WorldWideScience

Sample records for ozone depletion problem

  1. Addressing Ozone Layer Depletion

    Science.gov (United States)

    Access information on EPA's efforts to address ozone layer depletion through regulations, collaborations with stakeholders, international treaties, partnerships with the private sector, and enforcement actions under Title VI of the Clean Air Act.

  2. Revisiting Antarctic Ozone Depletion

    Science.gov (United States)

    Grooß, Jens-Uwe; Tritscher, Ines; Müller, Rolf

    2015-04-01

    Antarctic ozone depletion is known for almost three decades and it has been well settled that it is caused by chlorine catalysed ozone depletion inside the polar vortex. However, there are still some details, which need to be clarified. In particular, there is a current debate on the relative importance of liquid aerosol and crystalline NAT and ice particles for chlorine activation. Particles have a threefold impact on polar chlorine chemistry, temporary removal of HNO3 from the gas-phase (uptake), permanent removal of HNO3 from the atmosphere (denitrification), and chlorine activation through heterogeneous reactions. We have performed simulations with the Chemical Lagrangian Model of the Stratosphere (CLaMS) employing a recently developed algorithm for saturation-dependent NAT nucleation for the Antarctic winters 2011 and 2012. The simulation results are compared with different satellite observations. With the help of these simulations, we investigate the role of the different processes responsible for chlorine activation and ozone depletion. Especially the sensitivity with respect to the particle type has been investigated. If temperatures are artificially forced to only allow cold binary liquid aerosol, the simulation still shows significant chlorine activation and ozone depletion. The results of the 3-D Chemical Transport Model CLaMS simulations differ from purely Lagrangian longtime trajectory box model simulations which indicates the importance of mixing processes.

  3. Ozone-depleting Substances (ODS)

    Data.gov (United States)

    U.S. Environmental Protection Agency — This site includes all of the ozone-depleting substances (ODS) recognized by the Montreal Protocol. The data include ozone depletion potentials (ODP), global warming...

  4. Global Warming: Lessons from Ozone Depletion

    Science.gov (United States)

    Hobson, Art

    2010-01-01

    My teaching and textbook have always covered many physics-related social issues, including stratospheric ozone depletion and global warming. The ozone saga is an inspiring good-news story that's instructive for solving the similar but bigger problem of global warming. Thus, as soon as students in my physics literacy course at the University of…

  5. Ozone depletion calculations

    International Nuclear Information System (INIS)

    Luther, F.M.; Chang, J.S.; Wuebbles, D.J.; Penner, J.E.

    1992-01-01

    Models of stratospheric chemistry have been primarily directed toward an understanding of the behavior of stratospheric ozone. Initially this interest reflected the diagnostic role of ozone in the understanding of atmospheric transport processes. More recently, interest in stratospheric ozone has arisen from concern that human activities might affect the amount of stratospheric ozone, thereby affecting the ultraviolet radiation reaching the earth's surface and perhaps also affecting the climate with various potentially severe consequences for human welfare. This concern has inspired a substantial effort to develop both diagnostic and prognostic models of stratospheric ozone. During the past decade, several chemical agents have been determined to have potentially significant impacts on stratospheric ozone if they are released to the atmosphere in large quantities. These include oxides of nitrogen, oxides of hydrogen, chlorofluorocarbons, bromine compounds, fluorine compounds and carbon dioxide. In order to assess the potential impact of the perturbations caused by these chemicals, mathematical models have been developed to handle the complex coupling between chemical, radiative, and dynamical processes. Basic concepts in stratospheric modeling are reviewed

  6. Issues in Stratospheric Ozone Depletion.

    Science.gov (United States)

    Lloyd, Steven Andrew

    Following the announcement of the discovery of the Antarctic ozone hole in 1985 there have arisen a multitude of questions pertaining to the nature and consequences of polar ozone depletion. This thesis addresses several of these specific questions, using both computer models of chemical kinetics and the Earth's radiation field as well as laboratory kinetic experiments. A coupled chemical kinetic-radiative numerical model was developed to assist in the analysis of in situ field measurements of several radical and neutral species in the polar and mid-latitude lower stratosphere. Modeling was used in the analysis of enhanced polar ClO, mid-latitude diurnal variation of ClO, and simultaneous measurements of OH, HO_2, H_2 O and O_3. Most importantly, such modeling was instrumental in establishing the link between the observed ClO and BrO concentrations in the Antarctic polar vortex and the observed rate of ozone depletion. The principal medical concern of stratospheric ozone depletion is that ozone loss will lead to the enhancement of ground-level UV-B radiation. Global ozone climatology (40^circS to 50^ circN latitude) was incorporated into a radiation field model to calculate the biologically accumulated dosage (BAD) of UV-B radiation, integrated over days, months, and years. The slope of the annual BAD as a function of latitude was found to correspond to epidemiological data for non-melanoma skin cancers for 30^circ -50^circN. Various ozone loss scenarios were investigated. It was found that a small ozone loss in the tropics can provide as much additional biologically effective UV-B as a much larger ozone loss at higher latitudes. Also, for ozone depletions of > 5%, the BAD of UV-B increases exponentially with decreasing ozone levels. An important key player in determining whether polar ozone depletion can propagate into the populated mid-latitudes is chlorine nitrate, ClONO_2 . As yet this molecule is only indirectly accounted for in computer models and field

  7. Ozone depletion potentials of halocarbons

    International Nuclear Information System (INIS)

    Karol, I.L.; Kiselev, A.A.

    1992-01-01

    The concept of ozone depletion potential (ODP) is widely used in the evaluation of numerous halocarbons and of their replacements for effects on ozone, but the methods, model assumptions and conditions of ODP calculation have not been analyzed adequately. In this paper, a model study of effects on ozone after the instantaneous releases of various amounts of CH 3 CCl 3 and of CHF 2 Cl(HCFC-22) in the several conditions of the background atmosphere are presented, aimed to understand the main connections of ODP values with the methods of their calculations. To facilitate the ODP computation in numerous versions for long after the releases, the above rather short-lived gases have been used. The variation of released gas global mass from 1 Mt to 1 Gt leads to ODP value increase atmosphere. The same variations are analyzed for the CFC-free atmosphere of 1960s conditions for the anthropogenically loaded atmosphere in the 21st century according to the known IPCC- A scenario (business as usual). Recommendations of proper ways of ODP calculations are proposed for practically important cases

  8. International aspects of restrictions of ozone-depleting substances

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, S.C.

    1989-10-01

    This report summarizes international efforts to protect stratospheric ozone. Also included in this report is a discussion of activities in other countries to meet restrictions in the production and use of ozone-depleting substances. Finally, there is a brief presentation of trade and international competitiveness issues relating to the transition to alternatives for the regulated chlorofluorocarbons (CFCs) and halons. The stratosphere knows no international borders. Just as the impact of reduced stratospheric ozone will be felt internationally, so protection of the ozone layer is properly an international effort. Unilateral action, even by a country that produces and used large quantities of ozone-depleting substances, will not remedy the problem of ozone depletion if other countries do not follow suit. 32 refs., 7 tabs.

  9. Ozone depletion following future volcanic eruptions

    Science.gov (United States)

    Eric Klobas, J.; Wilmouth, David M.; Weisenstein, Debra K.; Anderson, James G.; Salawitch, Ross J.

    2017-07-01

    While explosive volcanic eruptions cause ozone loss in the current atmosphere due to an enhancement in the availability of reactive chlorine following the stratospheric injection of sulfur, future eruptions are expected to increase total column ozone as halogen loading approaches preindustrial levels. The timing of this shift in the impact of major volcanic eruptions on the thickness of the ozone layer is poorly known. Modeling four possible climate futures, we show that scenarios with the smallest increase in greenhouse gas concentrations lead to the greatest risk to ozone from heterogeneous chemical processing following future eruptions. We also show that the presence in the stratosphere of bromine from natural, very short-lived biogenic compounds is critically important for determining whether future eruptions will lead to ozone depletion. If volcanic eruptions inject hydrogen halides into the stratosphere, an effect not considered in current ozone assessments, potentially profound reductions in column ozone would result.

  10. Ozone depleting substances management inventory system

    Directory of Open Access Journals (Sweden)

    Felix Ivan Romero Rodríguez

    2018-02-01

    Full Text Available Context: The care of the ozone layer is an activity that contributes to the planet's environmental stability. For this reason, the Montreal Protocol is created to control the emission of substances that deplete the ozone layer and reduce its production from an organizational point of view. However, it is also necessary to have control of those that are already circulating and those present in the equipment that cannot be replaced yet because of the context of the companies that keep it. Generally, the control mechanisms for classifying the type of substances, equipment and companies that own them, are carried in physical files, spreadsheets and text documents, which makes it difficult to control and manage the data stored in them. Method: The objective of this research is to computerize the process of control of substances that deplete the ozone layer. An evaluation and description of all process to manage Ozone-Depleting Substances (ODS, and its alternatives, is done. For computerization, the agile development methodology SCRUM is used, and for the technological solution tools and free open source technologies are used. Result: As a result of the research, a computer tool was developed that automates the process of control and management of substances that exhaust the ozone layer and its alternatives. Conclusions: The developed computer tool allows to control and manage the ozone-depleting substances and the equipment that use them. It also manages the substances that arise as alternatives to be used for the protection of the ozone layer.

  11. The depletion of the stratospheric ozone layer

    International Nuclear Information System (INIS)

    Sabogal Nelson

    2000-01-01

    The protection of the Earth's ozone layer is of the highest importance to mankind. The dangers of its destruction are by now well known. The depletion of that layer has reached record levels. The Antarctic ozone hole covered this year a record area. The ozone layer is predicted to begin recovery in the next one or two decades and should be restored to pre-1980 levels by 2050. This is the achievement of the regime established by the 1985 Vienna Convention for the Protection of the Ozone Layer and the 1987 Montreal Protocol on Substances that Deplete the Ozone Layer. The regime established by these two agreements has been revised, and made more effective in London (1990), Copenhagen (1992), Vienna (1995), and Beijing (1999)

  12. Ozone depletion, greenhouse effect and atomic energy

    International Nuclear Information System (INIS)

    Adzersen, K.H.

    1991-01-01

    After describing the causes and effects of ozone depletion and the greenhouse effect, the author discusses the alternative offered by the nuclear industry. In his opinion, a worldwide energy strategy of risk minimisation will not be possible unless efficient energy use is introduced immediately, efficiently and on a reliable basis. Atomic energy is not viewed as an acceptable means of preventing the threatening climate change. (DG) [de

  13. Students' Understanding of the Greenhouse Effect, the Societal Consequences of Reducing CO2 Emissions and the Problem of Ozone Layer Depletion.

    Science.gov (United States)

    Andersson, Bjorn; Wallin, Anita

    2000-01-01

    Contributes to the growing body of knowledge about students' conceptions and views of environmental and natural resource issues. Questions 9th and 12th grade Swedish students' understandings of the greenhouse effect, reduction of CO2 emissions, and the depletion of the ozone layer. Observes five models of the greenhouse effect that appear among…

  14. Potential For Stratospheric Ozone Depletion During Carboniferous

    Science.gov (United States)

    Bill, M.; Goldstein, A. H.

    Methyl bromide (CH3Br) constitutes the largest source of bromine atoms to the strato- sphere whereas methyl chloride (CH3Cl) is the most abundant halocarbon in the tro- posphere. Both gases play an important role in stratospheric ozone depletion. For in- stance, Br coupled reactions are responsible for 30 to 50 % of total ozone loss in the polar vortex. Currently, the largest natural sources of CH3Br and CH3Cl appear to be biological production in the oceans, inorganic production during biomass burning and plant production in salt marsh ecosystems. Variations of paleofluxes of CH3Br and CH3Cl can be estimated by analyses of oceanic paleoproductivity, stratigraphic analyses of frequency and distribution of fossil charcoal indicating the occurrence of wildfires, and/or by paleoreconstruction indicating the extent of salt marshes. Dur- ing the lower Carboniferous time (Tournaisian-Visean), the southern margin of the Laurasian continent was characterized by charcoal deposits. Estimation on frequency of charcoal layers indicates that wildfires occur in a range of 3-35 years (Falcon-Lang 2000). This suggests that biomass burning could be an important source of CH3Br and CH3Cl during Tournaisian-Viesan time. During Tounaisian and until Merame- cian carbon and oxygen isotope records have short term oscillations (Bruckschen et al. 1999, Mii et al. 1999). Chesterian time (mid- Carboniferous) is marked by an in- crease in delta18O values ( ~ 2 permil) and an increase of glacial deposit frequency suggesting lower temperatures. The occurrence of glacial deposits over the paleopole suggests polar conditions and the associated special features of polar mete- orology such as strong circumpolar wind in the stratosphere (polar vortex) and polar stratospheric clouds. Thus, conditions leading to polar statospheric ozone depletion can be found. Simultaneously an increase in delta13C values is documented. We interpret the positive shift in delta13C as a result of higher bioproductivity

  15. Utilization of Alternate Propellants to Reduce Stratospheric Ozone Depletion

    National Research Council Canada - National Science Library

    Lewis, David

    1994-01-01

    There is continuing concern about the depletion of the ozone layer. Recently it has been determined that effluents from rockets exhausts contain chemical species that can be classified as Potentially Ozone Reactive Chemicals (PORCs...

  16. Producing, Importing, and Exporting Ozone-Depleting Substances

    Science.gov (United States)

    Overview page provides links to information on producing, importing, and exporting ozone-depleting substances, including information about the HCFC allowance system, importing, labeling, recordkeeping and reporting.

  17. Importance of energetic solar protons in ozone depletion

    Energy Technology Data Exchange (ETDEWEB)

    Stephenson, J A.E.; Scourfield, M W.J. [Natal Univ., Durban (South Africa). Space Physics Research Inst.

    1991-07-11

    CHLORINE-catalysed depletion of the stratospheric ozone layer has commanded considerable attention since 1985, when Farman et al. observed a decrease of 50% in the total column ozone over Antarctica in the austral spring. Here we examine the depletion of stratospheric ozone caused by the reaction of ozone with nitric oxide generated by energetic solar protons, associated with solar flares. During large solar flares in March 1989, satellite observations indicated that total column ozone was depleted by {approx} 9% over {approx} 20% of the total area between the South Pole and latitude 70{sup o}S. Chlorine-catalysed ozone depletion takes place over a much larger area, but our results indicate that the influence of solar protons on atmospheric ozone concentrations should not be ignored. (author).

  18. Importance of energetic solar protons in ozone depletion

    International Nuclear Information System (INIS)

    Stephenson, J.A.E.; Scourfield, M.W.J.

    1991-01-01

    CHLORINE-catalysed depletion of the stratospheric ozone layer has commanded considerable attention since 1985, when Farman et al. observed a decrease of 50% in the total column ozone over Antarctica in the austral spring. Here we examine the depletion of stratospheric ozone caused by the reaction of ozone with nitric oxide generated by energetic solar protons, associated with solar flares. During large solar flares in March 1989, satellite observations indicated that total column ozone was depleted by ∼ 9% over ∼ 20% of the total area between the South Pole and latitude 70 o S. Chlorine-catalysed ozone depletion takes place over a much larger area, but our results indicate that the influence of solar protons on atmospheric ozone concentrations should not be ignored. (author)

  19. Effect of greenhouse gas emissions on stratospheric ozone depletion

    NARCIS (Netherlands)

    Velders GJM; LLO

    1997-01-01

    The depletion of the ozone layer is caused mainly by the increase in emissions of chlorine- and bromine-containing compounds like CFCs, halons, carbon tetrachloride, methyl chloroform and methyl bromide. Emissions of greenhouse gases can affect the depletion of the ozone layer through atmospheric

  20. Ozone Sensitivity to Varying Greenhouse Gases and Ozone-Depleting Substances in CCMI-1 Simulations

    Science.gov (United States)

    Morgenstern, Olaf; Stone, Kane A.; Schofield, Robyn; Akiyoshi, Hideharu; Yamashita, Yousuke; Kinnison, Douglas E.; Garcia, Rolando R.; Sudo, Kengo; Plummer, David A.; Scinocca, John; hide

    2018-01-01

    Ozone fields simulated for the first phase of the Chemistry-Climate Model Initiative (CCMI-1) will be used as forcing data in the 6th Coupled Model Intercomparison Project. Here we assess, using reference and sensitivity simulations produced for CCMI-1, the suitability of CCMI-1 model results for this process, investigating the degree of consistency amongst models regarding their responses to variations in individual forcings. We consider the influences of methane, nitrous oxide, a combination of chlorinated or brominated ozone-depleting substances, and a combination of carbon dioxide and other greenhouse gases. We find varying degrees of consistency in the models' responses in ozone to these individual forcings, including some considerable disagreement. In particular, the response of total-column ozone to these forcings is less consistent across the multi-model ensemble than profile comparisons. We analyse how stratospheric age of air, a commonly used diagnostic of stratospheric transport, responds to the forcings. For this diagnostic we find some salient differences in model behaviour, which may explain some of the findings for ozone. The findings imply that the ozone fields derived from CCMI-1 are subject to considerable uncertainties regarding the impacts of these anthropogenic forcings. We offer some thoughts on how to best approach the problem of generating a consensus ozone database from a multi-model ensemble such as CCMI-1.

  1. Ozone sensitivity to varying greenhouse gases and ozone-depleting substances in CCMI-1 simulations

    Directory of Open Access Journals (Sweden)

    O. Morgenstern

    2018-01-01

    Full Text Available Ozone fields simulated for the first phase of the Chemistry-Climate Model Initiative (CCMI-1 will be used as forcing data in the 6th Coupled Model Intercomparison Project. Here we assess, using reference and sensitivity simulations produced for CCMI-1, the suitability of CCMI-1 model results for this process, investigating the degree of consistency amongst models regarding their responses to variations in individual forcings. We consider the influences of methane, nitrous oxide, a combination of chlorinated or brominated ozone-depleting substances, and a combination of carbon dioxide and other greenhouse gases. We find varying degrees of consistency in the models' responses in ozone to these individual forcings, including some considerable disagreement. In particular, the response of total-column ozone to these forcings is less consistent across the multi-model ensemble than profile comparisons. We analyse how stratospheric age of air, a commonly used diagnostic of stratospheric transport, responds to the forcings. For this diagnostic we find some salient differences in model behaviour, which may explain some of the findings for ozone. The findings imply that the ozone fields derived from CCMI-1 are subject to considerable uncertainties regarding the impacts of these anthropogenic forcings. We offer some thoughts on how to best approach the problem of generating a consensus ozone database from a multi-model ensemble such as CCMI-1.

  2. Future emission scenarios for chemicals that may deplete stratospheric ozone

    International Nuclear Information System (INIS)

    Hammitt, J.K; Camm, Frank; Mooz, W.E.; Wolf, K.A.; Bamezai, Anil; Connel, P.S.; Wuebbles, D.J.

    1990-01-01

    Scenarios are developed for long-term future emissions of seven of the most important manmade chemicals that may deplete ozone and the corresponding effect on stratospheric ozone concentrations is calculated using a one-dimensional atmospheric model. The scenarios are based on detailed analysis of the markets for products that use these chemicals and span a central 90% probability interval for the chemicals joint effect on calculated ozone abundance, assuming no additional regulations. (author). 22 refs., 2 figs., 5 tabs

  3. Ozone Layer Depletion: A Review | Eze | Nigerian Journal of Health ...

    African Journals Online (AJOL)

    However, the future behaviour of Ozone will also be affected by the changing atmospheric abundances of methane, nitrous oxide, water vapour, sulphate aerosol, and changing climate. KEY WORDS: Ozone Layer Depletion, Bioeffects, Protection. Nigerian Journal of Health and Biomedical Sciences Vol.4(1) 2005: 67-71 ...

  4. From ozone depletion to biological UV damage

    Energy Technology Data Exchange (ETDEWEB)

    Tamm, E; Thomalla, E; Koepke, P [Munich Univ. (Germany). Meteorological Inst.

    1996-12-31

    Based on the ozone data from the Meteorological Observatory Hohenpeissenberg (MOHP: 47.8 deg N, 11.01 deg E) and corresponding mean atmospheric conditions, high resolution UV spectra are calculated with a complex radiation transfer model STAR. Biologically weighted UV spectra are investigated as integrated irradiances (dose rates) for maximum zenith angles and as daily integrals for selected days of the year. Ozone variation and uncertainty of action spectra are investigated

  5. From ozone depletion to biological UV damage

    Energy Technology Data Exchange (ETDEWEB)

    Tamm, E.; Thomalla, E.; Koepke, P. [Munich Univ. (Germany). Meteorological Inst.

    1995-12-31

    Based on the ozone data from the Meteorological Observatory Hohenpeissenberg (MOHP: 47.8 deg N, 11.01 deg E) and corresponding mean atmospheric conditions, high resolution UV spectra are calculated with a complex radiation transfer model STAR. Biologically weighted UV spectra are investigated as integrated irradiances (dose rates) for maximum zenith angles and as daily integrals for selected days of the year. Ozone variation and uncertainty of action spectra are investigated

  6. OZONE DEPLETING SUBSTANCES ELIMINATION MANAGEMENT: THE SUCCESS STORY OF MACEDONIA

    Directory of Open Access Journals (Sweden)

    Margarita Matlievska

    2013-04-01

    Full Text Available Man, with its activities, produces and uses substances that have negative impact on the environment and the human health, and can cause an economic damage. Consequently, they have a great impact on quality of life. Among the most harmful chemicals are Ozone Depleting Substances that are subject of regulation with international conventions. This Paper supports the fact that each country has to undertake national efforts for ozone depleting substances reduction and elimination. In that respect, the general objective of the Paper is to present the Macedonian unique experience regarding its efforts to reduce or eliminate these substances. The following two aspects were subject to the research: national legislation which regulates the Ozone Depleting Substances import and export as well as the implementation of the projects that resulted with the elimination of Ozone Depleting Substances quantities in the period 1995 – 2010. The research outcomes confirm the starting research hypothesis i.e. that with adequately created and implemented national action, the amount of Ozone Depleting Substances consumption can dramatically fall.

  7. Ozone depletion, related UVB changes and increased skin cancer incidence

    Science.gov (United States)

    Kane, R. P.

    1998-03-01

    Stratospheric ozone at middle latitudes shows a seasonal variation of about +/-20%, a quasi-biennial oscillation of 1-10% range and a long-term variation in which the level was almost steady up to about 1979 and declined thereafter to the present day by about 10%. These variations are expected to be reflected in solar UVB observed at the ground, but in an opposite direction. Thus UVB should have had a long-term increase of about 10-20%, which should cause an increase in skin cancer incidence of about 20-40%. Skin cancer incidence has increased all over the world, e.g. about 90% in USA during 1974-1990. It is popularly believed that this increase in skin cancer incidence is related to the recent ozone depletion. This seems to be incorrect, for two reasons. Firstly, the observed skin cancer increase is too large (90%) compared with the expected value (40%) from ozone depletion. Secondly, cancer does not develop immediately after exposure to solar UVB. The sunburns may occur within hours; but cancer development and detection may take years, even decades. Hence the observed skin cancer increase since 1974 (no data available for earlier periods) must have occurred due to exposure to solar UVB in the 1950s and 1960s, when there was no ozone depletion. Thus, the skin cancer increase must be attributed to harmful solar UVB levels existing even in the 1960s, accentuated later not by ozone depletion (which started only much later, by 1979) but by other causes, such as a longer human life span, better screening, increasing tendencies of sunbathing at beaches, etc., in affluent societies. On the other hand, the recent ozone depletion and the associated UVB increases will certainly take their toll; only that the effects will not be noticed now but years or decades from now. The concern for the future expressed in the Montreal Protocol for reducing ozone depletion by controlling CFC production is certainly justified, especially because increased UVB is harmful to animal and

  8. Impact and mitigation of stratospheric ozone depletion by chemical rockets

    International Nuclear Information System (INIS)

    Mcdonald, A.J.

    1992-03-01

    The American Institute of Aeronautics and Astronautics (AIAA) conducted a workshop in conjunction with the 1991 AIAA Joint Propulsion Conference in Sacramento, California, to assess the impact of chemical rocket propulsion on the environment. The workshop included recognized experts from the fields of atmospheric physics and chemistry, solid rocket propulsion, liquid rocket propulsion, government, and environmental agencies, and representatives from several responsible environmental organizations. The conclusion from this workshop relative to stratospheric ozone depletion was that neither solid nor liquid rocket launchers have a significant impact on stratospheric ozone depletion, and that there is no real significant difference between the two

  9. 77 FR 74381 - Protection of Stratospheric Ozone: Listing of Substitutes for Ozone Depleting Substances-Fire...

    Science.gov (United States)

    2012-12-14

    ... Protection of Stratospheric Ozone: Listing of Substitutes for Ozone Depleting Substances--Fire Suppression... a companion proposed rule issuing listings for three fire suppressants under EPA's Significant New... companion proposed rule issuing listings for three fire suppressants under EPA's Significant New...

  10. Depletion of ozone layer and health

    International Nuclear Information System (INIS)

    Kripke, M.L.

    1990-01-01

    A decrease in food supply, rather than an increase in cancers, could turn out to be the greatest danger from the loss of the Earth's ozone shield says the author. This could result from alterations in plants and animals that are more sensitive than humans to increased levels of ultraviolet radiation. Increasing ambient ultraviolet radiation within a short time would exert dramatic selective pressure on all living organisms, but the global consequences of such an occurrence cannot be predicted. Common skin cancer is the best understood link with ultraviolet radiation. In fact, the link is so straightforward that precise calculations are possible: a 1% decrease in ozone equals a 2% increase in ultraviolet radiation, which translates into a 3 to 6% increase in common skin cancers in the US. If the immune system is damaged, the body cannot survive the continual onslaught of infectious agents present in the environment. People's willingness to protect themselves against sunlight exposure has been dictated by fashion. The fashionability of hats and sunglasses is beneficial for reducing the risk of cataracts; on the other hand, the fashionability of sun-tans has probably contributed to the rising incidence of skin cancer among Caucasians. The best remedy she advises is to avoid overexposure to sunlight

  11. Bromine measurements in ozone depleted air over the Arctic Ocean

    Directory of Open Access Journals (Sweden)

    J. A. Neuman

    2010-07-01

    Full Text Available In situ measurements of ozone, photochemically active bromine compounds, and other trace gases over the Arctic Ocean in April 2008 are used to examine the chemistry and geographical extent of ozone depletion in the arctic marine boundary layer (MBL. Data were obtained from the NOAA WP-3D aircraft during the Aerosol, Radiation, and Cloud Processes affecting Arctic Climate (ARCPAC study and the NASA DC-8 aircraft during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS study. Fast (1 s and sensitive (detection limits at the low pptv level measurements of BrCl and BrO were obtained from three different chemical ionization mass spectrometer (CIMS instruments, and soluble bromide was measured with a mist chamber. The CIMS instruments also detected Br2. Subsequent laboratory studies showed that HOBr rapidly converts to Br2 on the Teflon instrument inlets. This detected Br2 is identified as active bromine and represents a lower limit of the sum HOBr + Br2. The measured active bromine is shown to likely be HOBr during daytime flights in the arctic. In the MBL over the Arctic Ocean, soluble bromide and active bromine were consistently elevated and ozone was depleted. Ozone depletion and active bromine enhancement were confined to the MBL that was capped by a temperature inversion at 200–500 m altitude. In ozone-depleted air, BrO rarely exceeded 10 pptv and was always substantially lower than soluble bromide that was as high as 40 pptv. BrCl was rarely enhanced above the 2 pptv detection limit, either in the MBL, over Alaska, or in the arctic free troposphere.

  12. Quantifying the contributions to stratospheric ozone changes from ozone depleting substances and greenhouse gases

    Directory of Open Access Journals (Sweden)

    D. A. Plummer

    2010-09-01

    Full Text Available A state-of-the-art chemistry climate model coupled to a three-dimensional ocean model is used to produce three experiments, all seamlessly covering the period 1950–2100, forced by different combinations of long-lived Greenhouse Gases (GHGs and Ozone Depleting Substances (ODSs. The experiments are designed to quantify the separate effects of GHGs and ODSs on the evolution of ozone, as well as the extent to which these effects are independent of each other, by alternately holding one set of these two forcings constant in combination with a third experiment where both ODSs and GHGs vary. We estimate that up to the year 2000 the net decrease in the column amount of ozone above 20 hPa is approximately 75% of the decrease that can be attributed to ODSs due to the offsetting effects of cooling by increased CO2. Over the 21st century, as ODSs decrease, continued cooling from CO2 is projected to account for more than 50% of the projected increase in ozone above 20 hPa. Changes in ozone below 20 hPa show a redistribution of ozone from tropical to extra-tropical latitudes with an increase in the Brewer-Dobson circulation. In addition to a latitudinal redistribution of ozone, we find that the globally averaged column amount of ozone below 20 hPa decreases over the 21st century, which significantly mitigates the effect of upper stratospheric cooling on total column ozone. Analysis by linear regression shows that the recovery of ozone from the effects of ODSs generally follows the decline in reactive chlorine and bromine levels, with the exception of the lower polar stratosphere where recovery of ozone in the second half of the 21st century is slower than would be indicated by the decline in reactive chlorine and bromine concentrations. These results also reveal the degree to which GHG-related effects mute the chemical effects of N2O on ozone in the standard future scenario used for the WMO Ozone Assessment. Increases in the

  13. The Potential for Ozone Depletion in Solid Rocket Motor Plumes by Heterogeneous Chemistry

    National Research Council Canada - National Science Library

    Hanning-Lee, M

    1996-01-01

    ... (hydroxylated alumina), respectively, over the temperature range -60 to 200 degrees C. This work addresses the potential for stratospheric ozone depletion by launch vehicle solid rocket motor exhaust...

  14. Ozone-depleting-substance control and phase-out plan

    International Nuclear Information System (INIS)

    Nickels, J.M.; Brown, M.J.

    1994-07-01

    Title VI of the Federal Clean Air Act Amendments of 1990 requires regulation of the use and disposal of ozone-depleting substances (ODSs) (e.g., Halon, Freon). Several important federal regulations have been promulgated that affect the use of such substances at the Hanford Site. On April 23, 1993, Executive Order (EO) 12843, Procurement Requirements and Policies for Federal Agencies for Ozone-Depleting Substances (EPA 1993) was issued for Federal facilities to conform to the new US Environmental Protection Agency (EPA) regulations implementing the Clean Air Act of 1963 (CAA), Section 613, as amended. To implement the requirements of Title VI the US Department of Energy, Richland Operations Office (RL), issued a directive to the Hanford Site contractors on May 25, 1994 (Wisness 1994). The directive assigns Westinghouse Hanford Company (WHC) the lead in coordinating the development of a sitewide comprehensive implementation plan to be drafted by July 29, 1994 and completed by September 30, 1994. The implementation plan will address several areas where immediate compliance action is required. It will identify all current uses of ODSs and inventories, document the remaining useful life of equipment that contains ODS chemicals, provide a phase-out schedule, and provide a strategy that will be implemented consistently by all the Hanford Site contractors. This plan also addresses the critical and required elements of Federal regulations, the EO, and US Department of Energy (DOE) guidance. This plan is intended to establish a sitewide management system to address the clean air requirements

  15. International regime formation: Ozone depletion and global climate change

    International Nuclear Information System (INIS)

    Busmann, N.E.

    1994-03-01

    Two theoretical perspectives, neorealism and neoliberal institutionalism, dominate in international relations. An assessment is made of whether these perspectives provide compelling explanations of why a regime with specific targets and timetables was formed for ozone depletion, while a regime with such specificity was not formed for global climate change. In so doing, the assumptions underlying neorealism and neoliberal institutionalism are examined. A preliminary assessment is offered of the policymaking and institutional bargaining process. Patterns of interstate behavior are evolving toward broader forms of cooperation, at least with regard to global environmental issues, although this process is both slow and cautious. State coalitions on specific issues are not yet powerful enough to create a strong community of states in which states are willing to devolve power to international institutions. It is shown that regime analysis is a useful analytic framework, but it should not be mistaken for theory. Regime analysis provides an organizational framework offering a set of questions regarding the principles and norms that govern cooperation and conflict in an issue area, and whether forces independent of states exist which affect the scope of state behavior. An examination of both neorealism and neoliberal institutionalism, embodied by four approaches to regime formation, demonstrates that neither has sufficient scope to account for contextual dynamics in either the ozone depletion or global climate change regime formation processes. 261 refs

  16. A new approach to Ozone Depletion Potential (ODP) estimation

    Science.gov (United States)

    Portmann, R. W.; Daniel, J. S.; Yu, P.

    2017-12-01

    The Ozone Depletion Potential (ODP) is given by the time integrated global ozone loss of an ozone depleting substance (ODS) relative to a reference ODS (usually CFC-11). The ODP is used by the Montreal Protocol (and subsequent amendments) to inform policy decisions on the production of ODSs. Since the early 1990s, ODPs have usually been estimated using an approximate formulism that utilizes the lifetime and the fractional release factor of the ODS. This has the advantage that it can utilize measured concentrations of the ODSs to estimate their fractional release factors. However, there is a strong correlation between stratospheric lifetimes and fractional release factors of ODSs and that this can introduce uncertainties into ODP calculations when the terms are estimated independently. Instead, we show that the ODP is proportional to the average global ozone loss per equivalent chlorine molecule released in the stratosphere by the ODS loss process (which we call the Γ factor) and, importantly, this ratio varies only over a relatively small range ( 0.3-1.5) for ODPs with stratospheric lifetimes of 20 to more than 1,000 years. The Γ factor varies smoothly with stratospheric lifetime for ODSs with loss processes dominated by photolysis and is larger for long-lived species, while stratospheric OH loss processes produce relatively small Γs that are nearly independent of stratospheric lifetime. The fractional release approach does not accurately capture these relationships. We propose a new formulation that takes advantage of this smooth variation by parameterizing the Γ factor using ozone changes computed using the chemical climate model CESM-WACCM and the NOCAR two-dimensional model. We show that while the absolute Γ's vary between WACCM and NOCAR models, much of the difference is removed for the Γ/ΓCFC-11 ratio that is used in the ODP formula. This parameterized method simplifies the computation of ODPs while providing enhanced accuracy compared to the

  17. Implications of stratospheric ozone depletion upon plant production

    International Nuclear Information System (INIS)

    Teramura, A.H.

    1990-01-01

    An increase in the amount of UV-B radiation reaching the earth's surface is identified as the major factor of concern to result from stratospheric ozone depletion. UV radiation is believed to have wide ranging effects on plant physiology and biochemistry. In screening studies of > 300 species and cultivars, > 50% have shown sensitivity to UV radiation. The most sensitive plant families appear to be Leguminosae, Cucurbitaceae and Cruciferae. The need for a better understanding of the effects of UV radiation on crop plant physiology and particularly of the repair and protective mechanisms developed by some species is stressed. This paper was presented at a colloquium on Implications of global climate changes on horticultural cropping practices and production in developing countries held at the 86th Annual Meeting of the American Society for Horticultural Science at Tulsa, Oklahoma, on 2 Aug. 1989

  18. Ozone as an ecotoxicological problem

    Energy Technology Data Exchange (ETDEWEB)

    Mortensen, L. [National Environmental Research Inst., Dept. of Atmospheric Environment, Roskilde (Denmark)

    1996-11-01

    Ozone is quantitatively the dominating oxidant in photochemical air pollution. Other compounds like hydrogen peroxide, aldehydes, formate, peroxyacetyl nitrate (PAN) and nitrogen dioxide are present too, and several of these are known to be phytotoxic, but under Danish conditions the concentration of these gases are without significance for direct effects on vegetation. Therefore, it is the effects of ozone on plant growth that will be described below. (EG) 65 refs.

  19. Automotive industry program and strategy for control of ozone depleting substances and greenhouse gases

    International Nuclear Information System (INIS)

    Pound, F.R.; Stirling, P.J.

    1990-01-01

    This paper outlines the program status and strategy for the short and long term periods for ozone depleting substances and greenhouse gases from both stationary sources in manufacturing plants and mobile sources in motor vehicles. 5 refs

  20. Presence of stratospheric humidity in the ozone column depletion on the west coast of South America

    International Nuclear Information System (INIS)

    Da Silva, M. Luis; Gutierrez, O. Luis; Morales, S. Luis; Universidad de Chile, Santiago; Torres, C. Arnaldo

    2006-01-01

    The ozone column depletion over the western coast of South America has been previously explained, based on the existence of winds in the area of the depletion, which cause compression and thinning of the ozone layer. However, the presence of humidity and methane transported by these winds to the stratosphere where the ozone depletion is present gives evidence that these compounds also participate in the depletion of the ozone layer. These two compounds, humidity and methane, are analysed during the ozone depletion of January, 1998. It is observed that when humidity presents fluctuations, ozone has fluctuations too. A maximum of humidity corresponds to a minimum of ozone, but there is a shift in altitude between them. This shift is observed in the stratosphere and upper troposphere and corresponds to approximately 500 m. It is important to point out that during this event El Nino was present and the sources of methane are the Amazon forest and the Pacific Ocean. The data for this study was obtained from NASA and HALOE

  1. Depletion of the ozone layer: consequences for non-infectious human diseases

    International Nuclear Information System (INIS)

    Bentham, G.

    1993-01-01

    Stratospheric ozone depletion threatens to increase exposure to ultraviolet (UV) radiation which is known to be a factor in a number of diseases. There is little doubt that cumulative exposure to UV radiation is important in the aetiology of non-melanoma skin cancers. Evidence is also strong for a link with cutaneous malignant melanoma, although here it appears to be intermittent intense exposure that is most damaging. More controversial is the view that exposure to solar radiation is a significant factor in ocular damage, particularly in the formation of cataracts. Earlier studies pointing to such an effect have been criticized and alternative aetiological hypotheses have been proposed. However, other studies do show an effect of UV exposure on cortical cataract. Concern is also growing that UV may be capable of activating viruses and have immunological effects that might exacerbate infectious disease. Very worrying is the possibility that UV exposure can activate the human immunodeficiency virus which might accelerate the onset AIDS. Any such health effects that have been observed in human populations are the result of exposure to existing, naturally occurring levels of UV radiation. There is, therefore, great concern about the possible exacerbation of these impacts as a result of increased exposure to UV radiation associated with stratospheric ozone depletion. However, any assessment of the nature and scale of such impacts on human health has to deal with several major problems and these are the focus of this paper. There are uncertainties about recent trends in stratospheric ozone and problems in the prediction of future changes

  2. Biological UV-doses and the effect on an ozone layer depletion

    International Nuclear Information System (INIS)

    Dahlback, A.; Henriksen, T.

    1988-08-01

    Effective UV-doses were calculated based on the integrated product of the biological action spectrum and the solar radiation. The calculations included absorption and scattering of UV-radiation in the atmosphere, both for normal ozone conditions as well as for a depleted ozone layer. The effective annual UV-dose increases by approximately 4% per degree of latitude towards the equator. An ozone depletion of 1% increases the annual UV-dose by approximately 1% at 60 o N. A large depletion of 50% over Scandinavia (60 o N) would give this region an effective UV-dose similar to that obtained, with normal ozone conditions, at a latitude of 40 o N (California or the Mediterranean countries). The Antarctic ozone hole increases the annual UV-dose by 20 to 25% which is a similar increase as that attained by moving 5 to 6 degrees of latitude nearer the equator. The annual UV-dose on higher latitudes is mainly determined by the summer values of ozone. Both the ozone values and the effective UV-doses vary from one year to another (within ±4%). No positive or negative trend is observed for Scandinavia from 1978 to 1988

  3. Ozone Depletion in Tropospheric Volcanic Plumes: From Halogen-Poor to Halogen-Rich Emissions

    Directory of Open Access Journals (Sweden)

    Tjarda J. Roberts

    2018-02-01

    Full Text Available Volcanic halogen emissions to the troposphere undergo a rapid plume chemistry that destroys ozone. Quantifying the impact of volcanic halogens on tropospheric ozone is challenging, only a few observations exist. This study presents measurements of ozone in volcanic plumes from Kīlauea (HI, USA, a low halogen emitter. The results are combined with published data from high halogen emitters (Mt Etna, Italy; Mt Redoubt, AK, USA to identify controls on plume processes. Ozone was measured during periods of relatively sustained Kīlauea plume exposure, using an Aeroqual instrument deployed alongside Multi-Gas SO2 and H2S sensors. Interferences were accounted for in data post-processing. The volcanic H2S/SO2 molar ratio was quantified as 0.03. At Halema‘uma‘u crater-rim, ozone was close to ambient in the emission plume (at 10 ppmv SO2. Measurements in grounding plume (at 5 ppmv SO2 about 10 km downwind of Pu‘u ‘Ō‘ō showed just slight ozone depletion. These Kīlauea observations contrast with substantial ozone depletion reported at Mt Etna and Mt Redoubt. Analysis of the combined data from these three volcanoes identifies the emitted Br/S as a strong but non-linear control on the rate of ozone depletion. Model simulations of the volcanic plume chemistry highlight that the proportion of HBr converted into reactive bromine is a key control on the efficiency of ozone depletion. This underlines the importance of chemistry in the very near-source plume on the fate and atmospheric impacts of volcanic emissions to the troposphere.

  4. Simulation of Halocarbon Production and Emissions and Effects on Ozone Depletion

    Science.gov (United States)

    Holmes; Ellis

    1997-09-01

    / This paper describes an integrated model that simulates future halocarbon production/emissions and potential ozone depletion. Applications and historical production levels for various halocarbons are discussed first. A framework is then presented for modeling future halocarbon impacts incorporating differences in underlying demands, applications, regulatory mandates, and environmental characteristics. The model is used to simulate the potential impacts of several prominent issues relating to halocarbon production, regulation, and environmental interactions, notably: changes in agricultural methyl bromide use, increases in effectiveness of bromine for ozone depletion, modifications to the elimination schedule for HCFCs, short-term expansion of CFC demand in low use compliance countries, and delays in Russian Federation compliance. Individually, each issue does not unequivocally represent a significant likely increase in long-term atmospheric halogen loading and stratospheric ozone depletion. In combination, however, these impacts could increase peak halogen concentrations and long-term integral halogen loading, resulting in higher levels of stratospheric ozone depletion and longer exposure to increased levels of UV radiation.KEY WORDS: Halocarbons; Ozone depletion; Montreal Protocol; Integrated assessment

  5. Comparative Analysis of VERA Depletion Problems

    International Nuclear Information System (INIS)

    Park, Jinsu; Kim, Wonkyeong; Choi, Sooyoung; Lee, Hyunsuk; Lee, Deokjung

    2016-01-01

    Each code has its own solver for depletion, which can produce different depletion calculation results. In order to produce reference solutions for depletion calculation comparison, sensitivity studies should be preceded for each depletion solver. The sensitivity tests for burnup interval, number of depletion zones, and recoverable energy per fission (Q-value) were performed in this paper. For the comparison of depletion calculation results, usually the multiplication factors are compared as a function of burnup. In this study, new comparison methods have been introduced by using the number density of isotope or element, and a cumulative flux instead of burnup. In this paper, optimum depletion calculation options are determined through the sensitivity study of the burnup intervals and the number of depletion intrazones. Because the depletion using CRAM solver performs well for large burnup intervals, smaller number of burnup steps can be used to produce converged solutions. It was noted that the depletion intra-zone sensitivity is only pin-type dependent. The 1 and 10 depletion intra-zones for the normal UO2 pin and gadolinia rod, respectively, are required to obtain the reference solutions. When the optimized depletion calculation options are used, the differences of Q-values are found to be a main cause of the differences of solutions. In this paper, new comparison methods were introduced for consistent code-to-code comparisons even when different kappa libraries were used in the depletion calculations

  6. Ozone-layer depletion and the fate of CFs

    International Nuclear Information System (INIS)

    Ghauri, B.

    1998-01-01

    The ozone layer of the stratosphere, centred at an altitude of about 25 km from the earth's surface, plays the role of absorbing ultraviolet rays contained in solar light. The known harmful effects per unit dose of the shorter wavelengths, UV-C and UV-B, are greater than those of the longer wavelength, UV-A. The UV-B radiation is the most carcinogenic part of the solar UV spectrum reaching the earth's surface. Ozone layer is being destroyed rapidly by refrigerant gases released on the Earth. As a result, the global environment and our livelihood are being seriously threatened., The destruction of the ozone layer allows more damaging ultraviolet rays to reach the earth. Ultraviolet rays cause an increase in such illnesses as skin cancer and cataract, and may even seriously affect the ecosystem. Therefore, processing refrigerant gases without discharging these into the atmosphere is now a global issue. To solve the issue, CFCs must be reprocessed for reuse by recovery and reclamation, or else we should destruct it to fluoro carbons, with recovery reclamation of fluoro carbons. This paper gives an account of the international initiatives for protection of the ozone layer and present status of the various measures taken, including substitutes for the damaging fluoro-carbons, recovery reclamation of fluoro-carbons. (author)

  7. Power and knowledge in international environmental politics: The case of stratospheric ozone depletion

    International Nuclear Information System (INIS)

    Litfin, K.T.

    1992-01-01

    Most analyses of science in world politics suffer from the modern misreading of the relationship between knowledge and power. The availability of scientific knowledge to the relevant decision makers was a necessary condition for the negotiation of the Montreal Protocol on Substances that Deplete the Ozone Layer, but it was far from being a sufficient one. The power of science was a function of the political context in which it was debated, a context which was defined substantially by the discovery of the Antarctic ozone 'hole.' The prominence of knowledge-based power in at least some situations means that conventional materialist notions of power should be expanded to include a more discursive and productive conception of power. Environmental problems are not merely physical events, but informational phenomena. A case study methodology is used to develop an interactive conception of power and knowledge. A detailed study of the Montreal Protocol is offered, as well as less detailed studies of the international policy processes for acid rain and global climate change

  8. Persistent polar depletion of stratospheric ozone and emergent mechanisms of ultraviolet radiation-mediated health dysregulation.

    Science.gov (United States)

    Dugo, Mark A; Han, Fengxiang; Tchounwou, Paul B

    2012-01-01

    Year 2011 noted the first definable ozone "hole" in the Arctic region, serving as an indicator to the continued threat of dangerous ultraviolet radiation (UVR) exposure caused by the deterioration of stratospheric ozone in the northern hemisphere. Despite mandates of the Montreal Protocol to phase out the production of ozone-depleting chemicals (ODCs), the relative stability of ODCs validates popular notions of persistent stratospheric ozone for several decades. Moreover, increased UVR exposure through stratospheric ozone depletion is occurring within a larger context of physiologic stress and climate change across the biosphere. In this review, we provide commentaries on stratospheric ozone depletion with relative comparisons between the well-known Antarctic ozone hole and the newly defined ozone hole in the Arctic. Compared with the Antarctic region, the increased UVR exposure in the Northern Hemisphere poses a threat to denser human populations across North America, Europe, and Asia. In this context, we discuss emerging targets of UVR exposure that can potentially offset normal biologic rhythms in terms of taxonomically conserved photoperiod-dependent seasonal signaling and entrainment of circadian clocks. Consequences of seasonal shifts during critical life history stages can alter fitness and condition, whereas circadian disruption is increasingly becoming associated as a causal link to increased carcinogenesis. We further review the significance of genomic alterations via UVR-induced modulations of phase I and II transcription factors located in skin cells, the aryl hydrocarbon receptor (AhR), and the nuclear factor (erythroid-derived 2)-related factor 2 (Nrf2), with emphasis on mechanism that can lead to metabolic shifts and cancer. Although concern for adverse health consequences due to increased UVR exposure are longstanding, recent advances in biochemical research suggest that AhR and Nrf2 transcriptional regulators are likely targets for UVR

  9. Environmental effects of ozone depletion and its interactions with climate change: progress report, 2015

    Science.gov (United States)

    The Environmental Effects Assessment Panel (EEAP) is one of three Panels that regularly informs the Parties (countries) to the Montreal Protocol on the effects of ozone depletion and the consequences of climate change interactions with respect to human health, animals, plants, bi...

  10. Student Teacher Understanding of the Greenhouse Effect, Ozone Layer Depletion, and Acid Rain.

    Science.gov (United States)

    Dove, Jane

    1996-01-01

    Describes the results of a survey designed to ascertain details of student teachers' knowledge and misconceptions about the greenhouse effect, acid rain, and ozone layer depletion. Results indicate familiarity with the issues but little understanding of the concepts involved and many commonly held misconceptions. (JRH)

  11. Turkish Primary Science Teacher Candidates' Understandings of Global Warming and Ozone Layer Depletion

    Science.gov (United States)

    Yalcin, Fatma Aggul; Yalcin, Mehmet

    2017-01-01

    The purpose of the study was to explore Turkish primary science teacher candidates' understanding of global warming and ozone layer depletion. In the study, as the research approach the survey method was used. The sample consisted of one hundred eighty nine third grade science teacher candidates. Data was collected using the tool developed by the…

  12. Selecting corporate political tactics: The Montreal Protocol on substances that deplete the ozone layer

    International Nuclear Information System (INIS)

    Getz, K.A.

    1991-01-01

    This study examines factors influencing the choice of one set of tactics over others. The case of ozone depletion is used as the research context, and the data are drawn from US companies having a stake in this issue. A model is developed which suggests that a firm's choice of political tactics (dependent variable) is dependent on the targets of political activity and the nature of the issue of concern (independent variables), and a variety of organizational and industry factors (moderating variables). The paradigm of agency is used to systematically assess the relative importance of these factors. To test the relevance of the model, an empirical study was done. The case of the Montreal protocol on Substances That Deplete the Ozone Layer was chosen as a setting; and 551 firms directly affected by policy intended to protect the ozone layer were surveyed. There were 151 usable responses. Generally, the findings were consistent with the model

  13. Early work on the stratospheric ozone depletion-CFC issue

    Science.gov (United States)

    Molina, M.

    2012-12-01

    I became involved with the atmospheric chemistry of chlorofluorocarbons (CFCs) shortly after joining Sherry Rowland's research group at the University of California, Irvine, in 1973. CFCs had been detected in the troposphere by James Lovelock in 1971, and the question we set out to answer was the fate of these compounds of industrial origin in the environment, as well as possibly identifying any consequences of their accumulation in the atmosphere. After examining many potential sinks for these compounds we realized that because of their unusual stability the most likely destruction process was photolysis in the stratosphere. I carried out measurements of the absorption spectra of these compounds in the near ultraviolet; previous work involved only spectra in the far ultraviolet, not relevant for atmospheric chemistry. The results indicated that photolysis would take place in the upper stratosphere. I subsequently carried out calculations using one-dimensional atmospheric models to estimate their atmospheric residence times, which turned out to be many decades. We realized that the chlorine atoms generated by photolysis of the CFCs would participate in a catalytic chain reaction that would efficiently destroy ozone. Furthermore, we estimated that the amount of CFCs produced industrially was comparable to the amount of nitric oxide produced naturally in the stratosphere by the decomposition of nitrous oxide; work by Paul Crutzen and Harold Johnston had indicated that the abundance of ozone in the stratosphere was controlled by nitric oxide. We then formulated the hypothesis that the continued release of CFCs to the environment posed a threat to the stability of the ozone layer, and published our results in the journal Nature in 1974. The publication was noticed almost exclusively by the community of experts in stratospheric chemistry, and hence Sherry Rowland and I decided at that time that it was our responsibility to communicate this finding to society at large

  14. Environment and health: 3. Ozone depletion and ultraviolet radiation

    International Nuclear Information System (INIS)

    De Gruijl, F.R.; Van der Leun, J.C.

    2000-01-01

    Ultraviolet radiation from the sun is responsible for a variety of familiar photochemical reactions, including photochemical smog, bleaching of paints and decay of plastics. Conjugated bonds in organic molecules such as proteins and DNA absorb the UV radiation, which can damage these molecules. By a fortunate evolutionary event, the oxygen produced by photosynthesis forms a filter in the outer reaches of our atmosphere that absorbs the most energetic and harmful UV radiation, with wavelengths below 240 nm (in the UVC band [wavelength 100-280 nm]). In the process, the oxygen molecules split up and recombine to form ozone (Fig. 1). This ratified ozone layer (spread out between 10 and 50 Ion in the stratosphere but only 3 mm thick were it compressed at ground level) in turn efficiently absorbs UV radiation of higher wavelengths (tip to about 310 nm). A part of the UV radiation in the UVB band (wavelength 280-315 nm) still reaches ground level and is absorbed in sufficient amounts to have deleterious effects on cells. The less energetic radiation in the UVA band (wavelength 315-400 nm, bordering the visible band [wavelength 400-800 nm]) is not absorbed by ozone and reaches ground level without much attenuation through a clear atmosphere (i.e., no clouds, no air pollution). Although not completely innocuous, the UVA radiation in sunlight is much less photochemically active and therefore generally less harmful than UVB radiation. Life on earth has adapted itself to the UV stress, particularly UVB stress, fbr example by forming protective UV-absorbing surface layers, by repairing cell damage or by replacing damaged cells entirely. Human skin shows all of these adaptive features. Our eyes are less well adapted, but dicy, are shielded by the brows and by squinting. (author)

  15. A Three-Tier Diagnostic Test to Assess Pre-Service Teachers' Misconceptions about Global Warming, Greenhouse Effect, Ozone Layer Depletion, and Acid Rain

    Science.gov (United States)

    Arslan, Harika Ozge; Cigdemoglu, Ceyhan; Moseley, Christine

    2012-01-01

    This study describes the development and validation of a three-tier multiple-choice diagnostic test, the atmosphere-related environmental problems diagnostic test (AREPDiT), to reveal common misconceptions of global warming (GW), greenhouse effect (GE), ozone layer depletion (OLD), and acid rain (AR). The development of a two-tier diagnostic test…

  16. Improvements in Total Column Ozone in GEOSCCM and Comparisons with a New Ozone-Depleting Substances Scenario

    Science.gov (United States)

    Oman, Luke D.; Douglass, Anne R.

    2014-01-01

    The evolution of ozone is examined in the latest version of the Goddard Earth Observing System Chemistry-Climate Model (GEOSCCM) using old and new ozone-depleting substances (ODS) scenarios. This version of GEOSCCM includes a representation of the quasi-biennial oscillation, a more realistic implementation of ozone chemistry at high solar zenith angles, an improved air/sea roughness parameterization, and an extra 5 parts per trillion of CH3Br to account for brominated very short-lived substances. Together these additions improve the representation of ozone compared to observations. This improved version of GEOSCCM was used to simulate the ozone evolution for the A1 2010 and the newStratosphere-troposphere Processes and their Role in Climate (SPARC) 2013 ODS scenario derived using the SPARC Lifetimes Report 2013. This new ODS scenario results in a maximum Cltot increase of 65 parts per trillion by volume (pptv), decreasing slightly to 60 pptv by 2100. Approximately 72% of the increase is due to the longer lifetime of CFC-11. The quasi-global (60degS-60degN) total column ozone difference is relatively small and less than 1Dobson unit on average and consistent with the 3-4% larger 2050-2080 average Cly in the new SPARC 2013 scenario. Over high latitudes, this small change in Cly compared to the relatively large natural variabilitymakes it not possible to discern a significant impact on ozone in the second half of the 21st century in a single set of simulations.

  17. A Two-Timescale Response to Ozone Depletion: Importance of the Background State

    Science.gov (United States)

    Seviour, W.; Waugh, D.; Gnanadesikan, A.

    2015-12-01

    It has been recently suggested that the response of Southern Ocean sea-ice extent to stratospheric ozone depletion is time-dependent; that the ocean surface initially cools due to enhanced northward Ekman drift caused by a poleward shift in the eddy-driven jet, and then warms after some time due to upwelling of warm waters from below the mixed layer. It is therefore possible that ozone depletion could act to favor a short-term increase in sea-ice extent. However, many uncertainties remain in understanding this mechanism, with different models showing widely differing time-scales and magnitudes of the response. Here, we analyze an ensemble of coupled model simulations with a step-function ozone perturbation. The two-timescale response is present with an approximately 30 year initial cooling period. The response is further shown to be highly dependent upon the background ocean temperature and salinity stratification, which is influenced by both natural internal variability and the isopycnal eddy mixing parameterization. It is suggested that the majority of inter-model differences in the Southern Ocean response to ozone depletion is caused by differences in stratification.

  18. Climate change, ozone depletion and the impact on ultraviolet exposure of human skin

    International Nuclear Information System (INIS)

    Diffey, Brian

    2004-01-01

    For 30 years there has been concern that anthropogenic damage to the Earth's stratospheric ozone layer will lead to an increase of solar ultraviolet (UV) radiation reaching the Earth's surface, with a consequent adverse impact on human health, especially to the skin. More recently, there has been an increased awareness of the interactions between ozone depletion and climate change (global warming), which could also impact on human exposure to terrestrial UV. The most serious effect of changing UV exposure of human skin is the potential rise in incidence of skin cancers. Risk estimates of this disease associated with ozone depletion suggest that an additional peak incidence of 5000 cases of skin cancer per year in the UK would occur around the mid-part of this century. Climate change, which is predicted to lead to an increased frequency of extreme temperature events and high summer temperatures, will become more frequent in the UK. This could impact on human UV exposure by encouraging people to spend more time in the sun. Whilst future social trends remain uncertain, it is likely that over this century behaviour associated with climate change, rather than ozone depletion, will be the largest determinant of sun exposure, and consequent impact on skin cancer, of the UK population. (topical review)

  19. Environmental effects of ozone depletion and its interactions ...

    Science.gov (United States)

    When considering the effects of climate change, it has become clear that processes resulting in changes in stratospheric ozone are more complex than previously believed. As a result of this, human health and environmental issues will be longer-lasting and more regionally variable. Like the other Panels, the EEAP produces a detailed report every four years; the most recent was published as a series of seven papers in 2015 (Photochem. Photobiol. Sci., 2015, 14, 1-184). In the years in between, the EEAP produces less detailed and shorter Progress Reports of the relevant scientific findings. The most recent of these was for 2015 (Photochem. Photobiol. Sci., 2016, 15, 141-147). The present Progress Report for 2016 assesses some of the highlights and new insights with regard to the interactive nature of the direct and indirect effects of UV radiation, atmospheric processes, and climate change. The report is also published in (Photochem. Photobiol. Sci., 2017, DOI: 10.1039/c7pp90001e). The more detailed Quadrennial Assessment will be made available in 2018. The Parties to the Montreal Protocol are informed by three Panels of experts. One of these is the Environmental Effects Assessment Panel (EEAP), which deals with two focal issues. The first focus is the effects on increased UV radiation on human health, animals, plants, biogeochemistry, air quality, and materials. The second focus is on interactions between UV radiation and global climate change and how these may

  20. Vertical structure of Antarctic tropospheric ozone depletion events: characteristics and broader implications

    Directory of Open Access Journals (Sweden)

    A. E. Jones

    2010-08-01

    Full Text Available The majority of tropospheric ozone depletion event (ODE studies have focussed on time-series measurements, with comparatively few studies of the vertical component. Those that exist have almost exclusively used free-flying balloon-borne ozonesondes and almost all have been conducted in the Arctic. Here we use measurements from two separate Antarctic field experiments to examine the vertical profile of ozone during Antarctic ODEs. We use tethersonde data to probe details in the lowest few hundred meters and find considerable structure in the profiles associated with complex atmospheric layering. The profiles were all measured at wind speeds less than 7 ms−1, and on each occasion the lowest inversion height lay between 10 m and 40 m. We also use data from a free-flying ozonesonde study to select events where ozone depletion was recorded at altitudes >1 km above ground level. Using ERA-40 meteorological charts, we find that on every occasion the high altitude depletion was preceded by an atmospheric low pressure system. An examination of limited published ozonesonde data from other Antarctic stations shows this to be a consistent feature. Given the link between BrO and ODEs, we also examine ground-based and satellite BrO measurements and find a strong association between atmospheric low pressure systems and enhanced BrO that must arise in the troposphere. The results suggest that, in Antarctica, such depressions are responsible for driving high altitude ODEs and for generating the large-scale BrO clouds observed from satellites. In the Arctic, the prevailing meteorology differs from that in Antarctica, but, while a less common effect, major low pressure systems in the Arctic can also generate BrO clouds. Such depressions thus appear to be fundamental when considering the broader influence of ODEs, certainly in Antarctica, such as halogen export and the radiative influence of ozone-depleted air masses.

  1. Influence of the stratospheric humidity and methane on the ozone column depletion over the western side of South America

    International Nuclear Information System (INIS)

    Da Silva, L.; Morales, L.; Cordero, R.R.

    2009-01-01

    The ozone column depletion over the western side of South America has been previously explained as a consequence of winds in the area of the depletion, which lead to the compression and thinning of the ozone layer. However, humidity and methane (originated in the Amazon forest and the Pacific Ocean) transported by these winds toward the stratosphere may also have a role in the ozone depletion. Oxidation of methane generates additional humidity, which in turn reacts with ozone, destroying it. Humidity and methane levels were measured by NASA and HALOE during an ozone depletion event (January 1998) that occurred along with El Nino. By analyzing these measurements, we found that, at different altitudes, changes in the humidity seem to be associated with changes in the ozone such that an increment of humidity may lead to an ozone depletion. Moreover, we found that during the event, the sum 2CH4+H2O was roughly constant only at altitudes lower than 50 km; the ratio CH4/H2O exhibited an exponential decay with the altitude that may allow assessing the generation mechanism of stratospheric humidity from methane.

  2. Degradation and toxicity depletion of RB19 anthraquinone dye in water by ozone-based technologies.

    Science.gov (United States)

    Lovato, María E; Fiasconaro, María L; Martín, Carlos A

    2017-02-01

    This research investigated the discoloration and mineralization of Reactive Blue 19 (RB19) anthraquinone dye by single ozonation, single UV radiation and ozonation jointed with UV radiation (O 3 /UV). The problem was approached from two points of view: with the objective of color removal or the mineralization of solution. In each case, the optimum operating conditions were different. Ozonation was the most effective treatment for color removal, while the combined O 3 /UV treatment was for mineralization. Major intermediates of the dye degradation were identified by gas chromatography/mass spectrometry and a degradation pathway was proposed. In addition, a clear decrease of the toxicity of the dye was achieved at the end of the experiments. The effect of initial dye concentration, pH, ozone dose, and UV radiation on the degradation of the dye and decrease of total organic carbon was investigated, in order to establish the optimal operating conditions to achieve discoloration, mineralization or a combination of both.

  3. The potential importance of frost flowers, recycling on snow, and open leads for ozone depletion events

    Directory of Open Access Journals (Sweden)

    M. Piot

    2008-05-01

    Full Text Available We present model studies with the one-dimensional model MISTRA to investigate the potential role of frost flowers, recycling on snow, and open leads in the depletion of tropospheric ozone in the Arctic spring. In our model, we assumed frost flower aerosols to be the major source of bromine. We show that a major ozone depletion event can be satisfactorily reproduced only if the recycling on snow of deposited bromine into gas phase bromine is assumed. In the model, this cycling is more efficient than the bromine explosion process and maintains sufficiently high levels of bromine to deplete ozone down to few nmol mol−1 within four days. We assessed the influence of different surface combinations (open lead/frost flowers on the chemistry in the model. Results showed noticeable modifications affecting the composition of aerosols and the deposition velocities. A model run with a series of coupled frost flower fields and open leads, separated by large areas of snow, showed results comparable with field observations. In addition, we studied the effects of modified temperature of either the frost flower field or the ambient airmass. A warmer frost flower field increases the relative humidity and the aerosol deposition rate. The deposition/re-emission process gains in importance, inducing more reactive bromine in the gas phase, and a stronger ozone depletion. A decrease of 1K in airmass temperature shows in our model that the aerosol uptake capacities of all gas phase species substantially increases, leading to enhanced uptake of acids from the gas phase. Consequently, the so-called bromine explosion accelerated and O3 mixing ratios decreased. In our model representation, variations in wind speed affected the aerosol source function and influenced the amount of bromine in the atmosphere and thus the ozone depletion strength. Recent studies have suggested the important role of the precipitation of calcium carbonate (CaCO3

  4. Is There Evidence that Mid-Latitude Stratospheric Ozone Depletion Occurs in Conjunction with North American Monsoon Convection?

    Science.gov (United States)

    Rosenlof, K. H.; Ray, E. A.; Portmann, R. W.

    2017-12-01

    A recent study suggests that during the period of the summertime North American Monsoon (NAM), ozone depletion could occur as a result of catalytic ozone destruction associated with the cold and wet conditions caused by overshooting convection. Aura Microwave Limb Sounder (MLS) water vapor measurements do show that the NAM region is wetter than other parts of the globe in regards to both the mean and extremes. However, definitive evidence of ozone depletion occurring in that region has not been presented. In this study, we examine coincident measurements of water vapor, ozone, and tropospheric tracers from aircraft data taken during the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) aircraft campaign looking specifically for ozone depletion in regions identified as impacted by overshooting convection. Although we do find evidence of lower ozone values in air impacted by convective overshoots, using tropospheric tracers we attribute those observations to input of tropospheric air rather than catalytic ozone destruction. Additionally, we explore the consequences of these lower ozone values on surface UV, and conclude that there is minimal impact on the UV index.

  5. Vortex-averaged Arctic ozone depletion in the winter 2002/2003

    Directory of Open Access Journals (Sweden)

    T. Christensen

    2005-01-01

    Full Text Available A total ozone depletion of 68±7 Dobson units between 380 and 525K from 10 December 2002 to 10 March 2003 is derived from ozone sonde data by the vortex-average method, taking into account both diabatic descent of the air masses and transport of air into the vortex. When the vortex is divided into three equal-area regions, the results are 85±9DU for the collar region (closest to the edge, 52±5DU for the vortex centre and 68±7DU for the middle region in between centre and collar. Our results compare well with other studies: We find good agreement with ozone loss deduced from SAOZ data, with results inferred from POAM III observations and with results from tracer-tracer correlations using HF as the long-lived tracer. We find a higher ozone loss than that deduced by tracer-tracer correlations using CH4. We have made a careful comparison with Match results: The results were recalculated using a common time period, vortex edge definition and height interval. The two methods generally compare very well, except at the 475K level which exhibits an unexplained discrepancy.

  6. Mid-latitude Ozone Depletion Events Caused by Halogens from the Great Salt Lake in Utah

    Science.gov (United States)

    Fibiger, D. L.; Goldberger, L.; Womack, C.; McDuffie, E. E.; Dube, W. P.; Franchin, A.; Middlebrook, A. M.; Thornton, J. A.; Brown, S. S.

    2017-12-01

    Halogens are highly reactive chemicals and play an important role in atmospheric chemistry. They can be involved in many cycles which influence the oxidizing capacity of the atmosphere, including through destruction of ozone (O3). While the influence of halogens on O3 is well documented in the arctic, there are very few observations of O3 depletion driven by halogens in the mid-latitudes. To date, the most comprehensive study observed co-occurring plumes of BrO and depleted O3 near the Dead Sea in 1997. During the Utah Wintertime Fine Particulate Study (UWFPS) in winter 2017, simultaneous measurements of a comprehensive suite of halogen measurements by I- chemical ionization mass spectrometry and O3 from cavity ring-down spectroscopy, both at 1-second time resolution, were taken on a NOAA Twin Otter Aircraft over the Great Salt Lake and in the surrounding valleys. Many O3 depletion events were observed over the lake with O3 values sometimes below the instrument detection limit of 0.5 ppbv. Corresponding increases in BrO and/or ClO were observed. Many of these events were caused by extremely high levels of halogens (up to 1 ppmv Cl2) emitted from the U.S. Magnesium plant on the edge of the lake. The O3 depletion caused by U.S. Magnesium was usually isolated to a distinct vertical layer, but in other cases O3 depletion was vertically mixed and the origin of halogen activation was not immediately clear. The most complete O3 depletion was observed over the lake, but there were smaller events of a few ppbv observed in the adjacent valleys, including the highly populated Salt Lake Valley, with corresponding plumes of BrO and ClO, due to transport from the lake. Additionally, meteorology played a role in the observed O3 depletion. The strongest O3 depletion was observed during inversion events, when there is a low boundary layer and little mixing out of the air above the lake. During non-inversion conditions, only small depletions were observed, covering a much smaller

  7. Solar ultraviolet radiation and ozone depletion-driven climate change: effects on terrestrial ecosystems.

    Science.gov (United States)

    Bornman, J F; Barnes, P W; Robinson, S A; Ballaré, C L; Flint, S D; Caldwell, M M

    2015-01-01

    In this assessment we summarise advances in our knowledge of how UV-B radiation (280-315 nm), together with other climate change factors, influence terrestrial organisms and ecosystems. We identify key uncertainties and knowledge gaps that limit our ability to fully evaluate the interactive effects of ozone depletion and climate change on these systems. We also evaluate the biological consequences of the way in which stratospheric ozone depletion has contributed to climate change in the Southern Hemisphere. Since the last assessment, several new findings or insights have emerged or been strengthened. These include: (1) the increasing recognition that UV-B radiation has specific regulatory roles in plant growth and development that in turn can have beneficial consequences for plant productivity via effects on plant hardiness, enhanced plant resistance to herbivores and pathogens, and improved quality of agricultural products with subsequent implications for food security; (2) UV-B radiation together with UV-A (315-400 nm) and visible (400-700 nm) radiation are significant drivers of decomposition of plant litter in globally important arid and semi-arid ecosystems, such as grasslands and deserts. This occurs through the process of photodegradation, which has implications for nutrient cycling and carbon storage, although considerable uncertainty exists in quantifying its regional and global biogeochemical significance; (3) UV radiation can contribute to climate change via its stimulation of volatile organic compounds from plants, plant litter and soils, although the magnitude, rates and spatial patterns of these emissions remain highly uncertain at present. UV-induced release of carbon from plant litter and soils may also contribute to global warming; and (4) depletion of ozone in the Southern Hemisphere modifies climate directly via effects on seasonal weather patterns (precipitation and wind) and these in turn have been linked to changes in the growth of plants

  8. The Effects of Volcano-Induced Ozone Depletion on Short-lived Climate Forcing in the Arctic

    Science.gov (United States)

    Ward, P. L.

    2012-12-01

    Photodissociation of oxygen maintains the stratopause ~50°C warmer than the tropopause. Photodissociation of ozone warms the lower stratosphere, preventing most of this high-energy DNA-damaging solar radiation from reaching the troposphere. Ozone depletion allows more UV energy to reach the lower troposphere causing photodissociation of anthropogenic ozone and nitrogen dioxide. UV energy also penetrates the ocean >10 m where it is absorbed more efficiently than infrared radiation that barely penetrates the surface. Manmade chlorofluorocarbons caused ozone depletion from 1965 to 1994 with slow recovery predicted over the next 50+ years. But the lowest levels of ozone followed the eruptions of Pinatubo (1991 VEI=6), Eyjafjallajökull (2010 VEI=4), and Grímsvötn (2011 VEI=4). Each of the relatively small, basaltic eruptions in Iceland caused more ozone depletion than the long-term effects of chlorofluorocarbons, although total ozone appears to return to pre-eruption levels within a decade. Ozone depletion by 20% increases energy flux thru the lowermost troposphere by 0.7 W m-2 for overhead sun causing temperatures in the lower stratosphere to drop >2°C since 1958 in steps after the 3 largest volcanic eruptions: Agung 1963, El Chichón 1982, and Pinatubo. Temperatures at the surface increased primarily in the regions and at the times of the greatest observed ozone depletion. The greatest warming observed was along the Western Antarctic Peninsula (65.4°S) where minimum temperatures rose 6.7°C from 1951 to 2003 while maximum temperatures remained relatively constant. Minimum total column ozone in September-October was 40-56% lower than in 1972 almost every year since 1987, strongly anti-correlated with observed minimum temperatures. Sea ice decreased 10%, 7 ice shelves separated, 87% of the glaciers retreated and the Antarctic Circumpolar Current warmed. Elsewhere under the ozone hole, warming of continental Antarctica was limited by the high albedo (0.86) of

  9. Ozone depletion in the interstitial air of the seasonal snowpack in northern Japan

    Directory of Open Access Journals (Sweden)

    Momoko Nakayama

    2015-02-01

    Full Text Available To examine the behaviour of ozone (O3 in the seasonal snowpack, measurements were taken of O3 and CO2 in the interstitial air on Rishiri Island, which is located in northern Japan, during the 2010/11 winter season. Exhibiting variation on timescales ranging from several minutes to several days, the atmospheric O3 in the surface air generally increased from December (38 ppb to April (52 ppb. The ozone mixing ratio sharply decreased below the snow surface. Whereas the CO2 data in the interstitial air indicated that a rapid exchange between the snow and the atmosphere occurred intermittently, the O3 mixing ratio remained low and constant (<5 ppb in the snowpack interior. The vertical profile of the O3 mixing ratio indicates that the e-folding lifetime of the O3 loss reaction was 5.0±2.3 minutes during the day and 10.0±6.3 minutes at night, suggesting photochemical O3 depletion occurred during the daytime. Kinetic experiments using ambient (maritime air and snow indicate that the photochemical O3 loss is proportional to the solar radiation and that the O3 loss rate decreases as dawn approaches during the night. The result of the kinetic experiments using artificial O3 in the pure air and snow suggests the important role of gaseous species in the ambient air towards O3 depletion.

  10. Response of Antarctic sea surface temperature and sea ice to ozone depletion

    Science.gov (United States)

    Ferreira, D.; Gnanadesikan, A.; Kostov, Y.; Marshall, J.; Seviour, W.; Waugh, D.

    2017-12-01

    The influence of the Antarctic ozone hole extends all the way from the stratosphere through the troposphere down to the surface, with clear signatures on surface winds, and SST during summer. In this talk we discuss the impact of these changes on the ocean circulation and sea ice state. We are notably motivated by the observed cooling of the surface Southern Ocean and associated increase in Antarctic sea ice extent since the 1970s. These trends are not reproduced by CMIP5 climate models, and the underlying mechanism at work in nature and the models remain unexplained. Did the ozone hole contribute to the observed trends?Here, we review recent advances toward answering these issues using "abrupt ozone depletion" experiments. The ocean and sea ice response is rather complex, comprising two timescales: a fast ( 1-2y) cooling of the surface ocean and sea ice cover increase, followed by a slower warming trend, which, depending on models, flip the sign of the SST and sea ice responses on decadal timescale. Although the basic mechanism seems robust, comparison across climate models reveal large uncertainties in the timescales and amplitude of the response to the extent that even the sign of the ocean and sea ice response to ozone hole and recovery remains unconstrained. After briefly describing the dynamics and thermodynamics behind the two-timescale response, we will discuss the main sources of uncertainties in the modeled response, namely cloud effects and air-sea heat exchanges, surface wind stress response and ocean eddy transports. Finally, we will consider the implications of our results on the ability of coupled climate models to reproduce observed Southern Ocean changes.

  11. Terrestrial ozone depletion due to a Milky Way gamma-ray burst

    Science.gov (United States)

    Thomas, Brian C.

    Gamma-Ray Bursts (GRBs) are short, incredibly powerful astrophysical events which produce a flux of radiation detectable across the observable universe. A GRB within our own galaxy could cause major damage to the Earth's biosphere. Rate estimates suggest that at least one GRB has occurred within a dangerous range (about 2 kpc) in the last billion years. The gamma radiation from such a burst would quickly deplete much of the Earth's protective ozone layer, allowing an increase in solar UVB radiation reaching the surface. This radiation is harmful to life, causing sunburn and damaging DNA. In addition, NO 2 produced in the atmosphere would cause a decrease in visible sunlight reaching the surface and could cause global cooling. Nitric acid rain could stress portions of the biosphere, but the increased nitrate deposition could be helpful to land plants. We have used a two-dimensional atmospheric model to investigate the effects on the Earth's atmosphere of a GRB. We have simulated bursts delivering a range of fluences, at various latitudes, at the equinoxes and solstices, and at different times of day. We have computed DNA damage caused by increased solar UVB radiation, reduction in solar visible light due to NO 2 opacity; and deposition of nitrates through rainout of HNO 3 . For a "typical" burst in the last billion years, we find globally averaged ozone depletion up to 38%. Localized depletion reaches as much as 74%. Significant global depletion (at least 10%) persists up to about 7 years after the burst. Our results depend strongly on time of year and latitude over which the burst occurs. We find DNA damage of up to 16 times the normal annual global average, with greatest damage occurring at low to mid latitudes. We find reductions in visible sunlight of a few percent, primarily in the polar regions. Nitrate deposition similar to or slightly greater than that currently caused by lightning is also observed. We find support in our results for the hypothesis that the

  12. Ozone, Climate, and Global Atmospheric Change.

    Science.gov (United States)

    Levine, Joel S.

    1992-01-01

    Presents an overview of global atmospheric problems relating to ozone depletion and global warming. Provides background information on the composition of the earth's atmosphere and origin of atmospheric ozone. Describes causes, effects, and evidence of ozone depletion and the greenhouse effect. A vignette provides a summary of a 1991 assessment of…

  13. Future stratospheric ozone depletion will affect a subarctic dwarf shrub ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    Johanson, Ulf

    1997-02-01

    The stratospheric ozone depletion and the concomitant increase in ultraviolet-B (UV-B, 280-320 nm) radiation is of global concern due to the effects of UV-B on living organisms. To investigate the effects of increased levels of UV-B, a field irradiation system was established at a subarctic dwarf shrub heath in Northern Sweden (68 deg N). An ozone depletion of 15% under clear sky conditions was simulated over a naturally growing ecosystem. The response of both individual components and processes was studied to reveal changes in ecosystem structure and function. Species with different life strategies (evergreen or deciduous) responded differently both in magnitude and direction. The evergreen species were more responsive to UV-B regarding shoot growth, which could be due to cumulative effects in long-lived tissues, since the retardation in relative growth increased over time of exposure. Leaves of evergreen species became thicker under enhanced UV-B, while leaves of deciduous species became thinner. Decomposition studies (laboratory and in situ) showed that indirect effects of UV-B, due to changes in leaf tissue chemistry affected microbial activity and slowed down the decomposition rate. More directly, UV-B decreased the abundance of some fungal species and hence the composition of species. However, no altered decomposition rate was found when decomposition progressed under high UV-B even if the microorganisms were fewer. This could be due to the increased direct photo degradation of litter that compensates for lower microbial activity. The decomposition rate is therefore strongly dependent on the interception of UV-B at the litter layer. This research has shown that ecosystem components and processes are affected in a number of ways and that there are indications of changes in species composition in a long-term perspective due to differences in responsiveness between the different species. 128 refs, 7 figs

  14. Effects of Greenhouse Gas Increase and Stratospheric Ozone Depletion on Stratospheric Mean Age of Air in 1960-2010

    Science.gov (United States)

    Li, Feng; Newman, Paul; Pawson, Steven; Perlwitz, Judith

    2018-01-01

    The relative impacts of greenhouse gas (GHG) increase and stratospheric ozone depletion on stratospheric mean age of air in the 1960-2010 period are quantified using the Goddard Earth Observing System Chemistry-�Climate Model. The experiment compares controlled simulations using a coupled atmosphere-�ocean version of the Goddard Earth Observing System Chemistry-�Climate Model, in which either GHGs or ozone depleting substances, or both factors evolve over time. The model results show that GHGs and ozone-depleting substances have about equal contributions to the simulated mean age decrease, but GHG increases account for about two thirds of the enhanced strength of the lower stratospheric residual circulation. It is also found that both the acceleration of the diabatic circulation and the decrease of the mean age difference between downwelling and upwelling regions are mainly caused by GHG forcing. The results show that ozone depletion causes an increase in the mean age of air in the Antarctic summer lower stratosphere through two processes: (1) a seasonal delay in the Antarctic polar vortex breakup that inhibits young midlatitude air from mixing with the older air inside the vortex, and (2) enhanced Antarctic downwelling that brings older air from middle and upper stratosphere into the lower stratosphere.

  15. Ozone-depleting substances and the greenhouse gases HFCs, PFCs and SF{sub 6}. Danish consumption and emissions, 2006

    Energy Technology Data Exchange (ETDEWEB)

    Sander Poulsen, T. (PlanMiljoe (Denmark))

    2007-07-01

    The objective of this project was to map the 2006 consumption of newly produced industrial ozone-depleting substances and the consumption and actual emissions of HFCs, PFCs, and SF{sub 6}. The evaluation was made in accordance with the IPCC guidelines and following the method employed in previous evaluations. (BA)

  16. Ozone-depleting substances and the greenhouse gases HFCs, PFCs and SF6. Danish consumption and emissions, 2004

    Energy Technology Data Exchange (ETDEWEB)

    Sander Poulsen, T. [PlanMiljoe (Denmark)

    2006-05-19

    The objective of this project was to map the 2004 consumption of newly produced industrial ozone-depleting substances and the consumption and actual emissions of HFCs, PFCs, and SF6. The evaluation was made in accordance with the IPCC guidelines, and following the method employed in previous evaluations and it covers the net consumption of ozone-depleting substances. The term 'net consumption' is understood as the amount of imported goods in bulk or drums, less any re-export of substances as raw materials. Ozone-depleting substances contained in finished products that are imported and exported are not included in the evaluation. This delimitation is in full compliance with international guidelines. The evaluation does not account for the consumption of ozone-depleting substances used as raw material in the production of other substances, such as tetra chloromethane, and which are not subsequently emitted to the atmosphere. The information on consumption has been gathered from importers, suppliers and enterprise end-users (usually purchasing departments), and Statistics Denmark. This method of data gathering means that the information gathered is about the quantities of substances traded. Purchase and sales figures are used as an expression of consumption. This approach is considered to be suitable and adequate for the present purpose, since experience from previous projects shows that a levelling out occurs with time and that the substances sold/purchased are consumed within a relatively small time horizon. None of the substances covered here are produced in Denmark. Furthermore, ozone-depleting substances are treated at chemical waste processing plants in Denmark. Treatment and destruction data was gathered for the evaluation, but in line with all previous evaluations it has not been accounted for in the consumption figures. (BA)

  17. A Two-Timescale Response of the Southern Ocean to Ozone Depletion: Importance of the Background State

    Science.gov (United States)

    Seviour, W.; Waugh, D.; Gnanadesikan, A.

    2016-02-01

    It has been recently suggested that the response of Southern Ocean sea-ice extent to stratospheric ozone depletion is time-dependent; that the ocean surface initially cools due to enhanced northward Ekman drift caused by a poleward shift in the eddy-driven jet, and then warms after some time due to upwelling of warm waters from below the mixed layer. It is therefore possible that ozone depletion could act to favor a short-term increase in sea-ice extent. However, many uncertainties remain in understanding this mechanism, with different models showing widely differing time-scales and magnitudes of the response. Here, we analyze an ensemble of coupled model simulations with a step-function ozone perturbation. The two-timescale response is present with an approximately 30 year initial cooling period. The response is further shown to be highly dependent upon the background ocean temperature and salinity stratification, which is influenced by both natural internal variability and the isopycnal eddy mixing parameterization. It is suggested that the majority of inter-model differences in the Southern Ocean response to ozone depletion are caused by differences in stratification.

  18. Effects of Greenhouse Gas Increase and Stratospheric Ozone Depletion on Stratospheric Mean Age of Air in 1960-2010

    Science.gov (United States)

    Li, F.; Newman, P. A.; Pawson, S.; Perlwitz, J.

    2017-12-01

    The strength of the stratospheric Brewer-Dobson circulation (BDC) in a changing climate has been extensively studied, but the relative importance of greenhouse gas (GHG) increases and stratospheric ozone depletion in driving the BDC changes remains uncertain. This study separates the impacts of GHG and stratospheric ozone forcings on stratospheric mean age of air in the 1960-2010 period using the Goddard Earth Observing System Model (GEOS) Chemistry-Climate Model (CCM). The experiment compares a set of controlled simulations using a coupled atmosphere-ocean version of the GEOS CCM, in which either GHGs, or stratospheric ozone, or both factors evolve over time. The model results show that GHGs and stratospheric ozone have about equal contributions to the simulated mean age decrease. It is also found that GHG increases account for about two thirds of the enhanced strength of the lower stratospheric residual circulation. The results show that ozone depletion causes an increase in the mean age of air in the Antarctic summer lower stratosphere through two processes: 1) a seasonal delay in the Antarctic polar vortex breakup, that inhibits young mid-latitude air from mixing with the older air inside the vortex; and 2) enhanced Antarctic downwelling, that brings older air from middle and upper stratosphere into the lower stratosphere.

  19. Recent advances in destruction technology on ozone depleting substances and international activities for technology evaluation. Freon bunkai gijutsu no genjo-to kokusaiteki doko

    Energy Technology Data Exchange (ETDEWEB)

    Mizuno, K [National Institute for Resources and Environment, Tsukuba (Japan)

    1992-07-25

    This paper summarizes the current status and the international activities in the technologies to decompose fleon (CFC) which can cause ozone depletion in the stratosphere and global warming. Discussions have been given in Japan on combustion decomposing method as a fleon decomposing technology, which can use generally available incinerators. A plasma decomposition process uses a high-frequency plasma device with an input of 182 kW which can process CFC-12 of 48 kg/h at a decomposition efficiency of 99.99% or higher. A reported catalyst decomposition method uses zeolites, alumina, TiO2-ZrO2-based oxide mixture, and iron oxide carrying activated carbon as catalysts. A super critical water decomposition process is reported capable of decomposing almost completely CFC-11 and CFC-113 at 400[degree]C and 320 or higher atmospheric pressure. The United Nations Environment Programme arranges international cooperations on the stratospheric ozone/fleon problem, and the committee has established an ozone depleting substance (ODS) decomposing technology authorization act. The currently available capacities of decomposing devices are by far lower than the banked ODS amount to be provided to decomposition. 3 refs., 3 figs., 7 tabs.

  20. Regional strategies for the accelerating global problem of groundwater depletion

    Science.gov (United States)

    Aeschbach-Hertig, Werner; Gleeson, Tom

    2012-12-01

    Groundwater--the world's largest freshwater resource--is critically important for irrigated agriculture and hence for global food security. Yet depletion is widespread in large groundwater systems in both semi-arid and humid regions of the world. Excessive extraction for irrigation where groundwater is slowly renewed is the main cause of the depletion, and climate change has the potential to exacerbate the problem in some regions. Globally aggregated groundwater depletion contributes to sea-level rise, and has accelerated markedly since the mid-twentieth century. But its impacts on water resources are more obvious at the regional scale, for example in agriculturally important parts of India, China and the United States. Food production in such regions can only be made sustainable in the long term if groundwater levels are stabilized. To this end, a transformation is required in how we value, manage and characterize groundwater systems. Technical approaches--such as water diversion, artificial groundwater recharge and efficient irrigation--have failed to balance regional groundwater budgets. They need to be complemented by more comprehensive strategies that are adapted to the specific social, economic, political and environmental settings of each region.

  1. The consequences for human health of stratospheric ozone depletion in association with other environmental factors.

    Science.gov (United States)

    Lucas, R M; Norval, M; Neale, R E; Young, A R; de Gruijl, F R; Takizawa, Y; van der Leun, J C

    2015-01-01

    Due to the implementation of the Montreal Protocol, which has limited, and is now probably reversing, the depletion of the stratospheric ozone layer, only modest increases in solar UV-B radiation at the surface of the Earth have occurred. For many fair-skinned populations, changing behaviour with regard to exposure to the sun over the past half century - more time in the sun, less clothing cover (more skin exposed), and preference for a tan - has probably contributed more to greater levels of exposure to UV-B radiation than ozone depletion. Exposure to UV-B radiation has both adverse and beneficial effects on human health. This report focuses on an assessment of the evidence regarding these outcomes that has been published since our previous report in 2010. The skin and eyes are the organs exposed to solar UV radiation. Excessive solar irradiation causes skin cancer, including cutaneous malignant melanoma and the non-melanoma skin cancers, basal cell carcinoma and squamous cell carcinoma, and contributes to the development of other rare skin cancers such as Merkel cell carcinoma. Although the incidence of melanoma continues to increase in many countries, in some locations, primarily those with strong sun protection programmes, incidence has stabilised or decreased over the past 5 years, particularly in younger age-groups. However, the incidence of non-melanoma skin cancers is still increasing in most locations. Exposure of the skin to the sun also induces systemic immune suppression that may have adverse effects on health, such as through the reactivation of latent viral infections, but also beneficial effects through suppression of autoimmune reactivity. Solar UV-B radiation damages the eyes, causing cataracts and pterygium. UV-B irradiation of the skin is the main source of vitamin D in many geographic locations. Vitamin D plays a critical role in the maintenance of calcium homeostasis in the body; severe deficiency causes the bone diseases, rickets in children

  2. Depletion GPT-free sensitivity analysis for reactor eigenvalue problems

    International Nuclear Information System (INIS)

    Kennedy, C.; Abdel-Khalik, H.

    2013-01-01

    This manuscript introduces a novel approach to solving depletion perturbation theory problems without the need to set up or solve the generalized perturbation theory (GPT) equations. The approach, hereinafter denoted generalized perturbation theory free (GPT-Free), constructs a reduced order model (ROM) using methods based in perturbation theory and computes response sensitivity profiles in a manner that is independent of the number or type of responses, allowing for an efficient computation of sensitivities when many responses are required. Moreover, the reduction error from using the ROM is quantified in the GPT-Free approach by means of a Wilks' order statistics error metric denoted the K-metric. Traditional GPT has been recognized as the most computationally efficient approach for performing sensitivity analyses of models with many input parameters, e.g. when forward sensitivity analyses are computationally intractable. However, most neutronics codes that can solve the fundamental (homogenous) adjoint eigenvalue problem do not have GPT capabilities unless envisioned during code development. The GPT-Free approach addresses this limitation by requiring only the ability to compute the fundamental adjoint. This manuscript demonstrates the GPT-Free approach for depletion reactor calculations performed in SCALE6 using the 7x7 UAM assembly model. A ROM is developed for the assembly over a time horizon of 990 days. The approach both calculates the reduction error over the lifetime of the simulation using the K-metric and benchmarks the obtained sensitivities using sample calculations. (authors)

  3. Variability of ozone depleting substances as an indication of emissions in the Pearl River Delta, China

    Science.gov (United States)

    Chang, Chih-Chung; Lai, Cheng-Hsun; Wang, Chieh-Heng; Liu, Ying; Shao, Min; Zhang, Yuanhang; Wang, Jia-Lin

    The continued production and consumption of five major chlorocarbons, i.e., CFC-11 (CCl 3F), CFC-12 (CCl 2F 2), CFC-113 (CCl 2FCClF 2), CH 3CCl 3, and CCl 4, as allowed by developing nations including China under the Montreal Protocol, were assessed by a method employing concentration variability. Measurements of the five ozone depleting substances (ODS) were measured in downtown Guangzhou and a rural site in the Pearl River Delta (PRD), China by both in situ and flask measurements. In order to post a contrast to PRD with a referencing environment of minimal emissions, in situ measurements were also conducted in Taipei, Taiwan, where a decade long phase-out of CFCs has been implemented. In general, the variability of chlorocarbons in the PRD sites was significantly greater than that of Taipei. While the abundance of the five ODSs in Taipei was relatively uniform with a relative standard deviation (RSD) varying between 3% and 16%, their variability in PRD with the exception of CFC-113 was significantly more pronounced, clearly indicating the significant usage of ODSs. The variability of CFC-113 in both cities, however, was nearly indiscernible from the instrumental precision, suggesting little usage of CFC-113 in China. Methyl chloroform in Guangzhou exhibited a strong link to solvent evaporation as it showed a tight correlation with ambient toluene. Alarmingly, CCl 4 was the most variable of the five major chlorocarbons in Guangzhou, which should arouse a serious concern for public health due to its carcinogenicity.

  4. Effects of ozone depletion and UV-B radiation on humans and the environment

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, K.R. [Guelph Univ., ON (Canada). Centre for Toxicology

    2008-03-15

    This paper summarized current research related to the effects of ultraviolet (UV-B) radiation on human health and the environment. Effects included direct responses in human as well as effects on biogeochemistry and the environmental cycling of substances. UV radiation has many harmful effects on the skin, eyes, and immune systems of humans. Skin cancer is a leading cause of death among fair-skinned populations exposed to UV radiation. The role of UV radiation in cataract formation was discussed, as well as issues related to the suppression of immune responses. The link between sunlight exposure and vitamin D levels in human populations was examined. The effects of UV radiation on terrestrial and aquatic ecosystems were reviewed. Issues related to biogeochemistry and atmospheric processes were discussed. The review suggested that changes in the intensity of solar UV radiation due to ozone depletion will have important repercussions for all organisms on the planet. It was concluded that the combined effects of UV-B radiation and climate change will not be easy to predict. 201 refs., 4 figs.

  5. Precipitation of salts in freezing seawater and ozone depletion events: a status report

    Science.gov (United States)

    Morin, S.; Marion, G. M.; von Glasow, R.; Voisin, D.; Bouchez, J.; Savarino, J.

    2008-12-01

    In springtime, the polar marine boundary layer exhibits drastic ozone depletion events (ODEs), associated with elevated bromine oxide (BrO) mixing ratios. The current interpretation of this peculiar chemistry requires the existence of acid and bromide-enriched surfaces to heterogeneously promote and sustain ODEs. Sander et al. (2006) have proposed that calcium carbonate (CaCO3) precipitation in any seawater-derived medium could potentially decrease its alkalinity, making it easier for atmospheric acids such as HNO3 and H2SO4 to acidify it. We performed simulations using the state-of-the-art FREZCHEM model, capable of handling the thermodynamics of concentrated electrolyte solutions, to try to reproduce their results, and found that when ikaite (CaCO3·6H2O) rather than calcite (CaCO3) precipitates, there is no such effect on alkalinity. Given that ikaite has recently been identified in Antarctic brines (Dieckmann et al., 2008), our results show that great caution should be exercised when using the results of Sander et al. (2006), and reveal the urgent need of laboratory investigations on the actual link(s) between bromine activation and the pH of the surfaces on which it is supposed to take place at subzero temperature. In addition, the evolution of the Cl/Br ratio in the brine during freezing was computed using FREZCHEM, taking into account Br substitutions in Cl-containing salts.

  6. Detectability of the impacts of ozone-depleting substances and greenhouse gases upon stratospheric ozone accounting for nonlinearities in historical forcings

    Science.gov (United States)

    Bandoro, Justin; Solomon, Susan; Santer, Benjamin D.; Kinnison, Douglas E.; Mills, Michael J.

    2018-01-01

    We perform a formal attribution study of upper- and lower-stratospheric ozone changes using observations together with simulations from the Whole Atmosphere Community Climate Model. Historical model simulations were used to estimate the zonal-mean response patterns (fingerprints) to combined forcing by ozone-depleting substances (ODSs) and well-mixed greenhouse gases (GHGs), as well as to the individual forcing by each factor. Trends in the similarity between the searched-for fingerprints and homogenized observations of stratospheric ozone were compared to trends in pattern similarity between the fingerprints and the internally and naturally generated variability inferred from long control runs. This yields estimated signal-to-noise (S/N) ratios for each of the three fingerprints (ODS, GHG, and ODS + GHG). In both the upper stratosphere (defined in this paper as 1 to 10 hPa) and lower stratosphere (40 to 100 hPa), the spatial fingerprints of the ODS + GHG and ODS-only patterns were consistently detectable not only during the era of maximum ozone depletion but also throughout the observational record (1984-2016). We also develop a fingerprint attribution method to account for forcings whose time evolutions are markedly nonlinear over the observational record. When the nonlinearity of the time evolution of the ODS and ODS + GHG signals is accounted for, we find that the S/N ratios obtained with the stratospheric ODS and ODS + GHG fingerprints are enhanced relative to standard linear trend analysis. Use of the nonlinear signal detection method also reduces the detection time - the estimate of the date at which ODS and GHG impacts on ozone can be formally identified. Furthermore, by explicitly considering nonlinear signal evolution, the complete observational record can be used in the S/N analysis, without applying piecewise linear regression and introducing arbitrary break points. The GHG-driven fingerprint of ozone changes was not statistically identifiable in either

  7. Ozone-depleting substances and the greenhouse gases HFCs, PFCs and SF{sub 6}. Danish consumption and emissions, 2005

    Energy Technology Data Exchange (ETDEWEB)

    Sander Poulsen, T. [PlanMiljoe (Denmark)

    2007-06-15

    An evaluation of Danish consumption and emissions of ozone-depleting substances and industrial greenhouse gases has been carried out in continuation of previous evaluations, partly to fulfil Denmark's international obligations to provide information within this area and partly to follow the trend in consumption of ozone-depleting substances as well as the consumption and emissions of HFCs, PFCs and SF{sub 6}. The evaluation includes a calculation of actual emissions of HFCs, PFCs, and SF{sub 6} for 2006. In this calculation the release from stock of greenhouse gases in products has been taken into account, and adjustments have been made for imports and exports of the greenhouse gases in products. (BA)

  8. Tropospheric jet response to Antarctic ozone depletion: An update with Chemistry-Climate Model Initiative (CCMI) models

    Science.gov (United States)

    Son, Seok-Woo; Han, Bo-Reum; Garfinkel, Chaim I.; Kim, Seo-Yeon; Park, Rokjin; Abraham, N. Luke; Akiyoshi, Hideharu; Archibald, Alexander T.; Butchart, N.; Chipperfield, Martyn P.; Dameris, Martin; Deushi, Makoto; Dhomse, Sandip S.; Hardiman, Steven C.; Jöckel, Patrick; Kinnison, Douglas; Michou, Martine; Morgenstern, Olaf; O’Connor, Fiona M.; Oman, Luke D.; Plummer, David A.; Pozzer, Andrea; Revell, Laura E.; Rozanov, Eugene; Stenke, Andrea; Stone, Kane; Tilmes, Simone; Yamashita, Yousuke; Zeng, Guang

    2018-05-01

    The Southern Hemisphere (SH) zonal-mean circulation change in response to Antarctic ozone depletion is re-visited by examining a set of the latest model simulations archived for the Chemistry-Climate Model Initiative (CCMI) project. All models reasonably well reproduce Antarctic ozone depletion in the late 20th century. The related SH-summer circulation changes, such as a poleward intensification of westerly jet and a poleward expansion of the Hadley cell, are also well captured. All experiments exhibit quantitatively the same multi-model mean trend, irrespective of whether the ocean is coupled or prescribed. Results are also quantitatively similar to those derived from the Coupled Model Intercomparison Project phase 5 (CMIP5) high-top model simulations in which the stratospheric ozone is mostly prescribed with monthly- and zonally-averaged values. These results suggest that the ozone-hole-induced SH-summer circulation changes are robust across the models irrespective of the specific chemistry-atmosphere-ocean coupling.

  9. Sensitivity of the Reaction Mechanism of the Ozone Depletion Events during the Arctic Spring on the Initial Atmospheric Composition of the Troposphere

    Directory of Open Access Journals (Sweden)

    Le Cao

    2016-09-01

    Full Text Available Ozone depletion events (ODEs during the Arctic spring have been investigated since the 1980s. It was found that the depletion of ozone is highly associated with the release of halogens, especially bromine containing compounds. These compounds originate from various substrates such as the ice/snow-covered surfaces in Arctic. In the present study, the dependence of the mixing ratios of ozone and principal bromine species during ODEs on the initial composition of the Arctic atmospheric boundary layer was investigated by using a concentration sensitivity analysis. This analysis was performed by implementing a reaction mechanism representing the ozone depletion and halogen release in the box model KINAL (KInetic aNALysis of reaction mechanics. The ratios between the relative change of the mixing ratios of particular species such as ozone and the variation in the initial concentration of each atmospheric component were calculated, which indicate the relative importance of each initial species in the chemical kinetic system. The results of the computations show that the impact of various chemical species is different for ozone and bromine containing compounds during the depletion of ozone. It was found that CH3CHO critically controls the time scale of the complete removal of ozone. However, the rate of the ozone loss and the maximum values of bromine species are only slightly influenced by the initial value of CH3CHO. In addition, according to the concentration sensitivity analysis, the reduction of initial Br2 was found to cause a significant retardant of the ODE while the initial mixing ratio of HBr exerts minor influence on both ozone and bromine species. In addition, it is also interesting to note that the increase of C2H2 would significantly raise the amount of HOBr and Br in the atmosphere while the ozone depletion is hardly changed.

  10. Growth of soybean at future tropospheric ozone concentrations decreases canopy evapotranspiration and soil water depletion

    Energy Technology Data Exchange (ETDEWEB)

    Bernacchi, Carl J., E-mail: bernacch@illinois.edu [Global Change and Photosynthesis Research Unit, United States Department of Agriculture Agricultural Research Service, Urbana, IL 61801 (United States); Institute for Genomic Biology and Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Leakey, Andrew D.B. [Institute for Genomic Biology and Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Kimball, Bruce A. [USDA-ARS US Arid-Land Agricultural Research Center, 21881 N. Cardon Lane, Maricopa, AZ 85238 (United States); Ort, Donald R. [Global Change and Photosynthesis Research Unit, United States Department of Agriculture Agricultural Research Service, Urbana, IL 61801 (United States); Institute for Genomic Biology and Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States)

    2011-06-15

    Tropospheric ozone is increasing in many agricultural regions resulting in decreased stomatal conductance and overall biomass of sensitive crop species. These physiological effects of ozone forecast changes in evapotranspiration and thus in the terrestrial hydrological cycle, particularly in intercontinental interiors. Soybean plots were fumigated with ozone to achieve concentrations above ambient levels over five growing seasons in open-air field conditions. Mean season increases in ozone concentrations ([O{sub 3}]) varied between growing seasons from 22 to 37% above background concentrations. The objective of this experiment was to examine the effects of future [O{sub 3}] on crop ecosystem energy fluxes and water use. Elevated [O{sub 3}] caused decreases in canopy evapotranspiration resulting in decreased water use by as much as 15% in high ozone years and decreased soil water removal. In addition, ozone treatment resulted in increased sensible heat flux in all years indicative of day-time increase in canopy temperature of up to 0.7 deg. C. - Highlights: > Globally, tropospheric ozone is currently and will likely continue to increase into the future. > We examine the impact of elevated ozone on water use by soybean at the SoyFACE research facility. > High ozone grown soybean had reduced rates of evapotranspiration and higher soil moisture. > Increases in ozone have the potential to impact the hydrologic cycle where these crops are grown. - Soybean grown in elevated concentrations of ozone is shown to evapotranspire less water compared with soybean canopies grown under current atmospheric conditions.

  11. Growth of soybean at future tropospheric ozone concentrations decreases canopy evapotranspiration and soil water depletion

    International Nuclear Information System (INIS)

    Bernacchi, Carl J.; Leakey, Andrew D.B.; Kimball, Bruce A.; Ort, Donald R.

    2011-01-01

    Tropospheric ozone is increasing in many agricultural regions resulting in decreased stomatal conductance and overall biomass of sensitive crop species. These physiological effects of ozone forecast changes in evapotranspiration and thus in the terrestrial hydrological cycle, particularly in intercontinental interiors. Soybean plots were fumigated with ozone to achieve concentrations above ambient levels over five growing seasons in open-air field conditions. Mean season increases in ozone concentrations ([O 3 ]) varied between growing seasons from 22 to 37% above background concentrations. The objective of this experiment was to examine the effects of future [O 3 ] on crop ecosystem energy fluxes and water use. Elevated [O 3 ] caused decreases in canopy evapotranspiration resulting in decreased water use by as much as 15% in high ozone years and decreased soil water removal. In addition, ozone treatment resulted in increased sensible heat flux in all years indicative of day-time increase in canopy temperature of up to 0.7 deg. C. - Highlights: → Globally, tropospheric ozone is currently and will likely continue to increase into the future. → We examine the impact of elevated ozone on water use by soybean at the SoyFACE research facility. → High ozone grown soybean had reduced rates of evapotranspiration and higher soil moisture. → Increases in ozone have the potential to impact the hydrologic cycle where these crops are grown. - Soybean grown in elevated concentrations of ozone is shown to evapotranspire less water compared with soybean canopies grown under current atmospheric conditions.

  12. 40 CFR Appendix H to Subpart A of... - Clean Air Act Amendments of 1990 Phaseout Schedule for Production of Ozone-Depleting Substances

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Clean Air Act Amendments of 1990 Phaseout Schedule for Production of Ozone-Depleting Substances H Appendix H to Subpart A of Part 82... STRATOSPHERIC OZONE Production and Consumption Controls Pt. 82, Subpt. A, App. H Appendix H to Subpart A of Part...

  13. Precipitation of salts in freezing seawater and ozone depletion events: a status report

    Directory of Open Access Journals (Sweden)

    S. Morin

    2008-12-01

    Full Text Available In springtime, the polar marine boundary layer exhibits drastic ozone depletion events (ODEs, associated with elevated bromine oxide (BrO mixing ratios. The current interpretation of this peculiar chemistry requires the existence of acid and bromide-enriched surfaces to heterogeneously promote and sustain ODEs. Sander et al. (2006 have proposed that calcium carbonate (CaCO3 precipitation in any seawater-derived medium could potentially decrease its alkalinity, making it easier for atmospheric acids such as HNO3 and H2SO4 to acidify it. We performed simulations using the state-of-the-art FREZCHEM model, capable of handling the thermodynamics of concentrated electrolyte solutions, to try to reproduce their results, and found that when ikaite (CaCO3·6H2O rather than calcite (CaCO3 precipitates, there is no such effect on alkalinity. Given that ikaite has recently been identified in Antarctic brines (Dieckmann et al., 2008, our results show that great caution should be exercised when using the results of Sander et al. (2006, and reveal the urgent need of laboratory investigations on the actual link(s between bromine activation and the pH of the surfaces on which it is supposed to take place at subzero temperature. In addition, the evolution of the Cl/Br ratio in the brine during freezing was computed using FREZCHEM, taking into account Br substitutions in Cl–containing salts.

  14. Precious Metals in Automotive Technology: An Unsolvable Depletion Problem?

    Directory of Open Access Journals (Sweden)

    Ugo Bardi

    2014-04-01

    Full Text Available Since the second half of the 20th century, various devices have been developed in order to reduce the emissions of harmful substances at the exhaust pipe of combustion engines. In the automotive field, the most diffuse and best known device of this kind is the “three way” catalytic converter for engines using the Otto cycle designed to abate the emissions of carbon monoxide, nitrogen oxides and unburnt hydrocarbons. These catalytic converters can function only by means of precious metals (mainly platinum, rhodium and palladium which exist in a limited supply in economically exploitable ores. The recent increase in prices of all mineral commodities is already making these converters significantly expensive and it is not impossible that the progressive depletion of precious metals will make them too expensive for the market of private cars. The present paper examines how this potential scarcity could affect the technology of road transportation worldwide. We argue that the supply of precious metals for automotive converters is not at risk in the short term, but that in the future it will not be possible to continue using this technology as a result of increasing prices generated by progressive depletion. Mitigation methods such as reducing the amounts of precious metals in catalysts, or recycling them can help but cannot be considered as a definitive solution. We argue that precious metal scarcity is a critical factor that may determine the future development of road transportation in the world. As the problem is basically unsolvable in the long run, we must explore new technologies for road transportation and we conclude that it is likely that the clean engine of the future will be electric and powered by batteries.

  15. Stratospheric measurements of ozone-depleting substances and greenhouse gases using AirCores

    Science.gov (United States)

    Laube, Johannes; Leedham Elvidge, Emma; Kaiser, Jan; Sturges, Bill; Heikkinen, Pauli; Laurila, Tuomas; Hatakka, Juha; Kivi, Rigel; Chen, Huilin; Fraser, Paul; van der Veen, Carina; Röckmann, Thomas

    2017-04-01

    Retrieving air samples from the stratosphere has previously required aircraft or large balloons, both of which are expensive to operate. The novel "AirCore" technique (Karion et al., 2010) enables stratospheric sampling using weather balloons, which is much more cost effective. AirCores are long (up to 200 m) stainless steel tubes which are placed as a payload on a small balloon, can ascend to over 30 km and fill upon descent, collecting a vertical profile of the atmosphere. Retrieved volumes are much smaller though, which presents a challenge for trace gas analysis. To date, only the more abundant trace gases such as carnon dioxide (CO2) and methane (CH4) have been quantified in AirCores. Halogenated trace gases are also important greenhouse gases and many also deplete stratospheric ozone. Their concentrations are however much lower i.e. typically in the part per trillion (ppt) molar range. We here present the first stratospheric measurements of halocarbons in AirCores obtained using UEA's highly sensitive (detection limits of 0.01-0.1 ppt in 10 ml of air) gas chromatography mass spectrometry system. The analysed air originates from a Stratospheric Air Sub-sampler (Mrozek et al., 2016) which collects AirCore segments after the non-destructive CO2 and CH4 analysis. Successfully measured species include CFC-11, CFC-12, CFC-113, CFC-115, H-1211, H-1301, HCFC-22, HCFC-141b, HCFC-142b, HCFC-133a, and sulphur hexafluoride (SF6). We compare the observed mixing ratios and precisions with data obtained from samples collected during various high-altitude aircraft campaigns between 2009 and 2016 as well as with southern hemisphere tropospheric long-term trends. As part of the ERC-funded EXC3ITE (EXploring stratospheric Composition, Chemistry and Circulation with Innovative Techniques) project more than 40 AirCore flights are planned in the next 3 years with an expanded range of up to 30 gases in order to explore seasonal and interannual variability in the stratosphere

  16. Next Generation Refrigeration Lubricants for Low Global Warming Potential/Low Ozone Depleting Refrigeration and Air Conditioning Systems

    Energy Technology Data Exchange (ETDEWEB)

    Hessell, Edward

    2013-12-31

    The goal of this project is to develop and test new synthetic lubricants that possess high compatibility with new low ozone depleting (LOD) and low global warming potential (LGWP) refrigerants and offer improved lubricity and wear protection over current lubricant technologies. The improved compatibility of the lubricants with the refrigerants, along with improved lubricating properties, will resulted in lower energy consumption and longer service life of the refrigeration systems used in residential, commercial and industrial heating, ventilating and air-conditioning (HVAC) and refrigeration equipment.

  17. Synchronous volcanic eruptions and abrupt climate change ∼17.7 ka plausibly linked by stratospheric ozone depletion.

    Science.gov (United States)

    McConnell, Joseph R; Burke, Andrea; Dunbar, Nelia W; Köhler, Peter; Thomas, Jennie L; Arienzo, Monica M; Chellman, Nathan J; Maselli, Olivia J; Sigl, Michael; Adkins, Jess F; Baggenstos, Daniel; Burkhart, John F; Brook, Edward J; Buizert, Christo; Cole-Dai, Jihong; Fudge, T J; Knorr, Gregor; Graf, Hans-F; Grieman, Mackenzie M; Iverson, Nels; McGwire, Kenneth C; Mulvaney, Robert; Paris, Guillaume; Rhodes, Rachael H; Saltzman, Eric S; Severinghaus, Jeffrey P; Steffensen, Jørgen Peder; Taylor, Kendrick C; Winckler, Gisela

    2017-09-19

    Glacial-state greenhouse gas concentrations and Southern Hemisphere climate conditions persisted until ∼17.7 ka, when a nearly synchronous acceleration in deglaciation was recorded in paleoclimate proxies in large parts of the Southern Hemisphere, with many changes ascribed to a sudden poleward shift in the Southern Hemisphere westerlies and subsequent climate impacts. We used high-resolution chemical measurements in the West Antarctic Ice Sheet Divide, Byrd, and other ice cores to document a unique, ∼192-y series of halogen-rich volcanic eruptions exactly at the start of accelerated deglaciation, with tephra identifying the nearby Mount Takahe volcano as the source. Extensive fallout from these massive eruptions has been found >2,800 km from Mount Takahe. Sulfur isotope anomalies and marked decreases in ice core bromine consistent with increased surface UV radiation indicate that the eruptions led to stratospheric ozone depletion. Rather than a highly improbable coincidence, circulation and climate changes extending from the Antarctic Peninsula to the subtropics-similar to those associated with modern stratospheric ozone depletion over Antarctica-plausibly link the Mount Takahe eruptions to the onset of accelerated Southern Hemisphere deglaciation ∼17.7 ka.

  18. Destruction of concentrated chlorofluorocarbons in India demonstrates an effective option to simultaneously curb climate change and ozone depletion

    International Nuclear Information System (INIS)

    Karstensen, Kåre Helge; Parlikar, Ulhas V.; Ahuja, Deepak; Sharma, Shiv; Chakraborty, Moumita A.; Maurya, Harivansh Prasad; Mallik, Mrinal; Gupta, P.K.; Kamyotra, J.S.; Bala, S.S.; Kapadia, B.V.

    2014-01-01

    Highlights: • Chlorofluorocarbons and halons are potent ozone depleting substances and greenhouse gases. • No provisions in the Montreal or in Kyoto Protocol to destroy stockpiles of concentrated CFCs. • The UNEP recommends 11 technologies for destruction of concentrated CFCs. • No studies have up to now investigated the potential of using cement kilns in developing countries. • The test demonstrated that the local Indian cement kiln was able to destroy high feeding rates of several concentrated CFC-gases effectively. - Abstract: The Montreal Protocol aims to protect the stratospheric ozone layer by phasing out production of substances that contribute to ozone depletion, currently covering over 200 individual substances. As most of these compounds are synthetic greenhouse gases, there is an opportunity to curb both ozone depletion and climate change simultaneously by requiring Parties of both the Montreal and the Kyoto Protocol to destroy their existing stocks of concentrated chlorofluorocarbons (CFCs). Many emerging countries still possess stocks which need to be destroyed in an environmentally sound manner but costs may be prohibitive. The UNEP Technology and Economic Assessment Panel identified in 2002 eleven destruction technologies which meet the criteria for environmentally sound destruction of chlorofluorocarbons. Cement kilns were among these, but no study has been reported in scientific literature assessing its destruction performance under real developing country conditions up to now. In contrast to incinerators and other treatment techniques, high temperature cement kilns are already in place in virtually every country and can, if found technical feasible, be retrofitted and adapted cost-efficiently to destroy chemicals like CFCs. India has the second largest cement industry in the world and several hazardous waste categories have been tested successfully in recent years. The objective of this study was to carry out the first full scale

  19. New methodology for Ozone Depletion Potentials of short-lived compounds: n-Propyl bromide as an example

    Science.gov (United States)

    Wuebbles, Donald J.; Patten, Kenneth O.; Johnson, Matthew T.; Kotamarthi, Rao

    2001-07-01

    A number of the compounds proposed as replacements for substances controlled under the Montreal Protocol have extremely short atmospheric lifetimes, on the order of days to a few months. An important example is n-propyl bromide (also referred to as 1-bromopropane, CH2BrCH2CH3 or simplified as 1-C3H7Br or nPB). This compound, useful as a solvent, has an atmospheric lifetime of less than 20 days due to its reaction with hydroxyl. Because nPB contains bromine, any amount reaching the stratosphere has the potential to affect concentrations of stratospheric ozone. The definition of Ozone Depletion Potentials (ODP) needs to be modified for such short-lived compounds to account for the location and timing of emissions. It is not adequate to treat these chemicals as if they were uniformly emitted at all latitudes and longitudes as normally done for longer-lived gases. Thus, for short-lived compounds, policymakers will need a table of ODP values instead of the single value generally provided in past studies. This study uses the MOZART2 three-dimensional chemical-transport model in combination with studies with our less computationally expensive two-dimensional model to examine potential effects of nPB on stratospheric ozone. Multiple facets of this study examine key questions regarding the amount of bromine reaching the stratosphere following emission of nPB. Our most significant findings from this study for the purposes of short-lived replacement compound ozone effects are summarized as follows. The degradation of nPB produces a significant quantity of bromoacetone which increases the amount of bromine transported to the stratosphere due to nPB. However, much of that effect is not due to bromoacetone itself, but instead to inorganic bromine which is produced from tropospheric oxidation of nPB, bromoacetone, and other degradation products and is transported above the dry and wet deposition processes of the model. The MOZART2 nPB results indicate a minimal correction of the

  20. A Model of the Effect of Ozone Depletion on Lower-Stratospheric Structure

    Science.gov (United States)

    Olsen, Mark A.; Stolarski, Richard S.; Gupta, Mohan L.; Nielsen, J. Eric; Pawson, Steven

    2005-01-01

    We have run two twenty-year integrations of a global circulation model using 1978-1980 and 1998-2000 monthly mean ozone climatologies. The ozone climatology is used solely in the radiation scheme of the model. Several key differences between the model runs will be presented. The temperature and potential vorticity (PV) structure of the lower stratosphere, particularly in the Southern Hemisphere, is significantly changed using the 1998-2000 ozone climatology. In the Southern Hemisphere summer, the lapse rate and PV-defined polar tropopauses are both at altitudes on the order of several hundred meters greater than the 1978-1980 climatological run. The 380 K potential temperature surf= is likewise at a greater altitude. The mass of the extratropical lowermost stratosphere (between the tropopause and 380 K surface) remains unchanged. The altitude differences are not observed in the Northern Hemisphere. The different ozone fields do not produce a significant change in the annual extratropical stratosphere-troposphere exchange of mass although slight variations in the spatial distribution of the exchange exist. We are also investigating a delay in the breakup of the Southern Hemisphere polar vortex due to the differing ozone climatologies.

  1. Atmospheric chemistry of short-chain haloolefins: photochemical ozone creation potentials (POCPs), global warming potentials (GWPs), and ozone depletion potentials (ODPs).

    Science.gov (United States)

    Wallington, T J; Sulbaek Andersen, M P; Nielsen, O J

    2015-06-01

    Short-chain haloolefins are being introduced as replacements for saturated halocarbons. The unifying chemical feature of haloolefins is the presence of a CC double bond which causes the atmospheric lifetimes to be significantly shorter than for the analogous saturated compounds. We discuss the atmospheric lifetimes, photochemical ozone creation potentials (POCPs), global warming potentials (GWPs), and ozone depletion potentials (ODPs) of haloolefins. The commercially relevant short-chain haloolefins CF3CFCH2 (1234yf), trans-CF3CHCHF (1234ze(Z)), CF3CFCF2 (1216), cis-CF3CHCHCl (1233zd(Z)), and trans-CF3CHCHCl (1233zd(E)) have short atmospheric lifetimes (days to weeks), negligible POCPs, negligible GWPs, and ODPs which do not differ materially from zero. In the concentrations expected in the environment their atmospheric degradation products will have a negligible impact on ecosystems. CF3CFCH2 (1234yf), trans-CF3CHCHF (1234ze(Z)), CF3CFCF2 (1216), cis-CF3CHCHCl (1233zd(Z)), and trans-CF3CHCHCl (1233zd(E)) are environmentally acceptable. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Ozone Depletion Caused by Rocket Engine Emissions: A Fundamental Limit on the Scale and Viability of Space-Based Geoengineering Schemes

    Science.gov (United States)

    Ross, M. N.; Toohey, D.

    2008-12-01

    Emissions from solid and liquid propellant rocket engines reduce global stratospheric ozone levels. Currently ~ one kiloton of payloads are launched into earth orbit annually by the global space industry. Stratospheric ozone depletion from present day launches is a small fraction of the ~ 4% globally averaged ozone loss caused by halogen gases. Thus rocket engine emissions are currently considered a minor, if poorly understood, contributor to ozone depletion. Proposed space-based geoengineering projects designed to mitigate climate change would require order of magnitude increases in the amount of material launched into earth orbit. The increased launches would result in comparable increases in the global ozone depletion caused by rocket emissions. We estimate global ozone loss caused by three space-based geoengineering proposals to mitigate climate change: (1) mirrors, (2) sunshade, and (3) space-based solar power (SSP). The SSP concept does not directly engineer climate, but is touted as a mitigation strategy in that SSP would reduce CO2 emissions. We show that launching the mirrors or sunshade would cause global ozone loss between 2% and 20%. Ozone loss associated with an economically viable SSP system would be at least 0.4% and possibly as large as 3%. It is not clear which, if any, of these levels of ozone loss would be acceptable under the Montreal Protocol. The large uncertainties are mainly caused by a lack of data or validated models regarding liquid propellant rocket engine emissions. Our results offer four main conclusions. (1) The viability of space-based geoengineering schemes could well be undermined by the relatively large ozone depletion that would be caused by the required rocket launches. (2) Analysis of space- based geoengineering schemes should include the difficult tradeoff between the gain of long-term (~ decades) climate control and the loss of short-term (~ years) deep ozone loss. (3) The trade can be properly evaluated only if our

  3. Environmental effects of ozone depletion and its interactions with climate change: Progress report, 2016

    Science.gov (United States)

    When considering the effects of climate change, it has become clear that processes resulting in changes in stratospheric ozone are more complex than previously believed. As a result of this, human health and environmental issues will be longer-lasting and more regionally variable...

  4. Health and environmental problems of using depleted uranium

    International Nuclear Information System (INIS)

    Matousek, J.

    2006-01-01

    In the 1970's, a core of depleted uranium (DU) began to be introduced into the break through anti-tank munitions to enhance their effectiveness. The health and environmental threats of DU stem from the pyrophoric character of the core, burnt when penetrating armour to an aerosol of uranium oxides deposited in tissues after inhalation or ingestion. Their delayed effects are due to internal alpha irradiation by daughter products and toxicity of uranium. (authors)

  5. Characteristics of tropospheric ozone depletion events in the Arctic spring: analysis of the ARCTAS, ARCPAC, and ARCIONS measurements and satellite BrO observations

    Directory of Open Access Journals (Sweden)

    J.-H. Koo

    2012-10-01

    Full Text Available Arctic ozone depletion events (ODEs are caused by halogen catalyzed ozone loss. In situ chemistry, advection of ozone-poor air mass, and vertical mixing in the lower troposphere are important factors affecting ODEs. To better characterize the ODEs, we analyze the combined set of surface, ozonesonde, and aircraft in situ measurements of ozone and bromine compounds during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS, the Aerosol, Radiation, and Cloud Processes affecting Arctic Climate (ARCPAC, and the Arctic Intensive Ozonesonde Network Study (ARCIONS experiments (April 2008. Tropospheric BrO columns retrieved from satellite measurements and back trajectory calculations are also used to investigate the characteristics of observed ODEs. In situ observations from these field experiments are inadequate to validate tropospheric BrO columns derived from satellite measurements. In view of this difficulty, we construct an ensemble of tropospheric column BrO estimates from two satellite (OMI and GOME-2 measurements and with three independent methods of calculating stratospheric BrO columns. Furthermore, we select analysis methods that do not depend on the absolute magnitude of column BrO, such as time-lagged correlation analysis of ozone and tropospheric column BrO, to understand characteristics of ODEs. Time-lagged correlation analysis between in situ (surface and ozonesonde measurements of ozone and satellite derived tropospheric BrO columns indicates that the ODEs are due to either local halogen-driven ozone loss or short-range (∼1 day transport from nearby regions with ozone depletion. The effect of in situ ozone loss is also evident in the diurnal variation difference between low (10th and 25th percentiles and higher percentiles of surface ozone concentrations at Alert, Canada. Aircraft observations indicate low-ozone air mass transported from adjacent high-BrO regions. Correlation analyses of ozone

  6. Fate of Chloromethanes in the Atmospheric Environment: Implications for Human Health, Ozone Formation and Depletion, and Global Warming Impacts.

    Science.gov (United States)

    Tsai, Wen-Tien

    2017-09-21

    Among the halogenated hydrocarbons, chloromethanes (i.e., methyl chloride, CH₃Cl; methylene chloride, CH₂Cl₂; chloroform, CHCl₃; and carbon tetrachloride, CCl₄) play a vital role due to their extensive uses as solvents and chemical intermediates. This article aims to review their main chemical/physical properties and commercial/industrial uses, as well as the environment and health hazards posed by them and their toxic decomposition products. The environmental properties (including atmospheric lifetime, radiative efficiency, ozone depletion potential, global warming potential, photochemical ozone creation potential, and surface mixing ratio) of these chlorinated methanes are also reviewed. In addition, this paper further discusses their atmospheric fates and human health implications because they are apt to reside in the lower atmosphere when released into the environment. According to the atmospheric degradation mechanism, their toxic degradation products in the troposphere include hydrogen chloride (HCl), carbon monoxide (CO), chlorine (Cl₂), formyl chloride (HCOCl), carbonyl chloride (COCl₂), and hydrogen peroxide (H₂O₂). Among them, COCl₂ (also called phosgene) is a powerful irritating gas, which is easily hydrolyzed or thermally decomposed to form hydrogen chloride.

  7. Fate of Chloromethanes in the Atmospheric Environment: Implications for Human Health, Ozone Formation and Depletion, and Global Warming Impacts

    Science.gov (United States)

    Tsai, Wen-Tien

    2017-01-01

    Among the halogenated hydrocarbons, chloromethanes (i.e., methyl chloride, CH3Cl; methylene chloride, CH2Cl2; chloroform, CHCl3; and carbon tetrachloride, CCl4) play a vital role due to their extensive uses as solvents and chemical intermediates. This article aims to review their main chemical/physical properties and commercial/industrial uses, as well as the environment and health hazards posed by them and their toxic decomposition products. The environmental properties (including atmospheric lifetime, radiative efficiency, ozone depletion potential, global warming potential, photochemical ozone creation potential, and surface mixing ratio) of these chlorinated methanes are also reviewed. In addition, this paper further discusses their atmospheric fates and human health implications because they are apt to reside in the lower atmosphere when released into the environment. According to the atmospheric degradation mechanism, their toxic degradation products in the troposphere include hydrogen chloride (HCl), carbon monoxide (CO), chlorine (Cl2), formyl chloride (HCOCl), carbonyl chloride (COCl2), and hydrogen peroxide (H2O2). Among them, COCl2 (also called phosgene) is a powerful irritating gas, which is easily hydrolyzed or thermally decomposed to form hydrogen chloride. PMID:29051455

  8. The Nature of Relationships among the Components of Pedagogical Content Knowledge of Preservice Science Teachers: "Ozone Layer Depletion" as an Example

    Science.gov (United States)

    Kaya, Osman N.

    2009-01-01

    The purpose of this study was to explore the relationships among the components of preservice science teachers' (PSTs) pedagogical content knowledge (PCK) involving the topic "ozone layer depletion". An open-ended survey was first administered to 216 PSTs in their final year at the Faculty of Education to determine their subject matter…

  9. Concept Formation in Environmental Education: 14-Year Olds' Work on the Intensified Greenhouse Effect and the Depletion of the Ozone Layer. Research Report

    Science.gov (United States)

    Osterlind, Karolina

    2005-01-01

    A case study is presented describing the work of three pupils in the upper level of compulsory school. The pupils were learning about the intensified greenhouse effect and the depletion of the ozone layer. In their work, the need for certain domain-specific knowledge becomes apparent; for example, understanding such concepts as photosynthesis,…

  10. Atmospheric lifetimes and Ozone Depletion Potentials of trans-1-chloro-3,3,3-trifluoropropylene and trans-1,2-dichloroethylene in a three-dimensional model

    Directory of Open Access Journals (Sweden)

    K. O. Patten

    2010-11-01

    Full Text Available The chloroalkenes trans-1-chloro-3,3,3-trifluoropropylene (tCFP and trans-1,2-dichloroethylene (tDCE have been proposed as candidate replacements for other compounds in current use that cause concerns regarding potential environmental effects including destruction of stratospheric ozone. Because tCFP and tDCE contain chlorine atoms, the effects of these short-lived compounds on stratospheric ozone must be established. In this study, we derive the atmospheric lifetimes and Ozone Depletion Potentials (ODPs for tCFP and for tDCE assuming emissions from land surfaces at latitudes 30° N to 60° N using the MOZART 3 three-dimensional model of atmospheric chemistry and physics. 53% of the ozone loss due to tCFP and 98% of the ozone loss due to tDCE take place in the troposphere, rather than in the stratosphere as generally expected from longer-lived chlorocarbons. The atmospheric lifetime of tCFP against chemical reaction is 40.4 days, and its ODP is quite small at 0.00034. The tDCE atmospheric lifetime is 12.7 days, and its ODP is 0.00024, which is the lowest ODP found for any chlorocarbon we have studied. Our study suggests that chlorine from tCFP and tDCE are unlikely to affect ozone at quantities likely to be emitted to the atmosphere.

  11. Comparison of autoregressive (AR) strategy with that of regression approach for determining ozone layer depletion as a physical process

    International Nuclear Information System (INIS)

    Yousufzai, M.A.K; Aansari, M.R.K.; Quamar, J.; Iqbal, J.; Hussain, M.A.

    2010-01-01

    This communication presents the development of a comprehensive characterization of ozone layer depletion (OLD) phenomenon as a physical process in the form of mathematical models that comprise the usual regression, multiple or polynomial regression and stochastic strategy. The relevance of these models has been illuminated using predicted values of different parameters under a changing environment. The information obtained from such analysis can be employed to alter the possible factors and variables to achieve optimum performance. This kind of analysis initiates a study towards formulating the phenomenon of OLD as a physical process with special reference to the stratospheric region of Pakistan. The data presented here establishes that the Auto regressive (AR) nature of modeling OLD as a physical process is an appropriate scenario rather than using usual regression. The data reported in literature suggest quantitatively the OLD is occurring in our region. For this purpose we have modeled this phenomenon using the data recorded at the Geophysical Centre Quetta during the period 1960-1999. The predictions made by this analysis are useful for public, private and other relevant organizations. (author)

  12. Extreme ozone depletion in the 2010–2011 Arctic winter stratosphere as observed by MIPAS/ENVISAT using a 2-D tomographic approach

    Directory of Open Access Journals (Sweden)

    E. Arnone

    2012-10-01

    Full Text Available We present observations of the 2010–2011 Arctic winter stratosphere from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS onboard ENVISAT. Limb sounding infrared measurements were taken by MIPAS during the Northern polar winter and into the subsequent spring, giving a continuous vertically resolved view of the Arctic dynamics, chemistry and polar stratospheric clouds (PSCs. We adopted a 2-D tomographic retrieval approach to account for the strong horizontal inhomogeneity of the atmosphere present under vortex conditions, self-consistently comparing 2011 to the 2-D analysis of 2003–2010. Unlike most Arctic winters, 2011 was characterized by a strong stratospheric vortex lasting until early April. Lower stratospheric temperatures persistently remained below the threshold for PSC formation, extending the PSC season up to mid-March, resulting in significant chlorine activation leading to ozone destruction. On 3 January 2011, PSCs were detected up to 30.5 ± 0.9 km altitude, representing the highest PSCs ever reported in the Arctic. Through inspection of MIPAS spectra, 83% of PSCs were identified as supercooled ternary solution (STS or STS mixed with nitric acid trihydrate (NAT, 17% formed mostly by NAT particles, and only two cases by ice. In the lower stratosphere at potential temperature 450 K, vortex average ozone showed a daily depletion rate reaching 100 ppbv day−1. In early April at 18 km altitude, 10% of vortex measurements displayed total depletion of ozone, and vortex average values dropped to 0.6 ppmv. This corresponds to a chemical loss from early winter greater than 80%. Ozone loss was accompanied by activation of ClO, associated depletion of its reservoir ClONO2, and significant denitrification, which further delayed the recovery of ozone in spring. Once the PSC season halted, ClO was reconverted primarily into ClONO2. Compared to MIPAS observed 2003–2010 Arctic average values

  13. The role of bromine and chlorine chemistry for arctic ozone depletion events in Ny-Ålesund and comparison with model calculations

    Directory of Open Access Journals (Sweden)

    M. Martinez

    Full Text Available During the Arctic Tropospheric Ozone Chemistry (ARCTOC campaigns at Ny-Ålesund, Spitsbergen, the role of halogens in the depletion of boundary layer ozone was investigated. In spring 1995 and 1996 up to 30 ppt bromine monoxide were found whenever ozone decreased from normal levels of about 40 ppb. Those main trace gases and others were specifically followed in the UV-VIS spectral region by differential optical absorption spectroscopy (DOAS along light paths running between 20 and 475 m a.s.l.. The daily variation of peroxy radicals closely followed the ozone photolysis rate J(O3(O1D in the absence of ozone depletion most of the time. However, during low ozone events this close correlation was no longer found because the measurement of radicals by chemical amplification (CA turned out to be sensitive to peroxy radicals and ClOx. Large CA signals at night can sometimes definitely be assigned to ClOx and reached up to 2 ppt. Total bromine and iodine were both stripped quantitatively from air by active charcoal traps and measured after neutron activation of the samples. Total bromine increased from background levels of about 15 ppt to a maximum of 90 ppt during an event of complete ozone depletion. For the spring season a strong source of bromine is identified in the pack ice region according to back trajectories. Though biogenic emission sources cannot be completely ruled out, a primary activation of halogenides by various oxidants seems to initiate an efficient autocatalytic process, mainly driven by ozone and light, on ice and perhaps on aerosols. Halogenides residing on pack ice surfaces are continuously oxidised by hypohalogenous acids releasing bromine and chlorine into the air. During transport and especially above open water this air mixes with upper layer pristine air. As large quantities of bromine, often in the form of BrO, have been observed at polar sunrise also around Antarctica, its release

  14. The role of bromine and chlorine chemistry for arctic ozone depletion events in Ny-Ålesund and comparison with model calculations

    Directory of Open Access Journals (Sweden)

    M. Martinez

    1999-07-01

    Full Text Available During the Arctic Tropospheric Ozone Chemistry (ARCTOC campaigns at Ny-Ålesund, Spitsbergen, the role of halogens in the depletion of boundary layer ozone was investigated. In spring 1995 and 1996 up to 30 ppt bromine monoxide were found whenever ozone decreased from normal levels of about 40 ppb. Those main trace gases and others were specifically followed in the UV-VIS spectral region by differential optical absorption spectroscopy (DOAS along light paths running between 20 and 475 m a.s.l.. The daily variation of peroxy radicals closely followed the ozone photolysis rate J(O3(O1D in the absence of ozone depletion most of the time. However, during low ozone events this close correlation was no longer found because the measurement of radicals by chemical amplification (CA turned out to be sensitive to peroxy radicals and ClOx. Large CA signals at night can sometimes definitely be assigned to ClOx and reached up to 2 ppt. Total bromine and iodine were both stripped quantitatively from air by active charcoal traps and measured after neutron activation of the samples. Total bromine increased from background levels of about 15 ppt to a maximum of 90 ppt during an event of complete ozone depletion. For the spring season a strong source of bromine is identified in the pack ice region according to back trajectories. Though biogenic emission sources cannot be completely ruled out, a primary activation of halogenides by various oxidants seems to initiate an efficient autocatalytic process, mainly driven by ozone and light, on ice and perhaps on aerosols. Halogenides residing on pack ice surfaces are continuously oxidised by hypohalogenous acids releasing bromine and chlorine into the air. During transport and especially above open water this air mixes with upper layer pristine air. As large quantities of bromine, often in the form of BrO, have been observed at polar sunrise also around Antarctica, its release seems to be a natural phenomenon. The

  15. Substituting HCFC-22 for HFC-410A: an environmental impact trade-off between the ozone depletion and climate change regimes

    Science.gov (United States)

    Wang, Z.; Fang, X.; Zhang, J.

    2015-12-01

    After the phase-out of hydrochlorofluorocarbons (HCFCs) as ozone-depleting substances pursuant to the requirements of the Montreal Protocol, hydrofluorocarbons (HFCs) are worldwide used as substitutes although the bulk of them are potent greenhouse gases (GHGs). Therefore, the alternation may bring side effect on global climate change. The trade-off of its environmental impacts between the ozone depletion and climate change regimes necessitates a quantification of the past and future consumption and emissions of both the original HCFCs and their alternative HFCs. Now a dilemma arise in China's RAC industry that HCFC-22, which has an ozone-depleting potential (ODP) of 0.055, has been replaced by HFC-410A, which is a blended potent GHG from respective 50% HFC-32 and HFC-125 with a global warming potential (GWP) of 1923.5. Here, we present our results of estimates of consumption and emissions of HCFC-22 and HFC-410A from 1994 to 2050. Historic emissions of HCFC-22 contributed to global total HCFCs by 4.0% (3.0%-5.6%) ODP-weighted. Projection under a baseline scenario shows future accumulative emissions of HFC-410A make up 5.9%-11.0% of global GWP-weighted HFCs emissions, and its annual contribution to national overall CO2 emissions can be 5.5% in 2050. This makes HCFC-22 and HFC-410A emissions of significant importance in ozone depletion and climate change regimes. Two mitigation scenarios were set to assess the mitigation performance under the North America Proposal and an accelerated schedule. In practice of international environmental agreement, "alternative to alternative" should be developed to avoid regrettable alternations.

  16. Polar boundary layer bromine explosion and ozone depletion events in the chemistry-climate model EMAC v2.52: implementation and evaluation of AirSnow algorithm

    Science.gov (United States)

    Falk, Stefanie; Sinnhuber, Björn-Martin

    2018-03-01

    Ozone depletion events (ODEs) in the polar boundary layer have been observed frequently during springtime. They are related to events of boundary layer enhancement of bromine. Consequently, increased amounts of boundary layer volume mixing ratio (VMR) and vertical column densities (VCDs) of BrO have been observed by in situ observation, ground-based as well as airborne remote sensing, and from satellites. These so-called bromine explosion (BE) events have been discussed serving as a source of tropospheric BrO at high latitudes, which has been underestimated in global models so far. We have implemented a treatment of bromine release and recycling on sea-ice- and snow-covered surfaces in the global chemistry-climate model EMAC (ECHAM/MESSy Atmospheric Chemistry) based on the scheme of Toyota et al. (2011). In this scheme, dry deposition fluxes of HBr, HOBr, and BrNO3 over ice- and snow-covered surfaces are recycled into Br2 fluxes. In addition, dry deposition of O3, dependent on temperature and sunlight, triggers a Br2 release from surfaces associated with first-year sea ice. Many aspects of observed bromine enhancements and associated episodes of near-complete depletion of boundary layer ozone, both in the Arctic and in the Antarctic, are reproduced by this relatively simple approach. We present first results from our global model studies extending over a full annual cycle, including comparisons with Global Ozone Monitoring Experiment (GOME) satellite BrO VCDs and surface ozone observations.

  17. Prospective Primary Teachers' Understanding of Climate Change, Greenhouse Effect, and Ozone Layer Depletion

    Science.gov (United States)

    Papadimitriou, Vasiliki

    2004-01-01

    Climate change is one of the most serious global environmental problems and for that reason there has been lately a great interest in educating pupils, the future citizens, about it. Previous research has shown that pupils of all ages and teachers hold many misconceptions and misunderstandings concerning this issue. This paper reports on research…

  18. Rethinking the ozone problem in urban and regional air pollution

    National Research Council Canada - National Science Library

    Committee on Geosciences, Environment and Resourcs S; National Research Council Staff; Division on Earth and Life Studies; National Research Council; National Academy of Sciences

    ... on Tropospheric Ozone Formation and Measurement Board on Environmental Studies and Toxicology Board on Atmospheric Sciences and Climate Commission on Geosciences, Environment, and Resources National Research Council NATIONAL ACADEMY PRESS Washington, D.C. 1991 Copyrightthe cannot be not from book, paper however, version for formatting, original authoritati...

  19. Depletion of stratospheric ozone over the Antarctic and Arctic: Responses of plants of polar terrestrial ecosystems to enhanced UV-B, an overview

    International Nuclear Information System (INIS)

    Rozema, Jelte; Boelen, Peter; Blokker, Peter

    2005-01-01

    Depletion of stratospheric ozone over the Antarctic has been re-occurring yearly since 1974, leading to enhanced UV-B radiation. Arctic ozone depletion has been observed since 1990. Ozone recovery has been predicted by 2050, but no signs of recovery occur. Here we review responses of polar plants to experimentally varied UV-B through supplementation or exclusion. In supplementation studies comparing ambient and above ambient UV-B, no effect on growth occurred. UV-B-induced DNA damage, as measured in polar bryophytes, is repaired overnight by photoreactivation. With UV exclusion, growth at near ambient may be less than at below ambient UV-B levels, which relates to the UV response curve of polar plants. UV-B screening foils also alter PAR, humidity, and temperature and interactions of UV with environmental factors may occur. Plant phenolics induced by solar UV-B, as in pollen, spores and lignin, may serve as a climate proxy for past UV. Since the Antarctic and Arctic terrestrial ecosystems differ essentially (e.g. higher species diversity and more trophic interactions in the Arctic), generalization of polar plant responses to UV-B needs caution. - Polar plant responses to UV-B may be different in the Arctic than Antarctic regions

  20. Polar boundary layer bromine explosion and ozone depletion events in the chemistry–climate model EMAC v2.52: implementation and evaluation of AirSnow algorithm

    Directory of Open Access Journals (Sweden)

    S. Falk

    2018-03-01

    Full Text Available Ozone depletion events (ODEs in the polar boundary layer have been observed frequently during springtime. They are related to events of boundary layer enhancement of bromine. Consequently, increased amounts of boundary layer volume mixing ratio (VMR and vertical column densities (VCDs of BrO have been observed by in situ observation, ground-based as well as airborne remote sensing, and from satellites. These so-called bromine explosion (BE events have been discussed serving as a source of tropospheric BrO at high latitudes, which has been underestimated in global models so far. We have implemented a treatment of bromine release and recycling on sea-ice- and snow-covered surfaces in the global chemistry–climate model EMAC (ECHAM/MESSy Atmospheric Chemistry based on the scheme of Toyota et al. (2011. In this scheme, dry deposition fluxes of HBr, HOBr, and BrNO3 over ice- and snow-covered surfaces are recycled into Br2 fluxes. In addition, dry deposition of O3, dependent on temperature and sunlight, triggers a Br2 release from surfaces associated with first-year sea ice. Many aspects of observed bromine enhancements and associated episodes of near-complete depletion of boundary layer ozone, both in the Arctic and in the Antarctic, are reproduced by this relatively simple approach. We present first results from our global model studies extending over a full annual cycle, including comparisons with Global Ozone Monitoring Experiment (GOME satellite BrO VCDs and surface ozone observations.

  1. Impact of increased ultraviolet-B radiation stress due to stratospheric ozone depletion on N2 fixation in traditional African commercial legumes

    International Nuclear Information System (INIS)

    Chimphango, S.B.M.; Musil, C.F.; Dakora, F.D.

    2004-01-01

    Reports of diminished nodule formation and nitroge-nase activity in some Asian tropical legumes exposed to above-ambient levels of ultraviolet-B (UV-B: 280-315nm) radiation have raised concerns as to the impact of stratospheric ozone depletion on generally poorly developed traditional African farming systems confronted by the high cost and limited availability of chemical fertilisers. These rely on N 2 -fixing legumes as the cheapest source of N for maintaining soil fertility and sustainable yields in the intrinsically infertile and heterogeneous African soils. In view of this, we examined the effects of supplemental UV-B radiation approximating 15% and 25% depletions in the total ozone column on N 2 fixation in eight traditional African commercial legume species representing crop, forest, medicinal, ornamental and pasture categories. In all categories examined, except medicinal, supplemental UV-B had no effect on root non-structural carbohydrates, antho-cyanins and flavonoids, known to signal Rhizobiaceae micro-symbionts and promote nodule formation, or on nodule mass, activity and quantities of N fixed in different plant organs and whole plants. In contrast, in the medicinal category Cyclopia maculata (Honeybush) a slow growing commercially important herbal beverage with naturally high flavonoid concentrations, displayed decreased nodule activity and quantities of N fixed in different plant organs and whole plants with increased UV-B. This study's findings conclude negligible impacts of ozone depletion on nitrogen fixation and soil fertility in most traditional African farming systems, these limited to occasional inhibition of nodule induction in some crops. (author)

  2. Report of a large depletion in the ozone layer over southern Brazil and Uruguay by using multi-instrumental data

    Science.gov (United States)

    Bresciani, Caroline; Dornelles Bittencourt, Gabriela; Valentin Bageston, José; Kirsch Pinheiro, Damaris; Schuch, Nelson Jorge; Bencherif, Hassan; Paes Leme, Neusa; Vaz Peres, Lucas

    2018-03-01

    Ozone is one of the chemical compounds that form part of the atmosphere. It plays a key role in the stratosphere where the ozone layer is located and absorbs large amounts of ultraviolet radiation. However, during austral spring (August-November), there is a massive destruction of the ozone layer, which is known as the Antarctic ozone hole. This phenomenon decreases ozone concentration in that region, which may affect other regions in addition to the polar one. This anomaly may also reach mid-latitudes; hence, it is called the secondary effect of the Antarctic ozone hole. Therefore, this study aims to identify the passage of an ozone secondary effect (OSE) event in the region of the city of Santa Maria - RS (29.68° S, 53.80° W) by means of a multi-instrumental analysis using the satellites TIMED/SABER, AURA/MLS, and OMI-ERS. Measurements were made in São Martinho da Serra/RS - Brazil (29.53° S, 53.85° W) using a sounding balloon and a Brewer Spectrophotometer. In addition, the present study aims to describe and analyse the influence that this stratospheric ozone reduction has on temperatures presented by these instruments, including data collected through the radio occultation technique. The event was first identified by the AURA/MLS satellite on 19 October 2016 over Uruguay. This reduction in ozone concentration was found by comparing the climatology for the years 1996-1998 for the state of Rio Grande do Sul, which is close to Uruguay. This event was already observed in Santa Maria/RS-Brazil on 20 October 2016 as presented by the OMI-ERS satellite and the Brewer Spectrophotometer. Moreover, a significant decrease was reported by the TIMED/SABER satellite in Uruguay. On 21 October, the poor ozone air mass was still over the region of interest, according to the OMI-ERS satellite, data from the sounding balloon launched in Santa Maria/RS-Brazil, and measurements made by the AURA/MLS satellite. Furthermore, the influence of ozone on the stratosphere temperature

  3. Ozone-Depleting Gases in the Atmosphere: Results From 28 Years of Measurements by the NOAA Climate Monitoring and Diagnostics Laboratory (CMDL)

    Science.gov (United States)

    Hurst, D. F.; Elkins, J. W.; Montzka, S. A.; Butler, J. H.; Dutton, G. S.; Hall, B. D.; Mondeel, D. J.; Moore, F. L.; Nance, J. D.; Romashkin, P. A.; Thompson, T. M.

    2005-12-01

    Back in 1978, NOAA/CMDL initiated the weekly filling of flasks at CMDL observatories in Alaska, Hawaii, American Samoa, and Antarctica for analyses of CFC-11, CFC-12 and N2O in the home laboratory. A decade later, each observatory was outfitted with an automated gas chromatograph to make routine, in situ measurements of these three source gases plus methyl chloroform and carbon tetrachloride. Both measurement programs are ongoing, having expanded over the years to include methyl halides and substitutes for regulated halocarbons, to presently account for 95% of the total burden of long-lived Cl and Br believed to enter the stratosphere. These long-term monitoring data have been assimilated into temporal records of the global tropospheric burdens of ozone-depleting chlorine and bromine which are critical input to models that predict future trends in stratospheric ozone. Other information pivotal to ozone projections, such as the atmospheric lifetimes of source gases, stratospheric entry values for total chlorine and total bromine, and identification of the stratospheric sink regions for long-lived source gases, has been gained from in situ measurements by NOAA/CMDL instruments aboard NASA high-altitude aircraft (ER-2 and WB-57) and balloons since 1991. Though CMDL's routine monitoring activities provide important historical records of halogenated source gases in the atmosphere, significant inaccuracies in ozone projections may propagate from the uncertain estimates of impending emissions of ozone-depleting gases. Scenarios of future halocarbon emissions require substantial assumptions about past and pending compliance with the Montreal Protocol, and the sizes and release rates of existing global reservoirs (banks) of halocarbons. Recent work by CMDL has focused on quantifying halocarbon bank emission rates in Russia, the USA, and Canada through geographically extensive measurements aboard trains and low-altitude aircraft. The USA and Canada results indicate that

  4. Derivation of the reduced reaction mechanisms of ozone depletion events in the Arctic spring by using concentration sensitivity analysis and principal component analysis

    Directory of Open Access Journals (Sweden)

    L. Cao

    2016-12-01

    Full Text Available The ozone depletion events (ODEs in the springtime Arctic have been investigated since the 1980s. It is found that the depletion of ozone is highly associated with an auto-catalytic reaction cycle, which involves mostly the bromine-containing compounds. Moreover, bromide stored in various substrates in the Arctic such as the underlying surface covered by ice and snow can be also activated by the absorbed HOBr. Subsequently, this leads to an explosive increase of the bromine amount in the troposphere, which is called the “bromine explosion mechanism”. In the present study, a reaction scheme representing the chemistry of ozone depletion and halogen release is processed with two different mechanism reduction approaches, namely, the concentration sensitivity analysis and the principal component analysis. In the concentration sensitivity analysis, the interdependence of the mixing ratios of ozone and principal bromine species on the rate of each reaction in the ODE mechanism is identified. Furthermore, the most influential reactions in different time periods of ODEs are also revealed. By removing 11 reactions with the maximum absolute values of sensitivities lower than 10 %, a reduced reaction mechanism of ODEs is derived. The onsets of each time period of ODEs in simulations using the original reaction mechanism and the reduced reaction mechanism are identical while the maximum deviation of the mixing ratio of principal bromine species between different mechanisms is found to be less than 1 %. By performing the principal component analysis on an array of the sensitivity matrices, the dependence of a particular species concentration on a combination of the reaction rates in the mechanism is revealed. Redundant reactions are indicated by principal components corresponding to small eigenvalues and insignificant elements in principal components with large eigenvalues. Through this investigation, aside from the 11 reactions identified as

  5. Stratospheric ozone depletion: high arctic tundra plant species from Svalbard are not affected by enhanced UV-B after 7 years of UV-B supplementation in the field.

    NARCIS (Netherlands)

    Rozema, J.; Boelen, P.; Blokker, P.; Callaghan, T.V.; Solheim, B.; Zielke, M.

    2006-01-01

    The response of tundra plants to enhanced UV-B radiation simulating 15 and 30% ozone depletion was studied at two high arctic sites (Isdammen and Adventdalen, 78° N, Svalbard).The set-up of the UV-B supplementation systems is described, consisting of large and small UV lamp arrays, installed in 1996

  6. An Evaluation of C1-C3 Hydrochlorofluorocarbon (HCFC) Metrics: Lifetimes, Ozone Depletion Potentials, Radiative Efficiencies, Global Warming and Global Temperature Potentials

    Science.gov (United States)

    Burkholder, J. B.; Papanastasiou, D. K.; Marshall, P.

    2017-12-01

    Hydrochlorofluorocarbons (HCFCs) have been used as chlorofluorocarbon (CFC) substitutes in a number of applications, e.g. refrigerator and air-conditioning systems. Although HCFCs have lower ozone-depletion potentials (ODPs) compared to CFCs, they are potent greenhouse gases. The twenty-eighth meeting of the parties to the Montreal Protocol on Substances that Deplete the Ozone Layer (Kigali, 2016) included a list of 274 HCFCs to be controlled under the Montreal Protocol. However, from this list, only 15 of the HCFCs have values for their atmospheric lifetime, ODP, global warming potential (GWP), and global temperature potential (GTP) that are based on fundamental experimental studies, while 48 are registered compounds. In this work, we present a comprehensive evaluation of the atmospheric lifetimes, ODPs, radiative efficiencies (REs), GWPs, and GTPs for all 274 HCFCs to be included in the Montreal Protocol. Atmospheric lifetimes were estimated based on HCFC reactivity with OH radicals and O(1D), as well as their removal by UV photolysis using structure activity relationships and reactivity trends. ODP values are based on the semi-empirical approach described in the WMO/UNEP ozone assessment. Radiative efficiencies were estimated, based on infrared spectra calculated using theoretical electronic structure methods (Gaussian 09). GWPs and GTPs were calculated relative to CO2 using our estimated atmospheric lifetimes and REs. The details of the methodology will be discussed as well as the associated uncertainties. This study has provided a consistent set of atmospheric metrics for a wide range of HCFCs that support future policy decisions. More accurate metrics for a specific HCFC, if desired, would require fundamental laboratory studies to better define the OH reactivity and infrared absorption spectrum of the compound of interest. Overall, HCFCs within the same family (isomers) show a large ODP, GWP, GTP dependence on the molecular geometry of the isomers. The

  7. Greenhouse windows are closing;. and the ozone layer is still being depleted. Ozone and climate experts have worked in vain. Die Treibhaus-Fenster schliessen sich. ;. und die Ozonschicht versproedet weiter / Ozon- und Klimaforscher haben vergeblich 'Bringschuld' geleistet

    Energy Technology Data Exchange (ETDEWEB)

    Frese, W

    1994-02-14

    Forecast dont change a thing: This is the resumee that Prof. Paul Crutzen, Director of the Mainz Max-Planck-Institut of Chemistry and Prof. Hartmut Grassl, Director of the Hamburg Max-Planck-Institut of Meteorology draw from their many year of public information work for the cause of the ozone layer and the climate. The earth's atmosphere is in greater danger today than ever before: The ground layers are gradually warming up beneath an ozone layer that is steadily getting thinner. The fate of the ozone layer is meanwhile beyond our influence. The climate could still grant us a reprieve if we succeed in containing the temperature rise. Should we fail to make us of this time, the worst of scientists' predictions will come fine. (orig.)

  8. A depleted ozone layer absorbs less UV-B, cooling the ozone layer, increasing the amount of UV-B observed to reach Earth, heating air by dissociating tropospheric and ground-level ozone, and heating oceans very efficiently by penetrating tens of meters into the mixed layer. UV-B is 48 times more energetic ("hotter") than IR absorbed by greenhouse gases

    Science.gov (United States)

    Ward, P. L.

    2017-12-01

    This new insight into the physics of radiation shows why changes in stratospheric ozone are observed to cause changes in global temperature. By 1970, manufactured CFC gases and ozone depletion began increasing. By 1993, increases in CFCs stopped as mandated by the Montreal Protocol. By 1995, increases in ozone depletion stopped. By 1998, increases in temperature stopped until 2014. Ozone is also depleted by halogen gases emitted from major basaltic lava flows, the largest of which, since 1783, occurred at Bardarbunga in Iceland in 2014, causing 2015 and 2016 to be the hottest years on record. Throughout Earth history, the largest basaltic lava flows were contemporaneous with periods of greatest warming and greatest levels of mass extinctions. Planck's empirical law shows that temperature of matter results from oscillation of all the bonds holding matter together. The higher the temperature, the higher the frequencies and amplitudes of oscillation. Thus, radiation from a nearby hotter body will make the absorbing body hotter than radiation from a cooler body. According to the Planck-Einstein relation, thermal energy (E) in matter and in radiation equals frequency of oscillation (ν) times the Planck constant (h), E=hν—the energy of a frictionless atomic oscillator. Since frequency is observed to be a very broad continuum extending from radio signals through visible light to gamma rays, thermal energy (E=hν) must also be a very broad continuum. Thermal flux cannot be represented properly by a single number of watts per square meter, as commonly assumed throughout the physical sciences, because all frequencies coexist and the number of watts increases with frequency. Thus, UV-B solar radiation is 48 times more energetic than IR terrestrial radiation absorbed by greenhouse gases and can make the absorbing body 48 times hotter. UV-B causes sunburn; no amount of IR can cause sunburn. Furthermore, in a basic experiment, I show that air containing more than 23 times

  9. The key role of ozone depleting substances in weakening the Walker Circulation over the second half of the 20th Century

    Science.gov (United States)

    Bellomo, K.; Polvani, L. M.

    2017-12-01

    It is widely believed that the Walker Circulation will weaken in response to increasing greenhouse gases (GHG) by the end of the 21st century. But over the 20th century, the existence of a statistical significant weakening trends in the observations remains unclear. We here present new modelling evidence showing that Ozone Depleting Substances (ODS) may have significantly contributed to the weakening of the Walker Circulation over the years 1955-2005. While the primary impact of increasing ODS has been the formation of the ozone hole, it is perhaps not as widely appreciated that ODS are also powerful greenhouse gases. Using an ensemble of integrations with the the Whole Atmosphere Chemistry Climate Model, we show that the surface warming caused by increasing ODS over the second half of the 20th century causes a statistically significant weakening of the Walker Circulation in the model. In fact, we find that the increase of the other well-mixed GHG alone leads to a strengthening, not a weakening of the Walker Circulation, over that period in our model. When ODS concentrations are held fixed at 1950's levels, the effect of the other GHG is not sufficient, and a warming delay in the eastern tropical Pacific SST leads to an increase in the east-west SST gradient which is accompanied by a strengthening of the Walker Circulation. But, when the forcing from ODS is added in, the additional radiative forcing causes the eastern Pacific to warm faster, and the trend in the Walker Circulation reverses sign and becomes negative over the second half of the 20th century.

  10. 1,2-Dichlorohexafluoro-Cyclobutane (1,2-c-C4F6Cl2, R-316c) a Potent Ozone Depleting Substance and Greenhouse Gas: Atmospheric Loss Processes, Lifetimes, and Ozone Depletion and Global Warming Potentials for the (E) and (Z) stereoisomers

    Science.gov (United States)

    Papadimitriou, Vassileios C.; McGillen, Max R.; Smith, Shona C.; Jubb, Aaron M.; Portmann, Robert W.; Hall, Bradley D.; Fleming, Eric L.; Jackman, Charles H.; Burkholder, James B.

    2013-01-01

    The atmospheric processing of (E)- and (Z)-1,2-dichlorohexafluorocyclobutane (1,2-c-C4F6Cl2, R-316c) was examined in this work as the ozone depleting (ODP) and global warming (GWP) potentials of this proposed replacement compound are presently unknown. The predominant atmospheric loss processes and infrared absorption spectra of the R-316c isomers were measured to provide a basis to evaluate their atmospheric lifetimes and, thus, ODPs and GWPs. UV absorption spectra were measured between 184.95 to 230 nm at temperatures between 214 and 296 K and a parametrization for use in atmospheric modeling is presented. The Cl atom quantum yield in the 193 nm photolysis of R- 316c was measured to be 1.90 +/- 0.27. Hexafluorocyclobutene (c-C4F6) was determined to be a photolysis co-product with molar yields of 0.7 and 1.0 (+/-10%) for (E)- and (Z)-R-316c, respectively. The 296 K total rate coefficient for the O(1D) + R-316c reaction, i.e., O(1D) loss, was measured to be (1.56 +/- 0.11) × 10(exp -10)cu cm/ molecule/s and the reactive rate coefficient, i.e., R-316c loss, was measured to be (1.36 +/- 0.20) × 10(exp -10)cu cm/molecule/s corresponding to a approx. 88% reactive yield. Rate coefficient upper-limits for the OH and O3 reaction with R-316c were determined to be model to be 74.6 +/- 3 and 114.1 +/-10 years, respectively, where the estimated uncertainties are due solely to the uncertainty in the UV absorption spectra. Stratospheric photolysis is the predominant atmospheric loss process for both isomers with the O(1D) reaction making a minor, approx. 2% for the (E) isomer and 7% for the (Z) isomer, contribution to the total atmospheric loss. Ozone depletion potentials for (E)- and (Z)-R-316c were calculated using the 2-D model to be 0.46 and 0.54, respectively. Infrared absorption spectra for (E)- and (Z)-R-316c were measured at 296 K and used to estimate their radiative efficiencies (REs) and GWPs; 100-year time-horizon GWPs of 4160 and 5400 were obtained for (E)- and (Z

  11. Ozone depleting substances and greenhouse gases HFCs, PFCs and SF{sub 6} consumption and emissions; Ozonlagsnedbrydende stoffer og drivhusgasserne HFC'er, PFC'er og SF{sub 6}. Forbrug og emissioner 2002

    Energy Technology Data Exchange (ETDEWEB)

    Sander Poulsen, T. [Planmiljoe, Veksoe Sjaelland (Denmark)

    2004-07-01

    The aim of the project is to map the 2002 Danish consumption of produced ozone depleting substances and the consumption and actual emission of the greenhouse gases HFCs, PFCs and SF{sub 6}. The inventory is performed, partly according to the guidelines recommended by IPCC (Intergovernmental Panel on Climate Change), and partly according to the method that has been used for previous mappings. The mapping is done partly in order to meet Denmark's international commitments to report and partly in order to monitor how the consumption of ozone depleting substances and the emissions of greenhouse gases develop. The mapping of ozone depleting substances includes the net consumption, meaning the amount of the imported raw materials in bulk or in drums minus any re-export of the substances in the form of raw materials. Mapping of the actual emissions of HFCs, PFCs and SF{sub 6} is done in continuation of previous greenhouse gas inventories. The inventory process is continuously improving due to development of international approved guidelines (IPCC) and the production of increasingly detailed data. (BA)

  12. Enhanced UV-B radiation alleviates the adverse effects of summer drought in two Mediterranean pines under field conditions [ozone depletion

    International Nuclear Information System (INIS)

    Petropoulou, Y.; Kyparissis, A.; Nikolopoulos, D.; Manetas, Y.

    1995-01-01

    The effects of enhanced UV-B (290-320 nm) radiation on two native Mediterranean pines (Pinus pinea L., Pinus halepensis Mill.) were recorded during a one-year field study. Plants received ambient or ambient plus supplemental UV-B radiation (simulating a 15% stratospheric ozone depletion over Patras. Greece, 38.3°N. 29.1°E) and only natural precipitation, i.e. they were simultaneously exposed to other natural stresses. particularly water stress during summer. Supplemental UV-B irradiation started in early February, 1993 and up to late June, no effects were observed on growth and photochemical efficiency of photosystem II, as measured by chlorophy II fluorescence induction. Water stress during the summer was manifested in the control plants as a decline in the ratio of variable to maximum fluorescence (F v /F m ), the apparent photon yield for oxygen evolution (φ I ) and the photosynthetic capacity at 5% CO 2 (P m ). In addition, a partial needle loss was evident. Under supplemental UV-B radiation, however, the decreases in F v /F m , φ i , and P m . as well as needle losses were significantly less. Soon after the first heavy autumn rains. photosynthetic parameters in both control and UV-B treated plants recovered to similar values. but the transient summer superiority of UV-B irradiated plants resulted in a significant increase in their dry weight measured at plant harvest. during late January. 1994. Plant height. UV-B absorbing compounds, photosynthetic pigments and relative water content measured at late spring. late summer and at plant harvest, were not significantly affected by supplemental UV-B radiation. The results indicate that enhanced UV-B radiation may be beneficial for Mediterranean pines through a partial alleviation of the adverse effects of summer drought. (author)

  13. Health and environmental problems of using antiarmour munitions containing depleted uranium core

    International Nuclear Information System (INIS)

    Matousek, J.

    2006-01-01

    In the 1970s, core of depleted uranium commenced to be introduced into the breakthrough antitank munitions of various calibers and types in order to considerably enhance their effectiveness due to extremely high density in comparison with steel. The health and environmental threats of using this munitions and other weaponry where depleted uranium has been utilised as counterbalance stem from the pyrophoric character of uranium, burnt due to material deformation and friction when penetrating armour targets creating thus highly respirable aerosol of uranium oxides that are deposited in alveoli after being inhaled or in other tissues after being ingested. Composition and main properties of depleted uranium are presented. Chronic effects of deposited particles of uranium oxides are due to internal irradiation of sensitive organs at proceeding radioactive decay accompanied with alpha irradiation. Long-term internal irradiation by radionuclides producing alpha-rays leads to proved risk of increased incidence of carcinoma and leukaemia not to speak on chronic chemical toxicity of uranium, independent of its isotopic composition. Environmental impact of extensive use of munitions with depleted uranium in the recent armed conflicts is assessed. (authors)

  14. Protecting the ozone layer.

    Science.gov (United States)

    Munasinghe, M; King, K

    1992-06-01

    Stratospheric ozone layer depletion has been recognized as a problem by the Vienna Convention for the Protection of the Ozone Layer and the 1987 Montreal Protocol (MP). The ozone layer shields the earth from harmful ultraviolet radiation (UV-B), which is more pronounced at the poles and around the equator. Industrialized countries have contributed significantly to the problem by releasing chlorofluorocarbons (CFCs) and halons into the atmosphere. The effect of these chemicals, which were known for their inertness, nonflammability, and nontoxicity, was discovered in 1874. Action to deal with the effects of CFCs and halons was initiated in 1985 in a 49-nation UN meeting. 21 nations signed a protocol limiting ozone depleting substances (ODS): CFCs and halons. Schedules were set based on each country's use in 1986; the target phaseout was set for the year 2000. The MP restricts trade in ODSs and weights the impact of substances to reflect the extent of damage; i.e., halons are 10 times more damaging than CFCs. ODS requirements for developing countries were eased to accommodate scarce resources and the small fraction of ODS emissions. An Interim Multilateral Fund under the Montreal Protocol (IMFMP) was established to provide loans to finance the costs to developing countries in meeting global environmental requirements. The IMFMP is administered by the World Bank, the UN Environmental Program, and the UN Development Program. Financing is available to eligible countries who use .3 kg of ODS/person/year. Rapid phaseout in developed countries has occurred due to strong support from industry and a lower than expected cost. Although there are clear advantages to rapid phaseout, there were no incentives included in the MP for rapid phaseout. Some of the difficulties occur because the schedules set minimum targets at the lowest possible cost. Also, costs cannot be minimized by a country-specific and ODS-specific process. The ways to improve implementation in scheduling and

  15. Development of a fuel depletion sensitivity calculation module for multi-cell problems in a deterministic reactor physics code system CBZ

    International Nuclear Information System (INIS)

    Chiba, Go; Kawamoto, Yosuke; Narabayashi, Tadashi

    2016-01-01

    Highlights: • A new functionality of fuel depletion sensitivity calculations is developed in a code system CBZ. • This is based on the generalized perturbation theory for fuel depletion problems. • The theory with a multi-layer depletion step division scheme is described. • Numerical techniques employed in actual implementation are also provided. - Abstract: A new functionality of fuel depletion sensitivity calculations is developed as one module in a deterministic reactor physics code system CBZ. This is based on the generalized perturbation theory for fuel depletion problems. The theory for fuel depletion problems with a multi-layer depletion step division scheme is described in detail. Numerical techniques employed in actual implementation are also provided. Verification calculations are carried out for a 3 × 3 multi-cell problem consisting of two different types of fuel pins. It is shown that the sensitivities of nuclide number densities after fuel depletion with respect to the nuclear data calculated by the new module agree well with reference sensitivities calculated by direct numerical differentiation. To demonstrate the usefulness of the new module, fuel depletion sensitivities in different multi-cell arrangements are compared and non-negligible differences are observed. Nuclear data-induced uncertainties of nuclide number densities obtained with the calculated sensitivities are also compared.

  16. On problems related to the deployment of depleted uranium weapons in the Balkans

    International Nuclear Information System (INIS)

    Mietelski, J. W.; Waligorski, M.P.R.; Zunic, Z.S.

    2002-01-01

    The likely long-term environmental and health effects of the deployment of weapons containing depleted uranium (DU) in the Balkans are discussed. To determine whether depleted uranium or spent reactor fuel was used in the weapons, knowledge is required of the 235 U to 238 U activity (or concentration) ratio in the measured samples. To this end, and to distinguish between uranium originating from natural and man-made sources, we discuss some of the methodology and metrology issues involved in performing alpha- and gamma- spectrometry of uranium in environmental and human samples. We present results of nuclear spectrometry performed on DU core deposits from the aluminium jacket of a PGU-14 bullet found in South Serbia. We draw attention to aspects involving ionising radiation, which are likely to be of importance when formulating a prognosis of the possible environmental and health impact of the deployment of DU weapons, indicating the importance of the inhalation pathway in children. (author)

  17. Civilian and military uses of depleted uranium. Environmental and health problems

    International Nuclear Information System (INIS)

    Cantaluppi, C.; Degetto, S.

    2000-01-01

    Depleted uranium is a by-product of the process of enrichment of natural uranium and is classified as a toxic and radioactive waste; it has a very high density (approximately 19 g cm - 3), a remarkable ductility and a cost low enough to be attractive for some particular technical applications. Civilian uses are essentially related to its high density, but the prevailing use is however military (production of projectiles). From the radioactive point of view, the exposure to depleted uranium can result from both external irradiation as well as internal contamination. The associated risks are however mainly of chemical-toxicological kind and the target organ is the kidney. In the present note the recent military uses and the possible effects of its environmental diffusion are discussed [it

  18. OZONE PRODUCTION EFFICIENCY AND NOX DEPLETION IN AN URBAN PLUME: INTERPRETATION OF FIELD OBSERVATIONS AND IMPLICATIONS FOR EVALUATING O3-NOX-VOC SENSITIVITY

    Science.gov (United States)

    Ozone production efficiency (OPE) can be defined as the number of ozone (O3) molecules photochemically produced by a molecule of NOx (NO + NO2) before it is lost from the NOx - O3 cycle. Here, we consider observational and modeling techniques to evaluate various operational defi...

  19. Some current problems in atmospheric ozone chemistry; role of chemical kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Cox, R.A.

    1987-03-01

    A review is given on selected aspects of the reaction mechanisms of current interest in the chemistry of atmospheric ozone. Atmospheric ozone is produced and removed by a complex series of elementary gas-phase photochemical reactions involving O/sub x/, HO/sub x/, NO/sub x/, CIO/sub x/ and hydrocarbon species. At the present time there is a good knowledge of the basic processes involved in ozone chemistry in the stratosphere and the troposphere and the kinetics of most of the key reactions are well defined. There are a number of difficulties in the theoretical descriptions of observed ozone behaviour which may be due to uncertainties in the chemistry. Examples are the failure to predict present day ozone in the photochemically controlled region above 35 Km altitude and the large reductions in the ozone column in the Antartic Spring which has been observed in recent years. In the troposphere there is growing evidence that ozone and other trace gases have changed appreciably from pre-industrial concentrations, due to chemical reactions involving man-made pollutants. Quantitative investigation of the mechanisms by which these changes may occur requires a sound laboratory kinetics data base.

  20. Table - Impacts of the Proposed Transport Rule on Counties with Monitors Projected to have Ozone and/or Fine Particle Air Quality Problems

    Science.gov (United States)

    This table shows the impacts of the proposed Transport Rule on Counties with Monitors Projected to have Ozone and/or Fine Particle Air Quality Problems, both with and without the Cross-State Air Pollution Rule.

  1. Iterative solution to the optimal control of depletion problem in pressurized water reactors

    International Nuclear Information System (INIS)

    Colletti, J.P.

    1981-01-01

    A method is described for determining the optimal time and spatial dependence of control absorbers in the core of a pressurized water reactor over a single refueling cycle. The reactor is modeled in two dimensions with many regions using two-group diffusion theory. The problem is formulated as an optimal control problem with the cycle length fixed and the initial reactor state known. Constraints are placed on the regionwise normalized powers, control absorber concentrations, and the critical soluble boron concentration of the core. The cost functional contains two terms which may be used individually or together. One term maximizes the end-of-cycle (EOC) critical soluble boron concentration, and the other minimizes the norm of the distance between the actual and a target EOC burnup distribution. Results are given for several test problems which are based on a three-region model of the Three Mile Island Unit 1 reactor. The resulting optimal control strategies are bang-bang and lead to EOC states with the power peaking at its maximum and no control absorbers remaining in the core. Throughout the cycle the core soluble boron concentration is zero

  2. Context Related Curriculum Planning for Science Teaching: A Proposal To Teach Science around the Ozone Problem.

    Science.gov (United States)

    Rioseco, Marilu

    This paper reports on the dilution effect of the ozone layer which jeopardizes a section of land in Chile from 53 degrees South latitude to 33 degrees South and the necessity of preparing the population for the possible ecological consequences of an increase in ultraviolet radiation. Scientists in Chile assume part of this task by studying the…

  3. SMM mesospheric ozone measurements

    Science.gov (United States)

    Aikin, A. C.

    1990-01-01

    The main objective was to understand the secular and seasonal behavior of ozone in the lower mesosphere, 50 to 70 km. This altitude region is important in understanding the factors which determine ozone behavior. A secondary objective is the study of stratospheric ozone in the polar regions. Use is made of results from the SBUV satellite borne instrument. In the Arctic the interaction between chlorine compounds and low molecular weight hydrocarbons is studied. More than 30,000 profiles were obtained using the UVSP instrument on the SMM spacecraft. Several orbits of ozone data per day were obtained allowing study of the current rise in solar activity from the minimum until the present. Analysis of Nimbus 7 SBUV data in Antarctic spring indicates that ozone is depleted within the polar vortex relative to ozone outside the vortex. This depletion confirms the picture of ozone loss at altitudes where polar stratospheric clouds exist. In addition, there is ozone loss above the cloud level indicating that there is another mechanism in addition to ozone loss initiated by heterogeneous chlorine reactions on cloud particles.

  4. Depleted uranium

    International Nuclear Information System (INIS)

    Huffer, E.; Nifenecker, H.

    2001-02-01

    This document deals with the physical, chemical and radiological properties of the depleted uranium. What is the depleted uranium? Why do the military use depleted uranium and what are the risk for the health? (A.L.B.)

  5. Unequivocal detection of ozone recovery in the Antarctic Ozone Hole through significant increases in atmospheric layers with minimum ozone

    Science.gov (United States)

    de Laat, Jos; van Weele, Michiel; van der A, Ronald

    2015-04-01

    An important new landmark in present day ozone research is presented through MLS satellite observations of significant ozone increases during the ozone hole season that are attributed unequivocally to declining ozone depleting substances. For many decades the Antarctic ozone hole has been the prime example of both the detrimental effects of human activities on our environment as well as how to construct effective and successful environmental policies. Nowadays atmospheric concentrations of ozone depleting substances are on the decline and first signs of recovery of stratospheric ozone and ozone in the Antarctic ozone hole have been observed. The claimed detection of significant recovery, however, is still subject of debate. In this talk we will discuss first current uncertainties in the assessment of ozone recovery in the Antarctic ozone hole by using multi-variate regression methods, and, secondly present an alternative approach to identify ozone hole recovery unequivocally. Even though multi-variate regression methods help to reduce uncertainties in estimates of ozone recovery, great care has to be taken in their application due to the existence of uncertainties and degrees of freedom in the choice of independent variables. We show that taking all uncertainties into account in the regressions the formal recovery of ozone in the Antarctic ozone hole cannot be established yet, though is likely before the end of the decade (before 2020). Rather than focusing on time and area averages of total ozone columns or ozone profiles, we argue that the time evolution of the probability distribution of vertically resolved ozone in the Antarctic ozone hole contains a better fingerprint for the detection of ozone recovery in the Antarctic ozone hole. The advantages of this method over more tradition methods of trend analyses based on spatio-temporal average ozone are discussed. The 10-year record of MLS satellite measurements of ozone in the Antarctic ozone hole shows a

  6. Video-documentation: 'The Pannonic ozon project'

    International Nuclear Information System (INIS)

    Loibl, W.; Cabela, E.; Mayer, H. F.; Schmidt, M.

    1998-07-01

    Goal of the project was the production of a video film as documentation of the Pannonian Ozone Project- POP. The main part of the video describes the POP-model consisting of the modules meteorology, emissions and chemistry, developed during the POP-project. The model considers the European emission patterns of ozone precursors and the actual wind fields. It calculates ozone build up and depletion within air parcels due to emission and weather situation along trajectory routes. Actual ozone concentrations are calculated during model runs simulating the photochemical processes within air parcels moving along 4 day trajectories before reaching the Vienna region. The model computations were validated during extensive ground and aircraft-based measurements of ozone precursors and ozone concentration within the POP study area. Scenario computations were used to determine how much ozone can be reduced in north-eastern Austria by emissions control measures. The video lasts 12:20 minutes and consists of computer animations and life video scenes, presenting the ozone problem in general, the POP model and the model results. The video was produced in co-operation by the Austrian Research Center Seibersdorf - Department of Environmental Planning (ARCS) and Joanneum Research - Institute of Informationsystems (JR). ARCS was responsible for idea, concept, storyboard and text while JR was responsible for computer animation and general video production. The speaker text was written with scientific advice by the POP - project partners: Institute of Meteorology and Physics, University of Agricultural Sciences- Vienna, Environment Agency Austria - Air Quality Department, Austrian Research Center Seibersdorf- Environmental Planning Department/System Research Division. The film was produced as German and English version. (author)

  7. The ozone backlash

    International Nuclear Information System (INIS)

    Taubes, G.

    1993-01-01

    While evidence for the role of chlorofluorocarbons in ozone depletion grows stronger, researchers have recently been subjected to vocal public criticism of their theories-and their motives. Their understanding of the mechanisms of ozone destruction-especially the annual ozone hole that appears in the Antarctic-has grown stronger, yet everywhere they go these days, they seem to be confronted by critics attacking their theories as baseless. For instance, Rush Limbaugh, the conservative political talk-show host and now-best-selling author of The Way Things Ought to Be, regularly insists that the theory of ozone depletion by CFCs is a hoax: bladerdash and poppycock. Zoologist Dixy Lee Ray, former governor of the state of Washington and former head of the Atomic Energy Commission, makes the same argument in her book, Trashing the Planet. The Wall Street Journal and National Review have run commentaries by S. Fred Singer, a former chief scientists for the Department of Transportation, purporting to shoot holes in the theory of ozone depletion. Even the June issue of Omni, a magazine with a circulation of more than 1 million that publishes a mixture of science and science fiction, printed a feature article claiming to expose ozone research as a politically motivated scam

  8. Ozone: The secret greenhouse gas

    International Nuclear Information System (INIS)

    Berntsen, Terje; Tjernshaugen, Andreas

    2001-01-01

    The atmospheric ozone not only protects against harmful ultraviolet radiation; it also contributes to the greenhouse effect. Ozone is one of the jokers to make it difficult to calculate the climatic effect of anthropogenic emissions. The greenhouse effect and the ozone layer should not be confused. The greenhouse effect creates problems when it becomes enhanced, so that the earth becomes warmer. The problem with the ozone layer, on the contrary, is that it becomes thinner and so more of the harmful ultraviolet radiation gets through to the earth. However, ozone is also a greenhouse gas and so the greenhouse effect and the ozone layer are connected

  9. Research program on climatic and environmental problems. Summary of Norwegian climatic and ozone layer research in the last decade and important research tasks in the future

    International Nuclear Information System (INIS)

    Dahlin, Elin

    1999-04-01

    This report includes 44 abstracts, 21 lectures and 23 posters from a workshop arranged by the Norwegian Research Council, the Steering Group for the Norwegian research programme for changes in climate and ozone layer. The topics dealt with are: Results from the research, the greenhouse effect and its influence on the climate of today, the interactions between ocean and climate, pollution influence on ozone layer changes, the UV radiation effects and their influence on the environment, climatic modelling and forecasting, ecological problems related to climatic and environmental changes, the climatic influences of human energy utilisation and suggestions for future research

  10. Our Shrinking Ozone Layer

    Indian Academy of Sciences (India)

    Depletion of the ozone layer is therefore having significant effects on life on .... but there is always a net balance between the rate of formation and destruction ..... award of Commonwealth Fellowship during the present work and also being an ...

  11. Solar Energy Deposition Rates in the Mesosphere Derived from Airglow Measurements: Implications for the Ozone Model Deficit Problem

    Science.gov (United States)

    Mlynczak, Martin G.; Garcia, Rolando R.; Roble, Raymond G.; Hagan, Maura

    2000-01-01

    We derive rates of energy deposition in the mesosphere due to the absorption of solar ultraviolet radiation by ozone. The rates are derived directly from measurements of the 1.27-microns oxygen dayglow emission, independent of knowledge of the ozone abundance, the ozone absorption cross sections, and the ultraviolet solar irradiance in the ozone Hartley band. Fifty-six months of airglow data taken between 1982 and 1986 by the near-infrared spectrometer on the Solar-Mesosphere Explorer satellite are analyzed. The energy deposition rates exhibit altitude-dependent annual and semi-annual variations. We also find a positive correlation between temperatures and energy deposition rates near 90 km at low latitudes. This correlation is largely due to the semiannual oscillation in temperature and ozone and is consistent with model calculations. There is also a suggestion of possible tidal enhancement of this correlation based on recent theoretical and observational analyses. The airglow-derived rates of energy deposition are then compared with those computed by multidimensional numerical models. The observed and modeled deposition rates typically agree to within 20%. This agreement in energy deposition rates implies the same agreement exists between measured and modeled ozone volume mixing ratios in the mesosphere. Only in the upper mesosphere at midlatitudes during winter do we derive energy deposition rates (and hence ozone mixing ratios) consistently and significantly larger than the model calculations. This result is contrary to previous studies that have shown a large model deficit in the ozone abundance throughout the mesosphere. The climatology of solar energy deposition and heating presented in this paper is available to the community at the Middle Atmosphere Energy Budget Project web site at http://heat-budget.gats-inc.com.

  12. International standard problem ISP37: VANAM M3 - A Multi compartment aerosol depletion test with hygroscopic aerosol material: comparison report

    International Nuclear Information System (INIS)

    Firnhaber, M.; Kanzleiter, T.F.; Schwarz, S.; Weber, G.

    1996-12-01

    This paper presents the results and assessment of the 'open' ISP37, which deals with the containment thermal-hydraulics and aerosol behavior during an unmitigated severe LWR accident with core melt-down and steam and aerosol release into the containment. Representatives of 22 organizations participated to the ISP37 using the codes CONTAIN, FIPLOC, MELCOR, RALOC, FUMO, MACRES, REMOVAL etc. The containment and aerosol behavior experiment VANAM M3 was selected as experimental comparison basis. The main phenomena investigated are the thermal behavior of a multi-compartment containment, e.g. pressure, temperature and the distribution and depletion of a soluble aerosol. The ISP37 has demonstrated that the codes used could calculate the thermal-hydraulic containment behavior in general with sufficient accuracy. But with respect to the needs of aerosol behavior analysis the accuracies, both analytical and experimental as well, for specific thermal-hydraulic variables should be improved. Although large progress has been made in the simulation of aerosol behavior in multi-compartment geometries the calculated local aerosol concentrations scatter widely. However, the aerosol source term to the environment is overestimated in general. The largest uncertainty concerning the aerosol results is caused by a limited number of thermal hydraulic variables like relative humidity, volume condensation rate and atmospheric flow rate. In some codes also a solubility model is missing

  13. Ozone: Good Up High, Bad Nearby

    Science.gov (United States)

    ... are already under stress from UV radiation. This stress could have adverse consequences for human food supplies from the oceans. What is Being Done About the Depletion of “Good” Ozone? The United States, along with over 180 ...

  14. Disappearing threat to ozone

    Energy Technology Data Exchange (ETDEWEB)

    Gribbin, J

    1979-02-15

    Concern that human activities might disturb the dynamic natural equilibrium of the ozone layer has stemmed from the fact that this layer plays a key part in the ecology of the earth by absorbing harmful ultraviolet radiation which would otherwise penetrate to the ground. Apparently, however, a decline of as much at 15% in total global ozone would have very little effect on climate. A 50% reduction would produce a marked cooling of the stratosphere at 40 km altitude over the tropics, but barely detectable changes in temperature and rainfall in the lower atmosphere. Therefore, biological effects of more uv light at ground level is the only hazard associated with ozone depletion on the scale which might take place.

  15. Children's Models of Understanding of Two Major Global Environmental Issues (Ozone Layer and Greenhouse Effect).

    Science.gov (United States)

    Boyes, Edward; Stanisstreet, Martin

    1997-01-01

    Aims to quantify the models that 13- and 14 year-old students hold about the causes of the greenhouse effect and ozone layer depletion. Assesses the prevalence of those ideas that link the two phenomena. Twice as many students think that holes in the ozone layer cause the greenhouse effect than think the greenhouse effect causes ozone depletion.…

  16. Anthropogenous modifications of the atmosphere. The atmospheric ozone threat

    International Nuclear Information System (INIS)

    Aimedieu, P.

    1991-01-01

    Ozone role and atmospheric chemistry are first reviewed: chemical reactions and vertical distribution of ozone in the atmosphere. The origins of chlorofluorocarbon air pollution and the role of the various types of CFC on ozone depletion, greenhouse effect, cancer, etc. are then discussed. The political and environmental discussions concerning these phenomena are also reviewed

  17. Evidence for midwinter chemical ozone destruction over Antartica

    Energy Technology Data Exchange (ETDEWEB)

    Voemel, H. [Univ. of Colorado, Boulder, CO (United States); Hoffmann, D.J.; Oltmans, S.J.; Harris, J.M. [NOAA Climate Monitoring and Diagnostics Laboratory, Boulder, CO (United States)

    1995-09-01

    Two ozone profiles on June 15 and June 19, obtained over McMurdo, Antartica, showed a strong depletion in stratospheric ozone, and a simultaneous profile of water vapor on June 19 showed the first clear signs of dehydration. The observation of Polar Stratospheric Clouds (PSCs) beginning with the first sounding showing ozone depletion, the indication of rehydration layers, which could be a sign for recent dehydration, and trajectory calculations indicate that the observed low ozone was not the result of transport from lower latitudes. during this time the vortex was strongly distorted, transporting PSC processed air well into sunlit latitudes where photochemical ozone destruction may have occurred. The correlation of ozone depletion and dehydration indicates that water ice PSCs provided the dominant surface for chlorine activation. An analysis of the time when the observed air masses could have formed type II PSCs for the first time limits the time scale for the observed ozone destruction to about 4 days.

  18. UV and infrared absorption spectra, atmospheric lifetimes, and ozone depletion and global warming potentials for CCl2FCCl2F (CFC-112, CCl3CClF2 (CFC-112a, CCl3CF3 (CFC-113a, and CCl2FCF3 (CFC-114a

    Directory of Open Access Journals (Sweden)

    M. E. Davis

    2016-07-01

    Full Text Available The potential impact of CCl2FCF3 (CFC-114a and the recently observed CCl2FCCl2F (CFC-112, CCl3CClF2 (CFC-112a, and CCl3CF3 (CFC-113a chlorofluorocarbons (CFCs on stratospheric ozone and climate is presently not well characterized. In this study, the UV absorption spectra of these CFCs were measured between 192.5 and 235 nm over the temperature range 207–323 K. Precise parameterizations of the UV absorption spectra are presented. A 2-D atmospheric model was used to evaluate the CFC atmospheric loss processes, lifetimes, ozone depletion potentials (ODPs, and the associated uncertainty ranges in these metrics due to the kinetic and photochemical uncertainty. The CFCs are primarily removed in the stratosphere by short-wavelength UV photolysis with calculated global annually averaged steady-state lifetimes (years of 63.6 (61.9–64.7, 51.5 (50.0–52.6, 55.4 (54.3–56.3, and 105.3 (102.9–107.4 for CFC-112, CFC-112a, CFC-113a, and CFC-114a, respectively. The range of lifetimes given in parentheses is due to the 2σ uncertainty in the UV absorption spectra and O(1D rate coefficients included in the model calculations. The 2-D model was also used to calculate the CFC ozone depletion potentials (ODPs with values of 0.98, 0.86, 0.73, and 0.72 obtained for CFC-112, CFC-112a, CFC-113a, and CFC-114a, respectively. Using the infrared absorption spectra and lifetimes determined in this work, the CFC global warming potentials (GWPs were estimated to be 4260 (CFC-112, 3330 (CFC-112a, 3650 (CFC-113a, and 6510 (CFC-114a for the 100-year time horizon.

  19. Estimation of surface UV levels based on Meteor-3/TOMS ozone data

    Energy Technology Data Exchange (ETDEWEB)

    Borisov, Y A [Central Aerological Observatory, Moscow (Russian Federation); Geogdzhaev, I V [Moscow Inst. of Physics and Technology, Moscow (Russian Federation); Khattatov, V U [Central Aerological Observatory, Moscow (Russian Federation)

    1996-12-31

    The major consequence of ozone layer depletion for the environment is an increase of harmful ultraviolet (UV) radiation on the Earth surface and in the upper ocean. This implies the importance of environmental UV monitoring. Since the direct global monitoring is not currently possible, indirect estimations of surface UV levels may be used based on satellite ozone data (Madronich, S. 1992). Total Ozone Mapping Spectrometer (TOMS) on board the METEOR-3 satellite provided regular set of data for such estimates. During the time of its operation (August, 1991 - December, 1994) the instrument registered several ozone hole events over Antarctica, when ozone levels dropped by as much as 60 % from their unperturbed values. Probably even more alarming ozone depletions were observed over highly populated regions of middle latitudes of northern hemisphere. Radiative transfer modeling was used to convert METEOR-3/TOMS daily ozone values into regional and global maps of biologically active UV. Calculations demonstrate the effect on surface UV levels produced by ozone hole over Antarctica and ozone depletions over the territory of Russia (March, 1994). UV contour lines deviate from the normal appearance which is determined by growing southward solar elevation. UV contour lines are almost perpendicular to the ozone ones in the ozone depletions areas. The 30 % ozone depletion, over Siberia caused more than 30 % increase in noontime erythemal UV levels, which is equivalent to 10-15 degrees southward latitude displacement. Higher UV radiation increases were found in ozone hole over South America (October 1992) equivalent to about 20 degrees southward displacement

  20. Estimation of surface UV levels based on Meteor-3/TOMS ozone data

    Energy Technology Data Exchange (ETDEWEB)

    Borisov, Y.A. [Central Aerological Observatory, Moscow (Russian Federation); Geogdzhaev, I.V. [Moscow Inst. of Physics and Technology, Moscow (Russian Federation); Khattatov, V.U. [Central Aerological Observatory, Moscow (Russian Federation)

    1995-12-31

    The major consequence of ozone layer depletion for the environment is an increase of harmful ultraviolet (UV) radiation on the Earth surface and in the upper ocean. This implies the importance of environmental UV monitoring. Since the direct global monitoring is not currently possible, indirect estimations of surface UV levels may be used based on satellite ozone data (Madronich, S. 1992). Total Ozone Mapping Spectrometer (TOMS) on board the METEOR-3 satellite provided regular set of data for such estimates. During the time of its operation (August, 1991 - December, 1994) the instrument registered several ozone hole events over Antarctica, when ozone levels dropped by as much as 60 % from their unperturbed values. Probably even more alarming ozone depletions were observed over highly populated regions of middle latitudes of northern hemisphere. Radiative transfer modeling was used to convert METEOR-3/TOMS daily ozone values into regional and global maps of biologically active UV. Calculations demonstrate the effect on surface UV levels produced by ozone hole over Antarctica and ozone depletions over the territory of Russia (March, 1994). UV contour lines deviate from the normal appearance which is determined by growing southward solar elevation. UV contour lines are almost perpendicular to the ozone ones in the ozone depletions areas. The 30 % ozone depletion, over Siberia caused more than 30 % increase in noontime erythemal UV levels, which is equivalent to 10-15 degrees southward latitude displacement. Higher UV radiation increases were found in ozone hole over South America (October 1992) equivalent to about 20 degrees southward displacement

  1. The global warming problem

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    In this chapter, a discussion is presented of the global warming problem and activities contributing to the formation of acid rain, urban smog and to the depletion of the ozone layer. Globally, about two-thirds of anthropogenic carbon dioxide emissions arise from fossil-fuel burning; the rest arise primarily from deforestation. Chlorofluorocarbons are the second largest contributor to global warming, accounting for about 20% of the total. The third largest contributor is methane, followed by ozone and nitrous oxide. A study of current activities in the US that contribute to global warming shows the following: electric power plants account for about 33% of carbon dioxide emissions; motor vehicles, planes and ships (31%); industrial plants (24%); commercial and residential buildings (11%)

  2. Ozone decomposition

    Directory of Open Access Journals (Sweden)

    Batakliev Todor

    2014-06-01

    Full Text Available Catalytic ozone decomposition is of great significance because ozone is a toxic substance commonly found or generated in human environments (aircraft cabins, offices with photocopiers, laser printers, sterilizers. Considerable work has been done on ozone decomposition reported in the literature. This review provides a comprehensive summary of the literature, concentrating on analysis of the physico-chemical properties, synthesis and catalytic decomposition of ozone. This is supplemented by a review on kinetics and catalyst characterization which ties together the previously reported results. Noble metals and oxides of transition metals have been found to be the most active substances for ozone decomposition. The high price of precious metals stimulated the use of metal oxide catalysts and particularly the catalysts based on manganese oxide. It has been determined that the kinetics of ozone decomposition is of first order importance. A mechanism of the reaction of catalytic ozone decomposition is discussed, based on detailed spectroscopic investigations of the catalytic surface, showing the existence of peroxide and superoxide surface intermediates

  3. Ozone modeling

    Energy Technology Data Exchange (ETDEWEB)

    McIllvaine, C M

    1994-07-01

    Exhaust gases from power plants that burn fossil fuels contain concentrations of sulfur dioxide (SO{sub 2}), nitric oxide (NO), particulate matter, hydrocarbon compounds and trace metals. Estimated emissions from the operation of a hypothetical 500 MW coal-fired power plant are given. Ozone is considered a secondary pollutant, since it is not emitted directly into the atmosphere but is formed from other air pollutants, specifically, nitrogen oxides (NO), and non-methane organic compounds (NMOQ) in the presence of sunlight. (NMOC are sometimes referred to as hydrocarbons, HC, or volatile organic compounds, VOC, and they may or may not include methane). Additionally, ozone formation Alternative is a function of the ratio of NMOC concentrations to NO{sub x} concentrations. A typical ozone isopleth is shown, generated with the Empirical Kinetic Modeling Approach (EKMA) option of the Environmental Protection Agency's (EPA) Ozone Isopleth Plotting Mechanism (OZIPM-4) model. Ozone isopleth diagrams, originally generated with smog chamber data, are more commonly generated with photochemical reaction mechanisms and tested against smog chamber data. The shape of the isopleth curves is a function of the region (i.e. background conditions) where ozone concentrations are simulated. The location of an ozone concentration on the isopleth diagram is defined by the ratio of NMOC and NO{sub x} coordinates of the point, known as the NMOC/NO{sub x} ratio. Results obtained by the described model are presented.

  4. Ozone modeling

    International Nuclear Information System (INIS)

    McIllvaine, C.M.

    1994-01-01

    Exhaust gases from power plants that burn fossil fuels contain concentrations of sulfur dioxide (SO 2 ), nitric oxide (NO), particulate matter, hydrocarbon compounds and trace metals. Estimated emissions from the operation of a hypothetical 500 MW coal-fired power plant are given. Ozone is considered a secondary pollutant, since it is not emitted directly into the atmosphere but is formed from other air pollutants, specifically, nitrogen oxides (NO), and non-methane organic compounds (NMOQ) in the presence of sunlight. (NMOC are sometimes referred to as hydrocarbons, HC, or volatile organic compounds, VOC, and they may or may not include methane). Additionally, ozone formation Alternative is a function of the ratio of NMOC concentrations to NO x concentrations. A typical ozone isopleth is shown, generated with the Empirical Kinetic Modeling Approach (EKMA) option of the Environmental Protection Agency's (EPA) Ozone Isopleth Plotting Mechanism (OZIPM-4) model. Ozone isopleth diagrams, originally generated with smog chamber data, are more commonly generated with photochemical reaction mechanisms and tested against smog chamber data. The shape of the isopleth curves is a function of the region (i.e. background conditions) where ozone concentrations are simulated. The location of an ozone concentration on the isopleth diagram is defined by the ratio of NMOC and NO x coordinates of the point, known as the NMOC/NO x ratio. Results obtained by the described model are presented

  5. Ego depletion impairs implicit learning.

    Science.gov (United States)

    Thompson, Kelsey R; Sanchez, Daniel J; Wesley, Abigail H; Reber, Paul J

    2014-01-01

    Implicit skill learning occurs incidentally and without conscious awareness of what is learned. However, the rate and effectiveness of learning may still be affected by decreased availability of central processing resources. Dual-task experiments have generally found impairments in implicit learning, however, these studies have also shown that certain characteristics of the secondary task (e.g., timing) can complicate the interpretation of these results. To avoid this problem, the current experiments used a novel method to impose resource constraints prior to engaging in skill learning. Ego depletion theory states that humans possess a limited store of cognitive resources that, when depleted, results in deficits in self-regulation and cognitive control. In a first experiment, we used a standard ego depletion manipulation prior to performance of the Serial Interception Sequence Learning (SISL) task. Depleted participants exhibited poorer test performance than did non-depleted controls, indicating that reducing available executive resources may adversely affect implicit sequence learning, expression of sequence knowledge, or both. In a second experiment, depletion was administered either prior to or after training. Participants who reported higher levels of depletion before or after training again showed less sequence-specific knowledge on the post-training assessment. However, the results did not allow for clear separation of ego depletion effects on learning versus subsequent sequence-specific performance. These results indicate that performance on an implicitly learned sequence can be impaired by a reduction in executive resources, in spite of learning taking place outside of awareness and without conscious intent.

  6. Reconciliation of Halogen-Induced Ozone Loss with the Total-Column Ozone Record

    Science.gov (United States)

    Shepherd, T. G.; Plummer, D. A.; Scinocca, J. F.; Hegglin, M. I.; Fioletov, V. E.; Reader, M. C.; Remsberg, E.; von Clarmann, T.; Wang, H. J.

    2014-01-01

    The observed depletion of the ozone layer from the 1980s onwards is attributed to halogen source gases emitted by human activities. However, the precision of this attribution is complicated by year-to-year variations in meteorology, that is, dynamical variability, and by changes in tropospheric ozone concentrations. As such, key aspects of the total-column ozone record, which combines changes in both tropospheric and stratospheric ozone, remain unexplained, such as the apparent absence of a decline in total-column ozone levels before 1980, and of any long-term decline in total-column ozone levels in the tropics. Here we use a chemistry-climate model to estimate changes in halogen-induced ozone loss between 1960 and 2010; the model is constrained by observed meteorology to remove the eects of dynamical variability, and driven by emissions of tropospheric ozone precursors to separate out changes in tropospheric ozone. We show that halogen-induced ozone loss closely followed stratospheric halogen loading over the studied period. Pronounced enhancements in ozone loss were apparent in both hemispheres following the volcanic eruptions of El Chichon and, in particular, Mount Pinatubo, which significantly enhanced stratospheric aerosol loads. We further show that approximately 40% of the long-term non-volcanic ozone loss occurred before 1980, and that long-term ozone loss also occurred in the tropical stratosphere. Finally, we show that halogeninduced ozone loss has declined by over 10% since stratospheric halogen loading peaked in the late 1990s, indicating that the recovery of the ozone layer is well underway.

  7. OZONE CONCENTRATION ATTRIBUTABLE PREMATURE DEATH IN POLAND

    Directory of Open Access Journals (Sweden)

    Krzysztof Skotak

    2010-03-01

    Full Text Available Ozone in the lower part of the atmosphere (troposphere, strong photochemical oxidant, is not directly emitted to the atmosphere but formed through a series of complex reactions. Ozone concentrations depends on ozone precursors air contamination (mainly nitrogen dioxide and non-methane volatile organic compounds and meteorological conditions (temperature and solar radiation. The main sectors emitted ozone precursors are road transport, power and heat generation plants, household (heating, industry, and petrol storage and distribution. Ozone and some of its precursors are also transported long distances in the atmosphere and are therefore considered a transboundary problem. As a result, the ozone concentrations are often low in busy urban areas and higher in suburban and rural areas. Nowadays, instead of particulate matter, ozone is one of the most widespread global air pollution problems. In and around urban areas, relatively large gradients of ozone can be observed. Because of its high reactivity in elevated concentrations ozone causes serious health problems and damage to ecosystems, agricultural crops and materials. Main ill-health endpoints as a results of ozone concentrations can be characterised as an effect of pulmonary and cardiovascular system, time morbidity and mortality series, development of atherosclerosis and asthma and finally reduction in life expectancy. The associations with increased daily mortality due to ozone concentrations are confirmed by many researches and epidemiological studies. Estimation of the level selected ill-health endpoints (mortality in total and due to cardiovascular and respiratory causes as a result of the short-term ozone exposure in Poland was the main aim of the project. Final results have been done based on estimation method elaborated by WHO, ozone measurements from National Air Quality Monitoring System and statistical information such as mortality rate and populations. All analysis have been done in

  8. Optical remote measurement of ozone in cirrus clouds; Optische Fernmessung von Ozon in Zirruswolken

    Energy Technology Data Exchange (ETDEWEB)

    Reichardt, J. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Physikalische und Chemische Analytik

    1998-12-31

    The subject of this thesis is theoretical and experimental investigations into the simultaneous optical remote measurement of atmospheric ozone concentration and particle properties. A lidar system was developed that combines the Raman-lidar and the polarization-lidar with the Raman-DIAL technique. An error analysis is given for ozone measurements in clouds. It turns out that the wavelength dependencies of photon multiple scattering and of the particle extinction coefficient necessitate a correction of the measured ozone concentration. To quantify the cloud influence, model calculations based on particle size distributions of spheres are carried out. The most important experimental result of this thesis is the measured evidence of pronounced minima in the ozone distribution in a humid upper troposphere shortly before and during cirrus observation. Good correlation between ozone-depleted altitude ranges and ice clouds is found. This finding is in contrast to ozone profiles measured in a dry and cloud-free troposphere. (orig.) 151 refs.

  9. Ozone Pollution

    Science.gov (United States)

    Known as tropospheric or ground-level ozone, this gas is harmful to human heath and the environment. Since it forms from emissions of volatile organic compounds (VOCs) and nitrogen oxides (NOx), these pollutants are regulated under air quality standards.

  10. Nitrous Oxides Ozone Destructiveness Under Different Climate Scenarios

    Science.gov (United States)

    Kanter, David R.; McDermid, Sonali P.

    2016-01-01

    Nitrous oxide (N2O) is an important greenhouse gas and ozone depleting substance as well as a key component of the nitrogen cascade. While emissions scenarios indicating the range of N2O's potential future contributions to radiative forcing are widely available, the impact of these emissions scenarios on future stratospheric ozone depletion is less clear. This is because N2O's ozone destructiveness is partially dependent on tropospheric warming, which affects ozone depletion rates in the stratosphere. Consequently, in order to understand the possible range of stratospheric ozone depletion that N2O could cause over the 21st century, it is important to decouple the greenhouse gas emissions scenarios and compare different emissions trajectories for individual substances (e.g. business-as-usual carbon dioxide (CO2) emissions versus low emissions of N2O). This study is the first to follow such an approach, running a series of experiments using the NASA Goddard Institute for Space Sciences ModelE2 atmospheric sub-model. We anticipate our results to show that stratospheric ozone depletion will be highest in a scenario where CO2 emissions reductions are prioritized over N2O reductions, as this would constrain ozone recovery while doing little to limit stratospheric NOx levels (the breakdown product of N2O that destroys stratospheric ozone). This could not only delay the recovery of the stratospheric ozone layer, but might also prevent a return to pre-1980 global average ozone concentrations, a key goal of the international ozone regime. Accordingly, we think this will highlight the importance of reducing emissions of all major greenhouse gas emissions, including N2O, and not just a singular policy focus on CO2.

  11. Ozone mitigation tests at the APS

    International Nuclear Information System (INIS)

    Kuzay, T.M.; Collins, J.T.; Pisharody, M.; Job, P.K.; Wang Zhibi.

    1996-09-01

    Ozone is generated in the APS experimental stations whenever the x-ray beam has a chance to interact with air. Ozone concentrations in an experimental station have to be below a certain defined limit (current OSHA regulations specify 0.08 ppm as the maximum limit) before an experimenter can reenter the hutch. This limit is said to be currently under study for a downward adjustment. One method of depleting the ozone generated in an experimental station is mitigation through either adsorption or direct destruction. In recent tests, both methods were tried using commercially available units. Test results and some analytical predictions are presented

  12. The possible impact of fluorocarbons and halocarbons on ozone

    International Nuclear Information System (INIS)

    1975-05-01

    Partial contents: Chemistry-(The production and atmospheric release of fluorocarbons and certain other chlorine compounds, Photochemistry of fluorocarbons); Measurement techniques-(Stratospheric sampling platforms, Methods for measuring fluorocarbons and other halocarbons); Measurements-(Halogenated organic compounds in the troposphere, Stratospheric measurement of oxides of nitrogen, Total ozone trends); Models-(Assessment of the accuracy of atmospheric transport, Model prediction of ozone depletion); Effects-

  13. The effect of SST emissions on the earth's ozone layer

    Science.gov (United States)

    Whitten, R. C.; Turco, R. P.

    1974-01-01

    The work presented here is directed toward assessment of environmental effects of the supersonic transport (SST). The model used for the purpose includes vertical eddy transport and the photochemistry of the O-H-N system. It is found that the flight altitude has a pronounced effect on ozone depletion. The largest ozone reduction occurs for NO deposition above an altitude of 20 km.

  14. The ozone hole and the 1995 Nobel prize in chemistry; Trou d`ozone et Prix Nobel 1995 de chimie

    Energy Technology Data Exchange (ETDEWEB)

    Berger, A. [Universite Catholique de Louvain (UCL), Louvain-la-Neuve (Belgium). Inst. d`Astronomie et de Geophysique G. Lemaitre

    1996-03-01

    To mark to award of the 1995 Nobel Prize in chemistry to three world renowned atmospheric chemists, this paper recalls the history of scientific progress in stratospheric ozone chemistry. Then it summarizes current knowledge of ozone-layer depletion and its impact on climate, vegetation and human health. (author). 21 refs., 12 figs.

  15. What would have happened to the ozone layer if chlorofluorocarbons (CFCs) had not been regulated?

    OpenAIRE

    P. A. Newman; L. D. Oman; A. R. Douglass; E. L. Fleming; S. M. Frith; M. M. Hurwitz; S. R. Kawa; C. H. Jackman; N. A. Krotkov; E. R. Nash; J. E. Nielsen; S. Pawson; R. S. Stolarski; G. J. M. Velders

    2009-01-01

    Ozone depletion by chlorofluorocarbons (CFCs) was first proposed by Molina and Rowland in their 1974 Nature paper. Since that time, the scientific connection between ozone losses and CFCs and other ozone depleting substances (ODSs) has been firmly established with laboratory measurements, atmospheric observations, and modeling research. This science research led to the implementation of international agreements that largely stopped the production of ODSs. In this study we use a fully-c...

  16. Eight years of stratospheric ozone observations at Marambio, Antarctica

    Energy Technology Data Exchange (ETDEWEB)

    Damski, J; Taalas, P [Finnish Meteorological Inst., Helsinki (Finland). Section of Ozone and UV Research

    1996-12-31

    In this work behaviour of the stratospheric ozone using the total ozone and ozone sounding measurements from Marambio (64 deg 14`S, 56 deg 37`W) at Antarctic Peninsula has been studied. The effects of depleted stratospheric ozone to the UV-B-radiation are investigated employing a radiative transfer model, and the Marambio total ozone measurements. The levels of UV-B radiation have been studied from the point of the erythemal UV-B-doses on the horizontal human epidermis. The low values of total ozone at Marambio are also reflected to the received UV-doses which have increased roughly 20-80% (compared to long term average) during austral spring and summer. In respective to the total amount of ozone, the model calculations show that during October the UV-B-doses can be at the same level they should be during normal summer

  17. Eight years of stratospheric ozone observations at Marambio, Antarctica

    Energy Technology Data Exchange (ETDEWEB)

    Damski, J.; Taalas, P. [Finnish Meteorological Inst., Helsinki (Finland). Section of Ozone and UV Research

    1995-12-31

    In this work behaviour of the stratospheric ozone using the total ozone and ozone sounding measurements from Marambio (64 deg 14`S, 56 deg 37`W) at Antarctic Peninsula has been studied. The effects of depleted stratospheric ozone to the UV-B-radiation are investigated employing a radiative transfer model, and the Marambio total ozone measurements. The levels of UV-B radiation have been studied from the point of the erythemal UV-B-doses on the horizontal human epidermis. The low values of total ozone at Marambio are also reflected to the received UV-doses which have increased roughly 20-80% (compared to long term average) during austral spring and summer. In respective to the total amount of ozone, the model calculations show that during October the UV-B-doses can be at the same level they should be during normal summer

  18. Evidence for a continuous decline in lower stratospheric ozone offsetting ozone layer recovery

    Science.gov (United States)

    Ball, William T.; Alsing, Justin; Mortlock, Daniel J.; Staehelin, Johannes; Haigh, Joanna D.; Peter, Thomas; Tummon, Fiona; Stübi, Rene; Stenke, Andrea; Anderson, John; Bourassa, Adam; Davis, Sean M.; Degenstein, Doug; Frith, Stacey; Froidevaux, Lucien; Roth, Chris; Sofieva, Viktoria; Wang, Ray; Wild, Jeannette; Yu, Pengfei; Ziemke, Jerald R.; Rozanov, Eugene V.

    2018-02-01

    Ozone forms in the Earth's atmosphere from the photodissociation of molecular oxygen, primarily in the tropical stratosphere. It is then transported to the extratropics by the Brewer-Dobson circulation (BDC), forming a protective ozone layer around the globe. Human emissions of halogen-containing ozone-depleting substances (hODSs) led to a decline in stratospheric ozone until they were banned by the Montreal Protocol, and since 1998 ozone in the upper stratosphere is rising again, likely the recovery from halogen-induced losses. Total column measurements of ozone between the Earth's surface and the top of the atmosphere indicate that the ozone layer has stopped declining across the globe, but no clear increase has been observed at latitudes between 60° S and 60° N outside the polar regions (60-90°). Here we report evidence from multiple satellite measurements that ozone in the lower stratosphere between 60° S and 60° N has indeed continued to decline since 1998. We find that, even though upper stratospheric ozone is recovering, the continuing downward trend in the lower stratosphere prevails, resulting in a downward trend in stratospheric column ozone between 60° S and 60° N. We find that total column ozone between 60° S and 60° N appears not to have decreased only because of increases in tropospheric column ozone that compensate for the stratospheric decreases. The reasons for the continued reduction of lower stratospheric ozone are not clear; models do not reproduce these trends, and thus the causes now urgently need to be established.

  19. Evidence for a Continuous Decline in Lower Stratospheric Ozone Offsetting Ozone Layer Recovery

    Science.gov (United States)

    Ball, William T.; Alsing, Justin; Mortlock, Daniel J.; Staehelin, Johannes; Haigh, Joanna D.; Peter, Thomas; Tummon, Fiona; Stuebi, Rene; Stenke, Andrea; Anderson, John; hide

    2018-01-01

    Ozone forms in the Earth's atmosphere from the photodissociation of molecular oxygen, primarily in the tropical stratosphere. It is then transported to the extratropics by the Brewer-Dobson circulation (BDC), forming a protective "ozone layer" around the globe. Human emissions of halogen-containing ozone-depleting substances (hODSs) led to a decline in stratospheric ozone until they were banned by the Montreal Protocol, and since 1998 ozone in the upper stratosphere is rising again, likely the recovery from halogen-induced losses. Total column measurements of ozone between the Earth's surface and the top of the atmosphere indicate that the ozone layer has stopped declining across the globe, but no clear increase has been observed at latitudes between 60degS and 60degN outside the polar regions (60-90deg). Here we report evidence from multiple satellite measurements that ozone in the lower stratosphere between 60degS and 60degN has indeed continued to decline since 1998. We find that, even though upper stratospheric ozone is recovering, the continuing downward trend in the lower stratosphere prevails, resulting in a downward trend in stratospheric column ozone between 60degS and 60degN. We find that total column ozone between 60degS and 60degN appears not to have decreased only because of increases in tropospheric column ozone that compensate for the stratospheric decreases. The reasons for the continued reduction of lower stratospheric ozone are not clear; models do not reproduce these trends, and thus the causes now urgently need to be established.

  20. Ozone Decline and Recovery: The Significance of Uncertainties

    Science.gov (United States)

    Harris, N. R. P.

    2017-12-01

    Stratospheric ozone depletion has been one of the leading environmental issues of the last 40 years. It has required research scientists, industry and government to work together to address it successfully. Steps have been taken to reduce the emissions of ozone depleting substances (ODS) under successive revisions of the measures in the 30 year old Montreal Protocol. These have led to a reduction in atmospheric ODS concentrations and so are expected over time to result in a reduction of chemical ozone depletion by ODS. This 'recovery' is being influenced by a number of other factors (natural variability, climate change, other changes in stratospheric chemistry) which makes it hard to provide good, quantitative estimates of the impact of the recent ODS reductions on stratospheric ozone. In this presentation, I discuss how ozone trends were linked to ODS during the period of ozone depletion and during the recent period of 'recovery', i.e. before and after the peak in atmospheric ODS. It is important to be as rigorous as possible in order to give public confidence in the advice provided through the scientific assessment process. We thus need to be as critical of our analyses of the recent data as possible, even though there is a strong expectation and hope from all sides that stratospheric ozone is recovering. I will describe in outline the main challenges that exist now and looking forward.

  1. Ego Depletion Impairs Implicit Learning

    Science.gov (United States)

    Thompson, Kelsey R.; Sanchez, Daniel J.; Wesley, Abigail H.; Reber, Paul J.

    2014-01-01

    Implicit skill learning occurs incidentally and without conscious awareness of what is learned. However, the rate and effectiveness of learning may still be affected by decreased availability of central processing resources. Dual-task experiments have generally found impairments in implicit learning, however, these studies have also shown that certain characteristics of the secondary task (e.g., timing) can complicate the interpretation of these results. To avoid this problem, the current experiments used a novel method to impose resource constraints prior to engaging in skill learning. Ego depletion theory states that humans possess a limited store of cognitive resources that, when depleted, results in deficits in self-regulation and cognitive control. In a first experiment, we used a standard ego depletion manipulation prior to performance of the Serial Interception Sequence Learning (SISL) task. Depleted participants exhibited poorer test performance than did non-depleted controls, indicating that reducing available executive resources may adversely affect implicit sequence learning, expression of sequence knowledge, or both. In a second experiment, depletion was administered either prior to or after training. Participants who reported higher levels of depletion before or after training again showed less sequence-specific knowledge on the post-training assessment. However, the results did not allow for clear separation of ego depletion effects on learning versus subsequent sequence-specific performance. These results indicate that performance on an implicitly learned sequence can be impaired by a reduction in executive resources, in spite of learning taking place outside of awareness and without conscious intent. PMID:25275517

  2. Ego depletion impairs implicit learning.

    Directory of Open Access Journals (Sweden)

    Kelsey R Thompson

    Full Text Available Implicit skill learning occurs incidentally and without conscious awareness of what is learned. However, the rate and effectiveness of learning may still be affected by decreased availability of central processing resources. Dual-task experiments have generally found impairments in implicit learning, however, these studies have also shown that certain characteristics of the secondary task (e.g., timing can complicate the interpretation of these results. To avoid this problem, the current experiments used a novel method to impose resource constraints prior to engaging in skill learning. Ego depletion theory states that humans possess a limited store of cognitive resources that, when depleted, results in deficits in self-regulation and cognitive control. In a first experiment, we used a standard ego depletion manipulation prior to performance of the Serial Interception Sequence Learning (SISL task. Depleted participants exhibited poorer test performance than did non-depleted controls, indicating that reducing available executive resources may adversely affect implicit sequence learning, expression of sequence knowledge, or both. In a second experiment, depletion was administered either prior to or after training. Participants who reported higher levels of depletion before or after training again showed less sequence-specific knowledge on the post-training assessment. However, the results did not allow for clear separation of ego depletion effects on learning versus subsequent sequence-specific performance. These results indicate that performance on an implicitly learned sequence can be impaired by a reduction in executive resources, in spite of learning taking place outside of awareness and without conscious intent.

  3. Ozone decay in chemical reactor for ozone-dynamical disintegration of used tyres

    International Nuclear Information System (INIS)

    Golota, V.I.; Manuilenko, O.V.; Taran, G.V.; Dotsenko, Yu.V.; Pismenetskii, A.S.; Zamuriev, A.A.; Benitskaja, V.A.

    2011-01-01

    The ozone decay kinetics in the chemical reactor intended for used tyres disintegration is investigated experimentally and theoretically. Ozone was synthesized in barrierless ozonizers based on the streamer discharge. The chemical reactor for tyres disintegration in the ozone-air environment represents the cylindrical chamber, which feeds from the ozonizer by ozone-air mixture with the specified rate of volume flow, and with known ozone concentration. The output of the used mixture, which rate of volume flow is also known, is carried out through the ozone destructor. As a result of ozone decay in the volume and on the reactor walls, and output of the used mixture from the reactor, the ozone concentration in the reactor depends from time. In the paper, the analytical expression for dependence of ozone concentration in the reactor from time and from the parameters of a problem such as the volumetric feed rate, ozone concentration on the input in the reactor, volume flow rate of the used mixture, the volume of the reactor and the area of its internal surface is obtained. It is shown that experimental results coincide with good accuracy with analytical ones.

  4. Lidar Measurements of Tropospheric Ozone in the Arctic

    Directory of Open Access Journals (Sweden)

    Seabrook Jeffrey

    2016-01-01

    Full Text Available This paper reports on differential absorption lidar (DIAL measurements of tropospheric ozone in the Canadian Arctic during springtime. Measurements at Eureka Weather Station revealed that mountains have a significant effect on the vertical structure of ozone above Ellesmere Island. Ozone depletion events were observed when air that had spent significant time near to the frozen surface of the Arctic Ocean reached Eureka. This air arrived at Eureka by flowing over the surrounding mountains. Surface level ozone depletions were not observed during periods when the flow of air from over the sea ice was blocked by mountains. In the case of blocking there was an enhancement in the amount of ozone near the surface as air from the mid troposphere descended in the lee of the mountains. Three case studies will be shown in the presentation, while one is described in this paper.

  5. Impact of mineral resource depletion

    CSIR Research Space (South Africa)

    Brent, AC

    2006-09-01

    Full Text Available In a letter to the editor, the authors comment on BA Steen's article on "Abiotic Resource Depletion: different perceptions of the problem with mineral deposits" published in the special issue of the International Journal of Life Cycle Assessment...

  6. Is gas in the Orion nebula depleted

    International Nuclear Information System (INIS)

    Aiello, S.; Guidi, I.

    1978-01-01

    Depletion of heavy elements has been recognized to be important in the understanding of the chemical composition of the interstellar medium. This problem is also relevant to the study of H II regions. In this paper the gaseous depletion in the physical conditions of the Orion nebula is investigated. The authors reach the conclusion that very probably no depletion of heavy elements, due to sticking on dust grains, took place during the lifetime of the Orion nebula. (Auth.)

  7. Ozone Layer Protection

    Science.gov (United States)

    ... and Research Centers Contact Us Share Ozone Layer Protection The stratospheric ozone layer is Earth’s “sunscreen” – protecting ... GreenChill Partnership Responsible Appliance Disposal (RAD) Program Ozone Protection vs. Ozone Pollution This website addresses stratospheric ozone ...

  8. Effect of Pulse Width on Oxygen-fed Ozonizer

    Science.gov (United States)

    Okada, Sho; Wang, Douyan; Namihira, Takao; Katsuki, Sunao; Akiyama, Hidenori

    Though general ozonizers based on silent discharge (barrier discharge) have been used to supply ozone at many industrial situations, there is still some problem, such as improvements of ozone yield. In this work, ozone was generated by pulsed discharge in order to improve the characteristics of ozone generation. It is known that a pulse width gives strong effect to the improvement of energy efficiency in exhaust gas processing. In this paper, the effect of pulse duration on ozone generation by pulsed discharge in oxygen would be reported.

  9. In Brief: Monitoring ozone in Qatar

    Science.gov (United States)

    Showstack, Randy

    2008-12-01

    Qatar is establishing an ozone and pollution monitoring ground station in West Asia, following discussions between the government, the Qatar Foundation, and the United Nations Environment Programme, according to a 19 November announcement. The station will assist in understanding whether the ozone layer is actually recovering after being damaged by ozone-depleting chemicals. Qatar also announced plans to establish a global center of excellence for research and development of ozone and climate-friendly technology, equipment, and appliances. UNEP executive director Achim Steiner said the announcements by Qatar ``will help plug key data gaps relating to information gathering in West Asia and the Gulf to the benefit of the region and the world.''

  10. Options to Accelerate Ozone Recovery: Ozone and Climate Benefits

    Science.gov (United States)

    Fleming, E. L.; Daniel, J. S.; Portmann, R. W.; Velders, G. J. M.; Jackman, C. H.; Ravishankara, A. R.

    2010-01-01

    The humankind or anthropogenic influence on ozone primarily originated from the chlorofluorocarbons and halons (chlorine and bromine). Representatives from governments have met periodically over the years to establish international regulations starting with the Montreal Protocol in 1987, which greatly limited the release of these ozone-depleting substances (DDSs). Two global models have been used to investigate the impact of hypothetical reductions in future emissions of ODSs on total column ozone. The investigations primarily focused on chlorine- and bromine-containing gases, but some computations also included nitrous oxide (N2O). The Montreal Protocol with ODS controls have been so successful that further regulations of chlorine- and bromine-containing gases could have only a fraction of the impact that regulations already in force have had. if all anthropogenic ODS emissions were halted beginning in 2011, ozone is calculated to be higher by about 1-2% during the period 2030-2100 compared to a case of no additional ODS restrictions. Chlorine- and bromine-containing gases and nitrous oxide are also greenhouse gases and lead to warming of the troposphere. Elimination of N 20 emissions would result in a reduction of radiative forcing of 0.23 W/sq m in 2100 than presently computed and destruction of the CFC bank would produce a reduction in radiative forcing of 0.005 W/sq m in 2100. This paper provides a quantitative way to consider future regulations of the CFC bank and N 20 emissions

  11. Substitution of R502 in existing refrigerating, air-conditioning and heat pump systems with refrigerants of low ozone depletion potential in the Federal Republic of Germany; Ersatz von R 502 in bestehenden Kaelte-, Klima- und Waermepumpenanlagen in der Bundesrepublik Deutschland durch Kaeltemittel mit geringerem Ozonabbaupotential

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    The technical basics and the state of engineering for the substitution of R502 in existing refrigeration systems are described and explained. The report contains an overview of the current applications of R502 in the FRG, the presentation and discussion of existing substitutes, the presentation and valuations of research and experiences with the adaptation to alternative refrigerants, the presentation of the required infrastructure and a discussion of the technical feasibility. The conversion of existing systems to refrigerants of lower ozone depletion potential is in conclusion valuated with regard to its technical feasibility, environmental relevance and economic efficiency. (orig.) [Deutsch] Es werden die technischen Grundlagen und der Stand der Technik zum Ersatz von R502 in bestehenden Kaelteanlagen dargestellt und erlaeutert. Der Bericht beinhaltet einen Ueberblick ueber die derzeitige Anwendung von R502 in der BRD, die Vorstellung und Diskussion existierender Ersatzstoffe, die Darstellung und Bewertung der Forschung und Erfahrungen zu Umruestungen auf Ersatzstoffe, die Vorstellung der erforderlichen Infrastruktur und die Diskussion der technischen Durchfuehrbarkeit. Die Umstellung bestehender Anlagen auf Kaeltemittel mit geringerem Ozonabbaupotential wird abschliessend hinsichtlich der technischen Durchfuehrbarkeit, der Umweltrelevanz und der Wirtschaftlichkeit bewertet. (orig.)

  12. What would have happened to the ozone layer if chlorofluorocarbons (CFCs had not been regulated?

    Directory of Open Access Journals (Sweden)

    P. A. Newman

    2009-03-01

    Full Text Available Ozone depletion by chlorofluorocarbons (CFCs was first proposed by Molina and Rowland in their 1974 Nature paper. Since that time, the scientific connection between ozone losses and CFCs and other ozone depleting substances (ODSs has been firmly established with laboratory measurements, atmospheric observations, and modeling studies. This science research led to the implementation of international agreements that largely stopped the production of ODSs. In this study we use a fully-coupled radiation-chemical-dynamical model to simulate a future world where ODSs were never regulated and ODS production grew at an annual rate of 3%. In this "world avoided" simulation, 17% of the globally-averaged column ozone is destroyed by 2020, and 67% is destroyed by 2065 in comparison to 1980. Large ozone depletions in the polar region become year-round rather than just seasonal as is currently observed in the Antarctic ozone hole. Very large temperature decreases are observed in response to circulation changes and decreased shortwave radiation absorption by ozone. Ozone levels in the tropical lower stratosphere remain constant until about 2053 and then collapse to near zero by 2058 as a result of heterogeneous chemical processes (as currently observed in the Antarctic ozone hole. The tropical cooling that triggers the ozone collapse is caused by an increase of the tropical upwelling. In response to ozone changes, ultraviolet radiation increases, more than doubling the erythemal radiation in the northern summer midlatitudes by 2060.

  13. Multi-model assessment of stratospheric ozone return dates and ozone recovery in CCMVal-2 models

    Directory of Open Access Journals (Sweden)

    V. Eyring

    2010-10-01

    Full Text Available Projections of stratospheric ozone from a suite of chemistry-climate models (CCMs have been analyzed. In addition to a reference simulation where anthropogenic halogenated ozone depleting substances (ODSs and greenhouse gases (GHGs vary with time, sensitivity simulations with either ODS or GHG concentrations fixed at 1960 levels were performed to disaggregate the drivers of projected ozone changes. These simulations were also used to assess the two distinct milestones of ozone returning to historical values (ozone return dates and ozone no longer being influenced by ODSs (full ozone recovery. The date of ozone returning to historical values does not indicate complete recovery from ODSs in most cases, because GHG-induced changes accelerate or decelerate ozone changes in many regions. In the upper stratosphere where CO2-induced stratospheric cooling increases ozone, full ozone recovery is projected to not likely have occurred by 2100 even though ozone returns to its 1980 or even 1960 levels well before (~2025 and 2040, respectively. In contrast, in the tropical lower stratosphere ozone decreases continuously from 1960 to 2100 due to projected increases in tropical upwelling, while by around 2040 it is already very likely that full recovery from the effects of ODSs has occurred, although ODS concentrations are still elevated by this date. In the midlatitude lower stratosphere the evolution differs from that in the tropics, and rather than a steady decrease in ozone, first a decrease in ozone is simulated from 1960 to 2000, which is then followed by a steady increase through the 21st century. Ozone in the midlatitude lower stratosphere returns to 1980 levels by ~2045 in the Northern Hemisphere (NH and by ~2055 in the Southern Hemisphere (SH, and full ozone recovery is likely reached by 2100 in both hemispheres. Overall, in all regions except the tropical lower stratosphere, full ozone recovery from ODSs occurs significantly later than the

  14. Evaluation of linear ozone photochemistry parametrizations in a stratosphere-troposphere data assimilation system

    Directory of Open Access Journals (Sweden)

    A. J. Geer

    2007-01-01

    Full Text Available This paper evaluates the performance of various linear ozone photochemistry parametrizations using the stratosphere-troposphere data assimilation system of the Met Office. A set of experiments were run for the period 23 September 2003 to 5 November 2003 using the Cariolle (v1.0 and v2.1, LINOZ and Chem2D-OPP (v0.1 and v2.1 parametrizations. All operational meteorological observations were assimilated, together with ozone retrievals from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS. Experiments were validated against independent data from the Halogen Occultation Experiment (HALOE and ozonesondes. Additionally, a simple offline method for comparing the parametrizations is introduced. It is shown that in the upper stratosphere and mesosphere, outside the polar night, ozone analyses are controlled by the photochemistry parametrizations and not by the assimilated observations. The most important factor in getting good results at these levels is to pay attention to the ozone and temperature climatologies in the parametrizations. There should be no discrepancies between the climatologies and the assimilated observations or the model, but there is also a competing demand that the climatologies be objectively accurate in themselves. Conversely, in the lower stratosphere outside regions of heterogeneous ozone depletion, the ozone analyses are dominated by observational increments and the photochemistry parametrizations have little influence. We investigate a number of known problems in LINOZ and Cariolle v1.0 in more detail than previously, and we find discrepancies in Cariolle v2.1 and Chem2D-OPP v2.1, which are demonstrated to have been removed in the latest available versions (v2.8 and v2.6 respectively. In general, however, all the parametrizations work well through much of the stratosphere, helped by the presence of good quality assimilated MIPAS observations.

  15. Massive global ozone loss predicted following regional nuclear conflict

    Science.gov (United States)

    Mills, Michael J.; Toon, Owen B.; Turco, Richard P.; Kinnison, Douglas E.; Garcia, Rolando R.

    2008-01-01

    We use a chemistry-climate model and new estimates of smoke produced by fires in contemporary cities to calculate the impact on stratospheric ozone of a regional nuclear war between developing nuclear states involving 100 Hiroshima-size bombs exploded in cities in the northern subtropics. We find column ozone losses in excess of 20% globally, 25–45% at midlatitudes, and 50–70% at northern high latitudes persisting for 5 years, with substantial losses continuing for 5 additional years. Column ozone amounts remain near or <220 Dobson units at all latitudes even after three years, constituting an extratropical “ozone hole.” The resulting increases in UV radiation could impact the biota significantly, including serious consequences for human health. The primary cause for the dramatic and persistent ozone depletion is heating of the stratosphere by smoke, which strongly absorbs solar radiation. The smoke-laden air rises to the upper stratosphere, where removal mechanisms are slow, so that much of the stratosphere is ultimately heated by the localized smoke injections. Higher stratospheric temperatures accelerate catalytic reaction cycles, particularly those of odd-nitrogen, which destroy ozone. In addition, the strong convection created by rising smoke plumes alters the stratospheric circulation, redistributing ozone and the sources of ozone-depleting gases, including N2O and chlorofluorocarbons. The ozone losses predicted here are significantly greater than previous “nuclear winter/UV spring” calculations, which did not adequately represent stratospheric plume rise. Our results point to previously unrecognized mechanisms for stratospheric ozone depletion. PMID:18391218

  16. Ozone Control Strategies | Ground-level Ozone | New ...

    Science.gov (United States)

    2017-09-05

    The Air Quality Planning Unit's primary goal is to protect your right to breathe clean air. Guided by the Clean Air Act, we work collaboratively with states, communities, and businesses to develop and implement strategies to reduce air pollution from a variety of sources that contribute to the ground-level ozone or smog problem.

  17. Ozone in the atmosphere. Basic principles, natural and human impacts

    Energy Technology Data Exchange (ETDEWEB)

    Fabian, Peter [Technical Univ. Munich (Germany). Immission Research; Dameris, Martin [German Aerospace Center (DLR), Oberpfaffenhofen-Wessling (Germany). Inst. of Atmospheric Physics

    2014-09-01

    Comprehensive coverage of ozone both in the upper and the lower atmosphere. Essential overview of atmospheric ozone research written by two experienced and acknowledged experts. Numerous qualified references to the scientific literature. Peter Fabian and Martin Dameris provide a concise yet comprehensive overview of established scientific knowledge about ozone in the atmosphere. They present both ozone changes and trends in the stratosphere, as well as the effects of overabundance in the troposphere including the phenomenon of photosmog. Aspects such as photochemistry, atmospheric dynamics and global ozone distribution as well as various techniques for ozone measurement are treated. The authors outline the various causes for ozone depletion, the effects of ozone pollution and the relation to climate change. The book provides a handy reference guide for researchers active in atmospheric ozone research and a useful introduction for advanced students specializing in this field. Non-specialists interested in this field will also profit from reading the book. Peter Fabian can look back on a life-long active career in ozone research, having first gained international recognition for his measurements of the global distribution of halogenated hydrocarbons. He also pioneered photosmog investigations in the metropolitan areas of Munich, Berlin, Athens and Santiago de Chile, and his KROFEX facility provided controlled ozone fumigation of adult tree canopies for biologists to investigate the effects of ozone increases on forests. Besides having published a broad range of scientific articles, he has also been the author or editor of numerous books. From 2002 to 2005 he served the European Geosciences Union (EGU) as their first and Founding President. Martin Dameris is a prominent atmospheric modeler whose interests include the impacts of all kinds of natural and man-made disturbances on the atmospheric system. His scientific work focuses on the connections between ozone and

  18. Ozone in the atmosphere. Basic principles, natural and human impacts

    International Nuclear Information System (INIS)

    Fabian, Peter; Dameris, Martin

    2014-01-01

    Comprehensive coverage of ozone both in the upper and the lower atmosphere. Essential overview of atmospheric ozone research written by two experienced and acknowledged experts. Numerous qualified references to the scientific literature. Peter Fabian and Martin Dameris provide a concise yet comprehensive overview of established scientific knowledge about ozone in the atmosphere. They present both ozone changes and trends in the stratosphere, as well as the effects of overabundance in the troposphere including the phenomenon of photosmog. Aspects such as photochemistry, atmospheric dynamics and global ozone distribution as well as various techniques for ozone measurement are treated. The authors outline the various causes for ozone depletion, the effects of ozone pollution and the relation to climate change. The book provides a handy reference guide for researchers active in atmospheric ozone research and a useful introduction for advanced students specializing in this field. Non-specialists interested in this field will also profit from reading the book. Peter Fabian can look back on a life-long active career in ozone research, having first gained international recognition for his measurements of the global distribution of halogenated hydrocarbons. He also pioneered photosmog investigations in the metropolitan areas of Munich, Berlin, Athens and Santiago de Chile, and his KROFEX facility provided controlled ozone fumigation of adult tree canopies for biologists to investigate the effects of ozone increases on forests. Besides having published a broad range of scientific articles, he has also been the author or editor of numerous books. From 2002 to 2005 he served the European Geosciences Union (EGU) as their first and Founding President. Martin Dameris is a prominent atmospheric modeler whose interests include the impacts of all kinds of natural and man-made disturbances on the atmospheric system. His scientific work focuses on the connections between ozone and

  19. Deuterium-depleted water

    International Nuclear Information System (INIS)

    Stefanescu, Ion; Steflea, Dumitru; Saros-Rogobete, Irina; Titescu, Gheorghe; Tamaian, Radu

    2001-01-01

    Deuterium-depleted water represents water that has an isotopic content smaller than 145 ppm D/(D+H) which is the natural isotopic content of water. Deuterium depleted water is produced by vacuum distillation in columns equipped with structured packing made from phosphor bronze or stainless steel. Deuterium-depleted water, the production technique and structured packing are patents of National Institute of Research - Development for Cryogenics and Isotopic Technologies at Rm. Valcea. Researches made in the last few years showed the deuterium-depleted water is a biological active product that could have many applications in medicine and agriculture. (authors)

  20. Evaluation of stratospheric age of air from CF4, C2F6, C3F8, CHF3, HFC-125, HFC-227ea and SF6; implications for the calculations of halocarbon lifetimes, fractional release factors and ozone depletion potentials

    Science.gov (United States)

    Leedham Elvidge, Emma; Bönisch, Harald; Brenninkmeijer, Carl A. M.; Engel, Andreas; Fraser, Paul J.; Gallacher, Eileen; Langenfelds, Ray; Mühle, Jens; Oram, David E.; Ray, Eric A.; Ridley, Anna R.; Röckmann, Thomas; Sturges, William T.; Weiss, Ray F.; Laube, Johannes C.

    2018-03-01

    In a changing climate, potential stratospheric circulation changes require long-term monitoring. Stratospheric trace gas measurements are often used as a proxy for stratospheric circulation changes via the mean age of air values derived from them. In this study, we investigated five potential age of air tracers - the perfluorocarbons CF4, C2F6 and C3F8 and the hydrofluorocarbons CHF3 (HFC-23) and HFC-125 - and compare them to the traditional tracer SF6 and a (relatively) shorter-lived species, HFC-227ea. A detailed uncertainty analysis was performed on mean ages derived from these new tracers to allow us to confidently compare their efficacy as age tracers to the existing tracer, SF6. Our results showed that uncertainties associated with the mean age derived from these new age tracers are similar to those derived from SF6, suggesting that these alternative compounds are suitable in this respect for use as age tracers. Independent verification of the suitability of these age tracers is provided by a comparison between samples analysed at the University of East Anglia and the Scripps Institution of Oceanography. All five tracers give younger mean ages than SF6, a discrepancy that increases with increasing mean age. Our findings qualitatively support recent work that suggests that the stratospheric lifetime of SF6 is significantly less than the previous estimate of 3200 years. The impact of these younger mean ages on three policy-relevant parameters - stratospheric lifetimes, fractional release factors (FRFs) and ozone depletion potentials - is investigated in combination with a recently improved methodology to calculate FRFs. Updates to previous estimations for these parameters are provided.

  1. Efforts to reduce stratospheric ozone loss affect agriculture

    International Nuclear Information System (INIS)

    Weare, B.C.

    1995-01-01

    Research has shown that the increased ultraviolet radiation reaching the Earth's surface resulting from stratospheric ozone loss poses a danger to everyone. Concern about ozone loss prompted many nations to ratify the Montreal Protocol, the most comprehensive international environmental agreement ever enacted. Several provisions of this protocol will have substantial, long-term effects on the agricultural industry. Agriculture contributes substantially to ozone depletion, primarily through its use of chlorofluorocarbons (CFCs) for refrigeration in processing, storage and transport of meats and produce. This paper is meant to serve as an overview of the scientific basis for ozone depletion concerns, a description of the current international policy agreement, and the possible consequences of that policy for agriculture. (author)

  2. Secondary maxima in ozone profiles

    Directory of Open Access Journals (Sweden)

    R. Lemoine

    2004-01-01

    Full Text Available Ozone profiles from balloon soundings as well as SAGEII ozone profiles were used to detect anomalous large ozone concentrations of ozone in the lower stratosphere. These secondary ozone maxima are found to be the result of differential advection of ozone-poor and ozone-rich air associated with Rossby wave breaking events. The frequency and intensity of secondary ozone maxima and their geographical distribution is presented. The occurrence and amplitude of ozone secondary maxima is connected to ozone variability and trend at Uccle and account for a large part of the total ozone and lower stratospheric ozone variability.

  3. Evaluation of the Effect of Exhausts from Liquid and Solid Rockets on Ozone Layer

    Science.gov (United States)

    Yamagiwa, Yoshiki; Ishimaki, Tetsuya

    This paper reports the analytical results of the influences of solid rocket and liquid rocket exhausts on ozone layer. It is worried about that the exhausts from solid propellant rockets cause the ozone depletion in the ozone layer. Some researchers try to develop the analytical model of ozone depletion by rocket exhausts to understand its physical phenomena and to find the effective design of rocket to minimize its effect. However, these models do not include the exhausts from liquid rocket although there are many cases to use solid rocket boosters with a liquid rocket at the same time in practical situations. We constructed combined analytical model include the solid rocket exhausts and liquid rocket exhausts to analyze their effects. From the analytical results, we find that the exhausts from liquid rocket suppress the ozone depletion by solid rocket exhausts.

  4. Kinetics of depletion interactions

    NARCIS (Netherlands)

    Vliegenthart, G.A.; Schoot, van der P.P.A.M.

    2003-01-01

    Depletion interactions between colloidal particles dispersed in a fluid medium are effective interactions induced by the presence of other types of colloid. They are not instantaneous but built up in time. We show by means of Brownian dynamics simulations that the static (mean-field) depletion force

  5. Specification for the VERA Depletion Benchmark Suite

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kang Seog [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-12-17

    CASL-X-2015-1014-000 iii Consortium for Advanced Simulation of LWRs EXECUTIVE SUMMARY The CASL neutronics simulator MPACT is under development for the neutronics and T-H coupled simulation for the pressurized water reactor. MPACT includes the ORIGEN-API and internal depletion module to perform depletion calculations based upon neutron-material reaction and radioactive decay. It is a challenge to validate the depletion capability because of the insufficient measured data. One of the detoured methods to validate it is to perform a code-to-code comparison for benchmark problems. In this study a depletion benchmark suite has been developed and a detailed guideline has been provided to obtain meaningful computational outcomes which can be used in the validation of the MPACT depletion capability.

  6. Management of depleted uranium

    International Nuclear Information System (INIS)

    2001-01-01

    Large stocks of depleted uranium have arisen as a result of enrichment operations, especially in the United States and the Russian Federation. Countries with depleted uranium stocks are interested in assessing strategies for the use and management of depleted uranium. The choice of strategy depends on several factors, including government and business policy, alternative uses available, the economic value of the material, regulatory aspects and disposal options, and international market developments in the nuclear fuel cycle. This report presents the results of a depleted uranium study conducted by an expert group organised jointly by the OECD Nuclear Energy Agency and the International Atomic Energy Agency. It contains information on current inventories of depleted uranium, potential future arisings, long term management alternatives, peaceful use options and country programmes. In addition, it explores ideas for international collaboration and identifies key issues for governments and policy makers to consider. (authors)

  7. Ozone and meteorological boundary-layer conditions at Summit, Greenland, during 3-21 June 2000

    Energy Technology Data Exchange (ETDEWEB)

    Helmig, D.; Boulter, J.; David, D.; Birks, J.W.; Cullen, N.J.; Steffen, K. [University of Colorado, Boulder, CO (United States). Cooperative Institute for Research in Environmental Sciences; Johnson, B.J.; Oltmans, S.J. [National Oceanic and Atmospheric Administration, Boulder, CO (United States). Climate Monitoring and Diagnostics Laboratory

    2002-06-01

    The temporal and spatial distributions of boundary-layer ozone were studied during June 2000 at Summit, Greenland, using surface-level measurements and vertical profiling from a tethered balloon platform. Three weeks of continuous ozone surface data, 133 meteorological vertical profile data and 82 ozone vertical profile data sets were collected from the surface to a maximum altitude of 1400 m above ground. The lower atmosphere at Summit was characterized by the prevalence of strong stable conditions with strong surface temperature inversions. These inversions reversed to neutral to slightly unstable conditions between {approx} 9.00 and 18.00 h local time with the formation of shallow mixing heights of {approx} 70-250 m above the surface. The surface ozone mixing ratio ranged from 39 to 68 ppbv and occasionally had rapid changes of up to 20 ppb in 12 h. The diurnal mean ozone mixing ratio showed diurnal trends indicating meteorological and photochemical controls of surface ozone. Vertical profiles were within the range of 37-76 ppb and showed strong stratification in the lower troposphere. A high correlation of high ozone/low water vapor air masses indicated the transport of high tropospheric/low stratospheric air into the lower boundary layer. An {approx} 0.1-3 ppb decline of the ozone mixing ratio towards the surface was frequently observed within the neutrally stable mixed layer during midday hours. These data suggest that the boundary-layer ozone mixing ratio and ozone depletion and deposition to the snowpack are influenced by the boundary-layer ozone mixing ratio and ozone depletion and deposition to the snowpack are influenced by photochemical processes and/or transport phenomena that follow diurnal dependencies. With 37 ppb of ozone being the lowest mixing ratio measured in all data no evidence was seen for the occurrence of ozone depletion episodes similar to those that have been reported within the boundary layer at coastal Arctic sites during springtime

  8. A Global Ozone Climatology from Ozone Soundings via Trajectory Mapping: A Stratospheric Perspective

    Science.gov (United States)

    Liu, J. J.; Tarasick, D. W.; Fioletov, V. E.; McLinden, C.; Zhao, T.; Gong, S.; Sioris, G.; Jin, J. J.; Liu, G.; Moeini, O.

    2013-01-01

    as the spring ozone maximum over the Canadian Arctic. It also covers higher latitudes than current satellite data. The climatology shows clearly the depletion of ozone from the 1970s to the mid 1990s and ozone recovery in the 2000s. When this climatology is used as the upper boundary condition in an Environment Canada operational chemical forecast model, the forecast is improved in the vicinity of the upper tropospherelower stratosphere region. As this ozone climatology is neither dependent on a priori data or photochemical modeling, it provides independent information and insight that can supplement satellite data and model simulations and enhance our understanding of stratospheric ozone.

  9. What Would Have Happened to the Ozone Layer if Chlorofluorocarbons (CFCs) had not been Regulated?

    Science.gov (United States)

    Newman, Paul A.; Oman, L. D.; Douglass, A. R.; Fleming, E. L.; Frith, S. M.; Hurwitz, M. M.; Kawa, S. R.; Jackman, C. H.; Krotkov, N. A.; Nash, E. R.; hide

    2008-01-01

    Ozone depletion by chlorofluorocarbons (CFCs) was first proposed by Molina and Rowland in their 1974 Nature paper. Since that time, the sci entific connection between ozone losses and CFCs and other ozone depl eting substances (ODSs) has been firmly established with laboratory m easurements, atmospheric observations, and modeling research. This science research led to the implementation of international agreements t hat largely stopped the production of ODSs. In this study we use a fu lly-coupled radiation-chemical-dynamical model to simulate a future world where ODSs were never regulated and ODS production grew at an ann ual rate of 3%. In this "world avoided" simulation 1.7 % of the globa lly-average column ozone is destroyed by 2020, and 67% is destroyed b y 2065 in comparison to 1980. Large ozone depletions in the polar region become year-round rather than just seasonal as is currently observ ed in the Antarctic ozone hole. Very large temperature decreases are observed in response to circulation changes and decreased shortwave radiation absorption by ozone. Ozone levels in the tropical lower strat osphere remain constant until about 2053 and then collapse to near ze ro by 2058 as a result of heterogeneous chemical processes (as curren tly observed in the Antarctic ozone hole). The tropical cooling that triggers the ozone collapse is caused by an increase of the tropical upwelling. In response to ozone changes, ultraviolet radiation increa ses, more than doubling the erythemal radiation in the northern summer midlatitudes by 2060.

  10. The southern ozone hole as observed at Belgrano station

    OpenAIRE

    SILBERGLEIT, VIRGINIA

    2000-01-01

    The thinning of the stratosphere ozone layer in the Antarctic region is studied by considering ground-based observations at Belgrano Station (78.0°S; 38.8°W). Gumbel's first distribution of extreme values is used to evaluate the highest depletion of the Southern ozone hole for the spring months of 1998. According to the present study we predict that the expected largest yearly deviation of the ozone layer density during 1998 would be (109 ± 15)DU. This result agrees remarkably well with the m...

  11. Combined treatment of mezcal vinasses by ozonation and activated sludge.

    Science.gov (United States)

    2017-10-18

    In Mexico, mezcal production generates huge amounts of vinasses (MV) that cause negative environmental impacts. Thus, MV treatment is necessary before discharge to water bodies. Although there is no information for mezcal vinasses, similar effluents have been treated by biological processes (i.e. anaerobic and aerobic) usually complemented by oxidative chemical pretreatments (ozonation) and physico-chemical methods. In this work MV were first ozonated and followed by batch aerobic biological degradation. In the ozonation stage, organic matter removals were 4.5-11 % as COD, whereas the removal of aromatic compounds and phenols were 16-32 % and 48-83 % respectively. In the aerobic post-treatment, COD depletions up to 85 % were achieved; removals in ozone pre-treated vinasses were higher (80 to 85 %) than that of raw vinasse (69 %). It seems that ozonation preferentially attacked the recalcitrant fraction of organic matter present in the vinasses and increased its aerobic biodegradability.

  12. The Antarctic ozone hole

    International Nuclear Information System (INIS)

    Jones, Anna E

    2008-01-01

    Since the mid 1970s, the ozone layer over Antarctica has experienced massive destruction during every spring. In this article, we will consider the atmosphere, and what ozone and the ozone layer actually are. We explore the chemistry responsible for the ozone destruction, and learn about why conditions favour ozone destruction over Antarctica. For the historical perspective, the events leading up to the discovery of the 'hole' are presented, as well as the response from the international community and the measures taken to protect the ozone layer now and into the future

  13. Altitude-temporal behaviour of atmospheric ozone, temperature and wind velocity observed at Svalbard

    Czech Academy of Sciences Publication Activity Database

    Petkov, B. H.; Vitale, V.; Svendby, T. M.; Hansen, G. H.; Sobolewski, P. S.; Láska, K.; Elster, Josef; Pavlova, K.; Viola, A.; Mazzola, M.; Lupi, A.; Solomatnikova, A.

    2018-01-01

    Roč. 207, JUL 15 (2018), s. 100-110 ISSN 0169-8095 Institutional support: RVO:67985939 Keywords : Arctic atmosphere * Atmospheric ozone * Ozone depletion Subject RIV: DG - Athmosphere Sciences, Meteorology OBOR OECD: Meteorology and atmospheric sciences Impact factor: 3.778, year: 2016

  14. Halo Star Lithium Depletion

    International Nuclear Information System (INIS)

    Pinsonneault, M. H.; Walker, T. P.; Steigman, G.; Narayanan, Vijay K.

    1999-01-01

    The depletion of lithium during the pre-main-sequence and main-sequence phases of stellar evolution plays a crucial role in the comparison of the predictions of big bang nucleosynthesis with the abundances observed in halo stars. Previous work has indicated a wide range of possible depletion factors, ranging from minimal in standard (nonrotating) stellar models to as much as an order of magnitude in models that include rotational mixing. Recent progress in the study of the angular momentum evolution of low-mass stars permits the construction of theoretical models capable of reproducing the angular momentum evolution of low-mass open cluster stars. The distribution of initial angular momenta can be inferred from stellar rotation data in young open clusters. In this paper we report on the application of these models to the study of lithium depletion in main-sequence halo stars. A range of initial angular momenta produces a range of lithium depletion factors on the main sequence. Using the distribution of initial conditions inferred from young open clusters leads to a well-defined halo lithium plateau with modest scatter and a small population of outliers. The mass-dependent angular momentum loss law inferred from open cluster studies produces a nearly flat plateau, unlike previous models that exhibited a downward curvature for hotter temperatures in the 7Li-Teff plane. The overall depletion factor for the plateau stars is sensitive primarily to the solar initial angular momentum used in the calibration for the mixing diffusion coefficients. Uncertainties remain in the treatment of the internal angular momentum transport in the models, and the potential impact of these uncertainties on our results is discussed. The 6Li/7Li depletion ratio is also examined. We find that the dispersion in the plateau and the 6Li/7Li depletion ratio scale with the absolute 7Li depletion in the plateau, and we use observational data to set bounds on the 7Li depletion in main-sequence halo

  15. Maximizing percentage depletion in solid minerals

    International Nuclear Information System (INIS)

    Tripp, J.; Grove, H.D.; McGrath, M.

    1982-01-01

    This article develops a strategy for maximizing percentage depletion deductions when extracting uranium or other solid minerals. The goal is to avoid losing percentage depletion deductions by staying below the 50% limitation on taxable income from the property. The article is divided into two major sections. The first section is comprised of depletion calculations that illustrate the problem and corresponding solutions. The last section deals with the feasibility of applying the strategy and complying with the Internal Revenue Code and appropriate regulations. Three separate strategies or appropriate situations are developed and illustrated. 13 references, 3 figures, 7 tables

  16. Comparing Model Ozone Loss during the SOLVE and SOLVE-2 Winters

    Science.gov (United States)

    Drdla, K.

    2003-01-01

    Model simulations have been used to analyze the factors influencing ozone loss during the 1999-2000 and 2002-2003 js. For both winters, the evolution of the Arctic vortex from November to April has been simulated using a trajectory-based microphysical and photochemical model. Extensive PSC formation and strong ozone depletion are evident in both winters. However, the ozone loss begins earlier in the 2002-2003 winter, with significant ozone depletion by early January. Analysis of the model results shows that during December 2002 not only cold temperatures but also the vortex structure was critical, allowing PSC-processed air parcels to experience significant solar exposure. The resultant ozone loss can be differentiated from ozone loss that occurs in the springtime, in particular because of the continued exposure to PSCs. For example, chlorine reactivation by the PSCs causes ozone loss to be insensitive to denitrification. Therefore, diagnosing the extent of ozone loss early in the winter is critical In understanding the overall winter-long ozone depletion.

  17. Ozone-Depleting Substances on the Black Market

    Science.gov (United States)

    If you are a wholesaler, distributor, or retailer of chlorofluorocarbons (CFCs) or hydrochlorofluorocarbons (HCFCs), you are responsible for ensuring the CFCs/HCFCs you buy are legal. Learn about the penalties of knowingly buying or possessing illegal CFCs

  18. The human health chapter of climate change and ozone depletion ...

    African Journals Online (AJOL)

    Climate change is one of the greatest emerging threats of the 21st century. There is much scientific evidence that climate change is giving birth to direct health events including more frequent weather extremes, increase in epidemics, food and water scarcity. Indirect risks to health are related to changes in temperature and ...

  19. Effect of greenhouse gas emissions on stratospheric ozone depletion

    NARCIS (Netherlands)

    Velders GJM; LLO

    1997-01-01

    De aantasting van de ozonlaag wordt voornamelijk veroorzaakt door de toename in emissie van chloor- en broomhoudende verbindingen als CFK's, halonen, koolstoftetrachloride, methylchloroform en methylbromide. Emissies van broeikasgassen kunnen de aantasting van de ozonlaag be-invloeden via

  20. Contribution of some ozone depleting substances (ODS) and ...

    Indian Academy of Sciences (India)

    3Department of Chemistry, Howrah Zilla School, Howrah 711 101, India. ∗ ... change. The gases in an atmosphere that absorb and emit radiation within the thermal infrared range are known .... The Kyoto Protocol determines the international.

  1. Ozone Antimicrobial Efficacy

    Science.gov (United States)

    Ozone is a potent germicide that has been used extensively for water purification. In Europe, 90 percent of the municipal water systems are treated with ozone, and in France, ozone has been used to treat drinking water since 1903. However, there is limited information on the bioc...

  2. On the Size of the Antarctic Ozone Hole

    Science.gov (United States)

    Newman, Paul A.; Nash, Eric R.; Kawa, S. Randolph

    2002-01-01

    The Antarctic ozone hole is a region of extremely large ozone depletion that is roughly centered over the South Pole. Since 1979, the area coverage of the ozone hole has grown from near zero size to over 24 Million sq km. In the 8-year period from 1981 to 1989, the area expanded by 18 Million sq km. During the last 5 years, the hole has been observed to exceed 25 Million sq km over brief periods. In the spring of 2002, the size of the ozone hole barely reached 20 Million sq km for only a couple of days. We will review these size observations, the size trends, and the interannual variability of the size. The area is derived from the area enclosed by the 220 DU total ozone contour. We will discuss the rationale for the choice of 220 DU: 1) it is located near the steep gradient between southern mid-latitudes and the polar region, and 2) 220 DU is a value that is lower than the pre-1979 ozone observations over Antarctica during the spring period. The phenomenal growth of the ozone hole was directly caused by the increases of chlorine and bromine compounds in the stratosphere. In this talk, we will show the relationship of the ozone hole's size to the interannual variability of Antarctic spring temperatures. In addition, we will show the relationship of these same temperatures to planetary-scale wave forcings.

  3. Lagrangian Transport Calculations Using UARS Data. Part 2; Ozone

    Science.gov (United States)

    Manney, Gloria L.; Zurek, R. W.; Froidevaux, L.; Waters, J. W.; ONeill, A.; Swinbank, R.

    1995-01-01

    Trajectory calculations are used to examine ozone transport in the polar winter stratosphere during periods of the Upper Atmosphere Research Satellite (UARS) observations. The value of these calculations for determining mass transport was demonstrated previously using UARS observations of long-lived tracers, In the middle stratosphere, the overall ozone behavior observed by the Microwave Limb Sounder in the polar vortex is reproduced by this purely dynamical model. Calculations show the evolution of ozone in the lower stratosphere during early winter to be dominated by dynamics in December 1992 in the Arctic. Calculations for June 1992 in the Antarctic show evidence of chemical ozone destruction and indicate that approx. 50% of the chemical destruction may be masked by dynamical effects, mainly diabatic descent, which bring higher ozone into the lower-stratospheric vortex. Estimating differences between calculated and observed fields suggests that dynamical changes masked approx. 20% - 35% of chemical ozone loss during late February and early March 1993 in the Arctic. In the Antarctic late winter, in late August and early September 1992, below approx. 520 K, the evolution of vortex-averaged ozone is entirely dominated by chemical effects; above this level, however, chemical ozone depletion can be partially or completely masked by dynamical effects. Our calculations for 1992 showed that chemical loss was nearly completely compensated by increases due to diabatic descent at 655 K.

  4. Earth's ozone layer

    International Nuclear Information System (INIS)

    Lasa, J.

    1991-01-01

    The paper contain the actual results of investigations of the influence of the human activity on the Earth's ozone layer. History of the ozone measurements and of the changes in its concentrations within the last few years are given. The influence of the trace gases on both local and global ozone concentrations are discussed. The probable changes of the ozone concentrations are presented on the basis of the modelling investigations. The effect of a decrease in global ozone concentration on human health and on biosphere are also presented. (author). 33 refs, 36 figs, 5 tabs

  5. Low Ozone over Europe Doesn't Mean the Sky Is Falling, Its Actually Rising

    Science.gov (United States)

    Strahan, Susan; Newman, Paul; Steenrod, Stephen

    2016-01-01

    Data Sources: NASA Aura Microwave Limb Sounder (MLS) (O3 profiles and columns), NASA Global Modeling Initiative (GMI) Chemistry and Transport Model (calculated O3depletion), and MERRA Tropopause Heights. Technical Description of Figures: The left graphics show MLS northern hemisphere stratospheric column ozone on Feb. 1, 2016. Very low columns are seen over the UK and Europe (<225 DU, inside dashed circle). The lower graphic shows the GMI-calculated O3 depletion. It's very small, suggesting the low O3 does not indicate significant depletion. The right graphics show how the high tropopause height in this region explains the observed low ozone. The lower panel shows that the high tropopause on Feb. 1 lifts the O3 profile compared to a typical profile found earlier in winter. This motion lifts the profile to lower pressures thus reducing the total column. The GMI Model shows only 4 Dobson Units (DU) of O3 depletion even though the column is more than 100 DU lower than one month earlier. Scientific significant and societal relevance: To quantitatively understand anthropogenic impacts to the stratospheric ozone layer, we must be able to distinguish between low ozone caused by ozone depleting substances and that caused by natural dynamical variability in the atmosphere. Observations and realistic simulations of atmospheric composition are both required in order to separate natural and anthropogenic ozone variability.

  6. Alert with destruction of stratospheric ozone: 95 Nobel Prize Winners

    International Nuclear Information System (INIS)

    Santamaria, J.; Zurita, E.

    1995-01-01

    After briefly summarizing the discoveries of the 95 Nobel Prize Winners in Chemistry related to the threats to the ozone layer by chemical pollutants, we make a soft presentation of the overall problem of stratospheric ozone, starting with the destructive catalytic cycles of the pollutant-based free radicals, following with the diffusion mathematical models in Atmospheric Chemistry, and ending with the increasing annual drama of the ozone hole in the Antarctica. (Author)

  7. The Abiotic Depletion Potential: Background, Updates, and Future

    Directory of Open Access Journals (Sweden)

    Lauran van Oers

    2016-03-01

    Full Text Available Depletion of abiotic resources is a much disputed impact category in life cycle assessment (LCA. The reason is that the problem can be defined in different ways. Furthermore, within a specified problem definition, many choices can still be made regarding which parameters to include in the characterization model and which data to use. This article gives an overview of the problem definition and the choices that have been made when defining the abiotic depletion potentials (ADPs for a characterization model for abiotic resource depletion in LCA. Updates of the ADPs since 2002 are also briefly discussed. Finally, some possible new developments of the impact category of abiotic resource depletion are suggested, such as redefining the depletion problem as a dilution problem. This means taking the reserves in the environment and the economy into account in the reserve parameter and using leakage from the economy, instead of extraction rate, as a dilution parameter.

  8. Distribution and urban-suburban differences in ground-level ozone and its precursors over Shenyang, China

    Science.gov (United States)

    Liu, Ningwei; Ren, Wanhui; Li, Xiaolan; Ma, Xiaogang; Zhang, Yunhai; Li, Bingkun

    2018-03-01

    Hourly mixing ratio data of ground-level ozone and its main precursors at ambient air quality monitoring sites in Shenyang during 2013-2015 were used to survey spatiotemporal variations in ozone. Then, the transport of ozone and its precursors among urban, suburban, and rural sites was examined. The correlations between ozone and some key meteorological factors were also investigated. Ozone and O x mixing ratios in Shenyang were higher during warm seasons and lower during cold ones, while ozone precursors followed the opposite cycle. Ozone mixing ratios reached maximum and minimum values in the afternoon and morning, respectively, reflecting the significant influence of photochemical production during daytime and depletion via titration during nighttime. Compared to those in downtown Shenyang, ozone mixing ratios were higher and the occurrence of peak values were later in suburban and rural areas downwind of the prevailing wind. The differences were most significant in summer, when the ozone mixing ratios at one suburban downwind site reached a maximum value of 35.6 ppb higher than those at the downtown site. This suggests that photochemical production processes were significant during the transport of ozone precursors, particularly in warm seasons with sufficient sunlight. Temperature, total radiation, and wind speed all displayed positive correlations with ozone concentration, reflecting their important role in accelerating ozone formation. Generally, the correlations between ozone and meteorological factors were slightly stronger at suburban sites than in urban areas, indicating that ozone levels in suburban areas were more sensitive to these meteorological factors.

  9. Monitoring the consequences of decreased ozone protection: The NSF ultraviolet radiation monitoring network

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    The effects of decreased protection from ultraviolet radiation are as troubling as the continuing depletion of stratospheric ozone. Evidence exists to clearly link ozone depletion to changes in the antarctic marine environment. Results of two 1992 papers are summarized here. Enhanced exposure to mid-range UV radiation was found to be affecting marine ecosystems with a recorded 6-12 percent reduction in primary productivity directly related to the ozone layer depletion. In another experiment, a model was developed indicating that the ozone hole could reduce near-surface photosynthesis by as much as 12-15 percent. The NSF UV monitoring system in place for these and other experiments uses a spectroradiometer, making hourly, high-resolution measurements of the distribution of UV surface irradiance

  10. Impact of future nitrous oxide and carbon dioxide emissions on the stratospheric ozone layer

    International Nuclear Information System (INIS)

    Stolarski, Richard S; Waugh, Darryn W; Douglass, Anne R; Oman, Luke D

    2015-01-01

    The atmospheric levels of human-produced chlorocarbons and bromocarbons are projected to make only small contributions to ozone depletion by 2100. Increases in carbon dioxide (CO 2 ) and nitrous oxide (N 2 O) will become increasingly important in determining the future of the ozone layer. N 2 O increases lead to increased production of nitrogen oxides (NO x ), contributing to ozone depletion. CO 2 increases cool the stratosphere and affect ozone levels in several ways. Cooling decreases the rate of many photochemical reactions, thus slowing ozone loss rates. Cooling also increases the chemical destruction of nitrogen oxides, thereby moderating the effect of increased N 2 O on ozone depletion. The stratospheric ozone level projected for the end of this century therefore depends on future emissions of both CO 2 and N 2 O. We use a two-dimensional chemical transport model to explore a wide range of values for the boundary conditions for CO 2 and N 2 O, and find that all of the current scenarios for growth of greenhouse gases project the global average ozone to be larger in 2100 than in 1960. (letter)

  11. Interactive ozone and methane chemistry in GISS-E2 historical and future climate simulations

    Directory of Open Access Journals (Sweden)

    D. T. Shindell

    2013-03-01

    Full Text Available The new generation GISS climate model includes fully interactive chemistry related to ozone in historical and future simulations, and interactive methane in future simulations. Evaluation of ozone, its tropospheric precursors, and methane shows that the model captures much of the large-scale spatial structure seen in recent observations. While the model is much improved compared with the previous chemistry-climate model, especially for ozone seasonality in the stratosphere, there is still slightly too rapid stratospheric circulation, too little stratosphere-to-troposphere ozone flux in the Southern Hemisphere and an Antarctic ozone hole that is too large and persists too long. Quantitative metrics of spatial and temporal correlations with satellite datasets as well as spatial autocorrelation to examine transport and mixing are presented to document improvements in model skill and provide a benchmark for future evaluations. The difference in radiative forcing (RF calculated using modeled tropospheric ozone versus tropospheric ozone observed by TES is only 0.016 W m−2. Historical 20th Century simulations show a steady increase in whole atmosphere ozone RF through 1970 after which there is a decrease through 2000 due to stratospheric ozone depletion. Ozone forcing increases throughout the 21st century under RCP8.5 owing to a projected recovery of stratospheric ozone depletion and increases in methane, but decreases under RCP4.5 and 2.6 due to reductions in emissions of other ozone precursors. RF from methane is 0.05 to 0.18 W m−2 higher in our model calculations than in the RCP RF estimates. The surface temperature response to ozone through 1970 follows the increase in forcing due to tropospheric ozone. After that time, surface temperatures decrease as ozone RF declines due to stratospheric depletion. The stratospheric ozone depletion also induces substantial changes in surface winds and the Southern Ocean circulation, which may play a role in

  12. Catalyzed ozonation process with GAC and metal doped-GAC for removing organic pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Oh, B.S.; Kang, J.W.; Song, S.J. [Dept. of Environmental Engineering, Yonsei Univ., Wonju Campus, Hyeung-up Myon (Korea); Oh, H.J. [Water Resources and Environmental Research Div., Korea Inst. of Construction Technology, Kyonggi-do (Korea)

    2003-07-01

    This study investigates the catalytic role of granular activated carbon (GAC) and metal (Mn or Fe) doped-GAC in transforming ozone into more reactive secondary radicals such as OH radicals for the treatment of wastewater. The GAC doped with Mn showed the highest catalytic performance of ozone decomposition into OH radical (OH{sup .}) production. Likewise, activated carbon alone could accelerate ozone decomposition, resulting in the formation of OH{sup .}s. In the presence of promoters, ozone depletion rate was enhanced further by the Mn-GAC catalyst system even in an acidic pH aqueous condition. (orig.)

  13. Sensibility analysis of fuel depletion using different nuclear fuel depletion codes

    International Nuclear Information System (INIS)

    Martins, F.; Velasquez, C.E.; Castro, V.F.; Pereira, C.; Silva, C. A. Mello da

    2017-01-01

    Nowadays, the utilization of different nuclear codes to perform the depletion and criticality calculations has been used to simulated nuclear reactors problems. Therefore, the goal is to analyze the sensibility of the fuel depletion of a PWR assembly using three different nuclear fuel depletion codes. The burnup calculations are performed using the codes MCNP5/ORIGEN2.1 (MONTEBURNS), KENO-VI/ORIGEN-S (TRITONSCALE6.0) and MCNPX (MCNPX/CINDER90). Each nuclear code performs the burnup using different depletion codes. Each depletion code works with collapsed energies from a master library in 1, 3 and 63 groups, respectively. Besides, each code uses different ways to obtain neutron flux that influences the depletions calculation. The results present a comparison of the neutronic parameters and isotopes composition such as criticality and nuclides build-up, the deviation in results are going to be assigned to features of the depletion code in use, such as the different radioactive decay internal libraries and the numerical method involved in solving the coupled differential depletion equations. It is also seen that the longer the period is and the more time steps are chosen, the larger the deviation become. (author)

  14. Sensibility analysis of fuel depletion using different nuclear fuel depletion codes

    Energy Technology Data Exchange (ETDEWEB)

    Martins, F.; Velasquez, C.E.; Castro, V.F.; Pereira, C.; Silva, C. A. Mello da, E-mail: felipmartins94@gmail.com, E-mail: carlosvelcab@hotmail.com, E-mail: victorfariascastro@gmail.com, E-mail: claubia@nuclear.ufmg.br, E-mail: clarysson@nuclear.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear

    2017-07-01

    Nowadays, the utilization of different nuclear codes to perform the depletion and criticality calculations has been used to simulated nuclear reactors problems. Therefore, the goal is to analyze the sensibility of the fuel depletion of a PWR assembly using three different nuclear fuel depletion codes. The burnup calculations are performed using the codes MCNP5/ORIGEN2.1 (MONTEBURNS), KENO-VI/ORIGEN-S (TRITONSCALE6.0) and MCNPX (MCNPX/CINDER90). Each nuclear code performs the burnup using different depletion codes. Each depletion code works with collapsed energies from a master library in 1, 3 and 63 groups, respectively. Besides, each code uses different ways to obtain neutron flux that influences the depletions calculation. The results present a comparison of the neutronic parameters and isotopes composition such as criticality and nuclides build-up, the deviation in results are going to be assigned to features of the depletion code in use, such as the different radioactive decay internal libraries and the numerical method involved in solving the coupled differential depletion equations. It is also seen that the longer the period is and the more time steps are chosen, the larger the deviation become. (author)

  15. Cooling tower water conditioning study. [using ozone

    Science.gov (United States)

    Humphrey, M. F.; French, K. R.

    1979-01-01

    Successful elimination of cooling tower treatment chemicals was demonstrated. Three towers functioned for long periods of time with ozone as the only treatment for the water. The water in the systems was reused as much as 30 times (cycles of concentration) without deleterious effects to the heat exchangers. Actual system blow-down was eliminated and the only makeup water added was that required to replace the evaporation and mist entrainment losses. Minimum water savings alone are approximately 75.1 1/kg/year. Cost estimates indicate that a savings of 55 percent was obtained on the systems using ozone. A major problem experienced in the use of ozone for cooling tower applications was the difficulty of accurate concentration measurements. The ability to control the operational characteristics relies on easily and accurately determined concentration levels. Present methods of detection are subject to inaccuracies because of interfering materials and the rapid destruction of the ozone.

  16. Research program on climatic and environmental problems. Summary of Norwegian climatic and ozone layer research in the last decade and important research tasks in the future; Forskningsprogram om klima- og ozonspoersmaal. Oppsummering av norsk klima- og ozonlagsforskning de siste ti aarene og viktige forskningsoppgaver i framtiden

    Energy Technology Data Exchange (ETDEWEB)

    Dahlin, Elin [ed.

    1999-04-01

    This report includes 44 abstracts, 21 lectures and 23 posters from a workshop arranged by the Norwegian Research Council, the Steering Group for the Norwegian research programme for changes in climate and ozone layer. The topics dealt with are: Results from the research, the greenhouse effect and its influence on the climate of today, the interactions between ocean and climate, pollution influence on ozone layer changes, the UV radiation effects and their influence on the environment, climatic modelling and forecasting, ecological problems related to climatic and environmental changes, the climatic influences of human energy utilisation and suggestions for future research.

  17. Mortality tradeoff between air quality and skin cancer from changes in stratospheric ozone

    Science.gov (United States)

    Eastham, Sebastian D.; Keith, David W.; Barrett, Steven R. H.

    2018-03-01

    Skin cancer mortality resulting from stratospheric ozone depletion has been widely studied. Similarly, there is a deep body of literature on surface ozone and its health impacts, with modeling and observational studies demonstrating that surface ozone concentrations can be increased when stratospheric air mixes to the Earth’s surface. We offer the first quantitative estimate of the trade-off between these two effects, comparing surface air quality benefits and UV-related harms from stratospheric ozone depletion. Applying an idealized ozone loss term in the stratosphere of a chemistry-transport model for modern-day conditions, we find that each Dobson unit of stratospheric ozone depletion results in a net decrease in the global annual mortality rate of ~40 premature deaths per billion population (d/bn/DU). The impacts are spatially heterogeneous in sign and magnitude, composed of a reduction in premature mortality rate due to ozone exposure of ~80 d/bn/DU concentrated in Southeast Asia, and an increase in skin cancer mortality rate of ~40 d/bn/DU, mostly in Western Europe. This is the first study to quantify air quality benefits of stratospheric ozone depletion, and the first to find that marginal decreases in stratospheric ozone around modern-day values could result in a net reduction in global mortality due to competing health impact pathways. This result, which is subject to significant methodological uncertainty, highlights the need to understand the health and environmental trade-offs involved in policy decisions regarding anthropogenic influences on ozone chemistry over the 21st century.

  18. Impacts of stratospheric sulfate geoengineering on tropospheric ozone

    Science.gov (United States)

    Xia, Lili; Nowack, Peer J.; Tilmes, Simone; Robock, Alan

    2017-10-01

    A range of solar radiation management (SRM) techniques has been proposed to counter anthropogenic climate change. Here, we examine the potential effects of stratospheric sulfate aerosols and solar insolation reduction on tropospheric ozone and ozone at Earth's surface. Ozone is a key air pollutant, which can produce respiratory diseases and crop damage. Using a version of the Community Earth System Model from the National Center for Atmospheric Research that includes comprehensive tropospheric and stratospheric chemistry, we model both stratospheric sulfur injection and solar irradiance reduction schemes, with the aim of achieving equal levels of surface cooling relative to the Representative Concentration Pathway 6.0 scenario. This allows us to compare the impacts of sulfate aerosols and solar dimming on atmospheric ozone concentrations. Despite nearly identical global mean surface temperatures for the two SRM approaches, solar insolation reduction increases global average surface ozone concentrations, while sulfate injection decreases it. A fundamental difference between the two geoengineering schemes is the importance of heterogeneous reactions in the photochemical ozone balance with larger stratospheric sulfate abundance, resulting in increased ozone depletion in mid- and high latitudes. This reduces the net transport of stratospheric ozone into the troposphere and thus is a key driver of the overall decrease in surface ozone. At the same time, the change in stratospheric ozone alters the tropospheric photochemical environment due to enhanced ultraviolet radiation. A shared factor among both SRM scenarios is decreased chemical ozone loss due to reduced tropospheric humidity. Under insolation reduction, this is the dominant factor giving rise to the global surface ozone increase. Regionally, both surface ozone increases and decreases are found for both scenarios; that is, SRM would affect regions of the world differently in terms of air pollution. In conclusion

  19. Impacts of stratospheric sulfate geoengineering on tropospheric ozone

    Directory of Open Access Journals (Sweden)

    L. Xia

    2017-10-01

    Full Text Available A range of solar radiation management (SRM techniques has been proposed to counter anthropogenic climate change. Here, we examine the potential effects of stratospheric sulfate aerosols and solar insolation reduction on tropospheric ozone and ozone at Earth's surface. Ozone is a key air pollutant, which can produce respiratory diseases and crop damage. Using a version of the Community Earth System Model from the National Center for Atmospheric Research that includes comprehensive tropospheric and stratospheric chemistry, we model both stratospheric sulfur injection and solar irradiance reduction schemes, with the aim of achieving equal levels of surface cooling relative to the Representative Concentration Pathway 6.0 scenario. This allows us to compare the impacts of sulfate aerosols and solar dimming on atmospheric ozone concentrations. Despite nearly identical global mean surface temperatures for the two SRM approaches, solar insolation reduction increases global average surface ozone concentrations, while sulfate injection decreases it. A fundamental difference between the two geoengineering schemes is the importance of heterogeneous reactions in the photochemical ozone balance with larger stratospheric sulfate abundance, resulting in increased ozone depletion in mid- and high latitudes. This reduces the net transport of stratospheric ozone into the troposphere and thus is a key driver of the overall decrease in surface ozone. At the same time, the change in stratospheric ozone alters the tropospheric photochemical environment due to enhanced ultraviolet radiation. A shared factor among both SRM scenarios is decreased chemical ozone loss due to reduced tropospheric humidity. Under insolation reduction, this is the dominant factor giving rise to the global surface ozone increase. Regionally, both surface ozone increases and decreases are found for both scenarios; that is, SRM would affect regions of the world differently in terms of air

  20. Stratospheric ozone measurements at Arosa (Switzerland): history and scientific relevance

    Science.gov (United States)

    Staehelin, Johannes; Viatte, Pierre; Stübi, Rene; Tummon, Fiona; Peter, Thomas

    2018-05-01

    Climatic Observatory (LKO) in Arosa (Switzerland), marking the beginning of the world's longest series of total (or column) ozone measurements. They were driven by the recognition that atmospheric ozone is important for human health, as well as by scientific curiosity about what was, at the time, an ill characterised atmospheric trace gas. From around the mid-1950s to the beginning of the 1970s studies of high atmosphere circulation patterns that could improve weather forecasting was justification for studying stratospheric ozone. In the mid-1970s, a paradigm shift occurred when it became clear that the damaging effects of anthropogenic ozone-depleting substances (ODSs), such as long-lived chlorofluorocarbons, needed to be documented. This justified continuing the ground-based measurements of stratospheric ozone. Levels of ODSs peaked around the mid-1990s as a result of a global environmental policy to protect the ozone layer, implemented through the 1987 Montreal Protocol and its subsequent amendments and adjustments. Consequently, chemical destruction of stratospheric ozone started to slow around the mid-1990s. To some extent, this raises the question as to whether continued ozone observation is indeed necessary. In the last decade there has been a tendency to reduce the costs associated with making ozone measurements globally including at Arosa. However, the large natural variability in ozone on diurnal, seasonal, and interannual scales complicates the capacity for demonstrating the success of the Montreal Protocol. Chemistry-climate models also predict a super-recovery of the ozone layer at mid-latitudes in the second half of this century, i.e. an increase of ozone concentrations beyond pre-1970 levels, as a consequence of ongoing climate change. These factors, and identifying potentially unexpected stratospheric responses to climate change, support the continued need to document stratospheric ozone changes. This is particularly valuable at the Arosa site, due

  1. The stratospheric ozone and the ozone layer

    International Nuclear Information System (INIS)

    Zea Mazo, Jorge Anibal; Leon Aristizabal Gloria Esperanza; Eslava Ramirez Jesus Antonio

    2000-01-01

    An overview is presented of the principal characteristics of the stratospheric ozone in the Earth's atmosphere, with particular emphasis on the tropics and the ozone hole over the poles. Some effects produced in the atmosphere as a consequence of the different human activities will be described, and some data on stratospheric ozone will be shown. We point out the existence of a nucleus of least ozone in the tropics, stretching from South America to central Africa, with annual mean values less than 240 DU, a value lower than in the middle latitudes and close to the mean values at the South Pole. The existence of such a minimum is confirmed by mean values from measurements made on satellites or with earthbound instruments, for different sectors in Colombia, like Medellin, Bogota and Leticia

  2. The chemistry of stratospheric ozone

    International Nuclear Information System (INIS)

    Kurylo, M.J.

    1990-01-01

    Compelling observational evidence shows that the chemical composition of the atmosphere is changing on a global scale at a rapid rate. The atmospheric concentrations of carbon dioxide (CO 2 ), methane (CH 4 ), nitrous oxide (N 2 O), and chloroflourocarbons (CFCs) 11 (CFCl 3 ) and 12 (CF 2 Cl 2 ) are currently increasing at rate ranging from 0.2 to 5% per year. The concentrations of other cases, including CFC 113 (C 2 F 3 Cl 3 ) and halons 121 (CF 2 ClBr) and 1301 (CF 3 Br), important in the ozone depletion and global warming issues, are also increasing (at even faster rates). These changes in atmospheric composition reflect, on one part, the metabolism of the biosphere and, on another, the broad range of influencing human activities, including industrial, agricultural, and combustion practices. The only known sources of the CFCs and halons are industrial production prior to their use as aerosol propellants, refrigerants, foam blowing agents, solvents, and fire retardants. One of our greatest difficulties in accurately predicting future changes in ozone or global warming is our inability to predict the future atmospheric concentrations of these gases. This paper discusses the role of the biosphere in regulating the emissions of gases such as CH 4 , CO 2 , N 2 O, and methyl chloride (CH 3 Cl) to the atmosphere as well as the most probable future industrial release rates of the CFCs, halons, N 2 O, carbon monoxide (CO), and CO 2 , which depend upon a variety of economic, social, and political factors

  3. Lessons from the Ozone Hole

    International Nuclear Information System (INIS)

    Benedick, R.E.

    1991-01-01

    On September 16, 1987, a treaty was signed that was unique in that annals of international diplomacy. The Montreal Protocol on substrates that Deplete the Ozone Layer mandated significant reductions in the use of chlorofluorocarbons (CFCs) and halons. Perhaps the most extraordinary aspect of the Montreal Protocol was that it imposed substantial short-term economic costs in order to protect human health and the environment against speculative future dangers - dangers which rested on scientific theories rather than on proven facts. Unlike environmental agreements of the past, it was not a response to harmful events, but rather preventive action on a global scale. In the realm of international relations, there will always be resistance to change and there will always be uncertainties - political, economic, scientific, psychological. The ozone negotiations demonstrated that the international community, even in the real world of ambiguity and imperfect knowledge, can be capable of undertaking difficult cooperative actions for the benefit of future generation. The Montreal Protocol may well be a paradigm for international cooperation on the challenge of global warming

  4. Depleted uranium: A DOE management guide

    International Nuclear Information System (INIS)

    1995-10-01

    The U.S. Department of Energy (DOE) has a management challenge and financial liability in the form of 50,000 cylinders containing 555,000 metric tons of depleted uranium hexafluoride (UF 6 ) that are stored at the gaseous diffusion plants. The annual storage and maintenance cost is approximately $10 million. This report summarizes several studies undertaken by the DOE Office of Technology Development (OTD) to evaluate options for long-term depleted uranium management. Based on studies conducted to date, the most likely use of the depleted uranium is for shielding of spent nuclear fuel (SNF) or vitrified high-level waste (HLW) containers. The alternative to finding a use for the depleted uranium is disposal as a radioactive waste. Estimated disposal costs, utilizing existing technologies, range between $3.8 and $11.3 billion, depending on factors such as applicability of the Resource Conservation and Recovery Act (RCRA) and the location of the disposal site. The cost of recycling the depleted uranium in a concrete based shielding in SNF/HLW containers, although substantial, is comparable to or less than the cost of disposal. Consequently, the case can be made that if DOE invests in developing depleted uranium shielded containers instead of disposal, a long-term solution to the UF 6 problem is attained at comparable or lower cost than disposal as a waste. Two concepts for depleted uranium storage casks were considered in these studies. The first is based on standard fabrication concepts previously developed for depleted uranium metal. The second converts the UF 6 to an oxide aggregate that is used in concrete to make dry storage casks

  5. Oxidation of ammonium sulfite in aqueous solutions using ozone technology

    Science.gov (United States)

    Li, Yue; Shang, Kefeng; Lu, Na; Li, Jie; Wu, Yan

    2013-03-01

    How to deal with unstable ammonium sulfite, the byproduct of flue gas desulfuration by ammonia absorption methods, has been a difficult problem in recent years. Oxidation of ammonium sulfite in aqueous solutions using ozone produced by a surface discharge system was investigated in the paper. The oxidation efficiency of ammonium sulfite by ozone and traditional air aeration were compared, and the factors including ozone concentration, gas flow rate, initial concentration of ammonium sulfite solution and reaction temperature were discussed. The results show that the oxidation efficiency of ammonium sulfite by ozone technology reached nearly 100% under the optimum conditions, which had a significant increase compared with that by air aeration.

  6. Ozone therapy in periodontics.

    Science.gov (United States)

    Gupta, G; Mansi, B

    2012-02-22

    Gingival and Periodontal diseases represent a major concern both in dentistry and medicine. The majority of the contributing factors and causes in the etiology of these diseases are reduced or treated with ozone in all its application forms (gas, water, oil). The beneficial biological effects of ozone, its anti-microbial activity, oxidation of bio-molecules precursors and microbial toxins implicated in periodontal diseases and its healing and tissue regeneration properties, make the use of ozone well indicated in all stages of gingival and periodontal diseases. The primary objective of this article is to provide a general review about the clinical applications of ozone in periodontics. The secondary objective is to summarize the available in vitro and in vivo studies in Periodontics in which ozone has been used. This objective would be of importance to future researchers in terms of what has been tried and what the potentials are for the clinical application of ozone in Periodontics.

  7. Ground-level Ozone (Smog) Information | New England | US ...

    Science.gov (United States)

    2017-09-05

    Ground-level ozone presents a serious air quality problem in New England. In 2008, EPA revised the ozone standard to a level of 0.075 parts per million, 8-hour average. Over the last 5 years (2006 through 2010), there have been an average of 31 days per summer when New England's air exceeded this standard.

  8. What Controls the Size of the Antarctic Ozone Hole?

    Science.gov (United States)

    Bhartia, P. K. (Technical Monitor); Newman, Paul A.; Kawa, S. Randolph; Nash, Eric R.

    2002-01-01

    The Antarctic ozone hole is a region of extremely large ozone depletion that is roughly centered over the South Pole. Since 1979, the area coverage of the ozone hole has grown from near zero size to over 24 Million square kilometers. In the 8-year period from 1981 to 1989, the area expanded by 18 Million square kilometers. During the last 5 years, the hole has been observed to exceed 25 Million square kilometers over brief periods. We will review these size observations, the size trends, and the interannual variability of the size. The area is derived from the area enclosed by the 220 DU total ozone contour. We will discuss the rationale for the choice of 220 DU: 1) it is located near the steep gradient between southern mid-latitudes and the polar region, and 2) 220 DU is a value that is lower than the pre- 1979 ozone observations over Antarctica during the spring period. The phenomenal growth of the ozone hole was directly caused by the increases of chlorine and bromine compounds in the stratosphere. In this talk, we will show the relationship of the ozone hole's size to the interannual variability of Antarctic spring temperatures. In addition, we will show the relationship of these same temperatures to planetary-scale wave forcings.

  9. On the theory of polar ozone holes

    International Nuclear Information System (INIS)

    Njau, E.C.

    1990-12-01

    The viable theories already proposed to explain polar ozone holes generally fall into two main categories, namely, chemical theories and dynamical theories. In both of these categories, polar stratospheric clouds (PSCs) are taken as part of the essential basis. Besides, all the dynamical theories are based upon temperature changes. Since formation of the PSCs is highly temperature-dependent, it has been concluded from recent research (e.g. see Kawahira and Hirooka) that temperature changes are a cause, not a result of ozone depletion in polar regions. On this basis, formulations are developed that represent short-term and long-term temperature variations in the polar regions due to natural processes. These variations, which are confined to a limited area around each pole, include specific oscillations with periods ranging from ∼ 2 years up to ∼ 218,597 years. Polar ozone variations are normally expected to be influenced by these temperature oscillations. It is, therefore, apparent that the generally decreasing trend observed in mean October ozone column at Halley Bay (76 deg. S, 27 deg. W) from 1956 up to 1987 is mostly caused by the decreasing phase of a combination of two natural temperature oscillations, one with a period of ∼ 70-80 years and the other with a period of ∼ 160-180 years. Contributions of other natural temperature oscillations are also mentioned and briefly discussed. (author). 35 refs, 4 figs

  10. Capital expenditure and depletion

    International Nuclear Information System (INIS)

    Rech, O.; Saniere, A.

    2003-01-01

    In the future, the increase in oil demand will be covered for the most part by non conventional oils, but conventional sources will continue to represent a preponderant share of the world oil supply. Their depletion represents a complex challenge involving technological, economic and political factors. At the same time, there is reason for concern about the decrease in exploration budgets at the major oil companies. (author)

  11. Capital expenditure and depletion

    Energy Technology Data Exchange (ETDEWEB)

    Rech, O.; Saniere, A

    2003-07-01

    In the future, the increase in oil demand will be covered for the most part by non conventional oils, but conventional sources will continue to represent a preponderant share of the world oil supply. Their depletion represents a complex challenge involving technological, economic and political factors. At the same time, there is reason for concern about the decrease in exploration budgets at the major oil companies. (author)

  12. 75 FR 25799 - Protection of Stratospheric Ozone: Listing of Substitutes for Ozone-Depleting Substances...

    Science.gov (United States)

    2010-05-10

    ..., direct expansion refrigeration systems typically found in retail food stores. We are proposing as a use... freezers and commercial refrigeration (retail food refrigerators and freezers--stand-alone units only... received will be included in the public docket without change and may be made available online at http...

  13. 76 FR 78832 - Protection of Stratospheric Ozone: Listing of Substitutes for Ozone-Depleting Substances...

    Science.gov (United States)

    2011-12-20

    ... and Other Grocery (except Convenience) Stores. Industry 722211 Limited-Service Restaurants. Industry... compound WGL--workplace guidance level WMO--World Meteorological Organization II. How does the SNAP program...) which established the process for administering the SNAP program and issued EPA's first lists...

  14. Space nuclear power requirements for ozone layer modification

    International Nuclear Information System (INIS)

    Dolan, T.J.

    1991-01-01

    This work estimates the power requirements for using photochemical processes driven by space nuclear power to counteract the Earth's ozone layer depletion. The total quantity of ozone (O 3 ) in the Earth's atmosphere is estimated to be about 4.7 x 10 37 molecules. The ozone production and destruction rates in the stratosphere are both on the order of 4.9 x 10 31 molecules/s, differing by a small fraction so that the net depletion rate is about 0.16 to 0.26% per year. The delivered optical power requirement for offsetting this depletion is estimated to be on the order of 3 GW. If the power were produced by satellite reactors at 800 km altitude (orbit decay time ∼ 300 years), some means of efficient power beaming would be needed to deliver the power to stratospheric levels (10--50 km). Ultraviolet radiation at 140--150 nm could have higher absorption rates in O 2 (leading to production of atomic oxygen, which can combine with O 2 to form O 3 ) than in ozone (leading to photodissociation of O 3 ). Potential radiation sources include H 2 lasers and direct nuclear pumping of ultraviolet fluorescers. 5 refs

  15. Past changes in the vertical distribution of ozone – Part 1: Measurement techniques, uncertainties and availability

    Directory of Open Access Journals (Sweden)

    B. Hassler

    2014-05-01

    Full Text Available Peak stratospheric chlorofluorocarbon (CFC and other ozone depleting substance (ODS concentrations were reached in the mid- to late 1990s. Detection and attribution of the expected recovery of the stratospheric ozone layer in an atmosphere with reduced ODSs as well as efforts to understand the evolution of stratospheric ozone in the presence of increasing greenhouse gases are key current research topics. These require a critical examination of the ozone changes with an accurate knowledge of the spatial (geographical and vertical and temporal ozone response. For such an examination, it is vital that the quality of the measurements used be as high as possible and measurement uncertainties well quantified. In preparation for the 2014 United Nations Environment Programme (UNEP/World Meteorological Organization (WMO Scientific Assessment of Ozone Depletion, the SPARC/IO3C/IGACO-O3/NDACC (SI2N Initiative was designed to study and document changes in the global ozone profile distribution. This requires assessing long-term ozone profile data sets in regards to measurement stability and uncertainty characteristics. The ultimate goal is to establish suitability for estimating long-term ozone trends to contribute to ozone recovery studies. Some of the data sets have been improved as part of this initiative with updated versions now available. This summary presents an overview of stratospheric ozone profile measurement data sets (ground and satellite based available for ozone recovery studies. Here we document measurement techniques, spatial and temporal coverage, vertical resolution, native units and measurement uncertainties. In addition, the latest data versions are briefly described (including data version updates as well as detailing multiple retrievals when available for a given satellite instrument. Archive location information for each data set is also given.

  16. Newly divided eosinophils limit ozone-induced airway hyperreactivity in nonsensitized guinea pigs.

    Science.gov (United States)

    Wicher, Sarah A; Jacoby, David B; Fryer, Allison D

    2017-06-01

    Ozone causes vagally mediated airway hyperreactivity and recruits inflammatory cells, including eosinophils, to lungs, where they mediate ozone-induced hyperreactivity 1 day after exposure but are paradoxically protective 3 days later. We aimed to test the role of newly divided eosinophils in ozone-induced airway hyperreactivity in sensitized and nonsensitized guinea pigs. Nonsensitized and sensitized guinea pigs were treated with 5-bromo-2-deoxyuridine (BrdU) to label newly divided cells and were exposed to air or ozone for 4 h. Later (1 or 3 days later), vagally induced bronchoconstriction was measured, and inflammatory cells were harvested from bone marrow, blood, and bronchoalveolar lavage. Ozone induced eosinophil hematopoiesis. One day after ozone, mature eosinophils dominate the inflammatory response and potentiate vagally induced bronchoconstriction. However, by 3 days, newly divided eosinophils have reached the lungs, where they inhibit ozone-induced airway hyperreactivity because depleting them with antibody to IL-5 or a TNF-α antagonist worsened vagally induced bronchoconstriction. In sensitized guinea pigs, both ozone-induced eosinophil hematopoiesis and subsequent recruitment of newly divided eosinophils to lungs 3 days later failed to occur. Thus mature eosinophils dominated the ozone-induced inflammatory response in sensitized guinea pigs. Depleting these mature eosinophils prevented ozone-induced airway hyperreactivity in sensitized animals. Ozone induces eosinophil hematopoiesis and recruitment to lungs, where 3 days later, newly divided eosinophils attenuate vagally mediated hyperreactivity. Ozone-induced hematopoiesis of beneficial eosinophils is blocked by a TNF-α antagonist or by prior sensitization. In these animals, mature eosinophils are associated with hyperreactivity. Thus interventions targeting eosinophils, although beneficial in atopic individuals, may delay resolution of airway hyperreactivity in nonatopic individuals. Copyright

  17. Chemical and Dynamical Impacts of Stratospheric Sudden Warmings on Arctic Ozone Variability

    Science.gov (United States)

    Strahan, S. E.; Douglass, A. R.; Steenrod, S. D.

    2016-01-01

    We use the Global Modeling Initiative (GMI) chemistry and transport model with Modern-Era Retrospective Analysis for Research and Applications (MERRA) meteorological fields to quantify heterogeneous chemical ozone loss in Arctic winters 2005-2015. Comparisons to Aura Microwave Limb Sounder N2O and O3 observations show the GMI simulation credibly represents the transport processes and net heterogeneous chemical loss necessary to simulate Arctic ozone. We find that the maximum seasonal ozone depletion varies linearly with the number of cold days and with wave driving (eddy heat flux) calculated from MERRA fields. We use this relationship and MERRA temperatures to estimate seasonal ozone loss from 1993 to 2004 when inorganic chlorine levels were in the same range as during the Aura period. Using these loss estimates and the observed March mean 63-90N column O3, we quantify the sensitivity of the ozone dynamical resupply to wave driving, separating it from the sensitivity of ozone depletion to wave driving. The results show that about 2/3 of the deviation of the observed March Arctic O3 from an assumed climatological mean is due to variations in O3 resupply and 13 is due to depletion. Winters with a stratospheric sudden warming (SSW) before mid-February have about 1/3 the depletion of winters without one and export less depletion to the midlatitudes. However, a larger effect on the spring midlatitude ozone comes from dynamical differences between warm and cold Arctic winters, which can mask or add to the impact of exported depletion.

  18. Application of backtracking algorithm to depletion calculations

    International Nuclear Information System (INIS)

    Wu Mingyu; Wang Shixi; Yang Yong; Zhang Qiang; Yang Jiayin

    2013-01-01

    Based on the theory of linear chain method for analytical depletion calculations, the burnup matrix is decoupled by the divide and conquer strategy and the linear chain with Markov characteristic is formed. The density, activity and decay heat of every nuclide in the chain then can be calculated by analytical solutions. Every possible reaction path of the nuclide must be considered during the linear chain establishment process. To confirm the calculation precision and efficiency, the algorithm which can cover all the reaction paths and search the paths automatically according to the problem description and precision restrictions should be found. Through analysis and comparison of several kinds of searching algorithms, the backtracking algorithm was selected to establish and calculate the linear chains in searching process using depth first search (DFS) method, forming an algorithm which can solve the depletion problem adaptively and with high fidelity. The complexity of the solution space and time was analyzed by taking into account depletion process and the characteristics of the backtracking algorithm. The newly developed depletion program was coupled with Monte Carlo program MCMG-Ⅱ to calculate the benchmark burnup problem of the first core of China Experimental Fast Reactor (CEFR) and the preliminary verification and validation of the program were performed. (authors)

  19. Optimal Allocation of Sampling Effort in Depletion Surveys

    Science.gov (United States)

    We consider the problem of designing a depletion or removal survey as part of estimating animal abundance for populations with imperfect capture or detection rates. In a depletion survey, animals are captured from a given area, counted, and withheld from the population. This proc...

  20. Pollution Control Using Ozone

    DEFF Research Database (Denmark)

    2017-01-01

    This invention relates to a method for cleaning air comprising one or more pollutants, the method comprising contacting the air with thermal decompositions products of ozone.......This invention relates to a method for cleaning air comprising one or more pollutants, the method comprising contacting the air with thermal decompositions products of ozone....

  1. The pollution by ozone

    International Nuclear Information System (INIS)

    1997-09-01

    Air pollution by ozone is increasing in spite of several points to reduce it. If the process of ozone formation are complex, the sources of this pollution are well known: first, mobile sources with automobiles (49%), boats , trains and planes (13%), then are following paints and solvents(18%), thermal power plants(11%), and finally industry processing with 5%. (N.C.)

  2. Depleted uranium management alternatives

    Energy Technology Data Exchange (ETDEWEB)

    Hertzler, T.J.; Nishimoto, D.D.

    1994-08-01

    This report evaluates two management alternatives for Department of Energy depleted uranium: continued storage as uranium hexafluoride, and conversion to uranium metal and fabrication to shielding for spent nuclear fuel containers. The results will be used to compare the costs with other alternatives, such as disposal. Cost estimates for the continued storage alternative are based on a life-cycle of 27 years through the year 2020. Cost estimates for the recycle alternative are based on existing conversion process costs and Capital costs for fabricating the containers. Additionally, the recycle alternative accounts for costs associated with intermediate product resale and secondary waste disposal for materials generated during the conversion process.

  3. Consequences of biome depletion

    International Nuclear Information System (INIS)

    Salvucci, Emiliano

    2013-01-01

    The human microbiome is an integral part of the superorganism together with their host and they have co-evolved since the early days of the existence of the human species. The modification of the microbiome as a result changes in food and social habits of human beings throughout their life history has led to the emergence of many diseases. In contrast with the Darwinian view of nature of selfishness and competence, new holistic approaches are rising. Under these views, the reconstitution of the microbiome comes out as a fundamental therapy for emerging diseases related to biome depletion.

  4. Depleted uranium management alternatives

    International Nuclear Information System (INIS)

    Hertzler, T.J.; Nishimoto, D.D.

    1994-08-01

    This report evaluates two management alternatives for Department of Energy depleted uranium: continued storage as uranium hexafluoride, and conversion to uranium metal and fabrication to shielding for spent nuclear fuel containers. The results will be used to compare the costs with other alternatives, such as disposal. Cost estimates for the continued storage alternative are based on a life-cycle of 27 years through the year 2020. Cost estimates for the recycle alternative are based on existing conversion process costs and Capital costs for fabricating the containers. Additionally, the recycle alternative accounts for costs associated with intermediate product resale and secondary waste disposal for materials generated during the conversion process

  5. Uncertainty Propagation in Monte Carlo Depletion Analysis

    International Nuclear Information System (INIS)

    Shim, Hyung Jin; Kim, Yeong-il; Park, Ho Jin; Joo, Han Gyu; Kim, Chang Hyo

    2008-01-01

    A new formulation aimed at quantifying uncertainties of Monte Carlo (MC) tallies such as k eff and the microscopic reaction rates of nuclides and nuclide number densities in MC depletion analysis and examining their propagation behaviour as a function of depletion time step (DTS) is presented. It is shown that the variance of a given MC tally used as a measure of its uncertainty in this formulation arises from four sources; the statistical uncertainty of the MC tally, uncertainties of microscopic cross sections and nuclide number densities, and the cross correlations between them and the contribution of the latter three sources can be determined by computing the correlation coefficients between the uncertain variables. It is also shown that the variance of any given nuclide number density at the end of each DTS stems from uncertainties of the nuclide number densities (NND) and microscopic reaction rates (MRR) of nuclides at the beginning of each DTS and they are determined by computing correlation coefficients between these two uncertain variables. To test the viability of the formulation, we conducted MC depletion analysis for two sample depletion problems involving a simplified 7x7 fuel assembly (FA) and a 17x17 PWR FA, determined number densities of uranium and plutonium isotopes and their variances as well as k ∞ and its variance as a function of DTS, and demonstrated the applicability of the new formulation for uncertainty propagation analysis that need be followed in MC depletion computations. (authors)

  6. Estonian total ozone climatology

    Directory of Open Access Journals (Sweden)

    K. Eerme

    Full Text Available The climatological characteristics of total ozone over Estonia based on the Total Ozone Mapping Spectrometer (TOMS data are discussed. The mean annual cycle during 1979–2000 for the site at 58.3° N and 26.5° E is compiled. The available ground-level data interpolated before TOMS, have been used for trend detection. During the last two decades, the quasi-biennial oscillation (QBO corrected systematic decrease of total ozone from February–April was 3 ± 2.6% per decade. Before 1980, a spring decrease was not detectable. No decreasing trend was found in either the late autumn ozone minimum or in the summer total ozone. The QBO related signal in the spring total ozone has an amplitude of ± 20 DU and phase lag of 20 months. Between 1987–1992, the lagged covariance between the Singapore wind and the studied total ozone was weak. The spring (April–May and summer (June–August total ozone have the best correlation (coefficient 0.7 in the yearly cycle. The correlation between the May and August total ozone is higher than the one between the other summer months. Seasonal power spectra of the total ozone variance show preferred periods with an over 95% significance level. Since 1986, during the winter/spring, the contribution period of 32 days prevails instead of the earlier dominating 26 days. The spectral densities of the periods from 4 days to 2 weeks exhibit high interannual variability.

    Key words. Atmospheric composition and structure (middle atmosphere – composition and chemistry; volcanic effects – Meteorology and atmospheric dynamics (climatology

  7. On the Climate Impacts of Upper Tropospheric and Lower Stratospheric Ozone

    Science.gov (United States)

    Xia, Yan; Huang, Yi; Hu, Yongyun

    2018-01-01

    The global warming simulations of the general circulation models (GCMs) are generally performed with different ozone prescriptions. We find that the differences in ozone distribution, especially in the upper tropospheric and lower stratospheric (UTLS) region, account for important model discrepancies shown in the ozone-only historical experiment of the Coupled Model Intercomparison Project Phase 5 (CMIP5). These discrepancies include global high cloud fraction, stratospheric temperature, and stratospheric water vapor. Through a set of experiments conducted by an atmospheric GCM with contrasting UTLS ozone prescriptions, we verify that UTLS ozone not only directly radiatively heats the UTLS region and cools the upper parts of the stratosphere but also strongly influences the high clouds due to its impact on relative humidity and static stability in the UTLS region and the stratospheric water vapor due to its impact on the tropical tropopause temperature. These consequences strongly affect the global mean effective radiative forcing of ozone, as noted in previous studies. Our findings suggest that special attention should be paid to the UTLS ozone when evaluating the climate effects of ozone depletion in the 20th century and recovery in the 21st century. UTLS ozone difference may also be important for understanding the intermodel discrepancy in the climate projections of the CMIP6 GCMs in which either prescribed or interactive ozone is used.

  8. Development of a sensitive passive sampler using indigotrisulfonate for the determination of tropospheric ozone.

    Science.gov (United States)

    Garcia, Gabriel; Allen, Andrew George; Cardoso, Arnaldo Alves

    2010-06-01

    A new sampling and analytical design for measurement of ambient ozone is presented. The procedure is based on ozone absorption and decoloration (at 600 nm) of indigotrisulfonate dye, where ozone adds itself across the carbon-carbon double bond of the indigo. A mean relative standard deviation of 8.6% was obtained using samplers exposed in triplicate, and a correlation coefficient (r) of 0.957 was achieved in parallel measurements using the samplers and a commercial UV ozone instrument. The devices were evaluated in a measurement campaign, mapping spatial and temporal trends of ozone concentrations in a region of southeast Brazil strongly influenced by seasonal agricultural biomass burning, with associated emissions of ozone precursors. Ozone concentrations were highest in rural areas and lowest at an urban site, due to formation during downwind transport and short-term depletion due to titration with nitric oxide. Ozone concentrations showed strong seasonal trends, due to the influences of precursor emissions, relative humidity and solar radiation intensity. Advantages of the technique include ease and speed of use, the ready availability of components, and excellent sensitivity. Achievable temporal resolution of ozone concentrations is 8 hours at an ambient ozone concentration of 3.8 ppb, or 2 hours at a concentration of 15.2 ppb.

  9. Tropospheric ozone and the environment II. Effects, modeling and control

    International Nuclear Information System (INIS)

    Berglund, R.L.

    1992-01-01

    This was the sixth International Specialty Conference on ozone for the Air ampersand Waste Management Association since 1978 and the first to be held in the Southeast. Of the preceding five conferences, three were held in Houston, one in New England, and one in Los Angeles. The changing location continues to support the understanding that tropospheric ozone is a nationwide problem, requiring understanding and participation by representatives of all regions. Yet, questions such as the following continue to be raised over all aspects of the nation's efforts to control ozone. Are the existing primary and secondary National Ambient Air Quality Standards (NAAQS) for ozone the appropriate targets for the ozone control strategy, or should they be modified to more effectively accommodate new health or ecological effects information, or better fit statistical analyses of ozone modeling data? Are the modeling tools presently available adequate to predict ozone concentrations for future precursor emission trends? What ozones attainment strategy will be the best means of meeting the ozone standard? To best answer these and other questions there needs to be a continued sharing of information among researchers working on these and other questions. While answers to these questions will often be qualitative and location specific, they will help focus future research programs and assist in developing future regulatory strategies

  10. Ozone as an air pollutant

    DEFF Research Database (Denmark)

    Berg, Rolf W.

    1996-01-01

    A Danish new book on ozone as an air pollutant has been reviewed. The Book is "Ozon som luftforurening" by Jes Fenger, Published by "Danmarks Miljøundersøgelser, 1995.......A Danish new book on ozone as an air pollutant has been reviewed. The Book is "Ozon som luftforurening" by Jes Fenger, Published by "Danmarks Miljøundersøgelser, 1995....

  11. Assessment in the global context: From ozone to ecosystems

    CSIR Research Space (South Africa)

    Scholes, B

    2017-10-01

    Full Text Available This presentation discusses the assessment in the global context: From ozone to ecosystems. Process to evaluate the status of knowledge on complex problems relevant to societies. A key element of the contemporary science-policy interface....

  12. MOx Depletion Calculation Benchmark

    International Nuclear Information System (INIS)

    San Felice, Laurence; Eschbach, Romain; Dewi Syarifah, Ratna; Maryam, Seif-Eddine; Hesketh, Kevin

    2016-01-01

    Under the auspices of the NEA Nuclear Science Committee (NSC), the Working Party on Scientific Issues of Reactor Systems (WPRS) has been established to study the reactor physics, fuel performance, radiation transport and shielding, and the uncertainties associated with modelling of these phenomena in present and future nuclear power systems. The WPRS has different expert groups to cover a wide range of scientific issues in these fields. The Expert Group on Reactor Physics and Advanced Nuclear Systems (EGRPANS) was created in 2011 to perform specific tasks associated with reactor physics aspects of present and future nuclear power systems. EGRPANS provides expert advice to the WPRS and the nuclear community on the development needs (data and methods, validation experiments, scenario studies) for different reactor systems and also provides specific technical information regarding: core reactivity characteristics, including fuel depletion effects; core power/flux distributions; Core dynamics and reactivity control. In 2013 EGRPANS published a report that investigated fuel depletion effects in a Pressurised Water Reactor (PWR). This was entitled 'International Comparison of a Depletion Calculation Benchmark on Fuel Cycle Issues' NEA/NSC/DOC(2013) that documented a benchmark exercise for UO 2 fuel rods. This report documents a complementary benchmark exercise that focused on PuO 2 /UO 2 Mixed Oxide (MOX) fuel rods. The results are especially relevant to the back-end of the fuel cycle, including irradiated fuel transport, reprocessing, interim storage and waste repository. Saint-Laurent B1 (SLB1) was the first French reactor to use MOx assemblies. SLB1 is a 900 MWe PWR, with 30% MOx fuel loading. The standard MOx assemblies, used in Saint-Laurent B1 reactor, include three zones with different plutonium enrichments, high Pu content (5.64%) in the center zone, medium Pu content (4.42%) in the intermediate zone and low Pu content (2.91%) in the peripheral zone

  13. OZONE ABSORPTION IN RAW WATERS

    Directory of Open Access Journals (Sweden)

    LJILJANA TAKIĆ

    2008-03-01

    Full Text Available The ozone absorption in raw water entering the main ozonization step at the Belgrade drinking water supply plant was investigated in a continuous stirred tank reactor (CSTR. A slow chemical reaction rate of dissolved ozone and pollutants present in raw water have been experimentally determined. The modified Hatta number was defined and calculated as a criterion which determines whether and to which extent the reactions of ozone and pollutants influence the rate of the pure physical ozone absorption.

  14. Ozone, greenhouse effect. Ozone, effet de serre

    Energy Technology Data Exchange (ETDEWEB)

    Aviam, A.M.; Arthaut, R.

    1992-12-01

    This file is made of eight general papers on environment (climates under observation, research on photo-oxidizing pollution, scientific aspects of stratospheric ozone layer, urban engineering and environment, glory of public gardens, earths not very natural, darwinism and society, economical data on environment). (A.B.). refs., 3 tabs.

  15. Ozonation performance of WWTP secondary effluent of antibiotic manufacturing wastewater.

    Science.gov (United States)

    Zheng, Shaokui; Cui, Cancan; Liang, Qianjin; Xia, Xinghui; Yang, Fan

    2010-11-01

    The ozonation performance of wastewater treatment plant secondary effluent of oxytetracycline (OTC) manufacturing wastewater was investigated in terms of ozone dosage and initial pH levels when OTC contributed to a negligible fraction in the chemical oxygen demand (COD) ingredients of the medium-organic-strength wastewater with low biodegradability. A particular emphasis was placed on ammonia, OTC, and residual antibacterial activity (RAA) (evaluated using the objective pathogenic bacterium Staphylococcus aureus). It appears that an ozone dosage of 657 mg L⁻¹ (120 min of reaction) was enough to achieve an OTC abatement of 96%, and COD and biochemical oxygen demand removals of 29% and 33%, respectively, at initial levels of 10.4, 1360, and 300 mg L⁻¹ , respectively. There is a clear correlation between complete OTC depletion and complete RAA disappearance with an increase of ozone dosage. The presence of plentiful non-antibiotic refractory substances influenced the determination of the optimum ozone dosage for biodegradability enhancement and OTC/RAA reduction as well as the ozonation transformation of NH(3). The initial pH adjustment from the original level (pH 9) to pH 11 significantly reduced COD removal while RAA and NH(3) levels were not significantly influenced. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Automatic programmable air ozonizer

    International Nuclear Information System (INIS)

    Gubarev, S.P.; Klosovsky, A.V.; Opaleva, G.P.; Taran, V.S.; Zolototrubova, M.I.

    2015-01-01

    In this paper we describe a compact, economical, easy to manage auto air ozonator developed at the Institute of Plasma Physics of the NSC KIPT. It is designed for sanitation, disinfection of premises and cleaning the air from foreign odors. A distinctive feature of the developed device is the generation of a given concentration of ozone, approximately 0.7 maximum allowable concentration (MAC), and automatic maintenance of a specified level. This allows people to be inside the processed premises during operation. The microprocessor controller to control the operation of the ozonator was developed

  17. Riddle of depleted uranium

    International Nuclear Information System (INIS)

    Hussein, A.S.

    2005-01-01

    Depleted Uranium (DU) is the waste product of uranium enrichment from the manufacturing of fuel rods for nuclear reactors in nuclear power plants and nuclear power ships. DU may also results from the reprocessing of spent nuclear reactor fuel. Potentially DU has both chemical and radiological toxicity with two important targets organs being the kidney and the lungs. DU is made into a metal and, due to its availability, low price, high specific weight, density and melting point as well as its pyrophoricity; it has a wide range of civilian and military applications. Due to the use of DU over the recent years, there appeared in some press on health hazards that are alleged to be due to DU. In these paper properties, applications, potential environmental and health effects of DU are briefly reviewed

  18. Some observations on the role of planetary waves in determining the spring time ozone distribution in the Antarctic

    Science.gov (United States)

    Chandra, S.; Mcpeters, R. D.

    1986-01-01

    Ozone measurements from 1970 to 1984 from the Nimbus 4 backscattered ultraviolet and the Nimbus 7 solar backscattered ultraviolet spectrometers show significant decrease in total ozone only after 1979. The downward trend is most apparent in October south of 70 deg S in the longitude zone 0 to 30 deg W where planetary wave activity is weak. Outside this longitude region, the trend in total ozone is much smaller due to strong interannual variability of wave activity. This paper gives a phenomenological description of ozone depletion in the Antarctic region based on vertical advection and transient planetary waves.

  19. Comparative study of ozonized olive oil and ozonized sunflower oil

    Directory of Open Access Journals (Sweden)

    Díaz Maritza F.

    2006-01-01

    Full Text Available In this study the ozonized olive and sunflower oils are chemical and microbiologically compared. These oils were introduced into a reactor with bubbling ozone gas in a water bath at room temperature until they were solidified. The peroxide, acidity and iodine values along with antimicrobial activity were determined. Ozonization effects on the fatty acid composition of these oils were analyzed using Gas-Liquid Chromatographic Technique. An increase in peroxidation and acidity values was observed in both oils but they were higher in ozonized sunflower oil. Iodine value was zero in ozonized olive oil whereas in ozonized sunflower was 8.8 g Iodine per 100 g. The antimicrobial activity was similar for both ozonized oils except for Minimum Bactericidal Concentrations of Pseudomona aeruginosa. Composition of fatty acids in both ozonized oils showed gradual decrease in unsaturated fatty acids (C18:1, C18:2 with gradual increase in ozone doses.

  20. Key drivers of ozone change and its radiative forcing over the 21st century

    Science.gov (United States)

    Iglesias-Suarez, Fernando; Kinnison, Douglas E.; Rap, Alexandru; Maycock, Amanda C.; Wild, Oliver; Young, Paul J.

    2018-05-01

    Over the 21st century changes in both tropospheric and stratospheric ozone are likely to have important consequences for the Earth's radiative balance. In this study, we investigate the radiative forcing from future ozone changes using the Community Earth System Model (CESM1), with the Whole Atmosphere Community Climate Model (WACCM), and including fully coupled radiation and chemistry schemes. Using year 2100 conditions from the Representative Concentration Pathway 8.5 (RCP8.5) scenario, we quantify the individual contributions to ozone radiative forcing of (1) climate change, (2) reduced concentrations of ozone depleting substances (ODSs), and (3) methane increases. We calculate future ozone radiative forcings and their standard error (SE; associated with inter-annual variability of ozone) relative to year 2000 of (1) 33 ± 104 m Wm-2, (2) 163 ± 109 m Wm-2, and (3) 238 ± 113 m Wm-2 due to climate change, ODSs, and methane, respectively. Our best estimate of net ozone forcing in this set of simulations is 430 ± 130 m Wm-2 relative to year 2000 and 760 ± 230 m Wm-2 relative to year 1750, with the 95 % confidence interval given by ±30 %. We find that the overall long-term tropospheric ozone forcing from methane chemistry-climate feedbacks related to OH and methane lifetime is relatively small (46 m Wm-2). Ozone radiative forcing associated with climate change and stratospheric ozone recovery are robust with regard to background climate conditions, even though the ozone response is sensitive to both changes in atmospheric composition and climate. Changes in stratospheric-produced ozone account for ˜ 50 % of the overall radiative forcing for the 2000-2100 period in this set of simulations, highlighting the key role of the stratosphere in determining future ozone radiative forcing.

  1. The Toxicity of Depleted Uranium

    OpenAIRE

    Briner, Wayne

    2010-01-01

    Depleted uranium (DU) is an emerging environmental pollutant that is introduced into the environment primarily by military activity. While depleted uranium is less radioactive than natural uranium, it still retains all the chemical toxicity associated with the original element. In large doses the kidney is the target organ for the acute chemical toxicity of this metal, producing potentially lethal tubular necrosis. In contrast, chronic low dose exposure to depleted uranium may not produce a c...

  2. Ozone Therapy in Dentistry

    Science.gov (United States)

    Domb, William C

    2014-01-01

    Summary The 21st century dental practice is quite dynamic. New treatment protocols and new materials are being developed at a rapid pace. Ozone dental therapy falls into the category of new treatment protocols in dentistry, yet ozone is not new at all. Ozone therapy is already a major treatment modality in Europe, South America and a number of other countries. What is provided here will not be an exhaustive scientific treatise so much as a brief general introduction into what dentists are now doing with ozone therapies and the numerous oral/systemic links that make this subject so important for physicians so that, ultimately, they may serve their patients more effectively and productively. PMID:25363268

  3. Ozone health effects

    International Nuclear Information System (INIS)

    Easterly, C.

    1994-01-01

    Ozone is a principal component of photochemical air pollution endogenous to numerous metropolitan areas. It is primarily formed by the oxidation of NOx in the presence of sunlight and reactive organic compounds. Ozone is a highly active oxidizing agent capable of causing injury to the lung. Lung injury may take the form of irritant effects on the respiratory tract that impair pulmonary function and result in subjective symptoms of respiratory discomfort. These symptoms include, but are not limited to, cough and shortness of breath, and they can limit exercise performance. The effects of ozone observed in humans have been primarily limited to alterations in respiratory function, and a range of respiratory physiological parameters have been measured as a function of ozone exposure in adults and children. These affects have been observed under widely varying (clinical experimental and environmental settings) conditions

  4. 2001 Ozone Design Value

    Data.gov (United States)

    U.S. Environmental Protection Agency — Ozone is generated by a complex atmoshperic chemical process. Industrial and automobile pollutants in the form of oxides of nitrogen and hydrocarbons react in the...

  5. NOMAD: a nodal microscopic analysis method for nuclear fuel depletion

    International Nuclear Information System (INIS)

    Rajic, H.L.; Ougouag, A.M.

    1987-01-01

    Recently developed assembly homogenization techniques made possible very efficient global burnup calculations based on modern nodal methods. There are two possible ways of modeling the global depletion process: macroscopic and microscopic depletion models. Using a microscopic global depletion approach NOMAD (NOdal Microscopic Analysis Method for Nuclear Fuel Depletion), a multigroup, two- and three-dimensional, multicycle depletion code was devised. The code uses the ILLICO nodal diffusion model. The formalism of the ILLICO methodology is extended to treat changes in the macroscopic cross sections during a depletion cycle without recomputing the coupling coefficients. This results in a computationally very efficient method. The code was tested against a well-known depletion benchmark problem. In this problem a two-dimensional pressurized water reactor is depleted through two cycles. Both cycles were run with 1 x 1 and 2 x 2 nodes per assembly. It is obvious that the one node per assembly solution gives unacceptable results while the 2 x 2 solution gives relative power errors consistently below 2%

  6. Nuclear Fuel Depletion Analysis Using Matlab Software

    Science.gov (United States)

    Faghihi, F.; Nematollahi, M. R.

    Coupled first order IVPs are frequently used in many parts of engineering and sciences. In this article, we presented a code including three computer programs which are joint with the Matlab software to solve and plot the solutions of the first order coupled stiff or non-stiff IVPs. Some engineering and scientific problems related to IVPs are given and fuel depletion (production of the 239Pu isotope) in a Pressurized Water Nuclear Reactor (PWR) are computed by the present code.

  7. A Lagrangian analysis of mid-latitude stratospheric ozone variability and long-term trends.

    Science.gov (United States)

    Koch, G.; Wernli, H.; Staehelin, J.; Peter, T.

    2002-05-01

    A systematic Lagrangian investigation is performed of wintertime high-resolution stratospheric ozone soundings at Payerne, Switzerland, from January 1970 to March 2001. For every ozone sounding, 10-day backward trajectories have been calculated on 16 isentropic levels using NCEP reanalysis data. Both the minimum/maximum latitude and potential vorticity (PV) averaged along the trajectories are used as indicators of the air parcels' ``origin''. The importance of transport for the understandin g of single ozone profiles is confirmed by a statistical analysis which shows that negative/positive ozone deviations gener ally coincide with transport from regions with climatologically low/high ozone values. The stable relationship between PV and ozone for the 32 year period indicates either no direct chemical impact or no temporal change of this impact. In the upper layer the PV-ozone relationship changes significantly after 1987 and a separate trend analysis for air masses transported from the polar, midlatitude and subtropical regions shows negative ozone trends in all three categories (with a maximum for the polar region). This is not direct evidence for, but would be in agreement with, an increased chemical ozone depletion in the Arctic since the late 1980s. The reasons for the negative trend in the mid-stratospheric air masses with subtropical origin that are in qualitative agreement with recent satellite observations are presently unknown.

  8. Ozone and atmospheric pollution at synoptic scale: the monitoring network Paes

    International Nuclear Information System (INIS)

    Gheusi, F.; Chevalier, A.; Delmas, R.; Athier, G.; Bouchou, P.; Cousin, J.M.; Meyerfeld, Y.; Laj, P.; Sellegri, K.; Ancellet, G.

    2007-01-01

    Ozone as an environmental concern extends beyond the questions usually covered by media - stratospheric ozone depletion and urban pollution peaks. Strong expositions to this pollutant are frequent even far from pollution sources, and the background tropospheric content of ozone has been growing fivefold over the last century. In response to this concern at the French national scale, formerly independent monitoring stations have been coordinated since 2004 in a structured network: Paes (French acronym for atmospheric pollution at synoptic scale). The data are put in free access online. (authors)

  9. Trends of rural tropospheric ozone at the northwest of the Iberian Peninsula.

    Science.gov (United States)

    Saavedra, S; Rodríguez, A; Souto, J A; Casares, J J; Bermúdez, J L; Soto, B

    2012-01-01

    Tropospheric ozone levels around urban and suburban areas at Europe and North America had increased during 80's-90's, until the application of NO(x) reduction strategies. However, as it was expected, this ozone depletion was not proportional to the emissions reduction. On the other hand, rural ozone levels show different trends, with peaks reduction and average increments; this different evolution could be explained by either emission changes or climate variability in a region. In this work, trends of tropospheric ozone episodes at rural sites in the northwest of the Iberian Peninsula were analyzed and compared to others observed in different regions of the Atlantic European coast. Special interest was focused on the air quality sites characterization, in order to guarantee their rural character in terms of air quality. Both episodic local meteorological and air quality measurements along five years were considered, in order to study possible meteorological influences in ozone levels, different to other European Atlantic regions.

  10. Implantation of a new calculation method of fuel depletion in the CITHAM code

    International Nuclear Information System (INIS)

    Alvarenga, M.A.B.

    1985-01-01

    It is evaluated the accuracy of the linear aproximation method used in the CITHAN code to obtain the solution of depletion equations. Results are compared with the Benchmark problem. The convenience of depletion chain before criticality calculations is analysed. The depletion calculation was modified using linear combination technic of linear chains. (M.C.K.) [pt

  11. The Toxicity of Depleted Uranium

    Directory of Open Access Journals (Sweden)

    Wayne Briner

    2010-01-01

    Full Text Available Depleted uranium (DU is an emerging environmental pollutant that is introduced into the environment primarily by military activity. While depleted uranium is less radioactive than natural uranium, it still retains all the chemical toxicity associated with the original element. In large doses the kidney is the target organ for the acute chemical toxicity of this metal, producing potentially lethal tubular necrosis. In contrast, chronic low dose exposure to depleted uranium may not produce a clear and defined set of symptoms. Chronic low-dose, or subacute, exposure to depleted uranium alters the appearance of milestones in developing organisms. Adult animals that were exposed to depleted uranium during development display persistent alterations in behavior, even after cessation of depleted uranium exposure. Adult animals exposed to depleted uranium demonstrate altered behaviors and a variety of alterations to brain chemistry. Despite its reduced level of radioactivity evidence continues to accumulate that depleted uranium, if ingested, may pose a radiologic hazard. The current state of knowledge concerning DU is discussed.

  12. Ground-level ozone: Our new environmental policy

    International Nuclear Information System (INIS)

    Schiff, H.

    1991-01-01

    The environmental problem of ground level ozone is discussed, and the Canadian strategy for dealing with it is explained. Ozone in the troposphere can cause serious health problems in susceptible persons, and is estimated to cause up to $70 million in crop damage per year. The Canadian Council of Ministers of the Environment (CCME) Plan calls for less than 82 ppB by volume of ozone in any one-hour period in all areas of Canada by 2005. Three areas of Canada regularly exceed this value: the Lower Frazer valley in British Columbia, Saint John in New Brunswick, and the Windsor-Quebec corridor along the lower Great Lakes and the St. Lawrence River. Ozone is formed by a photochemical reaction of ammonia gases, nitrogen oxides, hydrogen sulfide or sulfur dioxide. Historically, ozone control has concentrated on controlling hydrocarbon emissions, but to little effect. In most locations close to large cities, ozone production is nitrogen oxide-limited, and the most recent models predict that the best strategy for ozone reduction requires the simultaneous reduction of both hydrocarbons and nitrogen oxides. The CCME Management Plan suggests that the 82 ppB ozone target will require a reduction of 40-50% in nitrogen oxide emissions. The Windsor end of the Windsor-Quebec corridor is dominated by transport of ozone and precursors from the USA, particularly Detroit and Cleveland, so Canadian controls alone are unlikely to solve the problem. For the rest of the corridor, nitrogen oxide control is likely to be most effective in urban areas. 1 fig

  13. Ozone modeling within plasmas for ozone sensor applications

    OpenAIRE

    Arshak, Khalil; Forde, Edward; Guiney, Ivor

    2007-01-01

    peer-reviewed Ozone (03) is potentially hazardous to human health and accurate prediction and measurement of this gas is essential in addressing its associated health risks. This paper presents theory to predict the levels of ozone concentration emittedfrom a dielectric barrier discharge (DBD) plasma for ozone sensing applications. This is done by postulating the kinetic model for ozone generation, with a DBD plasma at atmospheric pressure in air, in the form of a set of rate equations....

  14. Ozone and nitrogen oxides in surface air in Russia: TROICA experiments.

    Science.gov (United States)

    Pankratova, N.; Elansky, N.; Belikov, I.; Shumskiy, R.

    2009-04-01

    The results of measurements of surface ozone and nitrogen oxides concentrations over the continental regions of Russia are discussed. The measurements were done during 10 TROICA experiments (Transcontinental Observations Into the Chemistry of the Atmosphere). The TROICA experiment started in 1995. By the present moment ten expeditions along the Trans-Siberian railroad from Moscow to Vladivostok (around 9300 km) are carried out. We separate data sets into unpolluted and polluted areas to study temporal and spatial features. Moreover we analyzed cities (more then 100 cities). About 50% of all data corresponds to unpolluted conditions. The data collected are used in an analysis of the physical and chemical processes occurring over continental Russia. In this work the estimations of seasonal and daily ozone and NOx distribution were made. The seasonal distribution of ozone for TROICA experiments concentration considerably differs from ozone distribution at Mace Head (Ireland) and Hohenpeissenberg (Germany) stations and well agrees with the ozone distribution at Zotino (Russia, East Siberia). The same concerns also a daily variability. The ozone concentration gradient is presented. Ozone concentration gradually increases in the eastward direction. Its result of the air transport from polluted regions of Europe and ozone depletions, oxidations of CH4 in Siberia, forest fires in Siberia and around Baikal Lake, regional transport of burning products from Northern China. Significant factor of ozone increasing is stratospheric-tropospheric exchange. It appears in TROICA-3 experiment. During several hours ozone concentration was more then 60 ppbv. The areas of photochemical ozone generation in polluted air are also detected. We estimate anthropogenic and natural factors, which are responsible for sharp ozone concentration increasing. Acknowledgments. The work was supported by International Science and Technology Center (ISTC) under contract No. 2770 and by Russian Basic

  15. CONTRIBUTION TO INDOOR OZONE LEVELS OF AN OZONE GENERATOR

    Science.gov (United States)

    This report gives results of a study of a commonly used commercially available ozone generator, undertaken to determine its impact on indoor ozone levels. xperiment were conducted in a typical mechanically ventilated office and in a test house. he generated ozone and the in-room ...

  16. Air Quality Guide for Ozone

    Science.gov (United States)

    GO! Local Air Quality Conditions Zip Code: State : My Current Location Air Quality Guide for Ozone Ground-level ozone is one of our nation’s most common air pollutants. Use the chart below to help reduce ...

  17. Health Effects of Ozone Pollution

    Science.gov (United States)

    Inhaling ozone can cause coughing, shortness of breath, worse asthma or bronchitis symptoms, and irritation and damage to airways.You can reduce your exposure to ozone pollution by checking air quality where you live.

  18. Ozone production in summer in the megacities of Tianjin and Shanghai, China: a comparative study

    Directory of Open Access Journals (Sweden)

    L. Ran

    2012-08-01

    Full Text Available Rapid economic growth has given rise to a significant increase in ozone precursor emissions in many regions of China, especially in the densely populated North China Plain (NCP and Yangtze River Delta (YRD. Improved understanding of ozone formation in response to different precursor emissions is imperative to address the highly nonlinear ozone problem and to provide a solid scientific basis for efficient ozone abatement in these regions. A comparative study on ozone photochemical production in summer has thus been carried out in the megacities of Tianjin (NCP and Shanghai (YRD. Two intensive field campaigns were carried out respectively at an urban and a suburban site of Tianjin, in addition to routine monitoring of trace gases in Shanghai, providing data sets of surface ozone and its precursors including nitrogen oxides (NOx and various non-methane hydrocarbons (NMHCs. Ozone pollution in summer was found to be more severe in the Tianjin region than in the Shanghai region, based on either the frequency or the duration of high ozone events. Such differences might be attributed to the large amount of highly reactive NMHCs in Tianjin. Industry related species like light alkenes were of particular importance in both urban and suburban Tianjin, while in Shanghai aromatics dominated. In general, the ozone problem in Shanghai is on an urban scale. Stringent control policies on local emissions would help reduce the occurrence of high ozone concentrations. By contrast, ozone pollution in Tianjin is probably a regional problem. Combined efforts to reduce ozone precursor emissions on a regional scale must be undertaken to bring the ozone problem under control.

  19. Impact of lower stratospheric ozone on seasonal prediction systems

    Directory of Open Access Journals (Sweden)

    Kelebogile Mathole

    2014-03-01

    Full Text Available We conducted a comparison of trends in lower stratospheric temperatures and summer zonal wind fields based on 27 years of reanalysis data and output from hindcast simulations using a coupled ocean-atmospheric general circulation model (OAGCM. Lower stratospheric ozone in the OAGCM was relaxed to the observed climatology and increasing greenhouse gas concentrations were neglected. In the reanalysis, lower stratospheric ozone fields were better represented than in the OAGCM. The spring lower stratospheric/ upper tropospheric cooling in the polar cap observed in the reanalysis, which is caused by a direct ozone depletion in the past two decades and is in agreement with previous studies, did not appear in the OAGCM. The corresponding summer tropospheric response also differed between data sets. In the reanalysis, a statistically significant poleward trend of the summer jet position was found, whereas no such trend was found in the OAGCM. Furthermore, the jet position in the reanalysis exhibited larger interannual variability than that in the OAGCM. We conclude that these differences are caused by the absence of long-term lower stratospheric ozone changes in the OAGCM. Improper representation or non-inclusion of such ozone variability in a prediction model could adversely affect the accuracy of the predictability of summer rainfall forecasts over South Africa.

  20. Tropospheric ozone variations in polar regions; Troposphaerische Ozonvariationen in Polarregionen

    Energy Technology Data Exchange (ETDEWEB)

    Wessel, S.

    1997-08-01

    An extensive analysis for the description of chemical and dynamical processes during tropospheric ozone minima in the Arctic and Antarctic was carried out in this work. One main task was the analysis of the source regions of tropospheric ozone destruction and the following transport of ozone depleted air masses to the measuring site. Furtheron the ozone destruction mechanism itself should be examined as well as the efficiency of heterogeneous reactions for the regeneration of non-reative bromine compounds, which seems to be necessary because bromine may be the key component in the destruction of tropospheric ozone in polar regions. (orig./KW) [Deutsch] In der vorliegenden Arbeit wurde eine umfangreiche Analyse zur Beschreibung der chemischen und dynamischen Prozesse waehrend troposphaerischer Ozonminima in der Arktis und Antarktis durchgefuehrt. Ziel war es, die Quellregion des Ozonabbaus sowie den ausloesenden ozonabbauenden Mechanismus zu benennen, die Effizienz heterogener Reaktionen zur Regenerierung nichtreaktiver Bromverbindungen waehrend des Ozonabbaus zu ermitteln und den Transport der ozonarmen Luftmassen zum Messort zu untersuchen. (orig./KW)

  1. Ozone bioindicator sampling and estimation

    Science.gov (United States)

    Gretchen C, Smith; William D. Smith; John W. Coulston

    2007-01-01

    Ozone is an important forest stressor that has been measured at known phytotoxic levels at forest locations across the United States. The percent forest exhibiting negative impacts from ozone air pollution is one of the Montreal Process indicators of forest health and vitality. The ozone bioindicator data of the U.S. Forest Service Forest Inventory and Analysis Program...

  2. Ozonated Olive Oils and Troubles

    Directory of Open Access Journals (Sweden)

    Bulent Uysal

    2014-04-01

    Full Text Available One of the commonly used methods for ozone therapy is ozonated oils. Most prominent type of used oils is extra virgin olive oil. But still, each type of unsaturated oils may be used for ozonation. There are a lot of wrong knowledge on the internet about ozonated oils and its use as well. Just like other ozone therapy studies, also the studies about ozone oils are inadequate to avoid incorrect knowledge. Current data about ozone oil and its benefits are produced by supplier who oversees financial interests and make misinformation. Despite the rapidly increasing ozone oil sales through the internet, its quality and efficacy is still controversial. Dozens of companies and web sites may be easily found to buy ozonated oil. But, very few of these products are reliable, and contain sufficiently ozonated oil. This article aimed to introduce the troubles about ozonated oils and so to inform ozonated oil users. [J Intercult Ethnopharmacol 2014; 3(2.000: 49-50

  3. Ozonation for source treatment of pharmaceuticals in hospital wastewater - ozone lifetime and required ozone dose

    DEFF Research Database (Denmark)

    Hansen, Kamilla Marie Speht; Spiliotopoulou, Aikaterini; Chhetri, Ravi Kumar

    2016-01-01

    Ozonation aimed at removing pharmaceuticals was studied in an effluent from an experimental pilot system using staged moving bed biofilm reactor (MBBR) tanks for the optimal biological treatment of wastewater from a medical care unit of Aarhus University Hospital. Dissolved organic carbon (DOC......) and pH in samples varied considerably, and the effect of these two parameters on ozone lifetime and the efficiency of ozone in removing pharmaceuticals were determined. The pH in the effluent varied from 5.0 to 9.0 resulting in approximately a doubling of the required ozone dose at the highest p......H for each pharmaceutical. DOC varied from 6 to 20 mg-DOC/L. The ozone required for removing each pharmaceutical, varied linearly with DOC and thus, ozone doses normalized to DOC (specific ozone dose) agreed between water samples (typically within 15%). At neutral pH the specific ozone dose required...

  4. Chemical and climatic drivers of radiative forcing due to changes in stratospheric and tropospheric ozone over the 21st century

    Science.gov (United States)

    Banerjee, Antara; Maycock, Amanda C.; Pyle, John A.

    2018-02-01

    The ozone radiative forcings (RFs) resulting from projected changes in climate, ozone-depleting substances (ODSs), non-methane ozone precursor emissions and methane between the years 2000 and 2100 are calculated using simulations from the UM-UKCA chemistry-climate model (UK Met Office's Unified Model containing the United Kingdom Chemistry and Aerosols sub-model). Projected measures to improve air-quality through reductions in non-methane tropospheric ozone precursor emissions present a co-benefit for climate, with a net global mean ozone RF of -0.09 W m-2. This is opposed by a positive ozone RF of 0.05 W m-2 due to future decreases in ODSs, which is driven by an increase in tropospheric ozone through stratosphere-to-troposphere transport of air containing higher ozone amounts. An increase in methane abundance by more than a factor of 2 (as projected by the RCP8.5 scenario) is found to drive an ozone RF of 0.18 W m-2, which would greatly outweigh the climate benefits of non-methane tropospheric ozone precursor reductions. A small fraction (˜ 15 %) of the ozone RF due to the projected increase in methane results from increases in stratospheric ozone. The sign of the ozone RF due to future changes in climate (including the radiative effects of greenhouse gases, sea surface temperatures and sea ice changes) is shown to be dependent on the greenhouse gas emissions pathway, with a positive RF (0.05 W m-2) for RCP4.5 and a negative RF (-0.07 W m-2) for the RCP8.5 scenario. This dependence arises mainly from differences in the contribution to RF from stratospheric ozone changes. Considering the increases in tropopause height under climate change causes only small differences (≤ |0.02| W m-2) for the stratospheric, tropospheric and whole-atmosphere RFs.

  5. Health and environmental impact of depleted uranium

    International Nuclear Information System (INIS)

    Furitsu, Katsumi

    2010-01-01

    Depleted Uranium (DU) is 'nuclear waste' produced from the enrichment process and is mostly made up of 238 U and is depleted in the fissionable isotope 235 U compared to natural uranium (NU). Depleted uranium has about 60% of the radioactivity of natural uranium. Depleted uranium and natural uranium are identical in terms of the chemical toxicity. Uranium's high density gives depleted uranium shells increased range and penetrative power. This density, combined with uranium's pyrophoric nature, results in a high-energy kinetic weapon that can punch and burn through armour plating. Striking a hard target, depleted uranium munitions create extremely high temperatures. The uranium immediately burns and vaporizes into an aerosol, which is easily diffused in the environment. People can inhale the micro-particles of uranium oxide in an aerosol and absorb them mainly from lung. Depleted uranium has both aspects of radiological toxicity and chemical toxicity. The possible synergistic effect of both kinds of toxicities is also pointed out. Animal and cellular studies have been reported the carcinogenic, neurotoxic, immuno-toxic and some other effects of depleted uranium including the damage on reproductive system and foetus. In addition, the health effects of micro/ nano-particles, similar in size of depleted uranium aerosols produced by uranium weapons, have been reported. Aerosolized DU dust can easily spread over the battlefield spreading over civilian areas, sometimes even crossing international borders. Therefore, not only the military personnel but also the civilians can be exposed. The contamination continues after the cessation of hostilities. Taking these aspects into account, DU weapon is illegal under international humanitarian laws and is considered as one of the inhumane weapons of 'indiscriminate destruction'. The international society is now discussing the prohibition of DU weapons based on 'precautionary principle'. The 1991 Gulf War is reportedly the first

  6. Hsp90 depletion goes wild

    OpenAIRE

    Siegal, Mark L; Masel, Joanna

    2012-01-01

    Abstract Hsp90 reveals phenotypic variation in the laboratory, but is Hsp90 depletion important in the wild? Recent work from Chen and Wagner in BMC Evolutionary Biology has discovered a naturally occurring Drosophila allele that downregulates Hsp90, creating sensitivity to cryptic genetic variation. Laboratory studies suggest that the exact magnitude of Hsp90 downregulation is important. Extreme Hsp90 depletion might reactivate transposable elements and/or induce aneuploidy, in addition to r...

  7. "When the going gets tough, who keeps going?" Depletion sensitivity moderates the ego-depletion effect.

    Science.gov (United States)

    Salmon, Stefanie J; Adriaanse, Marieke A; De Vet, Emely; Fennis, Bob M; De Ridder, Denise T D

    2014-01-01

    Self-control relies on a limited resource that can get depleted, a phenomenon that has been labeled ego-depletion. We argue that individuals may differ in their sensitivity to depleting tasks, and that consequently some people deplete their self-control resource at a faster rate than others. In three studies, we assessed individual differences in depletion sensitivity, and demonstrate that depletion sensitivity moderates ego-depletion effects. The Depletion Sensitivity Scale (DSS) was employed to assess depletion sensitivity. Study 1 employs the DSS to demonstrate that individual differences in sensitivity to ego-depletion exist. Study 2 shows moderate correlations of depletion sensitivity with related self-control concepts, indicating that these scales measure conceptually distinct constructs. Study 3 demonstrates that depletion sensitivity moderates the ego-depletion effect. Specifically, participants who are sensitive to depletion performed worse on a second self-control task, indicating a stronger ego-depletion effect, compared to participants less sensitive to depletion.

  8. Physicochemical patterns of ozone absorption by wood

    Science.gov (United States)

    Mamleeva, N. A.; Lunin, V. V.

    2016-11-01

    Results from studying aspen and pine wood ozonation are presented. The effect the concentration of ozone, the reagent residence time, and the content of water in a sample of wood has on ozone consumption rate and ozone demand are analyzed. The residence time is shown to determine the degree of ozone conversion degree and the depth of substrate destruction. The main patterns of ozone absorption by wood with different moisture content are found. Ways of optimizing the ozonation of plant biomass are outlined.

  9. Measurement of Ozone Production Sensor

    Directory of Open Access Journals (Sweden)

    M. Cazorla

    2010-05-01

    Full Text Available A new ambient air monitor, the Measurement of Ozone Production Sensor (MOPS, measures directly the rate of ozone production in the atmosphere. The sensor consists of two 11.3 L environmental chambers made of UV-transmitting Teflon film, a unit to convert NO2 to O3, and a modified ozone monitor. In the sample chamber, flowing ambient air is exposed to the sunlight so that ozone is produced just as it is in the atmosphere. In the second chamber, called the reference chamber, a UV-blocking film over the Teflon film prevents ozone formation but allows other processes to occur as they do in the sample chamber. The air flows that exit the two chambers are sampled by an ozone monitor operating in differential mode so that the difference between the two ozone signals, divided by the exposure time in the chambers, gives the ozone production rate. High-efficiency conversion of NO2 to O3 prior to detection in the ozone monitor accounts for differences in the NOx photostationary state that can occur in the two chambers. The MOPS measures the ozone production rate, but with the addition of NO to the sampled air flow, the MOPS can be used to study the sensitivity of ozone production to NO. Preliminary studies with the MOPS on the campus of the Pennsylvania State University show the potential of this new technique.

  10. Climate change and ozone layer protection

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    This conference is composed of 27 communications of which the following main themes are: general approach to the problems of climatic change, greenhouse effect and ozone layer; France, Cameroon and Switzerland examples of energy conservation and greenhouse gas reduction; energy conservation measures and policies for dwellings, transport, industry, agriculture and food industry with a global aspect of reducing greenhouse gas emissions; CFC utilization effects on environment and alternatives to CFC utilization

  11. Dobson ozone spectrophotometer modification.

    Science.gov (United States)

    Komhyr, W. D.; Grass, R. D.

    1972-01-01

    Description of a modified version of the Dobson ozone spectrophotometer in which several outdated electronic design features have been replaced by circuitry embodying more modern design concepts. The resulting improvement in performance characteristics has been obtained without changing the principle of operation of the original instrument.

  12. The ozone monitoring instrument

    NARCIS (Netherlands)

    Levelt, P.F.; Oord, G.H.J. van den; Dobber, M.R.; Mälkki, A.; Visser, H.; Vries, J. de; Stammes, P.; Lundell, J.O.V.; Saari, H.

    2006-01-01

    The Ozone Monitoring Instrument (OMI) flies on the National Aeronautics and Space Adminsitration's Earth Observing System Aura satellite launched in July 2004. OMI is a ultraviolet/visible (UV/VIS) nadir solar backscatter spectrometer, which provides nearly global coverage in one day with a spatial

  13. Ozone, greenhouse effect

    International Nuclear Information System (INIS)

    Aviam, A.M.; Arthaut, R.

    1992-01-01

    This file is made of eight general papers on environment (climates under observation, research on photo-oxidizing pollution, scientific aspects of stratospheric ozone layer, urban engineering and environment, glory of public gardens, earths not very natural, darwinism and society, economical data on environment). (A.B.). refs., 3 tabs

  14. The effects of greenhouse gases on the Antarctic ozone hole in the past, present, and future

    Science.gov (United States)

    Newman, P. A.; Li, F.; Lait, L. R.; Oman, L.

    2017-12-01

    The Antarctic ozone hole is primarily caused by human-produced ozone depleting substances such as chlorine-containing chlorofluorocarbons (CFCs) and bromine-containing halons. The large ozone spring-time depletion relies on the very-cold conditions of the Antarctic lower stratosphere, and the general containment of air by the polar night jet over Antarctica. Here we show the Goddard Earth Observing System Chemistry Climate Model (GEOSCCM) coupled ocean-atmosphere-chemistry model for exploring the impact of increasing greenhouse gases (GHGs). Model simulations covering the 1960-2010 period are shown for: 1) a control ensemble with observed levels of ODSs and GHGs, 2) an ensemble with fixed 1960 GHG concentrations, and 3) an ensemble with fixed 1960 ODS levels. We look at a similar set of simulations (control, 2005 fixed GHG levels, and 2005 fixed ODS levels) with a new version of GEOSCCM over the period 2005-2100. These future simulations show that the decrease of ODSs leads to similar ozone recovery for both the control run and the fixed GHG scenarios, in spite of GHG forced changes to stratospheric ozone levels. These simulations demonstrate that GHG levels will have major impacts on the stratosphere by 2100, but have only small impacts on the Antarctic ozone hole.

  15. Mechanisms of impact of greenhouse gases on the Earth's ozone layer in the Polar Regions

    Science.gov (United States)

    Zadorozhny, Alexander; Dyominov, Igor

    A numerical 2-D zonally averaged interactive dynamical radiative-photochemical model of the atmosphere including aerosol physics is used to examine the impact of the greenhouse gases CO2, CH4, and N2O on the future long-term changes of the Earth's ozone layer, in particular on its expected recovery after reduction of anthropogenic discharges of chlorine and bromine compounds into the atmosphere. The model allows calculating self-consistently diabatic circu-lation, temperature, gaseous composition of the troposphere and stratosphere at latitudes from the North to South Poles, as well as distribution of sulphate aerosol particles and polar strato-spheric clouds (PSCs) of types I and II. The scenarios of expected changes of the anthropogenic pollutants for the period from 1980 through 2050 are taken from Climate Change 2001. The processes, which determine the influence of anthropogenic growth of atmospheric abun-dance of the greenhouse gases on the long-term changes of the Earth's ozone layer in the Polar Regions, have been studied in details. Expected cooling of the stratosphere caused by increases of greenhouse gases, most importantly CO2, essentially influences the ozone layer by two ways: through temperature dependencies of the gas phase reaction rates and through enhancement of polar ozone depletion via increased PSC formation. The model calculations show that a weak-ness in efficiencies of all gas phase catalytic cycles of the ozone destruction due to cooling of the stratosphere is a dominant mechanism of the impact of the greenhouse gases on the ozone layer in Antarctic as well as at the lower latitudes. This mechanism leads to a significant acceleration of the ozone layer recovery here because of the greenhouse gases growth. On the contrary, the mechanism of the impact of the greenhouse gases on the ozone through PSC modification be-gins to be more effective in Arctic in comparison with the gas phase mechanism in springs after about 2020, which leads to retard

  16. Long-term groundwater depletion in the United States

    Science.gov (United States)

    Konikow, Leonard F.

    2015-01-01

    The volume of groundwater stored in the subsurface in the United States decreased by almost 1000 km3 during 1900–2008. The aquifer systems with the three largest volumes of storage depletion include the High Plains aquifer, the Mississippi Embayment section of the Gulf Coastal Plain aquifer system, and the Central Valley of California. Depletion rates accelerated during 1945–1960, averaging 13.6 km3/year during the last half of the century, and after 2000 increased again to about 24 km3/year. Depletion intensity is a new parameter, introduced here, to provide a more consistent basis for comparing storage depletion problems among various aquifers by factoring in time and areal extent of the aquifer. During 2001–2008, the Central Valley of California had the largest depletion intensity. Groundwater depletion in the United States can explain 1.4% of observed sea-level rise during the 108-year study period and 2.1% during 2001–2008. Groundwater depletion must be confronted on local and regional scales to help reduce demand (primarily in irrigated agriculture) and/or increase supply.

  17. Stratospheric ozone, global warming, and the principle of unintended consequences--an ongoing science and policy success story.

    Science.gov (United States)

    Andersen, Stephen O; Halberstadt, Marcel L; Borgford-Parnell, Nathan

    2013-06-01

    In 1974, Mario Molina and F. Sherwood Rowland warned that chlorofluorocarbons (CFCs) could destroy the stratospheric ozone layer that protects Earth from harmful ultraviolet radiation. In the decade after scientists documented the buildup and long lifetime of CFCs in the atmosphere; found the proof that CFCs chemically decomposed in the stratosphere and catalyzed the depletion of ozone; quantified the adverse effects; and motivated the public and policymakers to take action. In 1987, 24 nations plus the European Community signed the Montreal Protocol. Today, 25 years after the Montreal Protocol was agreed, every United Nations state is a party (universal ratification of 196 governments); all parties are in compliance with the stringent controls; 98% of almost 100 ozone-depleting chemicals have been phased out worldwide; and the stratospheric ozone layer is on its way to recovery by 2065. A growing coalition of nations supports using the Montreal Protocol to phase down hydrofluorocarbons, which are ozone safe but potent greenhouse gases. Without rigorous science and international consensus, emissions of CFCs and related ozone-depleting substances (ODSs) could have destroyed up to two-thirds of the ozone layer by 2065, increasing the risk of causing millions of cancer cases and the potential loss of half of global agricultural production. Furthermore, because most, ODSs are also greenhouse gases, CFCs and related ODSs could have had the effect of the equivalent of 24-76 gigatons per year of carbon dioxide. This critical review describes the history of the science of stratospheric ozone depletion, summarizes the evolution of control measures and compliance under the Montreal Protocol and national legislation, presents a review of six separate transformations over the last 100 years in refrigeration and air conditioning (A/C) technology, and illustrates government-industry cooperation in continually improving the environmental performance of motor vehicle A/C.

  18. Stratospheric ozone, global warming, and the principle of unintended consequences-An ongoing science and policy success story.

    Science.gov (United States)

    Andersen, Stephen O; Halberstadt, Marcel L; Borgford-Parnell, Nathan

    2013-06-01

    In 1974, Mario Molina and F. Sherwood Rowland warned that chlorofluorocarbons (CFCs) could destroy the stratospheric ozone layer that protects Earth from harmful ultraviolet radiation. In the decade after, scientists documented the buildup and long lifetime of CFCs in the atmosphere; found the proof that CFCs chemically decomposed in the stratosphere and catalyzed the depletion of ozone; quantified the adverse effects; and motivated the public and policymakers to take action. In 1987, 24 nations plus the European Community signed the Montreal Protocol. Today, 25 years after the Montreal Protocol was agreed, every United Nations state is a party (universal ratification of 196 governments); all parties are in compliance with the stringent controls; 98% of almost 100 ozone-depleting chemicals have been phased out worldwide; and the stratospheric ozone layer is on its way to recovery by 2065. A growing coalition of nations supports using the Montreal Protocol to phase down hydrofluorocarbons, which are ozone safe but potent greenhouse gases. Without rigorous science and international consensus, emissions of CFCs and related ozone-depleting substances (ODSs) could have destroyed up to two-thirds of the ozone layer by 2065, increasing the risk of causing millions of cancer cases and the potential loss of half of global agricultural production. Furthermore, because most ODSs are also greenhouse gases, CFCs and related ODSs could have had the effect of the equivalent of 24-76 gigatons per year of carbon dioxide. This critical review describes the history of the science of stratospheric ozone depletion, summarizes the evolution of control measures and compliance under the Montreal Protocol and national legislation, presents a review of six separate transformations over the last 100 years in refrigeration and air conditioning (A/C) technology, and illustrates government-industry cooperation in continually improving the environmental performance of motor vehicle A/C. [Box

  19. Modelling horizontal and vertical concentration profiles of ozone and oxides of nitrogen within high-latitude urban areas

    International Nuclear Information System (INIS)

    Nicholson, J.P.; Weston, K.J.

    2001-01-01

    Urban ozone concentrations are determined by the balance between ozone destruction, chemical production and supply through advection and turbulent down-mixing from higher levels. At high latitudes, low levels of solar insolation and high horizontal advection speeds reduce the photochemical production and the spatial ozone concentration patterns are largely determined by the reaction of ozone with nitric oxide and dry deposition to the surface. A Lagrangian column model has been developed to simulate the mean (monthly and annual) three-dimensional structure in ozone and nitrogen oxides (NO x ) concentrations in the boundary-layer within and immediately around an urban area. The short-time-scale photochemical processes of ozone and NO x , as well as emissions and deposition to the ground, are simulated. The model has a horizontal resolution of 1x1km and high resolution in the vertical. It has been applied over a 100x100km domain containing the city of Edinburgh (at latitude 56 o N) to simulate the city-scale processes of pollutants. Results are presented, using averaged wind-flow frequencies and appropriate stability conditions, to show the extent of the depletion of ozone by city emissions. The long-term average spatial patterns in the surface ozone and NO x concentrations over the model domain are reproduced quantitatively. The model shows the average surface ozone concentrations in the urban area to be lower than the surrounding rural areas by typically 50% and that the areas experiencing a 20% ozone depletion are generally restricted to within the urban area. The depletion of the ozone concentration to less than 50% of the rural surface values extends only 20m vertically above the urban area. A series of monitoring sites for ozone, nitric oxide and nitrogen dioxide on a north-south transect through the city - from an urban, through a semi-rural, to a remote rural location - allows the comparison of modelled with observed data for the mean diurnal cycle of ozone

  20. [Ozone concentration distribution of urban].

    Science.gov (United States)

    Yin, Yong-quan; Li, Chang-mei; Ma, Gui-xia; Cui, Zhao-jie

    2004-11-01

    The increase of ozone concentration in urban is one of the most important research topics on environmental science. With the increase of nitrogen oxides and hydrogen-carbon compounds which are exhausted from cars, the ozone concentration in urban is obviously increased on sunlight, and threat of photochemistry smog will be possible. Therefore, it is very important to monitor and study the ozone concentration distribution in urban. The frequency-distribution, diurnal variation and monthly variation of ozone concentration were studied on the campus of Shandong University during six months monitoring. The influence of solar radiation and weather conditions on ozone concentration were discussed. The frequency of ozone concentration less than 200 microg/m3 is 96.88%. The ozone concentration has an obvious diurnal variation. The ozone concentration in the afternoon is higher than in the morning and in the evening. The maximum appears in June, when it is the strong solar radiation and high air-temperature. The weather conditions also influence the ozone concentration. The ozone concentration in clear day is higher than in rainy and cloudy day.

  1. Comparative study of ozonized olive oil and ozonized sunflower oil

    OpenAIRE

    Díaz,Maritza F.; Hernández,Rebeca; Martínez,Goitybell; Vidal,Genny; Gómez,Magali; Fernández,Harold; Garcés,Rafael

    2006-01-01

    In this study the ozonized olive and sunflower oils are chemical and microbiologically compared. These oils were introduced into a reactor with bubbling ozone gas in a water bath at room temperature until they were solidified. The peroxide, acidity and iodine values along with antimicrobial activity were determined. Ozonization effects on the fatty acid composition of these oils were analyzed using Gas-Liquid Chromatographic Technique. An increase in peroxidation and acidity values was observ...

  2. Isotopic depletion with Monte Carlo

    International Nuclear Information System (INIS)

    Martin, W.R.; Rathkopf, J.A.

    1996-06-01

    This work considers a method to deplete isotopes during a time- dependent Monte Carlo simulation of an evolving system. The method is based on explicitly combining a conventional estimator for the scalar flux with the analytical solutions to the isotopic depletion equations. There are no auxiliary calculations; the method is an integral part of the Monte Carlo calculation. The method eliminates negative densities and reduces the variance in the estimates for the isotope densities, compared to existing methods. Moreover, existing methods are shown to be special cases of the general method described in this work, as they can be derived by combining a high variance estimator for the scalar flux with a low-order approximation to the analytical solution to the depletion equation

  3. Development of the point-depletion code DEPTH

    International Nuclear Information System (INIS)

    She, Ding; Wang, Kan; Yu, Ganglin

    2013-01-01

    Highlights: ► The DEPTH code has been developed for the large-scale depletion system. ► DEPTH uses the data library which is convenient to couple with MC codes. ► TTA and matrix exponential methods are implemented and compared. ► DEPTH is able to calculate integral quantities based on the matrix inverse. ► Code-to-code comparisons prove the accuracy and efficiency of DEPTH. -- Abstract: The burnup analysis is an important aspect in reactor physics, which is generally done by coupling of transport calculations and point-depletion calculations. DEPTH is a newly-developed point-depletion code of handling large burnup depletion systems and detailed depletion chains. For better coupling with Monte Carlo transport codes, DEPTH uses data libraries based on the combination of ORIGEN-2 and ORIGEN-S and allows users to assign problem-dependent libraries for each depletion step. DEPTH implements various algorithms of treating the stiff depletion systems, including the Transmutation trajectory analysis (TTA), the Chebyshev Rational Approximation Method (CRAM), the Quadrature-based Rational Approximation Method (QRAM) and the Laguerre Polynomial Approximation Method (LPAM). Three different modes are supported by DEPTH to execute the decay, constant flux and constant power calculations. In addition to obtaining the instantaneous quantities of the radioactivity, decay heats and reaction rates, DEPTH is able to calculate the integral quantities by a time-integrated solver. Through calculations compared with ORIGEN-2, the validity of DEPTH in point-depletion calculations is proved. The accuracy and efficiency of depletion algorithms are also discussed. In addition, an actual pin-cell burnup case is calculated to illustrate the DEPTH code performance in coupling with the RMC Monte Carlo code

  4. Research and technology strategy to help overcome the environmental problems in relation to transport

    International Nuclear Information System (INIS)

    Martin, D.J.; Michaelis, L.A.

    1992-03-01

    This report considers global pollution issues, i.e. emissions which are of significance to global warming and stratospheric ozone depletion, and the following technology clusters: alternative fuels, engine technology and vehicle design

  5. Hsp90 depletion goes wild

    Directory of Open Access Journals (Sweden)

    Siegal Mark L

    2012-02-01

    Full Text Available Abstract Hsp90 reveals phenotypic variation in the laboratory, but is Hsp90 depletion important in the wild? Recent work from Chen and Wagner in BMC Evolutionary Biology has discovered a naturally occurring Drosophila allele that downregulates Hsp90, creating sensitivity to cryptic genetic variation. Laboratory studies suggest that the exact magnitude of Hsp90 downregulation is important. Extreme Hsp90 depletion might reactivate transposable elements and/or induce aneuploidy, in addition to revealing cryptic genetic variation. See research article http://wwww.biomedcentral.com/1471-2148/12/25

  6. The dynamics of ozone generation and mode transition in air surface micro-discharge plasma at atmospheric pressure

    International Nuclear Information System (INIS)

    Shimizu, Tetsuji; Zimmermann, Julia L; Morfill, Gregor E; Sakiyama, Yukinori; Graves, David B

    2012-01-01

    We present the transient, dynamic behavior of ozone production in surface micro-discharge (SMD) plasma in ambient air. Ultraviolet absorption spectroscopy at 254 nm was used to measure the time development of ozone density in a confined volume. We observed that ozone density increases monotonically over 1000 ppm for at least a few minutes when the input power is lower than ∼0.1 W/cm 2 . Interestingly, when input power is higher than ∼0.1 W/cm 2 , ozone density starts to decrease in a few tens of seconds at a constant power density, showing a peak ozone density. A model calculation suggests that the ozone depletion at higher power density is caused by quenching reactions with nitrogen oxides that are in turn created by vibrationally excited nitrogen molecules reacting with O atoms. The observed mode transition is significantly different from classical ozone reactors in that the transition takes place over time at a constant power. In addition, we observed a positive correlation between time-averaged ozone density and the inactivation rate of Escherichia coli on adjacent agar plates, suggesting that ozone plays a key role in inactivating bacteria under the conditions considered here. (paper)

  7. Ozone-Induced Nasal Type 2 Immunity in Mice Is Dependent on Innate Lymphoid Cells.

    Science.gov (United States)

    Kumagai, Kazuyoshi; Lewandowski, Ryan; Jackson-Humbles, Daven N; Li, Ning; Van Dyken, Steven J; Wagner, James G; Harkema, Jack R

    2016-06-01

    Epidemiological studies suggest that elevated ambient concentrations of ozone are associated with activation of eosinophils in the nasal airways of atopic and nonatopic children. Mice repeatedly exposed to ozone develop eosinophilic rhinitis and type 2 immune responses. In this study, we determined the role of innate lymphoid cells (ILCs) in the pathogenesis of ozone-induced eosinophilic rhinitis by using lymphoid-sufficient C57BL/6 mice, Rag2(-/-) mice that are devoid of T cells and B cells, and Rag2(-/-)Il2rg(-/-) mice that are depleted of all lymphoid cells including ILCs. The animals were exposed to 0 or 0.8 ppm ozone for 9 consecutive weekdays (4 h/d). Mice were killed 24 hours after exposure, and nasal tissues were selected for histopathology and gene expression analysis. ILC-sufficient C57BL/6 and Rag2(-/-) mice exposed to ozone developed marked eosinophilic rhinitis and epithelial remodeling (e.g., epithelial hyperplasia and mucous cell metaplasia). Chitinase-like proteins and alarmins (IL-33, IL-25, and thymic stromal lymphopoietin) were also increased morphometrically in the nasal epithelium of ozone-exposed C57BL/6 and Rag2(-/-) mice. Ozone exposure elicited increased expression of Il4, Il5, Il13, St2, eotaxin, MCP-2, Gob5, Arg1, Fizz1, and Ym2 mRNA in C57BL/6 and Rag2(-/-) mice. In contrast, ozone-exposed ILC-deficient Rag2(-/-)Il2rg(-/-) mice had no nasal lesions or overexpression of Th2- or ILC2-related transcripts. These results indicate that ozone-induced eosinophilic rhinitis, nasal epithelial remodeling, and type 2 immune activation are dependent on ILCs. To the best of our knowledge, this is the first study to demonstrate that ILCs play an important role in the nasal pathology induced by repeated ozone exposure.

  8. Health Effects of Ozone and Particle Pollution

    Science.gov (United States)

    ... this page: Health Effects of Ozone and Particle Pollution Two types of air pollution dominate in the ... So what are ozone and particle pollution? Ozone Pollution It may be hard to imagine that pollution ...

  9. Ozone increases airway hyperreactivity and mucus hyperproduction in mice previously exposed to allergen

    DEFF Research Database (Denmark)

    Larsen, Søren T; Matsubara, Shigeki; McConville, Glen

    2010-01-01

    Acute exacerbations of asthma represent a common clinical problem with major economic impact. Air pollutants including ozone have been shown to contribute to asthma exacerbation, but the mechanisms underlying ozone-induced asthma exacerbation are only partially understood. The present study aimed...

  10. Strategic Ozone Sounding Networks: Review of Design and Accomplishments

    Science.gov (United States)

    Thompson, Anne M.; Oltmans, Samuel J.; Tarasick, David W.; von der Gathen, Peter; Smit, Herman G. J.; Witte, Jacquelyn C.

    2011-01-01

    Ozone soundings are used to integrate models, satellite, aircraft and ground-based measurements for better interpretation of ozone variability, including atmospheric losses (predominantly in the stratosphere) and pollution (troposphere). A well-designed network of ozonesonde stations gives information with high vertical and horizontal resolution on a number of dynamical and chemical processes, allowing us to answer questions not possible with aircraft campaigns or current satellite technology. Strategic ozonesonde networks are discussed for high, mid- and low latitude studies. The Match sounding network was designed specifically to follow ozone depletion within the polar vortex; the standard sites are at middle to high northern hemisphere latitudes and typically operate from December through mid-March. Three mid-latitude strategic networks (the IONS series) operated over North America in July-August 2004, March-May and August 2006, and April and June-July-2008. These were designed to address questions about tropospheric ozone budgets and sources, including stratosphere-troposphere transport, and to validate satellite instruments and models. A global network focusing on processes in the equatorial zone, SHADOZ (Southern Hemisphere Additional Ozonesondes), has operated since 1998 in partnership with NOAA, NASA and the Meteorological Services of host countries. Examples of important findings from these networks are described,

  11. Depletion field focusing in semiconductors

    NARCIS (Netherlands)

    Prins, M.W.J.; Gelder, Van A.P.

    1996-01-01

    We calculate the three-dimensional depletion field profile in a semiconductor, for a planar semiconductor material with a spatially varying potential upon the surface, and for a tip-shaped semiconductor with a constant surface potential. The nonuniform electric field gives rise to focusing or

  12. Depletion interactions in lyotropic nematics

    NARCIS (Netherlands)

    Schoot, van der P.P.A.M.

    2000-01-01

    A theoretical study of depletion interactions between pairs of small, globular colloids dispersed in a lyotropic nematic of hard, rodlike particles is presented. We find that both the strength and range of the interaction crucially depends on the configuration of the spheres relative to the nematic

  13. Depleted uranium: an explosive dossier

    International Nuclear Information System (INIS)

    Barrillot, B.

    2001-01-01

    This book relates the history of depleted uranium, contemporaneous with the nuclear bomb history. Initially used in nuclear weapons and in experiments linked with nuclear weapons development, this material has been used also in civil industry, in particular in aeronautics. However, its properties made it interesting for military applications all along the 'cold war'. (J.S.)

  14. Global depletion of groundwater resources

    NARCIS (Netherlands)

    Wada, Y.; Beek, L.P.H. van; van Kempen, C.M.; Reckman, J.W.T.M.; Vasak, S.; Bierkens, M.F.P.

    2010-01-01

    In regions with frequent water stress and large aquifer systems groundwater is often used as an additional water source. If groundwater abstraction exceeds the natural groundwater recharge for extensive areas and long times, overexploitation or persistent groundwater depletion occurs. Here we

  15. Resource depletion promotes automatic processing: implications for distribution of practice.

    Science.gov (United States)

    Scheel, Matthew H

    2010-12-01

    Recent models of cognition include two processing systems: an automatic system that relies on associative learning, intuition, and heuristics, and a controlled system that relies on deliberate consideration. Automatic processing requires fewer resources and is more likely when resources are depleted. This study showed that prolonged practice on a resource-depleting mental arithmetic task promoted automatic processing on a subsequent problem-solving task, as evidenced by faster responding and more errors. Distribution of practice effects (0, 60, 120, or 180 sec. between problems) on rigidity also disappeared when groups had equal time on resource-depleting tasks. These results suggest that distribution of practice effects is reducible to resource availability. The discussion includes implications for interpreting discrepancies in the traditional distribution of practice effect.

  16. Yield, utilization, storage and ultimate storage of depleted uranium

    International Nuclear Information System (INIS)

    Aumueller, L.; Hermann, J.

    1977-11-01

    More than 80% of the uranium leaving uranium enrichment plants is depleted to a residual content of about 0,25% U 235. Due to the present ineconomical further depletion to the technically possible residual content of 0,1% U 235, the so-called 'tails' are first of all stored. The quantity of stored depleted uranium in the FRG should be about 100.000 t by the year 2000. It represents a strategic reserve for future energy supply regardless of profitableness. The study analysis the conceivable possible uses for the tails quantity considered. These are, besides further depletion whose profitableness is considered, also the use as breeder material in breeder reactors and the use in the non-nuclear field. The main part of the study deals with the various storage possibilities of the depleted uranium in oxidic or fluoride form. A comparison of costs of alternative storage concepts showed a clear advantage for the storage of UF 6 in 48 inch containers already in use. The conceivable accidents in storing are analyzed and measures to reduce the consequences are discussed. Finally, the problems of ultimate storage for the remaining waste after further depletion or use are investigated and the costs arising here are also estimated. (RB) [de

  17. Depleted depletion drives polymer swelling in poor solvent mixtures.

    Science.gov (United States)

    Mukherji, Debashish; Marques, Carlos M; Stuehn, Torsten; Kremer, Kurt

    2017-11-09

    Establishing a link between macromolecular conformation and microscopic interaction is a key to understand properties of polymer solutions and for designing technologically relevant "smart" polymers. Here, polymer solvation in solvent mixtures strike as paradoxical phenomena. For example, when adding polymers to a solvent, such that all particle interactions are repulsive, polymer chains can collapse due to increased monomer-solvent repulsion. This depletion induced monomer-monomer attraction is well known from colloidal stability. A typical example is poly(methyl methacrylate) (PMMA) in water or small alcohols. While polymer collapse in a single poor solvent is well understood, the observed polymer swelling in mixtures of two repulsive solvents is surprising. By combining simulations and theoretical concepts known from polymer physics and colloidal science, we unveil the microscopic, generic origin of this collapse-swelling-collapse behavior. We show that this phenomenon naturally emerges at constant pressure when an appropriate balance of entropically driven depletion interactions is achieved.

  18. Substitution of the CFCs R-11, R-13, R-503, R-13B1, R-113, R-114 and R-12B1 in existing refrigerating, air-conditioning and heat pump systems with refrigerants of low ozone depletion potential in the Federal Republic of Germany. Status report; Ersatz der FCKW R11, R13, R503, R13B1, R113, R114, und R12B1 in bestehenden Kaelte-, Klima- und Waermepumpenanlagen in der Bundesrepublik Deutschland durch Kaeltemittel mit geringem Ozonabbaupotential. Statusbericht

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-11-01

    The technical basics and the state of the art for the substitution of the CFC refrigerants R-11, R-13, R-503, R-13B1, R-113, R-114 and R-12B1 in existing refrigeration systems are described and explained. The report contains an overview of the current applications of these refrigerants in the FRG, a review and discussion of existing substitutes, the presentation and evaluation of research and experiences with the conversion to alternative refrigerants, the presentation of the required infrastructure and a discussion of the technical feasibility. The conversion of existing systems to refrigerants of lower ozone depletion potential is in conclusion evaluated with regard to its technical feasibility, environmental relevance and economic efficiency. (orig.) [Deutsch] Es werden die technischen Grundlagen und der Stand der Technik zum Ersatz der FCKW-Kaeltemittel R11, R13, R503, R13B1, R113, R114 und R12B1 in bestehenden Kaelteanlagen dargestellt und erlaeutert. Der Bericht beinhaltet einen Ueberblick ueber die derzeitige Anwendung dieser Kaeltemittel in der BRD, die Vorstellung und Diskussion existierender Ersatzstoffe, die Darstellung und Bewertung der Forschung und Erfahrungen zu Umruestungen auf Ersatzstoffe, die Vorstellung der erforderlichen Infrastruktur und die Diskussion der technischen Durchfuehrbarkeit. Die Umstellung bestehender Anlagen auf Kaeltemittel mit geringerem Ozonabbaupotential wird abschliessend hinsichtlich der technischen Durchfuehrbarkeit, der Umweltrelevanz und der Wirtschaftlichkeit bewertet. (orig.)

  19. When perception is more than reality: the effects of perceived versus actual resource depletion on self-regulatory behavior.

    Science.gov (United States)

    Clarkson, Joshua J; Hirt, Edward R; Jia, Lile; Alexander, Marla B

    2010-01-01

    Considerable research demonstrates that the depletion of self-regulatory resources impairs performance on subsequent tasks that demand these resources. The current research sought to assess the impact of perceived resource depletion on subsequent task performance at both high and low levels of actual depletion. The authors manipulated perceived resource depletion by having participants 1st complete a depleting or nondepleting task before being presented with feedback that did or did not provide a situational attribution for their internal state. Participants then persisted at a problem-solving task (Experiments 1-2), completed an attention-regulation task (Experiment 3), or responded to a persuasive message (Experiment 4). The findings consistently demonstrated that individuals who perceived themselves as less (vs. more) depleted, whether high or low in actual depletion, were more successful at subsequent self-regulation. Thus, perceived regulatory depletion can impact subsequent task performance-and this impact can be independent of one's actual state of depletion.

  20. A statistical inference approach for the retrieval of the atmospheric ozone profile from simulated satellite measurements of solar backscattered ultraviolet radiation

    Science.gov (United States)

    Bonavito, N. L.; Gordon, C. L.; Inguva, R.; Serafino, G. N.; Barnes, R. A.

    1994-01-01

    NASA's Mission to Planet Earth (MTPE) will address important interdisciplinary and environmental issues such as global warming, ozone depletion, deforestation, acid rain, and the like with its long term satellite observations of the Earth and with its comprehensive Data and Information System. Extensive sets of satellite observations supporting MTPE will be provided by the Earth Observing System (EOS), while more specific process related observations will be provided by smaller Earth Probes. MTPE will use data from ground and airborne scientific investigations to supplement and validate the global observations obtained from satellite imagery, while the EOS satellites will support interdisciplinary research and model development. This is important for understanding the processes that control the global environment and for improving the prediction of events. In this paper we illustrate the potential for powerful artificial intelligence (AI) techniques when used in the analysis of the formidable problems that exist in the NASA Earth Science programs and of those to be encountered in the future MTPE and EOS programs. These techniques, based on the logical and probabilistic reasoning aspects of plausible inference, strongly emphasize the synergetic relation between data and information. As such, they are ideally suited for the analysis of the massive data streams to be provided by both MTPE and EOS. To demonstrate this, we address both the satellite imagery and model enhancement issues for the problem of ozone profile retrieval through a method based on plausible scientific inferencing. Since in the retrieval problem, the atmospheric ozone profile that is consistent with a given set of measured radiances may not be unique, an optimum statistical method is used to estimate a 'best' profile solution from the radiances and from additional a priori information.

  1. Tropospheric Ozone Assessment Report: Assessment of global-scale model performance for global and regional ozone distributions, variability, and trends

    Directory of Open Access Journals (Sweden)

    P. J. Young

    2018-01-01

    Full Text Available The goal of the Tropospheric Ozone Assessment Report (TOAR is to provide the research community with an up-to-date scientific assessment of tropospheric ozone, from the surface to the tropopause. While a suite of observations provides significant information on the spatial and temporal distribution of tropospheric ozone, observational gaps make it necessary to use global atmospheric chemistry models to synthesize our understanding of the processes and variables that control tropospheric ozone abundance and its variability. Models facilitate the interpretation of the observations and allow us to make projections of future tropospheric ozone and trace gas distributions for different anthropogenic or natural perturbations. This paper assesses the skill of current-generation global atmospheric chemistry models in simulating the observed present-day tropospheric ozone distribution, variability, and trends. Drawing upon the results of recent international multi-model intercomparisons and using a range of model evaluation techniques, we demonstrate that global chemistry models are broadly skillful in capturing the spatio-temporal variations of tropospheric ozone over the seasonal cycle, for extreme pollution episodes, and changes over interannual to decadal periods. However, models are consistently biased high in the northern hemisphere and biased low in the southern hemisphere, throughout the depth of the troposphere, and are unable to replicate particular metrics that define the longer term trends in tropospheric ozone as derived from some background sites. When the models compare unfavorably against observations, we discuss the potential causes of model biases and propose directions for future developments, including improved evaluations that may be able to better diagnose the root cause of the model-observation disparity. Overall, model results should be approached critically, including determining whether the model performance is acceptable for

  2. Report card on low level ozone in urban areas

    Energy Technology Data Exchange (ETDEWEB)

    Onischak, M.

    1994-12-31

    It has been four years since the Clean Air Act was amended in November of 1990. Much work has been done in this time, and the country is beginning to see real air quality benefits. Although these changes have not completely licked the urban ozone problem yet, they have made a lot of progress. All of the urban areas which have been required to reduce their ozone levels have done a good job of lowering their emissions. While the urban areas have not all been able to meet every federal deadline, the areas have all been able to achieve the control milestones before the mandatory Clean Air Act sanctions have taken effect. Some areas are even ready to declare their ozone problems solved.

  3. Report card on low level ozone in urban areas

    International Nuclear Information System (INIS)

    Onischak, M.

    1994-01-01

    It has been four years since the Clean Air Act was amended in November of 1990. Much work has been done in this time, and the country is beginning to see real air quality benefits. Although these changes have not completely licked the urban ozone problem yet, they have made a lot of progress. All of the urban areas which have been required to reduce their ozone levels have done a good job of lowering their emissions. While the urban areas have not all been able to meet every federal deadline, the areas have all been able to achieve the control milestones before the mandatory Clean Air Act sanctions have taken effect. Some areas are even ready to declare their ozone problems solved

  4. Experimental study of ozone synthesis

    International Nuclear Information System (INIS)

    Garamoon, A A; Elakshar, F F; Nossair, A M; Kotp, E F

    2002-01-01

    A silent discharge ozonizer has been constructed with a design that enables the study of ozone concentration behaviour as a function of different parameters when oxygen used as a working gas. The behaviour of ozone concentration as a function of discharge current density has four characteristic regions. The concentration is enhanced by more than threefold whenever gas pressure is reduced by a factor of two. The flow rate of the working gas is a more effective parameter on ozone concentration than the gas pressure. When the flow rate is kept constant, and the pressure is decreased by 100%, the ozone concentration increases by only 10%. On the other hand, when the flow rate is decreased by 13%, the ozone concentration increases by 200%, whenever the gas pressure is kept constant. The concentration is nearly doubled when the gap space is increased by four times under the same conditions. The length of the discharge region, the thickness and the dielectric constant of the insulating materials are found to have a considerable effect on the generated ozone concentration. Also, the ozone concentration is ten times less when air is used instead of oxygen as a working gas. A maximum efficiency of 185 g/kWh, is obtained for the present system

  5. Strategy for reducing ozone levels in the northeast United States

    International Nuclear Information System (INIS)

    Bradley, M.

    1992-01-01

    In the northeast USA, ozone episodes are frequent during the summer; most of these episodes last 3-4 days. The duration and frequency of these episodes is mainly determined by weather conditions. The persistence of ozone episodes in the region is explained by the fact that emissions of ozone precursors (nitrogen oxides (NOx) and volatile organic compounds (VOC)) are like those of other regions of the USA affected by acute ozone problems. The population density, industry, and use of automobiles are other factors contributing to the difficulty of maintaining acceptable ozone levels. The ozone problem is especially severe in the New York metropolitan area and most of New Jersey. Strategies for combating ozone precursors have relied entirely on reducing emissions of VOCs, while little has been done to reduce NOx, except for automobile emissions. The Clean Air Act of 1990 provides for significant reductions of NOx and VOC from mobile sources and insists on VOC emissions reductions from stationary sources. In California, stricter emission standards for VOC and NOx have been implemented for new vehicles, requiring wider use of low- or zero-emission vehicles. The Northeast States for Coordinated Air Use Management (NESCAUM) organization, formed by the state agencies responsible for air quality, is aiding the northeast states to evaluate the advantages of adopting California standards for vehicles. Twelve northeast states propose to adopt the Californian low-emission vehicle program and are examining other options such as reformulated gasolines, improved maintenance and verification programs, and measures to reduce the number of miles travelled. 1 fig., 1 tab

  6. Source attribution of tropospheric ozone

    Science.gov (United States)

    Butler, T. M.

    2015-12-01

    Tropospheric ozone is a harmful pollutant with adverse effects on human health and ecosystems. As well as these effects, tropospheric ozone is also a powerful greenhouse gas, with an anthropogenic radiative forcing one quarter of that of CO2. Along with methane and atmospheric aerosol, tropospheric ozone belongs to the so-called Short Lived Climate forcing Pollutants, or SLCP. Recent work has shown that efforts to reduce concentrations of SLCP in the atmosphere have the potential to slow the rate of near-term climate change, while simultaneously improving public health and reducing crop losses. Unlike many other SLCP, tropospehric ozone is not directly emitted, but is instead influenced by two distinct sources: transport of air from the ozone-rich stratosphere; and photochemical production in the troposphere from the emitted precursors NOx (oxides of nitrogen), CO (Carbon Monoxide), and VOC (volatile organic compounds, including methane). Better understanding of the relationship between ozone production and the emissions of its precursors is essential for the development of targeted emission reduction strategies. Several modeling methods have been employed to relate the production of tropospheric ozone to emissions of its precursors; emissions perturbation, tagging, and adjoint sensitivity methods all deliver complementary information about modelled ozone production. Most studies using tagging methods have focused on attribution of tropospheric ozone production to emissions of NOx, even though perturbation methods have suggested that tropospheric ozone is also sensitive to VOC, particularly methane. In this study we describe the implementation into a global chemistry-climate model of a scheme for tagging emissions of NOx and VOC with an arbitrary number of labels, which are followed through the chemical reactions of tropospheric ozone production in order to perform attribution of tropospehric ozone to its emitted precursors. Attribution is performed to both

  7. Ozone's impact on public health: Contributions from indoor exposures to ozone and products of ozone-initiated chemistry

    DEFF Research Database (Denmark)

    Weschler, Charles J.

    2006-01-01

    OBJECTIVES: The associations between ozone concentrations measured outdoors and both morbidity and mortality may be partially due to indoor exposures to ozone and ozone-initiated oxidation products. In this article I examine the contributions of such indoor exposures to overall ozone-related heal...

  8. Physics of fully depleted CCDs

    International Nuclear Information System (INIS)

    Holland, S E; Bebek, C J; Kolbe, W F; Lee, J S

    2014-01-01

    In this work we present simple, physics-based models for two effects that have been noted in the fully depleted CCDs that are presently used in the Dark Energy Survey Camera. The first effect is the observation that the point-spread function increases slightly with the signal level. This is explained by considering the effect on charge-carrier diffusion due to the reduction in the magnitude of the channel potential as collected signal charge acts to partially neutralize the fixed charge in the depleted channel. The resulting reduced voltage drop across the carrier drift region decreases the vertical electric field and increases the carrier transit time. The second effect is the observation of low-level, concentric ring patterns seen in uniformly illuminated images. This effect is shown to be most likely due to lateral deflection of charge during the transit of the photo-generated carriers to the potential wells as a result of lateral electric fields. The lateral fields are a result of space charge in the fully depleted substrates arising from resistivity variations inherent to the growth of the high-resistivity silicon used to fabricate the CCDs

  9. Copernicus stratospheric ozone service, 2009–2012: validation, system intercomparison and roles of input data sets

    Directory of Open Access Journals (Sweden)

    K. Lefever

    2015-03-01

    Full Text Available This paper evaluates and discusses the quality of the stratospheric ozone analyses delivered in near real time by the MACC (Monitoring Atmospheric Composition and Climate project during the 3-year period between September 2009 and September 2012. Ozone analyses produced by four different chemical data assimilation (CDA systems are examined and compared: the Integrated Forecast System coupled to the Model for OZone And Related chemical Tracers (IFS-MOZART; the Belgian Assimilation System for Chemical ObsErvations (BASCOE; the Synoptic Analysis of Chemical Constituents by Advanced Data Assimilation (SACADA; and the Data Assimilation Model based on Transport Model version 3 (TM3DAM. The assimilated satellite ozone retrievals differed for each system; SACADA and TM3DAM assimilated only total ozone observations, BASCOE assimilated profiles for ozone and some related species, while IFS-MOZART assimilated both types of ozone observations. All analyses deliver total column values that agree well with ground-based observations (biases The northern spring 2011 period is studied in more detail to evaluate the ability of the analyses to represent the exceptional ozone depletion event, which happened above the Arctic in March 2011. Offline sensitivity tests are performed during this month and indicate that the differences between the forward models or the assimilation algorithms are much less important than the characteristics of the assimilated data sets. They also show that IFS-MOZART is able to deliver realistic analyses of ozone both in the troposphere and in the stratosphere, but this requires the assimilation of observations from nadir-looking instruments as well as the assimilation of profiles, which are well resolved vertically and extend into the lowermost stratosphere.

  10. Multidecadal Changes in the UTLS Ozone from the MERRA-2 Reanalysis and the GMI Chemistry Model

    Science.gov (United States)

    Wargan, Krzysztof; Orbe, Clara; Pawson, Steven; Ziemke, Jerald R.; Oman, Luke; Olsen, Mark; Coy, Lawrence; Knowland, Emma

    2018-01-01

    Long-term changes of ozone in the UTLS (Upper Troposphere / Lower Stratosphere) reflect the response to decreases in the stratospheric concentrations of ozone-depleting substances as well as changes in the stratospheric circulation induced by climate change. To date, studies of UTLS ozone changes and variability have relied mainly on satellite and in-situ observations as well as chemistry-climate model simulations. By comparison, the potential of reanalysis ozone data remains relatively untapped. This is despite evidence from recent studies, including detailed analyses conducted under SPARC (Scalable Processor Architecture) Reanalysis Intercomparison Project (S-RIP), that demonstrate that stratospheric ozone fields from modern atmospheric reanalyses exhibit good agreement with independent data while delineating issues related to inhomogeneities in the assimilated observations. In this presentation, we will explore the possibility of inferring long-term geographically and vertically resolved behavior of the lower stratospheric (LS) ozone from NASA's MERRA-2 (Modern-Era Retrospective Analysis for Research and Applications -2) reanalysis after accounting for the few known discontinuities and gaps in its assimilated input data. This work builds upon previous studies that have documented excellent agreement between MERRA-2 ozone and ozonesonde observations in the LS. Of particular importance is a relatively good vertical resolution of MERRA-2 allowing precise separation of tropospheric and stratospheric ozone contents. We also compare the MERRA-2 LS ozone results with the recently completed 37-year simulation produced using Goddard Earth Observing System in "replay"� mode coupled with the GMI (Global Modeling Initiative) chemistry mechanism. Replay mode dynamically constrains the model with the MERRA-2 reanalysis winds, temperature, and pressure. We will emphasize the areas of agreement of the reanalysis and replay and interpret differences between them in the context

  11. How Ego Depletion Affects Sexual Self-Regulation: Is It More Than Resource Depletion?

    Science.gov (United States)

    Nolet, Kevin; Rouleau, Joanne-Lucine; Benbouriche, Massil; Carrier Emond, Fannie; Renaud, Patrice

    2015-12-21

    Rational thinking and decision making are impacted when in a state of sexual arousal. The inability to self-regulate arousal can be linked to numerous problems, like sexual risk taking, infidelity, and sexual coercion. Studies have shown that most men are able to exert voluntary control over their sexual excitation with various levels of success. Both situational and dispositional factors can influence self-regulation achievement. The goal of this research was to investigate how ego depletion, a state of low self-control capacity, interacts with personality traits-propensities for sexual excitation and inhibition-and cognitive absorption, to cause sexual self-regulation failure. The sexual responses of 36 heterosexual males were assessed using penile plethysmography. They were asked to control their sexual arousal in two conditions, with and without ego depletion. Results suggest that ego depletion has opposite effects based on the trait sexual inhibition, as individuals moderately inhibited showed an increase in performance while highly inhibited ones showed a decrease. These results challenge the limited resource model of self-regulation and point to the importance of considering how people adapt to acute and high challenging conditions.

  12. Outlooks for the development of ozone-safe refrigerant production at the Minatom facilities

    International Nuclear Information System (INIS)

    Shatalov, V.V.; Orekhov, V.T.; Dedov, A.S.; Zakharov, V.Yu.; Golubev, A.N.; Tsarev, V.A.

    2001-01-01

    Results of activities undertaken at the All-Russian Research Institute of Chemical Technology since 1988, which were aimed at search of new methods of synthesis of ozone-safe refrigerants, using depleted uranium hexafluoride waste formed at gas-diffusion plants as fluorinating agent, are considered. It is pointed out that major advantages of the flowsheets making use of UF 6 versus traditional method consist in the fact that the processes are conducted in gas phase under normal pressure and moderate temperatures with UF 6 transfer into a more environmentally friendly form. Outlooks for expansion of production of ozone-safe refrigerants by the method described are discussed [ru

  13. Variability of the total ozone trend over Europe for the period 1950─2004 derived from reconstructed data

    Directory of Open Access Journals (Sweden)

    J. L. Borkowski

    2008-06-01

    Full Text Available The total ozone data over Europe are available for only few ground-based stations in the pre-satellite era disallowing examination of the spatial trend variability over the whole continent. A need of having gridded ozone data for a trend analysis and input to radiative transfer models stimulated a reconstruction of the daily ozone values since January 1950. Description of the reconstruction model and its validation were a subject of our previous paper. The data base used was built within the objectives of the COST action 726 "Long-term changes and climatology of UV radiation over Europe". Here we focus on trend analyses. The long-term variability of total ozone is discussed using results of a flexible trend model applied to the reconstructed total ozone data for the period 1950–2004. The trend pattern, which comprises both anthropogenic and "natural" component, is not a priori assumed but it comes from a smooth curve fit to the zonal monthly means and monthly grid values. The ozone long-term changes are calculated separately for cold (October–next year April and warm (May–September seasons. The confidence intervals for the estimated ozone changes are derived by the block bootstrapping. The statistically significant negative trends are found almost over the whole Europe only in the period 1985–1994. Negative trends up to −3% per decade appeared over small areas in earlier periods when the anthropogenic forcing on the ozone layer was weak . The statistically positive trends are found only during warm seasons 1995–2004 over Svalbard archipelago. The reduction of ozone level in 2004 relative to that before the satellite era is not dramatic, i.e., up to ~−5% and ~−3.5% in the cold and warm subperiod, respectively. Present ozone level is still depleted over many popular resorts in southern Europe and northern Africa. For high latitude regions the trend overturning could be inferred in last decade (1995–2004 as the ozone depleted

  14. Characterising the three-dimensional ozone distribution of a tidally locked Earth-like planet

    Science.gov (United States)

    Proedrou, Elisavet; Hocke, Klemens

    2016-06-01

    We simulate the 3D ozone distribution of a tidally locked Earth-like exoplanet using the high-resolution, 3D chemistry-climate model CESM1(WACCM) and study how the ozone layer of a tidally locked Earth (TLE) (Ω _{TLE}= 1/365 days) differs from that of our present-day Earth (PDE) (Ω _{PDE}= 1/1 day). The middle atmosphere reaches a steady state asymptotically within the first 80 days of the simulation. An upwelling, centred on the subsolar point, is present on the day side while a downwelling, centred on the antisolar point, is present on the night side. In the mesosphere, we find similar global ozone distributions for the TLE and the PDE, with decreased ozone on the day side and enhanced ozone on the night side. In the lower mesosphere, a jet stream transitions into a large-scale vortex around a low-pressure system, located at low latitudes of the TLE night side. In the middle stratosphere, the concentration of odd oxygen is approximately equal to that of the ozone [({O}x) ≈ ({O}3)]. At these altitudes, the lifetime of odd oxygen is ˜16 h and the transport processes significantly contribute to the global distribution of stratospheric ozone. Compared to the PDE, where the strong Coriolis force acts as a mixing barrier between low and high latitudes, the transport processes of the TLE are governed by jet streams variable in the zonal and meridional directions. In the middle stratosphere of the TLE, we find high ozone values on the day side, due to the increased production of atomic oxygen on the day side, where it immediately recombines with molecular oxygen to form ozone. In contrast, the ozone is depleted on the night side, due to changes in the solar radiation distribution and the presence of a downwelling. As a result of the reduced Coriolis force, the tropical and extratropical air masses are well mixed and the global temperature distribution of the TLE stratosphere has smaller horizontal gradients than the PDE. Compared to the PDE, the total ozone column

  15. The Extrapolar SWIFT model (version 1.0): fast stratospheric ozone chemistry for global climate models

    Science.gov (United States)

    Kreyling, Daniel; Wohltmann, Ingo; Lehmann, Ralph; Rex, Markus

    2018-03-01

    The Extrapolar SWIFT model is a fast ozone chemistry scheme for interactive calculation of the extrapolar stratospheric ozone layer in coupled general circulation models (GCMs). In contrast to the widely used prescribed ozone, the SWIFT ozone layer interacts with the model dynamics and can respond to atmospheric variability or climatological trends.The Extrapolar SWIFT model employs a repro-modelling approach, in which algebraic functions are used to approximate the numerical output of a full stratospheric chemistry and transport model (ATLAS). The full model solves a coupled chemical differential equation system with 55 initial and boundary conditions (mixing ratio of various chemical species and atmospheric parameters). Hence the rate of change of ozone over 24 h is a function of 55 variables. Using covariances between these variables, we can find linear combinations in order to reduce the parameter space to the following nine basic variables: latitude, pressure altitude, temperature, overhead ozone column and the mixing ratio of ozone and of the ozone-depleting families (Cly, Bry, NOy and HOy). We will show that these nine variables are sufficient to characterize the rate of change of ozone. An automated procedure fits a polynomial function of fourth degree to the rate of change of ozone obtained from several simulations with the ATLAS model. One polynomial function is determined per month, which yields the rate of change of ozone over 24 h. A key aspect for the robustness of the Extrapolar SWIFT model is to include a wide range of stratospheric variability in the numerical output of the ATLAS model, also covering atmospheric states that will occur in a future climate (e.g. temperature and meridional circulation changes or reduction of stratospheric chlorine loading).For validation purposes, the Extrapolar SWIFT model has been integrated into the ATLAS model, replacing the full stratospheric chemistry scheme. Simulations with SWIFT in ATLAS have proven that the

  16. Total ozone changes in the 1987 Antarctic ozone hole

    Science.gov (United States)

    Krueger, Arlin J.; Schoeberl, Mark R.; Doiron, Scott D.; Sechrist, Frank; Galimore, Reginald

    1988-01-01

    The development of the Antarctic ozone minimum was observed in 1987 with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) instrument. In the first half of August the near-polar (60 and 70 deg S) ozone levels were similar to those of recent years. By September, however, the ozone at 70 and 80 deg S was clearly lower than any previous year including 1985, the prior record low year. The levels continued to decrease throughout September until October 5 when a new record low of 109 DU was established at a point near the South Pole. This value is 29 DU less than the lowest observed in 1985 and 48 DU less than the 1986 low. The zonal mean total ozone at 60 deg S remained constant throughout the time of ozone hole formation. The ozone decline was punctuated by local minima formed away from the polar night boundary at about 75 deg S. The first of these, on August 15 to 17, formed just east of the Palmer Peninsula and appears to be a mountain wave. The second major minimum formed on September 5 to 7 again downwind of the Palmer Peninsula. This event was larger in scale than the August minimum and initiated the decline of ozone across the polar region. The 1987 ozone hole was nearly circular and pole centered for its entire life. In previous years the hole was perturbed by intrusions of the circumpolar maximum into the polar regions, thus causing the hole to be elliptical. The 1987 hole also remained in place until the end of November, a few days longer than in 1985, and this persistence resulted in the latest time for recovery to normal values yet observed.

  17. Risks associated to the depleted uranium in the piercing shells

    International Nuclear Information System (INIS)

    2001-01-01

    Following the complaints lodged by military personnel against the consequences of the utilization of depleted uranium in weapons during the Balkans war (1995-1999), the governments of six concerned countries asked information to the NATO. In this paper the IPSN gives its own opinion on this problem: the characteristics of the uranium and the depleted uranium, the impacts of the shell fires on the human and the environment. To establish the risks in terms of leukemia and the liabilities the IPSN advises more biological tests and more information on the shells utilization. (A.L.B.)

  18. Reassessment of causes of ozone column variability following the eruption of Mount Pinatubo using a nudged CCM

    Directory of Open Access Journals (Sweden)

    P. Telford

    2009-07-01

    Full Text Available The eruption of Mount Pinatubo produced the largest loading of stratospheric sulphate aerosol in the twentieth century. This heated the tropical lower stratosphere, affecting stratospheric circulation, and provided enhanced surface area for heterogeneous chemistry. These factors combined to produce record low values of "global" total ozone column. Though well studied, there remains some uncertainty about the attribution of this low ozone, with contributions from both chemical and dynamical effects. We take a complementary approach to previous studies, nudging the potential temperature and horizontal winds in the new UKCA chemistry climate model to reproduce the atmospheric response and assess the impact on global total ozone. We then combine model runs and observations to distinguish between chemical and dynamical effects. To estimate the effects of increased heterogeneous chemistry on ozone we compare runs with volcanically enhanced and background surface aerosol density. The modelled depletion of global ozone peaks at about 7 DU in early 1993, in good agreement with values obtained from observations. We subtract the modelled aerosol induced ozone loss from the observed ozone record and attribute the remaining variability to `dynamical' effects. The remaining variability is dominated by the QBO. We also examine tropical and mid-latitude ozone, diagnosing contributions from El Niño in the tropics and identifying dynamically driven low ozone in northern mid-latitudes, which we interpret as possible evidence of changes in the QBO. We conclude that, on a global scale, the record lows of extra-polar ozone are produced by the increased heterogeneous chemistry, although there is evidence for dynamics produced low ozone in certain regions, including northern mid-latitudes.

  19. Exposure to nature counteracts aggression after depletion.

    Science.gov (United States)

    Wang, Yan; She, Yihan; Colarelli, Stephen M; Fang, Yuan; Meng, Hui; Chen, Qiuju; Zhang, Xin; Zhu, Hongwei

    2018-01-01

    Acts of self-control are more likely to fail after previous exertion of self-control, known as the ego depletion effect. Research has shown that depleted participants behave more aggressively than non-depleted participants, especially after being provoked. Although exposure to nature (e.g., a walk in the park) has been predicted to replenish resources common to executive functioning and self-control, the extent to which exposure to nature may counteract the depletion effect on aggression has yet to be determined. The present study investigated the effects of exposure to nature on aggression following depletion. Aggression was measured by the intensity of noise blasts participants delivered to an ostensible opponent in a competition reaction-time task. As predicted, an interaction occurred between depletion and environmental manipulations for provoked aggression. Specifically, depleted participants behaved more aggressively in response to provocation than non-depleted participants in the urban condition. However, provoked aggression did not differ between depleted and non-depleted participants in the natural condition. Moreover, within the depletion condition, participants in the natural condition had lower levels of provoked aggression than participants in the urban condition. This study suggests that a brief period of nature exposure may restore self-control and help depleted people regain control over aggressive urges. © 2017 Wiley Periodicals, Inc.

  20. Stratospheric ozone, ultraviolet radiation and climate change

    International Nuclear Information System (INIS)

    Boucher, O.

    2008-01-01

    It is well known that an overexposure to ultraviolet radiation is associated with a number of health risks such as an increased risk of cataracts and skin cancers. At a time when climate change is often blamed for all our environmental problems, what is the latest news about the stratospheric ozone layer and other factors controlling ultraviolet radiation at the surface of the Earth? Will the expected changes in the chemical composition of the atmosphere and changes in our climate increase or decrease the risk for skin cancer? This article investigates the role of the various factors influencing ultraviolet radiation and presents the latest knowledge on the subject. (author)

  1. Correlative studies of satellite ozone sensor measurements

    International Nuclear Information System (INIS)

    Lovill, J.E.; Ellis, J.S.

    1983-01-01

    Comparisons are made between total ozone measurements made by four satellite ozone sensors (TOMS, SBUV, TOVS and MFR). The comparisons were made during July 1979 when all sensors were operating simultaneously. The TOMS and SBUV sensors were observed to measure less total ozone than the MFR sensor, 10 and 15 Dobson units (DU) respectively. The MFR and TOMS sensors measured less ozone than the TOVS sensor, 19 an 28 DU, respectively. Latitudinal variability of the total ozone comparisons is discussed

  2. Now you see it, now you don't: The ozone hole

    International Nuclear Information System (INIS)

    Wilkniss, P.E.

    1990-01-01

    Fragile, rainbow-colored clouds high in the antarctic sky are a beautiful but onerous reminder that all is not well in the universe. To the trained scientist, the clouds foretell the destruction of Antarctic ozone - a gas that protects the Earth from the sun's destructive ultraviolet rays. The author describes the scene while telling of the Dr. Jekyll/Mr. Hyde role that ozone plays in the environment. In the lower atmosphere, ozone is a nasty pollutant. In the upper atmosphere, it shields the Earth's surface from unwanted ultraviolet radiation. A bombshell was dropped in 1985 by the discovery of a large hole in the ozone layer in the upper atmosphere over the entire expanse of Antarctica. The hole later confirmed in other studies, has been appearing each spring and disappearing each summer since 1975. The mass of scientific evidence leaves no doubt that chlorine from chlorofluorocarbons (CFCs) is responsible for destroying the ozone. He predicts the hole will remain for 50 to 100 years, even if the world were to stop releasing CFCs now, although the size of the hole will wax and wane. Increased ultraviolet radiation resulting from the ozone depletion will cause an increase in skin cancer, cataracts, and infection due to weakened immune systems

  3. Uranium, depleted uranium, biological effects

    International Nuclear Information System (INIS)

    2001-01-01

    Physicists, chemists and biologists at the CEA are developing scientific programs on the properties and uses of ionizing radiation. Since the CEA was created in 1945, a great deal of research has been carried out on the properties of natural, enriched and depleted uranium in cooperation with university laboratories and CNRS. There is a great deal of available data about uranium; thousands of analyses have been published in international reviews over more than 40 years. This presentation on uranium is a very brief summary of all these studies. (author)

  4. Dobson spectrophotometer ozone measurements during international ozone rocketsonde intercomparison

    Science.gov (United States)

    Parsons, C. L.

    1980-01-01

    Measurements of the total ozone content of the atmosphere, made with seven ground based instruments at a site near Wallops Island, Virginia, are discussed in terms for serving as control values with which the rocketborne sensor data products can be compared. These products are profiles of O3 concentration with altitude. By integrating over the range of altitudes from the surface to the rocket apogee and by appropriately estimating the residual ozone amount from apogee to the top of the atmosphere, a total ozone amount can be computed from the profiles that can be directly compared with the ground based instrumentation results. Dobson spectrophotometers were used for two of the ground-based instruments. Preliminary data collected during the IORI from Dobson spectrophotometers 72 and 38 are presented. The agreement between the two and the variability of total ozone overburden through the experiment period are discussed.

  5. Determination of the Optimum Ozone Product on the Plasma Ozonizer

    International Nuclear Information System (INIS)

    Agus Purwadi; Widdi Usada; Suryadi; Isyuniarto; Sri Sukmajaya

    2002-01-01

    An experiment of the optimum ozone product determination on the cylindrical plasma ozonizer has been done. The experiment is carried out by using alternating high voltage power supply, oscilloscope CS-1577 A, flow meter and spectronik-20 instrument for the absorbance solution samples which produced by varying the physics parameter values of the discharge alternating high voltage and velocity of oxygen gas input. The plasma ozonizer is made of cylinder stainless steel as the electrode and cylinder glass as the dielectric with 1.00 mm of the discharge gap and 7.225 mm 3 of the discharge tube volume. The experiment results shows that the optimum ozone product is 0.360 mg/s obtained at the the discharge of alternating high voltage of 25.50 kV, the frequency of 1.00 kHz and the rate of oxygen gas input of 1.00 lpm. (author)

  6. "When the going gets tough, who keeps going?" Depletion sensitivity moderates the ego-depletion effect

    NARCIS (Netherlands)

    Salmon, Stefanie J.; Adriaanse, Marieke A.; De Vet, Emely; Fennis, Bob M.; De Ridder, Denise T D

    2014-01-01

    Self-control relies on a limited resource that can get depleted, a phenomenon that has been labeled ego-depletion. We argue that individuals may differ in their sensitivity to depleting tasks, and that consequently some people deplete their self-control resource at a faster rate than others. In

  7. "When the going gets tough, who keeps going?" : Depletion sensitivity moderates the ego-depletion effect

    NARCIS (Netherlands)

    Salmon, Stefanie J.; Adriaanse, Marieke A.; De Vet, Emely; Fennis, Bob M.; De Ridder, Denise T. D.

    2014-01-01

    Self-control relies on a limited resource that can get depleted, a phenomenon that has been labeled ego-depletion. We argue that individuals may differ in their sensitivity to depleting tasks, and that consequently some people deplete their self-control resource at a faster rate than others. In

  8. When the Going Gets Tough, Who Keeps Going? Depletion Sensitivity Moderates the Ego-Depletion Effect

    Directory of Open Access Journals (Sweden)

    Stefanie J. Salmon

    2014-06-01

    Full Text Available Self-control relies on a limited resource that can get depleted, a phenomenon that has been labeled ego-depletion. We argue that individuals may differ in their sensitivity to depleting tasks, and that consequently some people deplete their self-control resource at a faster rate than others. In three studies, we assessed individual differences in depletion sensitivity, and demonstrate that depletion sensitivity moderates ego-depletion effects. The Depletion Sensitivity Scale (DSS was employed to assess depletion sensitivity. Study 1 employs the DSS to demonstrate that individual differences in sensitivity to ego-depletion exist. Study 2 shows moderate correlations of depletion sensitivity with related self-control concepts, indicating that these scales measure conceptually distinct constructs. Study 3 demonstrates that depletion sensitivity moderates the ego-depletion effect. Specifically, participants who are sensitive to depletion performed worse on a second self-control task, indicating a stronger ego-depletion effect, compared to participants less sensitive to depletion.

  9. 78 FR 24997 - Protection of Stratospheric Ozone: Listing of Substitutes for Ozone-Depleting Substances-Fire...

    Science.gov (United States)

    2013-04-29

    ... available for products and manufacturing processes which use class I and II substances. B. Regulatory... (chlorofluorocarbon, halon, carbon tetrachloride, methyl chloroform, and hydrobromofluorocarbon) or class II... substitute to replace a class I substance or class II substance in one of the eight major industrial use...

  10. 77 FR 58035 - Protection of Stratospheric Ozone: Listing of Substitutes for Ozone-Depleting Substances-Fire...

    Science.gov (United States)

    2012-09-19

    ... not intended to be exhaustive, but rather a guide regarding entities likely to be regulated by this... provide the Agency with the producer's unpublished health and safety studies on such substitutes. Outreach.... Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United...

  11. 77 FR 58081 - Protection of Stratospheric Ozone: Listing of Substitutes for Ozone-Depleting Substances-Fire...

    Science.gov (United States)

    2012-09-19

    ... 332919 Nozzles, fire fighting, manufacturing. Manufacturing 334290 Fire detection and alarm systems... substitutes for halon 1301 for use in total flooding fire suppression systems in normally unoccupied spaces... regulated Category NAICS Code entities Construction 238210 Alarm system (e.g., fire, burglar), electric...

  12. Simulation of stratospheric water vapor trends: impact on stratospheric ozone chemistry

    Directory of Open Access Journals (Sweden)

    A. Stenke

    2005-01-01

    Full Text Available A transient model simulation of the 40-year time period 1960 to 1999 with the coupled climate-chemistry model (CCM ECHAM4.L39(DLR/CHEM shows a stratospheric water vapor increase over the last two decades of 0.7 ppmv and, additionally, a short-term increase after major volcanic eruptions. Furthermore, a long-term decrease in global total ozone as well as a short-term ozone decline in the tropics after volcanic eruptions are modeled. In order to understand the resulting effects of the water vapor changes on lower stratospheric ozone chemistry, different perturbation simulations were performed with the CCM ECHAM4.L39(DLR/CHEM feeding the water vapor perturbations only to the chemistry part. Two different long-term perturbations of lower stratospheric water vapor, +1 ppmv and +5 ppmv, and a short-term perturbation of +2 ppmv with an e-folding time of two months were applied. An additional stratospheric water vapor amount of 1 ppmv results in a 5–10% OH increase in the tropical lower stratosphere between 100 and 30 hPa. As a direct consequence of the OH increase the ozone destruction by the HOx cycle becomes 6.4% more effective. Coupling processes between the HOx-family and the NOx/ClOx-family also affect the ozone destruction by other catalytic reaction cycles. The NOx cycle becomes 1.6% less effective, whereas the effectiveness of the ClOx cycle is again slightly enhanced. A long-term water vapor increase does not only affect gas-phase chemistry, but also heterogeneous ozone chemistry in polar regions. The model results indicate an enhanced heterogeneous ozone depletion during antarctic spring due to a longer PSC existence period. In contrast, PSC formation in the northern hemisphere polar vortex and therefore heterogeneous ozone depletion during arctic spring are not affected by the water vapor increase, because of the less PSC activity. Finally, this study shows that 10% of the global total ozone decline in the transient model run

  13. OZONE TREATMENT OF SOLUBLE ORGANICS IN PRODUCED WATER

    Energy Technology Data Exchange (ETDEWEB)

    Klasson, KT

    2002-03-14

    This project was an extension of previous research to improve the applicability of ozonation and will help address the petroleum-industry problem of treating produced water containing soluble organics. The goal of this project was to maximize oxidation of hexane-extractable organics during a single-pass operation. The project investigated: (1) oxidant production by electrochemical and sonochemical methods, (2) increasing the mass transfer rate in the reactor by forming microbubbles during ozone injection into the produced water, and (3) using ultraviolet irradiation to enhance the reaction if needed. Several types of methodologies for treatment of soluble organics in synthetic and actual produced waters have been performed. The technologies tested may be categorized as follows: (1) Destruction via sonochemical oxidation at different pH, salt concentration, ultraviolet irradiation, and ferrous iron concentrations. (2) Destruction via ozonation at different pH, salt concentration, hydrogen peroxide concentrations, ultraviolet irradiation, temperature, and reactor configurations.

  14. CO Depletion: A Microscopic Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Cazaux, S. [Faculty of Aerospace Engineering, Delft University of Technology, Delft (Netherlands); Martín-Doménech, R.; Caro, G. M. Muñoz; Díaz, C. González [Centro de Astrobiología (INTA-CSIC), Ctra. de Ajalvir, km 4, Torrejón de Ardoz, E-28850 Madrid (Spain); Chen, Y. J. [Department of Physics, National Central University, Jhongli City, 32054, Taoyuan County, Taiwan (China)

    2017-11-10

    In regions where stars form, variations in density and temperature can cause gas to freeze out onto dust grains forming ice mantles, which influences the chemical composition of a cloud. The aim of this paper is to understand in detail the depletion (and desorption) of CO on (from) interstellar dust grains. Experimental simulations were performed under two different (astrophysically relevant) conditions. In parallel, Kinetic Monte Carlo simulations were used to mimic the experimental conditions. In our experiments, CO molecules accrete onto water ice at temperatures below 27 K, with a deposition rate that does not depend on the substrate temperature. During the warm-up phase, the desorption processes do exhibit subtle differences, indicating the presence of weakly bound CO molecules, therefore highlighting a low diffusion efficiency. IR measurements following the ice thickness during the TPD confirm that diffusion occurs at temperatures close to the desorption. Applied to astrophysical conditions, in a pre-stellar core, the binding energies of CO molecules, ranging between 300 and 850 K, depend on the conditions at which CO has been deposited. Because of this wide range of binding energies, the depletion of CO as a function of A{sub V} is much less important than initially thought. The weakly bound molecules, easily released into the gas phase through evaporation, change the balance between accretion and desorption, which result in a larger abundance of CO at high extinctions. In addition, weakly bound CO molecules are also more mobile, and this could increase the reactivity within interstellar ices.

  15. How is ozone pollution reducing our food supply?

    Science.gov (United States)

    Wilkinson, Sally; Mills, Gina; Illidge, Rosemary; Davies, William J

    2012-01-01

    Ground-level ozone pollution is already decreasing global crop yields (from ∼2.2-5.5% for maize to 3.9-15% and 8.5-14% for wheat and soybean, respectively), to differing extents depending on genotype and environmental conditions, and this problem is predicted to escalate given climate change and increasing ozone precursor emissions in many areas. Here a summary is provided of how ozone pollution affects yield in a variety of crops, thus impacting global food security. Ozone causes visible injury symptoms to foliage; it induces early senescence and abscission of leaves; it can reduce stomatal aperture and thereby carbon uptake, and/or directly reduce photosynthetic carbon fixation; it can moderate biomass growth via carbon availability or more directly; it can decrease translocation of fixed carbon to edible plant parts (grains, fruits, pods, roots) due either to reduced availability at source, redirection to synthesis of chemical protectants, or reduced transport capabilities via phloem; decreased carbon transport to roots reduces nutrient and water uptake and affects anchorage; ozone can moderate or bring forward flowering and induce pollen sterility; it induces ovule and/or grain abortion; and finally it reduces the ability of some genotypes to withstand other stresses such as drought, high vapour pressure deficit, and high photon flux density via effects on stomatal control. This latter point is emphasized here, given predictions that atmospheric conditions conducive to drought formation that also give rise to intense precursor emission events will become more severe over the coming decades.

  16. Ozone and the oxidizing properties of the troposphere

    International Nuclear Information System (INIS)

    Megie, G.

    1996-01-01

    This article is about the rising concentration of ozone and photo-oxidizers observed in the troposphere, the atmosphere between the ground and a height of 10 to 15 km. This serious global environmental problem has up to now been less well known than the greenhouse effect or the decrease in stratospheric ozone. This is because it varies with time and place and involves many complicated physico-chemical and atmospheric processes. At our latitudes, the average ozone concentration in the air we breathe has quadrupled since the beginning of this century. In polluted areas it often exceeds the recommended norms. This increase in ozone concentrations in the lower atmosphere directly reflects the impact of man-made emissions of compounds like methane, carbon monoxide, hydrocarbons and nitrogen oxides. Sunlight acts on these compounds to form ozone via complicated chemical reactions. This change in oxidizing properties of the troposphere is beginning produce perceptible effects on vegetable production, human health and climate. (author). 24 refs., 5 figs., 4 tabs

  17. Cyanide Containing Wastewater Treatment by Ozone Enhanced Catalytic Oxidation over Diatomite Catalysts

    Directory of Open Access Journals (Sweden)

    Lin Mingguo

    2018-01-01

    Full Text Available Cyanide containing wastewater that discharged from gold mining process creates environmental problems due to the toxicity of cyanide. As one of the promising advanced oxidation process, catalytic oxidation with ozone is considered to be effective on the purification of cyanide. Diatomite, a natural mineral, was used as catalyst in this study. The effect of O3 dosage, salinity, initial cyanide concentration and initial pH condition were investigated. It was observed that the removal rate of cyanide was much higher in the catalytic oxidation with ozone process than the one in zone alone process. Alkaline condition was especially favorable for cyanide in catalytic oxidation with ozone. The ozone and catalytic oxidation with ozone were simulated by pseudo-first-order kinetics model. The apparent first-order rate constant contribution of the diatomite catalyst was 0.0757 min-1, and the contribution percentage was 65.77%.

  18. Modeled population exposures to ozone

    Data.gov (United States)

    U.S. Environmental Protection Agency — Population exposures to ozone from APEX modeling for combinations of potential future air quality and demographic change scenarios. This dataset is not publicly...

  19. Ecosystem Effects of Ozone Pollution

    Science.gov (United States)

    Ground level ozone is absorbed by the leaves of plants, where it can reduce photosynthesis, damage leaves and slow growth. It can also make sensitive plants more susceptible to certain diseases, insects, harsh weather and other pollutants.

  20. Ozone - Current Air Quality Index

    Science.gov (United States)

    GO! Local Air Quality Conditions Zip Code: State : My Current Location Current AQI Forecast AQI Loop More Maps AQI: Good (0 - 50) ... resources for Hawaii residents and visitors more announcements Air Quality Basics Air Quality Index | Ozone | Particle Pollution | Smoke ...

  1. Ozone modelling in Eastern Austria

    Energy Technology Data Exchange (ETDEWEB)

    Stohl, A.; Wotawa, G.; Kromp-Kolb, H. [Univ. of Agriculture, Vienna (Austria). Inst. of Meteorology and Physics; Winiwater, W. [Austrian Research Centre, Seibersdorf (Austria); Baumann, R.; Spangl, W. [Federal Environmental Agency, Vienna (Austria)

    1995-12-31

    High ozone concentrations are frequently observed in Eastern Austria, often exceeding local as well as international health standards, both for short-term as well as for long-term exposures. The maximum concentrations are produced in urban plumes, e.g. of the city of Vienna, whereas regional-scale transport and production of ozone is more important for the long-term concentrations. The Pannonian Ozone Project (POP) is an Austrian research initiative to model photochemical processes on a regional as well as on a local scale with a Lagrangian model to better understand the mechanisms leading to the high ozone concentrations and to develop abatement strategies. Up to now, focus has been on the regional scale. Aircraft, tethered balloon, tetroon and intensified ground measurements are carried out to validate the model. Although the major measurement campaign will be held in summer 1995, first results from a measurement campaign in summer 1994 are already available

  2. Ozone Nonattainment Areas - 1 Hour

    Data.gov (United States)

    U.S. Environmental Protection Agency — This data layer identifies areas in the U.S. where air pollution levels have not met the National Ambient Air Quality Standards (NAAQS) for Ozone - 1hour (Legacy...

  3. Artificially ionized region as a source of ozone in the stratosphere

    International Nuclear Information System (INIS)

    Gurevich, Aleksandr V; Litvak, Aleksandr G; Vikharev, A L; Ivanov, O A; Borisov, Nikolai D; Sergeichev, Konstantin F

    2000-01-01

    A set of physical and chemical processes occurring in a microwave stratospheric discharge of nanosecond duration is discussed in connection with the effect they may have locally on the ozone layer in the artificially ionized region (AIR) in the stratosphere. The AIR, to be created at altitudes of 18 - 20 km by the microwave breakdown of air with ground-produced powerful electromagnetic wave beams, is planned for use in the natural physical experiment aimed at active monitoring of the ozone layer (its internal state and a set of plasma-chemical and photochemical processes) by controllably generating a considerable amount of ozone in the stratosphere. Results of relevant theoretical studies are presented, as are those of a large series of laboratory experiments performed under conditions similar to those prevailing in the stratosphere. Discharge regimes securing the efficient growth of ozone concentration are identified and studied in detail. It is demonstrated that such a stratospheric ozonizer is about as efficient as the best ground-based ozonizers used at present. For typical stratospheric conditions (low pressures and temperatures T ∼ 200 - 220 K), it is shown that the intense generation of ozone in a microwave breakdown effected by groups of short nanosecond pulses does not virtually increase the density of nitrogen oxides - gases that play a vital role in catalytic ozone-decomposing reactions. The possibility of effectively producing ozone in prebreakdown electric fields is established experimentally. It is demonstrated that due to its long lifetime, ozone produced locally at altitudes of 18 - 20 km may spread widely under the action of winds and turbulent diffusion, thus leading to an additional - artificial - ozonization of the stratosphere. (reviews of topical problems)

  4. The 2002 Antarctic Ozone Hole

    Science.gov (United States)

    Newman, P. A.; Nash, E. R.; Douglass, A. R.; Kawa, S. R.

    2003-01-01

    Since 1979, the ozone hole has grown from near zero size to over 24 Million km2. This area is most strongly controlled by levels of inorganic chlorine and bromine oncentrations. In addition, dynamical variations modulate the size of the ozone hole by either cooling or warming the polar vortex collar region. We will review the size observations, the size trends, and the interannual variability of the size. Using a simple trajectory model, we will demonstrate the sensitivity of the ozone hole to dynamical forcing, and we will use these observations to discuss the size of the ozone hole during the 2002 Austral spring. We will further show how the Cly decreases in the stratosphere will cause the ozone hole to decrease by 1-1.5% per year. We will also show results from a 3-D chemical transport model (CTM) that has been continuously run since 1999. These CTM results directly show how strong dynamics acts to reduce the size of the ozone hole.

  5. Extreme value modeling for the analysis and prediction of time series of extreme tropospheric ozone levels: a case study.

    Science.gov (United States)

    Escarela, Gabriel

    2012-06-01

    The occurrence of high concentrations of tropospheric ozone is considered as one of the most important issues of air management programs. The prediction of dangerous ozone levels for the public health and the environment, along with the assessment of air quality control programs aimed at reducing their severity, is of considerable interest to the scientific community and to policy makers. The chemical mechanisms of tropospheric ozone formation are complex, and highly variable meteorological conditions contribute additionally to difficulties in accurate study and prediction of high levels of ozone. Statistical methods offer an effective approach to understand the problem and eventually improve the ability to predict maximum levels of ozone. In this paper an extreme value model is developed to study data sets that consist of periodically collected maxima of tropospheric ozone concentrations and meteorological variables. The methods are applied to daily tropospheric ozone maxima in Guadalajara City, Mexico, for the period January 1997 to December 2006. The model adjusts the daily rate of change in ozone for concurrent impacts of seasonality and present and past meteorological conditions, which include surface temperature, wind speed, wind direction, relative humidity, and ozone. The results indicate that trend, annual effects, and key meteorological variables along with some interactions explain the variation in daily ozone maxima. Prediction performance assessments yield reasonably good results.

  6. Ozone Bioindicator Gardens: an Educational Tool to Raise Awareness about Environmental Pollution and its Effects on Living Systems

    Science.gov (United States)

    Lapina, K.; Lombardozzi, D.

    2014-12-01

    High concentrations of ground-level ozone cause health problems in humans and a number of negative effects on plants, from reduced yield for major agricultural crops to reduced amounts of carbon stored in trees. The Denver Metro/Colorado Front Range is exceeding the National Ambient Air Quality Standard for ozone on a regular basis in summer and the efforts to reduce the ozone levels are hampered by the presence of diverse pollution sources and complex meteorology in the region. To raise public awareness of air quality in the Colorado Front Range and to educate all age groups about ground-level ozone, two ozone bioindicator gardens were planted in Boulder in Spring 2014. The gardens contain ozone-sensitive plants that develop a characteristic ozone injury when exposed to high levels of ozone. The ozone gardens are providing the general public with a real-life demonstration of the negative effects of ozone pollution through observable plant damage. Additionally, the gardens are useful in teaching students how to collect and analyze real-world scientific data.

  7. Extreme events in total ozone over the Northern mid-latitudes: an analysis based on long-term data sets from five European ground-based stations

    Energy Technology Data Exchange (ETDEWEB)

    Rieder, Harald E. (Inst. for Atmospheric and Climate Science, ETH Zurich, Zurich (Switzerland)), e-mail: hr2302@columbia.edu; Jancso, Leonhardt M. (Inst. for Atmospheric and Climate Science, ETH Zurich, Zurich (Switzerland); Inst. for Meteorology and Geophysics, Univ. of Innsbruck, Innsbruck (Austria)); Di Rocco, Stefania (Inst. for Atmospheric and Climate Science, ETH Zurich, Zurich (Switzerland); Dept. of Geography, Univ. of Zurich, Zurich (Switzerland)) (and others)

    2011-11-15

    We apply methods from extreme value theory to identify extreme events in high (termed EHOs) and low (termed ELOs) total ozone and to describe the distribution tails (i.e. very high and very low values) of five long-term European ground-based total ozone time series. The influence of these extreme events on observed mean values, long-term trends and changes is analysed. The results show a decrease in EHOs and an increase in ELOs during the last decades, and establish that the observed downward trend in column ozone during the 1970-1990s is strongly dominated by changes in the frequency of extreme events. Furthermore, it is shown that clear 'fingerprints' of atmospheric dynamics (NAO, ENSO) and chemistry [ozone depleting substances (ODSs), polar vortex ozone loss] can be found in the frequency distribution of ozone extremes, even if no attribution is possible from standard metrics (e.g. annual mean values). The analysis complements earlier analysis for the world's longest total ozone record at Arosa, Switzerland, confirming and revealing the strong influence of atmospheric dynamics on observed ozone changes. The results provide clear evidence that in addition to ODS, volcanic eruptions and strong/moderate ENSO and NAO events had significant influence on column ozone in the European sector

  8. Monoamine depletion by reuptake inhibitors

    Directory of Open Access Journals (Sweden)

    Hinz M

    2011-10-01

    Full Text Available Marty Hinz1, Alvin Stein2, Thomas Uncini31Clinical Research, NeuroResearch Clinics Inc, Cape Coral, FL; 2Stein Orthopedic Associates, Plantation, FL; 3DBS Labs Inc, Duluth, MN, USABackground: Disagreement exists regarding the etiology of cessation of the observed clinical results with administration of reuptake inhibitors. Traditionally, when drug effects wane, it is known as tachyphylaxis. With reuptake inhibitors, the placebo effect is significantly greater than the drug effect in the treatment of depression and attention deficit hyperactivity disorder, leading some to assert that waning of drug effects is placebo relapse, not tachyphylaxis.Methods: Two groups were retrospectively evaluated. Group 1 was composed of subjects with depression and Group 2 was composed of bariatric subjects treated with reuptake inhibitors for appetite suppression.Results: In Group 1, 200 subjects with depression were treated with citalopram 20 mg per day. A total of 46.5% (n = 93 achieved relief of symptoms (Hamilton-D rating score ≤ 7, of whom 37 (39.8% of whom experienced recurrence of depression symptoms, at which point an amino acid precursor formula was started. Within 1–5 days, 97.3% (n = 36 experienced relief of depression symptoms. In Group 2, 220 subjects were treated with phentermine 30 mg in the morning and citalopram 20 mg at 4 pm. In this group, 90.0% (n = 198 achieved adequate appetite suppression. The appetite suppression ceased in all 198 subjects within 4–48 days. Administration of an amino acid precursor formula restored appetite suppression in 98.5% (n = 195 of subjects within 1–5 days.Conclusion: Reuptake inhibitors do not increase the total number of monoamine molecules in the central nervous system. Their mechanism of action facilitates redistribution of monoamines from one place to another. In the process, conditions are induced that facilitate depletion of monoamines. The "reuptake inhibitor monoamine depletion theory" of this paper

  9. New dynamic NNORSY ozone profile climatology

    Science.gov (United States)

    Kaifel, A. K.; Felder, M.; Declercq, C.; Lambert, J.-C.

    2012-01-01

    Climatological ozone profile data are widely used as a-priori information for total ozone using DOAS type retrievals as well as for ozone profile retrieval using optimal estimation, for data assimilation or evaluation of 3-D chemistry-transport models and a lot of other applications in atmospheric sciences and remote sensing. For most applications it is important that the climatology represents not only long term mean values but also the links between ozone and dynamic input parameters. These dynamic input parameters should be easily accessible from auxiliary datasets or easily measureable, and obviously should have a high correlation with ozone. For ozone profile these parameters are mainly total ozone column and temperature profile data. This was the outcome of a user consultation carried out in the framework of developing a new, dynamic ozone profile climatology. The new ozone profile climatology is based on the Neural Network Ozone Retrieval System (NNORSY) widely used for ozone profile retrieval from UV and IR satellite sounder data. NNORSY allows implicit modelling of any non-linear correspondence between input parameters (predictors) and ozone profile target vector. This paper presents the approach, setup and validation of a new family of ozone profile climatologies with static as well as dynamic input parameters (total ozone and temperature profile). The neural network training relies on ozone profile measurement data of well known quality provided by ground based (ozonesondes) and satellite based (SAGE II, HALOE, and POAM-III) measurements over the years 1995-2007. In total, four different combinations (modes) for input parameters (date, geolocation, total ozone column and temperature profile) are available. The geophysical validation spans from pole to pole using independent ozonesonde, lidar and satellite data (ACE-FTS, AURA-MLS) for individual and time series comparisons as well as for analysing the vertical and meridian structure of different modes of

  10. Ozone adsorption on carbon nanoparticles

    Science.gov (United States)

    Chassard, Guillaume; Gosselin, Sylvie; Visez, Nicolas; Petitprez, Denis

    2014-05-01

    Carbonaceous particles produced by incomplete combustion or thermal decomposition of hydrocarbons are ubiquitous in the atmosphere. On these particles are adsorbed hundreds of chemical species. Those of great concern to health are polycyclic aromatic hydrocarbons (PAHs). During atmospheric transport, particulate PAHs react with gaseous oxidants. The induced chemical transformations may change toxicity and hygroscopicity of these potentially inhalable particles. The interaction between ozone and carbon particles has been extensively investigated in literature. However ozone adsorption and surface reaction mechanisms are still ambiguous. Some studies described a fast catalytic decomposition of ozone initiated by an atomic oxygen chemisorption followed by a molecular oxygen release [1-3]. Others suggested a reversible ozone adsorption according to Langmuir-type behaviour [4,5]. The aim of this present study is a better understanding of ozone interaction with carbon surfaces. An aerosol of carbon nanoparticles was generated by flowing synthetic air in a glass tube containing pure carbon (primary particles studied. Accordingly to literature, it has been observed that the number of gas-phase ozone molecules lost per unit particle surface area tends towards a plateau for high ozone concentration suggesting a reversible ozone adsorption according to a Langmuir mechanism. We calculated the initial reaction probability between O3 and carbon particles.An initial uptake coefficient of 1.10-4 was obtained. Similar experiments were realized by selecting the particles size with a differential mobility analyser. We observed a strong size-dependent increase in reactivity with the decrease of particles size. This result is relevant for the health issues. Indeed the smallest particles are most likely to penetrate deep into the lungs. Competitive reactions between ozone and other species like H2O or atomic oxygen were also considered. Oxygen atoms were generated by photolysis of O3

  11. Statistical implications in Monte Carlo depletions - 051

    International Nuclear Information System (INIS)

    Zhiwen, Xu; Rhodes, J.; Smith, K.

    2010-01-01

    As a result of steady advances of computer power, continuous-energy Monte Carlo depletion analysis is attracting considerable attention for reactor burnup calculations. The typical Monte Carlo analysis is set up as a combination of a Monte Carlo neutron transport solver and a fuel burnup solver. Note that the burnup solver is a deterministic module. The statistical errors in Monte Carlo solutions are introduced into nuclide number densities and propagated along fuel burnup. This paper is towards the understanding of the statistical implications in Monte Carlo depletions, including both statistical bias and statistical variations in depleted fuel number densities. The deterministic Studsvik lattice physics code, CASMO-5, is modified to model the Monte Carlo depletion. The statistical bias in depleted number densities is found to be negligible compared to its statistical variations, which, in turn, demonstrates the correctness of the Monte Carlo depletion method. Meanwhile, the statistical variation in number densities generally increases with burnup. Several possible ways of reducing the statistical errors are discussed: 1) to increase the number of individual Monte Carlo histories; 2) to increase the number of time steps; 3) to run additional independent Monte Carlo depletion cases. Finally, a new Monte Carlo depletion methodology, called the batch depletion method, is proposed, which consists of performing a set of independent Monte Carlo depletions and is thus capable of estimating the overall statistical errors including both the local statistical error and the propagated statistical error. (authors)

  12. Is it true that ozone is always toxic? The end of a dogma

    International Nuclear Information System (INIS)

    Bocci, Velio

    2006-01-01

    There are a number of good experimental studies showing that exposure by inhalation to prolonged tropospheric ozone damages the respiratory system and extrapulmonary organs. The skin, if extensively exposed, may also contribute to the damage. The undoubtful strong reactivity of ozone has contributed to establish the dogma that ozone is always toxic and its medical application must be proscribed. Although it is less known, judiciously practiced ozonetherapy is becoming very useful either on its own or applied in combination with orthodox medicine in a broad range of pathologies. The opponents of ozonetherapy base their judgment on the ozone chemistry, and physicians, without any knowledge of the problem, are often skeptical. During the last 15 years, a clear understanding of the action of ozone in biology and medicine has been gained, allowing today to argue if it is true that ozone is always toxic. The fundamental points that are discussed in this paper are: the topography, anatomical and biochemical characteristics of the organs daily exposed to ozone versus the potent antioxidant capacity of blood exposed to a small and precisely calculated dose of ozone only for a few minutes. It is becoming clear how the respiratory system undergoing a chronic oxidative stress can release slowly, but steadily, a huge amount of toxic compounds able to enter the circulation and cause serious damage. The aim of this paper is to objectively evaluate this controversial issue

  13. Use of Ozone to Treat Ileostomy Dermatitis in an Experimental Rat Model.

    Science.gov (United States)

    Biçer, Şenol; Sayar, İlyas; Gürsul, Cebrail; Işık, Arda; Aydın, Merve; Peker, Kemal; Demiryilmaz, İsmail

    2016-03-07

    Dermatitis associated with ileostomy is an important problem that affects many people, especially children. The aim of this study was to investigate the therapeutic effects of ozone on dermatitis due to ileostomy, and to develop an alternative treatment option. A total of 28 rats were divided into 4 groups: control, ileostomy, ozone, and zinc oxide. Ileostomy was performed in all rats except the control group. After a 1-week waiting time, the ozone group was administered ozone therapy and the zinc oxide group was administered zinc oxide cream locally once a day for a total of 7 days. All rats were sacrificed at the end of this period. The efficacy of treatment was examined by biochemical, histopathological, and immunohistochemical parameters. The levels of malondialdehyde (MDA), total glutathione (tGSH), total antioxidant capacity (TAC), and total oxidant status (TOS) were measured from tissue. Vascular endothelial growth factor (VEGF) and proliferating cell nuclear antigen (PCNA) were examined immunohistochemically. Dermatitis occurred pathologically in all rats that underwent ileostomy surgery. The lowest dermatitis score was in the ozone treatment group (p<0.05). Ileostomy dermatitis caused increased levels of MDA and TOS. Ozone treatment resulted in reduced MDA and TOS levels, while the levels of tGSH and TAC were increased (p<0.05). Both VEGF and PCNA immunostaining were augmented in the ozone treatment group (p<0.05). Local ozone application may be a good alternative compared to the conventional treatment methods for the prevention of skin lesions that develop after ileostomy.

  14. Generation of ozone and safety aspects in an accelerator facility of BARC

    International Nuclear Information System (INIS)

    Dubey, Praveen; Sawatkar, Aparna R.; Sathe, Arun P.; Soundararajan, S.; Sarma, K.S.S.

    2009-01-01

    Industrial electron beam accelerators up to 10 MeV are commonly employed for different applications. During normal operation of an accelerator, the principal hazard is the high radiation level produced. Experiments and applications in which the electron beam is used to irradiate materials outside the accelerator vacuum system are associated with problems such as radiation damage and production of considerable quantities of ozone. The possible generation of ozone during the operation of an electron beam accelerator is of special interest due to reactivity, corrosivity and the toxic characteristics of ozone. Industrial hygiene surveys were conducted to estimate the airborne concentration of ozone during operations of the electron beam accelerator (Type: ILU-6; 2 MeV; 20 KW) at varied operating parameters. The ozone concentration in the accelerator room was measured at different powers of the accelerator and the ozone decay pattern was also observed after beam shut down. Ozone in the accelerator room was measured by different methods such as colorimetry using neutral buffered potassium iodide, chemiluminescence method using ethylene and by using electrochemical sensor. An air velocity meter was used to measure the linear air velocity across the exhaust grills and the number of air changes available in the accelerator room was calculated. Necessary control measures were suggested to keep the occupational exposure of the personnel to ozone concentrations well within the Threshold Limit Values. (author)

  15. Long-term ozone decline and its effect on night airglow intensity of Li ...

    Indian Academy of Sciences (India)

    A critical analysis has been made on the long-term yearly and seasonal variations of ozone concentration at Varanasi (25°N, 83°E), India and Halley Bay (76°S, 27°W), a British Antarctic Service Station. The effect of O3 depletion on night airglow emission of Li 6708 Å line at Varanasi and Halley Bay has been studied.

  16. Depleted uranium disposal options evaluation

    International Nuclear Information System (INIS)

    Hertzler, T.J.; Nishimoto, D.D.; Otis, M.D.

    1994-05-01

    The Department of Energy (DOE), Office of Environmental Restoration and Waste Management, has chartered a study to evaluate alternative management strategies for depleted uranium (DU) currently stored throughout the DOE complex. Historically, DU has been maintained as a strategic resource because of uses for DU metal and potential uses for further enrichment or for uranium oxide as breeder reactor blanket fuel. This study has focused on evaluating the disposal options for DU if it were considered a waste. This report is in no way declaring these DU reserves a ''waste,'' but is intended to provide baseline data for comparison with other management options for use of DU. To PICS considered in this report include: Retrievable disposal; permanent disposal; health hazards; radiation toxicity and chemical toxicity

  17. High order depletion sensitivity analysis

    International Nuclear Information System (INIS)

    Naguib, K.; Adib, M.; Morcos, H.N.

    2002-01-01

    A high order depletion sensitivity method was applied to calculate the sensitivities of build-up of actinides in the irradiated fuel due to cross-section uncertainties. An iteration method based on Taylor series expansion was applied to construct stationary principle, from which all orders of perturbations were calculated. The irradiated EK-10 and MTR-20 fuels at their maximum burn-up of 25% and 65% respectively were considered for sensitivity analysis. The results of calculation show that, in case of EK-10 fuel (low burn-up), the first order sensitivity was found to be enough to perform an accuracy of 1%. While in case of MTR-20 (high burn-up) the fifth order was found to provide 3% accuracy. A computer code SENS was developed to provide the required calculations

  18. Uranium under its depleted state

    International Nuclear Information System (INIS)

    2001-01-01

    This day organised by the SFRP, with the help of the Army Health service, the service of radiation protection of Army and IPSN is an information day to inform the public about the real toxicity of uranium, and its becoming in man and environment, about the risks during the use of depleted uranium and eventual consequences of its dispersion after a conflict, to give information on how is managed the protection of workers (civil or military ones) and what is really the situation of French military personnel in these conflicts. The news have brought to the shore cases of leukemia it is necessary to bring some information to the origin of this disease. (N.C.)

  19. Climate and ozone change effects on ultraviolet radiation and risks (COEUR). Using and validating earth observation

    Energy Technology Data Exchange (ETDEWEB)

    Van Dijk, A; Den Outer, P.N.; Slaper, H.

    2008-06-15

    The AMOUR2.0 (Assessment Model for Ultraviolet radiation and Risks) model is presented. With this model it is possible to relate ozone depletion scenarios to (changes in) skin cancer incidence. The estimation of UV maps is integrated in the model. The satellite-based method to estimate UV maps is validated for EPTOMS (Earth Probe - Total Ozone Mapping Spectrometer) data against ground measurements for 17 locations in Europe. For most ground stations the estimates for the yeardose agree within 5%. Deviations are related to high ground albedo. A suggestion has been made for improvement of the albedo-correction. The AMOUR2.0 UV estimate was found to correspond better with ground measurements than the models from NASA (National Aeronautics and Space Administration in the USA), TEMIS (Tropospheric Emission Monitoring Internet Service of the European Space Agency ESA) and FMI (Finnish Meteorological Institute). The EPTOMS-UV product and the FMI model overestimate the UV dose. The TEMIS model has a good clear-sky correspondence with ground measurement, but overestimates UV in clouded situations. Satellite measurements of ozone and historic chlorine level have been used to make global estimates for future ozone levels for a collection of emission scenarios for ozone depleting substances. Analysis of the 'best guess' scenario, shows that the minimum in ozone level will be reached within 15 years from now. In 2050 the UV dose for Europe will to a large extent have returned to the values observed in 1980 if there is no climate-change driven alteration in cloud patterns. Future incidence maps up to the year 2100 are estimated with the dose-effect relation presented in an earlier study. This is done for three UV related types of skin-cancer: Basal Cell Carcinoma (BCC), Squamous Cell Carcinoma (SCC) and Cutaneous Malignant Melanoma (CMM). For a stationary population, global incidences of BCC and CMM are expected to peak around the year 2065 and for SCC around 2040.

  20. 50 years of monitoring of the ozone layer in the Czech Republic - results and challenges

    Science.gov (United States)

    Vanicek, Karel; Skrivankova, Pavla; Metelka, Ladislav; Stanek, Martin

    2010-05-01

    Long-term observations of total ozone (TOZ) and vertical ozone profiles, the basic parameters of the ozone layer, have been performed at the Solar and Ozone Observatory (SOO) Hradec Kralove and at the Aerological Department (AD) Praha of the Czech Hydrometeorological Institute (CHMI) since 1961 and 1992 respectively. The Dobson and Brewer spectrophotometers regularly calibrated towards the international references and electro-chemical ECC ozone sondes are used for the measurements. The observations contribute to the global GAW and NDACC ozone monitoring systems. Up to now analyses of the data give the basic findings given bellow and documented in the presentation. Some of them have important implication to the international ozone monitoring infrastructure, as well. - The decrease of TOZ by about 5-7 % in the winter-spring months towards the pre ozone-hole period have occurred since the mid eighties. This is in good agreement by the magnitude and time with depletion of the ozone layer due to chemical destruction of ozone in the NH mid-latitudes. - Significant depletion 3-5 % of TOZ has been identified also in the summer season since the early nineties. As this can not be attributed to the man-made chemical processes a change in the UT/LS dynamics over Central Europe is the most probable reason. - Aerological measurements taken at AD show that the summer reduction of TOZ very well coincides with a change of UT/LS temperature that persists for about two decades over the Czech territory. Therefore it has a long-term character that can be regarded as a climate shift in UT/LS and need to be further investigated. - 15 years of unique simultaneous Dobson/Brewer observations of TOZ performed at SOO show systematic seasonal deviations between both data sets that exceed instrumental accuracy of measurements. The differences are mostly caused by different wavelengths and their ozone absorption coefficients used by both instruments. As the Brewer observations are being

  1. Ozone alteration of membrane permeability in Chlorella. I. Permeability of potassium ion as measured by 86Rubidium tracer

    International Nuclear Information System (INIS)

    Heath, R.L.; Frederick, P.E.

    1979-01-01

    The addition of ozone to a suspension of Chlorella sorokiniana causes a rapid loss of K + , as measured by efflux of 86 Rb from prelabeled cells. The efflux of the tracer is stimulated some 15 to 20 times over that of the control. For about 100 microliters per liter ozone, about 25 minutes (6 x 10 -8 moles O 3 delivered per minute) of exposure are required for a 50% depletion of the intracellular K + . The stimulation of K + efflux is nearly linearly dependent upon the amount of ozone delivered into the solution. Following short pulses of ozone (lasting 1 to 5 minutes), efflux rates return to the control level but only after about 15 minutes. While influx of K + is ultimately inhibited by ozone, at low concentrations or for short exposure times the tracer influx is stimulated 100 to 200%. Ozone stimulation of an active pump mechanism is unlikely in view of a concomitant decrease in respiration. Thus, this influx may represent movement of K + along its electrochemical gradient. Assuming that influx and efflux are in steady-state according to the Goldman equation, it was calculated that the membrane potential for K + of -80 to -90 millivolts in control cells drops to -40 millivolts with ozone exposure and is accompanied by a calculated increased permeability to K + of 2- to 3-fold. 25 references, 6 figures

  2. Innate Lymphoid Cells Mediate Pulmonary Eosinophilic Inflammation, Airway Mucous Cell Metaplasia, and Type 2 Immunity in Mice Exposed to Ozone.

    Science.gov (United States)

    Kumagai, Kazuyoshi; Lewandowski, Ryan P; Jackson-Humbles, Daven N; Buglak, Nicholas; Li, Ning; White, Kaylin; Van Dyken, Steven J; Wagner, James G; Harkema, Jack R

    2017-08-01

    Exposure to elevated levels of ambient ozone in photochemical smog is associated with eosinophilic airway inflammation and nonatopic asthma in children. In the present study, we determined the role of innate lymphoid cells (ILCs) in the pathogenesis of ozone-induced nonatopic asthma by using lymphoid cell-sufficient C57BL/6 mice, ILC-sufficient Rag2 -/- mice (devoid of T and B cells), and ILC-deficient Rag2 -/- Il2rg -/- mice (depleted of all lymphoid cells including ILCs). Mice were exposed to 0 or 0.8 parts per million ozone for 1 day or 9 consecutive weekdays (4 hr/day). A single exposure to ozone caused neutrophilic inflammation, airway epithelial injury, and reparative DNA synthesis in all strains of mice, irrespective of the presence or absence of ILCs. In contrast, 9-day exposures induced eosinophilic inflammation and mucous cell metaplasia only in the lungs of ILC-sufficient mice. Repeated ozone exposures also elicited increased messenger RNA expression of transcripts associated with type 2 immunity and airway mucus production in ILC-sufficient mice. ILC-deficient mice repeatedly exposed to ozone had no pulmonary pathology or increased gene expression related to type 2 immunity. These results suggest a new paradigm for the biologic mechanisms underlying the development of a phenotype of childhood nonatopic asthma that has been linked to ambient ozone exposures.

  3. Enhanced Monte-Carlo-Linked Depletion Capabilities in MCNPX

    International Nuclear Information System (INIS)

    Fensin, Michael L.; Hendricks, John S.; Anghaie, Samim

    2006-01-01

    As advanced reactor concepts challenge the accuracy of current modeling technologies, a higher-fidelity depletion calculation is necessary to model time-dependent core reactivity properly for accurate cycle length and safety margin determinations. The recent integration of CINDER90 into the MCNPX Monte Carlo radiation transport code provides a completely self-contained Monte-Carlo-linked depletion capability. Two advances have been made in the latest MCNPX capability based on problems observed in pre-released versions: continuous energy collision density tracking and proper fission yield selection. Pre-released versions of the MCNPX depletion code calculated the reaction rates for (n,2n), (n,3n), (n,p), (n,a), and (n,?) by matching the MCNPX steady-state 63-group flux with 63-group cross sections inherent in the CINDER90 library and then collapsing to one-group collision densities for the depletion calculation. This procedure led to inaccuracies due to the miscalculation of the reaction rates resulting from the collapsed multi-group approach. The current version of MCNPX eliminates this problem by using collapsed one-group collision densities generated from continuous energy reaction rates determined during the MCNPX steady-state calculation. MCNPX also now explicitly determines the proper fission yield to be used by the CINDER90 code for the depletion calculation. The CINDER90 code offers a thermal, fast, and high-energy fission yield for each fissile isotope contained in the CINDER90 data file. MCNPX determines which fission yield to use for a specified problem by calculating the integral fission rate for the defined energy boundaries (thermal, fast, and high energy), determining which energy range contains the majority of fissions, and then selecting the appropriate fission yield for the energy range containing the majority of fissions. The MCNPX depletion capability enables complete, relatively easy-to-use depletion calculations in a single Monte Carlo code

  4. Northern Hemisphere Winter Climate Response to Greenhouse Gas, Ozone, Solar and Volcanic Forcing

    Science.gov (United States)

    Shindell, Drew T.; Schmidt, Gavin A.; Miller, Ron L.; Rind, David; Hansen, James E. (Technical Monitor)

    2001-01-01

    The Goddard Institute for Space Studies (GISS) climate/middle atmosphere model has been used to study the impacts of increasing greenhouse gases, polar ozone depletion, volcanic eruptions, and solar cycle variability. We focus on the projection of the induced responses onto Northern Hemisphere winter surface climate. Changes in the model's surface climate take place largely through enhancement of existing variability patterns, with greenhouse gases, polar ozone depletion and volcanic eruptions primarily affecting the Arctic Oscillation (AO) pattern. Perturbations descend from the stratosphere to the surface in the model by altering the propagation of planetary waves coming up from the surface, in accord with observational evidence. Models lacking realistic stratospheric dynamics fail to capture these wave flux changes. The results support the conclusion that the stratosphere plays a crucial role in recent AO trends. We show that in our climate model, while ozone depletion has a significant effect, greenhouse gas forcing is the only one capable of causing the large, sustained increase in the AO observed over recent decades. This suggests that the AO trend, and a concurrent strengthening of the stratospheric vortex over the Arctic, are very likely anthropogenic in origin.

  5. Are relative depletions altered inside diffuse clouds?

    International Nuclear Information System (INIS)

    Joseph, C.L.

    1988-01-01

    The data of Jenkins, Savage, and Spitzer (1986) were used to analyze interstellar abundances and depletions of Fe, P, Mg, and Mn toward 37 stars, spanning nearly 1.0 (dex) in mean line-of-sight depletion. It was found that the depletions of these elements are linearly correlated and do not show evidence of differences in the rates of depletion or sputtering from one element to another. For a given level of overall depletion, the sightline-to-sightline rms variance in the depletion for each of these elements was less than 0.16 (dex), which is significantly smaller than is the element-to-element variance. The results suggest that, for most diffuse lines of sight, the relative abundances of these elements are set early in the lifetime of the grains and are not altered significantly thereafter. 53 references

  6. Observing Tropospheric Ozone From Space

    Science.gov (United States)

    Fishman, Jack

    2000-01-01

    The importance of tropospheric ozone embraces a spectrum of relevant scientific issues ranging from local environmental concerns, such as damage to the biosphere and human health, to those that impact global change questions, Such is climate warming. From an observational perspective, the challenge is to determine the tropospheric ozone global distribution. Because its lifetime is short compared with other important greenhouse gases that have been monitored over the past several decades, the distribution of tropospheric ozone cannot be inferred from a relatively small set of monitoring stations. Therefore, the best way to obtain a true global picture is from the use of space-based instrumentation where important spatial gradients over vast ocean expanses and other uninhabited areas can be properly characterized. In this paper, the development of the capability to measure tropospheric ozone from space over the past 15 years is summarized. Research in the late 1980s successfully led to the determination of the climatology of tropospheric ozone as a function of season; more recently, the methodology has improved to the extent where regional air pollution episodes can be characterized. The most recent modifications now provide quasi-global (50 N) to 50 S) maps on a daily basis. Such a data set would allow for the study of long-range (intercontinental) transport of air pollution and the quantification of how regional emissions feed into the global tropospheric ozone budget. Future measurement capabilities within this decade promise to offer the ability to provide Concurrent maps of the precursors to the in situ formation of tropospheric ozone from which the scientific community will gain unprecedented insight into the processes that control global tropospheric chemistry

  7. Study of Ozone Layer Variability near St. Petersburg on the Basis of SBUV Satellite Measurements and Numerical Simulation (2000-2014)

    Science.gov (United States)

    Virolainen, Y. A.; Timofeyev, Y. M.; Smyshlyaev, S. P.; Motsakov, M. A.; Kirner, O.

    2017-12-01

    A comparison between the numerical simulation results of ozone fields with different experimental data makes it possible to estimate the quality of models for their further use in reliable forecasts of ozone layer evolution. We analyze time series of satellite (SBUV) measurements of the total ozone column (TOC) and the ozone partial columns in two atmospheric layers (0-25 and 25-60 km) and compare them with the results of numerical simulation in the chemistry transport model (CTM) for the low and middle atmosphere and the chemistry climate model EMAC. The daily and monthly average ozone values, short-term periods of ozone depletion, and long-term trends of ozone columns are considered; all data sets relate to St. Petersburg and the period between 2000 and 2014. The statistical parameters (means, standard deviations, variations, medians, asymmetry parameter, etc.) of the ozone time series are quite similar for all datasets. However, the EMAC model systematically underestimates the ozone columns in all layers considered. The corresponding differences between satellite measurements and EMAC numerical simulations are (5 ± 5)% and (7 ± 7)% and (1 ± 4)% for the ozone column in the 0-25 and 25-60 km layers, respectively. The correspondent differences between SBUV measurements and CTM results amount to (0 ± 7)%, (1 ± 9)%, and (-2 ± 8)%. Both models describe the sudden episodes of the ozone minimum well, but the EMAC accuracy is much higher than that of the CTM, which often underestimates the ozone minima. Assessments of the long-term linear trends show that they are close to zero for all datasets for the period under study.

  8. Chemical and climatic drivers of radiative forcing due to changes in stratospheric and tropospheric ozone over the 21st century

    Directory of Open Access Journals (Sweden)

    A. Banerjee

    2018-02-01

    Full Text Available The ozone radiative forcings (RFs resulting from projected changes in climate, ozone-depleting substances (ODSs, non-methane ozone precursor emissions and methane between the years 2000 and 2100 are calculated using simulations from the UM-UKCA chemistry–climate model (UK Met Office's Unified Model containing the United Kingdom Chemistry and Aerosols sub-model. Projected measures to improve air-quality through reductions in non-methane tropospheric ozone precursor emissions present a co-benefit for climate, with a net global mean ozone RF of −0.09 W m−2. This is opposed by a positive ozone RF of 0.05 W m−2 due to future decreases in ODSs, which is driven by an increase in tropospheric ozone through stratosphere-to-troposphere transport of air containing higher ozone amounts. An increase in methane abundance by more than a factor of 2 (as projected by the RCP8.5 scenario is found to drive an ozone RF of 0.18 W m−2, which would greatly outweigh the climate benefits of non-methane tropospheric ozone precursor reductions. A small fraction (∼ 15 % of the ozone RF due to the projected increase in methane results from increases in stratospheric ozone. The sign of the ozone RF due to future changes in climate (including the radiative effects of greenhouse gases, sea surface temperatures and sea ice changes is shown to be dependent on the greenhouse gas emissions pathway, with a positive RF (0.05 W m−2 for RCP4.5 and a negative RF (−0.07 W m−2 for the RCP8.5 scenario. This dependence arises mainly from differences in the contribution to RF from stratospheric ozone changes. Considering the increases in tropopause height under climate change causes only small differences (≤ |0.02| W m−2 for the stratospheric, tropospheric and whole-atmosphere RFs.

  9. Tryptophan depletion affects compulsive behaviour in rats

    DEFF Research Database (Denmark)

    Merchán, A; Navarro, S V; Klein, A B

    2017-01-01

    investigated whether 5-HT manipulation, through a tryptophan (TRP) depletion by diet in Wistar and Lister Hooded rats, modulates compulsive drinking in schedule-induced polydipsia (SIP) and locomotor activity in the open-field test. The levels of dopamine, noradrenaline, serotonin and its metabolite were......-depleted HD Wistar rats, while the LD Wistar and the Lister Hooded rats did not exhibit differences in SIP. In contrast, the TRP-depleted Lister Hooded rats increased locomotor activity compared to the non-depleted rats, while no differences were found in the Wistar rats. Serotonin 2A receptor binding...

  10. Depleted uranium hexafluoride: The source material for advanced shielding systems

    Energy Technology Data Exchange (ETDEWEB)

    Quapp, W.J.; Lessing, P.A. [Idaho National Engineering Lab., Idaho Falls, ID (United States); Cooley, C.R. [Department of Technology, Germantown, MD (United States)

    1997-02-01

    The U.S. Department of Energy (DOE) has a management challenge and financial liability problem in the form of 50,000 cylinders containing 555,000 metric tons of depleted uranium hexafluoride (UF{sub 6}) that are stored at the gaseous diffusion plants. DOE is evaluating several options for the disposition of this UF{sub 6}, including continued storage, disposal, and recycle into a product. Based on studies conducted to date, the most feasible recycle option for the depleted uranium is shielding in low-level waste, spent nuclear fuel, or vitrified high-level waste containers. Estimates for the cost of disposal, using existing technologies, range between $3.8 and $11.3 billion depending on factors such as the disposal site and the applicability of the Resource Conservation and Recovery Act (RCRA). Advanced technologies can reduce these costs, but UF{sub 6} disposal still represents large future costs. This paper describes an application for depleted uranium in which depleted uranium hexafluoride is converted into an oxide and then into a heavy aggregate. The heavy uranium aggregate is combined with conventional concrete materials to form an ultra high density concrete, DUCRETE, weighing more than 400 lb/ft{sup 3}. DUCRETE can be used as shielding in spent nuclear fuel/high-level waste casks at a cost comparable to the lower of the disposal cost estimates. Consequently, the case can be made that DUCRETE shielded casks are an alternative to disposal. In this case, a beneficial long term solution is attained for much less than the combined cost of independently providing shielded casks and disposing of the depleted uranium. Furthermore, if disposal is avoided, the political problems associated with selection of a disposal location are also avoided. Other studies have also shown cost benefits for low level waste shielded disposal containers.

  11. Application of depletion perturbation theory to fuel cycle burnup analysis

    International Nuclear Information System (INIS)

    White, J.R.

    1979-01-01

    Over the past several years static perturbation theory methods have been increasingly used for reactor analysis in lieu of more detailed and costly direct computations. Recently, perturbation methods incorporating time dependence have also received attention, and several authors have demonstrated their applicability to fuel burnup analysis. The objective of the work described here is to demonstrate that a time-dependent perturbation method can be easily and accurately applied to realistic depletion problems

  12. OZONE GENERATORS IN INDOOR AIR SETTINGS

    Science.gov (United States)

    The report gives information on home/office ozone generators. It discusses their current uses as amelioratives for environmental tobacco smoke, biocontaminants, volatile organic compounds, and odors and details the advantages and disadvantages of each. Ozone appears to work well ...

  13. Cryptosporidiosis associated with ozonated apple cider.

    Science.gov (United States)

    Blackburn, Brian G; Mazurek, Jacek M; Hlavsa, Michele; Park, Jean; Tillapaw, Matt; Parrish, MaryKay; Salehi, Ellen; Franks, William; Koch, Elizabeth; Smith, Forrest; Xiao, Lihua; Arrowood, Michael; Hill, Vince; da Silva, Alex; Johnston, Stephanie; Jones, Jeffrey L

    2006-04-01

    We linked an outbreak of cryptosporidiosis to ozonated apple cider by using molecular and epidemiologic methods. Because ozonation was insufficient in preventing this outbreak, its use in rendering apple cider safe for drinking is questioned.

  14. Cryptosporidiosis Associated with Ozonated Apple Cider

    OpenAIRE

    Blackburn, Brian G.; Mazurek, Jacek M.; Hlavsa, Michele; Park, Jean; Tillapaw, Matt; Parrish, MaryKay; Salehi, Ellen; Franks, William; Koch, Elizabeth; Smith, Forrest; Xiao, Lihua; Arrowood, Michael; Hill, Vince; da Silva, Alex; Johnston, Stephanie

    2006-01-01

    We linked an outbreak of cryptosporidiosis to ozonated apple cider by using molecular and epidemiologic methods. Because ozonation was insufficient in preventing this outbreak, its use in rendering apple cider safe for drinking is questioned.

  15. Tropospheric Ozone from the TOMS TDOT (TOMS-Direct-Ozone-in-Troposphere) Technique During SAFARI-2000

    Science.gov (United States)

    Stone, J. B.; Thompson, A. M.; Frolov, A. D.; Hudson, R. D.; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    There are a number of published residual-type methods for deriving tropospheric ozone from TOMS (Total Ozone Mapping Spectrometer). The basic concept of these methods is that within a zone of constant stratospheric ozone, the tropospheric ozone column can be computed by subtracting stratospheric ozone from the TOMS Level 2 total ozone column, We used the modified-residual method for retrieving tropospheric ozone during SAFARI-2000 and found disagreements with in-situ ozone data over Africa in September 2000. Using the newly developed TDOT (TOMS-Direct-Ozone-in-Troposphere) method that uses TOMS radiances and a modified lookup table based on actual profiles during high ozone pollution periods, new maps were prepared and found to compare better to soundings over Lusaka, Zambia (15.5 S, 28 E), Nairobi and several African cities where MOZAIC aircraft operated in September 2000. The TDOT technique and comparisons are described in detail.

  16. Development, implementation, and verification of multicycle depletion perturbation theory for reactor burnup analysis

    Energy Technology Data Exchange (ETDEWEB)

    White, J.R.

    1980-08-01

    A generalized depletion perturbation formulation based on the quasi-static method for solving realistic multicycle reactor depletion problems is developed and implemented within the VENTURE/BURNER modular code system. The present development extends the original formulation derived by M.L. Williams to include nuclide discontinuities such as fuel shuffling and discharge. This theory is first described in detail with particular emphasis given to the similarity of the forward and adjoint quasi-static burnup equations. The specific algorithm and computational methods utilized to solve the adjoint problem within the newly developed DEPTH (Depletion Perturbation Theory) module are then briefly discussed. Finally, the main features and computational accuracy of this new method are illustrated through its application to several representative reactor depletion problems.

  17. Quasi-biennial oscillation in atmospheric ozone, and its possible consequences for damaging UV-B radiation and for determination of long-term ozone trends

    Energy Technology Data Exchange (ETDEWEB)

    Gruzdev, A N [Russian Academy of Sciences, Moscow (Russian Federation). Inst. of Atmospheric Physics

    1996-12-31

    The quasi-biennial oscillation (QBO) in ozone is supposed to be related to the QBO of zonal wind in the tropical stratosphere, with an approximate period of 29 months. Generally speaking, mechanisms of QBO-related effects in the extratropical atmosphere should depend on season and region, resulting in other periodicities (e.g., a 20-month periodicity) due to nonlinear interaction between the `pure` QBO and an annual cycle. Seasonal and regional dependences of QBO-related effects in ozone not only influence the regime of ozone variability itself, but can have important consequences, for example, for interannual changes in biologically active UV-B radiation and for determination of long-term ozone trends. This work is concerned with these problems

  18. Quasi-biennial oscillation in atmospheric ozone, and its possible consequences for damaging UV-B radiation and for determination of long-term ozone trends

    Energy Technology Data Exchange (ETDEWEB)

    Gruzdev, A.N. [Russian Academy of Sciences, Moscow (Russian Federation). Inst. of Atmospheric Physics

    1995-12-31

    The quasi-biennial oscillation (QBO) in ozone is supposed to be related to the QBO of zonal wind in the tropical stratosphere, with an approximate period of 29 months. Generally speaking, mechanisms of QBO-related effects in the extratropical atmosphere should depend on season and region, resulting in other periodicities (e.g., a 20-month periodicity) due to nonlinear interaction between the `pure` QBO and an annual cycle. Seasonal and regional dependences of QBO-related effects in ozone not only influence the regime of ozone variability itself, but can have important consequences, for example, for interannual changes in biologically active UV-B radiation and for determination of long-term ozone trends. This work is concerned with these problems

  19. Development of an Application Programming Interface for Depletion Analysis (APIDA)

    International Nuclear Information System (INIS)

    Lago, Daniel; Rahnema, Farzad

    2017-01-01

    cell depletion problem. Results show APIDA to be effective and efficient in solving lattice depletion problems, in addition to being successful in terms of portability for users to implement via the API.

  20. The holes in the ozone scare

    Energy Technology Data Exchange (ETDEWEB)

    Maduro, R.; Schauerhamer, R.

    1992-05-01

    For the authors, the ozone hole is more politic than scientific, and is caused by anthropogenic CFC, the ozone concentration reduction measured in the antarctic stratosphere is a natural phenomena: ozone destruction by chlorides and bromides coming from volcanos and oceans. The ozone hole was discovered in 1956 and not in 1985. For the greenhouse effect, the CO[sub 2] part is very small in comparison with the atmospheric water vapour part. (A.B.). refs., figs., tabs.

  1. Increase of ozone concentrations, its temperature sensitivity and the precursor factor in South China

    Directory of Open Access Journals (Sweden)

    Y. C. Lee

    2014-08-01

    Full Text Available Concerns have been raised about the possible connections between the local and regional photochemical problem and global warming. The current study assesses the trend of ozone in Hong Kong and the Pearl River Delta (PRD in South China and investigates the interannual changes of sensitivity of ozone to air temperature, as well as the trends in regional precursors. Results reveal, at the three monitoring sites from the mid-1990s to 2010, an increase in the mean ozone concentrations from 1.0 to 1.6 µg m−3 per year. The increase occurred in all seasons, with the highest rate in autumn. This is consistent with trends and temperature anomalies in the region. The increase in the sensitivity of ozone to temperature is clearly evident from the correlation between ozone (OMI [Ozone Monitoring Instrument] column amount and surface air temperature (from the Atmospheric Infrared Sounder displayed in the correlation maps for the PRD during the prominently high ozone period of July–September. It is observed to have increased from 2005 to 2010, the latter being the hottest year on record globally. To verify this temporal change in sensitivity, the ground-level trends of correlation coefficients/regression slopes are analysed. As expected, results reveal a statistically significant upward trend over a 14-year period (1997–2010. While the correlation revealed in the correlation maps is in agreement with the corresponding OMI ozone maps when juxtaposed, temperature sensitivity of surface ozone also shows an association with ozone concentration, with R=0.5. These characteristics of ozone sensitivity are believed to have adverse implications for the region. As shown by ground measurements and/or satellite analyses, the decrease in nitrogen oxides (NO2 and NOx in Hong Kong is not statistically significant while NO2 of the PRD has only very slightly changed. However, carbon dioxide has remarkably declined in the whole region. While these observations concerning

  2. Depleted Uranium and Human Health.

    Science.gov (United States)

    Faa, Armando; Gerosa, Clara; Fanni, Daniela; Floris, Giuseppe; Eyken, Peter V; Lachowicz, Joanna I; Nurchi, Valeria M

    2018-01-01

    Depleted uranium (DU) is generally considered an emerging pollutant, first extensively introduced into environment in the early nineties in Iraq, during the military operation called "Desert Storm". DU has been hypothesized to represent a hazardous element both for soldiers exposed as well as for the inhabitants of the polluted areas in the war zones. In this review, the possible consequences on human health of DU released in the environment are critically analyzed. In the first part, the chemical properties of DU and the principal civil and military uses are summarized. A concise analysis of the mechanisms underlying absorption, blood transport, tissue distribution and excretion of DU in the human body is the subject of the second part of this article. The following sections deal with pathological condition putatively associated with overexposure to DU. Developmental and birth defects, the Persian Gulf syndrome, and kidney diseases that have been associated to DU are the arguments treated in the third section. Finally, data regarding DU exposure and cancer insurgence will be critically analyzed, including leukemia/lymphoma, lung cancer, uterine cervix cancer, breast cancer, bladder cancer and testicular cancer. The aim of the authors is to give a contribution to the debate on DU and its effects on human health and disease. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Plutonium in depleted uranium penetrators

    International Nuclear Information System (INIS)

    McLaughlin, J.P.; Leon-Vintro, L.; Smith, K.; Mitchell, P.I.; Zunic, Z.S.

    2002-01-01

    Depleted Uranium (DU) penetrators used in the recent Balkan conflicts have been found to be contaminated with trace amounts of transuranic materials such as plutonium. This contamination is usually a consequence of DU fabrication being carried out in facilities also using uranium recycled from spent military and civilian nuclear reactor fuel. Specific activities of 239+240 Plutonium generally in the range 1 to 12 Bq/kg have been found to be present in DU penetrators recovered from the attack sites of the 1999 NATO bombardment of Kosovo. A DU penetrator recovered from a May 1999 attack site at Bratoselce in southern Serbia and analysed by University College Dublin was found to contain 43.7 +/- 1.9 Bq/kg of 239+240 Plutonium. This analysis is described. An account is also given of the general population radiation dose implications arising from both the DU itself and from the presence of plutonium in the penetrators. According to current dosimetric models, in all scenarios considered likely ,the dose from the plutonium is estimated to be much smaller than that due to the uranium isotopes present in the penetrators. (author)

  4. Trends of Rural Tropospheric Ozone at the Northwest of the Iberian Peninsula

    Directory of Open Access Journals (Sweden)

    S. Saavedra

    2012-01-01

    Full Text Available Tropospheric ozone levels around urban and suburban areas at Europe and North America had increased during 80’s–90’s, until the application of NOx reduction strategies. However, as it was expected, this ozone depletion was not proportional to the emissions reduction. On the other hand, rural ozone levels show different trends, with peaks reduction and average increments; this different evolution could be explained by either emission changes or climate variability in a region. In this work, trends of tropospheric ozone episodes at rural sites in the northwest of the Iberian Peninsula were analyzed and compared to others observed in different regions of the Atlantic European coast. Special interest was focused on the air quality sites characterization, in order to guarantee their rural character in terms of air quality. Both episodic local meteorological and air quality measurements along five years were considered, in order to study possible meteorological influences in ozone levels, different to other European Atlantic regions.

  5. A Review of Atmospheric Ozone and Current Thinking on the Antarctic Ozone Hole.

    Science.gov (United States)

    1987-01-01

    UNIVERSITY OF CALIFORNIA 0 A Review of Atmospheric ozone and Current Thinking on the Antartic Ozone Hole A thesis submitted in partial satisfaction of the...4. TI TLE (Pit 5,1tlfie) S. TYPE OF REPORT & PFRIOO COVERED A Review of Atmospheric Ozone and Current THESIS/DA/;J.At1AAU00 Thinking on the Antartic ...THESIS A Review of Atmospheric Ozone and Current Thinking on the Antartic Ozone Hole by Randolph Antoine Fix Master of Science in Atmospheric Science

  6. Tropospheric Ozone and Photochemical Smog

    Science.gov (United States)

    Sillman, S.

    2003-12-01

    The question of air quality in polluted regions represents one of the issues of geochemistry with direct implications for human well-being. Human health and well-being, along with the well-being of plants, animals, and agricultural crops, are dependent on the quality of air we breathe. Since the start of the industrial era, air quality has become a matter of major importance, especially in large cities or urbanized regions with heavy automobile traffic and industrial activity.Concern over air quality existed as far back as the 1600s. Originally, polluted air in cities resulted from the burning of wood or coal, largely as a source of heat. The industrial revolution in England saw a great increase in the use of coal in rapidly growing cities, both for industrial use and domestic heating. London suffered from devastating pollution events during the late 1800s and early 1900s, with thousands of excess deaths attributed to air pollution (Brimblecombe, 1987). With increasing use of coal, other instances also occurred in continental Europe and the USA. These events were caused by directly emitted pollutants (primary pollutants), including sulfur dioxide (SO2), carbon monoxide (CO), and particulates. They were especially acute in cities with northerly locations during fall and winter when sunlight is at a minimum. These original pollution events gave rise to the term "smog" (a combination of smoke and fog). Events of this type have become much less severe since the 1950s in Western Europe and the US, as natural gas replaced coal as the primary source of home heating, industrial smokestacks were designed to emit at higher altitudes (where dispersion is more rapid), and industries were required to install pollution control equipment.Beginning in the 1950s, a new type of pollution, photochemical smog, became a major concern. Photochemical smog consists of ozone (O3) and other closely related species ("secondary pollutants") that are produced photochemically from directly

  7. Future heat waves and surface ozone

    Science.gov (United States)

    Meehl, Gerald A.; Tebaldi, Claudia; Tilmes, Simone; Lamarque, Jean-Francois; Bates, Susan; Pendergrass, Angeline; Lombardozzi, Danica

    2018-06-01

    A global Earth system model is used to study the relationship between heat waves and surface ozone levels over land areas around the world that could experience either large decreases or little change in future ozone precursor emissions. The model is driven by emissions of greenhouse gases and ozone precursors from a medium-high emission scenario (Representative Concentration Pathway 6.0–RCP6.0) and is compared to an experiment with anthropogenic ozone precursor emissions fixed at 2005 levels. With ongoing increases in greenhouse gases and corresponding increases in average temperature in both experiments, heat waves are projected to become more intense over most global land areas (greater maximum temperatures during heat waves). However, surface ozone concentrations on future heat wave days decrease proportionately more than on non-heat wave days in areas where ozone precursors are prescribed to decrease in RCP6.0 (e.g. most of North America and Europe), while surface ozone concentrations in heat waves increase in areas where ozone precursors either increase or have little change (e.g. central Asia, the Mideast, northern Africa). In the stabilized ozone precursor experiment, surface ozone concentrations increase on future heat wave days compared to non-heat wave days in most regions except in areas where there is ozone suppression that contributes to decreases in ozone in future heat waves. This is likely associated with effects of changes in isoprene emissions at high temperatures (e.g. west coast and southeastern North America, eastern Europe).

  8. Problems in global atmospheric chemistry

    Science.gov (United States)

    Crutzen, Paul J.

    1993-02-01

    The chemistry of the atmosphere is substantially influenced by a wide range of chemical processes which are primarily driven by the action of ultraviolet radiation of wavelengths shorter than 320 nm (UV-B) on ozone and water vapor. This leads to the formation of hydroxyl (OH) radicals which, despite very low tropospheric concentrations, remove most gases that are emitted into the atmosphere by natural and anthropogenic processes. Therefore, although only about 10% of all atmospheric ozone is located in the troposphere, through the formation of OH, it determines the oxidation efficiency of the atmosphere and is, therefore, of the utmost importance for maintaining its chemical composition. Due to a variety of human activities, especially through increasing emissions of CH4, CO, and NOx, the concentrations of tropospheric ozone and hydroxyl are expected to be increasing in polluted and decreasing in clean tropospheric environments. Altogether, this may be leading to an overall decrease in the oxidation efficiency of the atmosphere, contributing to a gradual buildup of several longlived trace gases that are primarily removed by reaction with OH. In the stratosphere, especially due to catalytic reactions of chlorine-containing gases of industrial origin, ozone is being depleted, most drastically noted during the early spring months over Antarctica. Because ozone is the only atmospheric constituent that can significantly absorb solar radiation in the wavelength region 240 - 320 nm, this loss of ozone enhances the penetration of biologically harmful UV-B radiation to the earth's surface with ensuing negative consequences for the biosphere. Several of the aforementioned chemically active trace gases with growing trends in the atmosphere are also efficient greenhouse gases. Together they can exert a warming effect on the earth's climate about equal to that of carbon dioxide.

  9. Stratospheric ozone - Impact of human activity

    Science.gov (United States)

    Mcelroy, Michael B.; Salawitch, Ross J.

    1989-01-01

    The current knowledge of the chemistry of the stratosphere is reviewed, with particular consideration given to the measurements from the Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment and from the Airborne Antarctic Ozone Experiment. Analysis of the ATMOS data at 30 deg N suggests that the current understanding of the contemporary-stratosphere chemistry at mid-latitudes is relatively complete, except for possible problems with the diurnal variations of N2O5 at low altitudes, and with ClNO3 at higher altitudes. Except for some difficulties with these two compounds, the data from ATMOS agree well with the gas phase models for nitrogen and chlorine species at 30 deg N in spring. It is emphasized that, in addition to the HOCl mechanism proposed by Solomon et al. (1986), the ClO-BrO scheme proposed by McElroy et al. (1986), and the ClO dimer mechanism introduced by Molina and Molina (1987), other processes exist that are responsible for ozone removal.

  10. Depletion sensitivity predicts unhealthy snack purchases

    NARCIS (Netherlands)

    Salmon, Stefanie J.; Adriaanse, Marieke A.; Fennis, Bob M.; De Vet, Emely; De Ridder, Denise T D

    2016-01-01

    The aim of the present research is to examine the relation between depletion sensitivity - a novel construct referring to the speed or ease by which one's self-control resources are drained - and snack purchase behavior. In addition, interactions between depletion sensitivity and the goal to lose

  11. The Chemistry and Toxicology of Depleted Uranium

    Directory of Open Access Journals (Sweden)

    Sidney A. Katz

    2014-03-01

    Full Text Available Natural uranium is comprised of three radioactive isotopes: 238U, 235U, and 234U. Depleted uranium (DU is a byproduct of the processes for the enrichment of the naturally occurring 235U isotope. The world wide stock pile contains some 1½ million tons of depleted uranium. Some of it has been used to dilute weapons grade uranium (~90% 235U down to reactor grade uranium (~5% 235U, and some of it has been used for heavy tank armor and for the fabrication of armor-piercing bullets and missiles. Such weapons were used by the military in the Persian Gulf, the Balkans and elsewhere. The testing of depleted uranium weapons and their use in combat has resulted in environmental contamination and human exposure. Although the chemical and the toxicological behaviors of depleted uranium are essentially the same as those of natural uranium, the respective chemical forms and isotopic compositions in which they usually occur are different. The chemical and radiological toxicity of depleted uranium can injure biological systems. Normal functioning of the kidney, liver, lung, and heart can be adversely affected by depleted uranium intoxication. The focus of this review is on the chemical and toxicological properties of depleted and natural uranium and some of the possible consequences from long term, low dose exposure to depleted uranium in the environment.

  12. Highlights of TOMS Version 9 Total Ozone Algorithm

    Science.gov (United States)

    Bhartia, Pawan; Haffner, David

    2012-01-01

    The fundamental basis of TOMS total ozone algorithm was developed some 45 years ago by Dave and Mateer. It was designed to estimate total ozone from satellite measurements of the backscattered UV radiances at few discrete wavelengths in the Huggins ozone absorption band (310-340 nm). Over the years, as the need for higher accuracy in measuring total ozone from space has increased, several improvements to the basic algorithms have been made. They include: better correction for the effects of aerosols and clouds, an improved method to account for the variation in shape of ozone profiles with season, latitude, and total ozone, and a multi-wavelength correction for remaining profile shape errors. These improvements have made it possible to retrieve total ozone with just 3 spectral channels of moderate spectral resolution (approx. 1 nm) with accuracy comparable to state-of-the-art spectral fitting algorithms like DOAS that require high spectral resolution measurements at large number of wavelengths. One of the deficiencies of the TOMS algorithm has been that it doesn't provide an error estimate. This is a particular problem in high latitudes when the profile shape errors become significant and vary with latitude, season, total ozone, and instrument viewing geometry. The primary objective of the TOMS V9 algorithm is to account for these effects in estimating the error bars. This is done by a straightforward implementation of the Rodgers optimum estimation method using a priori ozone profiles and their error covariances matrices constructed using Aura MLS and ozonesonde data. The algorithm produces a vertical ozone profile that contains 1-2.5 pieces of information (degrees of freedom of signal) depending upon solar zenith angle (SZA). The profile is integrated to obtain the total column. We provide information that shows the altitude range in which the profile is best determined by the measurements. One can use this information in data assimilation and analysis. A side

  13. Deuterium - depleted water. Achievements and perspectives

    International Nuclear Information System (INIS)

    Titescu, Gh.; Stefanescu, I.; Saros-Rogobete, I.

    2001-01-01

    Deuterium - depleted water represents water that has an isotopic content lower than 145 ppm D/(D+H) which is the natural isotopic content of water. The research conducted at ICSI Ramnicu Valcea, regarding deuterium - depleted water were completed by the following patents: - technique and installation for deuterium - depleted water production; - distilled water with low deuterium content; - technique and installation for the production of distilled water with low deuterium content; - mineralized water with low deuterium content and technique to produce it. The gold and silver medals won at international salons for inventions confirmed the novelty of these inventions. Knowing that deuterium content of water has a big influence on living organisms, beginning with 1996, the ICSI Ramnicu Valcea, deuterium - depleted water producer, co-operated with Romanian specialized institutes for biological effects' evaluation of deuterium - depleted water. The role of natural deuterium in living organisms was examined by using deuterium - depleted water instead of natural water. These investigations led to the following conclusions: 1. deuterium - depleted water caused a tendency towards the increase of the basal tone, accompanied by the intensification of the vasoconstrictor effects of phenylefrine, noradrenaline and angiotensin; the increase of the basal tone and vascular reactivity produced by the deuterium - depleted water persists after the removal of the vascular endothelium; -2. animals treated with deuterium - depleted water showed an increase of the resistance both to sublethal and to lethal gamma radiation doses, suggesting a radioprotective action by the stimulation of non-specific immune defence mechanism; 3, deuterium - depleted water stimulates immune defence reactions, represented by the opsonic, bactericidal and phagocyte capacity of the immune system, together with increase in the numbers of polymorphonuclear neutrophils; 4. investigations regarding artificial

  14. Point-spread function in depleted and partially depleted CCDs

    International Nuclear Information System (INIS)

    Groom, D.E.; Eberhard, P.H.; Holland, S.E.; Levi, M.E.; Palaio, N.P.; Perlmutter, S.; Stover, R.J.; Wei, M.

    1999-01-01

    The point spread function obtainable in an astronomical instrument using CCD readout is limited by a number of factors, among them the lateral diffusion of charge before it is collected in the potential wells. They study this problem both theoretically and experimentally, with emphasis on the thick CCDs on high-resistivity n-type substrates being developed at Lawrence Berkeley National Laboratory

  15. Interstellar depletion anomalies and ionization potentials

    International Nuclear Information System (INIS)

    Tabak, R.G.

    1979-01-01

    Satellite observations indicate that (1) most elements are depleted from the gas phase when compared to cosmic abundances, (2) some elements are several orders of magnitude more depleted than others, and (3) these depletions vary from cloud to cloud. Since the most likely possibility is that the 'missing' atoms are locked into grains, depletions occur either by accretion onto core particles in interstellar clouds or earlier, during the period of primary grain formation. If the latter mechanism is dominant, then the most important depletion parameter is the condensation temperature of the elements and their various compounds. However, this alone is not sufficient to explain all the observed anomalies. It is shown that electrostatic effects - under a wide variety of conditions- can enormously enhance the capture cross-section of the grain. It is suggested that this mechanism can also account for such anomalies as the apparent 'overabundance' of the alkali metals in the gas phase. (orig.)

  16. Slow electrons kill the ozone

    International Nuclear Information System (INIS)

    Maerk, T.

    2001-01-01

    A new method and apparatus (Trochoidal electron monochromator) to study the interactions of electrons with atoms, molecules and clusters was developed. Two applications are briefly reported: a) the ozone destruction in the atmosphere is caused by different reasons, a new mechanism is proposed, that slow thermal electrons are self added to the ozone molecule (O 3 ) with a high frequency, then O 3 is destroyed ( O 3 + e - → O - + O 2 ); b) another application is the study of the binding energy of the football molecule C60. (nevyjel)

  17. Recirculating cooling water solute depletion models

    International Nuclear Information System (INIS)

    Price, W.T.

    1990-01-01

    Chromates have been used for years to inhibit copper corrosion in the plant Recirculating Cooling Water (RCW) system. However, chromates have become an environmental problem in recent years both in the chromate removal plant (X-616) operation and from cooling tower drift. In response to this concern, PORTS is replacing chromates with Betz Dianodic II, a combination of phosphates, BZT, and a dispersant. This changeover started with the X-326 system in 1989. In order to control chemical concentrations in X-326 and in systems linked to it, we needed to be able to predict solute concentrations in advance of the changeover. Failure to predict and control these concentrations can result in wasted chemicals, equipment fouling, or increased corrosion. Consequently, Systems Analysis developed two solute concentration models. The first simulation represents the X-326 RCW system by itself; and models the depletion of a solute once the feed has stopped. The second simulation represents the X-326, X-330, and the X-333 systems linked together by blowdown. This second simulation represents the concentration of a solute in all three systems simultaneously. 4 figs

  18. Gaseous elemental mercury depletion events observed at Cape Point during 2007–2008

    Directory of Open Access Journals (Sweden)

    E.-G. Brunke

    2010-02-01

    Full Text Available Gaseous mercury in the marine boundary layer has been measured with a 15 min temporal resolution at the Global Atmosphere Watch station Cape Point since March 2007. The most prominent features of the data until July 2008 are the frequent occurrences of pollution (PEs and depletion events (DEs. Both types of events originate mostly within a short transport distance (up to about 100 km, which are embedded in air masses ranging from marine background to continental. The Hg/CO emission ratios observed during the PEs are within the range reported for biomass burning and industrial/urban emissions. The depletion of gaseous mercury during the DEs is in many cases almost complete and suggests an atmospheric residence time of elemental mercury as short as a few dozens of hours, which is in contrast to the commonly used estimate of approximately 1 year. The DEs observed at Cape Point are not accompanied by simultaneous depletion of ozone which distinguishes them from the halogen driven atmospheric mercury depletion events (AMDEs observed in Polar Regions. Nonetheless, DEs similar to those observed at Cape Point have also been observed at other places in the marine boundary layer. Additional measurements of mercury speciation and of possible mercury oxidants are hence called for to reveal the chemical mechanism of the newly observed DEs and to assess its importance on larger scales.

  19. Gulf war depleted uranium risks.

    Science.gov (United States)

    Marshall, Albert C

    2008-01-01

    US and British forces used depleted uranium (DU) in armor-piercing rounds to disable enemy tanks during the Gulf and Balkan Wars. Uranium particulate is generated by DU shell impact and particulate entrained in air may be inhaled or ingested by troops and nearby civilian populations. As uranium is slightly radioactive and chemically toxic, a number of critics have asserted that DU exposure has resulted in a variety of adverse health effects for exposed veterans and nearby civilian populations. The study described in this paper used mathematical modeling to estimate health risks from exposure to DU during the 1991 Gulf War for both US troops and nearby Iraqi civilians. The analysis found that the risks of DU-induced leukemia or birth defects are far too small to result in an observable increase in these health effects among exposed veterans or Iraqi civilians. The analysis indicated that only a few ( approximately 5) US veterans in vehicles accidentally targeted by US tanks received significant exposure levels, resulting in about a 1.4% lifetime risk of DU radiation-induced fatal cancer (compared with about a 24% risk of a fatal cancer from all other causes). These veterans may have also experienced temporary kidney damage. Iraqi children playing for 500 h in DU-destroyed vehicles are predicted to incur a cancer risk of about 0.4%. In vitro and animal tests suggest the possibility of chemically induced health effects from DU internalization, such as immune system impairment. Further study is needed to determine the applicability of these findings for Gulf War exposure to DU. Veterans and civilians who did not occupy DU-contaminated vehicles are unlikely to have internalized quantities of DU significantly in excess of normal internalization of natural uranium from the environment.

  20. The effect of nonlinearity in CO2 heating rates on the attribution of stratospheric ozone and temperature changes

    Directory of Open Access Journals (Sweden)

    T. G. Shepherd

    2009-11-01

    Full Text Available An analysis of the attribution of past and future changes in stratospheric ozone and temperature to anthropogenic forcings is presented. The analysis is an extension of the study of Shepherd and Jonsson (2008 who analyzed chemistry-climate simulations from the Canadian Middle Atmosphere Model (CMAM and attributed both past and future changes to changes in the external forcings, i.e. the abundances of ozone-depleting substances (ODS and well-mixed greenhouse gases. The current study is based on a new CMAM dataset and includes two important changes. First, we account for the nonlinear radiative response to changes in CO2. It is shown that over centennial time scales the radiative response in the upper stratosphere to CO2 changes is significantly nonlinear and that failure to account for this effect leads to a significant error in the attribution. To our knowledge this nonlinearity has not been considered before in attribution analysis, including multiple linear regression studies. For the regression analysis presented here the nonlinearity was taken into account by using CO2 heating rate, rather than CO2 abundance, as the explanatory variable. This approach yields considerable corrections to the results of the previous study and can be recommended to other researchers. Second, an error in the way the CO2 forcing changes are implemented in the CMAM was corrected, which significantly affects the results for the recent past. As the radiation scheme, based on Fomichev et al. (1998, is used in several other models we provide some description of the problem and how it was fixed.

  1. Sustainable management of C&D waste - reducing the source to ozone depletion and global warming

    DEFF Research Database (Denmark)

    Kjeldsen, Peter

    2016-01-01

    Large quantities of construction and demolition waste (C&D waste) are produced. Buildings in many countries are thermally insulated by insulation foam containing large amounts of fluorocarbons (chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs) or hydrofluoro-carbons (HCFCs), which are ...

  2. 26 CFR 52.4681-1 - Taxes imposed with respect to ozone-depleting chemicals.

    Science.gov (United States)

    2010-04-01

    ... used in a trade or business other than a trade or business of performing services as an employee. (5... manufacture of an article, whether by incorporation into such article, chemical transformation, release into the atmosphere, or otherwise; or (B) Put into service in a trade or business or for production of...

  3. Environmental effects of ozone depletion and its interactions with climate change: Progress report, 2004

    OpenAIRE

    Björn, Lars Olof; Environmental Effects Assessment Panel, United Nations Environment Programme,

    2005-01-01

    The measures needed for the protection of the layer are decided regularly by the Parties to the Montreal Protocol, now consisting of 188 countries. The Parties are advised on knowledge relevant to this task by three panels of experts: the Scientific, Environmental Effects, and Technology and Economic Assessment Panels. These panels produce an assessment every four years. The Environmental Effects Assessments are also published in the scientific literature; the latest report was published as a...

  4. Montreal Protocol meeting looks to speed up phaseout of ozone depleters

    International Nuclear Information System (INIS)

    Rotman, D.; Chynoweth, E.

    1992-01-01

    Delegates from around the world are meeting in Copenhagen this week to debate an accelerated phaseout of chlorofluorocarbons (CFCs), a time schedule for the eventual phaseout of hydrochlorofluorocarbons (HCFCs), and phaseouts of methyl chloroform and carbon tetrachloride. The fate of methyl bromide will also be a hot issue. The fourth meeting of the parties to the Montreal Protocol is widely expected to put through a 100% CFC phaseout by Jan. 1, 1996, coming into agreement with current US and European Community rules. But debate continues over the intermediate phaseout schedule, with European members pushing for an 85% reduction - from a 1986 baseline - by Jan. 1, 1994, and others arguing for a 70% cut by 1994. Delegates are expected to agree to the final phaseout of halons on Jan. 1, 1996, with an 85% cut in carbon tet by 1995. The meeting is also expected to broadly agree on a Jan. 1, 1996 phaseout of methyl chloroform, with a 50% reduction from a 1989 baseline by Jan. 1, 1994. A critical debate for chemical producers will be on the fate of methyl bromide. Many observers expect some phaseout for the chemical, but when and how is undetermined

  5. The ocean's role in polar climate change: asymmetric Arctic and Antarctic responses to greenhouse gas and ozone forcing.

    Science.gov (United States)

    Marshall, John; Armour, Kyle C; Scott, Jeffery R; Kostov, Yavor; Hausmann, Ute; Ferreira, David; Shepherd, Theodore G; Bitz, Cecilia M

    2014-07-13

    In recent decades, the Arctic has been warming and sea ice disappearing. By contrast, the Southern Ocean around Antarctica has been (mainly) cooling and sea-ice extent growing. We argue here that interhemispheric asymmetries in the mean ocean circulation, with sinking in the northern North Atlantic and upwelling around Antarctica, strongly influence the sea-surface temperature (SST) response to anthropogenic greenhouse gas (GHG) forcing, accelerating warming in the Arctic while delaying it in the Antarctic. Furthermore, while the amplitude of GHG forcing has been similar at the poles, significant ozone depletion only occurs over Antarctica. We suggest that the initial response of SST around Antarctica to ozone depletion is one of cooling and only later adds to the GHG-induced warming trend as upwelling of sub-surface warm water associated with stronger surface westerlies impacts surface properties. We organize our discussion around 'climate response functions' (CRFs), i.e. the response of the climate to 'step' changes in anthropogenic forcing in which GHG and/or ozone-hole forcing is abruptly turned on and the transient response of the climate revealed and studied. Convolutions of known or postulated GHG and ozone-hole forcing functions with their respective CRFs then yield the transient forced SST response (implied by linear response theory), providing a context for discussion of the differing warming/cooling trends in the Arctic and Antarctic. We speculate that the period through which we are now passing may be one in which the delayed warming of SST associated with GHG forcing around Antarctica is largely cancelled by the cooling effects associated with the ozone hole. By mid-century, however, ozone-hole effects may instead be adding to GHG warming around Antarctica but with diminished amplitude as the ozone hole heals. The Arctic, meanwhile, responding to GHG forcing but in a manner amplified by ocean heat transport, may continue to warm at an accelerating rate.

  6. Impacts of ozone on trees and crops

    International Nuclear Information System (INIS)

    Felzer, B.S.; Cronina, T.; Melillo, J.M.; Reilly, J.M.; Xiaodong, Wang

    2007-01-01

    In this review article, we explore how surface-level ozone affects trees and crops with special emphasis on consequences for productivity and carbon sequestration. Vegetation exposure to ozone reduces photosynthesis, growth, and other plant functions. Ozone formation in the atmosphere is a product of NO x , which are also a source of nitrogen deposition. Reduced carbon sequestration of temperate forests resulting from ozone is likely offset by increased carbon sequestration from nitrogen fertilization. However, since fertilized crop-lands are generally not nitrogen-limited, capping ozone-polluting substances in the USA, Europe, and China can reduce future crop yield loss substantially. (authors)

  7. Defense meteorological satellite measurements of total ozone

    International Nuclear Information System (INIS)

    Lovill, J.E.; Ellis, J.S.; Luther, F.M.; Sullivan, R.J.; Weichel, R.L.

    1992-01-01

    A multichannel filter radiometer (MFR) on Defense Meteorological Satellites (DMS) that measured total ozone on a global-scale from March 1977 - February 1980 is described. The total ozone data measured by the MFR were compared with total ozone data taken by surfaced-based Dobson spectrophotometers. When comparisons were made for five months, the Dobson spectrophotometer measured 2-5% more total ozone than the MFR. Comparisons between the Dobson spectrophotometer and the MFR showed a reduced RMS difference as the comparisons were made at closer proximity. A Northern Hemisphere total ozone distribution obtained from MFR data is presented

  8. The Effect of New Ozone Cross Sections Applied to SBUV and TOMS Retrievals

    Science.gov (United States)

    McPeters, Richard D.; Labow, Gordon J.

    2010-01-01

    The ozone cross sections as measured by Bass and Paur have been used for processing of SBUV and TOMS data since 1986. While these cross sections were a big improvement over those previously available, there were known minor problems with accuracy for wavelengths longward of 330 nm and with the temperature dependance. Today's requirements to separate stratospheric ozone from tropospheric ozone and for the derivation of minor species such as BrO and N02 place stringent new requirements on the accuracy needed. The ozone cross section measurements of Brion, Daumont, and Malicet (BDM) are being considered for use in UV-based ozone retrievals. They have much better resolution, an extended wavelength range, and a more consistent temperature dependance. Tests show that BDM retrievals exhibit lower retrieval residuals in the satellite data; i.e., they explain our measured atmospheric radiances more accurately. Total column ozone retrieved by the TOMS instruments is about 1.5% higher than before. Ozone profiles retrieved from SBUV using the new cross sections are lower in the upper stratosphere and higher in the lower stratosphere and troposphere.

  9. Lesson learned case study: What the history of ozone depelting chemical phaseout may teach us about how to approach international climate change policy

    Energy Technology Data Exchange (ETDEWEB)

    Younis, S.E. [Conceptual Engineering Group, Inc., Crofton, MD (United States); Verdonik, D.P. [Hughes Associates, Inc., Baltimore, MD (United States)

    1997-12-31

    The world approached the production phaseout of ozone depleting chemicals conservatively under the Vienna Convention. The initial tasks were to recognize the problem within the science field and make political leaders and people aware that the problem existed and was a real threat to environmental stability. Several years later, Meetings of the Parties to the Montreal Protocol to Protect the Stratospheric Ozone Layer began occurring regularly. Long term goals on production reduction levels of chlorofluorocarbons (CFCs) and halons were set. Rapid acceleration in production phaseout dates were implemented worldwide, impacting industry plans to research, develop, and implement replacements. The impacts were widespread from small cleaning processes to the defense of countries. The trials and tribulations that industries such as the foam, refrigeration, air conditioning, fire protection, and manufacturing industries have gone through to meet the accelerated challenges are great. This fight is not yet over. Alternatives have yet to be fully implemented, long term effects analysis are not yet completed, budgets have not caught up with the rapid phaseout, and supplies of ODCs are dwindling quickly, as well as increasing in cost at a rapid rate. This is being felt from car owner all the way up to the national defense of countries. The paper will briefly describe the historic events and developments that occurred to industry and the users, from a political, environmental, and business perspective. From this, valuable lessons can be learned and we can plan for the future well in advance, in order that we are not caught off guard again. A very real environmental problem exists with global climate change. This is being increasingly recognized by both political leaders and citizens alike. From what we have seen with ODC phaseout, we can potentially project what course the future.

  10. "OZONE SOURCE APPORTIONMENT IN CMAQ' | Science ...

    Science.gov (United States)

    Ozone source attribution has been used to support various policy purposes including interstate transport (Cross State Air Pollution Rule) by U.S. EPA and ozone nonattainment area designations by State agencies. Common scientific applications include tracking intercontinental transport of ozone and ozone precursors and delineating anthropogenic and non-anthropogenic contribution to ozone in North America. As in the public release due in September 2013, CMAQ’s Integrated Source Apportionment Method (ISAM) attributes PM EC/OC, sulfate, nitrate, ammonium, ozone and its precursors NOx and VOC, to sectors/regions of users’ interest. Although the peroxide-to-nitric acid productions ratio has been the most common indicator to distinguish NOx-limited ozone production from VOC-limited one, other indicators are implemented in addition to allowing for an ensemble decision based on a total of 9 available indicator ratios. Moreover, an alternative approach of ozone attribution based on the idea of chemical sensitivity in a linearized system that has formed the basis of chemical treatment in forward DDM/backward adjoint tools has been implemented in CMAQ. This method does not require categorization into either ozone regime. In this study, ISAM will simulate the 2010 North America ozone using all of the above gas-phase attribution methods. The results are to be compared with zero-out difference out of those sectors in the host model runs. In addition, ozone contribution wil

  11. Tropospheric Enhancement of Ozone over the UAE

    Science.gov (United States)

    Abbasi, Naveed Ali; Majeed, Tariq; Iqbal, Mazhar; Kaminski, Jacek; Struzewska, Joanna; Durka, Pawel; Tarasick, David; Davies, Jonathan

    2015-04-01

    We use the Global Environmental Multiscale - Air Quality (GEM-AQ) model to interpret the vertical profiles of ozone acquired with ozone sounding experiments at the meteorological site located at the Abu Dhabi airport. The purpose of this study is to gain insight into the chemical and dynamical structures in the atmosphere of this unique subtropical location (latitude 24.45N; longitude 54.22E). Ozone observations for years 2012 - 2013 reveal elevated ozone abundances in the range from 70 ppbv to 120 ppbv near 500-400 hPa during summer. The ozone abundances in other seasons are much lower than these values. The preliminary results indicate that summertime enhancement in ozone is associated with the Arabian anticyclones centered over the Zagros Mountains in Iran and the Asir and Hijaz Mountain ranges in Saudi Arabia, and is consistent with TES observations of deuterated water. The model also shows considerable seasonal variation in the tropospheric ozone which is transported from the stratosphere by dynamical processes. The domestic production of ozone in the middle troposphere is estimated and compared GEM-AQ model. It is estimated that about 40-50% of ozone in the UAE is transported from the neighbouring petrochemical industries in the Gulf region. We will present ozone sounding data and GEM-AQ results including a discussion on the high levels of the tropospheric ozone responsible for contaminating the air quality in the UAE. This work is supported by National Research Foundation, UAE.

  12. Ozonation control and effects of ozone on water quality in recirculating aquaculture systems

    DEFF Research Database (Denmark)

    Spiliotopoulou, Aikaterini; Rojas-Tirado, Paula Andrea; Chetri, Ravi K.

    2018-01-01

    To address the undesired effect of chemotherapeutants in aquaculture, ozone has been suggested as an alternative to improve water quality. To ensure safe and robust treatment, it is vital to define the ozone demand and ozone kinetics of the specific water matrix to avoid ozone overdose. Different...... ozone dosages were applied to water in freshwater recirculating aquaculture systems (RAS). Experiments were performed to investigate ozone kinetics and demand, and to evaluate the effects on the water quality, particularly in relation to fluorescent organic matter. This study aimed at predicting...... a suitable ozone dosage for water treatment based on daily ozone demand via laboratory studies. These ozone dosages will be eventually applied and maintained at these levels in pilot-scale RAS to verify predictions. Selected water quality parameters were measured, including natural fluorescence and organic...

  13. Ozone Damages to Mediterranean Crops: Physiological Responses

    Directory of Open Access Journals (Sweden)

    Albino Maggio

    2008-03-01

    Full Text Available In this brief review we analyzed some aspects of tropospheric ozone damages to crop plants. Specifically, we addressed this issue to Mediterranean environments, where plant response to multiple stresses may either exacerbate or counteract deleterious ozone effects. After discussing the adequacy of current models to predict ozone damages to Mediterranean crops, we present a few examples of physiological responses to drought and salinity stress that generally overlap with seasonal ozone peaks in Southern Italy. The co-existence of multiple stresses is then analyzed in terms of stomatal vs. non-stomatal control of ozone damages. Recent results on osmoprotectant feeding experiments, as a non-invasive strategy to uncouple stomatal vs. non stomatal contribution to ozone protection, are also presented. In the final section, we discuss critical needs in ozone research and the great potential of plant model systems to unravel multiple stress responses in agricultural crops.

  14. Ozone Damages to Mediterranean Crops: Physiological Responses

    Directory of Open Access Journals (Sweden)

    Massimo Fagnano

    2011-02-01

    Full Text Available In this brief review we analyzed some aspects of tropospheric ozone damages to crop plants. Specifically, we addressed this issue to Mediterranean environments, where plant response to multiple stresses may either exacerbate or counteract deleterious ozone effects. After discussing the adequacy of current models to predict ozone damages to Mediterranean crops, we present a few examples of physiological responses to drought and salinity stress that generally overlap with seasonal ozone peaks in Southern Italy. The co-existence of multiple stresses is then analyzed in terms of stomatal vs. non-stomatal control of ozone damages. Recent results on osmoprotectant feeding experiments, as a non-invasive strategy to uncouple stomatal vs. non stomatal contribution to ozone protection, are also presented. In the final section, we discuss critical needs in ozone research and the great potential of plant model systems to unravel multiple stress responses in agricultural crops.

  15. Estimating changes in urban ozone concentrations due to life cycle emissions from hydrogen transportation systems

    Science.gov (United States)

    Wang, Guihua; Ogden, Joan M.; Chang, Daniel P. Y.

    (mostly in October). The truck pathway tends to cause a much wider fluctuation in degradation or improvement of ozone air quality: percentage changes in peak ozone concentrations are approximately -0.01% to 0.04% for the assumed 9% market penetration, and approximately -0.03% to 0.1% for the 20% market penetration. Moreover, the 20% on-site pathway occasionally results in a decrease of about -0.1% of baseline ozone pollution. Compared to the current ambient pollution level, all three hydrogen pathways are unlikely to cause a serious ozone problem for market penetration levels of HFCVs in the 9-20% range.

  16. Development of a portable instrument to measure ozone production rates in the troposphere

    Science.gov (United States)

    Sklaveniti, Sofia; Locoge, Nadine; Stevens, Philip; Kumar, Vinod; Sinha, Vinayak; Dusanter, Sébastien

    2015-04-01

    Ground-level ozone is a key species related to air pollution, causing respiratory problems, damaging crops and forests, and affecting the climate. Our current understanding of the tropospheric ozone-forming chemistry indicates that net ozone production occurs via reactions of peroxy radicals (HO2 + RO2) with NO producing NO2, whose photolysis leads to O3 formation. Production rates of tropospheric ozone, P(O3), depend on concentrations of oxides of nitrogen (NOx = NO + NO2) and Volatile Organic Compounds (V OCs), but also on production rates of ROx radicals (OH + HO2 + RO2). The formation of ozone follows a complex nonlinear chemistry that makes strategies for reducing ozone difficult to implement. In this context, atmospheric chemistry models are used to develop emission regulations, but there are still uncertainties associated with the chemical mechanisms used in these models. Testing the ozone formation chemistry in atmospheric models is needed, in order to ensure the development of effective strategies for ozone reduction. We will present the development of an instrument for direct measurements of ozone production rates (OPR) in ambient air. The OPR instrument is made of three components: (i) two quartz flow tubes to sample ambient air, one exposed to solar radiation and one covered by a UV filter, (ii) a NO2-to-O3 conversion unit, and (iii) an ozone analyzer. The total amount of ozone exiting each flow tube is conserved in the form of Ox = NO2 + O3. Ozone production rates P(O3) are derived from the difference in Ox concentration between the two flow tubes, divided by the exposure time of air inside the flow tubes. We will present studies that were carried out in the laboratory to characterize each part of the instrument and we will discuss the performances of the OPR instrument based on experiments carried out using synthetic air mixtures of known composition (NOx and V OCs). Chemical modeling will also be presented to assess the reliability of ozone

  17. Evaluation of ozone generation and indoor organic compounds removal by air cleaners based on chamber tests

    Science.gov (United States)

    Yu, Kuo-Pin; Lee, Grace Whei-May; Hsieh, Ching-Pei; Lin, Chi-Chi

    2011-01-01

    Ozone can cause many health problems, including exacerbation of asthma, throat irritation, cough, chest ache, shortness of breath, and respiratory infections. Air cleaners are one of the sources of indoor ozone, and thus the evaluation of ozone generated by air cleaners is desired significant issue. Most evaluation methods proposed are based on chamber tests. However, the adsorption and desorption of ozone on the wall of test chamber and the deposition of ozone resulted from the surface reaction can influence the evaluation results. In this study, we developed a mass balance model that took the adsorption, desorption and deposition of ozone into consideration to evaluate the effective ozone emission rates of six selected air cleaners. The experiments were conducted in a stainless steel chamber with a volume of 11.3 m 3 at 25 °C and 60% relative humidity. The adsorption, desorption and deposition rate constants of ozone obtained by fitting the model to the experimental data were k a = 0.149 ± 0.052 m h -1, k d = 0.013 ± 0.007 h -1, and k r = 0.050 ± 0.020 h -1, respectively. The effective ozone emission rates of Air Cleaners No. 1, 2, and 3 ranged between 13,400-24,500 μg h -1, 7190-10,400 μg h -1, and 4880-6560 μg h -1, respectively, which were more stable than those of No.4, 5, and 6. The effective ozone emission rates of Air Cleaners No. 4, 5, and 6 increased with the time of operation which might be relevant to the decrease of ozone removal by the "aging" filter installed in these cleaners. The removal of toluene and formaldehyde by these six air cleaners were also evaluated and the clean air delivery rates (CADRs) of these two pollutants ranged from non-detectable to 0.42 ± 0.08 m 3 h -1, and from non-detectable to 0.75 ± 0.07 m 3 h -1, respectively. The CADRs showed an insignificant relationship with the effective ozone emission rates. Thus, the removal of toluene and formaldehyde might be resulted from the adsorption on the filters and the

  18. Estimating changes in urban ozone concentrations due to life cycle emissions from hydrogen transportation systems

    International Nuclear Information System (INIS)

    Guihua Wang; Ogden, Joan M.; Chang, Daniel P.Y.

    2007-01-01

    quality (mostly in October). The truck pathway tends to cause a much wider fluctuation in degradation or improvement of ozone air quality: percentage changes in peak ozone concentrations are approximately -0.01% to 0.04% for the assumed 9% market penetration, and approximately -0.03% to 0.1% for the 20% market penetration. Moreover, the 20% on-site pathway occasionally results in a decrease of about -0.1% of baseline ozone pollution. Compared to the current ambient pollution level, all three hydrogen pathways are unlikely to cause a serious ozone problem for market penetration levels of HFCVs in the 9-20% range. (Author)

  19. Stopping the greenhouse effect - recommendations submitted by the Bundestag Enquete Commission. - Why nuclear energy cannot solve the global-warming problem - on the urgency of a low-risk, efficient future energy economy. - The latest cancer statistics of the Hiroshima/Nagasaki A-bomb survivors - a higher radiation risk at dose rates below 50cGy (rad) - consequences for radiation protection

    International Nuclear Information System (INIS)

    Bach, W.; Kohler, S.; Koehnlein, W.

    1991-01-01

    The report compiles three contributions two of which discuss the issues of global warming, trace gases and ozone depletion. The measures proposed by a German enquete commision to stop the greenhouse effect, i.e. utilization of renewable energy sources, nuclear phaseout because nuclear power is not supposed to solve the global-warming problem, are described. The third contribution gives the latest cancer statistics of the Hiroshima/Nagasaki a-bomb survivors while taking into account the higher radiation risk due to low dose rates. (DG) [de

  20. Satellite Ozone Analysis Center (SOAC)

    International Nuclear Information System (INIS)

    Lovill, J.E.; Sullivan, T.J.; Knox, J.B.; Korver, J.A.

    1976-08-01

    Many questions have been raised during the 1970's regarding the possible modification of the ozonosphere by aircraft operating in the stratosphere. Concern also has been expressed over the manner in which the ozonosphere may change in the future as a result of fluorocarbon releases. There are also other ways by which the ozonosphere may be significantly altered, both anthropogenic and natural. Very basic questions have been raised, bearing upon the amount of ozone which would be destroyed by the NO/sub x/ produced in atmospheric nuclear explosions. Studies of the available satellite data have suggested that the worldwide increase of ozone during the past decade, which was observed over land stations, may have been biased by a poor distribution of stations and/or a shift of the planetary wave. Additional satellite data will be required to resolve this issue. Proposals are presented for monitoring of the Earth's ozone variability from the present time into the 1980's to establish a baseline upon which regional, as well as global, ozone trends can be measured

  1. Venezuelan contribution to the ozone layer preservation

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, M.H.; Coltters, R.; Damian, A. [Universidad La Urbina, Caracas (Venezuela). Escuela de Ingenieria Mecanica

    1995-12-31

    There are two ways to solve the problem of the ozone layer destruction in the upper atmosphere by the harmful chlorine which comes from CFC refrigerants and from aerosols. The first one is to replace the old equipment by new ones which work with non-contaminant refrigerants and the second solution is to establish a conversion program according to the Montreal Protocol and the Vienna Convention. According to this, some Venezuelan Companies are beginning to replace the car`s air conditioning equipment, and others like CVG-SIDOR are making an accelerated program for its central air conditioning system. Another company, C.A. Metro de Caracas, has made a progressive program for the replacement of Freon R-11 and R-12 for HFC 123 and HFC-134a respectively. The results indicate that the most economical solution is to replace these refrigerants instead of replacing the equipment completely.

  2. Trends in total column ozone over Australia and New Zealand and its influence on clear-sky surface erythemal irradiance

    International Nuclear Information System (INIS)

    Bodeker, G. E.

    1995-01-01

    Australia and New Zealand are two of the countries closest to the Antarctic ozone depletion and may therefore be 'at risk' as a result of the associated increases in surface ultraviolet (UV) radiation. To investigate the possible impact of mid-latitude ozone decreases on surface erythemal irradiances, monthly mean total ozone has been calculated from daily total ozone mapping spectrometer data for 5 Australian cities (Canberra, Hobart, Melbourne, Perth and Sydney) and 3 New Zealand cities (Auckland, Christchurch and Wellington) from 1979 to 1992. These values have then been used as inputs to a single layer model to calculate noon clear-sky global UV irradiances and associated erythemal irradiances. In addition, the monthly mean ozone data have been modelled statistically for each location to reveal a long-term linear trend, an annual variation, a Quasi-Biennial Oscillation (QBO), a solar cycle component and a semi-annual (6 month) signal. Coefficients from these statistical models have been used to estimate monthly mean ozone and noon clear-sky erythemal irradiances to the year 2000 for each city. It is assumed that the rate of increase of stratospheric chlorine over the remainder of the century will remain constant. Given that there is some evidence that the rate of increase is decreasing, the results present here should be regarded as an upper limit. 33 refs., 7 tabs., 4 figs

  3. Changing Conditions in the Arctic: An Analysis of 45 years of Tropospheric Ozone Measurements at Barrow Observatory

    Science.gov (United States)

    McClure-Begley, A.; Petropavlovskikh, I. V.; Crepinsek, S.; Jefferson, A.; Emmons, L. K.; Oltmans, S. J.

    2017-12-01

    In order to understand the impact of climate on local bio-systems, understanding the changes to the atmospheric composition and processes in the Arctic boundary layer and free troposphere is imperative. In the Arctic, many conditions influence tropospheric ozone variability such as: seasonal halogen caused depletion events, long range transport of pollutants from mid-northern latitudes, compounds released from wildfires, and different meteorological conditions. The Barrow station in Utqiagvik, Alaska has collected continuous measurements of ground-level ozone since 1973. This unique long-term time series allows for analysis of the influence of a rapidly changing climate on ozone conditions in this region. Specifically, this study analyzes the frequency of enhanced ozone episodes over time and provides in depth analysis of periods of positive deviations from the expected conditions. To discern the contribution of different pollutant sources to observed ozone variability, co-located measurements of aerosols, carbon monoxide, and meteorological conditions are used. In addition, the NCAR Mozart-4/MOPITT Chemical Forecast model and NOAA Hysplit back-trajectory analysis provide information on transport patterns to the Arctic and confirmation of the emission sources that influenced the observed conditions. These anthropogenic influences on ozone variability in and below the boundary layer are essential for developing an understanding of the interaction of climate change and the bio-systems in the Arctic.

  4. Radioactivity of drinking waters from regions exposed to depleted uranium ammunition bombing in 2003 end 2004

    International Nuclear Information System (INIS)

    Tanaskovic, I.; Pantelic, G.; Vuletic, V.; Eremic Savkovic, M.; Javorina, L.J.

    2006-01-01

    Due to the military application of the depleted uranium in our country, the problem of its radioactivity and hemo toxicity is actualized. The locations verified to be contaminated by depleted uranium ammunition were at the South part of Serbia (Pljackovica, Bratoselce, Borovac and Reljan). The soluble forms of uranium could translocated and dispersed from soils and sediments into surface waters and groundwater. The environmental presence of depleted uranium is considered as potential threat to human health. The study presents the results of radiological safety analysis of drinking water in 2003 and 2004. All samples were analyzed by gamma spectrometry and measurements of alpha and beta activity. (authors)

  5. Characteristics of episodes with extremely low ozone values in the northern middle latitudes 1957−2000

    Directory of Open Access Journals (Sweden)

    D. S. Balis

    injected. In fact, the overall amount of ozone is not depleted, but redistributed on the hemispheric scale. Review of low ozone events, defined as days with negative deviations from the pre-1976 averages greater than 25% show, in general, similar origin. The seasonally averaged area with ELO3 and the associated O3MD, as well as for the cases with deviations > –25%, has increased during the 1990s, which could be an indication of stronger and/or more frequent subtropical air intrusions. Their occurrences could contribute noticeably to the ozone deficiency of the middle latitude ozone during the days of ELO3 appearances; however, their contribution to the long-term trend of the ozone seasonal decline is of the order of ~10%.Key words. Atmospheric composition and structure (middle atmosphere - composition and chemistry Meteorology and atmospheric dynamics (middle atmosphere dynamics

  6. Global distribution of total ozone and lower stratospheric temperature variations

    Directory of Open Access Journals (Sweden)

    W. Steinbrecht

    2003-01-01

    Full Text Available This study gives an overview of interannual variations of total ozone and 50 hPa temperature. It is based on newer and longer records from the 1979 to 2001 Total Ozone Monitoring Spectrometer (TOMS and Solar Backscatter Ultraviolet (SBUV instruments, and on US National Center for Environmental Prediction (NCEP reanalyses. Multiple linear least squares regression is used to attribute variations to various natural and anthropogenic explanatory variables. Usually, maps of total ozone and 50 hPa temperature variations look very similar, reflecting a very close coupling between the two. As a rule of thumb, a 10 Dobson Unit (DU change in total ozone corresponds to a 1 K change of 50 hPa temperature. Large variations come from the linear trend term, up to -30 DU or -1.5 K/decade, from terms related to polar vortex strength, up to 50 DU or 5 K (typical, minimum to maximum, from tropospheric meteorology, up to 30 DU or 3 K, or from the Quasi-Biennial Oscillation (QBO, up to 25 DU or 2.5 K. The 11-year solar cycle, up to 25 DU or 2.5 K, or El Niño/Southern Oscillation (ENSO, up to 10 DU or 1 K, are contributing smaller variations. Stratospheric aerosol after the 1991 Pinatubo eruption lead to warming up to 3 K at low latitudes and to ozone depletion up to 40 DU at high latitudes. Variations attributed to QBO, polar vortex strength, and to a lesser degree to ENSO, exhibit an inverse correlation between low latitudes and higher latitudes. Variations related to the solar cycle or 400 hPa temperature, however, have the same sign over most of the globe. Variations are usually zonally symmetric at low and mid-latitudes, but asymmetric at high latitudes. There, position and strength of the stratospheric anti-cyclones over the Aleutians and south of Australia appear to vary with the phases of solar cycle, QBO or ENSO.

  7. Meteorological and chemical impacts on ozone formation: A case study in Hangzhou, China

    Science.gov (United States)

    Li, Kangwei; Chen, Linghong; Ying, Fang; White, Stephen J.; Jang, Carey; Wu, Xuecheng; Gao, Xiang; Hong, Shengmao; Shen, Jiandong; Azzi, Merched; Cen, Kefa

    2017-11-01

    Regional ozone pollution has become one of the most challenging problems in China, especially in the more economically developed and densely populated regions like Hangzhou. In this study, measurements of O3, CO, NOx and non-methane hydrocarbons (NMHCs), together with meteorological data, were obtained for the period July 1, 2013-August 15, 2013 at three sites in Hangzhou. These sites included an urban site (Zhaohui ;ZH;), a suburban site (Xiasha ;XS;) and a rural site (Qiandaohu ;QDH;). During the observation period, both ZH and XS had a higher ozone level than QDH, with exceeding rates of 41.3% and 47.8%, respectively. Elevated O3 levels in QDH were found at night, which could be explained by less prominent NO titration effect in rural area. Detailed statistical analysis of meteorological and chemical impacts on ozone formation was carried out for ZH, and higher ozone concentration was observed when the wind direction was from the east. This is possibly due to emissions of VOCs from XS, a typical chemical industrial park located in 30 km upwind area of ZH. A comprehensive comparison between three ozone episode periods and one non-episode period were made in ZH. It was concluded that elevated concentrations of precursors and temperatures, low relative humidity and wind speed and easterly-dominated wind direction contribute to urban ozone episodes in Hangzhou. VOCs reactivity analysis indicated that reactive alkenes like isoprene and isobutene contributed most to ozone formation. Three methods were applied to evaluate O3-VOCs-NOx sensitivity in ZH: VOCs/NOx ratio method, Smog Production Model (SPM) and Relative Incremental Reactivity (RIR). The results show that summer ozone in urban Hangzhou mostly presents VOCs-limited and transition region alternately. Our study implies that the increasing automobiles and VOCs emissions from upwind area could result in ozone pollution in urban Hangzhou, and synergistic reduction of VOCs and NOx will be more effective.

  8. Association between outdoor ozone and compensated acute respiratory diseases among workers in Quebec (Canada).

    Science.gov (United States)

    Adam-Poupart, Ariane; Labrèche, France; Busque, Marc-Antoine; Brand, Allan; Duguay, Patrice; Fournier, Michel; Zayed, Joseph; Smargiassi, Audrey

    2015-01-01

    Respiratory effects of ozone in the workplace have not been extensively studied. Our aim was to explore the relationship between daily average ozone levels and compensated acute respiratory problems among workers in Quebec between 2003 and 2010 using a time-stratified case-crossover design. Health data came from the Workers' Compensation Board. Daily concentrations of ozone were estimated using a spatiotemporal model. Conditional logistic regressions, with and without adjustment for temperature, were used to estimate odds ratios (ORs, per 1 ppb increase of ozone), and lag effects were assessed. Relationships with respiratory compensations in all industrial sectors were essentially null. Positive non-statistically significant associations were observed for outdoor sectors, and decreased after controlling for temperature (ORs of 0.98; 1.01 and 1.05 at Lags 0, 1 and 2 respectively). Considering the predicted increase of air pollutant concentrations in the context of climate change, closer investigation should be carried out on outdoor workers.

  9. ISOGEN: Interactive isotope generation and depletion code

    International Nuclear Information System (INIS)

    Venkata Subbaiah, Kamatam

    2016-01-01

    ISOGEN is an interactive code for solving first order coupled linear differential equations with constant coefficients for a large number of isotopes, which are produced or depleted by the processes of radioactive decay or through neutron transmutation or fission. These coupled equations can be written in a matrix notation involving radioactive decay constants and transmutation coefficients, and the eigenvalues of thus formed matrix vary widely (several tens of orders), and hence no single method of solution is suitable for obtaining precise estimate of concentrations of isotopes. Therefore, different methods of solutions are followed, namely, matrix exponential method, Bateman series method, and Gauss-Seidel iteration method, as was followed in the ORIGEN-2 code. ISOGEN code is written in a modern computer language, VB.NET version 2013 for Windows operating system version 7, which enables one to provide many interactive features between the user and the program. The output results depend on the input neutron database employed and the time step involved in the calculations. The present program can display the information about the database files, and the user has to select one which suits the current need. The program prints the 'WARNING' information if the time step is too large, which is decided based on the built-in convergence criterion. Other salient interactive features provided are (i) inspection of input data that goes into calculation, (ii) viewing of radioactive decay sequence of isotopes (daughters, precursors, photons emitted) in a graphical format, (iii) solution of parent and daughter products by direct Bateman series solution method, (iv) quick input method and context sensitive prompts for guiding the novice user, (v) view of output tables for any parameter of interest, and (vi) output file can be read to generate new information and can be viewed or printed since the program stores basic nuclide concentration unlike other batch jobs. The sample

  10. Fully Depleted Charge-Coupled Devices

    International Nuclear Information System (INIS)

    Holland, Stephen E.

    2006-01-01

    We have developed fully depleted, back-illuminated CCDs that build upon earlier research and development efforts directed towards technology development of silicon-strip detectors used in high-energy-physics experiments. The CCDs are fabricated on the same type of high-resistivity, float-zone-refined silicon that is used for strip detectors. The use of high-resistivity substrates allows for thick depletion regions, on the order of 200-300 um, with corresponding high detection efficiency for near-infrared and soft x-ray photons. We compare the fully depleted CCD to the p-i-n diode upon which it is based, and describe the use of fully depleted CCDs in astronomical and x-ray imaging applications

  11. Plasmonic Nanoprobes for Stimulated Emission Depletion Nanoscopy.

    Science.gov (United States)

    Cortés, Emiliano; Huidobro, Paloma A; Sinclair, Hugo G; Guldbrand, Stina; Peveler, William J; Davies, Timothy; Parrinello, Simona; Görlitz, Frederik; Dunsby, Chris; Neil, Mark A A; Sivan, Yonatan; Parkin, Ivan P; French, Paul M W; Maier, Stefan A

    2016-11-22

    Plasmonic nanoparticles influence the absorption and emission processes of nearby emitters due to local enhancements of the illuminating radiation and the photonic density of states. Here, we use the plasmon resonance of metal nanoparticles in order to enhance the stimulated depletion of excited molecules for super-resolved nanoscopy. We demonstrate stimulated emission depletion (STED) nanoscopy with gold nanorods with a long axis of only 26 nm and a width of 8 nm. These particles provide an enhancement of up to 50% of the resolution compared to fluorescent-only probes without plasmonic components irradiated with the same depletion power. The nanoparticle-assisted STED probes reported here represent a ∼2 × 10 3 reduction in probe volume compared to previously used nanoparticles. Finally, we demonstrate their application toward plasmon-assisted STED cellular imaging at low-depletion powers, and we also discuss their current limitations.

  12. Real depletion in nodal diffusion codes

    International Nuclear Information System (INIS)

    Petkov, P.T.

    2002-01-01

    The fuel depletion is described by more than one hundred fuel isotopes in the advanced lattice codes like HELIOS, but only a few fuel isotopes are accounted for even in the advanced steady-state diffusion codes. The general assumption that the number densities of the majority of the fuel isotopes depend only on the fuel burnup is seriously in error if high burnup is considered. The real depletion conditions in the reactor core differ from the asymptotic ones at the stage of lattice depletion calculations. This study reveals which fuel isotopes should be explicitly accounted for in the diffusion codes in order to predict adequately the real depletion effects in the core. A somewhat strange conclusion is that if the real number densities of the main fissionable isotopes are not explicitly accounted for in the diffusion code, then Sm-149 should not be accounted for either, because the net error in k-inf is smaller (Authors)

  13. Depleted UF6 programmatic environmental impact statement

    International Nuclear Information System (INIS)

    1997-01-01

    The US Department of Energy has developed a program for long-term management and use of depleted uranium hexafluoride, a product of the uranium enrichment process. As part of this effort, DOE is preparing a Programmatic Environmental Impact Statement (PEIS) for the depleted UF 6 management program. This report duplicates the information available at the web site (http://www.ead.anl.gov/web/newduf6) set up as a repository for the PEIS. Options for the web site include: reviewing recent additions or changes to the web site; learning more about depleted UF 6 and the PEIS; browsing the PEIS and related documents, or submitting official comments on the PEIS; downloading all or part of the PEIS documents; and adding or deleting one's name from the depleted UF 6 mailing list

  14. Ecological considerations of natural and depleted uranium

    International Nuclear Information System (INIS)

    Hanson, W.C.

    1980-01-01

    Depleted 238 U is a major by-product of the nuclear fuel cycle for which increasing use is being made in counterweights, radiation shielding, and ordnance applications. This paper (1) summarizes the pertinent literature on natural and depleted uranium in the environment, (2) integrates results of a series of ecological studies conducted at Los Alamos Scientific Laboratory (LASL) in New Mexico where 70,000 kg of depleted and natural uranium has been expended to the environment over the past 34 years, and (3) synthesizes the information into an assessment of the ecological consequences of natural and depleted uranium released to the environment by various means. Results of studies of soil, plant, and animal communities exposed to this radiation and chemical environment over a third of a century provide a means of evaluating the behavior and effects of uranium in many contexts

  15. Sterilization of Microorganisms by Ozone and Ultrasound

    Science.gov (United States)

    Krasnyj, V. V.; Klosovskij, A. V.; Panasko, T. A.; Shvets, O. M.; Semenova, O. T.; Taran, V. S.; Tereshin, V. I.

    2008-03-01

    The results of recent experimental methods of sterilization of microorganisms with the use of ozone and ultrasound are presented. The main aim was to optimize the process of sterilization in water solution taking into account the ozone concentration, the power of ultrasonic emitter and the temperature of water. In the present work, the ultrasonic cavitation with simultaneous ozone generation has been used. The high ozone concentration in water solution was achieved by two-barrier glow discharge generated at atmospheric pressure and a cooling thermo-electric module. Such a sterilizer consists of ozone generator in a shape of flat electrodes covered with dielectric material and a high-voltage pulsed power supply of 250 W. The sterilization camera was equipped with ultrasonic source operated at 100 W. The experiments on the inactivation of bacteria of the Bacillus Cereus type were carried out in the distilled water saturated by ozone. The ozone concentration in the aqueous solution was 10 mg/1, whereas the ozone concentration at the output of ozone generator was 30 mg/1. The complete inactivation of spores took 15 min. Selection of the temperature of water, the ozone concentrations and ultrasonic power allowed to determine the time necessary for destroying the row of microorganisms.

  16. Ozone kinetics in low-pressure discharges

    Science.gov (United States)

    Guerra, Vasco; Marinov, Daniil; Guaitella, Olivier; Rousseau, Antoine

    2012-10-01

    Ozone kinetics is quite well established at atmospheric pressure, due to the importance of ozone in atmospheric chemistry and to the development of industrial ozone reactors. However, as the pressure is decreased and the dominant three-body reactions lose importance, the main mechanisms involved in the creation and destruction of ozone are still surrounded by important uncertainties. In this work we develop a self-consistent model for a pulsed discharge and its afterglow operating in a Pyrex reactor with inner radius 1 cm, at pressures in the range 1-5 Torr and discharge currents of 40-120 mA. The model couples the electron Boltzmann equation with a system of equations for the time evolution of the heavy particles. The calculations are compared with time-dependent measurements of ozone and atomic oxygen. Parametric studies are performed in order to clarify the role of vibrationally excited ozone in the overall kinetics and to establish the conditions where ozone production on the surface may become important. It is shown that vibrationally excited ozone does play a significant role, by increasing the time constants of ozone formation. Moreover, an upper limit for the ozone formation at the wall in these conditions is set at 10(-4).

  17. Stimulated emission depletion following two photon excitation

    OpenAIRE

    Marsh, R. J.; Armoogum, D. A.; Bain, A. J.

    2002-01-01

    The technique of stimulated emission depletion of fluorescence (STED) from a two photon excited molecular population is demonstrated in the S, excited state of fluorescein in ethylene glycol and methanol. Two photon excitation (pump) is achieved using the partial output of a regeneratively amplified Ti:Sapphire laser in conjunction with an optical parametric amplifier whose tuneable output provides a synchronous depletion (dump) pulse. Time resolved fluorescence intensity and anisotropy measu...

  18. Depleted Bulk Heterojunction Colloidal Quantum Dot Photovoltaics

    KAUST Repository

    Barkhouse, D. Aaron R.

    2011-05-26

    The first solution-processed depleted bulk heterojunction colloidal quantum dot solar cells are presented. The architecture allows for high absorption with full depletion, thereby breaking the photon absorption/carrier extraction compromise inherent in planar devices. A record power conversion of 5.5% under simulated AM 1.5 illumination conditions is reported. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Update of the Polar SWIFT model for polar stratospheric ozone loss (Polar SWIFT version 2)

    Science.gov (United States)

    Wohltmann, Ingo; Lehmann, Ralph; Rex, Markus

    2017-07-01

    The Polar SWIFT model is a fast scheme for calculating the chemistry of stratospheric ozone depletion in polar winter. It is intended for use in global climate models (GCMs) and Earth system models (ESMs) to enable the simulation of mutual interactions between the ozone layer and climate. To date, climate models often use prescribed ozone fields, since a full stratospheric chemistry scheme is computationally very expensive. Polar SWIFT is based on a set of coupled differential equations, which simulate the polar vortex-averaged mixing ratios of the key species involved in polar ozone depletion on a given vertical level. These species are O3, chemically active chlorine (ClOx), HCl, ClONO2 and HNO3. The only external input parameters that drive the model are the fraction of the polar vortex in sunlight and the fraction of the polar vortex below the temperatures necessary for the formation of polar stratospheric clouds. Here, we present an update of the Polar SWIFT model introducing several improvements over the original model formulation. In particular, the model is now trained on vortex-averaged reaction rates of the ATLAS Chemistry and Transport Model, which enables a detailed look at individual processes and an independent validation of the different parameterizations contained in the differential equations. The training of the original Polar SWIFT model was based on fitting complete model runs to satellite observations and did not allow for this. A revised formulation of the system of differential equations is developed, which closely fits vortex-averaged reaction rates from ATLAS that represent the main chemical processes influencing ozone. In addition, a parameterization for the HNO3 change by denitrification is included. The rates of change of the concentrations of the chemical species of the Polar SWIFT model are purely chemical rates of change in the new version, whereas in the original Polar SWIFT model, they included a transport effect caused by the

  20. ANATOMY OF DEPLETED INTERPLANETARY CORONAL MASS EJECTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Kocher, M.; Lepri, S. T.; Landi, E.; Zhao, L.; Manchester, W. B. IV, E-mail: mkocher@umich.edu [Department of Climate and Space Sciences and Engineering, University of Michigan, 2455 Hayward Street, Ann Arbor, MI 48109-2143 (United States)

    2017-01-10

    We report a subset of interplanetary coronal mass ejections (ICMEs) containing distinct periods of anomalous heavy-ion charge state composition and peculiar ion thermal properties measured by ACE /SWICS from 1998 to 2011. We label them “depleted ICMEs,” identified by the presence of intervals where C{sup 6+}/C{sup 5+} and O{sup 7+}/O{sup 6+} depart from the direct correlation expected after their freeze-in heights. These anomalous intervals within the depleted ICMEs are referred to as “Depletion Regions.” We find that a depleted ICME would be indistinguishable from all other ICMEs in the absence of the Depletion Region, which has the defining property of significantly low abundances of fully charged species of helium, carbon, oxygen, and nitrogen. Similar anomalies in the slow solar wind were discussed by Zhao et al. We explore two possibilities for the source of the Depletion Region associated with magnetic reconnection in the tail of a CME, using CME simulations of the evolution of two Earth-bound CMEs described by Manchester et al.

  1. VERA Pin and Fuel Assembly Depletion Benchmark Calculations by McCARD and DeCART

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ho Jin; Cho, Jin Young [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Monte Carlo (MC) codes have been developed and used to simulate a neutron transport since MC method was devised in the Manhattan project. Solving the neutron transport problem with the MC method is simple and straightforward to understand. Because there are few essential approximations for the 6- dimension phase of a neutron such as the location, energy, and direction in MC calculations, highly accurate solutions can be obtained through such calculations. In this work, the VERA pin and fuel assembly (FA) depletion benchmark calculations are performed to examine the depletion capability of the newly generated DeCART multi-group cross section library. To obtain the reference solutions, MC depletion calculations are conducted using McCARD. Moreover, to scrutinize the effect by stochastic uncertainty propagation, uncertainty propagation analyses are performed using a sensitivity and uncertainty (S/U) analysis method and stochastic sampling (S.S) method. It is still expensive and challenging to perform a depletion analysis by a MC code. Nevertheless, many studies and works for a MC depletion analysis have been conducted to utilize the benefits of the MC method. In this study, McCARD MC and DeCART MOC transport calculations are performed for the VERA pin and FA depletion benchmarks. The DeCART depletion calculations are conducted to examine the depletion capability of the newly generated multi-group cross section library. The DeCART depletion calculations give excellent agreement with the McCARD reference one. From the McCARD results, it is observed that the MC depletion results depend on how to split the burnup interval. First, only to quantify the effect of the stochastic uncertainty propagation at 40 DTS, the uncertainty propagation analyses are performed using the S/U and S.S. method.

  2. Ozone Therapy on Rats Submitted to Subtotal Nephrectomy: Role of Antioxidant System

    Directory of Open Access Journals (Sweden)

    José Luis Calunga

    2005-01-01

    Full Text Available Chronic renal failure (CRF represents a world health problem. Ozone increases the endogenous antioxidant defense system, preserving the cell redox state. The aim of this study is to evaluate the effect of ozone/oxygen mixture in the renal function, morphology, and biochemical parameters, in an experimental model of CRF (subtotal nephrectomy. Ozone/oxygen mixture was applied daily, by rectal insufflation (0.5 mg/kg for 15 sessions after the nephrectomy. Renal function was evaluated, as well as different biochemical parameters, at the beginning and at the end of the study (10 weeks. Renal plasmatic flow (RPF, glomerular filtration rate (GFR, the urine excretion index, and the sodium and potassium excretions (as a measurement of tubular function in the ozone group were similar to those in Sham group. Nevertheless, nephrectomized rats without ozone (positive control group showed the lowest RPF, GFR, and urine excretion figures, as well as tubular function. Animals treated with ozone showed systolic arterial pressure (SAP figures lower than those in the positive control group, but higher values compared to Sham group. Serum creatinine values and protein excretion in 24 hours in the ozone group were decreased compared with nephrectomized rats, but were still higher than normal values. Histological study demonstrated that animals treated with ozone showed less number of lesions in comparison with nephrectomized rats. Thiobarbituric acid reactive substances were significantly increased in nephrectomized and ozone-treated nephrectomized rats in comparison with Sham group. In the positive control group, superoxide dismutase (SOD and catalase (CAT showed the lowest figures in comparison with the other groups. However, ozone/oxygen mixture induced a significant stimulation in the enzymatic activity of CAT, SOD, and glutathione peroxidase, as well as reduced glutathione in relation with Sham and positive control groups. In this animal model of CRF, ozone

  3. Effect of ozone on leaf cell membranes

    Energy Technology Data Exchange (ETDEWEB)

    Swanson, E S; Thomson, W W; Mudd, J B

    1973-01-01

    The objective of this study was to determine the effects of ozone on membrane lipids and on the electron-density patterns of cell membranes in electron micrographs. Analysis of fatty acids from tobacco leaves fumigated with ozone indicated that there was no significant difference between the ozone-treated and the control plants in the relative amounts of the fatty acids. This suggests that if the primary site of ozone action is unsaturated lipids in membranes then the amounts of affected unsaturated fatty acids are too small to be detected by gas chromatography. In support of this, characteristic electron-microscopic images of membranes are observed in cells of fumigated leaves. However, measurements of the length and width of the chloroplasts and the determination of axial ratios indicated that the ozone treatment resulted in a shrinkage of the chloroplasts. In contrast, mitochondrial changes are apparently explained in terms of ozone-induced swelling. 33 references, 3 figures, 1 table.

  4. Modeling of recovery mechanism of ozone zero phenomenaby adding small amount of nitrogen in atmospheric pressure oxygen dielectric barrier discharges

    Science.gov (United States)

    Akashi, Haruaki; Yoshinaga, Tomokazu

    2013-09-01

    Ozone zero phenomena in an atmospheric pressure oxygen dielectric barrier discharges have been one of the major problems during a long time operation of ozone generators. But it is also known that the adding a small amount of nitrogen makes the recover from the ozone zero phenomena. To make clear the mechanism of recovery, authors have been simulated the discharges with using the results of Ref. 3. As a result, the recovery process can be seen and ozone density increased. It is found that the most important species would be nitrogen atoms. The reaction of nitrogen atoms and oxygen molecules makes oxygen atoms which is main precursor species of ozone. This generation of oxygen atoms is effective to increase ozone. The dependence of oxygen atom density (nO) and nitrogen atom density (nN) ratio was examined in this paper. In the condition of low nN/nO ratio case, generation of nitrogen oxide is low, and the quenching of ozone by the nitrogen oxide would be low. But in the high ratio condition, the quenching of ozone by nitrogen oxide would significant. This work was supported by KAKENHI(23560352).

  5. LANDFILL LEACHATES PRETREATMENT BY OZONATION

    Directory of Open Access Journals (Sweden)

    Jacek Leszczyński

    2016-06-01

    Full Text Available In this paper, the application of ozonation processes for stabilized landfill leachate treatment was investigated. The leachate came from a municipal sanitary landfill located nearby Bielsk Podlaski. The average values of its main parameters were: pH 8.23; COD 870 mgO2/dm3; BOD 90 mgO2/dm3; NH4+ 136.2 mgN/dm3; UV254 absorbance 0.312 and turbidity 14 NTU. The ozone dosages used were in the range of 115.5 to 808.5 mgO3/dm3 of the leachate. The maximum COD, color and UV254 absorbance removal wa.5 mgO3/dm3. After oxidation, the ratio of BOD/COD was increased from 0.1 up to 0.23.

  6. EPRI depletion benchmark calculations using PARAGON

    International Nuclear Information System (INIS)

    Kucukboyaci, Vefa N.

    2015-01-01

    Highlights: • PARAGON depletion calculations are benchmarked against the EPRI reactivity decrement experiments. • Benchmarks cover a wide range of enrichments, burnups, cooling times, and burnable absorbers, and different depletion and storage conditions. • Results from PARAGON-SCALE scheme are more conservative relative to the benchmark data. • ENDF/B-VII based data reduces the excess conservatism and brings the predictions closer to benchmark reactivity decrement values. - Abstract: In order to conservatively apply burnup credit in spent fuel pool criticality analyses, code validation for both fresh and used fuel is required. Fresh fuel validation is typically done by modeling experiments from the “International Handbook.” A depletion validation can determine a bias and bias uncertainty for the worth of the isotopes not found in the fresh fuel critical experiments. Westinghouse’s burnup credit methodology uses PARAGON™ (Westinghouse 2-D lattice physics code) and its 70-group cross-section library, which have been benchmarked, qualified, and licensed both as a standalone transport code and as a nuclear data source for core design simulations. A bias and bias uncertainty for the worth of depletion isotopes, however, are not available for PARAGON. Instead, the 5% decrement approach for depletion uncertainty is used, as set forth in the Kopp memo. Recently, EPRI developed a set of benchmarks based on a large set of power distribution measurements to ascertain reactivity biases. The depletion reactivity has been used to create 11 benchmark cases for 10, 20, 30, 40, 50, and 60 GWd/MTU and 3 cooling times 100 h, 5 years, and 15 years. These benchmark cases are analyzed with PARAGON and the SCALE package and sensitivity studies are performed using different cross-section libraries based on ENDF/B-VI.3 and ENDF/B-VII data to assess that the 5% decrement approach is conservative for determining depletion uncertainty

  7. Two-phase ozonation of chlorinated organics

    International Nuclear Information System (INIS)

    Bhattacharyya, D.; Freshour, A.; West, D.

    1995-01-01

    In the last few years the amount of research being conducted in the field of single-phase ozonation has grown extensively. However, traditional aqueous-phase ozonation systems are limited by a lack of selective oxidation potential, low ozone solubility in water, and slow intermediate decomposition rates. Furthermore, ozone may decompose before it can be utilized for pollutant destruction since ozone can be highly unstable in aqueous solutions. Naturally occurring compounds such as NaHCO 3 also affect ozone reactions by inhibiting the formation of OH-free radicals. To compensate for these factors, excess ozone is typically supplied to a reactor. Since ozone generation requires considerable electric power consumption (16 - 24 kWh/kg of O 3 ), attempts to enhance the ozone utilization rate and stability should lead to more efficient application of this process to hazardous waste treatment. To improve the process, ozonation may be more efficiently carried out in a two-phase system consisting of an inert solvent (saturated with O 3 ) contacted with an aqueous phase containing pollutants. The non-aqueous phase must meet the following criteria: (1) non-toxic, (2) very low vapor pressure, (3) high density (for ease of separation), (4) complete insolubility in water, (5) reusability, (6) selective pollutant extractability, (7) high oxidant solubility, and (8) extended O 3 stability. Previously published studies (1) have indicated that a number of fluorinated hydrocarbon compounds fit these criteria. For this project, FC40 (a product of 3M Co.) was chosen due to its low vapor pressure (3 mm Hg) and high specific gravity (1.9). The primary advantages of the FC40 solvent are that it is non-toxic, reusable, has an ozone solubility 10 times that of water, and that 85 % of the ozone remains in the solvent even after 2 hours. This novel two-phase process has been utilized to study the rapid destruction of organic chlorine compounds and organic mixtures

  8. Seasonal Changes in Tropospheric Ozone Concentrations over South Korea and Its Link to Ozone Precursors

    Science.gov (United States)

    Jung, H. C.; Moon, B. K.; Wie, J.

    2017-12-01

    Concentration of tropospheric ozone over South Korea has steadily been on the rise in the last decades, mainly due to rapid industrializing and urbanizing in the Eastern Asia. To identify the characteristics of tropospheric ozone in South Korea, we fitted a sine function to the surface ozone concentration data from 2005 to 2014. Based on fitted sine curves, we analyzed the shifts in the dates on which ozone concentration reached its peak in the calendar year. Ozone monitoring sites can be classified into type types: where the highest annual ozone concentration kept occurring sooner (Esites) and those that kept occurring later (Lsites). The seasonal analysis shows that the surface ozone had increased more rapidly in Esites than in Lsites in the past decade during springtime and vice-versa during summertime. We tried to find the reason for the different seasonal trends with the relationship between ozone and ozone precursors. As a result, it was found that the changes in the ground-level ozone concentration in the spring and summer times are considerably influenced by changes in nitrogen dioxide concentration, and this is closely linked to the destruction (production) process of ozone by nitrogen dioxide in spring (summer). The link between tropospheric ozone and nitrogen dioxide discussed in this study will have to be thoroughly examined through climate-chemistry modeling in the future. Acknowledgements This research was supported by the Korea Ministry of Environment (MOE) as "Climate Change Correspondence Program."

  9. Evaluation of Global Ozone Monitoring Experiment (GOME) ozone profiles from nine different algorithms

    NARCIS (Netherlands)

    Meijer, Y.J.; Swart, D.P.J.; Baier, F.; Bhartia, P.K.; Bodeker, G.E.; Casadio, S.; Chance, K.; Frate, Del F.; Erbertseder, T.; Felder, M.D.; Flynn, L.E.; Godin-Beekmann, S.; Hansen, G.; Hasekamp, O.P.; Kaifel, A.; Kelder, H.M.; Kerridge, B.J.; Lambert, J.-C.; Landgraf, J.; Latter, B.G.; Liu, X.; McDermid, I.S.; Pachepsky, Y.; Rozanov, V.; Siddans, R.; Tellmann, S.; A, van der R.J.; Oss, van R.F.; Weber, M.; Zehner, C.

    2006-01-01

    An evaluation is made of ozone profiles retrieved from measurements of the nadir-viewing Global Ozone Monitoring Experiment (GOME) instrument. Currently, four different approaches are used to retrieve ozone profile information from GOME measurements, which differ in the use of external information

  10. Towards the retrieval of tropospheric ozone with the ozone monitoring instrument (OMI)

    NARCIS (Netherlands)

    Mielonen, T.; De Haan, J.F.; Van Peet, J.C.A.; Eremenko, M.; Veefkind, J.P.

    2015-01-01

    We have assessed the sensitivity of the operational Ozone Monitoring Instrument (OMI) ozone profile retrieval algorithm to a number of a priori and radiative transfer assumptions. We studied the effect of stray light correction, surface albedo assumptions and a priori ozone profiles on the retrieved

  11. Mixed deterministic statistical modelling of regional ozone air pollution

    KAUST Repository

    Kalenderski, Stoitchko

    2011-03-17

    We develop a physically motivated statistical model for regional ozone air pollution by separating the ground-level pollutant concentration field into three components, namely: transport, local production and large-scale mean trend mostly dominated by emission rates. The model is novel in the field of environmental spatial statistics in that it is a combined deterministic-statistical model, which gives a new perspective to the modelling of air pollution. The model is presented in a Bayesian hierarchical formalism, and explicitly accounts for advection of pollutants, using the advection equation. We apply the model to a specific case of regional ozone pollution-the Lower Fraser valley of British Columbia, Canada. As a predictive tool, we demonstrate that the model vastly outperforms existing, simpler modelling approaches. Our study highlights the importance of simultaneously considering different aspects of an air pollution problem as well as taking into account the physical bases that govern the processes of interest. © 2011 John Wiley & Sons, Ltd..

  12. Ozone database in support of CMIP5 simulations: results and corresponding radiative forcing

    Directory of Open Access Journals (Sweden)

    I. Cionni

    2011-11-01

    total column ozone is overestimated in the southern polar latitudes during spring and tropospheric column ozone is slightly underestimated. Vertical profiles of tropospheric ozone are broadly consistent with ozonesondes and in-situ measurements, with some deviations in regions of biomass burning. The tropospheric ozone radiative forcing (RF from the 1850s to the 2000s is 0.23 W m−2, lower than previous results. The lower value is mainly due to (i a smaller increase in biomass burning emissions; (ii a larger influence of stratospheric ozone depletion on upper tropospheric ozone at high southern latitudes; and possibly (iii a larger influence of clouds (which act to reduce the net forcing compared to previous radiative forcing calculations. Over the same period, decreases in stratospheric ozone, mainly at high latitudes, produce a RF of −0.08 W m−2, which is more negative than the central Intergovernmental Panel on Climate Change (IPCC Fourth Assessment Report (AR4 value of −0.05 W m−2, but which is within the stated range of −0.15 to +0.05 W m−2. The more negative value is explained by the fact that the regression model simulates significant ozone depletion prior to 1979, in line with the increase in EESC and as confirmed by CCMs, while the AR4 assumed no change in stratospheric RF prior to 1979. A negative RF of similar magnitude persists into the future, although its location shifts from high latitudes to the tropics. This shift is due to increases in polar stratospheric ozone, but decreases in tropical lower stratospheric ozone, related to a strengthening of the Brewer-Dobson circulation, particularly through the latter half of the 21st century. Differences in trends in tropospheric ozone among the four RCPs are mainly driven by different methane concentrations, resulting in a range of tropospheric ozone RFs between 0.4 and 0.1 W m−2 by 2100. The ozone dataset described here has been released for

  13. [Cystinosis : Diagnosis, cystine-depleting therapy, and transition].

    Science.gov (United States)

    Kaufeld, Jessica; Weber, Lutz T; Kurschat, Christine; Canaan-Kuehl, Sima; Brand, Eva; Oh, Jun; Pape, Lars

    2018-04-18

    This article presents a case of cystinosis in a young man. Diagnosis of the disease and the problem of transition to adult care are described. Cystinosis is a rare lysosomal storage disease with first manifestation in early childhood presenting as renal Fanconi syndrome. Without treatment, the disease leads to severe health impairment. Due to the rarity of the disease, a correct diagnosis is often delayed. Without treatment, cystinosis often leads to end-stage renal failure, blindness, hypothyroidism, diabetes mellitus, and rickets. Cystine-depleting therapy with cysteamine significantly improves mortality and quality of life.

  14. Ground-Level Ozone Following Astrophysical Ionizing Radiation Events: An Additional Biological Hazard?

    Science.gov (United States)

    Thomas, Brian C; Goracke, Byron D

    2016-01-01

    Astrophysical ionizing radiation events such as supernovae, gamma-ray bursts, and solar proton events have been recognized as a potential threat to life on Earth, primarily through depletion of stratospheric ozone and subsequent increase in solar UV radiation at Earth's surface and in the upper levels of the ocean. Other work has also considered the potential impact of nitric acid rainout, concluding that no significant threat is likely. Not yet studied to date is the potential impact of ozone produced in the lower atmosphere following an ionizing radiation event. Ozone is a known irritant to organisms on land and in water and therefore may be a significant additional hazard. Using previously completed atmospheric chemistry modeling, we examined the amount of ozone produced in the lower atmosphere for the case of a gamma-ray burst and found that the values are too small to pose a significant additional threat to the biosphere. These results may be extended to other ionizing radiation events, including supernovae and extreme solar proton events.

  15. Synthesis of pure ozone by nanosecond discharge at cryogenic temperatures

    International Nuclear Information System (INIS)

    Amirov, R.H.; Asinovsky, E.I.; Samoilov, I.S.

    1996-01-01

    Synthesis of pure ozone by nanosecond discharge at cryogenic temperatures was experimentally examined. The average ozone concentration in the volume of the discharge tube was less at cryogenic temperatures than at room temperatures. The production of condensed ozone have been determined by measuring the ozone concentration when the walls was heated and ozone evaporated. The energy yield of ozone generation at cryogenic temperatures has been calculated. The maximum value was 200 g/kWh

  16. Chromosome breakage in Vicia faba by ozone

    Energy Technology Data Exchange (ETDEWEB)

    Fetner, R H

    1958-02-15

    Meristem cells of Vicia faba roots were exposed to an atmosphere of ozone and the fraction of cells showing chromosome aberrations were recorded. Chromosome aberrations were observed on a dose-response basis after exposing the seeds to 0.4 wt. percent ozone for 15, 30, and 60 minutes. The results of ozone, x-rays, and ozone and x-ray treatments are presented. A small number of root tips from each group was treated with colchicine and an analysis made of metaphase aberrations. These observations confirmed that the aberrations were all of the chromosome-type.

  17. Solar dynamics influence on the atmospheric ozone

    International Nuclear Information System (INIS)

    Gogosheva, T.; Grigorieva, V.; Mendeva, B.; Krastev, D.; Petkov, B.

    2007-01-01

    A response of the atmospheric ozone to the solar dynamics has been studied using the total ozone content data, taken from the satellite experiments GOME on ERS-2 and TOMS-EP together with data obtained from the ground-based spectrophotometer Photon operating in Stara Zagora, Bulgaria during the period 1999-2005. We also use data from surface ozone observations performed in Sofia, Bulgaria. The solar activity was characterized by the sunspot daily numbers W, the solar radio flux at 10.7 cm (F10.7) and the MgII wing-to-core ratio solar index. The impact of the solar activity on the total ozone has been investigated analysing the ozone response to sharp changes of these parameters. Some of the examined cases showed a positive correlation between the ozone and the solar parameters, however, a negative correlation in other cases was found. There were some cases when the sharp increases of the solar activity did not provoke any ozone changes. The solar radiation changes during an eclipse can be considered a particular case of the solar dynamics as this event causes a sharp change of irradiance within a comparatively short time interval. The results of both - the total and surface ozone measurements carried out during the eclipses on 11 August 1999, 31 May 2003 and 29 March 2006 are presented. It was found that the atmospheric ozone behavior shows strong response to the fast solar radiation changes which take place during solar eclipse. (authors)

  18. Ozone pollution and ozone biomonitoring in European cities Part II. Ozone-induced plant injury and its relationship with descriptors of ozone pollution

    DEFF Research Database (Denmark)

    Klumpp, A.; Ansel, W.; Klumpp, G.

    2006-01-01

    within local networks were relatively small, but seasonal and inter-annual differences were strong due to the variability of meteorological conditions and related ozone concentrations. The 2001 data revealed a significant relationship between foliar injury degree and various descriptors of ozone...... pollution such as mean value, AOT20 and AOT40. Examining individual sites of the local monitoring networks separately, however, yielded noticeable differences. Some sites showed no association between ozone pollution and ozone-induced effects, whereas others featured almost linear relationships...

  19. Review of analytical models to stream depletion induced by pumping: Guide to model selection

    Science.gov (United States)

    Huang, Ching-Sheng; Yang, Tao; Yeh, Hund-Der

    2018-06-01

    Stream depletion due to groundwater extraction by wells may cause impact on aquatic ecosystem in streams, conflict over water rights, and contamination of water from irrigation wells near polluted streams. A variety of studies have been devoted to addressing the issue of stream depletion, but a fundamental framework for analytical modeling developed from aquifer viewpoint has not yet been found. This review shows key differences in existing models regarding the stream depletion problem and provides some guidelines for choosing a proper analytical model in solving the problem of concern. We introduce commonly used models composed of flow equations, boundary conditions, well representations and stream treatments for confined, unconfined, and leaky aquifers. They are briefly evaluated and classified according to six categories of aquifer type, flow dimension, aquifer domain, stream representation, stream channel geometry, and well type. Finally, we recommend promising analytical approaches that can solve stream depletion problem in reality with aquifer heterogeneity and irregular geometry of stream channel. Several unsolved stream depletion problems are also recommended.

  20. Groundwater Depletion Embedded in International Food Trade

    Science.gov (United States)

    Dalin, Carole; Wada, Yoshihide; Kastner, Thomas; Puma, Michael J.

    2017-01-01

    Recent hydrological modeling and Earth observations have located and quantified alarming rates of groundwater depletion worldwide. This depletion is primarily due to water withdrawals for irrigation, but its connection with the main driver of irrigation, global food consumption, has not yet been explored. Here we show that approximately eleven per cent of non-renewable groundwater use for irrigation is embedded in international food trade, of which two-thirds are exported by Pakistan, the USA and India alone. Our quantification of groundwater depletion embedded in the world's food trade is based on a combination of global, crop-specific estimates of non-renewable groundwater abstraction and international food trade data. A vast majority of the world's population lives in countries sourcing nearly all their staple crop imports from partners who deplete groundwater to produce these crops, highlighting risks for global food and water security. Some countries, such as the USA, Mexico, Iran and China, are particularly exposed to these risks because they both produce and import food irrigated from rapidly depleting aquifers. Our results could help to improve the sustainability of global food production and groundwater resource management by identifying priority regions and agricultural products at risk as well as the end consumers of these products.