WorldWideScience

Sample records for ozone gas o3

  1. Enhanced ozone production in a pulsed dielectric barrier discharge plasma jet with addition of argon to a He-O2 flow gas

    Science.gov (United States)

    Sands, Brian; Ganguly, Biswa; Scofield, James

    2013-09-01

    Ozone production in a plasma jet DBD driven with a 20-ns risetime unipolar pulsed voltage can be significantly enhanced using helium as the primary flow gas with an O2 coflow. The overvolted discharge can be sustained with up to a 5% O2 coflow at pulse repetition frequency at 13 kV applied voltage. Ozone production scales with the pulse repetition frequency up to a ``turnover frequency'' that depends on the O2 concentration, total gas flow rate, and applied voltage. For example, peak ozone densities >1016 cm-3 were measured with 3% O2 admixture and discharge current and 777 nm O(5 P) emission, but decreased ozone production and is followed by a transition to a filamentary discharge mode. The addition of argon at concentrations >=5% reduces the channel conductivity and shifts the turnover frequency to higher frequencies. This results in increased ozone production for a given applied voltage and gas flow rate. Time-resolved Ar(1s5) and He(23S1) metastable densities were acquired along with discharge current and ozone density measurements to gain insight into the mechanisms of optimum ozone production.

  2. Steady-state ozone concentration in radiation induced noble gas-oxygen discharges

    International Nuclear Information System (INIS)

    Elsayed-Ali, H.E.; Miley, G.H.

    1985-01-01

    Measurements of steady-state ozone concentrations in continuous radiation induced noble gas-O 2 and noble gas-O 2 -SF 6 mixtures has been accomplished. The discharges were created through the bombardment of the gases with energetic particles from the boron-10 (n,α) lithium-7 nuclear reaction. Three noble gases were studied, He, Ne, and Ar at partial pressures of few hundred Torr. The dose rates studied were in the order of 10 15 eV.cm -3 .s -1 . The experimental apparatus and proceedure were previously described. The experimentally observed stead-state ozone concentrations in noble gas-O 2 discharges were about an order of magnitude lower than that observed for oxygen radiolysis at similar dose rates. These results were physically explained by an enhanced role of negative ionic reactions with ozone causing its destruction. In noble gas-O 2 -SF 6 mixtures, the steady-state ozone concentrations were found to be significantly higher (3-6 times) than that without the SF 6 addition. This observation was contrary to only a small increase observed after SF 6 addition to a few hundred Torr oxygen and is explained by an enhanced rate of electron dissociative attachment of ozone in noble gas-O 2 discharges

  3. Steady-state ozone concentrations in radiation induced noble gas-oxygen discharges

    International Nuclear Information System (INIS)

    Elsayed-Ali, H.E.; Miley, G.H.

    1985-01-01

    Measurements of steady-state ozone concentrations in continuous radiation induced noble gas-O/sub 2/ and noble gas-o/sub 2/-SF/sub 6/ mixtures has been accomplished. The discharges were created through the bombardment of the gases with energetic particles from the boron-10 (n,α) lithium-7 nuclear reaction. Three noble gases were studied, He, Ne, and Ar at partial pressures of few hundred Torr. The dose rates studied were in the order of 10/sup 15/ eV . cm/sup -3/ . s/sup -1/. The experimental apparatus and procedure were previously described. The experimentally observed steady-state ozone concentrations in noble gas-O/sub 2/ discharges were about an order of magnitude lower than that observed for oxygen radiolysis at similar dose rates. These results were physically explained by an enhanced role of negative ionic reactions with ozone causing its destruction. In noble gas-O/sub 2/-SF/sub 6/ mixtures, the steady-state ozone concentrations were found to be significantly higher (3-6 times) than that without the SF/sub 6/ addition. This observation was contrary to only a small increase observed after SF/sub 6/ addition to a few hundred Torr oxygen and is explained by an enhanced rate of electron dissociative attachment of ozone in noble gas-O/sub 2/ discharges

  4. Ozone formation in a transverse-flow gas discharge

    International Nuclear Information System (INIS)

    Baranov, G.A.; Zinchenko, A.K.; Lednev, M.G.

    1994-01-01

    The measurements of the ozone concentration in flows of air and nitrogen-oxygen mixtures under transverse dc discharge are performed using an absorption spectroscopy technique. The mechanism of ozone formation in the discharge is discussed. A simple equation is suggested for the estimation of ozone concentration in the gas mixtures. The influence of water vapor on the kinetics of formation and decay of O 3 molecules is considered. The numerical estimates of the ozone concentration are made using the suggested model of plasma-chemical reactions

  5. Direct observation of ozone formation on SiO2 surfaces in O2 discharges

    Science.gov (United States)

    Marinov, D.; Guaitella, O.; Booth, J. P.; Rousseau, A.

    2013-01-01

    Ozone production is studied in a pulsed O2 discharge at pressures in the range 1.3-6.7 mbar. Time-resolved absolute concentrations of O3 and O are measured in the post-discharge using UV absorption spectroscopy and two-photon absorption laser-induced fluorescence. In a bare silica discharge tube ozone is formed mainly by three-body gas-phase recombination. When the tube surface is covered by a high specific surface silica catalyst heterogeneous formation becomes the main source of ozone. The efficiency of this surface process increases with O2 pressure and is favoured by the presence of OH groups and adsorbed H2O on the surface. At p = 6.7 mbar ozone production accounts for up to 25% of the atomic oxygen losses on the surface.

  6. Direct observation of ozone formation on SiO2 surfaces in O2 discharges

    International Nuclear Information System (INIS)

    Marinov, D; Guaitella, O; Booth, J P; Rousseau, A

    2013-01-01

    Ozone production is studied in a pulsed O 2 discharge at pressures in the range 1.3-6.7 mbar. Time-resolved absolute concentrations of O 3 and O are measured in the post-discharge using UV absorption spectroscopy and two-photon absorption laser-induced fluorescence. In a bare silica discharge tube ozone is formed mainly by three-body gas-phase recombination. When the tube surface is covered by a high specific surface silica catalyst heterogeneous formation becomes the main source of ozone. The efficiency of this surface process increases with O 2 pressure and is favoured by the presence of OH groups and adsorbed H 2 O on the surface. At p = 6.7 mbar ozone production accounts for up to 25% of the atomic oxygen losses on the surface.

  7. Hydrological controls on the tropospheric ozone greenhouse gas effect

    Directory of Open Access Journals (Sweden)

    Le Kuai

    2017-03-01

    Full Text Available The influence of the hydrological cycle in the greenhouse gas (GHG effect of tropospheric ozone (O3 is quantified in terms of the O3longwave radiative effect (LWRE, which is defined as the net reduction of top-of-atmosphere flux due to total tropospheric O3absorption. The O3LWRE derived from the infrared spectral measurements by Aura’s Tropospheric Emission Spectrometer (TES show that the spatiotemporal variation of LWRE is relevant to relative humidity, surface temperature, and tropospheric O3column. The zonally averaged subtropical LWRE is ~0.2 W m-2higher than the zonally averaged tropical LWRE, generally due to lower water vapor concentrations and less cloud coverage at the downward branch of the Hadley cell in the subtropics. The largest values of O3LWRE over the Middle East (>1 W/m2 are further due to large thermal contrasts and tropospheric ozone enhancements from atmospheric circulation and pollution. Conversely, the low O3LWRE over the Inter-Tropical Convergence Zone (on average 0.4 W m-2 is due to strong water vapor absorption and cloudiness, both of which reduce the tropospheric O3absorption in the longwave radiation. These results show that changes in the hydrological cycle due to climate change could affect the magnitude and distribution of ozone radiative forcing.

  8. Effect of pulsed corona discharge voltage and feed gas flow rate on dissolved ozone concentration

    International Nuclear Information System (INIS)

    Prasetyaningrum, A.; Ratnawati,; Jos, B.

    2015-01-01

    Ozonization is one of the methods extensively used for water purification and degradation of organic materials. Ozone (O 3 ) is recognized as a powerful oxidizing agent. Due to its strong oxidability and better environmental friendless, ozone increasing being used in domestic and industrial applications. Current technology in ozone production utilizes several techniques (corona discharge, ultra violet radiation and electrolysis). This experiment aimed to evaluating effect of voltage and gas flow rate on ozone production with corona discharge. The system consists of two net-type stainless steel electrode placed in a dielectric barrier. Three pulsed voltage (20, 30, 40 KV) and flow rate (5, 10, 15 L/min) were prepare for operation variable at high frequency (3.7 kHz) with AC pulsed power supply. The dissolved ozone concentration depends on the applied high-voltage level, gas flow rate and the discharge exposure duration. The ozone concentration increases with decreasing gas flow rate. Dissolved ozone concentrations greater than 200 ppm can be obtained with a minimum voltage 40 kV

  9. Effect of pulsed corona discharge voltage and feed gas flow rate on dissolved ozone concentration

    Science.gov (United States)

    Prasetyaningrum, A.; Ratnawati, Jos, B.

    2015-12-01

    Ozonization is one of the methods extensively used for water purification and degradation of organic materials. Ozone (O3) is recognized as a powerful oxidizing agent. Due to its strong oxidability and better environmental friendless, ozone increasing being used in domestic and industrial applications. Current technology in ozone production utilizes several techniques (corona discharge, ultra violet radiation and electrolysis). This experiment aimed to evaluating effect of voltage and gas flow rate on ozone production with corona discharge. The system consists of two net-type stainless steel electrode placed in a dielectric barrier. Three pulsed voltage (20, 30, 40 KV) and flow rate (5, 10, 15 L/min) were prepare for operation variable at high frequency (3.7 kHz) with AC pulsed power supply. The dissolved ozone concentration depends on the applied high-voltage level, gas flow rate and the discharge exposure duration. The ozone concentration increases with decreasing gas flow rate. Dissolved ozone concentrations greater than 200 ppm can be obtained with a minimum voltage 40 kV.

  10. Effect of pulsed corona discharge voltage and feed gas flow rate on dissolved ozone concentration

    Energy Technology Data Exchange (ETDEWEB)

    Prasetyaningrum, A., E-mail: ajiprasetyaningrum@gmail.com; Ratnawati,; Jos, B. [Department of Chemical Engineering, Faculty of Engineering, Diponegoro University Jl. Prof. H. Soedarto Tembalang, Semarang, Central Java, Indonesia, 50276 (Indonesia)

    2015-12-29

    Ozonization is one of the methods extensively used for water purification and degradation of organic materials. Ozone (O{sub 3}) is recognized as a powerful oxidizing agent. Due to its strong oxidability and better environmental friendless, ozone increasing being used in domestic and industrial applications. Current technology in ozone production utilizes several techniques (corona discharge, ultra violet radiation and electrolysis). This experiment aimed to evaluating effect of voltage and gas flow rate on ozone production with corona discharge. The system consists of two net-type stainless steel electrode placed in a dielectric barrier. Three pulsed voltage (20, 30, 40 KV) and flow rate (5, 10, 15 L/min) were prepare for operation variable at high frequency (3.7 kHz) with AC pulsed power supply. The dissolved ozone concentration depends on the applied high-voltage level, gas flow rate and the discharge exposure duration. The ozone concentration increases with decreasing gas flow rate. Dissolved ozone concentrations greater than 200 ppm can be obtained with a minimum voltage 40 kV.

  11. Dependence of Ozone Generation on Gas Temperature Distribution in AC Atmospheric Pressure Dielectric Barrier Discharge in Oxygen

    Science.gov (United States)

    Takahashi, Go; Akashi, Haruaki

    AC atmospheric pressure multi-filament dielectric barrier discharge in oxygen has been simulated using two dimensional fluid model. In the discharge, three kinds of streamers have been obtained. They are primary streamers, small scale streamers and secondary streamers. The primary streamers are main streamers in the discharge and the small scale streamers are formed after the ceasing of the primary streamers. And the secondary streamers are formed on the trace of the primary streamers. In these streamers, the primary and the small scale streamers are very effective to generate O(3P) oxygen atoms which are precursor of ozone. And the ozone is generated mainly in the vicinity of the dielectrics. In high gas temperature region, ozone generation decreases in general. However, increase of the O(3P) oxygen atom density in high gas temperature region compensates decrease of ozone generation rate coefficient. As a result, amount of ozone generation has not changed. But if the effect of gas temperature was neglected, amount of ozone generation increases 10%.

  12. Solar photolysis of ozone to singlet D oxygen atoms, O(1D)

    International Nuclear Information System (INIS)

    Blackburn, T.E.

    1984-01-01

    Ground level solar photolysis rate coefficients (jO 3 ) were measured for the photolysis of ozone by sunlight, (O 3 + hnu( 2 + O( 1 D)). The O( 1 D) atoms produced react with nitrous oxide (N 2 O) carrier gas to form higher oxides of nitrogen (NOx). Computer model predictions show that these are mainly N 2 O 5 and NO 3 . Seventy five days of data were taken during the summer of 1983, at Ann Arbor, Michigan, and are presented in the appendix. Over 390 clear air jO 3 values are correlated with effective ozone column densities, and 500 nm aerosol optical depths. The solar direct beam component of ozone photolysis was measured for the different aerosol optical depths, over two entire days from sun-up to sun-down. Temperature dependence of jO 3 was measured from 10 0 C to 39 0 C with good agreement to models. Comparison of jO 3 versus global and ultraviolet radiation are made under various ozone column densities and aerosol optical depths. A jO 3 -photometer was built using an interference filter to pass only ozone photolyzing light. Improvements to instrumental parts are shown for balloon and aircraft flyable payloads

  13. Gas-sensing properties of In{sub 2}O{sub 3} films modified with gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Korotcenkov, G., E-mail: ghkoro@yahoo.com [School of Material Science and Engineering, Gwangju Institute of Science and Technology, Gwangju (Korea, Republic of); Brinzari, V. [Department of Theoretical Physics, State University of Moldova, Chisinau, Republic of Moldova (Moldova, Republic of); Han, S.H. [Division of Maritime Transportation System, Mokpo National Maritime University, Mokpo (Korea, Republic of); Cho, B.K., E-mail: chobk@gist.ac.kr [School of Material Science and Engineering, Gwangju Institute of Science and Technology, Gwangju (Korea, Republic of)

    2016-06-01

    A study of the surface and gas–sensitive properties of In{sub 2}O{sub 3} films modified with gold nanoparticles and synthesized by the successive ionic layer deposition (SILD) method was conducted. In{sub 2}O{sub 3} films were prepared using the spray pyrolysis method. The gas-sensing characteristics were tested using CO, H{sub 2}, and O{sub 3} as target gases. It has been shown that the surface modification with gold nanoparticles gives the opportunity to optimize the response of In{sub 2}O{sub 3}-based gas sensors to both reducing (CO, H{sub 2}) and oxidizing (O{sub 3}) gases. It has been found that the sensitizing effect during ozone detection was significantly higher than the effect during CO and H{sub 2} detection. It has been demonstrated that the sensitizing effect depended on the number of SILD cycles used for gold nanoparticle deposition and was maximal for the In{sub 2}O{sub 3} surface decorated with gold nanoparticles with the smallest size. The mechanism of the gold nanoparticles' influence on the gas-sensing properties of the In{sub 2}O{sub 3} films is also discussed. It is suggested that to explain the observed effects, we have to consider both the “electronic” and “chemical” mechanisms of sensitization. Suggestions for studies to be carried out to further improve both the understanding of the nature of the gas-sensitive effects and the parameters of In{sub 2}O{sub 3}:Au-based gas sensors are also formulated. - Highlights: • In{sub 2}O{sub 3} gas sensors modified with gold nanoparticles using SILD method are studied. • AuNPs exhibit activity during interaction with either reducing or oxidizing gases. • Maximal effect of optimization is observed during ozone detection. • Sensitizing effect depends on the number of SILD cycles. • Proposed mechanisms explain effects observed in the In{sub 2}O{sub 3}:Au based gas sensors.

  14. Study on the formation of ozone gas in industrial irradiation process

    Energy Technology Data Exchange (ETDEWEB)

    Uzueli, Daniel H., E-mail: daniel.uzueli@usp.br [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Centro de Medicina Nuclear. Hospital das Clinicas; Rela, Paulo R.; Vasquez, Pablo A.S.; Hamada, Margarida M.; Costa, Fabio E. da, E-mail: fecosta@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    In industrial irradiators, the generated electromagnetic radiation or particles, such as gamma or X rays and electrons interact with air during the irradiation of products. In this gas layer, these effects cause the radiolysis in the constituent atoms, affecting mainly the oxygen atoms. This interaction is similar to what occurs in the stratosphere, when the diatomic molecule of oxygen (O{sub 2}) absorbs ultraviolet radiation from the sun, breaking the connection and separating it into two highly reactive atoms, which combined with another molecule of oxygen produce ozone (O{sub 3}). Ozone, at high altitudes, is beneficial and protects us from ultraviolet radiation. At low altitudes, it is a highly oxidizing gas and harmful to living beings. Aiming to study the formation and behavior of this gas in gamma irradiators, the measurements were made at a Multipurpose Gamma Facility from IPEN / CNEN-SP, which has cobalt-60 sources with a total activity of 5.22 PBq. (author)

  15. Study on the formation of ozone gas in industrial irradiation process

    International Nuclear Information System (INIS)

    Uzueli, Daniel H.

    2013-01-01

    In industrial irradiators, the generated electromagnetic radiation or particles, such as gamma or X rays and electrons interact with air during the irradiation of products. In this gas layer, these effects cause the radiolysis in the constituent atoms, affecting mainly the oxygen atoms. This interaction is similar to what occurs in the stratosphere, when the diatomic molecule of oxygen (O 2 ) absorbs ultraviolet radiation from the sun, breaking the connection and separating it into two highly reactive atoms, which combined with another molecule of oxygen produce ozone (O 3 ). Ozone, at high altitudes, is beneficial and protects us from ultraviolet radiation. At low altitudes, it is a highly oxidizing gas and harmful to living beings. Aiming to study the formation and behavior of this gas in gamma irradiators, the measurements were made at a Multipurpose Gamma Facility from IPEN / CNEN-SP, which has cobalt-60 sources with a total activity of 5.22 PBq. (author)

  16. Generation of ozone by pulsed corona discharge over water surface in hybrid gas-liquid electrical discharge reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lukes, Petr [Department of Pulse Plasma Systems, Institute of Plasma Physics, Academy of Sciences of the Czech Republic, Za Slovankou 3, PO Box 17, 182 21 Prague 8 (Czech Republic); Clupek, Martin [Department of Pulse Plasma Systems, Institute of Plasma Physics, Academy of Sciences of the Czech Republic, Za Slovankou 3, PO Box 17, 182 21 Prague 8 (Czech Republic); Babicky, Vaclav [Department of Pulse Plasma Systems, Institute of Plasma Physics, Academy of Sciences of the Czech Republic, Za Slovankou 3, PO Box 17, 182 21 Prague 8 (Czech Republic); Janda, Vaclav [Department of Water Technology and Environmental Engineering, Institute of Chemical Technology, Technicka 5, 160 28 Prague 6 (Czech Republic); Sunka, Pavel [Department of Pulse Plasma Systems, Institute of Plasma Physics, Academy of Sciences of the Czech Republic, Za Slovankou 3, PO Box 17, 182 21 Prague 8 (Czech Republic)

    2005-02-07

    Ozone formation by a pulse positive corona discharge generated in the gas phase between a planar high voltage electrode made from reticulated vitreous carbon and a water surface with an immersed ground stainless steel plate electrode was investigated under various operating conditions. The effects of gas flow rate (0.5-3 litre min{sup -1}), discharge gap spacing (2.5-10 mm), applied input power (2-45 W) and gas composition (oxygen containing argon or nitrogen) on ozone production were determined. Ozone concentration increased with increasing power input and with increasing discharge gap. The production of ozone was significantly affected by the presence of water vapour formed through vaporization of water at the gas-liquid interface by the action of the gas phase discharge. The highest energy efficiency for ozone production was obtained using high voltage pulses of approximately 150 ns duration in Ar/O{sub 2} mixtures with the maximum efficiency (energy yield) of 23 g kW h{sup -1} for 40% argon content.

  17. Generation of ozone by pulsed corona discharge over water surface in hybrid gas-liquid electrical discharge reactor

    International Nuclear Information System (INIS)

    Lukes, Petr; Clupek, Martin; Babicky, Vaclav; Janda, Vaclav; Sunka, Pavel

    2005-01-01

    Ozone formation by a pulse positive corona discharge generated in the gas phase between a planar high voltage electrode made from reticulated vitreous carbon and a water surface with an immersed ground stainless steel plate electrode was investigated under various operating conditions. The effects of gas flow rate (0.5-3 litre min -1 ), discharge gap spacing (2.5-10 mm), applied input power (2-45 W) and gas composition (oxygen containing argon or nitrogen) on ozone production were determined. Ozone concentration increased with increasing power input and with increasing discharge gap. The production of ozone was significantly affected by the presence of water vapour formed through vaporization of water at the gas-liquid interface by the action of the gas phase discharge. The highest energy efficiency for ozone production was obtained using high voltage pulses of approximately 150 ns duration in Ar/O 2 mixtures with the maximum efficiency (energy yield) of 23 g kW h -1 for 40% argon content

  18. Degradation mechanism of alachlor during direct ozonation and O(3)/H(2)O(2) advanced oxidation process.

    Science.gov (United States)

    Qiang, Zhimin; Liu, Chao; Dong, Bingzhi; Zhang, Yalei

    2010-01-01

    The degradation of alachlor by direct ozonation and advanced oxidation process O(3)/H(2)O(2) was investigated in this study with focus on identification of degradation byproducts. The second-order reaction rate constant between ozone and alachlor was determined to be 2.5+/-0.1M(-1)s(-1) at pH 7.0 and 20 degrees C. Twelve and eight high-molecular-weight byproducts (with the benzene ring intact) from alachlor degradation were identified during direct ozonation and O(3)/H(2)O(2), respectively. The common degradation byproducts included N-(2,6-diethylphenyl)-methyleneamine, 8-ethyl-3,4-dihydro-quinoline, 8-ethyl-quinoline, 1-chloroacetyl-2-hydro-3-ketone-7-acetyl-indole, 2-chloro-2',6'-diacetyl-N-(methoxymethyl)acetanilide, 2-chloro-2'-acetyl-6'-ethyl-N-(methoxymethyl)-acetanilide, and two hydroxylated alachlor isomers. In direct ozonation, four more byproducts were also identified including 1-chloroacetyl-2,3-dihydro-7-ethyl-indole, 2-chloro-2',6'-ethyl-acetanilide, 2-chloro-2',6'-acetyl-acetanilide and 2-chloro-2'-ethyl-6'-acetyl-N-(methoxymethyl)-acetanilide. Degradation of alachlor by O(3) and O(3)/H(2)O(2) also led to the formation of low-molecular-weight byproducts including formic, acetic, propionic, monochloroacetic and oxalic acids as well as chloride ion (only detected in O(3)/H(2)O(2)). Nitrite and nitrate formation was negligible. Alachlor degradation occurred via oxidation of the arylethyl group, N-dealkylation, cyclization and cleavage of benzene ring. After O(3) or O(3)/H(2)O(2) treatment, the toxicity of alachlor solution examined by the Daphnia magna bioassay was slightly reduced. 2009 Elsevier Ltd. All rights reserved.

  19. Comparison of pharmaceutical abatement in various water matrices by conventional ozonation, peroxone (O3/H2O2), and an electro-peroxone process.

    Science.gov (United States)

    Wang, Huijiao; Zhan, Juhong; Yao, Weikun; Wang, Bin; Deng, Shubo; Huang, Jun; Yu, Gang; Wang, Yujue

    2018-03-01

    Pharmaceutical abatement in a groundwater (GW), surface water (SW), and secondary effluent (SE) by conventional ozonation, the conventional peroxone (O 3 /H 2 O 2 ), and the electro-peroxone (E-peroxone) processes was compared in batch tests. SE had significantly more fast-reacting dissolved organic matter (DOM) moieties than GW and SW. Therefore, O 3 decomposed much faster in SE than in GW and SW. At specific ozone doses of 0.5-1.5 mg O 3 /mg dissolved organic carbon (DOC), the application of O 3 /H 2 O 2 and E-peroxone process (by adding external H 2 O 2 stocks or in-situ generating H 2 O 2 from cathodic O 2 reduction during ozonation) similarly enhanced the OH yield from O 3 decomposition by ∼5-12% and 5-7% in GW and SW, respectively, compared to conventional ozonation. In contrast, due to the slower reaction kinetics of O 3 with H 2 O 2 than O 3 with fast-reacting DOM moieties, the addition or electro-generation of H 2 O 2 hardly increased the OH yield (<4% increases) in SE. Corresponding to the changes in the OH yields, the abatement efficiencies of ozone-resistant pharmaceuticals (ibuprofen and clofibric acid) increased evidently in GW (up to ∼14-18% at a specific ozone dose of 1.5 mg O 3 /mg DOC), moderately in SW (up to 6-10% at 0.5 mg O 3 /mg DOC), and negligibly in SE during the O 3 /H 2 O 2 and E-peroxone treatment compared to conventional ozonation. These results indicate that similar to the conventional O 3 /H 2 O 2 process, the E-peroxone process can more pronouncedly enhance O 3 transformation to OH, and thus increase the abatement efficiency of ozone-resistant pharmaceuticals in water matrices exerting relatively high ozone stability (e.g., groundwater and surface water with low DOM contents). Therefore, by installing electrodes in existing ozone reactors, the E-peroxone process may provide a convenient way to enhance pharmaceutical abatement in drinking water applications, where groundwater and surface water with low DOM contents are used as

  20. Inhaled ozone (O3)-induces changes in serum metabolomic and liver transcriptomic profiles in rats

    International Nuclear Information System (INIS)

    Miller, Desinia B.; Karoly, Edward D.; Jones, Jan C.; Ward, William O.; Vallanat, Beena D.; Andrews, Debora L.; Schladweiler, Mette C.; Snow, Samantha J.; Bass, Virginia L.; Richards, Judy E.; Ghio, Andrew J.; Cascio, Wayne E.; Ledbetter, Allen D.; Kodavanti, Urmila P.

    2015-01-01

    Air pollution has been linked to increased incidence of diabetes. Recently, we showed that ozone (O 3 ) induces glucose intolerance, and increases serum leptin and epinephrine in Brown Norway rats. In this study, we hypothesized that O 3 exposure will cause systemic changes in metabolic homeostasis and that serum metabolomic and liver transcriptomic profiling will provide mechanistic insights. In the first experiment, male Wistar Kyoto (WKY) rats were exposed to filtered air (FA) or O 3 at 0.25, 0.50, or 1.0 ppm, 6 h/day for two days to establish concentration-related effects on glucose tolerance and lung injury. In a second experiment, rats were exposed to FA or 1.0 ppm O 3 , 6 h/day for either one or two consecutive days, and systemic metabolic responses were determined immediately after or 18 h post-exposure. O 3 increased serum glucose and leptin on day 1. Glucose intolerance persisted through two days of exposure but reversed 18 h-post second exposure. O 3 increased circulating metabolites of glycolysis, long-chain free fatty acids, branched-chain amino acids and cholesterol, while 1,5-anhydroglucitol, bile acids and metabolites of TCA cycle were decreased, indicating impaired glycemic control, proteolysis and lipolysis. Liver gene expression increased for markers of glycolysis, TCA cycle and gluconeogenesis, and decreased for markers of steroid and fat biosynthesis. Genes involved in apoptosis and mitochondrial function were also impacted by O 3 . In conclusion, short-term O 3 exposure induces global metabolic derangement involving glucose, lipid, and amino acid metabolism, typical of a stress–response. It remains to be examined if these alterations contribute to insulin resistance upon chronic exposure. - Highlights: • Ozone, an ubiquitous air pollutant induces acute systemic metabolic derangement. • Serum metabolomic approach provides novel insights in ozone-induced changes. • Ozone exposure induces leptinemia, hyperglycemia, and glucose intolerance

  1. Advanced treatment of biologically pretreated coal chemical industry wastewater using the catalytic ozonation process combined with a gas-liquid-solid internal circulating fluidized bed reactor.

    Science.gov (United States)

    Li, Zhipeng; Liu, Feng; You, Hong; Ding, Yi; Yao, Jie; Jin, Chao

    2018-04-01

    This paper investigated the performance of the combined system of catalytic ozonation and the gas-liquid-solid internal circulating fluidized bed reactor for the advanced treatment of biologically pretreated coal chemical industry wastewater (CCIW). The results indicated that with ozonation alone for 60min, the removal efficiency of chemical oxygen demand (COD) could reach 34%. The introduction of activated carbon, pumice, γ-Al 2 O 3 carriers improved the removal performance of COD, and the removal efficiency was increased by 8.6%, 4.2%, 2%, respectively. Supported with Mn, the catalytic performance of activated carbon and γ-Al 2 O 3 were improved significantly with COD removal efficiencies of 46.5% and 41.3%, respectively; however, the promotion effect of pumice supported with Mn was insignificant. Activated carbon supported with Mn had the best catalytic performance. The catalytic ozonation combined system of MnO X /activated carbon could keep ozone concentration at a lower level in the liquid phase, and promote the transfer of ozone from the gas phase to the liquid phase to improve ozonation efficiency.

  2. Ozone: The secret greenhouse gas

    International Nuclear Information System (INIS)

    Berntsen, Terje; Tjernshaugen, Andreas

    2001-01-01

    The atmospheric ozone not only protects against harmful ultraviolet radiation; it also contributes to the greenhouse effect. Ozone is one of the jokers to make it difficult to calculate the climatic effect of anthropogenic emissions. The greenhouse effect and the ozone layer should not be confused. The greenhouse effect creates problems when it becomes enhanced, so that the earth becomes warmer. The problem with the ozone layer, on the contrary, is that it becomes thinner and so more of the harmful ultraviolet radiation gets through to the earth. However, ozone is also a greenhouse gas and so the greenhouse effect and the ozone layer are connected

  3. In situ DRIFTS study of O{sub 3} adsorption on CaO, γ-Al{sub 2}O{sub 3}, CuO, α-Fe{sub 2}O{sub 3} and ZnO at room temperature for the catalytic ozonation of cinnamaldehyde

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jianfeng; Su, Tongming; Jiang, Yuexiu; Xie, Xinling [School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China); Qin, Zuzeng, E-mail: qinzuzeng@gmail.com [School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China); Ji, Hongbing, E-mail: jihb@mail.sysu.edu.cn [School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China); School of Chemistry, Sun Yat-sen University, Guangzhou 510275 (China)

    2017-08-01

    Highlights: • In situ DRIFTS study of O{sub 3} adsorption on metal oxides at room temperature. • Using acidic probe molecules (DRIFTS) characterization of surface basicity. • Correlation between basic strength of metal oxides and O{sub 3} adsorption. • Study on the competitive adsorption of O{sub 3} and CO{sub 2}. • DRIFTS study of cinnamaldehyde ozonation and benzaldehyde excessive oxidation. - Abstract: In situ DRIFTS were conducted to identify adsorbed ozone and/or adsorbed oxygen species on CaO, ZnO, γ-Al{sub 2}O{sub 3}, CuO and α-Fe{sub 2}O{sub 3} surfaces at room temperature. Samples were characterized by means of TG, XRD, N{sub 2} adsorption–desorption, pyridine-IR, nitrobenzene-IR, chloroform-IR, and CO{sub 2}-TPD. Pyridine-DRIFTS measurements evidence two kinds of acid sites in all the samples. Nitrobenzene, chloroform-DRIFTS, and CO{sub 2}-TPD reveal that there are large amounts of medium-strength base sites on all the metal oxides, and only CaO, ZnO, and γ-Al{sub 2}O{sub 3} have strong base sites. And the benzaldehyde selectivity was increased in the same order of the alkalinity of the metal oxides. With weaker sites, ozone molecules form coordinative complexes bound via the terminal oxygen atom, observed by vibrational frequencies at 2095–2122 and 1026–1054 cm{sup −1}. The formation of ozonide O{sub 3}{sup −} at 790 cm{sup −1}, atomic oxygen at 1317 cm{sup −1}, and superoxide O{sub 2}{sup −} at 1124 cm{sup −1} was detected; these species are believed to be intermediates of O{sub 3} decomposition on strong acid/base sites. The adsorption of ozone on metal oxides is a weak adsorption, and other gases, such as CO{sub 2}, will compete with O{sub 3} adsorption. The mechanism of cinnamaldehyde ozonation at room temperature over CaO shows that cinnamaldehyde can not only be oxidized into cinnamic acid, but also be further oxidized into benzaldehyde, benzoic acid, maleic anhydride, and ultimately mineralized to CO{sub 2} in the

  4. O3, CH4, CO2, CO, NO2 and NMHC aircraft measurements in the Uinta Basin oil and gas region under low and high ozone conditions in winter 2012 and 2013

    Directory of Open Access Journals (Sweden)

    S. J. Oltmans

    2016-10-01

    Full Text Available Abstract Instrumented aircraft measuring air composition in the Uinta Basin, Utah, during February 2012 and January-February 2013 documented dramatically different atmospheric ozone (O3 mole fractions. In 2012 O3 remained near levels of ∼40 ppb in a well-mixed 500–1000 m deep boundary layer while in 2013, O3 mole fractions >140 ppb were measured in a shallow (∼200 m boundary layer. In contrast to 2012 when mole fractions of emissions from oil and gas production such as methane (CH4, non-methane hydrocarbons (NMHCs and combustion products such as carbon dioxide (CO2 were moderately elevated, in winter 2013 very high mole fractions were observed. Snow cover in 2013 helped produce and maintain strong temperature inversions that capped a shallow cold pool layer. In 2012, O3 and CH4 and associated NMHCs mole fractions were not closely related. In 2013, O3 mole fractions were correlated with CH4 and a suite of NMHCs identifying the gas field as the primary source of the O3 precursor NMHC emissions. In 2013 there was a strong positive correlation between CH4 and CO2 suggesting combustion from oil and natural gas processing activities. The presence of O3 precursor NMHCs through the depth of the boundary layer in 2013 led to O3 production throughout the layer. In 2013, O3 mole fractions increased over the course of the week-long episodes indicating O3 photochemical production was larger than dilution and deposition rates, while CH4 mole fractions began to level off after 3 days indicative of some air being mixed out of the boundary layer. The plume of a coal-fired power plant located east of the main gas field was not an important contributor to O3 or O3 precursors in the boundary layer in 2013.

  5. Leaf age affects the responses of foliar injury and gas exchange to tropospheric ozone in Prunus serotina seedlings

    International Nuclear Information System (INIS)

    Zhang Jianwei; Schaub, Marcus; Ferdinand, Jonathan A.; Skelly, John M.; Steiner, Kim C.; Savage, James E.

    2010-01-01

    We investigated the effect of leaf age on the response of net photosynthesis (A), stomatal conductance (g wv ), foliar injury, and leaf nitrogen concentration (N L ) to tropospheric ozone (O 3 ) on Prunus serotina seedlings grown in open-plots (AA) and open-top chambers, supplied with either carbon-filtered or non-filtered air. We found significant variation in A, g wv , foliar injury, and N L (P 3 treatments. Seedlings in AA showed the highest A and g wv due to relatively low vapor pressure deficit (VPD). Older leaves showed significantly lower A, g wv , N L , and higher foliar injury (P wv , and foliar injury to O 3 . Both VPD and N L had a strong influence on leaf gas exchange. Foliar O 3 -induced injury appeared when cumulative O 3 uptake reached 8-12 mmol m -2 , depending on soil water availability. The mechanistic assessment of O 3 -induced injury is a valuable approach for a biologically relevant O 3 risk assessment for forest trees. - Ozone effects on symptom development and leaf gas exchange interacted with leaf age and N-content on black cherry seedlings.

  6. Effect of ozone concentration on silicon surface passivation by atomic layer deposited Al2O3

    International Nuclear Information System (INIS)

    Gastrow, Guillaume von; Li, Shuo; Putkonen, Matti; Laitinen, Mikko; Sajavaara, Timo; Savin, Hele

    2015-01-01

    Highlights: • The ALD Al 2 O 3 passivation quality can be controlled by the ozone concentration. • Ozone concentration affects the Si/Al 2 O 3 interface charge and defect density. • A surface recombination velocity of 7 cm/s is reached combining ozone and water ALD. • Carbon and hydrogen concentrations correlate with the surface passivation quality. - Abstract: We study the impact of ozone-based Al 2 O 3 Atomic Layer Deposition (ALD) on the surface passivation quality of crystalline silicon. We show that the passivation quality strongly depends on the ozone concentration: the higher ozone concentration results in lower interface defect density and thereby improved passivation. In contrast to previous studies, our results reveal that too high interface hydrogen content can be detrimental to the passivation. The interface hydrogen concentration can be optimized by the ozone-based process; however, the use of pure ozone increases the harmful carbon concentration in the film. Here we demonstrate that low carbon and optimal hydrogen concentration can be achieved by a single process combining the water- and ozone-based reactions. This process results in an interface defect density of 2 × 10 11 eV −1 cm −2 , and maximum surface recombination velocities of 7.1 cm/s and 10 cm/s, after annealing and after an additional firing at 800 °C, respectively. In addition, our results suggest that the effective oxide charge density can be optimized in a simple way by varying the ozone concentration and by injecting water to the ozone process.

  7. Inhaled ozone (O{sub 3})-induces changes in serum metabolomic and liver transcriptomic profiles in rats

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Desinia B. [Curriculum in Toxicology, University of North Carolina-Chapel Hill, Chapel Hill, NC (United States); Karoly, Edward D.; Jones, Jan C. [Metabolon Incorporation, Durham, NC (United States); Ward, William O.; Vallanat, Beena D.; Andrews, Debora L. [Research Cores Unit, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Schladweiler, Mette C.; Snow, Samantha J. [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Bass, Virginia L. [Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC (United States); Richards, Judy E.; Ghio, Andrew J.; Cascio, Wayne E.; Ledbetter, Allen D. [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Kodavanti, Urmila P., E-mail: kodavanti.urmila@epa.gov [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States)

    2015-07-15

    Air pollution has been linked to increased incidence of diabetes. Recently, we showed that ozone (O{sub 3}) induces glucose intolerance, and increases serum leptin and epinephrine in Brown Norway rats. In this study, we hypothesized that O{sub 3} exposure will cause systemic changes in metabolic homeostasis and that serum metabolomic and liver transcriptomic profiling will provide mechanistic insights. In the first experiment, male Wistar Kyoto (WKY) rats were exposed to filtered air (FA) or O{sub 3} at 0.25, 0.50, or 1.0 ppm, 6 h/day for two days to establish concentration-related effects on glucose tolerance and lung injury. In a second experiment, rats were exposed to FA or 1.0 ppm O{sub 3}, 6 h/day for either one or two consecutive days, and systemic metabolic responses were determined immediately after or 18 h post-exposure. O{sub 3} increased serum glucose and leptin on day 1. Glucose intolerance persisted through two days of exposure but reversed 18 h-post second exposure. O{sub 3} increased circulating metabolites of glycolysis, long-chain free fatty acids, branched-chain amino acids and cholesterol, while 1,5-anhydroglucitol, bile acids and metabolites of TCA cycle were decreased, indicating impaired glycemic control, proteolysis and lipolysis. Liver gene expression increased for markers of glycolysis, TCA cycle and gluconeogenesis, and decreased for markers of steroid and fat biosynthesis. Genes involved in apoptosis and mitochondrial function were also impacted by O{sub 3}. In conclusion, short-term O{sub 3} exposure induces global metabolic derangement involving glucose, lipid, and amino acid metabolism, typical of a stress–response. It remains to be examined if these alterations contribute to insulin resistance upon chronic exposure. - Highlights: • Ozone, an ubiquitous air pollutant induces acute systemic metabolic derangement. • Serum metabolomic approach provides novel insights in ozone-induced changes. • Ozone exposure induces leptinemia

  8. Ozone as a possible radiomimetic gas

    Energy Technology Data Exchange (ETDEWEB)

    Brinkman, R; Lamberts, H B

    1958-01-01

    Decrease in cutaneous oxygen consumption after partial inactivation of relevant enzymes by hyperoxia, UV irradiation, and, in these experiments, ozone (0.1 to 1.0 ppM) was observed. Cysteamine, protective in moderate x irradiation and in hyperoxia affect on cutaneous O/sub 2/ consumption, also negated the effect of O/sub 3/. This suggests radiomimetic properties for O/sub 3/.

  9. [Mechanism and performance of styrene oxidation by O3/H2O2].

    Science.gov (United States)

    He, Jue-Cong; Huang, Qian-Ru; Ye, Qi-Hong; Luo, Yu-Wei; Zhang, Zai-Li; Fan, Qing-Juan; Wei, Zai-Shan

    2013-10-01

    It can produce a large number of free radicals in O3/H2O2, system, ozone and free radical coupling oxidation can improve the styrene removal efficiency. Styrene oxidation by O3/H2O2 was investigated. Ozone dosage, residence time, H2o2 volume fraction, spray density and molar ratio of O3/C8H8 on styrene removal were evaluated. The experimental results showed that styrene removal efficiency achieved 85.7%. The optimal residence time, H2O2, volume fraction, spray density and O3/C8H8 molar ratio were 20. 6 s, 10% , 1.72 m3.(m2.h)-1 and 0.46, respectively. The gas-phase degradation intermediate products were benzaldehyde(C6H5CHO) and benzoic acid (C6H5 COOH) , which were identified by means of gas chromatography-mass spectrometry(GC-MS). The degradation mechanism of styrene is presented.

  10. Within-canopy and ozone fumigation effects on delta13C and Delta18O in adult beech (Fagus sylvatica) trees: relation to meteorological and gas exchange parameters.

    Science.gov (United States)

    Gessler, Arthur; Löw, Markus; Heerdt, Christian; de Beeck, Maarten Op; Schumacher, Johannes; Grams, Thorsten E E; Bahnweg, Günther; Ceulemans, Reinhart; Werner, Herbert; Matyssek, Rainer; Rennenberg, Heinz; Haberer, Kristine

    2009-11-01

    In this study, the effects of different light intensities either in direct sunlight or in the shade crown of adult beech (Fagus sylvatica L.) trees on delta13C and Delta18O were determined under ambient (1 x O3) and twice-ambient (2 x O3) atmospheric ozone concentrations during two consecutive years (2003 and 2004). We analysed the isotopic composition in leaf bulk, leaf cellulose, phloem and xylem material and related the results to (a) meteorological data (air temperature, T and relative humidity, RH), (b) leaf gas exchange measurements (stomatal conductance, g(s); transpiration rate, E; and maximum photosynthetic activity, A(max)) and (c) the outcome of a steady-state evaporative enrichment model. Delta13C was significantly lower in the shade than in the sun crown in all plant materials, whilst Delta18O was increased significantly in the shade than in the sun crown in bulk material and cellulose. Elevated ozone had no effect on delta13C, although Delta18O was influenced by ozone to varied degrees during single months. We observed significant seasonal changes for both parameters, especially in 2004, and also significant differences between the study years. Relating the findings to meteorological data and gas exchange parameters, we conclude that the differences in Delta18O between the sun and the shade crown were predominantly caused by the Péclet effect. This assumption was supported by the modelled Delta18O values for leaf cellulose. It was demonstrated that independent of RH, light-dependent reduction of stomatal conductance (and thus transpiration) and of A(max) can drive the pattern of Delta18O increase with the concomitant decrease of delta13C in the shade crown. The effect of doubling ozone levels on time-integrated stomatal conductance and transpiration as indicated by the combined analysis of Delta18O and delta13C was much lower than the influence caused by the light exposure.

  11. The potential near-source ozone impacts of upstream oil and gas industry emissions.

    Science.gov (United States)

    Olaguer, Eduardo P

    2012-08-01

    Increased drilling in urban areas overlying shale formations and its potential impact on human health through decreased air quality make it important to estimate the contribution of oil and gas activities to photochemical smog. Flares and compressor engines used in natural gas operations, for example, are large sources not only of NOx but also offormaldehyde, a hazardous air pollutant and powerful ozone precursor We used a neighborhood scale (200 m horizontal resolution) three-dimensional (3D) air dispersion model with an appropriate chemical mechanism to simulate ozone formation in the vicinity ofa hypothetical natural gas processing facility, based on accepted estimates of both regular and nonroutine emissions. The model predicts that, under average midday conditions in June, regular emissions mostly associated with compressor engines may increase ambient ozone in the Barnett Shale by more than 3 ppb beginning at about 2 km downwind of the facility, assuming there are no other major sources of ozone precursors. Flare volumes of 100,000 cubic meters per hour ofnatural gas over a period of 2 hr can also add over 3 ppb to peak 1-hr ozone somewhatfurther (>8 km) downwind, once dilution overcomes ozone titration and inhibition by large flare emissions of NOx. The additional peak ozone from the hypothetical flare can briefly exceed 10 ppb about 16 km downwind. The enhancements of ambient ozone predicted by the model are significant, given that ozone control strategy widths are of the order of a few parts per billion. Degrading the horizontal resolution of the model to 1 km spuriously enhances the simulated ozone increases by reducing the effectiveness of ozone inhibition and titration due to artificial plume dilution.

  12. Evaluation of oxygenation time in SmBa2Cu3O7-δ superconductors ceramics in air and ozone atmospheres

    International Nuclear Information System (INIS)

    Viana, P.R.P; Cunha, A.G.

    2010-01-01

    High temperature superconductors (HTSC) represent a major milestone in science. During the preparation of superconductors, oxygenation plays a key role, because oxygenation determines the distribution of charge carriers in these plans through the superconducting Cu-O and hence superconductivity. This paper proposes the preparation of polycrystalline superconductors using the ceramic method, and the step of oxygenation made with ozone gas (O 3 ). Ozone exerts chemical pressure on the compound, which has oxygen vacancies in its structure after the step of synthesis. The work was performed by varying the time between oxygenation 20, 40, 80 and 160 hours, with samples going through a process of oxygenation at 350 deg C after the step of synthesis. This study evaluates the time effect as oxygen can improve the superconducting properties such as resistivity and magnetic susceptibility. (author)

  13. Ozone production in the reaction of T2 and O2 gas: A comparison of experimental results and model predictions

    International Nuclear Information System (INIS)

    Failor, R.A.; Souers, P.C.; Magnotta, F.

    1992-01-01

    Ozone, predicted to be an important intermediate species in T 2 oxidation, was monitored in situ by UV absorption spectroscopy for 0.01-1.0 mol % T 2 in O 2 (1 atm, 298 K). These are the first measurements of a tritium oxidation reaction intermediate. The experimental results were compared with the predictions of the author's comprehensive model of tritium oxidation. The experimentally determined temporal variation in ozone concentration is qualitatively reproduced by the model. As predicted, the measured initial rate of ozone production varied linearly with the initial T 2 concentration ([T 2 ] o ), but with a value one-third of that predicted. The steady-state ozone concentration ([O 3 ] ss ) a factor of 4 larger than predicted for a 1.0% T 2 -O 2 mixture. Addition of H 2 to the T 2 O 2 mixture, to differentiate between the radiolytic and chemical behavior of the tritium, produced a decrease in [O 3 ] ss which was larger than predicted. Changing the reaction cell surface-to-volume ratio showed indications of minor surface removal of ozone. No reasonable variation in model input parameters brought both the predicted initial ozone production rates and steady-state concentrations of ozone into agreement with the experimental results. Though qualitative agreement was achieved, further studies, with emphasis on surface effects, are necessary to explain quantitative differences and gain a greater understanding of the oxidation mechanism. 27 refs., 11 figs., 4 tabs

  14. OZONE PRECURSORS, SOURCE REGIONS, AND O(3) FORMATION DURING THE TEXAQS 2000 STUDY

    International Nuclear Information System (INIS)

    DAUM, P.H.; KLEINMAN, L.I.; BRECHTEL, F.; LEE, Y.N.; NUNNERMACKER, L.J.; SPRINGSTON, S.R.; WEINSTEIN-LLOYD, J.

    2001-01-01

    The DOE G-1 aircraft made flights on 14 days during the TexAQS 2000 study. On 7 of those days, the aircraft encountered highly localized plumes exhibiting O(sub 3) concentrations in excess of 150 ppb; on some days, peak O(sub 3) concentrations were in excess of 200 ppb. These ozone plumes were rapidly formed with an efficiency (O(sub 3) per NO(sub x) molecule consumed) much higher (7-20) than observed in other urban areas (3-4), and were frequently associated with high concentrations ( and gt;20 ppb) of secondary hydrocarbon species such as formaldehyde. Back trajectory analysis showed that the plumes were invariably associated with emissions from one or more of the large industrial complexes clustered about the Houston Ship Channel and Galveston Bay. Very high hydrocarbon reactivities were found in the vicinity of these facilities during morning flights. These hydrocarbon reactivities, in combination with local NO(sub x) emissions, were large enough to support instantaneous O(sub 3) production rates as high as 200 ppb/h. It is hypothesized that the combination of nitrogen oxides and hydrocarbon emissions emanating from this complex of industries provided a potent mixture of chemicals that caused the rapid formation of very high concentrations of ozone which, depending on the prevailing meteorology, could cause exceedance of the NAAQS ozone standard anywhere in the Houston metropolitan area

  15. Modulations of stratospheric ozone by volcanic eruptions

    Science.gov (United States)

    Blanchette, Christian; Mcconnell, John C.

    1994-01-01

    We have used a time series of aerosol surface based on the measurements of Hofmann to investigate the modulation of total column ozone caused by the perturbation to gas phase chemistry by the reaction N2O5(gas) + H2O(aero) yields 2HNO3(gas) on the surface of stratospheric aerosols. We have tested a range of values for its reaction probability, gamma = 0.02, 0.13, and 0.26 which we compared to unperturbed homogeneous chemistry. Our analysis spans a period from Jan. 1974 to Oct. 1994. The results suggest that if lower values of gamma are the norm then we would expect larger ozone losses for highly enhanced aerosol content that for larger values of gamma. The ozone layer is more sensitive to the magnitude of the reaction probability under background conditions than during volcanically active periods. For most conditions, the conversion of NO2 to HNO3 is saturated for reaction probability in the range of laboratory measurements, but is only absolutely saturated following major volcanic eruptions when the heterogeneous loss dominates the losses of N2O5. The ozone loss due to this heterogeneous reaction increases with the increasing chlorine load. Total ozone losses calculated are comparable to ozone losses reported from TOMS and Dobson data.

  16. Leaf age affects the responses of foliar injury and gas exchange to tropospheric ozone in Prunus serotina seedlings

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Jianwei, E-mail: jianweizhang@fs.fed.u [Environmental Resources Research Institute, Pennsylvania State University, University Park, PA 16802 (United States); School of Forest Resources, Pennsylvania State University, University Park, PA 16802 (United States); Schaub, Marcus; Ferdinand, Jonathan A. [Environmental Resources Research Institute, Pennsylvania State University, University Park, PA 16802 (United States); Skelly, John M. [Department of Plant Pathology, Pennsylvania State University, University Park, PA 16802 (United States); Steiner, Kim C. [School of Forest Resources, Pennsylvania State University, University Park, PA 16802 (United States); Savage, James E. [Department of Plant Pathology, Pennsylvania State University, University Park, PA 16802 (United States)

    2010-08-15

    We investigated the effect of leaf age on the response of net photosynthesis (A), stomatal conductance (g{sub wv}), foliar injury, and leaf nitrogen concentration (N{sub L}) to tropospheric ozone (O{sub 3}) on Prunus serotina seedlings grown in open-plots (AA) and open-top chambers, supplied with either carbon-filtered or non-filtered air. We found significant variation in A, g{sub wv}, foliar injury, and N{sub L} (P < 0.05) among O{sub 3} treatments. Seedlings in AA showed the highest A and g{sub wv} due to relatively low vapor pressure deficit (VPD). Older leaves showed significantly lower A, g{sub wv}, N{sub L}, and higher foliar injury (P < 0.001) than younger leaves. Leaf age affected the response of A, g{sub wv}, and foliar injury to O{sub 3}. Both VPD and N{sub L} had a strong influence on leaf gas exchange. Foliar O{sub 3}-induced injury appeared when cumulative O{sub 3} uptake reached 8-12 mmol m{sup -2}, depending on soil water availability. The mechanistic assessment of O{sub 3}-induced injury is a valuable approach for a biologically relevant O{sub 3} risk assessment for forest trees. - Ozone effects on symptom development and leaf gas exchange interacted with leaf age and N-content on black cherry seedlings.

  17. Ozone impacts of gas-aerosol uptake in global chemistry transport models

    Science.gov (United States)

    Stadtler, Scarlet; Simpson, David; Schröder, Sabine; Taraborrelli, Domenico; Bott, Andreas; Schultz, Martin

    2018-03-01

    The impact of six heterogeneous gas-aerosol uptake reactions on tropospheric ozone and nitrogen species was studied using two chemical transport models, the Meteorological Synthesizing Centre-West of the European Monitoring and Evaluation Programme (EMEP MSC-W) and the European Centre Hamburg general circulation model combined with versions of the Hamburg Aerosol Model and Model for Ozone and Related chemical Tracers (ECHAM-HAMMOZ). Species undergoing heterogeneous reactions in both models include N2O5, NO3, NO2, O3, HNO3, and HO2. Since heterogeneous reactions take place at the aerosol surface area, the modelled surface area density (Sa) of both models was compared to a satellite product retrieving the surface area. This comparison shows a good agreement in global pattern and especially the capability of both models to capture the extreme aerosol loadings in east Asia. The impact of the heterogeneous reactions was evaluated by the simulation of a reference run containing all heterogeneous reactions and several sensitivity runs. One reaction was turned off in each sensitivity run to compare it with the reference run. The analysis of the sensitivity runs confirms that the globally most important heterogeneous reaction is the one of N2O5. Nevertheless, NO2, HNO3, and HO2 heterogeneous reactions gain relevance particularly in east Asia due to the presence of high NOx concentrations and high Sa in the same region. The heterogeneous reaction of O3 itself on dust is of minor relevance compared to the other heterogeneous reactions. The impacts of the N2O5 reactions show strong seasonal variations, with the biggest impacts on O3 in springtime when photochemical reactions are active and N2O5 levels still high. Evaluation of the models with northern hemispheric ozone surface observations yields a better agreement of the models with observations in terms of concentration levels, variability, and temporal correlations at most sites when the heterogeneous reactions are

  18. Synthesis of MoO3 nanoparticles for azo dye degradation by catalytic ozonation

    International Nuclear Information System (INIS)

    Manivel, Arumugam; Lee, Gang-Juan; Chen, Chin-Yi; Chen, Jing-Heng; Ma, Shih-Hsin; Horng, Tzzy-Leng; Wu, Jerry J.

    2015-01-01

    Highlights: • Synthesis of one-dimensional MoO 3 nanostructures using hydrothermal, microwave, and sonochemical methods. • Sonochemical synthesized MoO 3 presents the best efficiency for the dye removal by catalytic ozonation. • Efficient environmental remediation process. - Abstract: One-dimensional molybdenum trioxide nanostructures were prepared in three different approaches, including thermal, microwave, and sonochemical methods. The physicochemical properties of the obtained MoO 3 nanoparticles were investigated by diffused reflectance spectroscopy, X-ray diffraction analysis, field emission scanning electron microscopy, high resolution transmission electron microscopy, and Brunauer–Emmett–Teller surface area analysis. Among the methods as investigated, sonochemical synthesis gave well-dispersed fine MoO 3 nanoparticles compared with the other approaches. All the synthesized MoO 3 nanostructures were examined for the catalytic ozonation to degrade azo dye in aqueous environment. Different performances were obtained for the catalyst prepared in different methods and the catalytic efficiencies were found to be the order of sonochemical, microwave, and then thermal methods. The sonochemical MoO 3 catalyst allowed the total dye removal within 20 min and its good performance was justified according to their higher surface area with higher number of active sites that provide effective dye interaction for better degradation

  19. Spatially resolved ozone densities and gas temperatures in a time modulated RF driven atmospheric pressure plasma jet: an analysis of the production and destruction mechanisms

    International Nuclear Information System (INIS)

    Zhang Shiqiang; Van Gessel, Bram; Hofmann, Sven; Van Veldhuizen, Eddie; Bruggeman, Peter; Van Gaens, Wouter; Bogaerts, Annemie

    2013-01-01

    In this work, a time modulated RF driven DBD-like atmospheric pressure plasma jet in Ar + 2%O 2 , operating at a time averaged power of 6.5 W is investigated. Spatially resolved ozone densities and gas temperatures are obtained by UV absorption and Rayleigh scattering, respectively. Significant gas heating in the core of the plasma up to 700 K is found and at the position of this increased gas temperature a depletion of the ozone density is found. The production and destruction reactions of O 3 in the jet effluent as a function of the distance from the nozzle are obtained from a zero-dimensional chemical kinetics model in plug flow mode which considers relevant air chemistry due to air entrainment in the jet fluent. A comparison of the measurements and the models show that the depletion of O 3 in the core of the plasma is mainly caused by an enhanced destruction of O 3 due to a large atomic oxygen density. (paper)

  20. SPIROMETRIC RESPONSE TO OZONE (O3) IN YOUNG ADULTS AS A FUNCTION OF BODY MAASS INDEX (BMI)

    Science.gov (United States)

    Recent studies in murine models of obesity have shown enhanced responsiveness to ozone in obese vs. lean mice. To assess whether previous human ozone exposure data from our laboratory support an effect of BMI on the spirometric response to ozone we analyzed the post-O3 percent de...

  1. Experimental and theoretical studies of nuclear generation of ozone and its photolysis into singlet delta oxygen

    International Nuclear Information System (INIS)

    Elsayed-Ali, H.E.

    1985-01-01

    A series of measurements of O 3 yield in nuclear induced O 2 and O 2 -SF 6 discharges created by bombardment with energetic particles from the 10 B(n,α) 7 Li reaction are reported. Continuous irradiation at dose ratios of 10 15 -10 17 eV.cm -3 .s -1 and pulsed irradiation (approx.10 ms FWHM) at a peak dose rate of approx.10 20 eV.cm -3 .s -1 were conducted. At the lower dose rates, SF 6 addition generally increased the ozone yield, which at the high dose rates, SF 6 addition decreased the observed ozone concentration. A numerical model was developed and applied to experimental conditions. The steady-state ozone concentration was found to be limited by the reaction O 3 - + O 3 → 2O 2 + O 2 - . A simplified analytical model of steady-state conditions was used to predict model sensitivity to various parameters. In addition to dose rate effects, pressure and temperature effect on ozone production were discussed. The present study was extended to noble gas (He, Ne, and Ar)-O 2 and noble gas - O 2 -SF 6 mixtures. Without SF 6 , steady-state ozone concentrations were found to be about an order of magnitude lower than that observed for oxygen at similar dose rates. Addition of SF 6 was found to significantly increase the steady-state ozone concentration (3-6 times) in noble gas-O 2 mixtures. The developed models were amended to study noble gas-O 2 discharges. A detailed computer model of ultraviolet irradiation of O 3 -O 2 -noble gas mixtures was presented. Dependence of O 2 (a 1 Δ/sub g/) yield on various parameters was investigated. Conditions needed to create O 2 (a 1 Δ/sub g/) concentrations sufficient for pumping an atomic iodine laser were identified. The model was tested by applying it to date on quantum yield of ozone decomposition for various mixtures and by observation of the absolute O 2 (a 1 Δ/sub g/) concentration generated under various conditions

  2. Effect of ozone concentration on silicon surface passivation by atomic layer deposited Al{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Gastrow, Guillaume von, E-mail: guillaume.von.gastrow@aalto.fi [Aalto University, Department of Micro- and Nanosciences, Tietotie 3, 02150 Espoo (Finland); Li, Shuo [Aalto University, Department of Micro- and Nanosciences, Tietotie 3, 02150 Espoo (Finland); Putkonen, Matti [VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT, Espoo (Finland); Aalto University School of Chemical Technology, Laboratory of Inorganic Chemistry, FI-00076 Aalto, Espoo (Finland); Laitinen, Mikko; Sajavaara, Timo [University of Jyvaskyla, Department of Physics, FIN-40014 University of Jyvaskyla (Finland); Savin, Hele [Aalto University, Department of Micro- and Nanosciences, Tietotie 3, 02150 Espoo (Finland)

    2015-12-01

    Highlights: • The ALD Al{sub 2}O{sub 3} passivation quality can be controlled by the ozone concentration. • Ozone concentration affects the Si/Al{sub 2}O{sub 3} interface charge and defect density. • A surface recombination velocity of 7 cm/s is reached combining ozone and water ALD. • Carbon and hydrogen concentrations correlate with the surface passivation quality. - Abstract: We study the impact of ozone-based Al{sub 2}O{sub 3} Atomic Layer Deposition (ALD) on the surface passivation quality of crystalline silicon. We show that the passivation quality strongly depends on the ozone concentration: the higher ozone concentration results in lower interface defect density and thereby improved passivation. In contrast to previous studies, our results reveal that too high interface hydrogen content can be detrimental to the passivation. The interface hydrogen concentration can be optimized by the ozone-based process; however, the use of pure ozone increases the harmful carbon concentration in the film. Here we demonstrate that low carbon and optimal hydrogen concentration can be achieved by a single process combining the water- and ozone-based reactions. This process results in an interface defect density of 2 × 10{sup 11} eV{sup −1} cm{sup −2}, and maximum surface recombination velocities of 7.1 cm/s and 10 cm/s, after annealing and after an additional firing at 800 °C, respectively. In addition, our results suggest that the effective oxide charge density can be optimized in a simple way by varying the ozone concentration and by injecting water to the ozone process.

  3. Effect of excess ozone on UV-stimulated tritium oxidation

    International Nuclear Information System (INIS)

    Hasegawa, Kiyoshi; Horii, Kazuhiro; Matsuyama, Masao; Watanabe, Kuniaki.

    1995-01-01

    The authors have reported that the oxidation of tritium is considerably accelerated by irradiating a mixture gas of HT(H 2 )-O 2 with UV-photons, and this UV-stimulated HT oxidation is mainly due to the formation of intermediates such as ozone and activated oxygen species. This suggests that the oxidation will be much more enhanced in the presence of excess ozone in the reaction system. To examine this possibility, effects of the excess ozone on the UV-stimulated HT oxidation was experimentally studied on the one hand, and reaction mechanisms were investigated by developing a computer simulation program applicable to the three-component system of HT(H 2 )-O 2 -O 3 . The formation rate of HTO was measured for gas mixtures consisting of O 2 (75.5 Torr), O 3 (0.5-2% of O 2 ), H 2 (0.1-3% of O 2 ) and HT(H 2 /HT=12000). The experiments showed considerable enhancement of the HTO production rate in the presence of excess ozone by UV-photons from a low pressure mercury lamp(5W). The time course of the reaction was reproduced quite well by computer simulation, indicating that the assumed reaction mechanism is valid. This is also supported by observations that computer simulation reproduced the experimentally observed dependence of ozone decomposition rate on ozone and hydrogen pressures under the UV-irradiation. Those results showed that UV-stimulated HT oxidation was accelerated by about 14000 times in the presence of excess ozone. It strongly suggests that the UV-stimulated oxidation in the presence of excess ozone will be applicable to tritium handling systems as a non-catalytic tritium removal method. (author)

  4. A high voltage DC switching power supply of corona discharge for ozone tube

    International Nuclear Information System (INIS)

    Ketkaew, Siseerot

    2007-08-01

    Full text: This paper presents a study of design and construction of a high voltage DC switching power supply for corona generating of ozone gas generating. This supply uses fly back converter at 3 k Vdc 30 khz and controls its operation using PWM techniques. I C TL494 is controlled of the switching. The testing of supply by putting high voltage to ozone gas tube at one-hour, the oxygen quantity 21 % of air, which ozone tube model enables ozone gas generating capacity of 95.2 mgO3/hr

  5. Decadal Trends and Variability of Tropospheric Ozone over Oil and Gas Regions over 2005 - 2015

    Science.gov (United States)

    Zhou, Y.; Mao, H.; Sive, B. C.

    2017-12-01

    Tropospheric ozone (O3), which is produced largely by photochemical oxidation of nitrogen oxides (NOx) and volatile organic compounds, is a serious and ubiquitous air pollutant with strong negative health effects. Recent technological innovations such as horizontal drilling and hydraulic fracturing have accelerated oil and natural gas production in the U.S. since 2005. The additional input of O3 precursors from expanding natural gas production might prolong the effort to comply the current O3 standard (70 ppbv). The objective of this study is to investigate the impact of oil and gas extractions on variability and long term trends of O3 in the intermountain west under varying meteorological conditions. We investigated long-term O3 trends at 13 rural sites, which were within 100 km of the shale play in the U.S. intermountain west. Significant decreasing trends (-0.35 - -3.38 ppbv yr-1) were found in seasonal O3 design values at six sites in spring, summer, or fall, while no trends were found in wintertime O3 at any sites. Wintertime O3 at each site showed strong and consistent interannual variation over 2006 - 2015, and was negatively correlated with the Arctic Oscillation (AO) Index. The negative correlation was a result of multiple factors, such as in situ O3 photochemical production, stratospheric intrusion, and transport from the Arctic and California. In summer, wildfire emissions were the dominate driver to the interannual variations of high percentiles O3 at each site, while meteorological conditions (i.e., temperature and relative humidity) determined the interannual variations of low percentiles O3. Box model simulations indicated that O3 production rates were 31.51 ppbv h-1 over winters of 2012 - 2014 and 32.12 ppbv h-1 in summer 2014 around shale gas extraction regions.

  6. Sex differences in diet and inhaled ozone (O3) induced metabolic impairment

    Science.gov (United States)

    APS 2015 abstract Sex differences in diet and inhaled ozone (O3) induced metabolic impairment U.P. Kodavanti1, V.L. Bass2, M.C. Schladweiler1, C.J. Gordon3, K.A. Jarema1, P. Phillips1, A.D. Ledbetter1, D.B. Miller4, S. Snow5, J.E. Richards1. 1 EPHD, NHEERL, USEPA, Research Triang...

  7. Exploring the Liquefied Petroleum Gas - Ozone Relation in Guadalajara, Mexico, by Smog Chamber Experiments

    OpenAIRE

    Jaimes-López, José Luis; Sandoval-Fernández, Julio; Zambrano-García, Angel

    2005-01-01

    It has been hypothesized that liquefied petroleum gas (LPG) emissions can increase substantially the formation of ozone (O3) in the ambient air. We tested experimentally such hypothesis in Guadalajara's downtown by captive-air irradiation (CAI) techniques. During November 1997-January, 1998, morning ambient air samples were confined in outdoor smog chambers and subjected to the following treatments: 35% addition of commercial LPG or one out of two mixtures of major LPG compounds (propane/buta...

  8. Explosion and detonation of ozone in mixtures with carrier gases employed in nuclear technology

    International Nuclear Information System (INIS)

    Weh, M.M.L.

    1988-09-01

    Explosive ozone is known to be formed during low temperature radiolysis of oxygen. Detailed knowledge on the explosion and the detonation of ozone is therefore required for safety considerations of nuclear installations such as proposed for the cryogenic separation of 85 krypton from the head end off gas of a reprocessing plant. The explosion properties of gaseous ozone in mixtures with oxygen, nitrogen, helium, argon, krypton, xenon and difluorodichloromethane were studied by varying the ozone concentration, the initial pressure and the shape of the vessel containing the gas. Detonation velocities were determined for gaseous mixtures of ozone with oxygen, argon, krypton or xenon as functions of the ozone concentration. In addition, the initial pressure was varied for ozone-xenon mixtures. The effect of a packing such as used in the 85 Kr-separation plant 'KRETA' in KfK on ozone-xenon detonation was investigated. In addition, the effect of low amounts of carbon monoxide, methane and nitrogen dioxide on the explosion (O 3 /Ar) and the detonation (O 3 /Xe) of an ozone-noble gas mixture was determined. (orig.) [de

  9. The gas phase reaction of ozone with 1,3-butadiene: formation yields of some toxic products

    Science.gov (United States)

    Kramp, Franz; Paulson, Suzanne E.

    The formation yields of acrolein, 1,2-epoxy-3-butene and OH radicals have been measured from reaction of ozone with 1,3-butadiene at room temperature and atmosphere pressure. 1,3,5-Trimethyl benzene was added to scavenge OH radicals in measurements of product yields. In separate experiments, small quantities of 1,3,5-trimethyl benzene were added as a tracer for OH. Formation yields of acrolein of (52±7)%, 1,2-epoxy-3-butene of (3.1±0.5)% and OH radicals of (13±3)% were observed. In addition, the rate coefficient of the gas-phase reaction of ozone with 1,2-epoxy-3-butene was measured both directly and relative to propene, finding an average of (1.6±0.4)×10 -18 cm 3 molecule -1 s -1, respectively, at 296±2 K. The results are briefly discussed in terms of the effect of atmospheric processing on the toxicity of 1,3-butadiene.

  10. Tree age dependence and within-canopy variation of leaf gas exchange and antioxidative defence in Fagus sylvatica under experimental free-air ozone exposure

    International Nuclear Information System (INIS)

    Herbinger, K.; Then, Ch.; Loew, M.; Haberer, K.; Alexous, M.; Koch, N.; Remele, K.; Heerdt, C.; Grill, D.; Rennenberg, H.; Haeberle, K.-H.; Matyssek, R.; Tausz, M.; Wieser, G.

    2005-01-01

    We characterized leaf gas exchange and antioxidative defence of two-year-old seedlings and 60-year-old trees of Fagus sylvatica exposed to ambient (1xO 3 ) or two-fold ambient (2xO 3 ) O 3 concentrations (maximum of 150 ppb) in a free-air canopy exposure system throughout the growing season. Decline in photosynthesis from sun-exposed to shaded conditions was more pronounced in adult than juvenile trees. Seedling leaves and leaves in the sun-exposed canopy had higher stomatal conductance and higher internal CO 2 concentrations relative to leaves of adult trees and leaves in shaded conditions. There was a weak overall depression of photosynthesis in the 2xO 3 variants across age classes and canopy positions. Pigment and tocopherol concentrations of leaves were significantly affected by canopy position and tree age, whereas differences between 1xO 3 and 2xO 3 regimes were not observed. Glutathione concentrations were significantly increased under 2xO 3 across both age classes and canopy levels. Seedlings differed from adult trees in relevant physiological and biochemical traits in ozone response. The water-soluble antioxidative systems responded most sensitively to 2xO 3 without regard of tree age or canopy position. - Ozone effects on leaf gas exchange and antioxidative systems of beech across tree age and canopy level were investigated in a free air exposure system

  11. Influence of Ar addition on ozone generation in a non-thermal plasma—a numerical investigation

    Science.gov (United States)

    Chen, Hsin Liang; Lee, How Ming; Chen, Shiaw Huei; Wei, Ta Chin; Been Chang, Moo

    2010-10-01

    A numerical model based on a dielectric barrier discharge is developed in this study to investigate the influence of Ar addition on ozone generation. The simulation results show good agreement with the experimental data, confirming the validity of the numerical model. The mechanisms regarding how the Ar addition affects ozone generation are investigated with the assistance of a numerical simulation by probing into the following two questions, (1) why the ozone concentration just slightly decreases in the low specific input energy (SIE, the ratio of discharge power to gas flow rate) region even if the inlet O2 concentration is substantially decreased and (2) why the variation of the increased rate of ozone concentration with SIE (i.e. the variation in the slope of ozone concentration versus SIE) is more significant for an O2/Ar mixture plasma. As SIE is relatively low, ozone decomposition through electron-impact and radical attack reactions is less significant because of low ozone concentration and gas temperature. Therefore, the ozone concentration depends mainly on the amount of oxygen atoms generated. The simulation results indicate that the amount of oxygen atoms generated per electronvolt for Ar concentrations of 0%, 10%, 30%, 50% and 80% are 0.178, 0.174, 0.169, 0.165 and 0.166, respectively, explaining why the ozone concentration does not decrease linearly with the inlet O2 concentration in the low SIE region. On the other hand, the simulation results show that increasing Ar concentration would lead to a lower reduced field and a higher gas temperature. The former would lead to an increase in the rate constant of e + O3 → e + O + O2 while the latter would result in a decrease in the rate constant of O + O2 + M → O3 + M and an increase in that of O3 + O → 2O2. The changes in the rate constants of these reactions would have a negative effect on ozone generation, which is the rationale for the second question.

  12. Influence of Ar addition on ozone generation in a non-thermal plasma-a numerical investigation

    International Nuclear Information System (INIS)

    Chen, Hsin Liang; Lee, How Ming; Chen, Shiaw Huei; Wei, Ta Chin; Chang, Moo Been

    2010-01-01

    A numerical model based on a dielectric barrier discharge is developed in this study to investigate the influence of Ar addition on ozone generation. The simulation results show good agreement with the experimental data, confirming the validity of the numerical model. The mechanisms regarding how the Ar addition affects ozone generation are investigated with the assistance of a numerical simulation by probing into the following two questions, (1) why the ozone concentration just slightly decreases in the low specific input energy (SIE, the ratio of discharge power to gas flow rate) region even if the inlet O 2 concentration is substantially decreased and (2) why the variation of the increased rate of ozone concentration with SIE (i.e. the variation in the slope of ozone concentration versus SIE) is more significant for an O 2 /Ar mixture plasma. As SIE is relatively low, ozone decomposition through electron-impact and radical attack reactions is less significant because of low ozone concentration and gas temperature. Therefore, the ozone concentration depends mainly on the amount of oxygen atoms generated. The simulation results indicate that the amount of oxygen atoms generated per electronvolt for Ar concentrations of 0%, 10%, 30%, 50% and 80% are 0.178, 0.174, 0.169, 0.165 and 0.166, respectively, explaining why the ozone concentration does not decrease linearly with the inlet O 2 concentration in the low SIE region. On the other hand, the simulation results show that increasing Ar concentration would lead to a lower reduced field and a higher gas temperature. The former would lead to an increase in the rate constant of e + O 3 → e + O + O 2 while the latter would result in a decrease in the rate constant of O + O 2 + M → O 3 + M and an increase in that of O 3 + O → 2O 2 . The changes in the rate constants of these reactions would have a negative effect on ozone generation, which is the rationale for the second question.

  13. Plasmachemical and heterogeneous processes in ozonizers with oxygen activation by a dielectric barrier discharge

    Energy Technology Data Exchange (ETDEWEB)

    Mankelevich, Yu. A., E-mail: ymankelevich@mics.msu.su; Voronina, E. N.; Poroykov, A. Yu.; Rakhimov, T. V.; Voloshin, D. G.; Chukalovsky, A. A. [Moscow State University, Skobeltsyn Institute of Nuclear Physics (Russian Federation)

    2016-10-15

    Plasmachemical and heterogeneous processes of generation and loss of ozone in the atmosphericpressure dielectric barrier discharge in oxygen are studied theoretically. Plasmachemical and electronic kinetics in the stage of development and decay of a single plasma filament (microdischarge) are calculated numerically with and without allowance for the effects of ozone vibrational excitation and high initial ozone concentration. The developed analytical approach is applied to determine the output ozone concentration taking into account ozone heterogeneous losses on the Al{sub 2}O{sub 3} dielectric surface. Using the results of quantummechanical calculations by the method of density functional theory, a multistage catalytic mechanism of heterogeneous ozone loss based on the initial passivation of a pure Al{sub 2}O{sub 3} surface by ozone and the subsequent interaction of O{sub 3} molecules with the passivated surface is proposed. It is shown that the conversion reaction 2O{sub 3} → 3O{sub 2} of a gas-phase ozone molecule with a physically adsorbed ozone molecule can result in the saturation of the maximum achievable ozone concentration at high specific energy depositions, the nonstationarity of the output ozone concentration, and its dependence on the prehistory of ozonizer operation.

  14. Effect of ozone gas on the shear bond strength to enamel.

    Science.gov (United States)

    Pires, Patrícia Teixeira; Ferreira, João Cardoso; Oliveira, Sofia Arantes; Silva, Mário Jorge; Melo, Paulo Ribeiro

    2013-01-01

    Ozone is an important disinfecting agent, however its influence on enamel adhesion has not yet been clarified. Evaluate the influence of ozone pretreatment on the shear strength of an etch-and-rinse and a self-etch system to enamel and analyze the respective failure modes. Sixty sound bovine incisors were used. Specimens were randomly assigned to four experimental groups (n=15): Group G1 (Excite® with ozone) and group G3 (AdheSE® with ozone) were prepared with ozone gas from the HealOzone unit (Kavo®) for 20 s prior to adhesion, and groups G2 (Excite®) and G4 (AdheSE®) were used as control. Teeth were bisected and polished to simulate a smear layer just before the application of the adhesive systems. The adhesives were applied according to the manufacturer's instructions to a standardized 3 mm diameter surface, and a composite (Synergy D6, Coltene Whaledent) cylinder with 2 mm increments was build. Specimens were stored in 100% humidity for 24 h at 37°C and then subjected to a thermal cycling regimen of 500 cycles. Shear bond tests were performed with a Watanabe device in a universal testing machine at 5 mm/min. The failure mode was analyzed under scanning electron microscope. Means and standard deviation of shear bond strength (SBS) were calculated and difference between the groups was analyzed using ANOVA, Kolmogorov-Smirnov, Levene and Bonferroni. Chi-squared statistical tests were used to evaluate the failure modes. Mean bond strength values and failure modes were as follows: G1--26.85±6.18 MPa (33.3% of adhesive cohesive failure); G2--27.95±5.58 MPa (53.8% of adhesive failures between enamel and adhesive); G3--15.0±3.84 MPa (77.8% of adhesive failures between enamel and adhesive) and G4--13.1±3.68 MPa (36.4% of adhesive failures between enamel and adhesive). Shear bond strength values of both adhesives tested on enamel were not influenced by the previous application of ozone gas.

  15. Seasonal trends in reduced leaf gas exchange and ozone-induced foliar injury in three ozone sensitive woody plant species

    International Nuclear Information System (INIS)

    Novak, K.; Schaub, M.; Fuhrer, J.; Skelly, J.M.; Hug, C.; Landolt, W.; Bleuler, P.; Kraeuchi, N.

    2005-01-01

    Seasonal trends in leaf gas exchange and ozone-induced visible foliar injury were investigated for three ozone sensitive woody plant species. Seedlings of Populus nigra L., Viburnum lantana L., and Fraxinus excelsior L. were grown in charcoal-filtered chambers, non-filtered chambers and open plots. Injury assessments and leaf gas exchange measurements were conducted from June to October during 2002. All species developed typical ozone-induced foliar injury. For plants exposed to non-filtered air as compared to the charcoal-filtered air, mean net photosynthesis was reduced by 25%, 21%, and 18% and mean stomatal conductance was reduced by 25%, 16%, and 8% for P. nigra, V. lantana, and F. excelsior, respectively. The timing and severity of the reductions in leaf gas exchange were species specific and corresponded to the onset of visible foliar injury. - Reductions in leaf gas exchange corresponded to the onset of ozone-induced visible foliar injury for seedlings exposed to ambient ozone exposures

  16. Seasonal trends in reduced leaf gas exchange and ozone-induced foliar injury in three ozone sensitive woody plant species

    Energy Technology Data Exchange (ETDEWEB)

    Novak, K. [Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, 8903 Birmensdorf (Switzerland)]. E-mail: kristopher.novak@wsl.ch; Schaub, M. [Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, 8903 Birmensdorf (Switzerland); Fuhrer, J. [Swiss Federal Research Station for Agroecology and Agriculture FAL, 8046 Zurich (Switzerland); Skelly, J.M. [Department of Plant Pathology, The Pennsylvania State University, University Park, PA 16802 (United States); Hug, C. [Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, 8903 Birmensdorf (Switzerland); Landolt, W. [Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, 8903 Birmensdorf (Switzerland); Bleuler, P. [Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, 8903 Birmensdorf (Switzerland); Kraeuchi, N. [Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, 8903 Birmensdorf (Switzerland)

    2005-07-15

    Seasonal trends in leaf gas exchange and ozone-induced visible foliar injury were investigated for three ozone sensitive woody plant species. Seedlings of Populus nigra L., Viburnum lantana L., and Fraxinus excelsior L. were grown in charcoal-filtered chambers, non-filtered chambers and open plots. Injury assessments and leaf gas exchange measurements were conducted from June to October during 2002. All species developed typical ozone-induced foliar injury. For plants exposed to non-filtered air as compared to the charcoal-filtered air, mean net photosynthesis was reduced by 25%, 21%, and 18% and mean stomatal conductance was reduced by 25%, 16%, and 8% for P. nigra, V. lantana, and F. excelsior, respectively. The timing and severity of the reductions in leaf gas exchange were species specific and corresponded to the onset of visible foliar injury. - Reductions in leaf gas exchange corresponded to the onset of ozone-induced visible foliar injury for seedlings exposed to ambient ozone exposures.

  17. Isotope separation of 17O by photodissociation of ozone with near-infrared laser irradiation

    Science.gov (United States)

    Hayashida, Shigeru; Kambe, Takashi; Sato, Tetsuya; Igarashi, Takehiro; Kuze, Hiroaki

    2012-04-01

    Oxygen-17 is a stable oxygen isotope useful for various diagnostics in both engineering and medical applications. Enrichment of 17O, however, has been very costly due to the lack of appropriate methods that enable efficient production of 17O on an industrial level. In this paper, we report the first 17O-selective photodissociation of ozone at a relatively high pressure, which has been achieved by irradiating a gas mixture of 10 vol% O3-90 vol% CF4 with narrowband laser. The experiment was conducted on a pilot-plant scale. A total laser power of 1.6 W was generated by external-cavity diode lasers with all the laser wavelengths fixed at the peak of an absorption line of 16O16O17O around 1 μm. The beams were introduced into a 25 -m long photoreaction cell under the sealed-off condition with a total pressure of 20 kPa. Lower cell temperature reduced the background decomposition of ozone, and at the temperature of 158 K, an 17O enrichment factor of 2.2 was attained.

  18. The Investigation of Decontamination Effects of Ozone Gas on Microbial Load and Essential Oil of Several Medicinal Plants

    Directory of Open Access Journals (Sweden)

    Razieh VALI ASILL

    2013-02-01

    Full Text Available Today, Ozone as a disinfectant method, without putting on the harmful effects on human and plant products, it is alternative common methods for disinfection of plant material. The research as a factorial experiment was conducted on the basis of randomized complete block design with three replications and the effects of Ozone gas on decreasing the microbial load of some important medicinal plants include: Peppermint (Mentha piperita, Summer savory (Satureja hortensis, Indian valerian(Valeriana wallichii, Meliss (Melissa officinalis and Iranian thyme (Zataria multiflora were investigated. Medicinal plants leaves were treated with Ozone gas concentration 0.3, 0.6 and 0.9 ml/L at times of 10 and 30 then total count, coliform and mold and yeast of the samples were studied. The result showed that Ozone gas decreases microbial load of medicinal plants samples. But Ozone gas and Ozone gas in medicinal plants interaction effect had no effect on essential oil content. The lowest and the highest of microbial load were detected in samples treated with concentration of 0.9 ml/L of Ozone gas and control respectively. The highest and the lowest of microbial load were observed in Iranian thyme and Indian valerian respectively. Also result showed that Ozone gas treatment for 30 min had the greatest of effect in reducing the microbial load and 0.9 ml/L Ozone gas concentration had the lowest of microbial load. Results of this survey reflect that the use of Ozone as a method of disinfection for medicinal plants is a decontamination.

  19. Synthesis of Co3O4 nanosheets via electrodeposition followed by ozone treatment and their application to high-performance supercapacitors

    Science.gov (United States)

    Kung, Chung-Wei; Chen, Hsin-Wei; Lin, Chia-Yu; Vittal, R.; Ho, Kuo-Chuan

    2012-09-01

    A thin film of Co3O4 nanosheets is electrodeposited on a flexible Ti substrate by a one-step potentiostatic method, followed by an UV-ozone treatment for 30 min. The films before and after the UV-ozone treatment are characterized with X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The film is composed of Co(OH)2 before UV-ozone treatment, and of Co3O4 after the treatment. The morphologies of both films are examined by scanning electron microscopy (SEM) and transmission electron microscope (TEM). The obtained films are composed of nanosheets, and there is no change in their sheet-like morphology before and after the UV-ozone treatment. When applied for a supercapacitor, the Co3O4 modified Ti electrode (Co3O4/Ti) shows a far higher capacitance than that of the Co(OH)2 modified Ti electrode. The electrodeposition time and NaOH concentration in the electrolyte are optimized. A remarkably high specific capacitance of 1033.3 F g-1 is obtained for the Co3O4 thin film at a charge-discharge current density of 2.5 A g-1. The long-term stability data shows that there is still 77% of specific capacitance remaining after 3000 repeated charge-discharge cycles. The high specific capacitance and long-term stability suggest the potential use of Co3O4/Ti for making a flexible supercapacitor.

  20. Nitrous Oxides Ozone Destructiveness Under Different Climate Scenarios

    Science.gov (United States)

    Kanter, David R.; McDermid, Sonali P.

    2016-01-01

    Nitrous oxide (N2O) is an important greenhouse gas and ozone depleting substance as well as a key component of the nitrogen cascade. While emissions scenarios indicating the range of N2O's potential future contributions to radiative forcing are widely available, the impact of these emissions scenarios on future stratospheric ozone depletion is less clear. This is because N2O's ozone destructiveness is partially dependent on tropospheric warming, which affects ozone depletion rates in the stratosphere. Consequently, in order to understand the possible range of stratospheric ozone depletion that N2O could cause over the 21st century, it is important to decouple the greenhouse gas emissions scenarios and compare different emissions trajectories for individual substances (e.g. business-as-usual carbon dioxide (CO2) emissions versus low emissions of N2O). This study is the first to follow such an approach, running a series of experiments using the NASA Goddard Institute for Space Sciences ModelE2 atmospheric sub-model. We anticipate our results to show that stratospheric ozone depletion will be highest in a scenario where CO2 emissions reductions are prioritized over N2O reductions, as this would constrain ozone recovery while doing little to limit stratospheric NOx levels (the breakdown product of N2O that destroys stratospheric ozone). This could not only delay the recovery of the stratospheric ozone layer, but might also prevent a return to pre-1980 global average ozone concentrations, a key goal of the international ozone regime. Accordingly, we think this will highlight the importance of reducing emissions of all major greenhouse gas emissions, including N2O, and not just a singular policy focus on CO2.

  1. Combined use of O3/H2O2 and O3/Mn2+ in flotation of dairy wastewater

    Directory of Open Access Journals (Sweden)

    Marta Cristina Silva Carvalho

    2018-05-01

    Full Text Available This work investigated the degradation of organic matter present in synthetic dairy wastewater by the combination of ozonation (ozone (O3/hydrogen peroxide (H2O2 and catalytic ozonation (ozone (O3/manganese (Mn2+ associated with dispersed air flotation process. The effect of independent factors such as O3 concentration, pH and H2O2 and Mn2+ concentration was evaluated. For the flotation/O3/H2O2 treatment, the significant variables (p ≤ 0.05 were: O3 concentration (linear and quadratic effect, H2O2 concentration linear and quadratic effect, pH values (linear and quadratic effect and interaction O3 concentration versus pH. For catalytic ozonation, it was observed that the significant variable was the linear effect of O3 concentration. According to the desirability function, it was concluded that the optimal condition for the treatment of flotation/O3/H2O2 can be obtained in acidic solution using O3 concentrations greater than 42.9 mg L-1 combined with higher concentrations of H2O2 to 1071.5 mg L-1. On other hand, at pH values higher than 9.0, the addition of O3 may be neglected when using higher concentrations than 1071.5 mg L-1 of H2O2. For flotation/ozonation catalyzed by Mn2+, it was observed that metal addition did not affect treatment, resulting in an optimum condition: 53.8 mg L-1 of O3 and pH 3.6.

  2. Tree age dependence and within-canopy variation of leaf gas exchange and antioxidative defence in Fagus sylvatica under experimental free-air ozone exposure

    Energy Technology Data Exchange (ETDEWEB)

    Herbinger, K. [Institut fuer Pflanzenwissenschaften, Universitaet Graz, Schubertstrasse 51, A-8010 Graz (Austria)]. E-mail: karin.herbinger@uni-graz.at; Then, Ch. [Bundesamt und Forschungszentrum fuer Wald, Abteilung Forstpflanzenphysiologie, Rennweg 1, A-6020 Innsbruck (Austria)]|[Lehrstuhl fuer Oekophysiologie der Pflanzen, Technische Universitaet Muenchen, Life Sciences Center Weihenstephan, Am Hochanger 13, D-85354 Freising (Germany); Loew, M.; Koch, N. [Lehrstuhl fuer Oekophysiologie der Pflanzen, Technische Universitaet Muenchen, Life Sciences Center Weihenstephan, Am Hochanger 13, D-85354 Freising (Germany); Haberer, K.; Alexous, M. [Institut fuer Forstbotanik und Baumphysiologie, Universitaet Freiburg, Georges-Koehler-Allee 053/054, D-79085 Freiburg (Germany); Remele, K. [Institut fuer Pflanzenwissenschaften, Universitaet Graz, Schubertstrasse 51, A-8010 Graz (Austria); Heerdt, C. [Lehrstuhl fuer Bioklimatologie und Immissionsforschung, Technische Universitaet Muenchen, Am Hochanger 13, D-85354 Freising (Germany); Grill, D. [Institut fuer Pflanzenwissenschaften, Universitaet Graz, Schubertstrasse 51, A-8010 Graz (Austria); Rennenberg, H. [Institut fuer Forstbotanik und Baumphysiologie, Universitaet Freiburg, Georges-Koehler-Allee 053/054, D-79085 Freiburg (Germany); Haeberle, K.-H.; Matyssek, R. [Lehrstuhl fuer Oekophysiologie der Pflanzen, Technische Universitaet Muenchen, Life Sciences Center Weihenstephan, Am Hochanger 13, D-85354 Freising (Germany); Tausz, M. [Institut fuer Pflanzenwissenschaften, Universitaet Graz, Schubertstrasse 51, A-8010 Graz (Austria)]|[[School of Forest and Ecosystem Science, University of Melbourne, Water Street, Creswick, Vic. 3363 (Australia); Wieser, G. [Bundesamt und Forschungszentrum fuer Wald, Abteilung Forstpflanzenphysiologie, Rennweg 1, A-6020 Innsbruck (Austria)

    2005-10-15

    We characterized leaf gas exchange and antioxidative defence of two-year-old seedlings and 60-year-old trees of Fagus sylvatica exposed to ambient (1xO{sub 3}) or two-fold ambient (2xO{sub 3}) O{sub 3} concentrations (maximum of 150 ppb) in a free-air canopy exposure system throughout the growing season. Decline in photosynthesis from sun-exposed to shaded conditions was more pronounced in adult than juvenile trees. Seedling leaves and leaves in the sun-exposed canopy had higher stomatal conductance and higher internal CO{sub 2} concentrations relative to leaves of adult trees and leaves in shaded conditions. There was a weak overall depression of photosynthesis in the 2xO{sub 3} variants across age classes and canopy positions. Pigment and tocopherol concentrations of leaves were significantly affected by canopy position and tree age, whereas differences between 1xO{sub 3} and 2xO{sub 3} regimes were not observed. Glutathione concentrations were significantly increased under 2xO{sub 3} across both age classes and canopy levels. Seedlings differed from adult trees in relevant physiological and biochemical traits in ozone response. The water-soluble antioxidative systems responded most sensitively to 2xO{sub 3} without regard of tree age or canopy position. - Ozone effects on leaf gas exchange and antioxidative systems of beech across tree age and canopy level were investigated in a free air exposure system.

  3. Effects of ozone on growth, yield and leaf gas exchange rates of two Bangladeshi cultivars of wheat (Triticum aestivum L.)

    International Nuclear Information System (INIS)

    Akhtar, Nahid; Yamaguchi, Masahiro; Inada, Hidetoshi; Hoshino, Daiki; Kondo, Taisuke; Izuta, Takeshi

    2010-01-01

    To clarify the effects of O 3 on crop plants cultivated in Bangladesh, two Bangladeshi wheat cultivars (Sufi and Bijoy) were grown in plastic boxes filled with Andisol and exposed daily to charcoal-filtered air or O 3 at 60 and 100 nl l -1 (10:00-17:00) from 13 March to 4 June 2008. The whole-plant dry mass and grain yield per plant of the two cultivars at the final harvest were significantly reduced by the exposure to O 3 . Although there was no significant effect of O 3 on stomatal diffusive conductance to H 2 O of flag leaf, net photosynthetic rate of the leaf was significantly reduced by the exposure to O 3. The sensitivity of growth, yield, yield components and leaf gas exchange rates to O 3 was not significantly different between the two cultivars. The results obtained in the present study suggest that ambient levels of O 3 may detrimentally affect wheat production in Bangladesh. - The exposure to ambient levels of ozone decreases growth, yield and leaf gas exchange rates of two Bangladeshi cultivars of wheat.

  4. Aerosol indirect effect on tropospheric ozone via lightning

    Science.gov (United States)

    Yuan, T.; Remer, L. A.; Bian, H.; Ziemke, J. R.; Albrecht, R. I.; Pickering, K. E.; Oreopoulos, L.; Goodman, S. J.; Yu, H.; Allen, D. J.

    2012-12-01

    Tropospheric ozone (O3) is a pollutant and major greenhouse gas and its radiative forcing is still uncertain. The unresolved difference between modeled and observed natural background O3 concentrations is a key source of the uncertainty. Here we demonstrate remarkable sensitivity of lightning activity to aerosol loading with lightning activity increasing more than 30 times per unit of aerosol optical depth over our study area. We provide observational evidence that indicates the observed increase in lightning activity is caused by the influx of aerosols from a volcano. Satellite data analyses suggest O3 is increased as a result of aerosol-induced increase in lightning and lightning produced NOx. Model simulations with prescribed lightning change corroborate the satellite data analysis. This aerosol-O3 connection is achieved via aerosol increasing lightning and thus lightning produced nitrogen oxides. This aerosol-lightning-ozone link provides a potential physical mechanism that may account for a part of the model-observation difference in background O3 concentration. More importantly, O3 production increase from this link is concentrated in the upper troposphere, where O3 is most efficient as a greenhouse gas. Both of these implications suggest a stronger O3 historical radiative forcing. This introduces a new pathway, through which increasing in aerosols from pre-industrial time to present day enhances tropospheric O3 production. Aerosol forcing thus has a warming component via its effect on O3 production. Sensitivity simulations suggest that 4-8% increase of tropospheric ozone, mainly in the tropics, is expected if aerosol-lighting-ozone link is parameterized, depending on the background emission scenario. We note, however, substantial uncertainties remain on the exact magnitude of aerosol effect on tropospheric O3 via lightning. The challenges for obtaining a quantitative global estimate of this effect are also discussed. Our results have significant implications

  5. Ozone visible symptoms and reduced root biomass in the subalpine species Pinus uncinata after two years of free-air ozone fumigation

    International Nuclear Information System (INIS)

    Díaz-de-Quijano, Maria; Schaub, Marcus; Bassin, Seraina; Volk, Matthias; Peñuelas, Josep

    2012-01-01

    Concentrations of ozone often exceed the thresholds of forest protection in the Pyrenees, but the effect of ozone on Pinus uncinata, the dominant species in subalpine forests in this mountainous range, has not yet been studied. We conducted an experiment of free-air ozone fumigation with saplings of P. uncinata fumigated with ambient O 3 (AOT40 May–Oct: 9.2 ppm h), 1.5 × O 3amb (AOT40 May–Oct: 19.2 ppm h), and 1.8 × O 3amb (AOT40 May–Oct: 32.5 ppm h) during two growing seasons. We measured chlorophyll content and fluorescence, visible injury, gas exchange, and above- and below-ground biomass. Increased exposures to ozone led to a higher occurrence and intensity of visible injury from O 3 and a 24–29% reduction of root biomass, which may render trees more susceptible to other stresses such as drought. P. uncinata is thus a species sensitive to O 3 , concentrations of which in the Pyrenees are already likely affecting this species. - Highlights: ► We assessed sensitivity to O 3 in Pinus uncinata using a free-air O 3 fumigation system. ► Occurrence and intensity of visible injury from O 3 correlated with exposure to O 3 . ► Increased O 3 reduced root biomass 24–29%. ► O 3 weakens P. uncinata, making it more susceptible to other stresses. ► Ambient [O 3 ] in the Pyrenees is thus likely to already be affecting P. uncinata stands. - Ozone concentrations similar to those in the Pyrenees affect Pinus uncinata by reducing root biomass and possibly increasing susceptibility to other stresses.

  6. Effect of ozone gas on the shear bond strength to enamel

    Directory of Open Access Journals (Sweden)

    Patrícia Teixeira Pires

    2013-04-01

    Full Text Available Ozone is an important disinfecting agent, however its influence on enamel adhesion has not yet been clarified. Objective: Evaluate the influence of ozone pretreatment on the shear strength of an etch-and-rinse and a self-etch system to enamel and analyze the respective failure modes. Material and Methods: Sixty sound bovine incisors were used. Specimens were randomly assigned to four experimental groups (n=15: Group G1 (Excite® with ozone and group G3 (AdheSE® with ozone were prepared with ozone gas from the HealOzone unit (Kavo® for 20 s prior to adhesion, and groups G2 (Excite® and G4 (AdheSE® were used as control. Teeth were bisected and polished to simulate a smear layer just before the application of the adhesive systems. The adhesives were applied according to the manufacturer's instructions to a standardized 3 mm diameter surface, and a composite (Synergy D6, Coltene Whaledent cylinder with 2 mm increments was build. Specimens were stored in 100% humidity for 24 h at 37°C and then subjected to a thermal cycling regimen of 500 cycles. Shear bond tests were performed with a Watanabe device in a universal testing machine at 5 mm/min. The failure mode was analyzed under scanning electron microscope. Means and standard deviation of shear bond strength (SBS were calculated and difference between the groups was analyzed using ANOVA, Kolmogorov-Smirnov, Levene and Bonferroni. Chi-squared statistical tests were used to evaluate the failure modes. Results: Mean bond strength values and failure modes were as follows: G1- 26.85±6.18 MPa (33.3% of adhesive cohesive failure; G2 - 27.95±5.58 MPa (53.8% of adhesive failures between enamel and adhesive; G3 - 15.0±3.84 MPa (77.8% of adhesive failures between enamel and adhesive and G4 - 13.1±3.68 MPa (36.4% of adhesive failures between enamel and adhesive. Conclusions: Shear bond strength values of both adhesives tested on enamel were not influenced by the previous application of ozone gas.

  7. OZONE PRODUCTION EFFICIENCY AND NOX DEPLETION IN AN URBAN PLUME: INTERPRETATION OF FIELD OBSERVATIONS AND IMPLICATIONS FOR EVALUATING O3-NOX-VOC SENSITIVITY

    Science.gov (United States)

    Ozone production efficiency (OPE) can be defined as the number of ozone (O3) molecules photochemically produced by a molecule of NOx (NO + NO2) before it is lost from the NOx - O3 cycle. Here, we consider observational and modeling techniques to evaluate various operational defi...

  8. Surface chemical and electronic properties of In{sub 2}O{sub 3} and In{sub 2}O{sub 3-x} nanoparticles for ozone detection

    Energy Technology Data Exchange (ETDEWEB)

    Himmerlich, Marcel; Krischok, Stefan [Institut fuer Physik and Institut fuer Mikro- und Nanotechnologien, TU Ilmenau, PF 100565, 98684 Ilmenau (Germany); Wang, Chunyu; Cimalla, Volker; Ambacher, Oliver [Fraunhofer-Institut fuer Angewandte Festkoerperphysik, Tullastr. 72, 79108 Freiburg im Breisgau (Germany)

    2012-07-01

    The electrical properties of indium oxide nanoparticle films can be tuned by variation of growth temperature as well as rapid thermal annealing, UV-irradiation and ozone-induced oxidation. The high O{sub 3} sensitivity of indium oxide thin films is strongly linked to their structural and electronic properties. Especially, the alteration of the surface electron accumulation plays an important role in the change of the film resistivity upon O{sub 3} interaction and UV-induced regeneration. We analyse the changes of indium oxide surface properties with respect to varying crystallinity using AFM, XPS and UPS. Compared to stoichiometric In{sub 2}O{sub 3} thin films, indium oxide nanoparticles exhibit a high oxygen deficiency and hence a high defect density at the nanoparticle surface. After growth, these defects are saturated by hydrocarbons due to the incomplete decomposition of precursors during low temperature MOCVD. The defects and the changed stoichiometry have impact on the surface band alignment. Upon ozone-induced oxidation and UV photoreduction a reversible change in band bending, surface dipole and O adsorption density is found and will be discussed in context with electron transport characteristics and thermal properties.

  9. Assessment of Ga2O3 technology

    Science.gov (United States)

    2016-09-15

    this article has given the emerging technology of GaN a valuable push in term of encouragement to stay with it while the painful technology development...Ga2O3 α-Ga2O3 β-Ga2O3 β-Ga2O3 β-Ga2O3 poly - Ga2O3 β-Ga2O3 Epi-layer Growth Method MBE (ozone) MBE (ozone) MBE (ozone) Mist-CVD MBE (ozone... pains to treat the wafer surface with BCl3 RIE to create charges at the interface. The gate contact was also barely a Schottky contact evidenced by

  10. Preparation and Study of NH3 Gas Sensing Behavior of Fe2O3 Doped ZnO Thick Film Resistors

    Directory of Open Access Journals (Sweden)

    D. R. Patil

    2006-08-01

    Full Text Available The preparation, characterization and gas sensing properties of pure and Fe2O3-ZnO mixed oxide semiconductors have been investigated. The mixed oxides were obtained by mixing ZnO and Fe2O3 in the proportion 1:1, 1:0.5 and 0.5:1. Pure ZnO was observed to be insensitive to NH3 gas. However, mixed oxides (with ZnO: Fe2O3 =1:0.5 were observed to be highly sensitive to ammonia gas. Upon exposure to NH3 gas, the barrier height of Fe2O3-ZnO intergranular regions decreases markedly due to the chemical transformation of Fe2O3 into well conducting ferric ammonium hydroxide leading to a drastic decrease in resistance. The crucial gas response was found to NH3 gas at 3500C and no cross response was observed to other hazardous and polluting gases. The effects of microstructure and doping concentration on the gas response, selectivity, response and recovery of the sensor in the presence of NH3 gas were studied and discussed.

  11. Semiconductor Sensors for Studying the Heterogeneous Destruction of Ozone at Low Concentrations

    Science.gov (United States)

    Obvintseva, L. A.; Sharova, T. B.; Avetisov, A. K.; Sukhareva, I. P.

    2018-06-01

    Prospects for the use of semiconductor resistive sensors in studies of the heterogeneous destruction of ozone at low concentrations (5-400 μg/m3) were shown. The influence of various factors (sensor temperature, gas flow rate, ozone concentration) on the results of ozone concentration measurements with sensors of various types was studied. Methods for forming a sensitive layer of In2O3(3% Fe2O3) sensors with specified parameters of calibration curves were proposed. The optimum conditions for the operation of sensors in a flow mode were formulated. The results of the study of heterogeneous destruction of ozone on microfiber polymer and natural disperse (sand, coals) materials obtained by the developed method were presented.

  12. An optimized two-step derivatization method for analyzing diethylene glycol ozonation products using gas chromatography and mass spectrometry.

    Science.gov (United States)

    Yu, Ran; Duan, Lei; Jiang, Jingkun; Hao, Jiming

    2017-03-01

    The ozonation of hydroxyl compounds (e.g., sugars and alcohols) gives a broad range of products such as alcohols, aldehydes, ketones, and carboxylic acids. This study developed and optimized a two-step derivatization procedure for analyzing polar products of aldehydes and carboxylic acids from the ozonation of diethylene glycol (DEG) in a non-aqueous environment using gas chromatography-mass spectrometry. Experiments based on Central Composite Design with response surface methodology were carried out to evaluate the effects of derivatization variables and their interactions on the analysis. The most desirable derivatization conditions were reported, i.e., oximation was performed at room temperature overnight with the o-(2,3,4,5,6-pentafluorobenzyl) hydroxyl amine to analyte molar ratio of 6, silylation reaction temperature of 70°C, reaction duration of 70min, and N,O-bis(trimethylsilyl)-trifluoroacetamide volume of 12.5μL. The applicability of this optimized procedure was verified by analyzing DEG ozonation products in an ultrafine condensation particle counter simulation system. Copyright © 2016. Published by Elsevier B.V.

  13. Statistical evaluation of the impact of shale gas activities on ozone pollution in North Texas.

    Science.gov (United States)

    Ahmadi, Mahdi; John, Kuruvilla

    2015-12-01

    Over the past decade, substantial growth in shale gas exploration and production across the US has changed the country's energy outlook. Beyond its economic benefits, the negative impacts of shale gas development on air and water are less well known. In this study the relationship between shale gas activities and ground-level ozone pollution was statistically evaluated. The Dallas-Fort Worth (DFW) area in north-central Texas was selected as the study region. The Barnett Shale, which is one the most productive and fastest growing shale gas fields in the US, is located in the western half of DFW. Hourly meteorological and ozone data were acquired for fourteen years from monitoring stations established and operated by the Texas Commission on Environmental Quality (TCEQ). The area was divided into two regions, the shale gas region (SGR) and the non-shale gas (NSGR) region, according to the number of gas wells in close proximity to each monitoring site. The study period was also divided into 2000-2006 and 2007-2013 because the western half of DFW has experienced significant growth in shale gas activities since 2007. An evaluation of the raw ozone data showed that, while the overall trend in the ozone concentration was down over the entire region, the monitoring sites in the NSGR showed an additional reduction of 4% in the annual number of ozone exceedance days than those in the SGR. Directional analysis of ozone showed that the winds blowing from areas with high shale gas activities contributed to higher ozone downwind. KZ-filtering method and linear regression techniques were used to remove the effects of meteorological variations on ozone and to construct long-term and short-term meteorologically adjusted (M.A.) ozone time series. The mean value of all M.A. ozone components was 8% higher in the sites located within the SGR than in the NSGR. These findings may be useful for understanding the overall impact of shale gas activities on the local and regional ozone

  14. Regional ozone impacts of increased natural gas use in the Texas power sector and development in the Eagle Ford shale.

    Science.gov (United States)

    Pacsi, Adam P; Kimura, Yosuke; McGaughey, Gary; McDonald-Buller, Elena C; Allen, David T

    2015-03-17

    The combined emissions and air quality impacts of electricity generation in the Texas grid and natural gas production in the Eagle Ford shale were estimated at various natural gas price points for the power sector. The increased use of natural gas in the power sector, in place of coal-fired power generation, drove reductions in average daily maximum 8 h ozone concentration of 0.6-1.3 ppb in northeastern Texas for a high ozone episode used in air quality planning. The associated increase in Eagle Ford upstream oil and gas production nitrogen oxide (NOx) emissions caused an estimated local increase, in south Texas, of 0.3-0.7 ppb in the same ozone metric. In addition, the potential ozone impacts of Eagle Ford emissions on nearby urban areas were estimated. On the basis of evidence from this work and a previous study on the Barnett shale, the combined ozone impact of increased natural gas development and use in the power sector is likely to vary regionally and must be analyzed on a case by case basis.

  15. Ozone impacts of natural gas development in the Haynesville Shale.

    Science.gov (United States)

    Kemball-Cook, Susan; Bar-Ilan, Amnon; Grant, John; Parker, Lynsey; Jung, Jaegun; Santamaria, Wilson; Mathews, Jim; Yarwood, Greg

    2010-12-15

    The Haynesville Shale is a subsurface rock formation located beneath the Northeast Texas/Northwest Louisiana border near Shreveport. This formation is estimated to contain very large recoverable reserves of natural gas, and during the two years since the drilling of the first highly productive wells in 2008, has been the focus of intensive leasing and exploration activity. The development of natural gas resources within the Haynesville Shale is likely to be economically important but may also generate significant emissions of ozone precursors. Using well production data from state regulatory agencies and a review of the available literature, projections of future year Haynesville Shale natural gas production were derived for 2009-2020 for three scenarios corresponding to limited, moderate, and aggressive development. These production estimates were then used to develop an emission inventory for each of the three scenarios. Photochemical modeling of the year 2012 showed increases in 2012 8-h ozone design values of up to 5 ppb within Northeast Texas and Northwest Louisiana resulting from development in the Haynesville Shale. Ozone increases due to Haynesville Shale emissions can affect regions outside Northeast Texas and Northwest Louisiana due to ozone transport. This study evaluates only near-term ozone impacts, but the emission inventory projections indicate that Haynesville emissions may be expected to increase through 2020.

  16. Godiva, a European Project for Ozone and Trace Gas Measurements from GOME

    Science.gov (United States)

    Goede, A. P. H.; Tanzi, C. P.; Aben, I.; Burrows, J. P.; Weber, M.; Perner, D.; Monks, P. S.; Llewellyn-Jones, D.; Corlett, G. K.; Arlander, D. W.; Platt, U.; Wagner, T.; Pfeilsticker, K.; Taalas, P.; Kelder, H.; Piters, A.

    GODIVA (GOME Data Interpretation, Validation and Application) is a European Commission project aimed at the improvement of GOME (Global Ozone Monitoring Experiment) data products. Existing data products include global ozone, NO2 columns and (ir)radiances. Advanced data products include O3 profiles, BrO, HCHO and OCIO columns. These data are validated by ground-based and balloon borne instruments. Calibration issues are investigated by in-flight monitoring using several complementary calibration sources, as well as an on-ground replica of the GOME instrument. The results will lead to specification of operational processing of the EUMETSAT ozone Satellite Application Facility as well as implementation of the improved and new GOME data products in the NILU database for use in the European THESEO (Third European Stratospheric Experiment on Ozone) campaign of 1999

  17. Novel Water Treatment Processes Based on Hybrid Membrane-Ozonation Systems: A Novel Ceramic Membrane Contactor for Bubbleless Ozonation of Emerging Micropollutants

    Directory of Open Access Journals (Sweden)

    Stylianos K. Stylianou

    2015-01-01

    Full Text Available The aim of this study is the presentation of novel water treatment systems based on ozonation combined with ceramic membranes for the treatment of refractory organic compounds found in natural water sources such as groundwater. This includes, firstly, a short review of possible membrane based hybrid processes for water treatment from various sources. Several practical and theoretical aspects for the application of hybrid membrane-ozonation systems are discussed, along with theoretical background regarding the transformation of target organic pollutants by ozone. Next, a novel ceramic membrane contactor, bringing into contact the gas phase (ozone and water phase without the creation of bubbles (bubbleless ozonation, is presented. Experimental data showing the membrane contactor efficiency for oxidation of atrazine, endosulfan, and methyl tert-butyl ether (MTBE are shown and discussed. Almost complete endosulfan degradation was achieved with the use of the ceramic contactor, whereas atrazine degradation higher than 50% could not be achieved even after 60 min of reaction time. Single ozonation of water containing MTBE could not result in a significant MTBE degradation. MTBE mineralization by O3/H2O2 combination increased at higher pH values and O3/H2O2 molar ratio of 0.2 reaching a maximum of around 65%.

  18. Ozone generation in a kHz-pulsed He-O2 capillary dielectric barrier discharge operated in ambient air

    Science.gov (United States)

    Sands, Brian L.; Ganguly, Biswa N.

    2013-12-01

    The generation of reactive oxygen species using nonequilibrium atmospheric pressure plasma jet devices has been a subject of recent interest due to their ability to generate localized concentrations from a compact source. To date, such studies with plasma jet devices have primarily utilized radio-frequency excitation. In this work, we characterize ozone generation in a kHz-pulsed capillary dielectric barrier discharge configuration comprised of an active discharge plasma jet operating in ambient air that is externally grounded. The plasma jet flow gas was composed of helium with an admixture of up to 5% oxygen. A unipolar voltage pulse train with a 20 ns pulse risetime was used to drive the discharge at repetition rates between 2-25 kHz. Using UVLED absorption spectroscopy centered at 255 nm near the Hartley-band absorption peak, ozone was detected over 1 cm from the capillary axis. We observed roughly linear scaling of ozone production with increasing pulse repetition rate up to a "turnover frequency," beyond which ozone production steadily dropped and discharge current and 777 nm O(5P→5S°) emission sharply increased. The turnover in ozone production occurred at higher pulse frequencies with increasing flow rate and decreasing applied voltage with a common energy density of 55 mJ/cm3 supplied to the discharge. The limiting energy density and peak ozone production both increased with increasing O2 admixture. The power dissipated in the discharge was obtained from circuit current and voltage measurements using a modified parallel plate dielectric barrier discharge circuit model and the volume-averaged ozone concentration was derived from a 2D ozone absorption measurement. From these measurements, the volume-averaged efficiency of ozone production was calculated to be 23 g/kWh at conditions for peak ozone production of 41 mg/h at 11 kV applied voltage, 3% O2, 2 l/min flow rate, and 13 kHz pulse repetition rate, with 1.79 W dissipated in the discharge.

  19. Stratospheric Aerosol and Gas Experiment II measurements of the quasi-biennial oscillations in ozone and nitrogen dioxide

    Science.gov (United States)

    Zawodny, Joseph M.; Mccormick, M. P.

    1991-01-01

    The first measurements ever to show a quasi-biennial oscillation (QBO) in NO2 have been made by the Stratospheric Aerosol and Gas Experiment II) (SAGE II) and are presented in this work along with observations of the well-known QBO in stratospheric ozone. The SAGE II instrument was launched aboard the Earth Radiation Budget satellite near the end of 1984. Measurements of ozone and nitrogen dioxide through early 1990 are analyzed for the presence of a quasi-biennial oscillation. The measurements show the global extent of both the O3 and NO2 QBO in the 25- to 40-km region of the stratosphere. The SAGE II QBO results for ozone compare favorably to theory and previous measurements. The QBO in NO2 is found to be consistent with the vertical and horizontal transport of NOy. Both species exhibit a QBO at extratropical latitudes consistent with strong meridional transport into the winter hemisphere.

  20. Ozone Production Using Pulsed Dielectric Barrier Discharge in Oxygen

    OpenAIRE

    Samaranayake, W. J. M.; Miyahara, Y.; Namihira, T.; Katsuki, S.; Hackam, R.; Akiyama, H.; ナミヒラ, タカオ; カツキ, スナオ; アキヤマ, ヒデノリ; 浪平, 隆男; 勝木, 淳; 秋山, 秀典

    2000-01-01

    The production of ozone was investigated using a dielectric barrier discharge in oxygen, and employing short-duration pulsed power. The dependence of the ozone concentration (parts per million, ppm) and ozone production yield (g(O3)/kWh) on the peak pulsed voltage (17.5 to 57.9 kV) and the pulse repetition rate (25 to 400 pulses/s, pps) were investigated. In the present study, the following parameters were kept constant: a pressure of 1.01×105 Pa, a temperature of 26±4°C a gas flow rate of 3....

  1. Distinct transcriptional profiles of ozone stress in soybean (Glycine max) flowers and pods

    Science.gov (United States)

    Tropospheric ozone (O3) is a secondary air pollutant and anthropogenic greenhouse gas. Concentrations of tropospheric O3 ([O3] have more than doubled since the Industrial Revolution, and are high enough to damage plant productivity. Soybean (Glycine max L. Merr.) is the world's most important legume...

  2. Fabrication of a P3HT-ZnO Nanowires Gas Sensor Detecting Ammonia Gas

    Directory of Open Access Journals (Sweden)

    Chin-Guo Kuo

    2017-12-01

    Full Text Available In this study, an organic-inorganic semiconductor gas sensor was fabricated to detect ammonia gas. An inorganic semiconductor was a zinc oxide (ZnO nanowire array produced by atomic layer deposition (ALD while an organic material was a p-type semiconductor, poly(3-hexylthiophene (P3HT. P3HT was suitable for the gas sensing application due to its high hole mobility, good stability, and good electrical conductivity. In this work, P3HT was coated on the zinc oxide nanowires by the spin coating to form an organic-inorganic heterogeneous interface of the gas sensor for detecting ammonia gas. The thicknesses of the P3HT were around 462 nm, 397 nm, and 277 nm when the speeds of the spin coating were 4000 rpm, 5000 rpm, and 6000 rpm, respectively. The electrical properties and sensing characteristics of the gas sensing device at room temperature were evaluated by Hall effect measurement and the sensitivity of detecting ammonia gas. The results of Hall effect measurement for the P3HT-ZnO nanowires semiconductor with 462 nm P3HT film showed that the carrier concentration and the mobility were 2.7 × 1019 cm−3 and 24.7 cm2∙V−1∙s−1 respectively. The gas sensing device prepared by the P3HT-ZnO nanowires semiconductor had better sensitivity than the device composed of the ZnO film and P3HT film. Additionally, this gas sensing device could reach a maximum sensitivity around 11.58 per ppm.

  3. O3 flux-related responsiveness of photosynthesis, respiration, and stomatal conductance of adult Fagus sylvatica to experimentally enhanced free-air O3 exposure.

    Science.gov (United States)

    Löw, M; Häberle, K-H; Warren, C R; Matyssek, R

    2007-03-01

    Knowledge of responses of photosynthesis, respiration, and stomatal conductance to cumulative ozone uptake (COU) is still scarce, and this is particularly the case for adult trees. The effect of ozone (O(3)) exposure on trees was examined with 60-year-old beech trees (FAGUS SYLVATICA) at a forest site of southern Germany. Trees were exposed to the ambient O(3) regime (1 x O(3)) or an experimentally elevated twice-ambient O(3) regime (2 x O(3)). The elevated 2 x O (3) regime was provided by means of a free-air O(3) canopy exposure system. The hypotheses were tested that (1) gas exchange is negatively affected by O(3) and (2) the effects of O(3) are dose-dependent and thus the sizes of differences between treatments are positively related to COU. Gas exchange (light-saturated CO(2) uptake rate A(max), stomatal conductance g (s), maximum rate of carboxylation Vc (max), ribulose-1,5-bisphosphate turnover limited rate of photosynthesis J (max), CO(2) compensation point CP, apparent quantum yield of net CO(2) uptake AQ, carboxylation efficiency CE, day- and nighttime respiration) and chlorophyll fluorescence (electron transfer rate, ETR) were measured IN SITU on attached sun and shade leaves. Measurements were made periodically throughout the growing seasons of 2003 (an exceptionally dry year) and 2004 (a year with average rainfall). In 2004 Vc(max), J(max), and CE were lower in trees receiving 2 x O(3) compared with the ambient O(3) regime (1 x O(3)). Treatment differences in Vc (max), J (max), CE were rather small in 2004 (i.e., parameter levels were lower by 10 - 30 % in 2 x O(3) than 1 x O(3)) and not significant in 2003. In 2004 COU was positively correlated with the difference between treatments in A (max), g (s), and ETR (i.e., consistent with the dose-dependence of O(3)'s deleterious effects). However, in 2003, differences in A(max), g (s), and ETR between the two O(3) regimes were smaller at the end of the dry summer 2003 (i.e., when COU was greatest). The

  4. Effect of ozone gas processing on physical and chemical properties ...

    African Journals Online (AJOL)

    Purpose: To investigate the effects of ozone treatment on chemical and physical properties of wheat (Triticum aestivum L.) gluten, glutenin and gliadin. Methods: Wheat proteins isolated from wheat flour were treated with ozone gas. The physical and chemical properties of gluten proteins were investigated after treatment ...

  5. Evaluating A Priori Ozone Profile Information Used in TEMPO Tropospheric Ozone Retrievals

    Science.gov (United States)

    Johnson, Matthew S.; Sullivan, John T.; Liu, Xiong; Newchurch, Mike; Kuang, Shi; McGee, Thomas J.; Langford, Andrew O'Neil; Senff, Christoph J.; Leblanc, Thierry; Berkoff, Timothy; hide

    2016-01-01

    Ozone (O3) is a greenhouse gas and toxic pollutant which plays a major role in air quality. Typically, monitoring of surface air quality and O3 mixing ratios is primarily conducted using in situ measurement networks. This is partially due to high-quality information related to air quality being limited from space-borne platforms due to coarse spatial resolution, limited temporal frequency, and minimal sensitivity to lower tropospheric and surface-level O3. The Tropospheric Emissions: Monitoring of Pollution (TEMPO) satellite is designed to address these limitations of current space-based platforms and to improve our ability to monitor North American air quality. TEMPO will provide hourly data of total column and vertical profiles of O3 with high spatial resolution to be used as a near-real-time air quality product. TEMPO O3 retrievals will apply the Smithsonian Astrophysical Observatory profile algorithm developed based on work from GOME, GOME-2, and OMI. This algorithm uses a priori O3 profile information from a climatological data-base developed from long-term ozone-sonde measurements (tropopause-based (TB) O3 climatology). It has been shown that satellite O3 retrievals are sensitive to a priori O3 profiles and covariance matrices. During this work we investigate the climatological data to be used in TEMPO algorithms (TB O3) and simulated data from the NASA GMAO Goddard Earth Observing System (GEOS-5) Forward Processing (FP) near-real-time (NRT) model products. These two data products will be evaluated with ground-based lidar data from the Tropospheric Ozone Lidar Network (TOLNet) at various locations of the US. This study evaluates the TB climatology, GEOS-5 climatology, and 3-hourly GEOS-5 data compared to lower tropospheric observations to demonstrate the accuracy of a priori information to potentially be used in TEMPO O3 algorithms. Here we present our initial analysis and the theoretical impact on TEMPO retrievals in the lower troposphere.

  6. Evaluating A Priori Ozone Profile Information Used in TEMPO Tropospheric Ozone Retrievals

    Science.gov (United States)

    Johnson, M. S.; Sullivan, J. T.; Liu, X.; Newchurch, M.; Kuang, S.; McGee, T. J.; Langford, A. O.; Senff, C. J.; Leblanc, T.; Berkoff, T.; Gronoff, G.; Chen, G.; Strawbridge, K. B.

    2016-12-01

    Ozone (O3) is a greenhouse gas and toxic pollutant which plays a major role in air quality. Typically, monitoring of surface air quality and O3 mixing ratios is primarily conducted using in situ measurement networks. This is partially due to high-quality information related to air quality being limited from space-borne platforms due to coarse spatial resolution, limited temporal frequency, and minimal sensitivity to lower tropospheric and surface-level O3. The Tropospheric Emissions: Monitoring of Pollution (TEMPO) satellite is designed to address these limitations of current space-based platforms and to improve our ability to monitor North American air quality. TEMPO will provide hourly data of total column and vertical profiles of O3 with high spatial resolution to be used as a near-real-time air quality product. TEMPO O3 retrievals will apply the Smithsonian Astrophysical Observatory profile algorithm developed based on work from GOME, GOME-2, and OMI. This algorithm uses a priori O3 profile information from a climatological data-base developed from long-term ozone-sonde measurements (tropopause-based (TB) O3 climatology). It has been shown that satellite O3 retrievals are sensitive to a priori O3 profiles and covariance matrices. During this work we investigate the climatological data to be used in TEMPO algorithms (TB O3) and simulated data from the NASA GMAO Goddard Earth Observing System (GEOS-5) Forward Processing (FP) near-real-time (NRT) model products. These two data products will be evaluated with ground-based lidar data from the Tropospheric Ozone Lidar Network (TOLNet) at various locations of the US. This study evaluates the TB climatology, GEOS-5 climatology, and 3-hourly GEOS-5 data compared to lower tropospheric observations to demonstrate the accuracy of a priori information to potentially be used in TEMPO O3 algorithms. Here we present our initial analysis and the theoretical impact on TEMPO retrievals in the lower troposphere.

  7. Mechanism for enhanced degradation of clofibric acid in aqueous by catalytic ozonation over MnO{sub x}/SBA-15

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Qiangqiang; Wang, Yu [School of Chemistry & Environment, South China Normal University, Guangzhou 510006 (China); Li, Laisheng, E-mail: llsh@scnu.edu.cn [School of Chemistry & Environment, South China Normal University, Guangzhou 510006 (China); Bing, Jishuai [Key Laboratory of Aquatic Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Wang, Yingxin; Yan, Huihua [School of Chemistry & Environment, South China Normal University, Guangzhou 510006 (China)

    2015-04-09

    Highlights: • Clofibric acid (CA) is efficiently mineralized by O{sub 3}/MnO{sub x}/SBA-15. • Adsorption of CA and its intermediates on MnO{sub x}/SBA-15 is proved unimportant. • Initiation of hydroxyl radicals (·OH) is enhanced in O{sub 3}/MnO{sub x}/SBA-15. • Uniformly distributed MnO{sub x} accounts for the high activity of MnO{sub x}/SBA-15. • Degradation routes of CA in ozonation alone and catalytic ozonation are proposed. - Abstract: Comparative experiments were conducted to investigate the catalytic ability of MnO{sub x}/SBA-15 for the ozonation of clofibric acid (CA) and its reaction mechanism. Compared with ozonation alone, the degradation of CA was barely enhanced, while the removal of TOC was significantly improved by catalytic ozonation (O{sub 3}/MnO{sub x}/SBA-15). Adsorption of CA and its intermediates by MnO{sub x}/SBA-15 was proved unimportant in O{sub 3}/MnO{sub x}/SBA-15 due to the insignificant adsorption of CA and little TOC variation after ceasing ozone in stopped-flow experiment. The more remarkably inhibition effect of sodium bisulfite (NaHSO{sub 3}) on the removal of TOC in catalytic ozonation than in ozonation alone elucidated that MnO{sub x}/SBA-15 facilitated the generation of hydroxyl radicals (·OH), which was further verified by electron spin-resonance spectroscopy (ESR). Highly dispersed MnO{sub x} on SBA-15 were believed to be the main active component in MnO{sub x}/SBA-15. Some intermediates were indentified and different degradation routes of CA were proposed in both ozonation alone and catalytic ozonation. The amounts of small molecular carboxylic acids (i.e., formic acid (FA), acetic acid (AA) and oxalic acid (OA)) generated in catalytic ozonation were lower than in ozonation alone, resulting from the generation of more ·OH.

  8. Cr2O3 nanoparticle-functionalized WO3 nanorods for ethanol gas sensors

    Science.gov (United States)

    Choi, Seungbok; Bonyani, Maryam; Sun, Gun-Joo; Lee, Jae Kyung; Hyun, Soong Keun; Lee, Chongmu

    2018-02-01

    Pristine WO3 nanorods and Cr2O3-functionalized WO3 nanorods were synthesized by the thermal evaporation of WO3 powder in an oxidizing atmosphere, followed by spin-coating of the nanowires with Cr2O3 nanoparticles and thermal annealing in an oxidizing atmosphere. Scanning electron microscopy was used to examine the morphological features and X-ray diffraction was used to study the crystallinity and phase formation of the synthesized nanorods. Gas sensing tests were performed at different temperatures in the presence of test gases (ethanol, acetone, CO, benzene and toluene). The Cr2O3-functionalized WO3 nanorods sensor showed a stronger response to these gases relative to the pristine WO3 nanorod sensor. In particular, the response of the Cr2O3-functionalized WO3 nanorods sensor to 200 ppm ethanol gas was 5.58, which is approximately 4.4 times higher that of the pristine WO3 nanorods sensor. Furthermore, the Cr2O3-functionalized WO3 nanorods sensor had a shorter response and recovery time. The pristine WO3 nanorods had no selectivity toward ethanol gas, whereas the Cr2O3-functionalized WO3 nanorods sensor showed good selectivity toward ethanol. The gas sensing mechanism of the Cr2O3-functionalized WO3 nanorods sensor toward ethanol is discussed in detail.

  9. Physiological and foliar injury responses of Prunus serotina, Fraxinus americana, and Acer rubrum seedlings to varying soil moisture and ozone

    International Nuclear Information System (INIS)

    Schaub, M.; Skelly, J.M.; Steiner, K.C.; Davis, D.D.; Pennypacker, S.P.; Zhang, J.; Ferdinand, J.A.; Savage, J.E.; Stevenson, R.E.

    2003-01-01

    High soil water availability favors ozone uptake, increases foliar injury, and exacerbates the negative ozone effect on gas exchange of seedlings of deciduous tree species. - Sixteen black cherry (Prunus serotina, Ehrh.), 10 white ash (Fraxinus americana, L.) and 10 red maple (Acer rubrum, L.) 1-year old seedlings were planted per plot in 1997 on a former nursery bed within 12 open-top chambers and six open plots. Seedlings were exposed to three different ozone scenarios (ambient air: 100% O 3 ; non-filtered air: 98% ambient O 3 ; charcoal-filtered air: 50% ambient O 3 ) within each of two different water regimes (nine plots irrigated, nine plots non-irrigated) during three growing seasons. During the 1998 and 1999 growing season, leaf gas exchange, plant water relations, and foliar injury were measured. Climatic data, ambient- and chamber-ozone-concentrations were monitored. We found that seedlings grown under irrigated conditions had similar (in 1998) but significantly higher gas exchange rates (in 1999) than seedlings grown within non-irrigated plots among similar ozone exposures. Cherry and ash had similar ozone uptake but cherry developed more ozone-induced injury (<34% affected leaf area, LAA) than ash (<5% LAA), while maple rarely showed foliar injury, indicating the species differed in ozone sensitivity. Significantly more severe injury on seedlings grown under irrigated conditions than seedlings grown under non-irrigated conditions demonstrated that soil moisture altered seedling responses to ambient ozone exposures

  10. Ozone Decomposition on the Surface of Metal Oxide Catalyst

    Directory of Open Access Journals (Sweden)

    Batakliev Todor Todorov

    2014-12-01

    Full Text Available The catalytic decomposition of ozone to molecular oxygen over catalytic mixture containing manganese, copper and nickel oxides was investigated in the present work. The catalytic activity was evaluated on the basis of the decomposition coefficient which is proportional to ozone decomposition rate, and it has been already used in other studies for catalytic activity estimation. The reaction was studied in the presence of thermally modified catalytic samples operating at different temperatures and ozone flow rates. The catalyst changes were followed by kinetic methods, surface measurements, temperature programmed reduction and IR-spectroscopy. The phase composition of the metal oxide catalyst was determined by X-ray diffraction. The catalyst mixture has shown high activity in ozone decomposition at wet and dry O3/O2 gas mixtures. The mechanism of catalytic ozone degradation was suggested.

  11. Effect of ozone treatment on the optical and electrical properties of HfSiO thin films

    International Nuclear Information System (INIS)

    Geng, Yang; Yang, Wen; Zhu, Shang-Bin; Zhang, Yuan; Sun, Qing-Qing; Lu, Hong-Liang; Zhang, David Wei

    2014-01-01

    The effect of room temperature ozone oxidation treatment on thin HfSiO film grown by atomic layer deposition (ALD) has been investigated. The optical and electrical properties with different post-ozone oxidation time were characterized. The evolution of ozone interacting with HfSiO films was clearly illuminated. Ozone can repair the lossy chemical bonds and vacancies, resulting in the improvement of packing density and polarizability of HfSiO films. With more ozone entering the HfSiO films, the refractive index, dielectric constant, and interfacial properties can be greatly upgraded. Furthermore, the frequency dispersion of ALD-HfSiO film can be improved after O 3 treatment time for 8 min. (orig.)

  12. Evaluation and Comparison of Chemiluminescence and UV Photometric Methods for Measuring Ozone Concentrations in Ambient Air

    Science.gov (United States)

    The current Federal Reference Method (FRM) for measuring concentrations of ozone in ambient air is based on the dry, gas-phase, chemiluminescence reaction between ethylene (C2H4) and any ozone (O3) that may be p...

  13. Ozone adsorption on carbon nanoparticles

    Science.gov (United States)

    Chassard, Guillaume; Gosselin, Sylvie; Visez, Nicolas; Petitprez, Denis

    2014-05-01

    Carbonaceous particles produced by incomplete combustion or thermal decomposition of hydrocarbons are ubiquitous in the atmosphere. On these particles are adsorbed hundreds of chemical species. Those of great concern to health are polycyclic aromatic hydrocarbons (PAHs). During atmospheric transport, particulate PAHs react with gaseous oxidants. The induced chemical transformations may change toxicity and hygroscopicity of these potentially inhalable particles. The interaction between ozone and carbon particles has been extensively investigated in literature. However ozone adsorption and surface reaction mechanisms are still ambiguous. Some studies described a fast catalytic decomposition of ozone initiated by an atomic oxygen chemisorption followed by a molecular oxygen release [1-3]. Others suggested a reversible ozone adsorption according to Langmuir-type behaviour [4,5]. The aim of this present study is a better understanding of ozone interaction with carbon surfaces. An aerosol of carbon nanoparticles was generated by flowing synthetic air in a glass tube containing pure carbon (primary particles studied. Accordingly to literature, it has been observed that the number of gas-phase ozone molecules lost per unit particle surface area tends towards a plateau for high ozone concentration suggesting a reversible ozone adsorption according to a Langmuir mechanism. We calculated the initial reaction probability between O3 and carbon particles.An initial uptake coefficient of 1.10-4 was obtained. Similar experiments were realized by selecting the particles size with a differential mobility analyser. We observed a strong size-dependent increase in reactivity with the decrease of particles size. This result is relevant for the health issues. Indeed the smallest particles are most likely to penetrate deep into the lungs. Competitive reactions between ozone and other species like H2O or atomic oxygen were also considered. Oxygen atoms were generated by photolysis of O3

  14. Surface ozone in the Colorado northern Front Range and the influence of oil and gas development during FRAPPE/DISCOVER-AQ in summer 2014

    Directory of Open Access Journals (Sweden)

    L. C. Cheadle

    2017-11-01

    Full Text Available High mixing ratios of ozone (O3 in the northern Front Range (NFR of Colorado are not limited to the urban Denver area but were also observed in rural areas where oil and gas activity is the primary source of O3 precursors. On individual days, oil and gas O3 precursors can contribute in excess of 30 ppb to O3 growth and can lead to exceedances of the EPA O3 National Ambient Air Quality Standard. Data used in this study were gathered from continuous surface O3 monitors for June–August 2013–2015 as well as additional flask measurements and mobile laboratories that were part of the FRAPPE/DISCOVER-AQ field campaign of July–August 2014. Overall observed O3 levels during the summer of 2014 were lower than in 2013, likely due to cooler and damper weather than an average summer. This study determined the median hourly surface O3 mixing ratio in the NFR on summer days with limited photochemical production to be approximately 45–55 ppb. Mobile laboratory and flask data collected on three days provide representative case studies of different O3 formation environments in and around Greeley, Colorado. Observations of several gases (including methane, ethane, CO, nitrous oxide along with O3 are used to identify sources of O3 precursor emissions. A July 23 survey demonstrated low O3 (45–60 ppb while August 3 and August 13 surveys recorded O3 levels of 75–80 ppb or more. August 3 exemplifies influence of moderate urban and high oil and gas O3 precursor emissions. August 13 demonstrates high oil and gas emissions, low agricultural emissions, and CO measurements that were well correlated with ethane from oil and gas, suggesting an oil and gas related activity as a NOx and O3 precursor source. Low isoprene levels indicated that they were not a significant contributor to O3 precursors measured during the case studies.

  15. Comparison of Efficiencies and Mechanisms of Catalytic Ozonation of Recalcitrant Petroleum Refinery Wastewater by Ce, Mg, and Ce-Mg Oxides Loaded Al2O3

    Directory of Open Access Journals (Sweden)

    Chunmao Chen

    2017-02-01

    Full Text Available The use of catalytic ozonation processes (COPs for the advanced treatment of recalcitrant petroleum refinery wastewater (RPRW is rapidly expanding. In this study, magnesium (Mg, cerium (Ce, and Mg-Ce oxide-loaded alumina (Al2O3 were developed as cost efficient catalysts for ozonation treatment of RPRW, having performance metrics that meet new discharge standards. Interactions between the metal oxides and the Al2O3 support influence the catalytic properties, as well as the efficiency and mechanism. Mg-Ce/Al2O3 (Mg-Ce/Al2O3-COP reduced the chemical oxygen demand by 4.7%, 4.1%, 6.0%, and 17.5% relative to Mg/Al2O3-COP, Ce/Al2O3-COP, Al2O3-COP, and single ozonation, respectively. The loaded composite metal oxides significantly increased the hydroxyl radical-mediated oxidation. Surface hydroxyl groups (–OHs are the dominant catalytic active sites on Al2O3. These active surface –OHs along with the deposited metal oxides (Mg2+ and/or Ce4+ increased the catalytic activity. The Mg-Ce/Al2O3 catalyst can be economically produced, has high efficiency, and is stable under acidic and alkaline conditions.

  16. Chemical processes related to net ozone tendencies in the free troposphere

    Science.gov (United States)

    Bozem, Heiko; Butler, Tim M.; Lawrence, Mark G.; Harder, Hartwig; Martinez, Monica; Kubistin, Dagmar; Lelieveld, Jos; Fischer, Horst

    2017-09-01

    Ozone (O3) is an important atmospheric oxidant, a greenhouse gas, and a hazard to human health and agriculture. Here we describe airborne in situ measurements and model simulations of O3 and its precursors during tropical and extratropical field campaigns over South America and Europe, respectively. Using the measurements, net ozone formation/destruction tendencies are calculated and compared to 3-D chemistry-transport model simulations. In general, observation-based net ozone tendencies are positive in the continental boundary layer and the upper troposphere at altitudes above ˜ 6 km in both environments. On the other hand, in the marine boundary layer and the middle troposphere, from the top of the boundary layer to about 6-8 km altitude, net O3 destruction prevails. The ozone tendencies are controlled by ambient concentrations of nitrogen oxides (NOx). In regions with net ozone destruction the available NOx is below the threshold value at which production and destruction of O3 balance. While threshold NO values increase with altitude, in the upper troposphere NOx concentrations are generally higher due to the integral effect of convective precursor transport from the boundary layer, downward transport from the stratosphere and NOx produced by lightning. Two case studies indicate that in fresh convective outflow of electrified thunderstorms net ozone production is enhanced by a factor 5-6 compared to the undisturbed upper tropospheric background. The chemistry-transport model MATCH-MPIC generally reproduces the pattern of observation-based net ozone tendencies but mostly underestimates the magnitude of the net tendency (for both net ozone production and destruction).

  17. Validation of MIPAS IMK/IAA V5R_O3_224 ozone profiles

    Directory of Open Access Journals (Sweden)

    A. Laeng

    2014-11-01

    Full Text Available We present the results of an extensive validation program of the most recent version of ozone vertical profiles retrieved with the IMK/IAA (Institute for Meteorology and Climate Research/Instituto de Astrofísica de Andalucía MIPAS (Michelson Interferometer for Passive Atmospheric Sounding research level 2 processor from version 5 spectral level 1 data. The time period covered corresponds to the reduced spectral resolution period of the MIPAS instrument, i.e., January 2005–April 2012. The comparison with satellite instruments includes all post-2005 satellite limb and occultation sensors that have measured the vertical profiles of tropospheric and stratospheric ozone: ACE-FTS, GOMOS, HALOE, HIRDLS, MLS, OSIRIS, POAM, SAGE II, SCIAMACHY, SMILES, and SMR. In addition, balloon-borne MkIV solar occultation measurements and ground-based Umkehr measurements have been included, as well as two nadir sensors: IASI and SBUV. For each reference data set, bias determination and precision assessment are performed. Better agreement with reference instruments than for the previous data version, V5R_O3_220 (Laeng et al., 2014, is found: the known high bias around the ozone vmr (volume mixing ratio peak is significantly reduced and the vertical resolution at 35 km has been improved. The agreement with limb and solar occultation reference instruments that have a known small bias vs. ozonesondes is within 7% in the lower and middle stratosphere and 5% in the upper troposphere. Around the ozone vmr peak, the agreement with most of the satellite reference instruments is within 5%; this bias is as low as 3% for ACE-FTS, MLS, OSIRIS, POAM and SBUV.

  18. Investigation of the adsorption of ozone molecules on TiO2/WSe2 nanocomposites by DFT computations: Applications to gas sensor devices

    Science.gov (United States)

    Abbasi, Amirali; Sardroodi, Jaber Jahanbin

    2018-04-01

    The adsorption of O3 molecule on the undoped and N-doped TiO2/WSe2 nanocomposites was studied using first principles density functional theory calculations. O3 interaction with TiO2/WSe2 nanocomposites is considered so as to investigate WSe2 effects on the adsorption process. WSe2 favors the adsorption of O3 on TiO2 particles. In other words, WSe2 is conducive to the interaction of O3 molecule with fivefold coordinated titanium sites of TiO2. The effects of vdW interactions were taken into account in order to obtain equilibrium geometries of O3 molecules at TiO2/WSe2 interfaces. For all adsorption configurations, the binding site was positioned on the fivefold coordinated titanium atoms. The results show that the interactions between O3 and TiO2 in TiO2/WSe2 nanocomposites are stronger than those between O3 and bare TiO2, suggesting that WSe2 helps to strengthen the interaction of ozone molecule with TiO2 particles. The results also indicate that the adsorption of the O3 molecule on the N-doped TiO2/WSe2 nanocomposite is more energetically favorable than the adsorption of O3 on the pristine one, representing that the N-doped nanocomposites are more sensitive than the undoped ones. Our DFT results clearly show that the N-doped TiO2/WSe2 nanocomposite would be a promising O3 gas sensor. The electronic structure of the adsorption system was also investigated, including analysis of the total and projected density of states, and charge density differences of the TiO2/WSe2 with adsorbed O3 molecules. The charge density difference calculations indicate that the charges were accumulated over the adsorbed O3 molecule. Besides, the N-doped nanocomposites have better sensing response than the pristine ones. This work was devoted to provide the theory basis for the design and development of novel and advanced O3 sensors based on modified TiO2/WSe2 nanocomposites.

  19. Effect of operational and water quality parameters on conventional ozonation and the advanced oxidation process O3/H2O2: Kinetics of micropollutant abatement, transformation product and bromate formation in a surface water.

    Science.gov (United States)

    Bourgin, Marc; Borowska, Ewa; Helbing, Jakob; Hollender, Juliane; Kaiser, Hans-Peter; Kienle, Cornelia; McArdell, Christa S; Simon, Eszter; von Gunten, Urs

    2017-10-01

    The efficiency of ozone-based processes under various conditions was studied for the treatment of a surface water (Lake Zürich water, Switzerland) spiked with 19 micropollutants (pharmaceuticals, pesticides, industrial chemical, X-ray contrast medium, sweetener) each at 1 μg L -1 . Two pilot-scale ozonation reactors (4-5 m 3  h -1 ), a 4-chamber reactor and a tubular reactor, were investigated by either conventional ozonation and/or the advanced oxidation process (AOP) O 3 /H 2 O 2 . The effects of selected operational parameters, such as ozone dose (0.5-3 mg L -1 ) and H 2 O 2 dose (O 3 :H 2 O 2  = 1:3-3:1 (mass ratio)), and selected water quality parameters, such as pH (6.5-8.5) and initial bromide concentration (15-200 μg L -1 ), on micropollutant abatement and bromate formation were investigated. Under the studied conditions, compounds with high second-order rate constants k O3 >10 4  M -1  s -1 for their reaction with ozone were well abated (>90%) even for the lowest ozone dose of 0.5 mg L -1 . Conversely, the abatement efficiency of sucralose, which only reacts with hydroxyl radicals (OH), varied between 19 and 90%. Generally, the abatement efficiency increased with higher ozone doses and higher pH and lower bromide concentrations. H 2 O 2 addition accelerated the ozone conversion to OH, which enables a faster abatement of ozone-resistant micropollutants. Interestingly, the abatement of micropollutants decreased with higher bromide concentrations during conventional ozonation due to competitive ozone-consuming reactions, except for lamotrigine, due to the suspected reaction of HOBr/OBr - with the primary amine moieties. In addition to the abatement of micropollutants, the evolution of the two main transformation products (TPs) of hydrochlorothiazide (HCTZ) and tramadol (TRA), chlorothiazide (CTZ) and tramadol N-oxide (TRA-NOX), respectively, was assessed by chemical analysis and kinetic modeling. Both selected TPs were quickly formed initially

  20. Detoxification and repair process of ozone injury: From O3 uptake to gene expression adjustment

    International Nuclear Information System (INIS)

    Castagna, A.; Ranieri, A.

    2009-01-01

    Plants react to O 3 threat by setting up a variety of defensive strategies involving the co-ordinated modulation of stress perception, signalling and metabolic responses. Although stomata largely controls O 3 uptake, differences in O 3 tolerance cannot always be ascribed to changes in stomatal conductance but cell protective and repair processes should be taken into account. O 3 -driven ROS production in the apoplast induces a secondary, active, self-propagating generation of ROS, whose levels must be finely tuned, by many enzymatic and non-enzymatic antioxidant systems, to induce gene activation without determining uncontrolled cell death. Additional signalling molecules, as ethylene, jasmonic and salicylic acid are also crucial to determine the spreading and the containment of leaf lesions. The main recent results obtained on O 3 sensing, signal transduction, ROS formation and detoxification mechanisms are here discussed. - A dissection of the complex network of interacting mechanisms which determine the cell fate under ozone stress.

  1. Shelf Life Determination of Fresh Blueberries (Vaccinium corymbosum Stored under Controlled Atmosphere and Ozone

    Directory of Open Access Journals (Sweden)

    Anibal Concha-Meyer

    2015-01-01

    Full Text Available Fresh blueberries are commonly stored and transported by refrigeration in controlled atmospheres to protect shelf life for long periods of storage. Ozone is an antimicrobial gas that can extend shelf life and protect fruit from microbial contamination. Shelf life of fresh highbush blueberries was determined over 10-day storage in isolated cabinets at 4°C or 12°C under different atmosphere conditions, including air (control; 5% O2 : 15% CO2 : 80% N2 (controlled atmosphere storage (CAS; and ozone gas (O3 4 ppm at 4°C or 2.5 ppm at 12°C, at high relative humidity (90–95%. Samples were evaluated for yeast and molds growth, weight loss, and firmness. CAS and O3 did not delay or inhibit yeast and molds growth in blueberries after 10 days at both temperatures. Fruit stored at 4°C showed lower weight loss values compared with 12°C. Blueberries stored under O3 atmosphere showed reduced weight loss at 12°C by day 10 and loss of firmness when compared to the other treatments. Low concentrations of ozone gas together with proper refrigeration temperature can help protect fresh blueberries quality during storage.

  2. Shelf Life Determination of Fresh Blueberries (Vaccinium corymbosum) Stored under Controlled Atmosphere and Ozone.

    Science.gov (United States)

    Concha-Meyer, Anibal; Eifert, Joseph D; Williams, Robert C; Marcy, Joseph E; Welbaum, Gregory E

    2015-01-01

    Fresh blueberries are commonly stored and transported by refrigeration in controlled atmospheres to protect shelf life for long periods of storage. Ozone is an antimicrobial gas that can extend shelf life and protect fruit from microbial contamination. Shelf life of fresh highbush blueberries was determined over 10-day storage in isolated cabinets at 4°C or 12°C under different atmosphere conditions, including air (control); 5% O2 : 15% CO2 : 80% N2 (controlled atmosphere storage (CAS)); and ozone gas (O3) 4 ppm at 4°C or 2.5 ppm at 12°C, at high relative humidity (90-95%). Samples were evaluated for yeast and molds growth, weight loss, and firmness. CAS and O3 did not delay or inhibit yeast and molds growth in blueberries after 10 days at both temperatures. Fruit stored at 4°C showed lower weight loss values compared with 12°C. Blueberries stored under O3 atmosphere showed reduced weight loss at 12°C by day 10 and loss of firmness when compared to the other treatments. Low concentrations of ozone gas together with proper refrigeration temperature can help protect fresh blueberries quality during storage.

  3. 3D analysis of high ozone production rates observed during the ESCOMPTE campaign

    Science.gov (United States)

    Coll, Isabelle; Pinceloup, Stéphanie; Perros, Pascal E.; Laverdet, Gérard; Le Bras, Georges

    2005-03-01

    The development of environmental policies to reduce the ozone levels around large agglomerations requires a good understanding of the development of ozone episodes. In particular, it is necessary to know the location and photochemical activity of the plume where ozone is formed. Measurement campaigns make it possible not only to characterize the concentration fields of ozone and its precursors but also to identify the zones of strong ozone production, by means of specific measurements and kinetic calculations. The combination of the observation-based data with numerical simulations allows to better characterize photochemical pollution. This paper presents a study carried out within the ESCOMPTE program and based on the determination of ozone production rates by experimental and numerical methods: ground measurements of peroxy radicals, NO x at a rural site, airborne measurements of NO X and O 3, Eulerian modeling. The reported case is of particular interest since it corresponds to an episode with very different photochemical situations. The diurnal variations of the peroxy radical concentration are analyzed in relation to those of ozone and its precursors. Ozone production rates— P(O 3)-are studied over one particular day. The results show particularly high concentrations of RO 2+HO 2 at ground level (up to 200 pptv) under the influence of the urban and industrial plume, but also highlight very high production rates of ozone (60 to 80 ppbv h -1) a few tens of kilometers from the sources. The results show satisfactory agreement between the various approaches. Modeling provides a four-dimensional (4D) description of the plumes, in particular the relation between the ozone precursor concentrations and P(O 3) on the ground.

  4. Ozone-mist spray sterilization for pest control in agricultural management

    Science.gov (United States)

    Ebihara, Kenji; Mitsugi, Fumiaki; Ikegami, Tomoaki; Nakamura, Norihito; Hashimoto, Yukio; Yamashita, Yoshitaka; Baba, Seiji; Stryczewska, Henryka D.; Pawlat, Joanna; Teii, Shinriki; Sung, Ta-Lun

    2013-02-01

    We developed a portable ozone-mist sterilization system to exterminate pests (harmful insects) in agricultural field and greenhouse. The system is composed of an ozone generator, an ozone-mist spray and a small container of ozone gas. The ozone generator can supply highly concentrated ozone using the surface dielectric barrier discharge. Ozone-mist is produced using a developed nozzle system. We studied the effects of ozone-mist spray sterilization on insects and agricultural plants. The sterilization conditions are estimated by monitoring the behavior of aphids and observing the damage of the plants. It was shown that aphids were exterminated in 30 s without noticeable damages of the plant leaves. The reactive radicals with strong oxidation potential such as hydroxyl radical (*OH), hydroperoxide radical (*HO2), the superoxide ion radical (*O2‒) and ozonide radical ion (*O3‒) can increase the sterilization rate for aphids. Contribution to the Topical Issue "13th International Symposium on High Pressure Low Temperature Plasma Chemistry (Hakone XIII)", Edited by Nicolas Gherardi, Henryca Danuta Stryczewska and Yvan Ségui.

  5. Percutaneous intradiscal ozone (O3)-injection: an experimental study in canines

    International Nuclear Information System (INIS)

    Yu Zhijian; He Xiaofeng; Chen Yong; Zeng Qingle; Liu Chihong; Zhao Zhongqing; Lu Yong; Li Yanhao

    2002-01-01

    Objective: To evaluate the influence of ozone on normal nucleus pulpous and the safety of intradiscal ozone-injection for the treatment of herniated lumbar disc. Methods: Ozone was injected into selected lumbar discs (3 ml) and the para-spinal space (7 ml) with 20 G Chiba needle under fluoroscopy in five canines. The ozone concentration was 30 μg/ml and 50 μg/ml respectively. Two discs were selected for each concentration. Total 20 discs were injected. Three of the canines were given one-time ozone-injection and were sacrificed for pathology one week, one month and two months respectively after the procedure, and the other two canines were given two-time ozone-injection and were sacrificed one month and two months respectively after the procedure. The specimens including nucleus pulpous, end-plate, spinal cord, nerve root, and greater psoas muscle were observed macroscopically and microscopically. Results: No serious behavior abnormalities were observed in all animals. The atrophy of nucleus pulpous could be observed one month after ozone-injection due to significant reduction of water and extensive proliferation of collagenous fiber. The influence on the atrophy of nucleus pulpous demonstrated no apparent difference between the selected two concentrations of ozone, but was more apparent with two-time injection than that with one-time injection. The end-plates increased slightly or moderately in thickness in 16 simples and a few of fibers in greater psoas muscle suffered slight atrophy in 5 samples. Conclusion: It is suggested that percutaneous intradiscal ozone-injection is a safe method, and can cause gradual atrophy of nucleus pulpous. This study provides the evidence of the feasibility and value of this procedure's application in clinics

  6. Convection links biomass burning to increased tropical ozone: However, models will tend to overpredict O3

    Science.gov (United States)

    Chatfield, Robert B.; Delany, Anthony C.

    1990-10-01

    Biomass burning throughout the inhabited portions of the tropics generates precursors which lead to significant local atmospheric ozone pollution. Several simulations show how this smog could be only an easily observed, local manifestation of a much broader increase in tropospheric ozone. We illustrate basic processes with a one-dimensional time-dependent model that is closer to true meteorological motions than commonly used eddy diffusion models. Its application to a representative region of South America gives reasonable simulations of the local pollutants measured there. Three illustrative simulations indicate the importance of dilution, principally due to vertical transport, in increasing the efficiency of ozone production, possibly enough for high ozone to be apparent on a very large, intercontinental scale. In the first, cook-then-mix, simulation the nitrogen oxides and other burning-produced pollutants are confined to a persistently subsident fair weather boundary layer for several days, and the resultant ozone is found to have only a transient influence on the whole column of tropospheric ozone. In the second, mix-then-cook, simulation the effect of typical cumulonimbus convection, which vents an actively polluted boundary layer, is to make a persistent increase in the tropical ozone column. Such a broadly increased ozone column is observed over the the populated "continental" portion of the tropics. A third simulation averages all emission, transport, and deposition parameters, representing one column in a global tropospheric model that does not simulate individual weather events. This "oversmoothing" simulation produces 60% more ozone than observed or otherwise modeled. Qualitatively similar overprediction is suggested for all models which average significantly in time or space, as all need do. Clearly, simulating these O3 levels will depend sensitively on knowledge of the timing of emissions and transport.

  7. Postharvest quality of ozonized "nanicão" cv. bananas Qualidade pós-colheita de banana cv. "nanicão" ozonizada

    Directory of Open Access Journals (Sweden)

    Ernandes Rodrigues de Alencar

    2013-03-01

    Full Text Available This study was done to analyze the physic-chemical, microbiological and sensory qualities of the banana, after being either dry or wet treatment with ozone. For dry processing, the fruits were directly fumigated with ozone for 30 min. The wet treatment included the ozonization of water for 20 min followed by immersion of the fruit in the ozonized water for 10 min. In both treatments, the utilized gas concentration and flow were 0.36 mg L-1 and 1.5 L min-1, respectively. The quality of the fruits was evaluated at the beginning of storage and after 3; 6; 9 and 12 days. The variables analyzed were: fresh mater loss, total titratable acidity, total soluble solids, pH, pulp/peel ratio, color index of the peel, rot severity, microbiological analysis (total fungi and yeast count and sensorial analysis. In general, the fruits immersed in the ozonized water presented better quality, in reference to both the physico-chemical and microbiological parameters, as well as have good sensory acceptance among those tested. It could therefore be concluded that treatment with ozonized water is a new alternative for the postharvest handling of bananas.Esse trabalho teve como objetivo avaliar a qualidade físico-química, microbiológica e sensorial da banana ozonizada por via seca e por via úmida. Para o tratamento por via seca, os frutos foram fumigados diretamente com ozônio por 30 minutos. Para o tratamento da banana por via úmida, efetuou-se a ozonização da água por 20 min, e em seguida imersão dos frutos na água ozonizada por 10 min. Em ambos os tratamentos a concentração do gás e a vazão utilizadas foram 0,36 mg L-1 e 1,5 L min-1, respectivamente. A qualidade dos frutos foi avaliada no início do armazenamento e aos 3; 6; 9 e 12 dias. Analisaram-se as variáveis: perda de massa fresca (PMF, acidez total titulável, sólidos solúveis totais, pH, relação polpa/casca, índice de cor da casca, severidade de podridões, análise microbiol

  8. Residential indoor air quality guideline : ozone

    International Nuclear Information System (INIS)

    2010-01-01

    Ozone (O 3 ) is a colourless gas that reacts rapidly on surfaces and with other constituents in the air. Sources of indoor O 3 include devices sold as home air cleaners, and some types of office equipment. Outdoor O 3 is also an important contributor to indoor levels of O 3 , depending on the air exchange rate with indoor environments. This residential indoor air quality guideline examined factors that affect the introduction, dispersion and removal of O 3 indoors. The health effects of prolonged exposure to O 3 were discussed, and studies conducted to evaluate the population health impacts of O 3 were reviewed. The studies demonstrated that there is a significant association between ambient O 3 and adverse health impacts. Exposure guidelines for residential indoor air quality were discussed. 14 refs.

  9. On the O2(a1Δ) quenching by vibrationally excited ozone

    Science.gov (United States)

    Azyazov, V. N.; Mikheyev, P. A.; Heaven, M. C.

    2010-09-01

    The development of a discharge oxygen iodine laser (DOIL) requires efficient production of singlet delta oxygen (O2(a)) in electric discharge. It is important to understand the mechanisms by which O2(a) is quenched in these devices. To gain understanding of this mechanisms quenching of O2(a) in O(3P)/O2/O3/CO2/He/Ar mixtures has been investigated. Oxygen atoms and singlet oxygen molecules were produced by the 248 nm laser photolysis of ozone. The kinetics of O2(a) quenching were followed by observing the 1268 nm fluorescence of the O2 a --> X transition. Fast quenching of O2(a) in the presence of oxygen atoms and molecules was observed. The mechanism of the process has been examined using kinetic models, which indicate that quenching by vibrationally excited ozone is the dominant reaction.

  10. Ozone (O{sub 3}) elicits neurotoxicity in spinal cord neurons (SCNs) by inducing ER Ca{sup 2+} release and activating the CaMKII/MAPK signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yun; Lin, Xiaowen; Zhao, XueJun; Xie, Juntian; JunNan, Wang; Sun, Tao; Fu, Zhijian, E-mail: zhijian_fu@163.com

    2014-11-01

    Ozone (O{sub 3}) is widely used in the treatment of spinal cord related diseases. Excess or accumulation of this photochemical air can however be neurotoxic. In this study, in vitro cultured Wister rat spinal cord neurons (SCNs) were used to investigate the detrimental effects and underlying mechanisms of O{sub 3}. Ozone in a dose-dependent manner inhibited cell viability at a range of 20 to 500 μg/ml, with the dose at 40 μg/ml resulting in a decrease of cell viability to 75%. The cell death after O{sub 3} exposure was related to endoplasmic reticulum (ER) calcium (Ca{sup 2+}) release. Intracellular Ca{sup 2+} chelator, ER stabilizer (inositol 1,4,5-trisphosphate receptor (IP3R) antagonist and ryanodine receptor (RyR) antagonist) and calcium/calmodulin-dependent protein kinase II (CaMKII) antagonist could effectively block Ca{sup 2+} mobilization and inhibit cell death following 40 μg/ml O{sub 3} exposure. In addition, ER Ca{sup 2+} release due to O{sub 3} exposure enhanced phospho-p38 and phospho-JNK levels and apoptosis of SCNs through activating CaMKII. Based on these results, we confirm that ozone elicits neurotoxicity in SCNs via inducing ER Ca{sup 2+} release and activating CaMKII/MAPK signaling pathway. Therefore, physicians should get attention to the selection of treatment concentrations of oxygen/ozone. And, approaches, such as chelating intracellular Ca{sup 2+} and stabilizing neuronal Ca{sup 2+} homeostasis could effectively ameliorate the neurotoxicity of O{sub 3}. - Highlights: • Exposure to O{sub 3} can reduce the viability of SCNs and cause the cell death. • Exposure to O{sub 3} can trigger RyR and IP3R dependent intracellular Ca{sup 2+} release. • Exposure to O{sub 3} can enhance the phospho-CaMKII, phospho-JNK and phospho-p38 levels.

  11. Stomatal uptake and stomatal deposition of ozone in isoprene and monoterpene emitting plants.

    Science.gov (United States)

    Fares, S; Loreto, F; Kleist, E; Wildt, J

    2008-01-01

    Volatile isoprenoids were reported to protect plants against ozone. To understand whether this could be the result of a direct scavenging of ozone by these molecules, the stomatal and non-stomatal uptake of ozone was estimated in plants emitting isoprene or monoterpenes. Ozone uptake by holm oak (Quercus ilex, a monoterpene emitter) and black poplar (Populus nigra, an isoprene emitter) was studied in whole plant enclosures (continuously stirred tank reactors, CSTR). The ozone uptake by plants was estimated measuring ozone concentration at the inlet and outlet of the reactors, after correcting for the uptake of the enclosure materials. Destruction of ozone at the cuticle or at the plant stems was found to be negligible compared to the ozone uptake through the stomata. For both plant species, a relationship between stomatal conductance and ozone uptake was found. For the poplar, the measured ozone losses were explained by the uptake of ozone through the stomata only, and ozone destruction by gas phase reactions with isoprene was negligible. For the oak, gas phase reactions of ozone with the monoterpenes emitted by the plants contributed significantly to ozone destruction. This was confirmed by two different experiments showing a) that in cases of high stomatal conductance but under low CO(2) concentration, a reduction of monoterpene emission was still associated with reduced O(3) uptake; and b) that ozone losses due to the gas phase reactions only can be measured when using the exhaust from a plant chamber to determine the gas phase reactivity in an empty reaction chamber. Monoterpenes can therefore relevantly scavenge ozone at leaf level contributing to protection against ozone.

  12. Degradation of p-nitrotoluene in aqueous solution by ozonation combined with sonolysis

    International Nuclear Information System (INIS)

    Song Shuang; Xia Min; He Zhiqiao; Ying Haiping; Lue Bosheng; Chen Jianmeng

    2007-01-01

    p-Nitrotoluene (PNT) is a nitroaromatic compound that is hazardous to humans and is a suspected hormone disrupter. The degradation of PNT in aqueous solution by ozonation (O 3 ) combined with sonolysis (US) was investigated in laboratory-scale experiments in which pH, initial concentration of PNT, O 3 dose and temperature were varied. The degradation of PNT followed pseudo-first-order kinetics, and degradation products were monitored during the process. The maximum degradation was observed at pH 10.0. As the initial concentration of PNT decreased, the degradation rate increased. Both temperature and ozone dose had a positive effect on the degradation of PNT. Of the total organic carbon (TOC) reduction, 8, 68, and 85% were observed with US, O 3 , and a combination of US and O 3 after reaction for 90 min, respectively, proving that ozonation combined with sonolysis for removal of TOC is more efficient than ozonation alone or ultrasonic irradiation alone. Major by-products, including p-cresol, 4-hydroxybenzaldehyde, 4-hydroxybenzoic acid, 4-(oxomethylene) cyclohexa-2,5-dien-1-one, but-2-enedioic acid, and acetic acid were detected by gas chromatography coupled with mass spectrometry

  13. Detoxification and repair process of ozone injury: From O{sub 3} uptake to gene expression adjustment

    Energy Technology Data Exchange (ETDEWEB)

    Castagna, A., E-mail: castagna@agr.unipi.i [Department of Agricultural Chemistry and Biotechnology, University of Pisa, Via del Borghetto 80, 56124 Pisa (Italy); Ranieri, A., E-mail: aranieri@agr.unipi.i [Department of Agricultural Chemistry and Biotechnology, University of Pisa, Via del Borghetto 80, 56124 Pisa (Italy)

    2009-05-15

    Plants react to O{sub 3} threat by setting up a variety of defensive strategies involving the co-ordinated modulation of stress perception, signalling and metabolic responses. Although stomata largely controls O{sub 3} uptake, differences in O{sub 3} tolerance cannot always be ascribed to changes in stomatal conductance but cell protective and repair processes should be taken into account. O{sub 3}-driven ROS production in the apoplast induces a secondary, active, self-propagating generation of ROS, whose levels must be finely tuned, by many enzymatic and non-enzymatic antioxidant systems, to induce gene activation without determining uncontrolled cell death. Additional signalling molecules, as ethylene, jasmonic and salicylic acid are also crucial to determine the spreading and the containment of leaf lesions. The main recent results obtained on O{sub 3} sensing, signal transduction, ROS formation and detoxification mechanisms are here discussed. - A dissection of the complex network of interacting mechanisms which determine the cell fate under ozone stress.

  14. Surface recombination of oxygen atoms in O2 plasma at increased pressure: II. Vibrational temperature and surface production of ozone

    Science.gov (United States)

    Lopaev, D. V.; Malykhin, E. M.; Zyryanov, S. M.

    2011-01-01

    Ozone production in an oxygen glow discharge in a quartz tube was studied in the pressure range of 10-50 Torr. The O3 density distribution along the tube diameter was measured by UV absorption spectroscopy, and ozone vibrational temperature TV was found comparing the calculated ab initio absorption spectra with the experimental ones. It has been shown that the O3 production mainly occurs on a tube surface whereas ozone is lost in the tube centre where in contrast the electron and oxygen atom densities are maximal. Two models were used to analyse the obtained results. The first one is a kinetic 1D model for the processes occurring near the tube walls with the participation of the main particles: O(3P), O2, O2(1Δg) and O3 molecules in different vibrational states. The agreement of O3 and O(3P) density profiles and TV calculated in the model with observed ones was reached by varying the single model parameter—ozone production probability (\\gamma_{O_{3}}) on the quartz tube surface on the assumption that O3 production occurs mainly in the surface recombination of physisorbed O(3P) and O2. The phenomenological model of the surface processes with the participation of oxygen atoms and molecules including singlet oxygen molecules was also considered to analyse \\gamma_{O_{3}} data obtained in the kinetic model. A good agreement between the experimental data and the data of both models—the kinetic 1D model and the phenomenological surface model—was obtained in the full range of the studied conditions that allowed consideration of the ozone surface production mechanism in more detail. The important role of singlet oxygen in ozone surface production was shown. The O3 surface production rate directly depends on the density of physisorbed oxygen atoms and molecules and can be high with increasing pressure and energy inputted into plasma while simultaneously keeping the surface temperature low enough. Using the special discharge cell design, such an approach opens up the

  15. Surface recombination of oxygen atoms in O2 plasma at increased pressure: II. Vibrational temperature and surface production of ozone

    International Nuclear Information System (INIS)

    Lopaev, D V; Malykhin, E M; Zyryanov, S M

    2011-01-01

    Ozone production in an oxygen glow discharge in a quartz tube was studied in the pressure range of 10-50 Torr. The O 3 density distribution along the tube diameter was measured by UV absorption spectroscopy, and ozone vibrational temperature T V was found comparing the calculated ab initio absorption spectra with the experimental ones. It has been shown that the O 3 production mainly occurs on a tube surface whereas ozone is lost in the tube centre where in contrast the electron and oxygen atom densities are maximal. Two models were used to analyse the obtained results. The first one is a kinetic 1D model for the processes occurring near the tube walls with the participation of the main particles: O( 3 P), O 2 , O 2 ( 1 Δ g ) and O 3 molecules in different vibrational states. The agreement of O 3 and O( 3 P) density profiles and T V calculated in the model with observed ones was reached by varying the single model parameter-ozone production probability (γ O 3 ) on the quartz tube surface on the assumption that O 3 production occurs mainly in the surface recombination of physisorbed O( 3 P) and O 2 . The phenomenological model of the surface processes with the participation of oxygen atoms and molecules including singlet oxygen molecules was also considered to analyse γ O 3 data obtained in the kinetic model. A good agreement between the experimental data and the data of both models-the kinetic 1D model and the phenomenological surface model-was obtained in the full range of the studied conditions that allowed consideration of the ozone surface production mechanism in more detail. The important role of singlet oxygen in ozone surface production was shown. The O 3 surface production rate directly depends on the density of physisorbed oxygen atoms and molecules and can be high with increasing pressure and energy inputted into plasma while simultaneously keeping the surface temperature low enough. Using the special discharge cell design, such an approach opens up

  16. High mobility of the strongly confined hole gas in AgTaO3/SrTiO3

    KAUST Repository

    Nazir, Safdar

    2012-05-18

    A theoretical study of the two-dimensional hole gas at the (AgO)−/(TiO2)0 p-type interface in the AgTaO3/SrTiO3 (001) heterostructure is presented. The Ag 4d states strongly hybridize with the O 2p states and contribute to the hole gas. It is demonstrated that the holes are confined to an ultra thin layer (∼4.9Å) with a considerable carrier density of ∼1014cm−2. We estimate a hole mobility of 18.6 cm2 V−1 s−1, which is high enough to enable device applications.

  17. High mobility of the strongly confined hole gas in AgTaO3/SrTiO3

    KAUST Repository

    Nazir, Safdar; Schwingenschlö gl, Udo; Upadhyay Kahaly, M.

    2012-01-01

    A theoretical study of the two-dimensional hole gas at the (AgO)−/(TiO2)0 p-type interface in the AgTaO3/SrTiO3 (001) heterostructure is presented. The Ag 4d states strongly hybridize with the O 2p states and contribute to the hole gas. It is demonstrated that the holes are confined to an ultra thin layer (∼4.9Å) with a considerable carrier density of ∼1014cm−2. We estimate a hole mobility of 18.6 cm2 V−1 s−1, which is high enough to enable device applications.

  18. Measurements of HCl and HNO3 with the new research aircraft HALO - Quantification of the stratospheric contribution to the O3 and HNO3 budget in the UT/LS

    Science.gov (United States)

    Jurkat, Tina; Kaufmann, Stefan; Voigt, Christiane; Zahn, Andreas; Schlager, Hans; Engel, Andreas; Bönisch, Harald; Dörnbrack, Andreas

    2013-04-01

    Dynamic and chemical processes modify the ozone (O3) budget of the upper troposphere/lower stratosphere, leading to locally variable O3 trends. In this region, O3 acts as a strong greenhouse gas with a net positive radiative forcing. It has been suggested, that the correlation of the stratospheric tracer hydrochloric acid (HCl) with O3 can be used to quantify stratospheric O3 in the UT/LS region (Marcy et al., 2004). The question is, whether the stratospheric contribution to the nitric acid (HNO3) budget in the UT/LS can be determined by a similar approach in order to differentiate between tropospheric and stratospheric sources of HNO3. To this end, we performed in situ measurements of HCl and HNO3 with a newly developed Atmospheric chemical Ionization Mass Spectrometer (AIMS) during the TACTS (Transport and Composition in the UTLS) / ESMVal (Earth System Model Validation) mission in August/September 2012. The linear quadrupole mass spectrometer deployed aboard the new German research aircraft HALO was equipped with a new discharge source generating SF5- reagent ions and an in-flight calibration allowing for accurate, spatially highly resolved trace gas measurements. In addition, sulfur dioxide (SO2), nitrous acid (HONO) and chlorine nitrate (ClONO2) have been simultaneously detected with the AIMS instrument. Here, we show trace gas distributions of HCl and HNO3 measured during a North-South transect from Northern Europe to Antarctica (68° N to 65° S) at 8 to 15 km altitude and discuss their latitude dependence. In particular, we investigate the stratospheric ozone contribution to the ozone budget in the mid-latitude UT/LS using correlations of HCl with O3. Differences in these correlations in the subtropical and Polar regions are discussed. A similar approach is used to quantify the HNO3 budget of the UT/LS. We identify unpolluted atmospheric background distributions and various tropospheric HNO3 sources in specific regions. Our observations can be compared to

  19. Effects of elevated ozone, carbon dioxide, and the combination of both on the grain quality of Chinese hybrid rice

    International Nuclear Information System (INIS)

    Wang, Yunxia; Song, Qiling; Frei, Michael; Shao, Zaisheng; Yang, Lianxin

    2014-01-01

    The effects of CO 2 and/or O 3 elevation on rice grain quality were investigated in chamber experiments with gas fumigation performed from transplanting until maturity in 2011 and 2012. Compared with the control (current CO 2 and O 3 concentration), elevated CO 2 caused a tendency of an increase in grain chalkiness and a decrease in mineral nutrient concentrations. In contrast, elevated O 3 significantly increased grain chalkiness and the concentrations of essential nutrients, while changes in starch pasting properties indicated a trend of deterioration in the cooking and eating quality. In the combination of elevated CO 2 and O 3 treatment, only chalkiness degree was significantly affected. It is concluded that the O 3 concentration projected for the coming few decades will have more substantial effects on grain quality of Chinese hybrid rice than the projected high CO 2 concentration alone, and the combination of two gases caused fewer significant changes in grain quality than individual gas treatments. - Highlights: • We investigated the effects of carbon dioxide and/or ozone elevation on rice grain quality. • Elevated ozone concentration had substantial effects on grain quality under current carbon dioxide concentration. • Elevated carbon dioxide concentration mitigated the impact of elevated ozone concentration on rice grain quality. - Exposure of Chinese hybrid rice to elevated ozone and CO 2 during growth causes fewer changes in grain quality than ozone exposure alone

  20. High-tension corona controlled ozone generator for environment protection

    International Nuclear Information System (INIS)

    Vijayan, T; Patil, Jagadish G

    2010-01-01

    Engineering details of a high voltage driven corona-plasma ozone generator are described. The plasma diode of generator has coaxial cylindrical geometry with cathode located inside anode. Cathode is made of a large number of radial gas nozzles arranged on central tubular mast which admits oxygen gas. The sharp endings of the nozzles along with a set of corona rings create the high electric field at the cathode required for formation of dense corona plume responsible for O 3 evolution. A model of coronal plasma generation and ozone production is presented. The plasma formation is strongly dependent on the electric field and temperature in side diode where a high electron density in a low temperature negative corona is suited for high ozone yields. These are established by suitable regulation of A-K gap, voltage, oxygen pressure, and cathode-nozzle population.

  1. Measurement of ozone production scaling in a helium plasma jet with oxygen admixture

    Science.gov (United States)

    Sands, Brian; Ganguly, Biswa

    2012-10-01

    Capillary dielectric barrier plasma jet devices that generate confined streamer-like discharges along a rare gas flow can produce significant quantities of reactive oxygen species with average input powers ranging from 100 mW to >1 W. We have measured spatially-resolved ozone production in a He plasma jet with O2 admixture concentrations up to 5% using absorption spectroscopy of the O3 Hartley band system. A 20-ns risetime, 10-13 kV positive unipolar voltage pulse train was used to power the discharge, with pulse repetition rates varied from 1-20 kHz. The discharge was operated in a transient glow mode to scale the input power by adjusting the gap width between the anode and downstream cathodic plane. Peak ozone number densities in the range of 10^16 - 10^17 cm-3 were measured. At a given voltage, the density of ozone increased monotonically up to 3% O2 admixture (6 mm gap) as the peak discharge current decreased by an order of magnitude. Ozone production increased with distance from the capillary, consistent with observations by other groups. Atomic oxygen production inferred from O-atom 777 nm emission intensity did not scale with ozone as the input power was increased. The spatial distribution of ozone and scaling with input power will be presented.

  2. Enhanced photocatalytic ozonation of organics by g-C3N4 under visible light irradiation

    International Nuclear Information System (INIS)

    Liao, Gaozu; Zhu, Dongyun; Li, Laisheng; Lan, Bingyan

    2014-01-01

    Highlights: • g-C 3 N 4 is employed as active catalyst in the photocatalytic ozonation system. • The more negative conduction band of g-C 3 N 4 benefits the transfer of electrons. • The synergistic effect between photocatalysis and ozonation is promoted by g-C 3 N 4 . • Enhanced degradation of oxalic acid and biphenol A is achieved via g-C 3 N 4 /Vis/O 3 . - Abstract: Graphitic carbon nitride (g-C 3 N 4 ) was employed as the active photocatalyst in the photocatalytic ozonation coupling system in the present study. g-C 3 N 4 was prepared by directly heating thiourea in air at 550 °C. XRD, FT-IR, UV–vis was used to characterize the structure and optical property. Oxalic acid and bisphenol A were selected as model substances for photocatalytic ozonation reactions to evaluate the catalytic ability of g-C 3 N 4 (g-C 3 N 4 /Vis/O 3 ). The results showed that the degradation ratio of oxalic acid with g-C 3 N 4 /Vis/O 3 was 65.2% higher than the sum of ratio when it was individually decomposed by g-C 3 N 4 /Vis and O 3 . The TOC removal of biphenol A with g-C 3 N 4 /Vis/O 3 was 2.17 times as great as the sum of the ratio when using g-C 3 N 4 /Vis and O 3 . This improvement was attributed to the enhanced synergistic effect between photocatalysis and ozonation by g-C 3 N 4 . Under visible light irradiation, the photo-generated electrons produced on g-C 3 N 4 facilitated the electrons transfer owing to the more negative conduction band potential (−1.3 V versus NHE). It meant that the photo-generated electrons could be trapped by ozone and reaction with it more easily. Subsequently, the yield of hydroxyl radicals was improved so as to enhance the organics degradation efficiency. This work indicated that metal-free g-C 3 N 4 could be an excellent catalyst for mineralization of organic compounds in waste control

  3. Decomposition kinetics of gaseous ozone in peanuts Cinética da decomposição do gás ozônio em amendoim

    Directory of Open Access Journals (Sweden)

    Ernandes R. de Alencar

    2011-10-01

    Full Text Available This study was conducted to evaluate the decomposition kinetics of gaseous ozone in peanut grains. This evaluation was made with 1-kg peanut samples, moisture contents being 7.1 and 10.5% wet basis (w.b., placed in 3-liter glass containers. The peanut grains were ozonated at the concentration of 450 µg L-1, at 25 and 35 ºC, with gas flow rates of 1.0 and 3.0 L min-1. Time of saturation was determined by quantifying the residual concentration of ozone after the gas passed through the grains to constant mass. The decomposition kinetics of ozone was evaluated after the grain mass was ozone-saturated. For the peanut grains whose moisture content was 7.1% (w.b., at 25 and 35ºC and with flow rates of 1.0 and 3.0 L min-1, the values obtained for time of saturation of gaseous ozone ranged between 173 and 192 min; the concentration of saturation was approximately 260 µg L-1. For the grains whose moisture content was 10.5% (w.b., a higher residual concentration of gaseous ozone was obtained at 25 ºC, that of 190 µg L-1. As regards the half-life of ozone, the highest value obtained was equivalent to 7.7 min for grains ozonated at 25 ºC, while for those with moisture content of 10.5% at 35 ºC, half-life was 3.2 min. In the process of ozone decomposition in peanut grains, temperature was concluded to be the key factor. An increase of 10 ºC in the temperature of the grains results in a decrease of at least 43% in the half-life of ozone.Este trabalho foi desenvolvido com o objetivo de avaliar a cinética de decomposição do ozônio em grãos de amendoim. Para avaliar a cinética de decomposição do gás, utilizaram-se amostras de 1 kg de amendoim, com teores de água de 7,1 e 10,5% base úmida (b.u., acondicionadas em recipientes de vidro com capacidade de 3 L. Os grãos de amendoim foram ozonizados na concentração de 450 µg L-1, nas temperaturas de 25 e 35 ºC, e vazões do gás de 1,0 e 3,0 L min-1. Determinou-se o tempo de saturação

  4. Insights into the Electronic Structure of Ozone and Sulfur Dioxide from Generalized Valence Bond Theory: Bonding in O3 and SO2.

    Science.gov (United States)

    Takeshita, Tyler Y; Lindquist, Beth A; Dunning, Thom H

    2015-07-16

    There are many well-known differences in the physical and chemical properties of ozone (O3) and sulfur dioxide (SO2). O3 has longer and weaker bonds than O2, whereas SO2 has shorter and stronger bonds than SO. The O-O2 bond is dramatically weaker than the O-SO bond, and the singlet-triplet gap in SO2 is more than double that in O3. In addition, O3 is a very reactive species, while SO2 is far less so. These disparities have been attributed to variations in the amount of diradical character in the two molecules. In this work, we use generalized valence bond (GVB) theory to characterize the electronic structure of ozone and sulfur dioxide, showing O3 does indeed possess significant diradical character, whereas SO2 is effectively a closed shell molecule. The GVB results provide critical insights into the genesis of the observed difference in these two isoelectronic species. SO2 possesses a recoupled pair bond dyad in the a"(π) system, resulting in SO double bonds. The π system of O3, on the other hand, has a lone pair on the central oxygen atom plus a pair of electrons in orbitals on the terminal oxygen atoms that give rise to a relatively weak π interaction.

  5. A three-dimensional simulation of gas/particle flow and ozone decomposition in the riser of a circulating fluidized bed

    DEFF Research Database (Denmark)

    Hansen, Kim Granly; Solberg, Tron; Hjertager, Bjørn Helge

    2004-01-01

    The isothermal decomposition of ozone has been implemented in the CFD code FLOTRACS-MP-3D. The code is a 3D multiphase computational fluid dynamics code with an Eulerian description of both gas and particle phase. The turbulent motion of the particulate phase is modeled using the kinetic theory...... for granular flow, and the gas phase turbulence is modeled using a Sub-Grid-Scale model, cf. Ibsen et al. (2001). The decomposition reaction is studied in a 3D representation of a 0.254 m i.d. riser, which has been studied experimentally by Ouyang et al. (1993). The authors obtained profiles of ozone...

  6. Stratospheric ozone - Impact of human activity

    Science.gov (United States)

    Mcelroy, Michael B.; Salawitch, Ross J.

    1989-01-01

    The current knowledge of the chemistry of the stratosphere is reviewed, with particular consideration given to the measurements from the Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment and from the Airborne Antarctic Ozone Experiment. Analysis of the ATMOS data at 30 deg N suggests that the current understanding of the contemporary-stratosphere chemistry at mid-latitudes is relatively complete, except for possible problems with the diurnal variations of N2O5 at low altitudes, and with ClNO3 at higher altitudes. Except for some difficulties with these two compounds, the data from ATMOS agree well with the gas phase models for nitrogen and chlorine species at 30 deg N in spring. It is emphasized that, in addition to the HOCl mechanism proposed by Solomon et al. (1986), the ClO-BrO scheme proposed by McElroy et al. (1986), and the ClO dimer mechanism introduced by Molina and Molina (1987), other processes exist that are responsible for ozone removal.

  7. Magnetic two-dimensional electron gas at the manganite-buffered LaAlO3/SrTiO3 interface

    DEFF Research Database (Denmark)

    R. Zhang, H.; Zhang, Y.; Zhang, H.

    2017-01-01

    Fabrication of highly mobile spin-polarized two-dimensional electron gas (2DEG) is crucially important for both fundamental and applied research. Usually, spin polarization appears below 10 K for the 2DEG of LaAlO3/SrTiO3 interface, stemming from the magnetic ordering of Ti3+ ions with the mediat......Fabrication of highly mobile spin-polarized two-dimensional electron gas (2DEG) is crucially important for both fundamental and applied research. Usually, spin polarization appears below 10 K for the 2DEG of LaAlO3/SrTiO3 interface, stemming from the magnetic ordering of Ti3+ ions...... with the mediation of itinerant electrons. Herein, we report a magnetic 2DEG at a La7/8Sr1/8MnO3-buffered LaAlO3/SrTiO3 interface, which simultaneously shows electrically tunable anomalous Hall effect and high conductivity. The spin-polarized temperature for the 2DEG is promoted to 30 K while the mobility remains...... high. The magnetism likely results from a gradient manganese interdiffusion into SrTiO3. The present work demonstrates the great potential of manganite-buffered LaAlO3/SrTiO3 interfaces for spintronic applications....

  8. UV-laser-light-controlled photoluminescence of metal oxide nanoparticles in different gas atmospheres: BaTiO3, SrTiO3 and HfO2

    International Nuclear Information System (INIS)

    Mochizuki, Shosuke; Saito, Takashi; Yoshida, Kaori

    2012-01-01

    The photoluminescence (PL) enhancement has been studied at room temperature using various specimen atmospheres (O 2 gas, CO 2 gas, CO 2 -H 2 mixture gas, Ar-H 2 mixture gas and vacuum) under 325 nm laser light irradiation on various metal oxides. Of them, the results obtained for BaTiO 3 nanocrystals, SrTiO 3 ones and HfO 2 powder crystal are given in the present paper. Their PL were considerably increased in intensity by irradiation of 325 nm laser light in CO 2 gas and CO 2 -H 2 mixture gas. The cause of the PL intensity enhancements is discussed in the light of the exciton theory, the defect chemistry and the photocatalytic theory. The results may be applied for the utilization of greenhouse gas (CO 2 ) and the optical sensor for CO 2 gas.

  9. Comparison of high-latitude line-of-sight ozone column density with derived ozone fields and the effects of horizontal inhomogeneity

    Directory of Open Access Journals (Sweden)

    W. H. Swartz

    2006-01-01

    Full Text Available Extensive ozone measurements were made during the second SAGE III Ozone Loss and Validation Experiment (SOLVE II. We compare high-latitude line-of-sight (LOS slant column ozone measurements from the NASA DC-8 to ozone simulated by forward integration of measurement-derived ozone fields constructed both with and without the assumption of horizontal homogeneity. The average bias and rms error of the simulations assuming homogeneity are relatively small (−6 and 10%, respectively in comparison to the LOS measurements. The comparison improves significantly (−2% bias; 8% rms error using forward integrations of three-dimensional proxy ozone fields reconstructed from potential vorticity-O3 correlations. The comparisons provide additional verification of the proxy fields and quantify the influence of large-scale ozone inhomogeneity. The spatial inhomogeneity of the atmosphere is a source of error in the retrieval of trace gas vertical profiles and column abundance from LOS measurements, as well as a complicating factor in intercomparisons that include LOS measurements at large solar zenith angles.

  10. Feasibility of gas-discharge and optical methods of creating artificial ozone layers of the earth

    International Nuclear Information System (INIS)

    Batanov, G.M.; Kossyi, I.A.; Matveev, A.A.; Silakov, V.P.

    1996-01-01

    Gas-discharge (microwave) and optical (laser) methods of generating large-scale artificial ozone layers in the stratosphere are analyzed. A kinetic model is developed to calculate the plasma-chemical consequences of discharges localized in the stratosphere. Computations and simple estimates indicate that, in order to implement gas-discharge and optical methods, the operating power of ozone-producing sources should be comparable to or even much higher than the present-day power production throughout the world. Consequently, from the engineering and economic standpoints, microwave and laser methods cannot be used to repair large-scale ozone 'holes'

  11. Simplified Modeling of Tropospheric Ozone Formation Considering Alternative Fuels Using

    Directory of Open Access Journals (Sweden)

    Leonardo Aragão Ferreira da Silva

    2014-07-01

    Full Text Available Brazilian cities have been constantly exposed to air quality episodes of high ozone concentrations (O3 . Known for not be emitted directly into the environment, O3 is a result of several chemical reactions of other pollutants emitted to atmosphere. The growth of vehicle fleet and government incentives for using alternative fuels like ethanol and Compressed Natural Gas (CNG are changing the Brazilian Metropolitan Areas in terms of acetaldehyde and formaldehyde emissions, Volatile Organic Compounds (VOC's present in the atmosphere and known to act on the kinetics of ozone. Driven by high concentrations of tropospheric ozone in urban/industry centers and its implications for environment and population health, the target of this work is understand the kinetics of ozone formation through the creation of a mathematical model in FORTRAN 90, describing a system of coupled ordinary differential equations able to represent a simplified mechanism of photochemical reactions in the Brazilian Metropolitan Area. Evaluating the concentration results of each pollutant were possible to observe the precursor’s influence on tropospheric ozone formation, which seasons were more conducive to this one and which are the influences of weather conditions on formation of photochemical smog.

  12. Ozone kinetics in low-pressure discharges: vibrationally excited ozone and molecule formation on surfaces

    Science.gov (United States)

    Marinov, Daniil; Guerra, Vasco; Guaitella, Olivier; Booth, Jean-Paul; Rousseau, Antoine

    2013-10-01

    A combined experimental and modeling investigation of the ozone kinetics in the afterglow of pulsed direct current discharges in oxygen is carried out. The discharge is generated in a cylindrical silica tube of radius 1 cm, with short pulse durations between 0.5 and 2 ms, pressures in the range 1-5 Torr and discharge currents ˜40-120 mA. Time-resolved absolute concentrations of ground-state atoms and ozone molecules were measured simultaneously in situ, by two-photon absorption laser-induced fluorescence and ultraviolet absorption, respectively. The experiments were complemented by a self-consistent model developed to interpret the results and, in particular, to evaluate the roles of vibrationally excited ozone and of ozone formation on surfaces. It is found that vibrationally excited ozone, O_3^{*} , plays an important role in the ozone kinetics, leading to a decrease in the ozone concentration and an increase in its formation time. In turn, the kinetics of O_3^{*} is strongly coupled with those of atomic oxygen and O2(a 1Δg) metastables. Ozone formation at the wall does not contribute significantly to the total ozone production under the present conditions. Upper limits for the effective heterogeneous recombination probability of O atoms into ozone are established.

  13. Ozone kinetics in low-pressure discharges: vibrationally excited ozone and molecule formation on surfaces

    International Nuclear Information System (INIS)

    Marinov, Daniil; Guaitella, Olivier; Booth, Jean-Paul; Rousseau, Antoine; Guerra, Vasco

    2013-01-01

    A combined experimental and modeling investigation of the ozone kinetics in the afterglow of pulsed direct current discharges in oxygen is carried out. The discharge is generated in a cylindrical silica tube of radius 1 cm, with short pulse durations between 0.5 and 2 ms, pressures in the range 1–5 Torr and discharge currents ∼40–120 mA. Time-resolved absolute concentrations of ground-state atoms and ozone molecules were measured simultaneously in situ, by two-photon absorption laser-induced fluorescence and ultraviolet absorption, respectively. The experiments were complemented by a self-consistent model developed to interpret the results and, in particular, to evaluate the roles of vibrationally excited ozone and of ozone formation on surfaces. It is found that vibrationally excited ozone, O 3 * , plays an important role in the ozone kinetics, leading to a decrease in the ozone concentration and an increase in its formation time. In turn, the kinetics of O 3 * is strongly coupled with those of atomic oxygen and O 2 (a 1 Δ g ) metastables. Ozone formation at the wall does not contribute significantly to the total ozone production under the present conditions. Upper limits for the effective heterogeneous recombination probability of O atoms into ozone are established. (paper)

  14. Heterogeneous ozonation reactions of PAHs and fatty acid methyl esters in biodiesel particulate matter

    Science.gov (United States)

    Kasumba, John; Holmén, Britt A.

    2018-02-01

    Numerous studies have examined the oxidation of PAHs found in diesel particulate matter (PM) by ozone, but no studies have investigated the ozone oxidation of biodiesel exhaust PM. Fatty acid methyl esters (FAMEs), found in high abundance in biodiesel PM, can potentially alter the kinetics of the reactions between atmospheric oxidants such as ozone and particle-phase PAHs. In this study, the heterogeneous reactivity of 16 EPA PAHs upon 24 h exposure to 0.4 ppm ozone in the presence (PAH + FAMES) and absence (PAH-only) of FAMEs was investigated at room temperature and 50% relative humidity. The ozone-reactivity of the PAHs detected in 20% biodiesel (B20) exhaust PM was also investigated. In the absence of FAMEs, the pseudo-first order ozone reaction rate constant, kO 3 , of PAHs varied from 0.086 ± 0.030 hr-1 (chrysene) to 0.184 ± 0.078 hr-1 (anthracene). In the presence of FAMEs, kO 3 of the PAHs varied between 0.013 ± 0.012 hr-1 (benzo[b]fluoranthene) and 0.168 ± 0.028 hr-1 (benzo[a]pyrene), and with the exception of benzo[a]pyrene, the kO 3 of PAHs were 1.2-8 times lower compared to those obtained during the PAH-only ozone exposure. Only one PAH, benzo[a]pyrene (BaP), did not show a significant change in kO3 with addition of FAMEs. Phenanthrene, fluoranthene, and pyrene, the only PAHs detected in the B20 PM, had kO 3 values about 4 times lower in B20 PM than those obtained when spiked PAHs-only were exposed to ozone. The kO 3 values of phenanthrene and fluoranthene in the B20 PM were 2 times higher than rates obtained when the PAH mix was exposed to ozone in the presence of the FAMEs. In contrast, pyrene's kO 3 in the B20 PM was about 2 times lower than that obtained for the PAH + FAMEs exposure. Observed differences in PAH behavior demonstrate individual PAH heterogeneous reactivity with gas-phase ozone is sensitive to PAH (vapor pressure, solubility/sorption to matrix components, chemical reactivity) as well as substrate properties (PAH and O3 diffusivity

  15. Ozone Synthesis Efficiency Upgrading in the Pulsed Point-to-Plane Gas Discharge

    International Nuclear Information System (INIS)

    Golota, V.I.; Zavada, L.M.; Kotyukov, O.V.; Polyakov, A.V.; Pugach, S.G.

    2006-01-01

    Results are reported from the studies into electrodynamic characteristics of the barrierless point-to-plane gas discharge as a HV pulse of positive polarity is applied to the point electrode. The efficiency of ozone synthesis has been determined as a function of the length and repetition frequency of the HV pulse. It has been demonstrated that the electrodynamic characteristics of the discharge and the efficiency of ozone synthesis in oxygen-containing gas mixtures essentially depend on the parameters of HV power supply. The HV switch HTS-300 (BEHLKE Electronic GmbH) was used for HV pulse shaping

  16. Pulsed Power Production of Ozone in 02/N2 iin a Coaxial Reactor without Dielectric Layer

    OpenAIRE

    Samaranayake, W. J. M.; Miyahara, Y.; Namihira, T.; Katsuki, S.; Hackam, R.; Akiyama, H.; ミヤハラ, Y.; ナミヒラ, タカオ; カツキ, スナオ; アキヤマ, ヒデノリ; 浪平, 隆男; 勝木, 淳; 秋山, 秀典

    2001-01-01

    Very short duration pulsed streamer discharges have been used to produce ozone in a gas mixture of nitrogen and oxygen at atmospheric pressure. The ratio of nitrogen to oxygen in the mixture was varied in the range from 2.5/0.5 to 0.5/2.5, while maintaining a total flow rate of 3 l/min. The production of ozone was found to be higher for a specific mixture ratio of N2/O2 than that in oxygen or in dry air. The production of ozone in O2 was higher than that in dry air. The production yield of oz...

  17. The behaviour of stratospheric and upper tropospheric ozone in high and mid latitudes; the role of ozone as a climate gas

    Energy Technology Data Exchange (ETDEWEB)

    Kyroe, M; Rummukainen, M; Kivi, R; Turunen, T; Karhu, J [Finnish Meteorological Inst., Sodankylae (Finland); Taalas, P [Finnish Meteorological Inst., Helsinki (Finland)

    1997-12-31

    During the past few years, the dual role that ozone plays in climate change has been becoming increasingly obvious. First, continuous thinning of the ozone layer has been evident, even in the high and middle latitudes in the northern hemisphere. Secondly, ozone is also a greenhouse gas, affecting radiative transfer. Increases in tropospheric ozone have a positive forcing, whereas decreases in stratospheric ozone cause a negative forcing. During the last six years, measurements on total ozone and the vertical distribution of ozone have been performed at the Sodankylae Observatory. At Jokioinen Observatory, measurements on total ozone have been performed since 1990 and measurements on the vertical distribution of ozone since 1993. The overall project has focused on extending the national data series on total ozone and the vertical distribution of ozone. At the same time, the study has contributed to the study of interannual variability of the ozone layer. This SILMU project took part in the large-scale research activities, in addition to performing national studies. The results confirm that there has been fast chemical ozone destruction in the high latitudes in the northern hemisphere. This was particularly evident in the last two winters, 1994/95 and 1995/96. The new data also allows better trend analyses to be made on ozone in high and mid latitudes

  18. The behaviour of stratospheric and upper tropospheric ozone in high and mid latitudes; the role of ozone as a climate gas

    Energy Technology Data Exchange (ETDEWEB)

    Kyroe, M.; Rummukainen, M.; Kivi, R.; Turunen, T.; Karhu, J. [Finnish Meteorological Inst., Sodankylae (Finland); Taalas, P. [Finnish Meteorological Inst., Helsinki (Finland)

    1996-12-31

    During the past few years, the dual role that ozone plays in climate change has been becoming increasingly obvious. First, continuous thinning of the ozone layer has been evident, even in the high and middle latitudes in the northern hemisphere. Secondly, ozone is also a greenhouse gas, affecting radiative transfer. Increases in tropospheric ozone have a positive forcing, whereas decreases in stratospheric ozone cause a negative forcing. During the last six years, measurements on total ozone and the vertical distribution of ozone have been performed at the Sodankylae Observatory. At Jokioinen Observatory, measurements on total ozone have been performed since 1990 and measurements on the vertical distribution of ozone since 1993. The overall project has focused on extending the national data series on total ozone and the vertical distribution of ozone. At the same time, the study has contributed to the study of interannual variability of the ozone layer. This SILMU project took part in the large-scale research activities, in addition to performing national studies. The results confirm that there has been fast chemical ozone destruction in the high latitudes in the northern hemisphere. This was particularly evident in the last two winters, 1994/95 and 1995/96. The new data also allows better trend analyses to be made on ozone in high and mid latitudes

  19. Acute Ozone (O3) Exposure Accelerates Diet-Induced Pulmonary Injury and Metabolic Alterations in a Rat Model of Type II Diabetes

    Science.gov (United States)

    Abstract for Society of Toxicology, March 22-25, 2015, San Diego, CAAcute Ozone (O3) Exposure Accelerates Diet-Induced Pulmonary Injury and Metabolic Alterations in a Rat Model of Type II DiabetesS.J. Snow1,3, D. Miller2, V. Bass2, M. Schladweiler3, A. Ledbetter3, J. Richards3, C...

  20. Nicotiana tabacum as model for ozone - plant surface reactions

    Science.gov (United States)

    Jud, Werner; Fischer, Lukas; Wohlfahrt, Georg; Tissier, Alain; Canaval, Eva; Hansel, Armin

    2015-04-01

    Elevated tropospheric ozone concentrations are considered a toxic threat to plants, responsible for global crop losses with associated economic costs of several billion dollars per year. The ensuing injuries have been related to the uptake of ozone through the stomatal pores and oxidative effects damaging the internal leaf tissue. A striking question of current research is the environment and plant specific partitioning of ozone loss between gas phase, stomatal or plant surface sink terms. Here we show results from ozone fumigation experiments using various Nicotiana Tabacum varieties, whose surfaces are covered with different amounts of unsaturated diterpenoids exuded by their glandular trichomes. Exposure to elevated ozone levels (50 to 150 ppbv) for 5 to 15 hours in an exceptionally clean cuvette system did neither result in a reduction of photosynthesis nor caused any visible leaf damage. Both these ozone induced stress effects have been observed previously in ozone fumigation experiments with the ozone sensitive tobacco line Bel-W3. In our case ozone fumigation was accompanied by a continuous release of oxygenated volatile organic compounds, which could be clearly associated to their condensed phase precursors for the first time. Gas phase reactions of ozone were avoided by choosing a high enough gas exchange rate of the plant cuvette system. In the case of the Ambalema variety, that is known to exude only the diterpenoid cis-abienol, ozone fumigation experiments yield the volatiles formaldehyde and methyl vinyl ketone (MVK). The latter could be unequivocally separated from isomeric methacrolein (MACR) by the aid of a Selective Reagent Ion Time-of-Flight Mass Spectrometer (SRI-ToF-MS), which was switched every six minutes from H3O+ to NO+ primary ion mode and vice versa. Consistent with the picture of an ozone protection mechanism caused by reactive diterpenoids at the leaf surface are the results from dark-light experiments. The ozone loss obtained from the

  1. Productions of Volatile Organic Compounds (VOCs) in Surface Waters from Reactions with Atmospheric Ozone

    Science.gov (United States)

    Hopkins, Frances; Bell, Thomas; Yang, Mingxi

    2017-04-01

    Ozone (O3) is a key atmospheric oxidant, greenhouse gas and air pollutant. In marine environments, some atmospheric ozone is lost by reactions with aqueous compounds (e.g. dissolved organic material, DOM, dimethyl sulfide, DMS, and iodide) near the sea surface. These reactions also lead to formations of volatile organic compounds (VOCs). Removal of O3 by the ocean remains a large uncertainty in global and regional chemical transport models, hampering coastal air quality forecasts. To better understand the role of the ocean in controlling O3 concentrations in the coastal marine atmosphere, we designed and implemented a series of laboratory experiments whereby ambient surface seawater was bubbled with O3-enriched, VOC-free air in a custom-made glass bubble equilibration system. Gas phase concentrations of a range of VOCs were monitored continuously over the mass range m/z 33 - 137 at the outflow of the bubble equilibrator by a proton transfer reaction - mass spectrometer (PTR-MS). Gas phase O3 was also measured at the input and output of the equilibrator to monitor the uptake due to reactions with dissolved compounds in seawater. We observed consistent productions of a variety of VOCs upon reaction with O3, notably isoprene, aldehydes, and ketones. Aqueous DMS is rapidly removed from the reactions with O3. To test the importance of dissolved organic matter precursors, we added increasing (milliliter) volumes of Emiliania huxleyi culture to the equilibrator filled with aged seawater, and observed significant linear increases in gas phase concentrations of a number of VOCs. Reactions between DOM and O3 at the sea-air interface represent a potentially significant source of VOCs in marine air and a sink of atmospheric O3.

  2. Ozone and ozone injury on plants in and around Beijing, China

    International Nuclear Information System (INIS)

    Wan, Wuxing; Manning, W.J.; Wang, Xiaoke; Zhang, Hongxing; Sun, Xu; Zhang, Qianqian

    2014-01-01

    Ozone (O 3 ) levels were assessed for the first time with passive samplers at 10 sites in and around Beijing in summer 2012. Average O 3 concentrations were higher at locations around Beijing than in the city center. Levels varied with site locations and ranged from 22.5 to 48.1 ppb and were highest at three locations. Hourly O 3 concentrations exceeded 40 ppb for 128 h and 80 ppb for 17 h from 2 to 9 in August at one site, where it had a real-time O 3 analyzer. Extensive foliar O 3 injury was found on 19 species of native and cultivated trees, shrubs, and herbs at 6 of the 10 study sites and the other 2 sites without passive sampler. This is the first report of O 3 foliar injury in and around Beijing. Our results warrant an extensive program of O 3 monitoring and foliar O 3 injury assessment in and around Beijing. - Highlights: • Plants have been threatened by high O 3 concentration in and around Beijing, China. • 19 plant species are reported as obvious ambient O 3 injury symptoms in Beijing. • The O 3 injury symptoms occur more often where ambient O 3 concentration is higher. • The results warrant more extensive and long-term study of ambient O 3 in China. - First report of ozone incidence and ozone injury on plants in and around Beijing, China

  3. Determination of the Optimum Ozone Product on the Plasma Ozonizer

    International Nuclear Information System (INIS)

    Agus Purwadi; Widdi Usada; Suryadi; Isyuniarto; Sri Sukmajaya

    2002-01-01

    An experiment of the optimum ozone product determination on the cylindrical plasma ozonizer has been done. The experiment is carried out by using alternating high voltage power supply, oscilloscope CS-1577 A, flow meter and spectronik-20 instrument for the absorbance solution samples which produced by varying the physics parameter values of the discharge alternating high voltage and velocity of oxygen gas input. The plasma ozonizer is made of cylinder stainless steel as the electrode and cylinder glass as the dielectric with 1.00 mm of the discharge gap and 7.225 mm 3 of the discharge tube volume. The experiment results shows that the optimum ozone product is 0.360 mg/s obtained at the the discharge of alternating high voltage of 25.50 kV, the frequency of 1.00 kHz and the rate of oxygen gas input of 1.00 lpm. (author)

  4. Band-Bending of Ga-Polar GaN Interfaced with Al2O3 through Ultraviolet/Ozone Treatment.

    Science.gov (United States)

    Kim, Kwangeun; Ryu, Jae Ha; Kim, Jisoo; Cho, Sang June; Liu, Dong; Park, Jeongpil; Lee, In-Kyu; Moody, Baxter; Zhou, Weidong; Albrecht, John; Ma, Zhenqiang

    2017-05-24

    Understanding the band bending at the interface of GaN/dielectric under different surface treatment conditions is critically important for device design, device performance, and device reliability. The effects of ultraviolet/ozone (UV/O 3 ) treatment of the GaN surface on the energy band bending of atomic-layer-deposition (ALD) Al 2 O 3 coated Ga-polar GaN were studied. The UV/O 3 treatment and post-ALD anneal can be used to effectively vary the band bending, the valence band offset, conduction band offset, and the interface dipole at the Al 2 O 3 /GaN interfaces. The UV/O 3 treatment increases the surface energy of the Ga-polar GaN, improves the uniformity of Al 2 O 3 deposition, and changes the amount of trapped charges in the ALD layer. The positively charged surface states formed by the UV/O 3 treatment-induced surface factors externally screen the effect of polarization charges in the GaN, in effect, determining the eventual energy band bending at the Al 2 O 3 /GaN interfaces. An optimal UV/O 3 treatment condition also exists for realizing the "best" interface conditions. The study of UV/O 3 treatment effect on the band alignments at the dielectric/III-nitride interfaces will be valuable for applications of transistors, light-emitting diodes, and photovoltaics.

  5. Ag-Modified In2O3/ZnO Nanobundles with High Formaldehyde Gas-Sensing Performance

    Directory of Open Access Journals (Sweden)

    Fang Fang

    2015-08-01

    Full Text Available Ag-modified In2O3/ZnO bundles with micro/nano porous structures have been designed and synthesized with by hydrothermal method continuing with dehydration process. Each bundle consists of nanoparticles, where nanogaps of 10–30 nm are present between the nanoparticles, leading to a porous structure. This porous structure brings high surface area and fast gas diffusion, enhancing the gas sensitivity. Consequently, the HCHO gas-sensing performance of the Ag-modified In2O3/ZnO bundles have been tested, with the formaldehyde-detection limit of 100 ppb (parts per billion and the response and recover times as short as 6 s and 3 s, respectively, at 300 °C and the detection limit of 100 ppb, response time of 12 s and recover times of 6 s at 100 °C. The HCHO sensing detect limitation matches the health standard limitation on the concentration of formaldehyde for indoor air. Moreover, the strategy to synthesize the nanobundles is just two-step heating and easy to scale up. Therefore, the Ag-modified In2O3/ZnO bundles are ready for industrialization and practical applications.

  6. Ag-Modified In2O3/ZnO Nanobundles with High Formaldehyde Gas-Sensing Performance

    Science.gov (United States)

    Fang, Fang; Bai, Lu; Song, Dongsheng; Yang, Hongping; Sun, Xiaoming; Sun, Hongyu; Zhu, Jing

    2015-01-01

    Ag-modified In2O3/ZnO bundles with micro/nano porous structures have been designed and synthesized with by hydrothermal method continuing with dehydration process. Each bundle consists of nanoparticles, where nanogaps of 10–30 nm are present between the nanoparticles, leading to a porous structure. This porous structure brings high surface area and fast gas diffusion, enhancing the gas sensitivity. Consequently, the HCHO gas-sensing performance of the Ag-modified In2O3/ZnO bundles have been tested, with the formaldehyde-detection limit of 100 ppb (parts per billion) and the response and recover times as short as 6 s and 3 s, respectively, at 300 °C and the detection limit of 100 ppb, response time of 12 s and recover times of 6 s at 100 °C. The HCHO sensing detect limitation matches the health standard limitation on the concentration of formaldehyde for indoor air. Moreover, the strategy to synthesize the nanobundles is just two-step heating and easy to scale up. Therefore, the Ag-modified In2O3/ZnO bundles are ready for industrialization and practical applications. PMID:26287205

  7. Synthesis, characterization and gas sensing properties of undoped and Zn-doped γ-Fe2O3-based gas sensors

    International Nuclear Information System (INIS)

    Jing Zhihong

    2006-01-01

    In this study, undoped and Zn-doped γ-Fe 2 O 3 nanopowders have been prepared using Fe(NO 3 ) 3 .9H 2 O and Zn(NO 3 ) 2 .6H 2 O as starting materials and lauryl alcohol as anhydrous medium. Thermo-gravimetric analysis (TGA), differential thermal analysis (DTA), X-ray diffraction (XRD) and transmission electron micrograph (TEM) were employed to characterize the products. Sensitivity characteristics of the undoped and Zn-doped γ-Fe 2 O 3 semiconductor gas sensors have been investigated. The results show that both of the undoped and 15 mol% Zn-doped γ-Fe 2 O 3 -based gas sensors present good sensitivity and selectivity to acetone and ethanol in presence of CH 4 , H 2 and CO at the operating temperatures of 240 and 270 deg. C, respectively. After being doped with 15 mol% Zn addition, the γ-Fe 2 O 3 -based gas element displays higher sensitivity and selectivity as well as shorter response-recovery time compared with the undoped, suggesting that the promoting effect of ZnO is excellent. So, it seems that the γ-Fe 2 O 3 -based gas sensor doped with 15 mol% Zn is expected to be a promising sensor for detecting acetone and ethanol

  8. IR and UV gas absorption measurements during NOx reduction on an industrial natural gas fired power plant

    DEFF Research Database (Denmark)

    Stamate, Eugen; Chen, Weifeng; Jørgensen, L.

    2010-01-01

    NOx reduction of flue gas by plasma-generated ozone was investigated in pilot test experiments on an industrial power plant running on natural gas. Reduction rates higher than 95% have been achieved for a molar ratio O3:NOx slightly below two. Fourier transform infrared and ultraviolet absorption...... spectroscopy were used for spatial measurements of stable molecules and radicals along the reduction reactor. Reactions of O3 injected in the flue gas in the reduction reactor were also modeled. Experiments are in good agreement with numerical simulations. The operation costs for NOx reduction were estimated...

  9. Molecular storage of ozone in a clathrate hydrate: an attempt at preserving ozone at high concentrations.

    Directory of Open Access Journals (Sweden)

    Takahiro Nakajima

    Full Text Available This paper reports an experimental study of the formation of a mixed O(3+ O(2+ CO(2 hydrate and its frozen storage under atmospheric pressure, which aimed to establish a hydrate-based technology for preserving ozone (O(3, a chemically unstable substance, for various industrial, medical and consumer uses. By improving the experimental technique that we recently devised for forming an O(3+ O(2+ CO(2 hydrate, we succeeded in significantly increasing the fraction of ozone contained in the hydrate. For a hydrate formed at a system pressure of 3.0 MPa, the mass fraction of ozone was initially about 0.9%; and even after a 20-day storage at -25°C and atmospheric pressure, it was still about 0.6%. These results support the prospect of establishing an economical, safe, and easy-to-handle ozone-preservation technology of practical use.

  10. DO3SE model applicability and O3 flux performance compared to AOT40 for an O3-sensitive tropical tree species (Psidium guajava L. 'Paluma').

    Science.gov (United States)

    Assis, Pedro I L S; Alonso, Rocío; Meirelles, Sérgio T; Moraes, Regina M

    2015-07-01

    Phytotoxic ozone (O3) levels have been recorded in the Metropolitan Region of São Paulo (MRSP). Flux-based critical levels for O3 through stomata have been adopted for some northern hemisphere species, showing better accuracy than with accumulated ozone exposure above a threshold of 40 ppb (AOT40). In Brazil, critical levels for vegetation protection against O3 adverse effects do not exist. The study aimed to investigate the applicability of O3 deposition model (Deposition of Ozone for Stomatal Exchange (DO3SE)) to an O3-sensitive tropical tree species (Psidium guajava L. 'Paluma') under the MRSP environmental conditions, which are very unstable, and to assess the performance of O3 flux and AOT40 in relation to O3-induced leaf injuries. Stomatal conductance (g s) parameterization for 'Paluma' was carried out and used to calculate different rate thresholds (from 0 to 5 nmol O3 m(-2) projected leaf area (PLA) s(-1)) for the phytotoxic ozone dose (POD). The model performance was assessed through the relationship between the measured and modeled g sto. Leaf injuries were analyzed and associated with POD and AOT40. The model performance was satisfactory and significant (R (2) = 0.56; P < 0.0001; root-mean-square error (RMSE) = 116). As already expected, high AOT40 values did not result in high POD values. Although high POD values do not always account for more injuries, POD0 showed better performance than did AOT40 and other different rate thresholds for POD. Further investigation is necessary to improve our model and also to check if there is a critical level of ozone in which leaf injuries arise. The conclusion is that the DO3SE model for 'Paluma' is applicable in the MRSP as well as in temperate regions and may contribute to future directives.

  11. Effects of chronic elevated ozone exposure on gas exchange responses of adult beech trees (Fagus sylvatica) as related to the within-canopy light gradient

    International Nuclear Information System (INIS)

    Kitao, Mitsutoshi; Loew, Markus; Heerdt, Christian; Grams, Thorsten E.E.; Haeberle, Karl-Heinz; Matyssek, Rainer

    2009-01-01

    The effects of elevated O 3 on photosynthetic properties in adult beech trees (Fagus sylvatica) were investigated in relation to leaf mass per area as a measure of the gradually changing, within-canopy light availability. Leaves under elevated O 3 showed decreased stomatal conductance at unchanged carboxylation capacity of Rubisco, which was consistent with enhanced δ 13 C of leaf organic matter, regardless of the light environment during growth. In parallel, increased energy demand for O 3 detoxification and repair was suggested under elevated O 3 owing to enhanced dark respiration. Only in shade-grown leaves, light-limited photosynthesis was reduced under elevated O 3 , this effect being accompanied by lowered F v /F m . These results suggest that chronic O 3 exposure primarily caused stomatal closure to adult beech trees in the field regardless of the within-canopy light gradient. However, light limitation apparently raised the O 3 sensitivity of photosynthesis and accelerated senescence in shade leaves. - Across leaf differentiation in adult beech crowns, elevated ozone acted through stomatal closure on gas exchange although enhancing photosynthetic sensitivity of shaded leaves

  12. Ozone biomonitoring in Pakistan using tobacco cultivar Bel-W3

    International Nuclear Information System (INIS)

    Kafiatullah, A.; Shamsi, S.R.A.

    2012-01-01

    The present study depicts a comparison of ozone (O/sub 3/) concentrations over a decade time (1993-94 to 2006) using plant biomonitoring and continuous ozone monitors techniques in Lahore city of Pakistan. The variations in O/sub 3/ levels were assessed at city centre, suburbs and semi-rural/rural locations in and around the city of Lahore by using American O/sub 3/-sensitive tobacco biomonitor plant ( Nicotiana tabaccum L. cv. Bel-W3) for the first time in Pakistan during 1993 and 1994 seasons through weekly assessment of visible damage to leaves. Results for both 1993 and 1994 seasons indicated significant differences between sites in the mean 6-h O/sub 3/ concentrations with a range of over 20 ppb and 15 ppb across the sites in 1993 and 1994, respectively. An inverse relationship between the levels of NO/sub 2/ and O/sub 3/ was found during investigation. The highest O/sub 3/ levels of 75-80 ppb were found at rural areas and the lowest at city centre sites. The extent of O/sub 3/ injury on the tobacco cv. Bel-W3 leaves reflected the trends seen in O/sub 3/ concentrations. The highest and lowest leaf injury indices of 18-27% and 5-7% occurred at the rural and city centre sites, respectively. Results for 2006 season indicated the highest seasonal mean O/sub 3/ concentration of 100 ppb in semi-rural areas compared with city centre sites (68 ppb). The highest 26% and 20% increase in O/sub 3/ levels was observed at rural/semi-rural and city centre sites, respectively when compared with 1993 O/sub 3/ survey. Application of O/sub 3/ biomonitoring technique proved very cost-effective and feasible for the estimation of atmospheric O/sub 3/ levels in South East Asian regions like Pakistan where shortage of electric supply, trained man power and poverty is already playing havoc. (author)

  13. Caffeine degradation in water by gamma irradiation, ozonation and ozonation/gamma irradiation

    Directory of Open Access Journals (Sweden)

    Torun Murat

    2014-03-01

    Full Text Available Aqueous solutions of caffeine were treated with ozone and gamma irradiation. The amounts of remaining caffeine were determined after solid phase extraction as a function of absorbed dose and ozonation time. In addition to this, some important parameters such as inorganic ions, chemical oxygen demand (COD dissolved oxygen and total acidity changes were followed. Caffeine (50 ppm is found to be completely decomposed at 3.0 kGy and 1.2 kGy doses in the absence of H2O2 and in 1.20 mM H2O2 solutions, respectively. In the case of gamma irradiation after ozonation, 50 ppm caffeine was removed at 0.2 kGy when the solution was ozonized for 100 s at a rate of 10 g O3 h-1 in 400 mL 50 ppm paracetamol solution.

  14. Acetone gas-sensing properties of multiple-networked Pd-decorated Bi_2O_3 nanorod sensors

    International Nuclear Information System (INIS)

    Park, Sung Hoon; Kim, Soo Hyun; Lee, Sang Min; Lee, Chong Mu

    2015-01-01

    This study examined the sensing properties of Bi_2O_3 nanorods decorated with Pd nanoparticles. Pd-decorated β-Bi_2O_3 nanorods were prepared by immersing the Bi_2O_3 nanorods in ethanol/(50 mM)PdCl_2 solution followed by UV irradiation and annealing. The Bi_2O_3 nanorods decorated with Pd nanoparticles showed faster and stronger response to acetone gas than the pristine Bi_2O_3 nanorods. Interestingly, the difference in response time between the Pd-decorated Bi_2O_3 nanorod sensor and pristine Bi_2O_3 nanorod sensor increased with increasing the acetone gas concentration. In contrast, the difference in recovery time between the two nanorod sensors decreased with increasing the acetone gas concentration. This difference can be explained using the chemical mechanism. The underlying mechanism for the enhanced response of the Bi_2O_3 nanorods decorated with Pd nanoparticles to acetone gas is also discussed

  15. Artificial O3 formation during fireworks

    Science.gov (United States)

    Fiedrich, M.; Kurtenbach, R.; Wiesen, P.; Kleffmann, J.

    2017-09-01

    In several previous studies emission of ozone (O3) during fireworks has been reported, which was attributed to either photolysis of molecular oxygen (O2) or nitrogen dioxide (NO2) by short/near UV radiation emitted during the high-temperature combustion of fireworks. In contrast, in the present study no O3 formation was observed using a selective O3-LOPAP instrument during the combustion of pyrotechnical material in the laboratory, while a standard O3 monitor using UV absorption showed extremely high O3 signals. The artificial O3 response of the standard O3 monitor was caused by known interferences associated with high levels of co-emitted VOCs and could also be confirmed in field measurements during New Year's Eve in the city of Wuppertal, Germany. The present results help to explain unreasonably high ozone levels documented during ambient fireworks, which are in contradiction to the fast titration of O3 by nitrogen monoxide (NO) in the night-time atmosphere.

  16. Inhaled ozone (O3)-induces changes in serum metabolomic and liver transcriptomic profiles in rats☆

    Science.gov (United States)

    Miller, Desinia B.; Karoly, Edward D.; Jones, Jan C.; Ward, William O.; Vallanat, Beena D.; Andrews, Debora L.; Schladweiler, Mette C.; Snow, Samantha J.; Bass, Virginia L.; Richards, Judy E.; Ghio, Andrew J.; Cascio, Wayne E.; Ledbetter, Allen D.; Kodavanti, Urmila P.

    2016-01-01

    Air pollution has been linked to increased incidence of diabetes. Recently, we showed that ozone (O3) induces glucose intolerance, and increases serum leptin and epinephrine in Brown Norway rats. In this study, we hypothesized that O3 exposure will cause systemic changes in metabolic homeostasis and that serum metabolomic and liver transcriptomic profiling will provide mechanistic insights. In the first experiment, male Wistar Kyoto (WKY) rats were exposed to filtered air (FA) or O3 at 0.25, 0.50, or 1.0 ppm, 6 h/day for two days to establish concentration-related effects on glucose tolerance and lung injury. In a second experiment, rats were exposed to FA or 1.0 ppm O3, 6 h/day for either one or two consecutive days, and systemic metabolic responses were determined immediately after or 18 h post-exposure. O3 increased serum glucose and leptin on day 1. Glucose intolerance persisted through two days of exposure but reversed 18 h-post second exposure. O3 increased circulating metabolites of glycolysis, long-chain free fatty acids, branched-chain amino acids and cholesterol, while 1,5-anhydroglucitol, bile acids and metabolites of TCA cycle were decreased, indicating impaired glycemic control, proteolysis and lipolysis. Liver gene expression increased for markers of glycolysis, TCA cycle and gluconeogenesis, and decreased for markers of steroid and fat biosynthesis. Genes involved in apoptosis and mitochondrial function were also impacted by O3. In conclusion, short-term O3 exposure induces global metabolic derangement involving glucose, lipid, and amino acid metabolism, typical of a stress–response. It remains to be examined if these alterations contribute to insulin resistance upon chronic exposure. PMID:25838073

  17. Seasonal and diurnal gas exchange differences in ozone-sensitive common milkweed (Asclepias syriaca L.) in relation to ozone uptake

    International Nuclear Information System (INIS)

    Bergweiler, Chris; Manning, William J.; Chevone, Boris I.

    2008-01-01

    Stomatal conductance and net photosynthesis of common milkweed (Asclepias syriaca L.) plants in two different soil moisture regimes were directly quantified and subsequently modeled over an entire growing season. Direct measurements captured the dynamic response of stomatal conductance to changing environmental conditions throughout the day, as well as declining gas exchange and carbon assimilation throughout the growth period beyond an early summer maximum. This phenomenon was observed in plants grown both with and without supplemental soil moisture, the latter of which should theoretically mitigate against harmful physiological effects caused by exposure to ozone. Seasonally declining rates of stomatal conductance were found to be substantial and incorporated into models, making them less susceptible to the overestimations of effective exposure that are an inherent source of error in ozone exposure indices. The species-specific evidence presented here supports the integration of dynamic physiological processes into flux-based modeling approaches for the prediction of ozone injury in vegetation. - Temporal variation in physiological processes underlying diurnal and seasonal ozone uptake are described for a key ozone bioindicator species of North America

  18. Seasonal and diurnal gas exchange differences in ozone-sensitive common milkweed (Asclepias syriaca L.) in relation to ozone uptake

    Energy Technology Data Exchange (ETDEWEB)

    Bergweiler, Chris [Department of Plant, Soil, and Insect Sciences, University of Massachusetts, Amherst, MA 01003 (United States)], E-mail: bergweiler@nre.umass.edu; Manning, William J. [Department of Plant, Soil, and Insect Sciences, University of Massachusetts, Amherst, MA 01003 (United States); Chevone, Boris I. [Department of Plant Pathology, Physiology, and Weed Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 (United States)

    2008-03-15

    Stomatal conductance and net photosynthesis of common milkweed (Asclepias syriaca L.) plants in two different soil moisture regimes were directly quantified and subsequently modeled over an entire growing season. Direct measurements captured the dynamic response of stomatal conductance to changing environmental conditions throughout the day, as well as declining gas exchange and carbon assimilation throughout the growth period beyond an early summer maximum. This phenomenon was observed in plants grown both with and without supplemental soil moisture, the latter of which should theoretically mitigate against harmful physiological effects caused by exposure to ozone. Seasonally declining rates of stomatal conductance were found to be substantial and incorporated into models, making them less susceptible to the overestimations of effective exposure that are an inherent source of error in ozone exposure indices. The species-specific evidence presented here supports the integration of dynamic physiological processes into flux-based modeling approaches for the prediction of ozone injury in vegetation. - Temporal variation in physiological processes underlying diurnal and seasonal ozone uptake are described for a key ozone bioindicator species of North America.

  19. Degradation of methylparaben in water by corona plasma coupled with ozonation.

    Science.gov (United States)

    Dobrin, D; Magureanu, M; Bradu, C; Mandache, N B; Ionita, P; Parvulescu, V I

    2014-11-01

    The degradation of methylparaben (MeP) in water was investigated using a pulsed corona discharge generated in oxygen, above the liquid. A comparison was made between results obtained in semi-batch corona (SBC) configuration (stationary solution, continuous gas flow) and results obtained in a semi-batch corona with recirculation combined with ozonation (SBCR + O3), where the liquid is continuously circulated between a solution reservoir and the plasma reactor and the effluent gas containing ozone is bubbled through the solution in the reservoir. It was found that MeP was completely degraded after 10-15 min of treatment in both configurations. Oxidation by ozone alone, in the absence of plasma, was a slower process. The energy efficiency for MeP removal (Y MeP) and for mineralization (Y TOC) was significantly higher in the SBCR + O3 configuration (Y MeP = 7.1 g/kWh at 90 % MeP removal and Y TOC = 0.41 g/kWh at 50 % total organic carbon (TOC) removal) than in the SBC configuration (Y MeP = 0.6 g/kWh at 90 % MeP removal and Y TOC = 0.11 g/kWh at 50 % TOC removal).

  20. Breakdown Voltage of CF3CHCl2 gas an Alternative to SF6 Gas using HV Test and Bonding Energy Methods

    Science.gov (United States)

    Juliandhy, Tedy; Haryono, T.; Suharyanto; Perdana, Indra

    2018-04-01

    For more than two decades of Sulphur Hexafluoride (SF6) gases is used as a gas insulation in high voltage equipment especially in substations. In addition to getting an advantage as an insulating gas. SF6 gas is recognized as one of the greenhouse effect gases that cause global warming. Under the Kyoto Protocol, SF6 gas is one of those gases whose use is restricted and gradually reduced to the presence of a replacement gas for SF6 gas. One of the alternative gas alternatives which have the potential of replacing SF6 gas as an insulating gas in Gas Insulated Switchgear (GIS) equipment in the substation is Dichlorotrifluoroethane (CF3CHCl2) gas. The purpose of this paper is to enable a comparison of breakdown voltage with high voltage test and method of calculating Bonding energy to Dichlorotrifluoroethane gas as substitute gas for SF6 gas. At 0.1 bar gas pressure obtained an average breakdown voltage of 18.68 kV / mm at 25oC chamber temperature and has the highest breakdown voltage at 50oC with a breakdown voltage of 19.56 kV / mm. The CF3CHCl2 gas has great potential as an insulating gas because it has more insulation ability high of SF6 gas, and is part of the gas recommended under the Kyoto Protocol. Gas CF3CHCl2 has the capacity to double the value of electronegativity greater than SF6 gas as a major requirement of gas isolation and has a value of Global Warming Potential (GWP) and Ozone Depleting lower than from SF6 gas.

  1. Semiconductor Ceramic Mn0.5Fe1.5O3-Fe2O3 from Natural Minerals as Ethanol Gas Sensors

    Science.gov (United States)

    Aliah, H.; Syarif, D. G.; Iman, R. N.; Sawitri, A.; Sanjaya WS, M.; Nurul Subkhi, M.; Pitriana, P.

    2018-05-01

    In this research, Mn and Fe-based ceramic gas sensing were fabricated and characterized. This research used natural mineral which is widely available in Indonesia and intended to observe the characteristics of Mn and Fe-based semiconducting material. Fabricating process of the thick films started by synthesizing the ceramic powder of Fe(OH)3 and Mn oxide material using the precipitation method. The deposition from precipitation method previously was calcined at a temperature of 800 °C to produce nanoparticle powder. Nanoparticle powder that contains Mn and Fe oxide was mixed with an organic vehicle (OV) to produce a paste. Then, the paste was layered on the alumina substrate by using the screen printing method. XRD method was utilized to characterize the thick film crystal structure that has been produced. XRD spectra showed that the ceramic layer was formed from the solid Mn0.5Fe1.5O3 (bixbyite) and Fe2O3. In addition, the electrical properties (resistance) examination was held in the room that contains air and ethanol to determine the sensor sensitivity of ethanol gas. The sensor resistance decreases as the ethanol gas was added, showing that the sensor was sensitive to ethanol gas and an n-type semiconductor. Gas sensor exhibit sensitive characterization of ethanol gas on the concentration of (100 to 300) ppm at a temperature of (150 to 200) °C. This showed that the Mn0.5Fe1.5O3-Fe2O3 ceramic semiconductor could be utilized as the ethanol gas detector.

  2. Quantifying the Impact of Tropospheric Ozone on Crops Productivity at regional scale using JULES-crop

    Science.gov (United States)

    Leung, F.

    2016-12-01

    Tropospheric ozone (O3) is the third most important anthropogenic greenhouse gas. It is causing significant crop production losses. Currently, O3 concentrations are projected to increase globally, which could have a significant impact on food security. The Joint UK Land Environment Simulator modified to include crops (JULES-crop) is used here to quantify the impacts of tropospheric O3 on crop production at the regional scale until 2100. We evaluate JULES-crop against the Soybean Free-Air-Concentration-Enrichment (SoyFACE) experiment in Illinois, USA. Experimental data from SoyFACE and various literature sources is used to calibrate the parameters for soybean and ozone damage parameters in soybean in JULES-crop. The calibrated model is then applied for a transient factorial set of JULES-crop simulations over 1960-2005. Simulated yield changes are attributed to individual environmental drivers, CO2, O3 and climate change, across regions and for different crops. A mixed scenario of RCP 2.6 and RCP 8.5 climatology and ozone are simulated to explore the implication of policy. The overall findings are that regions with high ozone concentration such as China and India suffer the most from ozone damage, soybean is more sensitive to O3 than other crops. JULES-crop predicts CO2 fertilisation would increase the productivity of vegetation. This effect, however, is masked by the negative impacts of tropospheric O3. Using data from FAO and JULES-crop estimated that ozone damage cost around 55.4 Billion USD per year on soybean. Irrigation improves the simulation of rice only, and it increases the relative ozone damage because drought can reduce the ozone from entering the plant stomata. RCP 8.5 scenario results in a high yield for all crops mainly due to the CO2 fertilisation effect. Mixed climate scenarios simulations suggest that RCP 8.5 CO2 concentration and RCP 2.6 O3 concentration result in the highest yield. Further works such as more crop FACE-O3 experiments and more Crop

  3. Assessment of Fenton's reagent and ozonation as pre-treatments for increasing the biodegradability of aqueous diethanolamine solutions from an oil refinery gas sweetening process.

    Science.gov (United States)

    Durán-Moreno, A; García-González, S A; Gutiérrez-Lara, M R; Rigas, F; Ramírez-Zamora, R M

    2011-02-28

    The aim of this work was to evaluate the efficiency of three chemical oxidation processes for increasing the biodegradability of aqueous diethanolamine solutions (aqueous DEA solutions), to be used as pre-treatments before a biological process. The raw aqueous DEA solution, sourced from a sour gas sweetening plant at a Mexican oil refinery, was first characterized by standardized physico-chemical methods. Then experiments were conducted on diluted aqueous DEA solutions to test the effects of Fenton's reagent, ozone and ozone-hydrogen peroxide on the removal of some physicochemical parameters of these solutions. Lastly, biodegradability tests based on Dissolved Organic Carbon Die Away OECD301-A, were carried out on a dilution of the raw aqueous DEA solution and on the treated aqueous DEA solutions, produced by applying the best experimental conditions determined during the aforementioned oxidation tests. Experimental results showed that for aqueous DEA solutions treated with Fenton's reagent, the best degradation rate (70%) was obtained at pH 2.8, with Fe(2+) and H(2)O(2) at doses of 1000 and 10,000 mg/L respectively. In the ozone process, the best degradation (60%) was observed in aqueous DEA solution (100 mg COD/L), using 100 mg O(3)/L at pH 5. In the ozone-hydrogen peroxide process, no COD or DOC removals were observed. The diluted spent diethanolamine solution showed its greatest increase in biodegradability after a reaction period of 28 days when treated with Fenton's reagent, but after only 15 days in the case of ozonation. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Mass spectrometric investigation of the isotopes of ozone in the laboratory and the stratosphere

    International Nuclear Information System (INIS)

    Mauersberger, K.; Morton, J.; Schueler, B.

    1991-01-01

    During the last few years information on the isotope anomalies of ozone has substantially increased. Whenever ozone is formed in a gas phase reaction, an enhancement in its heavy isotopes is found of magnitude 12-14% ( 50 O 3 ) above the statistically expected values. The mass-independent enhancement decreases toward higher pressures and also shows a pronounced temperature dependence. Toward lower temperatures the enhancement becomes less. Studies of all possible ozone isotopes have shown that molecular symmetry plays a major role. Even large enhancements, above the laboratory results, have been occasionally measured in the stratosphere using a number of different experimental techniques. A correlation between very high heavy ozone enhancement (> 30%) and high solar activity may exist. The behavior of ozone isotopes will provide information about the ozone formation process

  5. Changes in gas exchange characteristics during the life span of giant sequoia: Implications for response to current and future concentrations of atmospheric ozone

    Energy Technology Data Exchange (ETDEWEB)

    Grulke, N.E.; Miller, P.R. (USDA Forest Service, Riverside, CA (United States))

    Native stands of giant sequoia are being exposed to relatively high concentrations of atmospheric ozone produced in urban and agricultural areas upwind. The expected change in environmental conditions over the next 100 y is likely to be unprecendented in the life span (ca 2,500 y) of giant sequoia. Changes in the physiological responses of three age classes of giant sequoia (current year, 12 y and 25 y) to different concentrations of ozone were determined, and age-related differences in sensitivity to pollutants were assessed by examining physiological changes (gas exchange, water use efficiency) across the life span of giant sequoia. The CO[sub 2] exchange rate (CER) was greater in current year (12.1 [mu]mol CO[sub 2]/m[sup 2]s) and 2 year old seedlings (4.8 [mu]mol CO[sub 2]/m[sup 2]s) than in all older trees (average of 3.0 [mu]mol CO[sub 2]/m[sup 2]s). Dark respiration was highest for current year seedlings and was increased twofold in symptotic individuals exposed to elevated ozone concentrations. Stomatal conductance was greater in current-year and 2 year old seedlings (335 and 200 mmol H[sub 2]O/m[sup 2]s), respectively, than in all older trees (50 mmol H[sub 2]O/m[sup 2]s), indicating that the ozone concentration in substomatol cavities is higher in young seedlings than in older trees. Significant changes in water use efficiency occurred in trees between ages 5 and 20 years. It is concluded that giant sequoia seedlings are sensitive to atmospheric ozone until they are ca 5 y old. Low conductance, high water use efficiency, and compact mesophyll all contribute to a natural ozone tolerance, or defense, or both, in foliage of older trees. 11 refs., 1 fig., 1 tab.

  6. Degradation and toxicity depletion of RB19 anthraquinone dye in water by ozone-based technologies.

    Science.gov (United States)

    Lovato, María E; Fiasconaro, María L; Martín, Carlos A

    2017-02-01

    This research investigated the discoloration and mineralization of Reactive Blue 19 (RB19) anthraquinone dye by single ozonation, single UV radiation and ozonation jointed with UV radiation (O 3 /UV). The problem was approached from two points of view: with the objective of color removal or the mineralization of solution. In each case, the optimum operating conditions were different. Ozonation was the most effective treatment for color removal, while the combined O 3 /UV treatment was for mineralization. Major intermediates of the dye degradation were identified by gas chromatography/mass spectrometry and a degradation pathway was proposed. In addition, a clear decrease of the toxicity of the dye was achieved at the end of the experiments. The effect of initial dye concentration, pH, ozone dose, and UV radiation on the degradation of the dye and decrease of total organic carbon was investigated, in order to establish the optimal operating conditions to achieve discoloration, mineralization or a combination of both.

  7. Evaluation of the Community Multiscale Air Quality Model for Simulating Winter Ozone Formation in the Uinta Basin

    Science.gov (United States)

    Matichuk, Rebecca; Tonnesen, Gail; Luecken, Deborah; Gilliam, Rob; Napelenok, Sergey L.; Baker, Kirk R.; Schwede, Donna; Murphy, Ben; Helmig, Detlev; Lyman, Seth N.; Roselle, Shawn

    2017-12-01

    The Weather Research and Forecasting (WRF) and Community Multiscale Air Quality (CMAQ) models were used to simulate a 10 day high-ozone episode observed during the 2013 Uinta Basin Winter Ozone Study (UBWOS). The baseline model had a large negative bias when compared to ozone (O3) and volatile organic compound (VOC) measurements across the basin. Contrary to other wintertime Uinta Basin studies, predicted nitrogen oxides (NOx) were typically low compared to measurements. Increases to oil and gas VOC emissions resulted in O3 predictions closer to observations, and nighttime O3 improved when reducing the deposition velocity for all chemical species. Vertical structures of these pollutants were similar to observations on multiple days. However, the predicted surface layer VOC mixing ratios were generally found to be underestimated during the day and overestimated at night. While temperature profiles compared well to observations, WRF was found to have a warm temperature bias and too low nighttime mixing heights. Analyses of more realistic snow heat capacity in WRF to account for the warm bias and vertical mixing resulted in improved temperature profiles, although the improved temperature profiles seldom resulted in improved O3 profiles. While additional work is needed to investigate meteorological impacts, results suggest that the uncertainty in the oil and gas emissions contributes more to the underestimation of O3. Further, model adjustments based on a single site may not be suitable across all sites within the basin.

  8. Regional impacts of oil and gas development on ozone formation in the western United States.

    Science.gov (United States)

    Rodriguez, Marco A; Barna, Michael G; Moore, Tom

    2009-09-01

    The Intermountain West is currently experiencing increased growth in oil and gas production, which has the potential to affect the visibility and air quality of various Class I areas in the region. The following work presents an analysis of these impacts using the Comprehensive Air Quality Model with extensions (CAMx). CAMx is a state-of-the-science, "one-atmosphere" Eulerian photochemical dispersion model that has been widely used in the assessment of gaseous and particulate air pollution (ozone, fine [PM2.5], and coarse [PM10] particulate matter). Meteorology and emissions inventories developed by the Western Regional Air Partnership Regional Modeling Center for regional haze analysis and planning are used to establish an ozone baseline simulation for the year 2002. The predicted range of values for ozone in the national parks and other Class I areas in the western United States is then evaluated with available observations from the Clean Air Status and Trends Network (CASTNET). This evaluation demonstrates the model's suitability for subsequent planning, sensitivity, and emissions control strategy modeling. Once the ozone baseline simulation has been established, an analysis of the model results is performed to investigate the regional impacts of oil and gas development on the ozone concentrations that affect the air quality of Class I areas. Results indicate that the maximum 8-hr ozone enhancement from oil and gas (9.6 parts per billion [ppb]) could affect southwestern Colorado and northwestern New Mexico. Class I areas in this region that are likely to be impacted by increased ozone include Mesa Verde National Park and Weminuche Wilderness Area in Colorado and San Pedro Parks Wilderness Area, Bandelier Wilderness Area, Pecos Wilderness Area, and Wheeler Peak Wilderness Area in New Mexico.

  9. What is Eating Ozone? Thermal Reactions between SO2 And O3: Implications for Icy Environments

    Science.gov (United States)

    Loeffler, Mark J.; Hudson, Reggie L.

    2016-01-01

    Laboratory studies are presented, showing for the first time that thermally driven reactions in solid H2O+SO2+O3 mixtures can occur below 150 K, with the main sulfur-containing product being bisulfate (HSO4(-)). Using a technique not previously applied to the low-temperature kinetics of either interstellar or solar system ice analogs, we estimate an activation energy of 32 kJ per mol for HSO4(-) formation. These results show that at the temperatures of the Jovian satellites, SO2 and O3 will efficiently react making detection of these molecules in the same vicinity unlikely. Our results also explain why O3 has not been detected on Callisto and why the SO2 concentration on Callisto appears to be highest on that world's leading hemisphere. Furthermore, our results predict that the SO2 concentration on Ganymede will be lowest in the trailing hemisphere, where the concentration of O3 is the highest. Our work suggests that thermal reactions in ices play a much more important role in surface and sub-surface chemistry than generally appreciated, possibly explaining the low abundance of sulfur-containing molecules and the lack of ozone observed in comets and interstellar ices.

  10. Catalytic ozonation of oxalate with a cerium supported palladium oxide: An efficient degradation not relying on hydroxyl radical oxidation

    KAUST Repository

    Zhang, Tao; Li, Weiwei; Croue, Jean-Philippe

    2011-01-01

    The cerium supported palladium oxide (PdO/CeO 2) at a low palladium loading was found very effective in catalytic ozonation of oxalate, a probe compound that is difficult to be efficiently degraded in water with hydroxyl radical oxidation and one of the major byproducts in ozonation of organic matter. The oxalate was degraded into CO 2 during the catalytic ozonation. The molar ratio of oxalate degraded to ozone consumption increased with increasing catalyst dose and decreasing ozone dosage and pH under the conditions of this study. The maximum molar ratio reached around 1, meaning that the catalyst was highly active and selective for oxalate degradation in water. The catalytic ozonation, which showed relatively stable activity, does not promote hydroxyl radical generation from ozone. Analysis with ATR-FTIR and in situ Raman spectroscopy revealed that 1) oxalate was adsorbed on CeO 2 of the catalyst forming surface complexes, and 2) O 3 was adsorbed on PdO of the catalyst and further decomposed to surface atomic oxygen (*O), surface peroxide (*O 2), and O 2 gas in sequence. The results indicate that the high activity of the catalyst is related to the synergetic function of PdO and CeO 2 in that the surface atomic oxygen readily reacts with the surface cerium-oxalate complex. This kind of catalytic ozonation would be potentially effective for the degradation of polar refractory organic pollutants and hydrophilic natural organic matter. © 2011 American Chemical Society.

  11. Catalytic ozonation of oxalate with a cerium supported palladium oxide: An efficient degradation not relying on hydroxyl radical oxidation

    KAUST Repository

    Zhang, Tao

    2011-11-01

    The cerium supported palladium oxide (PdO/CeO 2) at a low palladium loading was found very effective in catalytic ozonation of oxalate, a probe compound that is difficult to be efficiently degraded in water with hydroxyl radical oxidation and one of the major byproducts in ozonation of organic matter. The oxalate was degraded into CO 2 during the catalytic ozonation. The molar ratio of oxalate degraded to ozone consumption increased with increasing catalyst dose and decreasing ozone dosage and pH under the conditions of this study. The maximum molar ratio reached around 1, meaning that the catalyst was highly active and selective for oxalate degradation in water. The catalytic ozonation, which showed relatively stable activity, does not promote hydroxyl radical generation from ozone. Analysis with ATR-FTIR and in situ Raman spectroscopy revealed that 1) oxalate was adsorbed on CeO 2 of the catalyst forming surface complexes, and 2) O 3 was adsorbed on PdO of the catalyst and further decomposed to surface atomic oxygen (*O), surface peroxide (*O 2), and O 2 gas in sequence. The results indicate that the high activity of the catalyst is related to the synergetic function of PdO and CeO 2 in that the surface atomic oxygen readily reacts with the surface cerium-oxalate complex. This kind of catalytic ozonation would be potentially effective for the degradation of polar refractory organic pollutants and hydrophilic natural organic matter. © 2011 American Chemical Society.

  12. Landfill leachate treatment with ozone and ozone/hydrogen peroxide systems

    International Nuclear Information System (INIS)

    Tizaoui, Chedly; Bouselmi, Latifa; Mansouri, Loubna; Ghrabi, Ahmed

    2007-01-01

    In the search for an efficient and economical method to treat a leachate generated from a controlled municipal solid waste landfill site (Jebel Chakir) in the region of greater Tunis in Tunisia, ozone alone and ozone combined with hydrogen peroxide were studied. The leachate was characterised by high COD, low biodegradability and intense dark colour. A purpose-built reactor, to avoid foaming, was used for the study. It was found that ozone efficacy was almost doubled when combined with hydrogen peroxide at 2 g/L but higher H 2 O 2 concentrations gave lower performances. Enhancement in the leachate biodegradability from about 0.1 to about 0.7 was achieved by the O 3 /H 2 O 2 system. Insignificant changes in pH that may due to buffering effect of bicarbonate was found. A small decrease in sulphate concentrations were also observed. In contrast, chloride concentration declined at the beginning of the experiment then increased to reach its initial value. Estimates of the operating costs were made for comparison purposes and it was found that the O 3 /H 2 O 2 system at 2 g/L H 2 O 2 gave the lowest cost of about 3.1 TND (∼2.3 USD)/kg COD removed

  13. Enhanced photocatalytic ozonation of organics by g-C{sub 3}N{sub 4} under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Gaozu, E-mail: liaogaozu@m.scnu.edu.cn; Zhu, Dongyun; Li, Laisheng, E-mail: llsh@scnu.edu.cn; Lan, Bingyan

    2014-09-15

    Highlights: • g-C{sub 3}N{sub 4} is employed as active catalyst in the photocatalytic ozonation system. • The more negative conduction band of g-C{sub 3}N{sub 4} benefits the transfer of electrons. • The synergistic effect between photocatalysis and ozonation is promoted by g-C{sub 3}N{sub 4}. • Enhanced degradation of oxalic acid and biphenol A is achieved via g-C{sub 3}N{sub 4}/Vis/O{sub 3}. - Abstract: Graphitic carbon nitride (g-C{sub 3}N{sub 4}) was employed as the active photocatalyst in the photocatalytic ozonation coupling system in the present study. g-C{sub 3}N{sub 4} was prepared by directly heating thiourea in air at 550 °C. XRD, FT-IR, UV–vis was used to characterize the structure and optical property. Oxalic acid and bisphenol A were selected as model substances for photocatalytic ozonation reactions to evaluate the catalytic ability of g-C{sub 3}N{sub 4} (g-C{sub 3}N{sub 4}/Vis/O{sub 3}). The results showed that the degradation ratio of oxalic acid with g-C{sub 3}N{sub 4}/Vis/O{sub 3} was 65.2% higher than the sum of ratio when it was individually decomposed by g-C{sub 3}N{sub 4}/Vis and O{sub 3}. The TOC removal of biphenol A with g-C{sub 3}N{sub 4}/Vis/O{sub 3} was 2.17 times as great as the sum of the ratio when using g-C{sub 3}N{sub 4}/Vis and O{sub 3}. This improvement was attributed to the enhanced synergistic effect between photocatalysis and ozonation by g-C{sub 3}N{sub 4}. Under visible light irradiation, the photo-generated electrons produced on g-C{sub 3}N{sub 4} facilitated the electrons transfer owing to the more negative conduction band potential (−1.3 V versus NHE). It meant that the photo-generated electrons could be trapped by ozone and reaction with it more easily. Subsequently, the yield of hydroxyl radicals was improved so as to enhance the organics degradation efficiency. This work indicated that metal-free g-C{sub 3}N{sub 4} could be an excellent catalyst for mineralization of organic compounds in waste control.

  14. CuO-In2O3 Core-Shell Nanowire Based Chemical Gas Sensors

    Directory of Open Access Journals (Sweden)

    Xiaoxin Li

    2014-01-01

    Full Text Available The CuO-In2O3 core-shell nanowire was fabricated by a two-step method. The CuO nanowire core (NWs was firstly grown by the conventional thermal oxidation of Cu meshes at 500°C for 5 hours. Then, the CuO nanowires were immersed into the suspension of amorphous indium hydroxide deposited from the In(AC3 solution by ammonia. The CuO nanowires coated with In(OH3 were subsequently heated at 600°C to form the crystalline CuO-In2O3 core-shell structure, with In2O3 nanocrystals uniformly anchored on the CuO nanowires. The gas sensing properties of the formed CuO-In2O3 core-shell nanowires were investigated by various reducing gases such as hydrogen, carbon monoxide, and propane at elevated temperature. The sensors using the CuO-In2O3 nanowires show improved sensing performance to hydrogen and propane but a suppressed response to carbon monoxide, which could be attributed to the enhanced catalytic properties of CuO with the coated porous In2O3 shell and the p-n junction formed at the core-shell interface.

  15. Comparative study of ozonized olive oil and ozonized sunflower oil

    Directory of Open Access Journals (Sweden)

    Díaz Maritza F.

    2006-01-01

    Full Text Available In this study the ozonized olive and sunflower oils are chemical and microbiologically compared. These oils were introduced into a reactor with bubbling ozone gas in a water bath at room temperature until they were solidified. The peroxide, acidity and iodine values along with antimicrobial activity were determined. Ozonization effects on the fatty acid composition of these oils were analyzed using Gas-Liquid Chromatographic Technique. An increase in peroxidation and acidity values was observed in both oils but they were higher in ozonized sunflower oil. Iodine value was zero in ozonized olive oil whereas in ozonized sunflower was 8.8 g Iodine per 100 g. The antimicrobial activity was similar for both ozonized oils except for Minimum Bactericidal Concentrations of Pseudomona aeruginosa. Composition of fatty acids in both ozonized oils showed gradual decrease in unsaturated fatty acids (C18:1, C18:2 with gradual increase in ozone doses.

  16. Yield of H2O2 in Gas-Liquid Phase with Pulsed DBD

    Science.gov (United States)

    Jiang, Song; Wen, Yiyong; Liu, Kefu

    2014-01-01

    Electric discharge in water can generate a large number of oxidants such as ozone, hydrogen peroxide and hydroxyl radicals. In this paper, a non-thermal plasma processing system was established by means of pulsed dielectric barrier discharge in gas-liquid phase. The electrodes of discharge reactor were staggered. The yield of H2O2 was enhanced after discharge. The effects of discharge time, discharge voltage, frequency, initial pH value, and feed gas were investigated. The concentration of hydrogen peroxide and ozone was measured after discharge. The experimental results were fully analyzed. The chemical reaction equations in water were given as much as possible. At last, the water containing Rhodamine B was tested in this system. The degradation rate came to 94.22% in 30 min.

  17. Slow electrons kill the ozone

    International Nuclear Information System (INIS)

    Maerk, T.

    2001-01-01

    A new method and apparatus (Trochoidal electron monochromator) to study the interactions of electrons with atoms, molecules and clusters was developed. Two applications are briefly reported: a) the ozone destruction in the atmosphere is caused by different reasons, a new mechanism is proposed, that slow thermal electrons are self added to the ozone molecule (O 3 ) with a high frequency, then O 3 is destroyed ( O 3 + e - → O - + O 2 ); b) another application is the study of the binding energy of the football molecule C60. (nevyjel)

  18. Toward a biologically significant and usable standard for ozone that will also protect plants

    International Nuclear Information System (INIS)

    Paoletti, Elena; Manning, William J.

    2007-01-01

    Ozone remains an important phytotoxic air pollutant and is also recognized as a significant greenhouse gas. In North America, Europe, and Asia, incidence of high concentrations is decreasing, but background levels are steadily rising. There is a need to develop a biologically significant and usable standard for ozone. We compare the strengths and weaknesses of concentration-based, exposure-based and threshold-based indices, such as SUM60 and AOT40, and examine the O 3 flux concept. We also present major challenges to the development of an air quality standard for ozone that has both biological significance and practicality in usage. - Current standards do not protect vegetation from ozone, but progress is being made

  19. Reclaimed water quality during simulated ozone-managed aquifer recharge hybrid

    KAUST Repository

    Yoon, Min

    2014-06-17

    A synergistic hybrid of two treatment processes, managed aquifer recharge (MAR) combined with ozonation, was proposed for wastewater reclamation and water reuse applications. Batch reactor and soil-column experiments were performed to evaluate reclaimed water quality using various chemical and bacterial analyses. The ozone process was optimized at low ozone dose (0.5 mg O3/mg DOC) based on the control of N-nitrosodimethylamine (<5 ng L-1) and bromate (<10 μg L-1), and applied prior to (i.e., O3-MAR) and after MAR (i.e., MAR-O3). This work demonstrates that effluent organic matter (EfOM) and trace organic contaminants (TOrCs) are effectively removed during the hybrid process of MAR combined ozonation, compared to MAR only. Based on fluorescence excitation-emission matrices analyses, both MAR and ozonation reduce soluble microbial (protein-like) products while only ozonation contributes in reducing humic and fulvic substances. Even at low ozone dose of 0.5 mg O3/mg DOC, the O3-MAR hybrid significantly reduced UV absorbance by ≥2 m-1, BDOC by ≥64 %, and total (Σ) TOrC concentrations by ≥70 % in the effluent water quality. However, no significant improvement (<10 %) in the removal of Σ16 TOrC concentrations was observed for the increased ozone dose at 1.0 mg O3/mg DOC during MAR combined ozonation processes. Overall, O3-MAR was effective by 10-30 % in treating effluent water than MAR based on DOC, UV254 nm EfOM, TOrC and bacterial analyses. In addition, MAR-O3 was better than O3-MAR for the reduction of fluorescence (close MQ), TOrCs (≥74 %) and total bacteria cell concentrations (>3 log reduction). Therefore, implementing MAR prior to ozonation appears to remove the bio-amenable compounds that react rapidly with ozone, thereby reducing oxidant demand and treatment efficiency. © 2014 Springer-Verlag Berlin Heidelberg.

  20. Ketoprofen removal by O3 and O3/UV processes: Kinetics, transformation products and ecotoxicity

    International Nuclear Information System (INIS)

    Illés, Erzsébet; Szabó, Emese; Takács, Erzsébet; Wojnárovits, László; Dombi, András; Gajda-Schrantz, Krisztina

    2014-01-01

    Ozonation (O 3 ) and its combination with ultraviolet radiation (O 3 /UV) were used to decompose ketoprofen (KET). Depending on the initial KET concentration, fourteen to fifty time's faster KET degradation was achieved using combined O 3 /UV method compared to simple ozonation. Using both methods, formation of four major aromatic transformation products were observed: 3-(1-hydroxyethyl)benzophenone, 3-(1-hydroperoxyethyl) benzophenone, 1-(3-benzoylphenyl) ethanone and 3-ethylbenzophenone. In the combined treatment the degradation was mainly due to the direct effect of UV light, however, towards the end of the treatment, O 3 highly contributed to the mineralization of small carboxylic acids. High (∼ 90%) mineralization degree was achieved using the O 3 /UV method. Toxicity tests performed using representatives of three trophic levels of the aquatic ecosystems (producers, consumers and decomposers) Pseudokirchneriella subcapitata green algae, Daphnia magna zooplanktons and Vibrio fischeri bacteria showed that under the used experimental conditions the transformation products have significantly higher toxicity towards all the test organisms, than KET itself. The bacteria and the zooplanktons showed higher tolerance to the formed products than algae. The measured toxicity correlates well with the concentration of the aromatic transformation products, therefore longer treatments than needed for complete degradation of KET are strongly suggested, in order to avoid possible impact of aromatic transformation products on the aquatic ecosystem. - Highlights: • Ketoprofen degradation is significantly faster using O 3 /UV compared to ozonation. • The presence of O 3 enhances the overall mineralization. • Formation of four major aromatic by-products was observed. • The main step in the decomposition is the decarboxylation. • Degradation products have higher toxicity than ketoprofen itself

  1. Experimental study of ozone synthesis

    International Nuclear Information System (INIS)

    Garamoon, A A; Elakshar, F F; Nossair, A M; Kotp, E F

    2002-01-01

    A silent discharge ozonizer has been constructed with a design that enables the study of ozone concentration behaviour as a function of different parameters when oxygen used as a working gas. The behaviour of ozone concentration as a function of discharge current density has four characteristic regions. The concentration is enhanced by more than threefold whenever gas pressure is reduced by a factor of two. The flow rate of the working gas is a more effective parameter on ozone concentration than the gas pressure. When the flow rate is kept constant, and the pressure is decreased by 100%, the ozone concentration increases by only 10%. On the other hand, when the flow rate is decreased by 13%, the ozone concentration increases by 200%, whenever the gas pressure is kept constant. The concentration is nearly doubled when the gap space is increased by four times under the same conditions. The length of the discharge region, the thickness and the dielectric constant of the insulating materials are found to have a considerable effect on the generated ozone concentration. Also, the ozone concentration is ten times less when air is used instead of oxygen as a working gas. A maximum efficiency of 185 g/kWh, is obtained for the present system

  2. Three-dimensional MnO{sub 2} porous hollow microspheres for enhanced activity as ozonation catalysts in degradation of bisphenol A

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Xiuqin; Wan, Yifeng; Huang, Yajing [School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275 (China); He, Chun, E-mail: hechun@mail.sysu.edu.cn [School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275 (China); Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510275 (China); Zhang, Zaili; He, Zhuoyan; Hu, Lingling; Zeng, Jiawei [School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275 (China); Shu, Dong, E-mail: dshu@scnu.edu.cn [Key Lab of Technology on Electrochemical Energy Storage and Power Generation in Guangdong Universities, School of Chemistry and Environment, South China Normal University, Guangzhou, 510006 (China)

    2017-01-05

    Highlights: • 3D MnO{sub 2} porous hollow microspheres (PHMSs) are prepared by a self-template process. • MnO{sub 2} PHMSs with excellent adsorption and catalytic ozonation performance for BPA. • MnO{sub 2} PHMSs show enhanced activity due to hollow-mesoporous shell spherical structure. • O{sub 2}{sup −} and ·OH are reactive species to induce effective catalytic ozonation of BPA. - Abstract: Three-dimensional (3D) MnO{sub 2} porous hollow microspheres (δ- and α- MnO{sub 2} PHMSs), with high adsorption and catalytic ozonation performance, were synthesized by a self-template (MnCO{sub 3} microspheres) process at room temperature. The synthesized MnO{sub 2} PHMSs were characterized by X-ray diffraction (XRD), scanning electronic microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and Brunauer-Emmett-Teller (BET) surface area. The results showed that PHMSs exhibit the excellent adsorption ability and catalytic activity owning to their hollow spherical structure, mesoporous shell and well-defined interior voids, leading to the strong adsorption for bisphenol A (BPA) and the retention of O{sub 3} molecules on catalyst. Moreover, the catalytic performance of α-MnO{sub 2} PHMSs was better than that of δ-MnO{sub 2} PHMSs which was attributed to the richer lattice oxygen of α-MnO{sub 2} PHMSs to accelerate O{sub 3} decomposition by producing more reactive oxidative species. The degradation efficiency of BPA using 3D α-MnO{sub 2} PHMSs was more than 90% in the presence of ozone within 30 min reaction time. The probe tests for reactive oxidative species (ROSs) displayed that BPA degradation by catalytic ozonation is dominated by ·O{sub 2}{sup −} and ·OH in our present study. Furthermore, the organic compounds as intermediates of the degradation process were identified by LC/MS.

  3. Gas sensing behaviour of Cr{sub 2}O{sub 3} and W{sup 6+}: Cr{sub 2}O{sub 3} nanoparticles towards acetone

    Energy Technology Data Exchange (ETDEWEB)

    Kohli, Nipin, E-mail: nipinkohli82@yahoo.com; Hastir, Anita; Singh, Ravi Chand [Department of Physics, Guru Nanak Dev University, Amritsar-143005 (India)

    2016-05-23

    This paper reports the acetone gas sensing properties of Cr{sub 2}O{sub 3} and 2% W{sup 6+} doped Cr{sub 2}O{sub 3} nanoparticles. The simple cost-effective hydrolysis assisted co-precipitation method was adopted. Synthesized samples were characterized by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) techniques. XRD revealed that synthesized nanoparticles have corundum structure. The lattice parameters have been calculated by Rietveld refinement; and strain and crystallite size have been calculated by using the Williamson-Hall plots. For acetone gas sensing properties, the nanoparticles were applied as thick film onto alumina substrate and tested at different operating temperatures. The results showed that the optimum operating temperature of both the gas sensors is 250°C. At optimum operating temperature, the response of Cr{sub 2}O{sub 3} and 2% W{sup 6+} doped Cr{sub 2}O{sub 3} gas sensor towards 100 ppm acetone was found to be 25.5 and 35.6 respectively. The investigations revealed that the addition of W{sup 6+} as a dopant enhanced the sensing response of Cr{sub 2}O{sub 3} nanoparticles appreciably.

  4. Temporally resolved ozone distribution of a time modulated RF atmospheric pressure argon plasma jet: flow, chemical reaction, and transient vortex

    International Nuclear Information System (INIS)

    Zhang, S; Sobota, A; Van Veldhuizen, E M; Bruggeman, P J

    2015-01-01

    The ozone density distribution in the effluent of a time modulated RF atmospheric pressure plasma jet (APPJ) is investigated by time and spatially resolved by UV absorption spectroscopy. The plasma jet is operated with an averaged dissipated power of 6.5 W and gas flow rate 2 slm argon  +2% O 2 . The modulation frequency of the RF power is 50 Hz with a duty cycle of 50%. To investigate the production and destruction mechanism of ozone in the plasma effluent, the atomic oxygen and gas temperature is also obtained by TALIF and Rayleigh scattering, respectively. A temporal increase in ozone density is observed close to the quartz tube exit when the plasma is switched off due to the decrease in O density and gas temperature. Ozone absorption at different axial positions indicates that the ozone distribution is dominated by the convection induced by the gas flow and allows estimating the on-axis local gas velocity in the jet effluent. Transient vortex structures occurring during the switch on and off of the RF power also significantly affect the ozone density in the far effluent. (paper)

  5. Total column density variations of ozone (O3 O3 O3) in presence of ...

    Indian Academy of Sciences (India)

    3). In case of O4, an absorbance of. O2–O2 by Greenblatt et al (1990) is calculated as absorbance A is given by: A = σ[O2]2 l,. (2) where l is the optical path length (cm), [O2] is the concentration of oxygen (molecules cm. −3), σ is the absorption cross section with the unit of cm5 molecule. −2. The absorption cross sections of.

  6. Oxygen isotope dynamics of atmospheric nitrate over the Antarctic plateau: First combined measurements of ozone and nitrate 17O-excess (Δ17O)

    Science.gov (United States)

    Vicars, William; Savarino, Joël; Erbland, Joseph; Preunkert, Susanne; Jourdain, Bruno; Frey, Markus; Gil, Jaime; Legrand, Michel

    2013-04-01

    Variations in the isotopic composition of atmospheric nitrate (NO3-) provide novel indicators for important processes in boundary layer chemistry, often acting as source markers for reactive nitrogen (NOx = NO + NO2) and providing both qualitative and quantitative constraints on the pathways that determine its fate. Stable isotope ratios of nitrate (δ15N, δ17O, δ18O) offer direct insight into the nature and magnitude of the fluxes associated with different processes, thus providing unique information regarding phenomena that are often difficult to quantify from concentration measurements alone. The unique and distinctive 17O-excess (Δ17O = δ17O - 0.52 × δ18O ) of ozone (O3), which is transferred to NOx via oxidation reactions in the atmosphere, has been found to be a particularly useful isotopic fingerprint in studies of NOx transformations. Constraining the propagation of 17O-excess within the NOx cycle is critical in polar areas where there exists the possibility of extending atmospheric interpretations to the glacial/interglacial time scale using deep ice core records of nitrate. Here we present measurements of the comprehensive isotopic composition of atmospheric nitrate collected at Dome C, Antarctica during December 2011 to January 2012. Sampling was conducted within the framework of the OPALE (Oxidant Production over Antarctic Land and its Export) project, thus providing an opportunity to combine our isotopic observations with a wealth of meteorological and chemical data, including in-situ concentration measurements of the gas-phase precursors involved in nitrate production (NOx, O3, OH, HO2, etc.). Furthermore, nitrate isotope analysis has been combined in this study for the first time with parallel observations of the transferrable Δ17O of surface ozone, which was measured concurrently at Dome C using our recently developed analytical approach. This unique dataset has allowed for a direct comparison of observed Δ17O(NO3-) values to those that are

  7. Comparative study of ozonized olive oil and ozonized sunflower oil

    OpenAIRE

    Díaz,Maritza F.; Hernández,Rebeca; Martínez,Goitybell; Vidal,Genny; Gómez,Magali; Fernández,Harold; Garcés,Rafael

    2006-01-01

    In this study the ozonized olive and sunflower oils are chemical and microbiologically compared. These oils were introduced into a reactor with bubbling ozone gas in a water bath at room temperature until they were solidified. The peroxide, acidity and iodine values along with antimicrobial activity were determined. Ozonization effects on the fatty acid composition of these oils were analyzed using Gas-Liquid Chromatographic Technique. An increase in peroxidation and acidity values was observ...

  8. Effects of UV-Ozone Treatment on Sensing Behaviours of EGFETs with Al2O3 Sensing Film

    Directory of Open Access Journals (Sweden)

    Cuiling Sun

    2017-12-01

    Full Text Available The effects of UV-ozone (UVO treatment on the sensing behaviours of extended-gate field-effect transistors (EGFETs that use Al2O3 as the sensing film have been investigated. The Al2O3 sensing films are UVO-treated with various duration times and the corresponding EGFET sensing behaviours, such as sensitivity, hysteresis, and long-term stability, are electrically evaluated under various measurement conditions. Physical analysis is also performed to characterize the surface conditions of the UVO-treated sensing films using X-ray photoelectron spectroscopy and atomic force microscopy. It is found that UVO treatment effectively reduces the buried sites in the Al2O3 sensing film and subsequently results in reduced hysteresis and improved long-term stability of EGFET. Meanwhile, the observed slightly smoother Al2O3 film surface post UVO treatment corresponds to decreased surface sites and slightly reduced pH sensitivity of the Al2O3 film. The sensitivity degradation is found to be monotonically correlated with the UVO treatment time. A treatment time of 10 min is found to yield an excellent performance trade-off: clearly improved long-term stability and reduced hysteresis at the cost of negligible sensitivity reduction. These results suggest that UVO treatment is a simple and facile method to improve the overall sensing performance of the EGFETs with an Al2O3 sensing film.

  9. Seasonal patterns of ascorbate in the needles of Scots Pine (Pinus sylvestris L.) trees: Correlation analyses with atmospheric O3 and NO2 gas mixing ratios and meteorological parameters

    International Nuclear Information System (INIS)

    Haberer, Kristine; Jaeger, Lutz; Rennenberg, Heinz

    2006-01-01

    In the present field study the role of ascorbate in scavenging the harmful atmospheric trace gases O 3 and NO 2 was examined. For this purpose ascorbate contents were determined in needles of adult Scots pine trees (Pinus sylvestris L.) during three consecutive years. Ascorbate contents were correlated with ambient tropospheric O 3 and NO 2 concentrations and with meteorological parameters. The results showed a strong correlation of atmospheric O 3 but not of atmospheric NO 2 concentrations with the apoplastic content of ascorbate during the seasonal course. Ascorbate contents in needle extracts did not correlate with ambient trace gas concentrations. In the apoplastic space, but not in needle extracts ascorbate contents correlate highly significantly with global radiation. From these results it is assumed that apoplastic ascorbate in Scots pine needles is adapted to the actual atmospheric O 3 concentration to mediate immediate detoxification of O 3 , while the atmospheric O 3 concentration itself is largely dependent on light intensity. - Contents of apoplastic but not symplastic ascorbate correlate significantly with atmospheric ozone concentrations

  10. Two-phase ozonation of chlorinated organics

    International Nuclear Information System (INIS)

    Bhattacharyya, D.; Freshour, A.; West, D.

    1995-01-01

    In the last few years the amount of research being conducted in the field of single-phase ozonation has grown extensively. However, traditional aqueous-phase ozonation systems are limited by a lack of selective oxidation potential, low ozone solubility in water, and slow intermediate decomposition rates. Furthermore, ozone may decompose before it can be utilized for pollutant destruction since ozone can be highly unstable in aqueous solutions. Naturally occurring compounds such as NaHCO 3 also affect ozone reactions by inhibiting the formation of OH-free radicals. To compensate for these factors, excess ozone is typically supplied to a reactor. Since ozone generation requires considerable electric power consumption (16 - 24 kWh/kg of O 3 ), attempts to enhance the ozone utilization rate and stability should lead to more efficient application of this process to hazardous waste treatment. To improve the process, ozonation may be more efficiently carried out in a two-phase system consisting of an inert solvent (saturated with O 3 ) contacted with an aqueous phase containing pollutants. The non-aqueous phase must meet the following criteria: (1) non-toxic, (2) very low vapor pressure, (3) high density (for ease of separation), (4) complete insolubility in water, (5) reusability, (6) selective pollutant extractability, (7) high oxidant solubility, and (8) extended O 3 stability. Previously published studies (1) have indicated that a number of fluorinated hydrocarbon compounds fit these criteria. For this project, FC40 (a product of 3M Co.) was chosen due to its low vapor pressure (3 mm Hg) and high specific gravity (1.9). The primary advantages of the FC40 solvent are that it is non-toxic, reusable, has an ozone solubility 10 times that of water, and that 85 % of the ozone remains in the solvent even after 2 hours. This novel two-phase process has been utilized to study the rapid destruction of organic chlorine compounds and organic mixtures

  11. Low temperature deposition: Properties of SiO{sub 2} films from TEOS and ozone by APCVD system

    Energy Technology Data Exchange (ETDEWEB)

    Juarez, H; Diaz, T; Rosendo, E; Garcia, G; Mora, F; Escalante, G [Centro de Investigacion en Dispositivos Semiconductores, Universidad Autonoma de Puebla, 14 Sur and Av. San Claudio, San Manuel 72000, Puebla (Mexico); Pacio, M; GarcIa, A, E-mail: hjuarez@cs.buap.m [Ingenieria Electrica, Secciaan Electranica del Estado Salido, Centro de Investigacian y de Estudios Avanzados del I. P. N., Av. Instituto Politecnico Nacional 2508, San Pedro Zacatenco, 07360 Mexico, D. F. (Mexico)

    2009-05-01

    An Atmospheric Pressure Chemical Vapor Deposition (APCVD) system was implemented for SiO{sub 2} nanometric films deposition on silicon substrates. Tetraethoxysilane (TEOS) and ozone (O{sub 3}) were used and they were mixed into the APCVD system. The deposition temperatures were very low, from 125 to 250 {sup 0}C and the deposition time ranged from 1 to 15 minutes. The measured thicknesses from the deposited SiO{sub 2} films were between 5 and 300 nm. From the by Fourier-Transform Infrared (FTIR) spectra the typical absorption bands of the Si-O bond were observed and it was also observed a dependence on the vibrational modes corresponding to hydroxyl groups with the deposition temperature where the intensity of these vibrations can be related with the grade porosity grade of the films. Furthermore an analytical model has been evoked to determine the activation energy of the reactions in the surface and the gas phase in the deposit films process.

  12. Removal of diethyl phthalate from water solution by adsorption, photo-oxidation, ozonation and advanced oxidation process (UV/H2O2, O3/H2O2 and O3/activated carbon)

    International Nuclear Information System (INIS)

    Medellin-Castillo, Nahum A.; Ocampo-Pérez, Raúl; Leyva-Ramos, Roberto; Sanchez-Polo, Manuel; Rivera-Utrilla, José; Méndez-Díaz, José D.

    2013-01-01

    The objective of this work was to compare the effectiveness of conventional technologies (adsorption on activated carbon, AC, and ozonation) and technologies based on advanced oxidation processes, AOPs, (UV/H 2 O 2 , O 3 /AC, O 3 /H 2 O 2 ) to remove phthalates from aqueous solution (ultrapure water, surface water and wastewater). Diethyl phthalate (DEP) was chosen as a model pollutant because of its high water solubility (1080 mg/L at 293 K) and toxicity. The activated carbons showed a high adsorption capacity to adsorb DEP in aqueous solution (up to 858 mg/g), besides the adsorption mechanism of DEP on activated carbon is governed by dispersive interactions between π electrons of its aromatic ring with π electrons of the carbon graphene planes. The photodegration process showed that the pH solution does not significantly affect the degradation kinetics of DEP and the first-order kinetic model satisfactorily fitted the experimental data. It was observed that the rate of decomposition of DEP with the O 3 /H 2 O 2 and O 3 /AC systems is faster than that with only O 3 . The technologies based on AOPs (UV/H 2 O 2 , O 3 /H 2 O 2 , O 3 /AC) significantly improve the degradation of DEP compared to conventional technologies (O 3 , UV). AC adsorption, UV/H 2 O 2 , O 3 /H 2 O 2 , and O 3 /AC showed a high yield to remove DEP; however, the disadvantage of AC adsorption is its much longer time to reach maximum removal. The best system to treat water (ultrapure and natural) polluted with DEP is the O 3 /AC one since it achieved the highest DEP degradation and TOC removal, as well as the lower water toxicity. -- Highlights: ► Activated carbons showed a high adsorption capacity (up to 858 mg/g) to remove DEP. ► The pH solution did not significantly affect the photodegradation kinetics of DEP. ► The O 3 /H 2 O 2 and O 3 /AC systems were more efficient than O 3 to degrade DEP. ► The generation of HO • from O 3 was enhanced by ACs, mainly by those of basic nature. ► O

  13. Investigating the effect of gas flow rate, inlet ozone concentration and relative humidity on the efficacy of catalytic ozonation process in the removal of xylene from waste airstream

    Directory of Open Access Journals (Sweden)

    H.R. MokaramI

    2010-10-01

    Full Text Available Background and aimsThe catalytic ozonation is an efficient process for the degradation of volatile organic compounds from contaminated air stream. This study was aimed at investigating the efficacy of catalytic ozonation process in removal of xylene from the polluted air stream andthe influence of retention time (gas flow rate, inlet ozone dose and relative humidity on this performanceMethodsthe catalytic ozonation of xylene was conducted using a bench scale set-up consisted of a syringe pump,an air pump, an ozone generator, and a glass reactor packed with activated carbon. Several experimental run was defined to investigate the influence of the selectedoperational variables.ResultsThe results indicated that the efficiency of catalytic ozonation was greater than that of single adsorption in removal of xylene under similar inlet concentration and relative humidity. We found a significant catalytic effect for activated carbon when used in combination with ozonation process, leading to improvement of xylene removal percentage. In addition, the elimination capacity of the system improved with the increase of inlet ozone dose as well as gas flow rate. The relative humidity showed a positive effect of the xylene removal at the range of 5 to 50%, while the higher humidity (more than 50% resulted in reduction of the performance.ConclusionThe findings of the present work revealed that the catalytic ozonation process can be an efficient technique for treating the air streams containing industrial concentrations of xylene. Furthermore, there is a practical potential to retrofit the present adsorption systems intothe catalytic ozonation simply by coupling them with the ozonation system. the catalytic ozonation of xylene was conducted using a bench scale set-up consisted of a syringe pump,an air pump, an ozone generator, and a glass reactor packed with activated carbon. Several experimental run was defined to investigate the influence of the selected

  14. Synthesis, characterization, and comparative gas-sensing properties of Fe{sub 2}O{sub 3} prepared from Fe{sub 3}O{sub 4} and Fe{sub 3}O{sub 4}-chitosan

    Energy Technology Data Exchange (ETDEWEB)

    Cuong, Nguyen Duc [Faculty of Hospitality and Tourism, Hue University, 22 Lam Hoang, Vy Da Ward, Hue City (Viet Nam); College of Sciences, Hue University, 77 Nguyen Hue, Phu Nhuan Ward, Hue City (Viet Nam); International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology (HUST), Hanoi (Viet Nam); Hoa, Tran Thai; Khieu, Dinh Quang [College of Sciences, Hue University, 77 Nguyen Hue, Phu Nhuan Ward, Hue City (Viet Nam); Lam, Tran Dai [Institute of Materials Science, Vietnamese Academy of Science and Technology, Hanoi (Viet Nam); Hoa, Nguyen Duc [International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology (HUST), Hanoi (Viet Nam); Van Hieu, Nguyen, E-mail: hieu@itims.edu.vn [International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology (HUST), Hanoi (Viet Nam)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer We have demonstrated a facile method to prepare Fe{sub 3}O{sub 4} nanoparticles and chitosan-coated Fe{sub 3}O{sub 4} nanoparticles. Black-Right-Pointing-Pointer {alpha}-Fe{sub 2}O{sub 3} sensors prepared from those Fe{sub 3}O{sub 4} materials have been investigated and compared. Black-Right-Pointing-Pointer The results show potential application of {alpha}-Fe{sub 2}O{sub 3} for CO sensors in environmental monitoring. - Abstract: In this paper, Fe{sub 3}O{sub 4} and chitosan (CS)-coated Fe{sub 3}O{sub 4} nanoparticles were synthesized via co-precipitation method and subsequent covalent binding of CS onto the surface for functionalization, respectively. Characterization of the crystal structures and morphologies of as-synthesized nanoparticles by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy demonstrated that Fe{sub 3}O{sub 4} had a cubic spinal structure with irregular shapes and average diameters of 10-20 nm. The surface states and magnetic properties of Fe{sub 3}O{sub 4}-CS nanoparticles were characterized by Fourier transform infrared spectra and vibrating sample magnetometry. Results showed that Fe{sub 3}O{sub 4}-CS nanoparticles possessed super-paramagnetic properties, with saturated magnetization up to 60 emu/g. In addition, Fe{sub 3}O{sub 4} and CS-coated Fe{sub 3}O{sub 4} nanoparticles were used in the fabrication of {alpha}-Fe{sub 2}O{sub 3} based gas sensors. Gas sensing measurements revealed that the {alpha}-Fe{sub 2}O{sub 3} gas sensor prepared from Fe{sub 3}O{sub 4}-CS had a better response to H{sub 2}, CO, C{sub 2}H{sub 5}OH, and NH{sub 3} compared with the device prepared from pristine Fe{sub 3}O{sub 4}. Furthermore, the {alpha}-Fe{sub 2}O{sub 3} sensor prepared from Fe{sub 3}O{sub 4}-CS nanoparticles exhibited the highest response to CO among the test gases, suggesting that it has great potential for practical applications in environmental monitoring.

  15. Emission sources of non-methane volatile organic compounds (NMVOCs) and their contribution to photochemical ozone (O3) formation at an urban atmosphere in western India.

    Science.gov (United States)

    Yadav, R.; Sahu, L. K.; Tripathi, N.; Pal, D.

    2017-12-01

    Atmospheric non-methane volatile organic compounds (NMVOCs) were measured at a sampling site in Udaipur city of western India during 2015 to recognize their pollution levels, variation characteristics, sources and photochemical reactivity. The samples were analyzed for NMVOCs using a Gas Chromatograph equipped with Flame Ionization Detector (GC/FID) and Thermal Desorption (TD) system. The main focus on understand the sources responsible for NMVOC emissions, and evaluating the role of the identified sources towards ozone formation. Hourly variations of various NMVOC species indicate that VOCs mixing ratios were influenced by photochemical removal with OH radicals for reactive species, secondary formation for oxygenated VOCs. In general, higher mixing ratios were observed during winter/pre-monsoon and lower levels during the monsoon season due to the seasonal change in meteorological, transport path of air parcel and boundary layer conditions. The high levels of propane (C3H8) and butane (C4H10) show the dominance of LPG over the study location. The correlation coefficients of typical NMVOC pairs (ethylene/propylene, propylene/isoprene, and ethane/propane) depicted that vehicular emission and natural gas leakages were important sources for atmospheric hydrocarbons in Udaipur. Based on the annual data, PMF analysis suggest the source factors namely biomass burning/ bio-fuel, automobile exhaust, Industrial/ natural gas/power plant emissions, petrol/Diesel, gasoline evaporation, and use of liquid petroleum gas (LPG) contribute to NMVOCs loading. The propylene-equivalent and ozone formation potential of NMVOCs have also been calculated in order to find out their OH reactivity and contribution to the photochemical ozone formation.

  16. Measurement of Ozone Production Sensor

    Directory of Open Access Journals (Sweden)

    M. Cazorla

    2010-05-01

    Full Text Available A new ambient air monitor, the Measurement of Ozone Production Sensor (MOPS, measures directly the rate of ozone production in the atmosphere. The sensor consists of two 11.3 L environmental chambers made of UV-transmitting Teflon film, a unit to convert NO2 to O3, and a modified ozone monitor. In the sample chamber, flowing ambient air is exposed to the sunlight so that ozone is produced just as it is in the atmosphere. In the second chamber, called the reference chamber, a UV-blocking film over the Teflon film prevents ozone formation but allows other processes to occur as they do in the sample chamber. The air flows that exit the two chambers are sampled by an ozone monitor operating in differential mode so that the difference between the two ozone signals, divided by the exposure time in the chambers, gives the ozone production rate. High-efficiency conversion of NO2 to O3 prior to detection in the ozone monitor accounts for differences in the NOx photostationary state that can occur in the two chambers. The MOPS measures the ozone production rate, but with the addition of NO to the sampled air flow, the MOPS can be used to study the sensitivity of ozone production to NO. Preliminary studies with the MOPS on the campus of the Pennsylvania State University show the potential of this new technique.

  17. Orthorhombic MoO{sub 3} nanobelts based NO{sub 2} gas sensor

    Energy Technology Data Exchange (ETDEWEB)

    Mane, A.A. [Thin Film Nanomaterials Laboratory, Department of Physics, Shivaji University, Kolhapur 416 004 (India); General Science and Humanities Department, Sant Gajanan Maharaj College of Engineering, Mahagaon, 416 503 (India); Moholkar, A.V., E-mail: avmoholkar@gmail.com [Thin Film Nanomaterials Laboratory, Department of Physics, Shivaji University, Kolhapur 416 004 (India)

    2017-05-31

    Highlights: • The effect of thickness on physicochemical and NO{sub 2} gas sensing properties of sprayed MoO{sub 3} nanobelts has been reported. • The sprayed MoO{sub 3} nanobelts show the NO{sub 2} gas response of 68% for 100 ppm concentration at an operating temperature of 200 °C. • The lower detection limit of MoO{sub 3} nanobelts based NO{sub 2} sensor is found to be half of the IDLH value (20 ppm). - Abstract: Molybdenum trioxide (MoO{sub 3}) nanobelts have been deposited onto the glass substrates using chemical spray pyrolysis (CSP) deposition method. The XRD patterns reveal that films are polycrystalline having an orthorhombic crystal structure. Raman spectra confirm that the films are orthorhombic in phase. The XPS study shows the presence of two well resolved spectral lines of Mo-3d core levels appearing at the binding energy values of 232.82 eV and 235.95 eV corresponding to Mo-3d{sub 5/2} and Mo-3d{sub 3/2}, respectively. These binding energy values are assigned to Mo{sup 6+} oxidation state of fully oxidized MoO{sub 3}. The FE-SEM micrographs show the formation of nanobelts-like morphology. The AFM micrographs reveal that the RMS surface roughness increases from 16.5 nm to 17.5 nm with increase in film thickness from 470 nm to 612 nm and then decreases to 16 nm for 633 nm film thickness. The band gap energy is found to be decreased from 3.40 eV to 3.38 eV. To understand the electronic transport phenomenon in MoO{sub 3} thin films, dielectric properties are studied. For 612 nm film thickness, the highest NO{sub 2} gas response of 68% is obtained at an operating temperature of 200 °C for 100 ppm concentration with response and recovery times of 15 s and 150 s, respectively. The lower detection limit is found to be 10 ppm which is half of the immediately dangerous to life or health (IDLH) value of 20 ppm. Finally, NO{sub 2} gas sensing mechanism in an orthorhombic MoO{sub 3} crystal structure is discussed in detail.

  18. Generation and Reduction of NOx on Air-Fed Ozonizers

    Science.gov (United States)

    Ehara, Yoshiyasu; Amemiya, Yusuke; Yamamoto, Toshiaki

    A generation and reduction of NOx on air-fed ozonizers using a ferroelectric packed bed reactor have been experimentally investigated. The reactors packed with CaTiO3, SrTiO3 and BaTiO3 pellets are examined for ozone generation. An ac voltage is applied to the reactor to generate partial discharge. Ozone concentration and the different nitrogen oxides at downstream of the packed bed reactor were measured with UV absorption ozone monitor and a Fourier transform infrared spectroscope respectively. The dielectric constant of packed ferroelectric pellets influences the discharge characteristic, ozone and NOx generations are varied by the dielectric constant value. Focusing on a discharge pulse current and maximum discharge magnitude, the ferroelectric packed bed plasma reactors have been evaluated on nitrogen oxide and ozone generated concentrations.

  19. Al2O3- BSST Based Chemical Sensors for Ammonia Gas Sensing

    Directory of Open Access Journals (Sweden)

    L. A. Patil

    2009-10-01

    Full Text Available Gas sensing behaviour of pure and modified (Ba0.9Sr0.1(Sn0.5Ti0.5O3 (BSST thick films is reported in this article. The surface of the BSST thick film was modified by dipping it into aqueous solution of AlCl3, for different intervals of time. These films were then dried at 500 0C for 24 hours in air ambient for transformation of AlCl3 into Al2O3, for the evaporation of organic binders and also to improve the texture of the film. The gas response, selectivity, response and recovery time of the sensors were measured and presented. The role played by the aluminium species to improve the gas sensing performance of the sensors is discussed.

  20. Non-thermal atmospheric pressure HF plasma source: generation of nitric oxide and ozone for bio-medical applications

    Science.gov (United States)

    Kühn, S.; Bibinov, N.; Gesche, R.; Awakowicz, P.

    2010-01-01

    A new miniature high-frequency (HF) plasma source intended for bio-medical applications is studied using nitrogen/oxygen mixture at atmospheric pressure. This plasma source can be used as an element of a plasma source array for applications in dermatology and surgery. Nitric oxide and ozone which are produced in this plasma source are well-known agents for proliferation of the cells, inhalation therapy for newborn infants, disinfection of wounds and blood ozonation. Using optical emission spectroscopy, microphotography and numerical simulation, the gas temperature in the active plasma region and plasma parameters (electron density and electron distribution function) are determined for varied nitrogen/oxygen flows. The influence of the gas flows on the plasma conditions is studied. Ozone and nitric oxide concentrations in the effluent of the plasma source are measured using absorption spectroscopy and electro-chemical NO-detector at variable gas flows. Correlations between plasma parameters and concentrations of the particles in the effluent of the plasma source are discussed. By varying the gas flows, the HF plasma source can be optimized for nitric oxide or ozone production. Maximum concentrations of 2750 ppm and 400 ppm of NO and O3, correspondingly, are generated.

  1. Gas-phase rate coefficients of the reaction of ozone with four sesquiterpenes at 295 ± 2 K.

    Science.gov (United States)

    Richters, Stefanie; Herrmann, Hartmut; Berndt, Torsten

    2015-05-07

    The rate coefficients of the reaction of ozone with the four atmospherically relevant sesquiterpenes β-caryophyllene, α-humulene, α-cedrene and isolongifolene were investigated at 295 ± 2 K and atmospheric pressure by at least two independent experimental investigations for each reaction. Relative rate experiments were carried out in a flow tube using two different experimental approaches with GC-MS detection (RR 1) and PTR-MS analysis (RR 2) as the analytical techniques. Absolute rate coefficients were determined in a stopped-flow experiment following the ozone depletion by means of UV spectroscopy. The average rate coefficients from the combined investigations representing the mean values of the different experimental methods are (unit: cm(3) molecule(-1) s(-1)): k(O3+β-caryophyllene) = (1.1 ± 0.3) × 10(-14) (methods: RR 1, RR 2, absolute), k(O3+α-humulene) = (1.2 ± 0.3) × 10(-14) (RR 1, RR 2), k(O3+α-cedrene) = (1.7 ± 0.5) × 10(-16) (RR 2, absolute) and k(O3+isolongifolene) = (1.1 ± 0.5) × 10(-17) (RR 2, absolute). The high ozonolysis rate coefficients for β-caryophyllene and α-humulene agree well with the results by Shu and Atkinson (Int. J. Chem. Kinet., 1994, 26) and lead to short atmospheric lifetimes of about two minutes with respect to the ozone reaction. The relatively small rate coefficients for α-cedrene and isolongifolene differ from the available literature values by a factor of about 2.5-6. Possible reasons for the deviations are discussed. Finally, calibrated sesquiterpene FT-IR spectra were recorded for the first time.

  2. One-pot electrospinning and gas-sensing properties of LaMnO3 perovskite/SnO2 heterojunction nanofibers

    Science.gov (United States)

    Chen, Dongdong; Yi, Jianxin

    2018-03-01

    Using nanostructured composite materials is an effective way to obtain high-performance gas sensors. This work used p-type LaMnO3 perovskite-structured semiconductor as a novel promoter for SnO2 nanofibers and studied the gas-sensing characteristics. Nanofibers of 0-2.5-mol% LaMnO3/SnO2 were synthesized via one-pot electrospinning. Compared with pristine SnO2, LaMnO3/SnO2 composite nanofibers exhibited smaller particle size (10-30 nm) and higher BET surface area. XPS revealed that oxygen surface absorption decreased with increasing LaMnO3 content. 0.3-mol% LaMnO3/SnO2 exhibited significantly enhanced ethanol sensitivity relative to pristine SnO2. A response of 20 was obtained at the optimum temperature of 260 °C for 100-ppm ethanol. Higher LaMnO3 loading led to decrease of the ethanol response. The impact of LaMnO3 loading on the sensing behavior of SnO2 nanofibers was discussed in terms of p-n heterojunction formation and changes in the microstructure and catalytic properties.

  3. Personal exposure to metal fume, NO2, and O3 among production welders and non-welders.

    Science.gov (United States)

    Schoonover, Todd; Conroy, Lorraine; Lacey, Steven; Plavka, Julie

    2011-01-01

    The objective of this study was to characterize personal exposures to welding-related metals and gases for production welders and non-welders in a large manufacturing facility. Welding fume metals and irritant gases nitrogen dioxide (NO(2)) and ozone (O(3)) were sampled for thirty-eight workers. Personal exposure air samples for welding fume metals were collected on 37 mm open face cassettes and nitrogen dioxide and ozone exposure samples were collected with diffusive passive samplers. Samples were analyzed for metals using Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and welding fume metal exposure concentrations were defined as the sum of welding-related metals mass per volume of air sampled. Welding fume metal exposures were highly variable among similar types of welding while NO(2) and O(3) exposure were less variable. Welding fume metal exposures were significantly higher 474 μg/m(3) for welders than non-welders 60 μg/m(3) (p=0.001). Welders were exposed to higher concentrations of NO(2) and O(3) than non-welders but the differences were not statistically significant. Welding fume metal exposure concentrations for welders performing gas metal arc welding (GMAW) and shielded metal arc welding (SMAW) were higher than welders performing gas tungsten arc welding (GTAW). Non-welders experienced exposures similar to GTAW welders despite a curtain wall barrier separating welding and non-welding work areas.

  4. A simple large-scale synthesis of mesoporous In_2O_3 for gas sensing applications

    International Nuclear Information System (INIS)

    Zhang, Su; Song, Peng; Yan, Huihui; Yang, Zhongxi; Wang, Qi

    2016-01-01

    Graphical abstract: Large-scale mesoporous In_2O_3 nanostructures for gas-sensing applications were successfully fabricated via a facile Lewis acid catalytic the furfural alcohol resin template route. - Highlights: • Mesoporous In_2O_3 nanostructures with high-yield have been successfully fabricated via a facile strategy. • The microstructure and formation mechanism of mesoporous In_2O_3 nanostructures were discussed based on the experimental results. • The as-prepared In_2O_3 samples exhibited high response, short response-recovery times and good selectivity to ethanol gas. - Abstract: In this paper, large-scale mesoporous In_2O_3 nanostructures were synthesized by a facile Lewis acid catalytic the furfural alcohol resin (FAR) template route for the high-yield. Their morphology and structure were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), differential thermal and thermogravimetry analysis (DSC-TG) and the Brunauer-Emmett-Teller (BET) approach. The as-obtained mesoporous In_2O_3 nanostructures possess excellent mesoporous and network structure, which increases the contact area with the gases, it is conducive for adsorption-desorption of gas on the surface of In_2O_3. The In_2O_3 particles and pores were both about 15 nm and very uniform. In gas-sensing measurements with target gases, the gas sensor based on mesoporous In_2O_3 nanostructures showed a good response, short response-recovery time, good selectivity and stability to ethanol. These properties are due to the large specific surface area of mesoporous structure. This synthetic method could use as a new design concept for functional mesoporous nanomaterials and for mass production.

  5. Fabrication of Cubic p-n Heterojunction-Like NiO/In2O3 Composite Microparticles and Their Enhanced Gas Sensing Characteristics

    Directory of Open Access Journals (Sweden)

    Hou Xuemei

    2016-01-01

    Full Text Available Oxide semiconductor In2O3 has been extensively used as a gas sensing material for the detection of various toxic gases. However, the pure In2O3 sensor is always suffering from its low sensitivity. In the present study, a dramatic enhancement of sensing characteristic of cubic In2O3 was achieved by deliberately fabricating p-n heterojunction-like NiO/In2O3 composite microparticles as sensor material. The NiO-decorated In2O3 p-n heterojunction-like sensors were prepared through the hydrothermal transformation method. The as-synthesized products were characterized using SEM-EDS, XRD, and FT-IR, and their gas sensing characteristics were investigated by detecting the gas response. The experimental results showed that the response of the NiO/In2O3 sensors to 600 ppm methanal was 85.5 at 260°C, revealing a dramatic enhancement over the pure In2O3 cubes (21.1 at 260°C. Further, a selective detection of methanol with inappreciable cross-response to other gases, like formaldehyde, benzene, methylbenzene, trichloromethane, ethanol, and ammonia, was achieved. The cause for the enhanced gas response was discussed in detailed. In view of the facile method of fabrication of such composite sensors and the superior gas response performance of samples, the cubic p-n heterojunction-like NiO/In2O3 sensors present to be a promising and viable strategy for the detection of indoor air pollution.

  6. Laser-induced vibrational dynamics of ozone in solid argon

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Amstrup, B.; Henriksen, Niels Engholm

    1997-01-01

    We consider the vibrational dynamics, induced by an intense infrared laser pulse, in an ozone molecule with isotopic substitution, that is, (OOO)-O-16-O-16-O-18 and compare the dynamics in the gas phase and in solid ar on. not perturbed by argon on a time-scale of a few picoseconds and selective...

  7. O3 and NOx Exchange

    NARCIS (Netherlands)

    Loubet, B.; Castell, J.F.; Laville, P.; Personne, E.; Tuzet, A.; Ammann, C.; Emberson, L.; Ganzeveld, L.; Kowalski, A.S.; Merbold, L.; Stella, P.; Tuovinen, J.P.

    2015-01-01

    This discussion was based on the background document “Review on modelling atmosphere-biosphere exchange of Ozone and Nitrogen oxides”, which reviews the processes contributing to biosphere-atmosphere exchange of O3 and NOx, including stomatal and non-stomatal exchange of O3 and NO, NO2.

  8. Absorption of ozone, sulfur dioxide, and nitrogen dioxide by petunia plants

    Energy Technology Data Exchange (ETDEWEB)

    Elkiey, T.; Ormrod, D.P.

    1981-01-01

    Petunia plants (Petunia hybrida Vilm.) of three varieties with differing air pollutant sensitivities were grown in controlled environments and the absorption rates of ozone (O/sub 3/), sulfur dioxide (SO/sub 2/) and nitrogen dioxide (NO/sub 2/) determined during single gas and mixed gas exposures. Additional experiments were conducted to evaluate effects of duration of exposure, leaf age, and plant growth stage on absorption of O/sub 3/. Absorption of all pollutants from single gases or the mixture was generally greater for the more sensitive varieties. Absorption from single gases was generally greater than from the mixed gases. Absorption rates tended to decrease gradually throughout the day and from day to day with continuous exposure. Absorption of O/sub 3/ was proportional to exposure concentration and decreased with time at differing rates for each variety. More O/sub 3/ was absorbed by older than younger leaves and by plants at the early vegetative stage compared with those in the prefloral stage.

  9. Ground-level O3 pollution and its impacts on food crops in China: A review

    International Nuclear Information System (INIS)

    Feng, Zhaozhong; Hu, Enzhu; Wang, Xiaoke; Jiang, Lijun; Liu, Xuejun

    2015-01-01

    Ground-level ozone (O 3 ) pollution has become one of the top environmental issues in China, especially in those economically vibrant and densely populated regions. In this paper, we reviewed studies on the O 3 concentration observation and O 3 effects on food crops throughout China. Data from 118 O 3 monitoring sites reported in the literature show that the variability of O 3 concentration is a function of geographic location. The impacts of O 3 on food crops (wheat and rice) were studied at five sites, equipped with Open Top Chamber or O 3 -FACE (free-air O 3 concentration enrichment) system. Based on exposure concentration and stomatal O 3 flux–response relationships obtained from the O 3 -FACE experimental results in China, we found that throughout China current and future O 3 levels induce wheat yield loss by 6.4–14.9% and 14.8–23.0% respectively. Some policies to reduce ozone pollution and impacts are suggested. - Highlights: • Ozone concentrations are increasing in most of regions of China. • Ozone has caused high yield loss of food crops in China. • More species and local varieties should be investigated for ozone sensitivity. • Developing the air quality standards for crops is required in China. • More air quality stations in the rural are needed. - Ground-level ozone is one of the most serious environmental pollutants for food production in China

  10. Combined photolysis and catalytic ozonation of dimethyl phthalate in a high-gravity rotating packed bed

    Energy Technology Data Exchange (ETDEWEB)

    Chang, C.-C. [Graduate Institute of Environmental Engineering, National Taiwan University, Taipei 106, Taiwan (China); Chiu, C.-Y. [Department of Cosmetic Science and Application, Lan-Yang Institute of Technology, I-Lan 261, Taiwan (China); Chang, C.-Y. [Graduate Institute of Environmental Engineering, National Taiwan University, Taipei 106, Taiwan (China)], E-mail: cychang3@ntu.edu.tw; Chang, C.-F. [Department of Environmental Science and Engineering, Tunghai University, Taichung 407, Taiwan (China); Chen, Y.-H. [Department of Chemical and Material Engineering, National Kaohsiung University of Applied Science, Kaohsiung City 807, Taiwan (China); Ji, D.-R.; Yu, Y.-H.; Chiang, P.-C. [Graduate Institute of Environmental Engineering, National Taiwan University, Taipei 106, Taiwan (China)

    2009-01-15

    In this study, a high-gravity rotating packed bed (HGRPB) was used as a catalytic ozonation reactor to decompose dimethyl phthalate (DMP), an endocrine disrupting chemical commonly encountered. The HGRPB is an effective gas-liquid mixing equipment which can enhance the ozone mass transfer coefficient. Platinum-containing catalyst (Pt/-Al{sub 2}O{sub 3}) of Dash 220N and ultra violet (UV) lamp were combined in the high-gravity ozonation (HG-OZ) system to enhance the self-decomposition of molecular ozone in liquid to form highly reactive radical species. Different combinations of HG-OZ with Dash 220N and UV for the degradation of DMP were tested. These include HG-OZ, HG catalytic OZ (HG-Pt-OZ), HG photolysis OZ (HG-UV-OZ) and HG-UV-Pt-OZ. The result indicated that all the above four ozonation processes result in significant decomposition of DMP and mineralization of total organic carbon (TOC) at the applied ozone dosage per volume of liquid sample of 1.2 g L{sup -1}. The UV and Pt/{gamma}-Al{sub 2}O{sub 3} combined in HG-OZ can enhance the TOC mineralization efficiency ({eta}{sub TOC}) to 56% (via HG-UV-OZ) and 57% (via HG-Pt-OZ), respectively, while only 45% with ozone only. The process of HG-UV-Pt-OZ offers the highest {eta}{sub TOC} of about 68%.

  11. Investigation of the singlet delta oxygen and ozone yields from the pulsed radiolysis of oxygen and oxygen-noble gas mixtures

    International Nuclear Information System (INIS)

    Zediker, M.S.

    1984-01-01

    The experiments discussed herein were performed with a flowing gas apparatus coupled to the University of Illinois TRIGA reactor. The detectors (lambda = 1.27 μ 634 nm) were calibrated with a novel NO 2 titration scheme and the absorbed dose was estimated from the ozone concentrations measured in pure oxygen. The results of these experiments revealed an O 2 (a 1 Δ) production efficiency of 0.14% for direct nuclear pumping in an argon-oxygen mixture. Extensive modeling of the oxygen and argon-oxygen mixtures were benchmarked against these and other experiments. However, good agreement over a broad absorbed dose range was only possible if the O 4 + + O 4 - neutralization reaction was assumed to be nondissociative. In a second set of experiments with a nuclear sustained electrical discharge (low E/N), the O 2 (a 1 Δ) production efficiency was approx.0.40% for the electrical power densities examined. In addition, the O 2 (a 1 Δ) was observed to scale with the square root of the electrical power deposition but was independent of the oxygen concentration. A simple analytic model was developed which explains this behavior as a characteristic of an externally sustained discharge involving an electron attaching gas such as oxygen. The results of these experiments and the modeling of the chemical kinetics are discussed with an emphasis on optimizing the O 2 (a 1 Δ) and O 3 yields

  12. Effects of elevated ozone concentration on CH4 and N2O emission from paddy soil under fully open-air field conditions.

    Science.gov (United States)

    Tang, Haoye; Liu, Gang; Zhu, Jianguo; Kobayashi, Kazuhiko

    2015-04-01

    We investigated the effects of elevated ozone concentration (E-O3) on CH4 and N2O emission from paddies with two rice cultivars: an inbred Indica cultivar Yangdao 6 (YD6) and a hybrid one II-you 084 (IIY084), under fully open-air field conditions in China. A mean 26.7% enhancement of ozone concentration above the ambient level (A-O3) significantly reduced CH4 emission at tillering and flowering stages leading to a reduction of seasonal integral CH4 emission by 29.6% on average across the two cultivars. The reduced CH4 emission is associated with O3-induced reduction in the whole-plant biomass (-13.2%), root biomass (-34.7%), and maximum tiller number (-10.3%), all of which curbed the carbon supply for belowground CH4 production and its release from submerged soil to atmosphere. Although no significant difference was detected between the cultivars in the CH4 emission response to E-O3, a larger decrease in CH4 emission with IIY084 (-33.2%) than that with YD6 (-7.0%) was observed at tillering stage, which may be due to the larger reduction in tiller number in IIY084 by E-O3. Additionally, E-O3 reduced seasonal mean NOx flux by 5.7% and 11.8% with IIY084 and YD6, respectively, but the effects were not significant statistically. We found that the relative response of CH4 emission to E-O3 was not significantly different from those reported in open-top chamber experiments. This study has thus confirmed that increasing ozone concentration would mitigate the global warming potential of CH4 and suggested consideration of the feedback mechanism between ozone and its precursor emission into the projection of future ozone effects on terrestrial ecosystem. © 2014 John Wiley & Sons Ltd.

  13. Removal of APIs and bacteria from hospital wastewater by MBR plus O(3), O(3) + H(2)O(2), PAC or ClO(2).

    Science.gov (United States)

    Nielsen, U; Hastrup, C; Klausen, M M; Pedersen, B M; Kristensen, G H; Jansen, J L C; Bak, S N; Tuerk, J

    2013-01-01

    The objective of this study has been to develop technologies that can reduce the content of active pharmaceutical ingredients (APIs) and bacteria from hospital wastewater. The results from the laboratory- and pilot-scale testings showed that efficient removal of the vast majority of APIs could be achieved by a membrane bioreactor (MBR) followed by ozone, ozone + hydrogen peroxide or powdered activated carbon (PAC). Chlorine dioxide (ClO(2)) was significantly less effective. MBR + PAC (450 mg/l) was the most efficient technology, while the most cost-efficient technology was MBR + ozone (156 mg O(3)/l applied over 20 min). With MBR an efficient removal of Escherichia coli and enterococci was measured, and no antibiotic resistant bacteria were detected in the effluent. With MBR + ozone and MBR + PAC also the measured effluent concentrations of APIs (e.g. ciprofloxacin, sulfamethoxazole and sulfamethizole) were below available predicted no-effect concentrations (PNEC) for the marine environment without dilution. Iodinated contrast media were also reduced significantly (80-99% for iohexol, iopromide and ioversol and 40-99% for amidotrizoateacid). A full-scale MBR treatment plant with ozone at a hospital with 900 beds is estimated to require an investment cost of €1.6 mill. and an operating cost of €1/m(3) of treated water.

  14. An evolution from 3D face-centered-cubic ZnSnO3 nanocubes to 2D orthorhombic ZnSnO3 nanosheets with excellent gas sensing performance

    International Nuclear Information System (INIS)

    Chen Yuejiao; Yu Ling; Li Qing; Wu Yan; Li Qiuhong; Wang Taihong

    2012-01-01

    We have successfully observed the development of three-dimensional (3D) face-centered-cubic ZnSnO 3 into two-dimensional (2D) orthorhombic ZnSnO 3 nanosheets, which is the first observation of 2D ZnSnO 3 nanostructures to date. The synthesis from 3D to 2D nanostructures is realized by the dual-hydrolysis-assisted liquid precipitation reaction and subsequent hydrothermal treatment. The time-dependent morphology indicates the transformation via a ‘dissolution–recrystallization’ mechanism, accompanied by a ‘further growth’ process. Furthermore, the 2D ZnSnO 3 nanosheets consist of smaller sized nanoflakes. This further increases the special specific surface area and facilitates their application in gas sensing. The 2D ZnSnO 3 nanosheets exhibit excellent gas sensing properties, especially through their ultra-fast response and recovery. When exposed to ethanol and acetone, the response rate is as fast as 0.26 s and 0.18 s, respectively, and the concentration limit can reach as low as 50 ppb of ethanol. All these results are much better than those reported so far. Our experimental results indicate an efficient approach to realize high-performance gas sensors. (paper)

  15. Generation of ozone by pulsed corona discharge over water surface in hybrid gas-liquid electrical discharge reactor

    Czech Academy of Sciences Publication Activity Database

    Lukeš, Petr; Člupek, Martin; Babický, Václav; Šunka, Pavel; Janda, V.

    2005-01-01

    Roč. 38, č. 3 (2005), s. 409-416 ISSN 0022-3727 R&D Projects: GA ČR(CZ) GA202/02/1026 Institutional research plan: CEZ:AV0Z20430508 Keywords : Corona discharge * hybrid reactor * ozone * water treatment Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.957, year: 2005

  16. Ozone modeling within plasmas for ozone sensor applications

    OpenAIRE

    Arshak, Khalil; Forde, Edward; Guiney, Ivor

    2007-01-01

    peer-reviewed Ozone (03) is potentially hazardous to human health and accurate prediction and measurement of this gas is essential in addressing its associated health risks. This paper presents theory to predict the levels of ozone concentration emittedfrom a dielectric barrier discharge (DBD) plasma for ozone sensing applications. This is done by postulating the kinetic model for ozone generation, with a DBD plasma at atmospheric pressure in air, in the form of a set of rate equations....

  17. Efficient catalytic ozonation by ruthenium nanoparticles supported on SiO2 or TiO2: Towards the use of a non-woven fiber paper as original support

    KAUST Repository

    Biard, Pierre-François

    2015-12-24

    This work focuses on the use of Ru(0) nanoparticles as heterogeneous catalyst for ozone decomposition and radical production. In a first set of experiments, the nanoparticles have been deposited on two inorganic supports (TiO2 or SiO2) by a wet impregnation approach. This study confirmed the high potential of Ru nanoparticles as active species for ozone decomposition at pH 3, since the ozone half-life time decreases by a factor 20-25, compared to the reference experiment carried out without any catalyst. The enhancement of the ozone decomposition kinetics provided an improved radical production and a higher transient radical concentration in a shorten ozone exposure. Consequently, lower oxidant dosage and contact time would be necessary. Thus, very significant atrazine consumption kinetics enhancements were measured. In a second set of experiments, a non-woven fiber paper composed of a TiO2/SiO2/zeolite mixture has been evaluated as an original support for ruthenium nanoparticles. Even if lower ozone decomposition kinetics was observed compared to TiO2 or SiO2, this support would be a promising alternative to inorganic powders to avoid the catalyst recovery step and to design reactors such as tubular reactors. A new numerical procedure is presented for the evaluation of the transient HO° concentration and of the Rct.

  18. Noble gas bond and the behaviour of XeO3 under pressure.

    Science.gov (United States)

    Hou, Chunju; Wang, Xianlong; Botana, Jorge; Miao, Maosheng

    2017-10-18

    Over the past few decades, the concept of hydrogen bonds, in which hydrogen is electrophilic, has been extended to halogen bonds, chalcogen bonds and pnicogen bonds. Herein, we show that such a non-covalent bonding also exists in noble gas compounds. Using first principles calculations, we illustrate the OXe-O bond in molecular crystal XeO 3 and its effect on the behavior of this compound under pressure. Our calculations show that the covalent Xe-O bond lengths were elongated with increasing pressure and correspondingly the Xe-O stretching vibration frequencies were red shifted, which is similar to the change of H-bonds under pressure. The OXe-O bond and related hopping of O between neighboring Xe sites also correspond to the structural changes in the XeO 3 compounds at about 2 GPa. Our study extends the concept of hydrogen bonding to include all p-block elements and show a new bonding type for Noble gas elements in which it acts as an electrophilic species.

  19. Posttranslational modification of bioaerosol protein by common gas pollutants: NO2 and O3

    Science.gov (United States)

    Abdullahi Mahmood, Marliyyah; Bloss, William; Pope, Francis

    2016-04-01

    Air pollution can exacerbate several medical conditions, for example, hay fever and asthma. The global incidence of hay fever has been rising for decades; however, the underlying reasons behind this rise remain unclear. It is hypothesized that the exposure of pollen to common gas phase pollutants, such as nitrogen dioxide (NO2) and ozone (O3), increases the allergenicity of the pollen and thus increases hay fever incidence (Reinmuth-Selzle et al., 2014, Franze, et al., 2005). Since atmospheric pollutants often have greater concentrations within urban areas (in particular NO2) the hypothesis suggests that greater allergenicity should occur in urban areas. Certainly, several studies do suggest higher hay fever incidence within urban areas compared to rural areas (Schröder et al., 2015). Previous published work suggests a link between increased allergies and changes in the chemical composition of pollen protein via posttranslational modification of the protein (Reinmuth-Selzle et al., 2014). This study investigates the posttranslational modification of two highly allergenic pollen species (Birch and Ragweed) that are common in Europe. Within the laboratory, we expose pollen grains to atmospherically relevant exposures of gas phase NO2, O3 and other common gas phase oxidants under a range of environmentally relevant conditions. The effects of the exposures on the biochemistry of the pollen grains were probed using a proteomic approach (liquid chromatography coupled ultra-high resolution spectrometer). Our findings indicate the interaction between gas phase pollutants and pollen cause protein specific modifications; in particular nitration that occurs upon tyrosine residues and nitrosylation on cysteine residues. These modifications may affect human immune response to the pollen protein, which may suggest a possible reason for increased allergies in reaction to such chemically altered protein. Quantification of the relative degree of PTMs, from a variety of

  20. The Role of Catalyst Properties on Methanol Oxidation over V{sub 2}O{sub 5}-TiO{sub 2} Using Ozone

    Energy Technology Data Exchange (ETDEWEB)

    Sahle-Demessie, Endalkachew [US EPA, Office of Research and Development, NRML (United States)], E-mail: sahle-demessie.endalkachew@epa.gov; Almquist, Catherine B. [Miami University, Paper Science and Chemical Engineering Department (United States); Sehker, Sridara Chandra [US EPA, Office of Research and Development, NRML (United States)

    2008-08-15

    Oxidation of methanol over V{sub 2}O{sub 5} catalysts supported on anatase TiO{sub 2} that were prepared using sol-gel formation and impregnation procedures were investigated. The effects of incorporating Mg in sol-gel to influence the properties of the catalyst were also studied. The process provides an alternative low temperature reaction pathway for reducing emissions of hazardous air pollutant (HAPs) such as methanol and total reduced sulfur compounds (TRS) from pulp and paper mills. The bulk and surface composition of the catalysts were determined by XRD and SEM-EDAX, respectively. The X-ray diffraction patterns of the vanadia-titania catalysts showed mainly the anatase phase of TiO{sub 2}. Temperature programmed desorption of methanol from the different catalyst showed that the {alpha} and {beta} peaks differ significantly with V content and addition of Mg. The combination of gas phase and surface reactions on the V/TiO{sub 2} catalysts reduced the amount of ozone required for high degradation of methanol to mainly CO{sub x} with small quantities of methyl formate. In the absence of ozone the catalysts showed very low activity. It is hypothesized that the ozone is directly influencing the V{sup 4+} and V{sup 5+} redox cycle of the catalyst. Oxidation of methanol is influenced by the operation variables and catalyst properties. The results of this study revealed that the V content has significant influence on the catalyst activity, and the optimum vanadia loading of about 6 wt%. Higher turnover frequencies were observed over sol-gel catalysts than with catalysts prepared by the impregnation method.

  1. Ozonation of hospital raw wastewaters for cytostatic compounds removal. Kinetic modelling and economic assessment of the process

    Energy Technology Data Exchange (ETDEWEB)

    Ferre-Aracil, J. [Universitat Politècnica de València – EPSA, Department of Chemical and Nuclear Engineering. Institute for Industrial, Radiophysical and Environmental Safety (ISIRYM), Pl. Ferrandiz i Carbonell, 03801 Alcoi, Alicante (Spain); Valcárcel, Y. [Environmental Health and Ecotoxicology Research Group, Universidad Rey Juan Carlos, Avd. Atenas s/n, Móstoles, 28922 Alcorcón (Spain); Negreira, N.; López de Alda, M. [Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C/ Jordi Girona 18-26, 08034 Barcelona (Spain); Barceló, D. [Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C/ Jordi Girona 18-26, 08034 Barcelona (Spain); Catalan Institute for Water Research (ICRA), H2O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101, 17003 Girona (Spain); Cardona, S.C. [Universitat Politècnica de València – EPSA, Department of Chemical and Nuclear Engineering. Institute for Industrial, Radiophysical and Environmental Safety (ISIRYM), Pl. Ferrandiz i Carbonell, 03801 Alcoi, Alicante (Spain); Navarro-Laboulais, J., E-mail: jnavarla@iqn.upv.es [Universitat Politècnica de València – EPSA, Department of Chemical and Nuclear Engineering. Institute for Industrial, Radiophysical and Environmental Safety (ISIRYM), Pl. Ferrandiz i Carbonell, 03801 Alcoi, Alicante (Spain)

    2016-06-15

    The kinetics of the ozone consumption for the pretreatment of hospital wastewater has been analysed in order to determine the reaction rate coefficients between the ozone and the readily oxidisabled organic matter and cytostatic compounds. The wastewater from a medium size hospital was treated with ozone and peroxone methodologies, varying the ozone concentration, the reaction time and the hydrogen peroxide doses. The analysis shows that there are four cytostatic compounds, i.e. irinotecan, ifosfamide, cyclophosphamide and capecitabine, detected in the wastewaters and they are completely removed with reasonably short times after the ozone treatment. Considering the reactor geometry, the gas hydrodynamics, the mass transfer of ozone from gas to liquid and the reaction of all oxidisable compounds of the wastewater it is possible to determine the chemical ozone demand, COzD, of the sample as 256 mg O{sub 3} L{sup −1} and the kinetic rate coefficient with the dissolved organic matter as 8.4 M{sup −1} s{sup −1}. The kinetic rate coefficient between the ozone and the cyclophosphamide is in the order of 34.7 M{sup −1} s{sup −1} and higher for the other cytostatics. The direct economic cost of the treatment was evaluated considering this reaction kinetics and it is below 0.3 €/m{sup 3} under given circumstances. - Highlights: • 17 cytostatic compounds were analysed and 4 detected by SPE-LC/MS-MS. • The ozonation is 100% effective on the removal of the detected cytostatics. • The kinetics of cytostatic ozonation reaction is modeled by competitive kinetics. • The economic cost of the treatment of hospital wastewater was assessed.

  2. Ozonation of hospital raw wastewaters for cytostatic compounds removal. Kinetic modelling and economic assessment of the process

    International Nuclear Information System (INIS)

    Ferre-Aracil, J.; Valcárcel, Y.; Negreira, N.; López de Alda, M.; Barceló, D.; Cardona, S.C.; Navarro-Laboulais, J.

    2016-01-01

    The kinetics of the ozone consumption for the pretreatment of hospital wastewater has been analysed in order to determine the reaction rate coefficients between the ozone and the readily oxidisabled organic matter and cytostatic compounds. The wastewater from a medium size hospital was treated with ozone and peroxone methodologies, varying the ozone concentration, the reaction time and the hydrogen peroxide doses. The analysis shows that there are four cytostatic compounds, i.e. irinotecan, ifosfamide, cyclophosphamide and capecitabine, detected in the wastewaters and they are completely removed with reasonably short times after the ozone treatment. Considering the reactor geometry, the gas hydrodynamics, the mass transfer of ozone from gas to liquid and the reaction of all oxidisable compounds of the wastewater it is possible to determine the chemical ozone demand, COzD, of the sample as 256 mg O 3 L −1 and the kinetic rate coefficient with the dissolved organic matter as 8.4 M −1 s −1 . The kinetic rate coefficient between the ozone and the cyclophosphamide is in the order of 34.7 M −1 s −1 and higher for the other cytostatics. The direct economic cost of the treatment was evaluated considering this reaction kinetics and it is below 0.3 €/m 3 under given circumstances. - Highlights: • 17 cytostatic compounds were analysed and 4 detected by SPE-LC/MS-MS. • The ozonation is 100% effective on the removal of the detected cytostatics. • The kinetics of cytostatic ozonation reaction is modeled by competitive kinetics. • The economic cost of the treatment of hospital wastewater was assessed.

  3. Model of daytime emissions of electronically-vibrationally excited products of O3 and O2 photolysis: application to ozone retrieval

    Directory of Open Access Journals (Sweden)

    V. A. Yankovsky

    2006-11-01

    Full Text Available The traditional kinetics of electronically excited products of O3 and O2 photolysis is supplemented with the processes of the energy transfer between electronically-vibrationally excited levels O2(a1Δg, v and O2(b1Σ+g, v, excited atomic oxygen O(1D, and the O2 molecules in the ground electronic state O2(X3Σg−, v. In contrast to the previous models of kinetics of O2(a1Δg and O2 (b1Σ+g, our model takes into consideration the following basic facts: first, photolysis of O3 and O2 and the processes of energy exchange between the metastable products of photolysis involve generation of oxygen molecules on highly excited vibrational levels in all considered electronic states – b1Σ+g, a1Δg and X3Σg−; second, the absorption of solar radiation not only leads to populating the electronic states on vibrational levels with vibrational quantum number v equal to 0 – O2(b1Σ+g, v=0 (at 762 nm and O2(a1Δg, v=0 (at 1.27 µm, but also leads to populating the excited electronic–vibrational states O2(b1Σ+g, v=1 and O2(b1Σ+g, v=2 (at 689 nm and 629 nm. The proposed model allows one to calculate not only the vertical profiles of the O2(a1Δg, v=0 and O2(b1Σg, v=0 concentrations, but also the profiles of [O2(a1Δg, v≤5], [O2 (b1Σ+g , v=1, 2] and O2(X3Σg−, v=1–35. In the altitude range 60–125 km, consideration of the electronic-vibrational kinetics significantly changes the calculated concentrations of the metastable oxygen molecules and reduces the discrepancy between the altitude profiles of ozone concentrations retrieved from the 762-nm and 1.27-µm emissions measured simultaneously.

  4. Reaction of a phospholipid monolayer with gas-phase ozone at the air-water interface: measurement of surface excess and surface pressure in real time.

    Science.gov (United States)

    Thompson, Katherine C; Rennie, Adrian R; King, Martin D; Hardman, Samantha J O; Lucas, Claire O M; Pfrang, Christian; Hughes, Brian R; Hughes, Arwel V

    2010-11-16

    The reaction between gas-phase ozone and monolayers of the unsaturated lipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, POPC, on aqueous solutions has been studied in real time using neutron reflection and surface pressure measurements. The reaction between ozone and lung surfactant, which contains POPC, leads to decreased pulmonary function, but little is known about the changes that occur to the interfacial material as a result of oxidation. The results reveal that the initial reaction of ozone with POPC leads to a rapid increase in surface pressure followed by a slow decrease to very low values. The neutron reflection measurements, performed on an isotopologue of POPC with a selectively deuterated palmitoyl strand, reveal that the reaction leads to loss of this strand from the air-water interface, suggesting either solubilization of the product lipid or degradation of the palmitoyl strand by a reactive species. Reactions of (1)H-POPC on D(2)O reveal that the headgroup region of the lipids in aqueous solution is not dramatically perturbed by the reaction of POPC monolayers with ozone supporting degradation of the palmitoyl strand rather than solubilization. The results are consistent with the reaction of ozone with the oleoyl strand of POPC at the air-water interface leading to the formation of OH radicals. The highly reactive OH radicals produced can then go on to react with the saturated palmitoyl strands leading to the formation of oxidized lipids with shorter alkyl tails.

  5. LANDFILL LEACHATES PRETREATMENT BY OZONATION

    Directory of Open Access Journals (Sweden)

    Jacek Leszczyński

    2016-06-01

    Full Text Available In this paper, the application of ozonation processes for stabilized landfill leachate treatment was investigated. The leachate came from a municipal sanitary landfill located nearby Bielsk Podlaski. The average values of its main parameters were: pH 8.23; COD 870 mgO2/dm3; BOD 90 mgO2/dm3; NH4+ 136.2 mgN/dm3; UV254 absorbance 0.312 and turbidity 14 NTU. The ozone dosages used were in the range of 115.5 to 808.5 mgO3/dm3 of the leachate. The maximum COD, color and UV254 absorbance removal wa.5 mgO3/dm3. After oxidation, the ratio of BOD/COD was increased from 0.1 up to 0.23.

  6. Seasonal and diurnal gas exchange differences in ozone-sensitive common milkweed (Asclepias syriaca L.) in relation to ozone uptake.

    Science.gov (United States)

    Bergweiler, Chris; Manning, William J; Chevone, Boris I

    2008-03-01

    Stomatal conductance and net photosynthesis of common milkweed (Asclepias syriaca L.) plants in two different soil moisture regimes were directly quantified and subsequently modeled over an entire growing season. Direct measurements captured the dynamic response of stomatal conductance to changing environmental conditions throughout the day, as well as declining gas exchange and carbon assimilation throughout the growth period beyond an early summer maximum. This phenomenon was observed in plants grown both with and without supplemental soil moisture, the latter of which should theoretically mitigate against harmful physiological effects caused by exposure to ozone. Seasonally declining rates of stomatal conductance were found to be substantial and incorporated into models, making them less susceptible to the overestimations of effective exposure that are an inherent source of error in ozone exposure indices. The species-specific evidence presented here supports the integration of dynamic physiological processes into flux-based modeling approaches for the prediction of ozone injury in vegetation.

  7. O2(a1Δ) Quenching In The O/O2/O3 System

    Science.gov (United States)

    Azyazov, V. N.; Mikheyev, P. A.; Postell, D.; Heaven, M. C.

    2010-10-01

    The development of discharge singlet oxygen generators (DSOG's) that can operate at high pressures is required for the power scaling of the discharge oxygen iodine laser. In order to achieve efficient high-pressure DSOG operation it is important to understand the mechanisms by which singlet oxygen (O2(a1Δ)) is quenched in these devices. It has been proposed that three-body deactivation processes of the type O2(a1Δ)+O+M→2O2+M provide significant energy loss channels. To further explore these reactions the physical and reactive quenching of O2(a1Δ) in O(3P)/O2/O3/CO2/He/Ar mixtures has been investigated. Oxygen atoms and singlet oxygen molecules were produced by the 248 nm laser photolysis of ozone. The kinetics of O2(a1Δ) quenching were followed by observing the 1268 nm fluorescence of the O2a1Δ-X3∑ transition. Fast quenching of O2(a1Δ) in the presence of oxygen atoms and molecules was observed. The mechanism of the process has been examined using kinetic models, which indicate that quenching by vibrationally excited ozone is the dominant reaction.

  8. O2(a1Δ) Quenching In The O/O2/O3 System

    International Nuclear Information System (INIS)

    Azyazov, V. N.; Mikheyev, P. A.; Postell, D.; Heaven, M. C.

    2010-01-01

    The development of discharge singlet oxygen generators (DSOG's) that can operate at high pressures is required for the power scaling of the discharge oxygen iodine laser. In order to achieve efficient high-pressure DSOG operation it is important to understand the mechanisms by which singlet oxygen (O 2 (a 1 Δ)) is quenched in these devices. It has been proposed that three-body deactivation processes of the type O 2 (a 1 Δ)+O+M→2O 2 +M provide significant energy loss channels. To further explore these reactions the physical and reactive quenching of O 2 (a 1 Δ) in O( 3 P)/O 2 /O 3 /CO 2 /He/Ar mixtures has been investigated. Oxygen atoms and singlet oxygen molecules were produced by the 248 nm laser photolysis of ozone. The kinetics of O 2 (a 1 Δ) quenching were followed by observing the 1268 nm fluorescence of the O 2 a 1 Δ-X 3 Σ transition. Fast quenching of O 2 (a 1 Δ) in the presence of oxygen atoms and molecules was observed. The mechanism of the process has been examined using kinetic models, which indicate that quenching by vibrationally excited ozone is the dominant reaction.

  9. Chemical composition of gas-phase organic carbon emissions from motor vehicles and implications for ozone production.

    Science.gov (United States)

    Gentner, Drew R; Worton, David R; Isaacman, Gabriel; Davis, Laura C; Dallmann, Timothy R; Wood, Ezra C; Herndon, Scott C; Goldstein, Allen H; Harley, Robert A

    2013-10-15

    Motor vehicles are major sources of gas-phase organic carbon, which includes volatile organic compounds (VOCs) and other compounds with lower vapor pressures. These emissions react in the atmosphere, leading to the formation of ozone and secondary organic aerosol (SOA). With more chemical detail than previous studies, we report emission factors for over 230 compounds from gasoline and diesel vehicles via two methods. First we use speciated measurements of exhaust emissions from on-road vehicles in summer 2010. Second, we use a fuel composition-based approach to quantify uncombusted fuel components in exhaust using the emission factor for total uncombusted fuel in exhaust together with detailed chemical characterization of liquid fuel samples. There is good agreement between the two methods except for products of incomplete combustion, which are not present in uncombusted fuels and comprise 32 ± 2% of gasoline exhaust and 26 ± 1% of diesel exhaust by mass. We calculate and compare ozone production potentials of diesel exhaust, gasoline exhaust, and nontailpipe gasoline emissions. Per mass emitted, the gas-phase organic compounds in gasoline exhaust have the largest potential impact on ozone production with over half of the ozone formation due to products of incomplete combustion (e.g., alkenes and oxygenated VOCs). When combined with data on gasoline and diesel fuel sales in the U.S., these results indicate that gasoline sources are responsible for 69-96% of emissions and 79-97% of the ozone formation potential from gas-phase organic carbon emitted by motor vehicles.

  10. Drought stress does not protect Quercus ilex L. from ozone effects: results from a comparative study of two subspecies differing in ozone sensitivity.

    Science.gov (United States)

    Alonso, R; Elvira, S; González-Fernández, I; Calvete, H; García-Gómez, H; Bermejo, V

    2014-03-01

    Long-term effects of ozone (O3) exposure and drought stress were assessed on two subspecies of Quercus ilex: ssp. ilex and ssp. ballota. Two-year-old seedlings were continuously exposed for 26 months in open-top chambers to three O3 treatments: charcoal filtered air, non-filtered air and non-filtered air supplemented with 40 nl · l(-1) O3. Additionally, two irrigation regimes were adopted: half of the plants were well-watered and the others received half of the water supplied to control plants. Growth, shoot water potential and gas exchange rates were assessed seasonally, and biomass accumulation was determined at the end of the experiment. Drought stress caused higher reductions of gas exchange, growth and biomass accumulation than O3 exposure in both subspecies. The combination of O3 and drought stress caused further decreases of accumulated aboveground biomass but no additive effects were observed on gas exchange rates or root biomass. Thus, drought stress did not protect Q. ilex from O3 effects on biomass when the response of the whole plant was considered. Q. ilex ssp. ballota was more sensitive to O3 and ssp. ilex was more affected by drought stress. The different O3 sensitivity was not only related to pollutant uptake but also to the ability of plants for resource acquisition and allocation. Based on biomass dose-response functions, Q. ilex is more resistant to O3 than other European evergreen tree species, however, O3 represents an additional stress factor that might be impairing plant ability to withstand current and future climate change. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  11. Improvements to the WRF-Chem 3.5.1 model for quasi-hemispheric simulations of aerosols and ozone in the Arctic

    Science.gov (United States)

    Marelle, Louis; Raut, Jean-Christophe; Law, Kathy S.; Berg, Larry K.; Fast, Jerome D.; Easter, Richard C.; Shrivastava, Manish; Thomas, Jennie L.

    2017-10-01

    In this study, the WRF-Chem regional model is updated to improve simulated short-lived pollutants (e.g., aerosols, ozone) in the Arctic. Specifically, we include in WRF-Chem 3.5.1 (with SAPRC-99 gas-phase chemistry and MOSAIC aerosols) (1) a correction to the sedimentation of aerosols, (2) dimethyl sulfide (DMS) oceanic emissions and gas-phase chemistry, (3) an improved representation of the dry deposition of trace gases over seasonal snow, and (4) an UV-albedo dependence on snow and ice cover for photolysis calculations. We also (5) correct the representation of surface temperatures over melting ice in the Noah Land Surface Model and (6) couple and further test the recent KF-CuP (Kain-Fritsch + Cumulus Potential) cumulus parameterization that includes the effect of cumulus clouds on aerosols and trace gases. The updated model is used to perform quasi-hemispheric simulations of aerosols and ozone, which are evaluated against surface measurements of black carbon (BC), sulfate, and ozone as well as airborne measurements of BC in the Arctic. The updated model shows significant improvements in terms of seasonal aerosol cycles at the surface and root mean square errors (RMSEs) for surface ozone, aerosols, and BC aloft, compared to the base version of the model and to previous large-scale evaluations of WRF-Chem in the Arctic. These improvements are mostly due to the inclusion of cumulus effects on aerosols and trace gases in KF-CuP (improved RMSE for surface BC and BC profiles, surface sulfate, and surface ozone), the improved surface temperatures over sea ice (surface ozone, BC, and sulfate), and the updated trace gas deposition and UV albedo over snow and ice (improved RMSE and correlation for surface ozone). DMS emissions and chemistry improve surface sulfate at all Arctic sites except Zeppelin, and correcting aerosol sedimentation has little influence on aerosols except in the upper troposphere.

  12. Hydroxyl radical and ozone initiated photochemical reactions of 1,3-butadiene

    Science.gov (United States)

    Liu, Xiaoyu; Jeffries, Harvey E.; Sexton, Kenneth G.

    1,3-Butadiene, classified as hazardous in the 1990 Clean Air Act Amendments, is an important ambient air pollutant. Understanding its atmospheric transformation is useful for its own sake, and is also helpful for eliciting isoprene's fate in the atmosphere (isoprene dominates the biogenic emissions in US). In this paper, samples from both hydroxyl- and ozone-initiated photooxidation of 1,3-butadiene were analyzed by derivatization with O- (2,3,4,5,6-pentafluorobenzyl)-hydroxylamine followed by separation and detection by gas chromatography/ion trap mass spectrometry to detect and identify carbonyl compounds. The following carbonyls were observed: formaldehyde, acrolein, glycolaldehyde, glycidaldehyde, 3-hydroxy-propanaldehyde, hydroxy acetone, and malonaldehyde, which can be classified into three categories: epoxy carbonyls, hydroxyl carbonyls, and di-carbonyls. Three non-carbonyls, furan, 1,3-buatdiene monoxide, and 1,3-butadiene diepoxide, were also found. To confirm their identities, both commercially available and synthesized standards were used. To investigate the mechanism of 1,3-butadiene, separate batch reactor experiments for acrolein and 1,3-butadiene monoxide were carried out. Time series samples for several products were also taken. When necessary, computational chemistry methods were also employed. Based on these results, various schemes for the reaction mechanism are proposed.

  13. Gas Selectivity Control in Co3O4 Sensor via Concurrent Tuning of Gas Reforming and Gas Filtering using Nanoscale Hetero-Overlayer of Catalytic Oxides.

    Science.gov (United States)

    Jeong, Hyun-Mook; Jeong, Seong-Yong; Kim, Jae-Hyeok; Kim, Bo-Young; Kim, Jun-Sik; Abdel-Hady, Faissal; Wazzan, Abdulaziz A; Al-Turaif, Hamad Ali; Jang, Ho Won; Lee, Jong-Heun

    2017-11-29

    Co 3 O 4 sensors with a nanoscale TiO 2 or SnO 2 catalytic overlayer were prepared by screen-printing of Co 3 O 4 yolk-shell spheres and subsequent e-beam evaporation of TiO 2 and SnO 2 . The Co 3 O 4 sensors with 5 nm thick TiO 2 and SnO 2 overlayers showed high responses (resistance ratios) to 5 ppm xylene (14.5 and 28.8) and toluene (11.7 and 16.2) at 250 °C with negligible responses to interference gases such as ethanol, HCHO, CO, and benzene. In contrast, the pure Co 3 O 4 sensor did not show remarkable selectivity toward any specific gas. The response and selectivity to methylbenzenes and ethanol could be systematically controlled by selecting the catalytic overlayer material, varying the overlayer thickness, and tuning the sensing temperature. The significant enhancement of the selectivity for xylene and toluene was attributed to the reforming of less reactive methylbenzenes into more reactive and smaller species and oxidative filtering of other interference gases, including ubiquitous ethanol. The concurrent control of the gas reforming and oxidative filtering processes using a nanoscale overlayer of catalytic oxides provides a new, general, and powerful tool for designing highly selective and sensitive oxide semiconductor gas sensors.

  14. Oxygen vacancies enabled enhancement of catalytic property of Al reduced anatase TiO{sub 2} in the decomposition of high concentration ozone

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Yanhua; Zhang, Xiaolei [Shanghai Institute of Technology, Shanghai 200235 (China); Chen, Li [East China Normal University, Shanghai 200062 (China); Wang, Xiaorui [Shanghai Institute of Technology, Shanghai 200235 (China); Zhang, Na, E-mail: nzhang@sit.edu.cn [Shanghai Institute of Technology, Shanghai 200235 (China); Liu, Yufeng [Shanghai Institute of Technology, Shanghai 200235 (China); Fang, Yongzheng, E-mail: fyz1003@sina.com [Shanghai Institute of Technology, Shanghai 200235 (China)

    2017-06-15

    The catalytic decomposition of gaseous ozone (O{sub 3}) is investigated using anatase TiO{sub 2} (A-TiO{sub 2}) and Aluminum-reduced A-TiO{sub 2} (ARA-TiO{sub 2}) at high concentration and high relative humidity (RH) without light illumination. Compared with the pristine A-TiO{sub 2}, the ARA-TiO{sub 2} sample possesses a unique crystalline core-amorphous shell structure. It is proved to be an excellent solar energy “capture” for solar thermal collectors due to lots of oxygen vacancies. The results indicate that the overall decomposition efficiency of O{sub 3} without any light irradiation has been greatly improved from 4.8% on A-TiO{sub 2} to 100% on ARA-TiO{sub 2} under the RH=100% condition. The ozone conversion over T500/ARA-TiO{sub 2} catalyst is still maintained at 95% after a 72 h test under the reaction condition of 18.5 g/m{sup 3} ozone initial concentration, and RH=90%. The results can be explained that T500/ARA-TiO{sub 2} possesses the largest amorphous contour, the lowest crystallinity, the most surface-active Ti{sup 3+}/T{sup i4+}couples, and the most oxygen vacancies. This result opens a new door to widen the application of TiO{sub 2} in the thermal-catalytic field. - Graphical abstract: The anatase-TiO{sub 2} with various oxidation states and oxygen vacancies have been obtained by aluminum-reduction, and the decomposition efficiency of O{sub 3} has been greatly improved from 4.8% to 100% without irradiation under the RH=100% condition. - Highlights: • The decomposition of gaseous ozone over Al reduced TiO2 (ARA-TiO{sub 2}) is firstly reported. • The decomposition efficiency is up to 100% without any light irradiation on ARA-TiO{sub 2} under RH=100% condition. • The ozone conversion is maintained at 95% after a 72 h test, when C{sub inlet}=18.5 g/m{sup 3} and RH=90%.

  15. Formulation and Characterization of Cr2O3 Doped ZnO Thick Films as H2S Gas Sensor

    Directory of Open Access Journals (Sweden)

    A. V. PATIL

    2009-09-01

    Full Text Available Cr2O3 doped ZnO thick films have been prepared by screen printing technique and firing process. These films were characterized by X-ray diffraction (XRD, Scanning electron microscopy (SEM, and EDX. H2S gas sensing properties of these films were investigated at different operating temperatures and different H2S concentrations. The 7 wt. % Cr2O3 doped ZnO thick films exhibits excellent H2S gas sensing properties with maximum sensitivity of 99.12 % at 300 oC in air atmosphere with fast response and recovery time.

  16. The VOC-Ozone connection: a grassland case study

    Science.gov (United States)

    Wohlfahrt, G.; Hoertnagl, L.; Bamberger, I.; Schnitzhofer, R.; Dunkel, J.; Hammerle, A.; Graus, M.; Hansel, A.

    2009-04-01

    Trophospheric ozone (O3) is formed in the presence of sunlight through the interaction of volatile organic compounds (VOCs) and NOx (NO, NO2). O3 damages plants in several ways, most importantly by reducing net photosynthesis and growth. The extent of this damage depends on the time-integrated absorbed O3 flux (i.e. the dose), which is a function of leaf stomatal conductance and ambient O3 concentration, and further influenced by plant species specific defence mechanisms. VOCs are produced by plants through a variety of pathways and in response to a large number of different driving forces. A large variety of VOCs are emitted by plants in response to stress conditions, including the foliar uptake of O3. Here we present preliminary data from an ongoing study where concurrent measurements of the fluxes of VOCs and O3 are made above a managed mountain grassland in Tyrol/Austria. Fluxes of several different VOCs and O3 are measured by means of the eddy covariance method and a proton transfer reaction mass spectrometer (PTR-MS) and an ozone analyser, respectively. Our findings show that the Methanol (MeOH) flux is correlated with the daily time-integrated O3 uptake by vegetation (integrated daily from sunrise - a surrogate for the O3 dose absorbed and the oxidative stress experienced by plants) - MeOH deposition and emission prevailing at low and high time-integrated O3 uptake rates, respectively. Fluxes of other VOCs were not related to the time-integrated O3 uptake. Integrated over longer time scales (several weeks) no correlation between the O3 uptake and MeOH emissions were found. Our study thus confirms earlier leaf-level studies, who found that MeOH emission increase with O3 dose, at the ecosystems scale. As the reaction with the hydroxyl radical (OH), which is responsible for the destruction of the greenhouse gas methane (CH4), is the major sink of atmospheric MeOH, this process provides a potentially important indirect radiative forcing.

  17. LPS levels in root canals after the use of ozone gas and high frequency electrical pulses

    Directory of Open Access Journals (Sweden)

    Tiago André Fontoura de MELO

    2016-01-01

    Full Text Available Abstract The present study aims to verify the effect of ozone gas (OZY® System and high frequency electric pulse (Endox® System systems on human root canals previously contaminated with Escherichia colilipopolysaccharide (LPS. Fifty single-rooted teeth had their dental crowns removed and root lengths standardized to 16 mm. The root canals were prepared up to #60 hand K-files and sterilized using gamma radiation with cobalt 60. The specimens were divided into the following five groups (n = 10 based on the disinfection protocol used: OZY® System, one 120-second-pulse (OZY 1p; OZY® System, four 24-second-pulses (OZY 4p; and Endox® System (ENDOX. Contaminated and non-contaminated canals were exposed only to apyrogenic water and used as positive (C+ and negative (C- controls, respectively. LPS (O55:B55 was administered in all root canals except those belonging to group C-. After performing disinfection, LPS samples were collected from the canals using apyrogenic paper tips. Limulus Amoebocyte Lysate (LAL was used to quantify the LPS levels, and the data obtained was analyzed using one-way ANOVA. The disinfection protocols used were unable to reduce the LPS levels significantly (p = 0.019. The use of ozone gas and high frequency electric pulses was not effective in eliminating LPS from the root canals.

  18. Kinetics of the gas-phase tritium oxidation reaction

    International Nuclear Information System (INIS)

    Failor, R.A.

    1989-01-01

    Homogeneous gas-phase kinetics of tritium oxidation (2T 2 + O 2 →2T 2 O) have been studied with a model that accounts explicitly for radiolysis of the major species and the kinetics of the subsequent reactions of ionic, excited-state, and neutral species. Results from model calculations are given for 10 -4 -1.0 mol% T 2 in O 2 (298 K, 1 atm). As the reaction evolves three different mechanisms control T 2 O production, each with a different overall rate expression and a different order with respect to the T 2 concentration. The effects of self-radiolysis of pure T 2 on the tritium oxidation reaction were calculated. Tritium atoms, the primary product of T 2 self-radiolysis, altered the oxidation mechanism only during the first few seconds following the initiation of the T 2 -O 2 reaction. Ozone, an important intermediate in T 2 oxidation, was monitored in-situ by U.V. absorption spectroscopy for 0.01-1.0 mol% T 2 an 1 atm O 2 . The shape of the experimental ozone time profile agreed with the model predictions. As predicted, the measured initial rate of ozone production varied linearly with initial T 2 concentration ([T 2 ] 0.6 o ), but at an initial rate one-third the predicted value. The steady-state ozone concentration ([O 3 ]ss) was predicted to be dependent on [T 2 ] 0.3 o , but the measured value was [T 2 ] 0.6 o , resulting in four times higher [O 3 ]ss than predicted for a 1.0% T 2 -O 2 mixture. Adding H 2 to the T 2 -O 2 mixture, to provide insight into the differences between the radiolytic and chemical behavior of the tritium, produced a greater decrease in [O 3 ]ss than predicted. Adjusting the reaction cell surface-to-volume ratio showed implications of minor surface removal of ozone

  19. Effect of 3 years' free-air exposure to elevated ozone on mature Norway spruce (Picea abies (L.) Karst.) needle epicuticular wax physicochemical characteristics

    International Nuclear Information System (INIS)

    Percy, Kevin E.; Manninen, Sirkku; Haeberle, Karl-Heinz; Heerdt, C.; Werner, H.; Henderson, Gary W.; Matyssek, Rainer

    2009-01-01

    We examined the effect of ozone (O 3 ) on Norway spruce (Picea abies) needle epicuticular wax over three seasons at the Kranzberg Ozone Fumigation Experiment. Exposure to 2x ambient O 3 ranged from 64.5 to 74.2 μl O 3 l -1 h AOT40, and 117.1 to 123.2 nl O 3 l -1 4th highest daily maximum 8-h average O 3 concentration. The proportion of current-year needle surface covered by wax tubes, tube aggregates, and plates decreased (P = 0.011) under 2x O 3 . Epistomatal chambers had increased deposits of amorphous wax. Proportion of secondary alcohols varied due to year (P = 0.004) and O 3 treatment (P = 0.029). Secondary alcohols were reduced by 9.1% under 2x O 3 . Exposure to 2x O 3 increased (P = 0.037) proportions of fatty acids by 29%. Opposing trends in secondary alcohols and fatty acids indicate a direct action of O 3 on wax biosynthesis. These results demonstrate O 3 -induced changes in biologically important needle surface characteristics of 50-year-old field-grown trees. - Free-air ozone exposure induced changes in needle wax characteristics of mature Picea abies.

  20. Atmospheric Ozone and Methane in a Changing Climate

    Directory of Open Access Journals (Sweden)

    Ivar S. A. Isaksen

    2014-07-01

    Full Text Available Ozone and methane are chemically active climate-forcing agents affected by climate–chemistry interactions in the atmosphere. Key chemical reactions and processes affecting ozone and methane are presented. It is shown that climate-chemistry interactions have a significant impact on the two compounds. Ozone, which is a secondary compound in the atmosphere, produced and broken down mainly in the troposphere and stratosphre through chemical reactions involving atomic oxygen (O, NOx compounds (NO, NO2, CO, hydrogen radicals (OH, HO2, volatile organic compounds (VOC and chlorine (Cl, ClO and bromine (Br, BrO. Ozone is broken down through changes in the atmospheric distribution of the afore mentioned compounds. Methane is a primary compound emitted from different sources (wetlands, rice production, livestock, mining, oil and gas production and landfills.Methane is broken down by the hydroxyl radical (OH. OH is significantly affected by methane emissions, defined by the feedback factor, currently estimated to be in the range 1.3 to 1.5, and increasing with increasing methane emission. Ozone and methane changes are affected by NOx emissions. While ozone in general increase with increases in NOx emission, methane is reduced, due to increases in OH. Several processes where current and future changes have implications for climate-chemistry interactions are identified. It is also shown that climatic changes through dynamic processes could have significant impact on the atmospheric chemical distribution of ozone and methane, as we can see through the impact of Quasi Biennial Oscillation (QBO. Modeling studies indicate that increases in ozone could be more pronounced toward the end of this century. Thawing permafrost could lead to important positive feedbacks in the climate system. Large amounts of organic material are stored in the upper layers of the permafrost in the yedoma deposits in Siberia, where 2 to 5% of the deposits could be organic material

  1. Evaluation of the SO(2) and NH(3) gas adsorption properties of CuO/ZnO/Mn(3)O(4) and CuO/ZnO/NiO ternary impregnated activated carbon using combinatorial materials science methods.

    Science.gov (United States)

    Romero, Jennifer V; Smith, Jock W H; Sullivan, Braden M; Macdonald, Landan; Croll, Lisa M; Dahn, J R

    2013-02-11

    Impregnated activated carbons (IAC) are widely used materials for the removal of toxic gases in personal respiratory protection applications. The combinatorial method has been employed to prepare IACs containing different types of metal oxides in various proportions and evaluate their adsorption performance for low molecular weight gases, such as SO(2) and NH(3), under dry conditions. Among the metal oxides used for the study, Mn(3)O(4) was found to have the highest capacity for retaining SO(2) gas under dry conditions. NiO and ZnO were found to have similar NH(3) adsorption capacities which are higher than the NH(3) capacities observed for the other metal oxide impregnants used in the study. Although Cu- or Zn-based impregnants and their combinations have been extensively studied and used as gas adsorbents, neither Mn(3)O(4) nor NiO have been incorporated in the formulations used. In this study, ternary libraries of IACs with various combinations of CuO/ZnO/Mn(3)O(4) and CuO/ZnO/NiO were studied and evaluated for their adsorption of SO(2) and NH(3) gases. Combinations of CuO, ZnO, and Mn(3)O(4) were found to have the potential to be multigas adsorbents compared to formulations that contain NiO.

  2. Synthesis and gas-sensing characteristics of α-Fe2O3 hollow balls

    Directory of Open Access Journals (Sweden)

    Chu Manh Hung

    2016-03-01

    Full Text Available The synthesis of porous metal-oxide semiconductors for gas-sensing application is attracting increased interest. In this study, α-Fe2O3 hollow balls were synthesized using an inexpensive, scalable, and template-free hydrothermal method. The gas-sensing characteristics of the semiconductors were systematically investigated. Material characterization by XRD, SEM, HRTEM, and EDS reveals that single-phase α-Fe2O3 hollow balls with an average diameter of 1.5 μm were obtained. The hollow balls were formed by self assembly of α-Fe2O3 nanoparticles with an average diameter of 100 nm. The hollow structure and nanopores between the nanoparticles resulted in the significantly high response of the α-Fe2O3 hollow balls to ethanol at working temperatures ranging from 250 °C to 450 °C. The sensor also showed good selectivity over other gases, such as CO and NH3 promising significant application.

  3. Influence of ultrasonic irradiation on ozone generation in a dielectric barrier discharge

    International Nuclear Information System (INIS)

    Kusano, Y; Drews, J; Leipold, F; Fateev, A; Bardenshtein, A; Krebs, N

    2012-01-01

    An atmospheric pressure dielectric barrier discharge (DBD) was generated in an N 2 /O 2 gas mixture at room temperature with and without ultrasonic irradiation to investigate ozone production. Powerful ultrasonic irradiation with the sound pressure level of approximately 150 dB into the DBD can enhance ozone production especially when the DBD was driven at a frequency of 15 kHz.

  4. Ozone air pollution in the Ukrainian Carpathian Mountains and Kiev region

    Science.gov (United States)

    Oleg Blum; Andrzej Bytnerowicz; William Manning; Ludmila Popovicheva

    1998-01-01

    Ambient concentrations of ozone (O3) were measured at five highland forest locations in the Ukrainian Carpathians and in two lowland locations in the Kiev region during August to September 1995 by using O3 passive samplers. The ozone passive samplers were calibrated against a Thermo Environmental Model 49 ozone monitor...

  5. Degradation of the ammonia wastewater in aqueous medium with ozone in combination with mesoporous TiO2 catalytic

    Science.gov (United States)

    Liu, Zhiwu; Qiu, Jianping; Zheng, Chaocan; Li, Liqing

    2017-03-01

    TiO2 mesoporous nanomaterials are now widely used in catalytic ozone technology. In this paper, the market P25 as precursor hydrothermal method to prepare TiO2 mesoporous materials, ozone catalyst material characterization by transmission electron microscopy, surface area analyzers, and X-ray diffraction technique and found that nanotubes, nanosheets, nanorods through characterization results, nano-particles of different morphology and anatase and rutile proportion of the ozone catalytic material can be controlled by the calcination temperature and the temperature of hot water to give, and with the hot water temperature and calcination temperature, the catalyst becomes small aperture size larger catalyst crystalline phase from anatase to rutile gradually shift. Catalytic materials have been prepared by the Joint ozone degradation of ammonia wastewater to evaluate mesoporous TiO2 nanomaterials ozone catalytic performance, the results showed that: ammonia wastewater removal efficiency of various catalytic materials relatively separate ozone and markets P25 effects are significantly improved, and TiO2 nanotubes cooperate with ozone degradation ammonia wastewater highest efficiency, in addition, rutile TiO2 catalysts, the more the better the performance of their ozone catalysis.

  6. The effect of ozone on nicotine desorption from model surfaces:evidence for heterogeneous chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Destaillats, Hugo; Singer, Brett C.; Lee, Sharon K.; Gundel, LaraA.

    2005-05-01

    Assessment of secondhand tobacco smoke exposure using nicotine as a tracer or biomarker is affected by sorption of the alkaloid to indoor surfaces and by its long-term re-emission into the gas phase. However, surface chemical interactions of nicotine have not been sufficiently characterized. Here, the reaction of ozone with nicotine sorbed to Teflon and cotton surfaces was investigated in an environmental chamber by monitoring nicotine desorption over a week following equilibration in dry or humid air (65-70 % RH). The Teflon and cotton surfaces had N{sub 2}-BET surface areas of 0.19 and 1.17 m{sup 2} g{sup -1}, and water mass uptakes (at 70 % RH) of 0 and 7.1 % respectively. Compared with dry air baseline levels in the absence of O{sub 3}, gas phase nicotine concentrations decrease, by 2 orders of magnitude for Teflon after 50 h at 20-45 ppb O{sub 3}, and by a factor of 10 for cotton after 100 h with 13-15 ppb O{sub 3}. The ratios of pseudo first-order rate constants for surface reaction (r) to long-term desorption (k) were r/k = 3.5 and 2.0 for Teflon and cotton surfaces, respectively. These results show that surface oxidation was competitive with desorption. Hence, oxidative losses could significantly reduce long-term re-emissions of nicotine from indoor surfaces. Formaldehyde, N-methylformamide, nicotinaldehyde and cotinine were identified as oxidation products, indicating that the pyrrolidinic N was the site of electrophilic attack by O{sub 3}. The presence of water vapor had no effect on the nicotine-O{sub 3} reaction on Teflon surfaces. By contrast, nicotine desorption from cotton in humid air was unaffected by the presence of ozone. These observations are consistent with complete inhibition of ozone-nicotine surface reactions in an aqueous surface film present in cotton but not in Teflon surfaces.

  7. Surface preparation of gold nanostructures on glass by ultraviolet ozone and oxygen plasma for thermal atomic layer deposition of Al{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Lancaster, Cady A., E-mail: lancaster@chem.utah.edu; Shumaker-Parry, Jennifer S., E-mail: shumaker-parry@chem.utah.edu

    2016-08-01

    Thin film deposition to create robust plasmonic nanomaterials is a growing area of research. Plasmonic nanomaterials have tunable optical properties and can be used as substrates for surface-enhanced spectroscopies. Due to the surface sensitivity and the dependence of the near-field behavior on structural details, degradation from cleaning or spectroscopic interrogation causes plasmonic nanostructures to lose distinctive localized surface plasmon resonances or exhibit diminished optical near-field enhancements over time. To decrease degradation, conformal thin films of alumina are deposited on nanostructured substrates using atomic layer deposition. While film growth on homogenous surfaces has been studied extensively, atomic layer deposition-based film growth on heterogeneous nanostructured surfaces is not well characterized. In this report, we have evaluated the impact of oxygen plasma and ultraviolet ozone pre-treatments on Au nanoparticle substrates for thin film growth by monitoring changes in plasmonic response and nanostructure morphology. We have found that ultraviolet ozone is more effective than oxygen plasma for cleaning gold nanostructured surfaces, which is in contrast to bulk films of the same material. Our results show that oxygen plasma treatment negatively impacts the nanostructure and alumina coating based on both scanning electron microscopy analysis of morphology and changes in the plasmonic response. - Highlights: • Plasmonic response indicates oxygen plasma damages Au structures and Al{sub 2}O{sub 3} films. • Ultraviolet ozone (UVO) re-activates aged Al{sub 2}O{sub 3}-coated Au nanostructures. • UVO treatments do not damage Au or Al{sub 2}O{sub 3}-coated nanostructures.

  8. Passive sampling of ambient ozone by solid phase microextraction with on-fiber derivatization

    International Nuclear Information System (INIS)

    Lee, I-S.; Tsai, S.-W.

    2008-01-01

    The solid phase microextraction (SPME) device with the polydimethylsiloxane/divinylbenzene (PDMS/DVB) fiber was used as a passive sampler for ambient ozone. Both O-2,3,4,5,6-(pentafluorobenzyl)hydroxylamine hydrochloride (PFBHA) and 1,2-di-(4-pyridyl)ethylene (DPE) were loaded onto the fiber before sampling. The SPME fiber assembly was then inserted into a PTFE tubing as a passive sampler. Known concentrations of ozone around the ambient ground level were generated by a calibrated ozone generator. Laboratory validations of the SPME passive sampler with the direct-reading ozone monitor were performed side-by-side in an exposure chamber at 25 deg. C. After exposures, pyriden-4-aldehyde was formed due to the reaction between DPE and ozone. Further on-fiber derivatizations between pyriden-4-aldehyde and PFBHA were followed and the derivatives, oximes, were then determined by portable gas chromatography with electron capture detector. The experimental sampling rate of the SPME ozone passive sampler was found to be 1.10 x 10 -4 cm 3 s -1 with detection limit of 58.8 μg m -3 h -1 . Field validations with both SPME device and the direct-reading ozone monitor were also performed. The correlations between the results from both methods were found to be consistent with r = 0.9837. Compared with other methods, the current designed sampler provides a convenient and sensitive tool for the exposure assessments of ozone

  9. Detecting Liquefied Petroleum Gas (LPG) at Room Temperature Using ZnSnO3/ZnO Nanowire Piezo-Nanogenerator as Self-Powered Gas Sensor.

    Science.gov (United States)

    Fu, Yongming; Nie, Yuxin; Zhao, Yayu; Wang, Penglei; Xing, Lili; Zhang, Yan; Xue, Xinyu

    2015-05-20

    High sensitivity, selectivity, and reliability have been achieved from ZnSnO3/ZnO nanowire (NW) piezo-nanogenerator (NG) as self-powered gas sensor (SPGS) for detecting liquefied petroleum gas (LPG) at room temperature (RT). After being exposed to 8000 ppm LPG, the output piezo-voltage of ZnSnO3/ZnO NW SPGS under compressive deformation is 0.089 V, much smaller than that in air ambience (0.533 V). The sensitivity of the SPGS against 8000 ppm LPG is up to 83.23, and the low limit of detection is 600 ppm. The SPGS has lower sensitivity against H2S, H2, ethanol, methanol and saturated water vapor than LPG, indicating good selectivity for detecting LPG. After two months, the decline of the sensing performance is less than 6%. Such piezo-LPG sensing at RT can be ascribed to the new piezo-surface coupling effect of ZnSnO3/ZnO nanocomposites. The practical application of the device driven by human motion has also been simply demonstrated. This work provides a novel approach to fabricate RT-LPG sensors and promotes the development of self-powered sensing system.

  10. A simple large-scale synthesis of mesoporous In2O3 for gas sensing applications

    Science.gov (United States)

    Zhang, Su; Song, Peng; Yan, Huihui; Yang, Zhongxi; Wang, Qi

    2016-08-01

    In this paper, large-scale mesoporous In2O3 nanostructures were synthesized by a facile Lewis acid catalytic the furfural alcohol resin (FAR) template route for the high-yield. Their morphology and structure were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), differential thermal and thermogravimetry analysis (DSC-TG) and the Brunauer-Emmett-Teller (BET) approach. The as-obtained mesoporous In2O3 nanostructures possess excellent mesoporous and network structure, which increases the contact area with the gases, it is conducive for adsorption-desorption of gas on the surface of In2O3. The In2O3 particles and pores were both about 15 nm and very uniform. In gas-sensing measurements with target gases, the gas sensor based on mesoporous In2O3 nanostructures showed a good response, short response-recovery time, good selectivity and stability to ethanol. These properties are due to the large specific surface area of mesoporous structure. This synthetic method could use as a new design concept for functional mesoporous nanomaterials and for mass production.

  11. Ozonização em meio básico para redução de cor do licor negro de indústria de celulose de algodão Color reduction of black liquor from cotton cellulose industry using ozonation in an alkaline medium

    Directory of Open Access Journals (Sweden)

    José Roberto Guimarães

    2010-03-01

    Full Text Available As indústrias de papel e celulose descartam no ambiente um grande volume de efluente contendo grande quantidade da substância lignina, que atribui coloração e apresenta considerável potencial de toxicidade. Neste trabalho, foi avaliada a ozonização em meio básico para a redução de cor do licor negro gerado por uma indústria de celulose de algodão. Face aos resultados, foi possível observar que, para menores concentrações iniciais de ozônio (0,4 gO3 L-1 h-1, foi necessário um tempo mais longo de ozonização para se obter a redução desejada de 80% da cor. O consumo específico de ozônio, entretanto, em comparação a experimentos com dosagens mais elevadas (4,3 gO3 L-1 h-1 foi menor. Sugere-se que o oxigênio molecular desempenhe, também, um importante papel na oxidação dos compostos, participando do mecanismo de oxidação iniciado por radical hidroxila, •OH, formado na ozonização em meio básico.Pulp and paper mills discharge large amounts of wastewater containing high concentrations of lignin, a coloring substance that is dangerous and presents high toxicity to the environment. In this study, ozonation in alkaline ambience was evaluated for color reduction in black liquor, generated in a cotton linter mill. It was observed that the ozonation time to reach 80% color reduction was higher at a lower initial ozone dose (0,4 gO3 L-1 h-1 in comparison to a higher initial ozone dose (4,3 gO3 L-1 h-1. On the other hand, the amount of consumed oxidant was lower at the lower ozone dose. It is suggested that molecular oxygen participates in the oxidation mechanism of colored compounds, which is initiated by hydroxyl radicals (•OH formed during ozonation in alkaline ambience.

  12. Effect of low concentrations of ozone on the enzymes catalase, peroxidase, papain and urease

    Energy Technology Data Exchange (ETDEWEB)

    Todd, G W

    1958-01-01

    The enzymes catalase, peroxidase, papain and urease were treated in vitro with low concentrations of ozone gas. Wide variations were found in the sensitivity of the enzymes to the inhibitory action of the gas. Papain showed the greatest sensitivity; the rest required a much greater amount of ozone for inactivation. Comparisons of ozone and hydrogen peroxide as inhibitors of papain and urease showed ozone to be 30 times as effective as hydrogen peroxide on papain and 3 times as effective on urease. 14 references, 2 figures, 3 tables.

  13. Evolution of ferromagnetism in two-dimensional electron gas of LaTiO3/SrTiO3

    Science.gov (United States)

    Wen, Fangdi; Cao, Yanwei; Liu, Xiaoran; Pal, B.; Middey, S.; Kareev, M.; Chakhalian, J.

    2018-03-01

    Understanding, creating, and manipulating spin polarization of two-dimensional electron gases at complex oxide interfaces present an experimental challenge. For example, despite almost a decade long research effort, the microscopic origin of ferromagnetism in LaAlO3/SrTiO3 heterojunctions is still an open question. Here, by using a prototypical two-dimensional electron gas (2DEG) which emerges at the interface between band insulator SrTiO3 and antiferromagnetic Mott insulator LaTiO3, the experiment reveals the evidence for magnetic phase separation in a hole-doped Ti d1 t2g system, resulting in spin-polarized 2DEG. The details of electronic and magnetic properties of the 2DEG were investigated by temperature-dependent d.c. transport, angle-dependent X-ray photoemission spectroscopy, and temperature-dependent magnetoresistance. The observation of clear hysteresis in magnetotransport at low magnetic fields implies spin-polarization from magnetic islands in the hole rich LaTiO3 near the interface. These findings emphasize the role of magnetic instabilities in doped Mott insulators, thus providing another path for designing all-oxide structures relevant to spintronic applications.

  14. Pulse radiolytic study of the reaction OH + O3 in aqueous medium

    International Nuclear Information System (INIS)

    Sehested, K.; Holcman, J.; Bjergbakke, E.; Hart, E.J.

    1984-01-01

    In slightly alkaline solution the ozonide radical ion, O 3 - , forms as a product of the hydroxyl radical reaction with ozone. For each O 3 - formed, two O 3 molecules are consumed. In acid solution the product of this reaction is the perhydroxyl radical, HO 2 , formed from one O 3 molecule. Our results are consistent with the gas-phase reaction where the products are HO 2 and O 2 . A rate constant of (1.1 +/- 0.2) x 10 8 dm 3 mol -1 s -1 is found for the reaction OH + O 3 → HO 2 + O 2 . This rate constant was obtained by three systems, by buildup of O 3 - in basic solutions, by competition of the OH radical with the carbonate ion, and directly by O 3 consumption in acid solution. The rate constant for the reaction of HO 2 with O 3 is very low, 4 dm 3 mol -1 s -1 . At pH greater than or equal to 1, HO 2 reacts with O 3 preferentially in its dissociated form, O 2 - . No spectroscopic evidence has been found for the HO 3 and HO 4 free-radical intermediates. 24 references, 4 figures, 2 tables

  15. Ozone effects on Sphagnum mosses, carbon dioxide exchange and methane emission in boreal peatland microcosms

    International Nuclear Information System (INIS)

    Niemi, Riikka; Holopainen, Toini; Martikainen, Pertti J.; Silvola, Jouko

    2002-01-01

    Microcosms of a boreal peatland originating from an oligotrophic fen in Eastern Finland were fumigated under four ozone concentrations (0, 50, 100 and 150 ppb O 3 ) in laboratory growth chambers during two separate experiments (autumn and summer) for 4 and 6 weeks, respectively. Ozone effects on Sphagnum mosses and the fluxes of carbon dioxide and methane were evaluated. In both experiments, the three Sphagnum species studied showed only a few significant responses to ozone. In the autumn experiment, membrane permeability of S. angustifolium, measured as conductivity and magnesium leakage, was significantly higher under ozone fumigation (P=0.005 and 2 exchange during the 6-week-long summer experiment, but dark ecosystem respiration was transiently increased by ozone concentration of 100 ppb after 14 days of exposure (P<0.05). Fumigation with 100 ppb of ozone, however, more than doubled (P<0.05) methane emission from the peatland monoliths. Our results suggest that increasing tropospheric ozone concentration may cause substantial changes in the carbon gas cycling of boreal peatlands, even though these changes are not closely associated with the changes in Sphagnum vegetation

  16. Prediction of two-dimensional electron gas mediated magnetoelectric coupling at ferroelectric PbTiO3/SrTiO3 heterostructures

    Science.gov (United States)

    Wei, Lan-ying; Lian, Chao; Meng, Sheng

    2017-05-01

    First-principles calculations predict the emergence of magnetoelectric coupling mediated by two-dimensional electron gas (2DEG) at the ferroelectric PbTiO3/SrTiO3 heterostructure. Free electrons endowed by naturally existing oxygen vacancies in SrTiO3 are driven to the heterostructure interface under the polarizing field of ferroelectric PbTiO3 to form a 2DEG. The electrons are captured by interfacial Ti atoms, which surprisingly exhibits ferromagnetism even at room temperature with a small critical density of ˜15.5 μ C /cm2 . The ferroelectricity-controlled ferromagnetism mediated by interfacial 2DEG shows strong magnetoelectric coupling strength, enabling convenient control of magnetism by electric field and vice versa. The PbTiO3/SrTiO3 heterostructure is cheap, easily grown, and controllable, promising future applications in low-cost spintronics and information storage at ambient condition.

  17. Tropospheric Ozone as a Short-lived Chemical Climate Forcer

    Science.gov (United States)

    Pickering, Kenneth E.

    2012-01-01

    Tropospheric ozone is the third most important greenhouse gas according to the most recent IPCC assessment. However, tropospheric ozone is highly variable in both space and time. Ozone that is located in the vicinity of the tropopause has the greatest effect on climate forcing. Nitrogen oxides (NOx) are the most important precursors for ozone In most of the troposphere. Therefore, pollution that is lofted upward in thunderstorm updrafts or NOx produced by lightning leads to efficient ozone production in the upper troposphere, where ozone is most important climatically. Global and regional model estimates of the impact of North American pollution and lightning on ozone radiative forcing will be presented. It will be shown that in the Northern Hemisphere summer, the lightning effect on ozone radiative forcing can dominate over that of pollution, and that the radiative forcing signal from North America extends well into Europe and North Africa. An algorithm for predicting lightning flash rates and estimating lightning NOx emissions is being incorporated into the NASA GEOS-5 Chemistry and Climate Model. Changes in flash rates and emissions over an ENSO cycle and in future climates will be assessed, along with the resulting changes in upper tropospheric ozone. Other research on the production of NOx per lightning flash and its distribution in the vertical based on cloud-resolving modeling and satellite observations will be presented. Distributions of NO2 and O3 over the Middle East from the OMI instrument on NASA's Aura satellite will also be shown.

  18. Issues in Stratospheric Ozone Depletion.

    Science.gov (United States)

    Lloyd, Steven Andrew

    Following the announcement of the discovery of the Antarctic ozone hole in 1985 there have arisen a multitude of questions pertaining to the nature and consequences of polar ozone depletion. This thesis addresses several of these specific questions, using both computer models of chemical kinetics and the Earth's radiation field as well as laboratory kinetic experiments. A coupled chemical kinetic-radiative numerical model was developed to assist in the analysis of in situ field measurements of several radical and neutral species in the polar and mid-latitude lower stratosphere. Modeling was used in the analysis of enhanced polar ClO, mid-latitude diurnal variation of ClO, and simultaneous measurements of OH, HO_2, H_2 O and O_3. Most importantly, such modeling was instrumental in establishing the link between the observed ClO and BrO concentrations in the Antarctic polar vortex and the observed rate of ozone depletion. The principal medical concern of stratospheric ozone depletion is that ozone loss will lead to the enhancement of ground-level UV-B radiation. Global ozone climatology (40^circS to 50^ circN latitude) was incorporated into a radiation field model to calculate the biologically accumulated dosage (BAD) of UV-B radiation, integrated over days, months, and years. The slope of the annual BAD as a function of latitude was found to correspond to epidemiological data for non-melanoma skin cancers for 30^circ -50^circN. Various ozone loss scenarios were investigated. It was found that a small ozone loss in the tropics can provide as much additional biologically effective UV-B as a much larger ozone loss at higher latitudes. Also, for ozone depletions of > 5%, the BAD of UV-B increases exponentially with decreasing ozone levels. An important key player in determining whether polar ozone depletion can propagate into the populated mid-latitudes is chlorine nitrate, ClONO_2 . As yet this molecule is only indirectly accounted for in computer models and field

  19. Effect of 3 years' free-air exposure to elevated ozone on mature Norway spruce (Picea abies (L.) Karst.) needle epicuticular wax physicochemical characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Percy, Kevin E., E-mail: kpercy@nbnet.nb.c [Natural Resources Canada, Canadian Forest Service-Atlantic Forestry Centre, 1350 Regent Street, Fredericton, NB, E3B 5P7 (Canada); Manninen, Sirkku [Department of Biological and Environmental Sciences, P.O. Box 56, University of Helsinki, 00014 Helsinki (Finland); Department of Biology, P.O. Box 3000, University of Oulu, 90014 Oulu (Finland); Haeberle, Karl-Heinz [Ecophysiology of Plants, Department of Ecology, Technische Universitaet Muenchen, Am Hochanger 13, 85354 Freising (Germany); Heerdt, C.; Werner, H. [Ecoclimatology, Department of Ecology, Technische Universitaet Muenchen, Am Hochanger 13, 85354 Freising (Germany); Henderson, Gary W. [Natural Resources Canada, Canadian Forest Service-Atlantic Forestry Centre, 1350 Regent Street, Fredericton, NB, E3B 5P7 (Canada); Matyssek, Rainer [Ecophysiology of Plants, Department of Ecology, Technische Universitaet Muenchen, Am Hochanger 13, 85354 Freising (Germany)

    2009-05-15

    We examined the effect of ozone (O{sub 3}) on Norway spruce (Picea abies) needle epicuticular wax over three seasons at the Kranzberg Ozone Fumigation Experiment. Exposure to 2x ambient O{sub 3} ranged from 64.5 to 74.2 mul O{sub 3} l{sup -1} h AOT40, and 117.1 to 123.2 nl O{sub 3} l{sup -1} 4th highest daily maximum 8-h average O{sub 3} concentration. The proportion of current-year needle surface covered by wax tubes, tube aggregates, and plates decreased (P = 0.011) under 2x O{sub 3}. Epistomatal chambers had increased deposits of amorphous wax. Proportion of secondary alcohols varied due to year (P = 0.004) and O{sub 3} treatment (P = 0.029). Secondary alcohols were reduced by 9.1% under 2x O{sub 3}. Exposure to 2x O{sub 3} increased (P = 0.037) proportions of fatty acids by 29%. Opposing trends in secondary alcohols and fatty acids indicate a direct action of O{sub 3} on wax biosynthesis. These results demonstrate O{sub 3}-induced changes in biologically important needle surface characteristics of 50-year-old field-grown trees. - Free-air ozone exposure induced changes in needle wax characteristics of mature Picea abies.

  20. Suppression of the two-dimensional electron gas in LaGaO3/SrTiO3 by cation intermixing

    KAUST Repository

    Nazir, S.

    2013-12-03

    Cation intermixing at the n-type polar LaGaO 3 /SrTiO 3 (001) interface is investigated by first principles calculations. Ti"Ga, Sr"La, and SrTi"LaGa intermixing are studied in comparison to each other, with a focus on the interface stability. We demonstrate in which cases intermixing is energetically favorable as compared to a clean interface. A depopulation of the Ti 3d xy orbitals under cation intermixing is found, reflecting a complete suppression of the two-dimensional electron gas present at the clean interface.

  1. Retrieval and satellite intercomparison of O3 measurements from ground-based FTIR Spectrometer at Equatorial Station: Addis Ababa, Ethiopia

    Directory of Open Access Journals (Sweden)

    T. von Clarmann

    2013-02-01

    Full Text Available Since May 2009, high-resolution Fourier Transform Infrared (FTIR solar absorption spectra have been recorded at Addis Ababa (9.01° N latitude, 38.76° E longitude, 2443 m altitude above sea level, Ethiopia. The vertical profiles and total column amounts of ozone (O3 are deduced from the spectra by using the retrieval code PROFFIT (V9.5 and regularly determined instrumental line shape (ILS. A detailed error analysis of the O3 retrieval is performed. Averaging kernels of the target gas shows that the major contribution to the retrieved information comes from the measurement. The degrees of freedom for signals is found to be 2.1 on average for the retrieval of O3 from the observed FTIR spectra. The ozone Volume Mixing Ratio (VMR profiles and column amounts retrieved from FTIR spectra are compared with the coincident satellite observations of Microwave Limb Sounding (MLS, Michelson Interferometer for Passive Atmospheric Sounding (MIPAS, Tropospheric Emission Spectrometer (TES, Ozone Monitoring Instrument (OMI, Atmospheric Infrared Sounding (AIRS and Global Ozone Monitoring Experiment (GOME-2 instruments. The mean relative differences in ozone profiles of FTIR from MLS and MIPAS are generally lower than 15% within the altitude range of 27 to 36 km, whereas difference from TES is lower than 1%. Comparisons of measurements of column amounts from the satellite and the ground-based FTIR show very good agreement as exhibited by relative differences within +0.2% to +2.8% for FTIR versus MLS and GOME-2; and −0.9 to −9.0% for FTIR versus OMI, TES and AIRS. The corresponding standard deviations are within 2.0 to 2.8% for FTIR versus MLS and GOME-2 comparisons whereas that of FTIR versus OMI, TES and AIRS are within 3.5 to 7.3%. Thus, the retrieved O3 VMR and column amounts from a tropical site, Addis Ababa, is found to exhibit very good agreement with all coincident satellite observations over an approximate 3-yr period.

  2. Optimization of stabilized leachate treatment using ozone/persulfate in the advanced oxidation process

    International Nuclear Information System (INIS)

    Abu Amr, Salem S.; Aziz, Hamidi Abdul; Adlan, Mohd Nordin

    2013-01-01

    Highlights: ► Ozone and persulfate reagent (O 3 /S 2 O 8 2- ) was used to treat stabilized leachate. ► Central composite design (CCD) with response surface methodology (RSM) was applied. ► Operating variables including ozone and persulfate dosage, pH variance, and reaction time. ► Optimum removal of COD, color, and NH 3 –N was 72%, 96%, and 76%, respectively. ► A good value of ozone consumption (OC) obtained with 0.60 (kg O 3 /kg COD). - Abstract: The objective of this study was to investigate the performance of employing persulfate reagent in the advanced oxidation of ozone to treat stabilized landfill leachate in an ozone reactor. A central composite design (CCD) with response surface methodology (RSM) was applied to evaluate the relationships between operating variables, such as ozone and persulfate dosages, pH, and reaction time, to identify the optimum operating conditions. Quadratic models for the following four responses proved to be significant with very low probabilities ( 3 –N, and ozone consumption (OC). The obtained optimum conditions included a reaction time of 210 min, 30 g/m 3 ozone, 1 g/1 g COD 0 /S 2 O 8 2- ratio, and pH 10. The experimental results were corresponded well with predicted models (COD, color, and NH 3 –N removal rates of 72%, 96%, and 76%, respectively, and 0.60 (kg O 3 /kg COD OC). The results obtained in the stabilized leachate treatment were compared with those from other treatment processes, such as ozone only and persulfate S 2 O 8 2- only, to evaluate its effectiveness. The combined method (i.e., O 3 /S 2 O 8 2- ) achieved higher removal efficiencies for COD, color, and NH 3 –N compared with other studied applications. Furthermore, the new method is more efficient than ozone/Fenton in advanced oxidation process in the treatment of the same studied leachate

  3. CO gas sensing properties of In_4Sn_3O_1_2 and TeO_2 composite nanoparticle sensors

    International Nuclear Information System (INIS)

    Mirzaei, Ali; Park, Sunghoon; Sun, Gun-Joo; Kheel, Hyejoon; Lee, Chongmu

    2016-01-01

    Highlights: • In4Sn3O12–TeO2 composite nanoparticles were synthesized via a facile hydrothermal route. • The response of the In4Sn3O12–TeO2 composite sensor to CO was stronger than the pristine In4Sn3O12 sensor. • The response of the In4Sn3O12–TeO2 composite sensor to CO was faster than the pristine In4Sn3O12 sensor. • The improved sensing performance of the In4Sn3O12–TeO2 nanocomposite sensor is discussed in detail. • The In4Sn3O12-based nanoparticle sensors showed selectivity to CO over NH3, HCHO and H2. - Abstract: A simple hydrothermal route was used to synthesize In_4Sn_3O_1_2 nanoparticles and In_4Sn_3O_1_2–TeO_2 composite nanoparticles, with In(C_2H_3O_2)_3, SnCl_4, and TeCl_4 as the starting materials. The structure and morphology of the synthesized nanoparticles were examined by X-ray diffraction and scanning electron microscopy (SEM), respectively. The gas-sensing properties of the pure and composite nanoparticles toward CO gas were examined at different concentrations (5–100 ppm) of CO gas at different temperatures (100–300 °C). SEM observation revealed that the composite nanoparticles had a uniform shape and size. The sensor based on the In_4Sn_3O_1_2–TeO_2 composite nanoparticles showed stronger response to CO than its pure In_4Sn_3O_1_2 counterpart. The response of the In_4Sn_3O_1_2–TeO_2 composite-nanoparticle sensor to 100 ppm of CO at 200 °C was 10.21, whereas the maximum response of the In_4Sn_3O_1_2 nanoparticle sensor was 2.78 under the same conditions. Furthermore, the response time of the composite sensor was 19.73 s under these conditions, which is less than one-third of that of the In_4Sn_3O_1_2 sensor. The improved sensing performance of the In_4Sn_3O_1_2–TeO_2 nanocomposite sensor is attributed to the enhanced modulation of the potential barrier height at the In_4Sn_3O_1_2–TeO_2 interface, the stronger oxygen adsorption of p-type TeO_2, and the formation of preferential adsorption sites.

  4. Process analysis of regional ozone formation over the Yangtze River Delta, China using the Community Multi-scale Air Quality modeling system

    Directory of Open Access Journals (Sweden)

    L. Li

    2012-11-01

    Full Text Available A high O3 episode was detected in urban Shanghai, a typical city in the Yangtze River Delta (YRD region in August 2010. The CMAQ integrated process rate method is applied to account for the contribution of different atmospheric processes during the high pollution episode. The analysis shows that the maximum concentration of ozone occurs due to transport phenomena, including vertical diffusion and horizontal advective transport. Gas-phase chemistry producing O3 mainly occurs at the height of 300–1500 m, causing a strong vertical O3 transport from upper levels to the surface layer. The gas-phase chemistry is an important sink for O3 in the surface layer, coupled with dry deposition. Cloud processes may contribute slightly to the increase of O3 due to convective clouds or to the decrease of O3 due to scavenging. The horizontal diffusion and heterogeneous chemistry contributions are negligible during the whole episode. Modeling results show that the O3 pollution characteristics among the different cities in the YRD region have both similarities and differences. During the buildup period, the O3 starts to appear in the city regions of the YRD and is then transported to the surrounding areas under the prevailing wind conditions. The O3 production from photochemical reaction in Shanghai and the surrounding area is most significant, due to the high emission intensity in the large city; this ozone is then transported out to sea by the westerly wind flow, and later diffuses to rural areas like Chongming island, Wuxi and even to Nanjing. The O3 concentrations start to decrease in the cities after sunset, due to titration of the NO emissions, but ozone can still be transported and maintain a significant concentration in rural areas and even regions outside the YRD region, where the NO emissions are very small.

  5. Mechanism for enhanced degradation of clofibric acid in aqueous by catalytic ozonation over MnOx/SBA-15

    International Nuclear Information System (INIS)

    Sun, Qiangqiang; Wang, Yu; Li, Laisheng; Bing, Jishuai; Wang, Yingxin; Yan, Huihua

    2015-01-01

    Highlights: • Clofibric acid (CA) is efficiently mineralized by O 3 /MnO x /SBA-15. • Adsorption of CA and its intermediates on MnO x /SBA-15 is proved unimportant. • Initiation of hydroxyl radicals (·OH) is enhanced in O 3 /MnO x /SBA-15. • Uniformly distributed MnO x accounts for the high activity of MnO x /SBA-15. • Degradation routes of CA in ozonation alone and catalytic ozonation are proposed. - Abstract: Comparative experiments were conducted to investigate the catalytic ability of MnO x /SBA-15 for the ozonation of clofibric acid (CA) and its reaction mechanism. Compared with ozonation alone, the degradation of CA was barely enhanced, while the removal of TOC was significantly improved by catalytic ozonation (O 3 /MnO x /SBA-15). Adsorption of CA and its intermediates by MnO x /SBA-15 was proved unimportant in O 3 /MnO x /SBA-15 due to the insignificant adsorption of CA and little TOC variation after ceasing ozone in stopped-flow experiment. The more remarkably inhibition effect of sodium bisulfite (NaHSO 3 ) on the removal of TOC in catalytic ozonation than in ozonation alone elucidated that MnO x /SBA-15 facilitated the generation of hydroxyl radicals (·OH), which was further verified by electron spin-resonance spectroscopy (ESR). Highly dispersed MnO x on SBA-15 were believed to be the main active component in MnO x /SBA-15. Some intermediates were indentified and different degradation routes of CA were proposed in both ozonation alone and catalytic ozonation. The amounts of small molecular carboxylic acids (i.e., formic acid (FA), acetic acid (AA) and oxalic acid (OA)) generated in catalytic ozonation were lower than in ozonation alone, resulting from the generation of more ·OH

  6. Space nuclear power requirements for ozone layer modification

    International Nuclear Information System (INIS)

    Dolan, T.J.

    1991-01-01

    This work estimates the power requirements for using photochemical processes driven by space nuclear power to counteract the Earth's ozone layer depletion. The total quantity of ozone (O 3 ) in the Earth's atmosphere is estimated to be about 4.7 x 10 37 molecules. The ozone production and destruction rates in the stratosphere are both on the order of 4.9 x 10 31 molecules/s, differing by a small fraction so that the net depletion rate is about 0.16 to 0.26% per year. The delivered optical power requirement for offsetting this depletion is estimated to be on the order of 3 GW. If the power were produced by satellite reactors at 800 km altitude (orbit decay time ∼ 300 years), some means of efficient power beaming would be needed to deliver the power to stratospheric levels (10--50 km). Ultraviolet radiation at 140--150 nm could have higher absorption rates in O 2 (leading to production of atomic oxygen, which can combine with O 2 to form O 3 ) than in ozone (leading to photodissociation of O 3 ). Potential radiation sources include H 2 lasers and direct nuclear pumping of ultraviolet fluorescers. 5 refs

  7. Improvements to the WRF-Chem 3.5.1 model for quasi-hemispheric simulations of aerosols and ozone in the Arctic

    Directory of Open Access Journals (Sweden)

    L. Marelle

    2017-10-01

    Full Text Available In this study, the WRF-Chem regional model is updated to improve simulated short-lived pollutants (e.g., aerosols, ozone in the Arctic. Specifically, we include in WRF-Chem 3.5.1 (with SAPRC-99 gas-phase chemistry and MOSAIC aerosols (1 a correction to the sedimentation of aerosols, (2 dimethyl sulfide (DMS oceanic emissions and gas-phase chemistry, (3 an improved representation of the dry deposition of trace gases over seasonal snow, and (4 an UV-albedo dependence on snow and ice cover for photolysis calculations. We also (5 correct the representation of surface temperatures over melting ice in the Noah Land Surface Model and (6 couple and further test the recent KF-CuP (Kain–Fritsch + Cumulus Potential cumulus parameterization that includes the effect of cumulus clouds on aerosols and trace gases. The updated model is used to perform quasi-hemispheric simulations of aerosols and ozone, which are evaluated against surface measurements of black carbon (BC, sulfate, and ozone as well as airborne measurements of BC in the Arctic. The updated model shows significant improvements in terms of seasonal aerosol cycles at the surface and root mean square errors (RMSEs for surface ozone, aerosols, and BC aloft, compared to the base version of the model and to previous large-scale evaluations of WRF-Chem in the Arctic. These improvements are mostly due to the inclusion of cumulus effects on aerosols and trace gases in KF-CuP (improved RMSE for surface BC and BC profiles, surface sulfate, and surface ozone, the improved surface temperatures over sea ice (surface ozone, BC, and sulfate, and the updated trace gas deposition and UV albedo over snow and ice (improved RMSE and correlation for surface ozone. DMS emissions and chemistry improve surface sulfate at all Arctic sites except Zeppelin, and correcting aerosol sedimentation has little influence on aerosols except in the upper troposphere.

  8. Synergistic Effect of Copper and Cobalt in Cu-Co-O Composite Nanocatalyst for Catalytic Ozonation

    International Nuclear Information System (INIS)

    Dong, Yuming; Wu, Lina; Wang, Guangli; Zhao, Hui; Jiang, Pingping; Feng, Cuiyun

    2013-01-01

    A novel Cu-Co-O composite nanocatalyst was designed and prepared for the ozonation of phenol. A synergistic effect of copper and cobalt was observed over the Cu-Co-O composite nanocatalyst, which showed higher activity than either copper or cobalt oxide alone. In addition, the Cu-Co-O composite revealed good activity in a wide initial pH range (4.11-8.05) of water. The fine dispersion of cobalt on the surface of copper oxide boosted the interaction between catalyst and ozone, and the surface Lewis acid sites on the Cu-Co-O composite were determined as the active sites. The Raman spectroscopy also proved that the Cu-Co-O composite was quite sensitive to the ozone. The trivalent cobalt in the Cu-Co-O composite was proposed as the valid state

  9. Nano Ag-Doped In2O3 Thick Film: A Low-Temperature H2S Gas Sensor

    Directory of Open Access Journals (Sweden)

    D. N. Chavan

    2011-01-01

    Full Text Available Thick films of AR grade In2O3 were prepared by standard screen-printing technique. The gas sensing performances of thick films were tested for various gases. It showed maximum sensitivity to ethanol vapour at 350°C for 80 ppm concentration. To improve the sensitivity and selectivity of the film towards a particular gas, In2O3 sensors were surface-modified by dipping them in a solution of 2% nanosilver for different intervals of time. Obtained results indicated that spherical nano-Ag grains are highly dispersed on the surface of In2O3sensor. The surface area of the nano-Ag/ In2O3 sensor is several times larger than that of pure In2O3 sensor. In comparison with pure In2O3 sensor, all of the nano-Ag-doped sensors showed better sensing performance in respect of response, selectivity, and optimum operating temperature. The surface-modified (30 min In2O3 sensor showed larger sensitivity to H2S gas (10 ppm at 100°C. Nano silver on the surface of the film shifts the reactivity of film from ethanol vapour to H2S gas. A systematic study of gas sensing performance of the sensor indicates the key role played by the nano silver species on the surface. The sensitivity, selectivity, response, and recovery time of the sensor were measured and presented.

  10. OMI/Aura Ozone(O3) Total Column 1-Orbit L2 Swath 13x24 km V003 (OMTO3) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — The Aura Ozone Monitoring Instrument (OMI) Level-2 Total Column Ozone Data Product OMTO3 (Version 003) is available from the NASA Goddard Earth Sciences Data and...

  11. Multi-year assimilation of IASI and MLS ozone retrievals: variability of tropospheric ozone over the tropics in response to ENSO

    Science.gov (United States)

    Peiro, Hélène; Emili, Emanuele; Cariolle, Daniel; Barret, Brice; Le Flochmoën, Eric

    2018-05-01

    The Infrared Atmospheric Sounder Instrument (IASI) allows global coverage with very high spatial resolution and its measurements are promising for long-term ozone monitoring. In this study, Microwave Limb Sounder (MLS) O3 profiles and IASI O3 partial columns (1013.25-345 hPa) are assimilated in a chemistry transport model to produce 6-hourly analyses of tropospheric ozone for 6 years (2008-2013). We have compared and evaluated the IASI-MLS analysis and the MLS analysis to assess the added value of IASI measurements. The global chemical transport model MOCAGE (MOdèle de Chimie Atmosphérique à Grande Echelle) has been used with a linear ozone chemistry scheme and meteorological forcing fields from ERA-Interim (ECMWF global reanalysis) with a horizontal resolution of 2° × 2° and 60 vertical levels. The MLS and IASI O3 retrievals have been assimilated with a 4-D variational algorithm to constrain stratospheric and tropospheric ozone respectively. The ozone analyses are validated against ozone soundings and tropospheric column ozone (TCO) from the OMI-MLS residual method. In addition, an Ozone ENSO Index (OEI) is computed from the analysis to validate the TCO variability during the ENSO events. We show that the assimilation of IASI reproduces the variability of tropospheric ozone well during the period under study. The variability deduced from the IASI-MLS analysis and the OMI-MLS measurements are similar for the period of study. The IASI-MLS analysis can reproduce the extreme oscillation of tropospheric ozone caused by ENSO events over the tropical Pacific Ocean, although a correction is required to reduce a constant bias present in the IASI-MLS analysis.

  12. Low-Temperature Synthesis and Gas Sensitivity of Perovskite-Type LaCoO3 Nanoparticles

    Directory of Open Access Journals (Sweden)

    Lorenzo Gildo Ortiz

    2014-01-01

    Full Text Available LaCoO3 nanoparticles with perovskite-type structure were prepared by a microwave-assisted colloidal method. Lanthanum nitrate, cobalt nitrate, and ethylenediamine were used as precursors and ethyl alcohol as solvent. The thermal decomposition of the precursors leads to the formation of LaCoO3 from a temperature of 500°C. The structural, morphological, and compositional properties of LaCoO3 nanoparticles were studied in this work by X-ray diffraction (XRD, scanning electron microscopy (SEM, transmission electron microscopy (TEM, and atomic force microscopy (AFM. Pellets were manufactured in order to test the gas sensing properties of LaCoO3 powders in carbon monoxide (CO and propane (C3H8 atmospheres. Agglomerates of nanoparticles with high connectivity, forming a porous structure, were observed from SEM and TEM analysis. LaCoO3 pellets presented a high sensitivity in both CO and C3H8 at different concentrations and operating temperatures. As was expected, sensitivity increased with the gas concentration and operation temperature increase.

  13. Galactic cosmic rays and tropical ozone asymmetries

    International Nuclear Information System (INIS)

    Kilifarska, Natalya; Bakhmutov, Volodymyr; Melnyk, Galyna

    2017-01-01

    Lower stratospheric ozone O_3 is of special interest to climatic studies due to its direct influence on the tropopause temperature, and correspondingly on Earth’s radiation balance. By reason of the suppressed dissociation of molecular oxygen by solar UV radiation and the long life span of the lower stratospheric O_3 , its temporal variability is usually attributed to atmospheric circulation. Here we report about latitudinal-longitudinal differences in a centennial evolution of the tropical O_3 at 70 hPa. These asymmetries are hardly explicable within the concept of the ozone’s dynamical control alone. Analysis of ozone, energetic particles and the geomagnetic records from the last 111 years has revealed that they all evolve synchronously with time. This coherence motivates us to propose a mechanism explaining the geomagnetic and galactic cosmic ray influence on the near tropopause O_3 , allowing for an understanding of its spatial-temporal variability during the past century. Key words: galactic cosmic rays, asymmetries of tropical ozone distribution, geomagnetic filed

  14. Studies on the Biological Effects of Ozone: 10. Release of Factors from Ozonated Human Platelets

    Directory of Open Access Journals (Sweden)

    G. Valacchi

    1999-01-01

    Full Text Available In a previous work we have shown that heparin, in the presence of ozone (O3, promotes a dose-dependent platelet aggregation, while after Ca2+ chelation with citrate, platelet aggregation is almost negligible. These results led us to think that aggregation may enhance the release of platelet components. We have here shown that indeed significantly higher amount of platelet-derived growth factor (PDGF, transforming growth factor β1 (TGF-β1 and interleukin-8(IL-8 are released in a dose-dependent manner after ozonation of heparinised platelet-rich plasma samples. These findings may explain the enhanced healing of torpid ulcers in patients with chronic limbischemia treated with O3 autohaemoteraphy (O3-AHT.

  15. O2(a1Δ) quenching in O/O2/O3/CO2/He/Ar mixtures

    Science.gov (United States)

    Azyazov, V. N.; Mikheyev, P. A.; Postell, D.; Heaven, M. C.

    2010-02-01

    The development of discharge singlet oxygen generators (DSOG's) that can operate at high pressures is required for the power scaling of the discharge oxygen iodine laser. In order to achieve efficient high-pressure DSOG operation it is important to understand the mechanisms by which singlet oxygen (O2(a1Δ)) is quenched in these devices. It has been proposed that three-body deactivation processes of the type O2(a1Δ))+O+M-->2O2+M provide significant energy loss channels. To further explore these reactions the physical and reactive quenching of O2(a1Δ)) in O(3P)/O2/O3/CO2/He/Ar mixtures has been investigated. Oxygen atoms and singlet oxygen molecules were produced by the 248 nm laser photolysis of ozone. The kinetics of O2(a1Δ)) quenching were followed by observing the 1268 nm fluorescence of the O2 a1Δ-X3Ε transition. Fast quenching of O2(a1Δ)) in the presence of oxygen atoms and molecules was observed. The mechanism of the process has been examined using kinetic models, which indicate that quenching by vibrationally excited ozone is the dominant reaction.

  16. Enhanced response to ozone exposure during the follicular phase of the menstrual cycle

    Energy Technology Data Exchange (ETDEWEB)

    Fox, S.D.; Adams, W.C.; Brookes, K.A.; Lasley, B.L. (Univ. of Calfornia, Davis (United States))

    1993-08-01

    Exposure to ozone (O[sub 3]), a toxic component of photochemical smog, results in significant airway inflammation, respiratory discomfort, and pulmonary function impairment. These effects can be reduced via pretreatment with anti-inflammatory agents. Progesterone, a gonadal steroid, is known to reduce general inflammation in the uterine endometrium. However, it is not known whether fluctuation in blood levels of progesterone, which are experienced during the normal female menstrual cycle, could alter O[sub 3] inflammatory-induced pulmonary responses. In this study, we tested the hypothesis that young, adult females are more responsive to O[sub 3] inhalation with respect to pulmonary function impairment during their follicular (F) menstrual phase when progesterone levels are lowest that during their mid-luteal (ML) phase when progesterone levels are highest. Nine subjects with normal ovarian function were exposed in random order for 1 hour each to filtered air and to 0.30 ppm O[sub 3] in their F and ML menstrual phases. Ozone responsiveness was measured by percent change in pulmonary function from pre- to postexposure. Significant gas concentration effects (filtered air versus O[sub 3]) were observed for forced vital capacity (FVC), forced expiratory volume in 1 sec (FEV[sub 1]), and forced expiratory flow between 25 and 75% of FVC (FEF[sub 25-75]), showed a significant menstrual phase and gas concentration interaction effect, with larger decrements observed in the F menstrual phase when progesterone concentrations were significantly lower. We conclude that young, adult females appear to be more responsive to acute O[sub 3] exposure during the F phase than during the ML phase of their menstrual cycles. This difference in pulmonary function response could be related to the anti-inflammatory effects of increased progesterone concentrations during the luteal phase.

  17. Impact of natural gas development in the Marcellus and Utica shales on regional ozone and fine particulate matter levels

    Science.gov (United States)

    Roohani, Yusuf H.; Roy, Anirban A.; Heo, Jinhyok; Robinson, Allen L.; Adams, Peter J.

    2017-04-01

    The Marcellus and Utica shale formations have recently been the focus of intense natural gas development and production, increasing regional air pollutant emissions. Here we examine the effects of these emissions on regional ozone and fine particulate matter (PM2.5) levels using the chemical transport model, CAMx, and estimate the public health costs with BenMAP. Simulations were performed for three emissions scenarios for the year 2020 that span a range potential development storylines. In areas with the most gas development, the 'Medium Emissions' scenario, which corresponds to an intermediate level of development and widespread adoption of new equipment with lower emissions, is predicted to increase 8-hourly ozone design values by up to 2.5 ppbv and average annual PM2.5 concentrations by as much as 0.27 μg/m3. These impacts could range from as much as a factor of two higher to a factor of three lower depending on the level of development and the adoption of emission controls. Smaller impacts (e.g. 0.1-0.5 ppbv of ozone, depending on the emissions scenario) are predicted for non-attainment areas located downwind of the Marcellus region such as New York City, Philadelphia and Washington, DC. Premature deaths for the 'Medium Emissions' scenario are predicted to increase by 200-460 annually. The health impacts as well as the changes in ozone and PM2.5 were all driven primarily by NOx emissions.

  18. A simple large-scale synthesis of mesoporous In{sub 2}O{sub 3} for gas sensing applications

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Su; Song, Peng, E-mail: mse_songp@ujn.edu.cn; Yan, Huihui; Yang, Zhongxi; Wang, Qi, E-mail: mse_wangq@ujn.edu.cn

    2016-08-15

    Graphical abstract: Large-scale mesoporous In{sub 2}O{sub 3} nanostructures for gas-sensing applications were successfully fabricated via a facile Lewis acid catalytic the furfural alcohol resin template route. - Highlights: • Mesoporous In{sub 2}O{sub 3} nanostructures with high-yield have been successfully fabricated via a facile strategy. • The microstructure and formation mechanism of mesoporous In{sub 2}O{sub 3} nanostructures were discussed based on the experimental results. • The as-prepared In{sub 2}O{sub 3} samples exhibited high response, short response-recovery times and good selectivity to ethanol gas. - Abstract: In this paper, large-scale mesoporous In{sub 2}O{sub 3} nanostructures were synthesized by a facile Lewis acid catalytic the furfural alcohol resin (FAR) template route for the high-yield. Their morphology and structure were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), differential thermal and thermogravimetry analysis (DSC-TG) and the Brunauer-Emmett-Teller (BET) approach. The as-obtained mesoporous In{sub 2}O{sub 3} nanostructures possess excellent mesoporous and network structure, which increases the contact area with the gases, it is conducive for adsorption-desorption of gas on the surface of In{sub 2}O{sub 3}. The In{sub 2}O{sub 3} particles and pores were both about 15 nm and very uniform. In gas-sensing measurements with target gases, the gas sensor based on mesoporous In{sub 2}O{sub 3} nanostructures showed a good response, short response-recovery time, good selectivity and stability to ethanol. These properties are due to the large specific surface area of mesoporous structure. This synthetic method could use as a new design concept for functional mesoporous nanomaterials and for mass production.

  19. Leaf age affects the responses of foliar injury and gas exchange to tropospheric ozone in Prunus serotina seedlings

    Science.gov (United States)

    Jianwei Zhang; Marcus Schaub; Jonathan A. Ferdinand; John M. Skelly; Kim C. Steiner; James E. Savage

    2010-01-01

    We investigated the effect of leaf age on the response of net photosynthesis (A), stomatal conductance (gwv), foliar injury, and leaf nitrogen concentration (NL) to tropospheric ozone (O3) on Prunus serotina seedlings grown in open-plots (AA) and open-top...

  20. Zn doped MoO3 nanobelts and the enhanced gas sensing properties to ethanol

    Science.gov (United States)

    Yang, Shuang; Liu, Yueli; Chen, Tao; Jin, Wei; Yang, Tingqiang; Cao, Minchi; Liu, Shunshun; Zhou, Jing; Zakharova, Galina S.; Chen, Wen

    2017-01-01

    Zn doped MoO3 nanobelts with the thickness of 120-275 nm, width of 0.3-1.4 μm and length of more than 100 μm are prepared by hydrothermal reaction. The operating temperature of sensors based on Zn doped MoO3 nanobelts is 100-380 °C with a better response to low concentration of ethanol. The highest response value of sensors based on Zn doped MoO3 to 1000 ppm ethanol at 240 °C is 321, which is about 15 times higher than that of pure MoO3 nanobelts. The gas sensors based on Zn doped MoO3 nanobelts possess good selectivity to ethanol compared with methanol, ammonia, acetone and toluene, which implies that it would be a good candidate in the potential application. The improvement of gas sensing properties may be attributed to the increasing absorbed ethanol, the decreasing probability of ethoxy recombination, the promoted dehydrogenation progress at lower temperature, and the narrowed band gap by Zn doping.

  1. Spektroskopische (DOAS)-Langzeitmessungen von Ozon und Vorlaeufersubstanzen an der Ostseekuestenstation Arkona. Abschlussbericht; Long term spectroscopic (DOAS) measurement of ozone and related species at the Baltic coast station Arkona. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Dubois, R [Institut fuer Troposphaerenforschung e.V. (IfT), Leipzig (Germany); Flentje, H [Institut fuer Troposphaerenforschung e.V. (IfT), Leipzig (Germany); Heintz, F [Heidelberg Univ. (Germany). Inst. fuer Umweltphysik; Karbach, H J [Institut fuer Troposphaerenforschung e.V. (IfT), Leipzig (Germany); Stutz, J [Heidelberg Univ. (Germany). Inst. fuer Umweltphysik; Platt, U [Heidelberg Univ. (Germany). Inst. fuer Umweltphysik

    1996-08-01

    Boundary layer ozone concentrations have been recorded since 1956 by the German Weather Service, (MD / DWD) at Cape Arkona, Island of Ruegen, GDR / FRG. In April 1993, a Long Path Differential Optical Absorption Spectrometer (LP-DOAS) was set up near the DWD-site. Measurements of the concentrations of O{sub 3}, NO{sub 2}, NO{sub 3} and SO{sub 2} were carried out with a newly developed DOAS system. The system incorporates two coaxially arranged Newton-type telescopes, a flat field holographic grating spectrometer and a retro reflector array. Combining the meteorological data with ozone and other gas concentrations, sector-classified results are used to identify the constraints for future evaluations of regional long-term trends of ozone concentrations. A statistical analysis of different trace gases for the periods summer, autumn, winter and spring is prepared. The long term nitrate radicals data record is used to retrieve information on the production rate of nitrate radicals, its lifetime, and possible depletion mechanism. (orig.)

  2. Kinetic study of ozonation of molasses fermentation wastewater

    International Nuclear Information System (INIS)

    Coca, M.; Pena, M.; Gonzalez, G.

    2007-01-01

    A kinetic study of molasses wastewater ozonation was carried out in a stirred tank reactor to obtain the rate constants for the decolorization reaction and the regime through which ozone is absorbed. First, fundamental mass transfer parameters such as ozone solubility, volumetric mass transfer coefficients and ozone decomposition kinetics were determined from semi-batch experiments in organic-free solutions with an ionic composition similar that of industrial wastewater. The influence of operating variables such as the stirring rate and gas flow rate on the kinetic and mass transfer parameters was also studied. The application of film theory allows to establish that the reactions between ozone and colored compounds in wastewater take place in the fast and pseudo-first-order regime, within the liquid film. The decolorization rate constants were evaluated at pH 8.7 and 25 deg. C, varying from 0.6 x 10 7 to 3.8 x 10 7 L mol -1 s -1 , depending on the stirring rate and the inlet gas flow

  3. Impact of ozonation and biological activated carbon filtration on ceramic membrane fouling.

    Science.gov (United States)

    Ibn Abdul Hamid, Khaled; Sanciolo, Peter; Gray, Stephen; Duke, Mikel; Muthukumaran, Shobha

    2017-12-01

    Ozone pre-treatment (ozonation, ozonisation) and biological activated carbon (BAC) filtration pre-treatment for the ceramic microfiltration (CMF) treatment of secondary effluent (SE) were studied. Ozone pre-treatment was found to result in higher overall removal of UV absorbance (UVA 254 ) and colour, and higher permeability than BAC pre-treatment or the combined use of ozone and BAC (O3+BAC) pre-treatment. The overall removal of colour and UVA 254 by ceramic filtration of the ozone pre-treated water was 97% and 63% respectively, compared to 86% and 48% respectively for BAC pre-treatment and 29% and 6% respectively for the untreated water. Ozone pre-treatment, however, was not effective in removal of dissolved organic carbon (DOC). The permeability of the ozone pre-treated water through the ceramic membrane was found to decrease to 50% of the original value after 200 min of operation, compared to approximately 10% of the original value for the BAC pre-treated, O3+BAC pre-treated water and the untreated water. The higher permeability of the ozone pre-treated water was attributed to the excellent removal of biopolymer particles (100%) and high removal of humic substances (84%). The inclusion of a BAC stage between ozone pre-treatment and ceramic filtration was detrimental. The O3+BAC+CMF process was found to yield higher biopolymer removal (96%), lower humic substance (HS) component removal (66%) and lower normalized permeability (0.1) after 200 min of operation than the O3+CMF process (86%, 84% and 0.5 respectively). This was tentatively attributed to the chemical oxidation effect of ozone on the BAC biofilm and adsorbed components, leading to the generation of foulants that are not generated in the O3+CMF process. This study demonstrated the potential of ozone pre-treatment for reducing organic fouling and thus improving flux for the CMF of SE compared to O3+BAC pre-treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. How relevant is heterogeneous chemistry on Mars? Strong tests via global mapping of water and ozone (sampled via O2 dayglow)

    Science.gov (United States)

    Villanueva, Geronimo Luis; Mumma, Michael J.; Novak, Robert E.

    2015-11-01

    Ozone and water are powerful tracers of photochemical processes on Mars. Considering that water is a condensable with a multifaceted hydrological cycle and ozone is continuously being produced / destroyed on short-time scales, their maps can test the validity of current 3D photochemical and dynamical models. Comparisons of modern GCM models (e.g., Lefèvre et al. 2004) with certain datasets (e.g., Clancy et al. 2012; Bertaux et al. 2012) point to significant disagreement, which in some cases have been related to heterogeneous (gas-dust) chemistry beyond the classical gas-gas homogeneous reactions.We address these concerns by acquiring full 2D maps of water and ozone (via O2 dayglow) on Mars, employing high spectral infrared spectrometers at ground-based telescopes (CRIRES/VLT and CSHELL/NASA-IRTF). By performing a rotational analysis on the O2 lines, we derive molecular temperature maps that we use to derive the vertical level of the emission (e.g., Novak et al. 2002). Our maps sample the full observable disk of Mars on March/25/2008 (Ls=50°, northern winter) and on Jan/29/2014 (Ls=83°, northern spring). The maps reveal a strong dependence of the O2 emission and water burden on local orography, while the temperature maps are in strong disagreement with current models. Could this be the signature of heterogeneous chemistry? We will present the global maps and will discuss possible scenarios to explain the observations.This work was partially funded by grants from NASA's Planetary Astronomy Program (344-32-51-96), NASA’s Mars Fundamental Research Program (203959.02.02.20.29), NASA’s Astrobiology Program (344-53-51), and the NSF-RUI Program (AST-805540). We thank the administration and staff of the European Southern Observatory/VLT and NASA-IRTF for awarding observing time and coordinating our observations.Bertaux, J.-L., Gondet, B., Lefèvre, F., et al. 2012. J. Geophys. Res. Pl. 117. pp. 1-9.Clancy, R.T., Sandor, B.J., Wolff, M.J., et al. 2012. J. Geophys. Res

  5. Hydrothermal synthesis of h-MoO3 microrods and their gas sensing properties to ethanol

    International Nuclear Information System (INIS)

    Liu, Yueli; Yang, Shuang; Lu, Yu; Podval’naya, Natal’ya V.; Chen, Wen; Zakharova, Galina S.

    2015-01-01

    Highlights: • A simple hydrothermal acid-free method for the synthesis of h-MoO 3 microrods with the hexagonal cross-section is reported. • The h-MoO 3 phase is transformed to α-MoO 3 at 439 °C. • The h-MoO 3 microrods were employed to fabricate gas sensors to detect ethanol. • Sensor showed highest response with a sensitivity of 8.24–500 ppm C 2 H 5 OH at operating temperature of 332 °C. - Abstract: Hexagonal molybdenum trioxide (h-MoO 3 ) microrods were successfully synthesized via a novel and facile hydrothermal route from peroxomolybdate solution with the presence of NH 4 Cl as the mineralizer. A variety of the techniques including X-ray diffraction (XRD), scanning electron microscopy (SEM), differential scanning calorimetry combined with the thermal gravimetric analysis (DSC–TG) were used to characterize the product. The gas sensing test indicates that h-MoO 3 microrods have a good response to 5–500 ppm ethanol in the range of 273–380 °C, and the optimum operating temperature is 332 °C with a high sensitivity of 8.24 to 500 ppm ethanol. Moreover, it also has a good selectivity toward ethanol gas if compared with other gases, such as ammonia, methanol and toluene. The sensing mechanism of h-MoO 3 microrods to ethanol was also discussed.

  6. Effects of UV/Ag-TiO2/O3 advanced oxidation on unicellular green alga Dunaliella salina: implications for removal of invasive species from ballast water.

    Science.gov (United States)

    Wu, Donghai; You, Hong; Du, Jiaxuan; Chen, Chuan; Jin, Darui

    2011-01-01

    The UV/Ag-TiO2/O3 process was investigated for ballast water treatment using Dunaliella salina as an indicator. Inactivation curves were obtained, and the toxicity of effluent was determined. Compared with individual unit processes using ozone or UV/Ag-TiO2, the inactivation efficiency of D. salina by the combined UV/Ag-TiO2/O3 process was enhanced. The presence of ozone caused an immediate decrease in chlorophyll a (chl-a) concentration. Inactivation efficiency and ch1-a removal efficiency were positively correlated with ozone dose and ultraviolet intensity. The initial total residual oxidant (TRO) concentration of effluent increased with increasing ozone dose, and persistence of TRO resulted in an extended period of toxicity. The results suggest that UV/Ag-TiO2/O3 has potential for ballast water treatment.

  7. Products of BVOC oxidation: ozone and organic aerosols

    Science.gov (United States)

    Wildt, Jürgen; Andres, Stefanie; Carriero, Giulia; Ehn, Mikael; Fares, Silvano; Hoffmann, Thorsten; Hacker, Lina; Kiendler-Scharr, Astrid; Kleist, Einhard; Paoletti, Elena; Pullinen, Iida; Rohrer, Franz; Rudich, Yinon; Springer, Monika; Tillmann, Ralf; Wahner, Andreas; Wu, Cheng; Mentel, Thomas

    2015-04-01

    Biogenic Volatile Organic Compounds (BVOC) are important precursors in photochemical O3 and secondary organic aerosol (SOA) formation. We conducted a series of laboratory experiments with OH-induced oxidation of monoterpenes to elucidate pathways and efficiencies of O3 and SOA formation. At high NOx conditions ([BVOC] / [NOx] monoterpene mixes emitted from different plant species we observed increasing ozone formation with increasing [NOX]. Between 2 and 3 O3-molecules were formed from 1 monoterpene when ozone formation was BVOC limited. Under such high NOX conditions, new particle formation was suppressed. Increasing [BVOC] / [NOX] ratios caused increasing efficiency of new particle formation indicating that peroxy radicals are the key intermediates in both, photochemical ozone- and new particle formation. The classical chemistry of peroxy radicals is well established (e.g. Master Chemical Mechanism). Peroxy radicals are produced by addition of molecular oxygen to the alkyl radical formed after OH attack at the BVOC. They either react with NO which leads to ozone formation or they react with other peroxy radicals and form chemically stable products (hydroperoxides, alkoholes and ketones). Much less knowledge exists on such reactions for Highly Oxidized Peroxy Radicals, (HOPR). Such HOPR were observed during ozonolysis of several volatiles and, in case of monoterpenes as precursors, they can contain more than 12 Oxygen atoms (Mentel et al., 2015). Although the OH-initiated formation of HOPR is yet not fully understood, their basic gas phase reactions seem to follow classical photochemical rules. In reactions with NO they can act as precursor for O3 and in reactions with other HOPR or with classical less oxidized peroxy radicals they can form highly oxidized stable products and alkoxy radicals. In addition, HOPR-HOPR reactions lead to the formation of dimers that, in case of monoterpenes as reactants, consist of a skeleton with 20 carbon atoms. These dimers seem to

  8. Synthesis, Characterization and Gas Sensing Properties of Ag@α-Fe2O3 Core–Shell Nanocomposites

    Directory of Open Access Journals (Sweden)

    Ali Mirzaei

    2015-05-01

    Full Text Available Ag@α-Fe2O3 nanocomposite having a core–shell structure was synthesized by a two-step reduction-sol gel approach, including Ag nanoparticles synthesis by sodium borohydride as the reducing agent in a first step and the subsequent mixing with a Fe+3 sol for α-Fe2O3 coating. The synthesized Ag@α-Fe2O3 nanocomposite has been characterized by various techniques, such as SEM, TEM and UV-Vis spectroscopy. The electrical and gas sensing properties of the synthesized composite towards low concentrations of ethanol have been evaluated. The Ag@α-Fe2O3 nanocomposite showed better sensing characteristics than the pure α-Fe2O3. The peculiar hierarchical nano-architecture and the chemical and electronic sensitization effect of Ag nanoparticles in Ag@α-Fe2O3 sensors were postulated to play a key role in modulating gas-sensing properties in comparison to pristine α-Fe2O3 sensors.

  9. Vertical and Horizontal Measurements of Ambient Ozone over a Gas and Oil Production Area using a UAV Platform

    Science.gov (United States)

    Jensen, A.; Gowing, I.; Martin, R. S.

    2013-12-01

    During the 2013 wintertime Uintah Basin Ozone Study (UBOS13), an autonomous unmanned aerial vehicle (UAV) platform, coupled with an on-board UV ozone monitor, flew several spatial profiles near the location (Horse Pool) of other concentrated measurements by other co-investigators. The airframe, part of the Utah Water Research Laboratory's (UWRL) AggieAir UAV program, consisted of a custom-built, battery-operated plane with and 2.4 m (8 ft) wing span and a 12.7 cm x 12.7 cm x 30.5 cm payload bay with a carrying capacity of approximately 2.0 kg. With the current power system, the fully-loaded AggieAir UAV can fly for approximately 45 minutes at a nominal airspeed of 13.4 m/s (30 mph). The system can be operated either in manual control or be flown autonomously following preprogrammed waypoints via a built in GPS system. The AggieAir UAV systems were primarily designed for photographic and telemetry tracking projects. For the UBOS13 flights, a 2B Technologies Model 205 Ozone (O3) monitor was modified for minimal weight optimization, wrapped with lightweight insulation and secured into the UAV payload bay. Additionally, HOBO Model H08-001-02 shielded temperature/datalogger was secured to the exterior of the UAV from parallel thermal profile determination. During the study period, three demonstration flight profiles were obtained on February 17 and 18, 2013: two vertical 'curtain' profiles and a pair of 'stacked' horizontal profiles. As recorded by numerous ground-based monitoring sites, the ozone during the UAV test periods was characterized by initial trends of daytime O3 maximums over 130 ppb, followed by a meteorological front partially ventilating the Basin on the evening of Feb. 17th leading to decreased O3 minimums around 40 ppb. However, the ground level O3 rebuilt quickly to ground level maximums approaching 100 ppb. The vertical 'curtain' flown on the evening of Feb. 17th only reached a maximum elevation of about 2160 m ASL (600 m AGL) due to encountering

  10. Effects of ozone exposures on epicuticular wax of ponderosa pine needles

    International Nuclear Information System (INIS)

    Bytnerowicz, A.; Turunen, M.

    1994-01-01

    Two-year-old ponderosa pine (Pinus ponderosa L.) seedlings were exposed during the 1989 and 1990 growing seasons to ozone in open-top chambers placed in a forested location at Shirley Meadow, Greenhorn Mountain Range, Sierra Nevada. The ozone treatments were as follows: charcoal-filtered air (CF); charcoal-filtered air with addition of ambient concentrations of ozone (CF + O 3 ); and charcoal-filtered air with addition of doubled concentrations of ozone (CF + 2 x O 3 ). Ozone effects on ponderosa pine seedlings progressed and accumulated over two seasons of exposure. Throughout the first season, increased visible injury and accelerated senescence of the foliage were noted. Subsequently, during the second season of ozone exposure, various physiological and biochemical changes in the foliage took place. All these changes led to reduced growth and biomass of the seedlings. Epistomatal waxes of needles from the CA + 2 x O 3 treatment had an occluded appearance. This phenomenon may be caused by earlier phenological development of needles from the high-ozone treatments and disturbed development and synthesis of waxes. It may also be caused by chemical degradation of waxes by exposures to high ozone concentrations. (orig.)

  11. Adsorption-controlled growth of ferroelectric PbTiO{sub 3} and Bi{sub 4}Ti{sub 3}O{sub 12} films for nonvolatile memory applications by MBE

    Energy Technology Data Exchange (ETDEWEB)

    Theis, C.D.; Yeh, J.; Schlom, D.G. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Materials Science and Engineering; Hawley, M.E.; Brown, G.W. [Los Alamos National Lab., NM (United States). Center for Materials Science

    1997-09-01

    Epitaxial PbTiO{sub 3} and Bi{sub 4}Ti{sub 3}O{sub 12} thin films have been grown on (100) SrTiO{sub 3} and (100) LaAlO{sub 3} substrates by reactive molecular beam epitaxy (MBE). Titanium is supplied to the film in the form of shuttered bursts each containing a one monolayer dose of titanium atoms for the growth of PbTiO{sub 3} and three monolayers for the growth of Bi{sub 4}Ti{sub 3}O{sub 12}. Lead, bismuth, and ozone are continuously supplied to the surface of the depositing film. Growth of phase pure, c-axis oriented epitaxial films with bulk lattice constants is achieved using an overpressure of these volatile species. With the proper choice of substrate temperature (600--650 C) and ozone background pressure (P{sub O{sub 3}} = 2 {times} 10{sup {minus}5} Torr), the excess of the volatile metals and ozone desorb from the surface of the depositing film leaving a phase-pure stoichiometric crystal. The smooth PbTiO{sub 3} surface morphology revealed by atomic force microscopy (AFM) suggests that the PbTiO{sub 3} films grow in a layer-by-layer fashion. In contrast the Bi{sub 4}Ti{sub 3}O{sub 12} films contain islands which evolve either continuously or around screw dislocations via a spiral-type growth mechanism.

  12. An alternative gas sensor material: Synthesis and electrical characterization of SmCoO3

    International Nuclear Information System (INIS)

    Michel, Carlos Rafael; Delgado, Emilio; Santillan, Gloria; Martinez, Alma H.; Chavez-Chavez, Arturo

    2007-01-01

    Single-phase perovskite SmCoO 3 was prepared by a wet-chemical synthesis technique using metal-nitrates and citric acid; after its characterization by thermal analyses and X-ray diffraction, sintering at 900 deg. C in air, gave single phase and well crystallized powders. The powders were mixed with an organic solvent to prepare a slurry, which was deposited on alumina substrates as thick films, using the screen-printing technique. Electrical and gas sensing properties of sintered SmCoO 3 films were investigated in air, O 2 and CO 2 , the results show that sensitivity reached a maximum value at 420 deg. C, for both gases. Dynamic tests revealed a better behavior of SmCoO 3 in CO 2 than O 2 , due to a fast response and a larger electrical resistance change to this gas. X-ray diffraction made on powders after electrical characterization in gases, showed that perovskite-type structure was preserved

  13. Optimization of artificial neural network models through genetic algorithms for surface ozone concentration forecasting.

    Science.gov (United States)

    Pires, J C M; Gonçalves, B; Azevedo, F G; Carneiro, A P; Rego, N; Assembleia, A J B; Lima, J F B; Silva, P A; Alves, C; Martins, F G

    2012-09-01

    This study proposes three methodologies to define artificial neural network models through genetic algorithms (GAs) to predict the next-day hourly average surface ozone (O(3)) concentrations. GAs were applied to define the activation function in hidden layer and the number of hidden neurons. Two of the methodologies define threshold models, which assume that the behaviour of the dependent variable (O(3) concentrations) changes when it enters in a different regime (two and four regimes were considered in this study). The change from one regime to another depends on a specific value (threshold value) of an explanatory variable (threshold variable), which is also defined by GAs. The predictor variables were the hourly average concentrations of carbon monoxide (CO), nitrogen oxide, nitrogen dioxide (NO(2)), and O(3) (recorded in the previous day at an urban site with traffic influence) and also meteorological data (hourly averages of temperature, solar radiation, relative humidity and wind speed). The study was performed for the period from May to August 2004. Several models were achieved and only the best model of each methodology was analysed. In threshold models, the variables selected by GAs to define the O(3) regimes were temperature, CO and NO(2) concentrations, due to their importance in O(3) chemistry in an urban atmosphere. In the prediction of O(3) concentrations, the threshold model that considers two regimes was the one that fitted the data most efficiently.

  14. DNA damage in Populus tremuloides clones exposed to elevated O3

    International Nuclear Information System (INIS)

    Tai, Helen H.; Percy, Kevin E.; Karnosky, David F.

    2010-01-01

    The effects of elevated concentrations of atmospheric tropospheric ozone (O 3 ) on DNA damage in five trembling aspen (Populus tremuloides Michx.) clones growing in a free-air enrichment experiment in the presence and absence of elevated concentrations of carbon dioxide (CO 2 ) were examined. Growing season mean hourly O 3 concentrations were 36.3 and 47.3 ppb for ambient and elevated O 3 plots, respectively. The 4th highest daily maximum 8-h ambient and elevated O 3 concentrations were 79 and 89 ppb, respectively. Elevated CO 2 averaged 524 ppm (+150 ppm) over the growing season. Exposure to O 3 and CO 2 in combination with O 3 increased DNA damage levels above background as measured by the comet assay. Ozone-tolerant clones 271 and 8L showed the highest levels of DNA damage under elevated O 3 compared with ambient air; whereas less tolerant clone 216 and sensitive clones 42E and 259 had comparably lower levels of DNA damage with no significant differences between elevated O 3 and ambient air. Clone 8L was demonstrated to have the highest level of excision DNA repair. In addition, clone 271 had the highest level of oxidative damage as measured by lipid peroxidation. The results suggest that variation in cellular responses to DNA damage between aspen clones may contribute to O 3 tolerance or sensitivity. - Ozone tolerant clones and sensitive Populus tremuloides clones show differences in DNA damage and repair.

  15. Temporal multiscaling characteristics of particulate matter PM 10 and ground-level ozone O3 concentrations in Caribbean region

    Science.gov (United States)

    Plocoste, Thomas; Calif, Rudy; Jacoby-Koaly, Sandra

    2017-11-01

    A good knowledge of the intermittency of atmospheric pollutants is crucial for air pollution management. We consider here particulate matter PM 10 and ground-level ozone O3 time series in Guadeloupe archipelago which experiments a tropical and humid climate in the Caribbean zone. The aim of this paper is to study their scaling statistics in the framework of fully developed turbulence and Kolmogorov's theory. Firstly, we estimate their Fourier power spectra and consider their scaling properties in the physical space. The power spectra computed follows a power law behavior for both considered pollutants. Thereafter we study the scaling behavior of PM 10 and O3 time series. Contrary to numerous studies where the multifractal detrended fluctuation analysis is frequently applied, here, the classical structure function analysis is used to extract the scaling exponent or multifractal spectrum ζ(q) ; this function provides a full characterization of a process at all intensities and all scales. The obtained results show that PM 10 and O3 possess intermittent and multifractal properties. The singularity spectrum MS(α) also confirms both pollutants multifractal features. The originality of this work comes from a statistical modeling performed on ζ(q) and MS(α) by a lognormal model to compute the intermittency parameter μ. By contrast with PM 10 which mainly depends on puffs of Saharan dust (synoptic-scale), O3 is more intermittent due to variability of its local precursors. The results presented in this paper can help to better understand the mechanisms governing the dynamics of PM 10 and O3 in Caribbean islands context.

  16. Bromate Formation Characteristics of UV Irradiation, Hydrogen Peroxide Addition, Ozonation, and Their Combination Processes

    Directory of Open Access Journals (Sweden)

    Naoyuki Kishimoto

    2012-01-01

    Full Text Available Bromate formation characteristics of six-physicochemical oxidation processes, UV irradiation, single addition of hydrogen peroxide, ozonation, UV irradiation with hydrogen peroxide addition (UV/H2O2, ozonation with hydrogen peroxide addition (O3/H2O2, and ozonation with UV irradiation (O3/UV were investigated using 1.88 μM of potassium bromide solution with or without 6.4 μM of 4-chlorobenzoic acid. Bromate was not detected during UV irradiation, single addition of H2O2, and UV/H2O2, whereas ozone-based treatments produced . Hydroxyl radicals played more important role in bromate formation than molecular ozone. Acidification and addition of radical scavengers such as 4-chlorobenzoic acid were effective in inhibiting bromate formation during the ozone-based treatments because of inhibition of hydroxyl radical generation and consumption of hydroxyl radicals, respectively. The H2O2 addition was unable to decompose 4-chlorobenzoic acid, though O3/UV and O3/H2O2 showed the rapid degradation, and UV irradiation and UV/H2O2 showed the slow degradation. Consequently, if the concentration of organic contaminants is low, the UV irradiation and/or UV/H2O2 are applicable to organic contaminants removal without bromate formation. However, if the concentration of organic contaminants is high, O3/H2O2 and O3/UV should be discussed as advanced oxidation processes because of their high organic removal efficiency and low bromate formation potential at the optimum condition.

  17. Dobson spectrophotometer ozone measurements during international ozone rocketsonde intercomparison

    Science.gov (United States)

    Parsons, C. L.

    1980-01-01

    Measurements of the total ozone content of the atmosphere, made with seven ground based instruments at a site near Wallops Island, Virginia, are discussed in terms for serving as control values with which the rocketborne sensor data products can be compared. These products are profiles of O3 concentration with altitude. By integrating over the range of altitudes from the surface to the rocket apogee and by appropriately estimating the residual ozone amount from apogee to the top of the atmosphere, a total ozone amount can be computed from the profiles that can be directly compared with the ground based instrumentation results. Dobson spectrophotometers were used for two of the ground-based instruments. Preliminary data collected during the IORI from Dobson spectrophotometers 72 and 38 are presented. The agreement between the two and the variability of total ozone overburden through the experiment period are discussed.

  18. Hypocotyl shape in radishes - a useful impact criterion for biological indication of ozone?; Hypokotyl-Form bei Radieschen - ein sinnvolles Wirkungskriterium fuer die Bioindikation von Ozon?

    Energy Technology Data Exchange (ETDEWEB)

    Kostka-Rick, R.

    1992-12-31

    A consistent correlation between certain `source` leaves and specific `sink` regions in the root of Beta vulgaris L. justifies to study the impact of ozone (O{sub 3}) on the shape of the hypocotyl in radish (Raphanus sativus L.) and the potential use of shape variants as effect criteria. A 7-day period of exposure to O{sub 3} ranging within realistic immission levels caused a nonsignificant reduction of hypocotyl fresh weight in radish. Two out three of the shape indices under study were also changed by ozone exposure - sometimes significantly. A discriminance function derived from several shape indices with or without fresh weight allowed a significant separation between the two O{sub 3}-treatment variants. Treatment with the anti-oxidant ethylene diurea (EDU) had no essential effect on hypocotyl shape. The author discusses the use of shape variants for ozone bio-indication. (orig.) [Deutsch] Eine konsistente Beziehung zwischen bestimmten `source`-Blaettern und spezifischen `sink`-Regionen in der Wurzel von Beta vulgaris L. rechtfertigt die Ueberpruefung des Einflusses von Ozon (O{sub 3}) auf die Form des Hypokotyls bei Radies (Raphanus sativus L.) und der potentiellen Nutzung von Formvariablen als Wirkungskriterium. Eine 7taegige O{sub 3}-Belastung im Bereich realistischer Immissionskonzentrationen verursachte eine nicht-signifikante Minderung des Hypokotyl-Frischgewichtes von Radies. Zwei von drei der untersuchten Formindizes wurden durch die Ozon-Belastung ebenfalls, z.T. signifikant, veraendert. Eine Diskriminanzfunktion aus mehreren Formindizes, mit oder ohne Einbeziehung des Frischgewichtes, gestattete eine signifikante Trennung zwischen den beiden O{sub 3}-Behandlungsvarianten. Eine Behandlung mit dem Anti-oxidants Ethylendiurea (EDU) hatte keinen wesentlichen Einfluss auf die Hypokotylform. Die Moeglichkeiten des Einsatzes von Formvariablen in der Bioindikation von Ozon werden diskutiert. (orig.)

  19. OMI/Aura Ozone (O3) Total Column 1-Orbit L2 Swath 13x24 km V003 NRT

    Data.gov (United States)

    National Aeronautics and Space Administration — The OMI/Aura Level-2 Total Column Ozone Data Product OMTO3 Near Real Time data is made available from the OMI SIPS NASA for the public access. The Ozone Monitoring...

  20. Ozone Production and Control Strategies for Southern Taiwan

    Science.gov (United States)

    Shiu, C.; Liu, S.; Chang, C.; Chen, J.; Chou, C. C.; Lin, C.

    2006-12-01

    An observation-based modeling (OBM) approach is used to estimate the ozone production efficiency and production rate of O3 (P(O3)) in southern Taiwan. The approach can also provide an indirect estimate of the concentration of OH. Measured concentrations of two aromatic hydrocarbons, i.e. ethylbenzene/m,p-xylene, are used to estimate the degree of photochemical processing and the amounts of photochemically consumed NOx and NMHCs. In addition, a one-dimensional (1d) photochemical model is used to compare with the OBM results. The average ozone production efficiency during the field campaign in Kaohsiung-Pingtung area in Fall 2003 is found to be about 5, comparable to previous works. The relationship of P(O3) with NOx is examined in detail and compared to previous studies. The derived OH concentrations from this approach are in fair agreement with values calculated from the 1d photochemical model. The relationship of total oxidants (e.g. O3+NO2) versus initial NOx and NMHCs suggests that reducing NMHCs are more effective in controlling total oxidants than reducing NOx. For O3 control, reducing NMHC is even more effective than NOx due to the NO titration effect. This observation-based approach provides a good alternative for understanding the production of ozone and formulating ozone control strategy in urban and suburban environment without measurements of peroxy radicals.

  1. UASB reactor effluent disinfection by ozone and chlorine

    NARCIS (Netherlands)

    Ribeiro da Silvia, G.H.; Bruning, H.; Gerrity, D.; Daniel, L.A.

    2015-01-01

    This research studied the sequential ozone and chlorine process with respect to, the inactivation of indicator bacteria and the formation of ozone disinfection byproducts in sanitary wastewater effluent. The applied ozone doses were 5, 8 and 10 mg.O3.L-1, followed by chlorine doses of 10, 20 and 30

  2. Combination of ozonation and photocatalysis for pharmaceutical wastewater treatment

    Science.gov (United States)

    Ratnawati, Enjarlis, Slamet

    2017-11-01

    The chemical oxygen demand (COD) and phenol removal from pharmaceutical wastewater were investigated using configuration of two circulation batch reactors in a series with ozonation and photocatalytic processes. The ozonation is conducted with O3/granulated activated carbon (O3/GAC), whereas photocatalysis with TiO2 that immobilized on pumice stone (PS-TiO2). The effect of circulation flow rate (10; 12; 15 L/min) and the amount PS-TiO2 (200 g, 250 g, 300 g) were examined. Wastewater of 20 L was circulated pass through the pipe that injected with O3 by the ozone generator, and subsequently flow through two GAC columns, and finally, go through photoreactor that contains photocatalyst PS-TiO2 which equipped with mercury lamp as a photon source. At a time interval, COD and phenol concentration were measured to assess the performance of the process. FESEM imaging confirmed that TiO2 was successfully impregnated on PS, as corroborated by EDX spectra. Meanwhile, degradation process indicated that the combined ozonation and photocatalytic processes (O3/GAC-TiO2) is more efficient compared to the ozonation and photocatalysis alone. For combination process with the circulation flow rate of 10 L/min and 300 g of PS-TiO2,the influent COD of around 1000 ppm are effectively degraded to a final effluent COD of 290 ppm (71% removal) and initial phenol concentration of 4.75 ppm down to 0 ppm for 4 h which this condition fulfill the discharge standards quality. Therefore, this portable prototype reactor is effective that can be used in the pharmaceutical wastewater treatment. For the future, this process condition will be developed for orientation on the industrial applications (portable equipment) since pharmaceutical industries produce wastewater relatively in the small amount.

  3. Experimental and theoretical studies of nuclear generation of ozone from oxygen and oxygen--sulfur hexafluoride mixtures

    International Nuclear Information System (INIS)

    Elsayed-Ali, H.E.; Miley, G.H.

    1986-01-01

    A series of experimental measurements of the yield of O 3 in nuclear-induced O 2 and O 2 -SF 6 discharges are reported. The discharges were created by bombardment with energetic particles from the 10 B(n,α) 7 Li reaction. Continuous irradiation at dose rates of 10 15 --10 17 eV cm -3 s -1 and pulsed irradiation (--10 ms FWHM) at a peak dose rate of --10 20 eV cm -3 s -1 were conducted. At the lower dose rates, the addition of SF 6 generally increased the ozone yield due to the slowing of ozone destruction by negative oxygen and ozone ions. In contrast, at the high dose rates, the ozone concentration decreased due to SF 6 suppression of atomic oxygen formation by ion--ion recombination. A numerical model was developed and tested against experimental conditions. This model indicates that the steady-state ozone concentration was limited by the reaction O - 3 +O 3 →2O 2 +O - 2 with a rate coefficient of --1 x 10 -12 cm 3 s -1 . In addition to dose rate effects, pressure and temperature effects on ozone production are discussed and methods for increasing the ozone yield are suggested

  4. Experimental and theoretical studies of nuclear generation of ozone from oxygen and oxygen-sulfur hexafluoride mixtures

    Science.gov (United States)

    Elsayed-Ali, H. E.; Miley, G. H.

    1986-08-01

    A series of experimental measurements of the yield of O3 in nuclear-induced O2 and O2-SF6 discharges are reported. The discharges were created by bombardment with energetic particles from the 10B(n,α)7Li reaction. Continuous irradiation at dose rates of 1015-1017 eV cm-3 s-1 and pulsed irradiation (˜10 ms FWHM) at a peak dose rate of ˜1020 eV cm-3 s-1 were conducted. At the lower dose rates, the addition of SF6 generally increased the ozone yield due to the slowing of ozone destruction by negative oxygen and ozone ions. In contrast, at the high dose rates, the ozone concentration decreased due to SF6 suppression of atomic oxygen formation by ion-ion recombination. A numerical model was developed and tested against experimental conditions. This model indicates that the steady-state ozone concentration was limited by the reaction O-3+O3→2O2+O-2 with a rate coefficient of ˜1×10-12 cm3 s-1. In addition to dose rate effects, pressure and temperature effects on ozone production are discussed and methods for increasing the ozone yield are suggested.

  5. Selectivity of the gas sensor based on the 50%In2O3-50%Ga2O3 thin film in dynamic mode of operation

    Science.gov (United States)

    Demin, I. E.; Kozlov, A. G.

    2018-01-01

    The article considers the gas sensor with the sensitive layer based on the 50%In2O3 -50%Ga2O3 thin film. The temperature and concentration dependencies of gas-induced resistance response of this sensor and the dynamical dependencies of its resistance response on the test gases in air are investigated. The test gases were ethanol, acetone, ammonia and liquefied petroleum gas. The information parameters of the sensor in the dynamical mode of operation were considered to improve its selectivity. The presented results show that the selectivity of the sensor in this mode may be improved by using the following information parameters: gas-induced resistance response in steady state, activation energy of the response and pre-exponential factor of the temperature dependence of the response time constant.

  6. Effects of El Niño on Summertime Ozone Air Quality in the Eastern United States

    Science.gov (United States)

    Shen, Lu; Mickley, Loretta J.

    2017-12-01

    We investigate the effect of El Niño on maximum daily 8 h average surface ozone over the eastern United States in summer during 1980-2016. El Niño can influence the extratropical climate through the propagation of stationary waves, leading to (1) reduced transport of moist, clean air into the middle and southern Atlantic states and greater subsidence, reduced precipitation, and increased surface solar radiation in this region, as well as (2) intensified southerly flow into the south central states, which here enhances flux of moist and clean air. As a result, each standard deviation increase in the Niño 1 + 2 index is associated with an increase of 1-2 ppbv ozone in the Atlantic states and a decrease of 0.5-2 ppbv ozone in the south central states. These influences can be predicted 4 months in advance. We show that U.S. summertime ozone responds differently to eastern-type El Niño events compared to central-type events.

  7. Controllable synthesis of Co3O4/polyethyleneimine-carbon nanotubes nanocomposites for CO and NH3 gas sensing at room temperature

    International Nuclear Information System (INIS)

    Lin, Yufei; Kan, Kan; Song, Wanzhen; Zhang, Guo; Dang, Lifang; Xie, Yu; Shen, Peikang; Li, Li; Shi, Keying

    2015-01-01

    Graphical abstract: Co 3 O 4 /polyethyleneimine-carbon nanotubes composites (CoPCNTs) have been successfully controllable synthesized via hydrothermal method at different temperature. The CoPCNTs sensors exhibited the highest response to CO and NH 3 gases with response time of 4 s and 4.3 s, low detection limit of 5 ppm and 1 ppm at room temperature, respectively. The enhanced gas sensing could be ascribed to the synergistic effect between the tiny size of Co 3 O 4 and good conductivity of carbon nanotubes functionalized by polyethyleneimine. - Highlights: • The CNTs functionalized by polyethyleneimine provided a new functional structural. • The novel 1D structure could capture and migrate electrons quickly. • The Co 3 O 4 nanoparticles liked a snake winding around CNTs. • The gas sensor could work at room temperatures, which suit to practical application. - Abstract: A novel 1D Co 3 O 4 /polyethyleneimine-carbon nanotubes composites (CoPCNTs) have been successfully synthesized via hydrothermal method at different temperature. The CNTs functionalized by polyethyleneimine (PCNTs) provided a new material with new structural and functional properties. The PCNTs was used as loading guider and electron transfer path. The Co 3 O 4 nanoparticles (NPs) loaded on the PCNTs surface liked a snake winding around CNTs, and the size was about 5–10 nm. The gas sensing characteristics of the CoPCNTs sensors to carbon monoxide (CO) and ammonia (NH 3 ) were evaluated with different gas concentration. The CoPCNTs sensors grown at 160 °C exhibited the highest response to CO and NH 3 gases with response time of 4 s and 4.3 s at room temperature (RT), respectively. Hence, the approach developed in this work would be important for the low-cost and large-scale production of the CoPCNTs materials with highly promising applications in gas sensors

  8. Mechanism for enhanced degradation of clofibric acid in aqueous by catalytic ozonation over MnOx/SBA-15.

    Science.gov (United States)

    Sun, Qiangqiang; Wang, Yu; Li, Laisheng; Bing, Jishuai; Wang, Yingxin; Yan, Huihua

    2015-04-09

    Comparative experiments were conducted to investigate the catalytic ability of MnO(x)/SBA-15 for the ozonation of clofibric acid (CA) and its reaction mechanism. Compared with ozonation alone, the degradation of CA was barely enhanced, while the removal of TOC was significantly improved by catalytic ozonation (O3/MnO(x)/SBA-15). Adsorption of CA and its intermediates by MnO(x)/SBA-15 was proved unimportant in O3/MnO(x)/SBA-15 due to the insignificant adsorption of CA and little TOC variation after ceasing ozone in stopped-flow experiment. The more remarkably inhibition effect of sodium bisulfite (NaHSO3) on the removal of TOC in catalytic ozonation than in ozonation alone elucidated that MnO(x)/SBA-15 facilitated the generation of hydroxyl radicals (OH), which was further verified by electron spin-resonance spectroscopy (ESR). Highly dispersed MnO(x) on SBA-15 were believed to be the main active component in MnO(x)/SBA-15. Some intermediates were indentified and different degradation routes of CA were proposed in both ozonation alone and catalytic ozonation. The amounts of small molecular carboxylic acids (i.e., formic acid (FA), acetic acid (AA) and oxalic acid (OA)) generated in catalytic ozonation were lower than in ozonation alone, resulting from the generation of more OH. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Ozone air pollution effects on tree-ring growth,{delta}{sup 13}C, visible foliar injury and leaf gas exchange in three ozone-sensitive woody plant species

    Energy Technology Data Exchange (ETDEWEB)

    Novak, K. [Swiss Federal Inst. for Forest, Snow and Landscape Research, Birmensdorf (Switzerland); Agroscope FAL Reckenholz, Swiss Federal Research Station for Agroecology and Agriculture, Zurich (Switzerland); Saurer, M. [Paul Scherrer Inst. Villigen (Switzerland); Fuhrer, J. [Agroscope FAL Reckenholz, Swiss Federal Research Station for Agroecology and Agriculture, Zurich (Switzerland); Skelly, J.M. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Plant Pathology; Krauchi, N.; Schaub, M. [Swiss Federal Inst. for Forest, Snow and Landscape Research, Birmensdorf (Switzerland)

    2007-07-15

    Species specific plant responses to tropospheric ozone pollution depend on a range of morphological, biochemical and physiological characteristics as well as environmental factors. The effects of ambient tropospheric ozone on annual tree-ring growth, {delta}{sup 13} C in the rings, leaf gas exchange and ozone-induced visible foliar injury in three ozone-sensitive woody plant species in southern Switzerland were assessed during the 2001 and 2002 growing seasons. Seedlings of Populus nigra L., Viburnum lantana L. and Fraxinus excelsior L. were exposed to charcoal-filtered air and non-filtered air in open-top chambers, and to ambient air (AA) in open plots. The objective was to determine if a relationship exists between measurable ozone-induced effects at the leaf level and subsequent changes in annual tree-ring growth and {delta} {sup 13} C signatures. The visible foliar injury, early leaf senescence and premature leaf loss in all species was attributed to the ambient ozone exposures in the region. Ozone had pronounced negative effects on net photosynthesis and stomatal conductance in all species in 2002 and in V. lantana and F. excelsior in 2001. Water-use efficiency decreased and intercellular carbon dioxide concentrations increased in all species in response to ozone in 2002 only. The width and {delta}{sup 13} C of the 2001 and 2002 growth rings were measured for all species at the end of the 2002 growing season. Significant ozone-induced effects at the leaf level did not correspond to reduced tree-ring growth or increased {delta}{sup 13} C in all species, suggesting that the timing of ozone exposure and extent of leaf-level responses may be relevant in determining the sensitivity of tree productivity to ozone exposure. 48 refs., 4 tabs., 2 figs.

  10. Oxidation of nitrobenzene by ozone in the presence of faujasite zeolite in a continuous flow gas-liquid-solid reactor.

    Science.gov (United States)

    Reungoat, J; Pic, J S; Manéro, M H; Debellefontaine, H

    2010-01-01

    This work investigates the oxidation of nitrobenzene (NB) by ozone in the presence of faujasite zeolite. Experiments were carried out in a gas-liquid-solid reactor were ozone transfer and NB oxidation took place at the same time. Three configurations of the reactor were compared: empty, filled with inert glass beads and filled with faujasite pellets. First, ozone transfer coefficient (k(L)a) and decomposition rate constant (k(C)) were determined for each configuration. In presence of solid, k(L)a was 2.0 to 2.6 times higher and k(C) was 5.0 to 6.4 times higher compared to the empty reactor. Then, the various configurations were evaluated in terms of NB removal and chemical oxygen demand (COD) decrease. The faujasite reactor showed higher removal of NB and decrease of COD compared to other configurations under the same conditions suggesting that the faujasite increases the oxidation rate of NB. Oxidation of NB in presence of faujasite also proved to be limited by the transfer of ozone from the gas to the liquid phase.

  11. Ozone production process in pulsed positive dielectric barrier discharge

    Science.gov (United States)

    Ono, Ryo; Oda, Tetsuji

    2007-01-01

    The ozone production process in a pulsed positive dielectric barrier discharge (DBD) is studied by measuring the spatial distribution of ozone density using a two-dimensional laser absorption method. DBD occurs in a 6 mm point-to-plane gap with a 1 mm-thick glass plate placed on the plane electrode. First, the propagation of DBD is observed using a short-gated ICCD camera. It is shown that DBD develops in three phases: primary streamer, secondary streamer and surface discharge phases. Next, the spatial distribution of ozone density is measured. It is shown that ozone is mostly produced in the secondary streamer and surface discharge, while only a small amount of ozone is produced in the primary streamer. The rate coefficient of the ozone production reaction, O + O2 + M → O3 + M, is estimated to be 2.5 × 10-34 cm6 s-1.

  12. Ozone production process in pulsed positive dielectric barrier discharge

    International Nuclear Information System (INIS)

    Ono, Ryo; Oda, Tetsuji

    2007-01-01

    The ozone production process in a pulsed positive dielectric barrier discharge (DBD) is studied by measuring the spatial distribution of ozone density using a two-dimensional laser absorption method. DBD occurs in a 6 mm point-to-plane gap with a 1 mm-thick glass plate placed on the plane electrode. First, the propagation of DBD is observed using a short-gated ICCD camera. It is shown that DBD develops in three phases: primary streamer, secondary streamer and surface discharge phases. Next, the spatial distribution of ozone density is measured. It is shown that ozone is mostly produced in the secondary streamer and surface discharge, while only a small amount of ozone is produced in the primary streamer. The rate coefficient of the ozone production reaction, O + O 2 + M → O 3 + M, is estimated to be 2.5 x 10 -34 cm 6 s -1

  13. Fe3O4/γ-Fe2O3 nanoparticle multilayers deposited by the Langmuir-Blodgett technique for gas sensors application.

    Science.gov (United States)

    Capone, S; Manera, M G; Taurino, A; Siciliano, P; Rella, R; Luby, S; Benkovicova, M; Siffalovic, P; Majkova, E

    2014-02-04

    Fe3O4/γ-Fe2O3 nanoparticles (NPs) based thin films were used as active layers in solid state resistive chemical sensors. NPs were synthesized by high temperature solution phase reaction. Sensing NP monolayers (ML) were deposited by Langmuir-Blodgett (LB) techniques onto chemoresistive transduction platforms. The sensing ML were UV treated to remove NP insulating capping. Sensors surface was characterized by scanning electron microscopy (SEM). Systematic gas sensing tests in controlled atmosphere were carried out toward NO2, CO, and acetone at different concentrations and working temperatures of the sensing layers. The best sensing performance results were obtained for sensors with higher NPs coverage (10 ML), mainly for NO2 gas showing interesting selectivity toward nitrogen oxides. Electrical properties and conduction mechanisms are discussed.

  14. The effect of the gas composition on hydrogen-assisted NH3-SCR over Ag/Al2O3

    DEFF Research Database (Denmark)

    Tamm, Stefanie; Fogel, Sebastian; Gabrielsson, Pär

    2013-01-01

    In addition to high activity in hydrocarbon-SCR, Ag/Al2O3 catalysts show excellent activity for NOx reduction for H2-assisted NH3-SCR already at 200°C. Here, we study the influence of different gas compositions on the activity of a pre-sulfated 6wt% Ag/Al2O3 catalyst for NOx reduction, and oxidat...

  15. Development of a portable instrument to measure ozone production rates in the troposphere

    Science.gov (United States)

    Sklaveniti, Sofia; Locoge, Nadine; Stevens, Philip; Kumar, Vinod; Sinha, Vinayak; Dusanter, Sébastien

    2015-04-01

    Ground-level ozone is a key species related to air pollution, causing respiratory problems, damaging crops and forests, and affecting the climate. Our current understanding of the tropospheric ozone-forming chemistry indicates that net ozone production occurs via reactions of peroxy radicals (HO2 + RO2) with NO producing NO2, whose photolysis leads to O3 formation. Production rates of tropospheric ozone, P(O3), depend on concentrations of oxides of nitrogen (NOx = NO + NO2) and Volatile Organic Compounds (V OCs), but also on production rates of ROx radicals (OH + HO2 + RO2). The formation of ozone follows a complex nonlinear chemistry that makes strategies for reducing ozone difficult to implement. In this context, atmospheric chemistry models are used to develop emission regulations, but there are still uncertainties associated with the chemical mechanisms used in these models. Testing the ozone formation chemistry in atmospheric models is needed, in order to ensure the development of effective strategies for ozone reduction. We will present the development of an instrument for direct measurements of ozone production rates (OPR) in ambient air. The OPR instrument is made of three components: (i) two quartz flow tubes to sample ambient air, one exposed to solar radiation and one covered by a UV filter, (ii) a NO2-to-O3 conversion unit, and (iii) an ozone analyzer. The total amount of ozone exiting each flow tube is conserved in the form of Ox = NO2 + O3. Ozone production rates P(O3) are derived from the difference in Ox concentration between the two flow tubes, divided by the exposure time of air inside the flow tubes. We will present studies that were carried out in the laboratory to characterize each part of the instrument and we will discuss the performances of the OPR instrument based on experiments carried out using synthetic air mixtures of known composition (NOx and V OCs). Chemical modeling will also be presented to assess the reliability of ozone

  16. Chloroplastic responses of ponderosa pine (Pinus ponderosa) seedlings to ozone exposure.

    Science.gov (United States)

    Anderson, Paul D; Palmer, Brent; Houpis, James L J; Smith, Mary K; Pushnik, James C

    2003-06-01

    Integrity of chloroplast membranes is essential to photosynthesis. Loss of thylakoid membrane integrity has been proposed as a consequence of ozone (O(3)) exposure and therefore may be a mechanistic basis for decreased photosynthetic rates commonly associated with ozone exposure. To investigate this hypothesis, Pinus ponderosa seedlings were exposed to ambient air or ozone concentrations maintained at 0.15 or 0.30 microliter l(-1) for 10 h day(-1) for 51 days during their second growing season. Over the course of the study, foliage samples were periodically collected for thylakoid membrane, chlorophyll and protein analyses. Additionally, gas-exchange measurements were made in conjunction with foliage sampling to verify that observed chloroplastic responses were associated with ozone-induced changes in photosynthesis. Needles exposed to elevated ozone exhibited decreases in chlorophyll a and b content. The decreases were dependent on the duration and intensity of ozone exposure. When based on equal amounts of chlorophyll, ozone-exposed sample tissue exhibited an increase in total protein. When based on equal amounts of protein, ozone-exposed samples exhibited an increase in 37 kDa proteins, possibly consisting of breakdown products, and a possible decrease in 68 kDa proteins, Rubisco small subunit. There was also a change in the ratio of Photosystem I protein complexes CPI and CPII that may have contributed to decreased photosynthesis. Net photosynthetic rates were decreased in the high ozone treatment suggesting that observed structural and biochemical changes in the chloroplast were associated with alterations of the photosynthetic process.

  17. Correlation of gas sensitivite properties with microstructure of Fe2O3-SnO2 ceramics prepared by high energy ball milling

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Lu, S.W.; Zhou, Y.X.

    1997-01-01

    A remarkable gas sensitivity to ethnaol gas has been observed in nanostructured Fe2O3-SnO2 materials with a composition of 6.4 mol% SnO2 prepared by high energy ball milling. The microstructure of the materials has been examined by x-ray diffraction (XRD) and Mossbauer spectroscopy. It was found...

  18. Towards positive feedbacks between vegetation and tropospheric O3

    Science.gov (United States)

    VanLoocke, A. D.; Bernacchi, C. J.; Ainsworth, E. A.; Betzelberger, A. M.

    2011-12-01

    The concentration of tropospheric ozone ([O3]) has approximately doubled since 1900 and is projected to continue increasing. The extent of this increase depends strongly on the emission of ozone precursors as well as changing temperature and humidity. The responses of vegetation to O3 may also have the potential to positively feedback on regional climate and on the cycle of O3 formation and destruction. Plant productivity is linked to feedbacks in the climate indirectly through the carbon cycle as well as directly through the partitioning of radiation into sensible and latent heat fluxes. In the troposphere, O3 reduces plant productivity, an effect that is pronounced in soybean, the 4th most important food crop in the world. The soybean-maize agro-ecosystem is the largest ecosystem in the contiguous U.S., therefore changes in productivity and water use by soybean under increasing [O3] could impact the regional climate and hydrologic cycle in Midwestern U.S. with feedback effects on tropospheric O3 production and cycling. To assess the response to increasing [O3], soybeans were grown under open-air agricultural conditions at the SoyFACE research facility. During the 2009 growing season, eight 20 m diameter plots were exposed to different [O3] ranging from 40 to 200 ppb. Measurements of leaf-level gas exchange were made on four dates throughout the growing season and non-destructive measurements of Leaf Area Index were made weekly. Canopy latent and sensible heat fluxes were measured continuously throughout the growing season (day of year 197-245) using a residual energy balance micrometeorological technique. Results show that as [O3] increased, rates of photosynthesis and stomatal conductance decreased. Productivity, (i.e. seed yield) decreased by over 60% from 40 to 200 ppb while canopy evapotranspiration decreased by 30%. Sensible heat flux increased by 30%, while the growing season average canopy temperatures increased by 1 °C and with peak increases of 2

  19. Chronic drought stress reduced but not protected Shantung maple (Acer truncatum Bunge) from adverse effects of ozone (O3) on growth and physiology in the suburb of Beijing, China

    International Nuclear Information System (INIS)

    Li, Li; Manning, William J.; Tong, Lei; Wang, Xiaoke

    2015-01-01

    A two-year experiment exposing Acer truncatum Bunge seedlings to elevated ozone (O 3 ) concentrations above ambient air (AO) and drought stress (DS) was carried out using open-top chambers (OTCs) in a suburb of Beijing in north China in 2012–2013. The results suggested that AO and DS had both significantly reduced leaf mass area (LMA), stomatal conductance (Gs), light saturated photosynthetic rate (A sat ) as well as above and below ground biomass at the end of the experiment. It appeared that while drought stress mitigated the expression of foliar injury, LMA, leaf photosynthetic pigments, height growth and basal diameter, due to limited carbon fixation, the O 3 – induced reductions in A sat , Gs and total biomass were enhanced 23.7%. 15.5% and 8.1% respectively. These data suggest that when the whole plant was considered that drought under the conditions of this experiment did not protect the Shantung maple seedlings from the effects of O 3 . - Highlights: • The response of Acer truncatum Bunge to drought and ozone was investigated. • Drought could mitigate the foliage injury and leaf photosynthetic pigments. • The O 3 -induced reductions in Asat, Gs and total biomass were enhanced by drought. - Drought didn't protect Shantung maple from O 3 effects but rather cause more reductions in biomass

  20. Observation of enhanced ozone in an electrically active storm over Socorro, NM: Implications for ozone production from corona discharges

    Science.gov (United States)

    Minschwaner, K.; Kalnajs, L. E.; Dubey, M. K.; Avallone, L. M.; Sawaengphokai, P. C.; Edens, H. E.; Winn, W. P.

    2008-09-01

    Enhancements in ozone were observed between about 3 and 10 km altitude within an electrically active storm in central New Mexico. Measurements from satellite sensors and ground-based radar show cloud top pressures between 300 and 150 mb in the vicinity of an ozonesonde launched from Socorro, NM, and heavy precipitation with radar reflectivities exceeding 50 dBZ. Data from a lightning mapping array and a surface electric field mill show a large amount of electrical activity within this thunderstorm. The observed ozone enhancements are large (50% above the mean) and could have resulted from a number of possible processes, including the advection of polluted air from the urban environments of El Paso and Juarez, photochemical production by lightning-generated NOx from aged thunderstorm outflow, downward mixing of stratospheric air, or local production from within the thunderstorm. We find that a large fraction of the ozone enhancement is consistent with local production from corona discharges, either from cloud particles or by corona associated with lightning. The implied global source of ozone from thunderstorm corona discharge is estimated to be 110 Tg O3 a-1 with a range between 40 and 180 Tg O3 a-1. This value is about 21% as large as the estimated ozone production rate from lightning NOx, and about 3% as large as the total chemical production rate of tropospheric ozone. Thus while the estimated corona-induced production of ozone may be significant on local scales, it is unlikely to be as important to the global ozone budget as other sources.

  1. Kinetic and Mechanistic Studies for the Gas-phase Reaction of Ozone with 2, 3-Dimethyl-2-Butene and 1, 3-Butadiene

    Directory of Open Access Journals (Sweden)

    Ismael Abdulsatar AL Mulla

    2017-09-01

    Full Text Available The reactions of ozone with 2,3-Dimethyl-2-Butene (CH32C=C(CH32 and 1,3-Butadiene CH2=CHCH=CH2 have been investigated under atmospheric conditions at 298±3K in air using both relative and absolute rate techniques, and the measured rate coefficients are found to be in good agreement in both techniques used. The obtained results show the addition of ozone to the double bond in these compounds and how it acts as function of the methyl group substituent situated on the double bond. The yields of all the main products have been determined using FTIR and GC-FID and the product studies of these reactions establish a very good idea for the decomposition pathways for the primary formed compounds (ozonides and give a good information for the effect of the methyl group on the degradation pathways. The results have been discussed from the view point of their importance in the atmospheric oxidation of these pollutants.

  2. Chemical and Dynamical Impacts of Stratospheric Sudden Warmings on Arctic Ozone Variability

    Science.gov (United States)

    Strahan, S. E.; Douglass, A. R.; Steenrod, S. D.

    2016-01-01

    We use the Global Modeling Initiative (GMI) chemistry and transport model with Modern-Era Retrospective Analysis for Research and Applications (MERRA) meteorological fields to quantify heterogeneous chemical ozone loss in Arctic winters 2005-2015. Comparisons to Aura Microwave Limb Sounder N2O and O3 observations show the GMI simulation credibly represents the transport processes and net heterogeneous chemical loss necessary to simulate Arctic ozone. We find that the maximum seasonal ozone depletion varies linearly with the number of cold days and with wave driving (eddy heat flux) calculated from MERRA fields. We use this relationship and MERRA temperatures to estimate seasonal ozone loss from 1993 to 2004 when inorganic chlorine levels were in the same range as during the Aura period. Using these loss estimates and the observed March mean 63-90N column O3, we quantify the sensitivity of the ozone dynamical resupply to wave driving, separating it from the sensitivity of ozone depletion to wave driving. The results show that about 2/3 of the deviation of the observed March Arctic O3 from an assumed climatological mean is due to variations in O3 resupply and 13 is due to depletion. Winters with a stratospheric sudden warming (SSW) before mid-February have about 1/3 the depletion of winters without one and export less depletion to the midlatitudes. However, a larger effect on the spring midlatitude ozone comes from dynamical differences between warm and cold Arctic winters, which can mask or add to the impact of exported depletion.

  3. A comparison of chemical mechanisms using tagged ozone production potential (TOPP analysis

    Directory of Open Access Journals (Sweden)

    J. Coates

    2015-08-01

    Full Text Available Ground-level ozone is a secondary pollutant produced photochemically from reactions of NOx with peroxy radicals produced during volatile organic compound (VOC degradation. Chemical transport models use simplified representations of this complex gas-phase chemistry to predict O3 levels and inform emission control strategies. Accurate representation of O3 production chemistry is vital for effective prediction. In this study, VOC degradation chemistry in simplified mechanisms is compared to that in the near-explicit Master Chemical Mechanism (MCM using a box model and by "tagging" all organic degradation products over multi-day runs, thus calculating the tagged ozone production potential (TOPP for a selection of VOCs representative of urban air masses. Simplified mechanisms that aggregate VOC degradation products instead of aggregating emitted VOCs produce comparable amounts of O3 from VOC degradation to the MCM. First-day TOPP values are similar across mechanisms for most VOCs, with larger discrepancies arising over the course of the model run. Aromatic and unsaturated aliphatic VOCs have the largest inter-mechanism differences on the first day, while alkanes show largest differences on the second day. Simplified mechanisms break VOCs down into smaller-sized degradation products on the first day faster than the MCM, impacting the total amount of O3 produced on subsequent days due to secondary chemistry.

  4. Enhanced ethanol gas sensing performance of the networked Pd, In2O3-codecorated ZnO nanorod sensor

    Science.gov (United States)

    Lee, Sangmin; Sun, Gun-Joo; Lee, Jae Kyung; Hyun, Soong Keun; Lee, Chongmu

    2017-10-01

    ZnO nanorods codecorated with Pd and In2O3 nanoparticles were synthesized by thermal evaporation of a mixture of ZnO and graphite powders in an oxidizing atmosphere and followed by solvothermal deposition of Pd and In2O3 and their ethanol gas sensing properties were examined. Pristine ZnO nanorods, Pd-decorated ZnO nanorods and In2O3-decorated ZnO nanorods were also prepared in a similar manner. The codecorated ZnO nanorod sensor showed significantly stronger response to ethanol than the other three sensors, suggesting a synergistic effect of Pd and In2O3 codecoration. The former also showed faster response and recovery than the latter. The pristine and codecorated ZnO nanorod sensors exhibited selectivity toward ethanol over other gases such as acetone, CO, benzene, and toluene. The underlying mechanism for the enhanced sensing performance of the Pd, In2O3-codecorated ZnO nanorod sensor toward ethanol is discussed.

  5. Influencing factors on microbubble ozonation treatment of acid red 3R wastewater

    Directory of Open Access Journals (Sweden)

    Yurong YA

    2017-08-01

    Full Text Available The microbubble ozonation was used to treat acid red 3R wastewater in order to investigate the influencing factors on its performance. The effects of ozone dose, initial acid red 3R concentration and activated carbon on the performance of microbubble ozonation treatment of acid red 3R wastewater are investigated. The decolorization rate, TOC removal rate, pH variation and ozone utilization efficiency in the microbubble ozonation treatment are compared under different treatment conditions. The results indicate that when increasing ozone dose or decreasing initial acid red 3R concentration, both decolorization rate and TOC removal rate of acid red 3R wastewater increase, but ozone utilization efficiency decreases. The coal-based activated carbon shows strong catalytic activity for microbubble ozonation, which could enhance the decolorization rate and TOC removal rate of acid red 3R wastewater. The better performance of microbubble ozonation treatment is achieved when the ozone dose is 48.3 mg/min and the initial acid red 3R mass concentration is 100 mg/L. Under these conditions, the decolorization efficiency reaches to 100% after treatment for 30 min, the TOC removal efficiency reaches to 78.0% after treatment for 120 min, the reaction rate constant of TOC removal is 0.015 min-1 and the ozone utilization efficiency is higher than 99%. With addition of the coal-based activated carbon of 5 g/L, the decolorization efficiency reaches to 100% after treatment for 15 min, the TOC removal efficiency reaches to 91.2% after treatment for 120 min and the reaction rate constant of TOC removal increases to 0037 min-1.The accumulation and following degradation of intermediate products of small molecule organic acid happens during treatment process, and as a result, the solution pH decreases initially and then increases. Therefore, the optimization of influencing factors for microbubble ozonation could increase both contaminant removal

  6. Synthesis, characterization and formaldehyde gas sensitivity of La{sub 0.7}Sr{sub 0.3}FeO{sub 3} nanoparticles assembled nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Yao Pengjun [School of Electronic Science and Technology, Dalian University of Technology, Dalian 116023 (China); School of Educational Technology, Shenyang Normal University, Shenyang 110034 (China); Wang Jing, E-mail: wangjing@dlut.edu.cn [School of Electronic Science and Technology, Dalian University of Technology, Dalian 116023 (China); Du Haiying [School of Electronic Science and Technology, Dalian University of Technology, Dalian 116023 (China); Department of Electromechanical Engineering and Information, Dalian Nationalities University, Dalian 116600 (China); Qi Jinqing [School of Electronic Science and Technology, Dalian University of Technology, Dalian 116023 (China)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer High aspect ratio La{sub 0.7}Sr{sub 0.3}FeO{sub 3} nanoparticles assembled nanowires were synthesized by a CTAB assisted hydrothermal method. Black-Right-Pointing-Pointer Formaldehyde with low concentration (0.1-100 ppm) was used for gas sensing study. Black-Right-Pointing-Pointer The growth mechanism of La{sub 0.7}Sr{sub 0.3}FeO{sub 3} nanowires was reported. - Abstract: La{sub 0.7}Sr{sub 0.3}FeO{sub 3} nanoparticles assembled nanowires were synthesized by a hydrothermal method assisted with cetyltrimethylammonium bromide (CTAB). The hydrothermal temperature was 180 Degree-Sign C and the annealed temperature was 700 Degree-Sign C. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were used to characterize the morphology, composition and structural properties of the materials. The results showed that the La{sub 0.7}Sr{sub 0.3}FeO{sub 3} nanoparticles assembled nanowires had a high aspect ratio (the largest aspect ratio >100); the size of the nanoparticles was about 20 nm and the diameter of the nanowires was about 100-150 nm. The growth mechanism of La{sub 0.7}Sr{sub 0.3}FeO{sub 3} nanowires was discussed. Gas sensors were fabricated by using La{sub 0.7}Sr{sub 0.3}FeO{sub 3} nanowires. Formaldehyde gas sensing properties were carried out in the concentration range of 0.1-100 ppm at the optimum operating temperature of 280 Degree-Sign C. The response and recovery times to 20 ppm formaldehyde of the sensor were 110 s and 50 s, respectively. The gas sensing mechanism of La{sub 0.7}Sr{sub 0.3}FeO{sub 3} nanowires was investigated.

  7. Ozone exposure and stomatal sluggishness in different plant physiognomic classes

    Energy Technology Data Exchange (ETDEWEB)

    Paoletti, Elena, E-mail: e.paoletti@ipp.cnr.i [IPP-CNR, Via Madonna del Piano 10, I-50019 Sesto Fiorentino, Florence (Italy); Grulke, Nancy E. [US Forest Service, 4955 Canyon Crest Drive, Riverside, CA 92507 (United States)

    2010-08-15

    Gas exchange responses to static and variable light were tested in three species: snap bean (Phaseolus vulgaris, two cultivars), California black oak (Quercus kelloggii), and blue oak (Q. douglasii). The effects of 1-month (snap beans) and 2-month (oaks) O{sub 3} (ozone) exposure (70 ppb over 8 h per day in open-top chambers) were investigated. A delay in stomatal responses (i.e., 'sluggish' responses) to variable light was found to be both an effect of O{sub 3} exposure and a reason for increased O{sub 3} sensitivity in snap bean cultivars, as it implied higher O{sub 3} uptake during times of disequilibrium. Sluggishness increased the time to open (thus limiting CO{sub 2} uptake) and close stomata (thus increasing transpirational water loss) after abrupt changes in light level. Similar responses were shown by snap beans and oaks, suggesting that O{sub 3}-induced stomatal sluggishness is a common trait among different plant physiognomic classes. - Sluggish stomatal responses are suggested to be both an effect of O{sub 3} exposure and a reason of increased O{sub 3} sensitivity in plants.

  8. Ozone production process in pulsed positive dielectric barrier discharge

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Ryo [High Temperature Plasma Center, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 227-8568 (Japan); Oda, Tetsuji [Department of Electrical Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656 (Japan)

    2007-01-07

    The ozone production process in a pulsed positive dielectric barrier discharge (DBD) is studied by measuring the spatial distribution of ozone density using a two-dimensional laser absorption method. DBD occurs in a 6 mm point-to-plane gap with a 1 mm-thick glass plate placed on the plane electrode. First, the propagation of DBD is observed using a short-gated ICCD camera. It is shown that DBD develops in three phases: primary streamer, secondary streamer and surface discharge phases. Next, the spatial distribution of ozone density is measured. It is shown that ozone is mostly produced in the secondary streamer and surface discharge, while only a small amount of ozone is produced in the primary streamer. The rate coefficient of the ozone production reaction, O + O{sub 2} + M {yields} O{sub 3} + M, is estimated to be 2.5 x 10{sup -34} cm{sup 6} s{sup -1}.

  9. Removal of diethyl phthalate from water solution by adsorption, photo-oxidation, ozonation and advanced oxidation process (UV/H{sub 2}O{sub 2}, O{sub 3}/H{sub 2}O{sub 2} and O{sub 3}/activated carbon)

    Energy Technology Data Exchange (ETDEWEB)

    Medellin-Castillo, Nahum A. [Centro de Investigacion y Estudios de Posgrado, Facultad de Ingenieria, Universidad Autonoma de San Luis Potosi, Av. Dr. M. Nava No.6, San Luis de Potosi, 78290 (Mexico); Ocampo-Perez, Raul [Centro de Investigacion y Estudios de Posgrado, Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi, San Luis Potosi, 78290 (Mexico); Departamento de Quimica Inorganica, Facultad de Ciencias, Universidad de Granada, 18071, Granada (Spain); Leyva-Ramos, Roberto [Centro de Investigacion y Estudios de Posgrado, Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi, San Luis Potosi, 78290 (Mexico); Sanchez-Polo, Manuel [Departamento de Quimica Inorganica, Facultad de Ciencias, Universidad de Granada, 18071, Granada (Spain); Rivera-Utrilla, Jose, E-mail: jrivera@ugr.es [Departamento de Quimica Inorganica, Facultad de Ciencias, Universidad de Granada, 18071, Granada (Spain); Mendez-Diaz, Jose D. [Departamento de Quimica Inorganica, Facultad de Ciencias, Universidad de Granada, 18071, Granada (Spain)

    2013-01-01

    The objective of this work was to compare the effectiveness of conventional technologies (adsorption on activated carbon, AC, and ozonation) and technologies based on advanced oxidation processes, AOPs, (UV/H{sub 2}O{sub 2}, O{sub 3}/AC, O{sub 3}/H{sub 2}O{sub 2}) to remove phthalates from aqueous solution (ultrapure water, surface water and wastewater). Diethyl phthalate (DEP) was chosen as a model pollutant because of its high water solubility (1080 mg/L at 293 K) and toxicity. The activated carbons showed a high adsorption capacity to adsorb DEP in aqueous solution (up to 858 mg/g), besides the adsorption mechanism of DEP on activated carbon is governed by dispersive interactions between {pi} electrons of its aromatic ring with {pi} electrons of the carbon graphene planes. The photodegration process showed that the pH solution does not significantly affect the degradation kinetics of DEP and the first-order kinetic model satisfactorily fitted the experimental data. It was observed that the rate of decomposition of DEP with the O{sub 3}/H{sub 2}O{sub 2} and O{sub 3}/AC systems is faster than that with only O{sub 3}. The technologies based on AOPs (UV/H{sub 2}O{sub 2}, O{sub 3}/H{sub 2}O{sub 2}, O{sub 3}/AC) significantly improve the degradation of DEP compared to conventional technologies (O{sub 3}, UV). AC adsorption, UV/H{sub 2}O{sub 2}, O{sub 3}/H{sub 2}O{sub 2}, and O{sub 3}/AC showed a high yield to remove DEP; however, the disadvantage of AC adsorption is its much longer time to reach maximum removal. The best system to treat water (ultrapure and natural) polluted with DEP is the O{sub 3}/AC one since it achieved the highest DEP degradation and TOC removal, as well as the lower water toxicity. -- Highlights: Black-Right-Pointing-Pointer Activated carbons showed a high adsorption capacity (up to 858 mg/g) to remove DEP. Black-Right-Pointing-Pointer The pH solution did not significantly affect the photodegradation kinetics of DEP. Black

  10. Ozone impacts on cotton: towards an integrated mechanism

    International Nuclear Information System (INIS)

    Grantz, D.A.

    2003-01-01

    Vegetation removes tropospheric ozone (O 3 ) mainly through uptake by stomata. O 3 reduces growth, photosynthesis, and carbohydrate allocation. Effects on mesophyll photosynthesis, may reducing carbohydrate source strength and, indirectly, carbohydrate translocation. Alternatively direct translocation, itself, could explain all of these observations. O 3 -reduced root proliferation inhibits exploitation of soil resources and interferes with underground carbon sequestration. Simulations with cotton suggest O 3 -disrupted root development could indirectly reduce shoot photosynthesis. Strong evidence for O 3 impacts on both carbon assimilation and carbon translocation exists, but data determining the primacy of direct or indirect O 3 effects on either or both processes remain inconclusive. Pholoem loading may be particularly sensitive to O 3 . Further research on metabolic feedback control of carbon assimilation and phloem loading activity as affected by O 3 exposure is required. - Ozone impacts on Pima cotton are reviewed to evaluate the possibility that a direct effect on carbohydrate translocation could mediate the suite of symptoms observed

  11. Advanced treatment of biotreated textile industry wastewater with ozone, virgin/ozonated granular activated carbon and their combination.

    Science.gov (United States)

    Arslan-Alaton, Idil; Seremet, Ozden

    2004-01-01

    Biotreated textile wastewater (CODo = 248 mg L(-1); TOCo = 58 mg L(-1); A620 = 0.007 cm(-1); A525 = 0.181 cm(-1); A436 = 0.198 cm(-1)) was subjected to advanced treatment with ozonation, granular activated carbon (GAC) adsorption in serial and simultaneous applications. Experiments were conducted to investigate the effects of applied ozone dose, ozone absorption rate, specific ozone absorption efficiency, GAC dose, and reaction pH on the treatment performance of the selected tertiary treatment scheme. In separate experiments, the impact of virgin GAC ozonation on its adsorptive capacity for biotreated and biotreated + ozonated textile effluent was also investigated. Ozonation appeared to be more effective for decolorization (kd = 0.15 min(-1) at pH = 3), whereas GAC adsorption yielded higher COD removal rates (54% at pH = 3). It was also found that GAC addition (4 g/L) at pH = 7 and 9 enhanced the COD abatement rate of the ozonation process significantly and that the sequential application of ozonation (at pH = 3-11, 675 mg L(-1) O3) followed by GAC adsorption (at pH = 3-7, 10 g L(-1) GAC) resulted in the highest treatment performances both in terms of color and COD reduction. Simultaneous application of GAC and ozone at acidic and alkaline pH seriously inhibited COD abatement rates as a consequence of competitive adsorption and partial oxidation of textile components and GAC. It could also be established that ozone absorption efficiency decreased after color removal was complete. Ozonation of biotreated textile wastewater with 113 mg L(-1) ozone resulted in an appreciable enhancement of GAC adsorptive capacity in terms of residual color removal. Ozonation of GAC at relatively low doses (= 10.8 mg/g GAC) did not improve its overall adsorption capacity.

  12. Ozone decomposition on Ag/SiO2 and Ag/clinoptilolite catalysts at ambient temperature

    International Nuclear Information System (INIS)

    Nikolov, Penko; Genov, Krassimir; Konova, Petya; Milenova, Katya; Batakliev, Todor; Georgiev, Vladimir; Kumar, Narendra; Sarker, Dipak K.; Pishev, Dimitar; Rakovsky, Slavcho

    2010-01-01

    Silver modified zeolite (Bulgarian natural clinoptilolite) and Ag/silica catalysts were synthesized by ion exchange and incipient wet impregnation method respectively and characterized by different techniques. DC arc-AES was used for Ag detection. XRD spectra show that Ag is loaded over the surface of the SiO 2 sample and that after the ion-exchange process the HEU type structure of clinoptilolite is retained. UV-VIS (specific reflection at 310 nm) and IR (band at 695 cm -1 ) spectroscopy analysis proved that silver is loaded as a T-atom into zeolite channels as Ag + , instead of Na + , Ca 2+ , or K + ions, existing in the natural clinoptilolite form. The samples Ag/SiO 2 and Ag-clinoptilolite were tested as catalysts for decomposition of gas phase ozone. Very high catalytic activity (up to 99%) was observed and at the same time the catalysts remained active over time at room temperature.

  13. Efficiency of Ciprofloxacin (CIP Removal from Pharmaceutical Effluents Using the Ozone/Persulfate(O3/PS Process

    Directory of Open Access Journals (Sweden)

    Alirezi Rahmani

    2016-03-01

    Full Text Available A newly emerging environmental problem is the discharge of pharmaceutical effluents containing antibiotic compounds. Compared to common methods, the ozone/persulfate process is a novel measure for treating persistent pollutants. This process is highly efficient in removing pollutants by using the free radicals of sulfates as powerful oxidants. In this study, a semi-continuous reactor with a useful volume of 1 L was used to evaluate the performance of the ozone/persulfate process in treating the ciprofloxacin antibiotic at concentrations from 10 to 100 mg/L in the presence of 0 to 15 mM of persulfate in 30 min. The results showed that under the optimized operating conditions of pH = 3, persulfate dose = 10 mM, ozone dose = 1 g/h, and an initial antibiotic concentration of 10 mg/L, this method was capable of removing 96% of the contaminant. Moreover, the efficiency of the process was found to be a function of experimental conditions. Based on the results of this study, it may be concluded that the ozone/persulfate process can be considered as an appropriate process for treating persistent and non-biodegradable pollutants.

  14. Inactivation of E-coli O157 : H7 in apple cider by ozone at various temperatures and concentrations

    DEFF Research Database (Denmark)

    Steenstrup, Lotte Dock

    2004-01-01

    of dissolved ozone of about 5-6 mg/L at 20C, before the on-set of E. coli O157:H7 inactivation in the cider. Total processing times, based on lag time plus 5D, ranged from about 4 to 14 min depending on temperature and ozone concentration. Overall, inactivation of E. coli O157:H7by ozone was fast enough...

  15. Controlled Confinement of Half-metallic 2D Electron Gas in BaTiO3/Ba2FeReO6/BaTiO3 Heterostructures: A First-principles Study

    Science.gov (United States)

    Saha-Dasgupta, Tanusri; Baidya, Santu; Waghmare, Umesh; Paramekanti, Arun

    Using density functional theory calculations, we establish that the half-metallicity of bulk Ba2FeReO6 survives down i to 1 nm thickness in BaTiO3/Ba2FeReO6/BaTiO3 heterostructures grown along the (001) and (111) directions. The confinement of the two-dimensional (2D) electron gas in this quantum well structure arises from the suppressed hybridization between Re/Fe d states and unoccupied Ti d states, and it is further strengthened by polar fields for the (111) direction. This mechanism, distinct from the polar catastrophe, leads to an order of magnitude stronger confinement of the 2D electron gas than that at the LaAlO3/SrTiO3 interface. We further show low-energy bands of (111) heterostructure display nontrivial topological character. Our work opens up the possibility of realizing ultra-thin spintronic devices. Journal Ref: Phys. Rev. B 92, 161106(R) (2015) S.B. and T.S.D thank Department of Science and Technology, India for the support through Thematic Unit of Excellence. AP was supported by NSERC (Canada).

  16. Characteristics of tropospheric ozone depletion events in the Arctic spring: analysis of the ARCTAS, ARCPAC, and ARCIONS measurements and satellite BrO observations

    Directory of Open Access Journals (Sweden)

    J.-H. Koo

    2012-10-01

    Full Text Available Arctic ozone depletion events (ODEs are caused by halogen catalyzed ozone loss. In situ chemistry, advection of ozone-poor air mass, and vertical mixing in the lower troposphere are important factors affecting ODEs. To better characterize the ODEs, we analyze the combined set of surface, ozonesonde, and aircraft in situ measurements of ozone and bromine compounds during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS, the Aerosol, Radiation, and Cloud Processes affecting Arctic Climate (ARCPAC, and the Arctic Intensive Ozonesonde Network Study (ARCIONS experiments (April 2008. Tropospheric BrO columns retrieved from satellite measurements and back trajectory calculations are also used to investigate the characteristics of observed ODEs. In situ observations from these field experiments are inadequate to validate tropospheric BrO columns derived from satellite measurements. In view of this difficulty, we construct an ensemble of tropospheric column BrO estimates from two satellite (OMI and GOME-2 measurements and with three independent methods of calculating stratospheric BrO columns. Furthermore, we select analysis methods that do not depend on the absolute magnitude of column BrO, such as time-lagged correlation analysis of ozone and tropospheric column BrO, to understand characteristics of ODEs. Time-lagged correlation analysis between in situ (surface and ozonesonde measurements of ozone and satellite derived tropospheric BrO columns indicates that the ODEs are due to either local halogen-driven ozone loss or short-range (∼1 day transport from nearby regions with ozone depletion. The effect of in situ ozone loss is also evident in the diurnal variation difference between low (10th and 25th percentiles and higher percentiles of surface ozone concentrations at Alert, Canada. Aircraft observations indicate low-ozone air mass transported from adjacent high-BrO regions. Correlation analyses of ozone

  17. Low Ozone over Europe Doesn't Mean the Sky Is Falling, Its Actually Rising

    Science.gov (United States)

    Strahan, Susan; Newman, Paul; Steenrod, Stephen

    2016-01-01

    Data Sources: NASA Aura Microwave Limb Sounder (MLS) (O3 profiles and columns), NASA Global Modeling Initiative (GMI) Chemistry and Transport Model (calculated O3depletion), and MERRA Tropopause Heights. Technical Description of Figures: The left graphics show MLS northern hemisphere stratospheric column ozone on Feb. 1, 2016. Very low columns are seen over the UK and Europe (<225 DU, inside dashed circle). The lower graphic shows the GMI-calculated O3 depletion. It's very small, suggesting the low O3 does not indicate significant depletion. The right graphics show how the high tropopause height in this region explains the observed low ozone. The lower panel shows that the high tropopause on Feb. 1 lifts the O3 profile compared to a typical profile found earlier in winter. This motion lifts the profile to lower pressures thus reducing the total column. The GMI Model shows only 4 Dobson Units (DU) of O3 depletion even though the column is more than 100 DU lower than one month earlier. Scientific significant and societal relevance: To quantitatively understand anthropogenic impacts to the stratospheric ozone layer, we must be able to distinguish between low ozone caused by ozone depleting substances and that caused by natural dynamical variability in the atmosphere. Observations and realistic simulations of atmospheric composition are both required in order to separate natural and anthropogenic ozone variability.

  18. Microbubble enhanced ozonation process for advanced treatment of wastewater produced in acrylic fiber manufacturing industry

    KAUST Repository

    Zheng, Tianlong

    2015-02-02

    This work investigated microbubble-ozonation for the treatment of a refractory wet-spun acrylic fiber wastewater in comparison to macrobubble-ozonation. CODcr, NH3-N, and UV254 of the wastewater were removed by 42%, 21%, and 42%, respectively in the microbubble-ozonation, being 25%, 9%, and 35% higher than the removal rates achieved by macrobubble-ozonation at the same ozone dose. The microbubbles (with average diameter of 45μm) had a high concentration of 3.9×105 counts/mL at a gas flow rate of 0.5L/min. The gas holdup, total ozone mass-transfer coefficient, and average ozone utilization efficiency in the microbubble-ozonation were 6.6, 2.2, and 1.5 times higher than those of the macrobubble-ozonation. Greater generation of hydroxyl radicals and a higher zeta potential of the bubbles were also observed in the microbubble ozonation process. The biodegradability of the wastewater was also significantly improved by microbubble-ozonation, which was ascribed to the enhanced degradation of alkanes, aromatic compounds, and the many other bio-refractory organic compounds in the wastewater. Microbubble-ozonation can thus be a more effective treatment process than traditional macrobubble-ozonation for refractory wastewater produced by the acrylic fiber manufacturing industry.

  19. Biomolecule-assisted synthesis and gas-sensing properties of porous nanosheet-based corundum In2O3 microflowers

    International Nuclear Information System (INIS)

    Zhang Wenhui; Zhang Weide

    2012-01-01

    Porous nanosheet-based corundum In 2 O 3 microflowers were fabricated by one-pot hydrothermal treatment of D-fructose and In(NO 3 ) 3 mixture using urea as a precipitating agent followed by calcination. The products were characterized by X-ray diffraction, scanning and transmission electron microscopy. The effects of D-fructose and urea on the fabrication of nanosheet-based corundum In 2 O 3 microflowers were investigated and a possible mechanism is proposed to explain the formation of the hierarchical nanostructures. The gas sensor based on the In 2 O 3 microflowers exhibits excellent sensing properties for the detection of formaldehyde. - Graphical abstract: Nanosheets-based corundum In 2 O 3 microflowers were fabricated by one-pot hydrothermal treatment of D-fructose/In(NO 3 ) 3 mixture followed by calcination, which show high performance for formaldehyde sensing. Highlights: ► Preparation of porous nanosheet-based corundum In 2 O 3 microflowers. ► Morphology and phase control of In 2 O 3 . ► Gas sensor based on the In 2 O 3 microflowers exhibits excellent sensing properties for the detection of formaldehyde.

  20. Higher measured than modeled ozone production at increased NOx levels in the Colorado Front Range

    Directory of Open Access Journals (Sweden)

    B. C. Baier

    2017-09-01

    Full Text Available Chemical models must correctly calculate the ozone formation rate, P(O3, to accurately predict ozone levels and to test mitigation strategies. However, air quality models can have large uncertainties in P(O3 calculations, which can create uncertainties in ozone forecasts, especially during the summertime when P(O3 is high. One way to test mechanisms is to compare modeled P(O3 to direct measurements. During summer 2014, the Measurement of Ozone Production Sensor (MOPS directly measured net P(O3 in Golden, CO, approximately 25 km west of Denver along the Colorado Front Range. Net P(O3 was compared to rates calculated by a photochemical box model that was constrained by measurements of other chemical species and that used a lumped chemical mechanism and a more explicit one. Median observed P(O3 was up to a factor of 2 higher than that modeled during early morning hours when nitric oxide (NO levels were high and was similar to modeled P(O3 for the rest of the day. While all interferences and offsets in this new method are not fully understood, simulations of these possible uncertainties cannot explain the observed P(O3 behavior. Modeled and measured P(O3 and peroxy radical (HO2 and RO2 discrepancies observed here are similar to those presented in prior studies. While a missing atmospheric organic peroxy radical source from volatile organic compounds co-emitted with NO could be one plausible solution to the P(O3 discrepancy, such a source has not been identified and does not fully explain the peroxy radical model–data mismatch. If the MOPS accurately depicts atmospheric P(O3, then these results would imply that P(O3 in Golden, CO, would be NOx-sensitive for more of the day than what is calculated by models, extending the NOx-sensitive P(O3 regime from the afternoon further into the morning. These results could affect ozone reduction strategies for the region surrounding Golden and possibly other areas that do not comply with national ozone

  1. Stratospheric cooling and polar ozone loss due to H2 emissions of a global hydrogen economy

    Science.gov (United States)

    Feck, T.; Grooß, J.-U.; Riese, M.; Vogel, B.

    2009-04-01

    "Green" hydrogen is seen as a major element of the future energy supply to reduce greenhouse gas emissions substantially. However, due to the possible interactions of hydrogen (H2) with other atmospheric constituents there is a need to analyse the implications of additional atmospheric H2 that could result from hydrogen leakage of a global hydrogen infrastructure. Emissions of molecular H2 can occur along the whole hydrogen process chain which increase the tropospheric H2 burden. Across the tropical tropopause H2 reaches the stratosphere where it is oxidised and forms water vapour (H2O). This causes increased IR-emissions into space and hence a cooling of the stratosphere. Both effects, the increase of stratospheric H2O and the cooling, enhances the potential of chlorine activation on liquid sulfate aerosol and polar stratospheric clouds (PSCs), which increase polar ozone destruction. Hence a global hydrogen economy could provoke polar ozone loss and could lead to a substantial delay of the current projected recovery of the stratospheric ozone layer. Our investigations show that even if 90% of the current global fossil primary energy input could be replaced by hydrogen and approximately 9.5% of the product gas would leak to the atmosphere, the ozone loss would be increased between 15 to 26 Dobson Units (DU) if the stratospheric CFC loading would retain unchanged. A consistency check of the used approximation methods with the Chemical Lagrangian Model of the Stratosphere (CLaMS) shows that this additional ozone loss can probably be treated as an upper limit. Towards more realistic future H2 leakage rate assumptions (< 3%) the additional ozone loss would be rather small (? 10 DU). However, in all cases the full damage would only occur if stratospheric CFC-levels would retain unchanged. Due to the CFC-prohibition as a result of the Montreal Protocol the forecasts suggest a decline of the stratospheric CFC loading about 50% until 2050. In this case our calculations

  2. Ozone fumigation under dark/light conditions of Norway Spruce (Picea Abies) and Scots Pine (Pinus Sylvestris)

    Science.gov (United States)

    Canaval, Eva; Jud, Werner; Hansel, Armin

    2015-04-01

    Norway Spruce (Picea abies) and Scots Pine (Pinus sylvestris) represent dominating tree species in the northern hemisphere. Thus, the understanding of their ozone sensitivity in the light of the expected increasing ozone levels in the future is of great importance. In our experiments we investigated the emissions of volatile organic compounds (VOCs) of 3-4 year old Norway Spruce and Scots Pine seedlings under ozone fumigation (50-150 ppbv) and dark/light conditions. For the experiments the plants were placed in a setup with inert materials including a glass cuvette equipped with a turbulent air inlet and sensors for monitoring a large range of meteorological parameters. Typical conditions were 20-25°C and a relative humidity of 70-90 % for both plant species. A fast gas exchange rate was used to minimize reactions of ozone in the gas phase. A Switchable-Reagent-Ion-Time-of-Flight-MS (SRI-ToF-MS) was used to analyze the VOCs at the cuvette outlet in real-time during changing ozone and light levels. The use of H3O+ and NO+ as reagent ions allows the separation of certain isomers (e.g. aldehydes and ketones) due to different reaction pathways depending on the functional groups of the molecules. Within the Picea abies experiments the ozone loss, defined as the difference of the ozone concentration between cuvette inlet and outlet, remained nearly constant at the transition from dark to light. This indicates that a major part of the supplied ozone is depleted non-stomatally. In contrast the ozone loss increased by 50 % at the transition from dark to light conditions within Pinus sylvestris experiments. In this case the stomata represent the dominant loss channel. Since maximally 0.1% of the ozone loss could be explained by gas phase reactions with monoterpenes and sesquiterpenes, we suggest that ozone reactions on the surface of Picea abies represent the major sink in this case and lead to an light-independent ozone loss. This is supported by the fact that we detected

  3. Quenching of I(2P1/2) by O3 and O(3P).

    Science.gov (United States)

    Azyazov, Valeriy N; Antonov, Ivan O; Heaven, Michael C

    2007-04-26

    Oxygen-iodine lasers that utilize electrical or microwave discharges to produce singlet oxygen are currently being developed. The discharge generators differ from conventional chemical singlet oxygen generators in that they produce significant amounts of atomic oxygen. Post-discharge chemistry includes channels that lead to the formation of ozone. Consequently, removal of I(2P1/2) by O atoms and O3 may impact the efficiency of discharge driven iodine lasers. In the present study, we have measured the rate constants for quenching of I(2P1/2) by O(3P) atoms and O3 using pulsed laser photolysis techniques. The rate constant for quenching by O3, (1.8 +/- 0.4) x 10(-12) cm3 s-1, was found to be a factor of 5 smaller than the literature value. The rate constant for quenching by O(3P) was (1.2 +/- 0.2) x 10(-11) cm3 s-1.

  4. Ozone treatment of textile wastewater relevant to toxic effect elimination in marine environment

    OpenAIRE

    Guendy, H.R.

    2007-01-01

    Ozone is a powerful oxidizing agent. The reaction of ozone with organic compounds in aqueous media has achieved a variety of treatment goals. The advantage of ozonation over the other oxidants is that the degradable products of ozonation are generally non-toxic, its final products are CO2 and H2O, and also the residual O3 in the system changes in few minutes to O2 .Convential treatment of textile wastewater includes various combinations of biological (activated sludge), physical and chemical ...

  5. Study on the Ozonation of Organic Wastes (1)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki Hong; Kang, Il Sik; Hong, Dae Seok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Ozone is often used in combination with H{sub 2}O{sub 2}, UV, peroxides, and the catalyst. These combined processes have the purpose to increase OH radicals, so this combination process is called the advanced oxidation process (AOP, Advanced Oxidation Process). In this study, the possibility of the oxidation treatment of LSC Cocktail solution by using a combination of ozone and hydrogen peroxide was investigated. The addition of a suitable amount of hydrogen peroxide increases the efficiency of the oxidation process during ozonation of the organic materials. But on the contrary, the excess addition of hydrogen they can play a role as a scavenger consuming the hydroxyl radicals generated during the ozonation process. So it is very important to find the amount of volume of hydrogen peroxide. The efficiency of oxidation treatment of organic materials is greatly depended on the properties of liquid waste (pH, concentration and chemical type of organics), the process temperature, the flow rate (waste and ozone gas), the ozone concentration, the hydrogen peroxide concentration and the presence or absence of scavengers. In this study, by using an ozone contactor (hydrophobic hollow fiber membrane type), the basic experiments were carried out to evaluate the applicability of ozonation to the organic wastes. First of all, the oxidation treatment was evaluated by ozone alone, and secondly was evaluated according to the changes of the amount of hydrogen peroxide and a pH of wastes.

  6. Study on the Ozonation of Organic Wastes (1)

    International Nuclear Information System (INIS)

    Kim, Ki Hong; Kang, Il Sik; Hong, Dae Seok

    2014-01-01

    Ozone is often used in combination with H 2 O 2 , UV, peroxides, and the catalyst. These combined processes have the purpose to increase OH radicals, so this combination process is called the advanced oxidation process (AOP, Advanced Oxidation Process). In this study, the possibility of the oxidation treatment of LSC Cocktail solution by using a combination of ozone and hydrogen peroxide was investigated. The addition of a suitable amount of hydrogen peroxide increases the efficiency of the oxidation process during ozonation of the organic materials. But on the contrary, the excess addition of hydrogen they can play a role as a scavenger consuming the hydroxyl radicals generated during the ozonation process. So it is very important to find the amount of volume of hydrogen peroxide. The efficiency of oxidation treatment of organic materials is greatly depended on the properties of liquid waste (pH, concentration and chemical type of organics), the process temperature, the flow rate (waste and ozone gas), the ozone concentration, the hydrogen peroxide concentration and the presence or absence of scavengers. In this study, by using an ozone contactor (hydrophobic hollow fiber membrane type), the basic experiments were carried out to evaluate the applicability of ozonation to the organic wastes. First of all, the oxidation treatment was evaluated by ozone alone, and secondly was evaluated according to the changes of the amount of hydrogen peroxide and a pH of wastes

  7. Effects of hydrocarbon contamination on ozone generation with dielectric barrier discharges

    Science.gov (United States)

    Lopez, Jose L.; Vezzu, Guido; Freilich, Alfred; Paolini, Bernhard

    2013-08-01

    The increasing usage of the feed gases of lower grade liquid oxygen (LOX) containing higher levels of trace hydrocarbon impurities in dielectric barrier discharge (DBD) for ozone generation requires a better understanding of the kinetics of the by-product formation resulting from reactions involving these hydrocarbon impurities. As a case study of hydrocarbon impurities, the kinetics of CH4 conversion in DBDs and the subsequent HNO3 formation were investigated by means of gas-phase plasma diagnostics, supported by detailed process modeling, and extensive in-situ and ex-situ by-product analysis. The by-products formation in the plasma with the presence of CH4, were found to differ significantly in oxygen-fed generators as compared to generators fed with oxygen/nitrogen mixtures. The amount of HNO3 formed depends on the concentration of NOx formed in the plasma and the amount of CH4 that is converted, but not on the O3 concentration. In the present work we have investigated CH4 concentrations of up to 1.95 wt% of the feed gas. The rate of deterioration of the overall ozone generator performance was found to be affected by the concentration of nitrogen in the oxygen/nitrogen mixture.

  8. Functionalized Ga2O3 nanowires as active material in room temperature capacitance-based gas sensors.

    Science.gov (United States)

    Mazeina, Lena; Perkins, F Keith; Bermudez, Victor M; Arnold, Stephen P; Prokes, S M

    2010-08-17

    We report the first evidence for functionalization of Ga(2)O(3) nanowires (NWs), which have been incorporated as the active material in room temperature capacitance gas-sensing devices. An adsorbed layer of pyruvic acid (PA) was successfully formed on Ga(2)O(3) NWs by simple room temperature vapor transport, which was confirmed by Fourier transform infrared spectroscopy. The effect of the adsorbed PA on the surface properties was demonstrated by the change in the response of the NW gas-sensing devices. Results indicate that the adsorption of PA reduced the sensitivity of the Ga(2)O(3) NW device to common hydrocarbons such as nitromethane and acetone while improving the response to triethylamine by an order of magnitude. Taking into account the simplicity of this functionalization together with the ease of producing these capacitance-based gas-sensing devices, this approach represents a viable technique for sensor development.

  9. Stability enhancement of ozone-assisted laminar premixed Bunsen flames in nitrogen co-flow

    KAUST Repository

    Vu, Tran Manh

    2014-04-01

    Ozone (O3) is known as one of the strongest oxidizers and therefore is widely used in many applications. Typically in the combustion field, a combination of non-thermal plasma and combustion systems have been studied focusing on the effects of ozone on flame propagation speeds and ignition characteristics. Here, we experimentally investigated the effects of ozone on blowoff of premixed methane/air and propane/air flames over a full range of equivalence ratios at room temperature and atmospheric pressure by using a co-flow burner and a dielectric barrier discharge. The results with ozone showed that a nozzle exit jet velocity at the moment of flame blowoff (blowoff velocity) significantly increased, and flammability limits for both fuel-lean and rich mixtures were also extended. Ozone had stronger effects of percent enhancement in the blowoff velocity for off-stoichiometric mixtures, while minimum enhancements could be observed around stoichiometric conditions for both fuels showing linear positive dependence on a tested range of ozone concentration up to 3810ppm. Through chemical kinetic simulations, the experimentally observed trends of the enhancement in blowoff velocity were identified as a result of the modification of the laminar burning velocity. Two ozone decomposition pathways of O3+N2→O+O2+N2 and O3+H→O2+OH were identified as the most controlling steps. These reactions, coupled with fuel consumption characteristics of each fuel determined the degree of promotion in laminar burning velocities, supporting experimental observations on blowoff velocities with ozone addition. © 2013 The Combustion Institute.

  10. Ammonia gas sensors based on In2O3/PANI hetero-nanofibers operating at room temperature

    Directory of Open Access Journals (Sweden)

    Qingxin Nie

    2016-09-01

    Full Text Available Indium nitrate/polyvinyl pyrrolidone (In(NO33/PVP composite nanofibers were synthesized via electrospinning, and then hollow structure indium oxide (In2O3 nanofibers were obtained through calcination with PVP as template material. In situ polymerization was used to prepare indium oxide/polyaniline (In2O3/PANI composite nanofibers with different mass ratios of In2O3 to aniline. The structure and morphology of In(NO33/PVP, In2O3/PANI composite nanofibers and pure PANI were investigated by scanning electron microscopy (SEM, Fourier transform infrared spectroscopy (FTIR, X-ray diffraction (XRD, transmission electron microscopy (TEM and current–voltage (I–V measurements. The gas sensing properties of these materials towards NH3 vapor (100 to 1000 ppm were measured at room temperature. The results revealed that the gas sensing abilities of In2O3/PANI composite nanofibers were better than pure PANI. In addition, the mass ratio of In2O3 to aniline and the p–n heterostructure between In2O3 and PANI influences the sensing performance of the In2O3/PANI composite nanofibers. In this paper, In2O3/PANI composite nanofibers with a mass ratio of 1:2 exhibited the highest response values, excellent selectivity, good repeatability and reversibility.

  11. Hydrogen Peroxide and Ozone Formation in Hybrid Gas-Liquid Electrical Discharge Reactors

    Czech Academy of Sciences Publication Activity Database

    Lukeš, Petr; Appleton, A. T.; Locke, B. R.

    2004-01-01

    Roč. 40, č. 1 (2004), s. 60-67 ISSN 0093-9994. [IEEE Industry Applications Society Annual Meeting 2002/37th./. Pittsburgh, Pennsylvania , 13.10.2002-18.10.2002] R&D Projects: GA ČR GA202/02/1026; GA MŠk ME 472 Grant - others:NSF(US) INT0086351 Keywords : hydrogen peroxide, ozone, corona discharge, water treatment, hybrid reactor Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.987, year: 2004

  12. The enhancement of CuO modified V2O5-WO3/TiO2 based SCR catalyst for Hg° oxidation in simulated flue gas

    Science.gov (United States)

    Chen, Chuanmin; Jia, Wenbo; Liu, Songtao; Cao, Yue

    2018-04-01

    CuO modified V2O5-WO3/TiO2 based SCR catalysts prepared by improved impregnation method were investigated to evaluate the catalytic activity for elemental mercury (Hg°) oxidation in simulated flue gas at 150-400 °C. Nitrogen adsorption, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were used to characterize the catalysts. It was found that V0.8WTi-Cu3 catalyst exhibited the superior Hg° oxidation activity and wide operating temperature window at the gas hourly space velocity (GHSV) of 3 × 105 h-1. The BET and XRD results showed that CuO was well loaded and highly dispersed on the catalysts surface. The XPS results suggested that the addition of CuO generated abundant chemisorbed oxygen, which was due to the synergistic effect between CuO and V2O5. The existence of the redox cycle of V4+ + Cu2+ ↔ V5+ + Cu+ in V0.8WTi-Cu3 catalyst enhanced Hg° oxidation activity. The effects of flue gas components (O2, NO, SO2 and H2O) on Hg° oxidation over V0.8WTi-Cu3 catalyst were also explored. Moreover, the co-presence of NO and NH3 remarkably inhibited Hg° oxidation, which was due to the competitive adsorption and reduction effect of NH3 at SCR condition. Fortunately, this inhibiting effect was gradually scavenged with the decrease of GHSV. The mechanism of Hg° oxidation was also investigated.

  13. OZONE PRODUCTION IN THE PHILADELPHIA URBAN AREA DURING NE-OPS 99

    International Nuclear Information System (INIS)

    KLEINMAN, L.I.; DAUM, P.H.; BRECHTEL, F.; LEE, Y.N.; NUNNERMACKER, L.J.; SPRINGSTON, S.R.; WEINSTEIN-LLOYD, J.

    2001-01-01

    As part of the 1999 NARSTO Northeast Oxidant and Particulate Study (NE-OPS) field campaign, the DOE G-1 aircraft sampled trace gases and aerosols in and around the Philadelphia metropolitan area. Twenty research flights were conducted between July 25 and August 11. The overall goals of these flights were to obtain a mechanistic understanding of O(sub 3) production; to characterize the spatial and temporal behavior of photo-oxidants and aerosols; and to study the evolution of aerosol size distributions, including the process of new particle formation. Within the NE-OPS program, other groups provided additional trace gas, aerosol, and meteorological observations using aircraft, balloon, remote sensing, and surface based instruments (Phillbrick et al., 2000). In this article we provide an overview of the G-1 observations related to O(sub 3) production, focusing on the vertical distribution of pollutants. Ozone production rates are calculated using a box model that is constrained by observed trace gas concentrations. Highest O(sub 3) concentrations were observed on July 31, which we present as a case study. On that day, O(sub 3) concentrations above the 1-hour 120 ppb standard were observed downwind of Philadelphia and also in the plume of a single industrial facility located on the Delaware River south of the city

  14. Comparison of ultraviolet absorbance and NO-chemiluminescence for ozone measurement in wildfire plumes at the Mount Bachelor Observatory

    Science.gov (United States)

    Gao, Honglian; Jaffe, Daniel A.

    2017-10-01

    The goal of this paper is to evaluate the accuracy of the commonly used ozone (O3) instrument (the ultraviolet (UV) photometer) against a Federal Reference Method (Nitric Oxide -chemiluminescence) for ozone measurement in wildfire smoke plumes. We carried out simultaneous ozone measurement with two UV O3 photometers and one nitric oxide-chemiluminescence (NO-CL) ozone detectors during wildfire season (Aug. 1-Sept. 30) in 2015 at the Mount Bachelor Observatory (MBO, 2763 m above mean sea level, Oregon, USA). The UV O3 shows good agreement and excellent correlation to NO-CL O3, with linear regression slopes close to unity and R2 of 0.92 for 1-h average data and R2 of 0.93 for O3 daily maximum 8-h average (MDA8). During this two-month period we identified 35 wildfire events. Ozone enhancements in those wildfire plumes measured by NO-CL O3 and UV O3 monitors also show good agreement and excellent linear correlation, with a slope and R2 of 1.03 and 0.86 for O3 enhancements (ΔO3) and 1.00 and 0.98 for carbon monoxide (CO)-normalized ozone enhancement ratios (ΔO3/ΔCO), respectively. Overall, the UV O3 was found to have a positive bias of 4.7 ± 2.8 ppbv compared to the NO-CL O3. The O3 bias between NO-CL O3 and UV O3 is independent of wildfire plume tracers such as CO, particulate matter (PM1), aerosol scattering, and ultrafine particles. The results demonstrate that the UV O3 absorbance method is reliable, even in highly concentrated wildfire plumes.

  15. Electron attachment to molecules and clusters of atmospheric relevance: oxygen and ozone

    International Nuclear Information System (INIS)

    Matejcik, S.; Cicman, P.; Skalny, J.; Kiendler, A.; Stampfli, P.; Maerk, T.D.; Illenberger, E.; Chu, Y.; Stamatovic, A.

    1996-01-01

    Highly monochromatized electrons are used in a crossed beams experiment to investigate electron attachment to oxygen clusters (O 2 )-n at electron energies from approximately zero eV up to 2 eV. At energies close to zero the attachment cross section for the reaction (O 2 ) n + e → O 2 - varies inversely with the electron energy, indicative of s-wave electron capture to (O 2 ) n . Peaks in the attachment cross section present at higher energies can be ascribed to vibrational levels of the oxygen anion. The vibrational spacings observed can be quantitatively accounted for. In addition electron attachment to ozone and mixed oxygen/ozone clusters has been studied in the energy range up to 4 eV. Absolute attachment cross sections for both fragment ions anions, O - and O 2 - , from ozone could be deduced. Moreover, despite the initially large excess of oxygen molecules in the neutral oxygen/ozone clusters the dominant attachment products are un-dissociated cluster ions (O 3 ) m - including the O 3 - monomer while oxygen cluster ions (O 2 ) n appear with comparatively low intensity. (authors)

  16. Expected Performance of Ozone Climate Data Records from Ozone Mapping and Profiler Suite Limb Profiler

    Science.gov (United States)

    Xu, P. Q.; Rault, D. F.; Pawson, S.; Wargan, K.; Bhartia, P. K.

    2012-01-01

    The Ozone Mapping and Profiler Suite Limb Profiler (OMPS/LP) was launched on board of the Soumi NPP space platform in late October 2011. It provides ozone-profiling capability with high-vertical resolution from 60 Ian to cloud top. In this study, an end-to-end Observing System Simulation Experiment (OSSE) of OMPS/LP ozone is discussed. The OSSE was developed at NASA's Global Modeling and Assimilation Office (GMAO) using the Goddard Earth Observing System (GEOS-5) data assimilation system. The "truth" for this OSSE is built by assimilating MLS profiles and OMI ozone columns, which is known to produce realistic three-dimensional ozone fields in the stratosphere and upper troposphere. OMPS/LP radiances were computed at tangent points computed by an appropriate orbital model. The OMPS/LP forward RT model, Instrument Models (IMs) and EDR retrieval model were introduced and pseudo-observations derived. The resultant synthetic OMPS/LP observations were evaluated against the "truth" and subsequently these observations were assimilated into GEOS-5. Comparison of this assimilated dataset with the "truth" enables comparisons of the likely uncertainties in 3-D analyses of OMPS/LP data. This study demonstrated the assimilation capabilities of OMPS/LP ozone in GEOS-5, with the monthly, zonal mean (O-A) smaller than 0.02ppmv at all levels, the nns(O-A) close to O.lppmv from 100hPa to 0.2hPa; and the mean(O-B) around the 0.02ppmv for all levels. The monthly zonal mean analysis generally agrees to within 2% of the truth, with larger differences of 2-4% (0.1-0.2ppmv) around 10hPa close to North Pole and in the tropical tropopause region, where the difference is above 20% due to the very low ozone concentrations. These OSSEs demonstrated that, within a single data assimilation system and the assumption that assimilated MLS observations provide a true rendition of the stratosphere, the OMPS/LP ozone data are likely to produce accurate analyses through much of the stratosphere

  17. Improvement of H2S Sensing Properties of SnO2-Based Thick Film Gas Sensors Promoted with MoO3 and NiO

    Directory of Open Access Journals (Sweden)

    In Sung Son

    2013-03-01

    Full Text Available The effects of the SnO2 pore size and metal oxide promoters on the sensing properties of SnO2-based thick film gas sensors were investigated to improve the detection of very low H2S concentrations (<1 ppm. SnO2 sensors and SnO2-based thick-film gas sensors promoted with NiO, ZnO, MoO3, CuO or Fe2O3 were prepared, and their sensing properties were examined in a flow system. The SnO2 materials were prepared by calcining SnO2 at 600, 800, 1,000 and 1,200 °C to give materials identified as SnO2(600, SnO2(800, SnO2(1000, and SnO2(1200, respectively. The Sn(12Mo5Ni3 sensor, which was prepared by physically mixing 5 wt% MoO3 (Mo5, 3 wt% NiO (Ni3 and SnO2(1200 with a large pore size of 312 nm, exhibited a high sensor response of approximately 75% for the detection of 1 ppm H2S at 350 °C with excellent recovery properties. Unlike the SnO2 sensors, its response was maintained during multiple cycles without deactivation. This was attributed to the promoter effect of MoO3. In particular, the Sn(12Mo5Ni3 sensor developed in this study showed twice the response of the Sn(6Mo5Ni3 sensor, which was prepared by SnO2(600 with the smaller pore size than SnO2(1200. The excellent sensor response and recovery properties of Sn(12Mo5Ni3 are believed to be due to the combined promoter effects of MoO3 and NiO and the diffusion effect of H2S as a result of the large pore size of SnO2.

  18. The impact of using different ozone cross sections on ozone profile retrievals from OMI UV measurements

    International Nuclear Information System (INIS)

    Liu, Cheng; Liu, Xiong; Chance, Kelly

    2013-01-01

    We compare three datasets of high-resolution O 3 cross sections and evaluate the effects of using these cross sections on O 3 profile retrievals from OMI UV (270–330 nm) measurements. These O 3 cross sections include Brion–Daumont–Malicet (BDM), Bass–Paur (BP) and a new dataset measured by Serdyuchenko et al. (SGWCB), which is made from measurements at more temperatures and in a wider temperature range than BDM and BP, 193–293 K. Relative to the BDM dataset, the SGWCB data have systematic biases of −2 to +4% for 260–340 nm, and the BP data have smaller biases of 1–2% below 315 nm but larger spiky biases of up to ±6% at longer wavelengths. These datasets show distinctly different temperature dependences. Using different cross sections can significantly affect atmospheric retrievals. Using SGWCB data leads to retrieval failure for almost half of the OMI spatial pixels, producing large negative ozone values that cannot be handled by radiative transfer models and using BP data leads to large fitting residuals over 310–330 nm. Relative to the BDM retrievals, total ozone retrieved using original SGWCB data (with linear temperature interpolation/extrapolation) typically shows negative biases of 5–10 DU; retrieved tropospheric ozone column generally shows negative biases of 5–10 DU and 5–20 DU for parameterized and original SGWCB data, respectively. Compared to BDM retrievals, ozone profiles retrieved with BP/SGWCB data on average show large altitude-dependent oscillating differences of up to ±20–40% biases below ∼20 km with almost opposite bias patterns. Validation with ozonesonde observations demonstrates that the BDM retrievals agree well with ozonesondes, to typically within 10%, while both BP and SGWCB retrievals consistently show large altitude-dependent biases of up to ±20–70% below 20 km. Therefore, we recommend using the BDM dataset for ozone profile retrievals from UV measurements. Its improved performance is likely due to its

  19. Chloroplastic and stomatal aspects of ozone-induced reduction of net photosynthesis in plants

    Energy Technology Data Exchange (ETDEWEB)

    Torsethaugen, Gro

    1998-09-01

    The present thesis relates to ozone-induced reduction of photosynthesis in plants. As a photochemical oxidant O{sub 3} is formed by the interaction of hydrocarbons, nitrogen oxides and oxygen in sunlight. Ozone (O{sub 3}) is the most phytotoxic of all the air pollutants and is known to reduce plant growth and net photosynthesis, cause stomatal closure, induce visible injury, accelerate senescence and induce or inhibit transcription of a variety of genes with a corresponding increase/decrease in protein products. The underlying cellular mechanisms for many of these changes are unknown. Following fields are investigated: Ozone-induced reduction of net photosynthesis; ozone and the photosynthetic apparatus in the chloroplasts; ozone and stomata; ozone effects on plant membranes; protection against ozone injury in plants. 249 refs., 22 figs., 4 tabs.

  20. Performance evaluation of non-thermal plasma injection for elemental mercury oxidation in a simulated flue gas

    Energy Technology Data Exchange (ETDEWEB)

    An, Jiutao; Shang, Kefeng; Lu, Na [Institute of Electrostatics and Special Power, Dalian University of Technology, Dalian 116024 (China); Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education of the People' s Republic of China, Dalian 116024 (China); Jiang, Yuze [Shandong Electric Power Research Institute, Jinan 250002 (China); Wang, Tiecheng [Institute of Electrostatics and Special Power, Dalian University of Technology, Dalian 116024 (China); Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education of the People' s Republic of China, Dalian 116024 (China); Li, Jie, E-mail: lijie@dlut.edu.cn [Institute of Electrostatics and Special Power, Dalian University of Technology, Dalian 116024 (China); Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education of the People' s Republic of China, Dalian 116024 (China); Wu, Yan [Institute of Electrostatics and Special Power, Dalian University of Technology, Dalian 116024 (China); Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education of the People' s Republic of China, Dalian 116024 (China)

    2014-03-01

    Graphical abstract: - Highlights: • The use of non-thermal plasma injection approach to oxidize Hg{sup 0} in simulated flue gas at 110 °C was studied. • A high Hg{sup 0} oxidation efficiency was observed in the mixed flue gas that included O{sub 2}, H{sub 2}O, SO{sub 2}, NO and HCl. • Chemical and physical processes (e.g., ozone, N{sub 2} metastable states and UV-light) contributed to Hg{sup 0} oxidation. • Mercury species mainly existed in the form of HgO(s) adhering to the suspended aerosols in the gas-phase. - Abstract: The use of non-thermal plasma (NTP) injection approach to oxidize elemental mercury (Hg{sup 0}) in simulated flue gas at 110 °C was studied, where a surface discharge plasma reactor (SDPR) inserted in the simulated flue duct was used to generate and inject active species into the flue gas. Approximately 81% of the Hg{sup 0} was oxidized and 20.5 μg kJ{sup −1} of energy yield was obtained at a rate of 3.9 J L{sup −1}. A maximal Hg{sup 0} oxidation efficiency was found with a change in the NTP injection air flow rate. A high Hg{sup 0} oxidation efficiency was observed in the mixed flue gas that included O{sub 2}, H{sub 2}O, SO{sub 2}, NO and HCl. Chemical and physical processes (e.g., ozone, N{sub 2} metastable states and UV-light) were found to contribute to Hg{sup 0} oxidation, with ozone playing a dominant role. The deposited mercury species on the internal surface of the flue duct was analyzed using X-ray photoelectron spectroscopy (XPS) and electronic probe microanalysis (EPMA), and the deposit was identified as HgO. The mercury species is thought to primarily exist in the form of HgO(s) by adhering to the suspended aerosols in the gas-phase.

  1. Effect of ozone on leaf cell membranes

    Energy Technology Data Exchange (ETDEWEB)

    Swanson, E S; Thomson, W W; Mudd, J B

    1973-01-01

    The objective of this study was to determine the effects of ozone on membrane lipids and on the electron-density patterns of cell membranes in electron micrographs. Analysis of fatty acids from tobacco leaves fumigated with ozone indicated that there was no significant difference between the ozone-treated and the control plants in the relative amounts of the fatty acids. This suggests that if the primary site of ozone action is unsaturated lipids in membranes then the amounts of affected unsaturated fatty acids are too small to be detected by gas chromatography. In support of this, characteristic electron-microscopic images of membranes are observed in cells of fumigated leaves. However, measurements of the length and width of the chloroplasts and the determination of axial ratios indicated that the ozone treatment resulted in a shrinkage of the chloroplasts. In contrast, mitochondrial changes are apparently explained in terms of ozone-induced swelling. 33 references, 3 figures, 1 table.

  2. On the dependence of structural and sensing properties of sputtered MoO{sub 3} thin films on argon gas flow

    Energy Technology Data Exchange (ETDEWEB)

    Khojier, K., E-mail: k_khojier@yahoo.com [Department of Physics, Chalous Branch, Islamic Azad University, Chalous (Iran, Islamic Republic of); Savaloni, H. [Department of Physics, University of Tehran, North Kargar Street, Tehran (Iran, Islamic Republic of); Zolghadr, S. [Department of Physics, Faculty of Science, Central Tehran Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of)

    2014-11-30

    Highlights: • MoO{sub 3} thin films are sputter coated and their structure are analyzed. • Effect of argon gas flow on the structural and some properties is studied. • CO sensing ability of MoO{sub 3} increases with argon gas flow. • MoO{sub 3} nano-strain decreases with argon gas flow. - Abstract: Nitrogen and carbon oxides (CO, NO and NO{sub 2}), released from combustion facilities and automobiles, are known to be extremely harmful to the human body and also are the main cause of air pollution. Therefore, effective methods to monitor and suppress the carbon and nitrogen oxides have been highly demanded for atmospheric environmental measurements and controls. It is known that molybdenum oxide (MoO{sub 3}) can be a good semiconductor material for use as a gas sensor in monitoring CO, NO and NO{sub 2}. In this paper we report the structural characteristics and sensing properties of the sputtered MoO{sub 3} thin films as a function of argon gas flow. MoO{sub 3} thin films were deposited by DC reactive magnetron sputtering technique on glass substrates at different argon gas flows in the range of 5–20 sccm. X-ray diffraction (XRD) analysis was used for studying crystallographic structure. XRD results showed that all of our films were of polycrystalline structure and of α-MoO{sub 3} stable orthorhombic phase. Results also showed that crystallite size increases while compressive nano-strain in the structure of the films decreases with increasing the argon gas flow. Atomic force microscope and the field emission scanning electron microscope studies showed granular structures for all samples, which increased in size consistent with the XRD results, with argon gas flow, while the surface roughness of the films also increased with argon gas flow. Chemical composition study showed optimum reaction between oxygen and molybdenum atoms for films produced at 15 sccm flow of argon gas. The electrical response of samples was measured in the vacuum and the CO

  3. NH3/O2 mixed gas plasmas alter the interaction of blood components with stainless steel.

    Science.gov (United States)

    Chen, Meng; Zamora, Paul O; Peña, Louis; Som, Prantika; Osaki, Shigemasa

    2003-12-01

    Stainless steel treated with a mixed gas plasma of NH(3) plus O(2) had chemical and biologic characteristics distinct from untreated stainless steel or stainless steel treated with NH(3) or O(2) plasmas used separately. NH(3)/O(2) plasmas deposited nitrogen as both -CN (organic) and -NO (nitrate, nitrite)--materials not found on untreated stainless steel--and the contact angle changed from 44 degrees to 23 degrees. Treatment of stainless steel (and titanium) resulted in surfaces with enhanced resistance to platelet and leukocyte attachment. A gas plasma of N(2)O/O(2) also was found to reduce platelet and leukocyte attachment, suggesting that these properties may be common to surfaces coated with oxynitrites (nitrides). Upon subcutaneous implantation, no inflammation, hemolysis, or untoward thrombosis was noted in the tissue surrounding the wafers treated with the NH(3)/O(2) plasmas, although the cellular density was considerably reduced by 2 weeks after implant. Collectively, the results suggest that NH(3)/O(2) plasmas impart a unique character to stainless steel that may be useful in the construction of medical devices. Copyright 2003 Wiley Periodicals, Inc. J Biomed Mater Res 67A: 994-1000, 2003

  4. Catalytic ozonation of fenofibric acid over alumina-supported manganese oxide

    Energy Technology Data Exchange (ETDEWEB)

    Rosal, Roberto, E-mail: roberto.rosal@uah.es [Departamento de Quimica Analitica e Ingenieria Quimica, Universidad de Alcala, E-28771 Alcala de Henares (Spain); Gonzalo, Maria S.; Rodriguez, Antonio; Garcia-Calvo, Eloy [Departamento de Quimica Analitica e Ingenieria Quimica, Universidad de Alcala, E-28771 Alcala de Henares (Spain)

    2010-11-15

    The catalytic ozonation of fenofibric acid was studied using activated alumina and alumina-supported manganese oxide in a semicontinuous reactor. The rate constants at 20 deg. C for the non-catalytic reaction of fenofibric acid with ozone and hydroxyl radicals were 3.43 {+-} 0.20 M{sup -1} s{sup -1} and (6.55 {+-} 0.33) x 10{sup 9} M{sup -1} s{sup -1}, respectively. The kinetic constant for the catalytic reaction between fenofibric acid and hydroxyl radicals did not differ significantly from that of homogeneous ozonation, either using Al{sub 2}O{sub 3} or MnO{sub x}/Al{sub 2}O{sub 3}. The results showed a considerable increase in the generation of hydroxyl radicals due to the use of catalysts even in the case of catalytic runs performed using a real wastewater matrix. Both catalysts promoted the decomposition of ozone in homogeneous phase, but the higher production of hydroxyl radicals corresponded to the catalyst with more activity in terms of ozone decomposition. We did not find evidence of the catalysts having any effect on rate constants, which suggests that the reaction may not involve the adsorption of organics on catalyst surface.

  5. Analyzer for measurement of nitrogen oxide concentration by ozone content reduction in gas using solid state chemiluminescent sensor

    Science.gov (United States)

    Chelibanov, V. P.; Ishanin, G. G.; Isaev, L. N.

    2014-05-01

    Role of nitrogen oxide in ambient air is described and analyzed. New method of nitrogen oxide concentration measurement in gas phase is suggested based on ozone concentration measurement with titration by nitrogen oxide. Research of chemiluminescent sensor composition is carried out on experimental stand. The sensor produced on the base of solid state non-activated chemiluminescent composition is applied as ozone sensor. Composition is put on the surface of polymer matrix with developed surface. Sensor compositions includes gallic acid with addition of rodamine-6G. Model of interaction process between sensor composition and ozone has been developed, main products appeared during reaction are identified. The product determining the speed of luminescense appearance is found. This product belongs to quinone class. Then new structure of chemiluminescent composition was suggested, with absence of activation period and with high stability of operation. Experimental model of gas analyzer was constructed and operation algorithm was developed. It was demonstrated that developed NO measuring instrument would be applied for monitoring purposes of ambient air. This work was partially financially supported by Government of Russian Federation, Grant 074-U01

  6. Electrical properties of GaN-based metal-insulator-semiconductor structures with Al2O3 deposited by atomic layer deposition using water and ozone as the oxygen precursors

    Science.gov (United States)

    Kubo, Toshiharu; Freedsman, Joseph J.; Iwata, Yasuhiro; Egawa, Takashi

    2014-04-01

    Al2O3 deposited by atomic layer deposition (ALD) was used as an insulator in metal-insulator-semiconductor (MIS) structures for GaN-based MIS-devices. As the oxygen precursors for the ALD process, water (H2O), ozone (O3), and both H2O and O3 were used. The chemical characteristics of the ALD-Al2O3 surfaces were investigated by x-ray photoelectron spectroscopy. After fabrication of MIS-diodes and MIS-high-electron-mobility transistors (MIS-HEMTs) with the ALD-Al2O3, their electrical properties were evaluated by current-voltage (I-V) and capacitance-voltage (C-V) measurements. The threshold voltage of the C-V curves for MIS-diodes indicated that the fixed charge in the Al2O3 layer is decreased when using both H2O and O3 as the oxygen precursors. Furthermore, MIS-HEMTs with the H2O + O3-based Al2O3 showed good dc I-V characteristics without post-deposition annealing of the ALD-Al2O3, and the drain leakage current in the off-state region was suppressed by seven orders of magnitude.

  7. Ozone autohaemotherapy protects against ketamine hydrochloride ...

    African Journals Online (AJOL)

    Ozone is currently under scrutiny because of various claims of beneficial effect in disease. In order to shed some light on this we assessed the acute and chronic effect of O3 autohaemotherapy (AHT) on liver and muscle damage in baboons. Five percent of the total blood volume of a baboon was treated with O2 and O3.

  8. Facile Synthesis, Microstructure, and Gas Sensing Properties of NdCoO3 Nanoparticles

    Directory of Open Access Journals (Sweden)

    Lorenzo Gildo-Ortiz

    2017-01-01

    Full Text Available NdCoO3 nanoparticles were successfully synthesized by a simple, inexpensive, and reproducible solution method for gas sensing applications. Cobalt nitrate, neodymium nitrate, and ethylenediamine were used as precursors and distilled water as solvent. The solvent was evaporated later by means of noncontinuous microwave radiation at 290 W. The obtained precursor powders were calcined at 200, 500, 600, and 700°C in a standard atmosphere. The oxide crystallized in an orthorhombic crystal system with space group Pnma (62 and cell parameters a=5.33 Å, b=7.52 Å, and c=5.34 Å. The nanoparticles showed a diffusional growth to form a network-like structure and porous adsorption configuration. Pellets prepared from NdCoO3 were tested as gas sensors in atmospheres of carbon monoxide and propane at different temperatures. The oxide nanoparticles were clearly sensitive to changes in gas concentrations (0–300 ppm. The sensitivity increased with increasing concentration of the gases and operating temperatures (25, 100, 200, and 300°C.

  9. A survey of valleys and basins of the Western USA for the capacity to produce winter ozone.

    Science.gov (United States)

    Mansfield, Marc L; Hall, Courtney F

    2018-04-18

    High winter ozone in the Uintah Basin, Utah, and the Upper Green River Basin, Wyoming, occurs because of the confluence of three separate factors: (1) extensive oil or natural gas production, (2) topography conducive to strong multi-day thermal inversions, and (3) snow cover. We surveyed 13 basins and valleys in the western USA for the existence and magnitude of these factors. Seven of the basins, because winter ozone measurements were available, were assigned to four different behavioral classes. Based on similarities among the basins, the remaining six were also given a tentative assignment. Two classes (1 and 2) correspond to basins with high ozone because all three factors listed above are present at sufficient magnitude. Class 3 corresponds to rural basins with ozone at background levels, and occurs because at least one of the three factors is weak or absent. Class 4 corresponds to ozone below background levels, and occurs, for example, in urban basins whose emissions scavenge ozone. All three factors are present in the Wind River Basin, Wyoming, but compared to the Uintah or the Upper Green Basins, it has only moderate oil and gas production, and is assigned to class 3. We predict that the Wind River Basin, as well as other class 3 basins that have inversions and snow cover, would transition from background (class 3) to high ozone behavior (class 1 or 2) if oil or gas production were to intensify, or to class 4 (low winter ozone) if they were to become urban. Implication Statement High ozone concentrations in winter only occur in basins or valleys that have an active oil and natural gas production industry, multi-day thermal inversions, and snow cover; and have only been documented in two basins worldwide. We have examined a number of other candidate basins in the Western USA and conclude that these factors are either absent or too weak to produce high winter ozone. This study illustrates how strong each factor needs to be before winter ozone can be expected

  10. A new model and gas sensitivity of non-equilibrium xSnO2-(1-x)alpha-Fe2O3 nanopowders prepared by mechanical alloying

    DEFF Research Database (Denmark)

    Zhu, W.; Tan, O.K.; Jiang, Jianzhong

    1998-01-01

    )alpha-Fe2O3 materials. This model can explain non only the lattice expansion of the milled samples, but also takes into account the charge balance by adding oxygen dangling bonds at the particle surfaces, which can be visualized in the nano-sized powders. The thich film gas sensors made by such mechanically......Nano-sized xSnO2-(1-x)alpha-Fe2O3 materials have been prepared using the high energy ball milling technique and their structural and gas sensing properties have been characterized. Based on experimental results, we propose a new structure model, xxx, forthese non-equilibrium, nano-sized xSnO2-(1-x...... alloyed materials have high ethanol gas sensitivity values of 289 in air and 1016 in nitrogen at 1000 p.p.m. and very good gas selectivity to ethanol over CO and H2 gases. It is believed that the high ethanol gas sensitivity of these materials is related to the enormous defects such as O- and O2- dangling...

  11. Northern Hemisphere Winter Climate Response to Greenhouse Gas, Ozone, Solar and Volcanic Forcing

    Science.gov (United States)

    Shindell, Drew T.; Schmidt, Gavin A.; Miller, Ron L.; Rind, David; Hansen, James E. (Technical Monitor)

    2001-01-01

    The Goddard Institute for Space Studies (GISS) climate/middle atmosphere model has been used to study the impacts of increasing greenhouse gases, polar ozone depletion, volcanic eruptions, and solar cycle variability. We focus on the projection of the induced responses onto Northern Hemisphere winter surface climate. Changes in the model's surface climate take place largely through enhancement of existing variability patterns, with greenhouse gases, polar ozone depletion and volcanic eruptions primarily affecting the Arctic Oscillation (AO) pattern. Perturbations descend from the stratosphere to the surface in the model by altering the propagation of planetary waves coming up from the surface, in accord with observational evidence. Models lacking realistic stratospheric dynamics fail to capture these wave flux changes. The results support the conclusion that the stratosphere plays a crucial role in recent AO trends. We show that in our climate model, while ozone depletion has a significant effect, greenhouse gas forcing is the only one capable of causing the large, sustained increase in the AO observed over recent decades. This suggests that the AO trend, and a concurrent strengthening of the stratospheric vortex over the Arctic, are very likely anthropogenic in origin.

  12. Effect of composition on properties of In2O3-Ga2O3 thin films

    Science.gov (United States)

    Demin, I. E.; Kozlov, A. G.

    2017-06-01

    The In2O3-Ga2O3 mixed oxide polycrystalline thin films with various ratios of components were obtained by pulsed laser deposition. The effect of films composition on surface morphology, electrophysical and gas sensing properties and energies of adsorption and desorption of combustible gases was studied. The films with50%In2O3-50%Ga2O3 composition showed maximum gas response (˜25 times) combined with minimum optimal working temperature (˜530 °C) as compared with the other films. The optical transmittance of the films in visible range was investigated. For 50%In2O3-50%Ga2O3 films, the transmittance is higher in comparison with the other films. The explanation of the dependency of films behaviors on their composition was presented.The In2O3-Ga2O3 films were assumed to have perspectives as gas sensing material for semiconducting gas sensors.

  13. A new numerical model of the middle atmosphere. 2: Ozone and related species

    Science.gov (United States)

    Garcia, Rolando R.; Solomon, Susan

    1994-01-01

    A new two-dimensional model with detailed photochemistry is presented. The model includes descriptions of planetary wave and gravity wave propagation and dissipation to characterize the wave forcing and associated mixing in the stratosphere and mesosphere. Such a representation allows for explicit calculation of the regions of strong mixing in the middle atmosphere required for accurate simulation of trace gas transport. The new model also includes a detailed description of photochemical processes in the stratosphere and mesosphere. The downward transport of H2, H2O, and NO(y) from the mesosphere to the stratosphere is examined, and it is shown that mesospheric processes can influence the distributions of these chemical species in polar regions. For HNO3 we also find that small concentrations of liquid aerosols above 30 km could play a major role in determining the abundance in polar winter at high latitudes. The model is also used to examine the chemical budget of ozone in the midlatitude stratosphere and to set constraints on the effectiveness of bromine relative to chlorine for ozone loss and the role of the HO2 + BrO reaction. Recent laboratory data used in this modeling study suggest that this process greatly enhances the effectiveness of bromine for ozone destruction, making bromine-catalyzed chemistry second only to HO(x)-catalyzed ozone destruction in the contemporary stratosphere at midlatitudes below about 18 km. The calculated vertical distribution of ozone in the lower stratosphere agrees well with observations, as does the total column ozone during most seasons and latitudes, with the important exception of southern hemisphere winter and spring.

  14. Influence of ultrasonic irradiation on ozone generation in a dielectric barrier discharge

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Drews, J.; Leipold, Frank

    2012-01-01

    An atmospheric pressure dielectric barrier discharge (DBD) was generated in an N2/O2 gas mixture at room temperature with and without ultrasonic irradiation to investigate ozone production. Powerful ultrasonic irradiation with the sound pressure level of approximately 150 dB into the DBD can...

  15. Ecophysiological and biochemical strategies of response to ozone in Mediterranean evergreen broadleaf species

    Science.gov (United States)

    Nali, C.; Paoletti, E.; Marabottini, R.; Della Rocca, G.; Lorenzini, G.; Paolacci, A. R.; Ciaffi, M.; Badiani, M.

    Three Mediterranean shrubs, Phillyrea latifolia L. (phillyrea), Arbutus unedo L. (strawberry tree), and Laurus nobilis L. (laurel), differing in their morphological and ecological response to water shortage, were exposed for 90 days to 0 or 110 ppb of ozone (O 3), 5 h each day. This yielded an accumulated exposure over of a threshold of 40 ppb (AOT40) of 31.5 ppm h over the 3 months experiment. These species showed differing responses to O 3: laurel and phillyrea developed foliar chlorotic mottles on the adaxial surface of leaves, whereas strawberry tree leaves showed reddish interveinal stipple-like necrotic lesions. In all cases, however, foliar injury did not exceed 8% of the sampled leaf area. At the end of the exposure period, O 3-induced stomatal limitation caused significant decreases of net photosynthesis in strawberry tree and laurel, but not in phillyrea. The relative water content of the leaves was significantly decreased by O 3, especially in laurel and strawberry tree, suggesting the occurrence of drought stress. Electrical conductivity of leachates from foliar discs increased in response to the treatment, much more strongly in laurel and in strawberry tree than in phillyrea, suggesting an O 3-dependent alteration of the membrane retention capacity. At the end of the experimental period, the activity of superoxide dismutase and the content of reduced glutathione, but not that of reduced ascorbate, were significantly increased in the ozonated leaves of strawberry tree and phillyrea, but not in laurel. The evergreen broadleaves studied here maybe relatively tolerant to realistic O 3 levels, at least in terms of visible injury and gas exchange. Such tolerance might overlap with their level of tolerance to drought stress. High constitutive levels, and/or O 3-induced increases in antioxidants, might contribute to O 3 tolerance in these Mediterranean evergreen broadleaf species.

  16. A novel tropopause-related climatology of ozone profiles

    NARCIS (Netherlands)

    Sofieva, V.F.; Tamminen, J.; Kyrola, E.; Mielonen, T.; Veefkind, J.P.; Hassler, B.; Bodeker, G.E.

    2014-01-01

    A new ozone climatology, based on ozonesonde and satellite measurements, spanning the altitude region between the earth's surface and ~60 km is presented (TpO3 climatology). This climatology is novel in that the ozone profiles are categorized according to calendar month, latitude and local

  17. Tropospheric column ozone response to ENSO in GEOS-5 assimilation of OMI and MLS ozone data

    Directory of Open Access Journals (Sweden)

    M. A. Olsen

    2016-06-01

    Full Text Available We use GEOS-5 analyses of Ozone Monitoring Instrument (OMI and Microwave Limb Sounder (MLS ozone observations to investigate the magnitude and spatial distribution of the El Niño Southern Oscillation (ENSO influence on tropospheric column ozone (TCO into the middle latitudes. This study provides the first explicit spatially resolved characterization of the ENSO influence and demonstrates coherent patterns and teleconnections impacting the TCO in the extratropics. The response is evaluated and characterized by both the variance explained and sensitivity of TCO to the Niño 3.4 index. The tropospheric response in the tropics agrees well with previous studies and verifies the analyses. A two-lobed response symmetric about the Equator in the western Pacific/Indonesian region seen in some prior studies and not in others is confirmed here. This two-lobed response is consistent with the large-scale vertical transport. We also find that the large-scale transport in the tropics dominates the response compared to the small-scale convective transport. The ozone response is weaker in the middle latitudes, but a significant explained variance of the TCO is found over several small regions, including the central United States. However, the sensitivity of TCO to the Niño 3.4 index is statistically significant over a large area of the middle latitudes. The sensitivity maxima and minima coincide with anomalous anti-cyclonic and cyclonic circulations where the associated vertical transport is consistent with the sign of the sensitivity. Also, ENSO related changes to the mean tropopause height can contribute significantly to the midlatitude response. Comparisons to a 22-year chemical transport model simulation demonstrate that these results from the 9-year assimilation are representative of the longer term. This investigation brings insight to several seemingly disparate prior studies of the El Niño influence on tropospheric ozone in the middle latitudes.

  18. Compensation processes of Aleppo pine (Pinus halepensis Mill.) to ozone exposure and drought stress

    International Nuclear Information System (INIS)

    Inclan, R.; Gimeno, B.S.; Dizengremel, P.; Sanchez, M.

    2005-01-01

    A long-term experiment was performed to study the effects of O 3 and drought-stress (DS) on Aleppo pine seedlings (Pinus halepensis Mill.) exposed in open-top chambers. Ozone reduced gas exchange rates, ribulose-1,5-biphosphate carboxylase/oxygenase activity (Rubisco), aboveground C and needle N concentrations and C/N ratio and Ca concentrations of the twigs under 3 mm (twigs Pd ), C/N ratio, twigs<3 Ca, plant growth, aerial biomass and increased N, twigs with a diameter above 3 mm P and Mg concentrations. The combined exposure to both stresses increased N concentrations of twigs<3 and roots and aboveground biomass K content and decreased root C, maximum daily assimilation rate and instantaneous water use efficiency. The sensitivity of Aleppo pine to both stresses is determined by plant internal resource allocation and compensation mechanisms to cope with stress. - Ozone and drought stress induce the activation of similar processes related to C and N metabolism

  19. Fate of bulk and trace organics during a simulated aquifer recharge and recovery (ARR)-ozone hybrid process

    KAUST Repository

    Yoon, Min

    2013-11-01

    The attenuation of bulk organic matter and trace organic contaminants (TOrCs) was evaluated for various aquifer recharge and recovery (ARR)-ozone (O3) hybrid treatment process combinations using soil-batch reactor and bench-scale ozonation experiments as a proof of concept prior to pilot and/or field studies. In water reclamation and especially potable reuse, refractory bulk organic matter and TOrCs are of potential health concern in recycled waters. In this study, the role of biotransformation of bulk organic matter and TOrCs was investigated considering different simulated treatment combinations, including soil passage (ARR) alone, ARR after ozonation (O3-ARR), and ARR prior to ozonation (ARR-O3). During oxic (aerobic) ARR simulations, soluble microbial-like substances (e.g., higher molecular weight polysaccharides and proteins) were easily removed while (lower molecular weight) humic substances and aromatic organic matter were not efficiently removed. During ARR-ozone treatment simulations, removals of bulk organic matter and TOrCs were rapid and effective compared to ARR alone. A higher reduction of effluent-derived organic matter, including aromatic organic matter and humic substances, was observed in the ARR-O3 hybrid followed by the O3-ARR hybrid. An enhanced attenuation of recalcitrant TOrCs was observed while increasing the ozone dose slightly (O3: DOC=1). TOrC removal efficiency also increased during the post-ozone treatment combination (i.e., ARR-O3). In addition, the carcinogenic wastewater disinfection byproduct N-nitrosodimethylamine (NDMA) was eliminated below the method reporting limit (<5ngL-1) both during ARR treatment alone and the ARR-ozone hybrid. © 2013 Elsevier Ltd.

  20. Products and kinetics of the heterogeneous reaction of suspended vinclozolin particles with ozone.

    Science.gov (United States)

    Gan, Jie; Yang, Bo; Zhang, Yang; Shu, Xi; Liu, Changgeng; Shu, Jinian

    2010-11-25

    Vinclozolin is a widely used fungicide that can be released into the atmosphere via application and volatilization. This paper reports an experimental investigation on the heterogeneous ozonation of vinclozolin particles. The ozonation of vinclozolin adsorbed on azelaic acid particles under pseudo-first-order conditions is investigated online with a vacuum ultraviolet photoionization aerosol time-of-flight mass spectrometer (VUV-ATOFMS). The ozonation products are analyzed with a combination of VUV-ATOFMS and GC/MS. Two main ozonation products are observed. The formation of the ozonation products results from addition of O(3) on the C-C double bond of the vinyl group. The heterogeneous reactive rate constant of vinclozolin particles under room temperature is (2.4 ± 0.4) × 10(-17) cm(3) molecules(-1) s(-1), with a corresponding lifetime at 100 ppbv O(3) of 4.3 ± 0.7 h, which is almost comparable with the estimated lifetime due to the reaction with atmospheric OH radicals (∼1.7 h). The reactive uptake coefficient for O(3) on vinclozolin particles is (6.1 ± 1.0) × 10(-4).

  1. Titanium Dioxide-Based 64∘ YX LiNbO3 Surface Acoustic Wave Hydrogen Gas Sensors

    Directory of Open Access Journals (Sweden)

    A. Z. Sadek

    2008-01-01

    Full Text Available Amorphous titanium dioxide (TiO2 and gold (Au doped TiO2-based surface acoustic wave (SAW sensors have been investigated as hydrogen gas detectors. The nanocrystal-doped TiO2 films were synthesized through a sol-gel route, mixing a Ti-butoxide-based solution with diluted colloidal gold nanoparticles. The films were deposited via spin coating onto 64∘ YX LiNbO3 SAW transducers in a helium atmosphere. The SAW gas sensors were operated at various temperatures between 150 and 310∘C. It was found that gold doping on TiO2 increased the device sensitivity and reduced the optimum operating temperature.

  2. Analysis Influence of Mixing Gd2O3 in the Silicide Fuel Element to Core Excess Reactivity of RSG-GAS

    International Nuclear Information System (INIS)

    Susilo, Jati

    2004-01-01

    Gadolinium (Gd 2 O 3 ) is a burnable poison material mixed in the pin fuel element of the LWR core used to decrease core excess reactivity. In this research, analysis influence of mixing Gd 2 O 3 in the silicide fuel element to excess reactivity of the RSG-GAS core had been done. Equivalent cell of the equilibrium core developed by L.E.Strawbridge from Westing House Co. burn-up calculation has been done using SRAC-PIJ computer code achieve infinite multiplication factor (k x ). Value of Gd 2 O 3 concentration in the fuel element (pcm) showed by mass ratio of Gd 2 O 3 (gram) to that U 3 Si 2 (gram) times 10 5 , that is 0 pcm ∼ 100 pcm. From the calculation results analysis showed that Gd 2 O 3 concentration added should be considered. because a large number of Gd 2 O 3 will result in not achieving criticality at the Beginning Of Cycle. The maximum concentration of Gd 2 O 3 for RSG-GAS equilibrium fueled silicide 2.96 grU/cc is 80 pcm or 52.02 mgram/fuel plate. Maximum reduction of core excess reactivity due to mixing of Gd 2 O 3 in the RSG-GAS silicide fuels was around 1.502 %Δk/k, and hence not achieving the standard nominal excess reactivity for RSG-GAS core using high density of U 3 Si 2 -Al fuel. (author)

  3. Ozone decomposition kinetics on alumina: effects of ozone partial pressure, relative humidity and repeated oxidation cycles

    Directory of Open Access Journals (Sweden)

    R. C. Sullivan

    2004-01-01

    Full Text Available The room temperature kinetics of gas-phase ozone loss via heterogeneous interactions with thin alumina films has been studied in real-time using 254nm absorption spectroscopy to monitor ozone concentrations. The films were prepared from dispersions of fine alumina powder in methanol and their surface areas were determined by an in situ procedure using adsorption of krypton at 77K. The alumina was found to lose reactivity with increasing ozone exposure. However, some of the lost reactivity could be recovered over timescales of days in an environment free of water, ozone and carbon dioxide. From multiple exposures of ozone to the same film, it was found that the number of active sites is large, greater than 1.4x1014 active sites per cm2 of surface area or comparable to the total number of surface sites. The films maintain some reactivity at this point, which is consistent with there being some degree of active site regeneration during the experiment and with ozone loss being catalytic to some degree. The initial uptake coefficients on fresh films were found to be inversely dependent on the ozone concentration, varying from roughly 10-6 for ozone concentrations of 1014 molecules/cm3 to 10-5 at 1013 molecules/cm3. The initial uptake coefficients were not dependent on the relative humidity, up to 75%, within the precision of the experiment. The reaction mechanism is discussed, as well as the implications these results have for assessing the effect of mineral dust on atmospheric oxidant levels.

  4. A statistical model to predict total column ozone in Peninsular Malaysia

    Science.gov (United States)

    Tan, K. C.; Lim, H. S.; Mat Jafri, M. Z.

    2016-03-01

    This study aims to predict monthly columnar ozone in Peninsular Malaysia based on concentrations of several atmospheric gases. Data pertaining to five atmospheric gases (CO2, O3, CH4, NO2, and H2O vapor) were retrieved by satellite scanning imaging absorption spectrometry for atmospheric chartography from 2003 to 2008 and used to develop a model to predict columnar ozone in Peninsular Malaysia. Analyses of the northeast monsoon (NEM) and the southwest monsoon (SWM) seasons were conducted separately. Based on the Pearson correlation matrices, columnar ozone was negatively correlated with H2O vapor but positively correlated with CO2 and NO2 during both the NEM and SWM seasons from 2003 to 2008. This result was expected because NO2 is a precursor of ozone. Therefore, an increase in columnar ozone concentration is associated with an increase in NO2 but a decrease in H2O vapor. In the NEM season, columnar ozone was negatively correlated with H2O (-0.847), NO2 (0.754), and CO2 (0.477); columnar ozone was also negatively but weakly correlated with CH4 (-0.035). In the SWM season, columnar ozone was highly positively correlated with NO2 (0.855), CO2 (0.572), and CH4 (0.321) and also highly negatively correlated with H2O (-0.832). Both multiple regression and principal component analyses were used to predict the columnar ozone value in Peninsular Malaysia. We obtained the best-fitting regression equations for the columnar ozone data using four independent variables. Our results show approximately the same R value (≈ 0.83) for both the NEM and SWM seasons.

  5. Unexpected O and O3 production in the effluent of He/O2 microplasma jets emanating into ambient air

    International Nuclear Information System (INIS)

    Ellerweg, D; Von Keudell, A; Benedikt, J

    2012-01-01

    Microplasma jets are commonly used to treat samples in ambient air. The effect of admixing air into the effluent may severely affect the composition of the emerging species. Here, the effluent of a He/O 2 microplasma jet has been analyzed in a helium and in an air atmosphere by molecular beam mass spectrometry. First, the composition of the effluent in air was recorded as a function of the distance to determine how fast air admixes into the effluent. Then, the spatial distribution of atomic oxygen and ozone in the effluent was recorded in ambient air and compared with measurements in a helium atmosphere. Additionally, a fluid model of the gas flow with reaction kinetics of reactive oxygen species in the effluent was constructed. In ambient air, the O density declines only slightly faster with distance compared with a helium atmosphere. In contrast, the O 3 density in ambient air increases significantly faster with distance compared with a helium atmosphere. This unexpected behavior cannot be explained by simple recombination reactions of O atoms with O 2 molecules. A reaction scheme involving the reaction of plasma-produced excited O 2 * species of unknown identity with ground state O 2 molecules is proposed as a possible explanation for these observations. (paper)

  6. Stratospheric ozone chemistry in the Antarctic: what determines the lowest ozone values reached and their recovery?

    Directory of Open Access Journals (Sweden)

    J.-U. Grooß

    2011-12-01

    Full Text Available Balloon-borne observations of ozone from the South Pole Station have been reported to reach ozone mixing ratios below the detection limit of about 10 ppbv at the 70 hPa level by late September. After reaching a minimum, ozone mixing ratios increase to above 1 ppmv on the 70 hPa level by late December. While the basic mechanisms causing the ozone hole have been known for more than 20 yr, the detailed chemical processes determining how low the local concentration can fall, and how it recovers from the minimum have not been explored so far. Both of these aspects are investigated here by analysing results from the Chemical Lagrangian Model of the Stratosphere (CLaMS. As ozone falls below about 0.5 ppmv, a balance is maintained by gas phase production of both HCl and HOCl followed by heterogeneous reaction between these two compounds in these simulations. Thereafter, a very rapid, irreversible chlorine deactivation into HCl can occur, either when ozone drops to values low enough for gas phase HCl production to exceed chlorine activation processes or when temperatures increase above the polar stratospheric cloud (PSC threshold. As a consequence, the timing and mixing ratio of the minimum ozone depends sensitively on model parameters, including the ozone initialisation. The subsequent ozone increase between October and December is linked mainly to photochemical ozone production, caused by oxygen photolysis and by the oxidation of carbon monoxide and methane.

  7. Some current problems in atmospheric ozone chemistry; role of chemical kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Cox, R.A.

    1987-03-01

    A review is given on selected aspects of the reaction mechanisms of current interest in the chemistry of atmospheric ozone. Atmospheric ozone is produced and removed by a complex series of elementary gas-phase photochemical reactions involving O/sub x/, HO/sub x/, NO/sub x/, CIO/sub x/ and hydrocarbon species. At the present time there is a good knowledge of the basic processes involved in ozone chemistry in the stratosphere and the troposphere and the kinetics of most of the key reactions are well defined. There are a number of difficulties in the theoretical descriptions of observed ozone behaviour which may be due to uncertainties in the chemistry. Examples are the failure to predict present day ozone in the photochemically controlled region above 35 Km altitude and the large reductions in the ozone column in the Antartic Spring which has been observed in recent years. In the troposphere there is growing evidence that ozone and other trace gases have changed appreciably from pre-industrial concentrations, due to chemical reactions involving man-made pollutants. Quantitative investigation of the mechanisms by which these changes may occur requires a sound laboratory kinetics data base.

  8. Evaluation of ozonation technique for pesticide residue removal and its effect on ascorbic acid, cyanidin-3-glucoside, and polyphenols in apple (Malus domesticus) fruits.

    Science.gov (United States)

    Swami, Saurabh; Muzammil, Raunaq; Saha, Supradip; Shabeer, Ahammed; Oulkar, Dasharath; Banerjee, Kaushik; Singh, Shashi Bala

    2016-05-01

    Ozonated water dip technique was evaluated for the detoxification of six pesticides, i.e., chlorpyrifos, cypermethrin, azoxystrobin, hexaconazole, methyl parathion, and chlorothalonil from apple fruits. Results revealed that ozonation was better than washing alone. Ozonation for 15 min decreased residues of the test pesticides in the range of from 26.91 to 73.58%, while ozonation for 30 min could remove the pesticide residues by 39.39-95.14 % compared to 19.05-72.80 % by washing. Cypermethrin was the least removed pesticide by washing as well as by ozonation. Chlorothalonil, chlorpyrifos, and azoxystrobin were removed up to 71.45-95.14 % in a 30-min ozonation period. In case of methyl parathion removal, no extra advantage could be obtained by ozonation. The HPLC analysis indicated that ozonation also affected adversely the ascorbic acid and cyanidin-3-glucoside content of apples. However, 11 polyphenols studied showed a mixed trend. Gallic acid, 3,4-dihydroxybenzoic acid, catechin, epicatechin, p-coumaric acid, quercetin-3-O-glucoside, quercetin, and kaempferol were found to decrease while syringic acid, rutin, and resveratrol were found to increase in 30-min ozonation.

  9. Revisiting Antarctic Ozone Depletion

    Science.gov (United States)

    Grooß, Jens-Uwe; Tritscher, Ines; Müller, Rolf

    2015-04-01

    Antarctic ozone depletion is known for almost three decades and it has been well settled that it is caused by chlorine catalysed ozone depletion inside the polar vortex. However, there are still some details, which need to be clarified. In particular, there is a current debate on the relative importance of liquid aerosol and crystalline NAT and ice particles for chlorine activation. Particles have a threefold impact on polar chlorine chemistry, temporary removal of HNO3 from the gas-phase (uptake), permanent removal of HNO3 from the atmosphere (denitrification), and chlorine activation through heterogeneous reactions. We have performed simulations with the Chemical Lagrangian Model of the Stratosphere (CLaMS) employing a recently developed algorithm for saturation-dependent NAT nucleation for the Antarctic winters 2011 and 2012. The simulation results are compared with different satellite observations. With the help of these simulations, we investigate the role of the different processes responsible for chlorine activation and ozone depletion. Especially the sensitivity with respect to the particle type has been investigated. If temperatures are artificially forced to only allow cold binary liquid aerosol, the simulation still shows significant chlorine activation and ozone depletion. The results of the 3-D Chemical Transport Model CLaMS simulations differ from purely Lagrangian longtime trajectory box model simulations which indicates the importance of mixing processes.

  10. Improved Pt/Au and W/Pt/Au Schottky contacts on n-type ZnO using ozone cleaning

    International Nuclear Information System (INIS)

    Ip, K.; Gila, B.P.; Onstine, A.H.; Lambers, E.S.; Heo, Y.W.; Baik, K.H.; Norton, D.P.; Pearton, S.J.; Kim, S.; LaRoche, J.R; Ren, F.

    2004-01-01

    UV-ozone cleaning prior to metal deposition of either e-beam Pt contacts or sputtered W contacts on n-type single-crystal ZnO is found to significantly improve their rectifying characteristics. Pt contacts deposited directly on the as-received ZnO surface are Ohmic but show rectifying behavior with ozone cleaning. The Schottky barrier height of these Pt contacts was 0.70 eV, with ideality factor of 1.5 and a saturation current density of 6.2x10 -6 A cm -2 . In contrast, the as-deposited W contacts are Ohmic, independent of the use of ozone cleaning. Postdeposition annealing at 700 deg. C produces rectifying behavior with Schottky barrier heights of 0.45 eV for control samples and 0.49 eV for those cleaned with ozone exposure. The improvement in rectifying properties of both the Pt and W contacts is related to removal of surface carbon contamination from the ZnO

  11. Limitations of the removal of cyanide from coking wastewater by ozonation and by the hydrogen peroxide-ozone process.

    Science.gov (United States)

    Pueyo, N; Miguel, N; Ovelleiro, J L; Ormad, M P

    The purpose of this study is to compare the efficiency of ozonation and the hydrogen peroxide-ozone process for the removal of cyanide from coking wastewater. The most efficient oxidation process is combined with coagulation-flocculation-decantation and lime-soda ash softening pretreatments. The oxidation in aqueous solution and industrial wastewater (at pH 9.5-12.3) by O3 was carried out using a range of concentration of consumed O3 from 10 to 290 mg/L. A molar ratio of H2O2/O3 from 0.1 to 5.2 with different concentrations of O3 constants was used for the H2O2-O3 process. The maximum cyanide removal obtained in coking wastewater was 90% using a mass ratio of O3/CN(-) of 9.5. Using lower concentrations of O3, cyanide is not removed and can even be generated due to the presence of other cyanide precursor organic micropollutants in the industrial matrix. The concentration of O3 is reduced to half for the same cyanide removal efficiency if the pretreatments are applied to reduce the carbonate and bicarbonate ions. The cyanide removal efficiency in coking wastewater is not improved if the O3 is combined with the H2O2. However, the preliminary cyanide removal treatment in aqueous solution showed an increase in the cyanide removal efficiency for the H2O2-O3 process.

  12. Studies on Gas Sensing Performance of Pure and Surface Modified SrTiO3 Thick Film Resistors

    Directory of Open Access Journals (Sweden)

    V. B. Gaikwad

    2009-08-01

    Full Text Available Strontium Titanate (SrTiO3 (ST was prepared mechanochemically from Sr(OH2 and TiO2. XRD confirms the Perovskite phase of material. Thick films of ST were prepared by screen-printing technique. The gas sensing performances of thick films were tested for various gases. It showed maximum sensitivity to CO gas at 350 oC for 100 ppm gas concentration. To improve the sensitivity and selectivity of the film towards a particular gas, ST thick films were surface modified by dipping them in a solution of nano copper for different intervals of time. These surface modified ST films showed larger sensitivity to H2S gas (100 ppm at 300 oC than pure ST film. A systematic study, of sensing performance of the sensor, indicates the key role-played by the nano copper species on the surface .The sensitivity, selectivity, response and recovery time of the sensor were measured and presented.

  13. Mass-dependent and non-mass-dependent isotope effects in ozone photolysis: Resolving theory and experiments

    International Nuclear Information System (INIS)

    Cole, Amanda S.; Boering, Kristie A.

    2006-01-01

    In addition to the anomalous 17 O and 18 O isotope effects in the three-body ozone formation reaction O+O 2 +M, isotope effects in the destruction of ozone by photolysis may also play a role in determining the isotopic composition of ozone and other trace gases in the atmosphere. While previous experiments on ozone photolysis at 254 nm were interpreted as evidence for preferential loss of light ozone that is anomalous (or 'non-mass-dependent'), recent semiempirical theoretical calculations predicted a preferential loss of heavy ozone at that wavelength that is mass dependent. Through photochemical modeling results presented here, we resolve this apparent contradiction between experiment and theory. Specifically, we show that the formation of ozone during the UV photolysis experiments is not negligible, as had been assumed, and that the well-known non-mass-dependent isotope effects in ozone formation can account for the non-mass-dependent enrichment of the heavy isotopologs of ozone observed in the experiment. Thus, no unusual non-mass-dependent fractionation in ozone photolysis must be invoked to explain the experimental results. Furthermore, we show that theoretical predictions of a mass-dependent preferential loss of the heavy isotopologs of ozone during UV photolysis are not inconsistent with the experimental data, particularly if mass-dependent isotope effects in the chemical loss reactions of ozone during the photolysis experiments or experimental artifacts enrich the remaining ozone in 17 O and 18 O. Before the calculated fractionation factors can be quantitatively evaluated, however, further investigation of possible mass-dependent isotope effects in the reactions of ozone with O( 1 D), O( 3 P), O 2 ( 1 Δ), and O 2 ( 1 Σ) is needed through experiments we suggest here

  14. ELIMINACIÓN DE COLORANTES CATIÓNICOS USANDO OZONO, ZEOLITA NATURAL Y OZONO/ZEOLITA CATIONIC DYES REMOVAL USING OZONE, NATURAL ZEOLITE, AND OZONE/ZEOLITE

    Directory of Open Access Journals (Sweden)

    Héctor Valdés

    2009-12-01

    Full Text Available En este trabajo se comparan resultados experimentales de remoción azul de metileno (MB utilizando tratamientos basados en la oxidación con ozono (O3, la adsorción con zeolita natural (ZN, y tratamiento simultáneo de adsorción y oxidación con ozono en presencia de zeolita natural (O3/ZN. Se evalúa, a escala de laboratorio, el efecto del pH (2-8 y la presencia de sustancias atrapadoras radicales libres (iones acetatos en la velocidad de remoción y en la eficiencia de los procesos. Los experimentos se realizaron en un reactor diferencial compuesto por un estanque de 1 dm³ y una columna de 19 cm³ de capacidad. El ozono fue generado a razón de 5 g O3/h. Los resultados mostraron que el sistema simultáneo de oxidación/adsorción O3/ZN incrementa la velocidad de remoción del MB con respecto a los procesos separados de ozonización y adsorción con zeolita. En presencia de sustancias atrapadoras de radicales, se observó un 70% de disminución en la velocidad de remoción de MB cuando se empleó el tratamiento con O3 y sólo un 25% cuando se utiliza el tratamiento combinado O3/ZN. Los resultados sugieren que la reacción de oxidación del MB en el sistema tiene lugar fundamentalmente sobre la superficie de la zeolita.This paper compares experimental results on methylene blue (MB removal systems based on ozone oxidation, zeolite adsorption, and simultaneous adsorption-oxidation using ozone in the presence of natural zeolite. The effect of pH (2-8, and the presence of radical scavengers (sodium acetate on process rates and removal efficiencies are assessed at laboratory scale. The experimental system consisted of a 1L differential circular flow reactor and an ozone generator rated at 5 g O3/h. Results show that ozone oxidation combined with zeolite adsorption increases the overall MB oxidation rate with respect to ozonation process and zeolite adsorption. In presence of free radical scavenger, only a 25% of reduction on MB removal rate are

  15. Comparative study of activated carbon, natural zeolite, and green sand supports for CuOX and ZnO sites as ozone decomposition catalyst

    Science.gov (United States)

    Azhariyah, A. S.; Pradyasti, A.; Dianty, A. G.; Bismo, S.

    2018-03-01

    This research was based on ozone decomposition in industrial environment. Ozone is harmful to human. Therefore, catalysts were made as a mask filter to decompose ozone. Comparison studies of catalyst supports were done using Granular Activated Carbon (GAC), Natural Zeolite (NZ), and Green Sand (GS). GAC showed the highest catalytic activity compared to other supports with conversion of 98%. Meanwhile, the conversion using NZ was only 77% and GS had been just 27%. GAC had the highest catalytic activity because it had the largest pore volume, which is 0.478 cm3/g. So GAC was used as catalyst supports. To have a higher conversion in ozone decomposition, GAC was impregnated with metal oxide as the active site of the catalyst. Active site comparison was made using CuOX and ZnO as the active site. Morphology, composition, and crystal phase were analyzed using SEM-EDX, XRF, and XRD methods. Mask filter, which contained catalysts for ozone decomposition, was tested using a fixed bed reactor at room temperature and atmospheric pressure. The result of conversion was analyzed using iodometric method. CuOX/GAC and ZnO/GAC 2%-w showed the highest catalytic activity and conversion reached 100%. From the durability test, CuOX/GAC 2%-w was better than ZnO/GAC 2%-w because the conversion of ozone to oxygen reached 100% with the lowest conversion was 70% for over eight hours.

  16. Effects of ozonation on disinfection and microbial activity in waste activated sludge for land application

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Kyu-Hong; Maeng, Sung Kyu; Hong, Jun-Seok; Lim, Byung-Ran

    2003-07-01

    Effects of ozonation on microbial biomass activity and community structure in waste activated sludges from various treatment plants were investigated. The densities of viable cells and microbial community structure in the sludges treated with ozone at 0.1, 0.2 and 0.4 gO{sub 3}/gDS were measured on the basis of the respiratory quinone profile and LIVE/DEAD Backlight(TM). The results from the bacterial concentration and quinone profiles of the waste activated sludge showed that respiratory activities of microorganisms were detected at the ozone dose of 0.4 gO{sub 3}/gDS. However, fecal coliform, fecal streptococcus and Salmonella sp. in the ozonized sludge were not detected. This result implies that some microorganisms might be more tolerant to ozonation than the pathogenic indicators. The pathogens reduction requirements for Class A biosolids were still met by the ozonation at 0.4 gO{sub 3}/gDS.

  17. OMI/Aura Ozone (O3) Profile 1-Orbit L2 Swath 13x48km V003

    Data.gov (United States)

    National Aeronautics and Space Administration — The OMI/Aura Level-2 Ozone Profile data product OMO3PR (Version 003) is now available ( http://disc.gsfc.nasa.gov/Aura/OMI/omo3pr_v003.shtml ) from the NASA Goddard...

  18. Are Bavarian Forests (southern Germany) at risk from ground-level ozone? Assessment using exposure and flux based ozone indices

    International Nuclear Information System (INIS)

    Baumgarten, Manuela; Huber, Christian; Bueker, Patrick; Emberson, Lisa; Dietrich, Hans-Peter; Nunn, Angela J.; Heerdt, Christian; Beudert, Burkhard; Matyssek, Rainer

    2009-01-01

    Exposure and flux-based indices of O 3 risk were compared, at 19 forest locations across Bavaria in southern Germany from 2002 to 2005; leaf symptoms on mature beech trees found at these locations were also examined for O 3 injury. O 3 flux modelling was performed using continuously recorded O 3 concentrations in combination with meteorological and soil moisture data collected from Level II forest sites. O 3 measurements at nearby rural open-field sites proved appropriate as surrogates in cases where O 3 data were lacking at forest sites (with altitude-dependent average differences of about 10% between O 3 concentrations). Operational thresholds of biomass loss for both O 3 indices were exceeded at the majority of the forest locations, suggesting similar risk under long-term average climate conditions. However, exposure-based indices estimated higher O 3 risk during dry years as compared to the flux-based approach. In comparison, minor O 3 -like leaf injury symptoms were detected only at a few of the forest sites investigated. Relationships between flux-based risk thresholds and tree response need to be established for mature forest stands for validation of predicted growth reductions under the prevailing O 3 regimes. - Exposure- and flux-based ozone indices suggest Bavarian forests to be at risk from ozone; the flux-based index offers a means of incorporating stand-specific and ecological variables that influence risk.

  19. Comparative studies on the degradation of aqueous 2-chloroaniline by O3 as well as by UV-light and γ-rays in the presence of ozone

    International Nuclear Information System (INIS)

    Winarno, Ermin Katrin; Getoff, Nikola

    2002-01-01

    Chlorinated anilines are frequently used in the industry as starting materials for chemical synthesis. Hence, such compounds can occur as pollutants in waste waters. In the present study 2-chloroaniline (2-ClA) was selected as the representative model for this class of compounds. The objectives of the work concerned 2-ClA degradation in water by ozonation as well as by photolysis (UV-light of 254 nm) and radiolysis (γ-rays) in the presence of ozone. In all three series of experiments, the same amount ozone was passed through the 2-ClA solution at pH=6.9 during the treatment. The degradation process was followed as a function of the action time and by chemical analysis of the major products. Based on the actinometry of the monochromatic UV-light (λ=254 nm, E=4.88 eV/hν) and dosimetry data, the obtained degradation yields and products by the three series of experiments are compared. It was established that the synergic effect of γ-rays and ozone leads to the most efficient degradation of 2-ClA, followed by UV/O 3 -combination and pure ozonation. The same sequence is also observed by cleavage of the Cl-atom. The formation of the other major products: ammonia, formaldehyde, oxalic acid and the total yield of carboxylic acids depend on the media. Probable reaction mechanisms are suggested for explanation of the experimental results

  20. Multiannual tropical tropospheric ozone columns and the case of the 2015 el Niño event

    Science.gov (United States)

    Leventidou, Elpida; Eichmann, Kai-Uwe; Weber, Mark; Burrows, John P.

    2016-04-01

    Stratospheric ozone is well known for protecting the surface from harmful ultraviolet solar radiation whereas ozone in the troposphere plays a more complex role. In the lower troposphere ozone can be extremely harmful for human health as it can oxidize biological tissues and causes respiratory problems. Several studies have shown that the tropospheric ozone burden (300±30Tg (IPCC, 2007)) increases by 1-7% per decade in the tropics (Beig and Singh, 2007; Cooper et al., 2014) which makes the need to monitor it on a global scale crucial. Remote sensing from satellites has been proven to be very useful in providing consistent information of tropospheric ozone concentrations over large areas. Tropical tropospheric ozone columns can be retrieved with the Convective Cloud Differential (CCD) technique (Ziemke et al. 1998) using retrieved total ozone columns and cloud parameters from space-borne observations. We have developed a CCD-IUP algorithm which was applied to GOME/ ERS-2 (1995-2003), SCIAMACHY/ Envisat (2002-2012), and GOME-2/ MetOpA (2007-2012) weighting function DOAS (Coldewey-Egbers et al., 2005, Weber et al., 2005) total ozone data. A unique long-term record of monthly averaged tropical tropospheric ozone columns (20°S - 20°N) was created starting in 1996. This dataset has been extensively validated by comparisons with SHADOZ (Thompson et al., 2003) ozonesonde data and limb-nadir Matching (Ebojie et al. 2014) tropospheric ozone data. The comparison shows good agreement with respect to range, inter-annual variation, and variance. Biases where found to be within 5DU and the RMS errors less than 10 DU. This 17-years dataset has been harmonized into one consistent time series, taking into account the three instruments' difference in ground pixel size. The harmonised dataset is used to determine tropical tropospheric ozone trends and climatological values. The 2015 el Niño event has been characterised as one of the top three strongest el Niños since 1950. El Niño

  1. Theoretical study on the mechanism of CH3NH2 and O3 ...

    Indian Academy of Sciences (India)

    CH3NH + OH + O2 adducts with one transition state is the most favoured path. Keywords. Ozone; calculation; reaction mechanism; potential energy profile; transition state. 1. Introduction ..... University of. Applied Science, Bielefeld, Germany.

  2. Interactions of aqueous NOM with nanoscale TiO2: implications for ceramic membrane filtration-ozonation hybrid process.

    Science.gov (United States)

    Kim, Jeonghwan; Shan, Wenqian; Davies, Simon H R; Baumann, Melissa J; Masten, Susan J; Tarabara, Volodymyr V

    2009-07-15

    The combined effect of pH and calcium on the interactions of nonozonated and ozonated natural organic matter (NOM) with nanoscale TiO2 was investigated. The approach included characterization of TiO2 nanoparticles and NOM, extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) modeling of NOM-TiO2 and NOM-NOM interactions, batch study on the NOM adsorption onto TiO2 surface, and bench-scale study on the treatment of NOM-containing feed waters using a hybrid process that combines ozonation and ultrafiltration with a 5 kDa ceramic (TiO2 surface) membrane. It was demonstrated that depending on pH and TiO2 loading, the adsorption of NOM species is controlled by either the availability of divalent cations or by preozonation of NOM. XDLVO surface energy analysis predicts NOM adsorption onto TiO2 in the ozone-controlled regime but not in the calcium-controlled regime. In both regimes, short-range NOM-NOM and NOM-TiO2 interactions were governed by acid-base and van der Waals forces, whereas the role of electrostatic forces was relatively insignificant. Ozonation increased the surface energy of NOM, contributing to the hydrophilic repulsion component of the NOM-NOM and NOM-TiO2 interactions. In the calcium-controlled regime, neither NOM-TiO2 nor NOM-NOM interaction controlled adsorption. Non-XDLVO interactions such as intermolecular bridging by calcium were hypothesized to be responsible for the observed adsorption behavior. Adsorption data proved to be highly predictive of the permeate flux performance.

  3. Ozone generation in positive and negative corona discharge fed by humid oxygen and carbon dioxide

    International Nuclear Information System (INIS)

    Skalny, J D; Orszagh, J; MatejcIk, S; Mason, N J

    2008-01-01

    The effect of humidity on ozone generation of positive and negative corona discharges fed by O 2 and CO 2 has been studied in the humidity range of 100-20 000 ppm. The experiments were carried out at an ambient temperature and pressure of 100 kPa. The increase in humidity of CO 2 conspicuously suppressed the ozone generation in negative corona discharge at all values of the input energy densities into the discharge. The effect was less pronounced in oxygen. In contrast to decrease of ozone concentration observed in negative corona discharge, the presence of water both in O 2 and CO 2 acts catalytically. The ozone concentration has been found to increase remarkably (approximately 10 times) in oxygen, if the humidity was increased from 100 to 20 000 ppm. The dependence of ozone concentration on the gas humidity exhibited an extreme. The increase observed at humidity up to approximately 5000 ppm was followed by the marginal reduction in ozone concentration. Anyway, the values of this were considerably higher than those found in dry CO 2 . The effect of humidity on ozone concentration will be discussed in relation to plasma chemical processes in studied discharges and their macroscopic parameters.

  4. Estimation of surface UV levels based on Meteor-3/TOMS ozone data

    Energy Technology Data Exchange (ETDEWEB)

    Borisov, Y A [Central Aerological Observatory, Moscow (Russian Federation); Geogdzhaev, I V [Moscow Inst. of Physics and Technology, Moscow (Russian Federation); Khattatov, V U [Central Aerological Observatory, Moscow (Russian Federation)

    1996-12-31

    The major consequence of ozone layer depletion for the environment is an increase of harmful ultraviolet (UV) radiation on the Earth surface and in the upper ocean. This implies the importance of environmental UV monitoring. Since the direct global monitoring is not currently possible, indirect estimations of surface UV levels may be used based on satellite ozone data (Madronich, S. 1992). Total Ozone Mapping Spectrometer (TOMS) on board the METEOR-3 satellite provided regular set of data for such estimates. During the time of its operation (August, 1991 - December, 1994) the instrument registered several ozone hole events over Antarctica, when ozone levels dropped by as much as 60 % from their unperturbed values. Probably even more alarming ozone depletions were observed over highly populated regions of middle latitudes of northern hemisphere. Radiative transfer modeling was used to convert METEOR-3/TOMS daily ozone values into regional and global maps of biologically active UV. Calculations demonstrate the effect on surface UV levels produced by ozone hole over Antarctica and ozone depletions over the territory of Russia (March, 1994). UV contour lines deviate from the normal appearance which is determined by growing southward solar elevation. UV contour lines are almost perpendicular to the ozone ones in the ozone depletions areas. The 30 % ozone depletion, over Siberia caused more than 30 % increase in noontime erythemal UV levels, which is equivalent to 10-15 degrees southward latitude displacement. Higher UV radiation increases were found in ozone hole over South America (October 1992) equivalent to about 20 degrees southward displacement

  5. Estimation of surface UV levels based on Meteor-3/TOMS ozone data

    Energy Technology Data Exchange (ETDEWEB)

    Borisov, Y.A. [Central Aerological Observatory, Moscow (Russian Federation); Geogdzhaev, I.V. [Moscow Inst. of Physics and Technology, Moscow (Russian Federation); Khattatov, V.U. [Central Aerological Observatory, Moscow (Russian Federation)

    1995-12-31

    The major consequence of ozone layer depletion for the environment is an increase of harmful ultraviolet (UV) radiation on the Earth surface and in the upper ocean. This implies the importance of environmental UV monitoring. Since the direct global monitoring is not currently possible, indirect estimations of surface UV levels may be used based on satellite ozone data (Madronich, S. 1992). Total Ozone Mapping Spectrometer (TOMS) on board the METEOR-3 satellite provided regular set of data for such estimates. During the time of its operation (August, 1991 - December, 1994) the instrument registered several ozone hole events over Antarctica, when ozone levels dropped by as much as 60 % from their unperturbed values. Probably even more alarming ozone depletions were observed over highly populated regions of middle latitudes of northern hemisphere. Radiative transfer modeling was used to convert METEOR-3/TOMS daily ozone values into regional and global maps of biologically active UV. Calculations demonstrate the effect on surface UV levels produced by ozone hole over Antarctica and ozone depletions over the territory of Russia (March, 1994). UV contour lines deviate from the normal appearance which is determined by growing southward solar elevation. UV contour lines are almost perpendicular to the ozone ones in the ozone depletions areas. The 30 % ozone depletion, over Siberia caused more than 30 % increase in noontime erythemal UV levels, which is equivalent to 10-15 degrees southward latitude displacement. Higher UV radiation increases were found in ozone hole over South America (October 1992) equivalent to about 20 degrees southward displacement

  6. The protective effect of plasma antioxidants during ozone ...

    African Journals Online (AJOL)

    Ozone (O3) therapy forms part of a group of complementary and alternative medical therapies and is gaining more and more interest worldwide. There is, however, some concern regarding O3-toxicity and uncertainty about the effectiveness of O3-therapy. In this study we investigated the possible protective effects of the ...

  7. Membrane contactor/separator for an advanced ozone membrane reactor for treatment of recalcitrant organic pollutants in water

    International Nuclear Information System (INIS)

    Chan, Wai Kit; Jouët, Justine; Heng, Samuel; Yeung, King Lun; Schrotter, Jean-Christophe

    2012-01-01

    An advanced ozone membrane reactor that synergistically combines membrane distributor for ozone gas, membrane contactor for pollutant adsorption and reaction, and membrane separator for clean water production is described. The membrane reactor represents an order of magnitude improvement over traditional semibatch reactor design and is capable of complete conversion of recalcitrant endocrine disrupting compounds (EDCs) in water at less than three minutes residence time. Coating the membrane contactor with alumina and hydrotalcite (Mg/Al=3) adsorbs and traps the organics in the reaction zone resulting in 30% increase of total organic carbon (TOC) removal. Large surface area coating that diffuses surface charges from adsorbed polar organic molecules is preferred as it reduces membrane polarization that is detrimental to separation. - Graphical abstract: Advanced ozone membrane reactor synergistically combines membrane distributor for ozone, membrane contactor for sorption and reaction and membrane separator for clean water production to achieve an order of magnitude enhancement in treatment performance compared to traditional ozone reactor. Highlights: ► Novel reactor using membranes for ozone distributor, reaction contactor and water separator. ► Designed to achieve an order of magnitude enhancement over traditional reactor. ► Al 2 O 3 and hydrotalcite coatings capture and trap pollutants giving additional 30% TOC removal. ► High surface area coating prevents polarization and improves membrane separation and life.

  8. Characteristics and error estimation of stratospheric ozone and ozone-related species over Poker Flat (65° N, 147° W, Alaska observed by a ground-based FTIR spectrometer from 2001 to 2003

    Directory of Open Access Journals (Sweden)

    K. Mizutani

    2007-07-01

    Full Text Available It is important to obtain the year-to-year trend of stratospheric minor species in the context of global changes. An important example is the trend in global ozone depletion. The purpose of this paper is to report the accuracy and precision of measurements of stratospheric chemical species that are made at our Poker Flat site in Alaska (65° N, 147° W. Since 1999, minor atmospheric molecules have been observed using a Fourier-Transform solar-absorption infrared Spectrometer (FTS at Poker Flat. Vertical profiles of the abundances of ozone, HNO3, HCl, and HF for the period from 2001 to 2003 were retrieved from FTS spectra using Rodgers' formulation of the Optimal Estimation Method (OEM. The accuracy and precision of the retrievals were estimated by formal error analysis. Errors for the total column were estimated to be 5.3%, 3.4%, 5.9%, and 5.3% for ozone, HNO3, HCl, and HF, respectively. The ozone vertical profiles were in good agreement with profiles derived from collocated ozonesonde measurements that were smoothed with averaging kernel functions that had been obtained with the retrieval procedure used in the analysis of spectra from the ground-based FTS (gb-FTS. The O3, HCl, and HF columns that were retrieved from the FTS measurements were consistent with Earth Probe/Total Ozone Mapping Spectrometer (TOMS and HALogen Occultation Experiment (HALOE data over Alaska within the error limits of all the respective datasets. This is the first report from the Poker Flat FTS observation site on a number of stratospheric gas profiles including a comprehensive error analysis.

  9. Impact of ozone on Mediterranean forests: A review

    International Nuclear Information System (INIS)

    Paoletti, E.

    2006-01-01

    Ozone impact on Mediterranean forests remains largely under-investigated, despite strong photochemical activity and harmful effects on crops. As representative of O 3 impacts on Mediterranean vegetation, this paper reviews the current knowledge about O 3 and forests in Italy. The intermediate position between Africa and European mid-latitudes creates a complex patchwork of climate and vegetation. Available data from air quality monitoring stations and passive samplers suggest O 3 levels regularly exceed the critical level (CL) for forests. In contrast, relationships between O 3 exposure and effects (crown transparency, radial growth and foliar visible symptoms) often fail. Despite limitations in the study design or underestimation of the CL can also affect this discrepancy, the effects of site factors and plant ecology suggest Mediterranean forest vegetation is adapted to face oxidative stress, including O 3 . Implications for risk assessment (flux-based CL, level III, non-stomatal deposition) are discussed. - Why Mediterranean forests are more ozone tolerant than mesophilic vegetation is explored

  10. Spatial clustering and meteorological drivers of summer ozone in Europe

    Science.gov (United States)

    Carro-Calvo, Leopoldo; Ordóñez, Carlos; García-Herrera, Ricardo; Schnell, Jordan L.

    2017-04-01

    We present a regionalization of summer near-surface ozone (O3) in Europe. For this purpose we apply a K-means algorithm on a gridded MDA8 O3 (maximum daily average 8-h ozone) dataset covering a European domain [15° W - 30° E, 35°-70° N] at 1° x 1° horizontal resolution for the 1998-2012 period. This dataset was compiled by merging observations from the European Monitoring and Evaluation Programme (EMEP) and the European Environment Agency's air quality database (AirBase). The K-means method allows identifying sets of different regions where the O3 concentrations present coherent spatiotemporal patterns and are thus expected to be driven by similar meteorological factors. After some testing, 9 regions were selected: the British Isles, North-Central Europe, Northern Scandinavia, the Baltic countries, the Iberian Peninsula, Western Europe, South-Central Europe, Eastern Europe and the Balkans. For each region we examine the synoptic situations associated with elevated ozone extremes (days exceeding the 95th percentile of the summer MDA8 O3 distribution). Our analyses reveal that there are basically two different kinds of regions in Europe: (a) those in the centre and south of the continent where ozone extremes are associated with elevated temperature within the same region and (b) those in northern Europe where ozone extremes are driven by southerly advection of air masses from warmer, more polluted areas. Even when the observed patterns were initially identified only for days registering high O3 extremes, all summer days can be projected on such patterns to identify the main modes of meteorological variability of O3. We have found that such modes are partly responsible for the day-to-day variability in the O3 concentrations and can explain a relatively large fraction (from 44 to 88 %, depending on the region) of the interannual variability of summer mean MDA8 O3 during the period of analysis. On the other hand, some major teleconnection patterns have been tested

  11. Radiative forcing for changes in tropospheric O3

    International Nuclear Information System (INIS)

    Grossman, A.S.; Wuebbles, D.J.; Grant, K.E.

    1994-06-01

    We have evaluated the radiative forcing for assumed changes in tropospheric O 3 in the 500-1650 cm -1 wavenumber range. The radiative forcing calculations were performed as a function of latitude as well as for a globally and seasonally averaged model atmosphere, both in a clear sky approximation and in a model containing a representative cloud distribution. The scenarios involved radiative forcing calculations for O 3 at normal atmospheric abundance and at a tropospheric abundance depleted by 25 ppbv, at each altitude, for all northern hemisphere latitudes. Normal abundances of H 2 O, CO 2 , CH 4 , and N 2 O were included in the calculations. The IR radiative forcing was calculated using a correlated k-distribution radiative transfer model. The tropospheric radiative forcing values are compared to the IPCC formulae for ozone tropospheric forcing as well as other published values to determine the validity of the correlated k-distribution approach to the radiative forcing calculations. The results for the global average atmosphere show agreement with previous results to the order of 10 percent. We conclude that the O 3 forcing is linear in the background abundance and that the radiative forcing for ozone for the globally averaged atmosphere and the latitude averaged radiative forcing in the clear sky approximation are in agreement to within 10 percent. For the case of an atmosphere in which the tropospheric ozone has been depleted by 25 ppbv at all altitudes in the northern hemisphere, the mid latitude zone contributes ∼50 percent of the forcing, tropic zone contributes ∼37 percent of the forcing and the polar zone contributes ∼13 percent of the total forcing

  12. Ozone decomposition on Ag/SiO{sub 2} and Ag/clinoptilolite catalysts at ambient temperature

    Energy Technology Data Exchange (ETDEWEB)

    Nikolov, Penko, E-mail: penmail@mail.bg [Institute of Catalysis, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria); Genov, Krassimir; Konova, Petya [Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria); Milenova, Katya; Batakliev, Todor; Georgiev, Vladimir [Institute of Catalysis, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria); Kumar, Narendra [Laboratory of Industrial Chemistry, Process Chemistry Centre, Abo Akademi University, Biskopsgatan 8, 20500 Abo/Turku (Finland); Sarker, Dipak K. [School of Pharmacy and Biomolecular Sciences, University of Brighton, Lewes Road, Brighton BN2 4GJ (United Kingdom); Pishev, Dimitar [University of Chemical Technology and Metallurgy, 1756 Sofia (Bulgaria); Rakovsky, Slavcho [Institute of Catalysis, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria)

    2010-12-15

    Silver modified zeolite (Bulgarian natural clinoptilolite) and Ag/silica catalysts were synthesized by ion exchange and incipient wet impregnation method respectively and characterized by different techniques. DC arc-AES was used for Ag detection. XRD spectra show that Ag is loaded over the surface of the SiO{sub 2} sample and that after the ion-exchange process the HEU type structure of clinoptilolite is retained. UV-VIS (specific reflection at 310 nm) and IR (band at 695 cm{sup -1}) spectroscopy analysis proved that silver is loaded as a T-atom into zeolite channels as Ag{sup +}, instead of Na{sup +}, Ca{sup 2+}, or K{sup +} ions, existing in the natural clinoptilolite form. The samples Ag/SiO{sub 2} and Ag-clinoptilolite were tested as catalysts for decomposition of gas phase ozone. Very high catalytic activity (up to 99%) was observed and at the same time the catalysts remained active over time at room temperature.

  13. Spatial separation of electrons and holes for enhancing the gas-sensing property of a semiconductor: ZnO/ZnSnO3 nanorod arrays prepared by a hetero-epitaxial growth

    Science.gov (United States)

    Wang, Ying; Gao, Peng; Sha, Linna; Chi, Qianqian; Yang, Lei; Zhang, Jianjiao; Chen, Yujin; Zhang, Milin

    2018-04-01

    The construction of semiconductor composites is known as a powerful method used to realize the spatial separation of electrons and the holes in them, which can result in more electrons or holes and increase the dispersion of oxygen ions ({{{{O}}}2}- and O - ) (one of the most critical factors for their gas-sensing properties) on the surface of the semiconductor gas sensor. In this work, using 1D ZnO/ZnSnO3 nanoarrays as an example, which are prepared through a hetero-epitaxial growing process to construct a chemically bonded interface, the above strategy to attain a better semiconductor gas-sensing property has been realized. Compared with single ZnSnO3 nanotubes and no-matching ZnO/ZnSnO3 nanoarrays gas sensors, it has been proven by x-ray photoelectron spectroscopy and photoluminescence spectrum examination that the as-obtained ZnO/ZnSnO3 sensor showed a greatly increased quantity of active surface electrons with exceptional responses to trace target gases and much lower optimum working temperatures (less than about 170 °C). For example, the as-obtained ZnO/ZnSnO3 sensor exhibited an obvious response and short response/recovery time (less than 10 s) towards trace H2S gas (a detection limit down to 700 ppb). The high responses and dynamic repeatability observed in these sensors reveal that the strategy based on the as-presented electron and hole separation is reliable for improving the gas-sensing properties of semiconductors.

  14. Microstructure and gas sensitive properties of alpha-Fe2O3-MO2 (M: Sn and Ti) materials prepared by ball milling

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Lin, R.; Mørup, Steen

    1998-01-01

    Metastable alpha-Fe2O3-MO2 (M: Sn and Ti) solid solutions can be synthesized by mechanical alloying. The alloy formation, microstructure, and gas sensitive properties of mechanically milled alpha-Fe2O3-SnO2 materials are discussed. Tin ions in alpha-Fe2O3 are found to occupy the empty octahedral...... holes in the alpha-Fe2O3 lattice. This interstitial model can also describe the structure of alpha-Fe2O3-TiO2 solid solutions. Finally, a correlation of gas sensitive properties with microstructure of alpha-Fe2O3-SnO2 materials is presented....

  15. Geophysical validation of SCIAMACHY Limb Ozone Profiles

    Directory of Open Access Journals (Sweden)

    E. J. Brinksma

    2006-01-01

    Full Text Available We discuss the quality of the two available SCIAMACHY limb ozone profile products. They were retrieved with the University of Bremen IFE's algorithm version 1.61 (hereafter IFE, and the official ESA offline algorithm (hereafter OL versions 2.4 and 2.5. The ozone profiles were compared to a suite of correlative measurements from ground-based lidar and microwave, sondes, SAGE II and SAGE III (Stratospheric Aerosol and Gas Experiment. To correct for the expected Envisat pointing errors, which have not been corrected implicitly in either of the algorithms, we applied a constant altitude shift of -1.5 km to the SCIAMACHY ozone profiles. The IFE ozone profile data between 16 and 40 km are biased low by 3-6%. The average difference profiles have a typical standard deviation of 10% between 20 and 35 km. We show that more than 20% of the SCIAMACHY official ESA offline (OL ozone profiles version 2.4 and 2.5 have unrealistic ozone values, most of these are north of 15° S. The remaining OL profiles compare well to correlative instruments above 24 km. Between 20 and 24 km, they underestimate ozone by 15±5%.

  16. Suppressed carrier density for the patterned high mobility two-dimensional electron gas at γ-Al2O3/SrTiO3 heterointerfaces

    DEFF Research Database (Denmark)

    Niu, Wei; Gan, Yulin; Christensen, Dennis Valbjørn

    2017-01-01

    The two-dimensional electron gas (2DEG) at the non-isostructural interface between spinel γ-Al2O3 and perovskite SrTiO3 is featured by a record electron mobility among complex oxide interfaces in addition to a high carrier density up to the order of 1015 cm-2. Herein, we report on the patterning...... is found to be approximately 3×1013 cm-2, much lower than that of the unpatterned sample (~1015 cm-2). Remarkably, a high electron mobility of approximately 3,600 cm2V-1s-1 was obtained at low temperatures for the patterned 2DEG at a carrier density of ~ 7×1012 cm-2, which exhibits clear Shubnikov-de Hass...... quantum oscillations. The patterned high-mobility 2DEG at the γ-Al2O3/SrTiO3 interface paves the way for the design and application of spinel/perovskite interfaces for high-mobility all-oxide electronic devic...

  17. Physiological responses of lichens to factorial fumigations with nitric acid and ozone

    International Nuclear Information System (INIS)

    Riddell, J.; Padgett, P.E.; Nash, T.H.

    2012-01-01

    This paper addresses the effects of gaseous nitric acid (HNO 3 ) and ozone (O 3 ), two important air pollutants, on six lichen species with different morphological, ecological, and biological characteristics. The treatment chambers were set up in a factorial design consisting of control chambers, chambers fumigated with HNO 3 , with O 3 , and with HNO 3 and O 3 , together. Each species showed a different sensitivity to the fumigations, reflecting the physiological variation among species. Our results clearly indicate that HNO 3 is a strong phytotoxin to many lichens, and that O 3 alone has little effect on the measured parameters. The combined fumigation effects of HNO 3 and O 3 were not significantly different from HNO 3 alone. - Highlights: ► We fumigated 6 lichen species with factorial combinations of nitric acid (HNO 3 ) and ozone (O 3 ). ► Some species were highly sensitive to HNO 3 while others were tolerant. ► No species responded significantly to O 3 . ► The combined fumigation effects of HNO 3 and O 3 were not significantly different from HNO 3 alone. ► HNO 3 may play an important role in lichen community composition in areas with high HNO 3 pollution. - Nitric acid can be highly toxic to lichens through several physiological mechanisms. Ozone is relatively non-toxic to fumigated lichens.

  18. Inactivation of E. coli O157:H7 on blueberries by electrolyzed water, ultraviolet light, and ozone.

    Science.gov (United States)

    Kim, Chyer; Hung, Yen-Con

    2012-04-01

    Increased interest in blueberries due to their nutritional and health benefits has led to an increase in consumption. However, blueberries are consumed mostly raw or minimally processed and are susceptible to microbial contamination like other type of fresh produce. This study was, therefore, undertaken to evaluate the efficacy of electrostatic spray of electrolyzed oxidizing (EO) water, UV light, ozone, and a combination of ozone and UV light in killing Escherichia coli O157:H7 on blueberries. A 5-strain mixture of E. coli O157:H7 were inoculated on the calyx and skin of blueberries and then subjected to the treatments. Electrostatic EO water spray reduced initial populations of E. coli O157:H7 by only 0.13 to 0.24 log CFU/g and 0.88 to 1.10 log CFU/g on calyx and skin of blueberries, respectively. Ozone treatment with 4000 mg/L reduced E. coli O157:H7 by only 0.66 and 0.72 log CFU/g on calyx and skin of blueberries, respectively. UV light at 20 mW/cm² for 10 min was the most promising single technology and achieved 2.14 and greater than 4.05 log reductions of E. coli O157:H7 on the calyx and skin of blueberries, respectively. The combination treatment of 1 min ozone and followed by a 2 min UV achieved more than 1 and 2 log additional reductions on blueberry calyx than UV or ozone alone, respectively. Outbreaks of foodborne illnesses have been associated with consumption of fresh produce. Many methods for removing pathogens as well as minimizing their effect on quality of treated produce have been investigated. UV technology and its combination with ozone used in this study to inactive E. coli O157:H7 on blueberries was found effective. Results from this study may help producers and processors in developing hurdle technologies for the delivery of safer blueberries to consumers. © 2012 Institute of Food Technologists®

  19. Predicting tropospheric ozone and hydroxyl radical in a global, three-dimensional, chemistry, transport, and deposition model

    Energy Technology Data Exchange (ETDEWEB)

    Atherton, C.S.

    1995-01-05

    Two of the most important chemically reactive tropospheric gases are ozone (O{sub 3}) and the hydroxyl radical (OH). Although ozone in the stratosphere is a necessary protector against the sun`s radiation, tropospheric ozone is actually a pollutant which damages materials and vegetation, acts as a respiratory irritant, and is a greenhouse gas. One of the two main sources of ozone in the troposphere is photochemical production. The photochemistry is initiated when hydrocarbons and carbon monoxide (CO) react with nitrogen oxides (NO{sub x} = NO + NO{sub 2}) in the presence of sunlight. Reaction with the hydroxyl radical, OH, is the main sink for many tropospheric gases. The hydroxyl radical is highly reactive and has a lifetime on the order of seconds. Its formation is initiated by the photolysis of tropospheric ozone. Tropospheric chemistry involves a complex, non-linear set of chemical reactions between atmospheric species that vary substantially in time and space. To model these and other species on a global scale requires the use of a global, three-dimensional chemistry, transport, and deposition (CTD) model. In this work, I developed two such three dimensional CTD models. The first model incorporated the chemistry necessary to model tropospheric ozone production from the reactions of nitrogen oxides with carbon monoxide (CO) and methane (CH{sub 4}). The second also included longer-lived alkane species and the biogenic hydrocarbon isoprene, which is emitted by growing plants and trees. The models` ability to predict a number of key variables (including the concentration of O{sub 3}, OH, and other species) were evaluated. Then, several scenarios were simulated to understand the change in the chemistry of the troposphere since preindustrial times and the role of anthropogenic NO{sub x} on present day conditions.

  20. Catalytic ozonation of ammonia using biomass char and wood fly ash.

    Science.gov (United States)

    Kastner, James R; Miller, Joby; Kolar, Praveen; Das, K C

    2009-05-01

    Catalytic ozonation of gaseous ammonia was investigated at room temperature using wood fly ash (WFA) and biomass char as catalysts. WFA gave the best results, removing ammonia (11 ppmv NH(3), 45% conversion) at 23 degrees C at a residence time of 0.34 s, using 5 g of catalyst or ash at the lowest ozone concentration (62 ppmv). Assuming pseudo zero order kinetics in ozone, a power rate law of -r(NH3) = 7.2 x 10(-8) C(NH3)(0.25) (r, mol g(-1)s(-1), C(NH3)molL(-1)) was determined at 510 ppmv O(3) and 23 degrees C for WFA. Water vapor approximately doubled the oxidation rate using WFA and catalytic ozonation activity was not measured for the char without humidifying the air stream. Overall oxidation rates using the crude catalysts were lower than commercial catalysts, but the catalytic ozonation process operated at significantly lower temperatures (23 vs. 300 degrees C). Nitric oxide was not detected and the percentage of NO(2) formed from NH(3) oxidation ranged from 0.3% to 3% (v/v), with WFA resulting in the lowest NO(2) level (at low O(3) levels). However, we could not verify that N(2)O was not formed, so further research is needed to determine if N(2) is the primary end-product. Additional research is required to develop techniques to enhance the oxidation activity and industrial application of the crude, but potentially inexpensive catalysts.

  1. Enhanced pharmaceutical removal from water in a three step bio-ozone-bio process.

    Science.gov (United States)

    de Wilt, Arnoud; van Gijn, Koen; Verhoek, Tom; Vergnes, Amber; Hoek, Mirit; Rijnaarts, Huub; Langenhoff, Alette

    2018-07-01

    Individual treatment processes like biological treatment or ozonation have their limitations for the removal of pharmaceuticals from secondary clarified effluents with high organic matter concentrations (i.e. 17 mg TOC/L). These limitations can be overcome by combining these two processes for a cost-effective pharmaceutical removal. A three-step biological-ozone-biological (BO 3 B) treatment process was therefore designed for the enhanced pharmaceutical removal from wastewater effluent. The first biological step removed 38% of ozone scavenging TOC, thus proportionally reducing the absolute ozone input for the subsequent ozonation. Complementariness between biological and ozone treatment, i.e. targeting different pharmaceuticals, resulted in cost-effective pharmaceutical removal by the overall BO 3 B process. At a low ozone dose of 0.2 g O 3 /g TOC and an HRT of 1.46 h in the biological reactors, the removal of 8 out of 9 pharmaceuticals exceeded 85%, except for metoprolol (60%). Testing various ozone doses and HRTs revealed that pharmaceuticals were ineffectively removed at 0.1 g O3/g TOC and an HRT of 0.3 h. At HRTs of 0.47 and 1.46 h easily and moderately biodegradable pharmaceuticals such as caffeine, gemfibrozil, ibuprofen, naproxen and sulfamethoxazole were over 95% removed by biological treatment. The biorecalcitrant carbamazepine was completely ozonated at a dose of 0.4 g O 3 /g TOC. Ozonation products are likely biodegraded in the last biological reactor as a 17% TOC removal was found. No appreciable acute toxicity towards D. magna, P. subcapitata and V. fischeri was found after exposure to the influents and effluents of the individual BO 3 B reactors. The BO 3 B process is estimated to increase the yearly wastewater treatment tariff per population equivalent in the Netherlands by less than 10%. Overall, the BO 3 B process is a cost-effective treatment process for the removal of pharmaceuticals from secondary clarified effluents. Copyright

  2. Secondary ozone peaks in the troposphere over the Himalayas

    Directory of Open Access Journals (Sweden)

    N. Ojha

    2017-06-01

    Full Text Available Layers with strongly enhanced ozone concentrations in the middle–upper troposphere, referred to as secondary ozone peaks (SOPs, have been observed in different regions of the world. Here we use the global ECHAM5/MESSy atmospheric chemistry model (EMAC to (i investigate the processes causing SOPs, (ii explore both their frequency of occurrence and seasonality, and (iii assess their effects on the tropospheric ozone budget over the Himalayas. The vertical profiles of potential vorticity (PV and a stratospheric ozone tracer (O3s in EMAC simulations, in conjunction with the structure of SOPs, suggest that SOPs over the Himalayas are formed by stratosphere-to-troposphere transport (STT of ozone. The spatial distribution of O3s further shows that such effects are in general most pronounced in the northern part of India. Model simulated ozone distributions and backward air trajectories show that ozone rich air masses, associated with STT, originate as far as northern Africa and the North Atlantic Ocean, the Middle East, as well as in nearby regions in Afghanistan and Pakistan, and are rapidly (within 2–3 days transported to the Himalayas. Analysis of a 15-year (2000–2014 EMAC simulation shows that the frequency of SOPs is highest during the pre-monsoon season (e.g. 11 % of the time in May, while no intense SOP events are found during the July–October period. The SOPs are estimated to enhance the tropospheric column ozone (TCO over the central Himalayas by up to 21 %.

  3. Facile synthesis of α-Fe{sub 2}O{sub 3} nanoparticles for high-performance CO gas sensor

    Energy Technology Data Exchange (ETDEWEB)

    Cuong, Nguyen Duc, E-mail: nguyenduccuong@hueuni.edu.vn [College of Sciences, Hue University, 77 Nguyen Hue, Phu Nhuan Ward, Hue City (Viet Nam); Faculty of Hospitality and Tourism, Hue University, 22 Lam Hoang, Vy Da Ward, Hue City (Viet Nam); Khieu, Dinh Quang; Hoa, Tran Thai [College of Sciences, Hue University, 77 Nguyen Hue, Phu Nhuan Ward, Hue City (Viet Nam); Quang, Duong Tuan [College of Education, Hue University, 34 Le Loi, Hue City (Viet Nam); Viet, Pham Hung [Centre for Environmental Technology and Sustainable Development (CETASD), Hanoi University of Science, 334 Nguyen Trai, Hanoi (Viet Nam); Lam, Tran Dai [Graduate University of Science and Technology, Vietnamese Academy of Science and Technology, Hanoi (Viet Nam); Hoa, Nguyen Duc [International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology (HUST), No. 1, Dai Co Viet, Hanoi (Viet Nam); Hieu, Nguyen Van, E-mail: hieu@itims.edu.vn [International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology (HUST), No. 1, Dai Co Viet, Hanoi (Viet Nam)

    2015-08-15

    Highlights: • We have demonstrated a facile method to prepare Fe{sub 2}O{sub 3} nanoparticles. • The gas sensing properties of α-Fe{sub 2}O{sub 3} have been invested. • The results show potential application of α-Fe{sub 2}O{sub 3} NPs for CO sensors in environmental monitoring. - Abstract: Iron oxide nanoparticles (NPs) were prepared via a simple hydrothermal method for high performance CO gas sensor. The synthesized α-Fe{sub 2}O{sub 3} NPs were characterized by X-ray diffraction, nitrogen adsorption/desorption isotherm, scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and selected area electron diffraction (SAED). The SEM, TEM results revealed that obtained α-Fe{sub 2}O{sub 3} particles had a peanut-like geometry with hemispherical ends. The response of the α-Fe{sub 2}O{sub 3} NPs based sensor to carbon monoxide (CO) and various concentrations of other gases were measured at different temperatures. It found that the sensor based on the peanut-like α-Fe{sub 2}O{sub 3} NPs exhibited high response, fast response–recovery, and good selectivity to CO at 300 °C. The experimental results clearly demonstrated the potential application of α-Fe{sub 2}O{sub 3} NPs as a good sensing material in the fabrication of CO sensor.

  4. Highly selective SiO2 etching over Si3N4 using a cyclic process with BCl3 and fluorocarbon gas chemistries

    Science.gov (United States)

    Matsui, Miyako; Kuwahara, Kenichi

    2018-06-01

    A cyclic process for highly selective SiO2 etching with atomic-scale precision over Si3N4 was developed by using BCl3 and fluorocarbon gas chemistries. This process consists of two alternately performed steps: a deposition step using BCl3 mixed-gas plasma and an etching step using CF4/Ar mixed-gas plasma. The mechanism of the cyclic process was investigated by analyzing the surface chemistry at each step. BCl x layers formed on both SiO2 and Si3N4 surfaces in the deposition step. Early in the etching step, the deposited BCl x layers reacted with CF x radicals by forming CCl x and BF x . Then, fluorocarbon films were deposited on both surfaces in the etching step. We found that the BCl x layers formed in the deposition step enhanced the formation of the fluorocarbon films in the CF4 plasma etching step. In addition, because F radicals that radiated from the CF4 plasma reacted with B atoms while passing through the BCl x layers, the BCl x layers protected the Si3N4 surface from F-radical etching. The deposited layers, which contained the BCl x , CCl x , and CF x components, became thinner on SiO2 than on Si3N4, which promoted the ion-assisted etching of SiO2. This is because the BCl x component had a high reactivity with SiO2, and the CF x component was consumed by the etching reaction with SiO2.

  5. Observations of NO2 and O3 during thunderstorm activity using visible spectroscopy

    Science.gov (United States)

    Jadhav, D. B.; Londhe, A. L.; Bose, S.

    1996-08-01

    Simultaneous observations for the total column densities of NO2 , O3 and H2O were carried on using the portable Spectrometer (438-450 nm and 400-450 nm) and the visible Spectrometer (544.4-628 nm) during premonsoon thunderstorms and embedded hail storm activity at Pune (18°32’N & 73°51’E), India. These observations confirm the fact that there is an increase in O3 and NO2 column densities during thunderstorms. The increase in O3 was observed following onset of thunderstorm, while the increase in NO2 was observed only after the thunder flashes occur. This implies that the production mechanisms for O3 and NO2 in thunderstorm are different. The observed column density of NO2 value (1 to 3 × 1017molecules · cm-2) during thunderstorm activity is 10 to 30 times higher than the value (1 × 1016molecules · cm-2) of a normal day total column density. The spectrometric observations and observations of thunder flashes by electric field meter showed that 6.4 × 1025molecules / flash of NO2 are produced. The increased total column density of ozone during thunderstorm period is 1.2 times higher than normal (clear) day ozone concentration. The multiple scattering in the clouds is estimated from H2O and O2 absorption bands in the visible spectral region. Considering this effect the calculated amount of ozone added in the global atmosphere due to thunderstorm activity is 0.26 to 0.52 DU, and the annual production of ozone due to thunderstorm activity is of the order of 4.02 × 1037 molecules / year. The annual NO2 production may be of the order of 2.02 × 1035molecules / year.

  6. Are Antarctic ozone variations a manifestation of dynamics or chemistry?

    Science.gov (United States)

    Tung, K.-K.; Ko, M. K. W.; Rodriguez, J. M.; Sze, N. D.

    1986-01-01

    The existence of a reverse circulation cell with rising motion in the polar lower stratosphere is suggested as an explanation for the temporal behavior of the ozone column density in the Antarctic region. The upwelling brings ozone-poor air from below 100 mbar to the stratosphere, possibly contributing to the observed ozone decline in early spring. At the same time, the Antarctic stratosphere might contain a very low concentration of NO(x), a condition that could favor a greatly enhanced catalytic removal of O3 by halogen species. It is argued that heterogeneous processes and formation of OClO by the reaction BrO+ClO - OClO+Br before and after the polar night might help to suppress the NO(x) levels during the early spring period.

  7. Major Upgrades to the AIRS Version-6 Ozone Profile Methodology

    Science.gov (United States)

    Susskind, Joel; Blaisdell, John; Iredell, Lena

    2015-01-01

    This research is a continuation of part of what was shown at the last AIRS Science Team Meeting in the talk Improved Water Vapor and Ozone Profiles in SRT AIRS Version-6.X and the AIRS February 11, 2015 NetMeeting Further improvements in water vapor and ozone profiles compared to Version-6.AIRS Version-6 was finalized in late 2012 and is now operational. Version-6 contained many significant improvements in retrieval methodology compared to Version-5. However, Version-6 retrieval methodology used for the water vapor profile q(p) and ozone profile O3(p) retrievals is basically unchanged from Version-5, or even from Version-4. Subsequent research has made significant improvements in both water vapor and O3 profiles compared to Version-6. This talk will concentrate on O3 profile retrievals. Improvements in water vapor profile retrievals are given in a separate presentation.

  8. Retrieval of daytime [O3] altitude profile from measurements of 1.27 μm O2 emission in the mesosphere: a comparison of methods

    Science.gov (United States)

    Yankovsky, Valentine A.; Manuilova, Rada O.

    2017-11-01

    The altitude profiles of ozone concentration are retrieved from measurements of the volume emission rate in the 1.27 μm oxygen band in the TIMED-SABER experiment. In this study we compare the methods of retrieval of daytime [O3] altitude profile in the framework of two models: electronic-vibrational kinetics and a purely electronic kinetics of excited products of ozone and oxygen photolysis. In order to retrieve the [O3] altitude profile from the measurements of the intensity of the O2 band in the region of 1.27 μm correctly, it is necessary to use the photochemical model of the electronic-vibrational kinetics of excited products of ozone and oxygen photolysis in the mesosphere and lower thermosphere.

  9. Characterization of Mixed xWO3(1-xY2O3 Nanoparticle Thick Film for Gas Sensing Application

    Directory of Open Access Journals (Sweden)

    M. H. Shahrokh Abadi

    2010-05-01

    Full Text Available Microstructural, topology, inner morphology, and gas-sensitivity of mixed xWO3(1-xY2O3 nanoparticles (x = 1, 0.95, 0.9, 0.85, 0.8 thick-film semiconductor gas sensors were studied. The surface topography and inner morphological properties of the mixed powder and sensing film were characterized with X-ray diffraction (XRD, atomic force microscopy (AFM, transmission electron microscopy (TEM, and scanning electron microscopy (SEM. Also, gas sensitivity properties of the printed films were evaluated in the presence of methane (CH4 and butane (C4H10 at up to 500 °C operating temperature of the sensor. The results show that the doping agent can modify some structural properties and gas sensitivity of the mixed powder.

  10. 2D Electron Gas with 100% Spin-Polarization in the (LaMnO3)2/(SrTiO3)2 Superlattice under Uniaxial Strain

    KAUST Repository

    Cossu, Fabrizio

    2014-07-28

    By first-principles calculations we investigate the structural, electronic, and magnetic properties of the (LaMnO3)2/(SrTiO3)2 superlattice. We find that a monoclinic C2h symmetry is energetically favorable and that the spins order ferromagnetically. Under both compressive and tensile uniaxial strain the electronic structure of the superlattice shows a half-metallic character. In particular, a fully spin-polarized two-dimensional electron gas, which traces back to the Ti 3dxy orbitals, is achieved under compressive uniaxial strain. The (LaMnO3)2/(SrTiO3)2 superlattice is analysed with respect to its structure, magnetism, and electronic properties. Our results demonstrate that uniaxial strain in an experimentally accessible range, both tensile and compressive, can be used to induce half-metallicity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Effects of different petal thickness on gas sensing properties of flower-like WO3·H2O hierarchical architectures

    International Nuclear Information System (INIS)

    Zeng, Wen; Zhang, He; Wang, Zhongchang

    2015-01-01

    Graphical abstract: In this work, we prepare four different petal thicknesses of hierarchical WO 3 ·H 2 O architectures via a simple hydrothermal process, and systematically report their formation mechanisms and gas-sensing properties. - Highlights: • Flower-like WO 3 ·H 2 O architectures with different petal thickness were reported. • The WO 3 ·H 2 O sheet-flower sensor shows a significantly enhanced gas response. • A possible growth mechanism for the flower-like architectures is proposed. - Abstract: Hierarchical architectures consisting of two-dimensional (2D) nanostructures are of great interest for potential use in recent year. Here, we report the successful synthesis of four hierarchical tungsten oxide flower-like architectures via a simple yet facile hydrothermal method. The as-prepared WO 3 ·H 2 O hierarchical architectures are in fact assembled with numerous nanosheets or nanoplates. Through a comprehensive characterization of microstructures and morphologies of the as-prepared products, we find that petal thickness is a key factor for affecting gas-sensing performances. We further propose a possible growth mechanism for the four flower-like architectures. Moreover, gas-sensing measurements showed that the well-defined sheet-flower WO 3 ·H 2 O hierarchical architectures exhibited the excellent gas-sensing properties to ethanol owing to their largest amount of thin petal structures and pores

  12. Experimental and theoretical studies of nuclear generation of ozone and its photolysis into singlet delta oxygen

    International Nuclear Information System (INIS)

    Elsayed-Ali, H.E.

    1985-01-01

    The radiation chemistry of oxygen discharges is better-studied system. The discharges were made by irradiation with high energy helium and lithium ions created by a neutron-induced reaction in boron (10). A detailed numerical model and a simplified analytical model of oxygen radiolysis have been developed to interpret the data. A summary of the data on the ozone yield from irradiation of He-O2, Ne-O2 and Ar-O2 is presented. Dose rates are also indicated. The present work appears to be the first to measure the steady state ozone concentration in noble gas-oxygen discharges and the effect of SF6 on this steady state concentration. 106 refs

  13. Fate of return activated sludge after ozonation: an optimization study for sludge disintegration.

    Science.gov (United States)

    Demir, Ozlem; Filibeli, Ayse

    2012-09-01

    The effects of ozonation on sludge disintegration should be investigated before the application of ozone during biological treatment, in order to minimize excess sludge production. In this study, changes in sludge and supernatant after ozonation of return activated sludge were investigated for seven different ozone doses. The optimum ozone dose to avoid inhibition of ozonation and high ozone cost was determined in terms of disintegration degree as 0.05 g O3/gTS. Suspended solid and volatile suspended solid concentrations of sludge decreased by 77.8% and 71.6%, respectively, at the optimum ozone dose. Ozonation significantly decomposed sludge flocs. The release of cell contents was proved by the increase of supernatant total nitrogen (TN) and phosphorus (TP). While TN increased from 7 mg/L to 151 mg/L, TP increased from 8.8 to 33 mg/L at the optimum ozone dose. The dewaterability and filterability characteristics of the ozonated sludge were also examined. Capillary suction time increased with increasing ozone dosage, but specific resistance to filtration increased to a specific value and then decreased dramatically. The particle size distribution changed significantly as a result of floc disruption at an optimum dose of 0.05 gO3/gTS.

  14. Effect of calcium-ozone treatment on chemical and biological properties of polyethylene terephthalate.

    Science.gov (United States)

    Rashid, Ahmed Nafis; Tsuru, Kanji; Ishikawa, Kunio

    2015-05-01

    Ozone (O3 ) treatment of polyethylene terephthalate (PET) in distilled water was performed in the presence and absence of calcium (Ca(2+) ). PET was oxidized and thus carboxylic and hydroxyl functional groups were introduced on its surface after O3 treatment, regardless of the presence or absence of Ca(2+) . In the case of O3 treatment with Ca(2+) , PET surface was modified with Ca(2+) . Ca(2+) immobilization was confirmed by X-ray photoelectron spectrometric analysis. Hydrophilicity was investigated by measuring contact angles (CA). CA of PET decreased significantly after ozonation. Surface topography of PET before and after ozone treatment was observed by scanning electron microscopy, and showed no morphological changes. In vitro studies showed enhanced rat bone marrow cell responses on the O3 -treated PET surface. Ca(2+) -O3 oxidation at 37°C for 6 h is expected to be an effective method to fabricate PET with good biocompatibility. © 2014 Wiley Periodicals, Inc.

  15. Growth of soybean at future tropospheric ozone concentrations decreases canopy evapotranspiration and soil water depletion

    Energy Technology Data Exchange (ETDEWEB)

    Bernacchi, Carl J., E-mail: bernacch@illinois.edu [Global Change and Photosynthesis Research Unit, United States Department of Agriculture Agricultural Research Service, Urbana, IL 61801 (United States); Institute for Genomic Biology and Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Leakey, Andrew D.B. [Institute for Genomic Biology and Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Kimball, Bruce A. [USDA-ARS US Arid-Land Agricultural Research Center, 21881 N. Cardon Lane, Maricopa, AZ 85238 (United States); Ort, Donald R. [Global Change and Photosynthesis Research Unit, United States Department of Agriculture Agricultural Research Service, Urbana, IL 61801 (United States); Institute for Genomic Biology and Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States)

    2011-06-15

    Tropospheric ozone is increasing in many agricultural regions resulting in decreased stomatal conductance and overall biomass of sensitive crop species. These physiological effects of ozone forecast changes in evapotranspiration and thus in the terrestrial hydrological cycle, particularly in intercontinental interiors. Soybean plots were fumigated with ozone to achieve concentrations above ambient levels over five growing seasons in open-air field conditions. Mean season increases in ozone concentrations ([O{sub 3}]) varied between growing seasons from 22 to 37% above background concentrations. The objective of this experiment was to examine the effects of future [O{sub 3}] on crop ecosystem energy fluxes and water use. Elevated [O{sub 3}] caused decreases in canopy evapotranspiration resulting in decreased water use by as much as 15% in high ozone years and decreased soil water removal. In addition, ozone treatment resulted in increased sensible heat flux in all years indicative of day-time increase in canopy temperature of up to 0.7 deg. C. - Highlights: > Globally, tropospheric ozone is currently and will likely continue to increase into the future. > We examine the impact of elevated ozone on water use by soybean at the SoyFACE research facility. > High ozone grown soybean had reduced rates of evapotranspiration and higher soil moisture. > Increases in ozone have the potential to impact the hydrologic cycle where these crops are grown. - Soybean grown in elevated concentrations of ozone is shown to evapotranspire less water compared with soybean canopies grown under current atmospheric conditions.

  16. Growth of soybean at future tropospheric ozone concentrations decreases canopy evapotranspiration and soil water depletion

    International Nuclear Information System (INIS)

    Bernacchi, Carl J.; Leakey, Andrew D.B.; Kimball, Bruce A.; Ort, Donald R.

    2011-01-01

    Tropospheric ozone is increasing in many agricultural regions resulting in decreased stomatal conductance and overall biomass of sensitive crop species. These physiological effects of ozone forecast changes in evapotranspiration and thus in the terrestrial hydrological cycle, particularly in intercontinental interiors. Soybean plots were fumigated with ozone to achieve concentrations above ambient levels over five growing seasons in open-air field conditions. Mean season increases in ozone concentrations ([O 3 ]) varied between growing seasons from 22 to 37% above background concentrations. The objective of this experiment was to examine the effects of future [O 3 ] on crop ecosystem energy fluxes and water use. Elevated [O 3 ] caused decreases in canopy evapotranspiration resulting in decreased water use by as much as 15% in high ozone years and decreased soil water removal. In addition, ozone treatment resulted in increased sensible heat flux in all years indicative of day-time increase in canopy temperature of up to 0.7 deg. C. - Highlights: → Globally, tropospheric ozone is currently and will likely continue to increase into the future. → We examine the impact of elevated ozone on water use by soybean at the SoyFACE research facility. → High ozone grown soybean had reduced rates of evapotranspiration and higher soil moisture. → Increases in ozone have the potential to impact the hydrologic cycle where these crops are grown. - Soybean grown in elevated concentrations of ozone is shown to evapotranspire less water compared with soybean canopies grown under current atmospheric conditions.

  17. Spatial distribution of ozone density in pulsed corona discharges observed by two-dimensional laser absorption method

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Ryo; Oda, Tetsuji [Department of Electrical Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656 (Japan)

    2004-03-07

    The spatial distribution of ozone density is measured in pulsed corona discharges with a 40 {mu}m spatial resolution using a two-dimensional laser absorption method. Discharge occurs in a 13 mm point-to-plane gap in dry air with a pulse duration of 100 ns. The result shows that the ozone density increases for about 100 {mu}s after the discharge pulse. The rate coefficient of the ozone-producing reaction, O + O{sub 2} + M {yields} O{sub 3} + M, is estimated to be 3.5 x 10{sup -34} cm{sup 6} s{sup -1}. It is observed that ozone is mostly distributed in the secondary-streamer channel. This suggests that most of the ozone is produced by the secondary streamer, not the primary streamer. After the discharge pulse, ozone diffuses into the background from the secondary-streamer channel. The diffusion coefficient of ozone is estimated to be approximately 0.1 to 0.2 cm{sup 2} s{sup -1}.

  18. Spatial distribution of ozone density in pulsed corona discharges observed by two-dimensional laser absorption method

    International Nuclear Information System (INIS)

    Ono, Ryo; Oda, Tetsuji

    2004-01-01

    The spatial distribution of ozone density is measured in pulsed corona discharges with a 40 μm spatial resolution using a two-dimensional laser absorption method. Discharge occurs in a 13 mm point-to-plane gap in dry air with a pulse duration of 100 ns. The result shows that the ozone density increases for about 100 μs after the discharge pulse. The rate coefficient of the ozone-producing reaction, O + O 2 + M → O 3 + M, is estimated to be 3.5 x 10 -34 cm 6 s -1 . It is observed that ozone is mostly distributed in the secondary-streamer channel. This suggests that most of the ozone is produced by the secondary streamer, not the primary streamer. After the discharge pulse, ozone diffuses into the background from the secondary-streamer channel. The diffusion coefficient of ozone is estimated to be approximately 0.1 to 0.2 cm 2 s -1

  19. Treatability study of the effluent containing reactive blue 21 dye by ozonation and the mass transfer study of ozone

    Science.gov (United States)

    Velpula, Priyadarshini; Ghuge, Santosh; Saroha, Anil K.

    2018-04-01

    Ozonation is a chemical treatment process in which ozone reacts with the pollutants present in the effluent by infusion of ozone into the effluent. This study includes the effect of various parameters such as inlet ozone dose, pH of solution and initial concentration of dye on decolorization of dye in terms CRE. The maximum CRE of 98.62% with the reaction rate constant of 0.26 min-1 is achieved in 18 minutes of reaction time at inlet ozone dose of 11.5 g/m3, solution pH of 11 and 30 mg/L of initial concentration of dye. The presence of radical scavenger (Tertiary Butyl Alcohol) suppressed the CRE from 98.62% to 95.4% at high pH values indicates that the indirect mechanism dominates due to the presence of hydroxyl radicals which are formed by the decomposition of ozone. The diffusive and convective mass transfer coefficients of ozone are calculated as 1.78 × 10-5 cm2/sec and 0.075 min-1. It is observed that the fraction of resistance offered by liquid is very much high compared to gas phase indicates that the ozonation is a liquid phase mass transfer controlled operation.

  20. Ozone uptake by adult urban trees based on sap flow measurement

    International Nuclear Information System (INIS)

    Wang Hua; Zhou Weiqi; Wang Xiaoke; Gao Fuyuan; Zheng Hua; Tong Lei; Ouyang Zhiyun

    2012-01-01

    The O 3 uptake in 17 adult trees of six urban species was evaluated by the sap flow-based approach under free atmospheric conditions. The results showed very large species differences in ground area scaled whole-tree ozone uptake (F O 3 ), with estimates ranging from 0.61 ± 0.07 nmol m −2 s −1 in Robinia pseudoacacia to 4.80 ± 1.04 nmol m −2 s −1 in Magnolia liliiflora. However, average F O 3 by deciduous foliages was not significantly higher than that by evergreen ones (3.13 vs 2.21 nmol m −2 s −1 , p = 0.160). Species of high canopy conductance for O 3 (G O 3 ) took up more O 3 than those of low G O 3 , but that their sensitivity to vapour pressure deficit (D) were also higher, and their F O 3 decreased faster with increasing D, regardless of species. The responses of F O 3 to D and total radiation led to the relative high flux of O 3 uptake, indicating high ozone risk for urban tree species. - Highlights: ► O 3 uptake by urban trees varied considering contrasting species and study period. ►The responses of G O 3 to microclimate lead to relative high O 3 uptake by urban trees. ►Many urban species are susceptible to O 3 damage. ►The annual O 3 uptake in our study is greatly less than that from modeling approaches. ►The difference suggests considering the species-specific flux in O 3 risk assessment. - Sap flow-based O 3 uptake among urban species suggests high capacity and variation of ozone uptake, as well as potentially detrimental effects to urban species.

  1. Global ozone–CO correlations from OMI and AIRS: constraints on tropospheric ozone sources

    Directory of Open Access Journals (Sweden)

    P. S. Kim

    2013-09-01

    Full Text Available We present a global data set of free tropospheric ozone–CO correlations with 2° × 2.5° spatial resolution from the Ozone Monitoring Instrument (OMI and Atmospheric Infrared Sounder (AIRS satellite instruments for each season of 2008. OMI and AIRS have near-daily global coverage of ozone and CO respectively and observe coincident scenes with similar vertical sensitivities. The resulting ozone–CO correlations are highly statistically significant (positive or negative in most regions of the world, and are less noisy than previous satellite-based studies that used sparser data. Comparison with ozone–CO correlations and regression slopes (dO3/dCO from MOZAIC (Measurements of OZone, water vapour, carbon monoxide and nitrogen oxides by in-service AIrbus airCraft aircraft profiles shows good general agreement. We interpret the observed ozone–CO correlations with the GEOS (Goddard Earth Observing System-Chem chemical transport model to infer constraints on ozone sources. Driving GEOS-Chem with different meteorological fields generally shows consistent ozone–CO correlation patterns, except in some tropical regions where the correlations are strongly sensitive to model transport error associated with deep convection. GEOS-Chem reproduces the general structure of the observed ozone–CO correlations and regression slopes, although there are some large regional discrepancies. We examine the model sensitivity of dO3/dCO to different ozone sources (combustion, biosphere, stratosphere, and lightning NOx by correlating the ozone change from that source to CO from the standard simulation. The model reproduces the observed positive dO3/dCO in the extratropical Northern Hemisphere in spring–summer, driven by combustion sources. Stratospheric influence there is also associated with a positive dO3/dCO because of the interweaving of stratospheric downwelling with continental outflow. The well-known ozone maximum over the tropical South Atlantic is

  2. Effect of dissolved ozone or ferric ions on photodegradation of thiacloprid in presence of different TiO2 catalysts

    International Nuclear Information System (INIS)

    Cernigoj, Urh; Stangar, Urska Lavrencic; Jirkovsky, Jaromir

    2010-01-01

    Combining TiO 2 photocatalysis with inorganic oxidants (such as O 3 and H 2 O 2 ) or transition metal ions (Fe 3+ , Cu 2+ and Ag + ) often leads to a synergic effect. Electron transfer between TiO 2 and the oxidant is usually involved. Accordingly, the degree of synergy could be influenced by TiO 2 surface area. With this in mind, the disappearance of thiacloprid, a neonicotinoid insecticide, was studied applying various photochemical AOPs and different TiO 2 photocatalysts. In photocatalytic ozonation experiments, synergic effect of three different TiO 2 photocatalysts was quantified. Higher surface area resulted in a more pronounced synergic effect but an increasing amount of TiO 2 did not influence the degree of the synergy. This supports the theory that the synergy is a consequence of adsorption of ozone on the TiO 2 surface. No synergy was observed in photocatalytic degradation of thiacloprid in the presence of dissolved iron(III) species performed under varied experimental conditions (concentration, age of iron(III) solution, different TiO 2 films, usage of TiO 2 slurries). This goes against the literature for different organic compounds (i.e., monuron). It indicates different roles of iron(III) in the photodegradation of different organic molecules. Moreover, TiO 2 surface area did not affect photodegradation efficiency in iron(III)-based experiments which could confirm absence of electron transfer between TiO 2 photocatalyst and iron(III).

  3. Ozone decomposition in water studied by pulse radiolysis. 2. OH and HO4 as chain intermediates

    International Nuclear Information System (INIS)

    Staehelin, J.; Buehler, R.E.; Hoigne, J.

    1984-01-01

    Ozone decomposition in pure water involves a chain mechanism, initiated by the reaction OH - +O 3 and propogated by O 2 - and OH. In the present studies this chain is initiated by pulse radiolysis of aqueous solutions of ozone. The chain propogation steps were studied in two parts. By computer simulation of the rate curves, it is shown that from OH + O 3 and intermediate HO 4 must be formed, most likely a charge-transfer complex (HO.O 3 ), which eventually decays into HO 2 . The derived rate constants for the formation of the various species are included. The spectrum of HO 4 is derived. It is similar to the one of ozone, but the absorption coefficients are about 50% larger. In the presence of high ozone concentration, the dominant chain termination reactions are HO 4 + HO 4 and HO 4 + HO 3 . The effect on chain length, dose, overall rate, and pH and of added scavengers is described. The implications for the natural ozone decay mechanism are discussed

  4. Investigation of In-Package Ozonation: The Effectiveness of Ozone to Inactive Salmonella enteritidis on Raw, Shell Eggs

    Directory of Open Access Journals (Sweden)

    Austin Donner

    2011-01-01

    Full Text Available Food production, handling, and distribution practices pose a constant threat to the quality and safety of food products. The objective of this research is to evaluate an innovative in-package ozonation process to reduce Salmonella enteritidis on raw, shell eggs. Previous research has shown that in-package ozonation eliminates contaminants from outside sources, reduces pathogens, and extends shelf life. In this study, raw, shell eggs were inoculated with Salmonella enteritidis and exposed to ozonation treatment. Microbial recoveries were then tested to determine bacterial reductions. Measurements included: relative humidity (34 percent at 5oC, surface temperatures (oC, ozone concentrations, bacterial reductions of Salmonella enteritidis, and quality assessment of eggs (Haugh Unit [HU], color, pH, and weight. After a 24-hour storage period, all treated samples indicated 3 log10 reductions on average (previous research has achieved up to 6log10. These results show effective in-package ozonation treatment reducing Salmonella enteritidis on raw, shell eggs without significant effect on measured egg quality over time. Benefits of in-package ozonation include no heating, low power requirements (less or equal to 50 Watts, short treatment time (seconds to minutes, and adaptability into existing processes. Given its ability to ensure the safety and longevity of food products, this technology has great potential for utilization in the food processing industry.

  5. OMI/Aura Ozone (O3) Total Column 1-Orbit L2 Swath 13x24 km V003

    Data.gov (United States)

    National Aeronautics and Space Administration — The OMI/Aura Level-2 Total Column Ozone Data Product OMTO3 (Version 003) is made available (http://disc.gsfc.nasa.gov/Aura/OMI/omto3_v003.shtml) from the NASA...

  6. Modelling the Ozone-Based Treatments for Inactivation of Microorganisms

    Directory of Open Access Journals (Sweden)

    Agnieszka Joanna Brodowska

    2017-10-01

    Full Text Available The paper presents the development of a model for ozone treatment in a dynamic bed of different microorganisms (Bacillus subtilis, B. cereus, B. pumilus, Escherichia coli, Pseudomonas fluorescens, Aspergillus niger, Eupenicillium cinnamopurpureum on a heterogeneous matrix (juniper berries, cardamom seeds initially treated with numerous ozone doses during various contact times was studied. Taking into account various microorganism susceptibility to ozone, it was of great importance to develop a sufficiently effective ozone dose to preserve food products using different strains based on the microbial model. For this purpose, we have chosen the Weibull model to describe the survival curves of different microorganisms. Based on the results of microorganism survival modelling after ozone treatment and considering the least susceptible strains to ozone, we selected the critical ones. Among tested strains, those from genus Bacillus were recognized as the most critical strains. In particular, B. subtilis and B. pumilus possessed the highest resistance to ozone treatment because the time needed to achieve the lowest level of its survival was the longest (up to 17.04 min and 16.89 min for B. pumilus reduction on juniper berry and cardamom seed matrix, respectively. Ozone treatment allow inactivate microorganisms to achieving lower survival rates by ozone dose (20.0 g O3/m3 O2, with a flow rate of 0.4 L/min and contact time (up to 20 min. The results demonstrated that a linear correlation between parameters p and k in Weibull distribution, providing an opportunity to calculate a fitted equation of the process.

  7. Modelling the Ozone-Based Treatments for Inactivation of Microorganisms

    Science.gov (United States)

    Brodowska, Agnieszka Joanna; Nowak, Agnieszka; Kondratiuk-Janyska, Alina; Piątkowski, Marcin; Śmigielski, Krzysztof

    2017-01-01

    The paper presents the development of a model for ozone treatment in a dynamic bed of different microorganisms (Bacillus subtilis, B. cereus, B. pumilus, Escherichia coli, Pseudomonas fluorescens, Aspergillus niger, Eupenicillium cinnamopurpureum) on a heterogeneous matrix (juniper berries, cardamom seeds) initially treated with numerous ozone doses during various contact times was studied. Taking into account various microorganism susceptibility to ozone, it was of great importance to develop a sufficiently effective ozone dose to preserve food products using different strains based on the microbial model. For this purpose, we have chosen the Weibull model to describe the survival curves of different microorganisms. Based on the results of microorganism survival modelling after ozone treatment and considering the least susceptible strains to ozone, we selected the critical ones. Among tested strains, those from genus Bacillus were recognized as the most critical strains. In particular, B. subtilis and B. pumilus possessed the highest resistance to ozone treatment because the time needed to achieve the lowest level of its survival was the longest (up to 17.04 min and 16.89 min for B. pumilus reduction on juniper berry and cardamom seed matrix, respectively). Ozone treatment allow inactivate microorganisms to achieving lower survival rates by ozone dose (20.0 g O3/m3 O2, with a flow rate of 0.4 L/min) and contact time (up to 20 min). The results demonstrated that a linear correlation between parameters p and k in Weibull distribution, providing an opportunity to calculate a fitted equation of the process. PMID:28991199

  8. Mechanism insight of pollutant degradation and bromate inhibition by Fe-Cu-MCM-41 catalyzed ozonation.

    Science.gov (United States)

    Chen, Weirui; Li, Xukai; Tang, Yiming; Zhou, Jialu; Wu, Dan; Wu, Yin; Li, Laisheng

    2018-03-15

    A flexible catalyst, Fe-Cu-MCM-41, was employed to enhance diclofenac (DCF) mineralization and inhibit bromate formation in catalytic ozonation process. Greater TOC removal was achieved in Fe-Cu-MCM-41/O 3 process (78%) than those in Fe-MCM-41/O 3 (65%), Cu-MCM-41/O 3 (73%) and sole ozonation (42%). But it was interesting that both Cu-MCM-41/O 3 and Fe-MCM-41/O 3 achieved 93% bromate inhibition efficiency, only 71% inhibition efficiency was observed in Fe-Cu-MCM-41/O 3 . Influence of pH, TBA/NaHSO 3 and detection of by-products were conducted to explore the mechanism. By Pyridine adsorption-IR and XPS, a relationship was found among activity of catalysts, Lewis acid sites and electron transfer effect between Fe (II/III) and Cu (I/II). Fe-Cu-MCM-41 promoted ozone decomposition to generate OH, which accounted for enhanced DCF mineralization. The consumption of aqueous O 3 also suppressed the oxidative of Br - and HBrO/Br - . More HBrO/BrO - accumulated in catalytic ozonation process and less bromate generated. Bromate formation in Fe-Cu-MCM-41/O 3 process was sensitive with pH value, the acidic condition was not favor for bromate formation. Both DCF mineralization and bromate inhibition were influenced by surface reaction. Moreover, Fe-Cu-MCM-41 showed excellent catalytic performance in suppressing the accumulation of carboxylic acid, especially for oxalic acid. Nearly no oxalic acid was detected during Fe-Cu-MCM-41/O 3 process. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Stomatal uptake of O3 in aspen and aspen-birch forests under free-air CO2 and O3 enrichment

    Science.gov (United States)

    Johan Uddling; Alan J. Hogg; Ronald M. Teclaw; Mary Anne. Carroll; David S. Ellsworth

    2010-01-01

    Rising atmospheric carbon dioxide (CO2) may alleviate the toxicological impacts of concurrently rising tropospheric ozone (O3) during the present century if higher CO2 is accompanied by lower stomatal conductance (gs), as assumed by many models. We investigated how elevated...

  10. Cation disorder and gas phase equilibrium in an YBa 2Cu 3O 7- x superconducting thin film

    Science.gov (United States)

    Shin, Dong Chan; Ki Park, Yong; Park, Jong-Chul; Kang, Suk-Joong L.; Yong Yoon, Duk

    1997-02-01

    YBa 2Cu 3O 7- x superconducting thin films have been grown by in situ off-axis rf sputtering with varying oxygen pressure, Ba/Y ratio in a target, and deposition temperature. With decreasing oxygen pressure, increasing Ba/Y ratio, increasing deposition temperature, the critical temperature of the thin films decreased and the c-axis length increased. The property change of films with the variation of deposition variables has been explained by a gas phase equilibrium of the oxidation reaction of Ba and Y. Applying Le Chatelier's principle to the oxidation reaction, we were able to predict the relation of deposition variables and the resultant properties of thin films; the prediction was in good agreement with the experimental results. From the relation between the three deposition variables and gas phase equilibrium, a 3-dimensional processing diagram was introduced. This diagram has shown that the optimum deposition condition of YBa 2Cu 3O 7- x thin films is not a fixed point but can be varied. The gas phase equilibrium can also be applied to the explanation of previous results that good quality films were obtained at low deposition temperature using active species, such as O, O 3, and O 2+.

  11. Chemical Controls of Ozone Dry Deposition to the Sea Surface Microlayer

    Science.gov (United States)

    Carpenter, L.; Chance, R.; Tinel, L.; Saint, A.; Sherwen, T.; Loades, D.; Evans, M. J.; Boxhall, P.; Hamilton, J.; Stolle, C.; Wurl, O.; Ribas-Ribas, M.; Pereira, R.

    2017-12-01

    Oceanic dry deposition of atmospheric ozone (O3) is both the largest and most uncertain O3 depositional sink, and is widely acknowledged to be controlled largely by chemical reactions in the sea surface microlayer (SML) involving iodide (I-) and dissolved organic material (DOM). These reactions not only determine how quickly O3 can be removed from the atmosphere, but also result in emissions of trace gases including volatile organic compounds and may constitute a source of secondary organic aerosols to the marine atmosphere. Iodide concentrations at the sea surface vary by approximately an order of magnitude spatially, leading to more than fivefold variation in ozone deposition velocities (and volatile iodine fluxes). Sea-surface temperature is a reasonable predictor of [I-], however two recent parameterisations for surface I- differ by a factor of two at low latitudes. The nature and reactivity of marine DOM to O3 is almost completely unknown, although studies have suggested approximately equivalent chemical control of I- and DOM on ozone deposition. Here we present substantial new measurements of oceanic I- in both bulk seawater and the overlying SML, and show improved estimates of the global sea surface iodide distribution. We also present analyses of water-soluble DOM isolated from the SML and bulk seawater, and corresponding laboratory studies of ozone uptake to bulk and SML seawater, with the aim of characterizing the reactivity of O3 towards marine DOM.

  12. Classical and quasi-classical trajectory calculations of isotope exchange and ozone formation proceeding through O+O2 collision complexes

    Science.gov (United States)

    Baker, Thomas A.; Gellene, Gregory I.

    2002-10-01

    The isotope exchange reaction, and the three-body ozone formation rate proceeding through an ozone complex, have been studied by classical and quasi-classical trajectory techniques. The exchange rate studies indicate that the rate of this reaction is dominantly sensitive to the O+O2 entrance channel characteristics of the potential energy surface. A detailed consideration of the dynamics of the intermediate ozone complex reveals three important classes. In one class, the complex adopts an ozonelike geometry, largely undergoing asymmetric stretchinglike motion until it dissociates. In a second class, the oxygen atom and molecule never visit the ozonelike geometry but rather remain separated by relatively large distances trapped near the angular momentum barrier in the entrance channel of a pseudo-effective potential. These complexes, which cannot undergo exchange, are, nevertheless, found to contribute significantly to ozone formation at high density of the third body suggesting that the association of the high-density effective formation rate constant with twice the exchange rate may not be valid. The third class can be considered a hybrid of the first two, spending some time as an ozonelike complex and some time as a large atom-diatomic complex. This third class provides a mechanism for rearranging atom locations in the complex (e.g., end and middle position swapping) and, consequently, would not be well accounted for by statistical treatments of the ozone complex based on a single ozonelike reference geometry. In general, the survival time distributions of the complexes are found to be nonexponential. However, when the detailed survival time distributions are coupled with a Lennard-Jones collision model for the stabilization step, the experimental ozone formation rate can be adequately modeled over a broad range of temperature and density.

  13. Ozone therapy in periodontics.

    Science.gov (United States)

    Gupta, G; Mansi, B

    2012-02-22

    Gingival and Periodontal diseases represent a major concern both in dentistry and medicine. The majority of the contributing factors and causes in the etiology of these diseases are reduced or treated with ozone in all its application forms (gas, water, oil). The beneficial biological effects of ozone, its anti-microbial activity, oxidation of bio-molecules precursors and microbial toxins implicated in periodontal diseases and its healing and tissue regeneration properties, make the use of ozone well indicated in all stages of gingival and periodontal diseases. The primary objective of this article is to provide a general review about the clinical applications of ozone in periodontics. The secondary objective is to summarize the available in vitro and in vivo studies in Periodontics in which ozone has been used. This objective would be of importance to future researchers in terms of what has been tried and what the potentials are for the clinical application of ozone in Periodontics.

  14. Ozone depletion potentials of halocarbons

    International Nuclear Information System (INIS)

    Karol, I.L.; Kiselev, A.A.

    1992-01-01

    The concept of ozone depletion potential (ODP) is widely used in the evaluation of numerous halocarbons and of their replacements for effects on ozone, but the methods, model assumptions and conditions of ODP calculation have not been analyzed adequately. In this paper, a model study of effects on ozone after the instantaneous releases of various amounts of CH 3 CCl 3 and of CHF 2 Cl(HCFC-22) in the several conditions of the background atmosphere are presented, aimed to understand the main connections of ODP values with the methods of their calculations. To facilitate the ODP computation in numerous versions for long after the releases, the above rather short-lived gases have been used. The variation of released gas global mass from 1 Mt to 1 Gt leads to ODP value increase atmosphere. The same variations are analyzed for the CFC-free atmosphere of 1960s conditions for the anthropogenically loaded atmosphere in the 21st century according to the known IPCC- A scenario (business as usual). Recommendations of proper ways of ODP calculations are proposed for practically important cases

  15. Controllable synthesis of Co{sub 3}O{sub 4}/polyethyleneimine-carbon nanotubes nanocomposites for CO and NH{sub 3} gas sensing at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yufei [Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080 (China); Kan, Kan [Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080 (China); Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin 150000 (China); Song, Wanzhen; Zhang, Guo; Dang, Lifang [Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080 (China); Xie, Yu [Department of Materials Chemistry, Nanchang Hangkong University, Nanchang 330063 (China); Shen, Peikang [Department of Physics and Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Li, Li, E-mail: llwjjhlju@sina.cn [Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080 (China); Key Laboratory of Chemical Engineering Process & Technology for High-efficiency Conversion, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080 (China); Shi, Keying, E-mail: shikeying2008@163.com [Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080 (China)

    2015-08-05

    Graphical abstract: Co{sub 3}O{sub 4}/polyethyleneimine-carbon nanotubes composites (CoPCNTs) have been successfully controllable synthesized via hydrothermal method at different temperature. The CoPCNTs sensors exhibited the highest response to CO and NH{sub 3} gases with response time of 4 s and 4.3 s, low detection limit of 5 ppm and 1 ppm at room temperature, respectively. The enhanced gas sensing could be ascribed to the synergistic effect between the tiny size of Co{sub 3}O{sub 4} and good conductivity of carbon nanotubes functionalized by polyethyleneimine. - Highlights: • The CNTs functionalized by polyethyleneimine provided a new functional structural. • The novel 1D structure could capture and migrate electrons quickly. • The Co{sub 3}O{sub 4} nanoparticles liked a snake winding around CNTs. • The gas sensor could work at room temperatures, which suit to practical application. - Abstract: A novel 1D Co{sub 3}O{sub 4}/polyethyleneimine-carbon nanotubes composites (CoPCNTs) have been successfully synthesized via hydrothermal method at different temperature. The CNTs functionalized by polyethyleneimine (PCNTs) provided a new material with new structural and functional properties. The PCNTs was used as loading guider and electron transfer path. The Co{sub 3}O{sub 4} nanoparticles (NPs) loaded on the PCNTs surface liked a snake winding around CNTs, and the size was about 5–10 nm. The gas sensing characteristics of the CoPCNTs sensors to carbon monoxide (CO) and ammonia (NH{sub 3}) were evaluated with different gas concentration. The CoPCNTs sensors grown at 160 °C exhibited the highest response to CO and NH{sub 3} gases with response time of 4 s and 4.3 s at room temperature (RT), respectively. Hence, the approach developed in this work would be important for the low-cost and large-scale production of the CoPCNTs materials with highly promising applications in gas sensors.

  16. Generation of ozone foam and its application for disinfection

    Science.gov (United States)

    Hiragaki, Keisuke; Ishimaru, Tomiya; Nakanishi, Masaru; Muraki, Ryouji; Nieda, Masanori; Yamabe, Chobei

    2015-07-01

    Generated ozone foam was applied to the disinfection of Pseudomonas fluorescens. The effect of disinfection has been confirmed experimentally and new equipment for the disinfection of hands using this ozone foam has been put on the market for the practical use. The ozone foam was produced in the foam generator after mixing the water including surfactant (30 mL/min) and air including ozone (1000 ppm = 2.14 g/m3 ~ 1600 ppm = 3.4 g/m3, 300 mL/min). The liquid-to-gas ratio is 100 L/m3. The concentration of dissolved ozone in the thin liquid films of the bubbles was about 3 mg/L which was measured by the chemical method of the KI absorption and titration of sodium thiosulfate solution. The disinfection test samples were prepared using the PET disk on which Pseudomonas fluorescens of its number of more than 108 were attached. Test sample was inserted into ozone foam set on the glass plate for one to 6 min. The survival rate log (N/N0 decreased with time and its value of about-2.6 (i.e., ~1/400) was obtained at 6 min (2 min × 3 times repeated). It was also confirmed that the ozone foam was useful for the disinfection of hands. For more effective disinfection (in case of taking a long time for foam melting), the ozone foam was broken by force and changed into ozone water by which the survival rate decreased ×4 (i.e., N/N0 = 1/10 000) at 4 ~ 6 min. Contribution to the topical issue "The 14th International Symposium on High Pressure Low Temperature Plasma Chemistry (HAKONE XIV)", edited by Nicolas Gherardi, Ronny Brandenburg and Lars Stollenwark

  17. Hydrogen sulfide removal from hot coal gas by various mesoporous silica supported Mn2O3 sorbents

    International Nuclear Information System (INIS)

    Zhang, Z.F.; Liu, B.S.; Wang, F.; Wang, W.S.; Xia, C.; Zheng, S.; Amin, R.

    2014-01-01

    Graphical abstract: - Highlights: • Mn 2 O 3 /KIT-1 presented the best desulfurization performance at 600–850 °C. • High sulfur capacity of Mn 2 O 3 /KIT-1 correlated closely with 3-D channel of KIT-1. • Desulfurization character depended strongly on framework structure of sorbents. • High steam content suppressed greatly the occurrence of sulfidation reaction. - Abstract: A series of 50 wt% Mn 2 O 3 sorbents was prepared using various mesoporous silica, MCM-41, HMS, and KIT-1 as support. The influence of textural parameters of mesoporous silica, especially type of channel on the desulfurization performance of Mn 2 O 3 sorbents was investigated at 600–850 °C using hot coal gas containing 0.33 vol.% H 2 S. The fresh and used sorbents were characterized by means of N 2 -adsorption, x-ray diffraction (XRD), high resolution transmission microscopy (HRTEM) and H 2 temperature- programmed reduction (H 2 -TPR) techniques. The results confirmed that the manganese oxide was dispersed highly in regular pore channel of the mesoporous supports due to high surface area. Compared with the Mn 2 O 3 /diatomite, all mesoporous silica supported Mn 2 O 3 sorbents exhibited high breakthrough sulfur capacity and a sharp deactivation rate after the breakthrough point. Compared to Mn 2 O 3 /MCM-41 and Mn 2 O 3 /HMS sorbent, the Mn 2 O 3 /KIT-1 showed better desulfurization performance because of the 3D wormhole-like channel. The high sulfur capacity of the Mn 2 O 3 /KIT-1 sorbent was maintained during the eight consecutive desulfurization-regeneration cycles. The Mn 2 O 3 /KIT-1 still presented high desulfurization activity when hot coal gas contained low steam (<5%)

  18. Effect of Pulse Width on Oxygen-fed Ozonizer

    Science.gov (United States)

    Okada, Sho; Wang, Douyan; Namihira, Takao; Katsuki, Sunao; Akiyama, Hidenori

    Though general ozonizers based on silent discharge (barrier discharge) have been used to supply ozone at many industrial situations, there is still some problem, such as improvements of ozone yield. In this work, ozone was generated by pulsed discharge in order to improve the characteristics of ozone generation. It is known that a pulse width gives strong effect to the improvement of energy efficiency in exhaust gas processing. In this paper, the effect of pulse duration on ozone generation by pulsed discharge in oxygen would be reported.

  19. Ozone Pollution

    Science.gov (United States)

    Known as tropospheric or ground-level ozone, this gas is harmful to human heath and the environment. Since it forms from emissions of volatile organic compounds (VOCs) and nitrogen oxides (NOx), these pollutants are regulated under air quality standards.

  20. Roles of individual radicals generated by a submerged dielectric barrier discharge plasma reactor during Escherichia coli O157:H7 inactivation

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Muhammad Saiful Islam [Department of Food Biotechnology, University of Science and Technology, Daejeon, 305-350 (Korea, Republic of); Lee, Eun-Jung [Food Safety Research Group, Korea Food Research Institute, Seongnam-si, Gyeonggi-Do (Korea, Republic of); Kim, Yun-Ji, E-mail: yunji@kfri.re.kr [Department of Food Biotechnology, University of Science and Technology, Daejeon, 305-350 (Korea, Republic of); Food Safety Research Group, Korea Food Research Institute, Seongnam-si, Gyeonggi-Do (Korea, Republic of)

    2015-10-15

    A submerged dielectric barrier discharge plasma reactor (underwater DBD) has been used on Escherichia coli O157:H7 (ATCC 35150). Plasma treatment was carried out using clean dry air gas to investigate the individual effects of the radicals produced by underwater DBD on an E. coli O157:H7 suspension (8.0 log CFU/ml). E. coli O157:H7 was reduced by 6.0 log CFU/ml for 2 min of underwater DBD plasma treatment. Optical Emission Spectra (OES) shows that OH and NO (α, β) radicals, generated by underwater DBD along with ozone gas. E. coli O157:H7 were reduced by 2.3 log CFU/ml for 10 min of underwater DBD plasma treatment with the terephthalic acid (TA) OH radical scavenger solution, which is significantly lower (3.7 log CFU/ml) than the result obtained without using the OH radical scavenger. A maximum of 1.5 ppm of ozone gas was produced during the discharge of underwater DBD, and the obtained reduction difference in E.coli O157:H7 in presence and in absence of ozone gas was 1.68 log CFU/ml. The remainder of the 0.62 log CFU/ml reduction might be due to the effect of the NO (α, β) radicals or due to the combined effect of all the radicals produced by underwater DBD. A small amount of hydrogen peroxide was also generated but does not play any role in E. coli O157:H7 inactivation.

  1. Emission of Gas and Al2O3 Smoke in Gas-Al Particle Deflagration: Experiments and Emission Modeling for Explosive Fireballs

    Science.gov (United States)

    Ranc-Darbord, Isabelle; Baudin, Gérard; Genetier, Marc; Ramel, David; Vasseur, Pierre; Legrand, Julien; Pina, Vincent

    2018-03-01

    Emission of gas and Al2O3 smoke within the deflagration of H2{-}O2-{N2{-}CO2}-Al particles has been studied in a closed combustion chamber at pressures of up to 18 bar and at gas temperatures of up to 3700 K. Measurements of radiance intensity were taken using a five wavelength pyrometer (0.660 μ m, 0.850 μ m, 1.083 μ m, 1.260 μ m, 1.481 μ m) and a grating spectrometer in the range (4.10 μ m to 4.30 μ m). In order to characterize the aluminum oxide smoke size and temperature, an inversion method has been developed based on the radiation transfer equation and using pyrometer measurements and thermochemical calculations of Al2O3 smoke volume fractions. Temperatures in combustion gas have been determined using a method based on the assumed blackbody head of the 4.26 μ m CO2 emission line and on its spectral shift with pressure and temperature. For validation purpose, this method has been applied to measurements obtained when calibrated alumina particles are injected in a combustion chamber prior to gaseous deflagrations. This mathematical inversion method was developed to investigate explosive fireballs.

  2. Preparation and characterization of Ag-doped In2O3 nanoparticles gas sensor

    Science.gov (United States)

    Anand, Kanica; Kaur, Jasmeet; Singh, Ravi Chand; Thangaraj, Rengasamy

    2017-08-01

    Pure and Ag-doped In2O3 nanoparticles are synthesized by the co-precipitation method and are characterized by X-ray diffraction, transmission electron microscopy and photoluminescence spectroscopy. Gas sensing properties of the sensors has been investigated towards methanol, ethanol, acetone and LPG at different operating temperatures. It is found that the sensor response magnitude of the 3% Ag-doped In2O3 nanoparticles sensors is higher to 50 ppm of ethanol at 300 °C, to acetone at 350 °C and to LPG at 400 °C. This is mainly attributed to the large number of oxygen vacancies and defects in doped sensors as corroborated by the photoluminescence studies.

  3. Products and mechanisms of the reaction of gas phase ozone with organic colorants

    Energy Technology Data Exchange (ETDEWEB)

    Grosjean, D. (DGA, Inc., Ventura, CA (USA)); Druzik, J.R. (Getty Conservation Institute, Marina del Rey, CA (USA)); Sensharma, D.K. (Univ. of California, Los Angeles (USA)); Whitmore, P.M.; DeMoor, C.P.; Cass, G.R. (California Institute of Technology, Pasadena (USA))

    1988-09-01

    Studies carried out in this laboratory have shown that many artists organic colorants fade substantially when exposed to ozone in the dark. These studies typically involved pigment exposure for 12 weeks to purified air containing 0.3-0.4 ppm of ozone at ambient temperature and humidity. These laboratory conditions are equivalent to about six years of exposure inside a typical air-conditioned building in Los Angeles, and the observed fading is therefore directly relevant to possible damage to works of arts in museum settings. Organic colorants that were most ozone-fugitive included natural colorants, such as curcumin and indigo, as well as modern synthetic colorants such as alizarin lakes and triphenylmethane dyes. Thus, these colorants were selected for further study with emphasis on the nature of the reaction products. Exposures were carried out on different substrates including watercolor paper, cellulose, silica gel, and Teflon. The experiments involved long-term exposure to low levels of ozone (e.g. {approximately} 0.3 ppm for 90 days) or shorter-term exposure to higher ozone concentrations (e.g. 10 ppm for 24 hours). Exposed and control samples, along with solvent and substrate blanks, were analyzed by mass spectrometry using a Kratos Scientific Instruments MS25 hexapole mass spectrometer operated in either methane chemical ionization (CI) or electron impact (EI) modes.

  4. N2O isotopomers and N2:N2O ratio as indicators of denitrification in ecosystems

    International Nuclear Information System (INIS)

    Mander, Ülo; Zaman, Mohammad

    2015-01-01

    The world is experiencing climate change and variability due to increased greenhouse gas (GHG) emissions. The main GHG’s of concern are nitrous oxide (N 2 O), carbon dioxide (CO 2 ) and methane (CH 4 ). Agriculture contributes approximately 14% of the world’s GHG emissions. Nitrous oxide is one of the key GHG and ozone (O 3 ) depleting gas, constituting 7% of the anthropogenic greenhouse effect. On a molecular basis, N 2 O has a 310- and 16-fold greater global warming potential than each of CO 2 and CH 4 , respectively, over a 100-year period. Nitrous oxide can be produced through both chemical and biochemical pathways. They occur during denitrification (the stepwise conversion of nitrate (NO 3 - ) to nitrogen gas (N 2 ) and during nitrification by ammonia-oxidizing archea (bacteria) during the oxidation of hydroxylamine (NH 2 OH) to nitrite (NO 2 - ) which is then reduced to N 2 O and N 2 by nitrifier denitrification or heterotrophic denitrification

  5. Ozone Formation in Laser Flash Photolysis of Oxoacids and Oxoanions of Chlorine and Bromine

    DEFF Research Database (Denmark)

    Kläning, Ulrik; Sehested, Knud; Wolff, Thomas

    1984-01-01

    The kinetics of ozone formation in the photolysis of oxygen-containing solutions of HClO, ClO–, ClO–2, ClO–3, HBrO, BrO– and BrO–3 has been studied by laser flash photolysis and conventional flash photolysis. The usual assumption, that ozone only forms in the reaction of oxygen atoms in the spin-...

  6. Photochemical production of ozone and control strategy for Southern Taiwan

    Science.gov (United States)

    Shiu, Chein-Jung; Liu, Shaw Chen; Chang, Chih-Chung; Chen, Jen-Ping; Chou, Charles C. K.; Lin, Chuan-Yao; Young, Chea-Yuan

    An observation-based method (OBM) is developed to evaluate the ozone (O 3) production efficiency (O 3 molecules produced per NO x molecule consumed) and O 3 production rate ( P(O 3)) during a field campaign in southern Taiwan. The method can also provide an estimate of the concentration of OH. A key step in the method is to use observed concentrations of two aromatic hydrocarbons, namely ethylbenzene and m, p-xylene, to estimate the degree of photochemical processing and amounts of photochemically consumed NO x and NMHCs by OH. In addition, total oxidant (O 3+NO 2) instead of O 3 itself turns out to be very useful for representing ozone production in the OBM approach. The average O 3 production efficiency during the field campaign in Fall (2003) is found to be about 10.2±3.9. The relationship of P(O 3) with NO x is examined and compared with a one-dimensional (1D) photochemical model. Values of P(O 3) derived from the OBM are slightly lower than those calculated in the 1D model. However, OH concentrations estimated by the OBM are about a factor of 2 lower than the 1D model. Fresh emissions, which affect the degree of photochemical processing appear to be a major cause of the underestimate. We have developed a three-dimensional (3D) OBM O 3 production diagram that resembles the EKMA ozone isopleth diagram to study the relationship of the total oxidant versus O 3 precursors. The 3D OBM O 3 production diagram suggests that reducing emissions of NMHCs are more effective in controlling O 3 than reducing NO x. However, significant uncertainties remain in the OBM, and considerable more work is required to minimize these uncertainties before a definitive control strategy can be reached. The observation-based approach provides a good alternative to measuring peroxy radicals for evaluating the production of O 3 and formulating O 3 control strategy in urban and suburban environments.

  7. Trends of Ozone in Switzerland since 1992 (TROZOS)

    Energy Technology Data Exchange (ETDEWEB)

    Ordonez, C.; Mathis, H.; Furger, M.; Prevot, A.S.H

    2004-07-01

    This work reports on the trends of the daily afternoon (noon to midnight) maximum ozone concentrations at 15 of the 16 stations of the Swiss air quality monitoring network (NABEL) during the period 1992-2002. The use of numerous meteorological parameters and additional data allowed a detailed seasonal analysis of the influence of the weather on the ozone maxima at the different stations. An analysis of covariance (ANCOVA) was performed separately for each station and season in order to detect the parameters which best explain the variability of the daily ozone maximum concentrations. During the warm seasons (summer and spring) the most explanatory parameters are those related to the ozone production, in particular the afternoon temperature. In winter, the most explanatory variables are the ones influencing the vertical mixing and thus the ozone destruction by titration with NO and dry deposition, like the afternoon global radiation. The trends of both the measured and meteorologically corrected ozone maxima were calculated. The year-to-year variability in the ozone maxima was lowered by a factor of 3 by the meteorological correction. Significantly positive trends of corrected ozone maxima of 0.3 - 1.1 ppb/year were found at the low altitude stations in winter and autumn as well as at Lausanne - urban station - in all the seasons, mainly due to the lower loss of ozone by reaction with NO as a consequence of the decreased emissions of primary pollutants during the 90s. This could be partially confirmed by the lower trends of O{sub X} (sum O{sub 3} of and NO{sub 2}) maxima compared to the trends in ozone maxima. The absence of negative trends of the median or mean ozone maxima north of the Alps in summer suggests that the decrease in the emissions of ozone precursors did not have a strong impact on the afternoon maximum ozone concentrations during the last decade. In contrast to the project TOSS (Trends of Ozone in Southern Switzerland), no significantly negative

  8. Trends of Ozone in Switzerland since 1992 (TROZOS)

    International Nuclear Information System (INIS)

    Ordonez, C.; Mathis, H.; Furger, M.; Prevot, A.S.H.

    2004-07-01

    This work reports on the trends of the daily afternoon (noon to midnight) maximum ozone concentrations at 15 of the 16 stations of the Swiss air quality monitoring network (NABEL) during the period 1992-2002. The use of numerous meteorological parameters and additional data allowed a detailed seasonal analysis of the influence of the weather on the ozone maxima at the different stations. An analysis of covariance (ANCOVA) was performed separately for each station and season in order to detect the parameters which best explain the variability of the daily ozone maximum concentrations. During the warm seasons (summer and spring) the most explanatory parameters are those related to the ozone production, in particular the afternoon temperature. In winter, the most explanatory variables are the ones influencing the vertical mixing and thus the ozone destruction by titration with NO and dry deposition, like the afternoon global radiation. The trends of both the measured and meteorologically corrected ozone maxima were calculated. The year-to-year variability in the ozone maxima was lowered by a factor of 3 by the meteorological correction. Significantly positive trends of corrected ozone maxima of 0.3 - 1.1 ppb/year were found at the low altitude stations in winter and autumn as well as at Lausanne - urban station - in all the seasons, mainly due to the lower loss of ozone by reaction with NO as a consequence of the decreased emissions of primary pollutants during the 90s. This could be partially confirmed by the lower trends of O X (sum O 3 of and NO 2 ) maxima compared to the trends in ozone maxima. The absence of negative trends of the median or mean ozone maxima north of the Alps in summer suggests that the decrease in the emissions of ozone precursors did not have a strong impact on the afternoon maximum ozone concentrations during the last decade. In contrast to the project TOSS (Trends of Ozone in Southern Switzerland), no significantly negative trends of ozone

  9. Modeling nitrous acid and its impact on ozone and hydroxyl radical during the Texas Air Quality Study 2006

    Directory of Open Access Journals (Sweden)

    B. H. Czader

    2012-08-01

    Full Text Available Nitrous acid (HONO mixing ratios for the Houston metropolitan area were simulated with the Community Multiscale Air Quality (CMAQ Model for an episode during the Texas Air Quality Study (TexAQS II in August/September 2006 and compared to in-situ MC/IC (mist-chamber/ion chromatograph and long path DOAS (Differential Optical Absorption Spectroscopy measurements at three different altitude ranges. Several HONO sources were accounted for in simulations, such as gas phase formation, direct emissions, nitrogen dioxide (NO2 hydrolysis, photo-induced formation from excited NO2 and photo-induced conversion of NO2 into HONO on surfaces covered with organic materials. Compared to the gas-phase HONO formation there was about a tenfold increase in HONO mixing ratios when additional HONO sources were taken into account, which improved the correlation between modeled and measured values. Concentrations of HONO simulated with only gas phase chemistry did not change with altitude, while measured HONO concentrations decrease with height. A trend of decreasing HONO concentration with altitude was well captured with CMAQ predicted concentrations when heterogeneous chemistry and photolytic sources of HONO were taken into account. Heterogeneous HONO production mainly accelerated morning ozone formation, albeit slightly. Also HONO formation from excited NO2 only slightly affected HONO and ozone (O3 concentrations. Photo-induced conversion of NO2 into HONO on surfaces covered with organic materials turned out to be a strong source of daytime HONO. Since HONO immediately photo-dissociates during daytime its ambient mixing ratios were only marginally altered (up to 0.5 ppbv, but significant increase in the hydroxyl radical (OH and ozone concentration was obtained. In contrast to heterogeneous HONO formation that mainly accelerated morning ozone formation, inclusion of photo-induced surface chemistry

  10. Effects of Greenhouse Gas Increase and Stratospheric Ozone Depletion on Stratospheric Mean Age of Air in 1960-2010

    Science.gov (United States)

    Li, F.; Newman, P. A.; Pawson, S.; Perlwitz, J.

    2017-12-01

    The strength of the stratospheric Brewer-Dobson circulation (BDC) in a changing climate has been extensively studied, but the relative importance of greenhouse gas (GHG) increases and stratospheric ozone depletion in driving the BDC changes remains uncertain. This study separates the impacts of GHG and stratospheric ozone forcings on stratospheric mean age of air in the 1960-2010 period using the Goddard Earth Observing System Model (GEOS) Chemistry-Climate Model (CCM). The experiment compares a set of controlled simulations using a coupled atmosphere-ocean version of the GEOS CCM, in which either GHGs, or stratospheric ozone, or both factors evolve over time. The model results show that GHGs and stratospheric ozone have about equal contributions to the simulated mean age decrease. It is also found that GHG increases account for about two thirds of the enhanced strength of the lower stratospheric residual circulation. The results show that ozone depletion causes an increase in the mean age of air in the Antarctic summer lower stratosphere through two processes: 1) a seasonal delay in the Antarctic polar vortex breakup, that inhibits young mid-latitude air from mixing with the older air inside the vortex; and 2) enhanced Antarctic downwelling, that brings older air from middle and upper stratosphere into the lower stratosphere.

  11. Investigation of N2O Production from 266 and 532 nm Laser Flash Photolysis of O3/N2/O2 Mixtures

    Science.gov (United States)

    Estupinan, E. G.; Nicovich, J. M.; Li, J.; Cunnold, D. M.; Wine, P. H.

    2002-01-01

    Tunable diode laser absorption spectroscopy has been employed to measure the amount of N2O produced from laser flash photolysis of O3/N2/O2 mixtures at 266 and 532 nm. In the 532 nm photolysis experiments very little N2O is observed, thus allowing an upper limit yield of 7 x 10(exp -8) to be established for the process O3 + N2 yield N2O + O2, where O3 is nascent O3 that is newly formed via O(3P(sub J)) + O2 recombination (with vibrational excitation near the dissociation energy of O3). The measured upper limit yield is a factor of approx. 600 smaller than a previous literature value and is approximately a factor of 10 below the threshold for atmospheric importance. In the 266 nm photolysis experiments, significant N2O production is observed and the N2O quantum yield is found to increase linearly with pressure over the range 100 - 900 Torr in air bath gas. The source of N2O in the 266 nm photolysis experiments is believed to be the addition reaction O(1D(sub 2)) + N2 + M yields (k(sub sigma)) N2O + M, although reaction of (very short-lived) electronically excited O3 with N2 cannot be ruled out by the available data. Assuming that all observed N2O comes from the O(1D(sub 2)) + N2 + M reaction, the following expression describes the temperature dependence of k(sub sigma) (in its third-order low-pressure limit) that is consistent with the N2O yield data: k(sub sigma) = (2.8 +/- 0.1) x 10(exp -36)(T/300)(sup -(0-88+0.36)) cm(sup 6) molecule(sup -2)/s, where the uncertainties are 2(sigma) and represent precision only. The accuracy of the reported rate coefficients at the 95% confidence level is estimated to be 30 - 40% depending on the temperature. Model calculations suggest that gas phase processes initiated by ozone absorption of a UV photon represent about 1.4% of the currently estimated global source strength of atmospheric N2O. However, these processes could account for a significant fraction of the oxygen mass-independent enrichment observed in atmospheric N2O, and

  12. Ozone impacts on vegetation in a nitrogen enriched and changing climate

    International Nuclear Information System (INIS)

    Mills, Gina; Harmens, Harry; Wagg, Serena; Sharps, Katrina; Hayes, Felicity; Fowler, David; Sutton, Mark; Davies, Bill

    2016-01-01

    This paper provides a process-oriented perspective on the combined effects of ozone (O_3), climate change and/or nitrogen (N) on vegetation. Whereas increasing CO_2 in controlled environments or open-top chambers often ameliorates effects of O_3 on leaf physiology, growth and C allocation, this is less likely in the field. Combined responses to elevated temperature and O_3 have rarely been studied even though some critical growth stages such as seed initiation are sensitive to both. Under O_3 exposure, many species have smaller roots, thereby enhancing drought sensitivity. Of the 68 species assessed for stomatal responses to ozone, 22.5% were unaffected, 33.5% had sluggish or increased opening and 44% stomatal closure. The beneficial effect of N on root development was lost at higher O_3 treatments whilst the effects of increasing O_3 on root biomass became more pronounced as N increased. Both responses to gradual changes in pollutants and climate and those under extreme weather events require further study. - Highlights: • CO_2 amelioration of O_3 effects on leaf physiology are less likely in the field. • Both extremes of temperature and O_3 impact on critical growth stages. • Many species are more sensitive to drought as a result of exposure to O_3 pollution. • The beneficial effect of N on root development is lost at higher O_3 treatments. • The effects of O_3 on root biomass are higher at high than low N. - A process-oriented perspective on the combined effects of ozone, climate change and/or nitrogen on vegetation.

  13. Sensing Properties of Pd-Loaded Co3O4 Film for a ppb-Level NO Gas Sensor

    Directory of Open Access Journals (Sweden)

    Takafumi Akamatsu

    2015-04-01

    Full Text Available We prepared 0.1 wt%–30 wt% Pd-loaded Co3O4 by a colloidal mixing method and investigated the sensing properties of a Pd-loaded Co3O4 sensor element, such as the sensor response, 90% response time, 90% recovery time, and signal-to-noise (S/N ratio, toward low nitric oxide (NO gas levels in the range from 50 to 200 parts per billion. The structural properties of the Pd-loaded Co3O4 powder were investigated using X-ray diffraction analysis and transmission electron microscopy. Pd in the powder existed as PdO. The sensor elements with 0.1 wt%–10 wt% Pd content have higher sensor properties than those without any Pd content. The response of the sensor element with a 30 wt% Pd content decreased markedly because of the aggregation and poor dispersibility of the PdO particles. High sensor response and S/N ratio toward the NO gas were achieved when a sensor element with 10 wt% Pd content was used.

  14. Quantifying Ozone Production throughout the Boundary Layer from High Frequency Tethered Profile Measurements during a High Ozone Episode in the Uinta Basin, Utah

    Science.gov (United States)

    Sterling, C. W.; Johnson, B.; Schnell, R. C.; Oltmans, S. J.; Cullis, P.; Hall, E. G.; Jordan, A. F.; Windell, J.; McClure-Begley, A.; Helmig, D.; Petron, G.

    2015-12-01

    During the Uinta Basin Winter Ozone Study (UBWOS) in Jan - Feb 2013, 735 tethered ozonesonde profiles were obtained at 3 sites including during high wintertime photochemical ozone production events that regularly exceeded 125 ppb. High resolution profiles of ozone and temperature with altitude, measured during daylight hours, showed the development of approximately week long high ozone episodes building from background levels of ~40 ppb to >150 ppb. The topography of the basin combined with a strong temperature inversion trapped oil and gas production effluents in the basin and the snow covered surface amplified the sun's radiation driving the photochemical ozone production at rates up to 13 ppb/hour in a cold layer capped at 1600-1700 meters above sea level. Beginning in mid-morning, ozone mixing ratios throughout the cold layer increased until late afternoon. Ozone mixing ratios were generally constant with height indicating that ozone production was nearly uniform throughout the depth of the cold pool. Although there was strong diurnal variation, ozone mixing ratios increased during the day more than decreased during the night, resulting in elevated levels the next morning; an indication that nighttime loss processes did not compensate for daytime production. Even though the 3 tethersonde sites were at elevations differing by as much as 140 m, the top of the high ozone layer was nearly uniform in altitude at the 3 locations. Mobile van surface ozone measurements across the basin confirmed this capped structure of the ozone layer; the vehicle drove out of high ozone mixing ratios at an elevation of ~1900 meters above sea level, above which free tropospheric ozone mixing ratios of ~50 ppb were measured. Exhaust plumes from a coal-fired power plant in the eastern portion of the basin were intercepted by the tethersondes. The structure of the profiles clearly showed that effluents in the plumes were not mixed downward and thus did not contribute precursor nitrogen

  15. Simulation of summer ozone episodes in Southeast Louisiana during 2006-2015

    Science.gov (United States)

    Guo, H.; Zhang, H.

    2017-12-01

    Southeast Louisiana experiences high ozone (O3) events due to immense emissions from industrial and urban sources and unique meteorology conditions of high temperatures, intensive solar radiation and land-sea breeze circulation. The Community Multi-scale Air Quality (CMAQ) model with modified photochemical mechanism is used to investigate the contributions of regional transport to ozone (O3) and its precursors to Southeast Louisiana in summer months from 2006 to 2015. The meteorological and CMAQ model performance are validated. Spatial and temporal variations of O3 are investigated during summer episodes in 10 years. Contributions of different source types and regions to 1 hour O3 are also quantified. Changes in the contributions of different source types and regions are also obtained to help design intelligent control measures.

  16. Composite harm to plants by sulfurous acid gas and oxidant

    Energy Technology Data Exchange (ETDEWEB)

    Matsushima, J

    1971-01-01

    The composite effects on plants of sulfur dioxide and ozone, SO/sub 2/ and PAN, SO/sub 2/ and nitrogen dioxide, and NO/sub 2/ and ozone were studied. Pinto bean plants were exposed to SO/sub 2/ or O/sub 3/ only, to each gas alternately, and to a mixture of the two. The degree of injury by the gas or gases was indicated in percentage by area of the leaves damaged. In cases where no geometric effect occurred the damage to the plant by the individual gas had been great; damage from the individual gas had been slight in these cases where such an effect was observed. The geometric effect is produced when the density of SO/sub 2/ is rather low, generally 0.05-0.25 ppm. A mixture of SO/sub 2/ and O/sub 3/ was applied to a tabacco plant; it affected fully grown leaves. In experiments on the composite effects of SO/sub 2/ and PAN on bean, tomato and pepper plants, PAN affected mainly young leaves while SO/sub 2/ affected mature ones. These effects were arithmetric rather then geometric. The SO/sub 2/ and NO/sub 2/ were also studied in the same manner. When SO/sub 2/ and NO/sub 2/ were mixed, a geometric effect was conspicuous in damage to vegetables, the symptoms of damage by either of the two appeared about the same, younger leaves being affected less. When treated with the two gases alternately, the damage was greater if the plants were first treated with NO/sub 2/; possible causes for this effect are discussed. No significant composite effect of NO/sub 2/ and O/sub 3/ was observed.

  17. Enhanced effect of suction-cavitation on the ozonation of phenol

    International Nuclear Information System (INIS)

    Wu Zhilin; Franke, Marcus; Ondruschka, Bernd; Zhang, Yongchun; Ren Yanze; Braeutigam, Patrick; Wang, Weimin

    2011-01-01

    800 mL of 1.0 mM phenol-containing aqueous solution was circulated at 20 ° C for 30 min in a suction-reactor, while 3.2 mg min -1 ozone was introduced into the solution under the suction orifice. The removal rates of phenol vary polynomially with the orifice diameter as well as the suction pressure. The rate constant for the zero-order kinetics achieves the highest value at -0.070 MPa by using 5 mm orifice. Although the suction-cavitation alone cannot remove phenol in 30 min, it can considerably enhance the ozonation of phenol. The rate constants for the zero-order kinetics by the simple ozonation and the combined method are 0.018 and 0.028 min -1 , respectively. Furthermore, no ozone was observed in the tail gas during the first 15 min for the ozonation in the suction reactor, and then the concentration of unreacted ozone slowly increased, indicating that the utilization rate of ozone is significantly improved by the suction-cavitation. The increasing input concentration of ozone obviously accelerates the ozonation of phenol, but the total required quantities of ozone are very close by various ozone input concentrations to reach the same degradation rate, indicating the ozonation assisted by the suction-cavitation can be considered as a quantitative reaction.

  18. O2(a1Δ) vibrational kinetics in oxygen-iodine laser

    Science.gov (United States)

    Torbin, A. P.; Pershin, A. A.; Heaven, M. C.; Azyazov, V. N.; Mebel, A. M.

    2018-04-01

    Kinetics of vibrationally-excited singlet oxygen O2(a1Δ,ν) in gas mixture O3/N2/CO2 was studied using a pulse laser technique. Molecules O2(a1Δ,ν) were produced by laser photolysis of ozone at 266 nm. The O3 molecules number density was followed using time-resolved absorption spectroscopy. It was found that an upper bound for the rate constant of chemical reaction O2(a1Δ,ν)+ O3 is about 10-15 cm3/s. The rate constants of O2(a1Δ,ν= 1, 2 and 3) quenching by CO2 are presented.

  19. An upper tropospheric ‘ozone river’ from Africa to India during the 2008 Asian post-monsoon season

    Directory of Open Access Journals (Sweden)

    Flore Tocquer

    2015-03-01

    Full Text Available We have used ozone data from the Infrared Atmospheric Sounding Interferometer to follow an event of ozone-enriched air-masses in the upper troposphere from eastern Africa to northern India. The ozone transport (hereafter called ‘ozone river’ or O3R occurred during the Asian post-monsoon season in 2008 and was associated with Rossby wave propagation. The persistence of the O3R in a narrow channel was confirmed by MOZAIC airborne data over the northwestern Indian coast. The regions of origin of the O3R were identified by a transport analysis based on the Lagrangian model FLEXPART. The Lagrangian simulations combined with potential vorticity fields indicate that stratospheric intrusions are not likely to be the most important contributor to the observed O3 enhancements. A high-resolution Eulerian model, Meso-NH, with tagged tracers was used to discriminate between African biomass burning, lightnings and Indian anthropogenic pollution as potential sources of precursors for the O3R. Lightning NOx emissions, associated with convective clouds over Africa, were found to be the principal contributor to the ozone enhancement over the Indian Ocean taking advantage of a northeastward jet. This case study illustrates African lightning emissions as an important source for enhanced O3 in the upper troposphere over the Indian Ocean region during the post-monsoon season.

  20. Growth of Chironomus dilutus larvae exposed to ozone-treated and untreated oil sands process water

    International Nuclear Information System (INIS)

    Anderson, J.; Wiseman, S.; Franz, E.; Jones, P.; Liber, K.; Giesy, J.; Gamal El-Din, M.; Marin, J.

    2010-01-01

    Oil sand processing operations require large quantities of freshwater and produce large volumes of oil sands process water (OSPW) which must be stored on-site. This presentation reviewed various treatment methods for remediating OSPW in order to eliminate downstream toxicity. Naphthenic acids are the most important target fractions for treatment because they are primarily responsible for the acute toxicity of OSPW. Although ozonation has shown promise for reducing OSPW toxicity, the effects of ozonation on aquatic invertebrates remain unknown. This study investigated the effects of exposure to untreated and ozonated OSPW in Chironomus dilutus larvae. OSPW was treated with either a 50 or 80 mg O 3 /L dose of ozonation. The effects of ozonation levels on C. dilutus survival and growth were examined. The study showed that after a 10-day exposure, there were pronounced effects on survival of larvae exposed to ozone-treated or untreated OSPW. Larvae exposed to OSPW were 64-77 percent smaller than their respective controls, but the mean wet mass of organisms exposed to 50 mg O 3 /L ozonated OSPW was not much different from that of the controls. Larvae exposed to 80 mg O 3 /L ozone-treated OSPW were 40 percent smaller than the freshwater controls, and the mean wet mass was also much larger than the untreated OSPW. It was concluded that the toxicity of OSPW to benthic invertebrates may be reduced by ozone treatment.

  1. Remote sensed and in situ constraints on processes affecting tropical tropospheric ozone

    Directory of Open Access Journals (Sweden)

    B. Sauvage

    2007-01-01

    Full Text Available We use a global chemical transport model (GEOS-Chem to evaluate the consistency of satellite measurements of lightning flashes and ozone precursors with in situ measurements of tropical tropospheric ozone. The measurements are tropospheric O3, NO2, and HCHO columns from the GOME satellite instrument, lightning flashes from the OTD and LIS satellite instruments, profiles of O3, CO, and relative humidity from the MOZAIC aircraft program, and profiles of O3 from the SHADOZ ozonesonde network. We interpret these multiple data sources with our model to better understand what controls tropical tropospheric ozone. Tropical tropospheric ozone is mainly affected by lightning NOx and convection in the upper troposphere and by surface emissions in the lower troposphere. Scaling the spatial distribution of lightning in the model to the observed flashes improves the simulation of O3 in the upper troposphere by 5–20 ppbv versus in situ observations and by 1–4 Dobson Units versus GOME retrievals of tropospheric O3 columns. A lightning source strength of 6±2 Tg N/yr best represents in situ observations from aircraft and ozonesonde. Tropospheric NO2 and HCHO columns from GOME are applied to provide top-down constraints on emission inventories of NOx (biomass burning and soils and VOCs (biomass burning. The top-down biomass burning inventory is larger than the bottom-up inventory by a factor of 2 for HCHO and alkenes, and by a factor of 2.6 for NOx over northern equatorial Africa. These emissions increase lower tropospheric O3 by 5–20 ppbv, improving the simulation versus aircraft observations, and by 4 Dobson Units versus GOME observations of tropospheric O3 columns. Emission factors in the a posteriori inventory are more consistent with a recent compilation from in situ measurements. The ozone simulation using two different dynamical schemes (GEOS-3 and GEOS-4 is evaluated versus observations; GEOS-4 better represents O3 observations by 5–15 ppbv

  2. Study of non-stoichiometric BaSrTiFeO3 oxide dedicated to semiconductor gas sensors

    International Nuclear Information System (INIS)

    Fasquelle, D.; Verbrugghe, N.; Deputier, S.

    2016-01-01

    Developing instrumentation systems compatible with the European RoHS directive (restriction of hazardous substances) to monitor our environment is of great interest for our society. Our research therefore aims at developing innovating integrated systems of detection dedicated to the characterization of various environmental exposures. These systems, which integrate new gas sensors containing lead-free oxides, are dedicated to the detection of flammable and toxic gases. We have firstly chosen to study semiconductor gas sensors implemented with lead-free oxides in view to develop RoHS devices. Therefore thick films deposited by spin-coating and screen-printing have been chosen for their robustness, ease to realize and ease to finally obtain cost-effective sensors. As crystalline defects and ionic vacancies are of great interest for gas detection, we have decided to study a non-stoichiometric composition of the BaSrTiFeO 3 sensible oxide. Nonstoichiometric BaSrTiFeO 3 lead-free oxide thick films were deposited by screen-printing on polycrystalline AFO 3 substrates covered by a layer of Ag-Pd acting as bottom electrode. The physical characterizations have revealed a crystalline structure mainly composed of BaTiO 3 pseudo-cubic phase and Ba 4 Ti 12 O 27 monoclinic phase for the powder, and a porous microstructure for the thick films. When compared to a BSTF thick film with a stoichiometric composition, a notable increase in the BSTF dielectric constant value was observed when taking into account of a similar microstructure and grain size. The loss tangent mean value varies more softly for the non-stoichiometric BaSrTiFeO 3 films than for the perovskite BSTF film as tanδ decreases from 0.45 to 0.04 when the frequency increases from 100 Hz to 1 MHz. (paper)

  3. Ozone mass transfer behaviors on physical and chemical absorption for hollow fiber membrane contactors.

    Science.gov (United States)

    Zhang, Yong; Li, Kuiling; Wang, Jun; Hou, Deyin; Liu, Huijuan

    2017-09-01

    To understand the mass transfer behaviors in hollow fiber membrane contactors, ozone fluxes affected by various conditions and membranes were investigated. For physical absorption, mass transfer rate increased with liquid velocity and the ozone concentration in the gas. Gas flow rate was little affected when the velocity was larger than the critical value, which was 6.1 × 10 -3 m/s in this study. For chemical absorption, the flux was determined by the reaction rate between ozone and the absorbent. Therefore, concentration, species, and pH affected the mass transfer process markedly. For different absorbents, the order of mass transfer rate was the same as the reaction rate constant, which was phenol, sodium nitrite, hydrogen peroxide, and oxalate. Five hydrophobic membranes with various properties were employed and the mass transfer behavior can be described by the Graetz-Lévèque equation for the physical absorption process. The results showed the process was controlled by liquid film and the gas phase conditions, and membrane properties did not affect the ozone flux. For the chemical absorption, gas film, membrane and liquid film affected the mass transfer together, and none of them were negligible.

  4. Study of the heterogeneous reaction of O3 with CH3SCH3 using the wetted-wall flowtube technique

    Directory of Open Access Journals (Sweden)

    M. Barcellos da Rosa

    2003-01-01

    Full Text Available This work presents the heterogeneous kinetics of the reaction of CH3SCH3 (dimethyl sulphide, DMS with O3 (ozone in aqueous solutions of different ionic strengths (0, 0.1 and 1.0M NaCl using the wetted-wall flowtube (WWFT technique. Henry's law coefficients of DMS on pure water and on different concentrations of NaCl (0.1M - 4.0M in the WWFT from UV spectrophotometric measurements of DMS in the gas phase, using a numerical transport model of phase exchange, were determined to be H ±s (M atm-1 = 2.16±0.5 at 274.4 K, 1.47±0.3 at 283.4 K, 0.72±0.2 at 291 K, 0.57±0.1 at 303.4 K and 0.33±0.1 at 313.4 K on water, on 1.0M NaCl to be H = 1.57±0.4 at 275.7 K, 0.8±0.2 at 291 K and on 4.0M NaCl to be H = 0.44±0.1 at 275.7 K and 0.16±0.04 at 291 K, showing a significant effect of ionic strength, m, on the solubility of DMS according to the equation ln (H/M atm-1 = 4061 T-1 - 0.052 m2 - 50.9 m T-1 - 14.0. At concentrations of DMS(liq above 50 mM, UV spectrophotometry of both O3(gas and DMS(gas enables us to observe simultaneously the reactive uptake of O3 on DMS solution and the gas-liquid equilibration of DMS along the WWFT. The uptake coefficient, g (gamma, of O3 on aqueous solutions of DMS, varying between 1 and 15·10-6, showed a square root-dependence on the aqueous DMS concentration (as expected for diffusive penetration into the surface film, where the reaction takes place in aqueous solution. The uptake coefficient was smaller on NaCl solution in accord with the lower solubility of O3. The heterogeneous reaction of O3(gas with DMS(liq was evaluated from the observations of the second order rate constant (kII for the homogeneous aqueous reaction O3(liq + DMS(liq using a numerical model of radial diffusion and reactive penetration, leading to kII ± D kII (in units of 108 M-1 s-1 = 4.1±1.2 at 291.0 K, 2.15±0.65 at 283.4 K and 1.8±0.5 at 274.4 K. Aside from the expected influence on solubility and aqueous-phase diffusion coefficient of both

  5. Temperature-compensated Love wave based gas sensor on waveguide structure of SiO2/36° YX LiTaO3

    International Nuclear Information System (INIS)

    Wang, Wen; Xie, Xiao; Chen, Gui; Liu, Jiuling; He, Shitang

    2015-01-01

    A temperature-compensated Love wave device was proposed for gas sensing utilizing a waveguide structure of SiO 2 /36° YX LiTaO 3 . Significant improvement in the temperature stability of the hybrid Love wave device was implemented by varying the guiding layer thickness. The optimal values yielding low cross-sensitivity to temperature and high mass sensitivity in gas sorption were determined theoretically by solving the coupled electromechanical field equation in layered media. The theoretical analysis was confirmed experimentally in dimethylmethylphosphonate (DMMP) detection by using a fluoroalcoholpolysiloxane (SXFA) coated Love wave sensor. The experimental results indicate that better sensitivity and excellent temperature stability were obtained from the developed Love wave gas sensor over the Rayleigh surface acoustic wave (R-SAW) sensors. (paper)

  6. Degradation of 2,4-dichlorophenol using combined approach based on ultrasound, ozone and catalyst.

    Science.gov (United States)

    Barik, Arati J; Gogate, Parag R

    2017-05-01

    The present work investigates the application of ultrasound and ozone operated individually and in combination with catalyst (ZnO and CuO) for establishing the possible synergistic effects for the degradation of 2,4-dichlorophenol. The dependency of extent of degradation on the operating parameters like temperature (over the range of 30-36°C), initial pH (3-9), catalyst as ZnO (loading of 0.025-0.15g/L) and CuO (loading of 0.02-0.1g/L) and initial concentration of 2,4-DCP (20-50ppm) has been established to maximize the efficacy of ultrasound (US) induced degradation. Using only US, the maximum degradation of 2,4-DCP obtained was 28.85% under optimized conditions of initial concentration as 20ppm, pH of 5 and temperature of 34°C. Study of effect of ozone flow rate for approach of only ozone revealed that maximum degradation was obtained at 400mg/h ozone flow rate. The combined approaches such as US+O 3 , US+ZnO, US+CuO, O 3 +ZnO, O 3 +CuO, US+O 3 +ZnO and US+O 3 +CuO have been subsequently investigated under optimized conditions and observed to be more efficient as compared to individual approaches. The maximum extent of degradation for the combined operation of US+O 3 (400mg/h)+ZnO (0.1g/L) and US+O 3 (400mg/h)+CuO (0.08g/L) has been obtained as 95.66% and 97.03% respectively. The degradation products of 2,4-DCP have been identified using GC-MS analysis and the toxicity analysis has also been performed based on the anti-microbial activity test (agar-well diffusion method) for the different treatment strategies. The present work has conclusively established that the combined approach of US+O 3 +CuO was the most efficient treatment scheme resulting in near complete degradation of 2,4-DCP with production of less toxic intermediates. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Ce doped NiO nanoparticles as selective NO2 gas sensor

    Science.gov (United States)

    Gawali, Swati R.; Patil, Vithoba L.; Deonikar, Virendrakumar G.; Patil, Santosh S.; Patil, Deepak R.; Patil, Pramod S.; Pant, Jayashree

    2018-03-01

    Metal oxide gas sensors are promising portable gas detection devices because of their advantages such as low cost, easy production and compact size. The performance of such sensors is strongly dependent on material properties such as morphology, structure and doping. In the present study, we report the effect of cerium (Ce) doping on nickel oxide (NiO) nano-structured thin film sensors towards various gases. Bare NiO and Ce doped NiO nanoparticles (Ce:NiO) were synthesized by sol-gel method. To understand the effect of Ce doping in nickel oxide, various molar percentages of Ce with respect to nickel were incorporated. The structure, phase, morphology and band-gap energy of as-synthesized nanoparticles were studied by XRD, SEM, EDAX and UV-vis spectroscopy. Thin film gas sensors of all the samples were prepared and subjected to various gases such as LPG, NH3, CH3COCH3 and NO2. A systematic and comparative study reveals an enhanced gas sensing performance of Ce:NiO sensors towards NO2 gas. The maximum sensitivity for NO2 gas is around 0.719% per ppm at moderate operating temperature of 150 °C for 0.5% Ce:NiO thin film gas sensor. The enhanced gas sensing performance for Ce:NiO is attributed to the distortion of crystal lattice caused by doping of Ce into NiO.

  8. The role of symmetry in the mass independent isotope effect in ozone

    Science.gov (United States)

    Michalski, Greg; Bhattacharya, S. K.

    2009-01-01

    Understanding the internal distribution of “anomalous” isotope enrichments has important implications for validating theoretical postulates on the origin of these enrichments in molecules such as ozone and for understanding the transfer of these enrichments to other compounds in the atmosphere via mass transfer. Here, we present an approach, using the reaction NO2− + O3, for assessing the internal distribution of the Δ17O anomaly and the δ18O enrichment in ozone produced by electric discharge. The Δ17O results strongly support the symmetry mechanism for generating mass independent fractionations, and the δ18O results are consistent with published data. Positional Δ17O and δ18O enrichments in ozone can now be more effectively used in photochemical models that use mass balance oxygen atom transfer mechanisms to infer atmospheric oxidation chemistry. PMID:19307571

  9. Reduction of root-knot nematode, Meloidogyne javanica, and ozone mass transfer in soil treated with ozone.

    Science.gov (United States)

    Qiu, Jinya Jack; Westerdahl, Becky B; Pryor, Alan

    2009-09-01

    Ozone gas (O₃) is a reactive oxidizing agent with biocidal properties. Because of the current phasing out of methyl bromide, investigations on the use of ozone gas as a soil-fumigant were conducted. Ozone gas was produced at a concentration of 1% in air by a conventional electrical discharge O₃ generator. Two O₃ dosages and three gas flow rates were tested on a sandy loam soil collected from a tomato field that had a resident population of root knot nematodes, Meloidogyne javanica. At dosages equivalent to 50 and 250 kg of O₃/ha, M. javanica were reduced by 24% and 68%, and free-living nematodes by 19% and 52%, respectively. The reduction for both M. javanica and free-living nematodes was dosage dependent and flow rate independent. The rates of O₃ mass transfer (OMT) through three soils of different texture were greater at low and high moisture levels than at intermediate ones. At any one soil moisture level, the OMT rate varied with soil texture and soil organic matter content. Results suggest that soil texture, moisture, and organic matter content should be considered in determining O₃ dosage needed for effective nematode control.

  10. Direct analysis of ultra-trace semiconductor gas by inductively coupled plasma mass spectrometry coupled with gas to particle conversion-gas exchange technique.

    Science.gov (United States)

    Ohata, Masaki; Sakurai, Hiromu; Nishiguchi, Kohei; Utani, Keisuke; Günther, Detlef

    2015-09-03

    An inductively coupled plasma mass spectrometry (ICPMS) coupled with gas to particle conversion-gas exchange technique was applied to the direct analysis of ultra-trace semiconductor gas in ambient air. The ultra-trace semiconductor gases such as arsine (AsH3) and phosphine (PH3) were converted to particles by reaction with ozone (O3) and ammonia (NH3) gases within a gas to particle conversion device (GPD). The converted particles were directly introduced and measured by ICPMS through a gas exchange device (GED), which could penetrate the particles as well as exchange to Ar from either non-reacted gases such as an air or remaining gases of O3 and NH3. The particle size distribution of converted particles was measured by scanning mobility particle sizer (SMPS) and the results supported the elucidation of particle agglomeration between the particle converted from semiconductor gas and the particle of ammonium nitrate (NH4NO3) which was produced as major particle in GPD. Stable time-resolved signals from AsH3 and PH3 in air were obtained by GPD-GED-ICPMS with continuous gas introduction; however, the slightly larger fluctuation, which could be due to the ionization fluctuation of particles in ICP, was observed compared to that of metal carbonyl gas in Ar introduced directly into ICPMS. The linear regression lines were obtained and the limits of detection (LODs) of 1.5 pL L(-1) and 2.4 nL L(-1) for AsH3 and PH3, respectively, were estimated. Since these LODs revealed sufficiently lower values than the measurement concentrations required from semiconductor industry such as 0.5 nL L(-1) and 30 nL L(-1) for AsH3 and PH3, respectively, the GPD-GED-ICPMS could be useful for direct and high sensitive analysis of ultra-trace semiconductor gas in air. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Laboratory investigations of the alpha-pinene/ozone gas-phase reaction

    International Nuclear Information System (INIS)

    Benner, C.L.

    1985-01-01

    In order to provide more insight into terpene photooxidation or ozonolysis reaction mechanisms, a radiotracer technique was developed. This technique was applied to an investigation of the 14 C-alpha-pinene/ozone reaction. In the first phase of the research, the carbon distribution at the conclusion of the ozonolysis reaction was determined by separating carbon-14-labelled gaseous products from labelled aerosols, and counting each phase by liquid scintillation methods. The resulting carbon balance was 38% to 60% filtered aerosols, 6% to 20% gas phase compounds, and 11% to 29% products absorbed on the reaction chamber walls. Recoveries of the alpha-pinene carbon-14 ranging from 79% to 97% were achieved using this method. The alpha-pinene concentrations in these experiments were close to ambient (1 part per billion), yet the carbon balance was similar to that observed at much higher concentrations (>1 part per million). In the second phase of the alpha-pinene study, both gas and aerosol products of the ozonolysis reaction were collected on cartridges impregnated with 2,4-dinitrophenylhydrazine, then analyzed by HPLC. In the final experiments, alpha-pinene aerosol was reacted with a silylating agent to improve the detection of organic acids and alcohols. The gas chromatographic/mass spectrometric analysis of the silylated aerosol products showed evidence of dimer/polymer formation occurring in the ozonolysis reaction

  12. Removal of Ozone by Urban and Peri-Urban Forests: Evidence from Laboratory, Field, and Modeling Approaches

    Science.gov (United States)

    Carlo Calfapietra; Arianna Morani; Gregorio Sgrigna; Sara Di Giovanni; Valerio Muzzini; Emanuele Pallozzi; Gabriele Guidolotti; David Nowak; Silvano Fares

    2016-01-01

    A crucial issue in urban environments is the interaction between urban trees and atmospheric pollution, particularly ozone (O3). Ozone represents one of the most harmful pollutants in urban and peri-urban environments, especially in warm climates. Besides the large interest in reducing anthropogenic and biogenic precursors of O3...

  13. Construction of the Cylindrical Ozone Generator by Silent Discharge Method

    International Nuclear Information System (INIS)

    Agus Purwadi; Widdi Usada; Suryadi; Isyuniarto; Sri Sukmajaya

    2002-01-01

    It has been constructed the ozone generator by silent discharge method. Anode and cathode of discharge tube were made of stainless steel (SS) in the cylinder form with diameters of 22 mm and 25 mm, the length of 100 mm and 110 mm, the equal thickness of 1 mm respectively. The dielectric was made of cylinder glass with diameter of 23 cm, the length of 105 cm and the thickness of 1 mm. The testing of apparatus was carried out by using discharge voltage of 12.5 kV and frequency of 1.5 kHz. Identification of the ozone gas formation was marked by the existing of special ozone smell and the separated of iodine molecule (yellow colour) from the potassium iodide solution which contaminated gas out put from the ozonizer. By using absorbing method can be shown that the ozone production rate was 0.196 mg/s by using oxygen gas input and 0.065 mg/s by using ordinary air input. (author)

  14. Sequential disinfection of E. coli O157:H7 on shredded lettuce leaves by aqueous chlorine dioxide, ozonated water, and thyme essential oil

    Science.gov (United States)

    Singh, Nepal; Singh, Rakesh K.; Bhunia, Arun K.; Stroshine, Richard L.; Simon, James E.

    2001-03-01

    There have been numerous studies on effectiveness of different sanitizers for microbial inactivation. However, results obtained from different studies indicate that microorganism cannot be easily removed from fresh cut vegetables because of puncture and cut surfaces with varying surface topographies. In this study, three step disinfection approach was evaluated for inactivation of E. coli O157:H7 on shredded lettuce leaves. Sequential application of thyme oil, ozonated water, and aqueous chlorine dioxide was evaluated in which thyme oil was applied first followed by ozonated water and aqueous chlorine dioxide. Shredded lettuce leaves inoculated with cocktail culture of E. coli O157:H7 (C7927, EDL 933 and 204 P), were washed with ozonated water (15 mg/l for 10min), aqueous chlorine dioxide (10 mg/l,for 10min) and thyme oil suspension (0.1%, v/v for 5min). Washing of lettuce leaves with ozonated water, chlorine dioxide and thyme oil suspension resulted in 0.44, 1.20, and 1.46 log reduction (log10 cfu/g), respectively. However, the sequential treatment achieved approximately 3.13 log reductions (log10 cfu/g). These results demonstrate the efficacy of sequential treatments in decontaminating shredded lettuce leaves containing E. coli O157:H7.

  15. The performance and decolourization kinetics of O3/H2O2 oxidation of reactive green 19 dye in wastewater

    Science.gov (United States)

    Sabri, S. N.; Abidin, C. Z. A.; Fahmi; Kow, S. H.; Razali, N. A.

    2018-03-01

    The degradations characteristic of azo dye Reactive Green 19 (RG19) was investigated using advanced oxidation process (AOPs). It was evaluated based on colour and chemical oxygen demand (COD) removal. The effect of operational parameters such as initial dye concentration, initial dosage of hydrogen peroxide (H2O2), contact time, and pH was also being studied. The samples were treated by ozonation (O3) and peroxone O3/H2O2 process. Advanced oxidation processes (AOPs) involve two stages of oxidation; firstly is the formation of strong oxidant and secondly the reaction of organic contaminants in water. In addition, the term advanced oxidation is referring to the processes in which oxidation of organic contaminants occurs primarily through reactions with hydroxyl radicals. There are several analyses that use to determine the efficiency of the treatment process, which are UV-Vis absorption spectra, COD, Fourier Transform Infrared (FT-IR), and pH. The results demonstrated that the ozone oxidation was efficient in decolourization and good in mineralization, based on the reduction of colour and COD. Additionally, results indicate that H2O2 is able to perform better than ozonation in order to decolourize the dye wastewater with 0.5 mL H2O2/L dye dosage of H2O2 at different initial concentration, initial pH, with contact time.

  16. Effect of greenhouse gas emissions on stratospheric ozone depletion

    NARCIS (Netherlands)

    Velders GJM; LLO

    1997-01-01

    The depletion of the ozone layer is caused mainly by the increase in emissions of chlorine- and bromine-containing compounds like CFCs, halons, carbon tetrachloride, methyl chloroform and methyl bromide. Emissions of greenhouse gases can affect the depletion of the ozone layer through atmospheric

  17. Shelf life characteristics of bread produced from ozonated wheat flour.

    Science.gov (United States)

    Obadi, Mohammed; Zhu, Ke-Xue; Peng, Wei; Sulieman, Abdellatif A; Mahdi, Amer Ali; Mohammed, Khalid; Zhou, Hui-Ming

    2017-11-13

    The objective of this work was to study the effect of ozone treatment on the quality of bread and its shelf life. Flour was treated with ozone gas a rate of 5 L/min for 5, 15, 25, 35, and 45 min. Baking studies showed that bread made from flour treated with ozone for 15 min exhibited improved quality properties (in terms of specific volume, bread color, and crumb cell numbers). Exposure to ozone for shorter times did not cause obvious changes in the major volatile compounds of bread. A shelf life tests showed that ozone gas treatment influenced the extent of starch crystallinity. The relative starch crystallinity of bread made from flour treated with ozone for 15 min was lower than the control value, as were the hardness, springiness, and cohesiveness. Microscopic examination of crumb structure revealed remarkable differences between control and treated breads. Although ozone is a naturally occurring substance found in the atmosphere, ozone can also be produced synthetically. Recently, ozone has come to be regarded as a new treatment for flour. Especially in countries where the chlorination is forbidden, ozone treatment may be of a great interest if it were associated with significant and reliable changes in flour. Ozone treatment of wheat flour tends to improve bread shelf life and quality in terms of physiochemical, baking properties, X-ray diffraction data, volatile compound levels, crumb structure, and textural characteristics. Given such findings, desirable shelf life and bread qualities may be achieved when ozone is used as a flour oxidant prior to bread baking. Analyses of the effects of ozone gas on treatment of flour on bread shelf life and quality would aid the production of high quality and extend the shelf life of bread. © 2017 Wiley Periodicals, Inc.

  18. Ozone mixing ratios inside tropical deep convective clouds from OMI satellite measurements

    Directory of Open Access Journals (Sweden)

    J. R. Ziemke

    2009-01-01

    Full Text Available We have developed a new technique for estimating ozone mixing ratio inside deep convective clouds. The technique uses the concept of an optical centroid cloud pressure that is indicative of the photon path inside clouds. Radiative transfer calculations based on realistic cloud vertical structure as provided by CloudSat radar data show that because deep convective clouds are optically thin near the top, photons can penetrate significantly inside the cloud. This photon penetration coupled with in-cloud scattering produces optical centroid pressures that are hundreds of hPa inside the cloud. We combine measured column ozone and the optical centroid cloud pressure derived using the effects of rotational-Raman scattering to estimate O3 mixing ratio in the upper regions of deep convective clouds. The data are obtained from the Ozone Monitoring Instrument (OMI onboard NASA's Aura satellite. Our results show that low O3 concentrations in these clouds are a common occurrence throughout much of the tropical Pacific. Ozonesonde measurements in the tropics following convective activity also show very low concentrations of O3 in the upper troposphere. These low amounts are attributed to vertical injection of ozone poor oceanic boundary layer air during convection into the upper troposphere followed by convective outflow. Over South America and Africa, O3 mixing ratios inside deep convective clouds often exceed 50 ppbv which are comparable to mean background (cloud-free amounts and are consistent with higher concentrations of injected boundary layer/lower tropospheric O3 relative to the remote Pacific. The Atlantic region in general also consists of higher amounts of O3 precursors due to both biomass burning and lightning. Assuming that O3 is well mixed (i.e., constant mixing ratio with height up to the tropopause, we can estimate the stratospheric column O3 over

  19. Ozone flux over a Norway spruce forest and correlation with net ecosystem production

    International Nuclear Information System (INIS)

    Zapletal, Milos; Cudlin, Pavel; Chroust, Petr; Urban, Otmar; Pokorny, Radek; Edwards-Jonasova, Magda; Czerny, Radek; Janous, Dalibor; Taufarova, Klara; Vecera, Zbynek; Mikuska, Pavel; Paoletti, Elena

    2011-01-01

    Daily ozone deposition flux to a Norway spruce forest in Czech Republic was measured using the gradient method in July and August 2008. Results were in good agreement with a deposition flux model. The mean daily stomatal uptake of ozone was around 47% of total deposition. Average deposition velocity was 0.39 cm s -1 and 0.36 cm s -1 by the gradient method and the deposition model, respectively. Measured and modelled non-stomatal uptake was around 0.2 cm s -1 . In addition, net ecosystem production (NEP) was measured by using Eddy Covariance and correlations with O 3 concentrations at 15 m a.g.l., total deposition and stomatal uptake were tested. Total deposition and stomatal uptake of ozone significantly decreased NEP, especially by high intensities of solar radiation. - Highlights: → We estimate ozone deposition flux to a Norway spruce forest using the gradient method and model. → The mean stomatal uptake of ozone is approximately 47% of the total deposition. → We measure net ecosystem production (NEP) using Eddy Covariance. → We test whether elevated total deposition and stomatal uptake of O 3 imply a reduction of NEP. → Deposition and stomatal uptake of O 3 decrease NEP, especially by high intensities of solar radiation. - Net ecosystem production of a Norway spruce forest decreases with increasing deposition and stomatal uptake of ozone.

  20. Research Update: Diode performance of the Pt/Al2O3/two-dimensional electron gas/SrTiO3 structure and its time-dependent resistance evolution

    Directory of Open Access Journals (Sweden)

    Taehwan Moon

    2017-04-01

    Full Text Available Time domain electric pulse measurements were conducted on a capacitor consisting of a Pt film as the top electrode, atomic-layer-deposited 6.5-nm-thick amorphous Al2O3 as the dielectric layer, and two-dimensional electron gas (2DEG at the interface between Al2O3 and SrTiO3 as the bottom electrode. The sample showed highly useful current-voltage characteristics as the selector in cross-bar array resistance switching random access memory. The long-term (order of second variation in the leakage current when the Pt electrode was positively biased was attributed to the field-induced migration of oxygen vacancies between the interior of the Al2O3 and the 2DEG region. Relaxation of the vacancy concentration occurred even at room temperature.