however, due to the small size of the data set

  4. Effect of ozone concentration on silicon surface passivation by atomic layer deposited Al{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Gastrow, Guillaume von, E-mail: guillaume.von.gastrow@aalto.fi [Aalto University, Department of Micro- and Nanosciences, Tietotie 3, 02150 Espoo (Finland); Li, Shuo [Aalto University, Department of Micro- and Nanosciences, Tietotie 3, 02150 Espoo (Finland); Putkonen, Matti [VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT, Espoo (Finland); Aalto University School of Chemical Technology, Laboratory of Inorganic Chemistry, FI-00076 Aalto, Espoo (Finland); Laitinen, Mikko; Sajavaara, Timo [University of Jyvaskyla, Department of Physics, FIN-40014 University of Jyvaskyla (Finland); Savin, Hele [Aalto University, Department of Micro- and Nanosciences, Tietotie 3, 02150 Espoo (Finland)

    2015-12-01

    Highlights: • The ALD Al{sub 2}O{sub 3} passivation quality can be controlled by the ozone concentration. • Ozone concentration affects the Si/Al{sub 2}O{sub 3} interface charge and defect density. • A surface recombination velocity of 7 cm/s is reached combining ozone and water ALD. • Carbon and hydrogen concentrations correlate with the surface passivation quality. - Abstract: We study the impact of ozone-based Al{sub 2}O{sub 3} Atomic Layer Deposition (ALD) on the surface passivation quality of crystalline silicon. We show that the passivation quality strongly depends on the ozone concentration: the higher ozone concentration results in lower interface defect density and thereby improved passivation. In contrast to previous studies, our results reveal that too high interface hydrogen content can be detrimental to the passivation. The interface hydrogen concentration can be optimized by the ozone-based process; however, the use of pure ozone increases the harmful carbon concentration in the film. Here we demonstrate that low carbon and optimal hydrogen concentration can be achieved by a single process combining the water- and ozone-based reactions. This process results in an interface defect density of 2 × 10{sup 11} eV{sup −1} cm{sup −2}, and maximum surface recombination velocities of 7.1 cm/s and 10 cm/s, after annealing and after an additional firing at 800 °C, respectively. In addition, our results suggest that the effective oxide charge density can be optimized in a simple way by varying the ozone concentration and by injecting water to the ozone process.

  5. Effect of Nearby Forest Fires on Ground Level Ozone Concentrations in Santiago, Chile

    Directory of Open Access Journals (Sweden)

    María A. Rubio

    2015-12-01

    Full Text Available On 4 and 8 January 2014, at the height of the austral summer, intense wildfires in forests and dry pastures occurred in the Melipilla sector, located about 70 km to the southwest of Santiago, the Chilean capital, affecting more than 6 million inhabitants. Low level winds transported the forest fire plume towards Santiago causing a striking decrease in visibility and a marked increase in the concentration of both primary (PM10 and CO and secondary (Ozone pollutants in the urban atmosphere. In particular, ozone maximum concentrations in the Santiago basin reached hourly averages well above 80 ppb, the national air quality standard. This ozone increase took place at the three sampling sites considered in the present study. These large values can be explained in terms of high NOx concentrations and NO2/NO ratios in biomass burning emissions.

  6. Asymmetric correlations in the ozone concentration dynamics of the Mexico City Metropolitan Area

    Science.gov (United States)

    Meraz, M.; Alvarez-Ramirez, J.; Echeverria, J. C.

    2017-04-01

    Mexico City is a megalopolis with severe pollution problems caused by vehicles and industrial activity. This condition imposes important risks to human health and economic activity. Based on hourly-sampled data during the last decade, in a recent work (Meraz et al., 2015) we showed that the pollutant dynamics in Mexico City exhibits long-term and scale-dependent persistence effects resulting from the combination of pollutants generation by vehicles and removal by advection mechanisms. In this work, we analyzed the dynamics of ozone, a key component reflecting the degree of atmospheric contamination, to determine if its long-term correlations are asymmetric in relation to the actual concentration trend (increasing or decreasing). The analysis is conducted with detrended fluctuation analysis. The results showed that the average ozone dynamics is uncorrelated when the concentration is increasing. In contrast, the ozone dynamics shows long-term anti-persistence effects when the concentration is decreasing.

  7. Significant increase of surface ozone at a rural site, north of eastern China

    Directory of Open Access Journals (Sweden)

    Z. Ma

    2016-03-01

    Full Text Available Ozone pollution in eastern China has become one of the top environmental issues. Quantifying the temporal trend of surface ozone helps to assess the impacts of the anthropogenic precursor reductions and the likely effects of emission control strategies implemented. In this paper, ozone data collected at the Shangdianzi (SDZ regional atmospheric background station from 2003 to 2015 are presented and analyzed to obtain the variation in the trend of surface ozone in the most polluted region of China, north of eastern China or the North China Plain. A modified Kolmogorov–Zurbenko (KZ filter method was performed on the maximum daily average 8 h (MDA8 concentrations of ozone to separate the contributions of different factors from the variation of surface ozone and remove the influence of meteorological fluctuations on surface ozone. Results reveal that the short-term, seasonal and long-term components of ozone account for 36.4, 57.6 and 2.2 % of the total variance, respectively. The long-term trend indicates that the MDA8 has undergone a significant increase in the period of 2003–2015, with an average rate of 1.13 ± 0.01 ppb year−1 (R2 = 0.92. It is found that meteorological factors did not significantly influence the long-term variation of ozone and the increase may be completely attributed to changes in emissions. Furthermore, there is no significant correlation between the long-term O3 and NO2 trends. This study suggests that emission changes in VOCs might have played a more important role in the observed increase of surface ozone at SDZ.

  8. Dependence of Initial Oxygen Concentration on Ozone Yield Using Inductive Energy Storage System Pulsed Power Generator

    Science.gov (United States)

    Go, Tomio; Tanaka, Yasushi; Yamazaki, Nobuyuki; Mukaigawa, Seiji; Takaki, Koichi; Fujiwara, Tamiya

    Dependence of initial oxygen concentration on ozone yield using streamer discharge reactor driven by an inductive energy storage system pulsed power generator is described in this paper. Fast recovery type diodes were employed as semiconductor opening switch to interrupt a circuit current within 100 ns. This rapid current change produced high-voltage short pulse between a secondary energy storage inductor. The repetitive high-voltage short pulse was applied to a 1 mm diameter center wire electrode placed in a cylindrical pulse corona reactor. The streamer discharge successfully occurred between the center wire electrode and an outer cylinder ground electrode of 2 cm inner diameter. The ozone was produced with the streamer discharge and increased with increasing pulse repetition rate. The ozone yield changed in proportion to initial oxygen concentration contained in the injected gas mixture at 800 ns forward pumping time of the current. However, the decrease of the ozone yield by decreasing oxygen concentration in the gas mixture at 180 ns forward pumping time of the current was lower than the decrease at 800 ns forward pumping time of the current. This dependence of the initial oxygen concentration on ozone yield at 180 ns forward pumping time is similar to that of dielectric barrier discharge reactor.

  9. Projecting future summer mortality due to ambient ozone concentration and temperature changes

    Science.gov (United States)

    Lee, Jae Young; Lee, Soo Hyun; Hong, Sung-Chul; Kim, Ho

    2017-05-01

    Climate change is known to affect the human health both directly by increased heat stress and indirectly by altering environments, particularly by altering the rate of ambient ozone formation in the atmosphere. Thus, the risks of climate change may be underestimated if the effects of both future temperature and ambient ozone concentrations are not considered. This study presents a projection of future summer non-accidental mortality in seven major cities of South Korea during the 2020s (2016-2025) and 2050s (2046-2055) considering changes in temperature and ozone concentration, which were predicted by using the HadGEM3-RA model and Integrated Climate and Air Quality Modeling System, respectively. Four Representative Concentration Pathway (RCP) scenarios (RCP 2.6, 4.5, 6.0, and 8.5) were considered. The result shows that non-accidental summer mortality will increase by 0.5%, 0.0%, 0.4%, and 0.4% in the 2020s, 1.9%, 1.5%, 1.2%, and 4.4% in the 2050s due to temperature change compared to the baseline mortality during 2001-2010, under RCP 2.6, 4.5, 6.0, and 8.5, respectively, whereas the mortality will increase by 0.0%, 0.5%, 0.0%, and 0.5% in the 2020s, and 0.2%, 0.2%, 0.4%, and 0.6% in the 2050s due to ozone concentration change. The projection result shows that the future summer morality in South Korea is increased due to changes in both temperature and ozone, and the magnitude of ozone-related increase is much smaller than that of temperature-related increase, especially in the 2050s.

  10. Evaluation of The Surface Ozone Concentrations In Greater Cairo Area With Emphasis On Helwan, Egypt

    International Nuclear Information System (INIS)

    Ramadan, A.; Kandil, A.T.; Abd Elmaged, S.M.; Mubarak, I.

    2011-01-01

    Various biogenic and anthropogenic sources emit huge quantities of surface ozone. The main purpose of this study is to evaluate the surface ozone levels present at Helwan area in order to improve the knowledge and understanding troposphere processes. Surface Ozone has been measured at 2 sites at Helwan; these sites cover the most populated area in Helwan. Ozone concentration is continuously monitored by UV absorption photometry using the equipment O 3 41 M UV Photometric Ozone Analyzer. The daily maximum values of the ozone concentration in the greater Cairo area have approached but did not exceeded the critical levels during the year 2008. Higher ozone concentrations at Helwan are mainly due to the transport of ozone from regions further to the north of greater Cairo and to a lesser extent of ozone locally generated by photochemical smog process. The summer season has the largest diurnal variation, with the tendency of the daily ozone maxima occur in the late afternoon. The night time concentration of ozone was significantly higher at Helwan because there are no fast acting sinks, destroying ozone since the average night time concentration of ozone is maintained at 40 ppb at the site. No correlation between the diurnal total suspended particulate (TSP) matter and the diurnal cumulative ozone concentration was observed during the Khamasin period

  11. Effect of low concentrations of ozone on Escherichia coli chromosome

    Energy Technology Data Exchange (ETDEWEB)

    Hamelin, C; Chung, Y S

    1975-01-01

    The investigations reported here are an extension of previous work reported from the same laboratory, the aim of which is to demonstrate the potential of ozone to have mutagenic effects in man. Data indicate that ozone has the ability to induce mutation in a wide range of genes responsible for the nutritional properties of E. coli. They also indicate that there are a great number of mutant strains either more resistant or more sensitive to UV radiation than the parental strain; and there are numerous mucoid strains forming excessive amounts of capsular polysaccharide after treatment. It appears that ozone could be expected to produce mutation in all types of genes. Considering that these findings in the microbial system studied are associated with positive findings in in vivo cytogenetics-acute tests, and that extrapolation of mutation rates directly from experimental organisms to man can be done with confidence, it seems that even the very low concentrations of ozone which occur in certain weather conditions must be avoided. 17 references, 1 table.

  12. Ozone concentration dependent autohaemotherapy effects on ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-03-06

    Mar 6, 2009 ... Under normal conditions, these systems are sufficient to protect cells. Unfortu- nately, increased oxidative stress can overcome these mechanisms. Therefore when the ROS overwhelms the antioxidant defence systems DNA damage can follow. H2O2 can easily diffuse through cell membranes into the.

  13. Sensitivity of modeled ozone concentrations to uncertainties in biogenic emissions

    International Nuclear Information System (INIS)

    Roselle, S.J.

    1992-06-01

    The study examines the sensitivity of regional ozone (O3) modeling to uncertainties in biogenic emissions estimates. The United States Environmental Protection Agency's (EPA) Regional Oxidant Model (ROM) was used to simulate the photochemistry of the northeastern United States for the period July 2-17, 1988. An operational model evaluation showed that ROM had a tendency to underpredict O3 when observed concentrations were above 70-80 ppb and to overpredict O3 when observed values were below this level. On average, the model underpredicted daily maximum O3 by 14 ppb. Spatial patterns of O3, however, were reproduced favorably by the model. Several simulations were performed to analyze the effects of uncertainties in biogenic emissions on predicted O3 and to study the effectiveness of two strategies of controlling anthropogenic emissions for reducing high O3 concentrations. Biogenic hydrocarbon emissions were adjusted by a factor of 3 to account for the existing range of uncertainty in these emissions. The impact of biogenic emission uncertainties on O3 predictions depended upon the availability of NOx. In some extremely NOx-limited areas, increasing the amount of biogenic emissions decreased O3 concentrations. Two control strategies were compared in the simulations: (1) reduced anthropogenic hydrocarbon emissions, and (2) reduced anthropogenic hydrocarbon and NOx emissions. The simulations showed that hydrocarbon emission controls were more beneficial to the New York City area, but that combined NOx and hydrocarbon controls were more beneficial to other areas of the Northeast. Hydrocarbon controls were more effective as biogenic hydrocarbon emissions were reduced, whereas combined NOx and hydrocarbon controls were more effective as biogenic hydrocarbon emissions were increased

  14. Ozone depletion, related UVB changes and increased skin cancer incidence

    Science.gov (United States)

    Kane, R. P.

    1998-03-01

    Stratospheric ozone at middle latitudes shows a seasonal variation of about +/-20%, a quasi-biennial oscillation of 1-10% range and a long-term variation in which the level was almost steady up to about 1979 and declined thereafter to the present day by about 10%. These variations are expected to be reflected in solar UVB observed at the ground, but in an opposite direction. Thus UVB should have had a long-term increase of about 10-20%, which should cause an increase in skin cancer incidence of about 20-40%. Skin cancer incidence has increased all over the world, e.g. about 90% in USA during 1974-1990. It is popularly believed that this increase in skin cancer incidence is related to the recent ozone depletion. This seems to be incorrect, for two reasons. Firstly, the observed skin cancer increase is too large (90%) compared with the expected value (40%) from ozone depletion. Secondly, cancer does not develop immediately after exposure to solar UVB. The sunburns may occur within hours; but cancer development and detection may take years, even decades. Hence the observed skin cancer increase since 1974 (no data available for earlier periods) must have occurred due to exposure to solar UVB in the 1950s and 1960s, when there was no ozone depletion. Thus, the skin cancer increase must be attributed to harmful solar UVB levels existing even in the 1960s, accentuated later not by ozone depletion (which started only much later, by 1979) but by other causes, such as a longer human life span, better screening, increasing tendencies of sunbathing at beaches, etc., in affluent societies. On the other hand, the recent ozone depletion and the associated UVB increases will certainly take their toll; only that the effects will not be noticed now but years or decades from now. The concern for the future expressed in the Montreal Protocol for reducing ozone depletion by controlling CFC production is certainly justified, especially because increased UVB is harmful to animal and

  15. Ozone concentrations at a selected high-elevation forest site downwind Mexico City

    Science.gov (United States)

    Torres-JArdon, R.

    2013-05-01

    Torres-Jardón, R.*, Rosas-Pérez, I., Granada-Macías, L. M., Ruiz-Suárez, L. G. Centro de Ciencias de la Atmósfera, UNAM, México D. F. México * rtorres@unam.mx For many years, the vegetation of forest species such as Abies religiosa in natural parks located in the southwest mountains of Mexico City has attracted much attention since these parks have been experiencing a severe decline of unclear etiology. The high ozone levels in the area and the observed naked eye macroscopic, histological and cytological injuries on these species, strongly suggest an important contribution of tropospheric ozone to this deterioration process. Apart of historical short monitoring campaigns for measuring ozone levels in these mountains, it is known just a little is known about the present exposure levels at which the local vegetation is exposed. A continuous ozone analyzer has been in operation since 2011 at a high-elevation forest site (Parque Nacional Miguel Hidalgo, PNMH; 3110 m above mean sea level) located downwind of Mexico City Metropolitan Area (MCMA), in order to characterize the local ozone diel amplitude and its seasonal trend, as well as the influence of MCMA on the local O3 concentrations. Hourly average ozone data in PNMH shows that in general, the diel of ozone concentrations in the forest site has a statistical significant correlation with the pattern of ozone levels observed in several monitoring sites (smog receptor sites) within the MCMA, although the high elevation O3 levels are relatively lower than those in the urban area (around 2200 m above mean sea level). It is possible that a part of the oxidants in the air masses are removed by sink deposition processes during the air mass transport across the hills. The diel amplitude of ozone concentrations is small in the cold season, increasing as the seasons advance to June. As in the city, the highest ozone concentrations occur in April or May and the lowest levels during the rainy season, which extends from

  16. Steady-state ozone concentration in radiation induced noble gas-oxygen discharges

    International Nuclear Information System (INIS)

    Elsayed-Ali, H.E.; Miley, G.H.

    1985-01-01

    Measurements of steady-state ozone concentrations in continuous radiation induced noble gas-O 2 and noble gas-O 2 -SF 6 mixtures has been accomplished. The discharges were created through the bombardment of the gases with energetic particles from the boron-10 (n,α) lithium-7 nuclear reaction. Three noble gases were studied, He, Ne, and Ar at partial pressures of few hundred Torr. The dose rates studied were in the order of 10 15 eV.cm -3 .s -1 . The experimental apparatus and proceedure were previously described. The experimentally observed stead-state ozone concentrations in noble gas-O 2 discharges were about an order of magnitude lower than that observed for oxygen radiolysis at similar dose rates. These results were physically explained by an enhanced role of negative ionic reactions with ozone causing its destruction. In noble gas-O 2 -SF 6 mixtures, the steady-state ozone concentrations were found to be significantly higher (3-6 times) than that without the SF 6 addition. This observation was contrary to only a small increase observed after SF 6 addition to a few hundred Torr oxygen and is explained by an enhanced rate of electron dissociative attachment of ozone in noble gas-O 2 discharges

  17. Steady-state ozone concentrations in radiation induced noble gas-oxygen discharges

    International Nuclear Information System (INIS)

    Elsayed-Ali, H.E.; Miley, G.H.

    1985-01-01

    Measurements of steady-state ozone concentrations in continuous radiation induced noble gas-O/sub 2/ and noble gas-o/sub 2/-SF/sub 6/ mixtures has been accomplished. The discharges were created through the bombardment of the gases with energetic particles from the boron-10 (n,α) lithium-7 nuclear reaction. Three noble gases were studied, He, Ne, and Ar at partial pressures of few hundred Torr. The dose rates studied were in the order of 10/sup 15/ eV . cm/sup -3/ . s/sup -1/. The experimental apparatus and procedure were previously described. The experimentally observed steady-state ozone concentrations in noble gas-O/sub 2/ discharges were about an order of magnitude lower than that observed for oxygen radiolysis at similar dose rates. These results were physically explained by an enhanced role of negative ionic reactions with ozone causing its destruction. In noble gas-O/sub 2/-SF/sub 6/ mixtures, the steady-state ozone concentrations were found to be significantly higher (3-6 times) than that without the SF/sub 6/ addition. This observation was contrary to only a small increase observed after SF/sub 6/ addition to a few hundred Torr oxygen and is explained by an enhanced rate of electron dissociative attachment of ozone in noble gas-O/sub 2/ discharges

  18. Evaluation and Comparison of Chemiluminescence and UV Photometric Methods for Measuring Ozone Concentrations in Ambient Air

    Science.gov (United States)

    The current Federal Reference Method (FRM) for measuring concentrations of ozone in ambient air is based on the dry, gas-phase, chemiluminescence reaction between ethylene (C2H4) and any ozone (O3) that may be p...

  19. Silver birch and climate change: variable growth and carbon allocation responses to elevated concentrations of carbon dioxide and ozone

    International Nuclear Information System (INIS)

    Riikonen, J.; Holopainen, T.; Oksanen, E.; Lindsberg, M-M.; Lappi, J.; Peltonen, P.; Vapaavuori, E.

    2004-01-01

    The effects of elevated concentrations of carbon dioxide and ozone were studied on growth, biomass allocation and leaf area of field-grown ozone-tolerant (Clone 4) and ozone-sensitive (Clone 80) European silver birch trees. Seven-year old trees of both types were exposed for three years to outside and chamber control, (1) twice ambient ozone, (2) twice ambient carbon dioxide, and (3) twice ambient carbon dioxide and twice ambient ozone. No effect on biomass allocation was observed when results of the two clones were analyzed together. Total leaf area showed an increase, and leaf abscission appeared delayed in response to elevated carbon dioxide. Elevated ozone caused the dry mass of roots, branches and mean leaf size to decrease, and autumnal leaf abscission occurred earlier than usual in both clones. In general. the effects of elevated ozone were small, however, the interaction between elevated carbon dioxide and elevated oxygen were significant. When results from the two clones were analyzed separately, stem diameter, volume growth and total biomass of Clone 80 increased when exposed to elevated concentrations of carbon dioxide; elevated concentrations of ozone appeared to have no effect. In Clone 4 elevated ozone caused significant decrease in root and branch biomass, but the effects of elevated carbon dioxide were minimal. Responses to elevated ozone exposure were observed only under ambient carbon dioxide conditions. This response is believed to reflect the greater quantity of carbohydrates available for detoxification and repair under elevated carbon dioxide conditions. Alternatively, the response may be due to decreased stomatal conductance, thus decreased ozone uptake under elevated carbon dioxide conditions. 45 refs., 6 tabs., 4 figs

  20. The relationship between some meteorological parameters and the tropospheric concentrations of ozone in the urban area of Belgrade

    Directory of Open Access Journals (Sweden)

    DRAGAN M. MARKOVIC

    2005-12-01

    Full Text Available During the period between June and December 2002, the concentrations of ozone in the air at 4 measuring sites in Belgrade were measured. The measuring periods varied from 10 days to several weeks. Themaximalmeasured daily concentrations of ozone ranged from 19 ppbv (23 December 2002 to 118 ppbv (23 June 2002. Ozone concentrations higher than, or equal to 90 ppbv were registered at threemeasuring sites. It was shown that at measuring sites characterized as urban, maximal O3 concentrations equal to, or higher than 90 ppbv occurred at high temperatures (higher than 30 oC and low wind speeds (mostly from the north. The measured ozone concentrations mostly showed characteristics usual for a daily photochemical ozone cycle, excluding the specificities influenced by the measuring site itself. Ozone transport was recorded at increased wind speeds, primarily from south-easterly directions. On the basis of he correlations between ozone concentration and the corresponding meteorological parameters, a validation of the measuring sites was performed from the aspect of their representativeness for the measurements.

  1. Effects of plug-in hybrid electric vehicles on ozone concentrations in Colorado.

    Science.gov (United States)

    Brinkman, Gregory L; Denholm, Paul; Hannigan, Michael P; Milford, Jana B

    2010-08-15

    This study explores how ozone concentrations in the Denver, CO area might have been different if plug-in hybrid electric vehicles (PHEVs) had replaced light duty gasoline vehicles in summer 2006. A unit commitment and dispatch model was used to estimate the charging patterns of PHEVs and dispatch power plants to meet electricity demand. Emission changes were estimated based on gasoline displacement and the emission characteristics of the power plants providing additional electricity. The Comprehensive Air Quality Model with extensions (CAMx) was used to simulate the effects of these emissions changes on ozone concentrations. Natural gas units provided most of the electricity used for charging PHEVs in the scenarios considered. With 100% PHEV penetration, nitrogen oxide (NO(x)) emissions were reduced by 27 tons per day (tpd) from a fleet of 1.7 million vehicles and were increased by 3 tpd from power plants; VOC emissions were reduced by 57 tpd. These emission changes reduced modeled peak 8-h average ozone concentrations by approximately 2-3 ppb on most days. Ozone concentration increases were modeled for small areas near central Denver. Future research is needed to forecast when significant PHEV penetration may occur and to anticipate characteristics of the corresponding power plant and vehicle fleets.

  2. Ozone sonde cell current measurements and implications for observations of near-zero ozone concentrations in the tropical upper troposphere

    Directory of Open Access Journals (Sweden)

    H. Vömel

    2010-04-01

    Full Text Available Laboratory measurements of the Electrochemical Concentration Cell (ECC ozone sonde cell current using ozone free air as well as defined amounts of ozone reveal that background current measurements during sonde preparation are neither constant as a function of time, nor constant as a function of ozone concentration. Using a background current, measured at a defined timed after exposure to high ozone may often overestimate the real background, leading to artificially low ozone concentrations in the upper tropical troposphere, and may frequently lead to operator dependent uncertainties. Based on these laboratory measurements an improved cell current to partial pressure conversion is proposed, which removes operator dependent variability in the background reading and possible artifacts in this measurement. Data from the Central Equatorial Pacific Experiment (CEPEX have been reprocessed using the improved background treatment based on these laboratory measurements. In the reprocessed data set near-zero ozone events no longer occur. At Samoa, Fiji, Tahiti, and San Cristóbal, nearly all near-zero ozone concentrations occur in soundings with larger background currents. To a large extent, these events are no longer observed in the reprocessed data set using the improved background treatment.

  3. Ozone exposure increases respiratory epithelial permeability in humans

    International Nuclear Information System (INIS)

    Kehrl, H.R.; Vincent, L.M.; Kowalsky, R.J.; Horstman, D.H.; O'Neil, J.J.; McCartney, W.H.; Bromberg, P.A.

    1987-01-01

    Ozone is a respiratory irritant that has been shown to cause an increase in the permeability of the respiratory epithelium in animals. We used inhaled aerosolized /sup 99m/Tc-labeled diethylene triamine pentacetic acid (/sup 99m/Tc-DTPA) to investigate whether human respiratory epithelial permeability is similarly affected by exposure to ozone. In a randomized, crossover double-blinded study, 8 healthy, nonsmoking young men were exposed for 2 h to purified air and 0.4 ppm ozone while performing intermittent high intensity treadmill exercise (minute ventilation = 66.8 L/min). SRaw and FVC were measured before and at the end of exposures. Seventy-five minutes after the exposures, the pulmonary clearance of /sup 99m/Tc-DTPA was measured by sequential posterior lung imaging with a computer-assisted gamma camera. Ozone exposure caused respiratory symptoms in all 8 subjects and was associated with a 14 +/- 2.8% (mean +/- SEM) decrement in FVC (p less than 0.001) and a 71 +/- 22% increase in SRaw (p = 0.04). Compared with the air exposure day, 7 of the 8 subjects showed increased /sup 99m/Tc-DTPA clearance after the ozone exposure, with the mean value increasing from 0.59 +/- 0.08 to 1.75 +/- 0.43%/min (p = 0.03). These data show that ozone exposure sufficient to produce decrements in the pulmonary function of human subjects also causes an increase in /sup 99m/Tc-DTPA clearance

  4. Influence of local meteorology and NO2 conditions on ground-level ozone concentrations in the eastern part of Texas, USA

    OpenAIRE

    Gorai, A. K.; Tuluri, F.; Tchounwou, P. B.; Ambinakudige, S.

    2015-01-01

    The influence of local climatic factors on ground-level ozone concentrations is an area of increasing interest to air quality management in regards to future climate change. This study presents an analysis on the role of temperature, wind speed, wind direction, and NO2 level on ground-level ozone concentrations over the region of Eastern Texas, USA. Ozone concentrations at the ground level depend on the formation and dispersion processes. Formation process mainly depends on the precursor sour...

  5. Projections of summertime ozone concentration over East Asia under multiple IPCC SRES emission scenarios

    Science.gov (United States)

    Lee, Jae-Bum; Cha, Jun-Seok; Hong, Sung-Chul; Choi, Jin-Young; Myoung, Ji-Su; Park, Rokjin J.; Woo, Jung-Hun; Ho, Changhoi; Han, Jin-Seok; Song, Chang-Keun

    2015-04-01

    We have developed the Integrated Climate and Air Quality Modeling System (ICAMS) through the one-way nesting of global-regional models to examine the changes in the surface ozone concentrations over East Asia under future climate scenarios. Model simulations have been conducted for the present period of 1996-2005 to evaluate the performance of ICAMS. The simulated surface ozone concentrations reproduced the observed monthly mean concentrations at sites in East Asia with high R2 values (0.4-0.9), indicating a successful simulation to capture both spatial and temporal variability. We then performed several model simulations with the six IPCC SRES scenarios (A2, A1B, A1FI, A1T, B1, and B2) for the next three periods, 2016-2025 (the 2020s), 2046-2055 (the 2050s), and 2091-2100 (the 2090s). The model results show that the projected changes of the annual daily mean maximum eight-hour (DM8H) surface ozone concentrations in summertime for East Asia are in the range of 2-8 ppb, -3 to 8 ppb, and -7 to 9 ppb for the 2020s, the 2050s, and the 2090s, respectively, and are primarily determined based on the emission changes of NOx and NMVOC. The maximum increases in the annual DM8H surface ozone and high-ozone events occur in the 2020s for all scenarios except for A2, implying that the air quality over East Asia is likely to get worse in the near future period (the 2020s) than in the far future periods (the 2050s and the 2090s). The changes in the future environment based on IPCC SRES scenarios would also influence the change in the occurrences of high-concentrations events more greatly than that of the annual DM8H surface ozone concentrations. Sensitivity simulations show that the emissions increase is the key factor in determining future regional surface ozone concentrations in the case of a developing country, China, whereas a developed country, Japan would be influenced more greatly by effects of the regional climate change than the increase in emissions.

  6. Physiological responses of Pinus sylvestris to changing carbon dioxide and ozone concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Holopainen, T. [Kuopio Univ. (Finland). Dept. of Ecology and Environmental Science; Palomaeki, V. [Joensuu Univ. (Finland). Faculty of Forestry; Helmisaari, H.S. [Finnish Forest Research Inst., Helsinki (Finland)] [and others

    1996-12-31

    The objective of this research is to study the effects of elevated ozone, carbon dioxide and their combination on ultrastructural, physiological and biochemical responses of Scots pine needles and how these effects are reflected to photosynthesis, carbohydrate and nutrient allocation and finally to shoot and root growth of trees. In addition the interactions of the studied trees and mycorrhizal fungi as well as insect herbivores are studied. The exposures have been running only for two growing periods and it seems necessary to continue the experiment over the third growing season in 1996. Since the analyses are partially incomplete, only preliminary conclusions are possible at the moment. The slightly increased shoot growth and needle width and increased amount of starch in chloroplasts point to the slight stimulating effect of elevated CO{sub 2} among the chamber treatments. Altogether the growth of the seedlings was best in the chamberless treatment indicating a negative chamber effect. The elevated ozone significantly increased the chlorotic mottling and overall yellowing of second year needles as well as caused increased density of chloroplast stroma and declined photosynthesis, all these responses being often related to ozone exposures. The ozone related responses appeared at both CO{sub 2} levels indicating no clear protection due to elevated CO{sub 2}. The ozone or carbon dioxide treatments were not able to significantly change nutrient concentrations, insect herbivory or carbon allocation among the secondary compounds of needles. A tendency of increased carbon allocation to fine roots due to ozone but not so clearly to CO{sub 2} was observed

  7. Physiological responses of Pinus sylvestris to changing carbon dioxide and ozone concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Holopainen, T [Kuopio Univ. (Finland). Dept. of Ecology and Environmental Science; Palomaeki, V [Joensuu Univ. (Finland). Faculty of Forestry; Helmisaari, H S [Finnish Forest Research Inst., Helsinki (Finland); and others

    1997-12-31

    The objective of this research is to study the effects of elevated ozone, carbon dioxide and their combination on ultrastructural, physiological and biochemical responses of Scots pine needles and how these effects are reflected to photosynthesis, carbohydrate and nutrient allocation and finally to shoot and root growth of trees. In addition the interactions of the studied trees and mycorrhizal fungi as well as insect herbivores are studied. The exposures have been running only for two growing periods and it seems necessary to continue the experiment over the third growing season in 1996. Since the analyses are partially incomplete, only preliminary conclusions are possible at the moment. The slightly increased shoot growth and needle width and increased amount of starch in chloroplasts point to the slight stimulating effect of elevated CO{sub 2} among the chamber treatments. Altogether the growth of the seedlings was best in the chamberless treatment indicating a negative chamber effect. The elevated ozone significantly increased the chlorotic mottling and overall yellowing of second year needles as well as caused increased density of chloroplast stroma and declined photosynthesis, all these responses being often related to ozone exposures. The ozone related responses appeared at both CO{sub 2} levels indicating no clear protection due to elevated CO{sub 2}. The ozone or carbon dioxide treatments were not able to significantly change nutrient concentrations, insect herbivory or carbon allocation among the secondary compounds of needles. A tendency of increased carbon allocation to fine roots due to ozone but not so clearly to CO{sub 2} was observed

  8. Influence of duration and rate of pulse rise of the applied voltage on ozone concentration in the barrier glow discharge

    International Nuclear Information System (INIS)

    Krasnyj, V.V.; Klosovski, A.V.; Knysh, A.S.; Shvets, O.M.; Taran, V.S.; Tereshin, V.I.

    2005-01-01

    The barrier glow discharge between two planar electrodes, covered with dielectric, is studied under high-voltage pulsed power supply. Wide applications of such type of discharges, in particular, for ozone production, stimulated a number of investigations in this direction. In this work we investigated the dependence of ozone concentration on the duration and the rate of pulse rise of the applied voltage. The thyristor converter circuit with the shortening of input pulses on the base of the saturable throttle was used for the realization of this task. The output pulses with amplitude up to 15 kV, repetition frequency of 1 kHz, pulse duration of 0.3 μs (or 7 μs) and the rate of pulse rise of 0.1 μs were generated with this scheme. Measurements of the ozone concentration produced in the air mixture have shown that its value increased by factor two with variation of the rate of pulse rise from 0.5 μs to 0.1 μs (for pulse duration of 7 μs). The dependence of the ozone concentration on the variation of air mixture pressure in the discharge gap of reactor was investigated also. It was shown proportional increase of the output concentration of ozone with increasing the pressure value. Spectroscopic measurements carried out in the ultraviolet spectrum made it possible to analyze changing the concentration of ozone and nitric components. (author)

  9. Urban Ozone Concentration Forecasting with Artificial Neural Network in Corsica

    Directory of Open Access Journals (Sweden)

    Tamas Wani

    2014-03-01

    Full Text Available Atmospheric pollutants concentration forecasting is an important issue in air quality monitoring. Qualitair Corse, the organization responsible for monitoring air quality in Corsica (France, needs to develop a short-term prediction model to lead its mission of information towards the public. Various deterministic models exist for local forecasting, but need important computing resources, a good knowledge of atmospheric processes and can be inaccurate because of local climatical or geographical particularities, as observed in Corsica, a mountainous island located in the Mediterranean Sea. As a result, we focus in this study on statistical models, and particularly Artificial Neural Networks (ANNs that have shown good results in the prediction of ozone concentration one hour ahead with data measured locally. The purpose of this study is to build a predictor realizing predictions of ozone 24 hours ahead in Corsica in order to be able to anticipate pollution peaks formation and to take appropriate preventive measures. Specific meteorological conditions are known to lead to particular pollution event in Corsica (e.g. Saharan dust events. Therefore, an ANN model will be used with pollutant and meteorological data for operational forecasting. Index of agreement of this model was calculated with a one year test dataset and reached 0.88.

  10. Mesoscale circulation systems and ozone concentrations during ESCOMPTE: a case study from IOP 2b

    Science.gov (United States)

    Kalthoff, N.; Kottmeier, C.; Thürauf, J.; Corsmeier, U.; Saїd, F.; Fréjafon, E.; Perros, P. E.

    2005-03-01

    The main objective of 'Expérience sur Site pour COntraindre les Modèles de Pollution atmosphérique et de Transport d'Emissions' (ESCOMPTE) is to generate a relevant data set for testing and evaluating mesoscale chemistry-transport models (CTMs). During ESCOMPTE, measurements have been performed at numerous surface stations, by radars and lidars, and several aircraft in the planetary boundary layer. The data from these different sources have been merged to obtain a consistent description of the spatial distribution of wind, temperature, humidity, and ozone for the photosmog episode on June 25, 2001 (IOP 2b). On this day, moderate synoptic winds favour the evolution of different mesoscale circulation systems. During daytime, the sea breeze penetrates towards the north in the Rhône valley. As the winds above the sea breeze layer come from the east, polluted air from the metropolitan area of Marseille leads to an increase of ozone at elevated layers above the convective boundary layer (CBL). At the mountainous station of Luberon about 55 km north of Marseille around noon, when the CBL top surpasses the height of the mountain summit, polluted air with ozone concentrations of about 120 ppbv arrived from southerly directions, thus indicating the passage of the city plume of Marseille. At Cadarache and Vinon in the Durance valley, about 60 km inland, the ozone maximum at the surface and at flight level 920 m MSL appears between 14 and 15 UTC. At this time, southwesterly valley winds prevail in the valley, while southerly winds occur above. This finding highlights the height-dependent advection of ozone due to interacting mesoscale circulation systems. These dynamical processes need to be represented adequately in CTMs to deliver a realistic description of the ozone concentration fields.

  11. Evidence of a 50-year increase in tropospheric ozone in Upper Bavaria

    Directory of Open Access Journals (Sweden)

    M. Schmidt

    Full Text Available In a series of ozone-sonde soundings at the Hohenpeißenberg observatory, starting in 1967, the most striking features are increases of sim2.2% per year in all tropospheric heights up to 8 km during the past 24 years. These facts have recently been published and discussed by several authors. In this paper, we present some evidence for the increase of tropospheric ozone concentrations during the past 50 years 1940-1990 in the territory of the northern edge of the Bavarian Alps, including the Hohenpeißenberg data. In December 1940 and August 1942, probably the first exact wet-chemical vertical soundings of ozone up to 9 km height were made by an aircraft in the region mentioned. These results were published in the earlier literature. We have converted the results of the flights on 4 days in December 1940 and on 6 days in August 1942 to modern units and have compared them with the Hohenpeißenberg ozone-sonde data of the December and August months. We also compared the data at the ground with the August results of Paris-Montsouris 1886-1898. Our results show an increase of ozone concentration at all tropospheric heights in Upper Bavaria during the past 50 years, compared with the Montsouris data in August during the past 105 years. In the recently published papers, the increases since 1967 were approximated linearly.Our results, extended to the past, show non-linear trends, with steeper increases since 1975-1979. Possible reasons for these findings are discussed. Quite recently (in case of the December months since 1986/87, the August months since 1990, the ozone mixing ratios at and above Hohenpeißenberg seem to have decreased.

  12. Evidence of a 50-year increase in tropospheric ozone in Upper Bavaria

    Directory of Open Access Journals (Sweden)

    M. Schmidt

    1994-12-01

    Full Text Available In a series of ozone-sonde soundings at the Hohenpeißenberg observatory, starting in 1967, the most striking features are increases of \\sim2.2% per year in all tropospheric heights up to 8 km during the past 24 years. These facts have recently been published and discussed by several authors. In this paper, we present some evidence for the increase of tropospheric ozone concentrations during the past 50 years 1940-1990 in the territory of the northern edge of the Bavarian Alps, including the Hohenpeißenberg data. In December 1940 and August 1942, probably the first exact wet-chemical vertical soundings of ozone up to 9 km height were made by an aircraft in the region mentioned. These results were published in the earlier literature. We have converted the results of the flights on 4 days in December 1940 and on 6 days in August 1942 to modern units and have compared them with the Hohenpeißenberg ozone-sonde data of the December and August months. We also compared the data at the ground with the August results of Paris-Montsouris 1886-1898. Our results show an increase of ozone concentration at all tropospheric heights in Upper Bavaria during the past 50 years, compared with the Montsouris data in August during the past 105 years. In the recently published papers, the increases since 1967 were approximated linearly.Our results, extended to the past, show non-linear trends, with steeper increases since 1975-1979. Possible reasons for these findings are discussed. Quite recently (in case of the December months since 1986/87, the August months since 1990, the ozone mixing ratios at and above Hohenpeißenberg seem to have decreased.

  13. Ozone in the Upper Silesia region -- concentration and effects on plants

    Science.gov (United States)

    Stefan Godzik

    1998-01-01

    In the Beskidy Mountains at Brenna, Poland, and several other locations in the Katowice administrative district, plants were used as bioindicators to determine ozone concentration measurements in 1994 and 1995. Results showed that ozone is the only gaseous air pollutant significantly exceeding the permissible concentrations and causing foliar injury to both test and...

  14. Seasonal and species-specific response of VOC emissions by Mediterranean woody plant to elevated ozone concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Llusia, J.; Penuelas, J. [Universitat Autonoma de Barcelona (Spain). Unitat Ecofisiologia CSIC-CEAB-CREAF; Gimeno, R.S. [CIEMAT, Madrid (Spain). Ecotoxicologia de la Contaminacion Atmosferica

    2002-08-01

    Although certain factors controlling plant emission rates of volatile organic compounds (VOCs) are reasonably well understood, the influence of elevated ozone concentrations as abiotic stress is mostly unknown. Therefore, we studied the effects of ozone concentrations on seasonal biogenic volatile organic compound (BVOC) emissions by different Mediterranean plant species in open top chambers (OTC). Three ozone treatments were established: filtered air (F), non-filtered air (NF), and fumigated air (NF+) adding 40 nl l{sup -1} of ozone over NF. We studied the response of VOC emission in saplings of four Mediterranean woody plant species and subspecies: Ceratonia siliqua L., Olea europaea L., Quercus ilex spp. ilex L., and Quercus ilex spp. rotundifolia L. as representative of natural Mediterranean vegetation. No visible symptoms were detected on the leaves. No significant effect was found on net photosynthetic rates or stomatal conductance except for an increase in net photosynthetic rates in Quercus ilex ilex in spring and summer and an overall slight increase in Quercus ilex rotundifolia. Emissions of the total VOCs from Ceratonia siliqua in summer, and from Olea europaea and Quercus ilex rotundifolia in spring increased in ozone fumigated OTC in comparison with F or NF OTC. Decreased emissions were found in Quercus ilex rotundifolia in summer. There were no significant differences between ozone fumigation treatments for the other plant species and seasons. When considering particular VOCs, the results were also variable among species and time of the year. While {alpha}-pinene emissions decreased with ozone fumigation in Olea europaea, {alpha}-pinene and limonene emissions increased in Quercus ilex ilex. The responses of these particular VOCs did not always match the responses of total VOCs. In spite of this strong variability, when considering overall annual data for all species and seasons, there were increased net photosynthetic rates (37%) and limonene (95

  15. Seasonal and species-specific response of VOC emissions by Mediterranean woody plant to elevated ozone concentrations

    Science.gov (United States)

    Llusià, J.; Peñuelas, J.; Gimeno, B. S.

    Although certain factors controlling plant emission rates of volatile organic compounds (VOCs) are reasonably well understood, the influence of elevated ozone concentrations as abiotic stress is mostly unknown. Therefore, we studied the effects of ozone concentrations on seasonal biogenic volatile organic compound (BVOC) emissions by different Mediterranean plant species in open top chambers (OTC). Three ozone treatments were established: filtered air (F), non-filtered air (NF), and fumigated air (NF+) adding 40 nl l -1 of ozone over NF. We studied the response of VOC emission in saplings of four Mediterranean woody plant species and subspecies: Ceratonia siliqua L., Olea europaea L., Quercus ilex spp. ilex L., and Quercus ilex spp. rotundifolia L. as representative of natural Mediterranean vegetation. No visible symptoms were detected on the leaves. No significant effect was found on net photosynthetic rates or stomatal conductance except for an increase in net photosynthetic rates in Quercus ilex ilex in spring and summer and an overall slight increase in Quercus ilex rotundifolia. Emissions of the total VOCs from Ceratonia siliqua in summer, and from Olea europaea and Quercus ilex rotundifolia in spring increased in ozone fumigated OTC in comparison with F or NF OTC. Decreased emissions were found in Quercus ilex rotundifolia in summer. There were no significant differences between ozone fumigation treatments for the other plant species and seasons. When considering particular VOCs, the results were also variable among species and time of the year. While α-pinene emissions decreased with ozone fumigation in Olea europaea, α-pinene and limonene emissions increased in Quercus ilex ilex. The responses of these particular VOCs did not always match the responses of total VOCs. In spite of this strong variability, when considering overall annual data for all species and seasons, there were increased net photosynthetic rates (37%) and limonene (95%) and total VOC (45

  16. Variations of surface ozone concentration across the Klang Valley, Malaysia

    Science.gov (United States)

    Latif, Mohd Talib; Huey, Lim Shun; Juneng, Liew

    2012-12-01

    Hourly air quality data covering the period 2004-2008 was obtained from the Air Quality Division, the Department of Environment (DOE) through long-term monitoring by Alam Sekitar Sdn. Bhd. (ASMA) were analysed to investigate the variations of surface ozone (O3) in the Klang Valley, Malaysia. A total of nine monitoring stations were selected for analysis in this study and the results show that there are distinct seasonal patterns in the surface O3 across the Klang Valley. A high surface O3 concentration is usually observed between January and April, while a low surface O3 concentration is found between June and August. Analysis of daily variations in surface O3 and the precursors - NO, NO2, CO, NMHC and UVb, indicate that the surface O3 photochemistry in this study area exhibits a positive response to the intensity and wavelength in UVb while being influenced by the concentration of NOx, particularly through tritration processes. Although results from our study suggested that NMHCs may influence the maximum O3 concentration, further investigation is required. Wind direction during different monsoons was found to influence the concentration of O3 around the Klang Valley. HYSPLIT back trajectories (-72 h) were used to indicate the air-mass transport patterns on days with high concentrations of surface O3 in the study area. Results show that 47% of the high O3 days was associated with the localized circulation. The remaining 32% and 22% were associated with mid-range and long-range transport across the South China Sea from the northeast.

  17. Changes in concentrations of triazine and acetamide herbicides by bank filtration, ozonation, and chlorination in a public water supply

    Science.gov (United States)

    Verstraeten, Ingrid M.; Thurman, E.M.; Lindsey, M.E.; Lee, E.C.; Smith, R.D.

    2002-01-01

    The changes in triazine and acetamide concentrations in water during natural and artificial treatment by bank filtration, ozonation, filtration, and chlorination were measured at the well field and drinking water treatment plant of Lincoln, Nebraska, USA. The city's groundwater supply is affected by induced infiltration and transport of triazines and acetamide herbicides from the Platte River in late spring and early summer. The objective of the study was to evaluate the effect of infiltration and treatment on the presence of triazines and acetamides in drinking water. Samples of river water, well water, and public supply water at various stages of water treatment were collected from 1997-1999 during spring-runoff when the presence of herbicides in the Platte River is largest. In 1999, parent compounds were reduced by 76% of the concentration present in river water (33% by bank filtration, 41% by ozonation, and 1.5% by chlorination). Metabolites of herbicides for which analytical techniques existed were reduced by 21% (plus 26% by bank filtration, minus 23% by ozonation, and minus 24% by chlorination). However, increases in concentrations of specific metabolite compounds were identified after bank filtration and ozonation. After bank filtration, increases in cyanazine amide, cyanazine acid, and deethylcyanazine acid were identified. After ozonation, concentrations of deisopropylatrazine, deethylatrazine, didealkylatrazine, atrazine amide-I, hydroxydeethylatrazine, hydroxydeisopopylatrazine, deethylcyanazine acid, and deethylcyanazine increased. Concentrations of cyanazine acid and ethanesulfonic and oxanilic acids of acetamides decreased during ozonation. Our findings suggest that bank filtration and ozonation of water in part can shift the assessment of risk to human health associated with the consumption of the water from the parent compounds to their degradation products.

  18. Transportable lidar for the measurement of ozone concentration and flux profiles in the lower troposphere

    International Nuclear Information System (INIS)

    Zhao, Yanzeng; Howell, J.N.; Hardesty, R.M.

    1992-01-01

    In many areas of the United States, as well as in other industrial areas (such as Europe), elevated and potentially harmful levels of ozone are being measured during summer. Most of this ozone is photochemically produced. The relatively long lifetime of ozone allows industrially produced ozone to be transported on a hemispheric scale. Since the trends of tropospheric ozone are very likely dependent on the source strengths and distributions of the pollutants and the chemical/ transport process involved, a predictive understanding of tropospheric ozone climatology requires a focus on the chemical and transport processes that link regional emissions to hemispheric ozone trends and distributions. Of critical importance to these studies is a satisfactory data base of tropospheric ozone distribution from which global and regional tropospheric ozone climatology can be derived, and the processes controlling tropospheric ozone can be better understood. A transportable lidar for measuring ozone concentration and flux profiles in the lower troposphere is needed. One such system is being developed at the National Oceanic and Atmospheric Administration/Earth Resources Laboratory (NOAA/ERL) Wave Propagation Laboratory (WPL)

  19. Effects of simultaneous ozone exposure and nitrogen loads on carbohydrate concentrations, biomass, and growth of young spruce trees (Picea abies)

    International Nuclear Information System (INIS)

    Thomas, V.F.D.; Braun, S.; Flueckiger, W.

    2005-01-01

    Spruce saplings were grown under different nitrogen fertilization regimes in eight chamberless fumigation systems, which were fumigated with either charcoal-filtered (F) or ambient air (O 3 ). After the third growing season trees were harvested for biomass and non-structural carbohydrate analysis. Nitrogen had an overall positive effect on the investigated plant parameters, resulting in increased shoot elongation, biomass production, fine root soluble carbohydrate concentrations, and also slightly increased starch concentrations of stems and roots. Only needle starch concentrations and fine root sugar alcohol concentrations were decreased. Ozone fumigation resulted in needle discolorations and affected most parameters negatively, including decreased shoot elongation and decreased starch concentrations in roots, stems, and needles. In fine roots, however, soluble carbohydrate concentrations remained unaffected or increased by ozone fumigation. The only significant interaction was an antagonistic effect on root starch concentrations, where higher nitrogen levels alleviated the negative impact of ozone. - Simultaneous ozone fumigation and nitrogen fertilization have no synergistic impacts on carbohydrate concentrations, biomass, or growth of Picea abies saplings

  20. Influence of local meteorology and NO2 conditions on ground-level ozone concentrations in the eastern part of Texas, USA.

    Science.gov (United States)

    Gorai, A K; Tuluri, F; Tchounwou, P B; Ambinakudige, S

    2015-02-01

    The influence of local climatic factors on ground-level ozone concentrations is an area of increasing interest to air quality management in regards to future climate change. This study presents an analysis on the role of temperature, wind speed, wind direction, and NO 2 level on ground-level ozone concentrations over the region of Eastern Texas, USA. Ozone concentrations at the ground level depend on the formation and dispersion processes. Formation process mainly depends on the precursor sources, whereas, the dispersion of ozone depends on meteorological factors. Study results showed that the spatial mean of ground-level ozone concentrations was highly dependent on the spatial mean of NO 2 concentrations. However, spatial distributions of NO 2 and ozone concentrations were not uniformed throughout the study period due to uneven wind speeds and wind directions. Wind speed and wind direction also played a significant role in the dispersion of ozone. Temperature profile in the area rarely had any effects on the ozone concentrations due to low spatial variations.

  1. Use of bioindicators and passive sampling devices to evaluate ambient ozone concentrations in north central Pennsylvania

    Energy Technology Data Exchange (ETDEWEB)

    Yuska, D.E.; Skelly, J.M.; Ferdinand, J.A.; Stevenson, R.E.; Savage, J.E.; Mulik, J.D.; Hines, A

    2003-09-01

    Passive samplers and bioindicator plants detect ozone air pollution in north central Pennsylvania. - Ambient concentrations of tropospheric ozone and ozone-induced injury to black cherry (Prunus serotina) and common milkweed (Asclepias syriaca) were determined in north central Pennsylvania from 29 May to 5 September 2000 and from 28 May to 18 September 2001. Ogawa passive ozone samplers were utilized within openings at 15 forested sites of which six were co-located with TECO model 49 continuous ozone monitors. A significant positive correlation was observed between the Ogawa passive samplers and the TECO model 49 continuous ozone monitors for the 2000 (r=0.959) and 2001 (r=0.979) seasons. In addition, a significant positive correlation existed in 2000 and 2001 between ozone concentration and elevation (r=0.720) and (r=0.802), respectively. Classic ozone-induced symptoms were observed on black cherry and common milkweed. In 2000, initial injury was observed in early June, whereas for the 2001 season, initial injury was initially observed in late June. During both seasons, injury was noted at most sites by mid- to late-July. Soil moisture potential was measured for the 2001 season and a significant positive relationship (P<0.001) showed that injury to black cherry was a function of cumulative ozone concentrations and available soil moisture.

  2. Use of bioindicators and passive sampling devices to evaluate ambient ozone concentrations in north central Pennsylvania

    International Nuclear Information System (INIS)

    Yuska, D.E.; Skelly, J.M.; Ferdinand, J.A.; Stevenson, R.E.; Savage, J.E.; Mulik, J.D.; Hines, A.

    2003-01-01

    Passive samplers and bioindicator plants detect ozone air pollution in north central Pennsylvania. - Ambient concentrations of tropospheric ozone and ozone-induced injury to black cherry (Prunus serotina) and common milkweed (Asclepias syriaca) were determined in north central Pennsylvania from 29 May to 5 September 2000 and from 28 May to 18 September 2001. Ogawa passive ozone samplers were utilized within openings at 15 forested sites of which six were co-located with TECO model 49 continuous ozone monitors. A significant positive correlation was observed between the Ogawa passive samplers and the TECO model 49 continuous ozone monitors for the 2000 (r=0.959) and 2001 (r=0.979) seasons. In addition, a significant positive correlation existed in 2000 and 2001 between ozone concentration and elevation (r=0.720) and (r=0.802), respectively. Classic ozone-induced symptoms were observed on black cherry and common milkweed. In 2000, initial injury was observed in early June, whereas for the 2001 season, initial injury was initially observed in late June. During both seasons, injury was noted at most sites by mid- to late-July. Soil moisture potential was measured for the 2001 season and a significant positive relationship (P<0.001) showed that injury to black cherry was a function of cumulative ozone concentrations and available soil moisture

  3. Contribution of anthropogenic pollutants to the increase of tropospheric ozone levels in the Oporto Metropolitan Area, Portugal since the 19th century

    International Nuclear Information System (INIS)

    Alvim-Ferraz, M.C.M.; Sousa, S.I.V.; Pereira, M.C.; Martins, F.G.

    2006-01-01

    The main purpose of this study was to evaluate the contribution of anthropogenic pollutants to the increase of tropospheric ozone levels in the Oporto Metropolitan Area (Portugal) since the 19th century. The study was based on pre-industrial and recent data series, the results being analyzed according to the atmospheric chemistry. The treatment of ozone and meteorological data was performed by classical statistics and by time-series analysis. It was concluded that in the 19th century the ozone present in the troposphere was not of photochemical origin, being possible to consider the respective concentrations as reference values. For recent data a cycle of 8 h for ozone concentrations could be related to traffic. Compared to the 19th century, the current concentrations were 147% higher (252% higher in May) due to the increased photochemical production associated with the increased anthropogenic emissions. - Compared to the 19th century, the current ozone concentrations are 147% higher at Oporto, Portugal

  4. Effect of low concentrations of ozone on the enzymes catalase, peroxidase, papain and urease

    Energy Technology Data Exchange (ETDEWEB)

    Todd, G W

    1958-01-01

    The enzymes catalase, peroxidase, papain and urease were treated in vitro with low concentrations of ozone gas. Wide variations were found in the sensitivity of the enzymes to the inhibitory action of the gas. Papain showed the greatest sensitivity; the rest required a much greater amount of ozone for inactivation. Comparisons of ozone and hydrogen peroxide as inhibitors of papain and urease showed ozone to be 30 times as effective as hydrogen peroxide on papain and 3 times as effective on urease. 14 references, 2 figures, 3 tables.

  5. Comparison of measured and modeled surface ozone concentrations at two different sites in Europe during the solar eclipse on August 11, 1999

    International Nuclear Information System (INIS)

    Zanis, P.; Zerefos, C.S.; Melas, D.

    2001-01-01

    The effects of the solar eclipse on 11 August 1999 on surface ozone at two sites, Thessaloniki, Greece (urban site) and Hohenpeissenberg, Germany (elevated rural site) are investigated in this study and compared with model results. The eclipse offered a unique opportunity to test our understanding of tropospheric ozone chemistry and to investigate with a simple photochemical box model the response of surface ozone to changes of solar radiation during a photolytical perturbation such as the solar eclipse. The surface ozone measurements following the eclipse display a decrease of around 10-15 ppbv at the urban station of Eptapyrgio at Thessaloniki while at Hoheneissenberg, the actual ozone data do not show any clear effect of eclipse on surface ozone. For Thessaloniki, the model results suggest that solely photochemistry can account for a significant amount of the observed surface ozone decrease during the eclipse but transport effects mask part of the photochemical effect of eclipse on surface ozone. For Hohenpeissenberg, the box model predicted an ozone decrease, but to the eclipse, of about 2ppbv in relative agreement with the magnitude of the observed ozone decrease from the 2h moving average while at the same time it inhibits the foreseen diurnal ozone increase. However, this modeled ozone decrease during the eclipse is small compared to the diurnal ozone variability due to transport effects, and hence, transport really masks such relative small changes. The different magnitude of the surface ozone decrease between the two sites indicates mainly the role of the NO x levels. Measured and modeled NO and NO 2 concentrations at Hohenpeissenbergy during the eclipse are also compared and indicate that the partitioning of NO and NO 2 in NO x is influenced clearly from the eclipse. This is not observed at Thessaloniki due to local NO x sources. (Author)

  6. Regional and local meteorology influences high-resolution tropospheric ozone concentration in the Los Angeles Basin

    Science.gov (United States)

    Koutzoukis, S.; Jenerette, D.; Chandler, M.; Wang, J.; Ge, C.; Ripplinger, J.

    2017-12-01

    Urban air quality and climate directly affect resident health. The Los Angeles (LA) Basin is a highly populated metropolitan area, with widespread point sources of ozone (O3) precursors (NOx , Volatile Organic Compounds, CO) from fossil fuel combustion. The LA basin exists on a coast-to-mountain gradient, with increasing temperatures towards the Transverse Ranges, which rise to 1700m. Frequently not compliant with 8-hour O3 standards, the LA and South Coast Air Basins are designated as severe and extreme non-attainment areas. Summer weather in the LA basin is characterized by a persistent high pressure system, creating an inversion that traps air pollutants, including O3 precursors, coupled with physical geography that blocks prevailing upper atmosphere air flow. These interactions make neighborhood-level O3 levels more variable than common regional models. Over the summer of 2017, we investigated the importance of local meteorology, wind patterns and air temperature, in transporting and mixing ozone precursors from point sources along the coast-to-mountain gradient. We deployed a network of six EPA federal equivalent method ozone and meteorological sensors in three campaigns in the LA basin along the coast-to-mountain transect. Each campaign, we collaborated with citizen scientists to deploy three sensor stations in two, 4 km2 quadrats, for a total of six high-resolution 4 km2 pixels. O3 concentrations vary greatly along the transect. At the coastal sites, daily O3 ranges from 0ppm to 60ppm and the range increases at the inland sites, to 100ppm. At all sites, there was a positive relationship between wind speed, air temperature, and O3 concentration, with increasing correlation inland. The Pearson correlation coefficient between wind speed and O3 concentration doubles from the coast to inland, and triples between air temperature and O3. The site-specific relationships between O3 and wind direction and temperature vary, suggesting neighborhood-effects from local

  7. Surface ozone concentrations in Europe: Links with the regional-scale atmospheric circulation

    Science.gov (United States)

    Davies, T. D.; Kelly, P. M.; Low, P. S.; Pierce, C. E.

    1992-06-01

    Daily surface ozone observations from 1978 (1976 for some analyses) to 1988 for Bottesford (United Kingdom), Cabauw, Kloosterburen (The Netherlands), Hohenpeissenberg, Neuglobsow, Hamburg, and Arkona (Germany) are used to analyze links between surface ozone variations and the atmospheric circulation. A daily Europe-wide synoptic classification highlights marked differences between surface ozone/meteorology relationships in summer and winter. These relationships are characterized by correlations between daily surface ozone concentrations at each station and a local subregional surface pressure gradient (a wind speed index). Although there are geographical variations, which are explicable in terms of regional climatology, there are distinct annual cycles. In summer, the surface ozone/wind speed relationship exhibits the expected negative sign; however, in winter, the relationship is, in the main, strongly positive, especially at those stations which are more influenced by the vigorous westerlies. Spring and autumn exhibit negative, positive, or transitional (between summer and winter) behavior, depending on geographical position. It is suggested that these relationships reflect the importance of vertical exchange from the free troposphere to the surface in the nonsummer months. Composite surface pressure patterns and surface pressure anomaly (from the long-term mean) patterns associated with high surface ozone concentrations on daily and seasonal time scales are consistent with the surface ozone/wind speed relationships. Moreover, they demonstrate that high surface ozone concentrations, in a climatological time frame, can be associated with mean surface pressure patterns which have a synoptic reality and are robust. Such an approach may be useful in interpreting past variations in surface ozone and may help to isolate the effect of human activity. It is also possible that assessments can be made of the effect of projected future changes in the atmospheric circulation

  8. Ozone injury increases infection of geranium leaves by Botrytis cinerea

    Energy Technology Data Exchange (ETDEWEB)

    Manning, W.J.; Feder, W.A.; Perkins, I.

    1970-04-01

    Detached and attached, inoculated and noninoculated, ozone-injured and noninjured leaves from the lower, middle, and terminal regions of plants of geranium cultivars Enchantress and White Mountain were observed for infection by Botrytis cinerea. Previous exposure to ozone did not appreciably influence the susceptibility of leaves of either geranium cultivar to infection by B. cinerea, unless there was visible ozone injury. Ozone-injured, necrotic tissues on older attached and detached geranium leaves of both cultivars served as infection courts for B. cinerea. 14 references, 1 table.

  9. Dependence of the degree of antibacterial and antiphage action of ozone on cell and phage particle concentrations in nutrient media

    Energy Technology Data Exchange (ETDEWEB)

    Grits, N.V.; Fomichev, A.Iu.

    1985-05-01

    The work was aimed at studying the inactivating effect of ozone on Escherichia coli K-12 AB1157, Pseudomonas aeruginosa PA01, Erwinia herbicola EH103 and their phages T4, SM and I4. The degree of bacterial and phage inactivation was found to increase with a decrease in their initial concentration during the treatment. The effect depends on differences in the quantity of ozone per cell or per phage particle in the reaction medium. This conclusion is based on the fact that, irrespective of the suspension density, the amount of surviving bacteria and phages plotted versus O3 concentration and recalculated per one bacterial cell or phage particle is described graphically by one and the same curve typical of a strain under study. This technique for assessing the sensitivity of microbiological objects to ozone can be used in order to compare experimental data obtained in different laboratories.

  10. Detection of Changes in Ground-Level Ozone Concentrations via Entropy

    Directory of Open Access Journals (Sweden)

    Yuehua Wu

    2015-04-01

    Full Text Available Ground-level ozone concentration is a key indicator of air quality. Theremay exist sudden changes in ozone concentration data over a long time horizon, which may be caused by the implementation of government regulations and policies, such as establishing exhaust emission limits for on-road vehicles. To monitor and assess the efficacy of these policies, we propose a methodology for detecting changes in ground-level ozone concentrations, which consists of three major steps: data transformation, simultaneous autoregressive modelling and change-point detection on the estimated entropy. To show the effectiveness of the proposed methodology, the methodology is applied to detect changes in ground-level ozone concentration data collected in the Toronto region of Canada between June and September for the years from 1988 to 2009. The proposed methodology is also applicable to other climate data.

  11. Increased CCL24/eotaxin-2 with postnatal ozone exposure in allergen-sensitized infant monkeys is not associated with recruitment of eosinophils to airway mucosa

    International Nuclear Information System (INIS)

    Chou, Debbie L.; Gerriets, Joan E.; Schelegle, Edward S.; Hyde, Dallas M.; Miller, Lisa A.

    2011-01-01

    Epidemiology supports a causal link between air pollutant exposure and childhood asthma, but the mechanisms are unknown. We have previously reported that ozone exposure can alter the anatomic distribution of CD25+ lymphocytes in airways of allergen-sensitized infant rhesus monkeys. Here, we hypothesized that ozone may also affect eosinophil trafficking to allergen-sensitized infant airways. To test this hypothesis, we measured blood, lavage, and airway mucosa eosinophils in 3-month old monkeys following cyclical ozone and house dust mite (HDM) aerosol exposures. We also determined if eotaxin family members (CCL11, CCL24, CCL26) are associated with eosinophil location in response to exposures. In lavage, eosinophil numbers increased in animals exposed to ozone and/or HDM. Ozone + HDM animals showed significantly increased CCL24 and CCL26 protein in lavage, but the concentration of CCL11, CCL24, and CCL26 was independent of eosinophil number for all exposure groups. In airway mucosa, eosinophils increased with exposure to HDM alone; comparatively, ozone and ozone + HDM resulted in reduced eosinophils. CCL26 mRNA and immunofluorescence staining increased in airway mucosa of HDM alone animals and correlated with eosinophil volume. In ozone + HDM animal groups, CCL24 mRNA and immunofluorescence increased along with CCR3 mRNA, but did not correlate with airway mucosa eosinophils. Cumulatively, our data indicate that ozone exposure results in a profile of airway eosinophil migration that is distinct from HDM mediated pathways. CCL24 was found to be induced only by combined ozone and HDM exposure, however expression was not associated with the presence of eosinophils within the airway mucosa. -- Highlights: ► Ozone can modulate the localization of eosinophils in infant allergic airways. ► Expression of eotaxins within the lung is affected by ozone and allergen exposure. ► CCL24 induction by ozone and allergen exposure is not linked to eosinophilia.

  12. Increased CCL24/eotaxin-2 with postnatal ozone exposure in allergen-sensitized infant monkeys is not associated with recruitment of eosinophils to airway mucosa

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Debbie L.; Gerriets, Joan E. [California National Primate Research Center, UC Davis, Davis, CA 95616 (United States); Schelegle, Edward S.; Hyde, Dallas M. [California National Primate Research Center, UC Davis, Davis, CA 95616 (United States); Department of Anatomy, Physiology, and Cell Biology, UC Davis School of Veterinary Medicine, Davis, CA 95616 (United States); Miller, Lisa A., E-mail: lmiller@ucdavis.edu [California National Primate Research Center, UC Davis, Davis, CA 95616 (United States); Department of Anatomy, Physiology, and Cell Biology, UC Davis School of Veterinary Medicine, Davis, CA 95616 (United States)

    2011-12-15

    Epidemiology supports a causal link between air pollutant exposure and childhood asthma, but the mechanisms are unknown. We have previously reported that ozone exposure can alter the anatomic distribution of CD25+ lymphocytes in airways of allergen-sensitized infant rhesus monkeys. Here, we hypothesized that ozone may also affect eosinophil trafficking to allergen-sensitized infant airways. To test this hypothesis, we measured blood, lavage, and airway mucosa eosinophils in 3-month old monkeys following cyclical ozone and house dust mite (HDM) aerosol exposures. We also determined if eotaxin family members (CCL11, CCL24, CCL26) are associated with eosinophil location in response to exposures. In lavage, eosinophil numbers increased in animals exposed to ozone and/or HDM. Ozone + HDM animals showed significantly increased CCL24 and CCL26 protein in lavage, but the concentration of CCL11, CCL24, and CCL26 was independent of eosinophil number for all exposure groups. In airway mucosa, eosinophils increased with exposure to HDM alone; comparatively, ozone and ozone + HDM resulted in reduced eosinophils. CCL26 mRNA and immunofluorescence staining increased in airway mucosa of HDM alone animals and correlated with eosinophil volume. In ozone + HDM animal groups, CCL24 mRNA and immunofluorescence increased along with CCR3 mRNA, but did not correlate with airway mucosa eosinophils. Cumulatively, our data indicate that ozone exposure results in a profile of airway eosinophil migration that is distinct from HDM mediated pathways. CCL24 was found to be induced only by combined ozone and HDM exposure, however expression was not associated with the presence of eosinophils within the airway mucosa. -- Highlights: Black-Right-Pointing-Pointer Ozone can modulate the localization of eosinophils in infant allergic airways. Black-Right-Pointing-Pointer Expression of eotaxins within the lung is affected by ozone and allergen exposure. Black-Right-Pointing-Pointer CCL24 induction by

  13. Regionalization based on spatial and seasonal variation in ground-level ozone concentrations across China.

    Science.gov (United States)

    Cheng, Linjun; Wang, Shuai; Gong, Zhengyu; Li, Hong; Yang, Qi; Wang, Yeyao

    2018-05-01

    Owing to the vast territory of China and strong regional characteristic of ozone pollution, it's desirable for policy makers to have a targeted and prioritized regulation and ozone pollution control strategy in China based on scientific evidences. It's important to assess its current pollution status as well as spatial and temporal variation patterns across China. Recent advances of national monitoring networks provide an opportunity to insight the actions of ozone pollution. Here, we present rotated empirical orthogonal function (REOF) analysis that was used on studying the spatiotemporal characteristics of daily ozone concentrations. Based on results of REOF analysis in pollution seasons for 3years' observations, twelve regions with clear patterns were identified in China. The patterns of temporal variation of ozone in each region were separated well and different from each other, reflecting local meteorological, photochemical or pollution features. A rising trend in annual averaged Eight-hour Average Ozone Concentrations (O 3 -8hr) from 2014 to 2016 was observed for all regions, except for the Tibetan Plateau. The mean values of annual and 90 percentile concentrations for all 338 cities were 82.6±14.6 and 133.9±25.8μg/m 3 , respectively, in 2015. The regionalization results of ozone were found to be influenced greatly by terrain features, indicating significant terrain and landform effects on ozone spatial correlations. Among 12 regions, North China Plain, Huanghuai Plain, Central Yangtze River Plain, Pearl River Delta and Sichuan Basin were realized as priority regions for mitigation strategies, due to their higher ozone concentrations and dense population. Copyright © 2017. Published by Elsevier B.V.

  14. Semiconductor Sensors for Studying the Heterogeneous Destruction of Ozone at Low Concentrations

    Science.gov (United States)

    Obvintseva, L. A.; Sharova, T. B.; Avetisov, A. K.; Sukhareva, I. P.

    2018-06-01

    Prospects for the use of semiconductor resistive sensors in studies of the heterogeneous destruction of ozone at low concentrations (5-400 μg/m3) were shown. The influence of various factors (sensor temperature, gas flow rate, ozone concentration) on the results of ozone concentration measurements with sensors of various types was studied. Methods for forming a sensitive layer of In2O3(3% Fe2O3) sensors with specified parameters of calibration curves were proposed. The optimum conditions for the operation of sensors in a flow mode were formulated. The results of the study of heterogeneous destruction of ozone on microfiber polymer and natural disperse (sand, coals) materials obtained by the developed method were presented.

  15. On the impact of temperature on tropospheric ozone concentration ...

    Indian Academy of Sciences (India)

    can affect climate via the “atmospheric greenhouse effect” and the challenging task for scientists is to find out the factors that influence the presence of these trace gases. Ozone has a major significance, as in stratosphere in the protection of the earth from the sun's harmful ultraviolet radiation so in tro- posphere in climate ...

  16. Temporal Characterisation of Ground-level Ozone Concentration in Klang Valley

    Science.gov (United States)

    Izzah Mohamad Hashim, Nur; Noor, Norazian Mohamed; Yasina Yusof, Sara

    2018-03-01

    In Malaysia, ground-level ozone (O3) is one of the most significant air pollutants due to the increasing sources of ozone precursors. Hence, the surface O3 concentration should have received substantial attention because of its negative effects to human health, vegetation and the environment. In this study, hourly air pollutants dataset (i.e O3, Carbon monoxide (CO), Nitrogen dioxide (NO2), Particulate matter (PM10), Non-methane hydrocarbon (NmHC), Sulphur dioxide (SO2)) and weather parameters (i.e. wind speed (WS), wind direction (WD), temperature (T), ultraviolet B (UVB)) for ten years period (2003-2012) in Klang Valley were selected for analysis in this study. Two monitoring stations were selected that are Petaling Jaya and Shah Alam. The aim of the study is to determine the diurnal variations of O3 concentrations according to the seasonal monsoon and the correlation between the ground-level O3 concentration and others parameter. A high concentration of ground-level O3 was observed during the first transition (April to May) for both of the stations. While at a low surface, O3 concentration was found out during the southwest monsoon within June to September. Pearson correlation was used to find the correlation between the O3 concentration and all other pollutants and weather parameters. Most of the relationship between O3concentrationswas positively correlated with NO2 and negative relationship was found out with NMHC. These results were expected since these pollutants are known as the O3 precursors. Besides that, O3 concentration and its precursors show a positive significant correlation with all meteorological factors except for relative humidity.

  17. Temporal Characterisation of Ground-level Ozone Concentration in Klang Valley

    Directory of Open Access Journals (Sweden)

    Mohamad Hashim Nur Izzah

    2018-01-01

    Full Text Available In Malaysia, ground-level ozone (O3 is one of the most significant air pollutants due to the increasing sources of ozone precursors. Hence, the surface O3 concentration should have received substantial attention because of its negative effects to human health, vegetation and the environment. In this study, hourly air pollutants dataset (i.e O3, Carbon monoxide (CO, Nitrogen dioxide (NO2, Particulate matter (PM10, Non-methane hydrocarbon (NmHC, Sulphur dioxide (SO2 and weather parameters (i.e. wind speed (WS, wind direction (WD, temperature (T, ultraviolet B (UVB for ten years period (2003-2012 in Klang Valley were selected for analysis in this study. Two monitoring stations were selected that are Petaling Jaya and Shah Alam. The aim of the study is to determine the diurnal variations of O3 concentrations according to the seasonal monsoon and the correlation between the ground-level O3 concentration and others parameter. A high concentration of ground-level O3 was observed during the first transition (April to May for both of the stations. While at a low surface, O3 concentration was found out during the southwest monsoon within June to September. Pearson correlation was used to find the correlation between the O3 concentration and all other pollutants and weather parameters. Most of the relationship between O3concentrationswas positively correlated with NO2 and negative relationship was found out with NMHC. These results were expected since these pollutants are known as the O3 precursors. Besides that, O3 concentration and its precursors show a positive significant correlation with all meteorological factors except for relative humidity.

  18. Modelling and analysis of ozone concentration by artificial intelligent techniques for estimating air quality

    Science.gov (United States)

    Taylan, Osman

    2017-02-01

    High ozone concentration is an important cause of air pollution mainly due to its role in the greenhouse gas emission. Ozone is produced by photochemical processes which contain nitrogen oxides and volatile organic compounds in the lower atmospheric level. Therefore, monitoring and controlling the quality of air in the urban environment is very important due to the public health care. However, air quality prediction is a highly complex and non-linear process; usually several attributes have to be considered. Artificial intelligent (AI) techniques can be employed to monitor and evaluate the ozone concentration level. The aim of this study is to develop an Adaptive Neuro-Fuzzy inference approach (ANFIS) to determine the influence of peripheral factors on air quality and pollution which is an arising problem due to ozone level in Jeddah city. The concentration of ozone level was considered as a factor to predict the Air Quality (AQ) under the atmospheric conditions. Using Air Quality Standards of Saudi Arabia, ozone concentration level was modelled by employing certain factors such as; nitrogen oxide (NOx), atmospheric pressure, temperature, and relative humidity. Hence, an ANFIS model was developed to observe the ozone concentration level and the model performance was assessed by testing data obtained from the monitoring stations established by the General Authority of Meteorology and Environment Protection of Kingdom of Saudi Arabia. The outcomes of ANFIS model were re-assessed by fuzzy quality charts using quality specification and control limits based on US-EPA air quality standards. The results of present study show that the ANFIS model is a comprehensive approach for the estimation and assessment of ozone level and is a reliable approach to produce more genuine outcomes.

  19. The role and importance of ozone for atmospheric chemistry and methods for measuring its concentration

    Directory of Open Access Journals (Sweden)

    Marković Dragan M.

    2003-01-01

    Full Text Available Depending on where ozone resides, it can protect or harm life on Earth. The thin layer of ozone that surrounds Earth acts as a shield protecting the planet from irradiation by UV light. When it is close to the planet's surface, ozone is a powerful photochemical oxidant that damage, icons frescos, museum exhibits, rubber, plastic and all plant and animal life. Besides the basic properties of some methods for determining the ozone concentration in working and living conditions, this paper presents a detailed description of the electrochemical method. The basic properties of the electrochemical method are used in the construction of mobile equipment for determining the sum of oxidants in the atmosphere. The equipment was used for testing the determination of the ozone concentration in working rooms, where the concentration was at a high level and caused by UV radiation or electrostatic discharge. According to the obtained results, it can be concluded that this equipment for determining the ozone concentration in the atmosphere is very powerful and reproducible in measurements.

  20. Ozone using outlook for efficiency increasing of transportation and processing of high viscous petroleum raw materials

    International Nuclear Information System (INIS)

    Nadirov, N.K.; Zajkina, R.F.; Mamonova, T.B.

    1997-01-01

    Main types of oxidation reactions preceding during petroleum feedstock ozonization are generalized. The slight ozone high paraffin-content petroleum processing sites in shown on the example will make possible to rise the pipe transport efficiency and to increase the light fraction contents in petroleums. The prospects are discussed to application of ozone forming as a by-product of radiation-chemical facilities action for petroleum feedstock processing. (author)

  1. Study of the superficial ozone concentrations in the atmosphere of Comunidad de Madrid using passive samplers

    Directory of Open Access Journals (Sweden)

    D. Galán Madruga

    2001-06-01

    Full Text Available The ozone is a secondary atmospheric pollutant which is generated for photochemical reactions of volatil organic compounds (VOC’s and nitrogen oxides (NOx. In Spain the ozone is a big problem as a consequence of the solar radiation to reach high levels. Exposure over a period of time to elevated ozone concentrations can cause damage in the public health and alterations in the vegetation.The aim of this study is to carry out the development and validation of a measurement method to let asses the superficial ozone levels in the Comunidad de Madrid, by identifing the zones more significants, where to measure with UV photometric monitors (automatics methods this pollutant and where the health and the vegetation can be affected. To such effect, passive samplers are used, which have glass fiber filters coated with a solution of sodium nitrite, potassium carbonate, glycerol and water. The nitrite ion in the presence of ozone is oxidized to nitrato ion, which it is extrated with ultrapure water and analyzed for ion chromatography, by seen proportional to the concentration existing in the sampling point.The results of validation from field tests indicate a excellent correlation between the passive and the automatic method.The higher superficial ozone concentrations are placed in rural zones, distanced of emission focus of primary pollutants (nitrogen oxides and volatil organic compounds... principally in direction soutwest and northwest of the Comunidad of Madrid.

  2. Regional ozone impacts of increased natural gas use in the Texas power sector and development in the Eagle Ford shale.

    Science.gov (United States)

    Pacsi, Adam P; Kimura, Yosuke; McGaughey, Gary; McDonald-Buller, Elena C; Allen, David T

    2015-03-17

    The combined emissions and air quality impacts of electricity generation in the Texas grid and natural gas production in the Eagle Ford shale were estimated at various natural gas price points for the power sector. The increased use of natural gas in the power sector, in place of coal-fired power generation, drove reductions in average daily maximum 8 h ozone concentration of 0.6-1.3 ppb in northeastern Texas for a high ozone episode used in air quality planning. The associated increase in Eagle Ford upstream oil and gas production nitrogen oxide (NOx) emissions caused an estimated local increase, in south Texas, of 0.3-0.7 ppb in the same ozone metric. In addition, the potential ozone impacts of Eagle Ford emissions on nearby urban areas were estimated. On the basis of evidence from this work and a previous study on the Barnett shale, the combined ozone impact of increased natural gas development and use in the power sector is likely to vary regionally and must be analyzed on a case by case basis.

  3. Comparative scenario study of tropospheric ozone climate interactions using a global model. A 1% global increase rate, the IS92a IPCC scenario and a simplified aircraft traffic increase scenario

    Energy Technology Data Exchange (ETDEWEB)

    Chalita, S [Centre National de la Recherche Scientifique (CNRS), 75 - Paris (France). Service d` Aeronomie; Le Treut, H [Centre National de la Recherche Scientifique (CNRS), 75 - Paris (France). Lab. de Meteorologie Dynamique

    1998-12-31

    Sensitivity studies have been made to establish the relationship between different scenarios of tropospheric ozone increase and radiative forcing. Some aspects of the ozone-climate interactions for past and future scenarios are investigated. These calculations employ IMAGES tropospheric ozone concentrations for a pre-industrial, present and future atmospheres. The averaged last 10 years of the 25-year seasonal integrations were analyzed. The results of this study are preliminary. Ozone forcing is basically different from the CO{sub 2} forcing, for its regional and temporal structured nature and for its rather weak intensity. (R.P.) 14 refs.

  4. Comparative scenario study of tropospheric ozone climate interactions using a global model. A 1% global increase rate, the IS92a IPCC scenario and a simplified aircraft traffic increase scenario

    Energy Technology Data Exchange (ETDEWEB)

    Chalita, S. [Centre National de la Recherche Scientifique (CNRS), 75 - Paris (France). Service d`Aeronomie; Le Treut, H. [Centre National de la Recherche Scientifique (CNRS), 75 - Paris (France). Lab. de Meteorologie Dynamique

    1997-12-31

    Sensitivity studies have been made to establish the relationship between different scenarios of tropospheric ozone increase and radiative forcing. Some aspects of the ozone-climate interactions for past and future scenarios are investigated. These calculations employ IMAGES tropospheric ozone concentrations for a pre-industrial, present and future atmospheres. The averaged last 10 years of the 25-year seasonal integrations were analyzed. The results of this study are preliminary. Ozone forcing is basically different from the CO{sub 2} forcing, for its regional and temporal structured nature and for its rather weak intensity. (R.P.) 14 refs.

  5. Ozone synthesis improves by increasing number density of plasma channels and lower voltage in a nonthermal plasma

    Science.gov (United States)

    Arif Malik, Muhammad; Hughes, David

    2016-04-01

    Improvements in ozone synthesis from air and oxygen by increasing the number density of plasma channels and lower voltage for the same specific input energy (SIE) were explored in a nonthermal plasma based on a sliding discharge. The number of plasma channels and energy per pulse increased in direct proportion to the increase in the effective length of the anode (the high voltage electrode). Decreasing the discharge gap increased the energy per pulse for the same length and allowed the installation of more electrode pairs in the same space. It allowed the increase of the number of plasma channels in the same space to achieve the same SIE at a lower peak voltage with less energy per plasma channel. The ozone concentration gradually increased to ~1500 ppmv (140 to 50 g kWh-1) from air and to ~6000 ppmv (400 to 200 g kWh-1) from oxygen with a gradual increase in the SIE to ~200 J L-1, irrespective of the variations in electrode geometry, applied voltage or flow rate of the feed gas. A gradual increase in SIE beyond 200 J L-1 gradually increased the ozone concentration to a certain maximum value followed by a decline, but the rate of increase and the maximum value was higher for the greater number of plasma channels and lower peak voltage combination. The maximum ozone concentration was ~5000 ppmv (~30 g kWh-1) from air and ~22 000 ppmv (~80 g kWh-1) from oxygen. The results are explained on the basis of characteristics of the plasma and ozone synthesis mechanism.

  6. Multi-year ozone concentration and its spectra in Shanghai, China

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Fuhai; Mao, Xiaoqin [Shanghai Meteorological Bureau, Shanghai (China); Shanghai Key Laboratory of Meteorology and Health, Shanghai (China); Zhou, Mingyu, E-mail: mingyuzhou34@163.com [National Marine Environmental Forecasts Center, State Oceanic Administration, Beijing (China); Zhong, Shiyuan [Department of Geography, Michigan State University, East Lansing, MI (United States); Lenschow, Donald [National Center for Atmospheric Research, Boulder, CO (United States)

    2015-07-15

    The periodic properties of surface ozone variation were studied at five stations with different environmental conditions in Shanghai based on multi-year observations of ozone concentration and UV radiation using spectral decomposition methods. The spectra of surface ozone have distinct peaks at semi-diurnal, diurnal, intraseasonal, semiannual, annual, and quasi-biennial periods. The spectra for the frequency band larger than the semi-diurnal follow a − 5/3 power law at all the stations. The diurnal peak values for all stations in different years are similar to each other, while the semi-diurnal peak values are somewhat different among the stations. The peak value of semi-diurnal cycle at the station Dongtan (ecological environment area) is smaller than that at the other stations. The monthly mean of surface ozone has a significant seasonal variation with a maximum in May, a secondary maximum in fall, a lower value in summer (July and August), and a minimum in December or January. However the seasonal variation of UV radiation monthly mean shows a relatively higher value in summer (July and August), and for other months it is closely related to the ozone monthly mean. These secondary peaks of the ozone monthly mean in fall might be caused by the UV radiation coming back to its relevant value after falling off during the Asia summer monsoon; it was not related to biomass burning. The intraseasonal cycling of ozone might be related to the MJO (Madden–Julian Oscillation). Further studies are needed to understand the relationship between the local ozone intraseasonal variation and the MJO. The quasi-biennial variation of ozone in Shanghai might be a local reflection of climate change and could be associated with ENSO (El-Nino Southern Oscillation). Further studies will be needed to understand the relationship of the quasi-biennial variation of ozone to ENSO. - Highlights: • The spectral decomposition methods are used. • The spectra of surface ozone have multi

  7. Multi-year ozone concentration and its spectra in Shanghai, China

    International Nuclear Information System (INIS)

    Geng, Fuhai; Mao, Xiaoqin; Zhou, Mingyu; Zhong, Shiyuan; Lenschow, Donald

    2015-01-01

    The periodic properties of surface ozone variation were studied at five stations with different environmental conditions in Shanghai based on multi-year observations of ozone concentration and UV radiation using spectral decomposition methods. The spectra of surface ozone have distinct peaks at semi-diurnal, diurnal, intraseasonal, semiannual, annual, and quasi-biennial periods. The spectra for the frequency band larger than the semi-diurnal follow a − 5/3 power law at all the stations. The diurnal peak values for all stations in different years are similar to each other, while the semi-diurnal peak values are somewhat different among the stations. The peak value of semi-diurnal cycle at the station Dongtan (ecological environment area) is smaller than that at the other stations. The monthly mean of surface ozone has a significant seasonal variation with a maximum in May, a secondary maximum in fall, a lower value in summer (July and August), and a minimum in December or January. However the seasonal variation of UV radiation monthly mean shows a relatively higher value in summer (July and August), and for other months it is closely related to the ozone monthly mean. These secondary peaks of the ozone monthly mean in fall might be caused by the UV radiation coming back to its relevant value after falling off during the Asia summer monsoon; it was not related to biomass burning. The intraseasonal cycling of ozone might be related to the MJO (Madden–Julian Oscillation). Further studies are needed to understand the relationship between the local ozone intraseasonal variation and the MJO. The quasi-biennial variation of ozone in Shanghai might be a local reflection of climate change and could be associated with ENSO (El-Nino Southern Oscillation). Further studies will be needed to understand the relationship of the quasi-biennial variation of ozone to ENSO. - Highlights: • The spectral decomposition methods are used. • The spectra of surface ozone have multi

  8. The impact of anthropogenic and biogenic emissions on surface ozone concentrations in Istanbul.

    Science.gov (United States)

    Im, Ulas; Poupkou, Anastasia; Incecik, Selahattin; Markakis, Konstantinos; Kindap, Tayfun; Unal, Alper; Melas, Dimitros; Yenigun, Orhan; Topcu, Sema; Odman, M Talat; Tayanc, Mete; Guler, Meltem

    2011-03-01

    Surface ozone concentrations at Istanbul during a summer episode in June 2008 were simulated using a high resolution and urban scale modeling system coupling MM5 and CMAQ models with a recently developed anthropogenic emission inventory for the region. Two sets of base runs were performed in order to investigate for the first time the impact of biogenic emissions on ozone concentrations in the Greater Istanbul Area (GIA). The first simulation was performed using only the anthropogenic emissions whereas the second simulation was performed using both anthropogenic and biogenic emissions. Biogenic NMVOC emissions were comparable with anthropogenic NMVOC emissions in terms of magnitude. The inclusion of biogenic emissions significantly improved the performance of the model, particularly in reproducing the low night time values as well as the temporal variation of ozone concentrations. Terpene emissions contributed significantly to the destruction of the ozone during nighttime. Biogenic NMVOCs emissions enhanced ozone concentrations in the downwind regions of GIA up to 25ppb. The VOC/NO(x) ratio almost doubled due to the addition of biogenic NMVOCs. Anthropogenic NO(x) and NMVOCs were perturbed by ±30% in another set of simulations to quantify the sensitivity of ozone concentrations to the precursor emissions in the region. The sensitivity runs, as along with the model-calculated ozone-to-reactive nitrogen ratios, pointed NO(x)-sensitive chemistry, particularly in the downwind areas. On the other hand, urban parts of the city responded more to changes in NO(x) due to very high anthropogenic emissions. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Spatial assessment of PM{sub 10} and ozone concentrations in Europe (2005)

    Energy Technology Data Exchange (ETDEWEB)

    2009-07-01

    This report presents particulate matter (PM{sub 10}) and ground.level ozone concentration maps covering the whole of Europe. The interpolated maps are based on a combination of measurement and regional modelling results. Using measured concentrations as a primary source of information, the report summarizes the methodologies and the methodological choices taken in order to derive such maps. (au)

  10. Variations of Ground-level Ozone Concentration in Malaysia: A Case Study in West Coast of Peninsular Malaysia

    Directory of Open Access Journals (Sweden)

    Hashim Nur Izzah Mohamad

    2017-01-01

    Full Text Available Hourly ground ozone concentration, measured from the monitoring stations in the West Coast of Peninsular Malaysia for the period of 10 years (2003-2012 were used to analyse the ozone characteristic in Nilai, Melaka and Petaling Jaya. The prediction of tropospheric ozone concentrations is very important due to the negative impacts of ozone on human health, climate and vegetation. The mean concentration of ozone at the studied areas had not exceeded the recommended value of Malaysia Ambient Air Quality Guideline (MAAQG for 8-hour average (0.06 ppm, however some of the measurements exceeded the hourly permitted concentration by MAAQG that is 0.1 ppm. Higher concentration of ozone can be observed during the daytime since ozone needs sunlight for the photochemical reactions. The diurnal cycle of ozone concentration has a mid-day peak (14:00-15:00 and lower night-time concentrations. The ozone concentration slowly rises after the sun rises (08:00, reaching a maximum during daytime and then decreases until the next morning.

  11. Modeling the effects of reformulated gasoline usages on ambient concentrations of ozone and five air toxics

    International Nuclear Information System (INIS)

    Ligocki, M.P.; Schulhof, R.R.; Jackson, R.E.; Jimenez, M.M.; Atkinson, D.

    1993-01-01

    The use of reformulated gasolines to reduce motor-vehicle-related hydrocarbon emissions has been mandated by the 1990 Clean Air Act Amendments for nine severely polluted urban areas. Using a version of the Urban Airshed Model that includes explicit representation of five motor-vehicle-related air toxics, the effects of reformulated gasoline usage on ambient ozone and toxics concentrations were simulated. Simulations were conducted for two urban areas. Baltimore-Washington and Houston, for the year 1995. Additional simulation were conducted for Baltimore-Washington including winter and 1999 scenarios. In the Baltimore-Washington areas, the 1995 Federal reformulated gasoline scenario produce reductions of 1.1 percent in simulated peak ozone and 2.7 percent in the areal extent of simulated ozone exceedances. Simulated ozone reductions were much smaller in Houston. In the reformulated gasoline simulations, secondary formulation of formaldehyde and acetaldehyde was reduced, and decreases in ambient benzene and polycyclic organic matter (POM) concentrations were simulated. Larger reductions in ozone and toxics concentrations were simulated for reformulated gasolines meeting California Phase II standards than for those meeting Federal standards. The effects of reductions in motor-vehicle-related nitrogen oxides (NO x ) emissions, alone and in combination with hydrocarbon reductions, were also examined

  12. Ozone concentration characteristics in and over a high-altitude forest

    Energy Technology Data Exchange (ETDEWEB)

    Wooldridge, G.L.; Zeller, K.F.; Musselman, R.C. [USDA Rocky Mountain Forest and Range Experiment Station, Fort Collins, CO (United States)

    1994-12-31

    Four years of atmospheric ozone data from a subalpine forest site at an elevation of 3180 m above mean sea level (msl) about 55 km west of Laramie, Wyoming, U.S.A., and at a 2680 msl forest-steppe ecotone site 15 km to the southeast, have been analyzed. These sites appear to be free of any urban or industrial pollutants. Data for January through June show that the amplitude of the diurnal cycle of hourly mean values is small in winter, then increases through June. The highest monthly mean concentrations occur in April or May, and decrease in June. Episodal high O{sub 3} values were measured during spring months in connection with cutoff low pressure centers aloft and probable stratospheric intrusions. Spectral analyses yield a peak at the diurnal period and broad peaks at longer periodicities, particularly during the spring season. (orig.)

  13. Impact of Cabin Ozone Concentrations on Passenger Reported Symptoms in Commercial Aircraft

    DEFF Research Database (Denmark)

    Bekö, Gabriel; Allen, Joseph G.; Weschler, Charles J.

    2015-01-01

    relatively low (median: 9.5 ppb). On thirteen flights (16%) ozone levels exceeded 60 ppb, while the highest peak level reached 256 ppb for a single flight. The most commonly reported symptoms were dry mouth or lips (26%), dry eyes (22.1%) and nasal stuffiness (18.9%). 46% of passengers reported at least one...... symptom related to the eyes or mouth. A third of the passengers reported at least one upper respiratory symptom. Using multivariate logistic (individual symptoms) and linear (aggregated continuous symptom variables) regression, ozone was consistently associated with symptoms related to the eyes...... and certain upper respiratory endpoints. A concentration-response relationship was observed for nasal stuffiness and eye and upper respiratory symptom indicators. Average ozone levels, as opposed to peak concentrations, exhibited slightly weaker associations. Medium and long duration flights were...

  14. IMPACT OF AN OZONE GENERATOR AIR CLEANER ON STYRENE CONCENTRATIONS IN AN INDOOR AIR QUALITY RESEARCH CHAMBER

    Science.gov (United States)

    The paper gives results of an investigation of the impact of an ozone generator air cleaner on vapor-phase styrene concentrations in a full-scale indoor air quality test chamber. The time history of the concentrations of styrene and ozone is well predicted by a simulation model u...

  15. Convection links biomass burning to increased tropical ozone: However, models will tend to overpredict O3

    Science.gov (United States)

    Chatfield, Robert B.; Delany, Anthony C.

    1990-10-01

    Biomass burning throughout the inhabited portions of the tropics generates precursors which lead to significant local atmospheric ozone pollution. Several simulations show how this smog could be only an easily observed, local manifestation of a much broader increase in tropospheric ozone. We illustrate basic processes with a one-dimensional time-dependent model that is closer to true meteorological motions than commonly used eddy diffusion models. Its application to a representative region of South America gives reasonable simulations of the local pollutants measured there. Three illustrative simulations indicate the importance of dilution, principally due to vertical transport, in increasing the efficiency of ozone production, possibly enough for high ozone to be apparent on a very large, intercontinental scale. In the first, cook-then-mix, simulation the nitrogen oxides and other burning-produced pollutants are confined to a persistently subsident fair weather boundary layer for several days, and the resultant ozone is found to have only a transient influence on the whole column of tropospheric ozone. In the second, mix-then-cook, simulation the effect of typical cumulonimbus convection, which vents an actively polluted boundary layer, is to make a persistent increase in the tropical ozone column. Such a broadly increased ozone column is observed over the the populated "continental" portion of the tropics. A third simulation averages all emission, transport, and deposition parameters, representing one column in a global tropospheric model that does not simulate individual weather events. This "oversmoothing" simulation produces 60% more ozone than observed or otherwise modeled. Qualitatively similar overprediction is suggested for all models which average significantly in time or space, as all need do. Clearly, simulating these O3 levels will depend sensitively on knowledge of the timing of emissions and transport.

  16. Study nonlinear dynamics of stratospheric ozone concentration at Pakistan Terrestrial region

    Science.gov (United States)

    Jan, Bulbul; Zai, Muhammad Ayub Khan Yousuf; Afradi, Faisal Khan; Aziz, Zohaib

    2018-03-01

    This study investigates the nonlinear dynamics of the stratospheric ozone layer at Pakistan atmospheric region. Ozone considered now the most important issue in the world because of its diverse effects on earth biosphere, including human health, ecosystem, marine life, agriculture yield and climate change. Therefore, this paper deals with total monthly time series data of stratospheric ozone over the Pakistan atmospheric region from 1970 to 2013. Two approaches, basic statistical analysis and Fractal dimension (D) have adapted to study the nature of nonlinear dynamics of stratospheric ozone level. Results obtained from this research have shown that the Hurst exponent values of both methods of fractal dimension revealed an anti-persistent behavior (negatively correlated), i.e. decreasing trend for all lags and Rescaled range analysis is more appropriate as compared to Detrended fluctuation analysis. For seasonal time series all month follows an anti-persistent behavior except in the month of November which shown persistence behavior i.e. time series is an independent and increasing trend. The normality test statistics also confirmed the nonlinear behavior of ozone and the rejection of hypothesis indicates the strong evidence of the complexity of data. This study will be useful to the researchers working in the same field in the future to verify the complex nature of stratospheric ozone.

  17. Ozone Exposure Increases Circulating Stress Hormones and Lipid Metabolites in Humans

    Science.gov (United States)

    RATIONALE: Air pollution has been associated with increased prevalence of type 2 diabetes; however, the mechanisms remain unknown. We have shown that acute ozone exposure in rats induces release of stress hormones, hyperglycemia, leptinemia, and gluoose intolerance that are assoc...

  18. Comparative study of ozonized olive oil and ozonized sunflower oil

    Directory of Open Access Journals (Sweden)

    Díaz Maritza F.

    2006-01-01

    Full Text Available In this study the ozonized olive and sunflower oils are chemical and microbiologically compared. These oils were introduced into a reactor with bubbling ozone gas in a water bath at room temperature until they were solidified. The peroxide, acidity and iodine values along with antimicrobial activity were determined. Ozonization effects on the fatty acid composition of these oils were analyzed using Gas-Liquid Chromatographic Technique. An increase in peroxidation and acidity values was observed in both oils but they were higher in ozonized sunflower oil. Iodine value was zero in ozonized olive oil whereas in ozonized sunflower was 8.8 g Iodine per 100 g. The antimicrobial activity was similar for both ozonized oils except for Minimum Bactericidal Concentrations of Pseudomona aeruginosa. Composition of fatty acids in both ozonized oils showed gradual decrease in unsaturated fatty acids (C18:1, C18:2 with gradual increase in ozone doses.

  19. Trends in air concentration and deposition at background monitoring sites in Sweden - major inorganic compounds, heavy metals and ozone

    Energy Technology Data Exchange (ETDEWEB)

    Kindbom, K.; Svensson, Annika; Sjoeberg, K.; Pihl Karlsson, G.

    2001-09-01

    This report describes concentrations in air of sulphur compounds, soot, nitrogen compounds and ozone in Sweden between 1985-1998. Time trends of concentration in precipitation and deposition of sulphate, nitrate, ammonium, acidity, base cations and chloride in six different regions covering Sweden are evaluated during the period 1983-1998. Trends of heavy metals in precipitation have been analysed for the period 1983-1998 and the change in heavy metal concentration, 1975-1995, in mosses is described. Data used in the trend analyses originates from measurements performed at six Swedish EMEP stations and from approximately 25 stations within the national Precipitation Chemistry Network. Two different statistical methods, linear regression and the non-parametric Mann Kendall test, have been used to evaluate changes in annual mean values. Time trends of concentration of sulphur dioxide, particulate sulphate, soot, nitrogen dioxide, total nitrate and total ammonium in air show highly significant decreasing trends, except for soot at one station in northern Sweden. Concentrations of ozone have a strong seasonal variation with a peak occurring in spring every year. However, annual ozone concentrations show no obvious trends in spite of decreasing emissions of the precursors NOx and VOC. A slight indication of a decreasing trend in the number of ozone episodes might be seen from 1990 to 1998. Sulphate concentrations in precipitation and deposition show strongly significant decreasing trends in the whole country. Concentrations and deposition of nitrate and ammonium have been decreasing in all areas except for nitrate at stations in south-west and north-west Sweden and ammonium in south-west Sweden. Acidity has decreased in all areas since 1989, resulting in increasing pH values in Sweden. The interannual variations of concentration and deposition of base cations and chloride are large and few general trends can be seen during 1983-1997. Time trends of four heavy metals in

  20. The Uncertain Role of Biogenic VOC for Boundary-Layer Ozone Concentration: Example Investigation of Emissions from Two Forest Types with a Box Model

    Directory of Open Access Journals (Sweden)

    Boris Bonn

    2017-10-01

    Full Text Available High levels of air pollution including ground level ozone significantly reduce humans’ life expectancy and cause forest damage and decreased tree growth. The French Vosges and the German Black Forest are regions well-known for having the highest tropospheric ozone concentrations at remote forested sites in Central Europe. This box model study investigates the sensitivity of atmospheric chemistry calculations of derived ozone on differently resolved forest tree composition and volatile organic compound emissions. Representative conditions were chosen for the Upper Rhine area including the Alsatian Vosges/France and the Black Forest/Germany during summer. This study aims to answer the following question: What level of input detail for Alsace and Black Forest tree mixtures is required to accurately simulate ozone formation? While the French forest in Alsace—e.g., in the Vosges—emits isoprene to a substantially higher extent than the forest at the German site, total monoterpene emissions at the two sites are rather similar. However, the individual monoterpene structures, and therefore their reactivity, differs. This causes a higher ozone production rate for Vosges forest mixture conditions than for Black Forest tree mixtures at identical NOx levels, with the difference increasing with temperature. The difference in ozone formation is analyzed in detail and the short-comings of reduced descriptions are discussed. The outcome serves as a to-do-list to allow accurate future ozone predictions influenced by the climate adaptation of forests and the change in forest species composition.

  1. Case study of stratospheric ozone affecting ground-level oxidant concentrations

    International Nuclear Information System (INIS)

    Lamb, R.G.

    1977-01-01

    During the predawn hours of 19 November 1972, the air pollution monitoring station at Santa Rosa, Calif., recorded five consecutive hours of oxidant concentrations in excess of the present National Ambient Air Quality Standard. The highest of the hourly averages was 0.23 ppm. From a detailed analysis of the meteorological conditions surrounding this incident, it is shown that the ozone responsible for the anomalous concentrations originated in the stratosphere and not from anthropogenic sources

  2. Inactivation of E-coli O157 : H7 in apple cider by ozone at various temperatures and concentrations

    DEFF Research Database (Denmark)

    Steenstrup, Lotte Dock

    2004-01-01

    of dissolved ozone of about 5-6 mg/L at 20C, before the on-set of E. coli O157:H7 inactivation in the cider. Total processing times, based on lag time plus 5D, ranged from about 4 to 14 min depending on temperature and ozone concentration. Overall, inactivation of E. coli O157:H7by ozone was fast enough...

  3. Trends in Pinus ponderosa foliar pigment concentration due to chronic exposure of ozone and acid rain

    International Nuclear Information System (INIS)

    Neuman, L.; Houpis, J.; Anderson, P.

    1991-01-01

    To determine the effects of ozone and acid rain on mature Ponderosa pine trees, Lawrence Livermore National Lab. has collaborated with University of California Berkeley, University of California Davis, California State University Chico, and the US Forest Service at the latter's Chico Tree Improvement Center. Foliar tissue from mature grafted scions of Pinus ponderosa were exposed to two times ambient ozone for ten months and to acid rain (3.0 pH) weekly for 10 weeks using branch exposure chambers. Pigment extracts were analyzed spectrophotometrically for concentrations of chlorophylls a and b, and carotenoid pigments, at 662 nm, 644 nm, and 470 nm, respectively. Pigment concentrations were expressed on a surface area basis. Preliminary results revealed that chlorophyll a showed a downward trend due to the ozone treatment. Acid rain caused no effects on these three pigments, however, chlorophyll b showed an upward trend due to the interaction of ozone and acid rain. The carotenoid pigments showed no changes due to the treatments either singly, or in combination

  4. Fitting Statistical Distributions Functions on Ozone Concentration Data at Coastal Areas

    International Nuclear Information System (INIS)

    Muhammad Yazid Nasir; Nurul Adyani Ghazali; Muhammad Izwan Zariq Mokhtar; Norhazlina Suhaimi

    2016-01-01

    Ozone is known as one of the pollutant that contributes to the air pollution problem. Therefore, it is important to carry out the study on ozone. The objective of this study is to find the best statistical distribution for ozone concentration. There are three distributions namely Inverse Gaussian, Weibull and Lognormal were chosen to fit one year hourly average ozone concentration data in 2010 at Port Dickson and Port Klang. Maximum likelihood estimation (MLE) method was used to estimate the parameters to develop the probability density function (PDF) graph and cumulative density function (CDF) graph. Three performance indicators (PI) that are normalized absolute error (NAE), prediction accuracy (PA), and coefficient of determination (R 2 ) were used to determine the goodness-of-fit criteria of the distribution. Result shows that Weibull distribution is the best distribution with the smallest error measure value (NAE) at Port Klang and Port Dickson is 0.08 and 0.31, respectively. The best score for highest adequacy measure (PA: 0.99) with the value of R 2 is 0.98 (Port Klang) and 0.99 (Port Dickson). These results provide useful information to local authorities for prediction purpose. (author)

  5. Exposure to ozone modulates human airway protease/antiprotease balance contributing to increased influenza A infection.

    Directory of Open Access Journals (Sweden)

    Matthew J Kesic

    Full Text Available Exposure to oxidant air pollution is associated with increased respiratory morbidities and susceptibility to infections. Ozone is a commonly encountered oxidant air pollutant, yet its effects on influenza infections in humans are not known. The greater Mexico City area was the primary site for the spring 2009 influenza A H1N1 pandemic, which also coincided with high levels of environmental ozone. Proteolytic cleavage of the viral membrane protein hemagglutinin (HA is essential for influenza virus infectivity. Recent studies suggest that HA cleavage might be cell-associated and facilitated by the type II transmembrane serine proteases (TTSPs human airway trypsin-like protease (HAT and transmembrane protease, serine 2 (TMPRSS2, whose activities are regulated by antiproteases, such as secretory leukocyte protease inhibitor (SLPI. Based on these observations, we sought to determine how acute exposure to ozone may modulate cellular protease/antiprotease expression and function, and to define their roles in a viral infection. We utilized our in vitro model of differentiated human nasal epithelial cells (NECs to determine the effects of ozone on influenza cleavage, entry, and replication. We show that ozone exposure disrupts the protease/antiprotease balance within the airway liquid. We also determined that functional forms of HAT, TMPRSS2, and SLPI are secreted from human airway epithelium, and acute exposure to ozone inversely alters their expression levels. We also show that addition of antioxidants significantly reduces virus replication through the induction of SLPI. In addition, we determined that ozone-induced cleavage of the viral HA protein is not cell-associated and that secreted endogenous proteases are sufficient to activate HA leading to a significant increase in viral replication. Our data indicate that pre-exposure to ozone disrupts the protease/antiprotease balance found in the human airway, leading to increased influenza susceptibility.

  6. Modelling horizontal and vertical concentration profiles of ozone and oxides of nitrogen within high-latitude urban areas

    International Nuclear Information System (INIS)

    Nicholson, J.P.; Weston, K.J.

    2001-01-01

    Urban ozone concentrations are determined by the balance between ozone destruction, chemical production and supply through advection and turbulent down-mixing from higher levels. At high latitudes, low levels of solar insolation and high horizontal advection speeds reduce the photochemical production and the spatial ozone concentration patterns are largely determined by the reaction of ozone with nitric oxide and dry deposition to the surface. A Lagrangian column model has been developed to simulate the mean (monthly and annual) three-dimensional structure in ozone and nitrogen oxides (NO x ) concentrations in the boundary-layer within and immediately around an urban area. The short-time-scale photochemical processes of ozone and NO x , as well as emissions and deposition to the ground, are simulated. The model has a horizontal resolution of 1x1km and high resolution in the vertical. It has been applied over a 100x100km domain containing the city of Edinburgh (at latitude 56 o N) to simulate the city-scale processes of pollutants. Results are presented, using averaged wind-flow frequencies and appropriate stability conditions, to show the extent of the depletion of ozone by city emissions. The long-term average spatial patterns in the surface ozone and NO x concentrations over the model domain are reproduced quantitatively. The model shows the average surface ozone concentrations in the urban area to be lower than the surrounding rural areas by typically 50% and that the areas experiencing a 20% ozone depletion are generally restricted to within the urban area. The depletion of the ozone concentration to less than 50% of the rural surface values extends only 20m vertically above the urban area. A series of monitoring sites for ozone, nitric oxide and nitrogen dioxide on a north-south transect through the city - from an urban, through a semi-rural, to a remote rural location - allows the comparison of modelled with observed data for the mean diurnal cycle of ozone

  7. Interstitial adenosine concentration is increased by dipyridamole

    International Nuclear Information System (INIS)

    Gorman, M.W.; Wangler, R.D.; DeWitt, D.F.; Wang, C.Y.; Bassingthwaighte, J.B.; Sparks, H.V.

    1986-01-01

    The authors used the multiple indicator dilution technique to observe the capillary transport of adenosine (ADO) in isolated guinea pig hearts. Radiolabelled albumin, sucrose and ADO were injected on the arterial side and measured in venous samples collected during the following 20 seconds. Transport parameters calculated from these data include permeability-surface area products (PS) for transendothelial diffusion, endothelial cell (EC) uptake at the lumenal and ablumenal membranes, and EC metabolism. With simultaneous measurements of arterial and venous ADO concentrations and flow, the authors calculated the steady-state interstitial fluid (ISF) ADO concentration. Under control conditions the venous ADO concentration was 7.1 +/- 2.8 nM. The calculated ISF concentration depends on whether they assume the venous ADO comes from the ISF, or directly from ECs. These ISF concentrations are 25 +/- 12 nM and 9.8 +/- 4.0 nM, respectively. During dipyridamole infusion (10 uM) the EC transport parameters became nearly zero. Venous and ISF ADO concentrations increased to 33 +/- 8.9 nM and 169 +/- 42 nM, respectively. The authors conclude that the ISF ADO concentration is 1.5-4 fold higher than the venous concentration at rest, and the ISF concentration increases greatly with dipyridamole

  8. Effects of Low Ozone Concentrations and Short Exposure Times on the Mortality of Immature Stages of the Indian Meal Moth, Plodia Interpunctella (Lepidoptera: Pyralidae

    Directory of Open Access Journals (Sweden)

    Keivanloo Ensieh

    2014-07-01

    Full Text Available In Iran, the Indian meal moth, Plodia interpunctella (Hübner, is one of the most important pests of such stored products as date fruits and pistachio nuts. Ozone was applied as a gas at four concentrations (0, 2, 3, and 5 ppm for four different periods (30, 60, 90, and 120 min on the immature stages of P. interpunctella. The results indicated that by increasing the concentration and exposure time, the rate of mortality increased for all tested stages. This study showed that 12-day-old larvae were more susceptible than other stages when exposed to 5 ppm ozone for 120 min. The next in order of susceptibility were pupae, then 5-day-old larvae, and 17-dayold larvae had the highest sensitivity to ozonation. At the highest concentration of ozone, for the longest time, the least mortality rate was recorded for one-day-old eggs. According to the results, a reduction in the population density of P. interpunctella in laboratory experiments is promising. However, validation studies will be necessary to fully determine the potential of ozone as a replacement for the current post harvest chemical control of P. interpunctella on either pistachio nuts or date fruits.

  9. DNA bulky adducts in a Mediterranean population correlate with environmental ozone concentration, an indicator of photochemical smog.

    Science.gov (United States)

    Palli, Domenico; Saieva, Calogero; Grechi, Daniele; Masala, Giovanna; Zanna, Ines; Barbaro, Antongiulio; Decarli, Adriano; Munnia, Armelle; Peluso, Marco

    2004-03-01

    Ozone (O(3)), the major oxidant component in photochemical smog, mostly derives from photolysis of nitrogen dioxide. O(3) may have biologic effects directly and/or via free radicals reacting with other primary pollutants and has been reported to influence daily mortality and to increase lung cancer risk. Although DNA damage may be caused by ozone itself, only other photochemical reaction products (as oxidised polycyclic aromatic hydrocarbons) may form bulky DNA adducts, a reliable biomarker of genotoxic damage and cancer risk, showing a seasonal trend. In a large series consisting of 320 residents in the metropolitan area of Florence, Italy, enrolled in a prospective study for the period 1993-1998 (206 randomly sampled volunteers, 114 traffic-exposed workers), we investigated the correlation between individual levels of DNA bulky adducts and a cumulative O(3) exposure score. The average O(3) concentrations were calculated for different time windows (0-5 to 0-90 days) prior to blood drawing for each participant, based on daily measurements provided by the local monitoring system. Significant correlations between DNA adduct levels and O3 cumulative exposure scores in the last 2-8 weeks before enrollment emerged in never smokers. Correlations were highest in the subgroup of never smokers residing in the urban area and not occupationally exposed to vehicle traffic pollution, with peak values for average concentrations 4-6 weeks before enrollment (r = 0.34). Our current findings indicate that DNA adduct formation may be modulated by individual characteristics and by the cumulative exposure to environmental levels of ozone in the last 4-6 weeks, possibly through ozone-associated reactive pollutants. Copyright 2003 Wiley-Liss, Inc.

  10. Modelling Distribution Function of Surface Ozone Concentration for Selected Suburban Areas in Malaysia

    International Nuclear Information System (INIS)

    Muhammad Izwan Zariq Mokhtar; Nurul Adyani Ghazali; Muhammad Yazid Nasir; Norhazlina Suhaimi

    2016-01-01

    Ozone is known as an important secondary pollutant in the atmosphere. The aim of this study is to find the best fit distribution for calculating exceedance and return period of ozone based on suburban areas; Perak (AMS1) and Pulau Pinang (AMS2). Three distributions namely Gamma, Rayleigh and Laplace were used to fit 2 years ozone data (2010 and 2011). The parameters were estimated by using Maximum Likelihood Estimation (MLE) in order to plot probability distribution function (PDF) and cumulative distribution function (CDF). Four performance indicators were used to find the best distribution namely, normalized absolute error (NAE), prediction accuracy (PA), coefficient of determination (R 2 ) and root mean square error (RMSE). The best distribution to represent ozone concentration at both sites in 2010 and 2011 is Gamma distribution with the smallest error measure (NAE and RMSE) and the highest adequacy measure (PA and R 2 ). For the 2010 data, AMS1 was predicted to exceed 0.1 ppm for 2 days in 2011 with a return period of one occurrence. (author)

  11. Effects of chronic elevated ozone concentration on the redox state and fruit yield of red pepper plant Capsicum baccatum.

    Science.gov (United States)

    Bortolin, Rafael Calixto; Caregnato, Fernanda Freitas; Divan, Armando Molina; Reginatto, Flávio Henrique; Gelain, Daniel Pens; Moreira, José Cláudio Fonseca

    2014-02-01

    Ozone (O3) is one of the most harmful air pollutants to crops, contributing to high losses on crop yield. Tropospheric O3 background concentrations have increased since pre-industrial times reaching phytotoxic concentrations in many world regions. Capsicum peppers are the second most traded spice in the world, but few studies concerning the O3 effects in this genus are known. Thereby, the aim of this work was to evaluate the effects of chronic exposure to elevated O3 concentrations in red pepper plant Capsicum baccatum L. var. pendulum with especial considerations on the leaf redox state and fruit yield. Fifteen C. baccatum plants were exposed to O3 in open-top chambers during fruit ripening (62 days) at a mean concentration of 171.6 µg/m(3) from 10:00 am to 4:00 pm. We found that O3 treated plants significantly decreased the amount and the total weight of fruits, which were probably a consequence of the changes on leaf oxidative status induced by ozone exposure. Ozone exposed plants increased the reactive oxygen species (ROS) levels on the leaves, which may be associated with the observed decrease on the activity of enzymatic antioxidant defense system, as well with lower levels of polyphenol and reduced thiol groups. Enhanced ROS production and the direct O3 reaction lead to biomacromolecules damages as seen in the diminished chlorophyll content and in the elevated lipid peroxidation and protein carbonylation levels. Through a correlation analysis it was possible to observe that polyphenols content was more important to protect pepper plants against oxidative damages to lipids than to proteins. © 2013 Published by Elsevier Inc.

  12. Attribution of projected changes in summertime US ozone and PM2.5 concentrations to global changes

    Directory of Open Access Journals (Sweden)

    A. Guenther

    2009-02-01

    Full Text Available The impact that changes in future climate, anthropogenic US emissions, background tropospheric composition, and land-use have on summertime regional US ozone and PM2.5 concentrations is examined through a matrix of downscaled regional air quality simulations, where each set of simulations was conducted for five months of July climatology, using the Community Multi-scale Air Quality (CMAQ model. Projected regional scale changes in meteorology due to climate change under the Intergovernmental Panel on Climate Change (IPCC A2 scenario are derived through the downscaling of Parallel Climate Model (PCM output with the MM5 meteorological model. Future chemical boundary conditions are obtained through downscaling of MOZART-2 (Model for Ozone and Related Chemical Tracers, version 2.4 global chemical model simulations based on the IPCC Special Report on Emissions Scenarios (SRES A2 emissions scenario. Projected changes in US anthropogenic emissions are estimated using the EPA Economic Growth Analysis System (EGAS, and changes in land-use are projected using data from the Community Land Model (CLM and the Spatially Explicit Regional Growth Model (SERGOM. For July conditions, changes in chemical boundary conditions are found to have the largest impact (+5 ppbv on average daily maximum 8-h (DM8H ozone. Changes in US anthropogenic emissions are projected to increase average DM8H ozone by +3 ppbv. Land-use changes are projected to have a significant influence on regional air quality due to the impact these changes have on biogenic hydrocarbon emissions. When climate changes and land-use changes are considered simultaneously, the average DM8H ozone decreases due to a reduction in biogenic VOC emissions (−2.6 ppbv. Changes in average 24-h (A24-h PM2.5 concentrations are dominated by projected changes in anthropogenic emissions (+3 μg m−3, while changes in chemical boundary conditions have a negligible effect. On average, climate change reduces A24-h PM2

  13. A modeling study of the impact of urban trees on ozone

    Science.gov (United States)

    David J. Nowak; Kevin L. Civerolo; S. Trivikrama Rao; Gopal Sistla; Christopher J. Luley; Daniel E. Crane

    2000-01-01

    Modeling the effects of increased urban tree cover on ozone concentrations (July 13-15, 1995) from Washington, DC, to central Massachusetts reveals that urban trees generally reduce ozone concentrations in cities, but tend to increase average ozone concentrations in the overall modeling domain. During the daytime, average ozone reductions in urban areas (1 ppb) were...

  14. Destruction of concentrated chlorofluorocarbons in India demonstrates an effective option to simultaneously curb climate change and ozone depletion

    International Nuclear Information System (INIS)

    Karstensen, Kåre Helge; Parlikar, Ulhas V.; Ahuja, Deepak; Sharma, Shiv; Chakraborty, Moumita A.; Maurya, Harivansh Prasad; Mallik, Mrinal; Gupta, P.K.; Kamyotra, J.S.; Bala, S.S.; Kapadia, B.V.

    2014-01-01

    Highlights: • Chlorofluorocarbons and halons are potent ozone depleting substances and greenhouse gases. • No provisions in the Montreal or in Kyoto Protocol to destroy stockpiles of concentrated CFCs. • The UNEP recommends 11 technologies for destruction of concentrated CFCs. • No studies have up to now investigated the potential of using cement kilns in developing countries. • The test demonstrated that the local Indian cement kiln was able to destroy high feeding rates of several concentrated CFC-gases effectively. - Abstract: The Montreal Protocol aims to protect the stratospheric ozone layer by phasing out production of substances that contribute to ozone depletion, currently covering over 200 individual substances. As most of these compounds are synthetic greenhouse gases, there is an opportunity to curb both ozone depletion and climate change simultaneously by requiring Parties of both the Montreal and the Kyoto Protocol to destroy their existing stocks of concentrated chlorofluorocarbons (CFCs). Many emerging countries still possess stocks which need to be destroyed in an environmentally sound manner but costs may be prohibitive. The UNEP Technology and Economic Assessment Panel identified in 2002 eleven destruction technologies which meet the criteria for environmentally sound destruction of chlorofluorocarbons. Cement kilns were among these, but no study has been reported in scientific literature assessing its destruction performance under real developing country conditions up to now. In contrast to incinerators and other treatment techniques, high temperature cement kilns are already in place in virtually every country and can, if found technical feasible, be retrofitted and adapted cost-efficiently to destroy chemicals like CFCs. India has the second largest cement industry in the world and several hazardous waste categories have been tested successfully in recent years. The objective of this study was to carry out the first full scale

  15. Numerical simulation for regional ozone concentrations: A case study by weather research and forecasting/chemistry (WRF/Chem) model

    Energy Technology Data Exchange (ETDEWEB)

    Habib Al Razi, Khandakar Md; Hiroshi, Moritomi [Environmental and Renewable Energy System, Graduate School of Engineering, Gifu University, 1-1 Yanagido, Gifu City, 501-1193 (Japan)

    2013-07-01

    The objective of this research is to better understand and predict the atmospheric concentration distribution of ozone and its precursor (in particular, within the Planetary Boundary Layer (Within 110 km to 12 km) over Kasaki City and the Greater Tokyo Area using fully coupled online WRF/Chem (Weather Research and Forecasting/Chemistry) model. In this research, a serious and continuous high ozone episode in the Greater Tokyo Area (GTA) during the summer of 14–18 August 2010 was investigated using the observation data. We analyzed the ozone and other trace gas concentrations, as well as the corresponding weather conditions in this high ozone episode by WRF/Chem model. The simulation results revealed that the analyzed episode was mainly caused by the impact of accumulation of pollution rich in ozone over the Greater Tokyo Area. WRF/Chem has shown relatively good performance in modeling of this continuous high ozone episode, the simulated and the observed concentrations of ozone, NOx and NO2 are basically in agreement at Kawasaki City, with best correlation coefficients of 0.87, 0.70 and 0.72 respectively. Moreover, the simulations of WRF/Chem with WRF preprocessing software (WPS) show a better agreement with meteorological observations such as surface winds and temperature profiles in the ground level of this area. As a result the surface ozone simulation performances have been enhanced in terms of the peak ozone and spatial patterns, whereas WRF/Chem has been succeeded to generate meteorological fields as well as ozone, NOx, NO2 and NO.

  16. The COST733 circulation type classification software: an example for surface ozone concentrations in Central Europe

    Science.gov (United States)

    Demuzere, Matthias; Kassomenos, P.; Philipp, A.

    2011-08-01

    In the framework of the COST733 Action "Harmonisation and Applications of Weather Types Classifications for European Regions" a new circulation type classification software (hereafter, referred to as cost733class software) is developed. The cost733class software contains a variety of (European) classification methods and is flexible towards choice of domain of interest, input variables, time step, number of circulation types, sequencing and (weighted) target variables. This work introduces the capabilities of the cost733class software in which the resulting circulation types (CTs) from various circulation type classifications (CTCs) are applied on observed summer surface ozone concentrations in Central Europe. Firstly, the main characteristics of the CTCs in terms of circulation pattern frequencies are addressed using the baseline COST733 catalogue (cat 2.0), at present the latest product of the new cost733class software. In a second step, the probabilistic Brier skill score is used to quantify the explanatory power of all classifications in terms of the maximum 8 hourly mean ozone concentrations exceeding the 120-μg/m3 threshold; this was based on ozone concentrations from 130 Central European measurement stations. Averaged evaluation results over all stations indicate generally higher performance of CTCs with a higher number of types. Within the subset of methodologies with a similar number of types, the results suggest that the use of CTCs based on optimisation algorithms are performing slightly better than those which are based on other algorithms (predefined thresholds, principal component analysis and leader algorithms). The results are further elaborated by exploring additional capabilities of the cost733class software. Sensitivity experiments are performed using different domain sizes, input variables, seasonally based classifications and multiple-day sequencing. As an illustration, CTCs which are also conditioned towards temperature with various weights

  17. Exposure of Norway spruce to ozone increases the sensitivity of current year needles to photoinhibition and desiccation

    DEFF Research Database (Denmark)

    Mikkelsen, Teis Nørgaard; Ro-Poulsen, H.

    1994-01-01

    decreases in net photosynthesis and chlorophyll fluorescence (FN/FM) were found during periods with co-occurrence of high ozone concentrations And high light intensities, indicating interactions between effects of ozone and photoinhibition. After termination of fumigation enhanced rates of photosynthesis...

  18. Changes in gas exchange characteristics during the life span of giant sequoia: Implications for response to current and future concentrations of atmospheric ozone

    Energy Technology Data Exchange (ETDEWEB)

    Grulke, N.E.; Miller, P.R. (USDA Forest Service, Riverside, CA (United States))

    Native stands of giant sequoia are being exposed to relatively high concentrations of atmospheric ozone produced in urban and agricultural areas upwind. The expected change in environmental conditions over the next 100 y is likely to be unprecendented in the life span (ca 2,500 y) of giant sequoia. Changes in the physiological responses of three age classes of giant sequoia (current year, 12 y and 25 y) to different concentrations of ozone were determined, and age-related differences in sensitivity to pollutants were assessed by examining physiological changes (gas exchange, water use efficiency) across the life span of giant sequoia. The CO[sub 2] exchange rate (CER) was greater in current year (12.1 [mu]mol CO[sub 2]/m[sup 2]s) and 2 year old seedlings (4.8 [mu]mol CO[sub 2]/m[sup 2]s) than in all older trees (average of 3.0 [mu]mol CO[sub 2]/m[sup 2]s). Dark respiration was highest for current year seedlings and was increased twofold in symptotic individuals exposed to elevated ozone concentrations. Stomatal conductance was greater in current-year and 2 year old seedlings (335 and 200 mmol H[sub 2]O/m[sup 2]s), respectively, than in all older trees (50 mmol H[sub 2]O/m[sup 2]s), indicating that the ozone concentration in substomatol cavities is higher in young seedlings than in older trees. Significant changes in water use efficiency occurred in trees between ages 5 and 20 years. It is concluded that giant sequoia seedlings are sensitive to atmospheric ozone until they are ca 5 y old. Low conductance, high water use efficiency, and compact mesophyll all contribute to a natural ozone tolerance, or defense, or both, in foliage of older trees. 11 refs., 1 fig., 1 tab.

  19. Experimental study of ozone synthesis

    International Nuclear Information System (INIS)

    Garamoon, A A; Elakshar, F F; Nossair, A M; Kotp, E F

    2002-01-01

    A silent discharge ozonizer has been constructed with a design that enables the study of ozone concentration behaviour as a function of different parameters when oxygen used as a working gas. The behaviour of ozone concentration as a function of discharge current density has four characteristic regions. The concentration is enhanced by more than threefold whenever gas pressure is reduced by a factor of two. The flow rate of the working gas is a more effective parameter on ozone concentration than the gas pressure. When the flow rate is kept constant, and the pressure is decreased by 100%, the ozone concentration increases by only 10%. On the other hand, when the flow rate is decreased by 13%, the ozone concentration increases by 200%, whenever the gas pressure is kept constant. The concentration is nearly doubled when the gap space is increased by four times under the same conditions. The length of the discharge region, the thickness and the dielectric constant of the insulating materials are found to have a considerable effect on the generated ozone concentration. Also, the ozone concentration is ten times less when air is used instead of oxygen as a working gas. A maximum efficiency of 185 g/kWh, is obtained for the present system

  20. Future heat waves and surface ozone

    Science.gov (United States)

    Meehl, Gerald A.; Tebaldi, Claudia; Tilmes, Simone; Lamarque, Jean-Francois; Bates, Susan; Pendergrass, Angeline; Lombardozzi, Danica

    2018-06-01

    A global Earth system model is used to study the relationship between heat waves and surface ozone levels over land areas around the world that could experience either large decreases or little change in future ozone precursor emissions. The model is driven by emissions of greenhouse gases and ozone precursors from a medium-high emission scenario (Representative Concentration Pathway 6.0–RCP6.0) and is compared to an experiment with anthropogenic ozone precursor emissions fixed at 2005 levels. With ongoing increases in greenhouse gases and corresponding increases in average temperature in both experiments, heat waves are projected to become more intense over most global land areas (greater maximum temperatures during heat waves). However, surface ozone concentrations on future heat wave days decrease proportionately more than on non-heat wave days in areas where ozone precursors are prescribed to decrease in RCP6.0 (e.g. most of North America and Europe), while surface ozone concentrations in heat waves increase in areas where ozone precursors either increase or have little change (e.g. central Asia, the Mideast, northern Africa). In the stabilized ozone precursor experiment, surface ozone concentrations increase on future heat wave days compared to non-heat wave days in most regions except in areas where there is ozone suppression that contributes to decreases in ozone in future heat waves. This is likely associated with effects of changes in isoprene emissions at high temperatures (e.g. west coast and southeastern North America, eastern Europe).

  1. The Impact of Iodide-Mediated Ozone Deposition and Halogen Chemistry on Surface Ozone Concentrations Across the Continental United States

    Science.gov (United States)

    The air quality of many large coastal areas in the United States is affected by the confluence of polluted urban and relatively clean marine airmasses, each with distinct atmospheric chemistry. In this context, the role of iodide-mediated ozone (O3) deposition over seawater and m...

  2. Will the ozone shield of the earth be destroyed by the increasing use of nitrogen fertilizers

    International Nuclear Information System (INIS)

    Huebner, H.

    1981-01-01

    The increase of the world's population is accompanied by a parallel increase of the application of nitrogen fertilizers since an extensive expansion of land use cannot keep up with the currently increasing population. Continuous transformations of matter in soils are accompanied by isotopic variations. Using delta 15 N-NO 3 variations as an example, it is shown that in the aerobic zone values are becoming more negative at the beginning, whereas they are shifted anew to the positive during transition to the anaerobic zone. Accountable for the latter change of delta 15 N-NO 3 values is the isotope effect in denitrification which allows to determine the degree of denitrification. The increasing fertilizer use is accompanied by some environmental problems. NO 3 in groundwaters and N 2 O originating from denitrification processes are such environmental problems. Apprehensions for destroying the ozone shield of the earth by the increasing N 2 O in the stratosphere and the current knowledge of the global N cycle are discussed. Natural variations in the stratospheric ozone content are much higher than those resulting from possible NOsub(x)-catalyzed decomposition reactions of ozone. (author)

  3. Combined cadmium and elevated ozone affect concentrations of cadmium and antioxidant systems in wheat under fully open-air conditions

    International Nuclear Information System (INIS)

    Guo, Hongyan; Tian, Ran; Zhu, Jianguo; Zhou, Hui; Pei, Daping; Wang, Xiaorong

    2012-01-01

    Highlights: ► Combined effect of elevated O 3 and Cd levels on wheat was studied using the free-air concentration enrichment system. ► Elevated O 3 levels result in an increased concentration of Cd in wheat plants grown on Cd-contaminated soils. ► Combined cadmium and elevated O 3 have a significantly synergic effect on oxidative stress in wheat shoots. - Abstract: Pollution of the environment with both ozone (O 3 ) and heavy metals has been steadily increasing. An understanding of their combined effects on plants, especially crops, is limited. Here we studied the effects of elevated O 3 on oxidative stress and bioaccumulation of cadmium (Cd) in wheat under Cd stress using a free-air concentration enrichment (FACE) system. In this field experiment in Jiangdu (Jiangsu Province, China), wheat plants were grown in pots containing soil with various concentrations of cadmium (0, 2, and 10 mg kg −1 Cd was added to the soil) under ambient conditions and under elevated O 3 levels (50% higher than the ambient O 3 ). Present results showed that elevated O 3 led to higher concentrations of Cd in wheat tissues (shoots, husk and grains) with respect to contaminated soil. Combined exposure to Cd and elevated O 3 levels strongly affected the antioxidant isoenzymes POD, APX and CAT and accelerated oxidative stress in wheat leaves. Our results suggest that elevated O 3 levels cause a reduction in food quality and safety.

  4. The exhibition to ozone diminishes the adherence and increases the membrane permeability of macrophages alveolar of rate

    International Nuclear Information System (INIS)

    Garcia, J.

    2000-01-01

    Ozone gas is generated photochemically in areas with high levels of automotive or industrial emissions, and causes irritation and inflammation of the airways if inhaled. Rat alveolar macrophages were obtained by lung lavage from male Sprague Dawley rats and used as a model to assess ozone induced cell damage (0,594 ppm for up to 60 minutes). Ozone exposure caused loss of cell adherence to a polystyrene substrate and increased membrane permeability, as noted by increases in specific 51 Cr release and citoplasmic calcium levels. The results indicate that the cell membrane is a target for ozone damage. Elevations of cytoplasmic calcium could mediate other macrophage responses to ozone , including eicosanoid and nitric oxide production, with concomitant decreases in phagocytic ability and superoxide production. (Author) [es

  5. Radial diffusive sampler for the determination of 8-h ambient ozone concentrations

    International Nuclear Information System (INIS)

    Plaisance, H.; Gerboles, M.; Piechocki, A.; Detimmerman, F.; Saeger, E. de

    2007-01-01

    The 8-h ozone radial diffusive sampler was evaluated according to the CEN protocol for the validation of diffusive samplers. All the parameters regarding the sampler characteristics were found to be consistent with the requirements of this protocol apart from the blank value, which must be evaluated and subtracted at each sampling. The nominal uptake rate was determined in laboratory conditions. However, the uptake rate depends on the mass uptake, temperature, humidity and on the combination of temperature and humidity. Based on laboratory experiments, an empirical model has been established which improved the agreement between the radial sampler and the reference method. This improvement was observed under several different meteorological and emission conditions of sampling. By using the model equation of uptake rate, the data quality objective of 30% for the expanded uncertainty included in the O 3 European Directive, is easily attained. Therefore, the sampler represents an appropriate indicative method. - A passive sampler has been fully validated for monitoring 8-h ozone concentrations in ambient air

  6. Impacts of a large boreal wildfire on ground level atmospheric concentrations of PAHs, VOCs and ozone

    Science.gov (United States)

    Wentworth, Gregory R.; Aklilu, Yayne-abeba; Landis, Matthew S.; Hsu, Yu-Mei

    2018-04-01

    During May 2016 a very large boreal wildfire burned throughout the Athabasca Oil Sands Region (AOSR) in central Canada, and in close proximity to an extensive air quality monitoring network. This study examines speciated 24-h integrated polycyclic aromatic hydrocarbon (PAH) and volatile organic compound (VOC) measurements collected every sixth day at four and seven sites, respectively, from May to August 2016. The sum of PAHs (ΣPAH) was on average 17 times higher in fire-influenced samples (852 ng m-3, n = 8), relative to non-fire influenced samples (50 ng m-3, n = 64). Diagnostic PAH ratios in fire-influenced samples were indicative of a biomass burning source, whereas ratios in June to August samples showed additional influence from petrogenic and fossil fuel combustion. The average increase in the sum of VOCs (ΣVOC) was minor by comparison: 63 ppbv for fire-influenced samples (n = 16) versus 46 ppbv for non-fire samples (n = 90). The samples collected on August 16th and 22nd had large ΣVOC concentrations at all sites (average of 123 ppbv) that were unrelated to wildfire emissions, and composed primarily of acetaldehyde and methanol suggesting a photochemically aged air mass. Normalized excess enhancement ratios (ERs) were calculated for 20 VOCs and 23 PAHs for three fire influenced samples, and the former were generally consistent with previous observations. To our knowledge, this is the first study to report ER measurements for a number of VOCs and PAHs in fresh North American boreal wildfire plumes. During May the aged wildfire plume intercepted the cities of Edmonton (∼380 km south) or Lethbridge (∼790 km south) on four separate occasions. No enhancement in ground-level ozone (O3) was observed in these aged plumes despite an assumed increase in O3 precursors. In the AOSR, the only daily-averaged VOCs which approached or exceeded the hourly Alberta Ambient Air Quality Objectives (AAAQOs) were benzene (during the fire) and acetaldehyde (on August 16th

  7. Effects of elevated ozone concentration on CH4 and N2O emission from paddy soil under fully open-air field conditions.

    Science.gov (United States)

    Tang, Haoye; Liu, Gang; Zhu, Jianguo; Kobayashi, Kazuhiko

    2015-04-01

    We investigated the effects of elevated ozone concentration (E-O3) on CH4 and N2O emission from paddies with two rice cultivars: an inbred Indica cultivar Yangdao 6 (YD6) and a hybrid one II-you 084 (IIY084), under fully open-air field conditions in China. A mean 26.7% enhancement of ozone concentration above the ambient level (A-O3) significantly reduced CH4 emission at tillering and flowering stages leading to a reduction of seasonal integral CH4 emission by 29.6% on average across the two cultivars. The reduced CH4 emission is associated with O3-induced reduction in the whole-plant biomass (-13.2%), root biomass (-34.7%), and maximum tiller number (-10.3%), all of which curbed the carbon supply for belowground CH4 production and its release from submerged soil to atmosphere. Although no significant difference was detected between the cultivars in the CH4 emission response to E-O3, a larger decrease in CH4 emission with IIY084 (-33.2%) than that with YD6 (-7.0%) was observed at tillering stage, which may be due to the larger reduction in tiller number in IIY084 by E-O3. Additionally, E-O3 reduced seasonal mean NOx flux by 5.7% and 11.8% with IIY084 and YD6, respectively, but the effects were not significant statistically. We found that the relative response of CH4 emission to E-O3 was not significantly different from those reported in open-top chamber experiments. This study has thus confirmed that increasing ozone concentration would mitigate the global warming potential of CH4 and suggested consideration of the feedback mechanism between ozone and its precursor emission into the projection of future ozone effects on terrestrial ecosystem. © 2014 John Wiley & Sons Ltd.

  8. Optimization of artificial neural network models through genetic algorithms for surface ozone concentration forecasting.

    Science.gov (United States)

    Pires, J C M; Gonçalves, B; Azevedo, F G; Carneiro, A P; Rego, N; Assembleia, A J B; Lima, J F B; Silva, P A; Alves, C; Martins, F G

    2012-09-01

    This study proposes three methodologies to define artificial neural network models through genetic algorithms (GAs) to predict the next-day hourly average surface ozone (O(3)) concentrations. GAs were applied to define the activation function in hidden layer and the number of hidden neurons. Two of the methodologies define threshold models, which assume that the behaviour of the dependent variable (O(3) concentrations) changes when it enters in a different regime (two and four regimes were considered in this study). The change from one regime to another depends on a specific value (threshold value) of an explanatory variable (threshold variable), which is also defined by GAs. The predictor variables were the hourly average concentrations of carbon monoxide (CO), nitrogen oxide, nitrogen dioxide (NO(2)), and O(3) (recorded in the previous day at an urban site with traffic influence) and also meteorological data (hourly averages of temperature, solar radiation, relative humidity and wind speed). The study was performed for the period from May to August 2004. Several models were achieved and only the best model of each methodology was analysed. In threshold models, the variables selected by GAs to define the O(3) regimes were temperature, CO and NO(2) concentrations, due to their importance in O(3) chemistry in an urban atmosphere. In the prediction of O(3) concentrations, the threshold model that considers two regimes was the one that fitted the data most efficiently.

  9. Radial diffusive samplers for determination of 8-h concentration of BTEX, acetone, ethanol and ozone in ambient air during a sea breeze event

    Science.gov (United States)

    Roukos, Joelle; Locoge, Nadine; Sacco, Paolo; Plaisance, Hervé

    2011-01-01

    The radial diffusive sampler Radiello ® filled with Carbograph 4 was evaluated for monitoring BTEX, ethanol and acetone concentrations for 8-hour exposure time. The sampling rates were first evaluated in an exposure chamber under standard conditions. Benzene and toluene showed the highest sampling rates with satisfactory standard deviations. Ethylbenzene and xylenes showed medium sampling rates but higher standard deviations that can be attributed to a low affinity of these compounds with the adsorbent medium for short sampling time. Acetone has a fair result because of the increase of its partial pressure in the vicinity of the adsorbent surface in the course of sampling. The Carbograph 4 adsorbent does not seem to be suitable for sampling ethanol, likely because of its high volatility. The influences of three environmental factors (temperature (T), relative humidity (RH) and concentration level (C)) on the sampling rates were also evaluated, following a fractional factorial design at two factor levels (low and high). Results were only investigated on benzene, toluene and acetone. Temperature and relative humidity are found to be the most important factors leading to variability of the benzene and toluene sampling rates. The applicability of the sampler for 8-hour sampling was demonstrated by the results of a measurement campaign carried out during a sea breeze event. Mapping of benzene, toluene and acetone concentrations showed the highest concentrations in the industrial zone following the wind direction coming from the North. Nevertheless, the sea breeze tends to reduce the spread of the industrial plumes. On the contrary, the ozone map presents the lowest concentrations at the same industrial area indicating a net consumption of ozone. The highest ozone concentrations were found in the southeastern zone suggesting a local ozone formation.

  10. Secondary maxima in ozone profiles

    Directory of Open Access Journals (Sweden)

    R. Lemoine

    2004-01-01

    Full Text Available Ozone profiles from balloon soundings as well as SAGEII ozone profiles were used to detect anomalous large ozone concentrations of ozone in the lower stratosphere. These secondary ozone maxima are found to be the result of differential advection of ozone-poor and ozone-rich air associated with Rossby wave breaking events. The frequency and intensity of secondary ozone maxima and their geographical distribution is presented. The occurrence and amplitude of ozone secondary maxima is connected to ozone variability and trend at Uccle and account for a large part of the total ozone and lower stratospheric ozone variability.

  11. Kudzu (Pueraria montana) invasion doubles emissions of nitric oxide and increases ozone pollution.

    Science.gov (United States)

    Hickman, Jonathan E; Wu, Shiliang; Mickley, Loretta J; Lerdau, Manuel T

    2010-06-01

    The nitrogen-fixing legume kudzu (Pueraria montana) is a widespread invasive plant in the southeastern United States with physiological traits that may lead to important impacts on ecosystems and the atmosphere. Its spread has the potential to raise ozone levels in the region by increasing nitric oxide (NO) emissions from soils as a consequence of increasing nitrogen (N) inputs and cycling in soils. We studied the effects of kudzu invasions on soils and trace N gas emissions at three sites in Madison County, Georgia in 2007 and used the results to model the effects of kudzu invasion on regional air quality. We found that rates of net N mineralization increased by up to 1,000%, and net nitrification increased by up to 500% in invaded soils in Georgia. Nitric oxide emissions from invaded soils were more than 100% higher (2.81 vs. 1.24 ng NO-N cm(-2) h(-1)). We used the GEOS-Chem chemical transport model to evaluate the potential impact of kudzu invasion on regional atmospheric chemistry and air quality. In an extreme scenario, extensive kudzu invasion leads directly to an increase in the number of high ozone events (above 70 ppb) of up to 7 days each summer in some areas, up from 10 to 20 days in a control scenario with no kudzu invasion. These results establish a quantitative link between a biological invasion and ozone formation and suggest that in this extreme scenario, kudzu invasion can overcome some of the air quality benefits of legislative control.

  12. Increased anion channel activity is an unavoidable event in ozone-induced programmed cell death.

    Directory of Open Access Journals (Sweden)

    Takashi Kadono

    Full Text Available BACKGROUND: Ozone is a major secondary air pollutant often reaching high concentrations in urban areas under strong daylight, high temperature and stagnant high-pressure systems. Ozone in the troposphere is a pollutant that is harmful to the plant. PRINCIPAL FINDINGS: By exposing cells to a strong pulse of ozonized air, an acute cell death was observed in suspension cells of Arabidopsis thaliana used as a model. We demonstrated that O(3 treatment induced the activation of a plasma membrane anion channel that is an early prerequisite of O(3-induced cell death in A. thaliana. Our data further suggest interplay of anion channel activation with well known plant responses to O(3, Ca(2+ influx and NADPH-oxidase generated reactive oxygen species (ROS in mediating the oxidative cell death. This interplay might be fuelled by several mechanisms in addition to the direct ROS generation by O(3; namely, H(2O(2 generation by salicylic and abscisic acids. Anion channel activation was also shown to promote the accumulation of transcripts encoding vacuolar processing enzymes, a family of proteases previously reported to contribute to the disruption of vacuole integrity observed during programmed cell death. SIGNIFICANCE: Collectively, our data indicate that anion efflux is an early key component of morphological and biochemical events leading to O(3-induced programmed cell death. Because ion channels and more specifically anion channels assume a crucial position in cells, an understanding about the underlying role(s for ion channels in the signalling pathway leading to programmed cell death is a subject that warrants future investigation.

  13. Understanding the effectiveness of precursor reductions in lowering 8-hr ozone concentrations--Part II. The eastern United States.

    Science.gov (United States)

    Reynolds, Steven D; Blanchard, Charles L; Ziman, Stephen D

    2004-11-01

    Analyses of ozone (O3) measurements in conjunction with photochemical modeling were used to assess the feasibility of attaining the federal 8-hr O3 standard in the eastern United States. Various combinations of volatile organic compound (VOC) and oxides of nitrogen (NOx) emission reductions were effective in lowering modeled peak 1-hr O3 concentrations. VOC emissions reductions alone had only a modest impact on modeled peak 8-hr O3 concentrations. Anthropogenic NOx emissions reductions of 46-86% of 1996 base case values were needed to reach the level of the 8-hr standard in some areas. As NOx emissions are reduced, O3 production efficiency increases, which accounts for the less than proportional response of calculated 8-hr O3 levels. Such increases in O3 production efficiency also were noted in previous modeling work for central California. O3 production in some urban core areas, such as New York City and Chicago, IL, was found to be VOC-limited. In these areas, moderate NOx emissions reductions may be accompanied by increases in peak 8-hr O3 levels. The findings help to explain differences in historical trends in 1- and 8-hr O3 levels and have serious implications for the feasibility of attaining the 8-hr O3 standard in several areas of the eastern United States.

  14. Interaction between local and regional pollution during Escompte 2001: impact on surface ozone concentrations (IOP2a and 2b)

    Science.gov (United States)

    Cousin, F.; Tulet, P.; Rosset, R.

    2005-03-01

    Escompte, a European programme which took place in the Marseille region in June-July 2001, has been designed as an exhaustive database to be used for the development and validation of air pollution models. The air quality Mesoscale NonHydrostatic Chemistry model (Meso-NH-C) is used to simulate 2 days of an Intensive Observation Period (IOP) documented during the Escompte campaign, June 23 and 24, 2001. We first study the synoptic and local meteorological situation on June 23 and 24, using surface and aircraft measurements. Then, we focus on the pollution episode of June 24. This study emphasizes the deep impact of synoptic and local dynamics on observed ozone concentrations. It is shown that ozone levels are due both to regional and local factors, with highlights of the importance of ozone layering. More generally this confirms, even in an otherwise predominant local sea-breeze regime, the need to consider larger scale regional pollutant transport.

  15. Aged mice have increased inflammatory monocyte concentration ...

    Indian Academy of Sciences (India)

    monocytes from old as compared with those from young mice. The increased classic .... several instances where the isotype control antibodies stained in a similar position but at a ..... responses in young and older adults. J. Infect. Dis. 195.

  16. Increased plasma fibronectin concentrations in obesity

    DEFF Research Database (Denmark)

    Andersen, T; Dejgaard, A; Astrup, A

    1987-01-01

    In 23 morbidly obese patients we investigated the influence of a large weight loss (30.6 kg, range 17.5-90.8) on the plasma fibronectin concentrations. Further, changes in plasma fibronectin were related to serum insulin levels and to liver biochemistry. Between the measurements patients had been...... treated with an intermittent very-low-calorie formula diet sufficient in respect to protein, minerals and vitamins. They were investigated in weight-stable states. Before weight reduction, 14 patients (61%, 95% confidence limits 39-80%) had elevated plasma fibronectin levels. Plasma fibronectin decreased...... (medians 1.22 and 0.59 mumol/l before and after weight loss, p less than 0.01) and was after weight loss within the normal range in 14 patients. The change in plasma fibronectin was unassociated with the magnitude of the weight loss as well as with the reduction of overweight. The resulting plasma...

  17. Enhanced nitrogen deposition exacerbates the negative effect of increasing background ozone in Dactylis glomerata, but not Ranunculus acris

    Energy Technology Data Exchange (ETDEWEB)

    Wyness, Kirsten, E-mail: kirnes@ceh.ac.uk [Centre for Ecology and Hydrology (CEH), Environment Centre Wales, Deiniol Road, Bangor LL57 2UW (United Kingdom); Newcastle Institute for Research on the Environment and Sustainability - NIRES, Devonshire Building, Newcastle University, Newcastle Upon Tyne NE1 7RU (United Kingdom); Mills, Gina; Jones, Laurence [Centre for Ecology and Hydrology (CEH), Environment Centre Wales, Deiniol Road, Bangor LL57 2UW (United Kingdom); Barnes, Jeremy D. [Newcastle Institute for Research on the Environment and Sustainability - NIRES, Devonshire Building, Newcastle University, Newcastle Upon Tyne NE1 7RU (United Kingdom); Jones, Davey L. [School of the Environment and Natural Resources, Bangor University, Bangor, Gwynedd LL57 2UW (United Kingdom)

    2011-10-15

    The combined impacts of simulated increased nitrogen (N) deposition (75 kg N ha{sup -1} yr{sup -1}) and increasing background ozone (O{sub 3}) were studied using two mesotrophic grassland species (Dactylis glomerata and Ranunculus acris) in solardomes, by means of eight O{sub 3} treatments ranging from 15.5 ppb to 92.7 ppb (24 h average mean). A-C{sub i} curves were constructed for each species to gauge effects on photosynthetic efficiency and capacity, and effects on biomass partitioning were determined after 14 weeks. Increasing the background concentration of O{sub 3} reduced the healthy above ground and root biomass of both species, and increased senesced biomass. N fertilisation increased biomass production in D. glomerata, and a significantly greater than additive effect of O{sub 3} and N on root biomass was evident. In contrast, R. acris biomass was not affected by high N. The study shows the combined effects of these pollutants have differential implications for carbon allocation patterns in common grassland species. - Highlights: > Dactylis glomerata and Ranunculus acris enhanced senescence with increasing O{sub 3}. > Ozone effects on root biomass were larger than on shoot biomass in both species. > N deposition exacerbated the negative O{sub 3} effect on D. glomerata root biomass. > Inter-specific differences in the response to O{sub 3} and N combined exposure. - Synergistic effects of elevated O{sub 3} and N were observed in below ground C-partitioning in the grass Dactylis glomerata, but not in the forb Ranunculus acris.

  18. CARRY-OVER EFFECTS OF OZONE ON ROOT GROWTH AND CARBOHYDRATE CONCENTRATIONS OF PONDEROSA PINE SEEDLINGS

    Science.gov (United States)

    Ozone exposure decreases belowground carbon allocation and root growth of plants;however,the extent to which these effects persist and the cumulative impact of ozone stress on plant growth are poorly understood.To evaluate the potential for plant compensation,we followed the prog...

  19. Increasing ozone in marine boundary layer inflow at the west coasts of North America and Europe

    Directory of Open Access Journals (Sweden)

    D. D. Parrish

    2009-02-01

    Full Text Available An effective method is presented for determining the ozone (O3 mixing ratio in the onshore flow of marine air at the North American west coast. By combining the data available from all marine boundary layer (MBL sites with simultaneous wind data, decadal temporal trends of MBL O3 in all seasons are established with high precision. The average springtime temporal trend over the past two decades is 0.46 ppbv/yr with a 95% confidence limit of 0.13 ppbv/yr, and statistically significant trends are found for all seasons except autumn, which does have a significantly smaller trend than other seasons. The average trend in mean annual ozone is 0.34±0.09 ppbv/yr. These decadal trends at the North American west coast present a striking comparison and contrast with the trends reported for the European west coast at Mace Head, Ireland. The trends in the winter, spring and summer seasons compare well at the two locations, while the Mace Head trend is significantly greater in autumn. Even though the trends are similar, the absolute O3 mixing ratios differ markedly, with the marine air arriving at Europe in all seasons containing 7±2 ppbv higher ozone than marine air arriving at North America. Further, the ozone mixing ratios at the North American west coast show no indication of stabilizing as has been reported for Mace Head. In a larger historical context the background boundary layer O3 mixing ratios over the 130 years covered by available data have increased substantially (by a factor of two to three, and this increase continues at present, at least in the MBL of the Pacific coast region of North America. The reproduction of the increasing trends in MBL O3 over the past two decades, as well as the difference in the O3 mixing ratios between the two coastal regions will present a significant challenge for global chemical transport models. Further, the ability of the models to at least semi

  20. Do building wakes increase ground level concentrations?

    International Nuclear Information System (INIS)

    Taylor, T.J.; Melbourne, W.H.

    1996-01-01

    As part of the EPRI Plume Rise and Downwash Project to develop and evaluate new mathematical algorithms representing plume rise and downwash, physical model studies were performed on the plume dispersion from Combustion Turbine Unit 4, (CT 4), at the Jersey Central Power and Light Sayreville Generating Station, Sayreville, New Jersey. Studies were performed both in neutral and stably stratified model atmospheric boundary layer conditions with the primary objective being to determine the behavior of the combustion turbine plume under high and low ambient wind speed conditions within the wake region produced by the combustion turbine itself. Field measurements were also performed at the site and to this end a base case wind direction of β = 335 degree was chosen for both the field and model studies in an attempt to minimize the effects of other building wakes on the plume. This paper looks at the flow and dispersion characteristics with and without these large structures in the model in an attempt to explain why the differences in concentration levels occurred

  1. Reformulated and alternative fuels: modeled impacts on regional air quality with special emphasis on surface ozone concentration.

    Science.gov (United States)

    Schell, Benedikt; Ackermann, Ingmar J; Hass, Heinz

    2002-07-15

    The comprehensive European Air Pollution and Dispersion model system was used to estimate the impacts of the usage of reformulated and alternative fuels on regional air quality with special emphasis on surface ozone concentrations. A severe western European summer smog episode in July 1994 has been used as a reference, and the model predictions have been evaluated for this episode. A forecast simulation for the year 2005 (TREND) has been performed, including the future emission development based on the current legislation and technologies available. The results of the scenario TREND are used as a baseline for the other 2005 fuel scenarios, including fuel reformulation, fuel sulfur content, and compressed natural gas (CNG) as an alternative fuel. Compared to the year 1994, significant reductions in episode peak ozone concentrations and ozone grid hours are predicted for the TREND scenario. These reductions are even more pronounced within the investigated alternative and reformulated fuel scenarios. Especially, low sulfur fuels are appropriate for an immediate improvement in air quality, because they effect the emissions of the whole fleet. Furthermore, the simulation results indicate that the introduction of CNG vehicles would also enhance air quality with respect to ozone.

  2. Ambient Ozone Concentrations and the Risk of Perforated and Nonperforated Appendicitis: A Multicity Case-Crossover Study

    Science.gov (United States)

    Tanyingoh, Divine; Dixon, Elijah; Johnson, Markey; Wheeler, Amanda J.; Myers, Robert P.; Bertazzon, Stefania; Saini, Vineet; Madsen, Karen; Ghosh, Subrata; Villeneuve, Paul J.

    2013-01-01

    Background: Environmental determinants of appendicitis are poorly understood. Past work suggests that air pollution may increase the risk of appendicitis. Objectives: We investigated whether ambient ground-level ozone (O3) concentrations were associated with appendicitis and whether these associations varied between perforated and nonperforated appendicitis. Methods: We based this time-stratified case-crossover study on 35,811 patients hospitalized with appendicitis from 2004 to 2008 in 12 Canadian cities. Data from a national network of fixed-site monitors were used to calculate daily maximum O3 concentrations for each city. Conditional logistic regression was used to estimate city-specific odds ratios (ORs) relative to an interquartile range (IQR) increase in O3 adjusted for temperature and relative humidity. A random-effects meta-analysis was used to derive a pooled risk estimate. Stratified analyses were used to estimate associations separately for perforated and nonperforated appendicitis. Results: Overall, a 16-ppb increase in the 7-day cumulative average daily maximum O3 concentration was associated with all appendicitis cases across the 12 cities (pooled OR = 1.07; 95% CI: 1.02, 1.13). The association was stronger among patients presenting with perforated appendicitis for the 7-day average (pooled OR = 1.22; 95% CI: 1.09, 1.36) when compared with the corresponding estimate for nonperforated appendicitis [7-day average (pooled OR = 1.02, 95% CI: 0.95, 1.09)]. Heterogeneity was not statistically significant across cities for either perforated or nonperforated appendicitis (p > 0.20). Conclusions: Higher levels of ambient O3 exposure may increase the risk of perforated appendicitis. PMID:23842601

  3. 6.6-hour inhalation of ozone concentrations from 60 to 87 parts per billion in healthy humans.

    Science.gov (United States)

    Schelegle, Edward S; Morales, Christopher A; Walby, William F; Marion, Susan; Allen, Roblee P

    2009-08-01

    Identification of the minimal ozone (O(3)) concentration and/or dose that induces measurable lung function decrements in humans is considered in the risk assessment leading to establishing an appropriate National Ambient Air Quality Standard for O(3) that protects public health. To identify and/or predict the minimal mean O(3) concentration that produces a decrement in FEV(1) and symptoms in healthy individuals completing 6.6-hour exposure protocols. Pulmonary function and subjective symptoms were measured in 31 healthy adults (18-25 yr, male and female, nonsmokers) who completed five 6.6-hour chamber exposures: filtered air and four variable hourly patterns with mean O(3) concentrations of 60, 70, 80, and 87 parts per billion (ppb). Compared with filtered air, statistically significant decrements in FEV(1) and increases in total subjective symptoms scores (P < 0.05) were measured after exposure to mean concentrations of 70, 80, and 87 ppb O(3). The mean percent change in FEV(1) (+/-standard error) at the end of each protocol was 0.80 +/- 0.90, -2.72 +/- 1.48, -5.34 +/- 1.42, -7.02 +/- 1.60, and -11.42 +/- 2.20% for exposure to filtered air and 60, 70, 80, and 87 ppb O(3), respectively. Inhalation of 70 ppb O(3) for 6.6 hours, a concentration below the current 8-hour National Ambient Air Quality Standard of 75 ppb, is sufficient to induce statistically significant decrements in FEV(1) in healthy young adults.

  4. An exploratory analysis of the relationship between ambient ozone and particulate matter concentrations during early pregnancy and selected birth defects in Texas

    International Nuclear Information System (INIS)

    Vinikoor-Imler, Lisa C.; Stewart, Thomas G.; Luben, Thomas J.; Davis, J. Allen; Langlois, Peter H.

    2015-01-01

    We performed an exploratory analysis of ozone (O 3 ) and fine particulate matter (PM 2.5 ) concentrations during early pregnancy and multiple types of birth defects. Data on births were obtained from the Texas Birth Defects Registry (TBDR) and the National Birth Defects Prevention Study (NBDPS) in Texas. Air pollution concentrations were previously determined by combining modeled air pollution concentrations with air monitoring data. The analysis generated hypotheses for future, confirmatory studies; although many of the observed associations were null. The hypotheses are provided by an observed association between O 3 and craniosynostosis and inverse associations between PM 2.5 and septal and obstructive heart defects in the TBDR. Associations with PM 2.5 for septal heart defects and ventricular outflow tract obstructions were null using the NBDPS. Both the TBDR and the NBPDS had inverse associations between O 3 and septal heart defects. Further research to confirm the observed associations is warranted. - Highlights: • Air pollution concentrations combined modeled air data and air monitoring data. • No associations were observed between the majority of birth defects and PM 2.5 and O 3 . • Estimated associations between PM 2.5 and certain heart defects varied by dataset. • Results were suggestive of an inverse association between O 3 and septal heart defects. • Higher O 3 concentrations may be associated with increased odds of craniosynostosis. - Although most observed associations between ozone and fine particulate matter concentrations and birth defects were null, some were present and warrant further consideration

  5. Determination of nitrous oxide and dinitrogen pentoxide concentrations in the output of air-fed ozone generators of high power density

    International Nuclear Information System (INIS)

    Kogelschatz, U.; Baessler, P.

    1987-01-01

    Infrared absorption spectroscopy is utilized to identify and measure different nitrogen oxide species in the output of air-fed ozone generators. The concentrations of nitrous oxide (N 2 O) and dinitrogen pentoxide (N 2 O 5 ) were determined over a wide parameter range of modern high power medium-frequency ozone generators. With a typical ozonation dose of 1 mg ozone per liter of drinking water, less than 10 μ N 2 O and about 20 μ N 2 O 5 are introduced into one liter of drinking water

  6. The Effect of Elevated Ozone Concentrations with Varying Shading on Dry Matter Loss in a Winter Wheat-Producing Region in China.

    Science.gov (United States)

    Xu, Jingxin; Zheng, Youfei; He, Yuhong; Wu, Rongjun; Mai, Boru; Kang, Hanqing

    2016-01-01

    Surface-level ozone pollution causes crop production loss by directly reducing healthy green leaf area available for carbon fixation. Ozone and its precursors also affect crop photosynthesis indirectly by decreasing solar irradiance. Pollutants are reported to have become even more severe in Eastern China over the last ten years. In this study, we investigated the effect of a combination of elevated ozone concentrations and reduced solar irradiance on a popular winter wheat Yangmai13 (Triticum aestivum L.) at field and regional levels in China. Winter wheat was grown in artificial shading and open-top-chamber environments. Treatment 1 (T1, i.e., 60% shading with an enhanced ozone of 100±9 ppb), Treatment 2 (T2, i.e., 20% shading with an enhanced ozone of 100±9 ppb), and Control Check Treatment (CK, i.e., no shading with an enhanced ozone of 100±9 ppb), with two plots under each, were established to investigate the response of winter wheat under elevated ozone concentrations and varying solar irradiance. At the field level, linear temporal relationships between dry matter loss and cumulative stomatal ozone uptake were first established through a parameterized stomatal-flux model. At the regional level, ozone concentrations and meteorological variables, including solar irradiance, were simulated using the WRF-CMAQ model (i.e., a meteorology and air quality modeling system). These variables were then used to estimate cumulative stomatal ozone uptake for the four major winter wheat-growing provinces. The regional-level cumulative ozone uptake was then used as the independent variable in field data-based regression models to predict dry matter loss over space and time. Field-level results showed that over 85% (T1: R(2) = 0.85 & T2: R(2) = 0.89) of variation in dry matter loss was explained by cumulative ozone uptake. Dry matter was reduced by 3.8% in T1 and 2.2% in T2 for each mmol O3·m(-2) of cumulative ozone uptake. At the regional level, dry matter loss in winter

  7. The Effect of Elevated Ozone Concentrations with Varying Shading on Dry Matter Loss in a Winter Wheat-Producing Region in China.

    Directory of Open Access Journals (Sweden)

    Jingxin Xu

    Full Text Available Surface-level ozone pollution causes crop production loss by directly reducing healthy green leaf area available for carbon fixation. Ozone and its precursors also affect crop photosynthesis indirectly by decreasing solar irradiance. Pollutants are reported to have become even more severe in Eastern China over the last ten years. In this study, we investigated the effect of a combination of elevated ozone concentrations and reduced solar irradiance on a popular winter wheat Yangmai13 (Triticum aestivum L. at field and regional levels in China. Winter wheat was grown in artificial shading and open-top-chamber environments. Treatment 1 (T1, i.e., 60% shading with an enhanced ozone of 100±9 ppb, Treatment 2 (T2, i.e., 20% shading with an enhanced ozone of 100±9 ppb, and Control Check Treatment (CK, i.e., no shading with an enhanced ozone of 100±9 ppb, with two plots under each, were established to investigate the response of winter wheat under elevated ozone concentrations and varying solar irradiance. At the field level, linear temporal relationships between dry matter loss and cumulative stomatal ozone uptake were first established through a parameterized stomatal-flux model. At the regional level, ozone concentrations and meteorological variables, including solar irradiance, were simulated using the WRF-CMAQ model (i.e., a meteorology and air quality modeling system. These variables were then used to estimate cumulative stomatal ozone uptake for the four major winter wheat-growing provinces. The regional-level cumulative ozone uptake was then used as the independent variable in field data-based regression models to predict dry matter loss over space and time. Field-level results showed that over 85% (T1: R(2 = 0.85 & T2: R(2 = 0.89 of variation in dry matter loss was explained by cumulative ozone uptake. Dry matter was reduced by 3.8% in T1 and 2.2% in T2 for each mmol O3·m(-2 of cumulative ozone uptake. At the regional level, dry matter

  8. Dissolution behavior of Cu, Fe and Zn from gold sulfide concentrate during pre-oxidation using ozone in neutral media

    Science.gov (United States)

    Kurniawan, Mubarok, M. Zaki

    2018-04-01

    The aim of this work was to observe the dissolution behaviour of Cu, Fe and Zn from gold sulfide concentrate during preoxidation with ozone as the oxidant and distillation water as the media. The preoxidation experiments were carried out in five-necked reactor with variations of retention time, percent solid, particle size and oxygen dosage injected to ozone generator. The retention time was varied at 6 hours, 8 hours, 12 hours and 24 hours. The percent solid was varied at 10%, 20% and 30% while the particle size was varied at P80 -75 mesh dan P80 -20 mesh. The dosage of oxygen injection to ozone generator was varried at 1 liter per minute and 2 liter per minute. The ozone gas was produced by using ozone generator type OZ-03 and injected to the slurry by using Mazzei injector. The soluble Cu, Fe and Zn were measured by using Atomic Absorption Spectrophotometry (AAS). The concentrates were characterized by X-Ray Diffraction (XRD), mineragraphy, fire assay and Inductively Coupled Plasma (ICP). Fire assay, ICP and XRD were used to analyse the residues and froth. The solubilition of metals (Cu, Fe and Zn) was obtained through the formation of sulphate ion and H+ which decreased the pH, released a number of heat and then was continued by the formation of elemental sulphur (S°). The interaction of particles and gas yielded the formation of froth. The highest dissolution percentage of Cu, Fe and Zn was achieved through 24 hours oxidation at 20% (w/w), P80 -20 mesh and one liter per minute of oxygen injection dosage by 83.016%, 24.7303% and 91.6808%, respectively.

  9. Germination of fungal conidia after exposure to low concentration ozone atmospheres.

    Science.gov (United States)

    The germinability of conidia of Alternaria alternata, Aspergillus flavus, Aspergillus niger, Penicillium digitatum, Penicillium expansum, or Penicillium italicum was determined periodically during exposure for approximately 100 days to a humid atmosphere of air alone or air containing 150 ppb ozone ...

  10. Changes in leaf area, nitrogen content and canopy photosynthesis in soybean exposed to an ozone concentration gradient

    Science.gov (United States)

    Influences of ozone (O3) on light-saturated rates of photosynthesis in crop leaves have been well documented. To increase our understanding of O3 effects on individual- or stand level productivity, a mechanistic understanding of factors determining canopy photosynthesis is necessary. We used a canop...

  11. Ozone depletion following future volcanic eruptions

    Science.gov (United States)

    Eric Klobas, J.; Wilmouth, David M.; Weisenstein, Debra K.; Anderson, James G.; Salawitch, Ross J.

    2017-07-01

    While explosive volcanic eruptions cause ozone loss in the current atmosphere due to an enhancement in the availability of reactive chlorine following the stratospheric injection of sulfur, future eruptions are expected to increase total column ozone as halogen loading approaches preindustrial levels. The timing of this shift in the impact of major volcanic eruptions on the thickness of the ozone layer is poorly known. Modeling four possible climate futures, we show that scenarios with the smallest increase in greenhouse gas concentrations lead to the greatest risk to ozone from heterogeneous chemical processing following future eruptions. We also show that the presence in the stratosphere of bromine from natural, very short-lived biogenic compounds is critically important for determining whether future eruptions will lead to ozone depletion. If volcanic eruptions inject hydrogen halides into the stratosphere, an effect not considered in current ozone assessments, potentially profound reductions in column ozone would result.

  12. Long-term changes in lower tropospheric baseline ozone concentrations: Comparing chemistry-climate models and observations at northern midlatitudes

    Science.gov (United States)

    Parrish, D. D.; Lamarque, J.-F.; Naik, V.; Horowitz, L.; Shindell, D. T.; Staehelin, J.; Derwent, R.; Cooper, O. R.; Tanimoto, H.; Volz-Thomas, A.; Gilge, S.; Scheel, H.-E.; Steinbacher, M.; Fröhlich, M.

    2014-05-01

    Two recent papers have quantified long-term ozone (O3) changes observed at northern midlatitude sites that are believed to represent baseline (here understood as representative of continental to hemispheric scales) conditions. Three chemistry-climate models (NCAR CAM-chem, GFDL-CM3, and GISS-E2-R) have calculated retrospective tropospheric O3 concentrations as part of the Atmospheric Chemistry and Climate Model Intercomparison Project and Coupled Model Intercomparison Project Phase 5 model intercomparisons. We present an approach for quantitative comparisons of model results with measurements for seasonally averaged O3 concentrations. There is considerable qualitative agreement between the measurements and the models, but there are also substantial and consistent quantitative disagreements. Most notably, models (1) overestimate absolute O3 mixing ratios, on average by 5 to 17 ppbv in the year 2000, (2) capture only 50% of O3 changes observed over the past five to six decades, and little of observed seasonal differences, and (3) capture 25 to 45% of the rate of change of the long-term changes. These disagreements are significant enough to indicate that only limited confidence can be placed on estimates of present-day radiative forcing of tropospheric O3 derived from modeled historic concentration changes and on predicted future O3 concentrations. Evidently our understanding of tropospheric O3, or the incorporation of chemistry and transport processes into current chemical climate models, is incomplete. Modeled O3 trends approximately parallel estimated trends in anthropogenic emissions of NOx, an important O3 precursor, while measured O3 changes increase more rapidly than these emission estimates.

  13. Investigations into regional ozone concentrations in the Bakken-Williston Basin using ARTEMIS, a mobile measurment platform.

    Science.gov (United States)

    Donohoue, D.; Jumes, D.; Jaglowski, J.

    2017-12-01

    During a campaign launched in August 2015, concentrations of ozone, nitrogen oxides, and weather conditions were measured throughout the Bakken-Williston Basin. The data was collected using a new in-situ monitoring system ARTEMIS (Atmospheric Research Trailer for Environmental Monitoring and Interactive Science). ARTEMIS is a self-sustaining trailer equipped with a solar panel and four 80 Ah batteries, which can power an instrumental suite. It provided a temporary sampling station which could be erected in five minutes. During this campaign we collected data for one hour at sites throughout North Dakota and Montana. Preliminary results from this data suggests that near active mining or methane flaring regions ozone concentrations appear to be elevated from the background.

  14. Ozone modeling

    Energy Technology Data Exchange (ETDEWEB)

    McIllvaine, C M

    1994-07-01

    Exhaust gases from power plants that burn fossil fuels contain concentrations of sulfur dioxide (SO{sub 2}), nitric oxide (NO), particulate matter, hydrocarbon compounds and trace metals. Estimated emissions from the operation of a hypothetical 500 MW coal-fired power plant are given. Ozone is considered a secondary pollutant, since it is not emitted directly into the atmosphere but is formed from other air pollutants, specifically, nitrogen oxides (NO), and non-methane organic compounds (NMOQ) in the presence of sunlight. (NMOC are sometimes referred to as hydrocarbons, HC, or volatile organic compounds, VOC, and they may or may not include methane). Additionally, ozone formation Alternative is a function of the ratio of NMOC concentrations to NO{sub x} concentrations. A typical ozone isopleth is shown, generated with the Empirical Kinetic Modeling Approach (EKMA) option of the Environmental Protection Agency's (EPA) Ozone Isopleth Plotting Mechanism (OZIPM-4) model. Ozone isopleth diagrams, originally generated with smog chamber data, are more commonly generated with photochemical reaction mechanisms and tested against smog chamber data. The shape of the isopleth curves is a function of the region (i.e. background conditions) where ozone concentrations are simulated. The location of an ozone concentration on the isopleth diagram is defined by the ratio of NMOC and NO{sub x} coordinates of the point, known as the NMOC/NO{sub x} ratio. Results obtained by the described model are presented.

  15. Ozone modeling

    International Nuclear Information System (INIS)

    McIllvaine, C.M.

    1994-01-01

    Exhaust gases from power plants that burn fossil fuels contain concentrations of sulfur dioxide (SO 2 ), nitric oxide (NO), particulate matter, hydrocarbon compounds and trace metals. Estimated emissions from the operation of a hypothetical 500 MW coal-fired power plant are given. Ozone is considered a secondary pollutant, since it is not emitted directly into the atmosphere but is formed from other air pollutants, specifically, nitrogen oxides (NO), and non-methane organic compounds (NMOQ) in the presence of sunlight. (NMOC are sometimes referred to as hydrocarbons, HC, or volatile organic compounds, VOC, and they may or may not include methane). Additionally, ozone formation Alternative is a function of the ratio of NMOC concentrations to NO x concentrations. A typical ozone isopleth is shown, generated with the Empirical Kinetic Modeling Approach (EKMA) option of the Environmental Protection Agency's (EPA) Ozone Isopleth Plotting Mechanism (OZIPM-4) model. Ozone isopleth diagrams, originally generated with smog chamber data, are more commonly generated with photochemical reaction mechanisms and tested against smog chamber data. The shape of the isopleth curves is a function of the region (i.e. background conditions) where ozone concentrations are simulated. The location of an ozone concentration on the isopleth diagram is defined by the ratio of NMOC and NO x coordinates of the point, known as the NMOC/NO x ratio. Results obtained by the described model are presented

  16. Role of Biogenic Volatile Organic Compounds (BVOC) emitted by urban trees on ozone concentration in cities: A review

    International Nuclear Information System (INIS)

    Calfapietra, C.; Fares, S.; Manes, F.; Morani, A.; Sgrigna, G.; Loreto, F.

    2013-01-01

    Biogenic Volatile Organic Compounds (BVOC) play a critical role in biosphere–atmosphere interactions and are key factors of the physical and chemical properties of the atmosphere and climate. However, few studies have been carried out at urban level to investigate the interactions between BVOC emissions and ozone (O 3 ) concentration. The contribution of urban vegetation to the load of BVOCs in the air and the interactions between biogenic emissions and urban pollution, including the likely formation of O 3 , needs to be investigated, but also the effects of O 3 on the biochemical reactions and physiological conditions leading to BVOC emissions are largely unknown. The effect of BVOC emission on the O 3 uptake by the trees is further complicating the interactions BVOC–O 3 , thus making challenging the estimation of the calculation of BVOC effect on O 3 concentration at urban level. -- Highlights: • We examine the role of BVOC emitted from urban trees for O 3 formation in our cities. • We state that the high BVOC emitter trees are dangerous especially in VOC limited conditions for ozone formation. • We conclude that the choice of the tree species can be very important for the quality of the air in our cities. -- BVOC emission from urban trees can be very important for ozone concentration

  17. Effects of Greenhouse Gas Increase and Stratospheric Ozone Depletion on Stratospheric Mean Age of Air in 1960-2010

    Science.gov (United States)

    Li, F.; Newman, P. A.; Pawson, S.; Perlwitz, J.

    2017-12-01

    The strength of the stratospheric Brewer-Dobson circulation (BDC) in a changing climate has been extensively studied, but the relative importance of greenhouse gas (GHG) increases and stratospheric ozone depletion in driving the BDC changes remains uncertain. This study separates the impacts of GHG and stratospheric ozone forcings on stratospheric mean age of air in the 1960-2010 period using the Goddard Earth Observing System Model (GEOS) Chemistry-Climate Model (CCM). The experiment compares a set of controlled simulations using a coupled atmosphere-ocean version of the GEOS CCM, in which either GHGs, or stratospheric ozone, or both factors evolve over time. The model results show that GHGs and stratospheric ozone have about equal contributions to the simulated mean age decrease. It is also found that GHG increases account for about two thirds of the enhanced strength of the lower stratospheric residual circulation. The results show that ozone depletion causes an increase in the mean age of air in the Antarctic summer lower stratosphere through two processes: 1) a seasonal delay in the Antarctic polar vortex breakup, that inhibits young mid-latitude air from mixing with the older air inside the vortex; and 2) enhanced Antarctic downwelling, that brings older air from middle and upper stratosphere into the lower stratosphere.

  18. Ozone increases airway hyperreactivity and mucus hyperproduction in mice previously exposed to allergen

    DEFF Research Database (Denmark)

    Larsen, Søren T; Matsubara, Shigeki; McConville, Glen

    2010-01-01

    Acute exacerbations of asthma represent a common clinical problem with major economic impact. Air pollutants including ozone have been shown to contribute to asthma exacerbation, but the mechanisms underlying ozone-induced asthma exacerbation are only partially understood. The present study aimed...

  19. Analyzer for measurement of nitrogen oxide concentration by ozone content reduction in gas using solid state chemiluminescent sensor

    Science.gov (United States)

    Chelibanov, V. P.; Ishanin, G. G.; Isaev, L. N.

    2014-05-01

    Role of nitrogen oxide in ambient air is described and analyzed. New method of nitrogen oxide concentration measurement in gas phase is suggested based on ozone concentration measurement with titration by nitrogen oxide. Research of chemiluminescent sensor composition is carried out on experimental stand. The sensor produced on the base of solid state non-activated chemiluminescent composition is applied as ozone sensor. Composition is put on the surface of polymer matrix with developed surface. Sensor compositions includes gallic acid with addition of rodamine-6G. Model of interaction process between sensor composition and ozone has been developed, main products appeared during reaction are identified. The product determining the speed of luminescense appearance is found. This product belongs to quinone class. Then new structure of chemiluminescent composition was suggested, with absence of activation period and with high stability of operation. Experimental model of gas analyzer was constructed and operation algorithm was developed. It was demonstrated that developed NO measuring instrument would be applied for monitoring purposes of ambient air. This work was partially financially supported by Government of Russian Federation, Grant 074-U01

  20. A depleted ozone layer absorbs less UV-B, cooling the ozone layer, increasing the amount of UV-B observed to reach Earth, heating air by dissociating tropospheric and ground-level ozone, and heating oceans very efficiently by penetrating tens of meters into the mixed layer. UV-B is 48 times more energetic ("hotter") than IR absorbed by greenhouse gases

    Science.gov (United States)

    Ward, P. L.

    2017-12-01

    This new insight into the physics of radiation shows why changes in stratospheric ozone are observed to cause changes in global temperature. By 1970, manufactured CFC gases and ozone depletion began increasing. By 1993, increases in CFCs stopped as mandated by the Montreal Protocol. By 1995, increases in ozone depletion stopped. By 1998, increases in temperature stopped until 2014. Ozone is also depleted by halogen gases emitted from major basaltic lava flows, the largest of which, since 1783, occurred at Bardarbunga in Iceland in 2014, causing 2015 and 2016 to be the hottest years on record. Throughout Earth history, the largest basaltic lava flows were contemporaneous with periods of greatest warming and greatest levels of mass extinctions. Planck's empirical law shows that temperature of matter results from oscillation of all the bonds holding matter together. The higher the temperature, the higher the frequencies and amplitudes of oscillation. Thus, radiation from a nearby hotter body will make the absorbing body hotter than radiation from a cooler body. According to the Planck-Einstein relation, thermal energy (E) in matter and in radiation equals frequency of oscillation (ν) times the Planck constant (h), E=hν—the energy of a frictionless atomic oscillator. Since frequency is observed to be a very broad continuum extending from radio signals through visible light to gamma rays, thermal energy (E=hν) must also be a very broad continuum. Thermal flux cannot be represented properly by a single number of watts per square meter, as commonly assumed throughout the physical sciences, because all frequencies coexist and the number of watts increases with frequency. Thus, UV-B solar radiation is 48 times more energetic than IR terrestrial radiation absorbed by greenhouse gases and can make the absorbing body 48 times hotter. UV-B causes sunburn; no amount of IR can cause sunburn. Furthermore, in a basic experiment, I show that air containing more than 23 times

  1. Principal component analysis and neurocomputing-based models for total ozone concentration over different urban regions of India

    Science.gov (United States)

    Chattopadhyay, Goutami; Chattopadhyay, Surajit; Chakraborthy, Parthasarathi

    2012-07-01

    The present study deals with daily total ozone concentration time series over four metro cities of India namely Kolkata, Mumbai, Chennai, and New Delhi in the multivariate environment. Using the Kaiser-Meyer-Olkin measure, it is established that the data set under consideration are suitable for principal component analysis. Subsequently, by introducing rotated component matrix for the principal components, the predictors suitable for generating artificial neural network (ANN) for daily total ozone prediction are identified. The multicollinearity is removed in this way. Models of ANN in the form of multilayer perceptron trained through backpropagation learning are generated for all of the study zones, and the model outcomes are assessed statistically. Measuring various statistics like Pearson correlation coefficients, Willmott's indices, percentage errors of prediction, and mean absolute errors, it is observed that for Mumbai and Kolkata the proposed ANN model generates very good predictions. The results are supported by the linearly distributed coordinates in the scatterplots.

  2. Reduced plasma concentrations of vitamin B6 and increased ...

    African Journals Online (AJOL)

    Reduced plasma concentrations of vitamin B6 and increased plasma concentrations of the neurotoxin 3-hydroxykynurenine are associated with nodding syndrome: a case control study in Gulu and Amuru districts, Northern Uganda.

  3. Observations of reduced ozone concentrations in the tropical stratosphere after the eruption of Mt. Pinatubo

    Science.gov (United States)

    Grant, W. B.; Fishman, J.; Browell, E. V.; Brackett, V. G.; Nganga, D.; Minga, A.; Cros, B.; Veiga, R. E.; Butler, C. F.; Fenn, M. A.

    1992-01-01

    Two independent sets of data, one of aerosols from an airborne lidar system, and one of ozone from ozonesonde measurements indicate that significant ozone decreases may have happened as a result of the injection of debris by the Mt. Pinatubo volcano in June 1991. The amount of this reduction maximizes at 24-25 km, near the peak of the aerosol distribution, though a deficit is seen throughout the lower stratosphere between 19 and 28 km. The greatest differences observed prior and subsequent to the eruptions at these altitudes is 18-20 percent.

  4. Measuring the concentration of ozone produced by a pulsed microwave discharge

    Science.gov (United States)

    Stepanov, A. N.; Iazenkov, V. V.

    1991-09-01

    The possibility of efficient ozone production in a pulsed microwave discharge in oxygen is investigated experimentally in the context of the problem of creation of an artificial ionization region in the earth atmosphere. The experiments were conducted in commercial oxygen at a pressure of 30 tor. It is found that there exists a certain optimal (from the standpoint of ozone production) microwave pulse duration, which depends on the experimental conditions. A theoretical model is proposed which provides a consistent explanation for the experimental results.

  5. AN EVALUATION OF OZONE EXPOSURE METRICS FOR A SEASONALLY DROUGHT STRESSED PONDEROSA PINE ECOSYSTEM. (R826601)

    Science.gov (United States)

    Ozone stress has become an increasingly significant factor in cases of forest decline reported throughout the world. Current metrics to estimate ozone exposure for forest trees are derived from atmospheric concentrations and assume that the forest is physiologically active at ...

  6. Impacts of future climate change and effects of biogenic emissions on surface ozone and particulate matter concentrations in the United States

    Directory of Open Access Journals (Sweden)

    Y. F. Lam

    2011-05-01

    Full Text Available Simulations of present and future average regional ozone and PM2.5 concentrations over the United States were performed to investigate the potential impacts of global climate change and emissions on regional air quality using CMAQ. Various emissions and climate conditions with different biogenic emissions and domain resolutions were implemented to study the sensitivity of future air quality trends from the impacts of changing biogenic emissions. A comparison of GEOS-Chem and CMAQ was performed to investigate the effect of downscaling on the prediction of future air quality trends. For ozone, the impacts of global climate change are relatively smaller when compared to the impacts of anticipated future emissions reduction, except for the Northeast area, where increasing biogenic emissions due to climate change have stronger positive effects (increases to the regional ozone air quality. The combination effect from both climate change and emission reductions leads to approximately a 10 % or 5 ppbv decrease of the maximum daily average eight-hour ozone (MDA8 over the Eastern United States. For PM2.5, the impacts of global climate change have shown insignificant effect, where as the impacts of anticipated future emissions reduction account for the majority of overall PM2.5 reductions. The annual average 24-h PM2.5 of the future-year condition was found to be about 40 % lower than the one from the present-year condition, of which 60 % of its overall reductions are contributed to by the decrease of SO4 and NO3 particulate matters. Changing the biogenic emissions model increases the MDA8 ozone by about 5–10 % or 3–5 ppbv in the Northeast area. Conversely, it reduces the annual average PM2.5 by 5 % or 1.0 μg m−3 in the Southeast region.

  7. Ozone concentrations and damage for realistic future European climate and air quality scenarios

    NARCIS (Netherlands)

    Hendriks, C.; Forsell, N.; Kiesewetter, G.; Schaap, M.; Schöpp, W.

    2016-01-01

    Ground level ozone poses a significant threat to human health from air pollution in the European Union. While anthropogenic emissions of precursor substances (NOx, NMVOC, CH4) are regulated by EU air quality legislation and will decrease further in the future, the emissions of biogenic NMVOC (mainly

  8. Climate Change Impacts on Human Health Due to Changes in Ambient Ozone Concentrations (External Review Draft)

    Science.gov (United States)

    This report uses results from a previous report titled Assessment of the Impacts of Global Change on Regional U.S. Air Quality: A Synthesis of Climate Change Impacts on Ground-Level Ozone, a number of high-resolution, spatially explicit population projections developed ...

  9. The impacts of surface ozone pollution on winter wheat productivity in China--An econometric approach.

    Science.gov (United States)

    Yi, Fujin; Jiang, Fei; Zhong, Funing; Zhou, Xun; Ding, Aijun

    2016-01-01

    The impact of surface ozone pollution on winter wheat yield is empirically estimated by considering socio-economic and weather determinants. This research is the first to use an economic framework to estimate the ozone impact, and a unique county-level panel is employed to examine the impact of the increasing surface ozone concentration on the productivity of winter wheat in China. In general, the increment of surface ozone concentration during the ozone-sensitive period of winter wheat is determined to be harmful to its yield, and a conservative reduction of ozone pollution could significantly increase China's wheat supply. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Concentration- and flux-based ozone dose–response relationships for five poplar clones grown in North China

    International Nuclear Information System (INIS)

    Hu, Enzhu; Gao, Feng; Xin, Yue; Jia, Huixia; Li, Kaihui; Hu, Jianjun; Feng, Zhaozhong

    2015-01-01

    Concentration- and flux-based O_3 dose–response relationships were developed for poplars in China. Stomatal conductance (g_s) of five poplar clones was measured to parameterize a Jarvis-type multiplicative g_s model. The maximum g_s and other model parameters varied between clones. The strongest relationship between stomatal O_3 flux and total biomass was obtained when phytotoxic ozone dose (POD) was integrated using an uptake rate threshold of 7 nmol m"−"2 s"−"1. The R"2 value was similar between flux-based and concentration-based dose–response relationships. Ozone concentrations above 28–36 nmol mol"−"1 contributed to reducing the biomass production of poplar. Critical levels of AOT_4_0 (accumulated O_3 exposure over 40 nmol mol"−"1) and POD_7 in relation to 5% reduction in total biomass for poplar were 12 μmol mol"−"1 h and 3.8 mmol m"−"2, respectively. - Highlights: • A stomatal conductance model was calibrated for poplar clones in China. • The stomatal O_3 flux–response relationship was developed for poplars. • O_3 concentrations > 28–36 nmol mol"−"1 contributed to poplar biomass reduction. • Current ambient O_3 level in most places of China has threatened poplar growth. • Ozone sensitivity of poplar is similar to that of birch/beech. - For the first time, dose–response relationships were developed for risk assessment of O_3 impacts on poplars in China.

  11. Derivation of the reduced reaction mechanisms of ozone depletion events in the Arctic spring by using concentration sensitivity analysis and principal component analysis

    Directory of Open Access Journals (Sweden)

    L. Cao

    2016-12-01

    Full Text Available The ozone depletion events (ODEs in the springtime Arctic have been investigated since the 1980s. It is found that the depletion of ozone is highly associated with an auto-catalytic reaction cycle, which involves mostly the bromine-containing compounds. Moreover, bromide stored in various substrates in the Arctic such as the underlying surface covered by ice and snow can be also activated by the absorbed HOBr. Subsequently, this leads to an explosive increase of the bromine amount in the troposphere, which is called the “bromine explosion mechanism”. In the present study, a reaction scheme representing the chemistry of ozone depletion and halogen release is processed with two different mechanism reduction approaches, namely, the concentration sensitivity analysis and the principal component analysis. In the concentration sensitivity analysis, the interdependence of the mixing ratios of ozone and principal bromine species on the rate of each reaction in the ODE mechanism is identified. Furthermore, the most influential reactions in different time periods of ODEs are also revealed. By removing 11 reactions with the maximum absolute values of sensitivities lower than 10 %, a reduced reaction mechanism of ODEs is derived. The onsets of each time period of ODEs in simulations using the original reaction mechanism and the reduced reaction mechanism are identical while the maximum deviation of the mixing ratio of principal bromine species between different mechanisms is found to be less than 1 %. By performing the principal component analysis on an array of the sensitivity matrices, the dependence of a particular species concentration on a combination of the reaction rates in the mechanism is revealed. Redundant reactions are indicated by principal components corresponding to small eigenvalues and insignificant elements in principal components with large eigenvalues. Through this investigation, aside from the 11 reactions identified as

  12. Increased ultrafine particles and carbon monoxide concentrations are associated with asthma exacerbation among urban children

    Science.gov (United States)

    Evans, Kristin A.; Halterman, Jill S.; Hopke, Philip K.; Fagnano, Maria; Rich, David Q.

    2014-01-01

    Objectives Increased air pollutant concentrations have been linked to several asthma-related outcomes in children, including respiratory symptoms, medication use, and hospital visits. However, few studies have examined effects of ultrafine particles in a pediatric population. Our primary objective was to examine the effects of ambient concentrations of ultrafine particles on asthma exacerbation among urban children and determine whether consistent treatment with inhaled corticosteroids could attenuate these effects. We also explored the relationship between asthma exacerbation and ambient concentrations of accumulation mode particles, fine particles (≤ 2.5 micrograms [μm]; PM2.5), carbon monoxide, sulfur dioxide, and ozone. We hypothesized that increased 1 to 7 day concentrations of ultrafine particles and other pollutants would be associated with increases in the relative odds of an asthma exacerbation, but that this increase in risk would be attenuated among children receiving school-based corticosteroid therapy. Methods We conducted a pilot study using data from 3–10 year-old children participating in the School-Based Asthma Therapy trial. Using a time-stratified case-crossover design and conditional logistic regression, we estimated the relative odds of a pediatric asthma visit treated with prednisone (n=96 visits among 74 children) associated with increased pollutant concentrations in the previous 7 days. We re-ran these analyses separately for children receiving medications through the school-based intervention and children in a usual care control group. Results Interquartile range increases in ultrafine particles and carbon monoxide concentrations in the previous 7 days were associated with increases in the relative odds of a pediatric asthma visit, with the largest increases observed for 4-day mean ultrafine particles (interquartile range=2088 p/cm3; OR=1.27; 95% CI=0.90–1.79) and 7-day mean carbon monoxide (interquartile range=0.17 ppm; OR=1.63; 95

  13. Effects of Greenhouse Gas Increase and Stratospheric Ozone Depletion on Stratospheric Mean Age of Air in 1960-2010

    Science.gov (United States)

    Li, Feng; Newman, Paul; Pawson, Steven; Perlwitz, Judith

    2018-01-01

    The relative impacts of greenhouse gas (GHG) increase and stratospheric ozone depletion on stratospheric mean age of air in the 1960-2010 period are quantified using the Goddard Earth Observing System Chemistry-�Climate Model. The experiment compares controlled simulations using a coupled atmosphere-�ocean version of the Goddard Earth Observing System Chemistry-�Climate Model, in which either GHGs or ozone depleting substances, or both factors evolve over time. The model results show that GHGs and ozone-depleting substances have about equal contributions to the simulated mean age decrease, but GHG increases account for about two thirds of the enhanced strength of the lower stratospheric residual circulation. It is also found that both the acceleration of the diabatic circulation and the decrease of the mean age difference between downwelling and upwelling regions are mainly caused by GHG forcing. The results show that ozone depletion causes an increase in the mean age of air in the Antarctic summer lower stratosphere through two processes: (1) a seasonal delay in the Antarctic polar vortex breakup that inhibits young midlatitude air from mixing with the older air inside the vortex, and (2) enhanced Antarctic downwelling that brings older air from middle and upper stratosphere into the lower stratosphere.

  14. Responses to ozone pollution of alfalfa exposed to increasing salinity levels

    Energy Technology Data Exchange (ETDEWEB)

    Maggio, Albino; Chiaranda, Fabrizio Quaglietta; Cefariello, Roberto [DIAAT, Naples University Federico II, via Universita 100, 80055 Portici (Italy); Fagnano, Massimo, E-mail: fagnano@unina.i [DIAAT, Naples University Federico II, via Universita 100, 80055 Portici (Italy)

    2009-05-15

    Stomatal closure and biosynthesis of antioxidant molecules are two fundamental components of the physiological machinery that lead to stress adaptation during plant's exposure to salinity. Since high stomatal resistance may also contribute in counteracting O{sub 3} damages, we hypothesized that soil salinization may increase O{sub 3} tolerance of crops. An experiment was performed with alfalfa grown in filtered (AOT40 = 0 in both years) and non-filtered (AOT40 = 9.7 in 2005 and 6.9 ppm h in 2006) open-top chambers. Alfalfa yield was reduced by O{sub 3} (-33%) only in plants irrigated with salt-free water, while the increasing levels of soil salinity until 1.06 dS m{sup -1} reduced both stomatal conductance and plant O{sub 3} uptake, thus linearly reducing O{sub 3} effects on yield. Therefore a reliable flux-based model for assessing the effects of O{sub 3} on crop yield should take into account soil salinity. - Moderate saline stress can reduce ozone uptake and yield losses in alfalfa plants.

  15. Responses to ozone pollution of alfalfa exposed to increasing salinity levels

    International Nuclear Information System (INIS)

    Maggio, Albino; Chiaranda, Fabrizio Quaglietta; Cefariello, Roberto; Fagnano, Massimo

    2009-01-01

    Stomatal closure and biosynthesis of antioxidant molecules are two fundamental components of the physiological machinery that lead to stress adaptation during plant's exposure to salinity. Since high stomatal resistance may also contribute in counteracting O 3 damages, we hypothesized that soil salinization may increase O 3 tolerance of crops. An experiment was performed with alfalfa grown in filtered (AOT40 = 0 in both years) and non-filtered (AOT40 = 9.7 in 2005 and 6.9 ppm h in 2006) open-top chambers. Alfalfa yield was reduced by O 3 (-33%) only in plants irrigated with salt-free water, while the increasing levels of soil salinity until 1.06 dS m -1 reduced both stomatal conductance and plant O 3 uptake, thus linearly reducing O 3 effects on yield. Therefore a reliable flux-based model for assessing the effects of O 3 on crop yield should take into account soil salinity. - Moderate saline stress can reduce ozone uptake and yield losses in alfalfa plants.

  16. Surface recombination of oxygen atoms in O2 plasma at increased pressure: II. Vibrational temperature and surface production of ozone

    Science.gov (United States)

    Lopaev, D. V.; Malykhin, E. M.; Zyryanov, S. M.

    2011-01-01

    Ozone production in an oxygen glow discharge in a quartz tube was studied in the pressure range of 10-50 Torr. The O3 density distribution along the tube diameter was measured by UV absorption spectroscopy, and ozone vibrational temperature TV was found comparing the calculated ab initio absorption spectra with the experimental ones. It has been shown that the O3 production mainly occurs on a tube surface whereas ozone is lost in the tube centre where in contrast the electron and oxygen atom densities are maximal. Two models were used to analyse the obtained results. The first one is a kinetic 1D model for the processes occurring near the tube walls with the participation of the main particles: O(3P), O2, O2(1Δg) and O3 molecules in different vibrational states. The agreement of O3 and O(3P) density profiles and TV calculated in the model with observed ones was reached by varying the single model parameter—ozone production probability (\\gamma_{O_{3}}) on the quartz tube surface on the assumption that O3 production occurs mainly in the surface recombination of physisorbed O(3P) and O2. The phenomenological model of the surface processes with the participation of oxygen atoms and molecules including singlet oxygen molecules was also considered to analyse \\gamma_{O_{3}} data obtained in the kinetic model. A good agreement between the experimental data and the data of both models—the kinetic 1D model and the phenomenological surface model—was obtained in the full range of the studied conditions that allowed consideration of the ozone surface production mechanism in more detail. The important role of singlet oxygen in ozone surface production was shown. The O3 surface production rate directly depends on the density of physisorbed oxygen atoms and molecules and can be high with increasing pressure and energy inputted into plasma while simultaneously keeping the surface temperature low enough. Using the special discharge cell design, such an approach opens up the

  17. Surface recombination of oxygen atoms in O2 plasma at increased pressure: II. Vibrational temperature and surface production of ozone

    International Nuclear Information System (INIS)

    Lopaev, D V; Malykhin, E M; Zyryanov, S M

    2011-01-01

    Ozone production in an oxygen glow discharge in a quartz tube was studied in the pressure range of 10-50 Torr. The O 3 density distribution along the tube diameter was measured by UV absorption spectroscopy, and ozone vibrational temperature T V was found comparing the calculated ab initio absorption spectra with the experimental ones. It has been shown that the O 3 production mainly occurs on a tube surface whereas ozone is lost in the tube centre where in contrast the electron and oxygen atom densities are maximal. Two models were used to analyse the obtained results. The first one is a kinetic 1D model for the processes occurring near the tube walls with the participation of the main particles: O( 3 P), O 2 , O 2 ( 1 Δ g ) and O 3 molecules in different vibrational states. The agreement of O 3 and O( 3 P) density profiles and T V calculated in the model with observed ones was reached by varying the single model parameter-ozone production probability (γ O 3 ) on the quartz tube surface on the assumption that O 3 production occurs mainly in the surface recombination of physisorbed O( 3 P) and O 2 . The phenomenological model of the surface processes with the participation of oxygen atoms and molecules including singlet oxygen molecules was also considered to analyse γ O 3 data obtained in the kinetic model. A good agreement between the experimental data and the data of both models-the kinetic 1D model and the phenomenological surface model-was obtained in the full range of the studied conditions that allowed consideration of the ozone surface production mechanism in more detail. The important role of singlet oxygen in ozone surface production was shown. The O 3 surface production rate directly depends on the density of physisorbed oxygen atoms and molecules and can be high with increasing pressure and energy inputted into plasma while simultaneously keeping the surface temperature low enough. Using the special discharge cell design, such an approach opens up

  18. Concentrations of motor vehicle exhaust emissions and ozone in the area surrounding a motorway; Konzentrationen von Kraftfahrzeugemissionen und Ozon im Nahbereich einer Autobahn

    Energy Technology Data Exchange (ETDEWEB)

    Corsmeier, U.; Vogel, H. [Forschungszentrum Karlsruhe GmbH Umwelt und Technik (Germany). Inst. fuer Meteorologie und Klimaforschung]|[Karlsruhe Univ. (T.H.). (Germany). Inst. fuer Meteorologie und Klimaforschung

    1998-01-01

    The measuring concept realized along the federal motorway BAB656, which makes use of meteorological and air-chemical measuring techniques under selected meteorological conditions, permits detecting the plume of motorway exhaust emissions beyond doubt. By simultaneous, comprehensive traffic surveys, the input parameters for numerical emission calculation models valid up to now could be verified. In part, as regards trafic density, fleet composition and driving speed, they were corrected. From the difference between the vertical profiles of the meteorological parameters and ozone concentration measured at the luff and lee sides of the motorway and from measurements of the concentrations of primarily emitted substances at ground level, the actual emissions of these substances for the motorway segment in kgh{sup 1} km{sup -}1 were calculated. (orig./KW) [Deutsch] Es konnte gezeigt werden, dass mit dem bei BAB656 realisierten Messkonzept mit Hilfe meteorologischer und luftchemischer Messtechnik bei ausgesuchten meteorologischen Bedingungen die Abluftfahne mit den auf einer Autobahn emittierten Substanzen zweifelsfrei detektiert werden kann. Durch gleichzeitige umfangreiche Verkehrserhebungen konnten die bisher gueltigen Eingabeparameter fuer numerische Emissionsberechnungsmodelle ueberprueft und was Verkehrsdichte, Flottenzusammensetzung und Fahrgeschwindigkeit angeht, teilweise korrigiert werden. Aus der Differenz der im Luv und Lee der Autobahn gemessenen Vertikalprofile meteorologischer Parameter und der Ozonkonzentration sowie der Messung der Konzentrationen primaer emittierter Substanzen am Boden konnten die Emissionen dieser Stoffe fuer den Autobahnabschnitt in kgh{sup -1} km{sup -1} aktuell berechnet werden. (orig./KW)

  19. Impact of meteorological data resolution on the forecasted ozone concentrations during the ESCOMPTE IOP2a and IOP2b

    Science.gov (United States)

    Menut, Laurent; Coll, Isabelle; Cautenet, Sylvie

    2005-03-01

    During the summer 2001, several photo-oxidant pollution episodes were documented around Marseilles-Fos-Berre in the South of France within the framework of the ESCOMPTE campaign. The site is composed of large cities (Marseilles, Aix, and Toulon), significant factories (Fos-Berre), a dense road network, and extensive rural area. Both biogenic and anthropogenic emissions are thus significative. Located close to the Mediterranean Sea and framed by the Pyrenees and the Alps Mountains, pollutant concentrations are under the influence of strong emissions as well as a complex meteorology. During the whole summer 2001, the chemistry-transport model CHIMERE was used to forecast pollutant concentrations. The ECMWF forecast meteorological fields were used as forcing, with a raw spatial and temporal resolution of 0.5° and 3 h, respectively. It was observed that even if the synoptic dynamic processes were correctly described, the resolution was not always able to detail small-scale dynamics (sea breezes and orographical winds). To estimate the impact of meteorological forcing on the modeled concentration accuracy, an intercomparison exercise has thus been carried out on the same episode but with two sets of meteorological data: ECMWF data (with horizontal and temporal resolution of 0.5° and 3 h) and data from the mesoscale model RAMS (3 km and 1 h). The two sets of meteorological data are compared and discussed in terms of raw differences as a function of time and location, and in terms of induced discrepancies between the modeled and observed ozone concentration fields. It was shown that even if the RAMS model provides a better description of land-sea breezes and nocturnal boundary layer processes, the simulated ozone time series are satisfactory with the two meteorological forcings. In the context of ozone forecast, the scores are better with ECMWF. This is attributed to the diffusive aspect of these data that will more easily catch localized peaks, while a small error in

  20. Increased outdoor recreation, diminished ozone layer pose ultraviolet radiation threat to eye

    Energy Technology Data Exchange (ETDEWEB)

    1989-02-24

    The long-term effects of ultraviolet (UV) light on the eye are of increasing concern as many people live longer and spend more of that time in outdoor recreation and as the diminishing ozone layer filters less UV light. Ultraviolet radiation is strongest at high altitude, low latitude, and open for reflective environments (sand, snow, or water). For people who lack an eye lens (aphakics), UV light is transmitted directly onto the retina. Cumulative exposure to the 300- to 400-nm range of UV light is one factor causing cataracts. Ophthalmologists say cataracts cause visual deficits for more than 3.5 million people in the United States. Cumulative UV exposure may lead to age-related macular degeneration. At a Research to Prevent Blindness conference in Arlington, VA, John S. Werner, PhD, professor of psychology and neurosciences at the University of Colorado, Boulder, described how his group demonstrated the effects of UV light on retinal cones. Different types of intraocular lenses were placed in each eye of eight patients who had undergone bilateral cataract surgery. After five years, retinal cones chronically exposured to UV radiation had less sensitivity for short wavelengths (440 nm) by a factor of 1.7.

  1. Photosynthesis and growth response of almond to increased atmospheric ozone partial pressures

    Energy Technology Data Exchange (ETDEWEB)

    Retzlaff, W.A.; Williams, L.E. (Univ. of California, Davis (United States) Kearney Agricultural Center, Parlier, CA (United States)); DeJong, T.M. (Univ. of California, Davis (United States))

    Uniform nursery stock of five almond cultivars [Prunus dulcis (Mill) D.A. Webb syn. P. amygdalus Batsch, cv. Butte, Carmel, Mission, Nonpareil, and Sonora] propagated on peach (P. domstica L. Batsch.) rootstock were exposed to three different atmospheric ozone (O[sub 3]) partial pressures. The trees were planted in open-top fumigation chambers on 19 Apr. 1989 at the University of California Kearny Agricultural Center located in the San Joaquin Valley of California. Exposures of the trees to three atmospheric O[sub 3] partial pressures lasted from 1 June to 2 Nov. 1989. The mean 12-h [0800-2000 h Pacific Daylight Time (PDT)] O[sub 3] partial pressures measured in the open-top chambers during the experimental period were 0.038, 0.060, and 0.112 [mu]Pa Pa[sup [minus]1] O[sub 3] in the charcoal filtered, ambient, and ambient + O[sub 3] treatments, respectively. Leaf net CO[sub 2] assimilation, trunk cross-sectional area growth, and root, trunk, foliage, and total dry weight of Nonpareil were reduced by increased atmospheric O[sub 3] partial pressures. Mission was unaffected by O[sub 3] and Butte, Carmel, and Sonora were intermediate in their responses. Foliage of Nonpareil also abscised prematurely in the ambient and ambient + O[sub 3] treatments. The results indicate that there are almond cultivars that are sensitive to O[sub 3] exposure.

  2. Photosynthesis and growth response of almond to increased atmospheric ozone partial pressures

    International Nuclear Information System (INIS)

    Retzlaff, W.A.; Williams, L.E.; DeJong, T.M.

    1992-01-01

    Uniform nursery stock of five almond cultivars [Prunus dulcis (Mill) D.A. Webb syn. P. amygdalus Batsch, cv. Butte, Carmel, Mission, Nonpareil, and Sonora] propagated on peach (P. domstica L. Batsch.) rootstock were exposed to three different atmospheric ozone (O 3 ) partial pressures. The trees were planted in open-top fumigation chambers on 19 Apr. 1989 at the University of California Kearny Agricultural Center located in the San Joaquin Valley of California. Exposures of the trees to three atmospheric O 3 partial pressures lasted from 1 June to 2 Nov. 1989. The mean 12-h [0800-2000 h Pacific Daylight Time (PDT)] O 3 partial pressures measured in the open-top chambers during the experimental period were 0.038, 0.060, and 0.112 μPa Pa -1 O 3 in the charcoal filtered, ambient, and ambient + O 3 treatments, respectively. Leaf net CO 2 assimilation, trunk cross-sectional area growth, and root, trunk, foliage, and total dry weight of Nonpareil were reduced by increased atmospheric O 3 partial pressures. Mission was unaffected by O 3 and Butte, Carmel, and Sonora were intermediate in their responses. Foliage of Nonpareil also abscised prematurely in the ambient and ambient + O 3 treatments. The results indicate that there are almond cultivars that are sensitive to O 3 exposure

  3. Earth's ozone layer

    International Nuclear Information System (INIS)

    Lasa, J.

    1991-01-01

    The paper contain the actual results of investigations of the influence of the human activity on the Earth's ozone layer. History of the ozone measurements and of the changes in its concentrations within the last few years are given. The influence of the trace gases on both local and global ozone concentrations are discussed. The probable changes of the ozone concentrations are presented on the basis of the modelling investigations. The effect of a decrease in global ozone concentration on human health and on biosphere are also presented. (author). 33 refs, 36 figs, 5 tabs

  4. Effects of ozone-vegetation coupling on surface ozone air quality via biogeochemical and meteorological feedbacks

    Science.gov (United States)

    Sadiq, Mehliyar; Tai, Amos P. K.; Lombardozzi, Danica; Martin, Maria Val

    2017-02-01

    Tropospheric ozone is one of the most hazardous air pollutants as it harms both human health and plant productivity. Foliage uptake of ozone via dry deposition damages photosynthesis and causes stomatal closure. These foliage changes could lead to a cascade of biogeochemical and biogeophysical effects that not only modulate the carbon cycle, regional hydrometeorology and climate, but also cause feedbacks onto surface ozone concentration itself. In this study, we implement a semi-empirical parameterization of ozone damage on vegetation in the Community Earth System Model to enable online ozone-vegetation coupling, so that for the first time ecosystem structure and ozone concentration can coevolve in fully coupled land-atmosphere simulations. With ozone-vegetation coupling, present-day surface ozone is simulated to be higher by up to 4-6 ppbv over Europe, North America and China. Reduced dry deposition velocity following ozone damage contributes to ˜ 40-100 % of those increases, constituting a significant positive biogeochemical feedback on ozone air quality. Enhanced biogenic isoprene emission is found to contribute to most of the remaining increases, and is driven mainly by higher vegetation temperature that results from lower transpiration rate. This isoprene-driven pathway represents an indirect, positive meteorological feedback. The reduction in both dry deposition and transpiration is mostly associated with reduced stomatal conductance following ozone damage, whereas the modification of photosynthesis and further changes in ecosystem productivity are found to play a smaller role in contributing to the ozone-vegetation feedbacks. Our results highlight the need to consider two-way ozone-vegetation coupling in Earth system models to derive a more complete understanding and yield more reliable future predictions of ozone air quality.

  5. Competition modifies effects of enhanced ozone/carbon dioxide concentrations on carbohydrate and biomass accumulation in juvenile Norway spruces and European beech

    International Nuclear Information System (INIS)

    Liu, X.; Rennenberg, H.; Kozovits, A. R.; Grams, T. E.; Blaschke, H.; Matyssek, R.

    2004-01-01

    Potential interactions of carbon dioxide and ozone on carbohydrate concentrations and contents were studied in Norway spruce and European beech saplings to test the hypotheses that (1) prolonged exposure to elevated carbon dioxide does not compensate for the limiting effects of ozone on the accumulation of sugars and starches, or biomass partitioning to the root; and (2) growth of mixed-species planting will repress plant responses to elevated ozone and carbon dioxide. Norway spruce and European beech saplings were acclimated for one year to ambient and elevated carbon dioxide, followed by exposure to factorial combinations of ambient and elevated ozone and carbon dioxide during the next two years. In spruce trees, sugar and starch content was greater in saplings exposed to elevated carbon dioxide; in beech, the response was the opposite. The overall conclusion was that the results did not support Hypothesis One, because the adverse effects were counteracted by elevated carbon dioxide. Regarding Hypothesis Two, it was found to be supportive for beech but not for spruce. In beech, the reduction of sugars and starch by elevated ozone and stimulation by elevated carbon dioxide were repressed by competitive interaction with spruce, whereas in spruce saplings elevated concentrations of carbon dioxide resulted in higher concentrations of sugar and starch, but only in leaves and coarse roots and only when grown in combination with beech. Elevated ozone in spruce saplings produced no significant effect on sugar or starch content either in intra- or interspecific competition. 57 refs., 1 tab., 5 figs

  6. Competition modifies effects of enhanced ozone/carbon dioxide concentrations on carbohydrate and biomass accumulation in juvenile Norway spruces and European beech

    Energy Technology Data Exchange (ETDEWEB)

    Liu, X.; Rennenberg, H. [University of Freiburg, Inst. of Forest Botany and Tree Physiology, Freiburg (Germany); Kozovits, A. R.; Grams, T. E.; Blaschke, H.; Matyssek, R. [Technische Universitat Munchen, Dept. of Ecology and Ecophysiology of Plants, Freising (Germany)

    2004-09-01

    Potential interactions of carbon dioxide and ozone on carbohydrate concentrations and contents were studied in Norway spruce and European beech saplings to test the hypotheses that (1) prolonged exposure to elevated carbon dioxide does not compensate for the limiting effects of ozone on the accumulation of sugars and starches, or biomass partitioning to the root; and (2) growth of mixed-species planting will repress plant responses to elevated ozone and carbon dioxide. Norway spruce and European beech saplings were acclimated for one year to ambient and elevated carbon dioxide, followed by exposure to factorial combinations of ambient and elevated ozone and carbon dioxide during the next two years. In spruce trees, sugar and starch content was greater in saplings exposed to elevated carbon dioxide; in beech, the response was the opposite. The overall conclusion was that the results did not support Hypothesis One, because the adverse effects were counteracted by elevated carbon dioxide. Regarding Hypothesis Two, it was found to be supportive for beech but not for spruce. In beech, the reduction of sugars and starch by elevated ozone and stimulation by elevated carbon dioxide were repressed by competitive interaction with spruce, whereas in spruce saplings elevated concentrations of carbon dioxide resulted in higher concentrations of sugar and starch, but only in leaves and coarse roots and only when grown in combination with beech. Elevated ozone in spruce saplings produced no significant effect on sugar or starch content either in intra- or interspecific competition. 57 refs., 1 tab., 5 figs.

  7. Ozone decomposition

    Directory of Open Access Journals (Sweden)

    Batakliev Todor

    2014-06-01

    Full Text Available Catalytic ozone decomposition is of great significance because ozone is a toxic substance commonly found or generated in human environments (aircraft cabins, offices with photocopiers, laser printers, sterilizers. Considerable work has been done on ozone decomposition reported in the literature. This review provides a comprehensive summary of the literature, concentrating on analysis of the physico-chemical properties, synthesis and catalytic decomposition of ozone. This is supplemented by a review on kinetics and catalyst characterization which ties together the previously reported results. Noble metals and oxides of transition metals have been found to be the most active substances for ozone decomposition. The high price of precious metals stimulated the use of metal oxide catalysts and particularly the catalysts based on manganese oxide. It has been determined that the kinetics of ozone decomposition is of first order importance. A mechanism of the reaction of catalytic ozone decomposition is discussed, based on detailed spectroscopic investigations of the catalytic surface, showing the existence of peroxide and superoxide surface intermediates

  8. Air quality models and unusually large ozone increases: Identifying model failures, understanding environmental causes, and improving modeled chemistry

    Science.gov (United States)

    Couzo, Evan A.

    Several factors combine to make ozone (O3) pollution in Houston, Texas, unique when compared to other metropolitan areas. These include complex meteorology, intense clustering of industrial activity, and significant precursor emissions from the heavily urbanized eight-county area. Decades of air pollution research have borne out two different causes, or conceptual models, of O 3 formation. One conceptual model describes a gradual region-wide increase in O3 concentrations "typical" of many large U.S. cities. The other conceptual model links episodic emissions of volatile organic compounds to spatially limited plumes of high O3, which lead to large hourly increases that have exceeded 100 parts per billion (ppb) per hour. These large hourly increases are known to lead to violations of the federal O 3 standard and impact Houston's status as a non-attainment area. There is a need to further understand and characterize the causes of peak O 3 levels in Houston and simulate them correctly so that environmental regulators can find the most cost-effective pollution controls. This work provides a detailed understanding of unusually large O 3 increases in the natural and modeled environments. First, we probe regulatory model simulations and assess their ability to reproduce the observed phenomenon. As configured for the purpose of demonstrating future attainment of the O3 standard, the model fails to predict the spatially limited O3 plumes observed in Houston. Second, we combine ambient meteorological and pollutant measurement data to identify the most likely geographic origins and preconditions of the concentrated O3 plumes. We find evidence that the O3 plumes are the result of photochemical activity accelerated by industrial emissions. And, third, we implement changes to the modeled chemistry to add missing formation mechanisms of nitrous acid, which is an important radical precursor. Radicals control the chemical reactivity of atmospheric systems, and perturbations to

  9. The Effect of Ozone and Zeolite Concentration to the Performance of the Treatment of Wastewater Containing Heavy Metal Using Flotation Process

    Directory of Open Access Journals (Sweden)

    Eva Karamah

    2010-10-01

    Full Text Available Industrial wastewater which contains heavy metal cannot be disposed to the environment directly, due to its toxicity. In this research, separation of metal from wastewater was conducted by sorptive flotation method, using Lampung natural zeolite as bonding agent. The most common diffuser used in the flotation process is air or oxygen. In this research, ozone is used as diffuser because it is a stronger oxidant and more dissolvable in water than oxygen. Besides, ozone is a coagulant aid and disinfectant. With ozone as diffuser, it is expected that the process become faster with higher efficiency. This research was conducted to determine ozone effectiveness as diffuser, compared with other diffuser, and also to determine optimum concentration and effectiveness of zeolite in flotation of iron, nickel and copper. The research result shows that separation of iron with air diffuser is 90.8%, air-oxygen diffuser is 95.7%, air-ozone (from air diffuser is 99.7%, and air-ozone (from oxygen diffuser is 99.7%. Natural zeolite is effective as bonding agent with optimum concentration equal to 2 gram/liter, producing separation percentage for iron equal to 99.70%, copper equal to 88.98% and Nickel equal to 98.46%.

  10. An exploratory analysis of the relationship between ambient ozone and particulate matter concentrations during early pregnancy and selected birth defects in Texas

    Science.gov (United States)

    Background: Associations between ozone (O3) and fine particulate matter (PM2.5) concentrations and birth outcomes have been previously demonstrated. We perform an exploratory analysis of O3 and PM2.5 concentrations during early pregnancy and multiple types of birth defects. Met...

  11. Power consumption analysis DBD plasma ozone generator

    International Nuclear Information System (INIS)

    Nur, M.; Restiwijaya, M.; Muchlisin, Z.; Arianto, F.; Susan, I. A.; Widyanto, S. A.

    2016-01-01

    Studies on the consumption of energy by an ozone generator with various constructions electrodes of dielectric barrier discharge plasma (DBDP) reactor has been carried out. This research was done to get the configuration of the reactor, that is capable to produce high ozone concentrations with low energy consumption. BDBP reactors were constructed by spiral- cylindrical configuration, plasma ozone was generated by high voltage AC voltage up to 25 kV and maximum frequency of 23 kHz. The reactor consists of an active electrode in the form of a spiral-shaped with variation diameter Dc, and it was made by using copper wire with diameter Dw. In this research, we variated number of loops coil windings N as well as Dc and Dw. Ozone concentrations greater when the wire's diameter Dw and the diameter of the coil windings applied was greater. We found that impedance greater will minimize the concentration of ozone, in contrary to the greater capacitance will increase the concentration of ozone. The ozone concentrations increase with augmenting of power. Maximum power is effective at DBD reactor spiral-cylinder is on the Dc = 20 mm, Dw = 1.2 mm, and the number of coil windings N = 10 loops with the resulting concentration is greater than 20 ppm and it consumes energy of 177.60 watts (paper)

  12. Higher measured than modeled ozone production at increased NOx levels in the Colorado Front Range

    Directory of Open Access Journals (Sweden)

    B. C. Baier

    2017-09-01

    Full Text Available Chemical models must correctly calculate the ozone formation rate, P(O3, to accurately predict ozone levels and to test mitigation strategies. However, air quality models can have large uncertainties in P(O3 calculations, which can create uncertainties in ozone forecasts, especially during the summertime when P(O3 is high. One way to test mechanisms is to compare modeled P(O3 to direct measurements. During summer 2014, the Measurement of Ozone Production Sensor (MOPS directly measured net P(O3 in Golden, CO, approximately 25 km west of Denver along the Colorado Front Range. Net P(O3 was compared to rates calculated by a photochemical box model that was constrained by measurements of other chemical species and that used a lumped chemical mechanism and a more explicit one. Median observed P(O3 was up to a factor of 2 higher than that modeled during early morning hours when nitric oxide (NO levels were high and was similar to modeled P(O3 for the rest of the day. While all interferences and offsets in this new method are not fully understood, simulations of these possible uncertainties cannot explain the observed P(O3 behavior. Modeled and measured P(O3 and peroxy radical (HO2 and RO2 discrepancies observed here are similar to those presented in prior studies. While a missing atmospheric organic peroxy radical source from volatile organic compounds co-emitted with NO could be one plausible solution to the P(O3 discrepancy, such a source has not been identified and does not fully explain the peroxy radical model–data mismatch. If the MOPS accurately depicts atmospheric P(O3, then these results would imply that P(O3 in Golden, CO, would be NOx-sensitive for more of the day than what is calculated by models, extending the NOx-sensitive P(O3 regime from the afternoon further into the morning. These results could affect ozone reduction strategies for the region surrounding Golden and possibly other areas that do not comply with national ozone

  13. Ozone kinetics in low-pressure discharges: vibrationally excited ozone and molecule formation on surfaces

    Science.gov (United States)

    Marinov, Daniil; Guerra, Vasco; Guaitella, Olivier; Booth, Jean-Paul; Rousseau, Antoine

    2013-10-01

    A combined experimental and modeling investigation of the ozone kinetics in the afterglow of pulsed direct current discharges in oxygen is carried out. The discharge is generated in a cylindrical silica tube of radius 1 cm, with short pulse durations between 0.5 and 2 ms, pressures in the range 1-5 Torr and discharge currents ˜40-120 mA. Time-resolved absolute concentrations of ground-state atoms and ozone molecules were measured simultaneously in situ, by two-photon absorption laser-induced fluorescence and ultraviolet absorption, respectively. The experiments were complemented by a self-consistent model developed to interpret the results and, in particular, to evaluate the roles of vibrationally excited ozone and of ozone formation on surfaces. It is found that vibrationally excited ozone, O_3^{*} , plays an important role in the ozone kinetics, leading to a decrease in the ozone concentration and an increase in its formation time. In turn, the kinetics of O_3^{*} is strongly coupled with those of atomic oxygen and O2(a 1Δg) metastables. Ozone formation at the wall does not contribute significantly to the total ozone production under the present conditions. Upper limits for the effective heterogeneous recombination probability of O atoms into ozone are established.

  14. Ozone kinetics in low-pressure discharges: vibrationally excited ozone and molecule formation on surfaces

    International Nuclear Information System (INIS)

    Marinov, Daniil; Guaitella, Olivier; Booth, Jean-Paul; Rousseau, Antoine; Guerra, Vasco

    2013-01-01

    A combined experimental and modeling investigation of the ozone kinetics in the afterglow of pulsed direct current discharges in oxygen is carried out. The discharge is generated in a cylindrical silica tube of radius 1 cm, with short pulse durations between 0.5 and 2 ms, pressures in the range 1–5 Torr and discharge currents ∼40–120 mA. Time-resolved absolute concentrations of ground-state atoms and ozone molecules were measured simultaneously in situ, by two-photon absorption laser-induced fluorescence and ultraviolet absorption, respectively. The experiments were complemented by a self-consistent model developed to interpret the results and, in particular, to evaluate the roles of vibrationally excited ozone and of ozone formation on surfaces. It is found that vibrationally excited ozone, O 3 * , plays an important role in the ozone kinetics, leading to a decrease in the ozone concentration and an increase in its formation time. In turn, the kinetics of O 3 * is strongly coupled with those of atomic oxygen and O 2 (a 1 Δ g ) metastables. Ozone formation at the wall does not contribute significantly to the total ozone production under the present conditions. Upper limits for the effective heterogeneous recombination probability of O atoms into ozone are established. (paper)

  15. Stratospheric ozone chemistry in the Antarctic: what determines the lowest ozone values reached and their recovery?

    Directory of Open Access Journals (Sweden)

    J.-U. Grooß

    2011-12-01

    Full Text Available Balloon-borne observations of ozone from the South Pole Station have been reported to reach ozone mixing ratios below the detection limit of about 10 ppbv at the 70 hPa level by late September. After reaching a minimum, ozone mixing ratios increase to above 1 ppmv on the 70 hPa level by late December. While the basic mechanisms causing the ozone hole have been known for more than 20 yr, the detailed chemical processes determining how low the local concentration can fall, and how it recovers from the minimum have not been explored so far. Both of these aspects are investigated here by analysing results from the Chemical Lagrangian Model of the Stratosphere (CLaMS. As ozone falls below about 0.5 ppmv, a balance is maintained by gas phase production of both HCl and HOCl followed by heterogeneous reaction between these two compounds in these simulations. Thereafter, a very rapid, irreversible chlorine deactivation into HCl can occur, either when ozone drops to values low enough for gas phase HCl production to exceed chlorine activation processes or when temperatures increase above the polar stratospheric cloud (PSC threshold. As a consequence, the timing and mixing ratio of the minimum ozone depends sensitively on model parameters, including the ozone initialisation. The subsequent ozone increase between October and December is linked mainly to photochemical ozone production, caused by oxygen photolysis and by the oxidation of carbon monoxide and methane.

  16. Compensation of self-absorption losses in luminescent solar concentrators by increasing luminophore concentration

    NARCIS (Netherlands)

    Krumer, Zachar; van Sark, Wilfried G.J.H.M.; Schropp, Ruud E.I.; de Mello Donegá, Celso

    2017-01-01

    Self-absorption in luminophores is considered a major obstacle on the way towards efficient luminescent solar concentrators (LSCs). It is commonly expected that upon increasing luminophore concentration in an LSC the absorption of the luminophores increases as well and therefore self-absorption

  17. On the local and regional influence on ground-level ozone concentrations in Hong Kong

    International Nuclear Information System (INIS)

    So, K.L.; Wang, T.

    2003-01-01

    It is imperative to consider regional scale emissions and dynamic transport in managing ozone pollution in Hong Kong. - Hong Kong is a densely populated city situated in the fast developing Pearl River Delta of southern China. In this study, the recent data on ozone (O 3 ) and related air pollutants obtained at three sites in Hong Kong are analyzed to show the variations of O 3 in urban, sub-urban and rural areas and the possible regional influences. Highest monthly averaged O 3 was found at a northeastern rural site and lowest O 3 level was observed at an urban site. The levels of NO x , CO, SO 2 and PM 10 showed a different spatial pattern with the highest level in the urban site and lowest at the rural site. Analysis of chemical species ratios such as SO 2 /NO x and CO/NO x indicated that the sites were under the influences of local and regional emissions to varying extents reflecting the characteristics of emission sources surround the respective sites. Seasonal pattern of O 3 is examined. Low O 3 level was found in summer and elevated levels occurred in autumn and spring. The latter appears different from the previous result obtained in 1996 indicating a single maximum occurring in autumn. Principal component analysis was used to further elucidate the relationships of air pollutants at each site. As expected, the O 3 variation in the northeastern rural area was largely determined by regional chemical and transport processes, while the O 3 variability at the southwestern suburban and urban sites were more influenced by local emissions. Despite the large difference in O 3 levels across the sites, total potential ozone (O 3 +NO 2 ) showed little variability. Cases of high O 3 episodes were presented and elevated O 3 levels were formed under the influence of tropical cyclone bringing in conditions of intense sunlight, high temperature and light winds. Elevated O 3 levels were also found to correlate with enhanced ratio of SO 2 to NO x , suggesting influence of

  18. MCS precipitation and downburst intensity response to increased aerosol concentrations

    Science.gov (United States)

    Clavner, M.; Cotton, W. R.; van den Heever, S. C.

    2015-12-01

    Mesoscale convective systems (MCSs) are important contributors to rainfall in the High Plains of the United States as well as producers of severe weather such as hail, tornados and straight-line wind events known as derechos. Past studies have shown that changes in aerosol concentrations serving as cloud condensation nuclei (CCN) alter the MCS hydrometeor characteristics which in turn modify precipitation yield, downdraft velocity, cold-pool strength, storm propagation and the potential for severe weather to occur. In this study, the sensitivity of MCS precipitation characteristics and convective downburst velocities associated with a derecho to changes in CCN concentrations were examined by simulating a case study using the Regional Atmospheric Modeling System (RAMS). The case study of the 8 May 2009 "Super-Derecho" MCS was chosen since it produced a swath of widespread wind damage in association with an embedded large-scale bow echo, over a broad region from the High Plains of western Kansas to the foothills of the Appalachians. The sensitivity of the storm to changes in CCN concentrations was examined by conducting a set of three simulations which differed in the initial aerosol concentration based on output from the 3D chemical transport model, GEOS-Chem. Results from this study indicate that while increasing CCN concentrations led to an increase in precipitation rates, the changes to the derecho strength were not linear. A moderate increase in aerosol concentration reduced the derecho strength, while the simulation with the highest aerosol concentrations increased the derecho intensity. These changes are attributed to the impact of enhanced CCN concentration on the production of convective downbursts. An analysis of aerosol loading impacts on these MCS features will be presented.

  19. Is ozonation environmentally benign for reverse osmosis concentrate treatment? Four-level analysis on toxicity reduction based on organic matter fractionation.

    Science.gov (United States)

    Weng, Jingxia; Jia, Huichao; Wu, Bing; Pan, Bingcai

    2018-01-01

    Ozonation is a promising option to treat reverse osmosis concentrate (ROC). However, a systematic understanding and assessment of ozonation on toxicity reduction is insufficient. In this study, ROC sampled from a typical industrial park wastewater treatment plant of China was fractionated into hydrophobic acid (HOA), hydrophobic base (HOB), hydrophobic neutral (HON), and hydrophilic fraction (HI). Systematic bioassays covering bacteria, algae, fish, and human cell lines were conducted to reveal the role of ozonation in toxicity variation of the four ROC fractions. HOA in the raw ROC exhibited the highest toxicity, followed by HON and HI. Ozonation significantly reduced total organic carbon (TOC) and UV 254 values in HOA, HON, and HI and their toxicity except in HOB. Correlation analysis indicated that chemical data (TOC and UV 254 ) of HOA and HON correlated well with their toxicities; however, poor correlations were observed for HOB and HI, suggesting that a battery of toxicity assays is necessary. This study indicates that TOC reduction during ozonation could not fully reflect the toxicity issue, and toxicity assessment is required in conjunction with the chemical data to evaluate the effectiveness of ozonation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Ozone Exposure-Response in Field Grown Soybean: Characterizing Intraspecific Variability of Physiology and Biochemistry

    Science.gov (United States)

    Crop losses due to rising tropospheric ozone concentrations ([ozone]) in 2000 were estimated to cost $1.8 to $3.9 billion in the U.S. and $3.0 to $5.5 billion in China, and are expected to grow with the predicted 25% increase in background [ozone] over the next 30 to 50 years. This challenge provide...

  1. Ozone Production With Dielectric Barrier Discharge: Effects of Power Source and Humidity

    KAUST Repository

    Zhang, Xuming; Lee, Bok Jik; Im, Hong G.; Cha, Min

    2016-01-01

    in the production of ozone for the cases of the ac DBD, while increased voltage is more effective for the pulsed DBD. Note that the maximum ozone production efficiency (110 g/kWh) was achieved with the pulsed DBD. At the ED of ∼ 85 J/L, the ozone concentrations

  2. Fungi outcompete bacteria under increased uranium concentration in culture media

    International Nuclear Information System (INIS)

    Mumtaz, Saqib; Streten-Joyce, Claire; Parry, David L.; McGuinness, Keith A.; Lu, Ping; Gibb, Karen S.

    2013-01-01

    As a key part of water management at the Ranger Uranium Mine (Northern Territory, Australia), stockpile (ore and waste) runoff water was applied to natural woodland on the mine lease in accordance with regulatory requirements. Consequently, the soil in these Land Application Areas (LAAs) presents a range of uranium concentrations. Soil samples were collected from LAAs with different concentrations of uranium and extracts were plated onto LB media containing no (0 ppm), low (3 ppm), medium (250 ppm), high (600 ppm) and very high (1500 ppm) uranium concentrations. These concentrations were similar to the range of measured uranium concentrations in the LAAs soils. Bacteria grew on all plates except for the very high uranium concentrations, where only fungi were recovered. Identifications based on bacterial 16S rRNA sequence analysis showed that the dominant cultivable bacteria belonged to the genus Bacillus. Members of the genera Paenibacillus, Lysinibacillus, Klebsiella, Microbacterium and Chryseobacterium were also isolated from the LAAs soil samples. Fungi were identified by sequence analysis of the intergenic spacer region, and members of the genera Aspergillus, Cryptococcus, Penicillium and Curvularia were dominant on plates with very high uranium concentrations. Members of the Paecilomyces and Alternaria were also present but in lower numbers. These findings indicate that fungi can tolerate very high concentrations of uranium and are more resistant than bacteria. Bacteria and fungi isolated at the Ranger LAAs from soils with high concentrations of uranium may have uranium binding capability and hence the potential for uranium bioremediation. -- Highlights: ► Fungi outcompete bacteria under increased uranium concentration in culture media. ► Soil microorganisms isolated from the Ranger Land Application Areas (LAAs) were resistant to uranium. ► Bacillus was the most abundant cultivable genus retrieved from the Ranger LAAs soils. ► Uranium in LAAs soils is

  3. Are we approaching an Arctic ozone hole

    International Nuclear Information System (INIS)

    Braathen, Geir

    1999-01-01

    Observations during the last decade in the Arctic areas mainly made by satellite, on the ground and by probes and sensors in the stratosphere are presented. Future perspectives are deducted from the results. Factors that may influence the ozone layer negatively are: Emission rate of ozone destroying compounds, the rapidly increasing use of some substitutes, increased concentrations of steam from aeroplanes and increased amount of methane, decreasing temperature in the stratosphere due to increasing amounts of climatic gases, large volcanic eruptions and altered timing for the polar whirl dissolution. It is concluded that the ozone reduction will be larger than observed at present in the next 10 to 20 years

  4. The impact of the observation nudging and nesting on the simulated meteorology and ozone concentrations from WRF-SMOKE-CMAQ during DISCOVER-AQ 2013 Texas campaign

    Science.gov (United States)

    Choi, Y.; Li, X.; Czader, B.

    2014-12-01

    Three WRF simulations for the DISCOVER-AQ 2013 Texas campaign period (30 days in September) are performed to characterize uncertainties in the simulated meteorological and chemical conditions. These simulations differ in domain setup, and in performing observation nudging in WRF runs. There are around 7% index of agreement (IOA) gain in temperature and 9-12% boost in U-WIND and V-WIND when the observational nudging is employed in the simulation. Further performance gain from nested domains over single domain is marginal. The CMAQ simulations based on above WRF setups showed that the ozone performance slightly improved in the simulation for which objective analysis (OA) is carried out. Further IOA gain, though quite limited, is achieved with nested domains. This study shows that the high ozone episodes during the analyzed time periods were associated with the uncertainties of the simulated cold front passage, chemical boundary condition and small-scale temporal wind fields. All runs missed the observed high ozone values which reached above 150 ppb in La Porte on September 25, the only day with hourly ozone over 120 ppb. The failure is likely due to model's inability to catch small-scale wind shifts in the industrial zone, despite better wind directions in the simulations with nudging and nested domains. This study also shows that overestimated background ozone from the southerly chemical boundary is a critical source for the model's general overpredictions of the ozone concentrations from CMAQ during September of 2013. These results of this study shed a light on the necessity of (1) capturing the small-scale winds such as the onsets of bay-breeze or sea-breeze and (2) implementing more accurate chemical boundary conditions to reduce the simulated high-biased ozone concentrations. One promising remedy for (1) is implementing hourly observation nudging instead of the standard one which is done every three hours.

  5. Theoretical basis for convective invigoration due to increased aerosol concentration

    Directory of Open Access Journals (Sweden)

    Z. J. Lebo

    2011-06-01

    Full Text Available The potential effects of increased aerosol loading on the development of deep convective clouds and resulting precipitation amounts are studied by employing the Weather Research and Forecasting (WRF model as a detailed high-resolution cloud resolving model (CRM with both detailed bulk and bin microphysics schemes. Both models include a physically-based activation scheme that incorporates a size-resolved aerosol population. We demonstrate that the aerosol-induced effect is controlled by the balance between latent heating and the increase in condensed water aloft, each having opposing effects on buoyancy. It is also shown that under polluted conditions, increases in the CCN number concentration reduce the cumulative precipitation due to the competition between the sedimentation and evaporation/sublimation timescales. The effect of an increase in the IN number concentration on the dynamics of deep convective clouds is small and the resulting decrease in domain-averaged cumulative precipitation is shown not to be statistically significant, but may act to suppress precipitation. It is also shown that even in the presence of a decrease in the domain-averaged cumulative precipitation, an increase in the precipitation variance, or in other words, andincrease in rainfall intensity, may be expected in more polluted environments, especially in moist environments.

    A significant difference exists between the predictions based on the bin and bulk microphysics schemes of precipitation and the influence of aerosol perturbations on updraft velocity within the convective core. The bulk microphysics scheme shows little change in the latent heating rates due to an increase in the CCN number concentration, while the bin microphysics scheme demonstrates significant increases in the latent heating aloft with increasing CCN number concentration. This suggests that even a detailed two-bulk microphysics scheme, coupled to a detailed activation scheme, may not be

  6. Elevated CO2 response of photosynthesis depends on ozone concentration in aspen

    International Nuclear Information System (INIS)

    Noormets, Asko; Kull, Olevi; Sober, Anu; Kubiske, Mark E.; Karnosky, David F.

    2010-01-01

    The effect of elevated CO 2 and O 3 on apparent quantum yield (φ), maximum photosynthesis (P max ), carboxylation efficiency (V cmax ) and electron transport capacity (J max ) at different canopy locations was studied in two aspen (Populus tremuloides) clones of contrasting O 3 tolerance. Local light climate at every leaf was characterized as fraction of above-canopy photosynthetic photon flux density (%PPFD). Elevated CO 2 alone did not affect φ or P max , and increased J max in the O 3 -sensitive, but not in the O 3 -tolerant clone. Elevated O 3 decreased leaf chlorophyll content and all photosynthetic parameters, particularly in the lower canopy, and the negative impact of O 3 increased through time. Significant interaction effect, whereby the negative impact of elevated O 3 was exaggerated by elevated CO 2 was seen in Chl, N and J max , and occurred in both O 3 -tolerant and O 3 -sensitive clones. The clonal differences in the level of CO 2 x O 3 interaction suggest a relationship between photosynthetic acclimation and background O 3 concentration. - Photosynthetic acclimation to elevated CO 2 depends on the background oxidant levels.

  7. Impact of increased ultraviolet-B radiation stress due to stratospheric ozone depletion on N2 fixation in traditional African commercial legumes

    International Nuclear Information System (INIS)

    Chimphango, S.B.M.; Musil, C.F.; Dakora, F.D.

    2004-01-01

    Reports of diminished nodule formation and nitroge-nase activity in some Asian tropical legumes exposed to above-ambient levels of ultraviolet-B (UV-B: 280-315nm) radiation have raised concerns as to the impact of stratospheric ozone depletion on generally poorly developed traditional African farming systems confronted by the high cost and limited availability of chemical fertilisers. These rely on N 2 -fixing legumes as the cheapest source of N for maintaining soil fertility and sustainable yields in the intrinsically infertile and heterogeneous African soils. In view of this, we examined the effects of supplemental UV-B radiation approximating 15% and 25% depletions in the total ozone column on N 2 fixation in eight traditional African commercial legume species representing crop, forest, medicinal, ornamental and pasture categories. In all categories examined, except medicinal, supplemental UV-B had no effect on root non-structural carbohydrates, antho-cyanins and flavonoids, known to signal Rhizobiaceae micro-symbionts and promote nodule formation, or on nodule mass, activity and quantities of N fixed in different plant organs and whole plants. In contrast, in the medicinal category Cyclopia maculata (Honeybush) a slow growing commercially important herbal beverage with naturally high flavonoid concentrations, displayed decreased nodule activity and quantities of N fixed in different plant organs and whole plants with increased UV-B. This study's findings conclude negligible impacts of ozone depletion on nitrogen fixation and soil fertility in most traditional African farming systems, these limited to occasional inhibition of nodule induction in some crops. (author)

  8. Oxidation of ammonium sulfite in aqueous solutions using ozone technology

    Science.gov (United States)

    Li, Yue; Shang, Kefeng; Lu, Na; Li, Jie; Wu, Yan

    2013-03-01

    How to deal with unstable ammonium sulfite, the byproduct of flue gas desulfuration by ammonia absorption methods, has been a difficult problem in recent years. Oxidation of ammonium sulfite in aqueous solutions using ozone produced by a surface discharge system was investigated in the paper. The oxidation efficiency of ammonium sulfite by ozone and traditional air aeration were compared, and the factors including ozone concentration, gas flow rate, initial concentration of ammonium sulfite solution and reaction temperature were discussed. The results show that the oxidation efficiency of ammonium sulfite by ozone technology reached nearly 100% under the optimum conditions, which had a significant increase compared with that by air aeration.

  9. Ozone Generation in Dry Air Using Pulsed Discharges With and Without a Solid Dielectric Layer

    OpenAIRE

    Samaranayake, W.J.M.; Miyahara, Y.; Namihira, T.; Katsuki, S.; Hackam, R.; Akiyama, H.; ミヤハラ, Y.; ナミヒラ, タカオ; カツキ, スナオ; アキヤマ, ヒデノリ; 浪平, 隆男; 勝木, 淳; 秋山, 秀典

    2001-01-01

    Energy efficient generation of ozone is very important because ozone is being used increasingly in a wide range of industrial applications. Ozonizers usually use dielectric barrier discharges and employ alternating current (ac) with consequent heat generation, which necessitates cooling. In the present study, very short duration pulsed voltage is employed resulting in reduced heating of the gas and discharge reactor. A comparison of ozone generation in dry air using a coaxial concentric elect...

  10. Physicochemical patterns of ozone absorption by wood

    Science.gov (United States)

    Mamleeva, N. A.; Lunin, V. V.

    2016-11-01

    Results from studying aspen and pine wood ozonation are presented. The effect the concentration of ozone, the reagent residence time, and the content of water in a sample of wood has on ozone consumption rate and ozone demand are analyzed. The residence time is shown to determine the degree of ozone conversion degree and the depth of substrate destruction. The main patterns of ozone absorption by wood with different moisture content are found. Ways of optimizing the ozonation of plant biomass are outlined.

  11. Impact of increasing heat waves on U.S. ozone episodes in the 2050s: Results from a multimodel analysis using extreme value theory

    Science.gov (United States)

    Shen, L.; Mickley, L. J.; Gilleland, E.

    2016-04-01

    We develop a statistical model using extreme value theory to estimate the 2000-2050 changes in ozone episodes across the United States. We model the relationships between daily maximum temperature (Tmax) and maximum daily 8 h average (MDA8) ozone in May-September over 2003-2012 using a Point Process (PP) model. At ~20% of the sites, a marked decrease in the ozone-temperature slope occurs at high temperatures, defined as ozone suppression. The PP model sometimes fails to capture ozone-Tmax relationships, so we refit the ozone-Tmax slope using logistic regression and a generalized Pareto distribution model. We then apply the resulting hybrid-extreme value theory model to projections of Tmax from an ensemble of downscaled climate models. Assuming constant anthropogenic emissions at the present level, we find an average increase of 2.3 d a-1 in ozone episodes (>75 ppbv) across the United States by the 2050s, with a change of +3-9 d a-1 at many sites.

  12. The Solubility of Ozone in Deionized Water and its Cleaning Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Han, J.H.; Park, J.G. [Hanyang University, Seoul (Korea, Republic of); Kwak, Y.S. [Hanyang Technology Co., Ltd., Ansan (Korea, Republic of)

    1998-06-01

    The purpose of this study was to investigate the behavior of ozone in DI water and the reaction with wafers during the semiconductor wet cleaning process. The solubility of ozone in DI water was not only dependent on the temperature but also directly proportional to the input concentration of ozone. The lower the initial ozone concentration and the temperature, the longer the half-life time of ozone. The reaction order of ozone in DI water was calculated to be around 1.5. The redox potential reached a saturation value in 5min and slightly increased as the input ozone concentrations increased. The completely hydrophilic surface was created in 1min when HF etched silicon wafer was cleaned in ozonized DI water containing higher ozone concentrations than 2ppm. Spectroscopic ellipsometry measurements showed that the chemical oxide formed by ozonized DI water was measured to be thicker than that by piranha solution. The wafers contaminated with a non-ionic surfactant were more effectively cleaned in ozonized DI water than in piranha and ozonized piranha solutions. (author). 19 refs., 11 figs., 1 tab.

  13. Plasma procalcitonin concentrations are increased in dogs with sepsis

    Science.gov (United States)

    Goggs, Robert; Milloway, Matthew; Troia, Roberta; Giunti, Massimo

    2018-01-01

    Sepsis, the life-threatening organ dysfunction caused by a dysregulated host response to infection, is difficult to identify and to prognosticate for. In people with sepsis, procalcitonin (PCT) measurement aids diagnosis, enables therapeutic monitoring and improves prognostic accuracy. This study used a commercial canine PCT assay to measure plasma PCT concentrations in dogs with gastric dilatation volvulus (GDV) syndrome and in dogs with sepsis. It was hypothesised that dogs with GDV syndrome and with sepsis have greater plasma PCT concentrations than healthy dogs and that dogs with sepsis have greater PCT concentrations than dogs with GDV syndrome. Before analysing canine plasma samples, the ability of the assay to identify canine PCT, in addition to assay imprecision and the lower limit of detection were established. The assay had low imprecision with coefficients of variation ≤4.5 per cent. The lower limit of detection was 3.4 pg/ml. Plasma PCT concentrations were measured in 20 dogs with sepsis, in 32 dogs with GDV syndrome and in 52 healthy dogs. Median (IQR) PCT concentration in dogs with sepsis 78.7 pg/ml (39.1–164.7) was significantly greater than in healthy dogs 49.8 pg/ml (36.2–63.7) (P=0.019), but there were no significant differences between PCT concentrations in dogs with GDV syndrome and controls (P=0.072) or between dogs with sepsis and GDV syndrome (P=1.000). Dogs with sepsis have significantly increased plasma PCT concentrations compared with healthy dogs, although considerable overlap between these populations was identified. Future investigations should confirm this finding in other populations and evaluate the diagnostic and prognostic value of PCT in dogs with sepsis. PMID:29682292

  14. Stimulation of Suicidal Erythrocyte Death by Increased Extracellular Phosphate Concentrations

    Directory of Open Access Journals (Sweden)

    Jakob Voelkl

    2014-02-01

    Full Text Available Background/Aim: Anemia in renal insufficiency results in part from impaired erythrocyte formation due to erythropoietin and iron deficiency. Beyond that, renal insufficiency enhances eryptosis, the suicidal erythrocyte death characterized by phosphatidylserine-exposure at the erythrocyte surface. Eryptosis may be stimulated by increase of cytosolic Ca2+-activity ([Ca2+]i. Several uremic toxins have previously been shown to stimulate eryptosis. Renal insufficiency is further paralleled by increase of plasma phosphate concentration. The present study thus explored the effect of phosphate on erythrocyte death. Methods: Cell volume was estimated from forward scatter, phosphatidylserine-exposure from annexin V binding, and [Ca2+]i from Fluo3-fluorescence. Results: Following a 48 hours incubation, the percentage of phosphatidylserine exposing erythrocytes markedly increased as a function of extracellular phosphate concentration (from 0-5 mM. The exposure to 2 mM or 5 mM phosphate was followed by slight but significant hemolysis. [Ca2+]i did not change significantly up to 2 mM phosphate but significantly decreased at 5 mM phosphate. The effect of 2 mM phosphate on phosphatidylserine exposure was significantly augmented by increase of extracellular Ca2+ to 1.7 mM, and significantly blunted by nominal absence of extracellular Ca2+, by additional presence of pyrophosphate as well as by presence of p38 inhibitor SB203580. Conclusion: Increasing phosphate concentration stimulates erythrocyte membrane scrambling, an effect depending on extracellular but not intracellular Ca2+ concentration. It is hypothesized that suicidal erythrocyte death is triggered by complexed CaHPO4.

  15. Glacier Melting Increases the Solute Concentrations of Himalayan Glacial Lakes.

    Science.gov (United States)

    Salerno, Franco; Rogora, Michela; Balestrini, Raffaella; Lami, Andrea; Tartari, Gabriele A; Thakuri, Sudeep; Godone, Danilo; Freppaz, Michele; Tartari, Gianni

    2016-09-06

    Over the past two decades, we observed a substantial rise in ionic content that was mainly determined by the sulfate concentration at 20 remote high elevation lakes located in central southern Himalaya. At LCN9, which was monitored on an annual basis for the last 20 years, the sulfate concentrations increased over 4-fold. Among the main causes, we exclude a change in the composition of wet atmospheric deposition, as well as a possible influence of decrease in seasonal snow cover duration, which could have exposed larger basin surfaces to alteration processes. Glacier retreat likely was the main factor responsible for the observed increase of sulfate concentrations. We attribute this chemical changes mainly to the sulfide oxidation processes that occur in subglacial environments. Moreover, we observe that the weakened monsoon of the past two decades has only partially contributed to the lakes enrichment through runoff waters that are more concentrated in solutes or lowering the water table, resulting in more rock exposed to air and enhanced mineral oxidation.

  16. Multi-model assessment of stratospheric ozone return dates and ozone recovery in CCMVal-2 models

    Directory of Open Access Journals (Sweden)

    V. Eyring

    2010-10-01

    Full Text Available Projections of stratospheric ozone from a suite of chemistry-climate models (CCMs have been analyzed. In addition to a reference simulation where anthropogenic halogenated ozone depleting substances (ODSs and greenhouse gases (GHGs vary with time, sensitivity simulations with either ODS or GHG concentrations fixed at 1960 levels were performed to disaggregate the drivers of projected ozone changes. These simulations were also used to assess the two distinct milestones of ozone returning to historical values (ozone return dates and ozone no longer being influenced by ODSs (full ozone recovery. The date of ozone returning to historical values does not indicate complete recovery from ODSs in most cases, because GHG-induced changes accelerate or decelerate ozone changes in many regions. In the upper stratosphere where CO2-induced stratospheric cooling increases ozone, full ozone recovery is projected to not likely have occurred by 2100 even though ozone returns to its 1980 or even 1960 levels well before (~2025 and 2040, respectively. In contrast, in the tropical lower stratosphere ozone decreases continuously from 1960 to 2100 due to projected increases in tropical upwelling, while by around 2040 it is already very likely that full recovery from the effects of ODSs has occurred, although ODS concentrations are still elevated by this date. In the midlatitude lower stratosphere the evolution differs from that in the tropics, and rather than a steady decrease in ozone, first a decrease in ozone is simulated from 1960 to 2000, which is then followed by a steady increase through the 21st century. Ozone in the midlatitude lower stratosphere returns to 1980 levels by ~2045 in the Northern Hemisphere (NH and by ~2055 in the Southern Hemisphere (SH, and full ozone recovery is likely reached by 2100 in both hemispheres. Overall, in all regions except the tropical lower stratosphere, full ozone recovery from ODSs occurs significantly later than the

  17. Genetically low vitamin D concentrations and increased mortality

    DEFF Research Database (Denmark)

    Afzal, Shoaib; Brøndum-Jacobsen, Peter; Bojesen, Stig E

    2014-01-01

    adjusted hazard ratios for a 20 nmol/L lower plasma 25-hydroxyvitamin D concentration were 1.19 (95% confidence interval 1.14 to 1.25) for all cause mortality, 1.18 (1.09 to 1.28) for cardiovascular mortality, 1.12 (1.03 to 1.22) for cancer mortality, and 1.27 (1.15 to 1.40) for other mortality. Each...... increase in DHCR7/CYP2R1 allele score was associated with a 1.9 nmol/L lower plasma 25-hydroxyvitamin D concentration and with increased all cause, cancer, and other mortality but not with cardiovascular mortality. The odds ratio for a genetically determined 20 nmol/L lower plasma 25-hydroxyvitamin D...

  18. IMPACT OF INCREASED ALUMINATE CONCENTRATIONS ON PROPERTIES OF SALTSTONE MIXES

    International Nuclear Information System (INIS)

    Harbour, J; Tommy Edwards, T; Erich Hansen, E; Vickie Williams, V

    2007-01-01

    One of the goals of the Saltstone variability study is to identify the operational and compositional variables that control or influence the important processing and performance properties of Saltstone mixes. The protocols developed in this variability study are ideally suited as a tool to assess the impact of proposed changes to the processing flow sheet for Liquid Waste Operations (LWO). One such proposal that is currently under consideration is to introduce a leaching step in the treatment of the High Level Waste (HLW) sludge to remove aluminum prior to vitrification at the Defense Waste Processing Facility (DWPF). This leachate would significantly increase the soluble aluminate concentrations as well as the free hydroxide ion concentration in the salt feed that will be processed at the Saltstone Processing Facility (SPF). Consequently, an initial study of the impact of increased aluminate concentration on the Saltstone grout properties was performed. The projected compositions and ranges of the aluminate rich salt stream (which includes the blending strategy) are not yet available and consequently, in this initial report, two separate salt stream compositions were investigated. The first stream starts with the previously projected baseline composition of the salt solution that will be fed to SPF from the Salt Waste Processing Facility (SWPF). The second stream is the solution that results from washing of the current Tank 51 sludge and subsequent transfer of the salt solution to Tank 11. The SWPF simulant has higher nitrate and lower free hydroxide than the Tank 11 simulant. In both of these cases, the aluminate was varied up to a maximum of 0.40 to 0.45M aluminate in order to evaluate the impact of increasing aluminate ion concentration on the grout properties. In general, the fresh grout properties of mixes made with SWPF and Tank 11 simulants were relatively insensitive to an increase in aluminate concentration in the salt solutions. However, the overall

  19. Increase in tiagabine serum concentration with coadministration of gemfibrozil.

    Science.gov (United States)

    Burstein, Aaron H; Boudreau, Eilis A; Theodore, William H

    2009-02-01

    To report a case of possible acute tiagabine toxicity secondary to administration of gemfibrozil. A 39-year-old male was taking tiagabine 16 mg orally 3 times per day and carbamazepine 500 mg orally twice per day for complex partial seizures secondary to mesial temporal sclerosis. He was found to have type IV hypertriglyceridemia and was prescribed gemfibrozil. Because he reported severe confusion and altered consciousness shortly after a single 600-mg dose of gemfibrozil, he was admitted for controlled challenge with that drug. A single 300-mg dose of gemfibrozil resulted in lightheadedness and led to a 59% and 75% increase in total tiagabine serum concentrations at 2 and 5 hours, respectively, without significant change in baseline carbamazepine concentrations. This is the first report of an interaction between the widely used antihyperlipidemic drug gemfibrozil and tiagabine. Since tiagabine, which was originally developed as an antiepileptic medication, is now being used widely for a variety of other indications such as anxiety and depression, there is an increased risk for clinically significant interactions with gemfibrozil. Increased total and unbound tiagabine concentrations following a single 300-mg dose of gemfibrozil and reproduction of clinical symptoms with gemfibrozil rechallenge suggests the toxicity our patient experienced was due to a pharmacokinetic drug interaction. Use of the Horn Drug Interaction Probability Scale showed a probable interaction between gemfibrozil and tiagabine.

  20. Reasons for increasing radon concentrations in radon remediated houses

    International Nuclear Information System (INIS)

    Clavensjoe, B.

    1997-01-01

    The study comprises 31 single-dwelling houses where remedial actions were carried out in the 1980s. In all of them the radon concentrations have increased more than 30% according to recent control measurements. Radon sources are building material as well as the soil. The remedial actions dealt with ventilation systems, leakage through the basement floor, air cushions, sub-slab suction or radon wells according to the original problems. Causes for the increase varied: In many houses with soil radon problems, the installation of a normal mechanical ventilation system is not a good remedial action. In some houses on a ground with high permeability and high radon content in the soil air, the radon concentration may increase by the lowering of the indoor air pressure. In other houses the increase was a measurement effect, where sites/rooms were confused. Living related causes were identified in a number of cases, where fan speeds were reduced for energy conservation/noise reduction purposes or different use of windows airing had occurred. Extension of the dwelling space without changing the ventilation system caused the increase in one house. 23 refs

  1. Effects of short-term abatement measures on peak ozone concentrations during summer smog episodes in the Netherlands

    NARCIS (Netherlands)

    Smeets CJPP; Beck JP; LLO

    2002-01-01

    De afgelopen jaren werden de drempelwaarden voor ozon op grondniveau, zoals vastgelegd in de huidige Richtlijn 92/72/EEC, veelvuldig overschreden in alle landen van de Europese Unie. De EU verplicht alle deelnemende landen om een onderzoek te doen naar het ozon reductie potentieel van korte

  2. Enhanced effect of suction-cavitation on the ozonation of phenol

    International Nuclear Information System (INIS)

    Wu Zhilin; Franke, Marcus; Ondruschka, Bernd; Zhang, Yongchun; Ren Yanze; Braeutigam, Patrick; Wang, Weimin

    2011-01-01

    800 mL of 1.0 mM phenol-containing aqueous solution was circulated at 20 ° C for 30 min in a suction-reactor, while 3.2 mg min -1 ozone was introduced into the solution under the suction orifice. The removal rates of phenol vary polynomially with the orifice diameter as well as the suction pressure. The rate constant for the zero-order kinetics achieves the highest value at -0.070 MPa by using 5 mm orifice. Although the suction-cavitation alone cannot remove phenol in 30 min, it can considerably enhance the ozonation of phenol. The rate constants for the zero-order kinetics by the simple ozonation and the combined method are 0.018 and 0.028 min -1 , respectively. Furthermore, no ozone was observed in the tail gas during the first 15 min for the ozonation in the suction reactor, and then the concentration of unreacted ozone slowly increased, indicating that the utilization rate of ozone is significantly improved by the suction-cavitation. The increasing input concentration of ozone obviously accelerates the ozonation of phenol, but the total required quantities of ozone are very close by various ozone input concentrations to reach the same degradation rate, indicating the ozonation assisted by the suction-cavitation can be considered as a quantitative reaction.

  3. Phenols removal using ozonation-adsorption with granular activated carbon (GAC) in rotating packed bed reactor

    Science.gov (United States)

    Karamah, E. F.; Leonita, S.; Bismo, S.

    2018-01-01

    Synthetic wastewater containing phenols was treated using combination method of ozonation-adsorption with GAC (Granular Activated Carbon) in a packed bed rotating reactor. Ozone reacts quickly with phenol and activated carbon increases the oxidation process by producing hydroxyl radicals. Performance parameters evaluated are phenol removal percentage, the quantity of hydroxyl radical formed, changes in pH and ozone utilization, dissolved ozone concentration and ozone concentration in off gas. The performance of the combination method was compared with single ozonation and single adsorption. The influence of GAC dose and initial pH of phenols were evaluated in ozonation-adsorption method. The results show that ozonation-adsorption method generates more OH radicals than a single ozonation. Quantity of OH radical formation increases with increasing pH and quantity of the GAC. The combination method prove better performance in removing phenols. At the same operation condition, ozonation-adsorption method is capable of removing of 78.62% phenols as compared with single ozonation (53.15%) and single adsorption (36.67%). The increasing percentage of phenol removal in ozonation-adsorption method is proportional to the addition of GAC dose, solution pH, and packed bed rotator speed. Maximum percentage of phenol removal is obtained under alkaline conditions (pH 10) and 125 g of GAC

  4. Method of increased bioethanol concentration with reduced heat consumption

    International Nuclear Information System (INIS)

    Bremers, G.; Blija, A.

    2003-01-01

    Ethanol dehydration applying method of non-reflux saline distillation was conduced on a laboratory scale and in bigger pilot equipment. Results make possible recommend new method for the increased of ethanol concentration. Heat consumption reduced by 50% and cooling water consumption by 90 % when the non-reflux distillation was applied. Reflux flow in the column is replacing with contact mass, which consist from saline layer and seclude medium. Basis diagram of ethanol non-reflux saline distillation was established. Distillation equipment and number of plates in the column can calculate using basis diagram. Absolute ethanol can obtain with non-reflux saline distillation. Absolute ethanol use in produce of biofuel (author)

  5. Issues in Stratospheric Ozone Depletion.

    Science.gov (United States)

    Lloyd, Steven Andrew

    Following the announcement of the discovery of the Antarctic ozone hole in 1985 there have arisen a multitude of questions pertaining to the nature and consequences of polar ozone depletion. This thesis addresses several of these specific questions, using both computer models of chemical kinetics and the Earth's radiation field as well as laboratory kinetic experiments. A coupled chemical kinetic-radiative numerical model was developed to assist in the analysis of in situ field measurements of several radical and neutral species in the polar and mid-latitude lower stratosphere. Modeling was used in the analysis of enhanced polar ClO, mid-latitude diurnal variation of ClO, and simultaneous measurements of OH, HO_2, H_2 O and O_3. Most importantly, such modeling was instrumental in establishing the link between the observed ClO and BrO concentrations in the Antarctic polar vortex and the observed rate of ozone depletion. The principal medical concern of stratospheric ozone depletion is that ozone loss will lead to the enhancement of ground-level UV-B radiation. Global ozone climatology (40^circS to 50^ circN latitude) was incorporated into a radiation field model to calculate the biologically accumulated dosage (BAD) of UV-B radiation, integrated over days, months, and years. The slope of the annual BAD as a function of latitude was found to correspond to epidemiological data for non-melanoma skin cancers for 30^circ -50^circN. Various ozone loss scenarios were investigated. It was found that a small ozone loss in the tropics can provide as much additional biologically effective UV-B as a much larger ozone loss at higher latitudes. Also, for ozone depletions of > 5%, the BAD of UV-B increases exponentially with decreasing ozone levels. An important key player in determining whether polar ozone depletion can propagate into the populated mid-latitudes is chlorine nitrate, ClONO_2 . As yet this molecule is only indirectly accounted for in computer models and field

  6. Study on the Ozonation of Organic Wastes (1)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki Hong; Kang, Il Sik; Hong, Dae Seok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Ozone is often used in combination with H{sub 2}O{sub 2}, UV, peroxides, and the catalyst. These combined processes have the purpose to increase OH radicals, so this combination process is called the advanced oxidation process (AOP, Advanced Oxidation Process). In this study, the possibility of the oxidation treatment of LSC Cocktail solution by using a combination of ozone and hydrogen peroxide was investigated. The addition of a suitable amount of hydrogen peroxide increases the efficiency of the oxidation process during ozonation of the organic materials. But on the contrary, the excess addition of hydrogen they can play a role as a scavenger consuming the hydroxyl radicals generated during the ozonation process. So it is very important to find the amount of volume of hydrogen peroxide. The efficiency of oxidation treatment of organic materials is greatly depended on the properties of liquid waste (pH, concentration and chemical type of organics), the process temperature, the flow rate (waste and ozone gas), the ozone concentration, the hydrogen peroxide concentration and the presence or absence of scavengers. In this study, by using an ozone contactor (hydrophobic hollow fiber membrane type), the basic experiments were carried out to evaluate the applicability of ozonation to the organic wastes. First of all, the oxidation treatment was evaluated by ozone alone, and secondly was evaluated according to the changes of the amount of hydrogen peroxide and a pH of wastes.

  7. Study on the Ozonation of Organic Wastes (1)

    International Nuclear Information System (INIS)

    Kim, Ki Hong; Kang, Il Sik; Hong, Dae Seok

    2014-01-01

    Ozone is often used in combination with H 2 O 2 , UV, peroxides, and the catalyst. These combined processes have the purpose to increase OH radicals, so this combination process is called the advanced oxidation process (AOP, Advanced Oxidation Process). In this study, the possibility of the oxidation treatment of LSC Cocktail solution by using a combination of ozone and hydrogen peroxide was investigated. The addition of a suitable amount of hydrogen peroxide increases the efficiency of the oxidation process during ozonation of the organic materials. But on the contrary, the excess addition of hydrogen they can play a role as a scavenger consuming the hydroxyl radicals generated during the ozonation process. So it is very important to find the amount of volume of hydrogen peroxide. The efficiency of oxidation treatment of organic materials is greatly depended on the properties of liquid waste (pH, concentration and chemical type of organics), the process temperature, the flow rate (waste and ozone gas), the ozone concentration, the hydrogen peroxide concentration and the presence or absence of scavengers. In this study, by using an ozone contactor (hydrophobic hollow fiber membrane type), the basic experiments were carried out to evaluate the applicability of ozonation to the organic wastes. First of all, the oxidation treatment was evaluated by ozone alone, and secondly was evaluated according to the changes of the amount of hydrogen peroxide and a pH of wastes

  8. The relationship between typhoons' peripheral circulation and ground-level ozone concentrations in central Taiwan.

    Science.gov (United States)

    Cheng, Wan-Li; Lai, Li-Wei; Den, Walter; Wu, Meng-Ting; Hsueh, Chao-An; Lin, Pay-Liam; Pai, Chueh-Ling; Yan, Yeou-Lih

    2014-02-01

    Surface data of meteorological parameters (wind speed, wind direction, and mixing height) and air pollutant concentrations (O3, NO, and NO2) were collected for a 92-day period associated with typhoon formation in 2005. The influence of typhoons on O3 concentration were defined by azimuth and distance from Taiwan, and Types A, B, and C correspond to typhoons less than 1,500 km from Taiwan and located between azimuths 45° and 135°, 135° and 225°, and 225° and 45°, respectively. Type D corresponds to typhoons more than 1,500 km from Taiwan. Titration reactions were conducted at three temporal phases: 2000-0700, 0800-1100, and 1200-1400 LST (Local Standard Time). The air pollution model (TAPM) was used to simulate wind fields and trajectories of air masses. It was determined that typhoon position affected O3 concentration, temporal and spatial patterns of O3 titration and vertical meteorological characteristics, which were not all at the statistically significant level.

  9. Indoor transient SOA formation from ozone + α-pinene reactions: Impacts of air exchange and initial product concentrations, and comparison to limonene ozonolysis

    Science.gov (United States)

    Youssefi, Somayeh; Waring, Michael S.

    2015-07-01

    The ozonolysis of reactive organic gases (ROG), e.g. terpenes, generates secondary organic aerosol (SOA) indoors. The SOA formation strength of such reactions is parameterized by the aerosol mass fraction (AMF), a.k.a. SOA yield, which is the mass ratio of generated SOA to oxidized ROG. AMFs vary in magnitude both among and for individual ROGs. Here, we quantified dynamic SOA formation from the ozonolysis of α-pinene with 'transient AMFs,' which describe SOA formation due to pulse emission of a ROG in an indoor space with air exchange, as is common when consumer products are intermittently used in ventilated buildings. We performed 19 experiments at low, moderate, and high (0.30, 0.52, and 0.94 h-1, respectively) air exchange rates (AER) at varying concentrations of initial reactants. Transient AMFs as a function of peak SOA concentrations ranged from 0.071 to 0.25, and they tended to increase as the AER and product of the initial reactant concentrations increased. Compared to our similar research on limonene ozonolysis (Youssefi and Waring, 2014), for which formation strength was driven by secondary ozone reactions, the AER impact for α-pinene was opposite in direction and weaker, while the initial reactant product impact was in the same direction but stronger for α-pinene than for limonene. Linear fits of AMFs for α-pinene ozonolysis as a function of the AER and initial reactant concentrations are provided so that future indoor models can predict SOA formation strength.

  10. Ozone Monitoring Instrument Observations of Interannual Increases in SO2 Emissions from Indian Coal-fired Power Plants During 2005-2012

    Science.gov (United States)

    Lu, Zifeng; Streets, David D.; de Foy, Benjamin; Krotkov, Nickolay A.

    2014-01-01

    Due to the rapid growth of electricity demand and the absence of regulations, sulfur dioxide (SO2) emissions from coal-fired power plants in India have increased notably in the past decade. In this study, we present the first interannual comparison of SO2 emissions and the satellite SO2 observations from the Ozone Monitoring Instrument (OMI) for Indian coal-fired power plants during the OMI era of 2005-2012. A detailed unit-based inventory is developed for the Indian coal-fired power sector, and results show that its SO2 emissions increased dramatically by 71 percent during 2005-2012. Using the oversampling technique, yearly high-resolution OMI maps for the whole domain of India are created, and they reveal a continuous increase in SO2 columns over India. Power plant regions with annual SO2 emissions greater than 50 Gg year-1 produce statistically significant OMI signals, and a high correlation (R equals 0.93) is found between SO2 emissions and OMI-observed SO2 burdens. Contrary to the decreasing trend of national mean SO2 concentrations reported by the Indian Government, both the total OMI-observed SO2 and average SO2 concentrations in coal-fired power plant regions increased by greater than 60 percent during 2005-2012, implying the air quality monitoring network needs to be optimized to reflect the true SO2 situation in India.

  11. Fate of return activated sludge after ozonation: an optimization study for sludge disintegration.

    Science.gov (United States)

    Demir, Ozlem; Filibeli, Ayse

    2012-09-01

    The effects of ozonation on sludge disintegration should be investigated before the application of ozone during biological treatment, in order to minimize excess sludge production. In this study, changes in sludge and supernatant after ozonation of return activated sludge were investigated for seven different ozone doses. The optimum ozone dose to avoid inhibition of ozonation and high ozone cost was determined in terms of disintegration degree as 0.05 g O3/gTS. Suspended solid and volatile suspended solid concentrations of sludge decreased by 77.8% and 71.6%, respectively, at the optimum ozone dose. Ozonation significantly decomposed sludge flocs. The release of cell contents was proved by the increase of supernatant total nitrogen (TN) and phosphorus (TP). While TN increased from 7 mg/L to 151 mg/L, TP increased from 8.8 to 33 mg/L at the optimum ozone dose. The dewaterability and filterability characteristics of the ozonated sludge were also examined. Capillary suction time increased with increasing ozone dosage, but specific resistance to filtration increased to a specific value and then decreased dramatically. The particle size distribution changed significantly as a result of floc disruption at an optimum dose of 0.05 gO3/gTS.

  12. Assessing the impacts of current and future concentrations of surface ozone on crop yield with meta-analysis

    Science.gov (United States)

    Feng, Zhaozhong; Kobayashi, Kazuhiko

    Meta-analysis was conducted to quantitatively assess the effects of rising ozone concentrations ([O 3]) on yield and yield components of major food crops: potato, barley, wheat, rice, bean and soybean in 406 experimental observations. Yield loss of the crops under current and future [O 3] was expressed relative to the yield under base [O 3] (≤26 ppb). With potato, current [O 3] (31-50 ppb) reduced the yield by 5.3%, and it reduced the yield of barley, wheat and rice by 8.9%, 9.7% and 17.5%, respectively. In bean and soybean, the yield losses were 19.0% and 7.7%, respectively. Compared with yield loss at current [O 3], future [O 3] (51-75 ppb) drove a further 10% loss in yield of soybean, wheat and rice, and 20% loss in bean. Mass of individual grain, seed, or tuber was often the major cause of the yield loss at current and future [O 3], whereas other yield components also contributed to the yield loss in some cases. No significant difference was found between the responses in crops grown in pots and those in the ground for any yield parameters. The ameliorating effect of elevated [CO 2] was significant in the yields of wheat and potato, and the individual grain weight in wheat exposed to future [O 3]. These findings confirm the rising [O 3] as a threat to food security for the growing global population in this century.

  13. The behaviour of ozone and peroxyacetyl nitrate concentrations for different wind regimes during the MEDCAPHOT-TRACE campaign in the greater area of Athens, Greece

    DEFF Research Database (Denmark)

    Suppan, P.; Fabian, P.; Vyras, L.

    1998-01-01

    As a part of an international experimental field campaign, the association of air pollution with sea breeze circulation in the Greater Athens Area (GAA) is discussed on the basis of the behaviour of ozone and peroxyacetyl nitrate (PAN). During typical sea breeze days inside the Athens basin the o...... a straight line across the Athens basin ranging From the island of Aegina in the Gulf of Saronikos to the northern border of the GAA show distinct peaks due to the pollution cloud NEPHOS. (C) 1998 Published by Elsevier Science Ltd. All rights reserved....... the ozone levels reach values up to 66% greater than values outside the basin. There is also an increase in ozone and PAN mixing ratios from the south to the north and from lower to higher locations, within the GAA. On-line PAN-measurements with a time resolution of 5 min at three sites located almost along...

  14. Effect of ozone and distance from a major roadway on nitrogen oxides concentrations.

    Science.gov (United States)

    2011-02-28

    Despite recent advances in the automobile industry in reducing emissions from individual vehicles, air pollution in localities, where there are regional increases in the traffic volumes, still persist at problematic levels. Vehicular emissions are th...

  15. Effect of coupled anthropogenic perturbations on stratospheric ozone

    International Nuclear Information System (INIS)

    Wuebbles, D.J.; Luther, F.M.; Penner, J.E.

    1992-01-01

    Since 1976 the greatest concern about potential perturbations to stratospheric ozone has been in regard to the atmospheric release of chlorofluorocarbons. Consequently, atmospheric measurements of ozone have usually been compared with model calculations in which only chlorocarbon perturbations are considered. However, in order to compare theoretical calculations with recent measurements of ozone and to project expected changes to atmospheric ozone levels over the next few decades, one must consider the effect from other perturbations as well. In this paper, the authors consider the coupling between several possible anthropogenic atmospheric perturbations. Namely, they examine the effects of past and possible future increases of chlorocarbons, CO 2 , N 2 O, and NO x . The focus of these calculations is on the potential changes in ozone due to chlorocarbon emissions, how other anthropogenic perturbations may have influenced the actual change in ozone over the last decade, and how these perturbations may influence future changes in ozone. Although calculations including future chlorocarbon emissions alone result in significant reductions in ozone, there is very little change in total ozone over the coming decades when other anthropogenic sources are included. Increasing CO 2 concentrations have the largest offsetting effect on the change in total ozone due to chlorocarbons. Owing to the necessity of considering emissions from a number of trace gases simultaneously, determining expected global-scale chemical and climatic effects is more complex than was previously recognized

  16. Group Waterpipe Tobacco Smoking Increases Smoke Toxicant Concentration.

    Science.gov (United States)

    Ramôa, Carolina P; Shihadeh, Alan; Salman, Rola; Eissenberg, Thomas

    2016-05-01

    Waterpipe tobacco smoking is a global health concern. Laboratory research has focused on individual waterpipe users while group use is common. This study examined user toxicant exposure and smoke toxicant yield associated with individual and group waterpipe smoking. Twenty-two pairs of waterpipe smokers used a waterpipe individually and as a dyad. Before and after smoking, blood was sampled and expired carbon monoxide (CO) measured; puff topography was recorded throughout. One participant from each pair was selected randomly and their plasma nicotine and expired air CO concentrations were compared when smoking alone to when smoking as part of a dyad. Recorded puff topography was used to machine-produce smoke that was analyzed for toxicant content. There was no difference in mean plasma nicotine concentration when an individual smoked as part of a dyad (mean = 14.9 ng/ml; standard error of the mean [SEM] = 3.0) compared to when smoking alone (mean = 10.0 ng/ml; SEM = 1.5). An individual smoking as part of as a dyad had, on average, lower CO (mean = 15.8 ppm; SEM = 2.0) compared to when smoking alone (mean= 21.3 ppm; SEM = 2.7). When two participants smoked as a dyad they took, on average, more puffs (mean = 109.8; SEM = 7.6) than a singleton smoker (mean = 77.7; SEM = 8.1) and a shorter interpuff interval (IPI; dyad mean = 23.8 seconds; SEM = 1.9; singleton mean = 40.8 seconds; SEM = 4.8). Higher concentrations of several toxicants were observed in dyad-produced smoke. Dyad smoking may increase smoke toxicant content, likely due to the dyad's shorter IPIs and greater puff number. More work is needed to understand if group waterpipe smoking alters the health risks of waterpipe tobacco smoking. This study is the first to measure toxicants in smoke generated from a waterpipe when used by a dyad. Relative to smoke generated by a singleton, dyad smoke had higher concentration of some toxicants. These differences may be attributed to differences in puffing behavior

  17. California Baseline Ozone Transport Study (CABOTS): Ozonesonde Measurements

    Science.gov (United States)

    Eiserloh, A. J., Jr.; Chiao, S.; Spitze, J.; Cauley, S.; Clark, J.; Roberts, M.

    2016-12-01

    Because the EPA recently lowered the ambient air quality standard for the 8-hr average of ozone (O3) to70 ppbv, California must continue to achieve significant reductions in ozone precursor emissions and prepare for new State Implementation Plans (SIP) to demonstrate how ground-level ambient ozone will be reduced below the new health-based standard. Prior studies suggest that background levels of ozone traveling across the Pacific Ocean can significantly influence surface ozone throughout California, particularly during the spring. Evidence has been presented indicating that background levels of ozone continue to increase in the western United States over the recent few decades, implying more ozone exceedances in the future. To better understand the contributions of the external natural and anthropogenic pollution sources as well as atmospheric processes for surface ozone concentrations in California during the spring and summer months, the California Baseline Ozone Transport Study (CABOTS) has been established. One major goal of CABOTS is to implement near daily ozonesonde measurements along the California Coast to quantify background ozone aloft before entering the State during high ozone season. CABOTS has been ongoing from May through August of 2016 launching ozonesondes from Bodega Bay and Half Moon Bay, California. The temporal progression of ozonesonde measurements and subsequent analysis of the data will be discussed with a focus on the contribution of background ozone to surface ozone sites inland as well as likely origins of layers aloft. Comparisons of current ozonesondes versus prior ozonesonde studies of California will also be performed. A few selected cases of high ozone layers moving onshore from different sources will be discussed as well.

  18. A Case Study On the Relative Influence of Free Tropospheric Subsidence, Long Range Transport and Local Production in Modulating Ozone Concentrations over Qatar

    Science.gov (United States)

    Ayoub, Mohammed; Ackermann, Luis; Fountoukis, Christos; Gladich, Ivan

    2016-04-01

    The Qatar Environment and Energy Research Institute (QEERI) operates a network of air quality monitoring stations (AQMS) around the Doha metropolitan area and an ozonesonde station with regular weekly launches and occasional higher frequency launch experiments (HFLE). Six ozonesondes were launched at 0700 LT/0400 UTC and 1300 LT/1000 UTC over a three day period between 10-12 September, 2013. We present the analysis of the ozonesonde data coupled with regional chemical transport modeling over the same time period using WRF-Chem validated against both the ozonesonde and surface AQMS measurements. The HFLE and modeling show evidence of both subsidence and transboundary transport of ozone during the study period, coupled with a strong sea breeze circulation on the 11th of September resulting in elevated ozone concentrations throughout the boundary layer. The development of the sea breeze during the course of the day and influence of the early morning residual layer versus daytime production is quantified. The almost complete titration of ozone in the morning hours of 11 September, 2013 is attributed to local vehicular emissions of NOx and stable atmospheric conditions prevailing over the Doha area. The relative contribution of long range transport of ozone along the Arabian Gulf coast and local urban emissions are discussed.

  19. Ozone adsorption on carbon nanoparticles

    Science.gov (United States)

    Chassard, Guillaume; Gosselin, Sylvie; Visez, Nicolas; Petitprez, Denis

    2014-05-01

    Carbonaceous particles produced by incomplete combustion or thermal decomposition of hydrocarbons are ubiquitous in the atmosphere. On these particles are adsorbed hundreds of chemical species. Those of great concern to health are polycyclic aromatic hydrocarbons (PAHs). During atmospheric transport, particulate PAHs react with gaseous oxidants. The induced chemical transformations may change toxicity and hygroscopicity of these potentially inhalable particles. The interaction between ozone and carbon particles has been extensively investigated in literature. However ozone adsorption and surface reaction mechanisms are still ambiguous. Some studies described a fast catalytic decomposition of ozone initiated by an atomic oxygen chemisorption followed by a molecular oxygen release [1-3]. Others suggested a reversible ozone adsorption according to Langmuir-type behaviour [4,5]. The aim of this present study is a better understanding of ozone interaction with carbon surfaces. An aerosol of carbon nanoparticles was generated by flowing synthetic air in a glass tube containing pure carbon (primary particles studied. Accordingly to literature, it has been observed that the number of gas-phase ozone molecules lost per unit particle surface area tends towards a plateau for high ozone concentration suggesting a reversible ozone adsorption according to a Langmuir mechanism. We calculated the initial reaction probability between O3 and carbon particles.An initial uptake coefficient of 1.10-4 was obtained. Similar experiments were realized by selecting the particles size with a differential mobility analyser. We observed a strong size-dependent increase in reactivity with the decrease of particles size. This result is relevant for the health issues. Indeed the smallest particles are most likely to penetrate deep into the lungs. Competitive reactions between ozone and other species like H2O or atomic oxygen were also considered. Oxygen atoms were generated by photolysis of O3

  20. Ozone pollution affects flower numbers and timing in a simulated BAP priority calcareous grassland community

    International Nuclear Information System (INIS)

    Hayes, Felicity; Williamson, Jennifer; Mills, Gina

    2012-01-01

    Mesocosms representing the BAP Priority habitat ‘Calcareous Grassland’ were exposed to eight ozone profiles for twelve-weeks in two consecutive years. Half of the mesocosms received a reduced watering regime during the exposure periods. Numbers and timing of flowering in the second exposure period were related to ozone concentration and phytotoxic ozone dose (accumulated stomatal flux). For Lotus corniculatus, ozone accelerated the timing of the maximum number of flowers. An increase in mean ozone concentration from 30 ppb to 70 ppb corresponded with an advance in the timing of maximum flowering by six days. A significant reduction in flower numbers with increasing ozone was found for Campanula rotundifolia and Scabiosa columbaria and the relationship with ozone was stronger for those that were well-watered than for those with reduced watering. These changes in flowering timing and numbers could have large ecological impacts, affecting plant pollination and the food supply of nectar feeding insects. - Highlights: ► An increase in ozone accelerated timing of maximum flowering in Lotus corniculatus. ► Ozone reduced flower numbers in Campanula rotundifolia and Scabiosa columbaria. ► Reduced water availability did not protect most species from the effects of ozone. - Increased tropospheric ozone affected timing of flowering and maximum flower numbers in calcareous grassland mesocosms.

  1. Effects of a pulsed operation on ozone production in dielectric barrier air discharges

    OpenAIRE

    Ruggero Barni; Ilaria Biganzoli; Elisa Dell’Orto; Claudia Riccardi

    2014-01-01

    We have performed an experimental investigation of ozone production in a pulsed dielectric barrier discharge (DBD) reactor. Measurements of ozone in the gas-phase as a function of the power level show that in continuous mode a maximum concentration is achieved before a decrease presumably connected with gas-phase heating. When the reactor is employed in pulsed mode, by applying a definite duty cycle, a strong increase in ozone concentration is generally observed, with a maximum which happens...

  2. Future impacts of distributed power generation on ambient ozone and particulate matter concentrations in the San Joaquin Valley of California.

    Science.gov (United States)

    Vutukuru, Satish; Carreras-Sospedra, Marc; Brouwer, Jacob; Dabdub, Donald

    2011-12-01

    Distributed power generation-electricity generation that is produced by many small stationary power generators distributed throughout an urban air basin-has the potential to supply a significant portion of electricity in future years. As a result, distributed generation may lead to increased pollutant emissions within an urban air basin, which could adversely affect air quality. However, the use of combined heating and power with distributed generation may reduce the energy consumption for space heating and air conditioning, resulting in a net decrease of pollutant and greenhouse gas emissions. This work used a systematic approach based on land-use geographical information system data to determine the spatial and temporal distribution of distributed generation emissions in the San Joaquin Valley Air Basin of California and simulated the potential air quality impacts using state-of-the-art three-dimensional computer models. The evaluation of the potential market penetration of distributed generation focuses on the year 2023. In general, the air quality impacts of distributed generation were found to be small due to the restrictive 2007 California Air Resources Board air emission standards applied to all distributed generation units and due to the use of combined heating and power. Results suggest that if distributed generation units were allowed to emit at the current Best Available Control Technology standards (which are less restrictive than the 2007 California Air Resources Board standards), air quality impacts of distributed generation could compromise compliance with the federal 8-hr average ozone standard in the region.

  3. Concentric resistance training increases muscle strength without affecting microcirculation

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Marc-Andre [Department of Diagnostic and Interventional Radiology, University of Heidelberg, Heidelberg (Germany)], E-mail: MarcAndre.Weber@med.uni-heidelberg.de; Hildebrandt, Wulf [Immunochemistry, German Cancer Research Center (dkfz), Heidelberg (Germany); Schroeder, Leif [Medical Physics in Radiology, German Cancer Research Center (dkfz), Heidelberg (Germany); Kinscherf, Ralf [Department of Anatomy and Developmental Biology, University of Heidelberg, Heidelberg (Germany); Krix, Martin [Radiology, German Cancer Research Center (dkfz), Heidelberg (Germany); Bachert, Peter [Medical Physics in Radiology, German Cancer Research Center (dkfz), Heidelberg (Germany); Delorme, Stefan; Essig, Marco [Radiology, German Cancer Research Center (dkfz), Heidelberg (Germany); Kauczor, Hans-Ulrich [Department of Diagnostic and Interventional Radiology, University of Heidelberg, Heidelberg (Germany); Krakowski-Roosen, Holger [National Center for Tumor Diseases (NCT), Heidelberg (Germany)

    2010-03-15

    Purpose: While the evidence is conclusive regarding the positive effects of endurance training, there is still some controversy regarding the effects of resistance training on muscular capillarity. Thus, the purpose was to assess whether resistance strength training influences resting skeletal muscle microcirculation in vivo. Materials and methods: Thirty-nine middle-aged subjects (15 female, 24 male; mean age, 54 {+-} 9 years) were trained twice a week on an isokinetic system (altogether 16 sessions lasting 50 min, intensity 75% of maximum isokinetic and isometric force of knee flexors and extensors). To evaluate success of training, cross-sectional area (CSA) of the quadriceps femoris muscle and its isokinetic and isometric force were quantified. Muscular capillarization was measured in biopsies of the vastus lateralis muscle. In vivo, muscular energy and lipid metabolites were quantified by magnetic resonance spectroscopy and parameters of muscular microcirculation, such as local blood volume, blood flow and velocity, by contrast-enhanced ultrasound analyzing replenishment kinetics. Results: The significant (P < 0.001) increase in CSA (60 {+-} 16 before vs. 64 {+-} 15 cm{sup 2} after training) and in absolute muscle strength (isometric, 146 {+-} 44 vs. 174 {+-} 50 Nm; isokinetic, 151 {+-} 53 vs. 174 {+-} 62 Nm) demonstrated successful training. Neither capillary density ex vivo (351 {+-} 75 vs. 326 {+-} 62) nor ultrasonographic parameters of resting muscle perfusion were significantly different (blood flow, 1.2 {+-} 1.2 vs. 1.1 {+-} 1.1 ml/min/100 g; blood flow velocity, 0.49 {+-} 0.44 vs. 0.52 {+-} 0.74 mm s{sup -1}). Also, the intensities of high-energy phosphates phosphocreatine and {beta}-adenosintriphosphate were not different after training within the skeletal muscle at rest ({beta}-ATP/phosphocreatine, 0.29 {+-} 0.06 vs. 0.28 {+-} 0.04). Conclusion: The significant increase in muscle size and strength in response to concentric isokinetic and isometric

  4. Ozone modeling within plasmas for ozone sensor applications

    OpenAIRE

    Arshak, Khalil; Forde, Edward; Guiney, Ivor

    2007-01-01

    peer-reviewed Ozone (03) is potentially hazardous to human health and accurate prediction and measurement of this gas is essential in addressing its associated health risks. This paper presents theory to predict the levels of ozone concentration emittedfrom a dielectric barrier discharge (DBD) plasma for ozone sensing applications. This is done by postulating the kinetic model for ozone generation, with a DBD plasma at atmospheric pressure in air, in the form of a set of rate equations....

  5. Diurnal salivary cortisol concentrations in Parkinson’s disease: increased total secretion and morning cortisol concentrations

    Directory of Open Access Journals (Sweden)

    Skogar Ö

    2011-08-01

    hypothalamic-pituitary-adrenal axis. Salivary cortisol concentrations in PD patients were increased in the morning compared with the reference group, and were not influenced by motor dysfunction, duration of disease, or coexistence of chronic or acute pain.Keywords: cortisol, hypothalamic-pituitary-adrenal axis, Parkinson's disease

  6. Reduction of date microbial load with ozone

    Science.gov (United States)

    Farajzadeh, Davood; Qorbanpoor, Ali; Rafati, Hasan; Isfeedvajani, Mohsen Saberi

    2013-01-01

    Background: Date is one of the foodstuffs that are produced in tropical areas and used worldwide. Conventionally, methyl bromide and phosphine are used for date disinfection. The toxic side effects of these usual disinfectants have led food scientists to consider safer agents such as ozone for disinfection, because food safety is a top priority. The present study was performed to investigate the possibility of replacing common conventional disinfectants with ozone for date disinfection and microbial load reduction. Materials and Methods: In this experimental study, date samples were ozonized for 3 and 5 hours with 5 and 10 g/h concentrations and packed. Ozonized samples were divided into two groups and kept in an incubator which was maintained at 25°C and 40°C for 9 months. During this period, every 3 month, microbial load (bacteria, mold, and yeast) were examined in ozonized and non-ozonized samples. Results: This study showed that ozonization with 5 g/h for 3 hours, 5 g/h for 5 hours, 10 g/h for 3 hours, and 10 g/h for 5 hours leads to about 25%, 25%, 53%, and 46% reduction in date mold and yeast load and about 6%, 9%, 76%, and 74.7% reduction in date bacterial load at baseline phase, respectively. Appropriate concentration and duration of ozonization for microbial load reduction were 10 g/h and 3 hours. Conclusion: Date ozonization is an appropriate method for microbial load reduction and leads to an increase in the shelf life of dates. PMID:24124432

  7. Concentric resistance training increases muscle strength without affecting microcirculation

    International Nuclear Information System (INIS)

    Weber, Marc-Andre; Hildebrandt, Wulf; Schroeder, Leif; Kinscherf, Ralf; Krix, Martin; Bachert, Peter; Delorme, Stefan; Essig, Marco; Kauczor, Hans-Ulrich; Krakowski-Roosen, Holger

    2010-01-01

    Purpose: While the evidence is conclusive regarding the positive effects of endurance training, there is still some controversy regarding the effects of resistance training on muscular capillarity. Thus, the purpose was to assess whether resistance strength training influences resting skeletal muscle microcirculation in vivo. Materials and methods: Thirty-nine middle-aged subjects (15 female, 24 male; mean age, 54 ± 9 years) were trained twice a week on an isokinetic system (altogether 16 sessions lasting 50 min, intensity 75% of maximum isokinetic and isometric force of knee flexors and extensors). To evaluate success of training, cross-sectional area (CSA) of the quadriceps femoris muscle and its isokinetic and isometric force were quantified. Muscular capillarization was measured in biopsies of the vastus lateralis muscle. In vivo, muscular energy and lipid metabolites were quantified by magnetic resonance spectroscopy and parameters of muscular microcirculation, such as local blood volume, blood flow and velocity, by contrast-enhanced ultrasound analyzing replenishment kinetics. Results: The significant (P 2 after training) and in absolute muscle strength (isometric, 146 ± 44 vs. 174 ± 50 Nm; isokinetic, 151 ± 53 vs. 174 ± 62 Nm) demonstrated successful training. Neither capillary density ex vivo (351 ± 75 vs. 326 ± 62) nor ultrasonographic parameters of resting muscle perfusion were significantly different (blood flow, 1.2 ± 1.2 vs. 1.1 ± 1.1 ml/min/100 g; blood flow velocity, 0.49 ± 0.44 vs. 0.52 ± 0.74 mm s -1 ). Also, the intensities of high-energy phosphates phosphocreatine and β-adenosintriphosphate were not different after training within the skeletal muscle at rest (β-ATP/phosphocreatine, 0.29 ± 0.06 vs. 0.28 ± 0.04). Conclusion: The significant increase in muscle size and strength in response to concentric isokinetic and isometric resistance training occurs without an increase in the in vivo microcirculation of the skeletal muscles at

  8. Over-expression of ascorbate oxidase in the apoplast of transgenic tobacco results in altered ascorbate and glutathione redox states and increased sensitivity to ozone

    DEFF Research Database (Denmark)

    Sanmartin, Maite; Drogoudi, Pavlina D.; Lyons, Tom

    2003-01-01

    overexpressing plants exposed to 100 nmol mol-1 ozone for 7 h day-1 exhibited a substantial increase in foliar injury, and a greater pollutant-induced reduction in both the light-saturated rate of CO2 assimilation and the maximum in vivo rate of ribulose-1,5-bisphosphate carboxylase/oxygenase carboxylation......Transgenic tobacco (Nicotiana tabacum L. cv. Xanthi) plants expressing cucumber ascorbate oxidase (EC.1.10.3.3) were used to examine the role of extracellular ascorbic acid in mediating tolerance to the ubiquitous air pollutant, ozone (O3). Three homozygous transgenic lines, chosen on the basis...

  9. Spatio-temporal observations of the tertiary ozone maximum

    Directory of Open Access Journals (Sweden)

    V. F. Sofieva

    2009-07-01

    Full Text Available We present spatio-temporal distributions of the tertiary ozone maximum (TOM, based on GOMOS (Global Ozone Monitoring by Occultation of Stars ozone measurements in 2002–2006. The tertiary ozone maximum is typically observed in the high-latitude winter mesosphere at an altitude of ~72 km. Although the explanation for this phenomenon has been found recently – low concentrations of odd-hydrogen cause the subsequent decrease in odd-oxygen losses – models have had significant deviations from existing observations until recently. Good coverage of polar night regions by GOMOS data has allowed for the first time to obtain spatial and temporal observational distributions of night-time ozone mixing ratio in the mesosphere.

    The distributions obtained from GOMOS data have specific features, which are variable from year to year. In particular, due to a long lifetime of ozone in polar night conditions, the downward transport of polar air by the meridional circulation is clearly observed in the tertiary ozone maximum time series. Although the maximum tertiary ozone mixing ratio is achieved close to the polar night terminator (as predicted by the theory, TOM can be observed also at very high latitudes, not only in the beginning and at the end, but also in the middle of winter. We have compared the observational spatio-temporal distributions of the tertiary ozone maximum with that obtained using WACCM (Whole Atmosphere Community Climate Model and found that the specific features are reproduced satisfactorily by the model.

    Since ozone in the mesosphere is very sensitive to HOx concentrations, energetic particle precipitation can significantly modify the shape of the ozone profiles. In particular, GOMOS observations have shown that the tertiary ozone maximum was temporarily destroyed during the January 2005 and December 2006 solar proton events as a result of the HOx enhancement from the increased ionization.

  10. Sources of increase in lowermost stratospheric sulphurous and carbonaceous aerosol background concentrations during 1999–2008 derived from CARIBIC flights

    Directory of Open Access Journals (Sweden)

    Johan Friberg

    2014-03-01

    Full Text Available This study focuses on sulphurous and carbonaceous aerosol, the major constituents of particulate matter in the lowermost stratosphere (LMS, based on in situ measurements from 1999 to 2008. Aerosol particles in the size range of 0.08–2 µm were collected monthly during intercontinental flights with the CARIBIC passenger aircraft, presenting the first long-term study on carbonaceous aerosol in the LMS. Elemental concentrations were derived via subsequent laboratory-based ion beam analysis. The stoichiometry indicates that the sulphurous fraction is sulphate, while an O/C ratio of 0.2 indicates that the carbonaceous aerosol is organic. The concentration of the carbonaceous component corresponded on average to approximately 25% of that of the sulphurous, and could not be explained by forest fires or biomass burning, since the average mass ratio of Fe to K was 16 times higher than typical ratios in effluents from biomass burning. The data reveal increasing concentrations of particulate sulphur and carbon with a doubling of particulate sulphur from 1999 to 2008 in the northern hemisphere LMS. Periods of elevated concentrations of particulate sulphur in the LMS are linked to downward transport of aerosol from higher altitudes, using ozone as a tracer for stratospheric air. Tropical volcanic eruptions penetrating the tropical tropopause are identified as the likely cause of the particulate sulphur and carbon increase in the LMS, where entrainment of lower tropospheric air into volcanic jets and plumes could be the cause of the carbon increase.

  11. The impacts of surface ozone pollution on winter wheat productivity in China – An econometric approach

    International Nuclear Information System (INIS)

    Yi, Fujin; Jiang, Fei; Zhong, Funing; Zhou, Xun; Ding, Aijun

    2016-01-01

    The impact of surface ozone pollution on winter wheat yield is empirically estimated by considering socio-economic and weather determinants. This research is the first to use an economic framework to estimate the ozone impact, and a unique county-level panel is employed to examine the impact of the increasing surface ozone concentration on the productivity of winter wheat in China. In general, the increment of surface ozone concentration during the ozone-sensitive period of winter wheat is determined to be harmful to its yield, and a conservative reduction of ozone pollution could significantly increase China's wheat supply. - Highlights: • We examine the impacts of the surface ozone exposure on winter wheat yield in China. • An econometric method is used to measure the ozone impacts. • The results conclude that surface ozone is harmful to winter wheat yield in China. • We confirm that stress conditions such as drought and air particles can mitigate the adverse effect of ozone. - Surface ozone pollution is harmful to winter wheat yield in China by considering socio-economic determinants, weather, and other stress conditions like drought and air particles.

  12. Impacts of stratospheric sulfate geoengineering on tropospheric ozone

    Science.gov (United States)

    Xia, Lili; Nowack, Peer J.; Tilmes, Simone; Robock, Alan

    2017-10-01

    A range of solar radiation management (SRM) techniques has been proposed to counter anthropogenic climate change. Here, we examine the potential effects of stratospheric sulfate aerosols and solar insolation reduction on tropospheric ozone and ozone at Earth's surface. Ozone is a key air pollutant, which can produce respiratory diseases and crop damage. Using a version of the Community Earth System Model from the National Center for Atmospheric Research that includes comprehensive tropospheric and stratospheric chemistry, we model both stratospheric sulfur injection and solar irradiance reduction schemes, with the aim of achieving equal levels of surface cooling relative to the Representative Concentration Pathway 6.0 scenario. This allows us to compare the impacts of sulfate aerosols and solar dimming on atmospheric ozone concentrations. Despite nearly identical global mean surface temperatures for the two SRM approaches, solar insolation reduction increases global average surface ozone concentrations, while sulfate injection decreases it. A fundamental difference between the two geoengineering schemes is the importance of heterogeneous reactions in the photochemical ozone balance with larger stratospheric sulfate abundance, resulting in increased ozone depletion in mid- and high latitudes. This reduces the net transport of stratospheric ozone into the troposphere and thus is a key driver of the overall decrease in surface ozone. At the same time, the change in stratospheric ozone alters the tropospheric photochemical environment due to enhanced ultraviolet radiation. A shared factor among both SRM scenarios is decreased chemical ozone loss due to reduced tropospheric humidity. Under insolation reduction, this is the dominant factor giving rise to the global surface ozone increase. Regionally, both surface ozone increases and decreases are found for both scenarios; that is, SRM would affect regions of the world differently in terms of air pollution. In conclusion

  13. Impacts of stratospheric sulfate geoengineering on tropospheric ozone

    Directory of Open Access Journals (Sweden)

    L. Xia

    2017-10-01

    Full Text Available A range of solar radiation management (SRM techniques has been proposed to counter anthropogenic climate change. Here, we examine the potential effects of stratospheric sulfate aerosols and solar insolation reduction on tropospheric ozone and ozone at Earth's surface. Ozone is a key air pollutant, which can produce respiratory diseases and crop damage. Using a version of the Community Earth System Model from the National Center for Atmospheric Research that includes comprehensive tropospheric and stratospheric chemistry, we model both stratospheric sulfur injection and solar irradiance reduction schemes, with the aim of achieving equal levels of surface cooling relative to the Representative Concentration Pathway 6.0 scenario. This allows us to compare the impacts of sulfate aerosols and solar dimming on atmospheric ozone concentrations. Despite nearly identical global mean surface temperatures for the two SRM approaches, solar insolation reduction increases global average surface ozone concentrations, while sulfate injection decreases it. A fundamental difference between the two geoengineering schemes is the importance of heterogeneous reactions in the photochemical ozone balance with larger stratospheric sulfate abundance, resulting in increased ozone depletion in mid- and high latitudes. This reduces the net transport of stratospheric ozone into the troposphere and thus is a key driver of the overall decrease in surface ozone. At the same time, the change in stratospheric ozone alters the tropospheric photochemical environment due to enhanced ultraviolet radiation. A shared factor among both SRM scenarios is decreased chemical ozone loss due to reduced tropospheric humidity. Under insolation reduction, this is the dominant factor giving rise to the global surface ozone increase. Regionally, both surface ozone increases and decreases are found for both scenarios; that is, SRM would affect regions of the world differently in terms of air

  14. Ozone's impact on public health: Contributions from indoor exposures to ozone and products of ozone-initiated chemistry

    DEFF Research Database (Denmark)

    Weschler, Charles J.

    2006-01-01

    OBJECTIVES: The associations between ozone concentrations measured outdoors and both morbidity and mortality may be partially due to indoor exposures to ozone and ozone-initiated oxidation products. In this article I examine the contributions of such indoor exposures to overall ozone-related heal...

  15. Increased reverse T3 concentration in patients with anorexia nerrosa

    International Nuclear Information System (INIS)

    Baranowska, B.; Kaniewski, M.; Zgliczynski, S.

    1980-01-01

    In 20 female patients with anorexia nervosa, aging 16 - 26 years, the thyroid function was estimated by +- determining TSH secretion in response to TRH, and serum thyroxine (T 4 ), 3,5,3'L-triiodothyronine (T 3 ) and 3,3',5'L-triiodothyronine (reverse T 3 ) concentrations. 14 healthy women of the same age were included into the control group. If compared with control group, a marked supression of TRH stimulated TSH secretion and a lowering of serum T 3 concentration was found in patients with anorexia nervosa. On the other hand, serum reverse T 3 concentration was markedly higher in patients with anorexia nervosa than in control ones. Gain of body weight leads to normalization of thyroid hormones level in the serum. Obtained results show for peripheral mechanism of described hormonal disorders. (author)

  16. Biologically resistant contaminants, primary treatment with ozone

    Energy Technology Data Exchange (ETDEWEB)

    Echegaray, Diego F. [White Martins Gases Industriais do Nordeste S.A., Salvador, BA (Brazil); Olivieri, Nadja F. [White Martins Gases Industriais S.A., Cordovil, RJ (Brazil)

    1993-12-31

    Organic effluent oxidation tests were conducted in petrochemical companies, in Camacari Petrochemical Complex (Northeast Brazil), to reduce treatment costs and improve the primary treatment efficiency in each industrial process. Ozone achieved 99.96 percent benzene reduction and 100 percent ethyl benzene and toluene reduction. Process efficiency is strongly dependent on the wastewater chemical composition and concentration. For this reason it is necessary to run pilot trials for each specific case. Ozone was obtained feeding commercial oxygen through a corona discharge generator and dissolved in the effluent with a bubble column. Commercial oxygen was used instead of air to increase 250 percent the ozone production, using the same ozone generator. (author). 4 figs., 2 tabs.

  17. Biologically resistant contaminants, primary treatment with ozone

    Energy Technology Data Exchange (ETDEWEB)

    Echegaray, Diego F [White Martins Gases Industriais do Nordeste S.A., Salvador, BA (Brazil); Olivieri, Nadja F [White Martins Gases Industriais S.A., Cordovil, RJ (Brazil)

    1994-12-31

    Organic effluent oxidation tests were conducted in petrochemical companies, in Camacari Petrochemical Complex (Northeast Brazil), to reduce treatment costs and improve the primary treatment efficiency in each industrial process. Ozone achieved 99.96 percent benzene reduction and 100 percent ethyl benzene and toluene reduction. Process efficiency is strongly dependent on the wastewater chemical composition and concentration. For this reason it is necessary to run pilot trials for each specific case. Ozone was obtained feeding commercial oxygen through a corona discharge generator and dissolved in the effluent with a bubble column. Commercial oxygen was used instead of air to increase 250 percent the ozone production, using the same ozone generator. (author). 4 figs., 2 tabs.

  18. Quantifying the contributions to stratospheric ozone changes from ozone depleting substances and greenhouse gases

    Directory of Open Access Journals (Sweden)

    D. A. Plummer

    2010-09-01

    Full Text Available A state-of-the-art chemistry climate model coupled to a three-dimensional ocean model is used to produce three experiments, all seamlessly covering the period 1950–2100, forced by different combinations of long-lived Greenhouse Gases (GHGs and Ozone Depleting Substances (ODSs. The experiments are designed to quantify the separate effects of GHGs and ODSs on the evolution of ozone, as well as the extent to which these effects are independent of each other, by alternately holding one set of these two forcings constant in combination with a third experiment where both ODSs and GHGs vary. We estimate that up to the year 2000 the net decrease in the column amount of ozone above 20 hPa is approximately 75% of the decrease that can be attributed to ODSs due to the offsetting effects of cooling by increased CO2. Over the 21st century, as ODSs decrease, continued cooling from CO2 is projected to account for more than 50% of the projected increase in ozone above 20 hPa. Changes in ozone below 20 hPa show a redistribution of ozone from tropical to extra-tropical latitudes with an increase in the Brewer-Dobson circulation. In addition to a latitudinal redistribution of ozone, we find that the globally averaged column amount of ozone below 20 hPa decreases over the 21st century, which significantly mitigates the effect of upper stratospheric cooling on total column ozone. Analysis by linear regression shows that the recovery of ozone from the effects of ODSs generally follows the decline in reactive chlorine and bromine levels, with the exception of the lower polar stratosphere where recovery of ozone in the second half of the 21st century is slower than would be indicated by the decline in reactive chlorine and bromine concentrations. These results also reveal the degree to which GHG-related effects mute the chemical effects of N2O on ozone in the standard future scenario used for the WMO Ozone Assessment. Increases in the

  19. Impact of parameterization choices on the restitution of ozone deposition over vegetation

    Science.gov (United States)

    Le Morvan-Quéméner, Aurélie; Coll, Isabelle; Kammer, Julien; Lamaud, Eric; Loubet, Benjamin; Personne, Erwan; Stella, Patrick

    2018-04-01

    Ozone is a potentially phyto-toxic air pollutant, which can cause leaf damage and drastically alter crop yields, causing serious economic losses around the world. The VULNOZ (VULNerability to OZone in Anthropised Ecosystems) project is a biology and modeling project that aims to understand how plants respond to the stress of high ozone concentrations, then use a set of models to (i) predict the impact of ozone on plant growth, (ii) represent ozone deposition fluxes to vegetation, and finally (iii) estimate the economic consequences of an increasing ozone background the future. In this work, as part of the VULNOZ project, an innovative representation of ozone deposition to vegetation was developed and implemented in the CHIMERE regional chemistry-transport model. This type of model calculates the average amount of ozone deposited on a parcel each hour, as well as the integrated amount of ozone deposited to the surface at the regional or country level. Our new approach was based on a refinement of the representation of crop types in the model and the use of empirical parameters specific to each crop category. The results obtained were compared with a conventional ozone deposition modeling approach, and evaluated against observations from several agricultural areas in France. They showed that a better representation of the distribution between stomatal and non-stomatal ozone fluxes was obtained in the empirical approach, and they allowed us to produce a new estimate of the total amount of ozone deposited on the subtypes of vegetation at the national level.

  20. Ozone and nitrogen oxides in surface air in Russia: TROICA experiments.

    Science.gov (United States)

    Pankratova, N.; Elansky, N.; Belikov, I.; Shumskiy, R.

    2009-04-01

    The results of measurements of surface ozone and nitrogen oxides concentrations over the continental regions of Russia are discussed. The measurements were done during 10 TROICA experiments (Transcontinental Observations Into the Chemistry of the Atmosphere). The TROICA experiment started in 1995. By the present moment ten expeditions along the Trans-Siberian railroad from Moscow to Vladivostok (around 9300 km) are carried out. We separate data sets into unpolluted and polluted areas to study temporal and spatial features. Moreover we analyzed cities (more then 100 cities). About 50% of all data corresponds to unpolluted conditions. The data collected are used in an analysis of the physical and chemical processes occurring over continental Russia. In this work the estimations of seasonal and daily ozone and NOx distribution were made. The seasonal distribution of ozone for TROICA experiments concentration considerably differs from ozone distribution at Mace Head (Ireland) and Hohenpeissenberg (Germany) stations and well agrees with the ozone distribution at Zotino (Russia, East Siberia). The same concerns also a daily variability. The ozone concentration gradient is presented. Ozone concentration gradually increases in the eastward direction. Its result of the air transport from polluted regions of Europe and ozone depletions, oxidations of CH4 in Siberia, forest fires in Siberia and around Baikal Lake, regional transport of burning products from Northern China. Significant factor of ozone increasing is stratospheric-tropospheric exchange. It appears in TROICA-3 experiment. During several hours ozone concentration was more then 60 ppbv. The areas of photochemical ozone generation in polluted air are also detected. We estimate anthropogenic and natural factors, which are responsible for sharp ozone concentration increasing. Acknowledgments. The work was supported by International Science and Technology Center (ISTC) under contract No. 2770 and by Russian Basic

  1. Evaluation of ozone emissions and exposures from consumer products and home appliances.

    Science.gov (United States)

    Zhang, Q; Jenkins, P L

    2017-03-01

    Ground-level ozone can cause serious adverse health effects and environmental impacts. This study measured ozone emissions and impacts on indoor ozone levels and associated exposures from 17 consumer products and home appliances that could emit ozone either intentionally or as a by-product of their functions. Nine products were found to emit measurable ozone, one up to 6230 ppb at a distance of 5 cm (2 inches). One use of these products increased room ozone concentrations by levels up to 106 ppb (mean, from an ozone laundry system) and personal exposure concentrations of the user by 12-424 ppb (mean). Multiple cycles of use of one fruit and vegetable washer increased personal exposure concentrations by an average of 2550 ppb, over 28 times higher than the level of the 1-h California Ambient Air Quality Standard for ozone (0.09 ppm). Ozone emission rates ranged from 1.6 mg/h for a refrigerator air purifier to 15.4 mg/h for a fruit and vegetable washer. The use of some products was estimated to contribute up to 87% of total daily exposures to ozone. The results show that the use of some products may result in potential health impacts. © 2016 The Authors. Indoor Air published by John Wiley & Sons Ltd.

  2. Increased Circulating Betatrophin Concentrations in Patients with Type 2 Diabetes

    Directory of Open Access Journals (Sweden)

    Daniel Espes

    2014-01-01

    Full Text Available Betatrophin has recently been described as a key hormone to stimulate beta-cell mass expansion in response to insulin resistance and obesity in mice. The finding has generated an interest in the development of antidiabetic drugs with betatrophin as the active component. However, the circulating levels of betatrophin in patients with type 2 diabetes are not well known. Betatrophin concentrations in plasma of 27 type 2 diabetes patients and 18 gender-, age-, and BMI-matched controls were measured. Study participants were characterized with regard to BMI, waist and hip circumference, blood pressure, and fasting plasma blood lipids, creatinine, glucose, HbA1c, and C-peptide. HOMA2 indices were calculated. Betatrophin was 40% higher in patients with type 2 diabetes (893±80 versus 639±66 pg/mL. Betatrophin positively correlated with age in the controls and with HbA1c in the type 2 diabetes patients. All study participants were insulin resistant with mean HOMA2B IR in both groups exceeding 2 and HOMA2%S<50%. Control individuals had impaired fasting glucose concentrations. In this report on betatrophin concentrations in type 2 diabetes and insulin resistance, elevated betatrophin levels were measured in the patients with type 2 diabetes. Future studies are clearly needed to delineate the exact role, if any, of betatrophin in regulating human beta-cell mass.

  3. Iron decreases biological effects of ozone exposure

    Science.gov (United States)

    CONTEXT: Ozone (0(3)) exposure is associated with a disruption of iron homeostasis and increased availability of this metal which potentially contributes to an oxidative stress and biologicaleffects. OBJECTIVE: We tested the postulate that increased concentrations of iron in c...

  4. Oxygen vacancies enabled enhancement of catalytic property of Al reduced anatase TiO{sub 2} in the decomposition of high concentration ozone

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Yanhua; Zhang, Xiaolei [Shanghai Institute of Technology, Shanghai 200235 (China); Chen, Li [East China Normal University, Shanghai 200062 (China); Wang, Xiaorui [Shanghai Institute of Technology, Shanghai 200235 (China); Zhang, Na, E-mail: nzhang@sit.edu.cn [Shanghai Institute of Technology, Shanghai 200235 (China); Liu, Yufeng [Shanghai Institute of Technology, Shanghai 200235 (China); Fang, Yongzheng, E-mail: fyz1003@sina.com [Shanghai Institute of Technology, Shanghai 200235 (China)

    2017-06-15

    The catalytic decomposition of gaseous ozone (O{sub 3}) is investigated using anatase TiO{sub 2} (A-TiO{sub 2}) and Aluminum-reduced A-TiO{sub 2} (ARA-TiO{sub 2}) at high concentration and high relative humidity (RH) without light illumination. Compared with the pristine A-TiO{sub 2}, the ARA-TiO{sub 2} sample possesses a unique crystalline core-amorphous shell structure. It is proved to be an excellent solar energy “capture” for solar thermal collectors due to lots of oxygen vacancies. The results indicate that the overall decomposition efficiency of O{sub 3} without any light irradiation has been greatly improved from 4.8% on A-TiO{sub 2} to 100% on ARA-TiO{sub 2} under the RH=100% condition. The ozone conversion over T500/ARA-TiO{sub 2} catalyst is still maintained at 95% after a 72 h test under the reaction condition of 18.5 g/m{sup 3} ozone initial concentration, and RH=90%. The results can be explained that T500/ARA-TiO{sub 2} possesses the largest amorphous contour, the lowest crystallinity, the most surface-active Ti{sup 3+}/T{sup i4+}couples, and the most oxygen vacancies. This result opens a new door to widen the application of TiO{sub 2} in the thermal-catalytic field. - Graphical abstract: The anatase-TiO{sub 2} with various oxidation states and oxygen vacancies have been obtained by aluminum-reduction, and the decomposition efficiency of O{sub 3} has been greatly improved from 4.8% to 100% without irradiation under the RH=100% condition. - Highlights: • The decomposition of gaseous ozone over Al reduced TiO2 (ARA-TiO{sub 2}) is firstly reported. • The decomposition efficiency is up to 100% without any light irradiation on ARA-TiO{sub 2} under RH=100% condition. • The ozone conversion is maintained at 95% after a 72 h test, when C{sub inlet}=18.5 g/m{sup 3} and RH=90%.

  5. Human Health and Economic Impacts of Ozone Reductions by Income Group.

    Science.gov (United States)

    Saari, Rebecca K; Thompson, Tammy M; Selin, Noelle E

    2017-02-21

    Low-income households may be disproportionately affected by ozone pollution and ozone policy. We quantify how three factors affect the relative benefits of ozone policies with household income: (1) unequal ozone reductions; (2) policy delay; and (3) economic valuation methods. We model ozone concentrations under baseline and policy conditions across the full continental United States to estimate the distribution of ozone-related health impacts across nine income groups. We enhance an economic model to include these impacts across household income categories, and present its first application to evaluate the benefits of ozone reductions for low-income households. We find that mortality incidence rates decrease with increasing income. Modeled ozone levels yield a median of 11 deaths per 100 000 people in 2005. Proposed policy reduces these rates by 13%. Ozone reductions are highest among low-income households, which increases their relative welfare gains by up to 4% and decreases them for the rich by up to 8%. The median value of reductions in 2015 is either $30 billion (in 2006 U.S. dollars) or $1 billion if reduced mortality risks are valued with willingness-to-pay or as income from increased life expectancy. Ozone reductions were relatively twice as beneficial for the lowest- compared to the highest-income households. The valuation approach affected benefits more than a policy delay or differential ozone reductions with income.

  6. Automatic programmable air ozonizer

    International Nuclear Information System (INIS)

    Gubarev, S.P.; Klosovsky, A.V.; Opaleva, G.P.; Taran, V.S.; Zolototrubova, M.I.

    2015-01-01

    In this paper we describe a compact, economical, easy to manage auto air ozonator developed at the Institute of Plasma Physics of the NSC KIPT. It is designed for sanitation, disinfection of premises and cleaning the air from foreign odors. A distinctive feature of the developed device is the generation of a given concentration of ozone, approximately 0.7 maximum allowable concentration (MAC), and automatic maintenance of a specified level. This allows people to be inside the processed premises during operation. The microprocessor controller to control the operation of the ozonator was developed

  7. Decolorization of industrial wastewater by ozonation followed by adsorption on activated carbon

    International Nuclear Information System (INIS)

    Konsowa, A.H.; Ossman, M.E.; Chen, Yongsheng; Crittenden, John C.

    2010-01-01

    The decolorization of industrial wastewater containing direct dye (Drimarene Red CL-3B) by advanced oxidation process using ozonation in a semi-batch bubble column reactor followed by granule activated carbon (GAC) adsorption process was studied. The effect of initial dye concentration, ozone concentration, pH and ozone-air flow rate on the rate of dye decolorization were investigated. It was found that the rate of dye decolorization increases with increasing ozone concentration, ozone-air flow rate, and pH but decreases with increasing initial dye concentration. This study is a hybrid system conducted in combination between ozonation process and GAC adsorption to reveal higher and efficient removal of color and TOC. The process started with ozonation for efficient and rapid decolorization of dyeing wastewater, followed by GAC adsorption process to gain efficient removal of color and TOC. The adsorption process was found to be very efficient in removal of ozonation residual TOC, in view of high TOC removal, up to 37% TOC removal was obtained. Numerical correlation using regression analysis for decolorization time with the operating conditions of the ozonation process were presented.

  8. Ozone distribution in remote ecologically vulnerable terrain of the southern Sierra Nevada, CA

    International Nuclear Information System (INIS)

    Panek, Jeanne; Saah, David; Esperanza, Annie; Bytnerowicz, Andrzej; Fraczek, Witold; Cisneros, Ricardo

    2013-01-01

    Ozone concentration spatial patterns remain largely uncharacterized across the extensive wilderness areas of the Sierra Nevada, CA, despite being downwind of major pollution sources. These natural areas, including four national parks and four national forests, contain forest species that are susceptible to ozone injury. Forests stressed by ozone are also more vulnerable to other agents of mortality, including insects, pathogens, climate change, and ultimately fire. Here we analyze three years of passive ozone monitor data from the southern Sierra Nevada and interpolate landscape-scale spatial and temporal patterns during the summer-through-fall high ozone concentration period. Segmentation analysis revealed three types of ozone exposure sub-regions: high, low, and variable. Consistently high ozone exposure regions are expected to be most vulnerable to forest mortality. One high exposure sub-region has been documented elsewhere as being further vulnerable to increased drought and fire potential. Identifying such hot-spots of forest vulnerability has utility for prioritizing management. -- Highlights: •Three years of passive ozone sampler data over 49,000 km 2 were analyzed spatially. •Spatial and temporal ozone patterns were mapped across the Sierra Nevada, CA. •Sub-regions of consistently high, low and variable ozone exposure were identified. •The 1700–2400 m elevation band delineated a distinct break in ozone concentration. •This approach has utility for prioritizing management across vulnerable landscapes. -- A passive ozone sampler network in combination with spatial analysis techniques was used to characterize landscape-scale ozone patterns and dynamics, identifying regions of consistently high and low ozone exposure for forest management prioritization

  9. Photochemical oxidants injury in rice plants. III. Effect of ozone on physiological activities in rice plants

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, H; Saka, H

    1978-01-01

    Experiments were made to determine the effect of photochemical oxidants on physiological activities of rice plants. Rice plants were fumigated with ozone at concentrations of 0.12-0.20 ppm for 2-3 hr to investigate acute injury and at 0.05 and 0.09 ppm for daily exposure from 3.0 leaf stage to assess the effect of ozone on growth. It was observed that malondialdehyde produced by disruption of the components of the membrane increased in the leaves exposed to ozone. Ozone reduced the RuBP-carboxylase activity in both young and old leaves 12-24 hr after fumigation. In the young leaves the activity of this enzyme recovered to some extent after 48 hr, but it did not show any recovery in the old leaves. On the other hand, ozone remarkably increased the peroxidase activity and slightly increased acid phosphatase in all leaves. Abnormally high ethylene evolution and oxygen uptake were detected in leaves soon after ozone fumigation. In general, high molecular protein and chlorophyll contents in the detached leaves decreased with incubation in dark, particularly in the old ones. These phenomena were more accelerated by ozone fumigation. Kinetin and benzimidazole showed significant effects on chlorophyll retention in ozone-exposed leaves. Reduction of plant growth and photosynthetic rate was recognized even in low concentration of ozone in daily exposure at 0.05 and 0.09 ppm. From these results it was postulated that ozone may cause the senescence of leaves in rice plants.

  10. Assessment of Fenton's reagent and ozonation as pre-treatments for increasing the biodegradability of aqueous diethanolamine solutions from an oil refinery gas sweetening process.

    Science.gov (United States)

    Durán-Moreno, A; García-González, S A; Gutiérrez-Lara, M R; Rigas, F; Ramírez-Zamora, R M

    2011-02-28

    The aim of this work was to evaluate the efficiency of three chemical oxidation processes for increasing the biodegradability of aqueous diethanolamine solutions (aqueous DEA solutions), to be used as pre-treatments before a biological process. The raw aqueous DEA solution, sourced from a sour gas sweetening plant at a Mexican oil refinery, was first characterized by standardized physico-chemical methods. Then experiments were conducted on diluted aqueous DEA solutions to test the effects of Fenton's reagent, ozone and ozone-hydrogen peroxide on the removal of some physicochemical parameters of these solutions. Lastly, biodegradability tests based on Dissolved Organic Carbon Die Away OECD301-A, were carried out on a dilution of the raw aqueous DEA solution and on the treated aqueous DEA solutions, produced by applying the best experimental conditions determined during the aforementioned oxidation tests. Experimental results showed that for aqueous DEA solutions treated with Fenton's reagent, the best degradation rate (70%) was obtained at pH 2.8, with Fe(2+) and H(2)O(2) at doses of 1000 and 10,000 mg/L respectively. In the ozone process, the best degradation (60%) was observed in aqueous DEA solution (100 mg COD/L), using 100 mg O(3)/L at pH 5. In the ozone-hydrogen peroxide process, no COD or DOC removals were observed. The diluted spent diethanolamine solution showed its greatest increase in biodegradability after a reaction period of 28 days when treated with Fenton's reagent, but after only 15 days in the case of ozonation. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Concentrative meditation influences creativity by increasing cognitive flexibility

    NARCIS (Netherlands)

    Müller, B.C.N.; Gerasimova, A.; Ritter, S.M.

    2016-01-01

    Given the great importance of creativity in society, it is worth investigating how creative thinking can be enhanced. The link between meditation and enhanced creativity has been proposed by a number of authors; however, the reason why meditation leads to an increase in creativity is not clear. The

  12. Aerosol-ozone correlations during dust transport episodes

    Directory of Open Access Journals (Sweden)

    P. Bonasoni

    2004-01-01

    Full Text Available Its location in the Mediterranean region and its physical characteristics render Mt. Cimone (44°11′ N, 10°42′ E, the highest peak of the Italian northern Apennines (2165 m asl, particularly suitable to study the transport of air masses from the north African desert area to Europe. During these northward transports 12 dust events were registered in measurements of the aerosol concentration at the station during the period June–December 2000, allowing the study of the impact of mineral dust transports on free tropospheric ozone concentrations, which were also measured at Mt. Cimone. Three-dimensional backward trajectories were used to determine the air mass origin, while TOMS Aerosol Index data for the Mt. Cimone area were used to confirm the presence of absorbing aerosol over the measurement site. A trajectory statistical analysis allowed identifying the main source areas of ozone and aerosols. The analysis of these back trajectories showed that central Europe and north and central Italy are the major pollution source areas for ozone and fine aerosol, whereas the north African desert regions were the most important source areas for coarse aerosol and low ozone concentrations. During dust events, the Mt. Cimone mean volume concentration for coarse particles was 6.18 µm3/cm3 compared to 0.63 µm3/cm3 in dust-free conditions, while the ozone concentrations were 4% to 21% lower than the monthly mean background values. Our observations show that surface ozone concentrations were lower than the background values in air masses coming from north Africa, and when these air masses were also rich in coarse particles, the lowest ozone values were registered. Moreover, preliminary results on the possible impact of the dust events on PM10 and ozone values measured in Italian urban and rural areas showed that during the greater number of the considered dust events, significant PM10 increases and ozone decreases have occurred in the Po valley.

  13. Nicotiana tabacum as model for ozone - plant surface reactions

    Science.gov (United States)

    Jud, Werner; Fischer, Lukas; Wohlfahrt, Georg; Tissier, Alain; Canaval, Eva; Hansel, Armin

    2015-04-01

    Elevated tropospheric ozone concentrations are considered a toxic threat to plants, responsible for global crop losses with associated economic costs of several billion dollars per year. The ensuing injuries have been related to the uptake of ozone through the stomatal pores and oxidative effects damaging the internal leaf tissue. A striking question of current research is the environment and plant specific partitioning of ozone loss between gas phase, stomatal or plant surface sink terms. Here we show results from ozone fumigation experiments using various Nicotiana Tabacum varieties, whose surfaces are covered with different amounts of unsaturated diterpenoids exuded by their glandular trichomes. Exposure to elevated ozone levels (50 to 150 ppbv) for 5 to 15 hours in an exceptionally clean cuvette system did neither result in a reduction of photosynthesis nor caused any visible leaf damage. Both these ozone induced stress effects have been observed previously in ozone fumigation experiments with the ozone sensitive tobacco line Bel-W3. In our case ozone fumigation was accompanied by a continuous release of oxygenated volatile organic compounds, which could be clearly associated to their condensed phase precursors for the first time. Gas phase reactions of ozone were avoided by choosing a high enough gas exchange rate of the plant cuvette system. In the case of the Ambalema variety, that is known to exude only the diterpenoid cis-abienol, ozone fumigation experiments yield the volatiles formaldehyde and methyl vinyl ketone (MVK). The latter could be unequivocally separated from isomeric methacrolein (MACR) by the aid of a Selective Reagent Ion Time-of-Flight Mass Spectrometer (SRI-ToF-MS), which was switched every six minutes from H3O+ to NO+ primary ion mode and vice versa. Consistent with the picture of an ozone protection mechanism caused by reactive diterpenoids at the leaf surface are the results from dark-light experiments. The ozone loss obtained from the

  14. An Estimation of the Climatic Effects of Stratospheric Ozone Losses during the 1980s. Appendix K

    Science.gov (United States)

    MacKay, Robert M.; Ko, Malcolm K. W.; Shia, Run-Lie; Yang, Yajaing; Zhou, Shuntai; Molnar, Gyula

    1997-01-01

    In order to study the potential climatic effects of the ozone hole more directly and to assess the validity of previous lower resolution model results, the latest high spatial resolution version of the Atmospheric and Environmental Research, Inc., seasonal radiative dynamical climate model is used to simulate the climatic effects of ozone changes relative to the other greenhouse gases. The steady-state climatic effect of a sustained decrease in lower stratospheric ozone, similar in magnitude to the observed 1979-90 decrease, is estimated by comparing three steady-state climate simulations: 1) 1979 greenhouse gas concentrations and 1979 ozone, II) 1990 greenhouse gas concentrations with 1979 ozone, and III) 1990 greenhouse gas concentrations with 1990 ozone. The simulated increase in surface air temperature resulting from nonozone greenhouse gases is 0.272 K. When changes in lower stratospheric ozone are included, the greenhouse warming is 0.165 K, which is approximately 39% lower than when ozone is fixed at the 1979 concentrations. Ozone perturbations at high latitudes result in a cooling of the surface-troposphere system that is greater (by a factor of 2.8) than that estimated from the change in radiative forcing resulting from ozone depiction and the model's 2 x CO, climate sensitivity. The results suggest that changes in meridional heat transport from low to high latitudes combined with the decrease in the infrared opacity of the lower stratosphere are very important in determining the steady-state response to high latitude ozone losses. The 39% compensation in greenhouse warming resulting from lower stratospheric ozone losses is also larger than the 28% compensation simulated previously by the lower resolution model. The higher resolution model is able to resolve the high latitude features of the assumed ozone perturbation, which are important in determining the overall climate sensitivity to these perturbations.

  15. Tropospheric Ozone and Photochemical Smog

    Science.gov (United States)

    Sillman, S.

    2003-12-01

    emitted species, in a process that is driven by sunlight and is accelerated by warm temperatures. This smog is largely the product of gasoline-powered engines (especially automobiles), although coal-fired industry can also generate photochemical smog. The process of photochemical smog formation was first identified by Haagen-Smit and Fox (1954) in association with Los Angeles, a city whose geography makes it particularly susceptible to this type of smog formation. Sulfate aerosols and organic particulates are often produced concurrently with ozone, giving rise to a characteristic milky-white haze associated with this type of air pollution.Today ozone and particulates are recognized as the air pollutants that are most likely to affect human health adversely. In the United States, most major metropolitan areas have periodic air pollution events with ozone in excess of government health standards. Violations of local health standards also occur in major cities in Canada and in much of Europe. Other cities around the world (especially Mexico City) also experience very high ozone levels. In addition to urban-scale events, elevated ozone occurs in region-wide events in the eastern USA and in Western Europe, with excess ozone extending over areas of 1,000 km2 or more. Ozone plumes of similar extent are found in the tropics (especially in Central Africa) at times of high biomass burning (e.g., Jenkins et al., 1997; Chatfield et al., 1998). In some cases ozone associated with biomass burning has been identified at distances up to 104 km from its sources (Schultz et al., 1999).Ozone also has a significant impact on the global troposphere, and ozone chemistry is a major component of global tropospheric chemistry. Global background ozone concentrations are much lower than urban or regional concentrations during pollution events, but there is evidence that the global background has increased as a result of human activities (e.g., Wang and Jacob, 1998; Volz and Kley, 1988). A rise in

  16. Degradation of 4-chlorophenol by ozonation, γ radiation as well as ozonation combined with γ radiation

    International Nuclear Information System (INIS)

    Hu, J.; Wang, J.L.

    2005-01-01

    The radiolysis of aqueous 4-chlorophenol (4-CP) by gamma radiation in the presence of air and ozone was investigated. The 4-CP degradation, release of chloride ion, UV absorption spectrum, total organic carbon (TOC) and adsorbable organic halogens (AOX) was measured. Under the conditions of synergistic effect of ozone and radiation a complete degradation of 100 mg/L 4-CP was obtained at a dose of 6 kGy, without ozone the 4-chlorophenol was completely decomposed at 15 kGy. The total organic carbon (TOC) was reduced by 26% when ionizing radiation (at 15 kGy) combined with ozonation, and by 17% without ozone, respectively. Analysis of intermediate products resulting from synergistic effect of ozone and radiation of 4-CP was performed by using the GC/MS method. Some primary influencing factors such as irradiation time and initial 4-CP concentration were also discussed. The results showed that the degradation of 4-chlorophenol could described by first-order reaction kinetic model. There is potential for combination of irradiation with ozonation, which can remarkably reduce the irradiation dose increase the degradation efficiency of 4-CP.

  17. The pollution by ozone

    International Nuclear Information System (INIS)

    1997-09-01

    Air pollution by ozone is increasing in spite of several points to reduce it. If the process of ozone formation are complex, the sources of this pollution are well known: first, mobile sources with automobiles (49%), boats , trains and planes (13%), then are following paints and solvents(18%), thermal power plants(11%), and finally industry processing with 5%. (N.C.)

  18. Time series analysis of ozone data in Isfahan

    Science.gov (United States)

    Omidvari, M.; Hassanzadeh, S.; Hosseinibalam, F.

    2008-07-01

    Time series analysis used to investigate the stratospheric ozone formation and decomposition processes. Different time series methods are applied to detect the reason for extreme high ozone concentrations for each season. Data was convert into seasonal component and frequency domain, the latter has been evaluated by using the Fast Fourier Transform (FFT), spectral analysis. The power density spectrum estimated from the ozone data showed peaks at cycle duration of 22, 20, 36, 186, 365 and 40 days. According to seasonal component analysis most fluctuation was in 1999 and 2000, but the least fluctuation was in 2003. The best correlation between ozone and sun radiation was found in 2000. Other variables which are not available cause to this fluctuation in the 1999 and 2001. The trend of ozone is increasing in 1999 and is decreasing in other years.

  19. Foliar nutrient status of Pinus ponderosa exposed to ozone and acid rain

    International Nuclear Information System (INIS)

    Anderson, P.D.; Houpis, J.L.J.

    1991-01-01

    A direct effect of foliar exposure to acid rain may be increased leaching of nutrient elements. Ozone exposure, through degradation of the cuticle and cellular membranes, may also result in increased nutrient leaching. To test these hypotheses, the foliar concentrations of 13 nutrient elements were monitored for mature branches of three clones of Pinus ponderosa exposed to ozone and/or acid rain. The three clones represented three distinct levels of phenotypic vigor. Branches were exposed to charcoal filtered, ambient, or 2 x ambient concentrations of ozone and received no acid rain (NAP), pH 5.1 rain (5.1), or pH 3.0 (3.0) rain. Following 10 months of continuous ozone exposure and 3 months of weekly rain applications, the concentrations of P and Mg differed significantly among rain treatments with a ranking of: 5.1 < NAP < 3.0. The S concentration increased with rain application regardless of pH. For the clones of moderate and low vigor, the concentration of N decreased with increasing rain acidity. There was no evidence of significant ozone or ozone x acid rain response. Among the three families, high phenotypic vigor was associated with significantly greater concentrations of N, P, K, Mg, B and An. These results indicate generally negligible leaching as a result of exposure to acid rain and/or ozone for one growing season. Increases in foliar concentrations of S, Mg and P are possibly the result of evaporative surface deposition from the rain solution

  20. A two-dimensional model study of past trends in global ozone

    International Nuclear Information System (INIS)

    Wuebbles, D.J.; Kinnison, D.E.

    1988-08-01

    Emissions and atmospheric concentrations of several trace gases important to atmospheric chemistry are known to have increased substantially over recent decades. Solar flux variations and the atmospheric nuclear test series are also likely to have affected stratospheric ozone. In this study, the LLNL two-dimensional chemical-radiative-transport model of the troposphere and stratosphere has been applied to an analysis of the effects that these natural and anthropogenic influences may have had on global ozone concentrations over the last three decades. In general, model determined species distributions and the derived ozone trends agree well with published analyses of land-based and satellite-based observations. Also, the total ozone and ozone distribution trends derived from CFC and other trace gas effects have a different response with latitude than the derived trends from solar flux variations, thus providing a ''signature'' for anthropogenic effects on ozone. 24 refs., 5 figs

  1. Synthesis of pure ozone by nanosecond discharge at cryogenic temperatures

    International Nuclear Information System (INIS)

    Amirov, R.H.; Asinovsky, E.I.; Samoilov, I.S.

    1996-01-01

    Synthesis of pure ozone by nanosecond discharge at cryogenic temperatures was experimentally examined. The average ozone concentration in the volume of the discharge tube was less at cryogenic temperatures than at room temperatures. The production of condensed ozone have been determined by measuring the ozone concentration when the walls was heated and ozone evaporated. The energy yield of ozone generation at cryogenic temperatures has been calculated. The maximum value was 200 g/kWh

  2. Application of ozone micro-nano-bubbles to groundwater remediation.

    Science.gov (United States)

    Hu, Liming; Xia, Zhiran

    2018-01-15

    Ozone is widely used for water treatment because of its strong oxidation ability. However, the efficiency of ozone in groundwater remediation is limited because of its relatively low solubility and rapid decomposition in the aqueous phase. Methods for increasing the stability of ozone within the subsurface are drawing increasing attention. Micro-nano-bubbles (MNBs), with diameters ranging from tens of nanometres to tens of micrometres, present rapid mass transfer rates, persist for a relatively long time in water, and transport with groundwater flow, which significantly improve gas concentration and provide a continuous gas supply. Therefore, MNBs show a considerable potential for application in groundwater remediation. In this study, the characteristics of ozone MNBs were examined, including their size distribution, bubble quantity, and zeta potential. The mass transfer rate of ozone MNBs was experimentally investigated. Ozone MNBs were then used to treat organics-contaminated water, and they showed remarkable cleanup efficiency. Column tests were also conducted to study the efficiency of ozone MNBs for organics-contaminated groundwater remediation. Based on the laboratory tests, field monitoring was conducted on a trichloroethylene (TCE)-contaminated site. The results showed that ozone MNBs can greatly improve remediation efficiency and represent an innovative technology for in situ remediation of organics-contaminated groundwater. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  3. Ozone decomposition kinetics on alumina: effects of ozone partial pressure, relative humidity and repeated oxidation cycles

    Directory of Open Access Journals (Sweden)

    R. C. Sullivan

    2004-01-01

    Full Text Available The room temperature kinetics of gas-phase ozone loss via heterogeneous interactions with thin alumina films has been studied in real-time using 254nm absorption spectroscopy to monitor ozone concentrations. The films were prepared from dispersions of fine alumina powder in methanol and their surface areas were determined by an in situ procedure using adsorption of krypton at 77K. The alumina was found to lose reactivity with increasing ozone exposure. However, some of the lost reactivity could be recovered over timescales of days in an environment free of water, ozone and carbon dioxide. From multiple exposures of ozone to the same film, it was found that the number of active sites is large, greater than 1.4x1014 active sites per cm2 of surface area or comparable to the total number of surface sites. The films maintain some reactivity at this point, which is consistent with there being some degree of active site regeneration during the experiment and with ozone loss being catalytic to some degree. The initial uptake coefficients on fresh films were found to be inversely dependent on the ozone concentration, varying from roughly 10-6 for ozone concentrations of 1014 molecules/cm3 to 10-5 at 1013 molecules/cm3. The initial uptake coefficients were not dependent on the relative humidity, up to 75%, within the precision of the experiment. The reaction mechanism is discussed, as well as the implications these results have for assessing the effect of mineral dust on atmospheric oxidant levels.

  4. Non-asthmatic patients show increased exhaled nitric oxide concentrations

    Directory of Open Access Journals (Sweden)

    Beatriz M. Saraiva-Romanholo

    2009-01-01

    Full Text Available OBJECTIVE: Evaluate whether exhaled nitric oxide may serve as a marker of intraoperative bronchospasm. INTRODUCTION: Intraoperative bronchospasm remains a challenging event during anesthesia. Previous studies in asthmatic patients suggest that exhaled nitric oxide may represent a noninvasive measure of airway inflammation. METHODS: A total of 146,358 anesthesia information forms, which were received during the period from 1999 to 2004, were reviewed. Bronchospasm was registered on 863 forms. From those, three groups were identified: 9 non-asthmatic patients (Bronchospasm group, 12 asthmatics (Asthma group and 10 subjects with no previous airway disease or symptoms (Control group. All subjects were submitted to exhaled nitric oxide measurements (parts/billion, spirometry and the induced sputum test. The data was compared by ANOVA followed by the Tukey test and Kruskal-Wallis followed by Dunn's test. RESULTS: The normal lung function test results for the Bronchospasm group were different from those of the asthma group (p <0.05. The median percentage of eosinophils in induced sputum was higher for the Asthma [2.46 (0.45-6.83] compared with either the Bronchospasm [0.55 (0-1.26] or the Control group [0.0 (0] (p <0.05; exhaled nitric oxide followed a similar pattern for the Asthma [81.55 (57.6-86.85], Bronchospasm [46.2 (42.0 -62.6] and Control group [18.7 (16.0-24.7] (p< 0.05. CONCLUSIONS: Non-asthmatic patients with intraoperative bronchospasm detected during anesthesia and endotracheal intubation showed increased expired nitric oxide.

  5. Bromate formation in a hybrid ozonation-ceramic membrane filtration system.

    Science.gov (United States)

    Moslemi, Mohammadreza; Davies, Simon H; Masten, Susan J

    2011-11-01

    The effect of pH, ozone mass injection rate, initial bromide concentration, and membrane molecular weight cut off (MWCO) on bromate formation in a hybrid membrane filtration-ozonation reactor was studied. Decreasing the pH, significantly reduced bromate formation. Bromate formation increased with increasing gaseous ozone mass injection rate, due to increase in dissolved ozone concentrations. Greater initial bromide concentrations resulted in higher bromate concentrations. An increase in the bromate concentration was observed by reducing MWCO, which resulted in a concomitant increase in the retention time in the system. A model to estimate the rate of bromate formation was developed. Good correlation between the model simulation and the experimental data was achieved. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Contribution of ozone to airborne aldehyde formation in Paris homes.

    Science.gov (United States)

    Rancière, Fanny; Dassonville, Claire; Roda, Célina; Laurent, Anne-Marie; Le Moullec, Yvon; Momas, Isabelle

    2011-09-15

    Indoor aldehydes may result from ozone-initiated chemistry, mainly documented by experimental studies. As part of an environmental investigation included in the PARIS birth cohort, the aim of this study was to examine ozone contribution to airborne aldehyde formation in Paris homes. Formaldehyde, acetaldehyde and hexaldehyde levels, as well as styrene, nitrogen dioxide and nicotine concentrations, comfort parameters and carbon dioxide levels, were measured twice during the first year of life of the babies. Ambient ozone concentrations were collected from the closest background station of the regional air monitoring network. Traffic-related nitrogen oxide concentrations in front of the dwellings were estimated by an air pollution dispersion model. Home characteristics and families' way of life were described by questionnaires. Stepwise multiple linear regression models were used to link aldehyde levels with ambient ozone concentrations and a few aldehyde precursors involved in oxidation reactions, adjusting for other indoor aldehyde sources, comfort parameters and traffic-related nitrogen oxides. A 4 and 11% increase in formaldehyde and hexaldehyde levels was pointed out when 8-hour ozone concentrations increased by 20 μg/m(3). The influence of potential precursors such as indoor styrene level and frequent use of air fresheners, containing unsaturated volatile organic compounds as terpenes, was also found. Thus, our results suggest that ambient ozone can significantly impact indoor air quality, especially with regard to formaldehyde and hexaldehyde levels. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Responses of Surface Ozone Air Quality to Anthropogenic Nitrogen Deposition

    Science.gov (United States)

    Zhang, L.; Zhao, Y.; Tai, A. P. K.; Chen, Y.; Pan, Y.

    2017-12-01

    Human activities have substantially increased atmospheric deposition of reactive nitrogen to the Earth's surface, inducing unintentional effects on ecosystems with complex environmental and climate consequences. One consequence remaining unexplored is how surface air quality might respond to the enhanced nitrogen deposition through surface-atmosphere exchange. We combine a chemical transport model (GEOS-Chem) and a global land model (Community Land Model) to address this issue with a focus on ozone pollution in the Northern Hemisphere. We consider three processes that are important for surface ozone and can be perturbed by addition of atmospheric deposited nitrogen: emissions of biogenic volatile organic compounds (VOCs), ozone dry deposition, and soil nitrogen oxide (NOx) emissions. We find that present-day anthropogenic nitrogen deposition (65 Tg N a-1 to the land), through enhancing plant growth (represented as increases in vegetation leaf area index (LAI) in the model), could increase surface ozone from increased biogenic VOC emissions, but could also decrease ozone due to higher ozone dry deposition velocities. Meanwhile, deposited anthropogenic nitrogen to soil enhances soil NOx emissions. The overall effect on summer mean surface ozone concentrations show general increases over the globe (up to 1.5-2.3 ppbv over the western US and South Asia), except for some regions with high anthropogenic NOx emissions (0.5-1.0 ppbv decreases over the eastern US, Western Europe, and North China). We compare the surface ozone changes with those driven by the past 20-year climate and historical land use changes. We find that the impacts from anthropogenic nitrogen deposition can be comparable to the climate and land use driven surface ozone changes at regional scales, and partly offset the surface ozone reductions due to land use changes reported in previous studies. Our study emphasizes the complexity of biosphere-atmosphere interactions, which can have important

  8. Investigation of vertical and horizontal transport processes and their influence on the concentration of aerosols and ozone over the greater Berlin area

    Science.gov (United States)

    Reimer, E.; Kerschbaumer, A.; Beekmann, M.; Neißner, F.

    2003-04-01

    Urban emissions of particulate matter and precursors of ozone are very important in relation to the EU-council directives and national pollution abatement strategies. Knowledge about the contribution of anthropogenic urban sources and about long range transport of polluted air to local concentrations is needed for any reduction strategy. Thus, within the German Atmospheric Research Program AFO2000 a project has been started to investigate the formation and transport of PM10/PM2.5 in the greater Berlin area by sampling and analysing PM, using LIDAR as well as physico-chemical measurements to determine density, partical size distribution and chemical composition of the aerosol. Participants are: Freie Universität Berlin, Institute for Meteorology BTU Cottbus, Air Chemistry Department Elight Laser Systems GmbH Freie Universität Berlin, Physics Department Environmental Administration, Berlin Government with an additional PM campaign Measurements at central Berlin monitoring stations exceed standard PM10 tresholds. Therefore, it is important to get a better knowledge about PM sources within and outside the city. Long term applications of the chemical transport model with an aerosol-module REM3/Calgrid is used to explain transport, formation and deposition processes. Backward and forward trajectories are used to determine source/receptor relationships between the observations and European wide emission maps for ozone, precursors and PM10 and PM2,5 by correlation between observed primary aerosols in Berlin and possible sources. The measurements obtained within the project are also used to validate REM3/Calgrid with special respect to SO4, NO3, NH4 and ozone precursors.

  9. Sensitivity of the UAM-predicted ozone concentrations to wind fields in the New York metropolitan area

    Energy Technology Data Exchange (ETDEWEB)

    Sistla, G.; Ku, J.Y.; Zhou, N.; Hao, W.; Rao, S.T. [New York State Dept. of Environmental Conservation, Albany, NY (United States); Thunis, P. [ISPRA Establishment (Italy); Bornstein, R.; Freedman, F. [San Jose State Univ., CA (United States)

    1994-12-31

    The New York airshed modeling domain, extending from northern Philadelphia, PA to the southern Massachusetts, is part of the large urban corridor stretching from Virginia to Maine alone the eastern sea-board of United States. Due to the continued non-attainment of the National Ambient Air Quality Standard (NAAQS) for ozone, the area has been designated to be in the {open_quotes}severe{close_quotes} classification under the 1990 Clean Air Act Amendments. This requires demonstration of compliance with the ozone NAAQS with grid-based photochemical models such as the Urban Airshed Model (UAM). The United States Environmental Protection Agency (USEPA) has recommended the use of a one-way model nesting scheme, with the Regional Oxidant Model (ROM) providing initial and boundary conditions and other ancillary data for the UAM. Meteorological data and emissions data can also be developed by alternative methods for use with UAM, if considered more appropriate than those derived from the ROM-UAM system.

  10. An ozone episode over the Pearl River Delta in October 2008

    Science.gov (United States)

    Shen, Jin; Zhang, Yuanhang; Wang, Xuesong; Li, Jinfeng; Chen, Hao; Liu, Run; Zhong, Liuju; Jiang, Ming; Yue, Dingli; Chen, Duohong; Lv, Wei

    2015-12-01

    The north and east Pearl River Delta (PRD) is usually a clean, upwind area in autumn. Serious ozone pollution there in mid-late October 2008 was first discovered and then analyzed. Trajectory analysis, process analysis, ozone source apportionment technology, and sensitivity analysis were used to study this episode. Under the influence of a weak south wind, the precursors emitted in Guangzhou and Foshan were transported to the north and northeast PRD and formed ozone there, which resulted in high ozone concentration (>100 ppb). As the wind direction later transited to northerly, the precursors in the northeast PRD that originated from the central and west PRD were transported to the south, and caused severe ozone pollution in the southeast PRD. The ozone contributed by chemical processes reached >20 ppb/h in Jinguowan. More than 40 ppb ozone was contributed by the precursor emission in the central and west PRD during the episode. The ozone concentration was highly sensitive to the precursor emission in the PRD region in the high-ozone situations. This episode showed the complexity of regional pollution in the PRD. When the PRD is controlled by a low air pressure system and then cold air moves from northern China to the south, the risk of ozone pollution in the north and southeast PRD increases.

  11. Ozone applied to the homogeneous charge compression ignition engine to control alcohol fuels combustion

    International Nuclear Information System (INIS)

    Masurier, J.-B.; Foucher, F.; Dayma, G.; Dagaut, P.

    2015-01-01

    Highlights: • Ozone was useful to control combustion phasing of alcohol fuels in HCCI engine. • Ozone helps to improve the combustion and advance its phasing. • Butanol is more impacted by ozone than methanol and ethanol. • HCCI combustion parameters may be controlled by managing ozone concentration. • Kinetics demonstrates that alcohol fuels are initially oxidized by O-atoms. - Abstract: The present investigation examines the impact of seeding the intake of an HCCI engine with ozone, one of the most oxidizing chemical species, on the combustion of three alcohol fuels: methanol, ethanol and n-butanol. The research was performed through engine experiments and constant volume computations. The results showed that increasing the ozone concentration led to an improvement in combustion coupled with a combustion advance. It was also observed, by comparing the results for each fuel selected, that n-butanol is the most impacted by ozone seeding and methanol the least. Further analyses of the experimental results showed that the alcohol fuel combustion can be controlled with ozone, which presents an interesting potential. Finally, computation results confirmed the experimental results observed. They also showed that in presence of ozone, alcohol fuels are not initially oxidized by molecular oxygen but by O-atoms coming from the ozone decomposition.

  12. Climate-driven ground-level ozone extreme in the fall over the Southeast United States.

    Science.gov (United States)

    Zhang, Yuzhong; Wang, Yuhang

    2016-09-06

    Ground-level ozone is adverse to human and vegetation health. High ground-level ozone concentrations usually occur over the United States in the summer, often referred to as the ozone season. However, observed monthly mean ozone concentrations in the southeastern United States were higher in October than July in 2010. The October ozone average in 2010 reached that of July in the past three decades (1980-2010). Our analysis shows that this extreme October ozone in 2010 over the Southeast is due in part to a dry and warm weather condition, which enhances photochemical production, air stagnation, and fire emissions. Observational evidence and modeling analysis also indicate that another significant contributor is enhanced emissions of biogenic isoprene, a major ozone precursor, from water-stressed plants under a dry and warm condition. The latter finding is corroborated by recent laboratory and field studies. This climate-induced biogenic control also explains the puzzling fact that the two extremes of high October ozone both occurred in the 2000s when anthropogenic emissions were lower than the 1980s and 1990s, in contrast to the observed decreasing trend of July ozone in the region. The occurrences of a drying and warming fall, projected by climate models, will likely lead to more active photochemistry, enhanced biogenic isoprene and fire emissions, an extension of the ozone season from summer to fall, and an increase of secondary organic aerosols in the Southeast, posing challenges to regional air quality management.

  13. Tropospheric Ozone Change from 1980 to 2010 Dominated by Equatorward Redistribution of Emissions

    Science.gov (United States)

    Zhang, Yuqiang; Cooper, Owen R.; Gaudel, Audrey; Thompson, Anne M.; Nedelec, Philippe; Ogino, Shin-Ya; West, J. Jason

    2016-01-01

    Ozone is an important air pollutant at the surface, and the third most important anthropogenic greenhouse gas in the troposphere. Since 1980, anthropogenic emissions of ozone precursors methane, non-methane volatile organic compounds, carbon monoxide and nitrogen oxides (NOx) have shifted from developed to developing regions. Emissions have thereby been redistributed equatorwards, where they are expected to have a stronger effect on the tropospheric ozone burden due to greater convection, reaction rates and NOx sensitivity. Here we use a global chemical transport model to simulate changes in tropospheric ozone concentrations from 1980 to 2010, and to separate the influences of changes in the spatial distribution of global anthropogenic emissions of short-lived pollutants, the magnitude of these emissions, and the global atmospheric methane concentration. We estimate that the increase in ozone burden due to the spatial distribution change slightly exceeds the combined influences of the increased emission magnitude and global methane. Emission increases in Southeast, East and South Asia may be most important for the ozone change, supported by an analysis of statistically significant increases in observed ozone above these regions. The spatial distribution of emissions dominates global tropospheric ozone, suggesting that the future ozone burden will be determined mainly by emissions from low latitudes.

  14. Sensitivity analysis of surface ozone to emission controls in Beijing and its neighboring area during the 2008 Olympic Games.

    Science.gov (United States)

    Gao, Yi; Zhang, Meigen

    2012-01-01

    The regional air quality modeling system RAMS (regional atmospheric modeling system)-CMAQ (community multi-scale air quality modeling system) is applied to analyze temporal and spatial variations in surface ozone concentration over Beijing and its surrounding region from July to October 2008. Comparison of simulated and observed meteorological elements and concentration of nitrogen oxides (NOx) and ozone at one urban site and three rural sites during Olympic Games show that model can generally reproduce the main observed feature of wind, temperature and ozone, but NOx concentration is overestimated. Although ozone concentration decreased during Olympics, high ozone episodes occurred on 24 July and 24 August with concentration of 360 and 245 microg/m3 at Aoyuncun site, respectively. The analysis of sensitive test, with and without emission controls, shows that emission controls could reduce ozone concentration in the afternoon when ozone concentration was highest but increase it at night and in the morning. The evolution of the weather system during the ozone episodes (24 July and 24 August) indicates that hot and dry air and a stable weak pressure field intensified the production of ozone and allowed it to accumulate. Process analysis at the urban site and rural site shows that under favorable weather condition on 24 August, horizontal transport was the main contributor of the rural place and the pollution from the higher layer would be transported to the surface layer. On 24 July, as the wind velocity was smaller, the impact of transport on the rural place was not obvious.

  15. Inquiry Based Projects Using Student Ozone Measurements and the Status of Using Plants as Bio-Indicators

    Science.gov (United States)

    Ladd, I. H.; Fishman, J.; Pippin, M.; Sachs, S.; Skelly, J.; Chappelka, A.; Neufeld, H.; Burkey, K.

    2006-05-01

    Students around the world work cooperatively with their teachers and the scientific research community measuring local surface ozone levels using a hand-held optical scanner and ozone sensitive chemical strips. Through the GLOBE (Global Learning and Observations to Benefit the Environment) Program, students measuring local ozone levels are connected with the chemistry of the air they breathe and how human activity impacts air quality. Educational tools have been developed and correlated with the National Science and Mathematics Standards to facilitate integrating the study of surface ozone with core curriculum. Ozone air pollution has been identified as the major pollutant causing foliar injury to plants when they are exposed to concentrations of surface ozone. The inclusion of native and agricultural plants with measuring surface ozone provides an Earth system approach to understanding surface ozone. An implementation guide for investigating ozone induced foliar injury has been developed and field tested. The guide, Using Sensitive Plants as Bio-Indicators of Ozone Pollution, provides: the background information and protocol for implementing an "Ozone Garden" with native and agricultural plants; and, a unique opportunity to involve students in a project that will develop and increase their awareness of surface ozone air pollution and its impact on plants.

  16. Ozonated Olive Oils and Troubles

    Directory of Open Access Journals (Sweden)

    Bulent Uysal

    2014-04-01

    Full Text Available One of the commonly used methods for ozone therapy is ozonated oils. Most prominent type of used oils is extra virgin olive oil. But still, each type of unsaturated oils may be used for ozonation. There are a lot of wrong knowledge on the internet about ozonated oils and its use as well. Just like other ozone therapy studies, also the studies about ozone oils are inadequate to avoid incorrect knowledge. Current data about ozone oil and its benefits are produced by supplier who oversees financial interests and make misinformation. Despite the rapidly increasing ozone oil sales through the internet, its quality and efficacy is still controversial. Dozens of companies and web sites may be easily found to buy ozonated oil. But, very few of these products are reliable, and contain sufficiently ozonated oil. This article aimed to introduce the troubles about ozonated oils and so to inform ozonated oil users. [J Intercult Ethnopharmacol 2014; 3(2.000: 49-50

  17. New Directions: Ozone-initiated reaction products indoors may be more harmful than ozone itself

    Science.gov (United States)

    Weschler, Charles J.

    2004-10-01

    Epidemiological studies have found associations between ozone concentrations measured at outdoor monitoring stations and certain adverse health outcomes. As a recent example, Gent et al. (2003, Journal of the American Medical Association 290, 1859-1867) have observed an association between ozone levels and respiratory symptoms as well as the use of maintenance medication by 271 asthmatic children living in Connecticut and the Springfield area of Massachusetts. In another example, Gilliland et al. (2001, Epidemiology 12, 43-54) detected an association between short-term increases in ozone levels and increased absences among 4th grade students from 12 southern California communities during the period from January to June 1996. Although children may spend a significant amount of time outdoors, especially during periods when ozone levels are elevated, they spend a much larger fraction of their time indoors. I hypothesize that exposure to the products of ozone-initiated indoor chemistry is more directly responsible for the health effects observed in the cited epidemiological studies than is exposure to outdoor ozone itself.

  18. Stratospheric ozone measurements at Arosa (Switzerland): history and scientific relevance

    Science.gov (United States)

    Staehelin, Johannes; Viatte, Pierre; Stübi, Rene; Tummon, Fiona; Peter, Thomas

    2018-05-01

    Climatic Observatory (LKO) in Arosa (Switzerland), marking the beginning of the world's longest series of total (or column) ozone measurements. They were driven by the recognition that atmospheric ozone is important for human health, as well as by scientific curiosity about what was, at the time, an ill characterised atmospheric trace gas. From around the mid-1950s to the beginning of the 1970s studies of high atmosphere circulation patterns that could improve weather forecasting was justification for studying stratospheric ozone. In the mid-1970s, a paradigm shift occurred when it became clear that the damaging effects of anthropogenic ozone-depleting substances (ODSs), such as long-lived chlorofluorocarbons, needed to be documented. This justified continuing the ground-based measurements of stratospheric ozone. Levels of ODSs peaked around the mid-1990s as a result of a global environmental policy to protect the ozone layer, implemented through the 1987 Montreal Protocol and its subsequent amendments and adjustments. Consequently, chemical destruction of stratospheric ozone started to slow around the mid-1990s. To some extent, this raises the question as to whether continued ozone observation is indeed necessary. In the last decade there has been a tendency to reduce the costs associated with making ozone measurements globally including at Arosa. However, the large natural variability in ozone on diurnal, seasonal, and interannual scales complicates the capacity for demonstrating the success of the Montreal Protocol. Chemistry-climate models also predict a super-recovery of the ozone layer at mid-latitudes in the second half of this century, i.e. an increase of ozone concentrations beyond pre-1970 levels, as a consequence of ongoing climate change. These factors, and identifying potentially unexpected stratospheric responses to climate change, support the continued need to document stratospheric ozone changes. This is particularly valuable at the Arosa site, due

  19. Influence of Ar addition on ozone generation in nonthermal plasmas

    International Nuclear Information System (INIS)

    Chen, Hsin Liang; Lee, How Ming; Chen, Shiaw Huei; Wei, Ta Chin; Chang, Moo Been

    2010-01-01

    Inconsistency regarding the influence of Ar addition on ozone generation in a corona discharge has been found in relevant studies. Unlike in the literature to date, a dielectric barrier discharge (DBD) reactor is adopted in this study. In addition to clarifying whether using Ar as an additive would lead to different types of behavior in a DBD and a corona discharge, this study is also motivated to explore the possible causes leading to the inconsistency. The experimental results show that adding Ar into the O 2 plasma would lead to the same influence on ozone generation in the DBD and corona discharge. Moreover, all types of controversial behavior caused by Ar addition reported in the relevant literature are observed in this study as well, indicating that the results of this study are comprehensive enough to interpret the inconsistency. By examining the experimental results in detail, it is found that the controversial influences of Ar addition on ozone generation were found using different assumptions. At a fixed applied voltage, the ozone generation might increase as the Ar concentration is increased, which results from a higher discharge power. Nevertheless, for a certain specific input energy (the ratio of discharge power to gas flow rate), the ozone concentration is lower as the Ar concentration is increased. Therefore, adding Ar is not a good way to enhance ozone generation from an economic point of view.

  20. Distributions of chemical reactive compounds: Effects of different emissions on the formation of ozone

    International Nuclear Information System (INIS)

    Vogel, H.; Fiedler, F.; Vogel, B.

    1993-01-01

    By using the model system the concentration distributions are simulated in accordance to the conditions of the beginning of August 1990. For this situation the influence of the emissions outside of the modelling region and the influence of biogenic emissions of hydrocarbons on the ozone formation in the modeling region was investigated. Comparing the results of the different simulations one can find differences concerning the netto production of the oxidants. For the first simulation day the emissions outside of the modeling region show a strong influence on the ozone production. Integrated over the whole boundary layer the ozone mass increases by 24%. If additionally the biogenic emissions are taken into account one can find only an increase of 7% for the 1. day. In contrast at the 2. simulation day the ozone production increases by 81%. For this case the ozone concentration near the ground is up to 20 ppb higher than for the model rund without biogenic emissions. (orig./BBR) [de

  1. Key drivers of ozone change and its radiative forcing over the 21st century

    Science.gov (United States)

    Iglesias-Suarez, Fernando; Kinnison, Douglas E.; Rap, Alexandru; Maycock, Amanda C.; Wild, Oliver; Young, Paul J.

    2018-05-01

    Over the 21st century changes in both tropospheric and stratospheric ozone are likely to have important consequences for the Earth's radiative balance. In this study, we investigate the radiative forcing from future ozone changes using the Community Earth System Model (CESM1), with the Whole Atmosphere Community Climate Model (WACCM), and including fully coupled radiation and chemistry schemes. Using year 2100 conditions from the Representative Concentration Pathway 8.5 (RCP8.5) scenario, we quantify the individual contributions to ozone radiative forcing of (1) climate change, (2) reduced concentrations of ozone depleting substances (ODSs), and (3) methane increases. We calculate future ozone radiative forcings and their standard error (SE; associated with inter-annual variability of ozone) relative to year 2000 of (1) 33 ± 104 m Wm-2, (2) 163 ± 109 m Wm-2, and (3) 238 ± 113 m Wm-2 due to climate change, ODSs, and methane, respectively. Our best estimate of net ozone forcing in this set of simulations is 430 ± 130 m Wm-2 relative to year 2000 and 760 ± 230 m Wm-2 relative to year 1750, with the 95 % confidence interval given by ±30 %. We find that the overall long-term tropospheric ozone forcing from methane chemistry-climate feedbacks related to OH and methane lifetime is relatively small (46 m Wm-2). Ozone radiative forcing associated with climate change and stratospheric ozone recovery are robust with regard to background climate conditions, even though the ozone response is sensitive to both changes in atmospheric composition and climate. Changes in stratospheric-produced ozone account for ˜ 50 % of the overall radiative forcing for the 2000-2100 period in this set of simulations, highlighting the key role of the stratosphere in determining future ozone radiative forcing.

  2. Concentration, ozone formation potential and source analysis of volatile organic compounds (VOCs) in a thermal power station centralized area: A study in Shuozhou, China.

    Science.gov (United States)

    Yan, Yulong; Peng, Lin; Li, Rumei; Li, Yinghui; Li, Lijuan; Bai, Huiling

    2017-04-01

    Volatile organic compounds (VOCs) from two sampling sites (HB and XB) in a power station centralized area, in Shuozhou city, China, were sampled by stainless steel canisters and measured by gas chromatography-mass selective detection/flame ionization detection (GC-MSD/FID) in the spring and autumn of 2014. The concentration of VOCs was higher in the autumn (HB, 96.87 μg/m 3 ; XB, 58.94 μg/m 3 ) than in the spring (HB, 41.49 μg/m 3 ; XB, 43.46 μg/m 3 ), as lower wind speed in the autumn could lead to pollutant accumulation, especially at HB, which is a new urban area surrounded by residential areas and a transportation hub. Alkanes were the dominant group at both HB and XB in both sampling periods, but the contribution of aromatic pollutants at HB in the autumn was much higher than that of the other alkanes (11.16-19.55%). Compared to other cities, BTEX pollution in Shuozhou was among the lowest levels in the world. Because of the high levels of aromatic pollutants, the ozone formation potential increased significantly at HB in the autumn. Using the ratio analyses to identify the age of the air masses and analyze the sources, the results showed that the atmospheric VOCs at XB were strongly influenced by the remote sources of coal combustion, while at HB in the spring and autumn were affected by the remote sources of coal combustion and local sources of vehicle emission, respectively. Source analysis conducted using the Positive Matrix Factorization (PMF) model at Shuozhou showed that coal combustion and vehicle emissions made the two largest contributions (29.98% and 21.25%, respectively) to atmospheric VOCs. With further economic restructuring, the influence of vehicle emissions on the air quality should become more significant, indicating that controlling vehicle emissions is key to reducing the air pollution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Method for automatic determination of soybean actual evapotranspiration under open top chambers (OTC) subjected to effects of water stress and air ozone concentration.

    Science.gov (United States)

    Rana, Gianfranco; Katerji, Nader; Mastrorilli, Marcello

    2012-10-01

    The present study describes an operational method, based on the Katerji et al. (Eur J Agron 33:218-230, 2010) model, for determining the daily evapotranspiration (ET) for soybean inside open top chambers (OTCs). It includes two functions, calculated day par day, making it possible to separately take into account the effects of concentrations of air ozone and plant water stress. This last function was calibrated in function of the daily values of actual water reserve in the soil. The input variables of the method are (a) the diurnal values of global radiation and temperature, usually measured routinely in a standard weather station; (b) the daily values of the AOT40 index accumulated (accumulated ozone over a threshold of 40 ppb during daylight hours, when global radiation exceeds 50 Wm(-2)) determined inside the OTC; and (c) the actual water reserve in the soil, at the beginning of the trial. The ensemble of these input variables can be automatable; thus, the proposed method could be applied in routine. The ability of the method to take into account contrasting conditions of ozone air concentration and water stress was evaluated over three successive years, for 513 days, in ten crop growth cycles, excluding the days employed to calibrate the method. Tests were carried out in several chambers for each year and take into account the intra- and inter-year variability of ET measured inside the OTCs. On the daily scale, the slope of the linear regression between the ET measured by the soil water balance and that calculated by the proposed method, under different water conditions, are 0.98 and 1.05 for the filtered and unfiltered (or enriched) OTCs with root mean square error (RMSE) equal to 0.77 and 1.07 mm, respectively. On the seasonal scale, the mean difference between measured and calculated ET is equal to +5% and +11% for the filtered and unfiltered OTCs, respectively. The ability of the proposed method to estimate the daily and seasonal ET inside the OTCs is

  4. Decolorization of malachite green, decolorization kinetics and stoichiometry of ozone-malachite green and removal of antibacterial activity with ozonation processes

    Energy Technology Data Exchange (ETDEWEB)

    Kusvuran, Erdal, E-mail: erdalkusvuran@yahoo.com [Chemistry Department, Arts and Sciences Faculty, Cukurova University, 01330 Balcali, Adana (Turkey); Gulnaz, Osman [Biology Department, Arts and Sciences Faculty, Cukurova University, 01330 Balcali, Adana (Turkey); Samil, Ali [Chemistry Department, Arts and Sciences Faculty, Sutcu Imam University, 46100 Kahramanmaras (Turkey); Yildirim, Ozlem [Chemistry Department, Arts and Sciences Faculty, Cukurova University, 01330 Balcali, Adana (Turkey)

    2011-02-15

    This study aimed to identify degradation intermediates and to investigate the stoichiometry of decolorization and degradation, decolorization kinetics, and removal of antibacterial activity of malachite green (MG) using ozonization processes. The decolorization of MG was optimal at an acidic pH value of 3 based on molecular ozone attack on MG molecules. The stoichiometric ratio of decolorization between ozone and MG was calculated to be 7.0 with a regression coefficient of 0.995, whereas the ratio for degradation was calculated as 13.1 with a regression coefficient of 0.998. With MG concentrations in the range of 0.30-1.82 mM, the concentration of decolorized MG increased with higher initial concentrations of MG, whereas the ozonolytic decolorization rates of MG, decreased with increasing initial concentration. The pseudo-first-order degradation rate constants (k') decreased with the initial concentration and ranged from 0.769 to 0.223 min{sup -1}. Twelve different intermediates were produced during the ozonation of MG with ozonation times between 5 min and 30 min and were identified by GC-MS. Although 86% of MG in the reaction mixture was removed by ozonation after 10 min, the decrease of antibacterial activity was very low (10%) for Bacillus subtilis and Staphylococcus epidermidis because the degradation intermediates, phenol and benzoic acid, also have antibacterial activity. The antibacterial activity of both MG and its intermediates were removed successfully with ozonation times above 26 min.

  5. Decolorization of malachite green, decolorization kinetics and stoichiometry of ozone-malachite green and removal of antibacterial activity with ozonation processes

    International Nuclear Information System (INIS)

    Kusvuran, Erdal; Gulnaz, Osman; Samil, Ali; Yildirim, Ozlem

    2011-01-01

    This study aimed to identify degradation intermediates and to investigate the stoichiometry of decolorization and degradation, decolorization kinetics, and removal of antibacterial activity of malachite green (MG) using ozonization processes. The decolorization of MG was optimal at an acidic pH value of 3 based on molecular ozone attack on MG molecules. The stoichiometric ratio of decolorization between ozone and MG was calculated to be 7.0 with a regression coefficient of 0.995, whereas the ratio for degradation was calculated as 13.1 with a regression coefficient of 0.998. With MG concentrations in the range of 0.30-1.82 mM, the concentration of decolorized MG increased with higher initial concentrations of MG, whereas the ozonolytic decolorization rates of MG, decreased with increasing initial concentration. The pseudo-first-order degradation rate constants (k') decreased with the initial concentration and ranged from 0.769 to 0.223 min -1 . Twelve different intermediates were produced during the ozonation of MG with ozonation times between 5 min and 30 min and were identified by GC-MS. Although 86% of MG in the reaction mixture was removed by ozonation after 10 min, the decrease of antibacterial activity was very low (10%) for Bacillus subtilis and Staphylococcus epidermidis because the degradation intermediates, phenol and benzoic acid, also have antibacterial activity. The antibacterial activity of both MG and its intermediates were removed successfully with ozonation times above 26 min.

  6. Increased Baseline C-Reactive Protein Concentrations Are Associated with Increased Risk of Infections

    DEFF Research Database (Denmark)

    Zacho, Jeppe; Benfield, Thomas; Tybjærg-Hansen, Anne

    2016-01-01

    BACKGROUND: The acute-phase reactant C-reactive protein (CRP) increases rapidly during an infection. We tested the hypothesis that chronic low-level increases in CRP are associated with an increased risk of infectious disease. METHODS: We studied 9660 individuals from a prospective general...... population cohort, including 3592 in whom infectious disease developed, and another 60 896 individuals from a cross-sectional general population study, of whom 13 332 developed infectious disease; 55% were women, and the mean age was 57 years. Hospital diagnoses of infections in 1977-2010 were based....... RESULTS: Individuals with CRP >3 mg/L had 1.2 and 1.7 times increased risk of infectious disease, in the prospective general population cohort and the cross-sectional general population study, respectively, compared with individuals with CRP

  7. Ozone generation in positive and negative corona discharge fed by humid oxygen and carbon dioxide

    International Nuclear Information System (INIS)

    Skalny, J D; Orszagh, J; MatejcIk, S; Mason, N J

    2008-01-01

    The effect of humidity on ozone generation of positive and negative corona discharges fed by O 2 and CO 2 has been studied in the humidity range of 100-20 000 ppm. The experiments were carried out at an ambient temperature and pressure of 100 kPa. The increase in humidity of CO 2 conspicuously suppressed the ozone generation in negative corona discharge at all values of the input energy densities into the discharge. The effect was less pronounced in oxygen. In contrast to decrease of ozone concentration observed in negative corona discharge, the presence of water both in O 2 and CO 2 acts catalytically. The ozone concentration has been found to increase remarkably (approximately 10 times) in oxygen, if the humidity was increased from 100 to 20 000 ppm. The dependence of ozone concentration on the gas humidity exhibited an extreme. The increase observed at humidity up to approximately 5000 ppm was followed by the marginal reduction in ozone concentration. Anyway, the values of this were considerably higher than those found in dry CO 2 . The effect of humidity on ozone concentration will be discussed in relation to plasma chemical processes in studied discharges and their macroscopic parameters.

  8. Tropospheric ozone using an emission tagging technique in the CAM-Chem and WRF-Chem models

    Science.gov (United States)

    Lupascu, A.; Coates, J.; Zhu, S.; Butler, T. M.

    2017-12-01

    Tropospheric ozone is a short-lived climate forcing pollutant. High concentration of ozone can affect human health (cardiorespiratory and increased mortality due to long-term exposure), and also it damages crops. Attributing ozone concentrations to the contributions from different sources would indicate the effects of locally emitted or transported precursors on ozone levels in specific regions. This information could be used as an important component of the design of emissions reduction strategies by indicating which emission sources could be targeted for effective reductions, thus reducing the burden of ozone pollution. Using a "tagging" approach within the CAM-Chem (global) and WRF-Chem (regional) models, we can quantify the contribution of individual emission of NOx and VOC precursors on air quality. Hence, when precursor emissions of NOx are tagged, we have seen that the largest contributors on ozone levels are the anthropogenic sources, while in the case of precursor emissions of VOCs, the biogenic sources and methane account for more than 50% of ozone levels. Further, we have extended the NOx tagging method in order to investigate continental source region contributions to concentrations of ozone over various receptor regions over the globe, with a zoom over Europe. In general, summertime maximum ozone in most receptor regions is largely attributable to local emissions of anthropogenic NOx and biogenic VOC. During the rest of the year, especially during springtime, ozone in most receptor regions shows stronger influences from anthropogenic emissions of NOx and VOC in remote source regions.

  9. Sunflower oil ozonation. Following of the reaction by proton Nuclear Magnetic Resonance

    International Nuclear Information System (INIS)

    Diaz Gomez, Maritza F.

    2005-01-01

    Previous studies have demonstrated that the technique of Proton Nuclear Magnetic Resonance can be used for the pursuit of the reaction between the ozone and the unsaturated fatty acids. It's carried out the sunflower oil ozonization to different applied dose of ozone and the index of peroxides and the concentration of aldehydes are determined. The main reaction products were identified by Proton Nuclear Magnetic Resonance Spectroscopy (NMR 1 H). The intensities of the signs were used to follow the advance of the reaction between the ozone and the sunflower oil. It is was carried out until obtaining an index of peroxides of 1 202 mmol-equiv/kg. The intensities of the signs of the olefinic protons diminish with a gradual increment in the dose of applied ozone, but without ending up disappearing completely. The ozonides of Criegee obtained to applied dose of ozone of 107,1 mg/g were approximately bigger 7,4 times that those obtained at the beginning from the reaction to applied dose of ozone of 15,3 mg/g. The aldehydes protons were observed as a sign of weak intensity in all the spectra. The signs belonging to the olenifics protons of the hydroperoxides in d = 5,55 ppm increases with the increment of the applied dose of ozone. You concludes that to higher applied dose of ozone, haggler is the advance of the ozonization reaction, what belongs together with a bigger formation of oxygenated compounds

  10. Effects of black carbon and boundary layer interaction on surface ozone in Nanjing, China

    Science.gov (United States)

    Gao, Jinhui; Zhu, Bin; Xiao, Hui; Kang, Hanqing; Pan, Chen; Wang, Dongdong; Wang, Honglei

    2018-05-01

    As an important solar radiation absorbing aerosol, the effect of black carbon (BC) on surface ozone, via reducing photolysis rate, has been widely discussed by offline model studies. However, BC-boundary layer (BL) interactions also influence surface ozone. Using the online model simulations and process analysis, we demonstrate the significant impact of BC-BL interaction on surface ozone in Nanjing. The absorbing effect of BC heats the air above the BL and suppresses and delays the development of the BL, which eventually leads to a change in surface ozone via a change in the contributions from chemical and physical processes (photochemistry, vertical mixing and advection). For chemical processes, the suppression of the BL leads to large amounts of ozone precursors being confined below the BL which has an increased effect on ozone chemical production and offsets the decrease caused by the reduction of the photolysis rate, thus enhancing ozone chemical formation from 10:00 to 12:00 LT. Furthermore, changes in physical processes, especially the vertical mixing process, show a more significant influence on surface ozone. The weakened turbulence, caused by the suppressed BL, entrains much less ozone aloft down to the surface. Finally, summing-up the changes in the processes, surface ozone reduces before noon and the maximum reduction reaches 16.4 ppb at 12:00 LT. In the afternoon, the changes in chemical process are small which inconspicuously influence surface ozone. However, change in the vertical mixing process still influences surface ozone significantly. Due to the delayed development of the BL, there are obvious ozone gradients around the top of BL. Therefore, high concentrations of ozone aloft can still be entrained down to the surface which offsets the reduction of surface ozone. Comparing the changes in the processes, the change in vertical mixing plays the most important role in impacting surface ozone. Our results highlight the great impacts BC

  11. Surface ozone in China: present-day distribution and long-term changes

    Science.gov (United States)

    Xu, X.; Lin, W.; Xu, W.

    2017-12-01

    Reliable knowledge of spatio-temporal variations of surface ozone is highly needed to assess the impacts of ozone on human health, ecosystem and climate. Although regional distributions and trends of surface ozone in European and North American countries have been well characterized, little is known about the variability of surface ozone in many other countries, including China, where emissions of ozone precursors have been changing rapidly in recent decades. Here we present the first comprehensive description of present-day (2013-2017) distribution and long-term changes of surface ozone in mainland China. Recent ozone measurements from China's air quality monitoring network (AQMN) are analyzed to show present-day distributions of a few ozone exposure metrics for urban environment. Long-term measurements of ozone at six background sites, a rural site and an urban are used to study the trends of ozone in background, rural and urban air, respectively. The average levels of ozone at the AQMN sites (mainly urban) are close to those found at many European and North American sites. However, ozone at most of the sites shows very large diurnal and seasonal variations so that ozone nonattainment can occur in many cities, particularly those in the North China Plain (NCP), the south of Northeast China (NEC), the Yangtze River Delta (YRD), the Pearl River Delta (PRD), and the Sichuan Basin-Chongqing region (SCB). In all these regions, particularly in the NCP, the maximum daily 8-h average (MDA8) ozone concentration can significantly exceed the national limit (75 ppb). High annual sum of ozone means over 35 ppb (SOMO35) exist mainly in the NCP, NEC and YRD, with regional averages over 4000 ppb·d. Surface ozone has significantly increased at Waliguan (a baseline site in western China) and Shangdianzi (a background site in the NCP), and decreased in winter and spring at Longfengshan (a background site in Northeast China). No clear trend can be derived from long-term measurements

  12. Effects of black carbon and boundary layer interaction on surface ozone in Nanjing, China

    Directory of Open Access Journals (Sweden)

    J. Gao

    2018-05-01

    Full Text Available As an important solar radiation absorbing aerosol, the effect of black carbon (BC on surface ozone, via reducing photolysis rate, has been widely discussed by offline model studies. However, BC–boundary layer (BL interactions also influence surface ozone. Using the online model simulations and process analysis, we demonstrate the significant impact of BC–BL interaction on surface ozone in Nanjing. The absorbing effect of BC heats the air above the BL and suppresses and delays the development of the BL, which eventually leads to a change in surface ozone via a change in the contributions from chemical and physical processes (photochemistry, vertical mixing and advection. For chemical processes, the suppression of the BL leads to large amounts of ozone precursors being confined below the BL which has an increased effect on ozone chemical production and offsets the decrease caused by the reduction of the photolysis rate, thus enhancing ozone chemical formation from 10:00 to 12:00 LT. Furthermore, changes in physical processes, especially the vertical mixing process, show a more significant influence on surface ozone. The weakened turbulence, caused by the suppressed BL, entrains much less ozone aloft down to the surface. Finally, summing-up the changes in the processes, surface ozone reduces before noon and the maximum reduction reaches 16.4 ppb at 12:00 LT. In the afternoon, the changes in chemical process are small which inconspicuously influence surface ozone. However, change in the vertical mixing process still influences surface ozone significantly. Due to the delayed development of the BL, there are obvious ozone gradients around the top of BL. Therefore, high concentrations of ozone aloft can still be entrained down to the surface which offsets the reduction of surface ozone. Comparing the changes in the processes, the change in vertical mixing plays the most important role in impacting surface ozone. Our results highlight the

  13. Measurements and Mesoscale Modeling of Autumnal Vertical Ozone Profiles in Southern Taiwan

    Directory of Open Access Journals (Sweden)

    Yen-Ping Peng

    2008-01-01

    Full Text Available Vertical measurements of ozone were made using a tethered balloon at the Linyuan site in Kaohsiung County, southern Taiwan. Ozone was monitored at altitudes of 0, 100, 300, 500, and 1000 m from November 23 to 25 in 2005. The potential temperature profiles revealed a stable atmosphere during the study period, largely because of the dominance of the high-pressure system and nocturnal radiation cooling close to the surface. The mixing height was low (50 - 300 m, particularly in the late night and early morning. The surface ozone concentrations that were predicted using TAPM (The Air Pollution Model were high (33.7 - 119 ppbv in the daytime (10:00 - 16:00 and were low (10 - 40 ppbv at other times; the predictions of which were consistent with the observations. The simulated surface ozone concentrations reveal that costal lands typically had higher ozone concentrations than those inland, because most industrial parks are located in or close to the boundaries of Kaohsiung City. Both measurements and simulations indicate that daytime ozone concentrations decreased quickly with increasing height at altitudes below 300 m; while nighttime ozone concentrations were lower at low altitudes (50 to 300 m than at higher altitudes, partly because of dry deposition and titration of surface ozone by the near-surface nitrogen oxides (NOx and partly because of the existence of the residual layer above the stable nocturnal boundary layer. The simulations show a good correlation between the maximum daytime surface ozone concentration and average nighttime ozone concentration above the nocturnal boundary layer.

  14. Ozone time scale decomposition and trend assessment from surface observations

    Science.gov (United States)

    Boleti, Eirini; Hueglin, Christoph; Takahama, Satoshi

    2017-04-01

    Emissions of ozone precursors have been regulated in Europe since around 1990 with control measures primarily targeting to industries and traffic. In order to understand how these measures have affected air quality, it is now important to investigate concentrations of tropospheric ozone in different types of environments, based on their NOx burden, and in different geographic regions. In this study, we analyze high quality data sets for Switzerland (NABEL network) and whole Europe (AirBase) for the last 25 years to calculate long-term trends of ozone concentrations. A sophisticated time scale decomposition method, called the Ensemble Empirical Mode Decomposition (EEMD) (Huang,1998;Wu,2009), is used for decomposition of the different time scales of the variation of ozone, namely the long-term trend, seasonal and short-term variability. This allows subtraction of the seasonal pattern of ozone from the observations and estimation of long-term changes of ozone concentrations with lower uncertainty ranges compared to typical methodologies used. We observe that, despite the implementation of regulations, for most of the measurement sites ozone daily mean values have been increasing until around mid-2000s. Afterwards, we observe a decline or a leveling off in the concentrations; certainly a late effect of limitations in ozone precursor emissions. On the other hand, the peak ozone concentrations have been decreasing for almost all regions. The evolution in the trend exhibits some differences between the different types of measurement. In addition, ozone is known to be strongly affected by meteorology. In the applied approach, some of the meteorological effects are already captured by the seasonal signal and already removed in the de-seasonalized ozone time series. For adjustment of the influence of meteorology on the higher frequency ozone variation, a statistical approach based on Generalized Additive Models (GAM) (Hastie,1990;Wood,2006), which corrects for meteorological

  15. Ozone exposure of a weed community produces adaptive changes in seed populations of Spergula arvensis.

    Directory of Open Access Journals (Sweden)

    Jennifer B Landesmann

    Full Text Available Tropospheric ozone is one of the major drivers of global change. This stress factor alters plant growth and development. Ozone could act as a selection pressure on species communities composition, but also on population genetic background, thus affecting life history traits. Our objective was to evaluate the consequences of prolonged ozone exposure of a weed community on phenotypic traits of Spergulaarvensis linked to persistence. Specifically, we predicted that the selection pressure exerted by high ozone concentrations as well as the concomitant changes in the weed community would drive population adaptive changes which will be reflected on seed germination, dormancy and longevity. In order to test seed viability and dormancy level, we conducted germination experiments for which we used seeds produced by S. arvensis plants grown within a weed community exposed to three ozone treatments during four years (0, 90 and 120 ppb. We also performed a soil seed bank experiment to test seed longevity with seeds coming from both the four-year ozone exposure experiment and from a short-term treatment conducted at ambient and added ozone concentrations. We found that prolonged ozone exposure produced changes in seed germination, dormancy and longevity, resulting in three S. arvensis populations. Seeds from the 90 ppb ozone selection treatment had the highest level of germination when stored at 75% RH and 25 °C and then scarified. These seeds showed the lowest dormancy level when being subjected to 5 ºC/5% RH and 25 ºC/75% followed by 5% RH storage conditions. Furthermore, ozone exposure increased seed persistence in the soil through a maternal effect. Given that tropospheric ozone is an important pollutant in rural areas, changes in seed traits due to ozone exposure could increase weed persistence in fields, thus affecting weed-crop interactions, which could ultimately reduce crop production.

  16. Ozone exposure of a weed community produces adaptive changes in seed populations of Spergula arvensis.

    Science.gov (United States)

    Landesmann, Jennifer B; Gundel, Pedro E; Martínez-Ghersa, M Alejandra; Ghersa, Claudio M

    2013-01-01

    Tropospheric ozone is one of the major drivers of global change. This stress factor alters plant growth and development. Ozone could act as a selection pressure on species communities composition, but also on population genetic background, thus affecting life history traits. Our objective was to evaluate the consequences of prolonged ozone exposure of a weed community on phenotypic traits of Spergulaarvensis linked to persistence. Specifically, we predicted that the selection pressure exerted by high ozone concentrations as well as the concomitant changes in the weed community would drive population adaptive changes which will be reflected on seed germination, dormancy and longevity. In order to test seed viability and dormancy level, we conducted germination experiments for which we used seeds produced by S. arvensis plants grown within a weed community exposed to three ozone treatments during four years (0, 90 and 120 ppb). We also performed a soil seed bank experiment to test seed longevity with seeds coming from both the four-year ozone exposure experiment and from a short-term treatment conducted at ambient and added ozone concentrations. We found that prolonged ozone exposure produced changes in seed germination, dormancy and longevity, resulting in three S. arvensis populations. Seeds from the 90 ppb ozone selection treatment had the highest level of germination when stored at 75% RH and 25 °C and then scarified. These seeds showed the lowest dormancy level when being subjected to 5 ºC/5% RH and 25 ºC/75% followed by 5% RH storage conditions. Furthermore, ozone exposure increased seed persistence in the soil through a maternal effect. Given that tropospheric ozone is an important pollutant in rural areas, changes in seed traits due to ozone exposure could increase weed persistence in fields, thus affecting weed-crop interactions, which could ultimately reduce crop production.

  17. Temporal multiscaling characteristics of particulate matter PM 10 and ground-level ozone O3 concentrations in Caribbean region

    Science.gov (United States)

    Plocoste, Thomas; Calif, Rudy; Jacoby-Koaly, Sandra

    2017-11-01

    A good knowledge of the intermittency of atmospheric pollutants is crucial for air pollution management. We consider here particulate matter PM 10 and ground-level ozone O3 time series in Guadeloupe archipelago which experiments a tropical and humid climate in the Caribbean zone. The aim of this paper is to study their scaling statistics in the framework of fully developed turbulence and Kolmogorov's theory. Firstly, we estimate their Fourier power spectra and consider their scaling properties in the physical space. The power spectra computed follows a power law behavior for both considered pollutants. Thereafter we study the scaling behavior of PM 10 and O3 time series. Contrary to numerous studies where the multifractal detrended fluctuation analysis is frequently applied, here, the classical structure function analysis is used to extract the scaling exponent or multifractal spectrum ζ(q) ; this function provides a full characterization of a process at all intensities and all scales. The obtained results show that PM 10 and O3 possess intermittent and multifractal properties. The singularity spectrum MS(α) also confirms both pollutants multifractal features. The originality of this work comes from a statistical modeling performed on ζ(q) and MS(α) by a lognormal model to compute the intermittency parameter μ. By contrast with PM 10 which mainly depends on puffs of Saharan dust (synoptic-scale), O3 is more intermittent due to variability of its local precursors. The results presented in this paper can help to better understand the mechanisms governing the dynamics of PM 10 and O3 in Caribbean islands context.

  18. Process-scale modeling of elevated wintertime ozone in Wyoming.

    Energy Technology Data Exchange (ETDEWEB)

    Kotamarthi, V. R.; Holdridge, D. J.; Environmental Science Division

    2007-12-31

    Measurements of meteorological variables and trace gas concentrations, provided by the Wyoming Department of Environmental Quality for Daniel, Jonah, and Boulder Counties in the state of Wyoming, were analyzed for this project. The data indicate that highest ozone concentrations were observed at temperatures of -10 C to 0 C, at low wind speeds of about 5 mph. The median values for nitrogen oxides (NOx) during these episodes ranged between 10 ppbv and 20 ppbv (parts per billion by volume). Measurements of volatile organic compounds (VOCs) during these periods were insufficient for quantitative analysis. The few available VOCs measurements indicated unusually high levels of alkanes and aromatics and low levels of alkenes. In addition, the column ozone concentration during one of the high-ozone episodes was low, on the order of 250 DU (Dobson unit) as compared to a normal column ozone concentration of approximately 300-325 DU during spring for this region. Analysis of this observation was outside the scope of this project. The data analysis reported here was used to establish criteria for making a large number of sensitivity calculations through use of a box photochemical model. Two different VOCs lumping schemes, RACM and SAPRC-98, were used for the calculations. Calculations based on this data analysis indicated that the ozone mixing ratios are sensitive to (a) surface albedo, (b) column ozone, (c) NOx mixing ratios, and (d) available terminal olefins. The RACM model showed a large response to an increase in lumped species containing propane that was not reproduced by the SAPRC scheme, which models propane as a nearly independent species. The rest of the VOCs produced similar changes in ozone in both schemes. In general, if one assumes that measured VOCs are fairly representative of the conditions at these locations, sufficient precursors might be available to produce ozone in the range of 60-80 ppbv under the conditions modeled.

  19. The impact of nudging coefficient for the initialization on the atmospheric flow field and the photochemical ozone concentration of Seoul, Korea

    Science.gov (United States)

    Choi, Hyun-Jung; Lee, Hwa Woon; Sung, Kyoung-Hee; Kim, Min-Jung; Kim, Yoo-Keun; Jung, Woo-Sik

    In order to incorporate correctly the large or local scale circulation in the model, a nudging term is introduced into the equation of motion. Nudging effects should be included properly in the model to reduce the uncertainties and improve the air flow field. To improve the meteorological components, the nudging coefficient should perform the adequate influence on complex area for the model initialization technique which related to data reliability and error suppression. Several numerical experiments have been undertaken in order to evaluate the effects on air quality modeling by comparing the performance of the meteorological result with variable nudging coefficient experiment. All experiments are calculated by the upper wind conditions (synoptic or asynoptic condition), respectively. Consequently, it is important to examine the model response to nudging effect of wind and mass information. The MM5-CMAQ model was used to assess the ozone differences in each case, during the episode day in Seoul, Korea and we revealed that there were large differences in the ozone concentration for each run. These results suggest that for the appropriate simulation of large or small-scale circulations, nudging considering the synoptic and asynoptic nudging coefficient does have a clear advantage over dynamic initialization, so appropriate limitation of these nudging coefficient values on its upper wind conditions is necessary before making an assessment. The statistical verifications showed that adequate nudging coefficient for both wind and temperature data throughout the model had a consistently positive impact on the atmospheric and air quality field. On the case dominated by large-scale circulation, a large nudging coefficient shows a minor improvement in the atmospheric and air quality field. However, when small-scale convection is present, the large nudging coefficient produces consistent improvement in the atmospheric and air quality field.

  20. Measurements of the potential ozone production rate in a forest

    Science.gov (United States)

    Crilley, L.; Sklaveniti, S.; Kramer, L.; Bloss, W.; Flynn, J. H., III; Alvarez, S. L.; Erickson, M.; Dusanter, S.; Locoge, N.; Stevens, P. S.; Millet, D. B.; Alwe, H. D.

    2017-12-01

    Biogenic volatile organic compounds (BVOC) are a significant source of organic compounds globally and alongside NOx play a key role in the formation of ozone in the troposphere. Understanding how changes in NOx concentrations feed through to altered ozone production in BVOC dominated environments will aid our understanding of future atmospheric composition, notably as developing nations transition from NOx dominated to NOx limited chemistry as a result of mitigation strategies. Here we empirically investigate this ambient ozone formation potential. We report deployment of a custom built instrument to measure in near real time the potential for in situ chemical ozone production, using an artificial light source. Our results are thus indicative of the ozone formation potential for a sampled ambient air mixture, including full VOC complexity, i.e. independent of characterization of individual organic compounds. Ground level measurements were performed as part of the PROPHET-AMOS 2016 field campaign, at a site located within a Northern Michigan forest that has typically low NOx abundance, but high isoprene and terpenoid loadings. As the ambient NOx concentrations were low during the campaign, experiments were performed in which NO was artificially added to the sampled ambient air mixture, to quantify changes in the potential ozone production rate as a function of NOx, and hence the ozone forming characteristics of the ambient air. Preliminarily results from these experiments are presented, and indicate that while ozone production increases with added NO, significant variation was observed for a given NO addition, reflecting differences in the ambient VOC chemical reactivity and ozone formation tendency.

  1. Nitrogen mediates above-ground effects of ozone but not below-ground effects in a rhizomatous sedge

    International Nuclear Information System (INIS)

    Jones, M.L.M.; Hodges, G.; Mills, G.

    2010-01-01

    Ozone and atmospheric nitrogen are co-occurring pollutants with adverse effects on natural grassland vegetation. Plants of the rhizomatous sedge Carex arenaria were exposed to four ozone regimes representing increasing background concentrations (background-peak): 10-30, 35-55, 60-80 and 85-105 ppb ozone at two nitrogen levels: 12 and 100 kg N ha -1 yr -1 . Ozone increased the number and proportion of senesced leaves, but not overall leaf number. There was a clear nitrogen x ozone interaction with high nitrogen reducing proportional senescence in each treatment and increasing the ozone dose (AOT40) at which enhanced senescence occurred. Ozone reduced total biomass due to significant effects on root biomass. There were no interactive effects on shoot:root ratio. Rhizome tissue N content was increased by both nitrogen and ozone. Results suggest that nitrogen mediates above-ground impacts of ozone but not impacts on below-ground resource translocation. This may lead to complex interactive effects between the two pollutants on natural vegetation. - Nitrogen alters threshold of ozone-induced senescence, but not below-ground resource allocation.

  2. Ozone production in summer in the megacities of Tianjin and Shanghai, China: a comparative study

    Directory of Open Access Journals (Sweden)

    L. Ran

    2012-08-01

    Full Text Available Rapid economic growth has given rise to a significant increase in ozone precursor emissions in many regions of China, especially in the densely populated North China Plain (NCP and Yangtze River Delta (YRD. Improved understanding of ozone formation in response to different precursor emissions is imperative to address the highly nonlinear ozone problem and to provide a solid scientific basis for efficient ozone abatement in these regions. A comparative study on ozone photochemical production in summer has thus been carried out in the megacities of Tianjin (NCP and Shanghai (YRD. Two intensive field campaigns were carried out respectively at an urban and a suburban site of Tianjin, in addition to routine monitoring of trace gases in Shanghai, providing data sets of surface ozone and its precursors including nitrogen oxides (NOx and various non-methane hydrocarbons (NMHCs. Ozone pollution in summer was found to be more severe in the Tianjin region than in the Shanghai region, based on either the frequency or the duration of high ozone events. Such differences might be attributed to the large amount of highly reactive NMHCs in Tianjin. Industry related species like light alkenes were of particular importance in both urban and suburban Tianjin, while in Shanghai aromatics dominated. In general, the ozone problem in Shanghai is on an urban scale. Stringent control policies on local emissions would help reduce the occurrence of high ozone concentrations. By contrast, ozone pollution in Tianjin is probably a regional problem. Combined efforts to reduce ozone precursor emissions on a regional scale must be undertaken to bring the ozone problem under control.

  3. The holes in the ozone scare

    Energy Technology Data Exchange (ETDEWEB)

    Maduro, R.; Schauerhamer, R.

    1992-05-01

    For the authors, the ozone hole is more politic than scientific, and is caused by anthropogenic CFC, the ozone concentration reduction measured in the antarctic stratosphere is a natural phenomena: ozone destruction by chlorides and bromides coming from volcanos and oceans. The ozone hole was discovered in 1956 and not in 1985. For the greenhouse effect, the CO[sub 2] part is very small in comparison with the atmospheric water vapour part. (A.B.). refs., figs., tabs.

  4. Acute Peritonitis and Nonspecific Resistance Factors in the Administration of Ozonized Perfluorane (Experimental Study

    Directory of Open Access Journals (Sweden)

    A. M. Golubev

    2008-01-01

    Full Text Available Objective: to study the effect of ozonized perfluorane on the natural course of acute of fecal peritonitis and congenital (nonspecific immunity factors during its intraperitoneal administration. Materials and methods. Perfluorane and saline solution were ozonized bubbling with a mixture of ozone and oxygen at a rate of 0.5 l/min and at a preset ozone concentration of 3000 flg/l on a Medozons — BM AOT — H-01-Arz-91 ozonator (OAO «Arzamasskiy Priborostroitelnyi Zavod» for 15 minutes. The concentration of ozone was measured in the solutions on a NF 254/1 spectrophotometer. Experiments were carried out on 200 non-inbred albino male rats in 4 series of experiments. After simulating fecal peritonitis by the procedure developed by S. S. Remennik, the animals were intraperitoneally injected ozonized perfluorane (Series 1, ozonized saline solution (Series 2, perfluorane (Series 3, and saline solution (Series 4 on the basis of 1.5 ml per 100 g of weight. Nine intact rats were used as a control. Results. The congenital immunity parameters (phagocytic block, intracellular and serum bactericidal activities were studied. An association was found between the clinical course and the degree of nonspecific immunity suppression. The ozonized perfluorane was ascertained to have a more significant protective action on nonspecific immunity factors than perfluorane or the ozonized saline solution. The factors under study were significantly decreased when saline solution was administered, and with this there was a mass mortality of Series 4 rats on days 2—14 of the experiment. Conclusion. The therapeutic effect of the ozonized perfluorane is due to the activation of phagocytic mononuclear leukocytes and their increased count, to the antibacterial activity of ozone and the protective action on the nonspecific link of the body’s immunological resistance.

  5. OZONE TREATMENT OF SOLUBLE ORGANICS IN PRODUCED WATER

    Energy Technology Data Exchange (ETDEWEB)

    Klasson, KT

    2002-03-14

    This project was an extension of previous research to improve the applicability of ozonation and will help address the petroleum-industry problem of treating produced water containing soluble organics. The goal of this project was to maximize oxidation of hexane-extractable organics during a single-pass operation. The project investigated: (1) oxidant production by electrochemical and sonochemical methods, (2) increasing the mass transfer rate in the reactor by forming microbubbles during ozone injection into the produced water, and (3) using ultraviolet irradiation to enhance the reaction if needed. Several types of methodologies for treatment of soluble organics in synthetic and actual produced waters have been performed. The technologies tested may be categorized as follows: (1) Destruction via sonochemical oxidation at different pH, salt concentration, ultraviolet irradiation, and ferrous iron concentrations. (2) Destruction via ozonation at different pH, salt concentration, hydrogen peroxide concentrations, ultraviolet irradiation, temperature, and reactor configurations.

  6. Ozonation and Thermal Pre-Treatment of Municipal Sewage Sludge-Implications for Toxicity and Methane Potential

    DEFF Research Database (Denmark)

    Davidsson, A.; Eriksson, Eva; Fick, J.

    2013-01-01

    The aim of this study was to determine effects on methane potential and overall sludge quality from two different sludge pre-treatment technologies (ozonation high/low dosage and thermal treatment 55/70 degrees C). In general both treatments produced increased methane potential. Thermal treatment...... by ozone treatment and digestion. No statistical significant reduction in concentrations of included pharmaceuticals could be observed....

  7. Measurements to understand the role of the sub Arctic environment on boundary layer ozone, gaseous mercury and bromine oxide concentrations

    Science.gov (United States)

    Netcheva, S.; Bottenheim, J.; Staebler, R.; Steffen, A.; Bobrowski, N.; Moores, J.

    2009-04-01

    Marine Boundary Layer spring time ozone (O3) and Gaseous Elemental Mercury (GEM) depletion episodes in Polar Regions and the role played by reactive halogen species have been studied for several years. Understanding of the photochemistry involved has improved significantly in the last few years, but many questions remain. The key in filling many gaps of information is in conducting systematic measurements over freezing and thawing surfaces of big water basins in Polar Regions where depletion episodes are thought to originate. Regardless of extensive research in the field, data sets collected over the ice are limited due to logistics and engineering challenges. The fast changing Arctic environment with its potential implications for climate change and human and ecosystem health demand urgent development of a predictive capability that could only be achieved by complete quantitative understanding of these phenomena. The Out On The Ice (OOTI) mini atmospheric chemistry laboratory was developed in 2004 specifically to permit collecting data at remote locations in an autonomous way. The system is battery powered, easily transported by snowmobile and quickly deployed at a target location. The equipment has undergone multiple engineering and instrumentation improvements. In its current version, it conducts fully automated measurements of O3, GEM and carbon dioxide (CO2) simultaneously at two levels: right above a surface of interest and at 2.5 meters. This is accomplished by utilizing two identical sets of instruments (2B for O3 and Gardis for GEM), or by continuous valve switching (CO2). A vertical profile of bromine oxide is determined by scanning the collecting optics of a Differential Optical Absorption Spectrometer through different elevation angles. Furthermore a full set of meteorological data is acquired in parallel with the chemical measurements in order to evaluate environmental and air mass transport contributions. We will present results from data collected

  8. Ozonation of azo dyes (Orange II and Acid Red 27) in saline media

    International Nuclear Information System (INIS)

    Silva, Alessandra C.; Pic, Jean Stephane; Sant'Anna, Geraldo L.; Dezotti, Marcia

    2009-01-01

    Ozonation of two azo dyes was investigated in a monitored bench scale bubble column reactor (8.5-L), varying liquid media salt content (0, 1, 40 and 100 g L -1 , NaCl). In experiments with Orange II pH was varied (5, 7.5 and 9) but ozonation of Acid Red 27 was performed at pH 7.5. Ozone self-decomposition rate-constant increased with salt concentration. Color removal was very effective and fast achieved under all experimental conditions. For the two azo dyes tested, more than 98% of color intensity was removed in 30-min ozonation assays. However, only partial mineralization of azo dyes (45%-Orange II; 20%-Acid Red 27) was attained in such experiments. The degree of mineralization (TOC removal) was negatively affected by salt concentration. Biodegradation assays conducted by respirometry revealed the inhibitory effect of dye degradation products formed during ozonation.

  9. Comparative study of ozonized olive oil and ozonized sunflower oil

    OpenAIRE

    Díaz,Maritza F.; Hernández,Rebeca; Martínez,Goitybell; Vidal,Genny; Gómez,Magali; Fernández,Harold; Garcés,Rafael

    2006-01-01

    In this study the ozonized olive and sunflower oils are chemical and microbiologically compared. These oils were introduced into a reactor with bubbling ozone gas in a water bath at room temperature until they were solidified. The peroxide, acidity and iodine values along with antimicrobial activity were determined. Ozonization effects on the fatty acid composition of these oils were analyzed using Gas-Liquid Chromatographic Technique. An increase in peroxidation and acidity values was observ...

  10. Increasing tetracycline concentrations on the performance and communities of mixed microalgae-bacteria photo-bioreactors

    KAUST Repository

    Xiong, Yanghui; Hozic, Dzenan; Goncalves, Ana L.; Simõ es, Manuel; Hong, Pei-Ying

    2017-01-01

    , however, increased in relative abundance, which correlated with an increase in the abundance of tetracycline resistance genes associated with efflux pump mechanism. Overall, the findings demonstrate that antibiotic concentrations in municipal wastewaters

  11. Effects of ozone exposures on epicuticular wax of ponderosa pine needles

    International Nuclear Information System (INIS)

    Bytnerowicz, A.; Turunen, M.

    1994-01-01

    Two-year-old ponderosa pine (Pinus ponderosa L.) seedlings were exposed during the 1989 and 1990 growing seasons to ozone in open-top chambers placed in a forested location at Shirley Meadow, Greenhorn Mountain Range, Sierra Nevada. The ozone treatments were as follows: charcoal-filtered air (CF); charcoal-filtered air with addition of ambient concentrations of ozone (CF + O 3 ); and charcoal-filtered air with addition of doubled concentrations of ozone (CF + 2 x O 3 ). Ozone effects on ponderosa pine seedlings progressed and accumulated over two seasons of exposure. Throughout the first season, increased visible injury and accelerated senescence of the foliage were noted. Subsequently, during the second season of ozone exposure, various physiological and biochemical changes in the foliage took place. All these changes led to reduced growth and biomass of the seedlings. Epistomatal waxes of needles from the CA + 2 x O 3 treatment had an occluded appearance. This phenomenon may be caused by earlier phenological development of needles from the high-ozone treatments and disturbed development and synthesis of waxes. It may also be caused by chemical degradation of waxes by exposures to high ozone concentrations. (orig.)

  12. Total and cause-specific mortality by moderately and markedly increased ferritin concentrations

    DEFF Research Database (Denmark)

    Ellervik, Christina; Marott, Jacob Louis; Tybjærg-Hansen, Anne

    2014-01-01

    . Stepwise increasing concentrations of ferritin were associated with a stepwise increased risk of premature death overall (log rank, P = 2 × 10(-22)), with median survival of 55 years at ferritin concentrations ≥600 μg/L, 72 years at 400-599 μg/L, 76 years at 200-399 μg/L, and 79 years at ferritin

  13. Ozone formation in pulsed SDBD in a wide pressure range

    Science.gov (United States)

    Starikovskiy, Andrey; Nudnova, Maryia; mipt Team

    2011-10-01

    Ozone concentration in surface anode-directed DBD for wide pressure range (150 - 1300 torr) was experimentally measured. Voltage and pressure effect were investigated. Reduced electric field was measured for anode-directed and cathode-directed SDBD. E/n values in cathode-directed SDBD is higher than in cathode-directed on 50 percent at atmospheric pressure. E/n value increase leads to decrease the rate of oxygen dissociation and Ozone formation at lower pressures. Radiating region thickness of sliding discharge was measured. Typical thickness of radiating zone is 0.4-1.0 mm within pressure range 220-740 torr. It was shown that high-voltage pulsed nanosecond discharge due to high E/n value produces less Ozone with compare to other discharges. Kinetic model was proposed to describe Ozone formation in the pulsed nanosecond SDBD.

  14. Observed atmospheric total column ozone distribution from SCIAMACHY over Peninsular Malaysia

    International Nuclear Information System (INIS)

    Chooi, T K; San, L H; Jafri, M Z M

    2014-01-01

    The increase in atmospheric ozone has received great attention because it degrades air quality and brings hazard to human health and ecosystems. The aim of this study was to assess the seasonal variations of ozone concentrations in Peninsular Malaysia from January 2003 to December 2009 using Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY). Level-2 data of total column ozone WFMD version 1.0 with spatial resolution 1° × 1.25° were acquired through SCIAMACHY. Analysis for trend of five selected sites exhibit strong seasonal variation in atmospheric ozone concentrations, where there is a significant difference between northeast monsoon and southwest monsoon. The highest ozone values occurred over industrial and congested urban zones (280.97 DU) on August at Bayan Lepas. The lowest ozone values were observed during northeast monsoon on December at Subang (233.08 DU). In addition, the local meteorological factors also bring an impact on the atmospheric ozone. During northeast monsoon, with the higher rate of precipitation, higher relative humidity, low temperature, and less sunlight hours let to the lowest ozone concentrations. Inversely, the highest ozone concentrations observed during southwest monsoon, with the low precipitation rate, lower relative humidity, higher temperature, and more sunlight hours. Back trajectories analysis is carried out, in order to trace the path of the air parcels with high ozone concentration event, suggesting cluster of trajectory (from southwest of the study area) caused by the anthropogenic sources associated with biogenic emissions from large tropical forests, which can make important contribution to regional and global pollution

  15. Trend analysis of urban NO2 concentrations and the importance of direct NO2 emissions versus ozone/NOx equilibrium

    NARCIS (Netherlands)

    Keuken, M.; Roemer, M.; Elshout, S. van den

    2009-01-01

    The annual air quality standard of NO2 is often exceeded in urban areas near heavy traffic locations. Despite significant decrease of NOx emissions in 1986-2005 in the industrial and harbour area near Rotterdam, NO2 concentrations at the urban background remain at the same level since the end of the

  16. Profiling secondary metabolites of needles of ozone-fumigated white pine (Pinus strobus) clones by thermally assisted hydrolysis/methylation GC/MS.

    Science.gov (United States)

    Shadkami, F; Helleur, R J; Cox, R M

    2007-07-01

    Plant secondary metabolites have an important role in defense responses against herbivores and pathogens, and as a chemical barrier to elevated levels of harmful air pollutants. This study involves the rapid chemical profiling of phenolic and diterpene resin acids in needles of two (ozone-tolerant and ozone-sensitive) white pine (Pinus strobus) clones, fumigated with different ozone levels (control, and daily events peaking at 80 and 200 ppb) for 40 days. The phenolic and resin acids were measured using thermally assisted hydrolysis and methylation (THM) gas chromatography/mass spectrometry. Short-term fumigation affected the levels of two phenolic acids, i.e., 3-hydroxybenzoic and 3,4-dihydroxybenzoic acids, in that both showed a substantial decrease in concentration with increased ozone dose. The decrease in concentration of these THM products may be caused by inhibition of the plant's shikimate biochemical pathway caused by ozone exposure. The combined occurrence of these two ozone-sensitive indicators has a role in biomonitoring of ozone levels and its impact on forest productivity. In addition, chromatographic profile differences in the major diterpene resin acid components were observed between ozone-tolerant and ozone-sensitive clones. The resin acids anticopalic, 3-oxoanticopalic, 3beta-hydroxyanticopalic, and 3,4-cycloanticopalic acids were present in the ozone-sensitive pine; however, only anticopalic acid was present in the ozone-tolerant clone. This phenotypic variation in resin acid composition may be useful in distinguishing populations that are differentially adapted to air pollutants.

  17. In situ autumn ozone fumigation of mature Norway spruce - Effects on net photosynthesis

    DEFF Research Database (Denmark)

    Mikkelsen, Teis Nørgaard; Ro-Poulsen, H.

    2002-01-01

    concentration. The experiment was conducted during 70 days during the autumn. Our system could not detect any ozone effects on dark respiration, but eventually effects on dark respiration could be masked in signal noise. An inhibition of daily net photosynthesis in ozone treated shoots was apparent......, and it is was found that a mean increase in ozone concentration of 10 nl l(-1) reduced net photosynthesis with 7.4 %. This effect should be related to a pre-exposure during the season of AOT40 12.5 mul l(-1) h....

  18. Low modeled ozone production suggests underestimation of precursor emissions (especially NOx) in Europe

    Science.gov (United States)

    Oikonomakis, Emmanouil; Aksoyoglu, Sebnem; Ciarelli, Giancarlo; Baltensperger, Urs; Prévôt, André Stephan Henry

    2018-02-01

    High surface ozone concentrations, which usually occur when photochemical ozone production takes place, pose a great risk to human health and vegetation. Air quality models are often used by policy makers as tools for the development of ozone mitigation strategies. However, the modeled ozone production is often not or not enough evaluated in many ozone modeling studies. The focus of this work is to evaluate the modeled ozone production in Europe indirectly, with the use of the ozone-temperature correlation for the summer of 2010 and to analyze its sensitivity to precursor emissions and meteorology by using the regional air quality model, the Comprehensive Air Quality Model with Extensions (CAMx). The results show that the model significantly underestimates the observed high afternoon surface ozone mixing ratios (≥ 60 ppb) by 10-20 ppb and overestimates the lower ones (degradation of the model performance for the lower ozone mixing ratios. The model performance for ozone-temperature correlation is also better when NOx emissions are doubled. In the Benelux area, however, the third scenario (where both NOx and VOC emissions are increased) leads to a better model performance. Although increasing only the traffic NOx emissions by a factor of 4 gave very similar results to the doubling of all NOx emissions, the first scenario is more consistent with the uncertainties reported by other studies than the latter, suggesting that high uncertainties in NOx emissions might originate mainly from the road-transport sector rather than from other sectors. The impact of meteorology was examined with three sensitivity tests: (i) increased surface temperature by 4 °C, (ii) reduced wind speed by 50 % and (iii) doubled wind speed. The first two scenarios led to a consistent increase in all surface ozone mixing ratios, thus improving the model performance for the high ozone values but significantly degrading it for the low ozone values, while the third scenario had exactly the

  19. DC corona discharge ozone production enhanced by magnetic field

    Science.gov (United States)

    Pekárek, S.

    2010-01-01

    We have studied the effect of a stationary magnetic field on the production of ozone from air at atmospheric pressure by a negative corona discharge in a cylindrical electrode configuration. We used a stainless steel hollow needle placed at the axis of the cylindrical discharge chamber as a cathode. The outer wall of the cylinder was used as an anode. The vector of magnetic induction was perpendicular to the vector of current density. We found that: (a) the magnetic field extends the current voltage range of the discharge; (b) for the discharge in the Trichel pulses regime and in the pulseless glow regime, the magnetic field has no substantial effect on the discharge voltage or on the concentration of ozone that is produced; (c) for the discharge in the filamentary streamer regime for a particular current, the magnetic field increases the discharge voltage and consequently an approximately 30% higher ozone concentration can be obtained; (d) the magnetic field does not substantially increase the maximum ozone production yield. A major advantage of using a magnetic field is that the increase in ozone concentration produced by the discharge can be obtained without additional energy requirements.

  20. Ozone modelling in Eastern Austria

    Energy Technology Data Exchange (ETDEWEB)

    Stohl, A.; Wotawa, G.; Kromp-Kolb, H. [Univ. of Agriculture, Vienna (Austria). Inst. of Meteorology and Physics; Winiwater, W. [Austrian Research Centre, Seibersdorf (Austria); Baumann, R.; Spangl, W. [Federal Environmental Agency, Vienna (Austria)

    1995-12-31

    High ozone concentrations are frequently observed in Eastern Austria, often exceeding local as well as international health standards, both for short-term as well as for long-term exposures. The maximum concentrations are produced in urban plumes, e.g. of the city of Vienna, whereas regional-scale transport and production of ozone is more important for the long-term concentrations. The Pannonian Ozone Project (POP) is an Austrian research initiative to model photochemical processes on a regional as well as on a local scale with a Lagrangian model to better understand the mechanisms leading to the high ozone concentrations and to develop abatement strategies. Up to now, focus has been on the regional scale. Aircraft, tethered balloon, tetroon and intensified ground measurements are carried out to validate the model. Although the major measurement campaign will be held in summer 1995, first results from a measurement campaign in summer 1994 are already available

  1. Exploration of the formation mechanism and source attribution of ambient ozone in Chongqing with an observation-based model

    Institute of Scientific and Technical Information of China (English)

    SU Rong; ZHAI ChongZhi; ZHANG YuanHang; LU KeDing; YU JiaYan; TAN ZhaoFeng; JIANG MeiQing; LI Jing; XIE ShaoDong; WU YuSheng; ZENG LiMin

    2018-01-01

    An intensive field campaign was conducted in Chongqing during the summer of 2015 to explore the formation mechanisms of ozone pollution.The sources of ozone,the local production rates,and the controlling factors,as well as key species of volatile organic compounds (VOCs),were quantified by integrating a local ozone budget analysis,calculations of the relative incremental reactivity,and an empirical kinetic model approach.It was found that the potential for rapid local ozone formation exists in Chongqing.During ozone pollution episodes,the ozone production rates were found to be high at the upwind station Nan Quan,the urban station Chao Zhan,and the downwind station Jin-Yun Shan.The average local ozone production rate was 30× 10-9 V/V h1 and the daily integration of the produced ozone was greater than 180× 10-9 V/V.High ozone concentrations were associated with urban and downwind air masses.At most sites,the local ozone production was VOC-limited and the key species were aromatics and alkene,which originated mainly from vehicles and solvent usage.In addition,the air masses at the northwestern rural sites were NOx-limited and the local ozone production rates were significantly higher during the pollution episodes due to the increased NOx concentrations.In summary,the ozone abatement strategies of Chongqing should be focused on the mitigation of VOCs.Nevertheless,a reduction in NOx is also beneficial for reducing the regional ozone peak values in Chongqing and the surrounding areas.

  2. Contribution of Co2+ in increasing chlorophyll a concentration of Nannochloropsis salina in controlled Conwy medium

    Science.gov (United States)

    Hala, Y.; Taba, P.; Suryati, E.; Kasih, P.; Firman, N. F.

    2018-03-01

    A research in determining the contribution of Co2+ on the increase of chlorophyll a concentration of Nannochloropsis salina has been caried out. The cultivation of N. salina was conducted in the Conwy medium with a salinity of 5%o and 25%o and various Co2+ concentration (2, 4, and 8 ppm). In this research, Co2+ was exposed early in the cultivation of N. salina. The growth of N. salina was observed daily by counting the number of populations using a haemocytometer while the chlorophyll a concentration was determined by a Uv-Vis spectrophotometer. The results showed that the growth of N. salina in the control was higher than that in the medium containing Co2+. The optimum growth time was achieved on 15th days (5%) and 8th days (25%). In the cultivation medium with a salinity of 5%, Co2+ with a concentration of 2 ppm increased the chlorophyll a level while Co2+ with concentrations of 4 and 8 ppm decreased it. In the medium of cultivation with a salinity of 25%, the increase in chlorophyll a level was observed at Co2+ concentrations of 2 and 4 ppm whereas the decrease in chlorophyl a level was given at a concentration of 8 ppm. It can be concluded that at low concentrations, Co2+ increased the concentration of chlorophyll a in N. salina.

  3. The chemistry of stratospheric ozone

    International Nuclear Information System (INIS)

    Kurylo, M.J.

    1990-01-01

    Compelling observational evidence shows that the chemical composition of the atmosphere is changing on a global scale at a rapid rate. The atmospheric concentrations of carbon dioxide (CO 2 ), methane (CH 4 ), nitrous oxide (N 2 O), and chloroflourocarbons (CFCs) 11 (CFCl 3 ) and 12 (CF 2 Cl 2 ) are currently increasing at rate ranging from 0.2 to 5% per year. The concentrations of other cases, including CFC 113 (C 2 F 3 Cl 3 ) and halons 121 (CF 2 ClBr) and 1301 (CF 3 Br), important in the ozone depletion and global warming issues, are also increasing (at even faster rates). These changes in atmospheric composition reflect, on one part, the metabolism of the biosphere and, on another, the broad range of influencing human activities, including industrial, agricultural, and combustion practices. The only known sources of the CFCs and halons are industrial production prior to their use as aerosol propellants, refrigerants, foam blowing agents, solvents, and fire retardants. One of our greatest difficulties in accurately predicting future changes in ozone or global warming is our inability to predict the future atmospheric concentrations of these gases. This paper discusses the role of the biosphere in regulating the emissions of gases such as CH 4 , CO 2 , N 2 O, and methyl chloride (CH 3 Cl) to the atmosphere as well as the most probable future industrial release rates of the CFCs, halons, N 2 O, carbon monoxide (CO), and CO 2 , which depend upon a variety of economic, social, and political factors

  4. Impact of climate change on ozone-related mortality and morbidity in Europe.

    Science.gov (United States)

    Orru, Hans; Andersson, Camilla; Ebi, Kristie L; Langner, Joakim; Aström, Christofer; Forsberg, Bertil

    2013-02-01

    Ozone is a highly oxidative pollutant formed from precursors in the presence of sunlight, associated with respiratory morbidity and mortality. All else being equal, concentrations of ground-level ozone are expected to increase due to climate change. Ozone-related health impacts under a changing climate are projected using emission scenarios, models and epidemiological data. European ozone concentrations are modelled with the model of atmospheric transport and chemistry (MATCH)-RCA3 (50×50 km). Projections from two climate models, ECHAM4 and HadCM3, are applied under greenhouse gas emission scenarios A2 and A1B, respectively. We applied a European-wide exposure-response function to gridded population data and country-specific baseline mortality and morbidity. Comparing the current situation (1990-2009) with the baseline period (1961-1990), the largest increase in ozone-associated mortality and morbidity due to climate change (4-5%) have occurred in Belgium, Ireland, the Netherlands and the UK. Comparing the baseline period and the future periods (2021-2050 and 2041-2060), much larger increases in ozone-related mortality and morbidity are projected for Belgium, France, Spain and Portugal, with the impact being stronger using the climate projection from ECHAM4 (A2). However, in Nordic and Baltic countries the same magnitude of decrease is projected. The current study suggests that projected effects of climate change on ozone concentrations could differentially influence mortality and morbidity across Europe.

  5. Past changes in the vertical distribution of ozone – Part 1: Measurement techniques, uncertainties and availability

    Directory of Open Access Journals (Sweden)

    B. Hassler

    2014-05-01

    Full Text Available Peak stratospheric chlorofluorocarbon (CFC and other ozone depleting substance (ODS concentrations were reached in the mid- to late 1990s. Detection and attribution of the expected recovery of the stratospheric ozone layer in an atmosphere with reduced ODSs as well as efforts to understand the evolution of stratospheric ozone in the presence of increasing greenhouse gases are key current research topics. These require a critical examination of the ozone changes with an accurate knowledge of the spatial (geographical and vertical and temporal ozone response. For such an examination, it is vital that the quality of the measurements used be as high as possible and measurement uncertainties well quantified. In preparation for the 2014 United Nations Environment Programme (UNEP/World Meteorological Organization (WMO Scientific Assessment of Ozone Depletion, the SPARC/IO3C/IGACO-O3/NDACC (SI2N Initiative was designed to study and document changes in the global ozone profile distribution. This requires assessing long-term ozone profile data sets in regards to measurement stability and uncertainty characteristics. The ultimate goal is to establish suitability for estimating long-term ozone trends to contribute to ozone recovery studies. Some of the data sets have been improved as part of this initiative with updated versions now available. This summary presents an overview of stratospheric ozone profile measurement data sets (ground and satellite based available for ozone recovery studies. Here we document measurement techniques, spatial and temporal coverage, vertical resolution, native units and measurement uncertainties. In addition, the latest data versions are briefly described (including data version updates as well as detailing multiple retrievals when available for a given satellite instrument. Archive location information for each data set is also given.

  6. Tropospheric Ozone Assessment Report: Database and Metrics Data of Global Surface Ozone Observations

    Directory of Open Access Journals (Sweden)

    Martin G. Schultz

    2017-10-01

    Full Text Available In support of the first Tropospheric Ozone Assessment Report (TOAR a relational database of global surface ozone observations has been developed and populated with hourly measurement data and enhanced metadata. A comprehensive suite of ozone data products including standard statistics, health and vegetation impact metrics, and trend information, are made available through a common data portal and a web interface. These data form the basis of the TOAR analyses focusing on human health, vegetation, and climate relevant ozone issues, which are part of this special feature. Cooperation among many data centers and individual researchers worldwide made it possible to build the world's largest collection of 'in-situ' hourly surface ozone data covering the period from 1970 to 2015. By combining the data from almost 10,000 measurement sites around the world with global metadata information, new analyses of surface ozone have become possible, such as the first globally consistent characterisations of measurement sites as either urban or rural/remote. Exploitation of these global metadata allows for new insights into the global distribution, and seasonal and long-term changes of tropospheric ozone and they enable TOAR to perform the first, globally consistent analysis of present-day ozone concentrations and recent ozone changes with relevance to health, agriculture, and climate. Considerable effort was made to harmonize and synthesize data formats and metadata information from various networks and individual data submissions. Extensive quality control was applied to identify questionable and erroneous data, including changes in apparent instrument offsets or calibrations. Such data were excluded from TOAR data products. Limitations of 'a posteriori' data quality assurance are discussed. As a result of the work presented here, global coverage of surface ozone data for scientific analysis has been significantly extended. Yet, large gaps remain in the surface

  7. Lower tropospheric ozone over India and its linkage to the South Asian monsoon

    Science.gov (United States)

    Lu, Xiao; Zhang, Lin; Liu, Xiong; Gao, Meng; Zhao, Yuanhong; Shao, Jingyuan

    2018-03-01

    .19 ± 0.07 (p value ozone over this period, which are mainly driven by increases in anthropogenic emissions with a small contribution (about 7 %) from global methane concentration increases.

  8. Ozone decay in chemical reactor for ozone-dynamical disintegration of used tyres

    International Nuclear Information System (INIS)

    Golota, V.I.; Manuilenko, O.V.; Taran, G.V.; Dotsenko, Yu.V.; Pismenetskii, A.S.; Zamuriev, A.A.; Benitskaja, V.A.

    2011-01-01

    The ozone decay kinetics in the chemical reactor intended for used tyres disintegration is investigated experimentally and theoretically. Ozone was synthesized in barrierless ozonizers based on the streamer discharge. The chemical reactor for tyres disintegration in the ozone-air environment represents the cylindrical chamber, which feeds from the ozonizer by ozone-air mixture with the specified rate of volume flow, and with known ozone concentration. The output of the used mixture, which rate of volume flow is also known, is carried out through the ozone destructor. As a result of ozone decay in the volume and on the reactor walls, and output of the used mixture from the reactor, the ozone concentration in the reactor depends from time. In the paper, the analytical expression for dependence of ozone concentration in the reactor from time and from the parameters of a problem such as the volumetric feed rate, ozone concentration on the input in the reactor, volume flow rate of the used mixture, the volume of the reactor and the area of its internal surface is obtained. It is shown that experimental results coincide with good accuracy with analytical ones.

  9. An In Vitro Evaluation of Ozonized Organic Extra-Virgin Olive Oil on Giardia Lamblia Cysts.

    Science.gov (United States)

    Boland-Nazar, Najmeh Sadat; Eslamirad, Zahra; Sarmadian, Hossein; Ghasemikhah, Reza

    2016-11-01

    Giardia lamblia is a common intestinal parasite that has been reported all over the world. This study was conducted to evaluate the effect of ozonized organic extra-virgin olive oil on the cyst of G. lamblia . The olive oil was ozonized based on international standards and confirmed by the world health organization (WHO) at various times in a generator. The ozone concentration of olive oil was adjusted at 32, 64, 96, 128, 160 mg/g based on ozone absorption. Giardia lamblia cysts were isolated from heavily infected stool samples and the sucrose gradient flotation technique. Five groups of triple tubes containing Giardia cysts were exposed to olive oil with 32, 64, 96, 128, 160 ozone concentrations, and the sixth and seventh groups were exposed to non-ozonized olive oil and normal saline, respectively. The tubes were placed at room temperature, and every four hours, the mortality of the Giardia cysts was assessed. The results showed that the first five groups' mortality rate of Giardia cysts reached 100% in 100 hours. An increasing concentration of ozone in olive oil leads to an increase in the mortality rate of Giardia cysts. The results showed a significant difference in the mean time of the mortality in all the groups (P ≤ 0.05). Furthermore, the higher fatality effect of ozonized organic extra-virgin olive oil (Ozonized Olive Oil = OZO) was proved in comparison with metronidazole in vitro. We concluded that ozonized organic extra-virgin olive oil was a growth inhibitor of Giardia cysts, and concerning its compatibility with a biological system, it is recommended for further clinical trials.

  10. Training increases the concentration of [3H]ouabain-binding sites in rat skeletal muscle

    DEFF Research Database (Denmark)

    Kjeldsen, K; Richter, Erik; Galbo, H

    1986-01-01

    ]ouabain-binding-site concentration in the diaphragm, but in the heart ventricles, the K+-dependent 3-O-methylfluorescein phosphatase activity increased by 20% (P less than 0.001). Muscle inactivity induced by denervation, plaster immobilisation or tenotomy reduced the [3H]ouabain-binding-site concentration by 20-30% (P less than 0...

  11. Effects of ozone on crops in north-west Pakistan

    International Nuclear Information System (INIS)

    Ahmad, Muhammad Nauman; Büker, Patrick; Khalid, Sofia; Van Den Berg, Leon; Shah, Hamid Ullah; Wahid, Abdul; Emberson, Lisa; Power, Sally A.; Ashmore, Mike

    2013-01-01

    Although ozone is well-documented to reduce crop yields in the densely populated Indo-Gangetic Plain, there is little knowledge of its effects in other parts of south Asia. We surveyed crops close to the city of Peshawar, in north-west Pakistan, for visible injury, linking this to passive measurements of ozone concentrations. Foliar injury was found on potato, onion and cotton when mean monthly ozone concentrations exceeded 45 ppb. The symptoms on onion were reproduced in ozone fumigation experiments, which also showed that daytime ozone concentrations of 60 ppb significantly reduce the growth of a major Pakistani onion variety. Aphid infestation on spinach was also reduced at these elevated ozone concentrations. The ozone concentrations measured in April–May in Peshawar, and used in the fumigation experiment, are comparable to those that have been modelled to occur over many parts of south Asia, where ozone may be a significant threat to sensitive crops. -- Highlights: ► Visible ozone injury to onion, cotton and potato was identified in north-west Pakistan. ► The symptoms on onion were reproduced by exposure to elevated ozone. ► Elevated ozone levels also significantly reduced onion growth. ► Levels of aphid infestation on spinach were lower under elevated ozone. ► These effects were observed at ozone levels that have been modelled to occur widely across south Asia. -- Ozone concentrations in NW Pakistan have adverse effects on sensitive crop species

  12. Metabolisable protein supply to lactating dairy cows increased with increasing dry matter concentration in grass-clover silage

    DEFF Research Database (Denmark)

    Johansen, Marianne; Hellwing, Anne Louise Frydendahl; Lund, Peter

    2017-01-01

    The aim of this experiment was to study the effect of increased dry matter (DM) concentration in grass-clover silage, obtained by extending the pre-wilting period before ensiling, on the amount of metabolisable protein (MP) supplied to lactating dairy cows. Spring growth and first regrowth of grass...... and faeces, respectively, were collected over 94 h to cover the diurnal variation, pooled, and subsequently analysed. Rumen fluid was collected in same sampling procedure. To estimate the duodenal flow of microbial protein, microbes were isolated from the rumen and analysed for amino acids (AA) and purines...... flow of AA. The higher duodenal flow of AA derived from a lower rumen degradation of feed protein and a tendency towards a higher microbial synthesis in the rumen. Fibre digestibility and CH4 production were not affected by silage DM concentration. In conclusion, MP concentration in grass-clover silage...

  13. Sterilization of Microorganisms by Ozone and Ultrasound

    Science.gov (United States)

    Krasnyj, V. V.; Klosovskij, A. V.; Panasko, T. A.; Shvets, O. M.; Semenova, O. T.; Taran, V. S.; Tereshin, V. I.

    2008-03-01

    The results of recent experimental methods of sterilization of microorganisms with the use of ozone and ultrasound are presented. The main aim was to optimize the process of sterilization in water solution taking into account the ozone concentration, the power of ultrasonic emitter and the temperature of water. In the present work, the ultrasonic cavitation with simultaneous ozone generation has been used. The high ozone concentration in water solution was achieved by two-barrier glow discharge generated at atmospheric pressure and a cooling thermo-electric module. Such a sterilizer consists of ozone generator in a shape of flat electrodes covered with dielectric material and a high-voltage pulsed power supply of 250 W. The sterilization camera was equipped with ultrasonic source operated at 100 W. The experiments on the inactivation of bacteria of the Bacillus Cereus type were carried out in the distilled water saturated by ozone. The ozone concentration in the aqueous solution was 10 mg/1, whereas the ozone concentration at the output of ozone generator was 30 mg/1. The complete inactivation of spores took 15 min. Selection of the temperature of water, the ozone concentrations and ultrasonic power allowed to determine the time necessary for destroying the row of microorganisms.

  14. Background Ozone in Southern China During 1994-2015: Role of Anthropogenic Emission and Climate Change

    Science.gov (United States)

    Wang, T.; Zhang, L.; Poon, S.

    2016-12-01

    Tropospheric ozone plays important roles in atmospheric chemistry, air quality, and climate. Changes in background ozone concentrations and underlying causes are therefore of great interest to the scientific community and governments. Compared with North America and Europe, long-term measurements of background ozone in China are scarce. This study reports the longest continuous ozone record in southern China measured at a background site (Hok Tsui) in Hong Kong during 1994-2015. The analysis of the 22-year record shows that the surface ozone in the background atmosphere of southern China has been increasing, with an overall Theil-Sen estimated rate of 0.43 ppbv/yr. Compared with our previous results during 1994-2007 (Wang et al., 2009), the average rate of increase has slowed down over during 2008-2015 (0.32 vs. 0.58 ppbv/yr), possibly due to smaller increase or even decrease in ozone precursors emission in mainland China in recent years. The average rates of change show significant seasonal differences with the largest rate occurring in summer (0.32, 0.55, 0.52, and 0.36 ppbv/yr in spring, summer, autumn, and winter, respectively). Monthly mean ozone concentrations at Hok Tsui are compared against an East Asian Monsoon index. It is found that only the summer-time ozone over period 2008-2015 has a strong positive correlation with the index, suggesting that climate might have played an important role in driving the ozone increase observed in summer since 2008. The ozone trend in Hong Kong will be compared to those from other regions in East Asia, and the role of emission changes in Asia will be discussed.

  15. Time evolution of tropospheric ozone and its radiative forcing

    International Nuclear Information System (INIS)

    Berntsen, Terje K.; Isaksen, Ivar S.A.; Myhre, Gunnar; Stordal, Frode

    1999-01-01

    The overview presents results from studies of ozone concentrations from pre industrial time and up to the end of the 20th century. Different models and also a global 3-D chemistry transport model have been used. Experiments have been performed for 1850, 1900, 1950, 1960, 1970, 1980 and 1990. The radiative forcing increases with increasing ozone levels and has been steadily increasing. It has escalated towards the end of the century. Comparative evaluations with project results and external results are presented. Connections to other greenhouse gases are mentioned

  16. Ozone Pollution

    Science.gov (United States)

    Known as tropospheric or ground-level ozone, this gas is harmful to human heath and the environment. Since it forms from emissions of volatile organic compounds (VOCs) and nitrogen oxides (NOx), these pollutants are regulated under air quality standards.

  17. Drivers of the tropospheric ozone budget throughout the 21st century under the medium-high climate scenario RCP 6.0

    Science.gov (United States)

    Revell, L. E.; Tummon, F.; Stenke, A.; Sukhodolov, T.; Coulon, A.; Rozanov, E.; Garny, H.; Grewe, V.; Peter, T.

    2015-05-01

    Because tropospheric ozone is both a greenhouse gas and harmful air pollutant, it is important to understand how anthropogenic activities may influence its abundance and distribution through the 21st century. Here, we present model simulations performed with the chemistry-climate model SOCOL, in which spatially disaggregated chemistry and transport tracers have been implemented in order to better understand the distribution and projected changes in tropospheric ozone. We examine the influences of ozone precursor emissions (nitrogen oxides (NOx), carbon monoxide (CO) and volatile organic compounds (VOCs)), climate change (including methane effects) and stratospheric ozone recovery on the tropospheric ozone budget, in a simulation following the climate scenario Representative Concentration Pathway (RCP) 6.0 (a medium-high, and reasonably realistic climate scenario). Changes in ozone precursor emissions have the largest effect, leading to a global-mean increase in tropospheric ozone which maximizes in the early 21st century at 23% compared to 1960. The increase is most pronounced at northern midlatitudes, due to regional emission patterns: between 1990 and 2060, northern midlatitude tropospheric ozone remains at constantly large abundances: 31% larger than in 1960. Over this 70-year period, attempts to reduce emissions in Europe and North America do not have an effect on zonally averaged northern midlatitude ozone because of increasing emissions from Asia, together with the long lifetime of ozone in the troposphere. A simulation with fixed anthropogenic ozone precursor emissions of NOx, CO and non-methane VOCs at 1960 conditions shows a 6% increase in global-mean tropospheric ozone by the end of the 21st century, with an 11 % increase at northern midlatitudes. This increase maximizes in the 2080s and is mostly caused by methane, which maximizes in the 2080s following RCP 6.0, and plays an important role in controlling ozone directly, and indirectly through its

  18. Spring leaf flush in aspen (Populus tremuloides) clones is altered by long-term growth at elevated carbon dioxide and elevated ozone concentration

    International Nuclear Information System (INIS)

    McGrath, Justin M.; Karnosky, David F.; Ainsworth, Elizabeth A.

    2010-01-01

    Early spring leaf out is important to the success of deciduous trees competing for light and space in dense forest plantation canopies. In this study, we investigated spring leaf flush and how long-term growth at elevated carbon dioxide concentration ([CO 2 ]) and elevated ozone concentration ([O 3 ]) altered leaf area index development in a closed Populus tremuloides (aspen) canopy. This work was done at the Aspen FACE experiment where aspen clones have been grown since 1997 in conditions simulating the [CO 2 ] and [O 3 ] predicted for ∼2050. The responses of two clones were compared during the first month of spring leaf out when CO 2 fumigation had begun, but O 3 fumigation had not. Trees in elevated [CO 2 ] plots showed a stimulation of leaf area index (36%), while trees in elevated [O 3 ] plots had lower leaf area index (-20%). While individual leaf area was not significantly affected by elevated [CO 2 ], the photosynthetic operating efficiency of aspen leaves was significantly improved (51%). There were no significant differences in the way that the two aspen clones responded to elevated [CO 2 ]; however, the two clones responded differently to long-term growth at elevated [O 3 ]. The O 3 -sensitive clone, 42E, had reduced individual leaf area when grown at elevated [O 3 ] (-32%), while the tolerant clone, 216, had larger mature leaf area at elevated [O 3 ] (46%). These results indicate a clear difference between the two clones in their long-term response to elevated [O 3 ], which could affect competition between the clones, and result in altered genotypic composition in future atmospheric conditions. - Spring leaf flush is stimulated by elevated [CO 2 ] and suppressed by elevated [O 3 ] in aspen (Populus tremuloides).

  19. Stratospheric impact on tropospheric ozone variability and trends: 1990–2009

    Directory of Open Access Journals (Sweden)

    P. G. Hess

    2013-01-01

    Full Text Available The influence of stratospheric ozone on the interannual variability and trends in tropospheric ozone is evaluated between 30 and 90° N from 1990–2009 using ozone measurements and a global chemical transport model, the Community Atmospheric Model with chemistry (CAM-chem. Long-term measurements from ozonesondes, at 150 and 500 hPa, and the Measurements of OZone and water vapour by in-service Airbus aircraft programme (MOZAIC, at 500 hPa, are analyzed over Japan, Canada, the Eastern US and Northern and Central Europe. The measurements generally emphasize northern latitudes, although the simulation suggests that measurements over the Canadian, Northern and Central European regions are representative of the large-scale interannual ozone variability from 30 to 90° N at 500 hPa. CAM-chem is run with input meteorology from the National Center for Environmental Prediction; a tagging methodology is used to identify the stratospheric contribution to tropospheric ozone concentrations. A variant of the synthetic ozone tracer (synoz is used to represent stratospheric ozone. Both the model and measurements indicate that on large spatial scales stratospheric interannual ozone variability drives significant tropospheric variability at 500 hPa and the surface. In particular, the simulation and the measurements suggest large stratospheric influence at the surface sites of Mace Head (Ireland and Jungfraujoch (Switzerland as well as many 500 hPa measurement locations. Both the measurements and simulation suggest the stratosphere has contributed to tropospheric ozone trends. In many locations between 30–90° N 500 hPa ozone significantly increased from 1990–2000, but has leveled off since (from 2000–2009. The simulated global ozone budget suggests global stratosphere-troposphere exchange increased in 1998–1999 in association with a global ozone anomaly. Discrepancies between the simulated and measured ozone budget include a large underestimation of

  20. Ozone effects on Sphagnum mosses, carbon dioxide exchange and methane emission in boreal peatland microcosms

    International Nuclear Information System (INIS)

    Niemi, Riikka; Holopainen, Toini; Martikainen, Pertti J.; Silvola, Jouko

    2002-01-01

    Microcosms of a boreal peatland originating from an oligotrophic fen in Eastern Finland were fumigated under four ozone concentrations (0, 50, 100 and 150 ppb O 3 ) in laboratory growth chambers during two separate experiments (autumn and summer) for 4 and 6 weeks, respectively. Ozone effects on Sphagnum mosses and the fluxes of carbon dioxide and methane were evaluated. In both experiments, the three Sphagnum species studied showed only a few significant responses to ozone. In the autumn experiment, membrane permeability of S. angustifolium, measured as conductivity and magnesium leakage, was significantly higher under ozone fumigation (P=0.005 and 2 exchange during the 6-week-long summer experiment, but dark ecosystem respiration was transiently increased by ozone concentration of 100 ppb after 14 days of exposure (P<0.05). Fumigation with 100 ppb of ozone, however, more than doubled (P<0.05) methane emission from the peatland monoliths. Our results suggest that increasing tropospheric ozone concentration may cause substantial changes in the carbon gas cycling of boreal peatlands, even though these changes are not closely associated with the changes in Sphagnum vegetation

  1. Pulsed corona discharge: the role of ozone and hydroxyl radical in aqueous pollutants oxidation.

    Science.gov (United States)

    Preis, S; Panorel, I C; Kornev, I; Hatakka, H; Kallas, J

    2013-01-01

    Ozone and hydroxyl radical are the most active oxidizing species in water treated with gas-phase pulsed corona discharge (PCD). The ratio of the species dependent on the gas phase composition and treated water contact surface was the objective for the experimental research undertaken for aqueous phenol (fast reaction) and oxalic acid (slow reaction) solutions. The experiments were carried out in the reactor, where aqueous solutions showered between electrodes were treated with 100-ns pulses of 20 kV voltage and 400 A current amplitude. The role of ozone increased with increasing oxygen concentration and the oxidation reaction rate. The PCD treatment showed energy efficiency surpassing that of conventional ozonation.

  2. Influencing factors on microbubble ozonation treatment of acid red 3R wastewater

    Directory of Open Access Journals (Sweden)

    Yurong YA

    2017-08-01

    Full Text Available The microbubble ozonation was used to treat acid red 3R wastewater in order to investigate the influencing factors on its performance. The effects of ozone dose, initial acid red 3R concentration and activated carbon on the performance of microbubble ozonation treatment of acid red 3R wastewater are investigated. The decolorization rate, TOC removal rate, pH variation and ozone utilization efficiency in the microbubble ozonation treatment are compared under different treatment conditions. The results indicate that when increasing ozone dose or decreasing initial acid red 3R concentration, both decolorization rate and TOC removal rate of acid red 3R wastewater increase, but ozone utilization efficiency decreases. The coal-based activated carbon shows strong catalytic activity for microbubble ozonation, which could enhance the decolorization rate and TOC removal rate of acid red 3R wastewater. The better performance of microbubble ozonation treatment is achieved when the ozone dose is 48.3 mg/min and the initial acid red 3R mass concentration is 100 mg/L. Under these conditions, the decolorization efficiency reaches to 100% after treatment for 30 min, the TOC removal efficiency reaches to 78.0% after treatment for 120 min, the reaction rate constant of TOC removal is 0.015 min-1 and the ozone utilization efficiency is higher than 99%. With addition of the coal-based activated carbon of 5 g/L, the decolorization efficiency reaches to 100% after treatment for 15 min, the TOC removal efficiency reaches to 91.2% after treatment for 120 min and the reaction rate constant of TOC removal increases to 0037 min-1.The accumulation and following degradation of intermediate products of small molecule organic acid happens during treatment process, and as a result, the solution pH decreases initially and then increases. Therefore, the optimization of influencing factors for microbubble ozonation could increase both contaminant removal

  3. Analysis of the Sensing Properties of a Highly Stable and Reproducible Ozone Gas Sensor Based on Amorphous In-Ga-Zn-O Thin Film.

    Science.gov (United States)

    Wu, Chiu-Hsien; Jiang, Guo-Jhen; Chang, Kai-Wei; Deng, Zu-Yin; Li, Yu-Ning; Chen, Kuen-Lin; Jeng, Chien-Chung

    2018-01-09

    In this study, the sensing properties of an amorphous indium gallium zinc oxide (a-IGZO) thin film at ozone concentrations from 500 to 5 ppm were investigated. The a-IGZO thin film showed very good reproducibility and stability over three test cycles. The ozone concentration of 60-70 ppb also showed a good response. The resistance change (Δ R ) and sensitivity ( S ) were linearly dependent on the ozone concentration. The response time ( T 90-res ), recovery time ( T 90-rec ), and time constant (τ) showed first-order exponential decay with increasing ozone concentration. The resistance-time curve shows that the maximum resistance change rate (dRg/dt) is proportional to the ozone concentration during the adsorption. The results also show that it is better to sense rapidly and stably at a low ozone concentration using a high light intensity. The ozone concentration can be derived from the resistance change, sensitivity, response time, time constant (τ), and first derivative function of resistance. However, the time of the first derivative function of resistance is shorter than other parameters. The results show that a-IGZO thin films and the first-order differentiation method are promising candidates for use as ozone sensors for practical applications.

  4. Analysis of the Sensing Properties of a Highly Stable and Reproducible Ozone Gas Sensor Based on Amorphous In-Ga-Zn-O Thin Film

    Directory of Open Access Journals (Sweden)

    Chiu-Hsien Wu

    2018-01-01

    Full Text Available In this study, the sensing properties of an amorphous indium gallium zinc oxide (a-IGZO thin film at ozone concentrations from 500 to 5 ppm were investigated. The a-IGZO thin film showed very good reproducibility and stability over three test cycles. The ozone concentration of 60–70 ppb also showed a good response. The resistance change (ΔR and sensitivity (S were linearly dependent on the ozone concentration. The response time (T90-res, recovery time (T90-rec, and time constant (τ showed first-order exponential decay with increasing ozone concentration. The resistance–time curve shows that the maximum resistance change rate (dRg/dt is proportional to the ozone concentration during the adsorption. The results also show that it is better to sense rapidly and stably at a low ozone concentration using a high light intensity. The ozone concentration can be derived from the resistance change, sensitivity, response time, time constant (τ, and first derivative function of resistance. However, the time of the first derivative function of resistance is shorter than other parameters. The results show that a-IGZO thin films and the first-order differentiation method are promising candidates for use as ozone sensors for practical applications.

  5. Combined anaerobic–ozonation process for treatment of textile wastewater: Removal of acute toxicity and mutagenicity

    Energy Technology Data Exchange (ETDEWEB)

    Punzi, Marisa, E-mail: marisa.punzi@biotek.lu.se [Department of Biotechnology, Lund University, P.O. Box 124, SE-221 00 Lund (Sweden); Nilsson, Filip [Water and Environmental Engineering at the Department of Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund (Sweden); Anbalagan, Anbarasan [Department of Biotechnology, Lund University, P.O. Box 124, SE-221 00 Lund (Sweden); Svensson, Britt-Marie [School of Education and Environment, Kristianstad University, SE-291 88 Kristianstad (Sweden); Jönsson, Karin [Water and Environmental Engineering at the Department of Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund (Sweden); Mattiasson, Bo; Jonstrup, Maria [Department of Biotechnology, Lund University, P.O. Box 124, SE-221 00 Lund (Sweden)

    2015-07-15

    Highlights: • COD and UV absorbance were effectively reduced. • The treated effluents were non-toxic to Artemia salina and Vibrio fischeri. • The real textile wastewater was mutagenic. • Mutagenicity persisted after bio treatment and even more after a short ozonation. • Higher ozone doses completely remove mutagenicity. - Abstract: A novel set up composed of an anaerobic biofilm reactor followed by ozonation was used for treatment of artificial and real textile effluents containing azo dyes. The biological treatment efficiently removed chemical oxygen demand and color. Ozonation further reduced the organic content of the effluents and was very important for the degradation of aromatic compounds, as shown by the reduction of UV absorbance. The acute toxicity toward Vibrio fischeri and the shrimp Artemia salina increased after the biological treatment. No toxicity was detected after ozonation with the exception of the synthetic effluent containing the highest concentration, 1 g/l, of the azo dye Remazol Red. Both untreated and biologically treated textile effluents were found to have mutagenic effects. The mutagenicity increased even further after 1 min of ozonation. No mutagenicity was however detected in the effluents subjected to longer exposure to ozone. The results of this study suggest that the use of ozonation as short post-treatment after a biological process can be beneficial for the degradation of recalcitrant compounds and the removal of toxicity of textile wastewater. However, monitoring of toxicity and especially mutagenicity is crucial and should always be used to assess the success of a treatment strategy.

  6. Ozonation of acid yellow 17 dye in a semi-batch bubble column

    International Nuclear Information System (INIS)

    Lackey, Laura W.; Mines, Richard O.; McCreanor, Philip T.

    2006-01-01

    A semi-batch bubble column was used to evaluate the effect of ozonation on the removal of acid yellow 17 dye from water. Results indicate that ozonation is very effective at removing acid yellow 17 dye from synthetic textile wastewater. The ozone consumed to apparent dye removal ratio ranged from 2 to 15,000 mg ozone per mg of dye decolorized and was dependent on both ozonation time and apparent dye concentration. The biodegradability of the dye wastewater was evaluated by monitoring changes in 5-day biochemical oxygen demand (BOD 5 ) with respect to chemical oxygen demand (COD). Results indicate that the wastewater biodegradability increased with an increase in ozonation time. Film theory was used to kinetically model the gas-liquid reactions occurring in the reactor. Modeling results indicated that during the first 10-15 min of ozonation, the system could be characterized by a fast, pseudo-first-order regime. With continued ozonation, system kinetics transitioned through a moderate then to a slow regime. Successful modeling of this period required use of a kinetic equation corresponding to a more inclusive condition. Model results are presented

  7. Ground-level ozone pollution and its health impacts in China

    Science.gov (United States)

    Liu, Huan; Liu, Shuai; Xue, Boru; Lv, Zhaofeng; Meng, Zhihang; Yang, Xiaofan; Xue, Tao; Yu, Qiao; He, Kebin

    2018-01-01

    In recent years, ground-level ozone pollution in China has become an increasingly prominent problem. This study simulated and analyzed spatiotemporal distribution of ozone and exposure level by the Weather Research and Forecasting (WRF)-Community Multiscale Air Quality (CMAQ) models and monitoring data from 1516 national air quality monitoring stations in China during 2015. The simulation results show that the Sichuan Basin, Shandong, Shanxi, Henan, Anhui, Qinghai-Tibetan Plateau, Yangtze River Delta (YRD), Pearl River Delta (PRD) and Beijing-Tianjin-Hebei (BTH) region had relatively high average annual concentrations of ozone. The regions with more than 10% nonattainment days of 160 μg/m3 (daily maximum 8-h) are mainly concentrated in BTH, Shandong Peninsula and YRD, where large seasonal variations were also found. Exposure levels were calculated based on population data and simulated ozone concentrations. The cumulative population exposed to daily maximum 8-h concentration greater than or equal to 100 μg/m3 was 816.04 million, 61.17% of the total. Three methods were used to estimate the mortality of chronic obstructive pulmonary disease (COPD) attributable to ozone. A comparative study using different exposure concentrations and threshold concentrations found large variations among these methods, although they were all peer-reviewed methods. The estimated mortality of COPD caused by ozone in China in 2015 ranged from 55341 to 80280, which mainly distributed in Beijing, Shandong, Henan, Hubei and Sichuan Province, the YRD and PRD region.

  8. Ozone and the oxidizing properties of the troposphere

    International Nuclear Information System (INIS)

    Megie, G.

    1996-01-01

    This article is about the rising concentration of ozone and photo-oxidizers observed in the troposphere, the atmosphere between the ground and a height of 10 to 15 km. This serious global environmental problem has up to now been less well known than the greenhouse effect or the decrease in stratospheric ozone. This is because it varies with time and place and involves many complicated physico-chemical and atmospheric processes. At our latitudes, the average ozone concentration in the air we breathe has quadrupled since the beginning of this century. In polluted areas it often exceeds the recommended norms. This increase in ozone concentrations in the lower atmosphere directly reflects the impact of man-made emissions of compounds like methane, carbon monoxide, hydrocarbons and nitrogen oxides. Sunlight acts on these compounds to form ozone via complicated chemical reactions. This change in oxidizing properties of the troposphere is beginning produce perceptible effects on vegetable production, human health and climate. (author). 24 refs., 5 figs., 4 tabs

  9. Acute exercise increases adipose tissue interstitial adiponectin concentration in healthy overweight and lean subjects

    DEFF Research Database (Denmark)

    Højbjerre, Lise; Rosenzweig, Mary; Dela, Flemming

    2007-01-01

    -) plasma concentration did not change during exercise in any of the groups, but SCAAT TNF- mRNA increased after exercise in both groups. Furthermore, exercise decreased SCAAT leptin mRNA with no change in resistin mRNA. CONCLUSIONS: Acute exercise increases adipose tissue interstitial adiponectin...

  10. Stratospheric ozone: History and concepts and interactions with climate

    Directory of Open Access Journals (Sweden)

    Bekki S.

    2009-02-01

    Full Text Available Although in relatively low concentration of a few molecules per million of e e air molecules, atmospheric ozone (trioxygen O3 is essential to sustaining life on the surface of the Earth. Indeed, by absorbing solar radiation between 240 and 320 nm, it shields living organisms including humans from the very harmful ultraviolet radiation UV-B. About 90% of the ozone resides in the stratosphere, a region that extends from the tropopause, whose altitude ranges from 7 km at the poles to 17 km in the tropics, to the stratopause located at about 50 km altitude. Stratospheric ozone is communally referred as the « ozone layer ». Unlike the atmosphere surrounding it, the stratosphere is vertically stratified and stable because the temperature increases with height within it. This particularity originates from heating produced by the absorption of UV radiation by stratospheric ozone. The present chapter describes the main mechanisms that govern the natural balance of ozone in the stratosphere, and its disruption under the influence of human activities.

  11. Mortality tradeoff between air quality and skin cancer from changes in stratospheric ozone

    Science.gov (United States)

    Eastham, Sebastian D.; Keith, David W.; Barrett, Steven R. H.

    2018-03-01

    Skin cancer mortality resulting from stratospheric ozone depletion has been widely studied. Similarly, there is a deep body of literature on surface ozone and its health impacts, with modeling and observational studies demonstrating that surface ozone concentrations can be increased when stratospheric air mixes to the Earth’s surface. We offer the first quantitative estimate of the trade-off between these two effects, comparing surface air quality benefits and UV-related harms from stratospheric ozone depletion. Applying an idealized ozone loss term in the stratosphere of a chemistry-transport model for modern-day conditions, we find that each Dobson unit of stratospheric ozone depletion results in a net decrease in the global annual mortality rate of ~40 premature deaths per billion population (d/bn/DU). The impacts are spatially heterogeneous in sign and magnitude, composed of a reduction in premature mortality rate due to ozone exposure of ~80 d/bn/DU concentrated in Southeast Asia, and an increase in skin cancer mortality rate of ~40 d/bn/DU, mostly in Western Europe. This is the first study to quantify air quality benefits of stratospheric ozone depletion, and the first to find that marginal decreases in stratospheric ozone around modern-day values could result in a net reduction in global mortality due to competing health impact pathways. This result, which is subject to significant methodological uncertainty, highlights the need to understand the health and environmental trade-offs involved in policy decisions regarding anthropogenic influences on ozone chemistry over the 21st century.

  12. A statistical model to predict total column ozone in Peninsular Malaysia

    Science.gov (United States)

    Tan, K. C.; Lim, H. S.; Mat Jafri, M. Z.

    2016-03-01

    This study aims to predict monthly columnar ozone in Peninsular Malaysia based on concentrations of several atmospheric gases. Data pertaining to five atmospheric gases (CO2, O3, CH4, NO2, and H2O vapor) were retrieved by satellite scanning imaging absorption spectrometry for atmospheric chartography from 2003 to 2008 and used to develop a model to predict columnar ozone in Peninsular Malaysia. Analyses of the northeast monsoon (NEM) and the southwest monsoon (SWM) seasons were conducted separately. Based on the Pearson correlation matrices, columnar ozone was negatively correlated with H2O vapor but positively correlated with CO2 and NO2 during both the NEM and SWM seasons from 2003 to 2008. This result was expected because NO2 is a precursor of ozone. Therefore, an increase in columnar ozone concentration is associated with an increase in NO2 but a decrease in H2O vapor. In the NEM season, columnar ozone was negatively correlated with H2O (-0.847), NO2 (0.754), and CO2 (0.477); columnar ozone was also negatively but weakly correlated with CH4 (-0.035). In the SWM season, columnar ozone was highly positively correlated with NO2 (0.855), CO2 (0.572), and CH4 (0.321) and also highly negatively correlated with H2O (-0.832). Both multiple regression and principal component analyses were used to predict the columnar ozone value in Peninsular Malaysia. We obtained the best-fitting regression equations for the columnar ozone data using four independent variables. Our results show approximately the same R value (≈ 0.83) for both the NEM and SWM seasons.

  13. Storage in high-barrier pouches increases the sulforaphane concentration in broccoli florets.

    Directory of Open Access Journals (Sweden)

    Yoshio Makino

    Full Text Available Sulforaphane is a phytochemical that is usually found in cruciferous vegetables and is known to have a depressive effect on gastric cancer. Preliminary investigations showed that the sulforaphane concentration in broccoli (Brassica oleracea var. italica florets increased under anoxia. Therefore, in the present study, we examined the effect of different atmospheric conditions on the sulforaphane concentration in broccoli and also tested whether there are concurrent effects on the concentration of ethanol, which is an unfavorable byproduct of fermentation. The sulforaphane concentration in broccoli florets was significantly elevated by 1.9- to 2.8-fold after 2 d of storage under hypoxia at ca. 0% O2 and ca. 24% CO2 at 20°C, whereas no such increase was observed following storage under normoxia at ca. 0% O2 without CO2 at 20°C. Furthermore, after 2 d, the sulforaphane concentration under hypoxia was 1.6- to 2.3-fold higher than that under normoxia. These results suggest that storage under hypoxia with high CO2 levels can elevate the sulforaphane concentration in broccoli florets. However, the elevated sulforaphane concentration could not be maintained beyond 2 d. There was no significant difference in the concentration of ethanol between florets that were stored under hypoxia with/without CO2 or normoxia at 2 d. However, the ethanol concentrations inside the pouches significantly increased between 2 d and 7 d. These findings indicate that the quality of broccoli florets can be improved through storage under hypoxia with high CO2 levels at 20°C for 2 d.

  14. Storage in high-barrier pouches increases the sulforaphane concentration in broccoli florets.

    Science.gov (United States)

    Makino, Yoshio; Nishimura, Yuto; Oshita, Seiichi; Mizosoe, Takaharu; Akihiro, Takashi

    2018-01-01

    Sulforaphane is a phytochemical that is usually found in cruciferous vegetables and is known to have a depressive effect on gastric cancer. Preliminary investigations showed that the sulforaphane concentration in broccoli (Brassica oleracea var. italica) florets increased under anoxia. Therefore, in the present study, we examined the effect of different atmospheric conditions on the sulforaphane concentration in broccoli and also tested whether there are concurrent effects on the concentration of ethanol, which is an unfavorable byproduct of fermentation. The sulforaphane concentration in broccoli florets was significantly elevated by 1.9- to 2.8-fold after 2 d of storage under hypoxia at ca. 0% O2 and ca. 24% CO2 at 20°C, whereas no such increase was observed following storage under normoxia at ca. 0% O2 without CO2 at 20°C. Furthermore, after 2 d, the sulforaphane concentration under hypoxia was 1.6- to 2.3-fold higher than that under normoxia. These results suggest that storage under hypoxia with high CO2 levels can elevate the sulforaphane concentration in broccoli florets. However, the elevated sulforaphane concentration could not be maintained beyond 2 d. There was no significant difference in the concentration of ethanol between florets that were stored under hypoxia with/without CO2 or normoxia at 2 d. However, the ethanol concentrations inside the pouches significantly increased between 2 d and 7 d. These findings indicate that the quality of broccoli florets can be improved through storage under hypoxia with high CO2 levels at 20°C for 2 d.

  15. Results of fuel elements fabrication on the basis of increased concentration dioxide fuel for research reactors

    International Nuclear Information System (INIS)

    Alexandrov, A.B.; Afanasiev, V.L.; Enin, A.A.; Suprun, V.B.

    1996-01-01

    According to the Russian Reduced Enrichment for Research and Test Reactors (RERTR) program, that were constructed under the Russian projects, at the Novosibirsk Chemical Concentrates Plant the pilot series of different configuration (WR-M2, MR, IRT-4M) fuel elements, based on increased concentration uranium dioxide fuel, have been fabricated for reactor tests. Comprehensive fabricated fuel elements quality estimation has been carried out. (author)

  16. Increased serum concentrations of soluble ST2 predict mortality after burn injury.

    Science.gov (United States)

    Hacker, Stefan; Dieplinger, Benjamin; Werba, Gregor; Nickl, Stefanie; Roth, Georg A; Krenn, Claus G; Mueller, Thomas; Ankersmit, Hendrik J; Haider, Thomas

    2018-06-27

    Large burn injuries induce a systemic response in affected patients. Soluble ST2 (sST2) acts as a decoy receptor for interleukin-33 (IL-33) and has immunosuppressive effects. sST2 has been described previously as a prognostic serum marker. Our aim was to evaluate serum concentrations of sST2 and IL-33 after thermal injury and elucidate whether sST2 is associated with mortality in these patients. We included 32 burn patients (total body surface area [TBSA] >10%) admitted to our burn intensive care unit and compared them to eight healthy probands. Serum concentrations of sST2 and IL-33 were measured serially using an enzyme-linked immunosorbent assay (ELISA) technique. The mean TBSA was 32.5%±19.6%. Six patients (18.8%) died during the hospital stay. Serum analyses showed significantly increased concentrations of sST2 and reduced concentrations of IL-33 in burn patients compared to healthy controls. In our study cohort, higher serum concentrations of sST2 were a strong independent predictor of mortality. Burn injuries cause an increment of sST2 serum concentrations with a concomitant reduction of IL-33. Higher concentrations of sST2 are associated with increased in-hospital mortality in burn patients.

  17. Analysis of Ozone in Cloudy Versus Clear Sky Conditions

    Science.gov (United States)

    Strode, Sarah; Douglass, Anne; Ziemke, Jerald

    2016-01-01

    Convection impacts ozone concentrations by transporting ozone vertically and by lofting ozone precursors from the surface, while the clouds and lighting associated with convection affect ozone chemistry. Observations of the above-cloud ozone column (Ziemke et al., 2009) derived from the OMI instrument show geographic variability, and comparison of the above-cloud ozone with all-sky tropospheric ozone columns from OMI indicates important regional differences. We use two global models of atmospheric chemistry, the GMI chemical transport model (CTM) and the GEOS-5 chemistry climate model, to diagnose the contributions of transport and chemistry to observed differences in ozone between areas with and without deep convection, as well as differences in clean versus polluted convective regions. We also investigate how the above-cloud tropospheric ozone from OMI can provide constraints on the relationship between ozone and convection in a free-running climate simulation as well as a CTM.

  18. Performance and microbial community variations of anaerobic digesters under increasing tetracycline concentrations

    KAUST Repository

    Xiong, Yanghui; Harb, Moustapha; Hong, Pei-Ying

    2017-01-01

    The impact of different concentrations of tetracycline on the performance of anaerobic treatment was evaluated. Results revealed that for all of the tested tetracycline concentrations, no major sustained impact on methane production was observed. Instead, a significant increase in propionic acid was observed in the reactor subjected to the highest concentration of tetracycline (20 mg/L). Microbial community analyses suggest that an alternative methanogenic pathway, specifically that of methanol-utilizing methanogens, may be important for ensuring the stability of methane production in the presence of high tetracycline concentrations. In addition, the accumulation of propionate was due to an increase in volatile fatty acids (VFA)-producing bacteria coupled with a reduction in propionate utilizers. An increase in the abundance of tetracycline resistance genes associated with ribosomal protection proteins was observed after 30 days of exposure to high concentrations of tetracycline, while other targeted resistance genes showed no significant changes. These findings suggest that anaerobic treatment processes can robustly treat wastewater with varying concentrations of antibiotics while also deriving value-added products and minimizing the dissemination of associated antibiotic resistance genes.

  19. Performance and microbial community variations of anaerobic digesters under increasing tetracycline concentrations

    KAUST Repository

    Xiong, Yanghui

    2017-04-01

    The impact of different concentrations of tetracycline on the performance of anaerobic treatment was evaluated. Results revealed that for all of the tested tetracycline concentrations, no major sustained impact on methane production was observed. Instead, a significant increase in propionic acid was observed in the reactor subjected to the highest concentration of tetracycline (20 mg/L). Microbial community analyses suggest that an alternative methanogenic pathway, specifically that of methanol-utilizing methanogens, may be important for ensuring the stability of methane production in the presence of high tetracycline concentrations. In addition, the accumulation of propionate was due to an increase in volatile fatty acids (VFA)-producing bacteria coupled with a reduction in propionate utilizers. An increase in the abundance of tetracycline resistance genes associated with ribosomal protection proteins was observed after 30 days of exposure to high concentrations of tetracycline, while other targeted resistance genes showed no significant changes. These findings suggest that anaerobic treatment processes can robustly treat wastewater with varying concentrations of antibiotics while also deriving value-added products and minimizing the dissemination of associated antibiotic resistance genes.

  20. Performance and microbial community variations of anaerobic digesters under increasing tetracycline concentrations.

    Science.gov (United States)

    Xiong, Yanghui; Harb, Moustapha; Hong, Pei-Ying

    2017-07-01

    The impact of different concentrations of tetracycline on the performance of anaerobic treatment was evaluated. Results revealed that for all of the tested tetracycline concentrations, no major sustained impact on methane production was observed. Instead, a significant increase in propionic acid was observed in the reactor subjected to the highest concentration of tetracycline (20 mg/L). Microbial community analyses suggest that an alternative methanogenic pathway, specifically that of methanol-utilizing methanogens, may be important for ensuring the stability of methane production in the presence of high tetracycline concentrations. In addition, the accumulation of propionate was due to an increase in volatile fatty acids (VFA)-producing bacteria coupled with a reduction in propionate utilizers. An increase in the abundance of tetracycline resistance genes associated with ribosomal protection proteins was observed after 30 days of exposure to high concentrations of tetracycline, while other targeted resistance genes showed no significant changes. These findings suggest that anaerobic treatment processes can robustly treat wastewater with varying concentrations of antibiotics while also deriving value-added products and minimizing the dissemination of associated antibiotic resistance genes.

  1. Increased nutrient concentrations in Lake Erie tributaries influenced by greenhouse agriculture.

    Science.gov (United States)

    Maguire, Timothy J; Wellen, Christopher; Stammler, Katie L; Mundle, Scott O C

    2018-08-15

    Greenhouse production of vegetables is a growing global trade. While greenhouses are typically captured under regulations aimed at farmland, they may also function as a point source of effluent. In this study, the cumulative impacts greenhouse effluents have on riverine macronutrient and trace metal concentrations were examined. Water samples were collected Bi-weekly for five years from 14 rivers in agriculturally dominated watersheds in southwestern Ontario. Nine of the watersheds contained greenhouses with their boundaries. Greenhouse influenced rivers had significantly higher concentrations of macronutrients (nitrogen, phosphorus, and potassium) and trace metals (copper, molybdenum, and zinc). Concentrations within greenhouse influenced rivers appeared to decrease over the 5-year study while concentrations within non-greenhouse influenced river remained constant. The different temporal pattern between river types was attributed to increased precipitation during the study period. Increases in precipitation diluted concentrations in greenhouse influenced rivers; however, non-influenced river runoff proportionally increased nutrient mobility and flow, stabilizing the observed concentrations of non-point sources. Understanding the dynamic nature of environmental releases of point and non-point sources of nutrients and trace metals in mixed agricultural systems using riverine water chemistry is complicated by changes in climatic conditions, highlighting the need for long-term monitoring of nutrients, river flows and weather data in assessing these agricultural sectors. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Source attribution of tropospheric ozone

    Science.gov (United States)

    Butler, T. M.

    2015-12-01

    Tropospheric ozone is a harmful pollutant with adverse effects on human health and ecosystems. As well as these effects, tropospheric ozone is also a powerful greenhouse gas, with an anthropogenic radiative forcing one quarter of that of CO2. Along with methane and atmospheric aerosol, tropospheric ozone belongs to the so-called Short Lived Climate forcing Pollutants, or SLCP. Recent work has shown that efforts to reduce concentrations of SLCP in the atmosphere have the potential to slow the rate of near-term climate change, while simultaneously improving public health and reducing crop losses. Unlike many other SLCP, tropospehric ozone is not directly emitted, but is instead influenced by two distinct sources: transport of air from the ozone-rich stratosphere; and photochemical production in the troposphere from the emitted precursors NOx (oxides of nitrogen), CO (Carbon Monoxide), and VOC (volatile organic compounds, including methane). Better understanding of the relationship between ozone production and the emissions of its precursors is essential for the development of targeted emission reduction strategies. Several modeling methods have been employed to relate the production of tropospheric ozone to emissions of its precursors; emissions perturbation, tagging, and adjoint sensitivity methods all deliver complementary information about modelled ozone production. Most studies using tagging methods have focused on attribution of tropospheric ozone production to emissions of NOx, even though perturbation methods have suggested that tropospheric ozone is also sensitive to VOC, particularly methane. In this study we describe the implementation into a global chemistry-climate model of a scheme for tagging emissions of NOx and VOC with an arbitrary number of labels, which are followed through the chemical reactions of tropospheric ozone production in order to perform attribution of tropospehric ozone to its emitted precursors. Attribution is performed to both

  3. Research on the influence of ozone dissolved in the fuel-water emulsion on the parameters of the CI engine

    Science.gov (United States)

    Wojs, M. K.; Orliński, P.; Kamela, W.; Kruczyński, P.

    2016-09-01

    The article presents the results of empirical research on the impact of ozone dissolved in fuel-water emulsion on combustion process and concentration of toxic substances in CI engine. The effect of ozone presence in the emulsion and its influence on main engine characteristics (power, torque, fuel consumption) and selected parameters that characterize combustion process (levels of pressures and temperatures in combustion chamber, period of combustion delay, heat release rate, fuel burnt rate) is shown. The change in concentration of toxic components in exhausts gases when engine is fueled with ozonized emulsion was also identified. The empirical research and their analysis showed significant differences in the combustion process when fuel-water emulsion containing ozone was used. These differences include: increased power and efficiency of the engine that are accompanied by reduction in time of combustion delay and beneficial effects of ozone on HC, PM, CO and NOX emissions.

  4. Association between outdoor ozone and compensated acute respiratory diseases among workers in Quebec (Canada).

    Science.gov (United States)

    Adam-Poupart, Ariane; Labrèche, France; Busque, Marc-Antoine; Brand, Allan; Duguay, Patrice; Fournier, Michel; Zayed, Joseph; Smargiassi, Audrey

    2015-01-01

    Respiratory effects of ozone in the workplace have not been extensively studied. Our aim was to explore the relationship between daily average ozone levels and compensated acute respiratory problems among workers in Quebec between 2003 and 2010 using a time-stratified case-crossover design. Health data came from the Workers' Compensation Board. Daily concentrations of ozone were estimated using a spatiotemporal model. Conditional logistic regressions, with and without adjustment for temperature, were used to estimate odds ratios (ORs, per 1 ppb increase of ozone), and lag effects were assessed. Relationships with respiratory compensations in all industrial sectors were essentially null. Positive non-statistically significant associations were observed for outdoor sectors, and decreased after controlling for temperature (ORs of 0.98; 1.01 and 1.05 at Lags 0, 1 and 2 respectively). Considering the predicted increase of air pollutant concentrations in the context of climate change, closer investigation should be carried out on outdoor workers.

  5. Effect of solar radiation on surface ozone in Cairo

    Energy Technology Data Exchange (ETDEWEB)

    Rizk, H F.S. [National Research Centre, Air Pollution Research Dept., Cairo (Egypt)

    1992-04-01

    Measurements of surface ozone content over an urban area in Cairo were conducted during a year, May 1989 to April 1990, while solar radiation at the same area was measured. Low and high concentrations of ozone are compared with those recommended by the WHO expert committee regarding the daily cycle of ozone concentration. 15 refs.

  6. Artificially ionized region as a source of ozone in the stratosphere

    International Nuclear Information System (INIS)

    Gurevich, Aleksandr V; Litvak, Aleksandr G; Vikharev, A L; Ivanov, O A; Borisov, Nikolai D; Sergeichev, Konstantin F

    2000-01-01

    A set of physical and chemical processes occurring in a microwave stratospheric discharge of nanosecond duration is discussed in connection with the effect they may have locally on the ozone layer in the artificially ionized region (AIR) in the stratosphere. The AIR, to be created at altitudes of 18 - 20 km by the microwave breakdown of air with ground-produced powerful electromagnetic wave beams, is planned for use in the natural physical experiment aimed at active monitoring of the ozone layer (its internal state and a set of plasma-chemical and photochemical processes) by controllably generating a considerable amount of ozone in the stratosphere. Results of relevant theoretical studies are presented, as are those of a large series of laboratory experiments performed under conditions similar to those prevailing in the stratosphere. Discharge regimes securing the efficient growth of ozone concentration are identified and studied in detail. It is demonstrated that such a stratospheric ozonizer is about as efficient as the best ground-based ozonizers used at present. For typical stratospheric conditions (low pressures and temperatures T ∼ 200 - 220 K), it is shown that the intense generation of ozone in a microwave breakdown effected by groups of short nanosecond pulses does not virtually increase the density of nitrogen oxides - gases that play a vital role in catalytic ozone-decomposing reactions. The possibility of effectively producing ozone in prebreakdown electric fields is established experimentally. It is demonstrated that due to its long lifetime, ozone produced locally at altitudes of 18 - 20 km may spread widely under the action of winds and turbulent diffusion, thus leading to an additional - artificial - ozonization of the stratosphere. (reviews of topical problems)

  7. Fabrication of fuel elements on the basis of increased concentration fuel composition

    International Nuclear Information System (INIS)

    Alexandrov, A.B.; Afanasiev, V.L.; Enin, A.A.; Suprun, V.B.

    2004-01-01

    As a part of Russian Program RERTR Reduced Enrichment for Research and Test Reactors), at NCCP, Inc. jointly with the State Scientific Centre VNIINM the mastering in industrial environment of design and fabrication process of fuel elements (FE) with increased concentration fuel compositions is performed. Fuel elements with fuel composition on the basis of dioxide uranium with nearly 4 g/cm 3 fuel concentration have been produced thus confirming the principal possibility of fuel enrichment reduction down to 20% for research reactors which were built up according to the projects of the former USSR, by increasing the oxide fuel concentration in fuel assemblies (FAs). The form and geometrical dimensions of FEs and FAs shall remain unchanged, only uranium mass in FA shall be increased. (author)

  8. Ozone as an ecotoxicological problem

    Energy Technology Data Exchange (ETDEWEB)

    Mortensen, L. [National Environmental Research Inst., Dept. of Atmospheric Environment, Roskilde (Denmark)

    1996-11-01

    Ozone is quantitatively the dominating oxidant in photochemical air pollution. Other compounds like hydrogen peroxide, aldehydes, formate, peroxyacetyl nitrate (PAN) and nitrogen dioxide are present too, and several of these are known to be phytotoxic, but under Danish conditions the concentration of these gases are without significance for direct effects on vegetation. Therefore, it is the effects of ozone on plant growth that will be described below. (EG) 65 refs.

  9. [Mechanism of catalytic ozonation for the degradation of paracetamol by activated carbon].

    Science.gov (United States)

    Wang, Jia-Yu; Dai, Qi-Zhou; Yu, Jie; Yan, Yi-Zhou; Chen, Jian-Meng

    2013-04-01

    The degradation of paracetamol (APAP) in aqueous solution was studied with ozonation integrated with activated carbon (AC). The synergistic effect of ozonation/AC process was explored by comparing the degradation efficiency of APAP in three processes (ozonation alone, activated carbon alone and ozonation integrated with activated carbon). The operational parameters that affected the reaction rate were carefully optimized. Based on the intermediates detected, the possible pathway for catalytic degradation was discussed and the reaction mechanism was also investigated. The results showed that the TOC removal reached 55.11% at 60 min in the AC/O3 system, and was significantly better than the sum of ozonation alone (20.22%) and activated carbon alone (27.39%), showing the great synergistic effect. And the BOD5/COD ratio increased from 0.086 (before reaction) to 0.543 (after reaction), indicating that the biodegradability was also greatly improved. The effects of the initial concentration of APAP, pH value, ozone dosage and AC dosage on the variation of reaction rate were carefully discussed. The catalytic reaction mechanism was different at different pH values: the organic pollutions were removed by adsorption and direct ozone oxidation at acidic pH, and mainly by catalytic ozonation at alkaline pH.

  10. Ozone-mist spray sterilization for pest control in agricultural management

    Science.gov (United States)

    Ebihara, Kenji; Mitsugi, Fumiaki; Ikegami, Tomoaki; Nakamura, Norihito; Hashimoto, Yukio; Yamashita, Yoshitaka; Baba, Seiji; Stryczewska, Henryka D.; Pawlat, Joanna; Teii, Shinriki; Sung, Ta-Lun

    2013-02-01

    We developed a portable ozone-mist sterilization system to exterminate pests (harmful insects) in agricultural field and greenhouse. The system is composed of an ozone generator, an ozone-mist spray and a small container of ozone gas. The ozone generator can supply highly concentrated ozone using the surface dielectric barrier discharge. Ozone-mist is produced using a developed nozzle system. We studied the effects of ozone-mist spray sterilization on insects and agricultural plants. The sterilization conditions are estimated by monitoring the behavior of aphids and observing the damage of the plants. It was shown that aphids were exterminated in 30 s without noticeable damages of the plant leaves. The reactive radicals with strong oxidation potential such as hydroxyl radical (*OH), hydroperoxide radical (*HO2), the superoxide ion radical (*O2‒) and ozonide radical ion (*O3‒) can increase the sterilization rate for aphids. Contribution to the Topical Issue "13th International Symposium on High Pressure Low Temperature Plasma Chemistry (Hakone XIII)", Edited by Nicolas Gherardi, Henryca Danuta Stryczewska and Yvan Ségui.

  11. Peripartum cardiomyopathy is associated with increased uric acid concentrations: A population based study.

    Science.gov (United States)

    Sagy, Iftach; Salman, Amjad Abu; Kezerle, Louise; Erez, Offer; Yoel, Idan; Barski, Leonid

    Peri-partum cardiomyopathy (PPCM) is a clinical heart failure that usually develops during the final stage of pregnancy or the first months following delivery. High maternal serum uric acid concentrations have been previous associated with heart failure and preeclampsia. 1) To explored the clinical characteristics of PPCM patients; and 2) to determine the association between maternal serum uric acid concentrations and PPCM. This is a retrospective population based case control study. Cases and controls were matched 1:4 (for gestational age, medical history of cardiac conditions and creatinine); conditional logistic regression was used to identify clinical parameters that were associated with PPCM. The prevalence of peripartum cardiomyopathy at our institution was 1-3832 deliveries (42/160,964). In a matched multivariate analysis high maternal serum uric acid concentrations were associated with PPCM (O.R 1.336, 95% C.I 1.003-1.778). Uric acid concentrations were higher within the Non-Jewish patients and mothers of male infant with PPCM in compare to those without PPCM (p value 0.003 and 0.01 respectively). PPCM patients had increased maternal serum uric acid concentrations. This observation aligns with previous report regarding the increased uric acid concentration in women with preeclampsia and congestive heart failure, suggestive of a common underlying mechanism that mediates the myocardial damage. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Levofloxacin oxidation by ozone and hydroxyl radicals: kinetic study, transformation products and toxicity.

    Science.gov (United States)

    Hamdi El Najjar, Nasma; Touffet, Arnaud; Deborde, Marie; Journel, Romain; Leitner, Nathalie Karpel Vel

    2013-10-01

    This work was carried out to investigate the fate of the antibiotic levofloxacin upon oxidation with ozone and hydroxyl radicals. A kinetic study was conducted at 20 °C for each oxidant. Ozonation experiments were performed using a competitive kinetic method with carbamazepin as competitor. Significant levofloxacin removal was observed during ozonation and a rate constant value of 6.0×10(4) M(-1) s(-1) was obtained at pH 7.2. An H2O2/UV system was used for the formation of hydroxyl radicals HO. The rate constant of HO was determined in the presence of a high H2O2 concentration. The kinetic expressions yielded a [Formula: see text] value of 4.5×10(9) M(-1) s(-1) at pH 6.0 and 5.2×10(9) M(-1) s(-1) at pH 7.2. These results were used to develop a model to predict the efficacy of the ozonation process and pharmaceutical removal was estimated under different ozonation conditions (i.e. oxidant concentrations and contact times). The results showed that levofloxacin was completely degraded by molecular ozone during ozonation of water and that hydroxyl radicals had no effect in real waters conditions. Moreover, LC/MS/MS and toxicity assays using Lumistox test were performed to identify ozonation transformation products. Under these conditions, four transformation products were observed and their chemical structures were proposed. The results showed an increase in toxicity during ozonation, even after degradation of all of the observed transformation products. The formation of other transformation products not identified under our experimental conditions could be responsible for the observed toxicity. These products might be ozone-resistant and more toxic to Vibrio fisheri than levofloxacin. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Treatment with cinacalcet increases plasma sclerostin concentration in hemodialysis patients with secondary hyperparathyroidism.

    Science.gov (United States)

    Kuczera, Piotr; Adamczak, Marcin; Więcek, Andrzej

    2016-11-15

    Sclerostin is a paracrine acting factor, which is expressed in the osteocytes and articular chondrocytes. Sclerostin decreases the osteoblast-related bone formation through the inhibition of the Wnt/β-catenin pathway. Osteocytes also express the Calcium sensing receptor which is a target for cinacalcet. The aim of this study was to assess the influence of six-month cinacalcet treatment on plasma sclerostin concentration in hemodialysed patients with secondary hyperparathyroidism (sHPT). In 58 hemodialysed patients with sHPT (PTH > 300 pg/ml) plasma sclerostin and serum PTH, calcium and phosphate concentrations were assessed before the first dose of cinacalcet and after 3 and 6 months of treatment. Serum PTH concentration decreased after 3 and 6 month of treatment from 1138 (931-1345) pg/ml to 772 (551-992) pg/ml and to 635 (430-839) pg/ml, respectively. Mean serum calcium and phosphate concentrations remained stable. Plasma sclerostin concentration increased after 3 and 6 months of treatment from 1.66 (1.35-1.96) ng/ml, to 1.77 (1.43-2.12) ng/ml and to 1.87 (1.50-2.25) ng/ml, respectively. In 42 patients with cinacalcet induced serum PTH decrease plasma sclerostin concentration increased after 3 and 6 months of treatment from 1.51 (1.19-1.84) ng/ml to 1.59 (1.29-1.89) ng/ml and to 1.75 (1.42-2.01) ng/ml, respectively. Contrary, in the 16 patients without cinacalcet induced serum PTH decrease plasma sclerostin concentration was stable. Plasma sclerostin concentrations correlated inversely with serum PTH concentrations at the baseline and also after 6 months of treatment. 1. In hemodialysed patients with secondary hyperparathyroidism treatment with cinacalcet increases plasma sclerostin concentration 2. This effect seems to be related to decrease of serum PTH concentration.

  14. Identification of a Hemolysis Threshold That Increases Plasma and Serum Zinc Concentration.

    Science.gov (United States)

    Killilea, David W; Rohner, Fabian; Ghosh, Shibani; Otoo, Gloria E; Smith, Lauren; Siekmann, Jonathan H; King, Janet C

    2017-06-01

    Background: Plasma or serum zinc concentration (PZC or SZC) is the primary measure of zinc status, but accurate sampling requires controlling for hemolysis to prevent leakage of zinc from erythrocytes. It is not established how much hemolysis can occur without changing PZC/SZC concentrations. Objective: This study determines a guideline for the level of hemolysis that can significantly elevate PZC/SZC. Methods: The effect of hemolysis on PZC/SZC was estimated by using standard hematologic variables and mineral content. The calculated hemolysis threshold was then compared with results from an in vitro study and a population survey. Hemolysis was assessed by hemoglobin and iron concentrations, direct spectrophotometry, and visual assessment of the plasma or serum. Zinc and iron concentrations were determined by inductively coupled plasma spectrometry. Results: A 5% increase in PZC/SZC was calculated to result from the lysis of 1.15% of the erythrocytes in whole blood, corresponding to ∼1 g hemoglobin/L added into the plasma or serum. Similarly, the addition of simulated hemolysate to control plasma in vitro caused a 5% increase in PZC when hemoglobin concentrations reached 1.18 ± 0.10 g/L. In addition, serum samples from a population nutritional survey were scored for hemolysis and analyzed for changes in SZC; samples with hemolysis in the range of 1-2.5 g hemoglobin/L showed an estimated increase in SZC of 6% compared with nonhemolyzed samples. Each approach indicated that a 5% increase in PZC/SZC occurs at ∼1 g hemoglobin/L in plasma or serum. This concentration of hemoglobin can be readily identified directly by chemical hemoglobin assays or indirectly by direct spectrophotometry or matching to a color scale. Conclusions: A threshold of 1 g hemoglobin/L is recommended for PZC/SZC measurements to avoid increases in zinc caused by hemolysis. The use of this threshold may improve zinc assessment for monitoring zinc status and nutritional interventions.

  15. Increasing Fuel Efficiency of Direct Methanol Fuel Cell Systems with Feedforward Control of the Operating Concentration

    Directory of Open Access Journals (Sweden)

    Youngseung Na

    2015-09-01

    Full Text Available Most of the R&D on fuel cells for portable applications concentrates on increasing efficiencies and energy densities to compete with other energy storage devices, especially batteries. To improve the efficiency of direct methanol fuel cell (DMFC systems, several modifications to system layouts and operating strategies are considered in this paper, rather than modifications to the fuel cell itself. Two modified DMFC systems are presented, one with an additional inline mixer and a further modification of it with a separate tank to recover condensed water. The set point for methanol concentration control in the solution is determined by fuel efficiency and varies with the current and other process variables. Feedforward concentration control enables variable concentration for dynamic loads. Simulation results were validated experimentally with fuel cell systems.

  16. Elevated CO{sub 2} and ozone reduce nitrogen acquisition by Pinus halepensis from its mycorrhizal symbiont

    Energy Technology Data Exchange (ETDEWEB)

    Kytoeviita, M.M. [Oulu Univ., Dept. of Biology, Oulu (Finland); Thiec, D. Le [Univ. Henri Poincare-Nancy, Lab. de Biologie Forestiere, Vandoeuvre-les-Nancy (France); Dizengremel, P. [Unite Ecophysiologie Forestiere-Lab. de Pollution Atmospherique, INRA-Centre de Recherches Forestieres, Champenoux (France)

    2001-07-01

    The effects of 700 {mu}mol mol{sup -1} CO{sub 2} and 200 nmol mol{sup -1} ozone on photosynthesis in Pinus halepensis seedlings and on N translocation from its mycorrhizal symbiont, Paxillus involutus, were studied under nutrient-poor conditions. After 79 days of exposure, ozone reduced and elevated CO{sub 2} increased net assimilation rate. However, the effect was dependent on daily accumulated exposure. No statistically significant differences in total plant mass accumulation were observed, although ozone-treated plants tended to be smaller. Changes in atmospheric gas concentrations induced changes in allocation of resources: under elevated ozone, shoots showed high priority over roots and had significantly elevated N concentrations. As a result of different shoot N concentration and net carbon assimilation rates, photosynthetic N use efficiency was significantly increased under elevated CO{sub 2} and decreased under ozone. The differences in photosynthesis were mirrored in the growth of the fungus in symbiosis with the pine seedlings. However, exposure to CO{sub 2} and ozone both reduced the symbiosis-mediated N uptake. The results suggest an increased carbon cost of symbiosis-mediated N uptake under elevated CO{sub 2} while under ozone, plant N acquisition is preferentially shifted towards increased root uptake. (au)

  17. Ingestive behavior of grazing steers fed increasing levels of concentrate supplementation with different crude protein contents.

    Science.gov (United States)

    Mendes, Fabrício Bacelar Lima; Silva, Robério Rodrigues; de Carvalho, Gleidson Giordano Pinto; da Silva, Fabiano Ferreira; Lins, Túlio Otávio Jardim D Almeida; da Silva, Anderson Luiz Nascimento; Macedo, Venício; Abreu Filho, George; de Souza, Sinvaldo Oliveira; Guimarães, Joanderson Oliveira

    2015-02-01

    This study aimed to evaluate the ingestive behavior of steers on Brachiaria brizantha pasture fed diets with increasing levels of concentrate supplementation. Thirty-two crossbred steers in the finishing phase with average weight of 420 ± 8 kg were distributed in a completely randomized design with four treatments and eight replicates per treatment. Their behavior was assessed every 5 min for 24 h, in the middle of the experimental period. Variance and regression analyses at 0.05 % probability were adopted. The times spent grazing and ruminating reduced linearly (P <0.05), whereas the times spent at the trough (eating) and on other activities increased linearly (P <0.05) as the supplementation levels were elevated. The total feeding and chewing times decreased linearly (P <0.05) as the concentrate levels in the diet were elevated. By increasing the supplementation levels, the number of bites per day decreased linearly (P <0.05), and the feed efficiency of dry matter increased quadratically. Rumination efficiency of dry matter increased linearly (P <0.05) with increasing levels of concentrate supplementation. Grazing and rumination activities are reduced when the time devoted to other activities and at the trough are increased, as a result of the substitution effect.

  18. Morphological and Metabolic Parameters of Red Blood Cells after Their Treatment with Ozone

    Directory of Open Access Journals (Sweden)

    Anna V. Deryugina

    2018-01-01

    Full Text Available The purpose of the study was to assess the morphology of red blood cells (RBC and the association of morphological parameters with lipid peroxidation processes and the content of organic phosphates in RBC when treating packed red blood cells with the ozonized saline solution (with an ozone concentration of 2 mg/l after different storage periods.Materials and methods. The morphology of human RBC, the concentration of malonic dialdehyde (MDA in RBC, the catalase activity, the concentration of ATP and 2,3-diphosphoglycerate (2,3-DPG were studied before and after treatment of RBC with the ozonized saline (with the ozone concentration of 2 mg/l after 7, 14, 21 and 30 days of storage.Results. The effect of ozone (2 ng/l in vitro on the packed red blood cells after 7–21 days of storage contributed to the recovery of RBC shape, increased the concentration of ATP and 2,3-DPG, and optimized the lipid peroxidation. Ozone did not demonstrate a pronounced positive effect on these parameters when the packed RBCs were stored for 30 days.Conclusion. The treatment of the packed RBCs with the ozonized saline solution (with the ozone concentration of 2 mg/l contributed to the recovery of the discocyte count due to optimization of lipid peroxidation processes in cell membranes and enhanced the synthesis of organic phosphates in cells due to the activation of glycolysis and the pentose phosphate pathway. This can be used to improve the morphological and metabolic status of the packed RBCs before their transfusion. 

  19. Response of Sphagnum mosses to increased CO2 concentration and nitrogen deposition

    International Nuclear Information System (INIS)

    Jauhiainen, J.

    1998-01-01

    The main objective of this work was to study the effects of different CO 2 concentration and N deposition rates on Sphagna adapted to grow along a nutrient availability gradient (i.e. ombrotrophy-mesotrophy-eutrophy). The study investigated: (i) the effects of various longterm CO 2 concentrations on the rate of net photosynthesis in Sphagna, (ii) the effects of the CO 2 and N treatments on the moss density, shoot dry masses, length increment and dry mass production in Sphagna, (iii) the concentrations of the major nutrients in Sphagna after prolonged exposure to the CO 2 and N treatments, and (iv) species dependent differences in potential NH 4 + and NO 3 - uptake rates. The internal nutrient concentration of the capitulum and the production of biomass were effected less by the elevated CO 2 concentrations because the availability of N was a controlling factor. In addition responses to the N treatments were related to ecological differences between the Sphagna species. Species with a high tolerance of N availability were able to acclimatise to the increased N deposition rates. The data suggests a high nutrient status is less significant than the adaptation of the Sphagna to their ecological niche (e.g. low tolerance of meso-eutrophic S. warnstorfii to high N deposition rate). At the highest N deposition rate the ombrotrophic S. fuscum had the highest increase in tissue N concentration among the Sphagna studied. S. fuscum almost died at the highest N deposition rate because of the damaging effects of N to the plant's metabolism. Ombrotrophic hummock species such as S. fuscum, were also found to have the highest potential N uptake rate (on density of dry mass basis) compared to lawn species. The rate of net photosynthesis was initially increased with elevated CO 2 concentrations, but photosynthesis was down regulated with prolonged exposure to CO 2 . The water use efficiency in Sphagna appeared not to be coupled with exposure to the long-term CO 2 concentration. The

  20. Response of Sphagnum mosses to increased CO{sub 2} concentration and nitrogen deposition

    Energy Technology Data Exchange (ETDEWEB)

    Jauhiainen, J.

    1998-12-31

    The main objective of this work was to study the effects of different CO{sub 2} concentration and N deposition rates on Sphagna adapted to grow along a nutrient availability gradient (i.e. ombrotrophy-mesotrophy-eutrophy). The study investigated: (i) the effects of various longterm CO{sub 2} concentrations on the rate of net photosynthesis in Sphagna, (ii) the effects of the CO{sub 2} and N treatments on the moss density, shoot dry masses, length increment and dry mass production in Sphagna, (iii) the concentrations of the major nutrients in Sphagna after prolonged exposure to the CO{sub 2} and N treatments, and (iv) species dependent differences in potential NH{sub 4}{sup +} and NO{sub 3}{sup -} uptake rates. The internal nutrient concentration of the capitulum and the production of biomass were effected less by the elevated CO{sub 2} concentrations because the availability of N was a controlling factor. In addition responses to the N treatments were related to ecological differences between the Sphagna species. Species with a high tolerance of N availability were able to acclimatise to the increased N deposition rates. The data suggests a high nutrient status is less significant than the adaptation of the Sphagna to their ecological niche (e.g. low tolerance of meso-eutrophic S. warnstorfii to high N deposition rate). At the highest N deposition rate the ombrotrophic S. fuscum had the highest increase in tissue N concentration among the Sphagna studied. S. fuscum almost died at the highest N deposition rate because of the damaging effects of N to the plant`s metabolism. Ombrotrophic hummock species such as S. fuscum, were also found to have the highest potential N uptake rate (on density of dry mass basis) compared to lawn species. The rate of net photosynthesis was initially increased with elevated CO{sub 2} concentrations, but photosynthesis was down regulated with prolonged exposure to CO{sub 2}. The water use efficiency in Sphagna appeared not to be coupled

  1. Impacts of ozone on trees and crops

    International Nuclear Information System (INIS)

    Felzer, B.S.; Cronina, T.; Melillo, J.M.; Reilly, J.M.; Xiaodong, Wang

    2007-01-01

    In this review article, we explore how surface-level ozone affects trees and crops with special emphasis on consequences for productivity and carbon sequestration. Vegetation exposure to ozone reduces photosynthesis, growth, and other plant functions. Ozone formation in the atmosphere is a product of NO x , which are also a source of nitrogen deposition. Reduced carbon sequestration of temperate forests resulting from ozone is likely offset by increased carbon sequestration from nitrogen fertilization. However, since fertilized crop-lands are generally not nitrogen-limited, capping ozone-polluting substances in the USA, Europe, and China can reduce future crop yield loss substantially. (authors)

  2. Persistent increase of plasma butyryl/isobutyrylcarnitine concentrations as marker of SCAD defect and ethylmalonic encephalopathy

    DEFF Research Database (Denmark)

    Merinero, B; Perez-Cerda, C; Ruiz Sala, P

    2007-01-01

    High concentrations of butyryl/isobutyrylcarnitine (C(4)-carnitine) in plasma with increase of ethylmalonic acid (EMA) in urine point to different genetic entities, and further investigations are required to differentiate the possible underlying defect. Here we report three unrelated cases, two n...

  3. Physiological and foliar injury responses of Prunus serotina, Fraxinus americana, and Acer rubrum seedlings to varying soil moisture and ozone

    International Nuclear Information System (INIS)

    Schaub, M.; Skelly, J.M.; Steiner, K.C.; Davis, D.D.; Pennypacker, S.P.; Zhang, J.; Ferdinand, J.A.; Savage, J.E.; Stevenson, R.E.

    2003-01-01

    High soil water availability favors ozone uptake, increases foliar injury, and exacerbates the negative ozone effect on gas exchange of seedlings of deciduous tree species. - Sixteen black cherry (Prunus serotina, Ehrh.), 10 white ash (Fraxinus americana, L.) and 10 red maple (Acer rubrum, L.) 1-year old seedlings were planted per plot in 1997 on a former nursery bed within 12 open-top chambers and six open plots. Seedlings were exposed to three different ozone scenarios (ambient air: 100% O 3 ; non-filtered air: 98% ambient O 3 ; charcoal-filtered air: 50% ambient O 3 ) within each of two different water regimes (nine plots irrigated, nine plots non-irrigated) during three growing seasons. During the 1998 and 1999 growing season, leaf gas exchange, plant water relations, and foliar injury were measured. Climatic data, ambient- and chamber-ozone-concentrations were monitored. We found that seedlings grown under irrigated conditions had similar (in 1998) but significantly higher gas exchange rates (in 1999) than seedlings grown within non-irrigated plots among similar ozone exposures. Cherry and ash had similar ozone uptake but cherry developed more ozone-induced injury (<34% affected leaf area, LAA) than ash (<5% LAA), while maple rarely showed foliar injury, indicating the species differed in ozone sensitivity. Significantly more severe injury on seedlings grown under irrigated conditions than seedlings grown under non-irrigated conditions demonstrated that soil moisture altered seedling responses to ambient ozone exposures

  4. Sensitivity analysis of surface ozone to emission controls in Beijing and its neighboring area during the 2008 Olympic Games

    Institute of Scientific and Technical Information of China (English)

    Yi Gao; Meigen Zhang

    2012-01-01

    The regional air quality modeling system RAMS (Regional Atmospheric Modeling System)-CMAQ (Community Multi-scale Air Quality modeling system) is applied to analyze temporal and spatial variations in surface ozone concentration over Beijing and its surrounding region from July to October 2008.Comparison of simulated and observed meteorological elements and concentration of nitrogen oxides (NOx) and ozone at one urban site and three rural sites during Olympic Games show that model can generally reproduce the main observed feature of wind,temperature and ozone,but NOx concentration is overestimated.Although ozone concentration decreased during Olympics,high ozone episodes occurred on 24 July and 24 August with concentration of 360 and 245 μg/m3 at Aoyuncun site,respectively.The analysis of sensitive test,with and without emission controls,shows that emission controls could reduce ozone concentration in the afternoon when ozone concentration was highest but increase it at night and in the morning.The evolution of the weather system during the ozone episodes (24 July and 24 August) indicates that hot and dry air and a stable weak pressure field intensified the production of ozone and allowed it to accumulate.Process analysis at the urban site and rural site shows that under favorable weather condition on 24 August,horizontal transport was the main contributor of the rural place and the pollution from the higher layer would be transported to the surface layer.On 24 July,as the wind velocity was smaller,the impact of transport on the rural place was not obvious.

  5. Co-exposure to ultrafine particulate matter and ozone causes electrocardiogram changes indicative of increased arrhythmia risk in mice

    Science.gov (United States)

    Numerous studies have shown a relationship between acute air pollution exposure and increased risk for cardiovascular morbidity and mortality. Due to the inherent complexity of air pollution, recent studies have focused on co-exposures to better understand potential interactions....

  6. [Health impact of ozone in 13 Italian cities].

    Science.gov (United States)

    Mitis, Francesco; Iavarone, Ivano; Martuzzi, Marco

    2007-01-01

    to estimate the health impact of ozone in 13 Italian cities over 200,000 inhabitants and to produce basic elements to permit the reproducibility of the study in other urban locations. the following data have been used: population data (2001), health data (2001 or from scientific literature), environmental data (2002-2004), from urban background monitoring station and concentration/response risk coefficients derived from recent metanalyses. The indicators SOMO35 and SOMO0 have been used as a proxi of the average exposure to calcolate attributable deaths (and years of life lost) and several causes of morbility for ozone concentrations over 70 microg/m3. acute mortality for all causes and for cardiovascular mortality, respiratory-related hospital admissions in elderly, asthma exacerbation in children and adults, minor restricted activity days, lower respiratory symptoms in children. over 500 (1900) deaths, the 0.6% (2.1%) of total mortality, equivalent to about 6000 (22,000) years of life lost are attributable to ozone levels over 70 microg/m3 in the 13 Italian cities under study. Larger figures, in the order of thousands, are attributable to less severe morbidity outcomes. The health impact of ozone in Italian towns is relevant in terms of acute mortality and morbidity, although less severe than PM10 impact. Background ozone levels are increasing. Abatement strategies for ozone concentrations should consider the whole summer and not only "peak" days and look at policies limiting the concentration of precursors produced by traffic sources. Relevant health benefits can be obtained also under levels proposed as guidelines in the present environmental regulations.

  7. Dobson spectrophotometer ozone measurements during international ozone rocketsonde intercomparison

    Science.gov (United States)

    Parsons, C. L.

    1980-01-01

    Measurements of the total ozone content of the atmosphere, made with seven ground based instruments at a site near Wallops Island, Virginia, are discussed in terms for serving as control values with which the rocketborne sensor data products can be compared. These products are profiles of O3 concentration with altitude. By integrating over the range of altitudes from the surface to the rocket apogee and by appropriately estimating the residual ozone amount from apogee to the top of the atmosphere, a total ozone amount can be computed from the profiles that can be directly compared with the ground based instrumentation results. Dobson spectrophotometers were used for two of the ground-based instruments. Preliminary data collected during the IORI from Dobson spectrophotometers 72 and 38 are presented. The agreement between the two and the variability of total ozone overburden through the experiment period are discussed.

  8. Increasing tetracycline concentrations on the performance and communities of mixed microalgae-bacteria photo-bioreactors

    KAUST Repository

    Xiong, Yanghui

    2017-12-11

    This study investigated the impact of varying concentrations of tetracycline on the performance of mixed microalgae-bacteria photo-bioreactors. Photo-bioreactors were assessed for their ability to remove carbon dioxide (CO2) from the biogas of anaerobic membrane bioreactor (anMBR), and nutrients from the anaerobic effluent. The varying concentrations of tetracycline had no impact on the removal of CO2 from biogas. 29% v/v of CO2 was completely removed to generate >20% v/v of oxygen (O2) in all reactors. Removal of nutrients and biomass was not affected at low concentrations of tetracycline (≤150μg/L), but 20mg/L of tetracycline lowered the biomass generation and removal efficiencies of phosphate. Conversely, high chlorophyll a and b content was observed at 20mg/L of tetracycline. High tetracycline level had no impact on the diversity of 18S rRNA gene-based microalgal communities but adversely affected the 16S rRNA gene-based microbial communities. Specifically, both Proteobacteria and Bacteroidetes phyla decreased in relative abundance but not phylum Chloroplast. Additionally, both nitrogen-fixing (e.g. Flavobacterium, unclassified Burkholderiales and unclassified Rhizobiaceae) and denitrifying groups (e.g. Hydrogenophaga spp.) were significantly reduced in relative abundance at high tetracycline concentration. Phosphate-accumulating microorganisms, Acinetobacter spp. and Pseudomonas spp. were similarly reduced upon exposure to high tetracycline concentration. Unclassified Comamonadaceae, however, increased in relative abundance, which correlated with an increase in the abundance of tetracycline resistance genes associated with efflux pump mechanism. Overall, the findings demonstrate that antibiotic concentrations in municipal wastewaters will not significantly affect the removal of nutrients by the mixed microalgae-bacteria photo-bioreactors. However, utilizing such photo-bioreactors as a polishing step for anMBRs that treat wastewaters with high tetracycline

  9. Ozone-Induced Nasal Type 2 Immunity in Mice Is Dependent on Innate Lymphoid Cells.

    Science.gov (United States)

    Kumagai, Kazuyoshi; Lewandowski, Ryan; Jackson-Humbles, Daven N; Li, Ning; Van Dyken, Steven J; Wagner, James G; Harkema, Jack R

    2016-06-01

    Epidemiological studies suggest that elevated ambient concentrations of ozone are associated with activation of eosinophils in the nasal airways of atopic and nonatopic children. Mice repeatedly exposed to ozone develop eosinophilic rhinitis and type 2 immune responses. In this study, we determined the role of innate lymphoid cells (ILCs) in the pathogenesis of ozone-induced eosinophilic rhinitis by using lymphoid-sufficient C57BL/6 mice, Rag2(-/-) mice that are devoid of T cells and B cells, and Rag2(-/-)Il2rg(-/-) mice that are depleted of all lymphoid cells including ILCs. The animals were exposed to 0 or 0.8 ppm ozone for 9 consecutive weekdays (4 h/d). Mice were killed 24 hours after exposure, and nasal tissues were selected for histopathology and gene expression analysis. ILC-sufficient C57BL/6 and Rag2(-/-) mice exposed to ozone developed marked eosinophilic rhinitis and epithelial remodeling (e.g., epithelial hyperplasia and mucous cell metaplasia). Chitinase-like proteins and alarmins (IL-33, IL-25, and thymic stromal lymphopoietin) were also increased morphometrically in the nasal epithelium of ozone-exposed C57BL/6 and Rag2(-/-) mice. Ozone exposure elicited increased expression of Il4, Il5, Il13, St2, eotaxin, MCP-2, Gob5, Arg1, Fizz1, and Ym2 mRNA in C57BL/6 and Rag2(-/-) mice. In contrast, ozone-exposed ILC-deficient Rag2(-/-)Il2rg(-/-) mice had no nasal lesions or overexpression of Th2- or ILC2-related transcripts. These results indicate that ozone-induced eosinophilic rhinitis, nasal epithelial remodeling, and type 2 immune activation are dependent on ILCs. To the best of our knowledge, this is the first study to demonstrate that ILCs play an important role in the nasal pathology induced by repeated ozone exposure.

  10. Solute concentration affects bradykinin-mediated increases in renal prostaglandin E2

    International Nuclear Information System (INIS)

    Zenser, T.V.; Davis, E.S.; Rapp, N.S.; Davis, B.B.

    1981-01-01

    The effects of solute concentration on the bradykinin-mediated increase in inner medullary slice prostaglandin E2 (PGE2) synthesis were investigated. PG content was determined by specific RIA. Bradykinin stimulation was prevented by the addition of the following solutes to Krebs buffer: 1.0 M urea, 0.5 or 1.0 M NaCl, 0.5 or 1.0 M mannitol, 1.0 M urea plus 0.5 M NaCl, or 1.0 M mannitol plus 0.5 M NaCl. By contrast, basal PGE2 synthesis was increased by 1.0 M mannitol or by 1.0 M mannitol plus 0.5 M NaCl, but decreased by 1.0 M urea. Urea elicited a concentration-dependent, reversible inhibition of bradykinin stimulation, with 0.01 M urea being the lowest effective concentration. By contrast, basal PGE2 synthesis was only reduced at a urea concentration greater than 0.6 M. Arachidonic acid-mediated increases in both PGE2 and PGF2 alpha synthesis were not prevented by 1.0 M urea. The latter suggests that neither PG endoperoxide synthetase nor PG endoperoxide E isomerase are inhibited by urea. The data indicate that different hypertonic solutions have different effects on basal PG production, but all inhibit bradykinin stimulation

  11. Less-studied TCE: are their environmental concentrations increasing due to their use in new technologies?

    Science.gov (United States)

    Filella, M; Rodríguez-Murillo, J C

    2017-09-01

    The possible environmental impact of the recent increase in use of a group of technology-critical elements (Nb, Ta, Ga, In, Ge and Te) is analysed by reviewing published concentration profiles in environmental archives (ice cores, ombrotrophic peat bogs, freshwater sediments and moss surveys) and evaluating temporal trends in surface waters. No increase has so far been recorded. The low potential direct emissions of these elements, resulting from their absolute low production levels, make it unlikely that the increasing use of these elements in modern technology has any noticeable effect on their environmental concentrations on a global scale. This holds particularly true for those of these elements that are probably emitted in relatively high amounts from other human activities (i.e., coal combustion and non-ferrous smelting), such as In, the most studied element of the group. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Percutaneous intradiscal ozone (O3)-injection: an experimental study in canines

    International Nuclear Information System (INIS)

    Yu Zhijian; He Xiaofeng; Chen Yong; Zeng Qingle; Liu Chihong; Zhao Zhongqing; Lu Yong; Li Yanhao

    2002-01-01

    Objective: To evaluate the influence of ozone on normal nucleus pulpous and the safety of intradiscal ozone-injection for the treatment of herniated lumbar disc. Methods: Ozone was injected into selected lumbar discs (3 ml) and the para-spinal space (7 ml) with 20 G Chiba needle under fluoroscopy in five canines. The ozone concentration was 30 μg/ml and 50 μg/ml respectively. Two discs were selected for each concentration. Total 20 discs were injected. Three of the canines were given one-time ozone-injection and were sacrificed for pathology one week, one month and two months respectively after the procedure, and the other two canines were given two-time ozone-injection and were sacrificed one month and two months respectively after the procedure. The specimens including nucleus pulpous, end-plate, spinal cord, nerve root, and greater psoas muscle were observed macroscopically and microscopically. Results: No serious behavior abnormalities were observed in all animals. The atrophy of nucleus pulpous could be observed one month after ozone-injection due to significant reduction of water and extensive proliferation of collagenous fiber. The influence on the atrophy of nucleus pulpous demonstrated no apparent difference between the selected two concentrations of ozone, but was more apparent with two-time injection than that with one-time injection. The end-plates increased slightly or moderately in thickness in 16 simples and a few of fibers in greater psoas muscle suffered slight atrophy in 5 samples. Conclusion: It is suggested that percutaneous intradiscal ozone-injection is a safe method, and can cause gradual atrophy of nucleus pulpous. This study provides the evidence of the feasibility and value of this procedure's application in clinics

  13. Ozone disintegration kinetics in the reactor for tyres decomposition

    International Nuclear Information System (INIS)

    Golota, V.I.; Manujlenko, O.V.; Taran, G.V.; Pis'menetskij, A.S.; Zamuriev, A.A.

    2010-01-01

    The results of theoretical and experimental research of ozone disintegration kinetics in the chemical reactor which is developed for decomposition of tyres in the ozone-air environment are presented. Analytical expression for dependence of ozone concentration in the reactor from time and from parameters of the task, such as volume speed of ozone-air mixture feed on a reactor input, concentration of ozone on the input to the reactor, volume speed of output of the used mixture, reactor size, and square of its internal surface is obtained. It is shown that at the same speed of ozone-air mixture pro rolling through the reactor, with growth of ozone concentration on the input, value of stationary concentration in the reactor grows, remaining always less than concentration on the input. It is also shown that at the same ozone concentration on the input, with growth of speed of ozone-air mixture pro rolling through the reactor, value of stationary ozone concentration in the reactor also grows, remaining always less than ozone concentration on the input. The ozone disintegration kinetics in the reactor in a wide range of speed of ozone-air mixture pro rolling through the reactor (0.15, 0.30, 0.45, 0.60 m3/hour) and various ozone concentration on the input (5, 10, 15, 20 g/m3) is experimentally studied. It is shown that experimental results with good accuracy coincide with the theoretical. Direct experiment showed the essential influence of the internal surface of the reactor on the ozone disintegration kinetics.

  14. Improved ozone resistance of styrene-butadiene rubber cured by a combination of sulfur and ionizing radiation

    International Nuclear Information System (INIS)

    Basfar, A.A.; Silverman, Joseph

    1995-01-01

    Fourier Transform Infrared (FTIR) studies performed in this work indicate that high ozone resistance of Styrene-Butadiene Rubber (SBR) formulations cured by a combination of sulfur and ionizing radiation is associated with unusually high vinyl concentration. On the other hand, sulfur cured SBR formulations with low vinyl concentration have poor ozone resistance. Curing with peroxides which involves chemistry similar to that of radiation curing, also leads to high vinyl concentration (relative to sulfur curing) and high ozone resistance. Increasing the absorbed dose in sulfur-radiation cured samples decreased the high vinyl content to a point where the ozone resistance declined greatly. Carbon black was shown to reduce the absorption of both the transvinylene and the vinyl unsaturation groups, but not to the same extent in all formulations. Also, the carbon black seems to play a greater role in the absorption of the unsaturation as sulfur increases. (Author)

  15. Improved ozone resistance of styrene-butadiene rubber cured by a combination of sulfur and ionizing radiation

    International Nuclear Information System (INIS)

    Basfar, A.A.; Silverman, J.

    1995-01-01

    Fourier Transform (FTIR) studies performed in this work indicate that high ozone resistance of Styrene-Butadiene Rubber (SBR) formulations cured by a combination of sulfur and ionizing radiation is associated with unusually high vinyl concentration. On the other hand, sulfur cured SBR formulations with low vinyl concentration have poor ozone resistance. Curing with peroxides which involves chemistry similar to that of radiation curing, also leads to high vinyl concentration (relative to sulfur curing) and high ozone resistance. Increasing the absorbed dose in sulfur-radiation cured samples decreased the high vinyl content to a point where the ozone resistance declined greatly. Carbon black was shown to reduce the absorption of both the transvinylene and the vinyl unsaturation groups, but not to the same extent in all formulations. Also, the carbon black seems to play a greater role in the absorption of the unsaturation as sulfur increases. (Author)

  16. Autoxidation of polyunsaturated fatty acids. Part I. Effect of ozone on the autoxidation of neat methyl linoleate and methyl linolenate

    Energy Technology Data Exchange (ETDEWEB)

    Pryor, W.A.; Stanley, J.P.; Blair, E.; Cullen, G.B.

    Neat samples of polyunsaturated fatty acids were exposed to ozone in air in a flow system, and the formation of peroxides, conjugated dienes and thiobarbituric acid (TBA)-reactive material was followed as a function of time. The effect of ozone is to shorten the induction period normally observed in autoxidation studies, but the ozone, at the concentrations used here (0-1.5 ppm), appears to have no effect on the rates of product formation after the induction period. During the induction period, increasing ozone concentrations gives rise to substantially increased rates of peroxide (or materials which titrate like peroxide) formation, a slightly increased rate of conjugated diene formation, and no significant increase in the rate of production of TBA-reactive material. Vitamin E lengthens the induction period but appears to have n