WorldWideScience

Sample records for ozone climate change

  1. Ozone, air quality and climatic change

    International Nuclear Information System (INIS)

    Van Noije, T.

    2008-01-01

    Changes in climate due to increased greenhouse gas emissions differ per region. Regional climate changes can also be caused by regional changes in air quality, though. On the other hand, global and regional changes in climate also lead to changes in air quality without any changes in sources of pollution. This article discusses the various aspects of the interaction between air quality and climate change with extra focus on the role of ozone. [mk] [nl

  2. Atmospheric Ozone and Methane in a Changing Climate

    Directory of Open Access Journals (Sweden)

    Ivar S. A. Isaksen

    2014-07-01

    Full Text Available Ozone and methane are chemically active climate-forcing agents affected by climate–chemistry interactions in the atmosphere. Key chemical reactions and processes affecting ozone and methane are presented. It is shown that climate-chemistry interactions have a significant impact on the two compounds. Ozone, which is a secondary compound in the atmosphere, produced and broken down mainly in the troposphere and stratosphre through chemical reactions involving atomic oxygen (O, NOx compounds (NO, NO2, CO, hydrogen radicals (OH, HO2, volatile organic compounds (VOC and chlorine (Cl, ClO and bromine (Br, BrO. Ozone is broken down through changes in the atmospheric distribution of the afore mentioned compounds. Methane is a primary compound emitted from different sources (wetlands, rice production, livestock, mining, oil and gas production and landfills.Methane is broken down by the hydroxyl radical (OH. OH is significantly affected by methane emissions, defined by the feedback factor, currently estimated to be in the range 1.3 to 1.5, and increasing with increasing methane emission. Ozone and methane changes are affected by NOx emissions. While ozone in general increase with increases in NOx emission, methane is reduced, due to increases in OH. Several processes where current and future changes have implications for climate-chemistry interactions are identified. It is also shown that climatic changes through dynamic processes could have significant impact on the atmospheric chemical distribution of ozone and methane, as we can see through the impact of Quasi Biennial Oscillation (QBO. Modeling studies indicate that increases in ozone could be more pronounced toward the end of this century. Thawing permafrost could lead to important positive feedbacks in the climate system. Large amounts of organic material are stored in the upper layers of the permafrost in the yedoma deposits in Siberia, where 2 to 5% of the deposits could be organic material

  3. Impact of climate change on tropospheric ozone and its global budgets

    Directory of Open Access Journals (Sweden)

    G. Zeng

    2008-01-01

    Full Text Available We present the chemistry-climate model UMCAM in which a relatively detailed tropospheric chemical module has been incorporated into the UK Met Office's Unified Model version 4.5. We obtain good agreements between the modelled ozone/nitrogen species and a range of observations including surface ozone measurements, ozone sonde data, and some aircraft campaigns.

    Four 2100 calculations assess model responses to projected changes of anthropogenic emissions (SRES A2, climate change (due to doubling CO2, and idealised climate change-associated changes in biogenic emissions (i.e. 50% increase of isoprene emission and doubling emissions of soil-NOx. The global tropospheric ozone burden increases significantly for all the 2100 A2 simulations, with the largest response caused by the increase of anthropogenic emissions. Climate change has diverse impacts on O3 and its budgets through changes in circulation and meteorological variables. Increased water vapour causes a substantial ozone reduction especially in the tropical lower troposphere (>10 ppbv reduction over the tropical ocean. On the other hand, an enhanced stratosphere-troposphere exchange of ozone, which increases by 80% due to doubling CO2, contributes to ozone increases in the extratropical free troposphere which subsequently propagate to the surface. Projected higher temperatures favour ozone chemical production and PAN decomposition which lead to high surface ozone levels in certain regions. Enhanced convection transports ozone precursors more rapidly out of the boundary layer resulting in an increase of ozone production in the free troposphere. Lightning-produced NOx increases by about 22% in the doubled CO2 climate and contributes to ozone production.

    The response to the increase of isoprene emissions shows that the change of ozone is largely determined by background NOx levels: high

  4. Effect of Climate Change on Surface Ozone over North America, Europe, and East Asia

    Science.gov (United States)

    Schnell, Jordan L.; Prather, Michael J.; Josse, Beatrice; Naik, Vaishali; Horowitz, Larry W.; Zeng, Guang; Shindell, Drew T.; Faluvegi, Greg

    2016-01-01

    The effect of future climate change on surface ozone over North America, Europe, and East Asia is evaluated using present-day (2000s) and future (2100s) hourly surface ozone simulated by four global models. Future climate follows RCP8.5, while methane and anthropogenic ozone precursors are fixed at year-2000 levels. Climate change shifts the seasonal surface ozone peak to earlier in the year and increases the amplitude of the annual cycle. Increases in mean summertime and high-percentile ozone are generally found in polluted environments, while decreases are found in clean environments. We propose climate change augments the efficiency of precursor emissions to generate surface ozone in polluted regions, thus reducing precursor export to neighboring downwind locations. Even with constant biogenic emissions, climate change causes the largest ozone increases at high percentiles. In most cases, air quality extreme episodes become larger and contain higher ozone levels relative to the rest of the distribution.

  5. Impact of climate change on ozone-related mortality and morbidity in Europe.

    Science.gov (United States)

    Orru, Hans; Andersson, Camilla; Ebi, Kristie L; Langner, Joakim; Aström, Christofer; Forsberg, Bertil

    2013-02-01

    Ozone is a highly oxidative pollutant formed from precursors in the presence of sunlight, associated with respiratory morbidity and mortality. All else being equal, concentrations of ground-level ozone are expected to increase due to climate change. Ozone-related health impacts under a changing climate are projected using emission scenarios, models and epidemiological data. European ozone concentrations are modelled with the model of atmospheric transport and chemistry (MATCH)-RCA3 (50×50 km). Projections from two climate models, ECHAM4 and HadCM3, are applied under greenhouse gas emission scenarios A2 and A1B, respectively. We applied a European-wide exposure-response function to gridded population data and country-specific baseline mortality and morbidity. Comparing the current situation (1990-2009) with the baseline period (1961-1990), the largest increase in ozone-associated mortality and morbidity due to climate change (4-5%) have occurred in Belgium, Ireland, the Netherlands and the UK. Comparing the baseline period and the future periods (2021-2050 and 2041-2060), much larger increases in ozone-related mortality and morbidity are projected for Belgium, France, Spain and Portugal, with the impact being stronger using the climate projection from ECHAM4 (A2). However, in Nordic and Baltic countries the same magnitude of decrease is projected. The current study suggests that projected effects of climate change on ozone concentrations could differentially influence mortality and morbidity across Europe.

  6. Climate effect of ozone changes caused by present and future air traffic

    Energy Technology Data Exchange (ETDEWEB)

    Ponater, M.; Sausen, R.; Feneberg, B. [DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Wessling (Germany). Inst. fuer Physik der Atmosphaere; Roeckner, E. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany)

    1998-08-01

    The potential of aircraft-induced ozone changes to significantly enhance the climate impact of air traffic due to CO{sub 2}-emissions is investigated by means of simulations with an atmospheric general circulation model, coupled to a mixed layer ocean model. Results from several numerical experiments are presented, based on ozone increase patterns for 1992 aviation and on a future scenario for the year 2015. The climate signal is statistically significant for both time slices. Its strength is of comparable magnitude to that arising from aircraft CO{sub 2} emissions, thus meaning a nonnegligible contribution to the total effect. There are indications of a characteristic signature of the aircraft ozone related temperature response pattern, distinctly different from that typically associated with the increase of a well-mixed greenhouse gas. Likewise, the climate sensitivity to nonuniform ozone changes including a strong concentration perturbation at the tropopause appears to he higher than the climate sensitivity to uniform changes of a greenhouse gas. In a hierarchy of experiments based on an aircraft-related ozone perturbation with fixed structure (but increasing amplitude), the climate signal depends in a nonlinear way from the radiative forcing. (orig.) 44 refs.

  7. Climate Change Impacts on Projections of Excess Mortality at 2030 using Spatially-Varying Ozone-Temperature Risk Surfaces

    Science.gov (United States)

    Wilson, Ander; Reich, Brian J.; Nolte, Christopher G.; Spero, Tanya L.; Hubbell, Bryan; Rappold, Ana G.

    2017-01-01

    We project the change in ozone-related mortality burden attributable to changes in climate between a historical (1995–2005) and near-future (2025–2035) time period while incorporating a nonlinear and synergistic effect of ozone and temperature on mortality. We simulate air quality from climate projections varying only biogenic emissions and holding anthropogenic emissions constant, thus attributing changes in ozone only to changes in climate and independent of changes in air pollutant emissions. We estimate nonlinear, spatially-varying, ozone-temperature risk surfaces for 94 US urban areas using observed data. Using the risk surfaces and climate projections we estimate daily mortality attributable to ozone exceeding 40 ppb (moderate level) and 75 ppb (US ozone NAAQS) for each time period. The average increases in city-specific median April-October ozone and temperature between time periods are 1.02 ppb and 1.94°F; however, the results varied by region. Increases in ozone due to climate change result in an increase in ozone-mortality burden. Mortality attributed to ozone exceeding 40 ppb increases by 7.7% (1.6%, 14.2%). Mortality attributed to ozone exceeding 75 ppb increases by 14.2% (1.6%, 28.9%). The absolute increase in excess ozone mortality is larger for changes in moderate ozone levels, reflecting the larger number of days with moderate ozone levels. PMID:27005744

  8. Stratospheric ozone, ultraviolet radiation and climate change

    International Nuclear Information System (INIS)

    Boucher, O.

    2008-01-01

    It is well known that an overexposure to ultraviolet radiation is associated with a number of health risks such as an increased risk of cataracts and skin cancers. At a time when climate change is often blamed for all our environmental problems, what is the latest news about the stratospheric ozone layer and other factors controlling ultraviolet radiation at the surface of the Earth? Will the expected changes in the chemical composition of the atmosphere and changes in our climate increase or decrease the risk for skin cancer? This article investigates the role of the various factors influencing ultraviolet radiation and presents the latest knowledge on the subject. (author)

  9. Climate change impacts on projections of excess mortality at 2030 using spatially varying ozone-temperature risk surfaces.

    Science.gov (United States)

    Wilson, Ander; Reich, Brian J; Nolte, Christopher G; Spero, Tanya L; Hubbell, Bryan; Rappold, Ana G

    2017-01-01

    We project the change in ozone-related mortality burden attributable to changes in climate between a historical (1995-2005) and near-future (2025-2035) time period while incorporating a non-linear and synergistic effect of ozone and temperature on mortality. We simulate air quality from climate projections varying only biogenic emissions and holding anthropogenic emissions constant, thus attributing changes in ozone only to changes in climate and independent of changes in air pollutant emissions. We estimate non-linear, spatially varying, ozone-temperature risk surfaces for 94 US urban areas using observed data. Using the risk surfaces and climate projections we estimate daily mortality attributable to ozone exceeding 40 p.p.b. (moderate level) and 75 p.p.b. (US ozone NAAQS) for each time period. The average increases in city-specific median April-October ozone and temperature between time periods are 1.02 p.p.b. and 1.94 °F; however, the results varied by region. Increases in ozone because of climate change result in an increase in ozone mortality burden. Mortality attributed to ozone exceeding 40 p.p.b. increases by 7.7% (1.6-14.2%). Mortality attributed to ozone exceeding 75 p.p.b. increases by 14.2% (1.6 28.9%). The absolute increase in excess ozone mortality is larger for changes in moderate ozone levels, reflecting the larger number of days with moderate ozone levels.

  10. Climate change and ozone layer protection

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    This conference is composed of 27 communications of which the following main themes are: general approach to the problems of climatic change, greenhouse effect and ozone layer; France, Cameroon and Switzerland examples of energy conservation and greenhouse gas reduction; energy conservation measures and policies for dwellings, transport, industry, agriculture and food industry with a global aspect of reducing greenhouse gas emissions; CFC utilization effects on environment and alternatives to CFC utilization

  11. Evaluating the effects of climate change on summertime ozone using a relative response factor approach for policymakers.

    Science.gov (United States)

    Avise, Jeremy; Abraham, Rodrigo Gonzalez; Chung, Serena H; Chen, Jack; Lamb, Brian; Salathé, Eric P; Zhang, Yongxin; Nolte, Christopher G; Loughlin, Daniel H; Guenther, Alex; Wiedinmyer, Christine; Duhl, Tiffany

    2012-09-01

    The impact of climate change on surface-level ozone is examined through a multiscale modeling effort that linked global and regional climate models to drive air quality model simulations. Results are quantified in terms of the relative response factor (RRF(E)), which estimates the relative change in peak ozone concentration for a given change in pollutant emissions (the subscript E is added to RRF to remind the reader that the RRF is due to emission changes only). A matrix of model simulations was conducted to examine the individual and combined effects offuture anthropogenic emissions, biogenic emissions, and climate on the RRF(E). For each member in the matrix of simulations the warmest and coolest summers were modeled for the present-day (1995-2004) and future (2045-2054) decades. A climate adjustment factor (CAF(C) or CAF(CB) when biogenic emissions are allowed to change with the future climate) was defined as the ratio of the average daily maximum 8-hr ozone simulated under a future climate to that simulated under the present-day climate, and a climate-adjusted RRF(EC) was calculated (RRF(EC) = RRF(E) x CAF(C)). In general, RRF(EC) > RRF(E), which suggests additional emission controls will be required to achieve the same reduction in ozone that would have been achieved in the absence of climate change. Changes in biogenic emissions generally have a smaller impact on the RRF(E) than does future climate change itself The direction of the biogenic effect appears closely linked to organic-nitrate chemistry and whether ozone formation is limited by volatile organic compounds (VOC) or oxides of nitrogen (NO(x) = NO + NO2). Regions that are generally NO(x) limited show a decrease in ozone and RRF(EC), while VOC-limited regions show an increase in ozone and RRF(EC). Comparing results to a previous study using different climate assumptions and models showed large variability in the CAF(CB). We present a methodology for adjusting the RRF to account for the influence of

  12. Climatic impact of aircraft induced ozone changes

    Energy Technology Data Exchange (ETDEWEB)

    Sausen, R; Feneberg, B; Ponater, M [Deutsche Forschungs- und Versuchsanstalt fuer Luft- und Raumfahrt e.V., Oberpfaffenhofen (Germany). Inst. fuer Physik der Atmosphaere

    1998-12-31

    The effect of aircraft induced ozone changes on the global climate is studied by means of the general circulation model ECHAM4. The zonal mean temperature signal is considered. In order to estimate the statistical significance of the climatic impact a multivariate statistical test hierarchy combined with the fingerprint method has been applied. Sensitivity experiments show a significant coherent temperature response pattern in the northern extra-tropics for mid-latitude summer conditions. It consists of a tropospheric warming of about 0.2 K with a corresponding stratospheric cooling of the same magnitude. (author) 16 refs.

  13. Climatic impact of aircraft induced ozone changes

    Energy Technology Data Exchange (ETDEWEB)

    Sausen, R.; Feneberg, B.; Ponater, M. [Deutsche Forschungs- und Versuchsanstalt fuer Luft- und Raumfahrt e.V., Oberpfaffenhofen (Germany). Inst. fuer Physik der Atmosphaere

    1997-12-31

    The effect of aircraft induced ozone changes on the global climate is studied by means of the general circulation model ECHAM4. The zonal mean temperature signal is considered. In order to estimate the statistical significance of the climatic impact a multivariate statistical test hierarchy combined with the fingerprint method has been applied. Sensitivity experiments show a significant coherent temperature response pattern in the northern extra-tropics for mid-latitude summer conditions. It consists of a tropospheric warming of about 0.2 K with a corresponding stratospheric cooling of the same magnitude. (author) 16 refs.

  14. Global economic effects of changes in crops, pasture, and forests due to changing climate, carbon dioxide, and ozone

    International Nuclear Information System (INIS)

    Reilly, J.; Paltsev, S.; Felzer, B.; Wang, X.; Kicklighter, D.; Melillo, J.; Prinn, R.; Sarofim, M.; Sokolov, A.; Wang, C.

    2007-01-01

    Multiple environmental changes will have consequences for global vegetation. To the extent that crop yields and pasture and forest productivity are affected, there can be important economic consequences. We examine the combined effects of changes in climate, increases in carbon dioxide (CO 2 ), and changes in tropospheric ozone on crop, pasture, and forest lands and the consequences for the global and regional economies. We examine scenarios where there is limited or little effort to control these substances, and policy scenarios that limit emissions of CO 2 and ozone precursors. We find the effects of climate and CO 2 to be generally positive, and the effects of ozone to be very detrimental. Unless ozone is strongly controlled, damage could offset CO 2 and climate benefits. We find that resource allocation among sectors in the economy, and trade among countries, can strongly affect the estimate of economic effect in a country

  15. Ozone and its projection in regard to climate change

    Science.gov (United States)

    Melkonyan, Ani; Wagner, Patrick

    2013-03-01

    In this paper, the dependence of ozone-forming potential on temperature was analysed based on data from two stations (with an industrial and rural background, respectively) in North Rhine-Westphalia, Germany, for the period of 1983-2007. After examining the interrelations between ozone, NOx and temperature, a projection of the days with ozone exceedance (over a limit value of a daily maximum 8-h average ≥ 120 μg m-3 for 25 days per year averaged for 3 years) in terms of global climate change was made using probability theory and an autoregression integrated moving average (ARIMA) model. The results show that with a temperature increase of 3 K, the frequency of days when ozone exceeds its limit value will increase by 135% at the industrial station and by 87% at the rural background station.

  16. Climate change, ozone depletion and the impact on ultraviolet exposure of human skin

    International Nuclear Information System (INIS)

    Diffey, Brian

    2004-01-01

    For 30 years there has been concern that anthropogenic damage to the Earth's stratospheric ozone layer will lead to an increase of solar ultraviolet (UV) radiation reaching the Earth's surface, with a consequent adverse impact on human health, especially to the skin. More recently, there has been an increased awareness of the interactions between ozone depletion and climate change (global warming), which could also impact on human exposure to terrestrial UV. The most serious effect of changing UV exposure of human skin is the potential rise in incidence of skin cancers. Risk estimates of this disease associated with ozone depletion suggest that an additional peak incidence of 5000 cases of skin cancer per year in the UK would occur around the mid-part of this century. Climate change, which is predicted to lead to an increased frequency of extreme temperature events and high summer temperatures, will become more frequent in the UK. This could impact on human UV exposure by encouraging people to spend more time in the sun. Whilst future social trends remain uncertain, it is likely that over this century behaviour associated with climate change, rather than ozone depletion, will be the largest determinant of sun exposure, and consequent impact on skin cancer, of the UK population. (topical review)

  17. Is the ozone climate penalty robust in Europe?

    International Nuclear Information System (INIS)

    Colette, Augustin; Bessagnet, Bertrand; Meleux, Frédérik; Rouïl, Laurence; Andersson, Camilla; Engardt, Magnuz; Langner, Joakim; Baklanov, Alexander; Brandt, Jørgen; Christensen, Jesper H; Geels, Camilla; Hedegaard, Gitte B; Doherty, Ruth; Giannakopoulos, Christos; Katragkou, Eleni; Lei, Hang; Manders, Astrid; Melas, Dimitris; Sofiev, Mikhail; Soares, Joana

    2015-01-01

    Ozone air pollution is identified as one of the main threats bearing upon human health and ecosystems, with 25 000 deaths in 2005 attributed to surface ozone in Europe (IIASA 2013 TSAP Report #10). In addition, there is a concern that climate change could negate ozone pollution mitigation strategies, making them insufficient over the long run and jeopardising chances to meet the long term objective set by the European Union Directive of 2008 (Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008) (60 ppbv, daily maximum). This effect has been termed the ozone climate penalty. One way of assessing this climate penalty is by driving chemistry-transport models with future climate projections while holding the ozone precursor emissions constant (although the climate penalty may also be influenced by changes in emission of precursors). Here we present an analysis of the robustness of the climate penalty in Europe across time periods and scenarios by analysing the databases underlying 11 articles published on the topic since 2007, i.e. a total of 25 model projections. This substantial body of literature has never been explored to assess the uncertainty and robustness of the climate ozone penalty because of the use of different scenarios, time periods and ozone metrics. Despite the variability of model design and setup in this database of 25 model projection, the present meta-analysis demonstrates the significance and robustness of the impact of climate change on European surface ozone with a latitudinal gradient from a penalty bearing upon large parts of continental Europe and a benefit over the North Atlantic region of the domain. Future climate scenarios present a penalty for summertime (JJA) surface ozone by the end of the century (2071–2100) of at most 5 ppbv. Over European land surfaces, the 95% confidence interval of JJA ozone change is [0.44; 0.64] and [0.99; 1.50] ppbv for the 2041–2070 and 2071–2100 time windows, respectively

  18. Is the ozone climate penalty robust in Europe?

    Science.gov (United States)

    Colette, Augustin; Andersson, Camilla; Baklanov, Alexander; Bessagnet, Bertrand; Brandt, Jørgen; Christensen, Jesper H.; Doherty, Ruth; Engardt, Magnuz; Geels, Camilla; Giannakopoulos, Christos; Hedegaard, Gitte B.; Katragkou, Eleni; Langner, Joakim; Lei, Hang; Manders, Astrid; Melas, Dimitris; Meleux, Frédérik; Rouïl, Laurence; Sofiev, Mikhail; Soares, Joana; Stevenson, David S.; Tombrou-Tzella, Maria; Varotsos, Konstantinos V.; Young, Paul

    2015-08-01

    Ozone air pollution is identified as one of the main threats bearing upon human health and ecosystems, with 25 000 deaths in 2005 attributed to surface ozone in Europe (IIASA 2013 TSAP Report #10). In addition, there is a concern that climate change could negate ozone pollution mitigation strategies, making them insufficient over the long run and jeopardising chances to meet the long term objective set by the European Union Directive of 2008 (Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008) (60 ppbv, daily maximum). This effect has been termed the ozone climate penalty. One way of assessing this climate penalty is by driving chemistry-transport models with future climate projections while holding the ozone precursor emissions constant (although the climate penalty may also be influenced by changes in emission of precursors). Here we present an analysis of the robustness of the climate penalty in Europe across time periods and scenarios by analysing the databases underlying 11 articles published on the topic since 2007, i.e. a total of 25 model projections. This substantial body of literature has never been explored to assess the uncertainty and robustness of the climate ozone penalty because of the use of different scenarios, time periods and ozone metrics. Despite the variability of model design and setup in this database of 25 model projection, the present meta-analysis demonstrates the significance and robustness of the impact of climate change on European surface ozone with a latitudinal gradient from a penalty bearing upon large parts of continental Europe and a benefit over the North Atlantic region of the domain. Future climate scenarios present a penalty for summertime (JJA) surface ozone by the end of the century (2071-2100) of at most 5 ppbv. Over European land surfaces, the 95% confidence interval of JJA ozone change is [0.44; 0.64] and [0.99; 1.50] ppbv for the 2041-2070 and 2071-2100 time windows, respectively.

  19. Solar ultraviolet radiation and ozone depletion-driven climate change: effects on terrestrial ecosystems.

    Science.gov (United States)

    Bornman, J F; Barnes, P W; Robinson, S A; Ballaré, C L; Flint, S D; Caldwell, M M

    2015-01-01

    In this assessment we summarise advances in our knowledge of how UV-B radiation (280-315 nm), together with other climate change factors, influence terrestrial organisms and ecosystems. We identify key uncertainties and knowledge gaps that limit our ability to fully evaluate the interactive effects of ozone depletion and climate change on these systems. We also evaluate the biological consequences of the way in which stratospheric ozone depletion has contributed to climate change in the Southern Hemisphere. Since the last assessment, several new findings or insights have emerged or been strengthened. These include: (1) the increasing recognition that UV-B radiation has specific regulatory roles in plant growth and development that in turn can have beneficial consequences for plant productivity via effects on plant hardiness, enhanced plant resistance to herbivores and pathogens, and improved quality of agricultural products with subsequent implications for food security; (2) UV-B radiation together with UV-A (315-400 nm) and visible (400-700 nm) radiation are significant drivers of decomposition of plant litter in globally important arid and semi-arid ecosystems, such as grasslands and deserts. This occurs through the process of photodegradation, which has implications for nutrient cycling and carbon storage, although considerable uncertainty exists in quantifying its regional and global biogeochemical significance; (3) UV radiation can contribute to climate change via its stimulation of volatile organic compounds from plants, plant litter and soils, although the magnitude, rates and spatial patterns of these emissions remain highly uncertain at present. UV-induced release of carbon from plant litter and soils may also contribute to global warming; and (4) depletion of ozone in the Southern Hemisphere modifies climate directly via effects on seasonal weather patterns (precipitation and wind) and these in turn have been linked to changes in the growth of plants

  20. Chemical and climatic drivers of radiative forcing due to changes in stratospheric and tropospheric ozone over the 21st century

    Science.gov (United States)

    Banerjee, Antara; Maycock, Amanda C.; Pyle, John A.

    2018-02-01

    The ozone radiative forcings (RFs) resulting from projected changes in climate, ozone-depleting substances (ODSs), non-methane ozone precursor emissions and methane between the years 2000 and 2100 are calculated using simulations from the UM-UKCA chemistry-climate model (UK Met Office's Unified Model containing the United Kingdom Chemistry and Aerosols sub-model). Projected measures to improve air-quality through reductions in non-methane tropospheric ozone precursor emissions present a co-benefit for climate, with a net global mean ozone RF of -0.09 W m-2. This is opposed by a positive ozone RF of 0.05 W m-2 due to future decreases in ODSs, which is driven by an increase in tropospheric ozone through stratosphere-to-troposphere transport of air containing higher ozone amounts. An increase in methane abundance by more than a factor of 2 (as projected by the RCP8.5 scenario) is found to drive an ozone RF of 0.18 W m-2, which would greatly outweigh the climate benefits of non-methane tropospheric ozone precursor reductions. A small fraction (˜ 15 %) of the ozone RF due to the projected increase in methane results from increases in stratospheric ozone. The sign of the ozone RF due to future changes in climate (including the radiative effects of greenhouse gases, sea surface temperatures and sea ice changes) is shown to be dependent on the greenhouse gas emissions pathway, with a positive RF (0.05 W m-2) for RCP4.5 and a negative RF (-0.07 W m-2) for the RCP8.5 scenario. This dependence arises mainly from differences in the contribution to RF from stratospheric ozone changes. Considering the increases in tropopause height under climate change causes only small differences (≤ |0.02| W m-2) for the stratospheric, tropospheric and whole-atmosphere RFs.

  1. Climate change impacts on projections of excess mortality at 2030 using spatially varying ozone-temperature

    Science.gov (United States)

    We project the change in ozone-related mortality burden attributable to changes in climate between a historical (1995-2005) and near-future (2025-2035) time period while incorporating a non-linear and synergistic effect of ozone and temperature on mortality. We simulate air quali...

  2. Establishing the common patterns of future tropospheric ozone under diverse climate change scenarios

    Science.gov (United States)

    Jimenez-Guerrero, Pedro; Gómez-Navarro, Juan J.; Jerez, Sonia; Lorente-Plazas, Raquel; Baro, Rocio; Montávez, Juan P.

    2013-04-01

    The impacts of climate change on air quality may affect long-term air quality planning. However, the policies aimed at improving air quality in the EU directives have not accounted for the variations in the climate. Climate change alone influences future air quality through modifications of gas-phase chemistry, transport, removal, and natural emissions. As such, the aim of this work is to check whether the projected changes in gas-phase air pollution over Europe depends on the scenario driving the regional simulation. For this purpose, two full-transient regional climate change-air quality projections for the first half of the XXI century (1991-2050) have been carried out with MM5+CHIMERE system, including A2 and B2 SRES scenarios. Experiments span the periods 1971-2000, as a reference, and 2071-2100, as future enhanced greenhouse gas and aerosol scenarios (SRES A2 and B2). The atmospheric simulations have a horizontal resolution of 25 km and 23 vertical layers up to 100 mb, and were driven by ECHO-G global climate model outputs. The analysis focuses on the connection between meteorological and air quality variables. Our simulations suggest that the modes of variability for tropospheric ozone and their main precursors hardly change under different SRES scenarios. The effect of changing scenarios has to be sought in the intensity of the changing signal, rather than in the spatial structure of the variation patterns, since the correlation between the spatial patterns of variability in A2 and B2 simulation is r > 0.75 for all gas-phase pollutants included in this study. In both cases, full-transient simulations indicate an enhanced enhanced chemical activity under future scenarios. The causes for tropospheric ozone variations have to be sought in a multiplicity of climate factors, such as increased temperature, different distribution of precipitation patterns across Europe, increased photolysis of primary and secondary pollutants due to lower cloudiness, etc

  3. The Norwegian Climate and Ozone Research Programme

    Energy Technology Data Exchange (ETDEWEB)

    Dahlin, E. [ed.

    1996-03-01

    This report includes abstracts from a workshop arranged by the Norwegian Climate and Ozone Research Programme 11-12 March 1996. The abstracts are organized according to the sessions: (1) Regional effects of climate change with emphasis on ecology, (2) Climate research related to the North Atlantic, (3) What lessons can be drawn from paleoclimatology about changes in the current climate?, (4) Changes in the ozone layer and their effect on UV and biology. Abstracts of a selection of papers presented at the workshop can be found elsewhere in the present data base. 70 refs., 19 figs., 2 tabs.

  4. Chemical and climatic drivers of radiative forcing due to changes in stratospheric and tropospheric ozone over the 21st century

    Directory of Open Access Journals (Sweden)

    A. Banerjee

    2018-02-01

    Full Text Available The ozone radiative forcings (RFs resulting from projected changes in climate, ozone-depleting substances (ODSs, non-methane ozone precursor emissions and methane between the years 2000 and 2100 are calculated using simulations from the UM-UKCA chemistry–climate model (UK Met Office's Unified Model containing the United Kingdom Chemistry and Aerosols sub-model. Projected measures to improve air-quality through reductions in non-methane tropospheric ozone precursor emissions present a co-benefit for climate, with a net global mean ozone RF of −0.09 W m−2. This is opposed by a positive ozone RF of 0.05 W m−2 due to future decreases in ODSs, which is driven by an increase in tropospheric ozone through stratosphere-to-troposphere transport of air containing higher ozone amounts. An increase in methane abundance by more than a factor of 2 (as projected by the RCP8.5 scenario is found to drive an ozone RF of 0.18 W m−2, which would greatly outweigh the climate benefits of non-methane tropospheric ozone precursor reductions. A small fraction (∼ 15 % of the ozone RF due to the projected increase in methane results from increases in stratospheric ozone. The sign of the ozone RF due to future changes in climate (including the radiative effects of greenhouse gases, sea surface temperatures and sea ice changes is shown to be dependent on the greenhouse gas emissions pathway, with a positive RF (0.05 W m−2 for RCP4.5 and a negative RF (−0.07 W m−2 for the RCP8.5 scenario. This dependence arises mainly from differences in the contribution to RF from stratospheric ozone changes. Considering the increases in tropopause height under climate change causes only small differences (≤ |0.02| W m−2 for the stratospheric, tropospheric and whole-atmosphere RFs.

  5. Climate Change Impacts on Human Health Due to Changes in Ambient Ozone Concentrations (External Review Draft)

    Science.gov (United States)

    This report uses results from a previous report titled Assessment of the Impacts of Global Change on Regional U.S. Air Quality: A Synthesis of Climate Change Impacts on Ground-Level Ozone, a number of high-resolution, spatially explicit population projections developed ...

  6. Ozone impacts on vegetation in a nitrogen enriched and changing climate

    International Nuclear Information System (INIS)

    Mills, Gina; Harmens, Harry; Wagg, Serena; Sharps, Katrina; Hayes, Felicity; Fowler, David; Sutton, Mark; Davies, Bill

    2016-01-01

    This paper provides a process-oriented perspective on the combined effects of ozone (O_3), climate change and/or nitrogen (N) on vegetation. Whereas increasing CO_2 in controlled environments or open-top chambers often ameliorates effects of O_3 on leaf physiology, growth and C allocation, this is less likely in the field. Combined responses to elevated temperature and O_3 have rarely been studied even though some critical growth stages such as seed initiation are sensitive to both. Under O_3 exposure, many species have smaller roots, thereby enhancing drought sensitivity. Of the 68 species assessed for stomatal responses to ozone, 22.5% were unaffected, 33.5% had sluggish or increased opening and 44% stomatal closure. The beneficial effect of N on root development was lost at higher O_3 treatments whilst the effects of increasing O_3 on root biomass became more pronounced as N increased. Both responses to gradual changes in pollutants and climate and those under extreme weather events require further study. - Highlights: • CO_2 amelioration of O_3 effects on leaf physiology are less likely in the field. • Both extremes of temperature and O_3 impact on critical growth stages. • Many species are more sensitive to drought as a result of exposure to O_3 pollution. • The beneficial effect of N on root development is lost at higher O_3 treatments. • The effects of O_3 on root biomass are higher at high than low N. - A process-oriented perspective on the combined effects of ozone, climate change and/or nitrogen on vegetation.

  7. Background Ozone in Southern China During 1994-2015: Role of Anthropogenic Emission and Climate Change

    Science.gov (United States)

    Wang, T.; Zhang, L.; Poon, S.

    2016-12-01

    Tropospheric ozone plays important roles in atmospheric chemistry, air quality, and climate. Changes in background ozone concentrations and underlying causes are therefore of great interest to the scientific community and governments. Compared with North America and Europe, long-term measurements of background ozone in China are scarce. This study reports the longest continuous ozone record in southern China measured at a background site (Hok Tsui) in Hong Kong during 1994-2015. The analysis of the 22-year record shows that the surface ozone in the background atmosphere of southern China has been increasing, with an overall Theil-Sen estimated rate of 0.43 ppbv/yr. Compared with our previous results during 1994-2007 (Wang et al., 2009), the average rate of increase has slowed down over during 2008-2015 (0.32 vs. 0.58 ppbv/yr), possibly due to smaller increase or even decrease in ozone precursors emission in mainland China in recent years. The average rates of change show significant seasonal differences with the largest rate occurring in summer (0.32, 0.55, 0.52, and 0.36 ppbv/yr in spring, summer, autumn, and winter, respectively). Monthly mean ozone concentrations at Hok Tsui are compared against an East Asian Monsoon index. It is found that only the summer-time ozone over period 2008-2015 has a strong positive correlation with the index, suggesting that climate might have played an important role in driving the ozone increase observed in summer since 2008. The ozone trend in Hong Kong will be compared to those from other regions in East Asia, and the role of emission changes in Asia will be discussed.

  8. Impact of climate and land cover changes on tropospheric ozone air quality and public health in East Asia between 1980 and 2010

    Science.gov (United States)

    Fu, Y.; Tai, A. P. K.

    2015-09-01

    Understanding how historical climate and land cover changes have affected tropospheric ozone in East Asia would help constrain the large uncertainties associated with future East Asian air quality projections. We perform a series of simulations using a global chemical transport model driven by assimilated meteorological data and a suite of land cover and land use data to examine the public health effects associated with changes in climate, land cover, land use, and anthropogenic emissions between the 5-year periods 1981-1985 and 2007-2011 in East Asia. We find that between these two periods land cover change alone could lead to a decrease in summertime surface ozone by up to 4 ppbv in East Asia and ~ 2000 fewer ozone-related premature deaths per year, driven mostly by enhanced dry deposition resulting from climate- and CO2-induced increase in vegetation density, which more than offsets the effect of reduced isoprene emission arising from cropland expansion. Climate change alone could lead to an increase in summertime ozone by 2-10 ppbv in most regions of East Asia and ~ 6000 more premature deaths annually, mostly attributable to warming. The combined impacts (-2 to +12 ppbv) show that while the effect of climate change is more pronounced, land cover change could offset part of the climate effect and lead to a previously unknown public health benefit. While the changes in anthropogenic emissions remain the largest contributor to deteriorating ozone air quality in East Asia over the past 30 years, we show that climate change and land cover changes could lead to a substantial modification of ozone levels, and thus should come into consideration when formulating future air quality management strategies. We also show that the sensitivity of surface ozone to land cover change is more dependent on dry deposition than on isoprene emission in most of East Asia, leading to ozone responses that are quite distinct from that in North America, where most ozone

  9. Vegetation-mediated Climate Impacts on Historical and Future Ozone Air Quality

    Science.gov (United States)

    Tai, A. P. K.; Fu, Y.; Mickley, L. J.; Heald, C. L.; Wu, S.

    2014-12-01

    Changes in climate, natural vegetation and human land use are expected to significantly influence air quality in the coming century. These changes and their interactions have important ramifications for the effectiveness of air pollution control strategies. In a series of studies, we use a one-way coupled modeling framework (GEOS-Chem driven by different combinations of historical and future meteorological, land cover and emission data) to investigate the effects of climate-vegetation changes on global and East Asian ozone air quality from 30 years ago to 40 years into the future. We find that future climate and climate-driven vegetation changes combine to increase summertime ozone by 2-6 ppbv in populous regions of the US, Europe, East Asia and South Asia by year 2050, but including the interaction between CO2 and biogenic isoprene emission reduces the climate impacts by more than half. Land use change such as cropland expansion has the potential to either mostly offset the climate-driven ozone increases (e.g., in the US and Europe), or greatly increase ozone (e.g., in Southeast Asia). The projected climate-vegetation effects in East Asia are particularly uncertain, reflecting a less understood ozone production regime. We thus further study how East Asian ozone air quality has evolved since the early 1980s in response to climate, vegetation and emission changes to shed light on its likely future course. We find that warming alone has led to a substantial increase in summertime ozone in populous regions by 1-4 ppbv. Despite significant cropland expansion and urbanization, increased summertime leafiness of vegetation in response to warming and CO2 fertilization has reduced ozone by 1-2 ppbv, driven by enhanced ozone deposition dominating over elevated biogenic emission and partially offsetting the warming effect. The historical role of CO2-isoprene interaction in East Asia, however, remains highly uncertain. Our findings demonstrate the important roles of land cover

  10. Impacts of Climate Change on Surface Ozone and Intercontinental Ozone Pollution: A Multi-Model Study

    Science.gov (United States)

    Doherty, R. M.; Wild, O.; Shindell, D. T.; Zeng, G.; MacKenzie, I. A.; Collins, W. J.; Fiore, A. M.; Stevenson, D. S.; Dentener, F. J.; Schultz, M. G.; hide

    2013-01-01

    The impact of climate change between 2000 and 2095 SRES A2 climates on surface ozone (O)3 and on O3 source-receptor (S-R) relationships is quantified using three coupled climate-chemistry models (CCMs). The CCMs exhibit considerable variability in the spatial extent and location of surface O3 increases that occur within parts of high NOx emission source regions (up to 6 ppbv in the annual average and up to 14 ppbv in the season of maximum O3). In these source regions, all three CCMs show a positive relationship between surface O3 change and temperature change. Sensitivity simulations show that a combination of three individual chemical processes-(i) enhanced PAN decomposition, (ii) higher water vapor concentrations, and (iii) enhanced isoprene emission-largely reproduces the global spatial pattern of annual-mean surface O3 response due to climate change (R2 = 0.52). Changes in climate are found to exert a stronger control on the annual-mean surface O3 response through changes in climate-sensitive O3 chemistry than through changes in transport as evaluated from idealized CO-like tracer concentrations. All three CCMs exhibit a similar spatial pattern of annual-mean surface O3 change to 20% regional O3 precursor emission reductions under future climate compared to the same emission reductions applied under present-day climate. The surface O3 response to emission reductions is larger over the source region and smaller downwind in the future than under present-day conditions. All three CCMs show areas within Europe where regional emission reductions larger than 20% are required to compensate climate change impacts on annual-mean surface O3.

  11. Modelling the Impacts of Climate Change on Tropospheric Ozone over three Centuries

    Science.gov (United States)

    Brandt Hedegaard, Gitte; Brandt, Jørgen; Christensen, Jesper H.; Gross, Allan; May, Wihelm; Hansen, Kaj M.; Skjøth, Carsten A.

    2010-05-01

    So far reduction of the anthropogenic emissions of chemical species to the atmosphere has been profoundly investigated. However, new research indicates that climate change on its own also has a significant impact on the future air pollution levels. Climate Change and its impact on air pollution levels are currently studied by a number of research groups using, global, hemispherical and regional modelling systems. In the Department of Atmospheric Environment, National Environmental Research Institute (NERI), Aarhus University, in Denmark, we have developed a hemispherical model system which is based on the DEHM model (Christensen, 1997; Frohn et al., 2002a; Frohn et al., 2002b). In the DEHM modelling system an option for modelling the impacts of climate change has been included by using meteorological input from global climate models. Here we present results by using climate data that are provided by the ECHAM5/MPI-OM Atmosphere-Ocean General Circulation Model (May, 2008; Roeckner et al., 2003). In the current experiment the anthropogenic emissions in the chemistry model DEHM are kept constant on a 2000 level to separate out the signal of climate change on air pollutants while the meteorological drivers simulated by the ECHAM5/MPI-OM climate model is based on the IPCC SRES A1B Scenario. To save computing time the experiment is carried out in time-slices representing four centuries (1890s, 1990s, 2090s and the 2190s). The results show that the dominating impacts from climate change on a large number of the chemical species are related to the predicted temperature increase. This temperature affects chemistry as well as emissions from nature. The largest changes in both meteorology and air quality is found to happen in the 21st century. However, significant changes are also found in some parameters including tropospheric ozone in the following century. In general the background ozone concentrations is predicted to decrease at surface level however in the densely

  12. International regime formation: Ozone depletion and global climate change

    International Nuclear Information System (INIS)

    Busmann, N.E.

    1994-03-01

    Two theoretical perspectives, neorealism and neoliberal institutionalism, dominate in international relations. An assessment is made of whether these perspectives provide compelling explanations of why a regime with specific targets and timetables was formed for ozone depletion, while a regime with such specificity was not formed for global climate change. In so doing, the assumptions underlying neorealism and neoliberal institutionalism are examined. A preliminary assessment is offered of the policymaking and institutional bargaining process. Patterns of interstate behavior are evolving toward broader forms of cooperation, at least with regard to global environmental issues, although this process is both slow and cautious. State coalitions on specific issues are not yet powerful enough to create a strong community of states in which states are willing to devolve power to international institutions. It is shown that regime analysis is a useful analytic framework, but it should not be mistaken for theory. Regime analysis provides an organizational framework offering a set of questions regarding the principles and norms that govern cooperation and conflict in an issue area, and whether forces independent of states exist which affect the scope of state behavior. An examination of both neorealism and neoliberal institutionalism, embodied by four approaches to regime formation, demonstrates that neither has sufficient scope to account for contextual dynamics in either the ozone depletion or global climate change regime formation processes. 261 refs

  13. The influence of climate change on stomatal ozone flux to a mountain Norway spruce forest

    Czech Academy of Sciences Publication Activity Database

    Zapletal, M.; Pretel, J.; Chroust, P.; Cudlín, Pavel; Edwards-Jonášová, Magda; Urban, Otmar; Pokorný, Radek; Czerný, Radek; Hůnová, I.

    2012-01-01

    Roč. 169, OCT 2012 (2012), s. 267-273 ISSN 0269-7491 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073; GA MŠk OC10022; GA MŠk(CZ) LM2010007 Institutional research plan: CEZ:AV0Z60870520 Keywords : Stomatal ozone flux * AOT40 * Phytotoxic Ozone Dose * Norway spruce * Net ecosystem production * Ozone * Climate change Subject RIV: EH - Ecology, Behaviour Impact factor: 3.730, year: 2012

  14. Environmental effects of ozone depletion and its interactions with climate change: Progress report, 2016

    Science.gov (United States)

    When considering the effects of climate change, it has become clear that processes resulting in changes in stratospheric ozone are more complex than previously believed. As a result of this, human health and environmental issues will be longer-lasting and more regionally variable...

  15. Impact of climate change on surface ozone and deposition of sulphur and nitrogen in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Langner, J.; Bergstroem, R.; Foltescu, V. [Swedish Meteorological and Hydrological Institute, Norrkoeping (Sweden)

    2005-02-01

    The potential impact of regional climate change on the distribution and deposition of air pollutants in Europe has been studied using a regional chemistry/transport/deposition model, MATCH. MATCH was set up using meteorological output from two 10-year climate change experiments made with the Rossby Centre regional Atmospheric climate model version 1 (RCA1). RCA1 was forced by boundary conditions from two different global climate models using the IPCC IS92a (business as usual) emission scenario. The global mean warming in both the GCMs was 2.6 K and was reached in the period 2050-2070. Simulations with MATCH indicate substantial potential impact of regional climate change on both deposition of oxidised nitrogen and concentrations of surface ozone. The simulations show a strong increase in surface ozone expressed as AOT40 and mean of daily maximum over southern and central Europe and a decrease in northern Europe. The simulated changes in April-September AOT40 are significant in relation to inter-annual variability over extended areas. Changes in deposition of oxidised nitrogen are much smaller and also less coherent due to the strong inter-annual variability in precipitation in the RCA1 simulations and differences in the regional climate change simulated with RCA1 in the two regional scenarios. Changes in simulated annual deposition are significant in relation to inter-annual variability only over small areas. This indicates that longer simulation periods are necessary to establish changes in deposition. (author)

  16. Impact of climate change on surface ozone and deposition of sulphur and nitrogen in Europe

    Science.gov (United States)

    Langner, Joakim; Bergström, Robert; Foltescu, Valentin

    The potential impact of regional climate change on the distribution and deposition of air pollutants in Europe has been studied using a regional chemistry/transport/deposition model, MATCH. MATCH was set up using meteorological output from two 10-year climate change experiments made with the Rossby Centre regional Atmospheric climate model version 1 (RCA1). RCA1 was forced by boundary conditions from two different global climate models using the IPCC IS92a (business as usual) emission scenario. The global mean warming in both the GCMs was 2.6 K and was reached in the period 2050-2070. Simulations with MATCH indicate substantial potential impact of regional climate change on both deposition of oxidised nitrogen and concentrations of surface ozone. The simulations show a strong increase in surface ozone expressed as AOT40 and mean of daily maximum over southern and central Europe and a decrease in northern Europe. The simulated changes in April-September AOT40 are significant in relation to inter-annual variability over extended areas. Changes in deposition of oxidised nitrogen are much smaller and also less coherent due to the strong inter-annual variability in precipitation in the RCA1 simulations and differences in the regional climate change simulated with RCA1 in the two regional scenarios. Changes in simulated annual deposition are significant in relation to inter-annual variability only over small areas. This indicates that longer simulation periods are necessary to establish changes in deposition.

  17. Ozone Climate Penalty and Mortality in a Changing World

    Science.gov (United States)

    Hakami, A.; Zhao, S.; Pappin, A.; Mesbah, M.

    2013-12-01

    The expected increase in ozone concentrations with temperature is referred to as the climate penalty factor (CPF). Observed ozone trends have resulted in estimations of regional CPFs in the range of 1-3 ppb/K in the Eastern US, and larger values around the globe. We use the adjoint of a regional model (CMAQ) for attributing changes in ozone mortality and attainment metrics to increased temperature levels at each location in North America during the summer of 2007. Unlike previous forward sensitivity analysis studies, we estimate how changes in temperatures at various locations influence such policy-relevant metrics. Our analysis accounts for separate temperature impact pathways through gas-phase chemistry, moisture abundance, and biogenic emissions. We find that water vapor impact, while mostly negative, is positive and large for temperature changes in urban areas. We also find that increased biogenic emissions plays an important role in the overall temperature influence. Our simulations show a wide range of spatial variability in CPFs between -0.4 and 6.2 ppb/K with largest values in urban areas. We also estimate mortality-based CPFs of up to 4 deaths/K for each grid cell, again with large localization in urban areas. This amounts to an estimated 370 deaths/K for the 3-month period of the simulation. We find that this number is almost equivalent to 5% reduction in anthropogenic NOx emissions for each degree increase in temperature. We show how the CPF will change as the result progressive NOx emission controls from various anthropogenic sectors and sources at different locations. Our findings suggest that urban NOx control can be regarded as an adaptation strategy with regards to ozone air quality. Also, the strong temperature dependence in urban environments suggests that the health and attainment burden of urban heat island may be more substantial than previously thought. Spatial distribution of average adjoint-based CPFs Adjoint-based CPF and Mortality CPF

  18. Tropospheric ozone changes, radiative forcing and attribution to emissions in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP

    Directory of Open Access Journals (Sweden)

    D. S. Stevenson

    2013-03-01

    Full Text Available Ozone (O3 from 17 atmospheric chemistry models taking part in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP has been used to calculate tropospheric ozone radiative forcings (RFs. All models applied a common set of anthropogenic emissions, which are better constrained for the present-day than the past. Future anthropogenic emissions follow the four Representative Concentration Pathway (RCP scenarios, which define a relatively narrow range of possible air pollution emissions. We calculate a value for the pre-industrial (1750 to present-day (2010 tropospheric ozone RF of 410 mW m−2. The model range of pre-industrial to present-day changes in O3 produces a spread (±1 standard deviation in RFs of ±17%. Three different radiation schemes were used – we find differences in RFs between schemes (for the same ozone fields of ±10%. Applying two different tropopause definitions gives differences in RFs of ±3%. Given additional (unquantified uncertainties associated with emissions, climate-chemistry interactions and land-use change, we estimate an overall uncertainty of ±30% for the tropospheric ozone RF. Experiments carried out by a subset of six models attribute tropospheric ozone RF to increased emissions of methane (44±12%, nitrogen oxides (31 ± 9%, carbon monoxide (15 ± 3% and non-methane volatile organic compounds (9 ± 2%; earlier studies attributed more of the tropospheric ozone RF to methane and less to nitrogen oxides. Normalising RFs to changes in tropospheric column ozone, we find a global mean normalised RF of 42 mW m−2 DU−1, a value similar to previous work. Using normalised RFs and future tropospheric column ozone projections we calculate future tropospheric ozone RFs (mW m−2; relative to 1750 for the four future scenarios (RCP2.6, RCP4.5, RCP6.0 and RCP8.5 of 350, 420, 370 and 460 (in 2030, and 200, 300, 280 and 600 (in 2100. Models show some coherent responses of ozone to climate change

  19. Tropospheric Ozone as a Short-lived Chemical Climate Forcer

    Science.gov (United States)

    Pickering, Kenneth E.

    2012-01-01

    Tropospheric ozone is the third most important greenhouse gas according to the most recent IPCC assessment. However, tropospheric ozone is highly variable in both space and time. Ozone that is located in the vicinity of the tropopause has the greatest effect on climate forcing. Nitrogen oxides (NOx) are the most important precursors for ozone In most of the troposphere. Therefore, pollution that is lofted upward in thunderstorm updrafts or NOx produced by lightning leads to efficient ozone production in the upper troposphere, where ozone is most important climatically. Global and regional model estimates of the impact of North American pollution and lightning on ozone radiative forcing will be presented. It will be shown that in the Northern Hemisphere summer, the lightning effect on ozone radiative forcing can dominate over that of pollution, and that the radiative forcing signal from North America extends well into Europe and North Africa. An algorithm for predicting lightning flash rates and estimating lightning NOx emissions is being incorporated into the NASA GEOS-5 Chemistry and Climate Model. Changes in flash rates and emissions over an ENSO cycle and in future climates will be assessed, along with the resulting changes in upper tropospheric ozone. Other research on the production of NOx per lightning flash and its distribution in the vertical based on cloud-resolving modeling and satellite observations will be presented. Distributions of NO2 and O3 over the Middle East from the OMI instrument on NASA's Aura satellite will also be shown.

  20. U.S. ozone air quality under changing climate and anthropogenic emissions.

    Science.gov (United States)

    Racherla, Pavan N; Adams, Peter J

    2009-02-01

    We examined future ozone (O3) air quality in the United States (U.S.) under changing climate and anthropogenic emissions worldwide by performing global climate-chemistry simulations, utilizing various combinations of present (1990s) and future (Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A2 2050s) climates, and present and future (2050s; IPCC SRES A2 and B1) anthropogenic emissions. The A2 climate scenario is employed here because it lies at the upper extreme of projected climate change for the 21st century. To examine the sensitivity of U.S. O3 to regional emissions increases (decreases), the IPCC SRES A2 and B1 scenarios, which have overall higher and lower O3-precursor emissions for the U.S., respectively, have been chosen. We find that climate change, by itself, significantly worsens the severity and frequency of high-O3 events ("episodes") over most locations in the U.S., with relatively small changes in average O3 air quality. These high-O3 increases due to climate change alone will erode moderately the gains made under a U.S. emissions reduction scenario (e.g., B1). The effect of climate change on high- and average-O3 increases with anthropogenic emissions. Insofar as average O3 air quality is concerned, changes in U.S. anthropogenic emissions will play the most important role in attaining (or not) near-term U.S. O3 air quality standards. However, policy makers must plan appropriately for O3 background increases due to projected increases in global CH4 abundance and non-U.S. anthropogenic emissions, as well as potential local enhancements that they could cause. These findings provide strong incentives for more-than-planned emissions reductions at locations that are currently O3-nonattainment.

  1. Impact of Future Emissions and Climate Change on Surface Ozone over China

    Science.gov (United States)

    Ma, C. T.; Westervelt, D. M.; Fiore, A. M.; Rieder, H. E.; Kinney, P.; Wang, S.; Correa, G. J. P.

    2017-12-01

    China's immense ambient air pollution problem and world-leading greenhouse gas emissions place it at the forefront of global efforts to address these related environmental concerns. Here, we analyze the impact of ECLIPSE (Evaluating the Climate and Air Quality Impacts of Short-Lived Pollutants) future emissions scenarios representative of current legislation (CLE) and maximum technically feasible emissions reductions (MFR) on surface ozone (O3) concentrations over China in the 2030s and 2050s, in the context of a changing climate. We use a suite of simulations performed with the NOAA Geophysical Fluid Dynamics Laboratory's AM3 global chemistry-climate model. To estimate the impact of climate change in isolation on Chinese air quality, we hold emissions of air pollutants including O3 precursors fixed at 2015 levels but allow climate (global sea surface temperatures and sea ice cover) to change according to decadal averages for the years 2026-2035 and 2046-2055 from a three-member ensemble of GFDL-CM3 simulations under the RCP8.5 high warming scenario. Evaluation of the present-day simulation (2015 CLE) with observations from 1497 chiefly urban air quality monitoring stations shows that simulated surface O3 is positively biased by 26 ppb on average over the domain of China. Previous studies, however, have shown that the modeled ozone response to changes in NOx emissions over the Eastern United States mirrors the magnitude and structure of observed changes in maximum daily average 8-hour (MDA8) O3 distributions. Therefore, we use the model's simulated changes for the 2030s and 2050s to project changes in policy-relevant MDA8 O3 concentrations. We find an overall increase in MDA8 O3 for CLE scenarios in which emissions of NOx precursors are projected to increase, and under MFR scenarios, an overall decrease, with the highest changes occurring in summertime for both 2030 and 2050 MFR. Under climate change alone, the model simulates a mean summertime decrease of 1.3 ppb

  2. Environmental effects of ozone depletion and its interactions with climate change: progress report, 2015

    Science.gov (United States)

    The Environmental Effects Assessment Panel (EEAP) is one of three Panels that regularly informs the Parties (countries) to the Montreal Protocol on the effects of ozone depletion and the consequences of climate change interactions with respect to human health, animals, plants, bi...

  3. Climate change impacts on projections of excess mortality at ...

    Science.gov (United States)

    We project the change in ozone-related mortality burden attributable to changes in climate between a historical (1995-2005) and near-future (2025-2035) time period while incorporating a non-linear and synergistic effect of ozone and temperature on mortality. We simulate air quality from climate projections varying only biogenic emissions and holding anthropogenic emissions constant, thus attributing changes in ozone only to changes in climate and independent of changes in air pollutant emissions. We estimate non-linear, spatially varying, ozone-temperature risk surfaces for 94 US urban areas using observeddata. Using the risk surfaces and climate projections we estimate daily mortality attributable to ozone exceeding 40 p.p.b. (moderate level) and 75 p.p.b. (US ozone NAAQS) for each time period. The average increases in city-specific median April-October ozone and temperature between time periods are 1.02 p.p.b. and 1.94 °F; however, the results variedby region . Increases in ozone because of climate change result in an increase in ozone mortality burden. Mortality attributed to ozone exceeding 40 p.p.b. increases by 7.7% (1 .6-14.2%). Mortality attributed to ozone exceeding 75 p.p.b. increases by 14.2% (1.628.9%). The absolute increase in excess ozone mortality is larger for changes in moderate ozone levels, reflecting the larger number of days with moderate ozone levels. In this study we evaluate changes in ozone related mortality due to changes in biogenic f

  4. Key drivers of ozone change and its radiative forcing over the 21st century

    Science.gov (United States)

    Iglesias-Suarez, Fernando; Kinnison, Douglas E.; Rap, Alexandru; Maycock, Amanda C.; Wild, Oliver; Young, Paul J.

    2018-05-01

    Over the 21st century changes in both tropospheric and stratospheric ozone are likely to have important consequences for the Earth's radiative balance. In this study, we investigate the radiative forcing from future ozone changes using the Community Earth System Model (CESM1), with the Whole Atmosphere Community Climate Model (WACCM), and including fully coupled radiation and chemistry schemes. Using year 2100 conditions from the Representative Concentration Pathway 8.5 (RCP8.5) scenario, we quantify the individual contributions to ozone radiative forcing of (1) climate change, (2) reduced concentrations of ozone depleting substances (ODSs), and (3) methane increases. We calculate future ozone radiative forcings and their standard error (SE; associated with inter-annual variability of ozone) relative to year 2000 of (1) 33 ± 104 m Wm-2, (2) 163 ± 109 m Wm-2, and (3) 238 ± 113 m Wm-2 due to climate change, ODSs, and methane, respectively. Our best estimate of net ozone forcing in this set of simulations is 430 ± 130 m Wm-2 relative to year 2000 and 760 ± 230 m Wm-2 relative to year 1750, with the 95 % confidence interval given by ±30 %. We find that the overall long-term tropospheric ozone forcing from methane chemistry-climate feedbacks related to OH and methane lifetime is relatively small (46 m Wm-2). Ozone radiative forcing associated with climate change and stratospheric ozone recovery are robust with regard to background climate conditions, even though the ozone response is sensitive to both changes in atmospheric composition and climate. Changes in stratospheric-produced ozone account for ˜ 50 % of the overall radiative forcing for the 2000-2100 period in this set of simulations, highlighting the key role of the stratosphere in determining future ozone radiative forcing.

  5. Impacts of future climate change and effects of biogenic emissions on surface ozone and particulate matter concentrations in the United States

    Directory of Open Access Journals (Sweden)

    Y. F. Lam

    2011-05-01

    Full Text Available Simulations of present and future average regional ozone and PM2.5 concentrations over the United States were performed to investigate the potential impacts of global climate change and emissions on regional air quality using CMAQ. Various emissions and climate conditions with different biogenic emissions and domain resolutions were implemented to study the sensitivity of future air quality trends from the impacts of changing biogenic emissions. A comparison of GEOS-Chem and CMAQ was performed to investigate the effect of downscaling on the prediction of future air quality trends. For ozone, the impacts of global climate change are relatively smaller when compared to the impacts of anticipated future emissions reduction, except for the Northeast area, where increasing biogenic emissions due to climate change have stronger positive effects (increases to the regional ozone air quality. The combination effect from both climate change and emission reductions leads to approximately a 10 % or 5 ppbv decrease of the maximum daily average eight-hour ozone (MDA8 over the Eastern United States. For PM2.5, the impacts of global climate change have shown insignificant effect, where as the impacts of anticipated future emissions reduction account for the majority of overall PM2.5 reductions. The annual average 24-h PM2.5 of the future-year condition was found to be about 40 % lower than the one from the present-year condition, of which 60 % of its overall reductions are contributed to by the decrease of SO4 and NO3 particulate matters. Changing the biogenic emissions model increases the MDA8 ozone by about 5–10 % or 3–5 ppbv in the Northeast area. Conversely, it reduces the annual average PM2.5 by 5 % or 1.0 μg m−3 in the Southeast region.

  6. An Estimation of the Climatic Effects of Stratospheric Ozone Losses during the 1980s. Appendix K

    Science.gov (United States)

    MacKay, Robert M.; Ko, Malcolm K. W.; Shia, Run-Lie; Yang, Yajaing; Zhou, Shuntai; Molnar, Gyula

    1997-01-01

    In order to study the potential climatic effects of the ozone hole more directly and to assess the validity of previous lower resolution model results, the latest high spatial resolution version of the Atmospheric and Environmental Research, Inc., seasonal radiative dynamical climate model is used to simulate the climatic effects of ozone changes relative to the other greenhouse gases. The steady-state climatic effect of a sustained decrease in lower stratospheric ozone, similar in magnitude to the observed 1979-90 decrease, is estimated by comparing three steady-state climate simulations: 1) 1979 greenhouse gas concentrations and 1979 ozone, II) 1990 greenhouse gas concentrations with 1979 ozone, and III) 1990 greenhouse gas concentrations with 1990 ozone. The simulated increase in surface air temperature resulting from nonozone greenhouse gases is 0.272 K. When changes in lower stratospheric ozone are included, the greenhouse warming is 0.165 K, which is approximately 39% lower than when ozone is fixed at the 1979 concentrations. Ozone perturbations at high latitudes result in a cooling of the surface-troposphere system that is greater (by a factor of 2.8) than that estimated from the change in radiative forcing resulting from ozone depiction and the model's 2 x CO, climate sensitivity. The results suggest that changes in meridional heat transport from low to high latitudes combined with the decrease in the infrared opacity of the lower stratosphere are very important in determining the steady-state response to high latitude ozone losses. The 39% compensation in greenhouse warming resulting from lower stratospheric ozone losses is also larger than the 28% compensation simulated previously by the lower resolution model. The higher resolution model is able to resolve the high latitude features of the assumed ozone perturbation, which are important in determining the overall climate sensitivity to these perturbations.

  7. Seasonal Changes in Tropospheric Ozone Concentrations over South Korea and Its Link to Ozone Precursors

    Science.gov (United States)

    Jung, H. C.; Moon, B. K.; Wie, J.

    2017-12-01

    Concentration of tropospheric ozone over South Korea has steadily been on the rise in the last decades, mainly due to rapid industrializing and urbanizing in the Eastern Asia. To identify the characteristics of tropospheric ozone in South Korea, we fitted a sine function to the surface ozone concentration data from 2005 to 2014. Based on fitted sine curves, we analyzed the shifts in the dates on which ozone concentration reached its peak in the calendar year. Ozone monitoring sites can be classified into type types: where the highest annual ozone concentration kept occurring sooner (Esites) and those that kept occurring later (Lsites). The seasonal analysis shows that the surface ozone had increased more rapidly in Esites than in Lsites in the past decade during springtime and vice-versa during summertime. We tried to find the reason for the different seasonal trends with the relationship between ozone and ozone precursors. As a result, it was found that the changes in the ground-level ozone concentration in the spring and summer times are considerably influenced by changes in nitrogen dioxide concentration, and this is closely linked to the destruction (production) process of ozone by nitrogen dioxide in spring (summer). The link between tropospheric ozone and nitrogen dioxide discussed in this study will have to be thoroughly examined through climate-chemistry modeling in the future. Acknowledgements This research was supported by the Korea Ministry of Environment (MOE) as "Climate Change Correspondence Program."

  8. Ozone and PM related health co-benefits of climate change policies in Mexico

    International Nuclear Information System (INIS)

    Crawford-Brown, Douglas; Barker, Terry; Anger, Annela; Dessens, Olivier

    2012-01-01

    This paper reports the results of extending a previous analysis of reductions in ozone exposures resulting from greenhouse gas reduction policies in Mexico, to the case of estimating reductions in premature death and risks of non-fatal diseases following reductions in both ozone and particulate matter exposures. The results show that a policy of greenhouse gas reduction in the Mexican economy by 77% relative to a baseline growth scenario results in reduced mortality loss of almost 3000 lives per year. The benefit in terms of non-fatal disease is 417,000 cases reduced per year, at a savings of $0.6B per year in cost of illness. These reductions in human health risk, stemming from co-benefits of climate change policies, are significant in light of targets of risk reduction typically used in environmental regulatory decisions, and would be considered important drivers of policy choice if climate policy were harmonised with other areas of risk-based environmental policy.

  9. The response of surface ozone to climate change over the Eastern United States

    Directory of Open Access Journals (Sweden)

    P. N. Racherla

    2008-02-01

    Full Text Available We investigate the response of surface ozone (O3 to future climate change in the eastern United States by performing simulations corresponding to present (1990s and future (2050s climates using an integrated model of global climate, tropospheric gas-phase chemistry, and aerosols. A future climate has been imposed using ocean boundary conditions corresponding to the IPCC SRES A2 scenario for the 2050s decade. Present-day anthropogenic emissions and CO2/CH4 mixing ratios have been used in both simulations while climate-sensitive emissions were allowed to vary with the simulated climate. The severity and frequency of O3 episodes in the eastern U.S. increased due to future climate change, primarily as a result of increased O3 chemical production. The 95th percentile O3 mixing ratio increased by 5 ppbv and the largest frequency increase occured in the 80–90 ppbv range; the US EPA's current 8-h ozone primary standard is 80 ppbv. The increased O3 chemical production is due to increases in: 1 natural isoprene emissions; 2 hydroperoxy radical concentrations resulting from increased water vapor concentrations; and, 3 NOx concentrations resulting from reduced PAN. The most substantial and statistically significant (p<0.05 increases in episode frequency occurred over the southeast and midatlantic U.S., largely as a result of 20% higher annual-average natural isoprene emissions. These results suggest a lengthening of the O3 season over the eastern U.S. in a future climate to include late spring and early fall months. Increased chemical production and shorter average lifetime are two consistent features of the seasonal response of surface O3, with increased dry deposition loss rates contributing most to the reduced lifetime in all seasons except summer. Significant interannual variability is observed in the frequency of O3

  10. Future local and remote influences on Mediterranean ozone air quality and climate forcing

    Science.gov (United States)

    Arnold, Steve; Martin, Maria Val; Emmons, Louisa; Rap, Alex; Heald, Colette; Lamarque, Jean-Francois; Tilmes, Simone

    2013-04-01

    The Mediterranean region is expected to display large increases in population over the coming decades, and to exhibit strong sensitivity to projected climate change, with increasing frequency of extreme summer temperatures and decreases in precipitation. Understanding of how these changes will affect atmospheric composition in the region is limited. The eastern Mediterranean basin has been shown to exhibit a pronounced summertime local maximum in tropospheric ozone, which impacts both local air quality and the atmospheric radiation balance. In summer, the region is subject to import of pollution from Northern Europe in the boundary layer and lower troposphere, from North American sources in the large-scale westerly flow of the free mid and upper-troposphere, as well as import of pollution lofted in the Asian monsoon and carried west to the eastern Mediterranean in anticyclonic flow in the upper troposphere over north Africa. In addition, interactions with the land-surface through biogenic emission sources and dry deposition play important roles in the Mediterranean ozone budget. Here we use the NCAR Community Earth System Model (CESM) to investigate how tropospheric ozone in the Mediterranean region responds to climate, land surface and global emissions changes between present day and 2050. We simulate climate and atmospheric composition for the year 2050, based on greenhouse gas abundances, trace gas and aerosol emissions and land cover and use from two representative concentration pathway (RCP) scenarios (RCP4.5 & RCP8.5), designed for use by the Coupled Model Intercomparison Project Phase 5(CMIP5) experiments in support of the IPCC. By comparing these simulations with a present-day scenario, we investigate the effects of predicted changes in climate and emissions on air quality and climate forcing over the Mediterranean region. The simulations suggest decreases in boundary layer ozone and sulfate aerosol throughout the tropospheric column over the Mediterranean

  11. Our changing climate

    International Nuclear Information System (INIS)

    Kandel, R.

    1990-01-01

    The author presents an overview of the changing climate. Attention is focused on the following: meteorology; weather; climate anomalies; changes in atmospheric composition and global warming; ozone; mathematical models; and climate and politics. In its conclusion, it asks researchers to stay out of a game in which, ultimately, neither science nor politics stands to gain anything

  12. Ozone concentrations and damage for realistic future European climate and air quality scenarios

    Science.gov (United States)

    Hendriks, Carlijn; Forsell, Nicklas; Kiesewetter, Gregor; Schaap, Martijn; Schöpp, Wolfgang

    2016-11-01

    Ground level ozone poses a significant threat to human health from air pollution in the European Union. While anthropogenic emissions of precursor substances (NOx, NMVOC, CH4) are regulated by EU air quality legislation and will decrease further in the future, the emissions of biogenic NMVOC (mainly isoprene) may increase significantly in the coming decades if short-rotation coppice plantations are expanded strongly to meet the increased biofuel demand resulting from the EU decarbonisation targets. This study investigates the competing effects of anticipated trends in land use change, anthropogenic ozone precursor emissions and climate change on European ground level ozone concentrations and related health and environmental impacts until 2050. The work is based on a consistent set of energy consumption scenarios that underlie current EU climate and air quality policy proposals: a current legislation case, and an ambitious decarbonisation case. The Greenhouse Gas-Air Pollution Interactions and Synergies (GAINS) integrated assessment model was used to calculate air pollutant emissions for these scenarios, while land use change because of bioenergy demand was calculated by the Global Biosphere Model (GLOBIOM). These datasets were fed into the chemistry transport model LOTOS-EUROS to calculate the impact on ground level ozone concentrations. Health damage because of high ground level ozone concentrations is projected to decline significantly towards 2030 and 2050 under current climate conditions for both energy scenarios. Damage to plants is also expected to decrease but to a smaller extent. The projected change in anthropogenic ozone precursor emissions is found to have a larger impact on ozone damage than land use change. The increasing effect of a warming climate (+2-5 °C across Europe in summer) on ozone concentrations and associated health damage, however, might be higher than the reduction achieved by cutting back European ozone precursor emissions. Global

  13. Ozone, Climate, and Global Atmospheric Change.

    Science.gov (United States)

    Levine, Joel S.

    1992-01-01

    Presents an overview of global atmospheric problems relating to ozone depletion and global warming. Provides background information on the composition of the earth's atmosphere and origin of atmospheric ozone. Describes causes, effects, and evidence of ozone depletion and the greenhouse effect. A vignette provides a summary of a 1991 assessment of…

  14. Synchronous volcanic eruptions and abrupt climate change ∼17.7 ka plausibly linked by stratospheric ozone depletion.

    Science.gov (United States)

    McConnell, Joseph R; Burke, Andrea; Dunbar, Nelia W; Köhler, Peter; Thomas, Jennie L; Arienzo, Monica M; Chellman, Nathan J; Maselli, Olivia J; Sigl, Michael; Adkins, Jess F; Baggenstos, Daniel; Burkhart, John F; Brook, Edward J; Buizert, Christo; Cole-Dai, Jihong; Fudge, T J; Knorr, Gregor; Graf, Hans-F; Grieman, Mackenzie M; Iverson, Nels; McGwire, Kenneth C; Mulvaney, Robert; Paris, Guillaume; Rhodes, Rachael H; Saltzman, Eric S; Severinghaus, Jeffrey P; Steffensen, Jørgen Peder; Taylor, Kendrick C; Winckler, Gisela

    2017-09-19

    Glacial-state greenhouse gas concentrations and Southern Hemisphere climate conditions persisted until ∼17.7 ka, when a nearly synchronous acceleration in deglaciation was recorded in paleoclimate proxies in large parts of the Southern Hemisphere, with many changes ascribed to a sudden poleward shift in the Southern Hemisphere westerlies and subsequent climate impacts. We used high-resolution chemical measurements in the West Antarctic Ice Sheet Divide, Byrd, and other ice cores to document a unique, ∼192-y series of halogen-rich volcanic eruptions exactly at the start of accelerated deglaciation, with tephra identifying the nearby Mount Takahe volcano as the source. Extensive fallout from these massive eruptions has been found >2,800 km from Mount Takahe. Sulfur isotope anomalies and marked decreases in ice core bromine consistent with increased surface UV radiation indicate that the eruptions led to stratospheric ozone depletion. Rather than a highly improbable coincidence, circulation and climate changes extending from the Antarctic Peninsula to the subtropics-similar to those associated with modern stratospheric ozone depletion over Antarctica-plausibly link the Mount Takahe eruptions to the onset of accelerated Southern Hemisphere deglaciation ∼17.7 ka.

  15. Attribution of projected changes in summertime US ozone and PM2.5 concentrations to global changes

    Directory of Open Access Journals (Sweden)

    A. Guenther

    2009-02-01

    Full Text Available The impact that changes in future climate, anthropogenic US emissions, background tropospheric composition, and land-use have on summertime regional US ozone and PM2.5 concentrations is examined through a matrix of downscaled regional air quality simulations, where each set of simulations was conducted for five months of July climatology, using the Community Multi-scale Air Quality (CMAQ model. Projected regional scale changes in meteorology due to climate change under the Intergovernmental Panel on Climate Change (IPCC A2 scenario are derived through the downscaling of Parallel Climate Model (PCM output with the MM5 meteorological model. Future chemical boundary conditions are obtained through downscaling of MOZART-2 (Model for Ozone and Related Chemical Tracers, version 2.4 global chemical model simulations based on the IPCC Special Report on Emissions Scenarios (SRES A2 emissions scenario. Projected changes in US anthropogenic emissions are estimated using the EPA Economic Growth Analysis System (EGAS, and changes in land-use are projected using data from the Community Land Model (CLM and the Spatially Explicit Regional Growth Model (SERGOM. For July conditions, changes in chemical boundary conditions are found to have the largest impact (+5 ppbv on average daily maximum 8-h (DM8H ozone. Changes in US anthropogenic emissions are projected to increase average DM8H ozone by +3 ppbv. Land-use changes are projected to have a significant influence on regional air quality due to the impact these changes have on biogenic hydrocarbon emissions. When climate changes and land-use changes are considered simultaneously, the average DM8H ozone decreases due to a reduction in biogenic VOC emissions (−2.6 ppbv. Changes in average 24-h (A24-h PM2.5 concentrations are dominated by projected changes in anthropogenic emissions (+3 μg m−3, while changes in chemical boundary conditions have a negligible effect. On average, climate change reduces A24-h PM2

  16. Impact of climate variability on tropospheric ozone

    International Nuclear Information System (INIS)

    Grewe, Volker

    2007-01-01

    A simulation with the climate-chemistry model (CCM) E39/C is presented, which covers both the troposphere and stratosphere dynamics and chemistry during the period 1960 to 1999. Although the CCM, by its nature, is not exactly representing observed day-by-day meteorology, there is an overall model's tendency to correctly reproduce the variability pattern due to an inclusion of realistic external forcings, like observed sea surface temperatures (e.g. El Nino), major volcanic eruption, solar cycle, concentrations of greenhouse gases, and Quasi-Biennial Oscillation. Additionally, climate-chemistry interactions are included, like the impact of ozone, methane, and other species on radiation and dynamics, and the impact of dynamics on emissions (lightning). However, a number of important feedbacks are not yet included (e.g. feedbacks related to biogenic emissions and emissions due to biomass burning). The results show a good representation of the evolution of the stratospheric ozone layer, including the ozone hole, which plays an important role for the simulation of natural variability of tropospheric ozone. Anthropogenic NO x emissions are included with a step-wise linear trend for each sector, but no interannual variability is included. The application of a number of diagnostics (e.g. marked ozone tracers) allows the separation of the impact of various processes/emissions on tropospheric ozone and shows that the simulated Northern Hemisphere tropospheric ozone budget is not only dominated by nitrogen oxide emissions and other ozone pre-cursors, but also by changes of the stratospheric ozone budget and its flux into the troposphere, which tends to reduce the simulated positive trend in tropospheric ozone due to emissions from industry and traffic during the late 80s and early 90s. For tropical regions the variability in ozone is dominated by variability in lightning (related to ENSO) and stratosphere-troposphere exchange (related to Northern Hemisphere Stratospheric

  17. Characterizing the impact of projected changes in climate and air quality on human exposures to ozone.

    Science.gov (United States)

    Dionisio, Kathie L; Nolte, Christopher G; Spero, Tanya L; Graham, Stephen; Caraway, Nina; Foley, Kristen M; Isaacs, Kristin K

    2017-05-01

    The impact of climate change on human and environmental health is of critical concern. Population exposures to air pollutants both indoors and outdoors are influenced by a wide range of air quality, meteorological, behavioral, and housing-related factors, many of which are also impacted by climate change. An integrated methodology for modeling changes in human exposures to tropospheric ozone (O 3 ) owing to potential future changes in climate and demographics was implemented by linking existing modeling tools for climate, weather, air quality, population distribution, and human exposure. Human exposure results from the Air Pollutants Exposure Model (APEX) for 12 US cities show differences in daily maximum 8-h (DM8H) exposure patterns and levels by sex, age, and city for all scenarios. When climate is held constant and population demographics are varied, minimal difference in O 3 exposures is predicted even with the most extreme demographic change scenario. In contrast, when population is held constant, we see evidence of substantial changes in O 3 exposure for the most extreme change in climate. Similarly, we see increases in the percentage of the population in each city with at least one O 3 exposure exceedance above 60 p.p.b and 70 p.p.b thresholds for future changes in climate. For these climate and population scenarios, the impact of projected changes in climate and air quality on human exposure to O 3 are much larger than the impacts of changing demographics. These results indicate the potential for future changes in O 3 exposure as a result of changes in climate that could impact human health.

  18. Interactions of Climate Change, Air Pollution, and Human Health.

    Science.gov (United States)

    Kinney, Patrick L

    2018-03-01

    I review literature on the impacts of climate change on air quality and human health, with a focus on articles published from 2013 on ozone and airborne particles. Selected previous literature is discussed where relevant in tracing the origins of our current knowledge. Climate and weather have strong influences on the spatial and temporal distribution of air pollution concentrations. Emissions of ozone and PM 2.5 precursors increase at higher ambient temperatures. The reactions that form ozone occur faster with greater sunlight and higher temperatures. Weather systems influence the movement and dispersion of air pollutants in the atmosphere through the action of winds, vertical mixing, and precipitation, all of which are likely to alter in a changing climate. Recent studies indicate that, holding anthropogenic air pollution emissions constant, ozone concentrations in populated regions will tend to increase in future climate scenarios. For the USA, the climate impact on ozone is most consistently seen in north-central and north-eastern states, with the potential for many thousands of additional ozone-related deaths. The sensitivity of anthropogenic PM 2.5 to climate is more variable across studies and regions, owing to the varied nature of PM constituents, as well as to less complete characterization of PM reaction chemistry in available atmospheric models. However, PM emitted by wildland fires is likely to become an increasing health risk in many parts of the world as climate continues to change. The complex interactions between climate change and air quality imply that future policies to mitigate these twin challenges will benefit from greater coordination. Assessing the health implications of alternative policy approaches towards climate and pollution mitigation will be a critical area of future work.

  19. The ocean's role in polar climate change: asymmetric Arctic and Antarctic responses to greenhouse gas and ozone forcing.

    Science.gov (United States)

    Marshall, John; Armour, Kyle C; Scott, Jeffery R; Kostov, Yavor; Hausmann, Ute; Ferreira, David; Shepherd, Theodore G; Bitz, Cecilia M

    2014-07-13

    In recent decades, the Arctic has been warming and sea ice disappearing. By contrast, the Southern Ocean around Antarctica has been (mainly) cooling and sea-ice extent growing. We argue here that interhemispheric asymmetries in the mean ocean circulation, with sinking in the northern North Atlantic and upwelling around Antarctica, strongly influence the sea-surface temperature (SST) response to anthropogenic greenhouse gas (GHG) forcing, accelerating warming in the Arctic while delaying it in the Antarctic. Furthermore, while the amplitude of GHG forcing has been similar at the poles, significant ozone depletion only occurs over Antarctica. We suggest that the initial response of SST around Antarctica to ozone depletion is one of cooling and only later adds to the GHG-induced warming trend as upwelling of sub-surface warm water associated with stronger surface westerlies impacts surface properties. We organize our discussion around 'climate response functions' (CRFs), i.e. the response of the climate to 'step' changes in anthropogenic forcing in which GHG and/or ozone-hole forcing is abruptly turned on and the transient response of the climate revealed and studied. Convolutions of known or postulated GHG and ozone-hole forcing functions with their respective CRFs then yield the transient forced SST response (implied by linear response theory), providing a context for discussion of the differing warming/cooling trends in the Arctic and Antarctic. We speculate that the period through which we are now passing may be one in which the delayed warming of SST associated with GHG forcing around Antarctica is largely cancelled by the cooling effects associated with the ozone hole. By mid-century, however, ozone-hole effects may instead be adding to GHG warming around Antarctica but with diminished amplitude as the ozone hole heals. The Arctic, meanwhile, responding to GHG forcing but in a manner amplified by ocean heat transport, may continue to warm at an accelerating rate.

  20. Substituting HCFC-22 for HFC-410A: an environmental impact trade-off between the ozone depletion and climate change regimes

    Science.gov (United States)

    Wang, Z.; Fang, X.; Zhang, J.

    2015-12-01

    After the phase-out of hydrochlorofluorocarbons (HCFCs) as ozone-depleting substances pursuant to the requirements of the Montreal Protocol, hydrofluorocarbons (HFCs) are worldwide used as substitutes although the bulk of them are potent greenhouse gases (GHGs). Therefore, the alternation may bring side effect on global climate change. The trade-off of its environmental impacts between the ozone depletion and climate change regimes necessitates a quantification of the past and future consumption and emissions of both the original HCFCs and their alternative HFCs. Now a dilemma arise in China's RAC industry that HCFC-22, which has an ozone-depleting potential (ODP) of 0.055, has been replaced by HFC-410A, which is a blended potent GHG from respective 50% HFC-32 and HFC-125 with a global warming potential (GWP) of 1923.5. Here, we present our results of estimates of consumption and emissions of HCFC-22 and HFC-410A from 1994 to 2050. Historic emissions of HCFC-22 contributed to global total HCFCs by 4.0% (3.0%-5.6%) ODP-weighted. Projection under a baseline scenario shows future accumulative emissions of HFC-410A make up 5.9%-11.0% of global GWP-weighted HFCs emissions, and its annual contribution to national overall CO2 emissions can be 5.5% in 2050. This makes HCFC-22 and HFC-410A emissions of significant importance in ozone depletion and climate change regimes. Two mitigation scenarios were set to assess the mitigation performance under the North America Proposal and an accelerated schedule. In practice of international environmental agreement, "alternative to alternative" should be developed to avoid regrettable alternations.

  1. Influence of isoprene chemical mechanism on modelled changes in tropospheric ozone due to climate and land use over the 21st century

    Science.gov (United States)

    Squire, O. J.; Archibald, A. T.; Griffiths, P. T.; Jenkin, M. E.; Smith, D.; Pyle, J. A.

    2015-05-01

    Isoprene is a~precursor to tropospheric ozone, a key pollutant and greenhouse gas. Anthropogenic activity over the coming century is likely to cause large changes in atmospheric CO2 levels, climate and land use, all of which will alter the global vegetation distribution leading to changes in isoprene emissions. Previous studies have used global chemistry-climate models to assess how possible changes in climate and land use could affect isoprene emissions and hence tropospheric ozone. The chemistry of isoprene oxidation, which can alter the concentration of ozone, is highly complex, therefore it must be parameterised in these models. In this work, we compare the effect of four different reduced isoprene chemical mechanisms, all currently used in Earth system models, on tropospheric ozone. Using a box model we compare ozone in these reduced schemes to that in a more explicit scheme (the Master Chemical Mechanism) over a range of NOx and isoprene emissions, through the use of O3 isopleths. We find that there is some variability, especially at high isoprene emissions, caused by differences in isoprene-derived NOx reservoir species. A global model is then used to examine how the different reduced schemes respond to potential future changes in climate, isoprene emissions, anthropogenic emissions and land use change. We find that, particularly in isoprene-rich regions, the response of the schemes varies considerably. The wide-ranging response is due to differences in the model descriptions of the peroxy radical chemistry, particularly their relative rates of reaction towards NO, leading to ozone formation, or HO2, leading to termination. Also important is the yield of isoprene nitrates and peroxyacyl nitrate precursors from isoprene oxidation. Those schemes that produce less of these NOx reservoir species, tend to produce more ozone locally and less away from the source region. We also note changes in other key oxidants such as NO3 and OH (due to the inclusion of

  2. Climate impact of idealized winter polar mesospheric and stratospheric ozone losses as caused by energetic particle precipitation

    Science.gov (United States)

    Meraner, Katharina; Schmidt, Hauke

    2018-01-01

    Energetic particles enter the polar atmosphere and enhance the production of nitrogen oxides and hydrogen oxides in the winter stratosphere and mesosphere. Both components are powerful ozone destroyers. Recently, it has been inferred from observations that the direct effect of energetic particle precipitation (EPP) causes significant long-term mesospheric ozone variability. Satellites observe a decrease in mesospheric ozone up to 34 % between EPP maximum and EPP minimum. Stratospheric ozone decreases due to the indirect effect of EPP by about 10-15 % observed by satellite instruments. Here, we analyze the climate impact of winter boreal idealized polar mesospheric and polar stratospheric ozone losses as caused by EPP in the coupled Max Planck Institute Earth System Model (MPI-ESM). Using radiative transfer modeling, we find that the radiative forcing of mesospheric ozone loss during polar night is small. Hence, climate effects of mesospheric ozone loss due to energetic particles seem unlikely. Stratospheric ozone loss due to energetic particles warms the winter polar stratosphere and subsequently weakens the polar vortex. However, those changes are small, and few statistically significant changes in surface climate are found.

  3. Drivers of the tropospheric ozone budget throughout the 21st century under the medium-high climate scenario RCP 6.0

    Science.gov (United States)

    Revell, L. E.; Tummon, F.; Stenke, A.; Sukhodolov, T.; Coulon, A.; Rozanov, E.; Garny, H.; Grewe, V.; Peter, T.

    2015-05-01

    Because tropospheric ozone is both a greenhouse gas and harmful air pollutant, it is important to understand how anthropogenic activities may influence its abundance and distribution through the 21st century. Here, we present model simulations performed with the chemistry-climate model SOCOL, in which spatially disaggregated chemistry and transport tracers have been implemented in order to better understand the distribution and projected changes in tropospheric ozone. We examine the influences of ozone precursor emissions (nitrogen oxides (NOx), carbon monoxide (CO) and volatile organic compounds (VOCs)), climate change (including methane effects) and stratospheric ozone recovery on the tropospheric ozone budget, in a simulation following the climate scenario Representative Concentration Pathway (RCP) 6.0 (a medium-high, and reasonably realistic climate scenario). Changes in ozone precursor emissions have the largest effect, leading to a global-mean increase in tropospheric ozone which maximizes in the early 21st century at 23% compared to 1960. The increase is most pronounced at northern midlatitudes, due to regional emission patterns: between 1990 and 2060, northern midlatitude tropospheric ozone remains at constantly large abundances: 31% larger than in 1960. Over this 70-year period, attempts to reduce emissions in Europe and North America do not have an effect on zonally averaged northern midlatitude ozone because of increasing emissions from Asia, together with the long lifetime of ozone in the troposphere. A simulation with fixed anthropogenic ozone precursor emissions of NOx, CO and non-methane VOCs at 1960 conditions shows a 6% increase in global-mean tropospheric ozone by the end of the 21st century, with an 11 % increase at northern midlatitudes. This increase maximizes in the 2080s and is mostly caused by methane, which maximizes in the 2080s following RCP 6.0, and plays an important role in controlling ozone directly, and indirectly through its

  4. Research program on climatic and environmental problems. Summary of Norwegian climatic and ozone layer research in the last decade and important research tasks in the future

    International Nuclear Information System (INIS)

    Dahlin, Elin

    1999-04-01

    This report includes 44 abstracts, 21 lectures and 23 posters from a workshop arranged by the Norwegian Research Council, the Steering Group for the Norwegian research programme for changes in climate and ozone layer. The topics dealt with are: Results from the research, the greenhouse effect and its influence on the climate of today, the interactions between ocean and climate, pollution influence on ozone layer changes, the UV radiation effects and their influence on the environment, climatic modelling and forecasting, ecological problems related to climatic and environmental changes, the climatic influences of human energy utilisation and suggestions for future research

  5. Future Global Mortality from Changes in Air Pollution Attributable to Climate Change

    Science.gov (United States)

    Silva, Raquel A.; West, J. Jason; Lamarque, Jean-Francois; Shindell, Drew T.; Collins, William J.; Faluvegi, Greg; Folberth, Gerd A.; Horowitz, Larry W.; Nagashima, Tatsuya; Naik, Vaishali; hide

    2017-01-01

    Ground-level ozone and fine particulate matter (PM (sub 2.5)) are associated with premature human mortality; their future concentrations depend on changes in emissions, which dominate the near-term, and on climate change. Previous global studies of the air-quality-related health effects of future climate change used single atmospheric models. However, in related studies, mortality results differ among models. Here we use an ensemble of global chemistry-climate models to show that premature mortality from changes in air pollution attributable to climate change, under the high greenhouse gas scenario RCP (Representative Concentration Pathway) 8.5, is probably positive. We estimate 3,340 (30,300 to 47,100) ozone-related deaths in 2030, relative to 2000 climate, and 43,600 (195,000 to 237,000) in 2100 (14 percent of the increase in global ozone-related mortality). For PM (sub 2.5), we estimate 55,600 (34,300 to 164,000) deaths in 2030 and 215,000 (76,100 to 595,000) in 2100 (countering by 16 percent the global decrease in PM (sub 2.5)-related mortality). Premature mortality attributable to climate change is estimated to be positive in all regions except Africa, and is greatest in India and East Asia. Most individual models yield increased mortality from climate change, but some yield decreases, suggesting caution in interpreting results from a single model. Climate change mitigation is likely to reduce air-pollution-related mortality.

  6. Future Climate Impacts of Direct Radiative Forcing Anthropogenic Aerosols, Tropospheric Ozone, and Long-lived Greenhouse Gases

    Science.gov (United States)

    Chen, Wei-Ting; Liao, Hong; Seinfeld, John H.

    2007-01-01

    Long-lived greenhouse gases (GHGs) are the most important driver of climate change over the next century. Aerosols and tropospheric ozone (O3) are expected to induce significant perturbations to the GHG-forced climate. To distinguish the equilibrium climate responses to changes in direct radiative forcing of anthropogenic aerosols, tropospheric ozone, and GHG between present day and year 2100, four 80-year equilibrium climates are simulated using a unified tropospheric chemistry-aerosol model within the Goddard Institute for Space Studies (GISS) general circulation model (GCM) 110. Concentrations of sulfate, nitrate, primary organic (POA) carbon, secondary organic (SOA) carbon, black carbon (BC) aerosols, and tropospheric ozone for present day and year 2100 are obtained a priori by coupled chemistry-aerosol GCM simulations, with emissions of aerosols, ozone, and precursors based on the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenario (SRES) A2. Changing anthropogenic aerosols, tropospheric ozone, and GHG from present day to year 2100 is predicted to perturb the global annual mean radiative forcing by +0.18 (considering aerosol direct effects only), +0.65, and +6.54 W m(sup -2) at the tropopause, and to induce an equilibrium global annual mean surface temperature change of +0.14, +0.32, and +5.31 K, respectively, with the largest temperature response occurring at northern high latitudes. Anthropogenic aerosols, through their direct effect, are predicted to alter the Hadley circulation owing to an increasing interhemispheric temperature gradient, leading to changes in tropical precipitation. When changes in both aerosols and tropospheric ozone are considered, the predicted patterns of change in global circulation and the hydrological cycle are similar to those induced by aerosols alone. GHG-induced climate changes, such as amplified warming over high latitudes, weakened Hadley circulation, and increasing precipitation over the

  7. Climate impact of idealized winter polar mesospheric and stratospheric ozone losses as caused by energetic particle precipitation

    Directory of Open Access Journals (Sweden)

    K. Meraner

    2018-01-01

    Full Text Available Energetic particles enter the polar atmosphere and enhance the production of nitrogen oxides and hydrogen oxides in the winter stratosphere and mesosphere. Both components are powerful ozone destroyers. Recently, it has been inferred from observations that the direct effect of energetic particle precipitation (EPP causes significant long-term mesospheric ozone variability. Satellites observe a decrease in mesospheric ozone up to 34 % between EPP maximum and EPP minimum. Stratospheric ozone decreases due to the indirect effect of EPP by about 10–15 % observed by satellite instruments. Here, we analyze the climate impact of winter boreal idealized polar mesospheric and polar stratospheric ozone losses as caused by EPP in the coupled Max Planck Institute Earth System Model (MPI-ESM. Using radiative transfer modeling, we find that the radiative forcing of mesospheric ozone loss during polar night is small. Hence, climate effects of mesospheric ozone loss due to energetic particles seem unlikely. Stratospheric ozone loss due to energetic particles warms the winter polar stratosphere and subsequently weakens the polar vortex. However, those changes are small, and few statistically significant changes in surface climate are found.

  8. Radiative effects of ozone on the climate of a Snowball Earth

    Directory of Open Access Journals (Sweden)

    J. Yang

    2012-12-01

    Full Text Available Some geochemical and geological evidence has been interpreted to suggest that the concentration of atmospheric oxygen was only 1–10 % of the present level in the time interval from 750 to 580 million years ago when several nearly global glaciations or Snowball Earth events occurred. This low concentration of oxygen would have been accompanied by a lower ozone concentration than exists at present. Since ozone is a greenhouse gas, this change in ozone concentration would alter surface temperature, and thereby could have an important influence on the climate of the Snowball Earth. Previous works that have focused either on initiation or deglaciation of the proposed Snowball Earth has not taken the radiative effects of ozone changes into account. We address this issue herein by performing a series of simulations using an atmospheric general circulation model with various ozone concentrations.

    Our simulation results demonstrate that, as ozone concentration is uniformly reduced from 100 % to 50 %, surface temperature decreases by approximately 0.8 K at the Equator, with the largest decreases located in the middle latitudes reaching as high as 2.5 K. When ozone concentration is reduced and its vertical and horizontal distribution is simultaneously modulated, surface temperature decreases by 0.4–1.0 K at the Equator and by 4–7 K in polar regions. These results here have uncertainties, depending on model parameterizations of cloud, surface snow albedo, and relevant feedback processes, while they are qualitatively consistent with radiative-convective model results that do not involve such parameterizations and feedbacks. These results suggest that ozone variations could have had a moderate impact on the climate during the Neoproterozoic glaciations.

  9. Projecting future summer mortality due to ambient ozone concentration and temperature changes

    Science.gov (United States)

    Lee, Jae Young; Lee, Soo Hyun; Hong, Sung-Chul; Kim, Ho

    2017-05-01

    Climate change is known to affect the human health both directly by increased heat stress and indirectly by altering environments, particularly by altering the rate of ambient ozone formation in the atmosphere. Thus, the risks of climate change may be underestimated if the effects of both future temperature and ambient ozone concentrations are not considered. This study presents a projection of future summer non-accidental mortality in seven major cities of South Korea during the 2020s (2016-2025) and 2050s (2046-2055) considering changes in temperature and ozone concentration, which were predicted by using the HadGEM3-RA model and Integrated Climate and Air Quality Modeling System, respectively. Four Representative Concentration Pathway (RCP) scenarios (RCP 2.6, 4.5, 6.0, and 8.5) were considered. The result shows that non-accidental summer mortality will increase by 0.5%, 0.0%, 0.4%, and 0.4% in the 2020s, 1.9%, 1.5%, 1.2%, and 4.4% in the 2050s due to temperature change compared to the baseline mortality during 2001-2010, under RCP 2.6, 4.5, 6.0, and 8.5, respectively, whereas the mortality will increase by 0.0%, 0.5%, 0.0%, and 0.5% in the 2020s, and 0.2%, 0.2%, 0.4%, and 0.6% in the 2050s due to ozone concentration change. The projection result shows that the future summer morality in South Korea is increased due to changes in both temperature and ozone, and the magnitude of ozone-related increase is much smaller than that of temperature-related increase, especially in the 2050s.

  10. Global warming and climate change

    International Nuclear Information System (INIS)

    1992-10-01

    A panel discussion was held to discuss climate change. Six panelists made presentations that summarized ozone depletion and climate change, discussed global responses, argued against the conventional scientific and policy dogmas concerning climate change, examined the effects of ultraviolet radiation on phytoplankton, examined the effects of carbon taxes on Canadian industry and its emissions, and examined the political and strategic aspects of global warming. A question session followed the presentations. Separate abstracts have been prepared for the six presentations

  11. The impact of climate change and emissions control on future ozone levels: Implications for human health.

    Science.gov (United States)

    Stowell, Jennifer D; Kim, Young-Min; Gao, Yang; Fu, Joshua S; Chang, Howard H; Liu, Yang

    2017-11-01

    Overwhelming evidence has shown that, from the Industrial Revolution to the present, human activities influence ground-level ozone (O 3 ) concentrations. Past studies demonstrate links between O 3 exposure and health. However, knowledge gaps remain in our understanding concerning the impacts of climate change mitigation policies on O 3 concentrations and health. Using a hybrid downscaling approach, we evaluated the separate impact of climate change and emission control policies on O 3 levels and associated excess mortality in the US in the 2050s under two Representative Concentration Pathways (RCPs). We show that, by the 2050s, under RCP4.5, increased O 3 levels due to combined climate change and emission control policies, could contribute to an increase of approximately 50 premature deaths annually nationwide in the US. The biggest impact, however, is seen under RCP8.5, where rises in O 3 concentrations are expected to result in over 2,200 additional premature deaths annually. The largest increases in O 3 are seen in RCP8.5 in the Northeast, the Southeast, the Central, and the West regions of the US. Additionally, when O 3 increases are examined by climate change and emissions contributions separately, the benefits of emissions mitigation efforts may significantly outweigh the effects of climate change mitigation policies on O 3 -related mortality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Surface ozone seasonality under global change: Influence from dry deposition and isoprene emissions at northern mid-latitudes

    Science.gov (United States)

    Clifton, O.; Paulot, F.; Fiore, A. M.; Horowitz, L. W.; Malyshev, S.; Shevliakova, E.; Correa, G. J. P.; Lin, M.

    2017-12-01

    Identifying the contributions of nonlinear chemistry and transport to observed surface ozone seasonal cycles over land using global models relies on an accurate representation of ozone uptake by vegetation (dry deposition). It is well established that in the absence of ozone precursor emission changes, a warming climate will increase surface ozone in polluted regions, and that a rise in temperature-dependent isoprene emissions would exacerbate this "climate penalty". However, the influence of changes in ozone dry deposition, expected to evolve with climate and land use, is often overlooked in air quality projections. With a new scheme that represents dry deposition within the NOAA GFDL dynamic vegetation land model (LM3) coupled to the NOAA GFDL atmospheric chemistry-climate model (AM3), we simulate the impact of 21st century climate and land use on ozone dry deposition and isoprene emissions. This dry deposition parameterization is a version of the Wesely scheme, but uses parameters explicitly calculated by LM3 that respond to climate and land use (e.g., stomatal conductance, canopy interception of water, leaf area index). The parameterization includes a nonstomatal deposition dependence on humidity. We evaluate climatological present-day seasonal cycles of ozone deposition velocities and abundances with those observed at northern mid-latitude sites. With a set of 2010s and 2090s decadal simulations under a high climate warming scenario (RCP8.5) and a sensitivity simulation with well-mixed greenhouse gases following RCP8.5 but air pollutants held at 2010 levels (RCP8.5_WMGG), we examine changes in surface ozone seasonal cycles. We build on our previous findings, which indicate that strong reductions in anthropogenic NOx emissions under RCP8.5 cause the surface ozone seasonal cycle over the NE USA to reverse, shifting from a summer peak at present to a winter peak by 2100. Under RCP8.5_WMGG, we parse the separate effects of climate and land use on ozone dry

  13. Regional climate, local climate and ozone air pollution in Tours and Orleans cities

    International Nuclear Information System (INIS)

    Berthelot, M.

    2006-10-01

    The importance of the relations between climate and the air pollution justifies the interest related to the role of the urban heat island of heat with respect to the night persistence of ozone in urban environment. When the days are favourable with important ozone concentrations, the agglomerations of the area observe a dynamics day laborer of ozone different from that observed in rural environment. The study is undertaken on the towns of Turns and Orleans where the observations of Lig'Air revealed a night persistence of ozone whereas the concentrations drop more quickly in periphery. This phenomenon is remarkable during the little broken down anticyclonic days. The region region Centre is a ground of study privileged for ozone because of its situation in the south-west of the Island of France rich in precursors of ozone. When flow is of continental origin, the Centre area is found then under the influence of the Paris area. The investigation of a study of the air pollution must take into account the notes of the regional climate and local climate. Several preliminary studies must intervene to answer our principal problems. First of all a descriptive study of the regional climate is carried out with the participation of Meteo-France. The current absence of climatic atlas as well as the many disparities of the climate related to extended from the territory partly justify the interest of our study. The regional approach of the climate is also essential for the continuation of work on a finer scale on the agglomerations of Turns and Orleans in order to detect the urban heat island of heat there. Collaboration with Meteo-France and Lig'Air made it possible to establish a satisfying network of measurement making it possible to obtain notable thermal differences between the downtown area and the surrounding rural environment. The correlation between meteorology and the proven air pollution leads us to establish the climatology of ozone. Many are the studies having

  14. Detection of Changes in Ground-Level Ozone Concentrations via Entropy

    Directory of Open Access Journals (Sweden)

    Yuehua Wu

    2015-04-01

    Full Text Available Ground-level ozone concentration is a key indicator of air quality. Theremay exist sudden changes in ozone concentration data over a long time horizon, which may be caused by the implementation of government regulations and policies, such as establishing exhaust emission limits for on-road vehicles. To monitor and assess the efficacy of these policies, we propose a methodology for detecting changes in ground-level ozone concentrations, which consists of three major steps: data transformation, simultaneous autoregressive modelling and change-point detection on the estimated entropy. To show the effectiveness of the proposed methodology, the methodology is applied to detect changes in ground-level ozone concentration data collected in the Toronto region of Canada between June and September for the years from 1988 to 2009. The proposed methodology is also applicable to other climate data.

  15. Northern Hemisphere Winter Climate Response to Greenhouse Gas, Ozone, Solar and Volcanic Forcing

    Science.gov (United States)

    Shindell, Drew T.; Schmidt, Gavin A.; Miller, Ron L.; Rind, David; Hansen, James E. (Technical Monitor)

    2001-01-01

    The Goddard Institute for Space Studies (GISS) climate/middle atmosphere model has been used to study the impacts of increasing greenhouse gases, polar ozone depletion, volcanic eruptions, and solar cycle variability. We focus on the projection of the induced responses onto Northern Hemisphere winter surface climate. Changes in the model's surface climate take place largely through enhancement of existing variability patterns, with greenhouse gases, polar ozone depletion and volcanic eruptions primarily affecting the Arctic Oscillation (AO) pattern. Perturbations descend from the stratosphere to the surface in the model by altering the propagation of planetary waves coming up from the surface, in accord with observational evidence. Models lacking realistic stratospheric dynamics fail to capture these wave flux changes. The results support the conclusion that the stratosphere plays a crucial role in recent AO trends. We show that in our climate model, while ozone depletion has a significant effect, greenhouse gas forcing is the only one capable of causing the large, sustained increase in the AO observed over recent decades. This suggests that the AO trend, and a concurrent strengthening of the stratospheric vortex over the Arctic, are very likely anthropogenic in origin.

  16. The Interplay of Climate Change and Air Pollution on Health.

    Science.gov (United States)

    Orru, H; Ebi, K L; Forsberg, B

    2017-12-01

    Air pollution significantly affects health, causing up to 7 million premature deaths annually with an even larger number of hospitalizations and days of sick leave. Climate change could alter the dispersion of primary pollutants, particularly particulate matter, and intensify the formation of secondary pollutants, such as near-surface ozone. The purpose of the review is to evaluate the recent evidence on the impacts of climate change on air pollution and air pollution-related health impacts and identify knowledge gaps for future research. Several studies modelled future ozone and particulate matter concentrations and calculated the resulting health impacts under different climate scenarios. Due to climate change, ozone- and fine particle-related mortalities are expected to increase in most studies; however, results differ by region, assumed climate change scenario and other factors such as population and background emissions. This review explores the relationships between climate change, air pollution and air pollution-related health impacts. The results highly depend on the climate change scenario used and on projections of future air pollution emissions, with relatively high uncertainty. Studies primarily focused on mortality; projections on the effects on morbidity are needed.

  17. No doubt: The climatic changes are man made

    International Nuclear Information System (INIS)

    Wiggen, Guri

    2000-01-01

    The article surveys the results of Norwegian climatic and ozone research. The main conclusions are that the climatic changes are largely caused through human errors and that the present climatic changes are largely due to activities in during the last two decades. The problems of climatic change in Norway and globally and secrecy by various authorities are mentioned

  18. Tropospheric ozone and aerosols in climate agreements: scientific and political challenges

    International Nuclear Information System (INIS)

    Rypdal, Kristin; Berntsen, Terje; Fuglestvedt, Jan S.; Aunan, Kristin; Torvanger, Asbjorn; Stordal, Frode; Pacyna, Jozef M.; Nygaard, Lynn P.

    2005-01-01

    In addition to the six greenhouse gases included in the Kyoto Protocol, the tropospheric ozone precursors CO, NMVOC and NO x and the aerosols/aerosol precursors black carbon, organic carbon and SO 2 also play significant roles in climate change. The aim of this paper is to review some of the main scientific and political challenges associated with incorporating tropospheric ozone and aerosol precursors into climate agreements, and to discuss how these challenges have a bearing on the design of future climate agreements. We argue that the optimal policy design for a particular substance depends on a combination of scientific and political concerns. We look particularly at regional climate effects, negative forcing, metrics (measuring climate effects against other gases on a common scale), political attractiveness, and verification and compliance. We systematically review the existing knowledge on these issues, explore their impact on policy design, and conclude that, with current scientific knowledge, CO and NMVOC could conceivably be included in a global climate agreement, either in a basket with the long-lived greenhouse gases or in a separate basket, while NO x and aerosols might be regulated more appropriately through regional agreements with links to a global agreement. However, the complexity and fairness implications of including tropospheric ozone precursors and aerosols might negatively affect the political feasibility of a future agreement

  19. Potential impact of climate change on air pollution-related human health effects.

    Science.gov (United States)

    Tagaris, Efthimios; Liao, Kuo-Jen; Delucia, Anthony J; Deck, Leland; Amar, Praveen; Russell, Armistead G

    2009-07-01

    The potential health impact of ambient ozone and PM2.5 concentrations modulated by climate change over the United States is investigated using combined atmospheric and health modeling. Regional air quality modeling for 2001 and 2050 was conducted using CMAQ Modeling System with meteorology from the GISS Global Climate Model, downscaled regionally using MM5,keeping boundary conditions of air pollutants, emission sources, population, activity levels, and pollution controls constant. BenMap was employed to estimate the air pollution health outcomes at the county, state, and national level for 2050 caused by the effect of meteorology on future ozone and PM2.5 concentrations. The changes in calculated annual mean PM2.5 concentrations show a relatively modest change with positive and negative responses (increasing PM2.5 levels across the northeastern U.S.) although average ozone levels slightly decrease across the northern sections of the U.S., and increase across the southern tier. Results suggest that climate change driven air quality-related health effects will be adversely affected in more then 2/3 of the continental U.S. Changes in health effects induced by PM2.5 dominate compared to those caused by ozone. PM2.5-induced premature mortality is about 15 times higher then that due to ozone. Nationally the analysis suggests approximately 4000 additional annual premature deaths due to climate change impacts on PM2.5 vs 300 due to climate change-induced ozone changes. However, the impacts vary spatially. Increased premature mortality due to elevated ozone concentrations will be offset by lower mortality from reductions in PM2.5 in 11 states. Uncertainties related to different emissions projections used to simulate future climate, and the uncertainties forecasting the meteorology, are large although there are potentially important unaddressed uncertainties (e.g., downscaling, speciation, interaction, exposure, and concentration-response function of the human health studies).

  20. Stratospheric ozone changes under solar geoengineering: implications for UV exposure and air quality

    Science.gov (United States)

    Nowack, Peer Johannes; Abraham, Nathan Luke; Braesicke, Peter; Pyle, John Adrian

    2016-03-01

    Various forms of geoengineering have been proposed to counter anthropogenic climate change. Methods which aim to modify the Earth's energy balance by reducing insolation are often subsumed under the term solar radiation management (SRM). Here, we present results of a standard SRM modelling experiment in which the incoming solar irradiance is reduced to offset the global mean warming induced by a quadrupling of atmospheric carbon dioxide. For the first time in an atmosphere-ocean coupled climate model, we include atmospheric composition feedbacks for this experiment. While the SRM scheme considered here could offset greenhouse gas induced global mean surface warming, it leads to important changes in atmospheric composition. We find large stratospheric ozone increases that induce significant reductions in surface UV-B irradiance, which would have implications for vitamin D production. In addition, the higher stratospheric ozone levels lead to decreased ozone photolysis in the troposphere. In combination with lower atmospheric specific humidity under SRM, this results in overall surface ozone concentration increases in the idealized G1 experiment. Both UV-B and surface ozone changes are important for human health. We therefore highlight that both stratospheric and tropospheric ozone changes must be considered in the assessment of any SRM scheme, due to their important roles in regulating UV exposure and air quality.

  1. Ozone changes under solar geoengineering: implications for UV exposure and air quality

    Science.gov (United States)

    Nowack, P. J.; Abraham, N. L.; Braesicke, P.; Pyle, J. A.

    2015-11-01

    Various forms of geoengineering have been proposed to counter anthropogenic climate change. Methods which aim to modify the Earth's energy balance by reducing insolation are often subsumed under the term Solar Radiation Management (SRM). Here, we present results of a standard SRM modelling experiment in which the incoming solar irradiance is reduced to offset the global mean warming induced by a quadrupling of atmospheric carbon dioxide. For the first time in an atmosphere-ocean coupled climate model, we include atmospheric composition feedbacks such as ozone changes under this scenario. Including the composition changes, we find large reductions in surface UV-B irradiance, with implications for vitamin D production, and increases in surface ozone concentrations, both of which could be important for human health. We highlight that both tropospheric and stratospheric ozone changes should be considered in the assessment of any SRM scheme, due to their important roles in regulating UV exposure and air quality.

  2. Climate and ozone change effects on ultraviolet radiation and risks (COEUR). Using and validating earth observation

    Energy Technology Data Exchange (ETDEWEB)

    Van Dijk, A; Den Outer, P.N.; Slaper, H.

    2008-06-15

    The AMOUR2.0 (Assessment Model for Ultraviolet radiation and Risks) model is presented. With this model it is possible to relate ozone depletion scenarios to (changes in) skin cancer incidence. The estimation of UV maps is integrated in the model. The satellite-based method to estimate UV maps is validated for EPTOMS (Earth Probe - Total Ozone Mapping Spectrometer) data against ground measurements for 17 locations in Europe. For most ground stations the estimates for the yeardose agree within 5%. Deviations are related to high ground albedo. A suggestion has been made for improvement of the albedo-correction. The AMOUR2.0 UV estimate was found to correspond better with ground measurements than the models from NASA (National Aeronautics and Space Administration in the USA), TEMIS (Tropospheric Emission Monitoring Internet Service of the European Space Agency ESA) and FMI (Finnish Meteorological Institute). The EPTOMS-UV product and the FMI model overestimate the UV dose. The TEMIS model has a good clear-sky correspondence with ground measurement, but overestimates UV in clouded situations. Satellite measurements of ozone and historic chlorine level have been used to make global estimates for future ozone levels for a collection of emission scenarios for ozone depleting substances. Analysis of the 'best guess' scenario, shows that the minimum in ozone level will be reached within 15 years from now. In 2050 the UV dose for Europe will to a large extent have returned to the values observed in 1980 if there is no climate-change driven alteration in cloud patterns. Future incidence maps up to the year 2100 are estimated with the dose-effect relation presented in an earlier study. This is done for three UV related types of skin-cancer: Basal Cell Carcinoma (BCC), Squamous Cell Carcinoma (SCC) and Cutaneous Malignant Melanoma (CMM). For a stationary population, global incidences of BCC and CMM are expected to peak around the year 2065 and for SCC around 2040.

  3. Stratospheric ozone changes under solar geoengineering: implications for UV exposure and air quality

    Directory of Open Access Journals (Sweden)

    P. J. Nowack

    2016-03-01

    Full Text Available Various forms of geoengineering have been proposed to counter anthropogenic climate change. Methods which aim to modify the Earth's energy balance by reducing insolation are often subsumed under the term solar radiation management (SRM. Here, we present results of a standard SRM modelling experiment in which the incoming solar irradiance is reduced to offset the global mean warming induced by a quadrupling of atmospheric carbon dioxide. For the first time in an atmosphere–ocean coupled climate model, we include atmospheric composition feedbacks for this experiment. While the SRM scheme considered here could offset greenhouse gas induced global mean surface warming, it leads to important changes in atmospheric composition. We find large stratospheric ozone increases that induce significant reductions in surface UV-B irradiance, which would have implications for vitamin D production. In addition, the higher stratospheric ozone levels lead to decreased ozone photolysis in the troposphere. In combination with lower atmospheric specific humidity under SRM, this results in overall surface ozone concentration increases in the idealized G1 experiment. Both UV-B and surface ozone changes are important for human health. We therefore highlight that both stratospheric and tropospheric ozone changes must be considered in the assessment of any SRM scheme, due to their important roles in regulating UV exposure and air quality.

  4. From stratospheric ozone to climate change: historical perspective on precaution and scientific responsibility.

    Science.gov (United States)

    Mégie, Gérard

    2006-10-01

    The issue of the impact of human activities on the stratospheric ozone layer emerged in the early 1970s. But international regulations to mitigate the most serious effects were not adopted until the mid-1980s. This case holds lessons for addressing more complex environmental problems. Concepts that should inform discussion include 'latency,' 'counter-factual scenario based on the Precautionary Principle,' 'inter-generational burden sharing,' and 'estimating global costs under factual and counter-factual regulatory scenarios.' Stringent regulations were adopted when large scientific uncertainty existed, and the environmental problem would have been prevented or more rapidly mitigated, at relatively modest incremental price, but for a time delay before more rigorous Precautionary measures were implemented. Will history repeat itself in the case of climate change?

  5. Changing habits, changing climate : a foundation analysis

    International Nuclear Information System (INIS)

    Enright, W.

    2001-03-01

    If Canada intends to meet its greenhouse gas reduction target of 6 per cent below 1990 levels, a fundamental shift in energy use by Canadians is required. The health sector will also be required to change. Global climate change is expected to affect regions differently, some might get wetter, some might get warmer, and others still might get colder. Climate changes will influence a number of health determinants: the geographical range of disease organisms and vectors; temperature extremes and violent weather events; air, food and water quality; the stability of ecosystems. There is a requirement to strongly regulate the emissions of carbon dioxide, methane and other greenhouse gases to limit health risks. Increased air pollution could negatively affect large numbers of people, especially asthma sufferers and people suffering from chronic respiratory ailments and cardiovascular diseases. Changes in precipitation and temperature could increase insect-borne diseases. Water sources could be badly affected by drought, flooding or increased glacial runoff. The thinning of the ozone layer could result in additional skin cancers, impaired vision and other diseases. The document explores the various impacts resulting from climate change. A chapter is devoted to each topic: air pollution, temperature extremes, extreme weather events, vector borne diseases, drought and increased evaporation, food supply and ecosystem range, sea level rise, stratospheric ozone depletion and describes the health impacts. In addition, a chapter deals with aboriginal communities. The topic of environmental refugees is discussed, followed by an historical perspective into climate change policy in Canada. The author concludes with adaptation measures. Further emphasis must be placed on priority topics such as the estimation of future emissions and modelling of climate processes. refs., tabs., figs

  6. Impacts of tropospheric ozone and climate change on net primary productivity and net carbon exchange of China’s forest ecosystems

    Science.gov (United States)

    Wei Ren; Hanqin Tian; Bo Tao; Art Chappelka; Ge Sun; et al

    2011-01-01

    Aim We investigated how ozone pollution and climate change/variability have interactively affected net primary productivity (NPP) and net carbon exchange (NCE) across China’s forest ecosystem in the past half century. Location Continental China. Methods Using the dynamic land ecosystem model (DLEM) in conjunction with 10-km-resolution gridded historical data sets (...

  7. Attribution of ozone changes to dynamical and chemical processes in CCMs and CTMs

    Directory of Open Access Journals (Sweden)

    H. Garny

    2011-04-01

    Full Text Available Chemistry-climate models (CCMs are commonly used to simulate the past and future development of Earth's ozone layer. The fully coupled chemistry schemes calculate the chemical production and destruction of ozone interactively and ozone is transported by the simulated atmospheric flow. Due to the complexity of the processes acting on ozone it is not straightforward to disentangle the influence of individual processes on the temporal development of ozone concentrations. A method is introduced here that quantifies the influence of chemistry and transport on ozone concentration changes and that is easily implemented in CCMs and chemistry-transport models (CTMs. In this method, ozone tendencies (i.e. the time rate of change of ozone are partitioned into a contribution from ozone production and destruction (chemistry and a contribution from transport of ozone (dynamics. The influence of transport on ozone in a specific region is further divided into export of ozone out of that region and import of ozone from elsewhere into that region. For this purpose, a diagnostic is used that disaggregates the ozone mixing ratio field into 9 separate fields according to in which of 9 predefined regions of the atmosphere the ozone originated. With this diagnostic the ozone mass fluxes between these regions are obtained. Furthermore, this method is used here to attribute long-term changes in ozone to chemistry and transport. The relative change in ozone from one period to another that is due to changes in production or destruction rates, or due to changes in import or export of ozone, are quantified. As such, the diagnostics introduced here can be used to attribute changes in ozone on monthly, interannual and long-term time-scales to the responsible mechanisms. Results from a CCM simulation are shown here as examples, with the main focus of the paper being on introducing the method.

  8. Forest responses to tropospheric ozone and global climate change: an analysis.

    Science.gov (United States)

    Kickert, R N; Krupa, S V

    1990-01-01

    In this paper an analysis is provided on: what we know, what we need to know, and what we need to do, to further our understanding of the relationships between tropospheric ozone (O(3)), global climate change and forest responses. The relationships between global geographic distributions of forest ecosystems and potential geographic regions of high photochemical smog by the year 2025 AD are described. While the emphasis is on the effects of tropospheric O(3) on forest ecosystems, discussion is presented to understand such effects in the context of global climate change. One particular strong point of this paper is the audit of published surface O(3) data by photochemical smog region that reveals important forest/woodland geographic regions where little or no O(3) data exist even though the potential threat to forests in those regions appears to be large. The concepts and considerations relevant to the examination of ecosystem responses as a whole, rather than simply tree stands alone are reviewed. A brief argument is provided to stimulate the modification of the concept of simple cause and effect relationships in viewing total ecosystems. Our knowledge of O(3) exposure and its effects on the energy, nutrient and hydrological flow within the ecosystem are described. Modeling strategies for such systems are reviewed. A discussion of responses of forests to potential multiple climatic changes is provided. An important concept in this paper is that changes in water exchange processes throughout the hydrological cycle can be used as early warning indicators of forest responses to O(3). Another strength of this paper is the integration of information on structural and functional processes of ecosystems and their responses to O(3). An admitted weakness of this analysis is that the information on integrated ecosystem responses is based overwhelmingly on the San Bernardino Forest ecosystem research program of the 1970s because of a lack of similar studies. In the final

  9. The effects of global changes upon regional ozone pollution in the United States

    Science.gov (United States)

    Chen, J.; Avise, J.; Lamb, B.; Salathé, E.; Mass, C.; Guenther, A.; Wiedinmyer, C.; Lamarque, J.-F.; O'Neill, S.; McKenzie, D.; Larkin, N.

    2009-02-01

    A comprehensive numerical modeling framework was developed to estimate the effects of collective global changes upon ozone pollution in the US in 2050. The framework consists of the global climate and chemistry models, PCM (Parallel Climate Model) and MOZART-2 (Model for Ozone and Related Chemical Tracers v.2), coupled with regional meteorology and chemistry models, MM5 (Mesoscale Meteorological model) and CMAQ (Community Multi-scale Air Quality model). The modeling system was applied for two 10-year simulations: 1990-1999 as a present-day base case and 2045-2054 as a future case. For the current decade, the daily maximum 8-h moving average (DM8H) ozone mixing ratio distributions for spring, summer and fall showed good agreement with observations. The future case simulation followed the Intergovernmental Panel on Climate Change (IPCC) A2 scenario together with business-as-usual US emission projections and projected alterations in land use, land cover (LULC) due to urban expansion and changes in vegetation. For these projections, US anthropogenic NOx (NO+NO2) and VOC (volatile organic carbon) emissions increased by approximately 6% and 50%, respectively, while biogenic VOC emissions decreased, in spite of warmer temperatures, due to decreases in forested lands and expansion of croplands, grasslands and urban areas. A stochastic model for wildfire emissions was applied that projected 25% higher VOC emissions in the future. For the global and US emission projection used here, regional ozone pollution becomes worse in the 2045-2054 period for all months. Annually, the mean DM8H ozone was projected to increase by 9.6 ppbv (22%). The changes were higher in the spring and winter (25%) and smaller in the summer (17%). The area affected by elevated ozone within the US continent was projected to increase; areas with levels exceeding the 75 ppbv ozone standard at least once a year increased by 38%. In addition, the length of the ozone season was projected to increase with

  10. Health effects of global climate change

    International Nuclear Information System (INIS)

    Ghauri, B.; Salam, M.; Mirza I.

    1992-01-01

    This paper identifies potential health problems that may arise from global climates changes caused by increasing green house gases and depletion in the ozone layer. The mankind is responsible for saving or destroying the environment. There are many forms which can pollute the environment like greenhouse activities. The greenhouse gases like carbon dioxide, methane and ozone etc. cause pollutants in the environment. (A.B.)

  11. Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer

    Science.gov (United States)

    Monks, P. S.; Archibald, A. T.; Colette, A.; Cooper, O.; Coyle, M.; Derwent, R.; Fowler, D.; Granier, C.; Law, K. S.; Mills, G. E.; Stevenson, D. S.; Tarasova, O.; Thouret, V.; von Schneidemesser, E.; Sommariva, R.; Wild, O.; Williams, M. L.

    2015-08-01

    Ozone holds a certain fascination in atmospheric science. It is ubiquitous in the atmosphere, central to tropospheric oxidation chemistry, yet harmful to human and ecosystem health as well as being an important greenhouse gas. It is not emitted into the atmosphere but is a byproduct of the very oxidation chemistry it largely initiates. Much effort is focused on the reduction of surface levels of ozone owing to its health and vegetation impacts, but recent efforts to achieve reductions in exposure at a country scale have proved difficult to achieve owing to increases in background ozone at the zonal hemispheric scale. There is also a growing realisation that the role of ozone as a short-lived climate pollutant could be important in integrated air quality climate change mitigation. This review examines current understanding of the processes regulating tropospheric ozone at global to local scales from both measurements and models. It takes the view that knowledge across the scales is important for dealing with air quality and climate change in a synergistic manner. The review shows that there remain a number of clear challenges for ozone such as explaining surface trends, incorporating new chemical understanding, ozone-climate coupling, and a better assessment of impacts. There is a clear and present need to treat ozone across the range of scales, a transboundary issue, but with an emphasis on the hemispheric scales. New observational opportunities are offered both by satellites and small sensors that bridge the scales.

  12. Impact of climate change on photochemical air pollution in Southern California

    Directory of Open Access Journals (Sweden)

    D. E. Millstein

    2009-06-01

    Full Text Available The effects of future climate and emissions-related perturbations on ozone air quality in Southern California are considered, with an assumed increase to 2× pre-industrial levels for global background levels of carbon dioxide. Effects of emission and climate-related forcings on air quality are superimposed on a summer 2005 high-ozone time period. Perturbations considered here include (a effect of increased temperature on atmospheric reaction rates, (b effect of increased temperature on biogenic emissions, (c effect of increased water vapor concentrations, (d effect of increased pollutant levels at the inflow (western boundary, and (e effect of population growth and technology change on emissions within Southern California. Various combinations of the above perturbations are also considered. The climate-related perturbations (a–c led to combined peak 1-h ozone increases of up to 11 ppb. The effect on ozone was greatly reduced when the temperature increase was applied mostly during nighttime hours rather than uniformly throughout the day. Increased pollutant levels at the inflow boundary also led to ozone increases up to 5 ppb. These climate and inflow-related changes offset some of the anticipated benefits of emission controls within the air basin.

  13. The behaviour of stratospheric and upper tropospheric ozone in high and mid latitudes; the role of ozone as a climate gas

    Energy Technology Data Exchange (ETDEWEB)

    Kyroe, M; Rummukainen, M; Kivi, R; Turunen, T; Karhu, J [Finnish Meteorological Inst., Sodankylae (Finland); Taalas, P [Finnish Meteorological Inst., Helsinki (Finland)

    1997-12-31

    During the past few years, the dual role that ozone plays in climate change has been becoming increasingly obvious. First, continuous thinning of the ozone layer has been evident, even in the high and middle latitudes in the northern hemisphere. Secondly, ozone is also a greenhouse gas, affecting radiative transfer. Increases in tropospheric ozone have a positive forcing, whereas decreases in stratospheric ozone cause a negative forcing. During the last six years, measurements on total ozone and the vertical distribution of ozone have been performed at the Sodankylae Observatory. At Jokioinen Observatory, measurements on total ozone have been performed since 1990 and measurements on the vertical distribution of ozone since 1993. The overall project has focused on extending the national data series on total ozone and the vertical distribution of ozone. At the same time, the study has contributed to the study of interannual variability of the ozone layer. This SILMU project took part in the large-scale research activities, in addition to performing national studies. The results confirm that there has been fast chemical ozone destruction in the high latitudes in the northern hemisphere. This was particularly evident in the last two winters, 1994/95 and 1995/96. The new data also allows better trend analyses to be made on ozone in high and mid latitudes

  14. The behaviour of stratospheric and upper tropospheric ozone in high and mid latitudes; the role of ozone as a climate gas

    Energy Technology Data Exchange (ETDEWEB)

    Kyroe, M.; Rummukainen, M.; Kivi, R.; Turunen, T.; Karhu, J. [Finnish Meteorological Inst., Sodankylae (Finland); Taalas, P. [Finnish Meteorological Inst., Helsinki (Finland)

    1996-12-31

    During the past few years, the dual role that ozone plays in climate change has been becoming increasingly obvious. First, continuous thinning of the ozone layer has been evident, even in the high and middle latitudes in the northern hemisphere. Secondly, ozone is also a greenhouse gas, affecting radiative transfer. Increases in tropospheric ozone have a positive forcing, whereas decreases in stratospheric ozone cause a negative forcing. During the last six years, measurements on total ozone and the vertical distribution of ozone have been performed at the Sodankylae Observatory. At Jokioinen Observatory, measurements on total ozone have been performed since 1990 and measurements on the vertical distribution of ozone since 1993. The overall project has focused on extending the national data series on total ozone and the vertical distribution of ozone. At the same time, the study has contributed to the study of interannual variability of the ozone layer. This SILMU project took part in the large-scale research activities, in addition to performing national studies. The results confirm that there has been fast chemical ozone destruction in the high latitudes in the northern hemisphere. This was particularly evident in the last two winters, 1994/95 and 1995/96. The new data also allows better trend analyses to be made on ozone in high and mid latitudes

  15. Inter- and intra-specific responses to elevated ozone and chamber climate in northern birches

    International Nuclear Information System (INIS)

    Manninen, S.; Huttunen, S.; Vanhatalo, M.; Pakonen, T.; Haemaelaeinen, A.

    2009-01-01

    We studied the responses of micropropagated, northern provenances of downy, mountain and silver birches to elevated ozone (O 3 ) and changing climate using open-top chambers (OTCs). Contrary to our hypothesis, northern birches were sensitive to O 3 , i.e. O 3 levels of 31-36 ppb reduced the leaf and root biomasses by -10%, whereas wood biomass was affected to a lesser extent. The warmer and drier OTC climate enhanced growth in general, though there were differences among the species and clones, e.g. in bud burst and biomass production. Inter- and intra-specific responses to O 3 and changing climate relate to traits such as allocation patterns between the above- and belowground parts (i.e. root/shoot ratio), which further relate to nutrient and water economy. Our experiments may have mimicked future conditions quite well, but only long-term field studies can yield the information needed to forecast responses at both tree and ecosystem levels. - Northern birches are responsive to ambient ozone levels.

  16. Impacts of Atmosphere-Ocean Coupling on Southern Hemisphere Climate Change

    Science.gov (United States)

    Li, Feng; Newman, Paul; Pawson, Steven

    2013-01-01

    Climate in the Southern Hemisphere (SH) has undergone significant changes in recent decades. These changes are closely linked to the shift of the Southern Annular Mode (SAM) towards its positive polarity, which is driven primarily by Antarctic ozone depletion. There is growing evidence that Antarctic ozone depletion has significant impacts on Southern Ocean circulation change. However, it is poorly understood whether and how ocean feedback might impact the SAM and climate change in the SH atmosphere. This outstanding science question is investigated using the Goddard Earth Observing System Coupled Atmosphere-Ocean-Chemistry Climate Model(GEOS-AOCCM).We perform ensemble simulations of the recent past (1960-2010) with and without the interactive ocean. For simulations without the interactive ocean, we use sea surface temperatures and sea ice concentrations produced by the interactive ocean simulations. The differences between these two ensemble simulations quantify the effects of atmosphere-ocean coupling. We will investigate the impacts of atmosphere-ocean coupling on stratospheric processes such as Antarctic ozone depletion and Antarctic polar vortex breakup. We will address whether ocean feedback affects Rossby wave generation in the troposphere and wave propagation into the stratosphere. Another focuson this study is to assess how ocean feedback might affect the tropospheric SAM response to Antarctic ozone depletion

  17. Development of a climate record of tropospheric and stratospheric column ozone from satellite remote sensing: evidence of an early recovery of global stratospheric ozone

    Directory of Open Access Journals (Sweden)

    J. R. Ziemke

    2012-07-01

    Full Text Available Ozone data beginning October 2004 from the Aura Ozone Monitoring Instrument (OMI and Aura Microwave Limb Sounder (MLS are used to evaluate the accuracy of the Cloud Slicing technique in effort to develop long data records of tropospheric and stratospheric ozone and for studying their long-term changes. Using this technique, we have produced a 32-yr (1979–2010 long record of tropospheric and stratospheric column ozone from the combined Total Ozone Mapping Spectrometer (TOMS and OMI. Analyses of these time series suggest that the quasi-biennial oscillation (QBO is the dominant source of inter-annual variability of stratospheric ozone and is clearest in the Southern Hemisphere during the Aura time record with related inter-annual changes of 30–40 Dobson Units. Tropospheric ozone for the long record also indicates a QBO signal in the tropics with peak-to-peak changes varying from 2 to 7 DU. The most important result from our study is that global stratospheric ozone indicates signature of a recovery occurring with ozone abundance now approaching the levels of year 1980 and earlier. The negative trends in stratospheric ozone in both hemispheres during the first 15 yr of the record are now positive over the last 15 yr and with nearly equal magnitudes. This turnaround in stratospheric ozone loss is occurring about 20 yr earlier than predicted by many chemistry climate models. This suggests that the Montreal Protocol which was first signed in 1987 as an international agreement to reduce ozone destroying substances is working well and perhaps better than anticipated.

  18. Changing Conditions in the Arctic: An Analysis of 45 years of Tropospheric Ozone Measurements at Barrow Observatory

    Science.gov (United States)

    McClure-Begley, A.; Petropavlovskikh, I. V.; Crepinsek, S.; Jefferson, A.; Emmons, L. K.; Oltmans, S. J.

    2017-12-01

    In order to understand the impact of climate on local bio-systems, understanding the changes to the atmospheric composition and processes in the Arctic boundary layer and free troposphere is imperative. In the Arctic, many conditions influence tropospheric ozone variability such as: seasonal halogen caused depletion events, long range transport of pollutants from mid-northern latitudes, compounds released from wildfires, and different meteorological conditions. The Barrow station in Utqiagvik, Alaska has collected continuous measurements of ground-level ozone since 1973. This unique long-term time series allows for analysis of the influence of a rapidly changing climate on ozone conditions in this region. Specifically, this study analyzes the frequency of enhanced ozone episodes over time and provides in depth analysis of periods of positive deviations from the expected conditions. To discern the contribution of different pollutant sources to observed ozone variability, co-located measurements of aerosols, carbon monoxide, and meteorological conditions are used. In addition, the NCAR Mozart-4/MOPITT Chemical Forecast model and NOAA Hysplit back-trajectory analysis provide information on transport patterns to the Arctic and confirmation of the emission sources that influenced the observed conditions. These anthropogenic influences on ozone variability in and below the boundary layer are essential for developing an understanding of the interaction of climate change and the bio-systems in the Arctic.

  19. Future changes of the atmospheric composition and the impact of climate change

    Energy Technology Data Exchange (ETDEWEB)

    Grewe, V.; Dameris, M.; Hein, R.; Sausen, R. [DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Wessling (Germany). Inst. fuer Physik der Atmosphaere; Steil, B. [Max-Planck-Institut fuer Chemie (Otto-Hahn-Institut), Mainz (Germany). Abt. Chemie der Atmosphaere

    1999-05-01

    The development of the future atmospheric chemical composition, with respect of NO{sub y} and O{sub 3} is investigated by means of the off-line coupled dynamic-chemical general circulation model ECHAM3/CHEM. Two time slice experiments have been performed for the years 1992 and 2015, which include changes in sea surface temperatures, greenhouse gas concentrations, emissions of CFCs, NO{sub x} and other species, i.e., the 2015 simulation accounts for changes in chemically relevant emissions and for a climate change and its impact on air chemistry. The 2015 simulation clearly shows a global increase in ozone except for large areas of the lower stratosphere, where no significant changes or even decreases in the ozone concentration are found. For a better understanding of the importance of (A) emissions like NO{sub x} and CFCs, (B) future changes of air temperature and water vapour concentration, and (C) other dynamic parameters, like precipitation and changes in the circulation, i.e. wind speed, diabatic circulation, stratosphere-troposphere-exchange, the simulation of the future atmosphere has been performed stepwise. This method requires a climate-chemistry model without interactive coupling of chemical species. Model results show that the direct effect of emissions (A) plays a major role for the composition of the future atmosphere, but they also clearly show that climate change has a significant impact and strongly reduces the NO{sub y} and ozone concentration in the lower stratosphere. (orig.)

  20. Atmospheric Composition Change: Climate-Chemistry Interactions

    Science.gov (United States)

    Isaksen, I.S.A.; Granier, C.; Myhre, G.; Bernsten, T. K.; Dalsoren, S. B.; Gauss, S.; Klimont, Z.; Benestad, R.; Bousquet, P.; Collins, W.; hide

    2011-01-01

    Chemically active climate compounds are either primary compounds such as methane (CH4), removed by oxidation in the atmosphere, or secondary compounds such as ozone (O3), sulfate and organic aerosols, formed and removed in the atmosphere. Man-induced climate-chemistry interaction is a two-way process: Emissions of pollutants change the atmospheric composition contributing to climate change through the aforementioned climate components, and climate change, through changes in temperature, dynamics, the hydrological cycle, atmospheric stability, and biosphere-atmosphere interactions, affects the atmospheric composition and oxidation processes in the troposphere. Here we present progress in our understanding of processes of importance for climate-chemistry interactions, and their contributions to changes in atmospheric composition and climate forcing. A key factor is the oxidation potential involving compounds such as O3 and the hydroxyl radical (OH). Reported studies represent both current and future changes. Reported results include new estimates of radiative forcing based on extensive model studies of chemically active climate compounds such as O3, and of particles inducing both direct and indirect effects. Through EU projects such as ACCENT, QUANTIFY, and the AEROCOM project, extensive studies on regional and sector-wise differences in the impact on atmospheric distribution are performed. Studies have shown that land-based emissions have a different effect on climate than ship and aircraft emissions, and different measures are needed to reduce the climate impact. Several areas where climate change can affect the tropospheric oxidation process and the chemical composition are identified. This can take place through enhanced stratospheric-tropospheric exchange of ozone, more frequent periods with stable conditions favouring pollution build up over industrial areas, enhanced temperature-induced biogenic emissions, methane releases from permafrost thawing, and enhanced

  1. Study: Ozone Layer's Future Linked Strongly to Changes in Climate

    Science.gov (United States)

    balloon to measure of the vertical profile of the ozone layer. NOAA scientists launch an ozonesonde via balloon to measure of the vertical profile of the ozone layer. NOAA releases ozonesondes at eight sites to continuously monitor stratospheric ozone. Download here. (Credit: NOAA) The ozone layer - the thin

  2. Do environmental and climate change issues threaten sustainable development?

    International Nuclear Information System (INIS)

    Mesarovic, M.

    2002-01-01

    The atmospheric environment is presently under threat from anthropogenic emissions of pollutants and greenhouse gases to the extent that irreversible changes to the climate, the ozone layer and the quality of the air could occur. While the required changes in practice and regulations may hit economies if the induced costs are to be internalised, the impact of ignoring these requirements might even threaten the concept of sustainable development. The prospects of environmental pollution, depletion of ozone layer and climate change due to human activities have sparked a variety of controversies on many fronts. These topics are discussed with respect to the imposed threats to the sustainable development, and with particular attention paid to delays in urgent emission reductions. (author)

  3. Complete Lesson 5: Climate Change and You

    Science.gov (United States)

    Students learn what causes climate change and how we can participate in reducing its harmful effects. Discuss the Solar System, heat and light energy, atmosphere, greenhouse effect and gases, ozone, and energy conservation.

  4. On the Climate Impacts of Upper Tropospheric and Lower Stratospheric Ozone

    Science.gov (United States)

    Xia, Yan; Huang, Yi; Hu, Yongyun

    2018-01-01

    The global warming simulations of the general circulation models (GCMs) are generally performed with different ozone prescriptions. We find that the differences in ozone distribution, especially in the upper tropospheric and lower stratospheric (UTLS) region, account for important model discrepancies shown in the ozone-only historical experiment of the Coupled Model Intercomparison Project Phase 5 (CMIP5). These discrepancies include global high cloud fraction, stratospheric temperature, and stratospheric water vapor. Through a set of experiments conducted by an atmospheric GCM with contrasting UTLS ozone prescriptions, we verify that UTLS ozone not only directly radiatively heats the UTLS region and cools the upper parts of the stratosphere but also strongly influences the high clouds due to its impact on relative humidity and static stability in the UTLS region and the stratospheric water vapor due to its impact on the tropical tropopause temperature. These consequences strongly affect the global mean effective radiative forcing of ozone, as noted in previous studies. Our findings suggest that special attention should be paid to the UTLS ozone when evaluating the climate effects of ozone depletion in the 20th century and recovery in the 21st century. UTLS ozone difference may also be important for understanding the intermodel discrepancy in the climate projections of the CMIP6 GCMs in which either prescribed or interactive ozone is used.

  5. Surface ozone in China: present-day distribution and long-term changes

    Science.gov (United States)

    Xu, X.; Lin, W.; Xu, W.

    2017-12-01

    Reliable knowledge of spatio-temporal variations of surface ozone is highly needed to assess the impacts of ozone on human health, ecosystem and climate. Although regional distributions and trends of surface ozone in European and North American countries have been well characterized, little is known about the variability of surface ozone in many other countries, including China, where emissions of ozone precursors have been changing rapidly in recent decades. Here we present the first comprehensive description of present-day (2013-2017) distribution and long-term changes of surface ozone in mainland China. Recent ozone measurements from China's air quality monitoring network (AQMN) are analyzed to show present-day distributions of a few ozone exposure metrics for urban environment. Long-term measurements of ozone at six background sites, a rural site and an urban are used to study the trends of ozone in background, rural and urban air, respectively. The average levels of ozone at the AQMN sites (mainly urban) are close to those found at many European and North American sites. However, ozone at most of the sites shows very large diurnal and seasonal variations so that ozone nonattainment can occur in many cities, particularly those in the North China Plain (NCP), the south of Northeast China (NEC), the Yangtze River Delta (YRD), the Pearl River Delta (PRD), and the Sichuan Basin-Chongqing region (SCB). In all these regions, particularly in the NCP, the maximum daily 8-h average (MDA8) ozone concentration can significantly exceed the national limit (75 ppb). High annual sum of ozone means over 35 ppb (SOMO35) exist mainly in the NCP, NEC and YRD, with regional averages over 4000 ppb·d. Surface ozone has significantly increased at Waliguan (a baseline site in western China) and Shangdianzi (a background site in the NCP), and decreased in winter and spring at Longfengshan (a background site in Northeast China). No clear trend can be derived from long-term measurements

  6. Arctic action against climatic changes

    International Nuclear Information System (INIS)

    Njaastad, Birgit

    2000-01-01

    The articles describes efforts to map the climatic changes in the Arctic regions through the Arctic Climate Impact Assessment Project which is a joint venture between eight Arctic countries: Denmark, Canada, the USA, Russia, Finland, Sweden and Norway. The project deals with the consequences of the changes such as the UV radiation due to diminishing ozone layers. The aims are: Evaluate and integrate existing knowledge in the field and evaluate and predict the consequences particularly on the environment both in the present and the future and produce reliable and useful information in order to aid the decision-making processes

  7. Greenhouse windows are closing;. and the ozone layer is still being depleted. Ozone and climate experts have worked in vain. Die Treibhaus-Fenster schliessen sich. ;. und die Ozonschicht versproedet weiter / Ozon- und Klimaforscher haben vergeblich 'Bringschuld' geleistet

    Energy Technology Data Exchange (ETDEWEB)

    Frese, W

    1994-02-14

    Forecast dont change a thing: This is the resumee that Prof. Paul Crutzen, Director of the Mainz Max-Planck-Institut of Chemistry and Prof. Hartmut Grassl, Director of the Hamburg Max-Planck-Institut of Meteorology draw from their many year of public information work for the cause of the ozone layer and the climate. The earth's atmosphere is in greater danger today than ever before: The ground layers are gradually warming up beneath an ozone layer that is steadily getting thinner. The fate of the ozone layer is meanwhile beyond our influence. The climate could still grant us a reprieve if we succeed in containing the temperature rise. Should we fail to make us of this time, the worst of scientists' predictions will come fine. (orig.)

  8. SWIFT: Semi-empirical and numerically efficient stratospheric ozone chemistry for global climate models

    OpenAIRE

    Kreyling, Daniel; Wohltmann, Ingo; Lehmann, Ralph; Rex, Markus

    2015-01-01

    The SWIFT model is a fast yet accurate chemistry scheme for calculating the chemistry of stratospheric ozone. It is mainly intended for use in Global Climate Models (GCMs), Chemistry Climate Models (CCMs) and Earth System Models (ESMs). For computing time reasons these models often do not employ full stratospheric chem- istry modules, but use prescribed ozone instead. This can lead to insufficient representation between stratosphere and troposphere. The SWIFT stratospheric ozone chem...

  9. Climate change and human health

    International Nuclear Information System (INIS)

    Sanderson, G.

    1991-01-01

    Changes in the earth's climate, stemming from the greenhouse effect, are highly likely to damage human health. As well as the disruptions to food and fresh water supplies, there is the prospect of major diseases flourishing in warmer conditions, in addition the decrease in the ozone layer is causing an increased incidence of skin cancer

  10. Interactive ozone and methane chemistry in GISS-E2 historical and future climate simulations

    Directory of Open Access Journals (Sweden)

    D. T. Shindell

    2013-03-01

    Full Text Available The new generation GISS climate model includes fully interactive chemistry related to ozone in historical and future simulations, and interactive methane in future simulations. Evaluation of ozone, its tropospheric precursors, and methane shows that the model captures much of the large-scale spatial structure seen in recent observations. While the model is much improved compared with the previous chemistry-climate model, especially for ozone seasonality in the stratosphere, there is still slightly too rapid stratospheric circulation, too little stratosphere-to-troposphere ozone flux in the Southern Hemisphere and an Antarctic ozone hole that is too large and persists too long. Quantitative metrics of spatial and temporal correlations with satellite datasets as well as spatial autocorrelation to examine transport and mixing are presented to document improvements in model skill and provide a benchmark for future evaluations. The difference in radiative forcing (RF calculated using modeled tropospheric ozone versus tropospheric ozone observed by TES is only 0.016 W m−2. Historical 20th Century simulations show a steady increase in whole atmosphere ozone RF through 1970 after which there is a decrease through 2000 due to stratospheric ozone depletion. Ozone forcing increases throughout the 21st century under RCP8.5 owing to a projected recovery of stratospheric ozone depletion and increases in methane, but decreases under RCP4.5 and 2.6 due to reductions in emissions of other ozone precursors. RF from methane is 0.05 to 0.18 W m−2 higher in our model calculations than in the RCP RF estimates. The surface temperature response to ozone through 1970 follows the increase in forcing due to tropospheric ozone. After that time, surface temperatures decrease as ozone RF declines due to stratospheric depletion. The stratospheric ozone depletion also induces substantial changes in surface winds and the Southern Ocean circulation, which may play a role in

  11. Multidecadal Changes in the UTLS Ozone from the MERRA-2 Reanalysis and the GMI Chemistry Model

    Science.gov (United States)

    Wargan, Krzysztof; Orbe, Clara; Pawson, Steven; Ziemke, Jerald R.; Oman, Luke; Olsen, Mark; Coy, Lawrence; Knowland, Emma

    2018-01-01

    Long-term changes of ozone in the UTLS (Upper Troposphere / Lower Stratosphere) reflect the response to decreases in the stratospheric concentrations of ozone-depleting substances as well as changes in the stratospheric circulation induced by climate change. To date, studies of UTLS ozone changes and variability have relied mainly on satellite and in-situ observations as well as chemistry-climate model simulations. By comparison, the potential of reanalysis ozone data remains relatively untapped. This is despite evidence from recent studies, including detailed analyses conducted under SPARC (Scalable Processor Architecture) Reanalysis Intercomparison Project (S-RIP), that demonstrate that stratospheric ozone fields from modern atmospheric reanalyses exhibit good agreement with independent data while delineating issues related to inhomogeneities in the assimilated observations. In this presentation, we will explore the possibility of inferring long-term geographically and vertically resolved behavior of the lower stratospheric (LS) ozone from NASA's MERRA-2 (Modern-Era Retrospective Analysis for Research and Applications -2) reanalysis after accounting for the few known discontinuities and gaps in its assimilated input data. This work builds upon previous studies that have documented excellent agreement between MERRA-2 ozone and ozonesonde observations in the LS. Of particular importance is a relatively good vertical resolution of MERRA-2 allowing precise separation of tropospheric and stratospheric ozone contents. We also compare the MERRA-2 LS ozone results with the recently completed 37-year simulation produced using Goddard Earth Observing System in "replay"� mode coupled with the GMI (Global Modeling Initiative) chemistry mechanism. Replay mode dynamically constrains the model with the MERRA-2 reanalysis winds, temperature, and pressure. We will emphasize the areas of agreement of the reanalysis and replay and interpret differences between them in the context

  12. No doubt: The climatic changes are man made; Ingen tvil: Klimaendringene er menneskeskapte

    Energy Technology Data Exchange (ETDEWEB)

    Wiggen, Guri

    2000-07-01

    The article surveys the results of Norwegian climatic and ozone research. The main conclusions are that the climatic changes are largely caused through human errors and that the present climatic changes are largely due to activities in during the last two decades. The problems of climatic change in Norway and globally and secrecy by various authorities are mentioned.

  13. Tropospheric jet response to Antarctic ozone depletion: An update with Chemistry-Climate Model Initiative (CCMI) models

    Science.gov (United States)

    Son, Seok-Woo; Han, Bo-Reum; Garfinkel, Chaim I.; Kim, Seo-Yeon; Park, Rokjin; Abraham, N. Luke; Akiyoshi, Hideharu; Archibald, Alexander T.; Butchart, N.; Chipperfield, Martyn P.; Dameris, Martin; Deushi, Makoto; Dhomse, Sandip S.; Hardiman, Steven C.; Jöckel, Patrick; Kinnison, Douglas; Michou, Martine; Morgenstern, Olaf; O’Connor, Fiona M.; Oman, Luke D.; Plummer, David A.; Pozzer, Andrea; Revell, Laura E.; Rozanov, Eugene; Stenke, Andrea; Stone, Kane; Tilmes, Simone; Yamashita, Yousuke; Zeng, Guang

    2018-05-01

    The Southern Hemisphere (SH) zonal-mean circulation change in response to Antarctic ozone depletion is re-visited by examining a set of the latest model simulations archived for the Chemistry-Climate Model Initiative (CCMI) project. All models reasonably well reproduce Antarctic ozone depletion in the late 20th century. The related SH-summer circulation changes, such as a poleward intensification of westerly jet and a poleward expansion of the Hadley cell, are also well captured. All experiments exhibit quantitatively the same multi-model mean trend, irrespective of whether the ocean is coupled or prescribed. Results are also quantitatively similar to those derived from the Coupled Model Intercomparison Project phase 5 (CMIP5) high-top model simulations in which the stratospheric ozone is mostly prescribed with monthly- and zonally-averaged values. These results suggest that the ozone-hole-induced SH-summer circulation changes are robust across the models irrespective of the specific chemistry-atmosphere-ocean coupling.

  14. The Effects of Interactive Stratospheric Chemistry on Antarctic and Southern Ocean Climate Change in an AOGCM

    Science.gov (United States)

    Li, Feng; Newman, Paul; Pawson, Steven; Waugh, Darryn

    2014-01-01

    Stratospheric ozone depletion has played a dominant role in driving Antarctic climate change in the last decades. In order to capture the stratospheric ozone forcing, many coupled atmosphere-ocean general circulation models (AOGCMs) prescribe the Antarctic ozone hole using monthly and zonally averaged ozone field. However, the prescribed ozone hole has a high ozone bias and lacks zonal asymmetry. The impacts of these biases on model simulations, particularly on Southern Ocean and the Antarctic sea ice, are not well understood. The purpose of this study is to determine the effects of using interactive stratospheric chemistry instead of prescribed ozone on Antarctic and Southern Ocean climate change in an AOGCM. We compare two sets of ensemble simulations for the 1960-2010 period using different versions of the Goddard Earth Observing System 5 - AOGCM: one with interactive stratospheric chemistry, and the other with prescribed monthly and zonally averaged ozone and 6 other stratospheric radiative species calculated from the interactive chemistry simulations. Consistent with previous studies using prescribed sea surface temperatures and sea ice concentrations, the interactive chemistry runs simulate a deeper Antarctic ozone hole and consistently larger changes in surface pressure and winds than the prescribed ozone runs. The use of a coupled atmosphere-ocean model in this study enables us to determine the impact of these surface changes on Southern Ocean circulation and Antarctic sea ice. The larger surface wind trends in the interactive chemistry case lead to larger Southern Ocean circulation trends with stronger changes in northerly and westerly surface flow near the Antarctica continent and stronger upwelling near 60S. Using interactive chemistry also simulates a larger decrease of sea ice concentrations. Our results highlight the importance of using interactive chemistry in order to correctly capture the influences of stratospheric ozone depletion on climate

  15. Climate change and transnational corporations. Analysis and trends

    International Nuclear Information System (INIS)

    1992-01-01

    In Economic and Social Council resolution 1989/25, the Council requested an analytic study of the main sectors of activity that have adverse effects on environmental preservation and the factors that determine the allocation of activities between developed and developing countries. The present report, entitled Climate Change and Transnational Corporations: Analysis and Trends, is in response to that request. The problem of global warming and the dangers it presents to global survival are being given high priority by the United Nations. Discussions are under way leading to a convention on global climate change under the auspices of United Nations intergovernmental bodies. The study was designed as a contribution to that process. It focuses on six transnational energy-producing and energy-consuming industrial sectors, in which corporate practices have a direct and major impact on the problems associated with global climate change. The sectors are fossil fuel production, transportation, electricity-generation, energy-intensive metals production, chlorofluorocarbons and other ozone-depleting chemicals, and inorganic nitrogen fertilizers. The study explores the relative differential impacts between industrialized and developing countries of each sector, and asks how each sector would have to be restructured in order to limit global climate change and ozone depletion. It concludes that major changes in the technical processes and investment patterns of the transnational corporations in those sectors would be necessary if catastrophic environmental changes are to be avoided

  16. Air Quality and Climate Change

    International Nuclear Information System (INIS)

    Colette, A.; Rouil, L.; Bessagnet, B.; Schucht, S.; Szopa, S.; Vautard, R.; Menut, L.

    2013-01-01

    Climate change and air quality are closely related: through the policy measures implemented to mitigate these major environmental threats but also through the geophysical processes that drive them. We designed, developed and implemented a comprehensive regional air quality and climate modeling System to investigate future air quality in Europe taking into account the combined pressure of future climate change and long range transport. Using the prospective scenarios of the last generation of pathways for both climate change (emissions of well mixed greenhouse gases) and air pollutants, we can provide a quantitative view into the possible future air quality in Europe. We find that ozone pollution will decrease substantially under the most stringent scenario but the efforts of the air quality legislation will be adversely compensated by the penalty of global warming and long range transport for the business as usual scenario. For particulate matter, the projected reduction of emissions efficiently reduces exposure levels. (authors)

  17. On the role of ozone feedback in the ENSO amplitude response under global warming.

    Science.gov (United States)

    Nowack, Peer J; Braesicke, Peter; Luke Abraham, N; Pyle, John A

    2017-04-28

    The El Niño-Southern Oscillation (ENSO) in the tropical Pacific Ocean is of key importance to global climate and weather. However, state-of-the-art climate models still disagree on the ENSO's response under climate change. The potential role of atmospheric ozone changes in this context has not been explored before. Here we show that differences between typical model representations of ozone can have a first-order impact on ENSO amplitude projections in climate sensitivity simulations. The vertical temperature gradient of the tropical middle-to-upper troposphere adjusts to ozone changes in the upper troposphere and lower stratosphere, modifying the Walker circulation and consequently tropical Pacific surface temperature gradients. We show that neglecting ozone changes thus results in a significant increase in the number of extreme ENSO events in our model. Climate modeling studies of the ENSO often neglect changes in ozone. We therefore highlight the need to understand better the coupling between ozone, the tropospheric circulation, and climate variability.

  18. Solar ultraviolet radiation in a changing climate

    Science.gov (United States)

    The projected large increases in damaging ultraviolet radiation as a result of global emissions of ozone-depleting substances have been forestalled by the success of the Montreal Protocol. New challenges are now arising in relation to climate change. We highlight the complex inte...

  19. Long-term changes in lower tropospheric baseline ozone concentrations: Comparing chemistry-climate models and observations at northern midlatitudes

    Science.gov (United States)

    Parrish, D. D.; Lamarque, J.-F.; Naik, V.; Horowitz, L.; Shindell, D. T.; Staehelin, J.; Derwent, R.; Cooper, O. R.; Tanimoto, H.; Volz-Thomas, A.; Gilge, S.; Scheel, H.-E.; Steinbacher, M.; Fröhlich, M.

    2014-05-01

    Two recent papers have quantified long-term ozone (O3) changes observed at northern midlatitude sites that are believed to represent baseline (here understood as representative of continental to hemispheric scales) conditions. Three chemistry-climate models (NCAR CAM-chem, GFDL-CM3, and GISS-E2-R) have calculated retrospective tropospheric O3 concentrations as part of the Atmospheric Chemistry and Climate Model Intercomparison Project and Coupled Model Intercomparison Project Phase 5 model intercomparisons. We present an approach for quantitative comparisons of model results with measurements for seasonally averaged O3 concentrations. There is considerable qualitative agreement between the measurements and the models, but there are also substantial and consistent quantitative disagreements. Most notably, models (1) overestimate absolute O3 mixing ratios, on average by 5 to 17 ppbv in the year 2000, (2) capture only 50% of O3 changes observed over the past five to six decades, and little of observed seasonal differences, and (3) capture 25 to 45% of the rate of change of the long-term changes. These disagreements are significant enough to indicate that only limited confidence can be placed on estimates of present-day radiative forcing of tropospheric O3 derived from modeled historic concentration changes and on predicted future O3 concentrations. Evidently our understanding of tropospheric O3, or the incorporation of chemistry and transport processes into current chemical climate models, is incomplete. Modeled O3 trends approximately parallel estimated trends in anthropogenic emissions of NOx, an important O3 precursor, while measured O3 changes increase more rapidly than these emission estimates.

  20. The human health chapter of climate change and ozone depletion ...

    African Journals Online (AJOL)

    Climate change is one of the greatest emerging threats of the 21st century. There is much scientific evidence that climate change is giving birth to direct health events including more frequent weather extremes, increase in epidemics, food and water scarcity. Indirect risks to health are related to changes in temperature and ...

  1. Misconceptions Surrounding Climate Change: A Review of the Literature

    Science.gov (United States)

    Templeton, C. M.; McNeal, K. S.; Libarkin, J.

    2011-12-01

    Misconceptions about climate change abound in every corner of society. The result manifests itself ranging from apprehension to total disregard for climate change conditions. According to several sources, however, a large percentage of the U. S. population do, indeed indicate some concern over global warming and climate change in general. These climate change misconceptions are numerous and include, to name a few; confusion between weather and climate, how greenhouse gases are affecting the earth, the effects of ozone depletion, earth's natural cycles, volcanic activity, nuclear waste and a host of other anthropogenic influences. This paper is a review of the current research literature relating to climate change misconceptions. These errant views will be addressed, cataloged, enumerated, and ranked to get a grasp on where the general population, politicians, scientists, and educators as well as students stand on informed climate change information. The categories where misconceptions arise have been identified in this literature review study and include the following: Natural cycles of the earth, ecological which include deforestation, urban development and any human intervention on the environment, educational - including teacher strategies, student understanding and textbook updates, emotional, ozone layer and its interactions, polar ice, political regulations, mandates and laws, pollution from human sources as well as from nature, religious beliefs and dogma and social beliefs. We suggest appropriate solutions for addressing these misconceptions, especially in the classroom setting, and broadly include available funding sources for work in climate change education. Some solutions include need for compilation of appropriate education resources and materials for public use, need for the development of educational materials that appropriately address the variety of publics, and need for programs that are conducting climate change education research and EPO work to

  2. The radiative heating response to climate change

    Science.gov (United States)

    Maycock, Amanda

    2016-04-01

    The structure and magnitude of radiative heating rates in the atmosphere can change markedly in response to climate forcings; diagnosing the causes of these changes can aid in understanding parts of the large-scale circulation response to climate change. This study separates the relative drivers of projected changes in longwave and shortwave radiative heating rates over the 21st century into contributions from radiatively active gases, such as carbon dioxide, ozone and water vapour, and from changes in atmospheric and surface temperatures. Results are shown using novel radiative diagnostics applied to timeslice experiments from the UM-UKCA chemistry-climate model; these online estimates are compared to offline radiative transfer calculations. Line-by-line calculations showing spectrally-resolved changes in heating rates due to different gases will also be presented.

  3. Quantifying the contributions to stratospheric ozone changes from ozone depleting substances and greenhouse gases

    Directory of Open Access Journals (Sweden)

    D. A. Plummer

    2010-09-01

    Full Text Available A state-of-the-art chemistry climate model coupled to a three-dimensional ocean model is used to produce three experiments, all seamlessly covering the period 1950–2100, forced by different combinations of long-lived Greenhouse Gases (GHGs and Ozone Depleting Substances (ODSs. The experiments are designed to quantify the separate effects of GHGs and ODSs on the evolution of ozone, as well as the extent to which these effects are independent of each other, by alternately holding one set of these two forcings constant in combination with a third experiment where both ODSs and GHGs vary. We estimate that up to the year 2000 the net decrease in the column amount of ozone above 20 hPa is approximately 75% of the decrease that can be attributed to ODSs due to the offsetting effects of cooling by increased CO2. Over the 21st century, as ODSs decrease, continued cooling from CO2 is projected to account for more than 50% of the projected increase in ozone above 20 hPa. Changes in ozone below 20 hPa show a redistribution of ozone from tropical to extra-tropical latitudes with an increase in the Brewer-Dobson circulation. In addition to a latitudinal redistribution of ozone, we find that the globally averaged column amount of ozone below 20 hPa decreases over the 21st century, which significantly mitigates the effect of upper stratospheric cooling on total column ozone. Analysis by linear regression shows that the recovery of ozone from the effects of ODSs generally follows the decline in reactive chlorine and bromine levels, with the exception of the lower polar stratosphere where recovery of ozone in the second half of the 21st century is slower than would be indicated by the decline in reactive chlorine and bromine concentrations. These results also reveal the degree to which GHG-related effects mute the chemical effects of N2O on ozone in the standard future scenario used for the WMO Ozone Assessment. Increases in the

  4. On the role of ozone feedback in the ENSO amplitude response under global warming

    Science.gov (United States)

    Nowack, P. J.; Braesicke, P.; Abraham, N. L.; Pyle, J. A.

    2017-12-01

    The El Niño-Southern Oscillation (ENSO) in the tropical Pacific is of key importance to global climate and weather. However, climate models still disagree on the ENSO's response under climate change. Here we show that typical model representations of ozone can have a first-order impact on ENSO amplitude projections in climate sensitivity simulations (i.e. standard abrupt 4xCO2). We mainly explain this effect by the lapse rate adjustment of the tropical troposphere to ozone changes in the upper troposphere and lower stratosphere (UTLS) under 4xCO2. The ozone-induced lapse rate changes modify the Walker circulation response to the CO2 forcing and consequently tropical Pacific surface temperature gradients. Therefore, not including ozone feedbacks increases the number of extreme ENSO events in our model. In addition, we demonstrate that even if ozone changes in the tropical UTLS are included in the simulations, the neglect of the ozone response in the middle-upper stratosphere still leads to significantly larger ENSO amplitudes (compared to simulations run with a fully interactive atmospheric chemistry scheme). Climate modeling studies of the ENSO often neglect changes in ozone. Our results imply that this could affect the inter-model spread found in ENSO projections and, more generally, surface climate change simulations. We discuss the additional complexity in quantifying such ozone-related effects that arises from the apparent model dependency of chemistry-climate feedbacks and, possibly, their range of surface climate impacts. In conclusion, we highlight the need to understand better the coupling between ozone, the tropospheric circulation, and climate variability. Reference: Nowack PJ, Braesicke P, Abraham NL, and Pyle JA (2017), On the role of ozone feedback in the ENSO amplitude response under global warming, Geophys. Res. Lett. 44, 3858-3866, doi:10.1002/2016GL072418.

  5. The relative importance of impacts from climate change vs. emissions change on air pollution levels in the 21st century

    Directory of Open Access Journals (Sweden)

    G. B. Hedegaard

    2013-04-01

    Full Text Available So far several studies have analysed the impacts of climate change on future air pollution levels. Significant changes due to impacts of climate change have been made clear. Nevertheless, these changes are not yet included in national, regional or global air pollution reduction strategies. The changes in future air pollution levels are caused by both impacts from climate change and anthropogenic emission changes, the importance of which needs to be quantified and compared. In this study we use the Danish Eulerian Hemispheric Model (DEHM driven by meteorological input data from the coupled Atmosphere-Ocean General Circulation Model ECHAM5/MPI-OM and forced with the newly developed RCP4.5 emissions. The relative importance of the climate signal and the signal from changes in anthropogenic emissions on the future ozone, black carbon (BC, total particulate matter with a diameter below 2.5 μm (total PM2.5 including BC, primary organic carbon (OC, mineral dust and secondary inorganic aerosols (SIA and total nitrogen (including NHx + NOy has been determined. For ozone, the impacts of anthropogenic emissions dominate, though a climate penalty is found in the Arctic region and northwestern Europe, where the signal from climate change dampens the effect from the projected emission reductions of anthropogenic ozone precursors. The investigated particles are even more dominated by the impacts from emission changes. For black carbon the emission signal dominates slightly at high latitudes, with an increase up to an order of magnitude larger, close to the emission sources in temperate and subtropical areas. Including all particulate matter with a diameter below 2.5 μm (total PM2.5 enhances the dominance from emissions change. In contrast, total nitrogen (NHx + NOy in parts of the Arctic and at low latitudes is dominated by impacts of climate change.

  6. The Extrapolar SWIFT model (version 1.0): fast stratospheric ozone chemistry for global climate models

    Science.gov (United States)

    Kreyling, Daniel; Wohltmann, Ingo; Lehmann, Ralph; Rex, Markus

    2018-03-01

    The Extrapolar SWIFT model is a fast ozone chemistry scheme for interactive calculation of the extrapolar stratospheric ozone layer in coupled general circulation models (GCMs). In contrast to the widely used prescribed ozone, the SWIFT ozone layer interacts with the model dynamics and can respond to atmospheric variability or climatological trends.The Extrapolar SWIFT model employs a repro-modelling approach, in which algebraic functions are used to approximate the numerical output of a full stratospheric chemistry and transport model (ATLAS). The full model solves a coupled chemical differential equation system with 55 initial and boundary conditions (mixing ratio of various chemical species and atmospheric parameters). Hence the rate of change of ozone over 24 h is a function of 55 variables. Using covariances between these variables, we can find linear combinations in order to reduce the parameter space to the following nine basic variables: latitude, pressure altitude, temperature, overhead ozone column and the mixing ratio of ozone and of the ozone-depleting families (Cly, Bry, NOy and HOy). We will show that these nine variables are sufficient to characterize the rate of change of ozone. An automated procedure fits a polynomial function of fourth degree to the rate of change of ozone obtained from several simulations with the ATLAS model. One polynomial function is determined per month, which yields the rate of change of ozone over 24 h. A key aspect for the robustness of the Extrapolar SWIFT model is to include a wide range of stratospheric variability in the numerical output of the ATLAS model, also covering atmospheric states that will occur in a future climate (e.g. temperature and meridional circulation changes or reduction of stratospheric chlorine loading).For validation purposes, the Extrapolar SWIFT model has been integrated into the ATLAS model, replacing the full stratospheric chemistry scheme. Simulations with SWIFT in ATLAS have proven that the

  7. Effect of some climatic parameters on tropospheric and total ozone ...

    Indian Academy of Sciences (India)

    Effect of some climatic parameters on tropospheric and total ozone column over Alipore (22.52°N, 88.33°E), India ... insolation obtained from Solar Geophysical Data Book and El-ñ index collected from National Climatic Data Center, US Department of Commerce, National Oceanic and Atmospheric Administration, USA.

  8. Man-made climate change: an overview

    Energy Technology Data Exchange (ETDEWEB)

    Holopainen, E [Helsinki Univ. (Finland). Dept. of Meteorology

    1996-12-31

    The first major man-made environmental problem was the soil acidification, caused primarily by the massive industrial emissions of sulphur dioxide. Then came the problem of ozone depletion, caused by the emissions of man-made halocarbons. More recently, the possibility of man-made climate change has received a lot of attention. These three man-made problems are interconnected in fundamental ways and require for their solution interdisciplinary and international approach. Narrowing of the scientific uncertainties connected with the problems mentioned above can be expected through international `Global Change` programmes such as the World Climate Research Programme (WCRP) and the International Geosphere-Biosphere Programme (IGBP). Periodic assessments of the type produced by the IPCC will clearly be needed. Also in the future such assessments should form the scientific basis for international negotiations and conventions on the climate change issue

  9. Man-made climate change: an overview

    Energy Technology Data Exchange (ETDEWEB)

    Holopainen, E. [Helsinki Univ. (Finland). Dept. of Meteorology

    1995-12-31

    The first major man-made environmental problem was the soil acidification, caused primarily by the massive industrial emissions of sulphur dioxide. Then came the problem of ozone depletion, caused by the emissions of man-made halocarbons. More recently, the possibility of man-made climate change has received a lot of attention. These three man-made problems are interconnected in fundamental ways and require for their solution interdisciplinary and international approach. Narrowing of the scientific uncertainties connected with the problems mentioned above can be expected through international `Global Change` programmes such as the World Climate Research Programme (WCRP) and the International Geosphere-Biosphere Programme (IGBP). Periodic assessments of the type produced by the IPCC will clearly be needed. Also in the future such assessments should form the scientific basis for international negotiations and conventions on the climate change issue

  10. Impacts of Interactive Stratospheric Chemistry on Antarctic and Southern Ocean Climate Change in the Goddard Earth Observing System Version 5 (GEOS-5)

    Science.gov (United States)

    Li, Feng; Vikhliaev, Yury V.; Newman, Paul A.; Pawson, Steven; Perlwitz, Judith; Waugh, Darryn W.; Douglass, Anne R.

    2016-01-01

    Stratospheric ozone depletion plays a major role in driving climate change in the Southern Hemisphere. To date, many climate models prescribe the stratospheric ozone layer's evolution using monthly and zonally averaged ozone fields. However, the prescribed ozone underestimates Antarctic ozone depletion and lacks zonal asymmetries. In this study we investigate the impact of using interactive stratospheric chemistry instead of prescribed ozone on climate change simulations of the Antarctic and Southern Ocean. Two sets of 1960-2010 ensemble transient simulations are conducted with the coupled ocean version of the Goddard Earth Observing System Model, version 5: one with interactive stratospheric chemistry and the other with prescribed ozone derived from the same interactive simulations. The model's climatology is evaluated using observations and reanalysis. Comparison of the 1979-2010 climate trends between these two simulations reveals that interactive chemistry has important effects on climate change not only in the Antarctic stratosphere, troposphere, and surface, but also in the Southern Ocean and Antarctic sea ice. Interactive chemistry causes stronger Antarctic lower stratosphere cooling and circumpolar westerly acceleration during November-December-January. It enhances stratosphere-troposphere coupling and leads to significantly larger tropospheric and surface westerly changes. The significantly stronger surface wind stress trends cause larger increases of the Southern Ocean Meridional Overturning Circulation, leading to year-round stronger ocean warming near the surface and enhanced Antarctic sea ice decrease.

  11. Climate Change Amplifications of Climate-Fire Teleconnections in the Southern Hemisphere

    Science.gov (United States)

    Mariani, Michela; Holz, Andrés.; Veblen, Thomas T.; Williamson, Grant; Fletcher, Michael-Shawn; Bowman, David M. J. S.

    2018-05-01

    Recent changes in trend and variability of the main Southern Hemisphere climate modes are driven by a variety of factors, including increasing atmospheric greenhouse gases, changes in tropical sea surface temperature, and stratospheric ozone depletion and recovery. One of the most important implications for climatic change is its effect via climate teleconnections on natural ecosystems, water security, and fire variability in proximity to populated areas, thus threatening human lives and properties. Only sparse and fragmentary knowledge of relationships between teleconnections, lightning strikes, and fire is available during the observed record within the Southern Hemisphere. This constitutes a major knowledge gap for undertaking suitable management and conservation plans. Our analysis of documentary fire records from Mediterranean and temperate regions across the Southern Hemisphere reveals a critical increased strength of climate-fire teleconnections during the onset of the 21st century including a tight coupling between lightning-ignited fire occurrences, the upward trend in the Southern Annular Mode, and rising temperatures across the Southern Hemisphere.

  12. Air Pollution and Climate Change Health Impact Assessment. The ACHIA Project

    International Nuclear Information System (INIS)

    Kinney, P.L.

    2013-01-01

    Climate change may affect human health via interactions with air pollutants such as ozone and PM 2.5 . These air pollutants are linked to climate because they can be both affected by and have effects on climate. In coming decades, substantial, cost-effective improvements in public health may be achieved with well-planned strategies to mitigate climate impacts while also reducing health effects of ozone and PM 2.5 . Climate mitigation actions affect greenhouse pollutant emissions, including methane and black carbon, but also may affect other key air pollution precursors such as NOx, CO, and SOx. To better understand the potential of such strategies, studies are needed that assess possible future health impacts under alternative assumptions about future emissions and climate across multiple spatial scales. The overall objective of this project is to apply state of the art climate, air quality, and health modelling tools to assess future health impacts of ozone and PM 2.5 under different IPCCs scenario of climate change, focusing specifically on pollution-related health co-benefits which could be achieved under alternative climate mitigation pathways in the period 2030-2050. This question will be explored at three spatial scales: global, regional (Europe), and urban (Paris). ACHIA is comprised of an integrated set of four work packages: WP1. Global Climate and Air Pollution Impacts of Alternative Emissions Pathways; WP2. Climate and Air Quality at Regional and Urban Scales: Results for Europe and Paris; WP3. Health Impact Assessment; WP4. Dissemination, Evaluation, Management. ACHIA is designed to create an interdisciplinary approach to the impacts of climate change on health through air quality changes, and to start longer-term collaborations between communities. We expect the project to advance state of art across all WPs, with important implications for research groups around the world. A particular innovation of the project is the multi-scale aspect, i.e., the

  13. Research program on climatic and environmental problems. Summary of Norwegian climatic and ozone layer research in the last decade and important research tasks in the future; Forskningsprogram om klima- og ozonspoersmaal. Oppsummering av norsk klima- og ozonlagsforskning de siste ti aarene og viktige forskningsoppgaver i framtiden

    Energy Technology Data Exchange (ETDEWEB)

    Dahlin, Elin [ed.

    1999-04-01

    This report includes 44 abstracts, 21 lectures and 23 posters from a workshop arranged by the Norwegian Research Council, the Steering Group for the Norwegian research programme for changes in climate and ozone layer. The topics dealt with are: Results from the research, the greenhouse effect and its influence on the climate of today, the interactions between ocean and climate, pollution influence on ozone layer changes, the UV radiation effects and their influence on the environment, climatic modelling and forecasting, ecological problems related to climatic and environmental changes, the climatic influences of human energy utilisation and suggestions for future research.

  14. Climate and energy

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    The dossier on Climate and Energy encompasses contributions addressing the following topics: Climate research in Germany, perspectives of the energy of the future; Energy-conserving building design, construction and retrofitting; Companies developing ecological awareness and ecological performance; World population, energy consumption and greenhouse gas abatement; On the uncertainty involved in political evaluation of the global climate change; Economic aspects of the carbon dioxide issue; Ozone - polar stratospheres - clouds and ozone hole; Ozone - vertical ozone distribution in the antarctic region; Sudden climate change; Sulfate aerosols and climate change; Symptoms of the global climate change; IKARUS - greenhouse gas abatement strategies; Energy from fossil fuels; Renewable energy sources; Nuclear fusion; Is there a chance for nuclear energy?; Least-cost planning leading to energy-conserving power plants; Pleading for a sustainable energy economy; Why we both love and destroy nature. The concluding two contributions are interviews highlighting two statements: We will persist in our intention to achieve the declared objectives for greenhouse gas abatement, and: We cannot do without nuclear energy. (RHM) [de

  15. A review of scientifc linkages and interactions between climate change and air quality, with implications for air quality management in South Africa

    Directory of Open Access Journals (Sweden)

    Tirusha Thambiran

    2010-04-01

    Full Text Available In recent years there has been considerable advancement in our scientifc understanding of the linkages and interactions between climate change and air quality. A warmer, evolving climate is likely to have severe consequences for air quality due to impacts on pollution sources and meteorology. Climate-induced changes to sources of tropospheric ozone precursor gases and to atmospheric circulation are likely to lead to changes in both the concentration and dispersion of near-surface ozone that could act to offset improvements in air quality. The control of air pollutants through air quality management is also likely to impact on climate change, with reductions in ozone, particulate matter and sulphur dioxide being of particular interest. The improved understanding of the relationship between air quality and climate change provides a scientific basis for policy interventions. After a review of the scientific linkages, the potential to include climate change considerations in air quality management planning processes in South Africa was examined.

  16. Evaluating a New Homogeneous Total Ozone Climate Data Record from GOME/ERS-2, SCIAMACHY/Envisat, and GOME-2/MetOp-A

    Science.gov (United States)

    Koukouli, M.E.; Lerot, C.; Granville, J.; Goutail, F.; Lambert, J.-C.; Pommereau, J.-P.; Balis, D.; Zyrichidou, I.; Van Roozendael, M.; Coldewey-Egbers, M.; hide

    2015-01-01

    The European Space Agency's Ozone Climate Change Initiative (O3-CCI) project aims at producing and validating a number of high-quality ozone data products generated from different satellite sensors. For total ozone, the O3-CCI approach consists of minimizing sources of bias and systematic uncertainties by applying a common retrieval algorithm to all level 1 data sets, in order to enhance the consistency between the level 2 data sets from individual sensors. Here we present the evaluation of the total ozone products from the European sensors Global Ozone Monitoring Experiment (GOME)/ERS-2, SCIAMACHY/Envisat, and GOME-2/MetOp-A produced with the GOME-type Direct FITting (GODFIT) algorithm v3. Measurements from the three sensors span more than 16 years, from 1996 to 2012. In this work, we present the latest O3-CCI total ozone validation results using as reference ground-based measurements from Brewer and Dobson spectrophotometers archived at the World Ozone and UV Data Centre of the World Meteorological Organization as well as from UV-visible differential optical absorption spectroscopy (DOAS)/Système D'Analyse par Observations Zénithales (SAOZ) instruments from the Network for the Detection of Atmospheric Composition Change. In particular, we investigate possible dependencies in these new GODFIT v3 total ozone data sets with respect to latitude, season, solar zenith angle, and different cloud parameters, using the most adequate type of ground-based instrument. We show that these three O3-CCI total ozone data products behave very similarly and are less sensitive to instrumental degradation, mainly as a result of the new reflectance soft-calibration scheme. The mean bias to the ground-based observations is found to be within the 1 plus or minus 1 percent level for all three sensors while the near-zero decadal stability of the total ozone columns (TOCs) provided by the three European instruments falls well within the 1-3 percent requirement of the European Space

  17. Tropospheric Ozone Assessment Report: Present-day distribution and trends of tropospheric ozone relevant to climate and global atmospheric chemistry model evaluation

    Directory of Open Access Journals (Sweden)

    A. Gaudel

    2018-05-01

    Full Text Available 'The Tropospheric Ozone Assessment Report' (TOAR is an activity of the International Global Atmospheric Chemistry Project. This paper is a component of the report, focusing on the present-day distribution and trends of tropospheric ozone relevant to climate and global atmospheric chemistry model evaluation. Utilizing the TOAR surface ozone database, several figures present the global distribution and trends of daytime average ozone at 2702 non-urban monitoring sites, highlighting the regions and seasons of the world with the greatest ozone levels. Similarly, ozonesonde and commercial aircraft observations reveal ozone’s distribution throughout the depth of the free troposphere. Long-term surface observations are limited in their global spatial coverage, but data from remote locations indicate that ozone in the 21st century is greater than during the 1970s and 1980s. While some remote sites and many sites in the heavily polluted regions of East Asia show ozone increases since 2000, many others show decreases and there is no clear global pattern for surface ozone changes since 2000. Two new satellite products provide detailed views of ozone in the lower troposphere across East Asia and Europe, revealing the full spatial extent of the spring and summer ozone enhancements across eastern China that cannot be assessed from limited surface observations. Sufficient data are now available (ozonesondes, satellite, aircraft across the tropics from South America eastwards to the western Pacific Ocean, to indicate a likely tropospheric column ozone increase since the 1990s. The 2014–2016 mean tropospheric ozone burden (TOB between 60°N–60°S from five satellite products is 300 Tg ± 4%. While this agreement is excellent, the products differ in their quantification of TOB trends and further work is required to reconcile the differences. Satellites can now estimate ozone’s global long-wave radiative effect, but evaluation is difficult due to limited

  18. Reconciliation of Halogen-Induced Ozone Loss with the Total-Column Ozone Record

    Science.gov (United States)

    Shepherd, T. G.; Plummer, D. A.; Scinocca, J. F.; Hegglin, M. I.; Fioletov, V. E.; Reader, M. C.; Remsberg, E.; von Clarmann, T.; Wang, H. J.

    2014-01-01

    The observed depletion of the ozone layer from the 1980s onwards is attributed to halogen source gases emitted by human activities. However, the precision of this attribution is complicated by year-to-year variations in meteorology, that is, dynamical variability, and by changes in tropospheric ozone concentrations. As such, key aspects of the total-column ozone record, which combines changes in both tropospheric and stratospheric ozone, remain unexplained, such as the apparent absence of a decline in total-column ozone levels before 1980, and of any long-term decline in total-column ozone levels in the tropics. Here we use a chemistry-climate model to estimate changes in halogen-induced ozone loss between 1960 and 2010; the model is constrained by observed meteorology to remove the eects of dynamical variability, and driven by emissions of tropospheric ozone precursors to separate out changes in tropospheric ozone. We show that halogen-induced ozone loss closely followed stratospheric halogen loading over the studied period. Pronounced enhancements in ozone loss were apparent in both hemispheres following the volcanic eruptions of El Chichon and, in particular, Mount Pinatubo, which significantly enhanced stratospheric aerosol loads. We further show that approximately 40% of the long-term non-volcanic ozone loss occurred before 1980, and that long-term ozone loss also occurred in the tropical stratosphere. Finally, we show that halogeninduced ozone loss has declined by over 10% since stratospheric halogen loading peaked in the late 1990s, indicating that the recovery of the ozone layer is well underway.

  19. The extrapolar SWIFT-model: Fast stratospheric ozone chemistry for global climate models

    OpenAIRE

    Kreyling, Daniel

    2016-01-01

    The goal of this PhD-thesis was the development of a fast yet accurate chemistry scheme for an interactive calculation of the extrapolar stratospheric ozone layer. The SWIFT-model is mainly intended for use in Global Climate Models (GCMs). For computing-time reasons GCMs often do not employ full stratospheric chemistry modules, but use prescribed ozone instead. This method does not consider the interaction between atmospheric dynamics and the ozone layer and can neither resolve the inter-annu...

  20. The effect of future outdoor air pollution on human health and the contribution of climate change

    Science.gov (United States)

    Silva, R.; West, J. J.; Lamarque, J.; Shindell, D.; Collins, W.; Dalsoren, S. B.; Faluvegi, G. S.; Folberth, G.; Horowitz, L. W.; Nagashima, T.; Naik, V.; Rumbold, S.; Skeie, R.; Sudo, K.; Takemura, T.; Bergmann, D. J.; Cameron-Smith, P. J.; Cionni, I.; Doherty, R. M.; Eyring, V.; Josse, B.; MacKenzie, I. A.; Plummer, D.; Righi, M.; Stevenson, D. S.; Strode, S. A.; Szopa, S.; Zeng, G.

    2013-12-01

    At present, exposure to outdoor air pollution from ozone and fine particulate matter (PM2.5) causes over 2 million deaths per year, due to respiratory and cardiovascular diseases and lung cancer. Future ambient concentrations of ozone and PM2.5 will be affected by both air pollutant emissions and climate change. Here we estimate the potential impact of future outdoor air pollution on premature human mortality, and isolate the contribution of future climate change due to its effect on air quality. We use modeled present-day (2000) and future global ozone and PM2.5 concentrations from simulations with an ensemble of chemistry-climate models from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Future air pollution was modeled for global greenhouse gas and air pollutant emissions in the four IPCC AR5 Representative Concentration Pathway (RCP) scenarios, for 2030, 2050 and 2100. All model outputs are regridded to a common 0.5°x0.5° horizontal resolution. Future premature mortality is estimated for each RCP scenario and year based on changes in concentrations of ozone and PM2.5 relative to 2000. Using a health impact function, changes in concentrations for each RCP scenario are combined with future population and cause-specific baseline mortality rates as projected by a single independent scenario in which the global incidence of cardiopulmonary diseases is expected to increase. The effect of climate change is isolated by considering the difference between air pollutant concentrations from simulations with 2000 emissions and a future year climate and simulations with 2000 emissions and climate. Uncertainties in the results reflect the uncertainty in the concentration-response function and that associated with variability among models. Few previous studies have quantified the effects of future climate change on global human health via changes in air quality, and this is the first such study to use an ensemble of global models.

  1. Projections of UV radiation changes in the 21st century: impact of ozone recovery and cloud effects

    Directory of Open Access Journals (Sweden)

    A. F. Bais

    2011-08-01

    Full Text Available Monthly averaged surface erythemal solar irradiance (UV-Ery for local noon from 1960 to 2100 has been derived using radiative transfer calculations and projections of ozone, temperature and cloud change from 14 chemistry climate models (CCM, as part of the CCMVal-2 activity of SPARC. Our calculations show the influence of ozone depletion and recovery on erythemal irradiance. In addition, we investigate UV-Ery changes caused by climate change due to increasing greenhouse gas concentrations. The latter include effects of both stratospheric ozone and cloud changes. The derived estimates provide a global picture of the likely changes in erythemal irradiance during the 21st century. Uncertainties arise from the assumed scenarios, different parameterizations – particularly of cloud effects on UV-Ery – and the spread in the CCM projections. The calculations suggest that relative to 1980, annually mean UV-Ery in the 2090s will be on average ~12 % lower at high latitudes in both hemispheres, ~3 % lower at mid latitudes, and marginally higher (~1 % in the tropics. The largest reduction (~16 % is projected for Antarctica in October. Cloud effects are responsible for 2–3 % of the reduction in UV-Ery at high latitudes, but they slightly moderate it at mid-latitudes (~1 %. The year of return of erythemal irradiance to values of certain milestones (1965 and 1980 depends largely on the return of column ozone to the corresponding levels and is associated with large uncertainties mainly due to the spread of the model projections. The inclusion of cloud effects in the calculations has only a small effect of the return years. At mid and high latitudes, changes in clouds and stratospheric ozone transport by global circulation changes due to greenhouse gases will sustain the erythemal irradiance at levels below those in 1965, despite the removal of ozone depleting substances. At northern high latitudes (60°–90°, the projected decreases in cloud

  2. Climate-driven ground-level ozone extreme in the fall over the Southeast United States.

    Science.gov (United States)

    Zhang, Yuzhong; Wang, Yuhang

    2016-09-06

    Ground-level ozone is adverse to human and vegetation health. High ground-level ozone concentrations usually occur over the United States in the summer, often referred to as the ozone season. However, observed monthly mean ozone concentrations in the southeastern United States were higher in October than July in 2010. The October ozone average in 2010 reached that of July in the past three decades (1980-2010). Our analysis shows that this extreme October ozone in 2010 over the Southeast is due in part to a dry and warm weather condition, which enhances photochemical production, air stagnation, and fire emissions. Observational evidence and modeling analysis also indicate that another significant contributor is enhanced emissions of biogenic isoprene, a major ozone precursor, from water-stressed plants under a dry and warm condition. The latter finding is corroborated by recent laboratory and field studies. This climate-induced biogenic control also explains the puzzling fact that the two extremes of high October ozone both occurred in the 2000s when anthropogenic emissions were lower than the 1980s and 1990s, in contrast to the observed decreasing trend of July ozone in the region. The occurrences of a drying and warming fall, projected by climate models, will likely lead to more active photochemistry, enhanced biogenic isoprene and fire emissions, an extension of the ozone season from summer to fall, and an increase of secondary organic aerosols in the Southeast, posing challenges to regional air quality management.

  3. Modelling the regional effects of climate change on air quality

    International Nuclear Information System (INIS)

    Giorgi, F.; Meleux, F.

    2007-01-01

    The life cycle of pollutants is affected by chemical as well as meteorological factors, such as wind, temperature, precipitation, solar radiation. Therefore, climatic changes induced by anthropogenic emissions of greenhouse gases may be expected to have significant effects on air quality. Because of the spatial variability of the pollutant emissions and climate-change signals, these effects are particularly relevant at the regional to local scales. This paper first briefly reviews modelling tools and methodologies used to study regional climate-change impacts on air quality. Patterns of regional precipitation, temperature, and sea-level changes emerging from the latest set of general circulation model projections are then discussed. Finally, the specific case of climate-change effects on summer ozone concentrations over Europe is presented to illustrate the potential impacts of climate change on pollutant amounts. It is concluded that climate change is an important factor that needs to be taken into account when designing future pollution-reduction policies. (authors)

  4. The Interplay of Climate Change and Air Pollution on Health

    OpenAIRE

    Orru, H.; Ebi, K. L.; Forsberg, B.

    2017-01-01

    Purpose of review: Air pollution significantly affects health, causing up to 7 million premature deaths annually with an even larger number of hospitalizations and days of sick leave. Climate change could alter the dispersion of primary pollutants, particularly particulate matter, and intensify the formation of secondary pollutants, such as near-surface ozone. The purpose of the review is to evaluate the recent evidence on the impacts of climate change on air pollution and air pollution-relat...

  5. Analysis of European ozone trends in the period 1995-2014

    Science.gov (United States)

    Yan, Yingying; Pozzer, Andrea; Ojha, Narendra; Lin, Jintai; Lelieveld, Jos

    2018-04-01

    Surface-based measurements from the EMEP and Airbase networks are used to estimate the changes in surface ozone levels during the 1995-2014 period over Europe. We find significant ozone enhancements (0.20-0.59 µg m-3 yr-1 for the annual means; P-value climate model EMAC, the importance of anthropogenic emissions changes in determining these changes over background sites are investigated. The EMAC model is found to successfully capture the observed temporal variability in mean ozone concentrations, as well as the contrast in the trends of 95th and 5th percentile ozone over Europe. Sensitivity simulations and statistical analysis show that a decrease in European anthropogenic emissions had contrasting effects on surface ozone trends between the 95th and 5th percentile levels and that background ozone levels have been influenced by hemispheric transport, while climate variability generally regulated the inter-annual variations of surface ozone in Europe.

  6. Downscaling a global climate model to simulate climate change over the US and the implication on regional and urban air quality

    Directory of Open Access Journals (Sweden)

    M. Trail

    2013-09-01

    Full Text Available Climate change can exacerbate future regional air pollution events by making conditions more favorable to form high levels of ozone. In this study, we use spectral nudging with the Weather Research and Forecasting (WRF model to downscale NASA earth system GISS modelE2 results during the years 2006 to 2010 and 2048 to 2052 over the contiguous United States in order to compare the resulting meteorological fields from the air quality perspective during the four seasons of five-year historic and future climatological periods. GISS results are used as initial and boundary conditions by the WRF regional climate model (RCM to produce hourly meteorological fields. The downscaling technique and choice of physics parameterizations used are evaluated by comparing them with in situ observations. This study investigates changes of similar regional climate conditions down to a 12 km by 12 km resolution, as well as the effect of evolving climate conditions on the air quality at major US cities. The high-resolution simulations produce somewhat different results than the coarse-resolution simulations in some regions. Also, through the analysis of the meteorological variables that most strongly influence air quality, we find consistent changes in regional climate that would enhance ozone levels in four regions of the US during fall (western US, Texas, northeastern, and southeastern US, one region during summer (Texas, and one region where changes potentially would lead to better air quality during spring (Northeast. Changes in regional climate that would enhance ozone levels are increased temperatures and stagnation along with decreased precipitation and ventilation. We also find that daily peak temperatures tend to increase in most major cities in the US, which would increase the risk of health problems associated with heat stress. Future work will address a more comprehensive assessment of emissions and chemistry involved in the formation and removal of air

  7. The increased atmospheric greenhouse effect and regional climate change

    Energy Technology Data Exchange (ETDEWEB)

    Groenaas, S. [Bergen Univ. (Norway)

    1996-03-01

    This paper was read at the workshop ``The Norwegian Climate and Ozone Research Programme`` held on 11-12 March 1996. The main information for predicting future climate changes comes from integrating coupled climate models of the atmosphere, ocean and cryosphere. Regional climate change may be studied from the global integrations, however, resolution is coarse because of insufficient computer power. Attempts are being made to get more regional details out of the global integrations by ``downscaling`` the latter. This can be done in two ways. Firstly, limited area models with high resolution are applied, driven by the global results as boundary values. Secondly, statistical relationships have been found between observed meteorological parameters, like temperature and precipitation, and analyzed large scale gridded fields. The derived relations are then used on similar data from climate runs to give local interpretations. A review is given of literature on recent observations of climate variations and on predicted regional climate change. 18 refs., 4 figs.

  8. Stratospheric ozone measurements at Arosa (Switzerland): history and scientific relevance

    Science.gov (United States)

    Staehelin, Johannes; Viatte, Pierre; Stübi, Rene; Tummon, Fiona; Peter, Thomas

    2018-05-01

    Climatic Observatory (LKO) in Arosa (Switzerland), marking the beginning of the world's longest series of total (or column) ozone measurements. They were driven by the recognition that atmospheric ozone is important for human health, as well as by scientific curiosity about what was, at the time, an ill characterised atmospheric trace gas. From around the mid-1950s to the beginning of the 1970s studies of high atmosphere circulation patterns that could improve weather forecasting was justification for studying stratospheric ozone. In the mid-1970s, a paradigm shift occurred when it became clear that the damaging effects of anthropogenic ozone-depleting substances (ODSs), such as long-lived chlorofluorocarbons, needed to be documented. This justified continuing the ground-based measurements of stratospheric ozone. Levels of ODSs peaked around the mid-1990s as a result of a global environmental policy to protect the ozone layer, implemented through the 1987 Montreal Protocol and its subsequent amendments and adjustments. Consequently, chemical destruction of stratospheric ozone started to slow around the mid-1990s. To some extent, this raises the question as to whether continued ozone observation is indeed necessary. In the last decade there has been a tendency to reduce the costs associated with making ozone measurements globally including at Arosa. However, the large natural variability in ozone on diurnal, seasonal, and interannual scales complicates the capacity for demonstrating the success of the Montreal Protocol. Chemistry-climate models also predict a super-recovery of the ozone layer at mid-latitudes in the second half of this century, i.e. an increase of ozone concentrations beyond pre-1970 levels, as a consequence of ongoing climate change. These factors, and identifying potentially unexpected stratospheric responses to climate change, support the continued need to document stratospheric ozone changes. This is particularly valuable at the Arosa site, due

  9. Climate change: challenges and opportunities for global health.

    Science.gov (United States)

    Patz, Jonathan A; Frumkin, Howard; Holloway, Tracey; Vimont, Daniel J; Haines, Andrew

    2014-10-15

    Health is inextricably linked to climate change. It is important for clinicians to understand this relationship in order to discuss associated health risks with their patients and to inform public policy. To provide new US-based temperature projections from downscaled climate modeling and to review recent studies on health risks related to climate change and the cobenefits of efforts to mitigate greenhouse gas emissions. We searched PubMed and Google Scholar from 2009 to 2014 for articles related to climate change and health, focused on governmental reports, predictive models, and empirical epidemiological studies. Of the more than 250 abstracts reviewed, 56 articles were selected. In addition, we analyzed climate data averaged over 13 climate models and based future projections on downscaled probability distributions of the daily maximum temperature for 2046-2065. We also compared maximum daily 8-hour average ozone with air temperature data taken from the National Oceanic and Atmospheric Administration, National Climate Data Center. By 2050, many US cities may experience more frequent extreme heat days. For example, New York and Milwaukee may have 3 times their current average number of days hotter than 32°C (90°F). High temperatures are also strongly associated with ozone exceedance days, for example, in Chicago, Illinois. The adverse health aspects related to climate change may include heat-related disorders, such as heat stress and economic consequences of reduced work capacity; respiratory disorders, including those exacerbated by air pollution and aeroallergens, such as asthma; infectious diseases, including vectorborne diseases and waterborne diseases, such as childhood gastrointestinal diseases; food insecurity, including reduced crop yields and an increase in plant diseases; and mental health disorders, such as posttraumatic stress disorder and depression, that are associated with natural disasters. Substantial health and economic cobenefits could be

  10. Implic ations of climate change and deforestation on behavioural ...

    African Journals Online (AJOL)

    Indiscriminate forest exploitation leads to deforestation also, release of CO2 and other pollutants tampers with ozone layer which has been acting as a big umbrella against ultraviolet radiation. This paper discusses effects of climate change and deforestation on physical environment as they affect animal population, ...

  11. Review: The impact of changing human environment and climate ...

    African Journals Online (AJOL)

    The impact of human-induced climate change through industrialization with the consequent depletion of the ozone layer of the environment is now observed to compromise the sustainability of human development as it threatens the ecological support system on which life depends in addition to encouraging the emergence ...

  12. A vertically resolved, global, gap-free ozone database for assessing or constraining global climate model simulations

    Directory of Open Access Journals (Sweden)

    G. E. Bodeker

    2013-02-01

    Full Text Available High vertical resolution ozone measurements from eight different satellite-based instruments have been merged with data from the global ozonesonde network to calculate monthly mean ozone values in 5° latitude zones. These ''Tier 0'' ozone number densities and ozone mixing ratios are provided on 70 altitude levels (1 to 70 km and on 70 pressure levels spaced ~ 1 km apart (878.4 hPa to 0.046 hPa. The Tier 0 data are sparse and do not cover the entire globe or altitude range. To provide a gap-free database, a least squares regression model is fitted to the Tier 0 data and then evaluated globally. The regression model fit coefficients are expanded in Legendre polynomials to account for latitudinal structure, and in Fourier series to account for seasonality. Regression model fit coefficient patterns, which are two dimensional fields indexed by latitude and month of the year, from the N-th vertical level serve as an initial guess for the fit at the N + 1-th vertical level. The initial guess field for the first fit level (20 km/58.2 hPa was derived by applying the regression model to total column ozone fields. Perturbations away from the initial guess are captured through the Legendre and Fourier expansions. By applying a single fit at each level, and using the approach of allowing the regression fits to change only slightly from one level to the next, the regression is less sensitive to measurement anomalies at individual stations or to individual satellite-based instruments. Particular attention is paid to ensuring that the low ozone abundances in the polar regions are captured. By summing different combinations of contributions from different regression model basis functions, four different ''Tier 1'' databases have been compiled for different intended uses. This database is suitable for assessing ozone fields from chemistry-climate model simulations or for providing the ozone boundary conditions for global climate model simulations that do not

  13. Global health and economic impacts of future ozone pollution

    International Nuclear Information System (INIS)

    Selin, N E; Nam, K M; Reilly, J M; Paltsev, S; Prinn, R G; Webster, M D; Wu, S

    2009-01-01

    We assess the human health and economic impacts of projected 2000-2050 changes in ozone pollution using the MIT Emissions Prediction and Policy Analysis - Health Effects (EPPA-HE) model, in combination with results from the GEOS-Chem global tropospheric chemistry model of climate and chemistry effects of projected future emissions. We use EPPA-HE to assess the human health damages (including mortality and morbidity) caused by ozone pollution, and quantify their economic impacts in sixteen world regions. We compare the costs of ozone pollution under scenarios with 2000 and 2050 ozone precursor and greenhouse gas emissions (using the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A1B scenario). We estimate that health costs due to global ozone pollution above pre-industrial levels by 2050 will be $580 billion (year 2000$) and that mortalities from acute exposure will exceed 2 million. We find that previous methodologies underestimate costs of air pollution by more than a third because they do not take into account the long-term, compounding effects of health costs. The economic effects of emissions changes far exceed the influence of climate alone.

  14. Impact of preindustrial to present-day changes in short-lived pollutant emissions on atmospheric composition and climate forcing

    Science.gov (United States)

    Naik, Vaishali; Horowitz, Larry W.; Fiore, Arlene M.; Ginoux, Paul; Mao, Jingqiu; Aghedo, Adetutu M.; Levy, Hiram

    2013-07-01

    We describe and evaluate atmospheric chemistry in the newly developed Geophysical Fluid Dynamics Laboratory chemistry-climate model (GFDL AM3) and apply it to investigate the net impact of preindustrial (PI) to present (PD) changes in short-lived pollutant emissions (ozone precursors, sulfur dioxide, and carbonaceous aerosols) and methane concentration on atmospheric composition and climate forcing. The inclusion of online troposphere-stratosphere interactions, gas-aerosol chemistry, and aerosol-cloud interactions (including direct and indirect aerosol radiative effects) in AM3 enables a more complete representation of interactions among short-lived species, and thus their net climate impact, than was considered in previous climate assessments. The base AM3 simulation, driven with observed sea surface temperature (SST) and sea ice cover (SIC) over the period 1981-2007, generally reproduces the observed mean magnitude, spatial distribution, and seasonal cycle of tropospheric ozone and carbon monoxide. The global mean aerosol optical depth in our base simulation is within 5% of satellite measurements over the 1982-2006 time period. We conduct a pair of simulations in which only the short-lived pollutant emissions and methane concentrations are changed from PI (1860) to PD (2000) levels (i.e., SST, SIC, greenhouse gases, and ozone-depleting substances are held at PD levels). From the PI to PD, we find that changes in short-lived pollutant emissions and methane have caused the tropospheric ozone burden to increase by 39% and the global burdens of sulfate, black carbon, and organic carbon to increase by factors of 3, 2.4, and 1.4, respectively. Tropospheric hydroxyl concentration decreases by 7%, showing that increases in OH sinks (methane, carbon monoxide, nonmethane volatile organic compounds, and sulfur dioxide) dominate over sources (ozone and nitrogen oxides) in the model. Combined changes in tropospheric ozone and aerosols cause a net negative top

  15. The climatic change

    International Nuclear Information System (INIS)

    Calvo Redondo, A.; Rodriguez Eustaquio, A.; Sanchez y Llorente, J.M.; Luis y Hernandez, S.; Panero Santos, C.; Gomez Cubero, J.A.; Arias-Camison Hernandez, J.C.

    1994-01-01

    This paper has been developed to show how the future of the climate of our planet could become. The factors that takes places in this possible change are also carefully explained. The human action over the environment is probably disturbing the atmospheric system. The processes that involves this perturbations are shown: pollution, fires in hugh regions such as Amazonia Central Australia, Central and East Africa and some others. Factors like these seems are destroying the ozone shell. We also explain the problems to be sure that the expectatives for the future are reliable. Finally, we propose some solutions for this situation. Special situations like nuclear winter or the desertization are also included. (Author)

  16. Multi-model assessment of stratospheric ozone return dates and ozone recovery in CCMVal-2 models

    Directory of Open Access Journals (Sweden)

    V. Eyring

    2010-10-01

    Full Text Available Projections of stratospheric ozone from a suite of chemistry-climate models (CCMs have been analyzed. In addition to a reference simulation where anthropogenic halogenated ozone depleting substances (ODSs and greenhouse gases (GHGs vary with time, sensitivity simulations with either ODS or GHG concentrations fixed at 1960 levels were performed to disaggregate the drivers of projected ozone changes. These simulations were also used to assess the two distinct milestones of ozone returning to historical values (ozone return dates and ozone no longer being influenced by ODSs (full ozone recovery. The date of ozone returning to historical values does not indicate complete recovery from ODSs in most cases, because GHG-induced changes accelerate or decelerate ozone changes in many regions. In the upper stratosphere where CO2-induced stratospheric cooling increases ozone, full ozone recovery is projected to not likely have occurred by 2100 even though ozone returns to its 1980 or even 1960 levels well before (~2025 and 2040, respectively. In contrast, in the tropical lower stratosphere ozone decreases continuously from 1960 to 2100 due to projected increases in tropical upwelling, while by around 2040 it is already very likely that full recovery from the effects of ODSs has occurred, although ODS concentrations are still elevated by this date. In the midlatitude lower stratosphere the evolution differs from that in the tropics, and rather than a steady decrease in ozone, first a decrease in ozone is simulated from 1960 to 2000, which is then followed by a steady increase through the 21st century. Ozone in the midlatitude lower stratosphere returns to 1980 levels by ~2045 in the Northern Hemisphere (NH and by ~2055 in the Southern Hemisphere (SH, and full ozone recovery is likely reached by 2100 in both hemispheres. Overall, in all regions except the tropical lower stratosphere, full ozone recovery from ODSs occurs significantly later than the

  17. Quality assessment of the Ozone_cci Climate Research Data Package (release 2017) - Part 1: Ground-based validation of total ozone column data products

    Science.gov (United States)

    Garane, Katerina; Lerot, Christophe; Coldewey-Egbers, Melanie; Verhoelst, Tijl; Elissavet Koukouli, Maria; Zyrichidou, Irene; Balis, Dimitris S.; Danckaert, Thomas; Goutail, Florence; Granville, Jose; Hubert, Daan; Keppens, Arno; Lambert, Jean-Christopher; Loyola, Diego; Pommereau, Jean-Pierre; Van Roozendael, Michel; Zehner, Claus

    2018-03-01

    The GOME-type Total Ozone Essential Climate Variable (GTO-ECV) is a level-3 data record, which combines individual sensor products into one single cohesive record covering the 22-year period from 1995 to 2016, generated in the frame of the European Space Agency's Climate Change Initiative Phase II. It is based on level-2 total ozone data produced by the GODFIT (GOME-type Direct FITting) v4 algorithm as applied to the GOME/ERS-2, OMI/Aura, SCIAMACHY/Envisat and GOME-2/Metop-A and Metop-B observations. In this paper we examine whether GTO-ECV meets the specific requirements set by the international climate-chemistry modelling community for decadal stability long-term and short-term accuracy. In the following, we present the validation of the 2017 release of the Climate Research Data Package Total Ozone Column (CRDP TOC) at both level 2 and level 3. The inter-sensor consistency of the individual level-2 data sets has mean differences generally within 0.5 % at moderate latitudes (±50°), whereas the level-3 data sets show mean differences with respect to the OMI reference data record that span between -0.2 ± 0.9 % (for GOME-2B) and 1.0 ± 1.4 % (for SCIAMACHY). Very similar findings are reported for the level-2 validation against independent ground-based TOC observations reported by Brewer, Dobson and SAOZ instruments: the mean bias between GODFIT v4 satellite TOC and the ground instrument is well within 1.0 ± 1.0 % for all sensors, the drift per decade spans between -0.5 % and 1.0 ± 1.0 % depending on the sensor, and the peak-to-peak seasonality of the differences ranges from ˜ 1 % for GOME and OMI to ˜ 2 % for SCIAMACHY. For the level-3 validation, our first goal was to show that the level-3 CRDP produces findings consistent with the level-2 individual sensor comparisons. We show a very good agreement with 0.5 to 2 % peak-to-peak amplitude for the monthly mean difference time series and a negligible drift per decade of the differences in the Northern Hemisphere

  18. Inter- and intra-specific responses to elevated ozone and chamber climate in northern birches.

    Science.gov (United States)

    Manninen, S; Huttunen, S; Vanhatalo, M; Pakonen, T; Hämäläinen, A

    2009-05-01

    We studied the responses of micropropagated, northern provenances of downy, mountain and silver birches to elevated ozone (O(3)) and changing climate using open-top chambers (OTCs). Contrary to our hypothesis, northern birches were sensitive to O(3), i.e. O(3) levels of 31-36 ppb reduced the leaf and root biomasses by -10%, whereas wood biomass was affected to a lesser extent. The warmer and drier OTC climate enhanced growth in general, though there were differences among the species and clones, e.g. in bud burst and biomass production. Inter- and intra-specific responses to O(3) and changing climate relate to traits such as allocation patterns between the above- and belowground parts (i.e. root/shoot ratio), which further relate to nutrient and water economy. Our experiments may have mimicked future conditions quite well, but only long-term field studies can yield the information needed to forecast responses at both tree and ecosystem levels.

  19. Source attribution of tropospheric ozone

    Science.gov (United States)

    Butler, T. M.

    2015-12-01

    Tropospheric ozone is a harmful pollutant with adverse effects on human health and ecosystems. As well as these effects, tropospheric ozone is also a powerful greenhouse gas, with an anthropogenic radiative forcing one quarter of that of CO2. Along with methane and atmospheric aerosol, tropospheric ozone belongs to the so-called Short Lived Climate forcing Pollutants, or SLCP. Recent work has shown that efforts to reduce concentrations of SLCP in the atmosphere have the potential to slow the rate of near-term climate change, while simultaneously improving public health and reducing crop losses. Unlike many other SLCP, tropospehric ozone is not directly emitted, but is instead influenced by two distinct sources: transport of air from the ozone-rich stratosphere; and photochemical production in the troposphere from the emitted precursors NOx (oxides of nitrogen), CO (Carbon Monoxide), and VOC (volatile organic compounds, including methane). Better understanding of the relationship between ozone production and the emissions of its precursors is essential for the development of targeted emission reduction strategies. Several modeling methods have been employed to relate the production of tropospheric ozone to emissions of its precursors; emissions perturbation, tagging, and adjoint sensitivity methods all deliver complementary information about modelled ozone production. Most studies using tagging methods have focused on attribution of tropospheric ozone production to emissions of NOx, even though perturbation methods have suggested that tropospheric ozone is also sensitive to VOC, particularly methane. In this study we describe the implementation into a global chemistry-climate model of a scheme for tagging emissions of NOx and VOC with an arbitrary number of labels, which are followed through the chemical reactions of tropospheric ozone production in order to perform attribution of tropospehric ozone to its emitted precursors. Attribution is performed to both

  20. Radiative forcing and climate metrics for ozone precursor emissions: the impact of multi-model averaging

    Directory of Open Access Journals (Sweden)

    C. R. MacIntosh

    2015-04-01

    Full Text Available Multi-model ensembles are frequently used to assess understanding of the response of ozone and methane lifetime to changes in emissions of ozone precursors such as NOx, VOCs (volatile organic compounds and CO. When these ozone changes are used to calculate radiative forcing (RF (and climate metrics such as the global warming potential (GWP and global temperature-change potential (GTP there is a methodological choice, determined partly by the available computing resources, as to whether the mean ozone (and methane concentration changes are input to the radiation code, or whether each model's ozone and methane changes are used as input, with the average RF computed from the individual model RFs. We use data from the Task Force on Hemispheric Transport of Air Pollution source–receptor global chemical transport model ensemble to assess the impact of this choice for emission changes in four regions (East Asia, Europe, North America and South Asia. We conclude that using the multi-model mean ozone and methane responses is accurate for calculating the mean RF, with differences up to 0.6% for CO, 0.7% for VOCs and 2% for NOx. Differences of up to 60% for NOx 7% for VOCs and 3% for CO are introduced into the 20 year GWP. The differences for the 20 year GTP are smaller than for the GWP for NOx, and similar for the other species. However, estimates of the standard deviation calculated from the ensemble-mean input fields (where the standard deviation at each point on the model grid is added to or subtracted from the mean field are almost always substantially larger in RF, GWP and GTP metrics than the true standard deviation, and can be larger than the model range for short-lived ozone RF, and for the 20 and 100 year GWP and 100 year GTP. The order of averaging has most impact on the metrics for NOx, as the net values for these quantities is the residual of the sum of terms of opposing signs. For example, the standard deviation for the 20 year GWP is 2–3

  1. Characterizing the impact of projected changes in climate and ...

    Science.gov (United States)

    The impact of climate change on human and environmental health is of critical concern. Population exposures to air pollutants both indoors and outdoors are influenced by a wide range of air quality, meteorological, behavioral, and housing-related factors, many of which are also impacted by climate change. An integrated methodology for modeling changes in human exposures to tropospheric ozone (O3) owing to potential future changes in climate and demographics was implemented by linking existing modeling tools for climate, weather, air quality, population distribution, and human exposure. Human exposure results from the Air Pollutants Exposure Model (APEX) for 12 US cities show differences in daily maximum 8-h (DM8H) exposure patterns and levels by sex, age, and city for all scenarios. When climate is held constant and population demographics are varied, minimal difference in O3 exposures is predicted even with the most extreme demographic change scenario. In contrast, when population is held constant, we see evidence of substantial changes in O3 exposure for the most extreme change in climate. Similarly, we see increases in the percentage of the population in each city with at least one O3 exposure exceedance above 60 p.p.b and 70 p.p.b thresholds for future changes in climate. For these climate and population scenarios, the impact of projected changes in climate and air quality on human exposure to O3 are much larger than the impacts of changing demographics.

  2. Responses of Surface Ozone Air Quality to Anthropogenic Nitrogen Deposition

    Science.gov (United States)

    Zhang, L.; Zhao, Y.; Tai, A. P. K.; Chen, Y.; Pan, Y.

    2017-12-01

    Human activities have substantially increased atmospheric deposition of reactive nitrogen to the Earth's surface, inducing unintentional effects on ecosystems with complex environmental and climate consequences. One consequence remaining unexplored is how surface air quality might respond to the enhanced nitrogen deposition through surface-atmosphere exchange. We combine a chemical transport model (GEOS-Chem) and a global land model (Community Land Model) to address this issue with a focus on ozone pollution in the Northern Hemisphere. We consider three processes that are important for surface ozone and can be perturbed by addition of atmospheric deposited nitrogen: emissions of biogenic volatile organic compounds (VOCs), ozone dry deposition, and soil nitrogen oxide (NOx) emissions. We find that present-day anthropogenic nitrogen deposition (65 Tg N a-1 to the land), through enhancing plant growth (represented as increases in vegetation leaf area index (LAI) in the model), could increase surface ozone from increased biogenic VOC emissions, but could also decrease ozone due to higher ozone dry deposition velocities. Meanwhile, deposited anthropogenic nitrogen to soil enhances soil NOx emissions. The overall effect on summer mean surface ozone concentrations show general increases over the globe (up to 1.5-2.3 ppbv over the western US and South Asia), except for some regions with high anthropogenic NOx emissions (0.5-1.0 ppbv decreases over the eastern US, Western Europe, and North China). We compare the surface ozone changes with those driven by the past 20-year climate and historical land use changes. We find that the impacts from anthropogenic nitrogen deposition can be comparable to the climate and land use driven surface ozone changes at regional scales, and partly offset the surface ozone reductions due to land use changes reported in previous studies. Our study emphasizes the complexity of biosphere-atmosphere interactions, which can have important

  3. GLIMPSE: A decision support tool for simultaneously achieving our air quality management and climate change mitigation goals

    Science.gov (United States)

    Pinder, R. W.; Akhtar, F.; Loughlin, D. H.; Henze, D. K.; Bowman, K. W.

    2012-12-01

    Poor air quality, ecosystem damages, and climate change all are caused by the combustion of fossil fuels, yet environmental management often addresses each of these challenges separately. This can lead to sub-optimal strategies and unintended consequences. Here we present GLIMPSE -- a decision support tool for simultaneously achieving our air quality and climate change mitigation goals. GLIMPSE comprises of two types of models, (i) the adjoint of the GEOS-Chem chemical transport model, to calculate the relationship between emissions and impacts at high spatial resolution, and (ii) the MARKAL energy system model, to calculate the relationship between energy technologies and emissions. This presentation will demonstrate how GLIMPSE can be used to explore energy scenarios to better achieve both improved air quality and mitigate climate change. Second, this presentation will discuss how space-based observations can be incorporated into GLIMPSE to improve decision-making. NASA satellite products, namely ozone radiative forcing from the Tropospheric Emission Spectrometer (TES), are used to extend GLIMPSE to include the impact of emissions on ozone radiative forcing. This provides a much needed observational constraint on ozone radiative forcing.

  4. Causes and impacts of changes in the stratospheric meridional circulation in a chemistry-climate model

    Energy Technology Data Exchange (ETDEWEB)

    Garny, Hella

    2011-05-13

    The stratospheric meridional circulation is projected to be subject to changes due to enhanced greenhouse-gas concentrations in the atmosphere. This study aims to diagnose and explain long-term changes in the stratospheric meridional circulation using the chemistry-climate model E39CA. The diagnosed strengthening of the circulation is found to be driven by increases in tropical sea surface temperatures which lead to a strengthening and upward shift of the subtropical jets. This enables enhanced vertical propagation of large scale waves into the lower stratosphere, and therefore stronger local wave forcing of the meridional circulation in the tropical lower stratosphere. The impact of changes in transport on the ozone layer is analysed using a newly developed method that allows the separation of the effects of transport and chemistry changes on ozone. It is found that future changes of mean stratospheric ozone concentrations are largely determined by changes in chemistry, while changes in transport of ozone play a minor role. (orig.)

  5. Impact of climate change on occupational exposure to solar radiation.

    Science.gov (United States)

    Grandi, Carlo; Borra, Massimo; Militello, Andrea; Polichetti, Alessandro

    2016-01-01

    Occupational exposure to solar radiation may induce both acute and long-term effects on skin and eyes. Personal exposure is very difficult to assess accurately, as it depends on environmental, organisational and individual factors. The ongoing climate change interacting with stratospheric ozone dynamics may affect occupational exposure to solar radiation. In addition, tropospheric levels of environmental pollutants interacting with solar radiation may be altered by climate dynamics, so introducing another variable affecting the overall exposure to solar radiation. Given the uncertainties regarding the direction of changes in exposure to solar radiation due to climate change, compliance of outdoor workers with protective measures and a proper health surveillance are crucial. At the same time, education and training, along with the promotion of healthier lifestyles, are of paramount importance.

  6. Global changes of climate through human activities. New clues and hypotheses

    Energy Technology Data Exchange (ETDEWEB)

    Grassl, H

    1988-02-01

    New clues to world-wide changes of climate through human activities have been found or corroborated: Precipitation belts have shifted during the last 30 years; ozone over Antarctica in spring has fallen to its lowest level ever (1956); near-ground ozone in our latitudes has at least doubled in this century. Newly discussed hypotheses are: The oxidation capacity and, consequently, the purification capacity of the atmosphere decreases in the southern hemisphere owing above all to the increase in methane. Increased backscatter of solar radiation through low clouds during periods of turbid air in the atmosphere attenuates the greenhouse effect, the increase in icy clouds through condensation trails of jets flying at high altitudes intensifies the greenhouse effect of the atmosphere. The paper analyses these hypotheses and shows that the distinction between change of climate on the one hand and ecological damage on the other is not justifiable any longer. (orig./HSCH).

  7. CHEM2D-OPP: A new linearized gas-phase ozone photochemistry parameterization for high-altitude NWP and climate models

    Directory of Open Access Journals (Sweden)

    J. P. McCormack

    2006-01-01

    Full Text Available The new CHEM2D-Ozone Photochemistry Parameterization (CHEM2D-OPP for high-altitude numerical weather prediction (NWP systems and climate models specifies the net ozone photochemical tendency and its sensitivity to changes in ozone mixing ratio, temperature and overhead ozone column based on calculations from the CHEM2D interactive middle atmospheric photochemical transport model. We evaluate CHEM2D-OPP performance using both short-term (6-day and long-term (1-year stratospheric ozone simulations with the prototype high-altitude NOGAPS-ALPHA forecast model. An inter-comparison of NOGAPS-ALPHA 6-day ozone hindcasts for 7 February 2005 with ozone photochemistry parameterizations currently used in operational NWP systems shows that CHEM2D-OPP yields the best overall agreement with both individual Aura Microwave Limb Sounder ozone profile measurements and independent hemispheric (10°–90° N ozone analysis fields. A 1-year free-running NOGAPS-ALPHA simulation using CHEM2D-OPP produces a realistic seasonal cycle in zonal mean ozone throughout the stratosphere. We find that the combination of a model cold temperature bias at high latitudes in winter and a warm bias in the CHEM2D-OPP temperature climatology can degrade the performance of the linearized ozone photochemistry parameterization over seasonal time scales despite the fact that the parameterized temperature dependence is weak in these regions.

  8. Climate change: overview of data sources, observed and predicted temperature changes, and impacts on public and environmental health

    Science.gov (United States)

    David H. Levinson; Christopher J. Fettig

    2014-01-01

    This chapter addresses the societal and the environmental impacts of climate change related to increasing surface temperatures on air quality and forest health. Increasing temperatures at and near the earth’s surface, due to both a warming climate and urban heat island effects, have been shown to increase ground-level ozone concentrations in cities across the U.S. In...

  9. Quantitative evaluation of ozone and selected climate parameters in a set of EMAC simulations

    Directory of Open Access Journals (Sweden)

    M. Righi

    2015-03-01

    Full Text Available Four simulations with the ECHAM/MESSy Atmospheric Chemistry (EMAC model have been evaluated with the Earth System Model Validation Tool (ESMValTool to identify differences in simulated ozone and selected climate parameters that resulted from (i different setups of the EMAC model (nudged vs. free-running and (ii different boundary conditions (emissions, sea surface temperatures (SSTs and sea ice concentrations (SICs. To assess the relative performance of the simulations, quantitative performance metrics are calculated consistently for the climate parameters and ozone. This is important for the interpretation of the evaluation results since biases in climate can impact on biases in chemistry and vice versa. The observational data sets used for the evaluation include ozonesonde and aircraft data, meteorological reanalyses and satellite measurements. The results from a previous EMAC evaluation of a model simulation with nudging towards realistic meteorology in the troposphere have been compared to new simulations with different model setups and updated emission data sets in free-running time slice and nudged quasi chemistry-transport model (QCTM mode. The latter two configurations are particularly important for chemistry-climate projections and for the quantification of individual sources (e.g., the transport sector that lead to small chemical perturbations of the climate system, respectively. With the exception of some specific features which are detailed in this study, no large differences that could be related to the different setups (nudged vs. free-running of the EMAC simulations were found, which offers the possibility to evaluate and improve the overall model with the help of shorter nudged simulations. The main differences between the two setups is a better representation of the tropospheric and stratospheric temperature in the nudged simulations, which also better reproduce stratospheric water vapor concentrations, due to the improved

  10. Global impact of road traffic on atmospheric chemical composition and on ozone climate forcing

    Science.gov (United States)

    Niemeier, Ulrike; Granier, Claire; Kornblueh, Luis; Walters, Stacy; Brasseur, Guy P.

    2006-05-01

    Automobile emissions are known to contribute to local air pollution and to photochemical smog in urban areas. The impact of road traffic on the chemical composition of the troposphere at the global scale and on climate forcing is less well quantified. Calculations performed with the chemical transport MOZART-2 model show that the concentrations of ozone and its precursors (NOx, CO, and hydrocarbons) are considerably enhanced in most regions of the Northern Hemisphere in response to current surface traffic. During summertime in the Northern Hemisphere, road traffic has increased the zonally averaged ozone concentration by more than 10% in the boundary layer and in the extratropics by approximately 6% at 500 hPa and 2.5% at 300 hPa. The summertime surface ozone concentrations have increased by typically 1-5 ppbv in the remote regions and by 5-20 ppbv in industrialized regions of the Northern Hemisphere. The corresponding ozone-related radiative forcing is 0.05 Wm-2. In order to assess the sensitivity of potential changes in road traffic intensity, two additional model cases were considered, in which traffic-related emissions in all regions of the world were assumed to be on a per capita basis the same as in Europe and in the United States, respectively. In the second and most dramatic case, the surface ozone concentration increases by 30-50 ppbv (50-100%) in south Asia as compared to the present situation. Under this assumption, the global radiative forcing due to traffic-generated ozone reaches 0.27 Wm-2.

  11. Tropospheric Ozone Assessment Report: Database and Metrics Data of Global Surface Ozone Observations

    Directory of Open Access Journals (Sweden)

    Martin G. Schultz

    2017-10-01

    Full Text Available In support of the first Tropospheric Ozone Assessment Report (TOAR a relational database of global surface ozone observations has been developed and populated with hourly measurement data and enhanced metadata. A comprehensive suite of ozone data products including standard statistics, health and vegetation impact metrics, and trend information, are made available through a common data portal and a web interface. These data form the basis of the TOAR analyses focusing on human health, vegetation, and climate relevant ozone issues, which are part of this special feature. Cooperation among many data centers and individual researchers worldwide made it possible to build the world's largest collection of 'in-situ' hourly surface ozone data covering the period from 1970 to 2015. By combining the data from almost 10,000 measurement sites around the world with global metadata information, new analyses of surface ozone have become possible, such as the first globally consistent characterisations of measurement sites as either urban or rural/remote. Exploitation of these global metadata allows for new insights into the global distribution, and seasonal and long-term changes of tropospheric ozone and they enable TOAR to perform the first, globally consistent analysis of present-day ozone concentrations and recent ozone changes with relevance to health, agriculture, and climate. Considerable effort was made to harmonize and synthesize data formats and metadata information from various networks and individual data submissions. Extensive quality control was applied to identify questionable and erroneous data, including changes in apparent instrument offsets or calibrations. Such data were excluded from TOAR data products. Limitations of 'a posteriori' data quality assurance are discussed. As a result of the work presented here, global coverage of surface ozone data for scientific analysis has been significantly extended. Yet, large gaps remain in the surface

  12. 2007 status of climate change: Mitigation of Climate Change. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Summary for Policy-makers

    International Nuclear Information System (INIS)

    Barker, T.; Bashmakov, I.; Bernstein, L.; Bogner, J.; Bosch, P.; Dave, R.; Davidson, O.; Fisher, B.; Grubb, M.; Gupta, S.; Halsnaes, K.; Heij, B.; Kahn Ribeiro, S.; Kobayashi, S.; Levine, M.; Martino, D.; Masera Cerutti, O.; Metz, B.; Meyer, L.; Nabuurs, G.J.; Najam, A.; Nakicenovic, N.; Holger Rogner, H.; Roy, J.; Sathaye, J.; Schock, R.; Shukla, P.; Sims, R.; Smith, P.; Swart, R.; Tirpak, D.; Urge-Vorsatz, D.; Dadi, Z.

    2007-01-01

    The Working Group III contribution to the IPCC Fourth Assessment Report (AR4) focuses on new literature on the scientific, technological, environmental, economic and social aspects of mitigation of climate change, published since the IPCC Third Assessment Report (TAR) and the Special Reports on CO 2 Capture and Storage (SRCCS) and on Safeguarding the Ozone Layer and the Global Climate System (SROC).The main aim of this summary report is to assess options for mitigating climate change. Several aspects link climate change with development issues. This report explores these links in detail, and illustrates where climate change and sustainable development are mutually reinforcing. Economic development needs, resource endowments and mitigative and adaptive capacities differ across regions. There is no one-size-fits-all approach to the climate change problem, and solutions need to be regionally differentiated to reflect different socio-economic conditions and, to a lesser extent, geographical differences. Although this report has a global focus, an attempt is made to differentiate the assessment of scientific and technical findings for the various regions. Given that mitigation options vary significantly between economic sectors, it was decided to use the economic sectors to organize the material on short- to medium-term mitigation options. Contrary to what was done in the Third Assessment Report, all relevant aspects of sectoral mitigation options, such as technology, cost, policies etc., are discussed together, to provide the user with a comprehensive discussion of the sectoral mitigation options. The report is organised into six sections after the introduction: - Greenhouse gas (GHG) emission trends; - Mitigation in the short and medium term, across different economic sectors (until 2030); - Mitigation in the long-term (beyond 2030); - Policies, measures and instruments to mitigate climate change; - Sustainable development and climate change mitigation; - Gaps in

  13. The key role of causal explanation in the climate change issue

    Directory of Open Access Journals (Sweden)

    Francesca Pongiglione

    2012-06-01

    Full Text Available The basis for adoption of pro-environment behaviour is the understanding of causal passages within climate dynamics. The understanding of the causes of climate change is necessary in order to be able to take mitigation actions  (the subject needs to be aware of his role as a causal agent. Conversely, the understanding of the consequences of climate change is essential in motivating action (the subject must be aware of the risks caused by it in order to prevent them. The case of ozone depletion confirms this view: the understanding of its causal dynamics played a determining role in people’s behavioural response.

  14. Ozone Layer Depletion: A Review | Eze | Nigerian Journal of Health ...

    African Journals Online (AJOL)

    However, the future behaviour of Ozone will also be affected by the changing atmospheric abundances of methane, nitrous oxide, water vapour, sulphate aerosol, and changing climate. KEY WORDS: Ozone Layer Depletion, Bioeffects, Protection. Nigerian Journal of Health and Biomedical Sciences Vol.4(1) 2005: 67-71 ...

  15. Changes in Arctic and Antarctic Sea Ice as a Microcosm of Global Climate Change

    Science.gov (United States)

    Parkinson, Claire L.

    2014-01-01

    Polar sea ice is a key element of the climate system and has now been monitored through satellite observations for over three and a half decades. The satellite observations reveal considerable information about polar ice and its changes since the late 1970s, including a prominent downward trend in Arctic sea ice coverage and a much lesser upward trend in Antarctic sea ice coverage, illustrative of the important fact that climate change entails spatial contrasts. The decreasing ice coverage in the Arctic corresponds well with contemporaneous Arctic warming and exhibits particularly large decreases in the summers of 2007 and 2012, influenced by both preconditioning and atmospheric conditions. The increasing ice coverage in the Antarctic is not as readily explained, but spatial differences in the Antarctic trends suggest a possible connection with atmospheric circulation changes that have perhaps been influenced by the Antarctic ozone hole. The changes in the polar ice covers and the issues surrounding those changes have many commonalities with broader climate changes and their surrounding issues, allowing the sea ice changes to be viewed in some important ways as a microcosm of global climate change.

  16. Compact, Rugged and Low-Cost Atmospheric Ozone DIAL Transmitter, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Real-time, high-frequency measurements of atmospheric ozone are becoming increasingly important to understand the impact of ozone towards climate change, to monitor...

  17. Modeling Effects of Climate Change on Air Quality and Population Exposure in Urban Planning Scenarios

    Directory of Open Access Journals (Sweden)

    Lars Gidhagen

    2012-01-01

    Full Text Available We employ a nested system of global and regional climate models, linked to regional and urban air quality chemical transport models utilizing detailed inventories of present and future emissions, to study the relative impact of climate change and changing air pollutant emissions on air quality and population exposure in Stockholm, Sweden. We show that climate change only marginally affects air quality over the 20-year period studied. An exposure assessment reveals that the population of Stockholm can expect considerably lower NO2 exposure in the future, mainly due to reduced local NOx emissions. Ozone exposure will decrease only slightly, due to a combination of increased concentrations in the city centre and decreasing concentrations in the suburban areas. The increase in ozone concentration is a consequence of decreased local NOx emissions, which reduces the titration of the long-range transported ozone. Finally, we evaluate the consequences of a planned road transit project on future air quality in Stockholm. The construction of a very large bypass road (including one of the largest motorway road tunnels in Europe will only marginally influence total population exposure, this since the improved air quality in the city centre will be complemented by deteriorated air quality in suburban, residential areas.

  18. Response of the global climate to changes in atmospheric chemical composition due to fossil fuel burning

    Science.gov (United States)

    Hameed, S.; Cess, R. D.; Hogan, J. S.

    1980-01-01

    Recent modeling of atmospheric chemical processes (Logan et al, 1978; Hameed et al, 1979) suggests that tropospheric ozone and methane might significantly increase in the future as the result of increasing anthropogenic emissions of CO, NO(x), and CH4 due to fossil fuel burning. Since O3 and CH4 are both greenhouse gases, increases in their concentrations could augment global warming due to larger future amounts of atmospheric CO2. To test the possible climatic impact of changes in tropospheric chemical composition, a zonal energy-balance climate model has been combined with a vertically averaged tropospheric chemical model. The latter model includes all relevant chemical reactions which affect species derived from H2O, O2, CH4, and NO(x). The climate model correspondingly incorporates changes in the infrared heating of the surface-troposphere system resulting from chemically induced changes in tropospheric ozone and methane. This coupled climate-chemical model indicates that global climate is sensitive to changes in emissions of CO, NO(x) and CH4, and that future increases in these emissions could augment global warming due to increasing atmospheric CO2.

  19. Global premature mortality due to anthropogenic outdoor air pollution and the contribution of past climate change

    International Nuclear Information System (INIS)

    Silva, Raquel A; West, J Jason; Zhang Yuqiang; Anenberg, Susan C; Lamarque, Jean-François; Shindell, Drew T; Faluvegi, Greg; Collins, William J; Dalsoren, Stig; Skeie, Ragnhild; Folberth, Gerd; Rumbold, Steven; Horowitz, Larry W; Nagashima, Tatsuya; Naik, Vaishali; Sudo, Kengo; Takemura, Toshihiko; Bergmann, Daniel; Cameron-Smith, Philip; Cionni, Irene

    2013-01-01

    Increased concentrations of ozone and fine particulate matter (PM 2.5 ) since preindustrial times reflect increased emissions, but also contributions of past climate change. Here we use modeled concentrations from an ensemble of chemistry–climate models to estimate the global burden of anthropogenic outdoor air pollution on present-day premature human mortality, and the component of that burden attributable to past climate change. Using simulated concentrations for 2000 and 1850 and concentration–response functions (CRFs), we estimate that, at present, 470 000 (95% confidence interval, 140 000 to 900 000) premature respiratory deaths are associated globally and annually with anthropogenic ozone, and 2.1 (1.3 to 3.0) million deaths with anthropogenic PM 2.5 -related cardiopulmonary diseases (93%) and lung cancer (7%). These estimates are smaller than ones from previous studies because we use modeled 1850 air pollution rather than a counterfactual low concentration, and because of different emissions. Uncertainty in CRFs contributes more to overall uncertainty than the spread of model results. Mortality attributed to the effects of past climate change on air quality is considerably smaller than the global burden: 1500 (−20 000 to 27 000) deaths yr −1 due to ozone and 2200 (−350 000 to 140 000) due to PM 2.5 . The small multi-model means are coincidental, as there are larger ranges of results for individual models, reflected in the large uncertainties, with some models suggesting that past climate change has reduced air pollution mortality. (letter)

  20. Relative impacts of worldwide tropospheric ozone changes and regional emission modifications on European surface-ozone levels

    International Nuclear Information System (INIS)

    Szopa, S.; Hauglustaine, D.A.

    2007-01-01

    Multi-scale models were applied to assess the surface ozone changes in 2030. Several emission scenarios are considered, ranging from (a) a pessimistic anthropogenic emission increase to (b) an optimistic decrease of emissions, and including (c) a realistic scenario that assumes the implementation of control legislations [CLE]. The two extreme scenarios lead respectively to homogeneous global increase and decrease of surface ozone, whereas low and inhomogeneous changes associated with a slight global increase of ozone are found for the CLE scenario. Over western Europe, for the CLE scenario, the benefit of European emission reduction is significantly counterbalanced by increasing global ozone levels. Considering warmer conditions over Europe and future emission modifications, the human health exposure to surface ozone is found to be significantly worsened. (authors)

  1. Significant Climate Changes Caused by Soot Emitted From Rockets in the Stratosphere

    Science.gov (United States)

    Mills, M. J.; Ross, M.; Toohey, D. W.

    2010-12-01

    A new type of hydrocarbon rocket engine with a larger soot emission index than current kerosene rockets is expected to power a fleet of suborbital rockets for commercial and scientific purposes in coming decades. At projected launch rates, emissions from these rockets will create a persistent soot layer in the northern middle stratosphere that would disproportionally affect the Earth’s atmosphere and cryosphere. A global climate model predicts that thermal forcing in the rocket soot layer will cause significant changes in the global atmospheric circulation and distributions of ozone and temperature. Tropical ozone columns decline as much as 1%, while polar ozone columns increase by up to 6%. Polar surface temperatures rise one Kelvin regionally and polar summer sea ice fractions shrink between 5 - 15%. After 20 years of suborbital rocket fleet operation, globally averaged radiative forcing (RF) from rocket soot exceeds the RF from rocket CO_{2} by six orders of magnitude, but remains small, comparable to the global RF from aviation. The response of the climate system is surprising given the small forcing, and should be investigated further with different climate models.

  2. Complex Interplay of Future Climate Levels of CO2, Ozone and Temperature on Susceptibility to Fungal Diseases in Barley

    DEFF Research Database (Denmark)

    Mikkelsen, Bolette Lind

    Climate change will modify the environmental growth conditions for plants, and consequently also their physiology and susceptibility to diseases. However, there is a lack of experimental studies on the effect of climate change on plant diseases, which include several climatic factors in order...... to simulate realistic growth conditions. In this PhD thesis, the complex interplay of elevated CO2, temperature and ozone on the susceptibility of barley to the biotrophic powdery mildew fungus (Blumeria graminis f.sp. hordei) and the hemibiotrophic spot blotch fungus (Bipolaris sorokiniana) was revealed....... The underlying mechanisms hereof was examined by studying changes in photosynthesis, accumulation of secondary metabolites and global gene expression after B. graminis attack...

  3. Multi-Model Simulations of Aerosol and Ozone Radiative Forcing Due to Anthropogenic Emission Changes During the Period 1990-2015

    Science.gov (United States)

    Myhre, Gunnar; Aas, Wenche; Ribu, Cherian; Collins, William; Faluvegi, Gregory S.; Flanner, Mark; Forster, Piers; Hodnebrog, Oivind; Klimont, Zbigniew; Lund, Marianne T.

    2017-01-01

    Over the past few decades, the geographical distribution of emissions of substances that alter the atmospheric energy balance has changed due to economic growth and air pollution regulations. Here, we show the resulting changes to aerosol and ozone abundances and their radiative forcing using recently updated emission data for the period 1990-2015, as simulated by seven global atmospheric composition models. The models broadly reproduce large-scale changes in surface aerosol and ozone based on observations (e.g. 1 to 3 percent per year in aerosols over the USA and Europe). The global mean radiative forcing due to ozone and aerosol changes over the 1990-2015 period increased by 0.17 plus or minus 0.08 watts per square meter, with approximately one-third due to ozone. This increase is more strongly positive than that reported in IPCC AR5 (Intergovernmental Panel on Climate Change Fifth Assessment Report). The main reasons for the increased positive radiative forcing of aerosols over this period are the substantial reduction of global mean SO2 emissions, which is stronger in the new emission inventory compared to that used in the IPCC analysis, and higher black carbon emissions.

  4. Effect of coupled anthropogenic perturbations on stratospheric ozone

    International Nuclear Information System (INIS)

    Wuebbles, D.J.; Luther, F.M.; Penner, J.E.

    1992-01-01

    Since 1976 the greatest concern about potential perturbations to stratospheric ozone has been in regard to the atmospheric release of chlorofluorocarbons. Consequently, atmospheric measurements of ozone have usually been compared with model calculations in which only chlorocarbon perturbations are considered. However, in order to compare theoretical calculations with recent measurements of ozone and to project expected changes to atmospheric ozone levels over the next few decades, one must consider the effect from other perturbations as well. In this paper, the authors consider the coupling between several possible anthropogenic atmospheric perturbations. Namely, they examine the effects of past and possible future increases of chlorocarbons, CO 2 , N 2 O, and NO x . The focus of these calculations is on the potential changes in ozone due to chlorocarbon emissions, how other anthropogenic perturbations may have influenced the actual change in ozone over the last decade, and how these perturbations may influence future changes in ozone. Although calculations including future chlorocarbon emissions alone result in significant reductions in ozone, there is very little change in total ozone over the coming decades when other anthropogenic sources are included. Increasing CO 2 concentrations have the largest offsetting effect on the change in total ozone due to chlorocarbons. Owing to the necessity of considering emissions from a number of trace gases simultaneously, determining expected global-scale chemical and climatic effects is more complex than was previously recognized

  5. Climate change and environmental health in southern Africa: it's not all about malaria

    CSIR Research Space (South Africa)

    Wright, C

    2011-07-01

    Full Text Available are to protect the health of our population in a changing climate. These issues are temperature (an its resulting heat exhaustion, reduced productivity and stroke), near surface ozone (and its resulting respiratory problems and asthma), and solar ultraviolet...

  6. Anthropogenic radiative forcing of southern African and Southern Hemisphere climate variability and change

    CSIR Research Space (South Africa)

    Engelbrecht, FA

    2014-10-01

    Full Text Available of stratospheric ozone, greenhouse gasses, aerosols and sulphur dioxide, can improve the model's skill to simulate inter-annual variability over southern Africa. The paper secondly explores the role of different radiative forcings of future climate change over...

  7. The Tropospheric Ozone Assessment Report (TOAR): A community-wide effort to quantify tropospheric ozone in a rapidly changing world

    Science.gov (United States)

    Cooper, O. R.; Schultz, M.; Paoletti, E.; Galbally, I. E.; Naja, M. K.; Tarasick, D. W.; Evans, M. J.; Thompson, A. M.

    2017-12-01

    Tropospheric ozone is a greenhouse gas and pollutant detrimental to human health and crop and ecosystem productivity. Since 1990 a large portion of the anthropogenic emissions that react in the atmosphere to produce ozone has shifted from North America and Europe to Asia. This rapid shift, coupled with limited ozone monitoring in developing nations, left scientists unable to answer the most basic questions: Which regions of the world have the greatest human and plant exposure to ozone pollution? Is ozone continuing to decline in nations with strong emissions controls? To what extent is ozone increasing in the developing world? How can the atmospheric sciences community facilitate access to the ozone metrics necessary for quantifying ozone's impact on human health and crop/ecosystem productivity? To answer these questions the International Global Atmospheric Chemistry Project (IGAC) initiated the Tropospheric Ozone Assessment Report (TOAR). With over 220 member scientists and air quality specialists from 36 nations, TOAR's mission is to provide the research community with an up-to-date scientific assessment of tropospheric ozone's global distribution and trends from the surface to the tropopause. TOAR has also built the world's largest database of surface ozone observations and generated ozone exposure and dose metrics at thousands of measurement sites around the world, freely accessible for research on the global-scale impact of ozone on climate, human health and crop/ecosystem productivity. Plots of these metrics show the regions of the world with the greatest ozone exposure for humans and crops/ecosystems, at least in areas where observations are available. The results also highlight regions where air quality is improving and where it has degraded. TOAR has also conducted the first intercomparison of tropospheric column ozone from ozonesondes and multiple satellite instruments, which provide similar estimates of the present-day tropospheric ozone burden.

  8. Interactive effects of ozone and climate on tree growth and water use in a southern Appalachian forest in the USA

    Science.gov (United States)

    S.B. McLaughlin; S.D. Wullschleger; G. Sun

    2007-01-01

    A lack of data on responses of mature tree growth and water use to ambient ozone (O3) concentrations has been a major limitation in efforts to understand and model responses of forests to current and future changes in climate.Here, hourly to seasonal patterns of stem growth and sap flow velocity were...

  9. Aerosols: connection between regional climatic change and air quality (Iupac Technical Report)

    NARCIS (Netherlands)

    Slanina, J.; Zhang, Y.H.

    2004-01-01

    yAerosols play an important role in all problems connected with air pollution, ranging from very local effects and human health problems to regional problems such as acid deposition and eutrophication up to continental and global questions such as stratospheric ozone loss and climatic change. In

  10. Mid-21st century air quality at the urban scale under the influence of changed climate and emissions: case studies for Paris and Stockholm

    Science.gov (United States)

    Markakis, K.; Valari, M.; Engardt, M.; Lacressonnière, G.; Vautard, R.; Andersson, C.

    2015-10-01

    Ozone, PM10 and PM2.5 concentrations over Paris, France and Stockholm, Sweden were modeled at 4 and 1 \\unit{km} horizontal resolutions respectively for the present and 2050 periods employing decade-long simulations. We account for large-scale global climate change (RCP-4.5) and fine resolution bottom-up emission projections developed by local experts and quantify their impact on future pollutant concentrations. Moreover, we identify biases related to the implementation of regional scale emission projections over the study areas by comparing modeled pollutant concentrations between the fine and coarse scale simulations. We show that over urban areas with major regional contribution (e.g., the city of Stockholm) the bias due to coarse emission inventory may be significant and lead to policy misclassification. Our results stress the need to better understand the mechanism of bias propagation across the modeling scales in order to design more successful local-scale strategies. We find that the impact of climate change is spatially homogeneous in both regions, implying strong regional influence. The climate benefit for ozone (daily average and maximum) is up to -5 % for Paris and -2 % for Stockholm city. The joined climate benefit on PM2.5 and PM10 in Paris is between -10 and -5 % while for Stockholm we observe mixed trends up to 3 % depending on season and size class. In Stockholm, emission mitigation leads to concentration reductions up to 15 % for daily average and maximum ozone and 20 % for PM and through a sensitivity analysis we show that this response is entirely due to changes in emissions at the regional scale. On the contrary, over the city of Paris (VOC-limited photochemical regime), local mitigation of NOx emissions increases future ozone concentrations due to ozone titration inhibition. This competing trend between the respective roles of emission and climate change, results in an increase in 2050 daily average ozone by 2.5 % in Paris. Climate and not

  11. Mid-21st century air quality at the urban scale under the influence of changed climate and emissions - case studies for Paris and Stockholm

    Science.gov (United States)

    Markakis, Konstantinos; Valari, Myrto; Engardt, Magnuz; Lacressonniere, Gwendoline; Vautard, Robert; Andersson, Camilla

    2016-02-01

    Ozone, PM10 and PM2.5 concentrations over Paris, France and Stockholm, Sweden were modelled at 4 and 1 km horizontal resolutions respectively for the present and 2050 periods employing decade-long simulations. We account for large-scale global climate change (RCP-4.5) and fine-resolution bottom-up emission projections developed by local experts and quantify their impact on future pollutant concentrations. Moreover, we identify biases related to the implementation of regional-scale emission projections by comparing modelled pollutant concentrations between the fine- and coarse-scale simulations over the study areas. We show that over urban areas with major regional contribution (e.g. the city of Stockholm) the bias related to coarse-scale projections may be significant and lead to policy misclassification. Our results stress the need to better understand the mechanism of bias propagation across the modelling scales in order to design more successful local-scale strategies. We find that the impact of climate change is spatially homogeneous in both regions, implying strong regional influence. The climate benefit for ozone (daily mean and maximum) is up to -5 % for Paris and -2 % for Stockholm city. The climate benefit on PM2.5 and PM10 in Paris is between -5 and -10 %, while for Stockholm we estimate mixed trends of up to 3 % depending on season and size class. In Stockholm, emission mitigation leads to concentration reductions up to 15 % for daily mean and maximum ozone and 20 % for PM. Through a sensitivity analysis we show that this response is entirely due to changes in emissions at the regional scale. On the contrary, over the city of Paris (VOC-limited photochemical regime), local mitigation of NOx emissions increases future ozone concentrations due to ozone titration inhibition. This competing trend between the respective roles of emission and climate change, results in an increase in 2050 daily mean ozone by 2.5 % in Paris. Climate and not emission change

  12. Modeling the Impacts of Global Climate and Regional Land Use Change on Regional Climate, Air Quality and Public Health in the New York Metropolitan Region

    Science.gov (United States)

    Rosenthal, J. E.; Knowlton, K. M.; Kinney, P. L.

    2002-12-01

    There is an imminent need to downscale the global climate models used by international consortiums like the IPCC (Intergovernmental Panel on Climate Change) to predict the future regional impacts of climate change. To meet this need, a "place-based" climate model that makes specific regional projections about future environmental conditions local inhabitants could face is being created by the Mailman School of Public Health at Columbia University, in collaboration with other researchers and universities, for New York City and the 31 surrounding counties. This presentation describes the design and initial results of this modeling study, aimed at simulating the effects of global climate change and regional land use change on climate and air quality over the northeastern United States in order to project the associated public health impacts in the region. Heat waves and elevated concentrations of ozone and fine particles are significant current public health stressors in the New York metropolitan area. The New York Climate and Health Project is linking human dimension and natural sciences models to assess the potential for future public health impacts from heat stress and air quality, and yield improved tools for assessing climate change impacts. The model will be applied to the NY metropolitan east coast region. The following questions will be addressed: 1. What changes in the frequency and severity of extreme heat events are likely to occur over the next 80 years due to a range of possible scenarios of land use and land cover (LU/LC) and climate change in the region? 2. How might the frequency and severity of episodic concentrations of ozone (O3) and airborne particulate matter smaller than 2.5 æm in diameter (PM2.5) change over the next 80 years due to a range of possible scenarios of land use and climate change in the metropolitan region? 3. What is the range of possible human health impacts of these changes in the region? 4. How might projected future human

  13. Climate and air quality-driven scenarios of ozone and aerosol precursor abatement

    International Nuclear Information System (INIS)

    Rypdal, Kristin; Rive, Nathan; Berntsen, Terje; Fagerli, Hilde; Klimont, Zbigniew; Mideksa, Torben K.; Fuglestvedt, Jan S.

    2009-01-01

    In addition to causing domestic and regional environmental effects, many air pollutants contribute to radiative forcing (RF) of the climate system. However, climate effects are not considered when cost-effective abatement targets for these pollutants are established, nor are they included in current international climate agreements. We construct air pollution abatement scenarios in 2030 which target cost-effective reductions in RF in the EU, USA, and China and compare these to abatement scenarios which instead target regional ozone effects and particulate matter concentrations. Our analysis covers emissions of PM (fine, black carbon and organic carbon), SO 2 , NO x , CH 4 , VOCs, and CO. We find that the effect synergies are strong for PM/BC, VOC, CO and CH 4 . While an air quality strategy targeted at reducing ozone will also reduce RF, this will not be the case for a strategy targeting particulate matter. Abatement in China dominates RF reduction, but there are cheap abatement options also available in the EU and USA. The justification for international cooperation on air quality issues is underlined when the co-benefits of reduced RF are considered. Some species, most importantly SO 2 , contribute a negative forcing on climate. We suggest that given current knowledge, NO x and SO 2 should be ignored in RF-targeted abatement policies.

  14. A large ozone-circulation feedback and its implications for global warming assessments

    Science.gov (United States)

    Abraham, N. Luke; Maycock, Amanda C.; Braesicke, Peter; Gregory, Jonathan M.; Joshi, Manoj M.; Osprey, Annette; Pyle, John A.

    2014-01-01

    State-of-the-art climate models now include more climate processes which are simulated at higher spatial resolution than ever1. Nevertheless, some processes, such as atmospheric chemical feedbacks, are still computationally expensive and are often ignored in climate simulations1,2. Here we present evidence that how stratospheric ozone is represented in climate models can have a first order impact on estimates of effective climate sensitivity. Using a comprehensive atmosphere-ocean chemistry-climate model, we find an increase in global mean surface warming of around 1°C (~20%) after 75 years when ozone is prescribed at pre-industrial levels compared with when it is allowed to evolve self-consistently in response to an abrupt 4×CO2 forcing. The difference is primarily attributed to changes in longwave radiative feedbacks associated with circulation-driven decreases in tropical lower stratospheric ozone and related stratospheric water vapour and cirrus cloud changes. This has important implications for global model intercomparison studies1,2 in which participating models often use simplified treatments of atmospheric composition changes that are neither consistent with the specified greenhouse gas forcing scenario nor with the associated atmospheric circulation feedbacks3-5. PMID:25729440

  15. Global topics and novel approaches in the study of air pollution, climate change and forest ecosystems

    Science.gov (United States)

    P. Sicard; A. Augustaitis; S. Belyazid; C. Calfapietra; A. De Marco; Mark E. Fenn; Andrzej Bytnerowicz; Nancy Grulke; S. He; R. Matyssek; Y. Serengil; G. Wieser; E. Paoletti

    2016-01-01

    Research directions from the 27th conference for Specialists in Air Pollution and Climate Change Effects on Forest Ecosystems (2015) reflect knowledge advancements about (i) Mechanistic bases of tree responses to multiple climate and pollution stressors, in particular the interaction of ozone (O3) with nitrogen (N) deposition and drought; (ii)...

  16. Longitude-dependent decadal ozone changes and ozone trends in boreal winter months during 1960–2000

    Directory of Open Access Journals (Sweden)

    D. H. W. Peters

    2008-05-01

    Full Text Available This study examines the longitude-dependent decadal changes and trends of ozone for the boreal winter months during the period of 1960–2000. These changes are caused primarily by changes in the planetary wave structure in the upper troposphere and lower stratosphere. The decadal changes and trends over 4 decades of geopotential perturbations, defined as a deviation from the zonal mean, are estimated by linear regression with time. The decadal changes in longitude-dependent ozone were calculated with a simple transport model of ozone based on the known planetary wave structure changes and prescribed zonal mean ozone gradients. For December of the 1960s and 1980s a statistically significant Rossby wave track appeared over the North Atlantic and Europe with an anticyclonic disturbance over the Eastern North Atlantic and Western Europe, flanked by cyclonic disturbances. In the 1970s and 1990s statistically significant cyclonic disturbances appeared over the Eastern North Atlantic and Europe, surrounded by anticyclonic anomalies over Northern Africa, Central Asia and Greenland. Similar patterns have been found for January. The Rossby wave track over the North Atlantic and Europe is stronger in the 1980s than in the 1960s. For February, the variability of the regression patterns is higher. For January we found a strong alteration in the modelled decadal changes in total ozone over Central and Northern Europe, showing a decrease of about 15 DU in the 1960s and 1980s and an increase of about 10 DU in the 1970s and 1990s. Over Central Europe the positive geopotential height trend (increase of 2.3 m/yr over 40 years is of the same order (about 100 m as the increase in the 1980s alone. This is important to recognize because it implies a total ozone decrease over Europe of the order of 14 DU for the 1960–2000 period, for January, if we use the standard change regression relation that about a 10-m geopotential height increase at 300 hPa is related to

  17. Disappearing threat to ozone

    Energy Technology Data Exchange (ETDEWEB)

    Gribbin, J

    1979-02-15

    Concern that human activities might disturb the dynamic natural equilibrium of the ozone layer has stemmed from the fact that this layer plays a key part in the ecology of the earth by absorbing harmful ultraviolet radiation which would otherwise penetrate to the ground. Apparently, however, a decline of as much at 15% in total global ozone would have very little effect on climate. A 50% reduction would produce a marked cooling of the stratosphere at 40 km altitude over the tropics, but barely detectable changes in temperature and rainfall in the lower atmosphere. Therefore, biological effects of more uv light at ground level is the only hazard associated with ozone depletion on the scale which might take place.

  18. Ozone layer - climate change interactions. Influence on UV levels and UV related effects

    NARCIS (Netherlands)

    Kelfkens G; Bregman A; de Gruijl FR; van der Leun JC; Piquet A; van Oijen T; Gieskes WWC; van Loveren H; Velders GJM; Martens P; Slaper H; NOP; LPI; LLO

    2002-01-01

    Ozone in the atmosphere serves as a partially protective filter against the most harmful part of the solar UV-spectrum. Decreases in ozone lead to increases in ambient UV with a wide variety of adverse effects on human health, aquatic and terrestrial ecosystems and food chains. Human health

  19. PM2.5 and tropospheric ozone in China: overview of situation and responses

    Science.gov (United States)

    Zhang, Hua

    This work reviewed the observational status of PM2.5 and tropospheric ozone in China. It told us the observational facts on the ratios of typical types of aerosol components to the total PM2.5/PM10, and daily and seasonal change of near surface ozone concentration at different cities of China; the global concentration distribution of tropospheric ozone observed by satellite in 2010-2013 was also given for comparison; the PM2.5 concentration distribution and their seasonal change in China region were simulated by an aerosol chemistry-global climate modeling system. Different contribution from five kinds of aerosols to the simulated PM2.5 was analyzed. Then, it linked the emissions of aerosol and greenhouse gases and their radiative forcing and thus gave their climatic effect by reducing their emissions on the basis of most recently published IPCC AR5. Finally it suggested policies on reducing emissions of short-lived climate pollutants (SLCPs) (such as PM2.5 and tropospheric ozone) in China from protecting both climate and environment.

  20. Climate change: Its possible impact on the environment and the people of northern regions

    International Nuclear Information System (INIS)

    Roots, F.

    1993-01-01

    A detailed overview is presented of the possible impacts of climate change on the Arctic environment, ecosystems, and human activities. The extent of global climate change is examined through the use of historical and paleoclimatologic records of temperature and stratospheric ozone. The effects of precipitation distribution and airborne particulates on climate change are also outlined. Changes in the Arctic are then examined, with an explanation of why global change in the Arctic is likely to be exaggerated. Likely scenarios of Arctic climate change involve milder winter temperatures, wetter and cloudier summers, more stormy weather and snowfall, greater variability in regional weather patterns, and dramatic changes in the extent of sea ice. Biological responses of wetland, northern forest, tundra, Arctic desert, below-ground, and marine ecosystems are assessed. Features of northern and Arctic ecosystems that may be particularly vulnerable to climate change are noted. Finally, the impacts of climate change on traditional activities and lifestyles, resource management and harvesting, agriculture, forestry, mining and fossil-fuel development, offshore operations, and human infrastructures are summarized. 5 figs

  1. Effects of ozone-vegetation coupling on surface ozone air quality via biogeochemical and meteorological feedbacks

    Science.gov (United States)

    Sadiq, Mehliyar; Tai, Amos P. K.; Lombardozzi, Danica; Martin, Maria Val

    2017-02-01

    Tropospheric ozone is one of the most hazardous air pollutants as it harms both human health and plant productivity. Foliage uptake of ozone via dry deposition damages photosynthesis and causes stomatal closure. These foliage changes could lead to a cascade of biogeochemical and biogeophysical effects that not only modulate the carbon cycle, regional hydrometeorology and climate, but also cause feedbacks onto surface ozone concentration itself. In this study, we implement a semi-empirical parameterization of ozone damage on vegetation in the Community Earth System Model to enable online ozone-vegetation coupling, so that for the first time ecosystem structure and ozone concentration can coevolve in fully coupled land-atmosphere simulations. With ozone-vegetation coupling, present-day surface ozone is simulated to be higher by up to 4-6 ppbv over Europe, North America and China. Reduced dry deposition velocity following ozone damage contributes to ˜ 40-100 % of those increases, constituting a significant positive biogeochemical feedback on ozone air quality. Enhanced biogenic isoprene emission is found to contribute to most of the remaining increases, and is driven mainly by higher vegetation temperature that results from lower transpiration rate. This isoprene-driven pathway represents an indirect, positive meteorological feedback. The reduction in both dry deposition and transpiration is mostly associated with reduced stomatal conductance following ozone damage, whereas the modification of photosynthesis and further changes in ecosystem productivity are found to play a smaller role in contributing to the ozone-vegetation feedbacks. Our results highlight the need to consider two-way ozone-vegetation coupling in Earth system models to derive a more complete understanding and yield more reliable future predictions of ozone air quality.

  2. Forest ecosystems and the global climatic change. Background and need to act

    International Nuclear Information System (INIS)

    Bellmann, K.; Grassl, H.; Kaiser, M.; Kuerzinger, J.; Lindner, M.; Mueller-Kraenner, S.; Schmidt, R.; Schuett, P.; Sperber, G.

    1994-01-01

    The consequences of the climatic change and of the depletion of the stratospheric ozone layer are of global significance and can only be controlled through worldwide measures. Mainly fossil fuels which cover most of our energy demand, industrial production, traffic, industrial intensive agriculture, and deforestation are responsible for trace gases which cause the greenhouse effect. The possible effects of the expected climatic change are discussed, and suitable political, social and silvicultural approaches to the maintenance of stable forest ecosystems are pointed out. Emphasis is placed on forestry and on ecosystems research in Central Europe. (MG) [de

  3. Decadal changes in summertime reactive oxidized nitrogen and surface ozone over the Southeast United States

    Science.gov (United States)

    Li, Jingyi; Mao, Jingqiu; Fiore, Arlene M.; Cohen, Ronald C.; Crounse, John D.; Teng, Alex P.; Wennberg, Paul O.; Lee, Ben H.; Lopez-Hilfiker, Felipe D.; Thornton, Joel A.; Peischl, Jeff; Pollack, Ilana B.; Ryerson, Thomas B.; Veres, Patrick; Roberts, James M.; Neuman, J. Andrew; Nowak, John B.; Wolfe, Glenn M.; Hanisco, Thomas F.; Fried, Alan; Singh, Hanwant B.; Dibb, Jack; Paulot, Fabien; Horowitz, Larry W.

    2018-02-01

    Widespread efforts to abate ozone (O3) smog have significantly reduced emissions of nitrogen oxides (NOx) over the past 2 decades in the Southeast US, a place heavily influenced by both anthropogenic and biogenic emissions. How reactive nitrogen speciation responds to the reduction in NOx emissions in this region remains to be elucidated. Here we exploit aircraft measurements from ICARTT (July-August 2004), SENEX (June-July 2013), and SEAC4RS (August-September 2013) and long-term ground measurement networks alongside a global chemistry-climate model to examine decadal changes in summertime reactive oxidized nitrogen (RON) and ozone over the Southeast US. We show that our model can reproduce the mean vertical profiles of major RON species and the total (NOy) in both 2004 and 2013. Among the major RON species, nitric acid (HNO3) is dominant (˜ 42-45 %), followed by NOx (31 %), total peroxy nitrates (ΣPNs; 14 %), and total alkyl nitrates (ΣANs; 9-12 %) on a regional scale. We find that most RON species, including NOx, ΣPNs, and HNO3, decline proportionally with decreasing NOx emissions in this region, leading to a similar decline in NOy. This linear response might be in part due to the nearly constant summertime supply of biogenic VOC emissions in this region. Our model captures the observed relative change in RON and surface ozone from 2004 to 2013. Model sensitivity tests indicate that further reductions of NOx emissions will lead to a continued decline in surface ozone and less frequent high-ozone events.

  4. Ozone in the atmosphere. Basic principles, natural and human impacts

    Energy Technology Data Exchange (ETDEWEB)

    Fabian, Peter [Technical Univ. Munich (Germany). Immission Research; Dameris, Martin [German Aerospace Center (DLR), Oberpfaffenhofen-Wessling (Germany). Inst. of Atmospheric Physics

    2014-09-01

    Comprehensive coverage of ozone both in the upper and the lower atmosphere. Essential overview of atmospheric ozone research written by two experienced and acknowledged experts. Numerous qualified references to the scientific literature. Peter Fabian and Martin Dameris provide a concise yet comprehensive overview of established scientific knowledge about ozone in the atmosphere. They present both ozone changes and trends in the stratosphere, as well as the effects of overabundance in the troposphere including the phenomenon of photosmog. Aspects such as photochemistry, atmospheric dynamics and global ozone distribution as well as various techniques for ozone measurement are treated. The authors outline the various causes for ozone depletion, the effects of ozone pollution and the relation to climate change. The book provides a handy reference guide for researchers active in atmospheric ozone research and a useful introduction for advanced students specializing in this field. Non-specialists interested in this field will also profit from reading the book. Peter Fabian can look back on a life-long active career in ozone research, having first gained international recognition for his measurements of the global distribution of halogenated hydrocarbons. He also pioneered photosmog investigations in the metropolitan areas of Munich, Berlin, Athens and Santiago de Chile, and his KROFEX facility provided controlled ozone fumigation of adult tree canopies for biologists to investigate the effects of ozone increases on forests. Besides having published a broad range of scientific articles, he has also been the author or editor of numerous books. From 2002 to 2005 he served the European Geosciences Union (EGU) as their first and Founding President. Martin Dameris is a prominent atmospheric modeler whose interests include the impacts of all kinds of natural and man-made disturbances on the atmospheric system. His scientific work focuses on the connections between ozone and

  5. Ozone in the atmosphere. Basic principles, natural and human impacts

    International Nuclear Information System (INIS)

    Fabian, Peter; Dameris, Martin

    2014-01-01

    Comprehensive coverage of ozone both in the upper and the lower atmosphere. Essential overview of atmospheric ozone research written by two experienced and acknowledged experts. Numerous qualified references to the scientific literature. Peter Fabian and Martin Dameris provide a concise yet comprehensive overview of established scientific knowledge about ozone in the atmosphere. They present both ozone changes and trends in the stratosphere, as well as the effects of overabundance in the troposphere including the phenomenon of photosmog. Aspects such as photochemistry, atmospheric dynamics and global ozone distribution as well as various techniques for ozone measurement are treated. The authors outline the various causes for ozone depletion, the effects of ozone pollution and the relation to climate change. The book provides a handy reference guide for researchers active in atmospheric ozone research and a useful introduction for advanced students specializing in this field. Non-specialists interested in this field will also profit from reading the book. Peter Fabian can look back on a life-long active career in ozone research, having first gained international recognition for his measurements of the global distribution of halogenated hydrocarbons. He also pioneered photosmog investigations in the metropolitan areas of Munich, Berlin, Athens and Santiago de Chile, and his KROFEX facility provided controlled ozone fumigation of adult tree canopies for biologists to investigate the effects of ozone increases on forests. Besides having published a broad range of scientific articles, he has also been the author or editor of numerous books. From 2002 to 2005 he served the European Geosciences Union (EGU) as their first and Founding President. Martin Dameris is a prominent atmospheric modeler whose interests include the impacts of all kinds of natural and man-made disturbances on the atmospheric system. His scientific work focuses on the connections between ozone and

  6. Destruction of concentrated chlorofluorocarbons in India demonstrates an effective option to simultaneously curb climate change and ozone depletion

    International Nuclear Information System (INIS)

    Karstensen, Kåre Helge; Parlikar, Ulhas V.; Ahuja, Deepak; Sharma, Shiv; Chakraborty, Moumita A.; Maurya, Harivansh Prasad; Mallik, Mrinal; Gupta, P.K.; Kamyotra, J.S.; Bala, S.S.; Kapadia, B.V.

    2014-01-01

    Highlights: • Chlorofluorocarbons and halons are potent ozone depleting substances and greenhouse gases. • No provisions in the Montreal or in Kyoto Protocol to destroy stockpiles of concentrated CFCs. • The UNEP recommends 11 technologies for destruction of concentrated CFCs. • No studies have up to now investigated the potential of using cement kilns in developing countries. • The test demonstrated that the local Indian cement kiln was able to destroy high feeding rates of several concentrated CFC-gases effectively. - Abstract: The Montreal Protocol aims to protect the stratospheric ozone layer by phasing out production of substances that contribute to ozone depletion, currently covering over 200 individual substances. As most of these compounds are synthetic greenhouse gases, there is an opportunity to curb both ozone depletion and climate change simultaneously by requiring Parties of both the Montreal and the Kyoto Protocol to destroy their existing stocks of concentrated chlorofluorocarbons (CFCs). Many emerging countries still possess stocks which need to be destroyed in an environmentally sound manner but costs may be prohibitive. The UNEP Technology and Economic Assessment Panel identified in 2002 eleven destruction technologies which meet the criteria for environmentally sound destruction of chlorofluorocarbons. Cement kilns were among these, but no study has been reported in scientific literature assessing its destruction performance under real developing country conditions up to now. In contrast to incinerators and other treatment techniques, high temperature cement kilns are already in place in virtually every country and can, if found technical feasible, be retrofitted and adapted cost-efficiently to destroy chemicals like CFCs. India has the second largest cement industry in the world and several hazardous waste categories have been tested successfully in recent years. The objective of this study was to carry out the first full scale

  7. Co-ordinated ozone and UV project COZUV

    International Nuclear Information System (INIS)

    Braathen, Geir

    1999-01-01

    The project encompasses all the major Norwegian research groups in the field of stratospheric ozone and UV research. the duration is from the 1st January 1999 to the 31st December 2000. The tasks carried out will include investigations of the ozone layer over the North Polar and middle latitudes, 3-D chemical modelling, diagnosis of chemical ozone loss, investigations of transport mechanisms between the polar vortex and middle latitudes, study of the coupling between ozone change and climate change in the stratosphere and upper troposphere, scenario calculations in order to investigate the consequences of temperature change in the stratosphere, development of methods to measure global, direct and radiance distribution of UV, to improve UV dose calculations, investigate the influence of clouds on the surface UV radiation and to use existing surface UV radiation measurements together with existing radiation models to investigate the connection between UV radiation and ozone, clouds and surface albedo. The results will be published in various publications, progress reports, by participation in international conferences, through information to the environmental authorities and through information on the Internet

  8. Impacts of climate change on power sector NOx emissions: A long-run analysis of the US mid-atlantic region

    International Nuclear Information System (INIS)

    Chen, Yihsu; Hobbs, Benjamin F.; Hugh Ellis, J.; Crowley, Christian; Joutz, Frederick

    2015-01-01

    We propose a framework for analyzing the long-run effects of climate change on the spatial and temporal distribution of nitrogen oxide (NOx) emissions from the power sector. Elevated ground-level temperatures could increase electricity demand during the ozone season, altering the generation mixes and ultimately changing emissions. A sequence of load forecasting, supply investment and operation, and facility siting models is used to project spatial and temporal distributions of NOx emissions. Under a worse-case scenario with no renewable additions or other interventions, the results indicate that even if total NOx is limited by cap-and-trade policies, climate-warming-induced changes in the timing of pollution emissions can be significant, especially under warmer or high-load conditions. This suggests that a continued reliance on fossil-fuel together with a temperature sensitivity of generation efficiency and peak electricity demands increases the likelihood that emissions will be greater during the warm days when ozone episodes also occur. The paper advances the integrated assessment by identifying ways at which climate-change-derived energy demand can impact generation mixture, operations and local air pollution. The downscaled emissions can be used in regional air quality models such as the Community Multiscale Air Quality (CMAQ) to project changes in tropospheric ozone due to climate change. -- Highlights: •We develop a framework to study the impact of climate-induced changes on electricity sector. •It could affect spatial and temporal distribution of pollution emissions in the long run. •Under a worse-case assumption, significant emissions during peak demand hours could occur. •It could possibly worsen regional air quality, even if seasonal emissions are constant under cap. •A separate cap or tax can be applied to extreme weather conditions to avoidworsening air quality

  9. A Semi-empirical Model of the Stratosphere in the Climate System

    Science.gov (United States)

    Sodergren, A. H.; Bodeker, G. E.; Kremser, S.; Meinshausen, M.; McDonald, A.

    2014-12-01

    Chemistry climate models (CCMs) currently used to project changes in Antarctic ozone are extremely computationally demanding. CCM projections are uncertain due to lack of knowledge of future emissions of greenhouse gases (GHGs) and ozone depleting substances (ODSs), as well as parameterizations within the CCMs that have weakly constrained tuning parameters. While projections should be based on an ensemble of simulations, this is not currently possible due to the complexity of the CCMs. An inexpensive but realistic approach to simulate changes in stratospheric ozone, and its coupling to the climate system, is needed as a complement to CCMs. A simple climate model (SCM) can be used as a fast emulator of complex atmospheric-ocean climate models. If such an SCM includes a representation of stratospheric ozone, the evolution of the global ozone layer can be simulated for a wide range of GHG and ODS emissions scenarios. MAGICC is an SCM used in previous IPCC reports. In the current version of the MAGICC SCM, stratospheric ozone changes depend only on equivalent effective stratospheric chlorine (EESC). In this work, MAGICC is extended to include an interactive stratospheric ozone layer using a semi-empirical model of ozone responses to CO2and EESC, with changes in ozone affecting the radiative forcing in the SCM. To demonstrate the ability of our new, extended SCM to generate projections of global changes in ozone, tuning parameters from 19 coupled atmosphere-ocean general circulation models (AOGCMs) and 10 carbon cycle models (to create an ensemble of 190 simulations) have been used to generate probability density functions of the dates of return of stratospheric column ozone to 1960 and 1980 levels for different latitudes.

  10. Downscaling a Global Climate Model to Simulate Climate Change Impacts on U.S. Regional and Urban Air Quality

    Science.gov (United States)

    Trail, M.; Tsimpidi, A. P.; Liu, P.; Tsigaridis, K.; Hu, Y.; Nenes, A.; Russell, A. G.

    2013-01-01

    Climate change can exacerbate future regional air pollution events by making conditions more favorable to form high levels of ozone. In this study, we use spectral nudging with WRF to downscale NASA earth system GISS modelE2 results during the years 2006 to 2010 and 2048 to 2052 over the continental United States in order to compare the resulting meteorological fields from the air quality perspective during the four seasons of five-year historic and future climatological periods. GISS results are used as initial and boundary conditions by the WRF RCM to produce hourly meteorological fields. The downscaling technique and choice of physics parameterizations used are evaluated by comparing them with in situ observations. This study investigates changes of similar regional climate conditions down to a 12km by 12km resolution, as well as the effect of evolving climate conditions on the air quality at major U.S. cities. The high resolution simulations produce somewhat different results than the coarse resolution simulations in some regions. Also, through the analysis of the meteorological variables that most strongly influence air quality, we find consistent changes in regional climate that would enhance ozone levels in four regions of the U.S. during fall (Western U.S., Texas, Northeastern, and Southeastern U.S), one region during summer (Texas), and one region where changes potentially would lead to better air quality during spring (Northeast). We also find that daily peak temperatures tend to increase in most major cities in the U.S. which would increase the risk of health problems associated with heat stress. Future work will address a more comprehensive assessment of emissions and chemistry involved in the formation and removal of air pollutants.

  11. Western Australian High School Students' Understandings about the Socioscientific Issue of Climate Change

    Science.gov (United States)

    Dawson, Vaille

    2015-05-01

    Climate change is one of the most significant science issues facing humanity; yet, teaching students about climate change is challenging: not only is it multidisciplinary, but also it is contentious and debated in political, social and media forums. Students need to be equipped with an understanding of climate change science to be able to participate in this discourse. The purpose of this study was to examine Western Australian high school students' understanding of climate change and the greenhouse effect, in order to identify their alternative conceptions about climate change science and provide a baseline for more effective teaching. A questionnaire designed to elicit students' understanding and alternative conceptions was completed by 438 Year 10 students (14-15 years old). A further 20 students were interviewed. Results showed that students know different features of both climate change and the greenhouse effect, however not necessarily all of them and the relationships between. Five categories of alternative conceptions were identified. The categories were (1) the greenhouse effect and the ozone layer; (2) types of greenhouse gases; (3) types of radiation; (4) weather and climate and (5) air pollution. These findings provide science educators a basis upon which to develop strategies and curriculum resources to improve their students' understanding and decision-making skills about the socioscientific issue, climate change.

  12. Implications of potential future grand solar minimum for ozone layer and climate

    Science.gov (United States)

    Arsenovic, Pavle; Rozanov, Eugene; Anet, Julien; Stenke, Andrea; Schmutz, Werner; Peter, Thomas

    2018-03-01

    Continued anthropogenic greenhouse gas (GHG) emissions are expected to cause further global warming throughout the 21st century. Understanding the role of natural forcings and their influence on global warming is thus of great interest. Here we investigate the impact of a recently proposed 21st century grand solar minimum on atmospheric chemistry and climate using the SOCOL3-MPIOM chemistry-climate model with an interactive ocean element. We examine five model simulations for the period 2000-2199, following the greenhouse gas concentration scenario RCP4.5 and a range of different solar forcings. The reference simulation is forced by perpetual repetition of solar cycle 23 until the year 2199. This reference is compared with grand solar minimum simulations, assuming a strong decline in solar activity of 3.5 and 6.5 W m-2, respectively, that last either until 2199 or recover in the 22nd century. Decreased solar activity by 6.5 W m-2 is found to yield up to a doubling of the GHG-induced stratospheric and mesospheric cooling. Under the grand solar minimum scenario, tropospheric temperatures are also projected to decrease compared to the reference. On the global scale a reduced solar forcing compensates for at most 15 % of the expected greenhouse warming at the end of the 21st and around 25 % at the end of the 22nd century. The regional effects are predicted to be significant, in particular in northern high-latitude winter. In the stratosphere, the reduction of around 15 % of incoming ultraviolet radiation leads to a decrease in ozone production by up to 8 %, which overcompensates for the anticipated ozone increase due to reduced stratospheric temperatures and an acceleration of the Brewer-Dobson circulation. This, in turn, leads to a delay in total ozone column recovery from anthropogenic halogen-induced depletion, with a global ozone recovery to the pre-ozone hole values happening only upon completion of the grand solar minimum.

  13. Protecting health from climate change: Preparedness of medical interns

    Directory of Open Access Journals (Sweden)

    Majra Jai

    2009-01-01

    Full Text Available Context : Climate change is a significant and emerging threat to public health and to meet the challenge, health systems require qualified staff. Aims : To study the preparedness of medical interns to meet the challenge of protecting health from climate change. Settings and Design: Medical colleges in a coastal town. Cross-sectional study. Materials and Methods: A proportionate number of medical interns from five medical colleges were included in the study. Level of awareness was used as a criterion to judge the preparedness. A self-administered, pretested, open-ended questionnaire was used. Responses were evaluated and graded. Statistical Analysis Used: Proportions, percentage, Chi-test. Results : About 90% of the medical interns were aware of the climate change and human activities that were playing a major role. Ninety-four percent were aware of the direct health impacts due to higher temperature and depletion in ozone concentration, and about 78% of the respondents were aware about the change in frequency / distribution of vector-borne diseases, water borne / related diseases, malnutrition, and health impact of population displacement. Knowledge regarding health protection was limited to mitigation of climate change and training / education. Options like adaptation, establishing / strengthening climate and disease surveillance systems, and health action in emergency were known to only nine (7%, eight (6%, and 17 (13%, respectively. Collegewise difference was statistically insignificant. Extra / co-curricular activities were the major source of knowledge. Conclusions : Majority of medical interns were aware of the causes and health impacts of climate change, but their knowledge regarding health protection measures was limited.

  14. Climate response to projected changes in short-lived species under an A1B scenario from 2000-2050 in the GISS climate model

    Energy Technology Data Exchange (ETDEWEB)

    Menon, Surabi; Shindell, Drew T.; Faluvegi, Greg; Bauer, Susanne E.; Koch, Dorothy M.; Unger, Nadine; Menon, Surabi; Miller, Ron L.; Schmidt, Gavin A.; Streets, David G.

    2007-03-26

    We investigate the climate forcing from and response to projected changes in short-lived species and methane under the A1B scenario from 2000-2050 in the GISS climate model. We present a meta-analysis of new simulations of the full evolution of gas and aerosol species and other existing experiments with variations of the same model. The comparison highlights the importance of several physical processes in determining radiative forcing, especially the effect of climate change on stratosphere-troposphere exchange, heterogeneous sulfate-nitrate-dust chemistry, and changes in methane oxidation and natural emissions. However, the impact of these fairly uncertain physical effects is substantially less than the difference between alternative emission scenarios for all short-lived species. The net global mean annual average direct radiative forcing from the short-lived species is .02 W/m{sup 2} or less in our projections, as substantial positive ozone forcing is largely offset by negative aerosol direct forcing. Since aerosol reductions also lead to a reduced indirect effect, the global mean surface temperature warms by {approx}0.07 C by 2030 and {approx}0.13 C by 2050, adding 19% and 17%, respectively, to the warming induced by long-lived greenhouse gases. Regional direct forcings are large, up to 3.8 W/m{sup 2}. The ensemble-mean climate response shows little regional correlation with the spatial pattern of the forcing, however, suggesting that oceanic and atmospheric mixing generally overwhelms the effect of even large localized forcings. Exceptions are the polar regions, where ozone and aerosols may induce substantial seasonal climate changes.

  15. Response of climate to regional emissions of ozone precursors: sensitivities and warming potentials

    International Nuclear Information System (INIS)

    Berntsen, T.K.; Fuglestvedt, J.S.; Joshi, M.M.; Shine, K.P.; Hauglustaine, D.A.; Li, L.

    2005-01-01

    The response of climate to ozone perturbations caused by regional emissions of NO x or CO has been studied through a sequence of model simulations. Changes C and OH concentrations due to emission perturbations in Europe and southeast Asia have been calculated with two global 3-D chemical tracer models(CTMs; LMDzINCA and Oslo-CTM2). The radiative transfer codes of three general circulation models (GCMs; ECHAM4, UREAD and LMD) have been used to calculate the radiative forcing of the O 3 perturbations, and for a subset of the cases full GCM simulations have been performed with ECHAM4 and UREAD. The results have been aggregated to a global number in two ways: first, through integrating the global-mean radiative forcing of a sustained step change in emissions, and second through a modified concept (SGWP*) which includes possible differences in the climate sensitivity of O 3 , CH 4 and CO 2 changes. In terms of change in global tropospheric O 3 burden the two CTMs differ by less than 30%. Both CTMs show a higher north/south gradient in the sensitivity to changes in NO x emission than for CO. We are not able to conclude whether real O 3 perturbations in general have a different climate sensitivity from CO 2 . However, in both GCMs high-latitude emission perturbations lead to climate perturbations with higher (10-30%) climate sensitivities. The calculated SGWP*, for a 100 yr time horizon, are negative for three of the four CTM/GCM combinations for European emissions (-9.6 to +6.9), while for the Asian emissions the SGWP* (H=100) is always positive (+2.9 to +25) indicating a warming. For CO the SGWP* values (3.8 and 4.4 for European and Asian emissions respectively, with only the Oslo-CTM2/ECHAM4 model combination) are less regionally dependent. Our results support the view that for NO x , regionally different weighting factors for the emissions are necessary. For CO the results are more robust and one global number may be acceptable

  16. Development of key indicators to quantify the health impacts of climate change on Canadians.

    Science.gov (United States)

    Cheng, June J; Berry, Peter

    2013-10-01

    This study aimed at developing a list of key human health indicators for quantifying the health impacts of climate change in Canada. A literature review was conducted in OVID Medline to identify health morbidity and mortality indicators currently used to quantify climate change impacts. Public health frameworks and other studies of climate change indicators were reviewed to identify criteria with which to evaluate the list of proposed key indicators and a rating scale was developed. Total scores for each indicator were calculated based on the rating scale. A total of 77 health indicators were identified from the literature. After evaluation using the chosen criteria, 8 indicators were identified as the best for use. They include excess daily all-cause mortality due to heat, premature deaths due to air pollution (ozone and particulate matter 2.5), preventable deaths from climate change, disability-adjusted life years lost from climate change, daily all-cause mortality, daily non-accidental mortality, West Nile Disease incidence, and Lyme borreliosis incidence. There is need for further data and research related to health effect quantification in the area of climate change.

  17. Climate/chemistry feedbacks and biogenic emissions.

    Science.gov (United States)

    Pyle, John A; Warwick, Nicola; Yang, Xin; Young, Paul J; Zeng, Guang

    2007-07-15

    The oxidizing capacity of the atmosphere is affected by anthropogenic emissions and is projected to change in the future. Model calculations indicate that the change in surface ozone at some locations could be large and have significant implications for human health. The calculations depend on the precise scenarios used for the anthropogenic emissions and on the details of the feedback processes included in the model. One important factor is how natural biogenic emissions will change in the future. We carry out a sensitivity calculation to address the possible increase in isoprene emissions consequent on increased surface temperature in a future climate. The changes in ozone are significant but depend crucially on the background chemical regime. In these calculations, we find that increased isoprene will increase ozone in the Northern Hemisphere but decrease ozone in the tropics. We also consider the role of bromine compounds in tropospheric chemistry and consider cases where, in a future climate, the impact of bromine could change.

  18. Impacts of air pollution and climate change on forest ecosystems - emerging research needs

    Science.gov (United States)

    Elena Paoletti; Bytnerowicz; Chris Andersen; Algirdas Augustaitis; Marco Ferretti; Nancy Grulke; Madeleine S. Gunthardt-goerg; John Innes; Dale Johnson; Dave Karnosky; Jessada Luangjame; Rainer Matyssek; Steven McNulty; Gerhard Muller-Starck; Robert Musselman; Kevin Percy

    2007-01-01

    Outcomes from the 22nd meeting for Specialists in Air Pollution Effects on Forest Ecosystems "Forests under Anthropogenic Pressure – Effects of Air Pollution, Climate Change and Urban Development", September 10–16, 2006, Riverside, CA, are summarized. Tropospheric or ground-level ozone (O3) is still the phytotoxic...

  19. Assessing perceived health risks of climate change : Canadian public opinion 2008

    International Nuclear Information System (INIS)

    2008-03-01

    This paper discussed a survey conducted to evaluate the awareness, knowledge, attitudes, and behaviours of Canadians in relation to climatic change. A total of 1600 telephone surveys were conducted with a broad range of age groups. The study showed that climate change is considered by many Canadians to pose a significant threat at both local and global levels. Evidence of climate change has been noted in many communities. However, relatively few Canadians understand how climate change may impact human health. While many Canadians associated climatic change with air pollution hazards and ozone depletion, most Canadians were not aware of the potential negative health impacts related to changes in disease vectors, extreme weather events, and coastal flooding. The strongest awareness and concern about health impacts were expressed by Canadians concerned about global warming. Individuals with chronic health conditions were more likely to be attuned to the potential health impacts of climatic change. Seniors viewed climate change as a longer term problem. Only 10 per cent of Canadians viewed global warming as a major health risk. Sixty-nine per cent of Canadians believed that global warming was happening, while 63 per cent attributed climate change to human activity. Nearly half of all respondents believed that an extreme weather disaster would affect their community during the course of their lifetime. The report suggested that marketing or communications campaigns should build public awareness of the health risks associated with direct or proximal environmental risks. Information about health risks should be specific, and communications should be tailored to age cohorts. Television and print media should be used to build awareness of the health risks of climate change. Provincial concerns related to climatic change were also outlined. tabs., figs

  20. Decadal changes in summertime reactive oxidized nitrogen and surface ozone over the Southeast United States

    Directory of Open Access Journals (Sweden)

    J. Li

    2018-02-01

    Full Text Available Widespread efforts to abate ozone (O3 smog have significantly reduced emissions of nitrogen oxides (NOx over the past 2 decades in the Southeast US, a place heavily influenced by both anthropogenic and biogenic emissions. How reactive nitrogen speciation responds to the reduction in NOx emissions in this region remains to be elucidated. Here we exploit aircraft measurements from ICARTT (July–August 2004, SENEX (June–July 2013, and SEAC4RS (August–September 2013 and long-term ground measurement networks alongside a global chemistry–climate model to examine decadal changes in summertime reactive oxidized nitrogen (RON and ozone over the Southeast US. We show that our model can reproduce the mean vertical profiles of major RON species and the total (NOy in both 2004 and 2013. Among the major RON species, nitric acid (HNO3 is dominant (∼ 42–45 %, followed by NOx (31 %, total peroxy nitrates (ΣPNs; 14 %, and total alkyl nitrates (ΣANs; 9–12 % on a regional scale. We find that most RON species, including NOx, ΣPNs, and HNO3, decline proportionally with decreasing NOx emissions in this region, leading to a similar decline in NOy. This linear response might be in part due to the nearly constant summertime supply of biogenic VOC emissions in this region. Our model captures the observed relative change in RON and surface ozone from 2004 to 2013. Model sensitivity tests indicate that further reductions of NOx emissions will lead to a continued decline in surface ozone and less frequent high-ozone events.

  1. Health and vitality assessment of two common pine species in the context of climate change in southern Europe.

    Science.gov (United States)

    Sicard, Pierre; Dalstein-Richier, Laurence

    2015-02-01

    The Mediterranean Basin is expected to be more strongly affected by ongoing climate change than most other regions of the earth. The South-eastern France can be considered as case study for assessing global change impacts on forests. Based on non-parametric statistical tests, the climatic parameters (temperature, relative humidity, rainfall, global radiation) and forest-response indicators (crown defoliation, discoloration and visible foliar ozone injury) of two pine species (Pinus halepensis and Pinus cembra) were analyzed. In the last 20 years, the trend analyses reveal a clear hotter and drier climate along the coastline and slightly rainier inland. In the current climate change context, a reduction in ground-level ozone (O3) was found at remote sites and the visible foliar O3 injury decreased while deterioration of the crown conditions was observed likely due to a drier and warmer climate. Clearly, if such climatic and ecological changes are now being detected when the climate, in South-eastern France, has warmed in the last 20 years (+0.46-1.08°C), it can be expected that many more impacts on tree species will occur in response to predicted temperature changes by 2100 (+1.95-4.59°C). Climate change is projected to reduce the benefits of O3 precursor emissions controls leading to a higher O3 uptake. However, the drier and warmer climate should induce a soil drought leading to a lower O3 uptake. These two effects, acting together in an opposite way, could mitigate the harmful impacts of O3 on forests. The development of coordinated emission abatement strategies is useful to reduce both climate change and O3 pollution. Climate change will create additional challenges for forest management with substantial socio-economic and biological diversity impacts. However, the development of future sustainable and adaptive forest management strategies has the potential to reduce the vulnerability of forest species to climate change. Copyright © 2014 Elsevier Inc. All

  2. Exploring the consequences of climate change for indoor air quality

    International Nuclear Information System (INIS)

    Nazaroff, William W

    2013-01-01

    Climate change will affect the concentrations of air pollutants in buildings. The resulting shifts in human exposure may influence public health. Changes can be anticipated because of altered outdoor pollution and also owing to changes in buildings effected in response to changing climate. Three classes of factors govern indoor pollutant levels in occupied spaces: (a) properties of pollutants; (b) building factors, such as the ventilation rate; and (c) occupant behavior. Diversity of indoor conditions influences the public health significance of climate change. Potentially vulnerable subpopulations include not only the young and the infirm but also those who lack resources to respond effectively to changing conditions. Indoor air pollutant levels reflect the sum of contributions from indoor sources and from outdoor pollutants that enter with ventilation air. Pollutant classes with important indoor sources include the byproducts of combustion, radon, and volatile and semivolatile organic compounds. Outdoor pollutants of special concern include particulate matter and ozone. To ensure good indoor air quality it is important first to avoid high indoor emission rates for all pollutants and second to ensure adequate ventilation. A third factor is the use of air filtration or air cleaning to achieve further improvements where warranted. (letter)

  3. Clean coal technologies and global climate change

    International Nuclear Information System (INIS)

    Long, R.S.

    1993-01-01

    The role for Clean Coal Technologies is discussed in the context of the global climate change debate. Global climate change is, of course as the name implies, a global issue. This clearly distinguishes this issue from acid rain or ozone non-attainment, which are regional in nature. Therefore, the issue requires a global perspective, one that looks at the issue not just from a US policy standpoint but from an international policy view. This includes the positions of other individual nations, trading blocks, common interest groups, and the evolving United Nations bureaucracy. It is assumed that as the global economy continues to grow, energy demand will also grow. With growth in economic activity and energy use, will come growth in worldwide greenhouse gas emissions, including growth in carbon dioxide (CO 2 ) emissions. Much of this growth will occur in developing economies which intend to fuel their growth with coal-fired power, especially China and India. Two basic premises which set out the boundaries of this topic are presented. First, there is the premise that global climate change is occurring, or is about to occur, and that governments must do something to mitigate the causes of climate change. Although this premise is highly rebuttable, and not based on scientific certainty, political science has driven it to the forefront of the debate. Second is the premise that advanced combustion CCTs, with their higher efficiencies, will result in lower CO 2 emissions, and hence lessen any contribution of greater coal use to potential global climate change. This promise is demonstrably true. This discussion focuses on recent and emerging public sector policy actions, which may in large part establish a new framework in which the private sector will find new challenges and new opportunities

  4. Improvements in Total Column Ozone in GEOSCCM and Comparisons with a New Ozone-Depleting Substances Scenario

    Science.gov (United States)

    Oman, Luke D.; Douglass, Anne R.

    2014-01-01

    The evolution of ozone is examined in the latest version of the Goddard Earth Observing System Chemistry-Climate Model (GEOSCCM) using old and new ozone-depleting substances (ODS) scenarios. This version of GEOSCCM includes a representation of the quasi-biennial oscillation, a more realistic implementation of ozone chemistry at high solar zenith angles, an improved air/sea roughness parameterization, and an extra 5 parts per trillion of CH3Br to account for brominated very short-lived substances. Together these additions improve the representation of ozone compared to observations. This improved version of GEOSCCM was used to simulate the ozone evolution for the A1 2010 and the newStratosphere-troposphere Processes and their Role in Climate (SPARC) 2013 ODS scenario derived using the SPARC Lifetimes Report 2013. This new ODS scenario results in a maximum Cltot increase of 65 parts per trillion by volume (pptv), decreasing slightly to 60 pptv by 2100. Approximately 72% of the increase is due to the longer lifetime of CFC-11. The quasi-global (60degS-60degN) total column ozone difference is relatively small and less than 1Dobson unit on average and consistent with the 3-4% larger 2050-2080 average Cly in the new SPARC 2013 scenario. Over high latitudes, this small change in Cly compared to the relatively large natural variabilitymakes it not possible to discern a significant impact on ozone in the second half of the 21st century in a single set of simulations.

  5. Global Air Quality and Health Co-benefits of Mitigating Near-term Climate Change Through Methane and Black Carbon Emission Controls

    Science.gov (United States)

    Anenberg, Susan C.; Schwartz, Joel; Shindell, Drew Todd; Amann, Markus; Faluvegi, Gregory S.; Klimont, Zbigniew; Janssens-Maenhout, Greet; Pozzoli, Luca; Dingenen, Rita Van; Vignati, Elisabetta; hide

    2012-01-01

    Tropospheric ozone and black carbon (BC), a component of fine particulate matter (PM health benefits of 14 specific emission control measures targeting BC and methane, an ozone precursor, that were selected because of their potential to reduce the rate of climate change over the next 20-40 years. Methods: We simulated the impacts of mitigation measures on outdoor concentrations of PM2.5 and ozone using two composition-climate models, and calculated associated changes in premature PM2.5- and ozone-related deaths using epidemiologically derived concentration-response functions. Results: We estimated that, for PM2.5 and ozone, respectively, fully implementing these measures could reduce global population-weighted average surface concentrations by 23-34% and 7-17% and avoid 0.6-4.4 and 0.04-0.52 million annual premature deaths globally in 2030. More than 80% of the health benefits are estimated to occur in Asia. We estimated that BC mitigation measures would achieve approximately 98% of the deaths that would be avoided if all BC and methane mitigation measures were implemented, due to reduced BC and associated reductions of nonmethane ozone precursor and organic carbon emissions as well as stronger mortality relationships for PM2.5 relative to ozone. Although subject to large uncertainty, these estimates and conclusions are not strongly dependent on assumptions for the concentration-response function. Conclusions: In addition to climate benefits, our findings indicate that the methane and BC emission control measures would have substantial co-benefits for air quality and public health worldwide, potentially reversing trends of increasing air pollution concentrations and mortality in Africa and South, West, and Central Asia. These projected benefits are independent of carbon dioxide mitigation measures. Benefits of BC measures are underestimated because we did not account for benefits from reduced indoor exposures and because outdoor exposure estimates were limited by

  6. Quality assessment of the Ozone_cci Climate Research Data Package (release 2017 – Part 1: Ground-based validation of total ozone column data products

    Directory of Open Access Journals (Sweden)

    K. Garane

    2018-03-01

    Full Text Available The GOME-type Total Ozone Essential Climate Variable (GTO-ECV is a level-3 data record, which combines individual sensor products into one single cohesive record covering the 22-year period from 1995 to 2016, generated in the frame of the European Space Agency's Climate Change Initiative Phase II. It is based on level-2 total ozone data produced by the GODFIT (GOME-type Direct FITting v4 algorithm as applied to the GOME/ERS-2, OMI/Aura, SCIAMACHY/Envisat and GOME-2/Metop-A and Metop-B observations. In this paper we examine whether GTO-ECV meets the specific requirements set by the international climate–chemistry modelling community for decadal stability long-term and short-term accuracy. In the following, we present the validation of the 2017 release of the Climate Research Data Package Total Ozone Column (CRDP TOC at both level 2 and level 3. The inter-sensor consistency of the individual level-2 data sets has mean differences generally within 0.5 % at moderate latitudes (±50°, whereas the level-3 data sets show mean differences with respect to the OMI reference data record that span between −0.2 ± 0.9 % (for GOME-2B and 1.0 ± 1.4 % (for SCIAMACHY. Very similar findings are reported for the level-2 validation against independent ground-based TOC observations reported by Brewer, Dobson and SAOZ instruments: the mean bias between GODFIT v4 satellite TOC and the ground instrument is well within 1.0 ± 1.0 % for all sensors, the drift per decade spans between −0.5 % and 1.0 ± 1.0 % depending on the sensor, and the peak-to-peak seasonality of the differences ranges from ∼ 1 % for GOME and OMI to  ∼ 2 % for SCIAMACHY. For the level-3 validation, our first goal was to show that the level-3 CRDP produces findings consistent with the level-2 individual sensor comparisons. We show a very good agreement with 0.5 to 2 % peak-to-peak amplitude for the monthly mean difference time series and a

  7. Tropospheric Ozone Change from 1980 to 2010 Dominated by Equatorward Redistribution of Emissions

    Science.gov (United States)

    Zhang, Yuqiang; Cooper, Owen R.; Gaudel, Audrey; Thompson, Anne M.; Nedelec, Philippe; Ogino, Shin-Ya; West, J. Jason

    2016-01-01

    Ozone is an important air pollutant at the surface, and the third most important anthropogenic greenhouse gas in the troposphere. Since 1980, anthropogenic emissions of ozone precursors methane, non-methane volatile organic compounds, carbon monoxide and nitrogen oxides (NOx) have shifted from developed to developing regions. Emissions have thereby been redistributed equatorwards, where they are expected to have a stronger effect on the tropospheric ozone burden due to greater convection, reaction rates and NOx sensitivity. Here we use a global chemical transport model to simulate changes in tropospheric ozone concentrations from 1980 to 2010, and to separate the influences of changes in the spatial distribution of global anthropogenic emissions of short-lived pollutants, the magnitude of these emissions, and the global atmospheric methane concentration. We estimate that the increase in ozone burden due to the spatial distribution change slightly exceeds the combined influences of the increased emission magnitude and global methane. Emission increases in Southeast, East and South Asia may be most important for the ozone change, supported by an analysis of statistically significant increases in observed ozone above these regions. The spatial distribution of emissions dominates global tropospheric ozone, suggesting that the future ozone burden will be determined mainly by emissions from low latitudes.

  8. A Scalable and Extensible Earth System Model for Climate Change Science

    Energy Technology Data Exchange (ETDEWEB)

    Gent, Peter; Lamarque, Jean-Francois; Conley, Andrew; Vertenstein, Mariana; Craig, Anthony

    2013-02-13

    The objective of this award was to build a scalable and extensible Earth System Model that can be used to study climate change science. That objective has been achieved with the public release of the Community Earth System Model, version 1 (CESM1). In particular, the development of the CESM1 atmospheric chemistry component was substantially funded by this award, as was the development of the significantly improved coupler component. The CESM1 allows new climate change science in areas such as future air quality in very large cities, the effects of recovery of the southern hemisphere ozone hole, and effects of runoff from ice melt in the Greenland and Antarctic ice sheets. Results from a whole series of future climate projections using the CESM1 are also freely available via the web from the CMIP5 archive at the Lawrence Livermore National Laboratory. Many research papers using these results have now been published, and will form part of the 5th Assessment Report of the United Nations Intergovernmental Panel on Climate Change, which is to be published late in 2013.

  9. Enzymatic changes in intact leaves of Phaseolus vulgaris following ozone fumigation

    Energy Technology Data Exchange (ETDEWEB)

    Dass, H C; Weaver, G M

    1972-01-01

    Enzymatic changes in the intact leaves of Phaseolus vulgaris cv. Seaway 65 were studied following ozone fumigation. It was found that peroxidase enzyme increased significantly with the ozone treatment in the first 48 h. Similarly, cellulase enzyme showed significant increase 48 h. following ozone treatment. Lactic dehydrogenase activity was not markedly affected by ozone treatment. Disc electrophoretic studies of peroxidase isoenzymes showed that ozone treatment induced a new band of peroxidase. The role of peroxidase, cellulase and lactic dehydrogenase enzymes is discussed in relation to ozone damage and the bronzing disorder in white beans. 22 references, 1 figure, 1 table.

  10. Total ozone changes in the 1987 Antarctic ozone hole

    Science.gov (United States)

    Krueger, Arlin J.; Schoeberl, Mark R.; Doiron, Scott D.; Sechrist, Frank; Galimore, Reginald

    1988-01-01

    The development of the Antarctic ozone minimum was observed in 1987 with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) instrument. In the first half of August the near-polar (60 and 70 deg S) ozone levels were similar to those of recent years. By September, however, the ozone at 70 and 80 deg S was clearly lower than any previous year including 1985, the prior record low year. The levels continued to decrease throughout September until October 5 when a new record low of 109 DU was established at a point near the South Pole. This value is 29 DU less than the lowest observed in 1985 and 48 DU less than the 1986 low. The zonal mean total ozone at 60 deg S remained constant throughout the time of ozone hole formation. The ozone decline was punctuated by local minima formed away from the polar night boundary at about 75 deg S. The first of these, on August 15 to 17, formed just east of the Palmer Peninsula and appears to be a mountain wave. The second major minimum formed on September 5 to 7 again downwind of the Palmer Peninsula. This event was larger in scale than the August minimum and initiated the decline of ozone across the polar region. The 1987 ozone hole was nearly circular and pole centered for its entire life. In previous years the hole was perturbed by intrusions of the circumpolar maximum into the polar regions, thus causing the hole to be elliptical. The 1987 hole also remained in place until the end of November, a few days longer than in 1985, and this persistence resulted in the latest time for recovery to normal values yet observed.

  11. Merged SAGE II, Ozone_cci and OMPS ozone profile dataset and evaluation of ozone trends in the stratosphere

    Directory of Open Access Journals (Sweden)

    V. F. Sofieva

    2017-10-01

    Full Text Available In this paper, we present a merged dataset of ozone profiles from several satellite instruments: SAGE II on ERBS, GOMOS, SCIAMACHY and MIPAS on Envisat, OSIRIS on Odin, ACE-FTS on SCISAT, and OMPS on Suomi-NPP. The merged dataset is created in the framework of the European Space Agency Climate Change Initiative (Ozone_cci with the aim of analyzing stratospheric ozone trends. For the merged dataset, we used the latest versions of the original ozone datasets. The datasets from the individual instruments have been extensively validated and intercompared; only those datasets which are in good agreement, and do not exhibit significant drifts with respect to collocated ground-based observations and with respect to each other, are used for merging. The long-term SAGE–CCI–OMPS dataset is created by computation and merging of deseasonalized anomalies from individual instruments. The merged SAGE–CCI–OMPS dataset consists of deseasonalized anomalies of ozone in 10° latitude bands from 90° S to 90° N and from 10 to 50 km in steps of 1 km covering the period from October 1984 to July 2016. This newly created dataset is used for evaluating ozone trends in the stratosphere through multiple linear regression. Negative ozone trends in the upper stratosphere are observed before 1997 and positive trends are found after 1997. The upper stratospheric trends are statistically significant at midlatitudes and indicate ozone recovery, as expected from the decrease of stratospheric halogens that started in the middle of the 1990s and stratospheric cooling.

  12. The climatic change. El cambio climatico

    Energy Technology Data Exchange (ETDEWEB)

    Calvo Redondo, A; Rodriguez Eustaquio, A; Sanchez y Llorente, J M; Luis y Hernandez, S; Panero Santos, C; Gomez Cubero, J A; Arias-Camison Hernandez, J C

    1994-01-01

    This paper has been developed to show how the future of the climate of our planet could become. The factors that takes places in this possible change are also carefully explained. The human action over the environment is probably disturbing the atmospheric system. The processes that involves this perturbations are shown: pollution, fires in hugh regions such as Amazonia Central Australia, Central and East Africa and some others. Factors like these seems are destroying the ozone shell. We also explain the problems to be sure that the expectatives for the future are reliable. Finally, we propose some solutions for this situation. Special situations like nuclear winter or the desertization are also included. (Author)

  13. Air pollution and climate change. Effects on vegetation, animals, and humans

    International Nuclear Information System (INIS)

    Wellburn, A.R.

    1997-01-01

    This is the first comprehensive review of the effects of air pollution and climate change on the biosphere. The emphasis is on the biochemical processes caused by specific pollutants in plants, animals, and humans, but global aspects of air pollution are gone into as well, e.g. greenhouse effect, acid rain, ozone depletion and forest decline. The reader is given a comprehensive outline of this interdisciplinary problem field. (orig./MG) [de

  14. Global health benefits of mitigating ozone pollution with methane emission controls.

    Science.gov (United States)

    West, J Jason; Fiore, Arlene M; Horowitz, Larry W; Mauzerall, Denise L

    2006-03-14

    Methane (CH(4)) contributes to the growing global background concentration of tropospheric ozone (O(3)), an air pollutant associated with premature mortality. Methane and ozone are also important greenhouse gases. Reducing methane emissions therefore decreases surface ozone everywhere while slowing climate warming, but although methane mitigation has been considered to address climate change, it has not for air quality. Here we show that global decreases in surface ozone concentrations, due to methane mitigation, result in substantial and widespread decreases in premature human mortality. Reducing global anthropogenic methane emissions by 20% beginning in 2010 would decrease the average daily maximum 8-h surface ozone by approximately 1 part per billion by volume globally. By using epidemiologic ozone-mortality relationships, this ozone reduction is estimated to prevent approximately 30,000 premature all-cause mortalities globally in 2030, and approximately 370,000 between 2010 and 2030. If only cardiovascular and respiratory mortalities are considered, approximately 17,000 global mortalities can be avoided in 2030. The marginal cost-effectiveness of this 20% methane reduction is estimated to be approximately 420,000 US dollars per avoided mortality. If avoided mortalities are valued at 1 US dollars million each, the benefit is approximately 240 US dollars per tone of CH(4) ( approximately 12 US dollars per tone of CO(2) equivalent), which exceeds the marginal cost of the methane reduction. These estimated air pollution ancillary benefits of climate-motivated methane emission reductions are comparable with those estimated previously for CO(2). Methane mitigation offers a unique opportunity to improve air quality globally and can be a cost-effective component of international ozone management, bringing multiple benefits for air quality, public health, agriculture, climate, and energy.

  15. Detectability of the impacts of ozone-depleting substances and greenhouse gases upon stratospheric ozone accounting for nonlinearities in historical forcings

    Science.gov (United States)

    Bandoro, Justin; Solomon, Susan; Santer, Benjamin D.; Kinnison, Douglas E.; Mills, Michael J.

    2018-01-01

    We perform a formal attribution study of upper- and lower-stratospheric ozone changes using observations together with simulations from the Whole Atmosphere Community Climate Model. Historical model simulations were used to estimate the zonal-mean response patterns (fingerprints) to combined forcing by ozone-depleting substances (ODSs) and well-mixed greenhouse gases (GHGs), as well as to the individual forcing by each factor. Trends in the similarity between the searched-for fingerprints and homogenized observations of stratospheric ozone were compared to trends in pattern similarity between the fingerprints and the internally and naturally generated variability inferred from long control runs. This yields estimated signal-to-noise (S/N) ratios for each of the three fingerprints (ODS, GHG, and ODS + GHG). In both the upper stratosphere (defined in this paper as 1 to 10 hPa) and lower stratosphere (40 to 100 hPa), the spatial fingerprints of the ODS + GHG and ODS-only patterns were consistently detectable not only during the era of maximum ozone depletion but also throughout the observational record (1984-2016). We also develop a fingerprint attribution method to account for forcings whose time evolutions are markedly nonlinear over the observational record. When the nonlinearity of the time evolution of the ODS and ODS + GHG signals is accounted for, we find that the S/N ratios obtained with the stratospheric ODS and ODS + GHG fingerprints are enhanced relative to standard linear trend analysis. Use of the nonlinear signal detection method also reduces the detection time - the estimate of the date at which ODS and GHG impacts on ozone can be formally identified. Furthermore, by explicitly considering nonlinear signal evolution, the complete observational record can be used in the S/N analysis, without applying piecewise linear regression and introducing arbitrary break points. The GHG-driven fingerprint of ozone changes was not statistically identifiable in either

  16. Climate Change and Impacts Research Experiences for Urban Students

    Science.gov (United States)

    Marchese, P.; Carlson, B. E.; Rosenzweig, C.; Austin, S. A.; Peteet, D. M.; Druyan, L.; Fulakeza, M.; Gaffin, S.; Scalzo, F.; Frost, J.; Moshary, F.; Greenbaum, S.; Cheung, T. K.; Howard, A.; Steiner, J. C.; Johnson, L. P.

    2011-12-01

    Climate change and impacts research for undergraduate urban students is the focus of the Center for Global Climate Research (CGCR). We describe student research and significant results obtained during the Summer 2011. The NSF REU site, is a collaboration between the City University of New York (CUNY) and the NASA Goddard Institute for Space Studies (GISS). The research teams are mentored by NASA scientists and CUNY faculty. Student projects include: Effects of Stratospheric Aerosols on Tropical Cyclone Activity in the North Atlantic Basin; Comparison of Aerosol Optical Depth and Angstrom Exponent Retrieved by AERONET, MISR, and MODIS Measurements; White Roofs to the Rescue: Combating the Urban Heat Island Effect; Tropospheric Ozone Investigations in New York City; Carbon Sequestration with Climate Change in Alaskan Peatlands; Validating Regional Climate Models for Western Sub-Sahara Africa; Bio-Remediation of Toxic Waste Sites: Mineral Characteristics of Cyanide-Treated Mining Waste; Assessment of an Ocean Mixing Parameterization for Climate Studies; Comparative Wind Speed through Doppler Sounding with Pulsed Infrared LIDAR; and Satellite Telemetry and Communications. The CGCR also partners with the New York City Research Initiative (NYCRI) at GISS. The center is supported by NSF ATM-0851932 and the American Recovery and Reinvestment Act of 2009 (ARRA).

  17. A New ENSO Index Derived from Satellite Measurements of Column Ozone

    Science.gov (United States)

    Ziemke, J. R.; Chandra, S.; Oman, L. D.; Bhartia, P. K.

    2010-01-01

    Column Ozone measured in tropical latitudes from Nimbus 7 total ozone mapping spectrometer (TOMS), Earth Probe TOMS, solar backscatter ultraviolet (SBUV), and Aura ozone monitoring instrument (OMI) are used to derive an El Nino-Southern Oscillation (ENSO) index. This index, which covers a time period from 1979 to the present, is defined as the Ozone ENSO Index (OEI) and is the first developed from atmospheric trace gas measurements. The OEI is constructed by first averaging monthly mean column ozone over two broad regions in the western and eastern Pacific and then taking their difference. This differencing yields a self-calibrating ENSO index which is independent of individual instrument calibration offsets and drifts in measurements over the long record. The combined Aura OMI and MLS ozone data confirm that zonal variability in total column ozone in the tropics caused by ENSO events lies almost entirely in the troposphere. As a result, the OEI can be derived directly from total column ozone instead of tropospheric column ozone. For clear-sky ozone measurements a +1K change in Nino 3.4 index corresponds to +2.9 Dobson Unit (DU) change in the OEI, while a +1 hPa change in SOI coincides with a -1.7DU change in the OEI. For ozone measurements under all cloud conditions these numbers are +2.4DU and -1.4 DU, respectively. As an ENSO index based upon ozone, it is potentially useful in evaluating climate models predicting long term changes in ozone and other trace gases.

  18. Possible climate change over Eurasia under different emission scenarios

    Science.gov (United States)

    Sokolov, A. P.; Monier, E.; Gao, X.

    2012-12-01

    In an attempt to evaluate possible climate change over EURASIA, we analyze results of six AMIP type simulations with CAM version 3 (CAM3) at 2x2.5 degree resolution. CAM3 is driven by time series of sea surface temperatures (SSTs) and sea ice obtained by running the MIT IGSM2.3, which consists of a 3D ocean GCM coupled to a zonally-averaged atmospheric climate-chemistry model. In addition to changes in SSTs, CAM3 is forced by changes in greenhouse gases and ozone concentrations, sulfate aerosol forcing and black carbon loading calculated by the IGSM2.3. An essential feature of the IGSM is the possibility to vary its climate sensitivity (using a cloud adjustment technique) and the strength of the aerosol forcing. For consistency, new modules were developed in CAM3 to modify its climate sensitivity and aerosol forcing to match those used in the simulations with the IGSM2.3. The simulations presented in this paper were carried out for two emission scenarios, a "Business as usual" scenario and a 660 ppm of CO2-EQ stabilization, which are similar to the RCP8.5 and RCP4.5 scenarios, respectively. Values of climate sensitivity used in the simulations within the IGSM-CAM framework are median and the bounds of the 90% probability interval of the probability distribution obtained by comparing the 20th century climate simulated by different versions of the IGSM with observations. The associated strength of the aerosol forcing was chosen to ensure a good agreement with the observed climate change over the 20th century. Because the concentration of sulfate aerosol significantly decreases over the 21st century in both emissions scenarios, climate changes obtained in these simulations provide a good approximation for the median, and the 5th and 95th percentiles of the probability distribution of 21st century climate change.

  19. Long-term trends of surface ozone and its influencing factors at the Mt Waliguan GAW station, China - Part 2: The roles of anthropogenic emissions and climate variability

    Science.gov (United States)

    Xu, Wanyun; Xu, Xiaobin; Lin, Meiyun; Lin, Weili; Tarasick, David; Tang, Jie; Ma, Jianzhong; Zheng, Xiangdong

    2018-01-01

    Inter-annual variability and long-term trends in tropospheric ozone are both environmental and climate concerns. Ozone measured at Mt Waliguan Observatory (WLG, 3816 m a.s.l.) on the Tibetan Plateau over the period of 1994-2013 has increased significantly by 0.2-0.3 ppbv yr-1 during spring and autumn but shows a much smaller trend in winter and no significant trend in summer. Here we explore the factors driving the observed ozone changes at WLG using backward trajectory analysis, chemistry-climate model hindcast simulations (GFDL AM3), a trajectory-mapped ozonesonde data set, and several climate indices. A stratospheric ozone tracer implemented in GFDL AM3 indicates that stratosphere-to-troposphere transport (STT) can explain ˜ 60 % of the simulated springtime ozone increase at WLG, consistent with an increase in the NW air-mass frequency inferred from the trajectory analysis. Enhanced STT associated with the strengthening of the mid-latitude jet stream contributes to the observed high ozone anomalies at WLG during the springs of 1999 and 2012. During autumn, observations at WLG are more heavily influenced by polluted air masses originating from South East Asia than in the other seasons. Rising Asian anthropogenic emissions of ozone precursors are the key driver of increasing autumnal ozone observed at WLG, as supported by the GFDL AM3 model with time-varying emissions, which captures the observed ozone increase (0.26 ± 0.11 ppbv yr-1). AM3 simulates a greater ozone increase of 0.38 ± 0.11 ppbv yr-1 at WLG in autumn under conditions with strong transport from South East Asia and shows no significant ozone trend in autumn when anthropogenic emissions are held constant in time. During summer, WLG is mostly influenced by easterly air masses, but these trajectories do not extend to the polluted regions of eastern China and have decreased significantly over the last 2 decades, which likely explains why summertime ozone measured at WLG shows no significant trend

  20. Health and vitality assessment of two common pine species in the context of climate change in southern Europe

    International Nuclear Information System (INIS)

    Sicard, Pierre; Dalstein-Richier, Laurence

    2015-01-01

    The Mediterranean Basin is expected to be more strongly affected by ongoing climate change than most other regions of the earth. The South-eastern France can be considered as case study for assessing global change impacts on forests. Based on non-parametric statistical tests, the climatic parameters (temperature, relative humidity, rainfall, global radiation) and forest-response indicators (crown defoliation, discoloration and visible foliar ozone injury) of two pine species (Pinus halepensis and Pinus cembra) were analyzed. In the last 20 years, the trend analyses reveal a clear hotter and drier climate along the coastline and slightly rainier inland. In the current climate change context, a reduction in ground-level ozone (O 3 ) was found at remote sites and the visible foliar O 3 injury decreased while deterioration of the crown conditions was observed likely due to a drier and warmer climate. Clearly, if such climatic and ecological changes are now being detected when the climate, in South-eastern France, has warmed in the last 20 years (+0.46–1.08 °C), it can be expected that many more impacts on tree species will occur in response to predicted temperature changes by 2100 (+1.95–4.59 °C). Climate change is projected to reduce the benefits of O 3 precursor emissions controls leading to a higher O 3 uptake. However, the drier and warmer climate should induce a soil drought leading to a lower O 3 uptake. These two effects, acting together in an opposite way, could mitigate the harmful impacts of O 3 on forests. The development of coordinated emission abatement strategies is useful to reduce both climate change and O 3 pollution. Climate change will create additional challenges for forest management with substantial socio-economic and biological diversity impacts. However, the development of future sustainable and adaptive forest management strategies has the potential to reduce the vulnerability of forest species to climate change. - Highlights: • We

  1. A projected decrease in lightning under climate change

    Science.gov (United States)

    Finney, Declan L.; Doherty, Ruth M.; Wild, Oliver; Stevenson, David S.; MacKenzie, Ian A.; Blyth, Alan M.

    2018-03-01

    Lightning strongly influences atmospheric chemistry1-3, and impacts the frequency of natural wildfires4. Most previous studies project an increase in global lightning with climate change over the coming century1,5-7, but these typically use parameterizations of lightning that neglect cloud ice fluxes, a component generally considered to be fundamental to thunderstorm charging8. As such, the response of lightning to climate change is uncertain. Here, we compare lightning projections for 2100 using two parameterizations: the widely used cloud-top height (CTH) approach9, and a new upward cloud ice flux (IFLUX) approach10 that overcomes previous limitations. In contrast to the previously reported global increase in lightning based on CTH, we find a 15% decrease in total lightning flash rate with IFLUX in 2100 under a strong global warming scenario. Differences are largest in the tropics, where most lightning occurs, with implications for the estimation of future changes in tropospheric ozone and methane, as well as differences in their radiative forcings. These results suggest that lightning schemes more closely related to cloud ice and microphysical processes are needed to robustly estimate future changes in lightning and atmospheric composition.

  2. An overview of international actions to deal with climate change problem and the scientific update

    Energy Technology Data Exchange (ETDEWEB)

    Usher, P. [United Nations Environment Programme, Climate Unit, Nairobi (Kenya)

    1995-06-01

    The atmospheric environment is under threat from anthropogenic emissions of pollutants and greenhouse gases to the extent that irreversible changes to the climate, the ozone layer and the quality of the air we breathe could occur. However, considerable scientific uncertainty remains with regard to the extent and magnitude of the change in climate as a result of human activities, and the impacts of such change. The natural variability of climate makes assessment of the human induced climate change difficult. Even if the magnitude of global warming from greenhouse gases in the atmosphere could be defined the impacts of this global average warming on, for example, the sea-level; the weather patterns such as rainfall, cloudiness, storms and droughts, agriculture; and marine and terrestrial eco-systems would have to be defined on regional, national and local scales. The assessments of these environmental impacts are, in turn, necessary for estimating the socio-economic impacts of environmental changes. This paper gives an overview of the international actions in combatting climate change and some information on the status of science on the climate change and its impacts. (EG)

  3. An overview of international actions to deal with climate change problem and the scientific update

    International Nuclear Information System (INIS)

    Usher, P.

    1995-01-01

    The atmospheric environment is under threat from anthropogenic emissions of pollutants and greenhouse gases to the extent that irreversible changes to the climate, the ozone layer and the quality of the air we breathe could occur. However, considerable scientific uncertainty remains with regard to the extent and magnitude of the change in climate as a result of human activities, and the impacts of such change. The natural variability of climate makes assessment of the human induced climate change difficult. Even if the magnitude of global warming from greenhouse gases in the atmosphere could be defined the impacts of this global average warming on, for example, the sea-level; the weather patterns such as rainfall, cloudiness, storms and droughts, agriculture; and marine and terrestrial eco-systems would have to be defined on regional, national and local scales. The assessments of these environmental impacts are, in turn, necessary for estimating the socio-economic impacts of environmental changes. This paper gives an overview of the international actions in combatting climate change and some information on the status of science on the climate change and its impacts. (EG)

  4. Climate warming: answering some basic questions

    International Nuclear Information System (INIS)

    Jancovici, J.M.

    2009-01-01

    Illustrated by many graphs, drawings, figures and tables, this long publication offers a detailed overview of the physical aspects of climatic change (definition of the greenhouse effect, explanation and assessment of warming, relationship and differences between greenhouse effect and ozone depletion, between climate change and greenhouse effect induced by human activity, and between meteorology and climate) and states some generalities on greenhouse effect gases. The author then discusses prospective issues on climatic change (notion of average temperature, role and liability of climate models, evolutions of temperatures and precipitations in different places, influence of greenhouse gas reduction), the various risks associated with climatic change (changes of sea currents, impact on ecosystems, diseases, ozone depletion, geographical differences, threat from methane hydrate). After a presentation of the carbon cycle, the next chapters are discussing the scientific discourses, the assessment of greenhouse effect in our everyday life, the impact of possible collective and individual actions, the relationship between greenhouse effect and economy, and strategic choices in France on airports and on nuclear energy

  5. Climate Penalty on Air Quality and Human Health in China and India

    Science.gov (United States)

    Li, M.; Zhang, S.; Garcia-Menendez, F.; Monier, E.; Selin, N. E.

    2017-12-01

    Climate change, favoring more heat waves and episodes of stagnant air, may deteriorate air quality by increasing ozone and fine particulate matter (PM2.5) concentrations and high pollution episodes. This effect, termed as "climate penalty", has been quantified and explained by many earlier studies in the U.S. and Europe, but research efforts in Asian countries are limited. We evaluate the impact of climate change on air quality and human health in China and India using a modeling framework that links the Massachusetts Institute of Technology Integrated Global System Model to the Community Atmosphere Model (MIT IGSM-CAM). Future climate fields are projected under three climate scenarios including a no-policy reference scenario and two climate stabilization scenarios with 2100 total radiative forcing targets of 9.7, 4.5 and 3.7 W m-2, respectively. Each climate scenario is run for five representations of climate variability to account for the role of natural variability. Thirty-year chemical transport simulations are conducted in 1981-2010 and 2086-2115 under the three climate scenarios with fixed anthropogenic emissions at year 2000 levels. We find that 2000—2100 climate change under the no-policy reference scenario would increase ozone concentrations in eastern China and northern India by up to 5 ppb through enhancing biogenic emissions and ozone production efficiency. Ozone extreme episodes also become more frequent in these regions, while climate policies can offset most of the increase in ozone episodes. Climate change between 2000 and 2100 would slightly increase anthropogenic PM2.5 concentrations in northern China and Sichuan province, but significantly reduce anthropogenic PM2.5 concentrations in southern China and northern India, primarily due to different chemical responses of sulfate-nitrate-ammonium aerosols to climate change in these regions. Our study also suggests that the mitigation costs of climate policies can be partially offset by health

  6. Options to Accelerate Ozone Recovery: Ozone and Climate Benefits

    Science.gov (United States)

    Fleming, E. L.; Daniel, J. S.; Portmann, R. W.; Velders, G. J. M.; Jackman, C. H.; Ravishankara, A. R.

    2010-01-01

    The humankind or anthropogenic influence on ozone primarily originated from the chlorofluorocarbons and halons (chlorine and bromine). Representatives from governments have met periodically over the years to establish international regulations starting with the Montreal Protocol in 1987, which greatly limited the release of these ozone-depleting substances (DDSs). Two global models have been used to investigate the impact of hypothetical reductions in future emissions of ODSs on total column ozone. The investigations primarily focused on chlorine- and bromine-containing gases, but some computations also included nitrous oxide (N2O). The Montreal Protocol with ODS controls have been so successful that further regulations of chlorine- and bromine-containing gases could have only a fraction of the impact that regulations already in force have had. if all anthropogenic ODS emissions were halted beginning in 2011, ozone is calculated to be higher by about 1-2% during the period 2030-2100 compared to a case of no additional ODS restrictions. Chlorine- and bromine-containing gases and nitrous oxide are also greenhouse gases and lead to warming of the troposphere. Elimination of N 20 emissions would result in a reduction of radiative forcing of 0.23 W/sq m in 2100 than presently computed and destruction of the CFC bank would produce a reduction in radiative forcing of 0.005 W/sq m in 2100. This paper provides a quantitative way to consider future regulations of the CFC bank and N 20 emissions

  7. Climate change, air pollution and human health in Sydney, Australia: A review of the literature

    Science.gov (United States)

    Dean, Annika; Green, Donna

    2018-05-01

    Sydney is Australia’s largest city and is growing rapidly. Although Sydney’s air quality is relatively good compared to the major cities in many industrialised countries, particulate matter (PM) and ozone (O3) occasionally exceed the national health standards and are the cause of premature mortalities and hospital admissions. Numerous studies from overseas (e.g. North America and continental Europe) suggest that climate change may impact air quality to the detriment of human health. There is limited knowledge about how climate change may impact air quality in Sydney. This study reviews the available literature on the impacts of climate change on air quality related health impacts in Sydney to identify knowledge and research gaps. Where no studies are available for Sydney, it draws on relevant studies from other Australian cities and overseas. Our findings summarise what is known about how climate change may impact air quality in Sydney and where research gaps exist. This approach can facilitate research agendas, policies and planning strategies that mitigate public health impacts and tackle climate change and air pollution in a coordinated way.

  8. Exploring the Multifaceted Topic of Climate Change in Our Changing Climate and Living With Our Changing Climate

    Science.gov (United States)

    Brey, J. A.; Kauffman, C.; Geer, I. W.; Mills, E. W.; Nugnes, K. A.; Stimach, A. E.

    2015-12-01

    As the effects of climate change become more profound, climate literacy becomes increasingly important. The American Meteorological Society (AMS) responds to this need through the publication of Our Changing Climate and Living With Our Changing Climate. Both publications incorporate the latest scientific understandings of Earth's climate system from reports such as IPCC AR5 and the USGCRP's Third National Climate Assessment. Topic In Depth sections appear throughout each chapter and lead to more extensive, multidisciplinary information related to various topics. Additionally, each chapter closes with a For Further Exploration essay, which addresses specific topics that complement a chapter concept. Web Resources, which encourage additional exploration of chapter content, and Scientific Literature, from which chapter content was derived can also be found at the conclusion of each chapter. Our Changing Climate covers a breadth of topics, including the scientific principles that govern Earth's climate system and basic statistics and geospatial tools used to investigate the system. Released in fall 2015, Living With Our Changing Climate takes a more narrow approach and investigates human and ecosystem vulnerabilities to climate change, the role of energy choices in affecting climate, actions humans can take through adaption, mitigation, and policy to lessen vulnerabilities, and psychological and financial reasons behind climate change denial. While Living With Our Changing Climate is intended for programs looking to add a climate element into their curriculum, Our Changing Climate is part of the AMS Climate Studies course. In a 2015 survey of California University of Pennsylvania undergraduate students using Our Changing Climate, 82% found it comfortable to read and utilized its interactive components and resources. Both ebooks illuminate the multidisciplinary aspect of climate change, providing the opportunity for a more sustainable future.

  9. Sixth-Grade Students' Progress in Understanding the Mechanisms of Global Climate Change

    Science.gov (United States)

    Visintainer, Tammie; Linn, Marcia

    2015-04-01

    Developing solutions for complex issues such as global climate change requires an understanding of the mechanisms involved. This study reports on the impact of a technology-enhanced unit designed to improve understanding of global climate change, its mechanisms, and their relationship to everyday energy use. Global Climate Change, implemented in the Web-based Inquiry Science Environment (WISE), engages sixth-grade students in conducting virtual investigations using NetLogo models to foster an understanding of core mechanisms including the greenhouse effect. Students then test how the greenhouse effect is enhanced by everyday energy use. This study draws on three data sources: (1) pre- and post-unit interviews, (2) analysis of embedded assessments following virtual investigations, and (3) contrasting cases of two students (normative vs. non-normative understanding of the greenhouse effect). Results show the value of using virtual investigations for teaching the mechanisms associated with global climate change. Interviews document that students hold a wide range of ideas about the mechanisms driving global climate change. Investigations with models help students use evidence-based reasoning to distinguish their ideas. Results show that understanding the greenhouse effect offers a foundation for building connections between everyday energy use and increases in global temperature. An impediment to establishing coherent understanding was the persistence of an alternative conception about ozone as an explanation for climate change. These findings illustrate the need for regular revision of curriculum based on classroom trials. We discuss key design features of models and instructional revisions that can transform the teaching and learning of global climate change.

  10. Exploring Undergraduate Engagement With The Consequences of Climate Change

    Science.gov (United States)

    Young, N.; Danielson, R.; Lombardi, D.

    2013-12-01

    Engendering conceptual change from naive to scientifically sophisticated beliefs is a difficult task. One factor that fosters conceptual change is greater engagement with a topic. Yet if one asks about a topic in the wrong way, one may fail to find engagement where it exists or assume it exists where it does not. Climate change is an immense topic with consequences across many domains and people may be more concerned with specific consequences than with the topic generally. Therefore, it may be helpful to disambiguate the various risks to see which consequences people find especially engaging and which they do not. We asked 188 undergraduate students at a large university in California to rate twenty-five potential consequences of climate change on several questions. The questions were drawn from constructs that lead to greater engagement with a topic according to the Cognitive Reconstruction of Knowledge Model (Dole & Sinatra, 1998). Scores were then combined to create engagement scores. We found that two potential consequences of climate change were rated as more engaging than climate change generally: air pollution and increases in the price of food. Many consequences were rated as less engaging, including floods, stronger hurricanes, and melting permafrost. This implies that some consequences that scientists consider potentially worthy of concern are nonetheless not considered engaging by many. We also asked participants several open-ended questions about their perceptions of climate change and what consequences they especially cared about. Results were broadly similar but demonstrated many misconceptions about the mechanics and consequences of climate change. Several participants expressed concerns about increases in earthquakes, changes to the ozone layer, and dangerous changes to the density of the atmosphere. We asked participants about the relationship between the terms climate change and global warming. There was considerable disagreement on how these two

  11. News on Climate Change, Air Pollution, and Allergic Triggers of Asthma.

    Science.gov (United States)

    D Amato, M; Cecchi, L; Annesi-Maesano, I; D Amato, G

    2018-01-01

    The rising frequency of obstructive respiratory diseases during recent years, in particular allergic asthma, can be partially explained by changes in the environment, with the increasing presence in the atmosphere of chemical triggers (particulate matter and gaseous components such as nitrogen dioxide and ozone) and biologic triggers (aeroallergens). In allergic individuals, aeroallergens stimulate airway sensitization and thus induce symptoms of bronchial asthma. Over the last 50 years, the earth's temperature has risen markedly, likely because of growing concentrations of anthropogenic greenhouse gas. Major atmospheric and climatic changes, including global warming induced by human activity, have a considerable impact on the biosphere and on the human environment. Urbanization and high levels of vehicle emissions induce symptoms of bronchial obstruction (in particular bronchial asthma), more so in people living in urban areas compared than in those who live in rural areas. Measures need to be taken to mitigate the future impact of climate change and global warming. However, while global emissions continue to rise, we must learn to adapt to climate variability.

  12. Investigation of the temporal development of the stratospheric ozone layer with an interactively coupled chemistry-climate model; Untersuchung der zeitlichen Entwicklung der stratosphaerischen Ozonschicht mit einem interaktiv gekoppelten Klima-Chemie-Modell

    Energy Technology Data Exchange (ETDEWEB)

    Schnadt, C

    2001-07-01

    The impact of climate change and stratospheric chlorine loading on the stratospheric ozone layer is estimated by evaluating three multi-annual simulations of the interactively coupled global chemistry-climate model ECUAM4.L39 (DLR)/CHEM. Two experiments of the near past were carried out representing the early 1980s and 1990s, respectively. An additional scenario was conducted which is characterised by increased greenhouse gas concentrations and a slightly reduced stratospheric chlorine loading with respect to its value measured in the year 1990, according to current projections. The model is able to describe dynamic and chemical processes of the 1980s and 1990s realistically, and it is capable in reproducing the observed stratospheric temperature, water vapour, and ozone temperature trends of this time period. With increasing greenhouse gas concentrations, the model produces an enhancing stratospheric cooling for the years 1980 to 2015. Despite the reduced stratospheric chlorine loading in 2015, the decreased stratospheric temperatures will cause a continued reduction of stratospheric ozone in the southern hemisphere. In the northern hemisphere, tropospheric warming results in a changed excitation of planetary waves. Their vertical propagation and breaking in the stratosphere causes the polar vortex to become more unstable in 2015. This overcompensates the radiative stratospheric cooling so that stratospheric ozone recovers. (orig.)

  13. [The effects of air pollution and climate change on pulmonary diseases].

    Science.gov (United States)

    Rohde, G

    2008-04-01

    From as early as 1930 there has been evidence for effects on health of air pollution. Ozone, particulates and nitrogen dioxide are the most important pollutants today. The acute increase in air pollution leads to a significant raise in morbidity and mortality. Hospital admissions of patients with chronic obstructive pulmonary disease (COPD) or asthma are more frequent during these periods. Chronic exposure to pollution causes bronchitis, accelerated decline of lung function and impaired maturing of the lungs. Ozone and a residence in proximity to major roads seem to play a role in the development of asthma. A further important environmental factor is climate change, which has an impact on air pollution but also on distribution and quality of aero-allergens and the dissemination and transmission of respiratory pathogens.

  14. The role of refrigerants in climate change

    International Nuclear Information System (INIS)

    Wuebbles, D.J.

    1992-06-01

    The primary chemicals used as refrigerants, chlorofluorocarbons (CFCs), and the compounds being considered as their replacements (HCFCs and HFCs) have been intensely studied because of concerns about chlorine chemistry effects on stratospheric ozone. Increasing attention is being given to the potential effects of these compounds in concerns about global warming. CFCs, HCFCs, and HFCs absorb infrared radiation and thus are greenhouse gases that can influence radiative forcing on climate. The purpose of this paper is to describe the current understanding of the role of refrigerants in affecting climate. Increasing atmospheric concentrations of CFCs have accounted for about 24 % of the direct increase in radiative forcing from greenhouse gases over the last decade. However, observed decreases in stratospheric ozone, thought to be connected to increasing stratospheric chlorine from CFCs, suggests a cooling tendency over the last decade. This cooling tendency has strong latitudinal gradients, but is, when globally averaged, about comparable in magnitude and opposite in sign to the radiative forcing from CFCs over this period. Because of their shorter atmospheric lifetimes, the direct radiative influence on climate from the replacement compounds should generally be much smaller than the CFCs

  15. Nitrous Oxides Ozone Destructiveness Under Different Climate Scenarios

    Science.gov (United States)

    Kanter, David R.; McDermid, Sonali P.

    2016-01-01

    Nitrous oxide (N2O) is an important greenhouse gas and ozone depleting substance as well as a key component of the nitrogen cascade. While emissions scenarios indicating the range of N2O's potential future contributions to radiative forcing are widely available, the impact of these emissions scenarios on future stratospheric ozone depletion is less clear. This is because N2O's ozone destructiveness is partially dependent on tropospheric warming, which affects ozone depletion rates in the stratosphere. Consequently, in order to understand the possible range of stratospheric ozone depletion that N2O could cause over the 21st century, it is important to decouple the greenhouse gas emissions scenarios and compare different emissions trajectories for individual substances (e.g. business-as-usual carbon dioxide (CO2) emissions versus low emissions of N2O). This study is the first to follow such an approach, running a series of experiments using the NASA Goddard Institute for Space Sciences ModelE2 atmospheric sub-model. We anticipate our results to show that stratospheric ozone depletion will be highest in a scenario where CO2 emissions reductions are prioritized over N2O reductions, as this would constrain ozone recovery while doing little to limit stratospheric NOx levels (the breakdown product of N2O that destroys stratospheric ozone). This could not only delay the recovery of the stratospheric ozone layer, but might also prevent a return to pre-1980 global average ozone concentrations, a key goal of the international ozone regime. Accordingly, we think this will highlight the importance of reducing emissions of all major greenhouse gas emissions, including N2O, and not just a singular policy focus on CO2.

  16. Health and vitality assessment of two common pine species in the context of climate change in southern Europe

    Energy Technology Data Exchange (ETDEWEB)

    Sicard, Pierre, E-mail: pierre.sicard@acri-st.fr [ACRI-ST, 260 route du Pin Montard, BP 234, 06904 Sophia Antipolis cedex (France); Dalstein-Richier, Laurence [GIEFS (Groupe International d’Etudes des Forêts Sud-européennes) – 60, Avenue des Hespérides, 06300 Nice (France)

    2015-02-15

    The Mediterranean Basin is expected to be more strongly affected by ongoing climate change than most other regions of the earth. The South-eastern France can be considered as case study for assessing global change impacts on forests. Based on non-parametric statistical tests, the climatic parameters (temperature, relative humidity, rainfall, global radiation) and forest-response indicators (crown defoliation, discoloration and visible foliar ozone injury) of two pine species (Pinus halepensis and Pinus cembra) were analyzed. In the last 20 years, the trend analyses reveal a clear hotter and drier climate along the coastline and slightly rainier inland. In the current climate change context, a reduction in ground-level ozone (O{sub 3}) was found at remote sites and the visible foliar O{sub 3} injury decreased while deterioration of the crown conditions was observed likely due to a drier and warmer climate. Clearly, if such climatic and ecological changes are now being detected when the climate, in South-eastern France, has warmed in the last 20 years (+0.46–1.08 °C), it can be expected that many more impacts on tree species will occur in response to predicted temperature changes by 2100 (+1.95–4.59 °C). Climate change is projected to reduce the benefits of O{sub 3} precursor emissions controls leading to a higher O{sub 3} uptake. However, the drier and warmer climate should induce a soil drought leading to a lower O{sub 3} uptake. These two effects, acting together in an opposite way, could mitigate the harmful impacts of O{sub 3} on forests. The development of coordinated emission abatement strategies is useful to reduce both climate change and O{sub 3} pollution. Climate change will create additional challenges for forest management with substantial socio-economic and biological diversity impacts. However, the development of future sustainable and adaptive forest management strategies has the potential to reduce the vulnerability of forest species to climate

  17. Climate change

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    In this paper, the authors discuss in brief the magnitude and rate of past changes in climate and examine the various factors influencing climate in order to place the potential warming due to increasing greenhouse gas concentrations in context. Feedback mechanisms that can amplify or lessen imposed climate changes are discussed next. The overall sensitivity of climate to changes in forcing is then considered, followed by a discussion of the time-dependent response of the Earth system. The focus is on global temperature as an indicator for the magnitude of climatic change

  18. Preparing for climate change.

    Science.gov (United States)

    Holdgate, M

    1989-01-01

    There is a distinct probability that humankind is changing the climate and at the same time raising the sea level of the world. The most plausible projections we have now suggest a rise in mean world temperature of between 1 degree Celsius and 2 degrees Celsius by 2030--just 40 years hence. This is a bigger change in a smaller period than we know of in the experience of the earth's ecosystems and human societies. It implies that by 2030 the earth will be warmer than at any time in the past 120,000 years. In the same period, we are likely to see a rise of 15-30 centimeters in sea level, partly due to the melting of mountain glaciers and partly to the expansion of the warmer seas. This may not seem much--but it comes on top of the 12-centimeter rise in the past century and we should recall that over 1/2 the world's population lives in zones on or near coasts. A quarter meter rise in sea level could have drastic consequences for countries like the Maldives or the Netherlands, where much of the land lies below the 2-meter contour. The cause of climate change is known as the 'greenhouse effect'. Greenhouse glass has the property that it is transparent to radiation coming in from the sun, but holds back radiation to space from the warmed surfaces inside the greenhouse. Certain gases affect the atmosphere in the same way. There are 5 'greenhouse gases' and we have been roofing ourselves with them all: carbon dioxide concentrations in the atmosphere have increased 25% above preindustrial levels and are likely to double within a century, due to tropical forest clearance and especially to the burning of increasing quantities of coal and other fossil fuels; methane concentrations are now twice their preindustrial levels as a result of releases from agriculture; nitrous oxide has increased due to land clearance for agriculture, use of fertilizers, and fossil fuel combustion; ozone levels near the earth's surface have increased due mainly to pollution from motor vehicles; and

  19. Climate change 101 : understanding and responding to global climate change

    Science.gov (United States)

    2009-01-01

    To inform the climate change dialogue, the Pew Center on Global Climate Change and the Pew Center on the States have developed a series of brief reports entitled Climate Change 101: Understanding and Responding to Global Climate Change. These reports...

  20. Climate change and animal diseases: making the case for adaptation.

    Science.gov (United States)

    Cáceres, Sigfrido Burgos

    2012-12-01

    The exponential expansion of the human population has led to overexploitation of resources and overproduction of items that have caused a series of potentially devastating effects, including ocean acidification, ozone depletion, biodiversity loss, the spread of invasive flora and fauna and climatic changes - along with the emergence of new diseases in animals and humans. Climate change occurs as a result of imbalances between incoming and outgoing radiation in the atmosphere. This process generates heat. As concentrations of atmospheric gases reach record levels, global temperatures are expected to increase significantly. The hydrologic cycle will be altered, since warmer air can retain more moisture than cooler air. This means that some geographic areas will have more rainfall, whereas others have more drought and severe weather. The potential consequences of significant and permanent climatic changes are altered patterns of diseases in animal and human populations, including the emergence of new disease syndromes and changes in the prevalence of existing diseases. A wider geographic distribution of known vectors and the recruitment of new strains to the vector pool could result in infections spreading to more and potentially new species of hosts. If these predictions turn out to be accurate, there will be a need for policymakers to consider alternatives, such as adaptation. This review explores the linkages between climate change and animal diseases, and examines interrelated issues that arise from altered biological dynamics. Its aim is to consider various risks and vulnerabilities and to make the case for policies favoring adaptation.

  1. Climate Change

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn; Hansen, Ernst Jan de Place

    2011-01-01

    This paper presents the effects of climate change relevant for Denmark, including the change in mean year values as well as the extent of maximum and minimum extremes. Described by the Intergovernmental Panel on Climate Change, the assumptions that the scenarios are based on were outlined...... and evaluated in a Danish context. The uncertainty of the scenarios leaves major challenges that, if not addressed and taken into account in building design, will grow far more serious as climate change progresses. Cases implemented in the Danish building stock illustrate adaptation to climate change...... and illustrate how building design can include mitigating measures to counteract climate change. Cases studied were individual buildings as well as the urban environment. Furthermore the paper describes some of the issues that must be addressed, as the building sector is investing in measures to adapt to climate...

  2. Climate Change

    Science.gov (United States)

    Climate is the average weather in a place over a period of time. Climate change is major change in temperature, rainfall, snow, ... by natural factors or by human activities. Today climate changes are occurring at an increasingly rapid rate. ...

  3. Influence of future cropland expansion on regional and global tropospheric ozone

    Science.gov (United States)

    Squire, Oliver; Archibald, Alex; Telford, Paul; Pyle, John

    2013-04-01

    With the global population set to rise over the next 100 years, the fraction of land used for crop cultivation is likely to increase, the trend being most pronounced in developing regions such as Brazil and South East Asia. In these regions currently there stands natural rainforest, a high emitter of isoprene. As many staple crops, such as soy bean, are low emitters of isoprene, increasing the crop fraction in these regions will decrease isoprene emissions. Ozone over ~35 ppb has been shown to be damaging to plants, and as ground level ozone is sensitive to isoprene concentrations, altering isoprene emissions could increase ground level ozone, potentially resulting in crop damage. This mechanism was investigated by comparing two configurations of an atmospheric chemistry-climate model (UM-UKCA) under a 2100 climate following an IPCC scenario of moderate climate change. The first run had a present day crop distribution but isoprene emissions concurrent with 2100 temperatures and climatic conditions. The second run had isoprene emissions representative of both a 2100 climate and a 2100 crop distribution in accordance with the IMAGE model. By comparing these runs it was established that ozone increased by up to 8 ppb (~30%) due to crop land expansion. Over the Amazon (the most affected region) it was found that crops were exposed to a daily maximum 8-hour (DM8H) ozone above the 35 ppb threshold for up to 65 days more per year than in the base case. These conclusions suggest that increasing the crop fraction in current areas of natural rainforest could increase regional ground level ozone, having a significant effect on crop yield and air quality. The sensitivity of such conclusions to isoprene chemistry was examined by varying the isoprene chemistry scheme within the model. The CheT isoprene scheme used here (50 reactions) was compared with the AQUM (23 reactions) and CESM Superfast (2 reactions) isoprene schemes, all of which are currently used in Earth-system models

  4. Ozone exposure of a weed community produces adaptive changes in seed populations of Spergula arvensis.

    Directory of Open Access Journals (Sweden)

    Jennifer B Landesmann

    Full Text Available Tropospheric ozone is one of the major drivers of global change. This stress factor alters plant growth and development. Ozone could act as a selection pressure on species communities composition, but also on population genetic background, thus affecting life history traits. Our objective was to evaluate the consequences of prolonged ozone exposure of a weed community on phenotypic traits of Spergulaarvensis linked to persistence. Specifically, we predicted that the selection pressure exerted by high ozone concentrations as well as the concomitant changes in the weed community would drive population adaptive changes which will be reflected on seed germination, dormancy and longevity. In order to test seed viability and dormancy level, we conducted germination experiments for which we used seeds produced by S. arvensis plants grown within a weed community exposed to three ozone treatments during four years (0, 90 and 120 ppb. We also performed a soil seed bank experiment to test seed longevity with seeds coming from both the four-year ozone exposure experiment and from a short-term treatment conducted at ambient and added ozone concentrations. We found that prolonged ozone exposure produced changes in seed germination, dormancy and longevity, resulting in three S. arvensis populations. Seeds from the 90 ppb ozone selection treatment had the highest level of germination when stored at 75% RH and 25 °C and then scarified. These seeds showed the lowest dormancy level when being subjected to 5 ºC/5% RH and 25 ºC/75% followed by 5% RH storage conditions. Furthermore, ozone exposure increased seed persistence in the soil through a maternal effect. Given that tropospheric ozone is an important pollutant in rural areas, changes in seed traits due to ozone exposure could increase weed persistence in fields, thus affecting weed-crop interactions, which could ultimately reduce crop production.

  5. Ozone exposure of a weed community produces adaptive changes in seed populations of Spergula arvensis.

    Science.gov (United States)

    Landesmann, Jennifer B; Gundel, Pedro E; Martínez-Ghersa, M Alejandra; Ghersa, Claudio M

    2013-01-01

    Tropospheric ozone is one of the major drivers of global change. This stress factor alters plant growth and development. Ozone could act as a selection pressure on species communities composition, but also on population genetic background, thus affecting life history traits. Our objective was to evaluate the consequences of prolonged ozone exposure of a weed community on phenotypic traits of Spergulaarvensis linked to persistence. Specifically, we predicted that the selection pressure exerted by high ozone concentrations as well as the concomitant changes in the weed community would drive population adaptive changes which will be reflected on seed germination, dormancy and longevity. In order to test seed viability and dormancy level, we conducted germination experiments for which we used seeds produced by S. arvensis plants grown within a weed community exposed to three ozone treatments during four years (0, 90 and 120 ppb). We also performed a soil seed bank experiment to test seed longevity with seeds coming from both the four-year ozone exposure experiment and from a short-term treatment conducted at ambient and added ozone concentrations. We found that prolonged ozone exposure produced changes in seed germination, dormancy and longevity, resulting in three S. arvensis populations. Seeds from the 90 ppb ozone selection treatment had the highest level of germination when stored at 75% RH and 25 °C and then scarified. These seeds showed the lowest dormancy level when being subjected to 5 ºC/5% RH and 25 ºC/75% followed by 5% RH storage conditions. Furthermore, ozone exposure increased seed persistence in the soil through a maternal effect. Given that tropospheric ozone is an important pollutant in rural areas, changes in seed traits due to ozone exposure could increase weed persistence in fields, thus affecting weed-crop interactions, which could ultimately reduce crop production.

  6. Legacy effects of elevated ozone on soil biota and plant growth

    NARCIS (Netherlands)

    Li, Q.; Yang, Y.; Bao, X.; Liu, F.; Liang, W.; Zhu, J.; Bezemer, T.M.; Putten, van der W.H.

    2015-01-01

    Many studies have examined how human-induced atmospheric changes will influence ecosystems. The long-term consequences of human induced climate changes on terrestrial ecosystems may be determined to a large extend by how the belowground compartment will respond to these changes. In a free-air ozone

  7. Influence of local meteorology and NO2 conditions on ground-level ozone concentrations in the eastern part of Texas, USA

    OpenAIRE

    Gorai, A. K.; Tuluri, F.; Tchounwou, P. B.; Ambinakudige, S.

    2015-01-01

    The influence of local climatic factors on ground-level ozone concentrations is an area of increasing interest to air quality management in regards to future climate change. This study presents an analysis on the role of temperature, wind speed, wind direction, and NO2 level on ground-level ozone concentrations over the region of Eastern Texas, USA. Ozone concentrations at the ground level depend on the formation and dispersion processes. Formation process mainly depends on the precursor sour...

  8. Long-term trends of surface ozone and its influencing factors at the Mt Waliguan GAW station, China – Part 2: The roles of anthropogenic emissions and climate variability

    Directory of Open Access Journals (Sweden)

    W. Xu

    2018-01-01

    Full Text Available Inter-annual variability and long-term trends in tropospheric ozone are both environmental and climate concerns. Ozone measured at Mt Waliguan Observatory (WLG, 3816 m a.s.l. on the Tibetan Plateau over the period of 1994–2013 has increased significantly by 0.2–0.3 ppbv yr−1 during spring and autumn but shows a much smaller trend in winter and no significant trend in summer. Here we explore the factors driving the observed ozone changes at WLG using backward trajectory analysis, chemistry–climate model hindcast simulations (GFDL AM3, a trajectory-mapped ozonesonde data set, and several climate indices. A stratospheric ozone tracer implemented in GFDL AM3 indicates that stratosphere-to-troposphere transport (STT can explain ∼ 60 % of the simulated springtime ozone increase at WLG, consistent with an increase in the NW air-mass frequency inferred from the trajectory analysis. Enhanced STT associated with the strengthening of the mid-latitude jet stream contributes to the observed high ozone anomalies at WLG during the springs of 1999 and 2012. During autumn, observations at WLG are more heavily influenced by polluted air masses originating from South East Asia than in the other seasons. Rising Asian anthropogenic emissions of ozone precursors are the key driver of increasing autumnal ozone observed at WLG, as supported by the GFDL AM3 model with time-varying emissions, which captures the observed ozone increase (0.26 ± 0.11 ppbv yr−1. AM3 simulates a greater ozone increase of 0.38 ± 0.11 ppbv yr−1 at WLG in autumn under conditions with strong transport from South East Asia and shows no significant ozone trend in autumn when anthropogenic emissions are held constant in time. During summer, WLG is mostly influenced by easterly air masses, but these trajectories do not extend to the polluted regions of eastern China and have decreased significantly over the last 2 decades, which likely explains why

  9. Strong modification of stratospheric ozone forcing by cloud and sea-ice adjustments

    Directory of Open Access Journals (Sweden)

    Y. Xia

    2016-06-01

    Full Text Available We investigate the climatic impact of stratospheric ozone recovery (SOR, with a focus on the surface temperature change in atmosphere–slab ocean coupled climate simulations. We find that although SOR would cause significant surface warming (global mean: 0.2 K in a climate free of clouds and sea ice, it causes surface cooling (−0.06 K in the real climate. The results here are especially interesting in that the stratosphere-adjusted radiative forcing is positive in both cases. Radiation diagnosis shows that the surface cooling is mainly due to a strong radiative effect resulting from significant reduction of global high clouds and, to a lesser extent, from an increase in high-latitude sea ice. Our simulation experiments suggest that clouds and sea ice are sensitive to stratospheric ozone perturbation, which constitutes a significant radiative adjustment that influences the sign and magnitude of the global surface temperature change.

  10. Climate change velocity underestimates climate change exposure in mountainous regions

    Science.gov (United States)

    Solomon Z. Dobrowski; Sean A. Parks

    2016-01-01

    Climate change velocity is a vector depiction of the rate of climate displacement used for assessing climate change impacts. Interpreting velocity requires an assumption that climate trajectory length is proportional to climate change exposure; longer paths suggest greater exposure. However, distance is an imperfect measure of exposure because it does not...

  11. Projections of summertime ozone concentration over East Asia under multiple IPCC SRES emission scenarios

    Science.gov (United States)

    Lee, Jae-Bum; Cha, Jun-Seok; Hong, Sung-Chul; Choi, Jin-Young; Myoung, Ji-Su; Park, Rokjin J.; Woo, Jung-Hun; Ho, Changhoi; Han, Jin-Seok; Song, Chang-Keun

    2015-04-01

    We have developed the Integrated Climate and Air Quality Modeling System (ICAMS) through the one-way nesting of global-regional models to examine the changes in the surface ozone concentrations over East Asia under future climate scenarios. Model simulations have been conducted for the present period of 1996-2005 to evaluate the performance of ICAMS. The simulated surface ozone concentrations reproduced the observed monthly mean concentrations at sites in East Asia with high R2 values (0.4-0.9), indicating a successful simulation to capture both spatial and temporal variability. We then performed several model simulations with the six IPCC SRES scenarios (A2, A1B, A1FI, A1T, B1, and B2) for the next three periods, 2016-2025 (the 2020s), 2046-2055 (the 2050s), and 2091-2100 (the 2090s). The model results show that the projected changes of the annual daily mean maximum eight-hour (DM8H) surface ozone concentrations in summertime for East Asia are in the range of 2-8 ppb, -3 to 8 ppb, and -7 to 9 ppb for the 2020s, the 2050s, and the 2090s, respectively, and are primarily determined based on the emission changes of NOx and NMVOC. The maximum increases in the annual DM8H surface ozone and high-ozone events occur in the 2020s for all scenarios except for A2, implying that the air quality over East Asia is likely to get worse in the near future period (the 2020s) than in the far future periods (the 2050s and the 2090s). The changes in the future environment based on IPCC SRES scenarios would also influence the change in the occurrences of high-concentrations events more greatly than that of the annual DM8H surface ozone concentrations. Sensitivity simulations show that the emissions increase is the key factor in determining future regional surface ozone concentrations in the case of a developing country, China, whereas a developed country, Japan would be influenced more greatly by effects of the regional climate change than the increase in emissions.

  12. Understanding climatic change

    International Nuclear Information System (INIS)

    Fellous, J.L.; Gautier, C.; Andre, J.C.; Balstad, R.; Boucher, O.; Brasseur, G.; Chahine, M.T.; Chanin, M.L.; Ciais, P.; Corell, W.; Duplessy, J.C.; Hourcade, J.C.; Jouzel, J.; Kaufman, Y.J.; Laval, K.; Le Treut, H.; Minster, J.F.; Moore, B. III; Morel, P.; Rasool, S.I.; Remy, F.; Smith, R.C.; Somerville, R.C.J.; Wood, E.F.; Wood, H.; Wunsch, C.

    2007-01-01

    Climatic change is gaining ground and with no doubt is stimulated by human activities. It is therefore urgent to better understand its nature, importance and potential impacts. The chapters of this book have been written by US and French experts of the global warming question. After a description of the Intergovernmental Panel on Climate Change (IPCC, GIEC in French) consensus, they present the past and present researches on each of the main component of the climate system, on the question of climatic change impacts and on the possible answers. The conclusion summarizes the results of each chapter. Content: presentation of the IPCC; greenhouse effect, radiation balance and clouds; atmospheric aerosols and climatic change; global water cycle and climate; influence of climatic change on the continental hydrologic cycle; ocean and climate; ice and climate; global carbon cycle; about some impacts of climatic change on Europe and the Atlantic Ocean; interaction between atmospheric chemistry and climate; climate and society, the human dimension. (J.S.)

  13. CLIMATE CHANGE, Change International Negociations?

    Institute of Scientific and Technical Information of China (English)

    Gao Xiaosheng

    2009-01-01

    @@ Climate change is one of key threats to human beings who have to deal with.According to Bali Action Plan released after the 2007 Bali Climate Talk held in Indonesia,the United Nations Framework on Climate Change(UNFCCC) has launched a two-year process to negotiate a post-2012 climate arrangement after the Kyoto Protocol expires in 2012 and the Copenhagen Climate Change Conference will seal a final deal on post-2012 climate regime in December,2009.For this,the United Nation Chief Ban Ki Moon called 2009"the year ofclimate change".

  14. NOAA Climate Data Record (CDR) of Zonal Mean Ozone Binary Database of Profiles (BDBP), version 1.0

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This NOAA Climate Data Record (CDR) of Zonal Mean Ozone Binary Database of Profiles (BDBP) dataset is a vertically resolved, global, gap-free and zonal mean dataset...

  15. Ozone Decline and Recovery: The Significance of Uncertainties

    Science.gov (United States)

    Harris, N. R. P.

    2017-12-01

    Stratospheric ozone depletion has been one of the leading environmental issues of the last 40 years. It has required research scientists, industry and government to work together to address it successfully. Steps have been taken to reduce the emissions of ozone depleting substances (ODS) under successive revisions of the measures in the 30 year old Montreal Protocol. These have led to a reduction in atmospheric ODS concentrations and so are expected over time to result in a reduction of chemical ozone depletion by ODS. This 'recovery' is being influenced by a number of other factors (natural variability, climate change, other changes in stratospheric chemistry) which makes it hard to provide good, quantitative estimates of the impact of the recent ODS reductions on stratospheric ozone. In this presentation, I discuss how ozone trends were linked to ODS during the period of ozone depletion and during the recent period of 'recovery', i.e. before and after the peak in atmospheric ODS. It is important to be as rigorous as possible in order to give public confidence in the advice provided through the scientific assessment process. We thus need to be as critical of our analyses of the recent data as possible, even though there is a strong expectation and hope from all sides that stratospheric ozone is recovering. I will describe in outline the main challenges that exist now and looking forward.

  16. Ozone database in support of CMIP5 simulations: results and corresponding radiative forcing

    Directory of Open Access Journals (Sweden)

    I. Cionni

    2011-11-01

    Full Text Available A continuous tropospheric and stratospheric vertically resolved ozone time series, from 1850 to 2099, has been generated to be used as forcing in global climate models that do not include interactive chemistry. A multiple linear regression analysis of SAGE I+II satellite observations and polar ozonesonde measurements is used for the stratospheric zonal mean dataset during the well-observed period from 1979 to 2009. In addition to terms describing the mean annual cycle, the regression includes terms representing equivalent effective stratospheric chlorine (EESC and the 11-yr solar cycle variability. The EESC regression fit coefficients, together with pre-1979 EESC values, are used to extrapolate the stratospheric ozone time series backward to 1850. While a similar procedure could be used to extrapolate into the future, coupled chemistry climate model (CCM simulations indicate that future stratospheric ozone abundances are likely to be significantly affected by climate change, and capturing such effects through a regression model approach is not feasible. Therefore, the stratospheric ozone dataset is extended into the future (merged in 2009 with multi-model mean projections from 13 CCMs that performed a simulation until 2099 under the SRES (Special Report on Emission Scenarios A1B greenhouse gas scenario and the A1 adjusted halogen scenario in the second round of the Chemistry-Climate Model Validation (CCMVal-2 Activity. The stratospheric zonal mean ozone time series is merged with a three-dimensional tropospheric data set extracted from simulations of the past by two CCMs (CAM3.5 and GISS-PUCCINI and of the future by one CCM (CAM3.5. The future tropospheric ozone time series continues the historical CAM3.5 simulation until 2099 following the four different Representative Concentration Pathways (RCPs. Generally good agreement is found between the historical segment of the ozone database and satellite observations, although it should be noted that

  17. The Role of Lightning in Controlling Interannual Variability of Tropical Tropospheric Ozone and OH and its Implications for Climate

    Science.gov (United States)

    Murray, Lee T.; Jacob, Daniel J.; Logan, Jennifer A.; Hudman, Rynda C.; Koshak, William J.

    2012-01-01

    Nitrogen oxides (NO(x) = NO + NO2) produced by lightning make a major contribution to the production of the dominant tropospheric oxidants (OH and ozone). These oxidants control the lifetime of many trace gases including long-lived greenhouse gases, and control the source-receptor relationship of inter-hemispheric pollutant transport. Lightning is affected by meteorological variability, and therefore represents a potentially important tropospheric chemistry-climate feedback. Understanding how interannual variability (IAV) in lightning affects IAV in ozone and OH in the recent past is important if we are to predict how oxidant levels may change in a future warmer climate. However, lightning parameterizations for chemical transport models (CTMs) show low skill in reproducing even climatological distributions of flash rates from the Lightning Imaging Sensor (LIS) and the Optical Transient Detector (OTD) satellite instruments. We present an optimized regional scaling algorithm for CTMs that enables sufficient sampling of spatiotemporally sparse satellite lightning data from LIS to constrain the spatial, seasonal, and interannual variability of tropical lightning. We construct a monthly time series of lightning flash rates for 1998-2010 and 35degS-35degN, and find a correlation of IAV in total tropical lightning with El Nino. We use the IAV-constraint to drive a 9-year hindcast (1998-2006) of the GEOS-Chem 3D chemical transport model, and find the increased IAV in LNO(x) drives increased IAV in ozone and OH, improving the model fs ability to simulate both. Although lightning contributes more than any other emission source to IAV in ozone, we find ozone more sensitive to meteorology, particularly convective transport. However, we find IAV in OH to be highly sensitive to lightning NO(x), and the constraint improves the ability of the model to capture the temporal behavior of OH anomalies inferred from observations of methyl chloroform and other gases. The sensitivity of

  18. Climate change

    Science.gov (United States)

    Cronin, Thomas M.

    2016-01-01

    Climate change (including climate variability) refers to regional or global changes in mean climate state or in patterns of climate variability over decades to millions of years often identified using statistical methods and sometimes referred to as changes in long-term weather conditions (IPCC, 2012). Climate is influenced by changes in continent-ocean configurations due to plate tectonic processes, variations in Earth’s orbit, axial tilt and precession, atmospheric greenhouse gas (GHG) concentrations, solar variability, volcanism, internal variability resulting from interactions between the atmosphere, oceans and ice (glaciers, small ice caps, ice sheets, and sea ice), and anthropogenic activities such as greenhouse gas emissions and land use and their effects on carbon cycling.

  19. Climate variability and climate change

    International Nuclear Information System (INIS)

    Rind, D.

    1990-01-01

    Changes of variability with climate change are likely to have a substantial impact on vegetation and society, rivaling the importance of changes in the mean values themselves. A variety of paleoclimate and future climate simulations performed with the GISS global climate model is used to assess how the variabilities of temperature and precipitation are altered as climate warms or cools. In general, as climate warms, temperature variability decreases due to reductions in the latitudinal temperature gradient and precipitation variability increases together with the intensity of the hydrologic cycle. If future climate projections are accurate, the reduction in temperature variability will be minimized by the rapid change in mean temperatures, but the hydrologic variability will be amplified by increased evapotranspiration. Greater hydrologic variability would appear to pose a potentially severe problem for the next century

  20. Quantifying the Impact of Tropospheric Ozone on Crops Productivity at regional scale using JULES-crop

    Science.gov (United States)

    Leung, F.

    2016-12-01

    Tropospheric ozone (O3) is the third most important anthropogenic greenhouse gas. It is causing significant crop production losses. Currently, O3 concentrations are projected to increase globally, which could have a significant impact on food security. The Joint UK Land Environment Simulator modified to include crops (JULES-crop) is used here to quantify the impacts of tropospheric O3 on crop production at the regional scale until 2100. We evaluate JULES-crop against the Soybean Free-Air-Concentration-Enrichment (SoyFACE) experiment in Illinois, USA. Experimental data from SoyFACE and various literature sources is used to calibrate the parameters for soybean and ozone damage parameters in soybean in JULES-crop. The calibrated model is then applied for a transient factorial set of JULES-crop simulations over 1960-2005. Simulated yield changes are attributed to individual environmental drivers, CO2, O3 and climate change, across regions and for different crops. A mixed scenario of RCP 2.6 and RCP 8.5 climatology and ozone are simulated to explore the implication of policy. The overall findings are that regions with high ozone concentration such as China and India suffer the most from ozone damage, soybean is more sensitive to O3 than other crops. JULES-crop predicts CO2 fertilisation would increase the productivity of vegetation. This effect, however, is masked by the negative impacts of tropospheric O3. Using data from FAO and JULES-crop estimated that ozone damage cost around 55.4 Billion USD per year on soybean. Irrigation improves the simulation of rice only, and it increases the relative ozone damage because drought can reduce the ozone from entering the plant stomata. RCP 8.5 scenario results in a high yield for all crops mainly due to the CO2 fertilisation effect. Mixed climate scenarios simulations suggest that RCP 8.5 CO2 concentration and RCP 2.6 O3 concentration result in the highest yield. Further works such as more crop FACE-O3 experiments and more Crop

  1. Ozone and the oxidizing properties of the troposphere

    International Nuclear Information System (INIS)

    Megie, G.

    1996-01-01

    This article is about the rising concentration of ozone and photo-oxidizers observed in the troposphere, the atmosphere between the ground and a height of 10 to 15 km. This serious global environmental problem has up to now been less well known than the greenhouse effect or the decrease in stratospheric ozone. This is because it varies with time and place and involves many complicated physico-chemical and atmospheric processes. At our latitudes, the average ozone concentration in the air we breathe has quadrupled since the beginning of this century. In polluted areas it often exceeds the recommended norms. This increase in ozone concentrations in the lower atmosphere directly reflects the impact of man-made emissions of compounds like methane, carbon monoxide, hydrocarbons and nitrogen oxides. Sunlight acts on these compounds to form ozone via complicated chemical reactions. This change in oxidizing properties of the troposphere is beginning produce perceptible effects on vegetable production, human health and climate. (author). 24 refs., 5 figs., 4 tabs

  2. Analysis of Ozone in Cloudy Versus Clear Sky Conditions

    Science.gov (United States)

    Strode, Sarah; Douglass, Anne; Ziemke, Jerald

    2016-01-01

    Convection impacts ozone concentrations by transporting ozone vertically and by lofting ozone precursors from the surface, while the clouds and lighting associated with convection affect ozone chemistry. Observations of the above-cloud ozone column (Ziemke et al., 2009) derived from the OMI instrument show geographic variability, and comparison of the above-cloud ozone with all-sky tropospheric ozone columns from OMI indicates important regional differences. We use two global models of atmospheric chemistry, the GMI chemical transport model (CTM) and the GEOS-5 chemistry climate model, to diagnose the contributions of transport and chemistry to observed differences in ozone between areas with and without deep convection, as well as differences in clean versus polluted convective regions. We also investigate how the above-cloud tropospheric ozone from OMI can provide constraints on the relationship between ozone and convection in a free-running climate simulation as well as a CTM.

  3. Solar cycle variations of stratospheric ozone and temperature in simulations of a coupled chemistry-climate model

    Directory of Open Access Journals (Sweden)

    J. Austin

    2007-01-01

    Full Text Available The results from three 45-year simulations of a coupled chemistry climate model are analysed for solar cycle influences on ozone and temperature. The simulations include UV forcing at the top of the atmosphere, which includes a generic 27-day solar rotation effect as well as the observed monthly values of the solar fluxes. The results are analysed for the 27-day and 11-year cycles in temperature and ozone. In accordance with previous results, the 27-day cycle results are in good qualitative agreement with observations, particularly for ozone. However, the results show significant variations, typically a factor of two or more in sensitivity to solar flux, depending on the solar cycle. In the lower and middle stratosphere we show good agreement also between the modelled and observed 11-year cycle results for the ozone vertical profile averaged over low latitudes. In particular, the minimum in solar response near 20 hPa is well simulated. In comparison, experiments of the model with fixed solar phase (solar maximum/solar mean and climatological sea surface temperatures lead to a poorer simulation of the solar response in the ozone vertical profile, indicating the need for variable phase simulations in solar sensitivity experiments. The role of sea surface temperatures and tropical upwelling in simulating the ozone minimum response are also discussed.

  4. Silver birch and climate change: variable growth and carbon allocation responses to elevated concentrations of carbon dioxide and ozone

    International Nuclear Information System (INIS)

    Riikonen, J.; Holopainen, T.; Oksanen, E.; Lindsberg, M-M.; Lappi, J.; Peltonen, P.; Vapaavuori, E.

    2004-01-01

    The effects of elevated concentrations of carbon dioxide and ozone were studied on growth, biomass allocation and leaf area of field-grown ozone-tolerant (Clone 4) and ozone-sensitive (Clone 80) European silver birch trees. Seven-year old trees of both types were exposed for three years to outside and chamber control, (1) twice ambient ozone, (2) twice ambient carbon dioxide, and (3) twice ambient carbon dioxide and twice ambient ozone. No effect on biomass allocation was observed when results of the two clones were analyzed together. Total leaf area showed an increase, and leaf abscission appeared delayed in response to elevated carbon dioxide. Elevated ozone caused the dry mass of roots, branches and mean leaf size to decrease, and autumnal leaf abscission occurred earlier than usual in both clones. In general. the effects of elevated ozone were small, however, the interaction between elevated carbon dioxide and elevated oxygen were significant. When results from the two clones were analyzed separately, stem diameter, volume growth and total biomass of Clone 80 increased when exposed to elevated concentrations of carbon dioxide; elevated concentrations of ozone appeared to have no effect. In Clone 4 elevated ozone caused significant decrease in root and branch biomass, but the effects of elevated carbon dioxide were minimal. Responses to elevated ozone exposure were observed only under ambient carbon dioxide conditions. This response is believed to reflect the greater quantity of carbohydrates available for detoxification and repair under elevated carbon dioxide conditions. Alternatively, the response may be due to decreased stomatal conductance, thus decreased ozone uptake under elevated carbon dioxide conditions. 45 refs., 6 tabs., 4 figs

  5. Effect of regional precursor emission controls on long-range ozone transport – Part 2: Steady-state changes in ozone air quality and impacts on human mortality

    Directory of Open Access Journals (Sweden)

    J. J. West

    2009-08-01

    Full Text Available Large-scale changes in ozone precursor emissions affect ozone directly in the short term, and also affect methane, which in turn causes long-term changes in ozone that affect surface ozone air quality. Here we assess the effects of changes in ozone precursor emissions on the long-term change in surface ozone via methane, as a function of the emission region, by modeling 10% reductions in anthropogenic nitrogen oxide (NOx emissions from each of nine world regions. Reductions in NOx emissions from all world regions increase methane and long-term surface ozone. While this long-term increase is small compared to the intra-regional short-term ozone decrease, it is comparable to or larger than the short-term inter-continental ozone decrease for some source-receptor pairs. The increase in methane and long-term surface ozone per ton of NOx reduced is greatest in tropical and Southern Hemisphere regions, exceeding that from temperate Northern Hemisphere regions by roughly a factor of ten. We also assess changes in premature ozone-related human mortality associated with regional precursor reductions and long-range transport, showing that for 10% regional NOx reductions, the strongest inter-regional influence is for emissions from Europe affecting mortalities in Africa. Reductions of NOx in North America, Europe, the Former Soviet Union, and Australia are shown to reduce more mortalities outside of the source regions than within. Among world regions, NOx reductions in India cause the greatest number of avoided mortalities per ton, mainly in India itself. Finally, by increasing global methane, NOx reductions in one hemisphere tend to cause long-term increases in ozone concentration and mortalities in the opposite hemisphere. Reducing emissions of methane, and to a lesser extent carbon monoxide and non-methane volatile organic compounds, alongside NOx reductions would

  6. Towards a NNORSY Ozone Profile ECV from European Nadir UV/VIS Measurements

    Science.gov (United States)

    Felder, Martin; Kaifel, Anton; Huckle, Roger

    2010-12-01

    The Neural Network Ozone Retrieval System (NNORSY) has been adapted and applied to several different satellite instruments, including the backscatter UV/VIS instruments ERS2-GOME, SCIAMACHY and METOP-GOME-2. The retrieved long term ozone field hence spans the years 1995 till now. To provide target data for training the neural networks, the lower parts of the atmosphere are sampled by ozone sondes from the WOUDC and SHADOZ data archives. Higher altitudes are covered by a variety of limb-sounding instruments, including the SAGE and POAM series, HALOE, ACE-FTS and AURA-MLS. In this paper, we show ozone profile time series over the entire time range to demonstrate the "out-of-the-box" consistency and homogeneity of our data across the three different nadir sounders, i.e. without any kind of tuning applied. These features of Essential Climate Variable (ECV) datasets [1] also lie at the heart of the recently announced ESA Climate Change Initiative, to which we hope to contribute in the near future.

  7. Renewable Energy Deployment as Climate Change Mitigation in Nigeria

    Directory of Open Access Journals (Sweden)

    Olotu Yahaya

    2016-10-01

    Full Text Available The scientific evidence of climate change as a result of greenhouse gas emissions which causes ozone layer depletion is becoming increasingly obvious and clear. Findings revealed that energy from the fossil fuel is the major source of greenhouse emission which destroys the environment and makes it unhealthy for living beings. In Nigeria, conventional energy (oil and gas with gas flaring has the highest percentage of 52% and liquid fuel of 32% of carbon dioxide (CO2 respectively. This sector contributes revenue of over 70% to Nigeria’s economy and generates an average total 21.8% of greenhouse gas emission. In Nigeria, there is a much more potential for share renewables with 15.4% of total energy production and 8.6 % of energy consumption. In reality with global environmental concern, Nigeria’s carbon dioxide emissions have increased with energy production and consumption. The Integrated Renewable Energy Master Plan of 2008 projects a 26.7% renewable energy contribution to the Nigeria’s energy use and this is expected to reduce CO2 and greenhouse gas emissions at 38% by2025. Nigeria has not been playing significant role by reducing emissions of greenhouse gases. This paper highlights Nigeria’s climate change situation and penetration requirements for various renewable energy deployments as mitigating instrument for climate change towards healthy and productive environment.

  8. Climate for Change?

    DEFF Research Database (Denmark)

    Wejs, Anja

    Cities rather than national governments take the lead in acting on climate change. Several cities have voluntarily created climate change plans to prevent and prepare for the effects of climate change. In the literature climate change has been examined as a multilevel governance area taking place...... around international networks. Despite the many initiatives taken by cities, existing research shows that the implementation of climate change actions is lacking. The reasons for this scarcity in practice are limited to general explanations in the literature, and studies focused on explaining...... the constraints on climate change planning at the local level are absent. To understand these constraints, this PhD thesis investigates the institutional dynamics that influence the process of the integration of climate change into planning practices at the local level in Denmark. The examination of integration...

  9. Climate variability and climate change

    International Nuclear Information System (INIS)

    Rind, D.

    1991-01-01

    Changes of variability with climate change are likely to have a substantial impact on vegetation and society, rivaling the importance of changes in the mean values themselves. A variety of paleoclimate and future climate simulations performed with the GISS global climate model is used to assess how the variabilities of temperature and precipitation are altered as climate warms or cools. In general, as climate warms, temperature variability decreases due to reductions in the latitudinal temperature gradient and precipitation variability increases together with the intensity of the hydrologic cycle. If future climate projections are accurate, the reduction in temperature variability will be minimized by the rapid change in mean temperatures, but the hydrologic variability will be amplified by increased evapotranspiration. Greater hydrologic variability would appear to pose a potentially severe problem for the next century. 19 refs.; 3 figs.; 2 tabs

  10. Ozone Depletion Caused by Rocket Engine Emissions: A Fundamental Limit on the Scale and Viability of Space-Based Geoengineering Schemes

    Science.gov (United States)

    Ross, M. N.; Toohey, D.

    2008-12-01

    Emissions from solid and liquid propellant rocket engines reduce global stratospheric ozone levels. Currently ~ one kiloton of payloads are launched into earth orbit annually by the global space industry. Stratospheric ozone depletion from present day launches is a small fraction of the ~ 4% globally averaged ozone loss caused by halogen gases. Thus rocket engine emissions are currently considered a minor, if poorly understood, contributor to ozone depletion. Proposed space-based geoengineering projects designed to mitigate climate change would require order of magnitude increases in the amount of material launched into earth orbit. The increased launches would result in comparable increases in the global ozone depletion caused by rocket emissions. We estimate global ozone loss caused by three space-based geoengineering proposals to mitigate climate change: (1) mirrors, (2) sunshade, and (3) space-based solar power (SSP). The SSP concept does not directly engineer climate, but is touted as a mitigation strategy in that SSP would reduce CO2 emissions. We show that launching the mirrors or sunshade would cause global ozone loss between 2% and 20%. Ozone loss associated with an economically viable SSP system would be at least 0.4% and possibly as large as 3%. It is not clear which, if any, of these levels of ozone loss would be acceptable under the Montreal Protocol. The large uncertainties are mainly caused by a lack of data or validated models regarding liquid propellant rocket engine emissions. Our results offer four main conclusions. (1) The viability of space-based geoengineering schemes could well be undermined by the relatively large ozone depletion that would be caused by the required rocket launches. (2) Analysis of space- based geoengineering schemes should include the difficult tradeoff between the gain of long-term (~ decades) climate control and the loss of short-term (~ years) deep ozone loss. (3) The trade can be properly evaluated only if our

  11. Ozone: The secret greenhouse gas

    International Nuclear Information System (INIS)

    Berntsen, Terje; Tjernshaugen, Andreas

    2001-01-01

    The atmospheric ozone not only protects against harmful ultraviolet radiation; it also contributes to the greenhouse effect. Ozone is one of the jokers to make it difficult to calculate the climatic effect of anthropogenic emissions. The greenhouse effect and the ozone layer should not be confused. The greenhouse effect creates problems when it becomes enhanced, so that the earth becomes warmer. The problem with the ozone layer, on the contrary, is that it becomes thinner and so more of the harmful ultraviolet radiation gets through to the earth. However, ozone is also a greenhouse gas and so the greenhouse effect and the ozone layer are connected

  12. Effects of atmospheric and climate change at the timberline of the Central European Alps

    Science.gov (United States)

    Wieser, Gerhard; Matyssek, Rainer; Luzian, Roland; Zwerger, Peter; Pindur, Peter; Oberhuber, Walter; Gruber, Andreas

    2011-01-01

    This review considers potential effects of atmospheric change and climate warming within the timberline ecotone of the Central European Alps. After focusing on the impacts of ozone (O3) and rising atmospheric CO2 concentration, effects of climate warming on the carbon and water balance of timberline trees and forests will be outlined towards conclusions about changes in tree growth and treeline dynamics. Presently, ambient ground-level O3 concentrations do not exert crucial stress on adult conifers at the timberline of the Central European Alps. In response to elevated atmospheric CO2 Larix decidua showed growth increase, whereas no such response was found in Pinus uncinata. Overall climate warming appears as the factor responsible for the observed growth stimulation of timberline trees. Increased seedling re-establishment in the Central European Alps however, resulted from invasion into potential habitats rather than upward migration due to climate change, although seedlings will only reach tree size upon successful coupling with the atmosphere and thus loosing the beneficial microclimate of low stature vegetation. In conclusion, future climate extremes are more likely than the gradual temperature increase to control treeline dynamics in the Central European Alps. PMID:21379395

  13. Decision-Support System for Urban Air Pollution under Future Climate Conditions

    OpenAIRE

    Jensen , Steen ,; Brandt , Jørgen; Hvidberg , Martin; Ketzel , Matthias; Hedegaard , Gitte ,; Christensen , Jens ,

    2011-01-01

    Part 6: Climate Services and Environmental Tools for Urban Planning and Climate Change Applications and Services; International audience; Climate change is expected to influence urban living conditions and challenge the ability of cities to adapt to and mitigate climate change. Urban climates will be faced with elevated temperatures and future climate conditions are expected to cause higher ozone concentrations, increased biogenic emissions from vegetation, changes in the chemistry of the atm...

  14. Climate Change and Health Risks from Extreme Heat and Air Pollution in the Eastern United States

    Science.gov (United States)

    Limaye, V.; Vargo, J.; Harkey, M.; Holloway, T.; Meier, P.; Patz, J.

    2013-12-01

    Climate change is expected to exacerbate health risks from exposure to extreme heat and air pollution through both direct and indirect mechanisms. Directly, warmer ambient temperatures promote biogenic emissions of ozone precursors and favor the formation of ground-level ozone, while an anticipated increase in the frequency of stagnant air masses will allow fine particulates to accumulate. Indirectly, warmer summertime temperatures stimulate energy demand and exacerbate polluting emissions from the electricity sector. Thus, while technological adaptations such as air conditioning can reduce risks from exposures to extreme heat, they can trigger downstream damage to air quality and public health. Through an interdisciplinary modeling effort, we quantify the impacts of climate change on ambient temperatures, summer energy demand, air quality, and public health. The first phase of this work explores how climate change will directly impact the burden of heat-related mortality. Climatic patterns, demographic trends, and epidemiologic risk models suggest that populations in the eastern United States are likely to experience an increasing heat stress mortality burden in response to rising summertime air temperatures. We use North American Regional Climate Change Assessment Program modeling data to estimate mid-century 2-meter air temperatures and humidity across the eastern US from June-August, and quantify how long-term changes in actual and apparent temperatures from present-day will affect the annual burden of heat-related mortality across this region. With the US Environmental Protection Agency's Environmental Benefits Mapping and Analysis Program, we estimate health risks using concentration-response functions, which relate temperature increases to changes in annual mortality rates. We compare mid-century summertime temperature data, downscaled using the Weather Research and Forecasting model, to 2007 baseline temperatures at a 12 km resolution in order to estimate

  15. Climate change in school : where does it fit, and how ready are we?

    Energy Technology Data Exchange (ETDEWEB)

    Fortner, R.W. [Ohio State Univ., Columbus, OH (United States)

    2000-06-01

    The issue of whether the topic of global climate change (GCC) should be part of the school curriculum, from elementary school to high school, was discussed. Studies have shown that teachers place a high priority on climate change as a topic their students should know, but report that their own knowledge is inadequate for conveying it. The subject of GCC is best to be taught in Earth systems oriented classrooms which focus on teaching that the Earth system is composed of interacting subsystems of water, rock, ice, air and life. There is plenty of teaching material about GCC and many credible and free sources of scientific information, but it is was cautioned that some teachers may possess misconceptions about Earth system relationships as well as how human activities impact those systems. The most common misconceptions are: (1) inflated estimates of temperature change, (2) confusion between chlorofluorocarbons, the ozone hole, and climate change, (3) perceived evidence of climate change through warmer weather, (4) all environmental harms such as aerosols, acid rain, and even solid waste disposal cause climate change, (5) confusion between weather issues and climate issues. Overcoming these incorrect perceptions might be difficult. In general, a majority of Americans believe that GCC is a serious threat to their life, but there are some interest groups that oppose human-mediated climate change as a part of the school curriculum, for the same reason they oppose public action the problem. It was emphasized that the development of scientific thinking and technology increases our ability to understand and utilize Earth and space. 26 refs., 2 tabs., 1 fig.

  16. A new diagnostic for tropospheric ozone production

    Science.gov (United States)

    Edwards, Peter M.; Evans, Mathew J.

    2017-11-01

    Tropospheric ozone is important for the Earth's climate and air quality. It is produced during the oxidation of organics in the presence of nitrogen oxides. Due to the range of organic species emitted and the chain-like nature of their oxidation, this chemistry is complex and understanding the role of different processes (emission, deposition, chemistry) is difficult. We demonstrate a new methodology for diagnosing ozone production based on the processing of bonds contained within emitted molecules, the fate of which is determined by the conservation of spin of the bonding electrons. Using this methodology to diagnose ozone production in the GEOS-Chem chemical transport model, we demonstrate its advantages over the standard diagnostic. We show that the number of bonds emitted, their chemistry and lifetime, and feedbacks on OH are all important in determining the ozone production within the model and its sensitivity to changes. This insight may allow future model-model comparisons to better identify the root causes of model differences.

  17. A new diagnostic for tropospheric ozone production

    Directory of Open Access Journals (Sweden)

    P. M. Edwards

    2017-11-01

    Full Text Available Tropospheric ozone is important for the Earth's climate and air quality. It is produced during the oxidation of organics in the presence of nitrogen oxides. Due to the range of organic species emitted and the chain-like nature of their oxidation, this chemistry is complex and understanding the role of different processes (emission, deposition, chemistry is difficult. We demonstrate a new methodology for diagnosing ozone production based on the processing of bonds contained within emitted molecules, the fate of which is determined by the conservation of spin of the bonding electrons. Using this methodology to diagnose ozone production in the GEOS-Chem chemical transport model, we demonstrate its advantages over the standard diagnostic. We show that the number of bonds emitted, their chemistry and lifetime, and feedbacks on OH are all important in determining the ozone production within the model and its sensitivity to changes. This insight may allow future model–model comparisons to better identify the root causes of model differences.

  18. Impacts of stratospheric sulfate geoengineering on tropospheric ozone

    Directory of Open Access Journals (Sweden)

    L. Xia

    2017-10-01

    Full Text Available A range of solar radiation management (SRM techniques has been proposed to counter anthropogenic climate change. Here, we examine the potential effects of stratospheric sulfate aerosols and solar insolation reduction on tropospheric ozone and ozone at Earth's surface. Ozone is a key air pollutant, which can produce respiratory diseases and crop damage. Using a version of the Community Earth System Model from the National Center for Atmospheric Research that includes comprehensive tropospheric and stratospheric chemistry, we model both stratospheric sulfur injection and solar irradiance reduction schemes, with the aim of achieving equal levels of surface cooling relative to the Representative Concentration Pathway 6.0 scenario. This allows us to compare the impacts of sulfate aerosols and solar dimming on atmospheric ozone concentrations. Despite nearly identical global mean surface temperatures for the two SRM approaches, solar insolation reduction increases global average surface ozone concentrations, while sulfate injection decreases it. A fundamental difference between the two geoengineering schemes is the importance of heterogeneous reactions in the photochemical ozone balance with larger stratospheric sulfate abundance, resulting in increased ozone depletion in mid- and high latitudes. This reduces the net transport of stratospheric ozone into the troposphere and thus is a key driver of the overall decrease in surface ozone. At the same time, the change in stratospheric ozone alters the tropospheric photochemical environment due to enhanced ultraviolet radiation. A shared factor among both SRM scenarios is decreased chemical ozone loss due to reduced tropospheric humidity. Under insolation reduction, this is the dominant factor giving rise to the global surface ozone increase. Regionally, both surface ozone increases and decreases are found for both scenarios; that is, SRM would affect regions of the world differently in terms of air

  19. Impacts of stratospheric sulfate geoengineering on tropospheric ozone

    Science.gov (United States)

    Xia, Lili; Nowack, Peer J.; Tilmes, Simone; Robock, Alan

    2017-10-01

    A range of solar radiation management (SRM) techniques has been proposed to counter anthropogenic climate change. Here, we examine the potential effects of stratospheric sulfate aerosols and solar insolation reduction on tropospheric ozone and ozone at Earth's surface. Ozone is a key air pollutant, which can produce respiratory diseases and crop damage. Using a version of the Community Earth System Model from the National Center for Atmospheric Research that includes comprehensive tropospheric and stratospheric chemistry, we model both stratospheric sulfur injection and solar irradiance reduction schemes, with the aim of achieving equal levels of surface cooling relative to the Representative Concentration Pathway 6.0 scenario. This allows us to compare the impacts of sulfate aerosols and solar dimming on atmospheric ozone concentrations. Despite nearly identical global mean surface temperatures for the two SRM approaches, solar insolation reduction increases global average surface ozone concentrations, while sulfate injection decreases it. A fundamental difference between the two geoengineering schemes is the importance of heterogeneous reactions in the photochemical ozone balance with larger stratospheric sulfate abundance, resulting in increased ozone depletion in mid- and high latitudes. This reduces the net transport of stratospheric ozone into the troposphere and thus is a key driver of the overall decrease in surface ozone. At the same time, the change in stratospheric ozone alters the tropospheric photochemical environment due to enhanced ultraviolet radiation. A shared factor among both SRM scenarios is decreased chemical ozone loss due to reduced tropospheric humidity. Under insolation reduction, this is the dominant factor giving rise to the global surface ozone increase. Regionally, both surface ozone increases and decreases are found for both scenarios; that is, SRM would affect regions of the world differently in terms of air pollution. In conclusion

  20. Impacts of Air Pollution and Climate Change on Forest Ecosystems — Emerging Research Needs

    Directory of Open Access Journals (Sweden)

    Elena Paoletti

    2007-01-01

    Full Text Available Outcomes from the 22nd meeting for Specialists in Air Pollution Effects on Forest Ecosystems “Forests under Anthropogenic Pressure Effects of Air Pollution, Climate Change and Urban Development”, September 1016, 2006, Riverside, CA, are summarized. Tropospheric or ground-level ozone (O3 is still the phytotoxic air pollutant of major interest. Challenging issues are how to make O3 standards or critical levels more biologically based and at the same time practical for wide use; quantification of plant detoxification processes in flux modeling; inclusion of multiple environmental stresses in critical load determinations; new concept development for nitrogen saturation; interactions between air pollution, climate, and forest pests; effects of forest fire on air quality; the capacity of forests to sequester carbon under changing climatic conditions and coexposure to elevated levels of air pollutants; enhanced linkage between molecular biology, biochemistry, physiology, and morphological traits.

  1. Decadal Changes in Ozone and Emissions in Central California and Current Issues

    Science.gov (United States)

    Tanrikulu, S.; Beaver, S.; Soong, S.; Tran, C.; Cordova, J.; Palazoglu, A.

    2011-12-01

    The relationships among ozone, emissions, and meteorology are very complex in central California, and must be well studied and understood in order to facilitate better air quality planning. Factors significantly impacting changes in emissions such as economic and population growth, and adopted emission controls make the matter even more complex. Here we review the history of ozone pollution in central California since the 1970s to plan for the future. Since the 1970s, changes in emissions have been accompanied by likewise dramatic changes in region-to-region differences in air quality. We focus on the coastal San Francisco Bay Area (SFBA) and the inland San Joaquin Valley (SJV). In the 1970s, the SFBA population was approaching 5 million people while the considerably larger and more rural SJV population remained below 2 million. The SFBA population was mostly confined to coastal locations. Peak ozone levels occurred mostly around the population centers and especially over the Bay itself. Hourly average ozone levels routinely approached 160 ppb. These high ozone levels promoted regulations under which SFBA emissions were continuously reduced through the present. By the 1990s, SFBA emissions had been reduced considerably despite the region's population growing to around 6 million. Relative to the 1970s, in 1990s the SFBA had lower peak ozone levels that were shifted to inland locations where much of the population growth was occurring. The SFBA still exceeded the federal 1-hour standard. A rapidly changing economic landscape in the 1970s promoted vast changes in the central California population distribution. In the SJV, the OPEC oil crisis promoted significant development of petroleum resources. Meanwhile, family farms were quickly being replaced with commercial-scale farming operations. The SJV population rapidly expanded to around 3 million people by the early 1990s. During this time, SJV emissions increased considerably, largely from increases in mobile source

  2. Climate Change Mitigation A Balanced Approach to Climate Change

    CERN Document Server

    2012-01-01

    This book provides a fresh and innovative perspective on climate change policy. By emphasizing the multiple facets of climate policy, from mitigation to adaptation, from technological innovation and diffusion to governance issues, it contains a comprehensive overview of the economic and policy dimensions of the climate problem. The keyword of the book is balance. The book clarifies that climate change cannot be controlled by sacrificing economic growth and many other urgent global issues. At the same time, action to control climate change cannot be delayed, even though gradually implemented. Therefore, on the one hand climate policy becomes pervasive and affects all dimensions of international policy. On the other hand, climate policy cannot be too ambitious: a balanced approach between mitigation and adaptation, between economic growth and resource management, between short term development efforts and long term innovation investments, should be adopted. I recommend its reading. Carlo Carraro, President, Ca�...

  3. Cinematic climate change, a promising perspective on climate change communication.

    Science.gov (United States)

    Sakellari, Maria

    2015-10-01

    Previous research findings display that after having seen popular climate change films, people became more concerned, more motivated and more aware of climate change, but changes in behaviors were short-term. This article performs a meta-analysis of three popular climate change films, The Day after Tomorrow (2005), An Inconvenient Truth (2006), and The Age of Stupid (2009), drawing on research in social psychology, human agency, and media effect theory in order to formulate a rationale about how mass media communication shapes our everyday life experience. This article highlights the factors with which science blends in the reception of the three climate change films and expands the range of options considered in order to encourage people to engage in climate change mitigation actions. © The Author(s) 2014.

  4. Influence of local meteorology and NO2 conditions on ground-level ozone concentrations in the eastern part of Texas, USA.

    Science.gov (United States)

    Gorai, A K; Tuluri, F; Tchounwou, P B; Ambinakudige, S

    2015-02-01

    The influence of local climatic factors on ground-level ozone concentrations is an area of increasing interest to air quality management in regards to future climate change. This study presents an analysis on the role of temperature, wind speed, wind direction, and NO 2 level on ground-level ozone concentrations over the region of Eastern Texas, USA. Ozone concentrations at the ground level depend on the formation and dispersion processes. Formation process mainly depends on the precursor sources, whereas, the dispersion of ozone depends on meteorological factors. Study results showed that the spatial mean of ground-level ozone concentrations was highly dependent on the spatial mean of NO 2 concentrations. However, spatial distributions of NO 2 and ozone concentrations were not uniformed throughout the study period due to uneven wind speeds and wind directions. Wind speed and wind direction also played a significant role in the dispersion of ozone. Temperature profile in the area rarely had any effects on the ozone concentrations due to low spatial variations.

  5. Managing Climate Change Refugia for Climate Adaptation

    Science.gov (United States)

    Daly, Christopher; Dobrowski, Solomon Z.; Dulen, Deanna M.; Ebersole, Joseph L.; Jackson, Stephen T.; Lundquist, Jessica D.; Millar, Constance I.; Maher, Sean P.; Monahan, William B.; Nydick, Koren R.; Redmond, Kelly T.; Sawyer, Sarah C.; Stock, Sarah; Beissinger, Steven R.

    2016-01-01

    Refugia have long been studied from paleontological and biogeographical perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change refugia, here defined as areas relatively buffered from contemporary climate change over time that enable persistence of valued physical, ecological, and socio-cultural resources. We differentiate historical and contemporary views, and characterize physical and ecological processes that create and maintain climate change refugia. We then delineate how refugia can fit into existing decision support frameworks for climate adaptation and describe seven steps for managing them. Finally, we identify challenges and opportunities for operationalizing the concept of climate change refugia. Managing climate change refugia can be an important option for conservation in the face of ongoing climate change. PMID:27509088

  6. Managing climate change refugia for climate adaptation

    Science.gov (United States)

    Morelli, Toni L.; Jackson, Stephen T.

    2016-01-01

    Refugia have long been studied from paleontological and biogeographical perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change refugia, here defined as areas relatively buffered from contemporary climate change over time that enable persistence of valued physical, ecological, and socio-cultural resources. We differentiate historical and contemporary views, and characterize physical and ecological processes that create and maintain climate change refugia. We then delineate how refugia can fit into existing decision support frameworks for climate adaptation and describe seven steps for managing them. Finally, we identify challenges and opportunities for operationalizing the concept of climate change refugia. Managing climate change refugia can be an important option for conservation in the face of ongoing climate change.

  7. Interactive effects of ozone and climate on water use, soil moisture content and streamflow in a southern Appalachian forest in the USA

    Science.gov (United States)

    S.B. McLaughlin; S.D. Wullschleger; G. Sun; M. Nosal

    2007-01-01

    Documentation of the degree and direction of effects of ozone on transpiration of canopies of mature forest trees is critically needed to model ozone effects on forest water use and growth in a warmer future climate.Patterns of sap flow in stems and soil moisture in the rooting zones of mature trees, coupled with late-season...

  8. Characteristics of Surface Ozone in Agra, a Sub-urban site in Indo ...

    Indian Academy of Sciences (India)

    65

    Ozone (O3) is a secondary pollutant which has an important effect on air quality, climate. 49 change and atmospheric chemistry (Solomon et al., 2000; Sitch et al., 2007). Depending on its. 50 location in the atmosphere, O3 can influence human health and climate; in the stratosphere, O3. 51 filters out detrimental ultraviolet ...

  9. Prospective Primary Teachers' Understanding of Climate Change, Greenhouse Effect, and Ozone Layer Depletion

    Science.gov (United States)

    Papadimitriou, Vasiliki

    2004-01-01

    Climate change is one of the most serious global environmental problems and for that reason there has been lately a great interest in educating pupils, the future citizens, about it. Previous research has shown that pupils of all ages and teachers hold many misconceptions and misunderstandings concerning this issue. This paper reports on research…

  10. CITYZEN climate impact studies

    Energy Technology Data Exchange (ETDEWEB)

    Schutz, Martin (ed.)

    2011-07-01

    We have estimated the impact of climate change on the chemical composition of the troposphere due to changes in climate from current climate (2000-2010) looking 40 years ahead (2040-2050). The climate projection has been made by the ECHAM5 model and was followed by chemistry-transport modelling using a global model, Oslo CTM2 (Isaksen et al., 2005; Srvde et al., 2008), and a regional model, EMEP. In this report we focus on carbon monoxide (CO) and surface ozone (O3) which are measures of primary and secondary air pollution. In parallel we have estimated the change in the same air pollutants resulting from changes in emissions over the same time period. (orig.)

  11. On the nature of the solar influence on climate and its contribution to climate change

    Science.gov (United States)

    Vieira, L. A.; da Silva, L. A.; Guarnieri, F.; Echer, E.; Dal Lago, A.; Wrasse, C. M.; Schuch, N.

    2007-05-01

    The influence of solar magnetic variability on the lower atmospheric regions has been observed on different atmospheric parameters in different time scales, but a plausible mechanism to explain these observations remains unclear. It is also indistinguishable whether or not the variability on the solar-terrestrial coupling drives the present climate change. New observations suggested that the existence of a geomagnetic signal in climate data would support a direct link between solar variability and their effects on climate. Usoskin and colleagues compared 1000-year reconstructions of sunspot numbers and cosmic ray flux, derived from cosmogenic isotope dates, with air temperature history in the Northern hemisphere. They observed higher temperatures during periods of intense solar activity. In addition, they report that three different statistical tests consistently indicate that the long-term trends in the temperature correlate better with cosmic rays than with sunspot numbers. Vieira and Da Silva observed that the clouds effects on the radiative flux in the atmosphere in the southern Pacific are related to the intensity of the geomagnetic field. They have also observed a cosmic rays modulation of the variability of the long wavelength radiative flux in the atmosphere. More recently, Vieira and colleagues reported that a correlation between increasing sea-level pressure in the tropical Pacific, and decreasing magnetic field intensity is observed. This indicates that the physical processes in the magnetosphere, ionosphere and upper atmosphere are mapped downward to the Earth's surface. It was suggested that that the coupling mechanism may be linked to the ozone depletion in the lower mesosphere, and in the upper stratosphere of the auroral region, and/or the southern hemisphere magnetic anomaly region. The depletion is caused by high energy protons produced during solar proton events (SPEs) released during large solar storms. Variations in solar irradiance, and ozone

  12. Impact of East Asian Summer Monsoon on Surface Ozone Pattern in China

    Science.gov (United States)

    Li, Shu; Wang, Tijian; Huang, Xing; Pu, Xi; Li, Mengmeng; Chen, Pulong; Yang, Xiu-Qun; Wang, Minghuai

    2018-01-01

    Tropospheric ozone plays a key role in regional and global atmospheric and climate systems. In East Asia, ozone can be affected both in concentration level and spatial pattern by typical monsoon climate. This paper uses three different indices to identify the strength of East Asian summer monsoon (EASM) and explores the possible impact of EASM intensity on the ozone pattern through synthetic and process analysis. The difference in ozone between three strong and three weak monsoon years was analyzed using the simulations from regional climate model RegCM4-Chem. It was found that EASM intensity can significantly influence the spatial distribution of ozone in the lower troposphere. When EASM is strong, ozone in the eastern part of China (28°N - 42° N) is reduced, but the inverse is detected in the north and south. The surface ozone difference ranges from -7 to 7 ppbv during the 3 months (June to August) of the EASM, with the most obvious difference in August. Difference of the 3 months' average ozone ranges from -3.5 to 4 ppbv. Process analysis shows that the uppermost factor controlling ozone level during summer monsoon seasons is the chemistry process. Interannual variability of EASM can impact the spatial distribution of ozone through wind in the lower troposphere, cloud cover, and downward shortwave radiation, which affect the transport and chemical formation of ozone. The phenomenon should be addressed when considering the interaction between ozone and the climate in East Asia region.

  13. Changing heathlands in a changing climate

    DEFF Research Database (Denmark)

    Ransijn, Johannes

    Atmospheric CO2 concentrations and temperatures are rising and precipitation regimes are changing at global scale. How ecosystem will be affected by global climatic change is dependent on the responses of plants and plant communities. This thesis focuses on how climate change affects heathland...... plant communities. Many heathlands have shifted from dwarf shrub dominance to grass dominance and climatic change might affect the competitive balance between dwarf shrubs and grasses. We looked at heathland vegetation dynamics and heathland plant responses to climatic change at different spatial...... between C. vulgaris and D. flexuosa in the same climate change experiment and 5) a study where we compared the responses of shrubland plant communities to experimental warming and recurrent experimental droughts in seven climate change experiments across Europe. Heathland vegetation dynamics are slow...

  14. effect of ambient levels of ozone on photosynthetic components

    African Journals Online (AJOL)

    ACSS

    To clarify the long-term effects of ambient levels of tropospheric ozone (O3) on ... (Rubisco), thus contributing to the reduction in net photosynthetic rate at the .... USA). During the measurements, atmospheric. CO2 concentrations, air ...... productivity and implications for climate change. Annual Review of Plant Biology 63:.

  15. Climate change and climate policy

    International Nuclear Information System (INIS)

    Alfsen, Knut H.; Kolshus, Hans H.; Torvanger, Asbjoern

    2000-08-01

    The climate issue is a great political and scientific challenge for several reasons: (1) There are many uncertain aspects of the climate problem, such as future emission of climate gases, the response of the climate system upon these gases, and the effects of climate changes. (2) It is probable, however, that anthropogenic emission of climate gases, deforestation etc. will cause noticeable climate changes in the future. This might be observed as increased frequency of extreme weather situations. This appears to be a greater threat than a gradual increase of temperature and precipitation. (3) Since the climate system is large and react only relatively slowly on changes in for instance the emission of climate gases, the climate problem can only be solved by means of long-term measures. (4) The climate changes may be irreversible. A rational short-term strategy is to ensure maximum flexibility, which can be done by ''slowing down'' (curtailing emissions) and by avoiding irreversible actions as much as possible. The long-term challenge is to develop an economically responsible alternative to the present fossil-based energy system that permits carbon-efficient technologies to compete on price with coal and unconventional oil and gas. Norway is in a special position by being a large exporter of fossil fuel and at the same time wanting to appear responsible in environmental matters. This combination may incur considerable expenses upon Norway and it is therefore important that environmental commitments like the Kyoto agreement can be honoured to the lowest possible cost. The costs can be minimized by: (1) minimizing the measure costs in Norway, (2) working to make the international quota price as low as possible, and (3) reducing the loss of petroleum income as much as possible. This report describes the earth's climate history, the forces behind climatic changes and what the prospects for the future look like. It also reviews what is being done to curtail the emission of

  16. The impacts of changing transport and precipitation on pollutant distributions in a future climate

    Science.gov (United States)

    Fang, Yuanyuan; Fiore, Arlene M.; Horowitz, Larry W.; Gnanadesikan, Anand; Held, Isaac; Chen, Gang; Vecchi, Gabriel; Levy, Hiram

    2011-09-01

    Air pollution (ozone and particulate matter in surface air) is strongly linked to synoptic weather and thus is likely sensitive to climate change. In order to isolate the responses of air pollutant transport and wet removal to a warming climate, we examine a simple carbon monoxide-like (CO) tracer (COt) and a soluble version (SAt), both with the 2001 CO emissions, in simulations with the Geophysical Fluid Dynamics Laboratory chemistry-climate model (AM3) for present (1981-2000) and future (2081-2100) climates. In 2081-2100, projected reductions in lower-tropospheric ventilation and wet deposition exacerbate surface air pollution as evidenced by higher surface COt and SAt concentrations. However, the average horizontal general circulation patterns in 2081-2100 are similar to 1981-2000, so the spatial distribution of COt changes little. Precipitation is an important factor controlling soluble pollutant wet removal, but the total global precipitation change alone does not necessarily indicate the sign of the soluble pollutant response to climate change. Over certain latitudinal bands, however, the annual wet deposition change can be explained mainly by the simulated changes in large-scale (LS) precipitation. In regions such as North America, differences in the seasonality of LS precipitation and tracer burdens contribute to an apparent inconsistency of changes in annual wet deposition versus annual precipitation. As a step toward an ultimate goal of developing a simple index that can be applied to infer changes in soluble pollutants directly from changes in precipitation fields as projected by physical climate models, we explore here a "Diagnosed Precipitation Impact" (DPI) index. This index captures the sign and magnitude (within 50%) of the relative annual mean changes in the global wet deposition of the soluble pollutant. DPI can only be usefully applied in climate models in which LS precipitation dominates wet deposition and horizontal transport patterns change

  17. Effect of regional precursor emission controls on long-range ozone transport – Part 1: Short-term changes in ozone air quality

    Directory of Open Access Journals (Sweden)

    J. J. West

    2009-08-01

    Full Text Available Observations and models demonstrate that ozone and its precursors can be transported between continents and across oceans. We model the influences of 10% reductions in anthropogenic nitrogen oxide (NOx emissions from each of nine world regions on surface ozone air quality in that region and all other regions. In doing so, we quantify the relative importance of long-range transport between all source-receptor pairs, for direct short-term ozone changes. We find that for population-weighted concentrations during the three-month "ozone-season", the strongest inter-regional influences are from Europe to the Former Soviet Union, East Asia to Southeast Asia, and Europe to Africa. The largest influences per unit of NOx reduced, however, are seen for source regions in the tropics and Southern Hemisphere, which we attribute mainly to greater sensitivity to changes in NOx in the lower troposphere, and secondarily to increased vertical convection to the free troposphere in tropical regions, allowing pollutants to be transported further. Results show, for example, that NOx reductions in North America are ~20% as effective per unit NOx in reducing ozone in Europe during summer, as NOx reductions from Europe itself. Reducing anthropogenic emissions of non-methane volatile organic compounds (NMVOCs and carbon monoxide (CO by 10% in selected regions, can have as large an impact on long-range ozone transport as NOx reductions, depending on the source region. We find that for many source-receptor pairs, the season of greatest long-range influence does not coincide with the season when ozone is highest in the receptor region. Reducing NOx emissions in most source regions causes a larger decrease in export of ozone from the source region than in ozone production outside of the source region.

  18. Latest Achievements on Climate Change and Forest Interactions in a Polluted Environment

    DEFF Research Database (Denmark)

    Carriero, Giulia; Tuovinen, Juha-Pekka; Clarke, Nicholas

    2014-01-01

    the information from European forest research/monitoring networks; the development of a new concept of forest sites for research and monitoring (Supersites); the identification of the main knowledge gaps; and the definition of priorities for forest adaptation to climate change in a polluted environment...... pollution dynamics into prospects for forest research and monitoring, with focus on the carbon, ozone, nitrogen and water budgets. The aim of this paper is to summarize scientific activities and achievements of MAFor: the creation of a meta-database for highlighting the available data and integrating...

  19. Effects of Stratospheric Ozone Depletion, Solar UV Radiation, and Climate Change on Biogeochemical Cycling: Interactions and Feedbacks

    Science.gov (United States)

    Climate change modulates the effects of solar UV radiation on biogeochemical cycles in terrestrial and aquatic ecosystems, particularly for carbon cycling, resulting in UV-mediated positive or negative feedbacks on climate. Possible positive feedbacks discussed in this assessment...

  20. Ozone depletion calculations

    International Nuclear Information System (INIS)

    Luther, F.M.; Chang, J.S.; Wuebbles, D.J.; Penner, J.E.

    1992-01-01

    Models of stratospheric chemistry have been primarily directed toward an understanding of the behavior of stratospheric ozone. Initially this interest reflected the diagnostic role of ozone in the understanding of atmospheric transport processes. More recently, interest in stratospheric ozone has arisen from concern that human activities might affect the amount of stratospheric ozone, thereby affecting the ultraviolet radiation reaching the earth's surface and perhaps also affecting the climate with various potentially severe consequences for human welfare. This concern has inspired a substantial effort to develop both diagnostic and prognostic models of stratospheric ozone. During the past decade, several chemical agents have been determined to have potentially significant impacts on stratospheric ozone if they are released to the atmosphere in large quantities. These include oxides of nitrogen, oxides of hydrogen, chlorofluorocarbons, bromine compounds, fluorine compounds and carbon dioxide. In order to assess the potential impact of the perturbations caused by these chemicals, mathematical models have been developed to handle the complex coupling between chemical, radiative, and dynamical processes. Basic concepts in stratospheric modeling are reviewed

  1. Climatic change

    International Nuclear Information System (INIS)

    Perthuis, Ch. de; Delbosc, A.

    2009-01-01

    Received ideas about climatic change are a mixture of right and wrong information. The authors use these ideas as starting points to shade light on what we really know and what we believe to know. The book is divided in three main chapters: should we act in front of climatic change? How can we efficiently act? How can we equitably act? For each chapter a series of received ideas is analyzed in order to find those which can usefully contribute to mitigate the environmental, economical and social impacts of climatic change. (J.S.)

  2. Influence of ozone pollution and climate variability on net primary productivity and carbon storage in China's grassland ecosystems from 1961 to 2000

    International Nuclear Information System (INIS)

    Ren Wei; Tian Hanqin; Chen Guangsheng; Liu Mingliang; Zhang Chi; Chappelka, Arthur H.; Pan Shufen

    2007-01-01

    Our simulations with the Dynamic Land Ecosystem Model (DLEM) indicate that the combined effect of ozone, climate, carbon dioxide and land use have caused China's grasslands to act as a weak carbon sink during 1961-2000. This combined effect on national grassland net primary productivity (NPP) and carbon storage was small, but changes in annual NPP and total carbon storage across China's grasslands showed substantial spatial variation, with the maximum total carbon uptake reduction of more than 400 g m -2 in some places of northeastern China. The grasslands in the central northeastern China were more sensitive and vulnerable to elevated ozone pollution than other regions. The combined effect excluding ozone could potentially lead to an increase of 14 Tg C in annual NPP and 0.11 Pg C in total carbon storage for the same time period. This implies that improvement in air quality could significantly increase productivity and carbon storage in China's grassland ecosystems. - Net primary productivity and carbon storage across China's grassland in the late half of the 20th century have been assessed by using the Dynamic Land Ecosystem Model

  3. Stratospheric ozone: History and concepts and interactions with climate

    Directory of Open Access Journals (Sweden)

    Bekki S.

    2009-02-01

    Full Text Available Although in relatively low concentration of a few molecules per million of e e air molecules, atmospheric ozone (trioxygen O3 is essential to sustaining life on the surface of the Earth. Indeed, by absorbing solar radiation between 240 and 320 nm, it shields living organisms including humans from the very harmful ultraviolet radiation UV-B. About 90% of the ozone resides in the stratosphere, a region that extends from the tropopause, whose altitude ranges from 7 km at the poles to 17 km in the tropics, to the stratopause located at about 50 km altitude. Stratospheric ozone is communally referred as the « ozone layer ». Unlike the atmosphere surrounding it, the stratosphere is vertically stratified and stable because the temperature increases with height within it. This particularity originates from heating produced by the absorption of UV radiation by stratospheric ozone. The present chapter describes the main mechanisms that govern the natural balance of ozone in the stratosphere, and its disruption under the influence of human activities.

  4. Ozone, greenhouse effect. Ozone, effet de serre

    Energy Technology Data Exchange (ETDEWEB)

    Aviam, A.M.; Arthaut, R.

    1992-12-01

    This file is made of eight general papers on environment (climates under observation, research on photo-oxidizing pollution, scientific aspects of stratospheric ozone layer, urban engineering and environment, glory of public gardens, earths not very natural, darwinism and society, economical data on environment). (A.B.). refs., 3 tabs.

  5. Climate change governance

    Energy Technology Data Exchange (ETDEWEB)

    Knieling, Joerg [HafenCity Univ. Hamburg (Germany). Urban Planning and Regional Development; Leal Filho, Walter (eds.) [HAW Hamburg (Germany). Research and Transfer Centre Applications of Life Science

    2013-07-01

    Climate change is a cause for concern both globally and locally. In order for it to be tackled holistically, its governance is an important topic needing scientific and practical consideration. Climate change governance is an emerging area, and one which is closely related to state and public administrative systems and the behaviour of private actors, including the business sector, as well as the civil society and non-governmental organisations. Questions of climate change governance deal both with mitigation and adaptation whilst at the same time trying to devise effective ways of managing the consequences of these measures across the different sectors. Many books have been produced on general matters related to climate change, such as climate modelling, temperature variations, sea level rise, but, to date, very few publications have addressed the political, economic and social elements of climate change and their links with governance. This book will address this gap. Furthermore, a particular feature of this book is that it not only presents different perspectives on climate change governance, but it also introduces theoretical approaches and brings these together with practical examples which show how main principles may be implemented in practice.

  6. Earth's ozone layer

    International Nuclear Information System (INIS)

    Lasa, J.

    1991-01-01

    The paper contain the actual results of investigations of the influence of the human activity on the Earth's ozone layer. History of the ozone measurements and of the changes in its concentrations within the last few years are given. The influence of the trace gases on both local and global ozone concentrations are discussed. The probable changes of the ozone concentrations are presented on the basis of the modelling investigations. The effect of a decrease in global ozone concentration on human health and on biosphere are also presented. (author). 33 refs, 36 figs, 5 tabs

  7. Observing Tropospheric Ozone From Space

    Science.gov (United States)

    Fishman, Jack

    2000-01-01

    The importance of tropospheric ozone embraces a spectrum of relevant scientific issues ranging from local environmental concerns, such as damage to the biosphere and human health, to those that impact global change questions, Such is climate warming. From an observational perspective, the challenge is to determine the tropospheric ozone global distribution. Because its lifetime is short compared with other important greenhouse gases that have been monitored over the past several decades, the distribution of tropospheric ozone cannot be inferred from a relatively small set of monitoring stations. Therefore, the best way to obtain a true global picture is from the use of space-based instrumentation where important spatial gradients over vast ocean expanses and other uninhabited areas can be properly characterized. In this paper, the development of the capability to measure tropospheric ozone from space over the past 15 years is summarized. Research in the late 1980s successfully led to the determination of the climatology of tropospheric ozone as a function of season; more recently, the methodology has improved to the extent where regional air pollution episodes can be characterized. The most recent modifications now provide quasi-global (50 N) to 50 S) maps on a daily basis. Such a data set would allow for the study of long-range (intercontinental) transport of air pollution and the quantification of how regional emissions feed into the global tropospheric ozone budget. Future measurement capabilities within this decade promise to offer the ability to provide Concurrent maps of the precursors to the in situ formation of tropospheric ozone from which the scientific community will gain unprecedented insight into the processes that control global tropospheric chemistry

  8. International aspects of climate change: The intergovernmental panel on climate change

    International Nuclear Information System (INIS)

    Brydges, T.; Fenech, A.

    1990-01-01

    The impact of various international conferences concerning global climate change on international opinions and attitudes is discussed. A number of conferences over the past two decades have drawn attention to the large socio-economic consequences of climate change. There has been increasing attention given to the likely affect of anthropogenically derived greenhouse gases on the global climate. Some early uncertainty over the likely long term changes in global temperature have been replaced by a scientific consensus that global temperatures are increasing and will continue to do so into the next century. Public awareness of the possibility of climate change and severe socio-economic consequences has been increasing and was given a major impetus by the Toronto Conference on the Changing Atmosphere. An estimate of the possible time to solution of the climate change issue is given as 1988-2005, a span of 17 years. The Intergovernmental Panel on Climate Change has focused work into three working groups examining science, impacts and response strategies. 28 refs., 3 figs., 6 tabs

  9. Changing climate, changing frames

    International Nuclear Information System (INIS)

    Vink, Martinus J.; Boezeman, Daan; Dewulf, Art; Termeer, Catrien J.A.M.

    2013-01-01

    Highlights: ► We show development of flood policy frames in context of climate change attention. ► Rising attention on climate change influences traditional flood policy framing. ► The new framing employs global-scale scientific climate change knowledge. ► With declining attention, framing disregards climate change, using local knowledge. ► We conclude that frames function as sensemaking devices selectively using knowledge. -- Abstract: Water management and particularly flood defence have a long history of collective action in low-lying countries like the Netherlands. The uncertain but potentially severe impacts of the recent climate change issue (e.g. sea level rise, extreme river discharges, salinisation) amplify the wicked and controversial character of flood safety policy issues. Policy proposals in this area generally involve drastic infrastructural works and long-term investments. They face the difficult challenge of framing problems and solutions in a publicly acceptable manner in ever changing circumstances. In this paper, we analyse and compare (1) how three key policy proposals publicly frame the flood safety issue, (2) the knowledge referred to in the framing and (3) how these frames are rhetorically connected or disconnected as statements in a long-term conversation. We find that (1) framings of policy proposals differ in the way they depict the importance of climate change, the relevant timeframe and the appropriate governance mode; (2) knowledge is selectively mobilised to underpin the different frames and (3) the frames about these proposals position themselves against the background of the previous proposals through rhetorical connections and disconnections. Finally, we discuss how this analysis hints at the importance of processes of powering and puzzling that lead to particular framings towards the public at different historical junctures

  10. Aerosol-associated changes in tropical stratospheric ozone following the eruption of Mount Pinatubo

    Science.gov (United States)

    Grant, William B.; Browell, Edward V.; Fishman, Jack; Brackett, Vincent G.; Veiga, Robert E.; Nganga, Dominique; Minga, A.; Cros, Bernard; Butler, Carolyn F.; Fenn, Marta A.

    1994-01-01

    The large amount of sulfuric acid aerosol formed in the stratosphere by conversion of sulfur dioxide emitted by the eruption of Mount Pinatubo (15.14 deg N, 120.35 deg E) in the Philippines around June 15, 1991, has had a pronounced effect on lower stratospheric ozone in the tropics. Measurements of stratospheric ozone in the tropics using electrochemical concentration cell (ECC) sondes before and after the eruption and the airborne UV differential absorption lidar (DIAL) system after the eruption are compared with Stratospheric Aerosol and Gas Experiment II (SAGE II) measurements from several years before the eruption and ECC sonde measurements from the year prior to the eruption to determine the resulting changes. Ozone decreases of up to 33 % compared with SAGE II climatological values were found to be directly correlated with altitude regions of enhanced aerosol loading in the 16- to 28-km range. A maximum partial-column decrease of 29 +/- Dobson units (DU) was found over the 16- to 28-km range in September 1991 along with small increases (to 5.9 +/- 2 DU) from 28 to 31.5 km. A large decrease of ozone was also found at 4 deg to 8 deg S from May to August 1992, with a maximum decrease of 33 +/- 7 DU found above Brazzaville in July. Aerosol data form the visible channel of the advanced very high resolution radiometer (AVHRR) and the visible wavelength of the UV DIAL system were used to examine the relationship between aerosol (surface area) densities and ozone changes. The tropical stratospheric ozone changes we observed in 1991 and 1992 are likely be explained by a combination of dynamical (vertical transport) perturbations, radiative perturbations on ozone photochemistry, and heterogeneous chemistry.

  11. Ozone depletion, greenhouse effect and atomic energy

    International Nuclear Information System (INIS)

    Adzersen, K.H.

    1991-01-01

    After describing the causes and effects of ozone depletion and the greenhouse effect, the author discusses the alternative offered by the nuclear industry. In his opinion, a worldwide energy strategy of risk minimisation will not be possible unless efficient energy use is introduced immediately, efficiently and on a reliable basis. Atomic energy is not viewed as an acceptable means of preventing the threatening climate change. (DG) [de

  12. Expected Performance of Ozone Climate Data Records from Ozone Mapping and Profiler Suite Limb Profiler

    Science.gov (United States)

    Xu, P. Q.; Rault, D. F.; Pawson, S.; Wargan, K.; Bhartia, P. K.

    2012-01-01

    The Ozone Mapping and Profiler Suite Limb Profiler (OMPS/LP) was launched on board of the Soumi NPP space platform in late October 2011. It provides ozone-profiling capability with high-vertical resolution from 60 Ian to cloud top. In this study, an end-to-end Observing System Simulation Experiment (OSSE) of OMPS/LP ozone is discussed. The OSSE was developed at NASA's Global Modeling and Assimilation Office (GMAO) using the Goddard Earth Observing System (GEOS-5) data assimilation system. The "truth" for this OSSE is built by assimilating MLS profiles and OMI ozone columns, which is known to produce realistic three-dimensional ozone fields in the stratosphere and upper troposphere. OMPS/LP radiances were computed at tangent points computed by an appropriate orbital model. The OMPS/LP forward RT model, Instrument Models (IMs) and EDR retrieval model were introduced and pseudo-observations derived. The resultant synthetic OMPS/LP observations were evaluated against the "truth" and subsequently these observations were assimilated into GEOS-5. Comparison of this assimilated dataset with the "truth" enables comparisons of the likely uncertainties in 3-D analyses of OMPS/LP data. This study demonstrated the assimilation capabilities of OMPS/LP ozone in GEOS-5, with the monthly, zonal mean (O-A) smaller than 0.02ppmv at all levels, the nns(O-A) close to O.lppmv from 100hPa to 0.2hPa; and the mean(O-B) around the 0.02ppmv for all levels. The monthly zonal mean analysis generally agrees to within 2% of the truth, with larger differences of 2-4% (0.1-0.2ppmv) around 10hPa close to North Pole and in the tropical tropopause region, where the difference is above 20% due to the very low ozone concentrations. These OSSEs demonstrated that, within a single data assimilation system and the assumption that assimilated MLS observations provide a true rendition of the stratosphere, the OMPS/LP ozone data are likely to produce accurate analyses through much of the stratosphere

  13. Global vs climate change

    International Nuclear Information System (INIS)

    Watson, H.L.; Bach, M.C.; Goklany, I.M.

    1991-01-01

    The various agents of global change that will affect the state of natural resources 50-100 years from now are discussed. These include economic and population growth, technological progress, and climatic change. The importance of climatic change lies in its effects on natural resources and on human activities that depend on those resources. Other factors affecting those resources include the demand on those resources from an increasing population and from a growing economy, and a more efficient use of those resources that comes from technological changes and from the consequences of economic growth itself. It is shown that there is a considerable ability to adapt to climatic change, since humans already have an intrinsic ability to adapt to the wide variations in climates that already exist and since technological developments can make it easier to cope with climatic variability. It appears that agents other than climatic change are more significant to the future state of natural resources than climatic change. Criteria for selecting options for addressing climatic change are outlined. Technological change and economic growth are seen to be key response options, since the vulnerability to climatic change depends on economic resources and technological progress. Specific options to stimulate sustainable economic growth and technological progress are listed. 16 refs., 1 fig., 2 tabs

  14. Climate for change

    International Nuclear Information System (INIS)

    Newell, P.

    2000-01-01

    Climate for Change: Non-State Actors and the Global Politics of the Greenhouse provides a challenging explanation of the forces that have shaped the international global warming debate. Unlike existing books on the politics of climate change, this book concentrates on how non-stage actors, such as scientific, environmental and industry groups, as opposed to governmental organisations, affect political outcomes in global fora on climate change. It also provides insights in to the role of the media in influencing the agenda. The book draws on a range of analytical approaches to assess and explain the influence of these non-governmental organisations in the course of global climate change politics. The book will be of interest to all researchers and policy-makers associated with climate change, and will be used on university courses in international relations, politics and environmental studies. (Author)

  15. Climate change

    International Nuclear Information System (INIS)

    2006-01-01

    This paper presented indicators of climate change for British Columbia (BC) with an emphasis on the coastal region. An overview of global effects of climate change was presented, as well as details of BC's current climate change action plan. Indicators examined in the paper for the BC coastal region included long-term trends in air temperature; long-term trends in precipitation; coastal ocean temperatures; sea levels on the BC coast; and the sensitivity of the BC coast to sea level rise and erosion. Data suggested that average air temperatures have become higher in many areas, and that Springtime temperatures have become warmer over the whole province. Winters have become drier in many areas of the province. Sea surface temperature has risen over the entire coast, with the North Coast and central Strait of Georgia showing the largest increases. Deep-water temperatures have also increased in 5 inlets on the South Coast. Results suggested that the direction and spatial pattern of the climate changes reported for British Columbia are consistent with broader trends in North America and the type of changes predicted by climate models for the region. Climate change will likely result in reduced snow-pack in southern BC. An earlier spring freshet on many snow-dominated river systems is anticipated as well as glacial retreat and disappearance. Warmer temperatures in some lakes and rivers are expected, as well as the increased frequency and severity of natural disturbances such as the pine mountain beetle. Large-scale shifts in ecosystems and the loss of certain ecosystems may also occur. BC's current climate plan includes cost effective actions that address GHG emissions and support efficient infrastructure and opportunities for innovation. Management programs for forest and agricultural lands have been initiated, as well as programs to reduce emissions from government operations. Research is also being conducted to understand the impacts of climate change on water

  16. Climate challenge 2012: growth and climate change - Socio-economical impacts of climate change. Conference proceedings

    International Nuclear Information System (INIS)

    Orange-Louboutin, Mylene; Robinet, Olivier; Delalande, Daniel; Reysset, Bertrand; De Perthuis, Christian; Le Treut, Herve; Cottenceau, Jean-Baptiste; Ayong, Alain; Daubaire, Aurelien; Gaudin, Thomas

    2012-01-01

    The contributions of this conference session proposed comments and discussion on the relationship between climate change and 'green' growth, on the status of scientific knowledge on climate change (from global to local), on the way to perform carbon print assessment and to decide which actions to implement, on the costs and opportunity of impacts of climate change, on the economy of adaptation, on the benefits and costs of the adaptation policy, and on impacts of climate change on employment in quantitative terms and in terms of profession types

  17. Comparison of the results of climate change impact assessment between RCP8.5 and SSP2 scenarios

    Science.gov (United States)

    Lee, D. K.; Park, J. H.; Park, C.; Kim, S.

    2017-12-01

    Climate change scenarios are mainly published by the Intergovernmental Panel on Climate Change (IPCC), and include SRES (Special Report on Emission Scenario) scenarios (IPCC Third Report), RCP (Representative Concentration Pathways) scenarios (IPCC 5th Report), and SSP (Shared Socioeconomic Pathways) scenarios. Currently widely used RCP scenarios are based on how future greenhouse gas concentrations will change. In contrast, SSP scenarios are that predict how climate change will change in response to socio-economic indicators such as population, economy, land use, and energy change. In this study, based on RCP 8.5 climate data, we developed a new Korean scenario using the future social and economic scenarios of SSP2. In the development of the scenario, not only Korea's emissions but also China and Japan's emissions were considered in terms of space. In addition, GHG emissions and air pollutant emissions were taken into consideration. Using the newly developed scenarios, the impacts assessments of the forest were evaluated and the impacts were evaluated using the RCP scenarios. The average precipitation is similar to the SSP2 scenario and the RCP8.5 scenario, but the SSP2 scenario shows the maximum value is lower than RCP8.5 scenario. This is because the SSP2 scenario simulates the summer precipitation weakly. The temperature distribution is similar for both scenarios, and it can be seen that the average temperature in the 2090s is higher than that in the 2050s. At present, forest net primary productivity of Korea is 693 tC/km2, and it is 679 tC/km2 when SSP2 scenario is applied. Also, the damage of forest by ozone is about 4.1-5.1%. On the other hand, when SSP2 scenario is applied, the forest net primary productivity of Korea is 607 tC/km2 and the forest net primary productivity of RCP8.5 scenario is 657 tC/km2. The analysis shows that the damage caused by climate change is reduced by 14.2% for the SSP2 scenario and 6.9% for the RCP8.5 scenario. The damage caused

  18. Ozone effects on radish (Raphanus sativus L. cv. Cherry Belle): gradient of ultrastructural changes

    Energy Technology Data Exchange (ETDEWEB)

    Athanassious, R.

    1980-01-01

    Ultrastructural changes produced by low ( less than or equal to 0.5 ppm) levels of ozone may be attributed to water deficit resulting from injury to the sensitive paravenial cells. The drastic alterations, resulting from high ( greater than or equal to 0.5 ppm) ozone concentrations, were apparently due to more direct effects. Although differential fixation images of membranes in control and ozone treated leaves were not obtained the significance of ozone attacking the olefinic groups of fatty acids in the membrane bilayer should not be completely ignored. 19 references, 12 figures.

  19. Lesson learned case study: What the history of ozone depelting chemical phaseout may teach us about how to approach international climate change policy

    Energy Technology Data Exchange (ETDEWEB)

    Younis, S.E. [Conceptual Engineering Group, Inc., Crofton, MD (United States); Verdonik, D.P. [Hughes Associates, Inc., Baltimore, MD (United States)

    1997-12-31

    The world approached the production phaseout of ozone depleting chemicals conservatively under the Vienna Convention. The initial tasks were to recognize the problem within the science field and make political leaders and people aware that the problem existed and was a real threat to environmental stability. Several years later, Meetings of the Parties to the Montreal Protocol to Protect the Stratospheric Ozone Layer began occurring regularly. Long term goals on production reduction levels of chlorofluorocarbons (CFCs) and halons were set. Rapid acceleration in production phaseout dates were implemented worldwide, impacting industry plans to research, develop, and implement replacements. The impacts were widespread from small cleaning processes to the defense of countries. The trials and tribulations that industries such as the foam, refrigeration, air conditioning, fire protection, and manufacturing industries have gone through to meet the accelerated challenges are great. This fight is not yet over. Alternatives have yet to be fully implemented, long term effects analysis are not yet completed, budgets have not caught up with the rapid phaseout, and supplies of ODCs are dwindling quickly, as well as increasing in cost at a rapid rate. This is being felt from car owner all the way up to the national defense of countries. The paper will briefly describe the historic events and developments that occurred to industry and the users, from a political, environmental, and business perspective. From this, valuable lessons can be learned and we can plan for the future well in advance, in order that we are not caught off guard again. A very real environmental problem exists with global climate change. This is being increasingly recognized by both political leaders and citizens alike. From what we have seen with ODC phaseout, we can potentially project what course the future.

  20. Ozone trends at northern mid- and high latitudes – a European perspective

    Directory of Open Access Journals (Sweden)

    N. R. P. Harris

    2008-05-01

    Full Text Available The EU CANDIDOZ project investigated the chemical and dynamical influences on decadal ozone trends focusing on the Northern Hemisphere. High quality long-term ozone data sets, satellite-based as well as ground-based, and the long-term meteorological reanalyses from ECMWF and NCEP are used together with advanced multiple regression models and atmospheric models to assess the relative roles of chemistry and transport in stratospheric ozone changes. This overall synthesis of the individual analyses in CANDIDOZ shows clearly one common feature in the NH mid latitudes and in the Arctic: an almost monotonic negative trend from the late 1970s to the mid 1990s followed by an increase. In most trend studies, the Equivalent Effective Stratospheric Chlorine (EESC which peaked in 1997 as a consequence of the Montreal Protocol was observed to describe ozone loss better than a simple linear trend. Furthermore, all individual analyses point to changes in dynamical drivers, such as the residual circulation (responsible for the meridional transport of ozone into middle and high latitudes playing a key role in the observed turnaround. The changes in ozone transport are associated with variations in polar chemical ozone loss via heterogeneous ozone chemistry on PSCs (polar stratospheric clouds. Synoptic scale processes as represented by the new equivalent latitude proxy, by conventional tropopause altitude or by 250 hPa geopotential height have also been successfully linked to the recent ozone increases in the lowermost stratosphere. These show significant regional variation with a large impact over Europe and seem to be linked to changes in tropospheric climate patterns such as the North Atlantic Oscillation. Some influence in recent ozone increases was also attributed to the rise in solar cycle number 23. Changes from the late 1970s to the mid 1990s were found in a number of characteristics of the Arctic vortex. However, only one trend was found when more recent

  1. Climate change and precipitation: Detecting changes Climate change and precipitation: Detecting changes

    International Nuclear Information System (INIS)

    Van Boxel, John H

    2001-01-01

    Precipitation is one of the most, if not the most important climate parameter In most studies on climate change the emphasis is on temperature and sea level rise. Often too little attention is given to precipitation. For a large part this is due to the large spatial en temporal variability of precipitation, which makes the detection of changes difficult. This paper describes methods to detect changes in precipitation. In order to arrive at statistically significant changes one must use long time series and spatial averages containing the information from several stations. In the Netherlands the average yearly precipitation increased by 11% during the 20th century .In the temperate latitudes on the Northern Hemisphere (40-60QN) the average increase was about 7% over the 20th century and the globally averaged precipitation increased by about 3%. During the 20th century 38% of the land surface of the earth became wetter, 42% experienced little change (less than 5% change) and 20% became dryer. More important than the average precipitation is the occurrence of extremes. In the Netherlands there is a tendency to more extreme precipitations, whereas the occurrence of relatively dry months has not changed. Also in many other countries increases in heavy precipitation events are observed. All climate models predict a further increase of mean global precipitation if the carbon dioxide concentration doubles. Nevertheless some areas get dryer, others have little change and consequently there are also areas where the increase is much more than the global average. On a regional scale however there are large differences between the models. Climate models do not yet provide adequate information on changes in extreme precipitations

  2. Response of Antarctic sea surface temperature and sea ice to ozone depletion

    Science.gov (United States)

    Ferreira, D.; Gnanadesikan, A.; Kostov, Y.; Marshall, J.; Seviour, W.; Waugh, D.

    2017-12-01

    The influence of the Antarctic ozone hole extends all the way from the stratosphere through the troposphere down to the surface, with clear signatures on surface winds, and SST during summer. In this talk we discuss the impact of these changes on the ocean circulation and sea ice state. We are notably motivated by the observed cooling of the surface Southern Ocean and associated increase in Antarctic sea ice extent since the 1970s. These trends are not reproduced by CMIP5 climate models, and the underlying mechanism at work in nature and the models remain unexplained. Did the ozone hole contribute to the observed trends?Here, we review recent advances toward answering these issues using "abrupt ozone depletion" experiments. The ocean and sea ice response is rather complex, comprising two timescales: a fast ( 1-2y) cooling of the surface ocean and sea ice cover increase, followed by a slower warming trend, which, depending on models, flip the sign of the SST and sea ice responses on decadal timescale. Although the basic mechanism seems robust, comparison across climate models reveal large uncertainties in the timescales and amplitude of the response to the extent that even the sign of the ocean and sea ice response to ozone hole and recovery remains unconstrained. After briefly describing the dynamics and thermodynamics behind the two-timescale response, we will discuss the main sources of uncertainties in the modeled response, namely cloud effects and air-sea heat exchanges, surface wind stress response and ocean eddy transports. Finally, we will consider the implications of our results on the ability of coupled climate models to reproduce observed Southern Ocean changes.

  3. Climate Change, Politics and Religion: Australian Churchgoers’ Beliefs about Climate Change

    Directory of Open Access Journals (Sweden)

    Miriam Pepper

    2016-05-01

    Full Text Available A growing literature has sought to understand the relationships between religion, politics and views about climate change and climate change policy in the United States. However, little comparative research has been conducted in other countries. This study draws on data from the 2011 Australian National Church Life Survey to examine the beliefs of Australian churchgoers from some 20 denominations about climate change—whether or not it is real and whether it is caused by humans—and political factors that explain variation in these beliefs. Pentecostals, Baptist and Churches of Christ churchgoers, and people from the smallest Protestant denominations were less likely than other churchgoers to believe in anthropogenic climate change, and voting and hierarchical and individualistic views about society predicted beliefs. There was some evidence that these views function differently in relation to climate change beliefs depending on churchgoers’ degree of opposition to gay rights. These findings are of interest not only for the sake of international comparisons, but also in a context where Australia plays a role in international climate change politics that is disproportionate to its small population.

  4. Climate changes your business

    International Nuclear Information System (INIS)

    2008-01-01

    Businesses face much bigger climate change costs than they realise. That is the conclusion of Climate Changes Your Business. The climate change risks that companies should be paying more attention to are physical risks, regulatory risks as well as risk to reputation and the emerging risk of litigation, says the report. It argues that the risks associated with climate change tend to be underestimated

  5. Construction of climate change scenarios from transient climate change experiments for the IPCC impacts assessment

    International Nuclear Information System (INIS)

    Viner, D.; Hulme, M.; Raper, S.C.B.; Jones, P.D.

    1994-01-01

    This paper outlines the different methods which may be used for the construction of regional climate change scenarios. The main focus of the paper is the construction of global climate change scenarios from climate change experiments carried out using General Circulation Models (GCMS) An introduction to some GCM climate change experiments highlights the difference between model types and experiments (e.g., equilibrium or transient). The latest generation of climate change experiments has been performed using fully coupled ocean-atmosphere GCMS. These allow transient simulations of climate change to be performed with respect to a given greenhouse gas forcing scenario. There are, however, a number of problems with these simulations which pose difficulties for the construction of climate change scenarios for use in climate change impacts assessment. The characteristics of the transient climate change experiments which pose difficulties for the construction of climate change scenarios are discussed. Three examples of these problems are: different climate change experiments use different greenhouse gas concentration scenarios; the 'cold-start' problem makes it difficult to link future projections of climate change to a given calendar year; a drift of the climate is noticeable in the control simulations. In order to construct climate change scenarios for impacts assessment a method has therefore to be employed which addresses these problems. At present the climate modeling and climate change impacts communities are somewhat polarized in their approach to spatial scales. Current GCMs model the climate at resolutions larger than 2.5 x 3.75 degree, while the majority of impacts assessment studies are undertaken at scales below 50km (or 0.5 degree). This paper concludes by addressing the problems in bringing together these two different modeling perspectives by presenting a number of regional climate change scenarios. 35 refs., 8 figs., 2 tabs

  6. Aerosol climate effects and air quality impacts from 1980 to 2030

    International Nuclear Information System (INIS)

    Menon, Surabi; Sednev, Igor; Unger, Nadine; Koch, Dorothy; Shindell, Drew; Francis, Jennifer; Garrett, Tim; Streets, David

    2008-01-01

    We investigate aerosol effects on climate for 1980, 1995 (meant to reflect present day) and 2030 using the NASA Goddard Institute for Space Studies climate model coupled to an on-line aerosol source and transport model with interactive oxidant and aerosol chemistry. Aerosols simulated include sulfates, organic matter (OM), black carbon (BC), sea-salt and dust and, additionally, the amount of tropospheric ozone is calculated, allowing us to estimate both changes to air quality and climate for different time periods and emission amounts. We include both the direct aerosol effect and indirect aerosol effects for liquid-phase clouds. Future changes for the 2030 A1B scenario are examined, focusing on the Arctic and Asia, since changes are pronounced in these regions. Our results for the different time periods include both emission changes and physical climate changes. We find that the aerosol indirect effect (AIE) has a large impact on photochemical processing, decreasing ozone amount and ozone forcing, especially for the future (2030-1995). Ozone forcings increase from 0 to 0.12 W m -2 and the total aerosol forcing decreases from -0.10 to -0.94 W m -2 (AIE decreases from -0.13 to -0.68 W m -2 ) for 1995-1980 versus 2030-1995. Over the Arctic we find that compared to ozone and the direct aerosol effect, the AIE contributes the most to net radiative flux changes. The AIE, calculated for 1995-1980, is positive (1.0 W m -2 ), but the magnitude decreases (-0.3 W m -2 ) considerably for the future scenario. Over Asia, we evaluate the role of biofuel- and transportation-based emissions (for BC and OM) via a scenario (2030A) that includes a projected increase (factor of 2) in biofuel- and transport-based emissions for 2030 A1B over Asia. Projected changes from present day due to the 2030A emissions versus 2030 A1B are a factor of 4 decrease in summertime precipitation in Asia. Our results are sensitive to emissions used. Uncertainty in present-day emissions suggests that

  7. Potential impact of a US climate policy and air quality regulations on future air quality and climate change

    Science.gov (United States)

    Lee, Yunha; Shindell, Drew T.; Faluvegi, Greg; Pinder, Rob W.

    2016-04-01

    We have investigated how future air quality and climate change are influenced by the US air quality regulations that existed or were proposed in 2013 and a hypothetical climate mitigation policy that aims to reduce 2050 CO2 emissions to be 50 % below 2005 emissions. Using the NASA GISS ModelE2 general circulation model, we look at the impacts for year 2030 and 2055. The US energy-sector emissions are from the GLIMPSE project (GEOS-Chem LIDORT Integrated with MARKAL (MARKet ALlocation) for the Purpose of Scenario Exploration), and other US emissions data sets and the rest of the world emissions data sets are based on the RCP4.5 scenario. The US air quality regulations are projected to have a strong beneficial impact on US air quality and public health in year 2030 and 2055 but result in positive radiative forcing. Under this scenario, no more emission constraints are added after 2020, and the impacts on air quality and climate change are similar between year 2030 and 2055. Surface particulate matter with a diameter smaller than 2.5 µm (PM2.5) is reduced by ˜ 2 µg m-3 on average over the USA, and surface ozone by ˜ 8 ppbv. The improved air quality prevents about 91 400 premature deaths in the USA, mainly due to the PM2.5 reduction (˜ 74 200 lives saved). The air quality regulations reduce the light-reflecting aerosols (i.e., sulfate and organic matter) more than the light-absorbing species (i.e., black carbon and ozone), leading to a strong positive radiative forcing (RF) over the USA by both aerosols' direct and indirect forcing: the total RF is ˜ 0.04 W m-2 over the globe, and ˜ 0.8 W m-2 over the USA. Under the hypothetical climate policy, a future CO2 emissions cut is achieved in part by relying less on coal, and thus SO2 emissions are noticeably reduced. This provides air quality co-benefits, but it could lead to potential climate disbenefits over the USA. In 2055, the US mean total RF is +0.22 W m-2 due to positive aerosol direct and indirect forcing

  8. Potential Impact of a US Climate Policy and Air Quality Regulations on Future Air Quality and Climate Change

    Science.gov (United States)

    Lee, Y. H.; Faluvegi, Gregory S.

    2016-01-01

    We have investigated how future air quality and climate change are influenced by the US air quality regulations that existed or were proposed in 2013 and a hypothetical climate mitigation policy that aims to reduce 2050 CO2 emissions to be 50% below 2005 emissions. Using the NASA GISS ModelE2 general circulation model, we look at the impacts for year 2030 and 2055. The US energy-sector emissions are from the GLIMPSE project (GEOS-Chem LIDORT Integrated with MARKAL (MARKet ALlocation) for the Purpose of Scenario Exploration), and other US emissions data sets and the rest of the world emissions data sets are based on the RCP4.5 scenario. The US air quality regulations are projected to have a strong beneficial impact on US air quality and public health in year 2030 and 2055 but result in positive radiative forcing. Under this scenario, no more emission constraints are added after 2020, and the impacts on air quality and climate change are similar between year 2030 and 2055. Surface particulate matter with a diameter smaller than 2.5 micron PM(sub 2:5) is reduced by 2 approximately µg/m(sup -3) on average over the USA, and surface ozone by approximately 8 ppbv. The improved air quality prevents about 91 400 premature deaths in the USA, mainly due to the PM(sub 2:5) reduction approximately (74 200 lives saved). The air quality regulations reduce the light-reflecting aerosols (i.e., sulfate and organic matter) more than the light-absorbing species (i.e., black carbon and ozone), leading to a strong positive radiative forcing (RF) over the USA by both aerosols' direct and indirect forcing: the total RF is approximately 0.04 W m(sup -2) over the globe, and approximately 0.8 W m(sup -2) over the USA. Under the hypothetical climate policy, a future CO2 emissions cut is achieved in part by relying less on coal, and thus SO2 emissions are noticeably reduced. This provides air quality co-benefits, but it could lead to potential climate disbenefits over the USA. In 2055, the US

  9. Nitrogen use efficiency in the US economy: Towards mitigation of climate change impacts

    Science.gov (United States)

    Houlton, B. Z.; Boyer, E. W.; Finzi, A. C.; Galloway, J. N.; Leach, A.; Liptzin, D.; Melillo, J. M.; Rosenstock, T.; Sobota, D. J.; Townsend, A. R.

    2011-12-01

    Nitrogen (N) interacts strongly with climate change in determining the severity and extent of many human health and environmental issues, such as eutrophication, poor air quality, and the maintenance of a secure food system. We were motivated by such N-climate interactions and their environmental impacts as part of a broader assessment of N in the continental United States. We here seek to identify and quantify inefficiencies associated with intentional N creation (i.e., creating synthetic N fertilizers and cultivating N-fixing legumes) among the major N-dependent sectors of the United States economy. We define efficiency of N use as the proportion N directly incorporated into food, fiber, biofuel, and industrial goods from the pool of intentionally created N. We are interested in whether reductions in N use could be achieved without changing the current functioning of the major N-dependent economic sectors. Our analysis points to substantial inefficiencies in N use at the national scale. A large percentage of the N applied as synthetic fertilizer and fixed by legumes annually fails to enter the United States food supply. Much of the unincorporated N enters air, land and water, where it can impact human health and ecosystems. The climate change forcing of N is uncertain, though it appears that the combined effects of intentionally and unintentionally created N on climate is roughly neutral in the United States (i.e., net effect of N-enhanced C storage, nitrous oxide emissions, N-based aerosols, and tropospheric ozone on climate forcing). Thus, it is reasonable to expect that improved efficiencies in N use would have minimal negative side effects on the United States economy, human health and the environment. We suggest that policies aimed at improving N-use efficiencies are an alternative to direct climate mitigation strategies in offsetting several impacts of climate change on human health and ecosystem functioning.

  10. Global isoprene and monoterpene emissions under changing climate, vegetation, CO2 and land use

    DEFF Research Database (Denmark)

    Hantson, Stijn; Knorr, Wolfgang; Schurgers, Guy

    2017-01-01

    Plants emit large quantities of isoprene and monoterpenes, the main components of global biogenic volatile organic compound (BVOC) emissions. BVOCs have an important impact on the atmospheric composition of methane, and of short-lived radiative forcing agents (e.g. ozone, aerosols etc.). It is th......Plants emit large quantities of isoprene and monoterpenes, the main components of global biogenic volatile organic compound (BVOC) emissions. BVOCs have an important impact on the atmospheric composition of methane, and of short-lived radiative forcing agents (e.g. ozone, aerosols etc.......). It is therefore necessary to know how isoprene and monoterpene emissions have changed over the past and how future changes in climate, land-use and other factors will impact them. Here we present emission estimates of isoprene and monoterpenes over the period 1901–2 100 based on the dynamic global vegetation...... model LPJ-GUESS, including the effects of all known important drivers. We find that both isoprene and monoterpene emissions at the beginning of the 20th century were higher than at present. While anthropogenic land-use change largely drives the global decreasing trend for isoprene over the 20th century...

  11. Interactive effects of air pollution and climate change on forest ecosystems in the United States: current understanding and future scenarios

    Science.gov (United States)

    Andrzej Bytnerowicz; Mark Fenn; Steven McNulty; Fengming Yuan; Afshin Pourmokhtarian; Charles Driscoll; Tom Meixner

    2013-01-01

    A review of the current status of air pollution and climate change (CC) in the United States from a perspective of their impacts on forest ecosystems is provided. Ambient ozone (O3) and nitrogen (N) deposition have important and widespread ecological impacts in U.S. forests. Effects of sulphurous (S) air pollutants and other trace pollutants have...

  12. Climate change and skin disease.

    Science.gov (United States)

    Lundgren, Ashley D

    2018-04-01

    Despite commanding essentially universal scientific consensus, climate change remains a divisive and poorly understood topic in the United States. Familiarity with this subject is not just for climate scientists. The impact of climate change on human morbidity and mortality may be considerable; thus, physicians also should be knowledgeable in this realm. Climate change science can seem opaque and inferential, creating fertile ground for political polemics and undoubtedly contributing to confusion among the general public. This puts physicians in a pivotal position to facilitate a practical understanding of climate change in the public sphere by discussing changes in disease patterns and their possible relationship to a changing climate. This article provides a background on climate change for dermatologists and highlights how climate change may impact the management of skin disease across the United States.

  13. Volcanic-aerosol-induced changes in stratospheric ozone following the eruption of Mount Pinatubo

    Science.gov (United States)

    Grant, W. B.; Browell, E. V.; Fishman, J.; Brackett, V. G.; Fenn, M. A.; Butler, C. F.; Nganga, D.; Minga, A.; Cros, B.; Mayor, S. D.

    1994-01-01

    Measurements of lower stratospheric ozone in the Tropics using electrochemical concentrations cell (ECC) sondes and the airborne UV Differential Absorption Lidar (DIAL) system after the eruption of Mt. Pinatubo are compared with the Stratospheric Aerosol and Gas Experiment 2 (SAGE 2) and ECC sonde measurements from below the eruption to determine what changes have occurred as a result. Aerosol data from the Advanced Very High Resolution Radiometer (AVHRR) and the visible and IR wavelengths of the lidar system are used to examine the relationship between aerosols and ozone changes. Ozone decreases of 30 percent at altitudes between 19 and 26 km, partial column (16-28 km) decreases of about 27 D.U., and slight increases (5.4 D.U.) between 28 and 31 km are found in comparison with SAGE 2 climatological values.

  14. Climate Prediction Center (CPC)Stratospheric Monitoring Ozone Blended Analysis

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A 3-D global ozone mixing ratio (ppm) and total column ozone (DU) dataset analyzed from daily Solar Backscatter Ultraviolet Instrument(SBUV/2) and TIROS Operational...

  15. Effects of Greenhouse Gas Increase and Stratospheric Ozone Depletion on Stratospheric Mean Age of Air in 1960-2010

    Science.gov (United States)

    Li, F.; Newman, P. A.; Pawson, S.; Perlwitz, J.

    2017-12-01

    The strength of the stratospheric Brewer-Dobson circulation (BDC) in a changing climate has been extensively studied, but the relative importance of greenhouse gas (GHG) increases and stratospheric ozone depletion in driving the BDC changes remains uncertain. This study separates the impacts of GHG and stratospheric ozone forcings on stratospheric mean age of air in the 1960-2010 period using the Goddard Earth Observing System Model (GEOS) Chemistry-Climate Model (CCM). The experiment compares a set of controlled simulations using a coupled atmosphere-ocean version of the GEOS CCM, in which either GHGs, or stratospheric ozone, or both factors evolve over time. The model results show that GHGs and stratospheric ozone have about equal contributions to the simulated mean age decrease. It is also found that GHG increases account for about two thirds of the enhanced strength of the lower stratospheric residual circulation. The results show that ozone depletion causes an increase in the mean age of air in the Antarctic summer lower stratosphere through two processes: 1) a seasonal delay in the Antarctic polar vortex breakup, that inhibits young mid-latitude air from mixing with the older air inside the vortex; and 2) enhanced Antarctic downwelling, that brings older air from middle and upper stratosphere into the lower stratosphere.

  16. Effects of climate change, CO2 and O3 on wheat productivity in Eastern China, singly and in combination

    Science.gov (United States)

    Tao, Fulu; Feng, Zhaozhong; Tang, Haoye; Chen, Yi; Kobayashi, Kazuhiko

    2017-03-01

    Air pollution and climate change are increasing threats to agricultural production and food security. Extensive studies have focused on the effect of climate change, but the interactive effects of multiple global change factors are poorly understood. Here, we incorporate the interactions between climate change, carbon dioxide (CO2) and ozone (O3) into an eco-physiological mechanistic model based on three years of O3 Free-Air Concentration Elevation (O3-FACE) experiments. We then investigate the effects of climate change, elevated CO2 concentration ([CO2]) and rising O3 concentration ([O3]) on wheat growth and productivity in eastern China in 1996-2005 (2000s) and 2016-2025 (2020s) under two climate change scenarios, singly and in combination. We find the interactive effects of climate change, CO2 and O3 on wheat productivity have spatially explicit patterns; the effect of climate change dominates the general pattern, which is however subject to the large uncertainties of climate change scenarios. Wheat productivity is estimated to increase by 2.8-9.0% due to elevated [CO2] however decline by 2.8-11.7% due to rising [O3] in the 2020s, relative to the 2000s. The combined effects of CO2 and O3 are less than that of O3 only, on average by 4.6-5.2%, however with O3 damage outweighing CO2 benefit in most of the region. This study demonstrates a more biologically meaningful and appropriate approach for assessing the interactive effects of climate change, CO2 and O3 on crop growth and productivity. Our findings promote the understanding on the interactive effects of multiple global change factors across contrasting climate conditions, cast doubt on the potential of CO2 fertilization effect in offsetting possible negative effect of climate change on crop productivity as suggested by many previous studies.

  17. Quality Climate Change Professional Development Translates into Quality Climate Change Education (Invited)

    Science.gov (United States)

    Holzer, M. A.

    2013-12-01

    Perhaps one of the reasons we have so many climate change deniers in the United States is that to them climate change is not occurring. This is a valid claim about climate change deniers considering that the effects of climate change in the mid-latitudes are quite subtle as compared to those found in low-latitude and high-latitude regions. A mid-latitude classroom teacher is saddled with the challenge of enlightening students about our changing climate and empowering students to assist in making necessary lifestyle changes, all the while the students don't understand the urgency in doing so. Quality climate change data and resources from the Polar Regions and low latitudes, as well as connections to researchers from these regions help to bridge the understanding of our changing climate from the extreme latitudes to the mid-latitudes. Connecting science teachers with data, resources, and researchers is one way of ensuring our mid-latitude students understand the urgency in taking appropriate actions to adapt, mitigate, and show resilience. This presentation will highlight a few of the many impacts of an authentic research experience for teachers that not only provides teachers with data, resources, and researchers, but changes the way a science teacher teaches where the methods they use mirror the methods used by scientists. National projects like PolarTREC connect educators with the science of climate change as well as the reality of impacts of climate change. For example, research expeditions in the Arctic and in Antarctica connect teachers with the content and practices of climate change science preparing them to replicate their experiences with their students. A PolarTREC experience does not end with the close of the expedition. Teachers continue their connections with the program through their educator network, the integration of PolarTREC resources into their curriculums, and communications with their principal investigators either virtually or with school

  18. Trade and climate change

    Energy Technology Data Exchange (ETDEWEB)

    Tamiotti, L.; Teh, R.; Kulacoglu, V. (World Trade Organization (WTO), Geneva (Switzerland)); Olhoff, A.; Simmons, B.; Abaza, H. (United Nations Environment Programme (UNEP) (Denmark))

    2009-06-15

    The Report aims to improve understanding about the linkages between trade and climate change. It shows that trade intersects with climate change in a multitude of ways. For example, governments may introduce a variety of policies, such as regulatory measures and economic incentives, to address climate change. This complex web of measures may have an impact on international trade and the multilateral trading system. The Report begins with a summary of the current state of scientific knowledge on climate change and on the options available for responding to the challenge of climate change. The scientific review is followed by a part on the economic aspects of the link between trade and climate change, and these two parts set the context for the subsequent parts of the Report, which looks at the policies introduced at both the international and national level to address climate change. The part on international policy responses to climate change describes multilateral efforts to reduce greenhouse gas emissions and to adapt to the effects of climate change, and also discusses the role of the current trade and environment negotiations in promoting trade in technologies that aim to mitigate climate change. The final part of the Report gives an overview of a range of national policies and measures that have been used in a number of countries to reduce greenhouse gas emissions and to increase energy efficiency. It presents key features in the design and implementation of these policies, in order to draw a clearer picture of their overall effect and potential impact on environmental protection, sustainable development and trade. It also gives, where appropriate, an overview of the WTO rules that may be relevant to such measures. (author)

  19. The effect of nonlinearity in CO2 heating rates on the attribution of stratospheric ozone and temperature changes

    Directory of Open Access Journals (Sweden)

    T. G. Shepherd

    2009-11-01

    Full Text Available An analysis of the attribution of past and future changes in stratospheric ozone and temperature to anthropogenic forcings is presented. The analysis is an extension of the study of Shepherd and Jonsson (2008 who analyzed chemistry-climate simulations from the Canadian Middle Atmosphere Model (CMAM and attributed both past and future changes to changes in the external forcings, i.e. the abundances of ozone-depleting substances (ODS and well-mixed greenhouse gases. The current study is based on a new CMAM dataset and includes two important changes. First, we account for the nonlinear radiative response to changes in CO2. It is shown that over centennial time scales the radiative response in the upper stratosphere to CO2 changes is significantly nonlinear and that failure to account for this effect leads to a significant error in the attribution. To our knowledge this nonlinearity has not been considered before in attribution analysis, including multiple linear regression studies. For the regression analysis presented here the nonlinearity was taken into account by using CO2 heating rate, rather than CO2 abundance, as the explanatory variable. This approach yields considerable corrections to the results of the previous study and can be recommended to other researchers. Second, an error in the way the CO2 forcing changes are implemented in the CMAM was corrected, which significantly affects the results for the recent past. As the radiation scheme, based on Fomichev et al. (1998, is used in several other models we provide some description of the problem and how it was fixed.

  20. 2007 status of climate change: Mitigation of Climate Change. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Summary for Policy-makers; Bilan 2007 des changements climatiques: l'attenuation des changements climatiques. Contribution du Groupe de travail 3 au quatrieme rapport d'evaluation du Groupe d'Experts Intergouvernemental sur l'Evolution du Climat (GIEC). Resume a l'attention des decideurs

    Energy Technology Data Exchange (ETDEWEB)

    Barker, T; Bashmakov, I; Bernstein, L; Bogner, J; Bosch, P; Dave, R; Davidson, O; Fisher, B; Grubb, M; Gupta, S; Halsnaes, K; Heij, B; Kahn Ribeiro, S; Kobayashi, S; Levine, M; Martino, D; Masera Cerutti, O; Metz, B; Meyer, L; Nabuurs, G J; Najam, A; Nakicenovic, N; Holger Rogner, H; Roy, J; Sathaye, J; Schock, R; Shukla, P; Sims, R; Smith, P; Swart, R; Tirpak, D; Urge-Vorsatz, D; Dadi, Z

    2007-07-01

    The Working Group III contribution to the IPCC Fourth Assessment Report (AR4) focuses on new literature on the scientific, technological, environmental, economic and social aspects of mitigation of climate change, published since the IPCC Third Assessment Report (TAR) and the Special Reports on CO{sub 2} Capture and Storage (SRCCS) and on Safeguarding the Ozone Layer and the Global Climate System (SROC).The main aim of this summary report is to assess options for mitigating climate change. Several aspects link climate change with development issues. This report explores these links in detail, and illustrates where climate change and sustainable development are mutually reinforcing. Economic development needs, resource endowments and mitigative and adaptive capacities differ across regions. There is no one-size-fits-all approach to the climate change problem, and solutions need to be regionally differentiated to reflect different socio-economic conditions and, to a lesser extent, geographical differences. Although this report has a global focus, an attempt is made to differentiate the assessment of scientific and technical findings for the various regions. Given that mitigation options vary significantly between economic sectors, it was decided to use the economic sectors to organize the material on short- to medium-term mitigation options. Contrary to what was done in the Third Assessment Report, all relevant aspects of sectoral mitigation options, such as technology, cost, policies etc., are discussed together, to provide the user with a comprehensive discussion of the sectoral mitigation options. The report is organised into six sections after the introduction: - Greenhouse gas (GHG) emission trends; - Mitigation in the short and medium term, across different economic sectors (until 2030); - Mitigation in the long-term (beyond 2030); - Policies, measures and instruments to mitigate climate change; - Sustainable development and climate change mitigation; - Gaps in

  1. Ozone depletion following future volcanic eruptions

    Science.gov (United States)

    Eric Klobas, J.; Wilmouth, David M.; Weisenstein, Debra K.; Anderson, James G.; Salawitch, Ross J.

    2017-07-01

    While explosive volcanic eruptions cause ozone loss in the current atmosphere due to an enhancement in the availability of reactive chlorine following the stratospheric injection of sulfur, future eruptions are expected to increase total column ozone as halogen loading approaches preindustrial levels. The timing of this shift in the impact of major volcanic eruptions on the thickness of the ozone layer is poorly known. Modeling four possible climate futures, we show that scenarios with the smallest increase in greenhouse gas concentrations lead to the greatest risk to ozone from heterogeneous chemical processing following future eruptions. We also show that the presence in the stratosphere of bromine from natural, very short-lived biogenic compounds is critically important for determining whether future eruptions will lead to ozone depletion. If volcanic eruptions inject hydrogen halides into the stratosphere, an effect not considered in current ozone assessments, potentially profound reductions in column ozone would result.

  2. The climate is changing

    International Nuclear Information System (INIS)

    Alfsen, Knut H.

    2001-01-01

    The Intergovernmental Panel on Climate Change (IPCC) has finalized its Third Assessment Report. Among its conclusions is that we must expect continued changes in our climate, despite our efforts to reduce greenhouse gas emissions. Planning for and adapting to climate change are therefore necessary. As a starting point, CICERO has written this short note on expected impacts in Norway. The main conclusions are that (1) Adaptation to climate change is necessary (2) Substantial impacts are expected for several important sectors in Norway (3) The local and central authorities should now consider and start planning for adaptation measures. (4) There is still a need for more knowledge about potential impacts of climate change in Norway. (author)

  3. Update of the Polar SWIFT model for polar stratospheric ozone loss (Polar SWIFT version 2)

    Science.gov (United States)

    Wohltmann, Ingo; Lehmann, Ralph; Rex, Markus

    2017-07-01

    The Polar SWIFT model is a fast scheme for calculating the chemistry of stratospheric ozone depletion in polar winter. It is intended for use in global climate models (GCMs) and Earth system models (ESMs) to enable the simulation of mutual interactions between the ozone layer and climate. To date, climate models often use prescribed ozone fields, since a full stratospheric chemistry scheme is computationally very expensive. Polar SWIFT is based on a set of coupled differential equations, which simulate the polar vortex-averaged mixing ratios of the key species involved in polar ozone depletion on a given vertical level. These species are O3, chemically active chlorine (ClOx), HCl, ClONO2 and HNO3. The only external input parameters that drive the model are the fraction of the polar vortex in sunlight and the fraction of the polar vortex below the temperatures necessary for the formation of polar stratospheric clouds. Here, we present an update of the Polar SWIFT model introducing several improvements over the original model formulation. In particular, the model is now trained on vortex-averaged reaction rates of the ATLAS Chemistry and Transport Model, which enables a detailed look at individual processes and an independent validation of the different parameterizations contained in the differential equations. The training of the original Polar SWIFT model was based on fitting complete model runs to satellite observations and did not allow for this. A revised formulation of the system of differential equations is developed, which closely fits vortex-averaged reaction rates from ATLAS that represent the main chemical processes influencing ozone. In addition, a parameterization for the HNO3 change by denitrification is included. The rates of change of the concentrations of the chemical species of the Polar SWIFT model are purely chemical rates of change in the new version, whereas in the original Polar SWIFT model, they included a transport effect caused by the

  4. Climate Change Portal - Home Page

    Science.gov (United States)

    Science Partnerships Contact Us Take Action Climate change is already having significant and widespread of climate change. Business Businesses throughout California are taking action to address climate climate change impacts and informing policies to reduce greenhouse gases, adapt to changing environments

  5. Trends of rural tropospheric ozone at the northwest of the Iberian Peninsula.

    Science.gov (United States)

    Saavedra, S; Rodríguez, A; Souto, J A; Casares, J J; Bermúdez, J L; Soto, B

    2012-01-01

    Tropospheric ozone levels around urban and suburban areas at Europe and North America had increased during 80's-90's, until the application of NO(x) reduction strategies. However, as it was expected, this ozone depletion was not proportional to the emissions reduction. On the other hand, rural ozone levels show different trends, with peaks reduction and average increments; this different evolution could be explained by either emission changes or climate variability in a region. In this work, trends of tropospheric ozone episodes at rural sites in the northwest of the Iberian Peninsula were analyzed and compared to others observed in different regions of the Atlantic European coast. Special interest was focused on the air quality sites characterization, in order to guarantee their rural character in terms of air quality. Both episodic local meteorological and air quality measurements along five years were considered, in order to study possible meteorological influences in ozone levels, different to other European Atlantic regions.

  6. Trends of Rural Tropospheric Ozone at the Northwest of the Iberian Peninsula

    Directory of Open Access Journals (Sweden)

    S. Saavedra

    2012-01-01

    Full Text Available Tropospheric ozone levels around urban and suburban areas at Europe and North America had increased during 80’s–90’s, until the application of NOx reduction strategies. However, as it was expected, this ozone depletion was not proportional to the emissions reduction. On the other hand, rural ozone levels show different trends, with peaks reduction and average increments; this different evolution could be explained by either emission changes or climate variability in a region. In this work, trends of tropospheric ozone episodes at rural sites in the northwest of the Iberian Peninsula were analyzed and compared to others observed in different regions of the Atlantic European coast. Special interest was focused on the air quality sites characterization, in order to guarantee their rural character in terms of air quality. Both episodic local meteorological and air quality measurements along five years were considered, in order to study possible meteorological influences in ozone levels, different to other European Atlantic regions.

  7. Climate change and forest diseases

    Science.gov (United States)

    R.N. Sturrock; Susan Frankel; A. V. Brown; Paul Hennon; J. T. Kliejunas; K. J. Lewis; J. J. Worrall; A. J. Woods

    2011-01-01

    As climate changes, the effects of forest diseases on forest ecosystems will change. We review knowledge of relationships between climate variables and several forest diseases, as well as current evidence of how climate, host and pathogen interactions are responding or might respond to climate change. Many forests can be managed to both adapt to climate change and...

  8. Impacts of ozone air pollution and temperature extremes on crop yields: Spatial variability, adaptation and implications for future food security

    Science.gov (United States)

    Tai, Amos P. K.; Val Martin, Maria

    2017-11-01

    Ozone air pollution and climate change pose major threats to global crop production, with ramifications for future food security. Previous studies of ozone and warming impacts on crops typically do not account for the strong ozone-temperature correlation when interpreting crop-ozone or crop-temperature relationships, or the spatial variability of crop-to-ozone sensitivity arising from varietal and environmental differences, leading to potential biases in their estimated crop losses. Here we develop an empirical model, called the partial derivative-linear regression (PDLR) model, to estimate the spatial variations in the sensitivities of wheat, maize and soybean yields to ozone exposures and temperature extremes in the US and Europe using a composite of multidecadal datasets, fully correcting for ozone-temperature covariation. We find generally larger and more spatially varying sensitivities of all three crops to ozone exposures than are implied by experimentally derived concentration-response functions used in most previous studies. Stronger ozone tolerance is found in regions with high ozone levels and high consumptive crop water use, reflecting the existence of spatial adaptation and effect of water constraints. The spatially varying sensitivities to temperature extremes also indicate stronger heat tolerance in crops grown in warmer regions. The spatial adaptation of crops to ozone and temperature we find can serve as a surrogate for future adaptation. Using the PDLR-derived sensitivities and 2000-2050 ozone and temperature projections by the Community Earth System Model, we estimate that future warming and unmitigated ozone pollution can combine to cause an average decline in US wheat, maize and soybean production by 13%, 43% and 28%, respectively, and a smaller decline for European crops. Aggressive ozone regulation is shown to offset such decline to various extents, especially for wheat. Our findings demonstrate the importance of considering ozone regulation

  9. Climatic change

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-02-15

    In spite of man's remarkable advances in technology, ultimately he is still dependent on the Earth's climatic system for food and fresh water. The recent occurrences in certain regions of the world of climatic extremes such as excessive rain or droughts and unseasonably high or low temperatures have led to speculation that a major climatic change is occurring on a global scale. Some point to the recent drop in temperatures in the northern hemisphere as an indication that the Earth is entering a new ice age. Others see a global warming trend that may be due to a build-up of carbon dioxide in the atmosphere. An authoritative report on the subject has been prepared by a World Meteorological Organization Panel of Experts on Climatic Change. Excerpts from the report are given. (author)

  10. Climatic change

    International Nuclear Information System (INIS)

    1977-01-01

    In spite of man's remarkable advances in technology, ultimately he is still dependent on the Earth's climatic system for food and fresh water. The recent occurrences in certain regions of the world of climatic extremes such as excessive rain or droughts and unseasonably high or low temperatures have led to speculation that a major climatic change is occurring on a global scale. Some point to the recent drop in temperatures in the northern hemisphere as an indication that the Earth is entering a new ice age. Others see a global warming trend that may be due to a build-up of carbon dioxide in the atmosphere. An authoritative report on the subject has been prepared by a World Meteorological Organization Panel of Experts on Climatic Change. Excerpts from the report are given. (author)

  11. Managing climate change refugia for climate adaptation

    Science.gov (United States)

    Toni Lyn Morelli; Christopher Daly; Solomon Z. Dobrowski; Deanna M. Dulen; Joseph L. Ebersole; Stephen T. Jackson; Jessica D. Lundquist; Connie Millar; Sean P. Maher; William B. Monahan; Koren R. Nydick; Kelly T. Redmond; Sarah C. Sawyer; Sarah Stock; Steven R. Beissinger

    2016-01-01

    Refugia have long been studied from paleontological and biogeographical perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change refugia, here defined as areas relatively buffered from contemporary climate change over time that...

  12. Climate variability and vulnerability to climate change: a review

    Science.gov (United States)

    Thornton, Philip K; Ericksen, Polly J; Herrero, Mario; Challinor, Andrew J

    2014-01-01

    The focus of the great majority of climate change impact studies is on changes in mean climate. In terms of climate model output, these changes are more robust than changes in climate variability. By concentrating on changes in climate means, the full impacts of climate change on biological and human systems are probably being seriously underestimated. Here, we briefly review the possible impacts of changes in climate variability and the frequency of extreme events on biological and food systems, with a focus on the developing world. We present new analysis that tentatively links increases in climate variability with increasing food insecurity in the future. We consider the ways in which people deal with climate variability and extremes and how they may adapt in the future. Key knowledge and data gaps are highlighted. These include the timing and interactions of different climatic stresses on plant growth and development, particularly at higher temperatures, and the impacts on crops, livestock and farming systems of changes in climate variability and extreme events on pest-weed-disease complexes. We highlight the need to reframe research questions in such a way that they can provide decision makers throughout the food system with actionable answers, and the need for investment in climate and environmental monitoring. Improved understanding of the full range of impacts of climate change on biological and food systems is a critical step in being able to address effectively the effects of climate variability and extreme events on human vulnerability and food security, particularly in agriculturally based developing countries facing the challenge of having to feed rapidly growing populations in the coming decades. PMID:24668802

  13. Climate Change and Malaria

    OpenAIRE

    Goklany;, I. M.

    2004-01-01

    Sir David A. King's claim that "Climate change is the most severe problem that we are facing today—more serious even than the threat of terrorism" "Climate change is the most severe problem that we are facing today—more serious even than the threat of terrorism" ("Climate change

  14. Climate change and Finland. Summary of the Finnish research programme on climate change (SILMU)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    Anthropogenic impacts on the Earth`s atmosphere are expected to cause significant global climate changes during the next few decades. These changes will have many consequences both in nature and on human activities. In order to investigate the implications of such changes in Finland, a six-year multidisciplinary national research programme on climate and global change, the Finnish Research Programme on Climate Change (SILMU), was initiated in 1990. The key research areas were: (1) quantification of the greenhouse effect and the magnitude of anticipated climate changes, (2) assessment of the effects of changing climate on terrestrial and aquatic ecosystems, and (3) development of mitigation and adaptation strategies

  15. Climate change and Finland. Summary of the Finnish research programme on climate change (SILMU)

    International Nuclear Information System (INIS)

    1996-01-01

    Anthropogenic impacts on the Earth's atmosphere are expected to cause significant global climate changes during the next few decades. These changes will have many consequences both in nature and on human activities. In order to investigate the implications of such changes in Finland, a six-year multidisciplinary national research programme on climate and global change, the Finnish Research Programme on Climate Change (SILMU), was initiated in 1990. The key research areas were: (1) quantification of the greenhouse effect and the magnitude of anticipated climate changes, (2) assessment of the effects of changing climate on terrestrial and aquatic ecosystems, and (3) development of mitigation and adaptation strategies

  16. Past changes in the vertical distribution of ozone – Part 1: Measurement techniques, uncertainties and availability

    Directory of Open Access Journals (Sweden)

    B. Hassler

    2014-05-01

    Full Text Available Peak stratospheric chlorofluorocarbon (CFC and other ozone depleting substance (ODS concentrations were reached in the mid- to late 1990s. Detection and attribution of the expected recovery of the stratospheric ozone layer in an atmosphere with reduced ODSs as well as efforts to understand the evolution of stratospheric ozone in the presence of increasing greenhouse gases are key current research topics. These require a critical examination of the ozone changes with an accurate knowledge of the spatial (geographical and vertical and temporal ozone response. For such an examination, it is vital that the quality of the measurements used be as high as possible and measurement uncertainties well quantified. In preparation for the 2014 United Nations Environment Programme (UNEP/World Meteorological Organization (WMO Scientific Assessment of Ozone Depletion, the SPARC/IO3C/IGACO-O3/NDACC (SI2N Initiative was designed to study and document changes in the global ozone profile distribution. This requires assessing long-term ozone profile data sets in regards to measurement stability and uncertainty characteristics. The ultimate goal is to establish suitability for estimating long-term ozone trends to contribute to ozone recovery studies. Some of the data sets have been improved as part of this initiative with updated versions now available. This summary presents an overview of stratospheric ozone profile measurement data sets (ground and satellite based available for ozone recovery studies. Here we document measurement techniques, spatial and temporal coverage, vertical resolution, native units and measurement uncertainties. In addition, the latest data versions are briefly described (including data version updates as well as detailing multiple retrievals when available for a given satellite instrument. Archive location information for each data set is also given.

  17. Chatham Islands Climate Change

    International Nuclear Information System (INIS)

    Mullan, B.; Salinger, J.; Thompson, C.; Ramsay, D.; Wild, M.

    2005-06-01

    This brief report provides guidance on climate change specific to the Chatham Islands, to complement the information recently produced for local government by the Ministry for the Environment in 'Climate Change Effects and Impacts Assessment: A guidance manual for Local Government in New Zealand' and 'Coastal Hazards and Climate Change: A guidance manual for Local Government in New Zealand'. These previous reports contain a lot of generic information on climate change, and how to assess associated risks, that is relevant to the Chatham Islands Council.

  18. Total column ozone retrieval using INSAT-3D sounder in the tropics ...

    Indian Academy of Sciences (India)

    important for ozone estimation and lower instrument noise results in better ozone ... the Indian Space Research Organisation (ISRO) ... tivity of the sounder ozone band corresponding to .... NOAA Climate Monitoring and Diagnostics Labo-.

  19. Scaling Climate Change Communication for Behavior Change

    Science.gov (United States)

    Rodriguez, V. C.; Lappé, M.; Flora, J. A.; Ardoin, N. M.; Robinson, T. N.

    2014-12-01

    Ultimately, effective climate change communication results in a change in behavior, whether the change is individual, household or collective actions within communities. We describe two efforts to promote climate-friendly behavior via climate communication and behavior change theory. Importantly these efforts are designed to scale climate communication principles focused on behavior change rather than soley emphasizing climate knowledge or attitudes. Both cases are embedded in rigorous evaluations (randomized controlled trial and quasi-experimental) of primary and secondary outcomes as well as supplementary analyses that have implications for program refinement and program scaling. In the first case, the Girl Scouts "Girls Learning Environment and Energy" (GLEE) trial is scaling the program via a Massive Open Online Course (MOOC) for Troop Leaders to teach the effective home electricity and food and transportation energy reduction programs. The second case, the Alliance for Climate Education (ACE) Assembly Program, is advancing the already-scaled assembly program by using communication principles to further engage youth and their families and communities (school and local communities) in individual and collective actions. Scaling of each program uses online learning platforms, social media and "behavior practice" videos, mastery practice exercises, virtual feedback and virtual social engagement to advance climate-friendly behavior change. All of these communication practices aim to simulate and advance in-person train-the-trainers technologies.As part of this presentation we outline scaling principles derived from these two climate change communication and behavior change programs.

  20. Asking about climate change

    DEFF Research Database (Denmark)

    Nielsen, Jonas Østergaard; D'haen, Sarah Ann Lise

    2014-01-01

    and the number and types of interviews conducted are, for example, not always clear. Information on crucial aspects of qualitative research like researcher positionality, social positions of key informants, the use of field assistants, language issues and post-fieldwork treatment of data is also lacking in many...... with climate change? On the basis of a literature review of all articles published in Global Environmental Change between 2000 and 2012 that deal with human dimensions of climate change using qualitative methods this paper provides some answers but also raises some concerns. The period and length of fieldwork......There is increasing evidence that climate change will strongly affect people across the globe. Likely impacts of and adaptations to climate change are drawing the attention of researchers from many disciplines. In adaptation research focus is often on perceptions of climate change...

  1. Climate engineering and the risk of rapid climate change

    International Nuclear Information System (INIS)

    Ross, Andrew; Damon Matthews, H

    2009-01-01

    Recent research has highlighted risks associated with the use of climate engineering as a method of stabilizing global temperatures, including the possibility of rapid climate warming in the case of abrupt removal of engineered radiative forcing. In this study, we have used a simple climate model to estimate the likely range of temperature changes associated with implementation and removal of climate engineering. In the absence of climate engineering, maximum annual rates of warming ranged from 0.015 to 0.07 deg. C/year, depending on the model's climate sensitivity. Climate engineering resulted in much higher rates of warming, with the temperature change in the year following the removal of climate engineering ranging from 0.13 to 0.76 deg. C. High rates of temperature change were sustained for two decades following the removal of climate engineering; rates of change of 0.5 (0.3,0.1) deg. C/decade were exceeded over a 20 year period with 15% (75%, 100%) likelihood. Many ecosystems could be negatively affected by these rates of temperature change; our results suggest that climate engineering in the absence of deep emissions cuts could arguably constitute increased risk of dangerous anthropogenic interference in the climate system under the criteria laid out in the United Nations Framework Convention on Climate Change.

  2. Impact on short-lived climate forcers (SLCFs) from a realistic land-use change scenario via changes in biogenic emissions.

    Science.gov (United States)

    Scott, C E; Monks, S A; Spracklen, D V; Arnold, S R; Forster, P M; Rap, A; Carslaw, K S; Chipperfield, M P; Reddington, C L S; Wilson, C

    2017-08-24

    More than one quarter of natural forests have been cleared by humans to make way for other land-uses, with changes to forest cover projected to continue. The climate impact of land-use change (LUC) is dependent upon the relative strength of several biogeophysical and biogeochemical effects. In addition to affecting the surface albedo and exchanging carbon dioxide (CO 2 ) and moisture with the atmosphere, vegetation emits biogenic volatile organic compounds (BVOCs), altering the formation of short-lived climate forcers (SLCFs) including aerosol, ozone (O 3 ) and methane (CH 4 ). Once emitted, BVOCs are rapidly oxidised by O 3 , and the hydroxyl (OH) and nitrate (NO 3 ) radicals. These oxidation reactions yield secondary organic products which are implicated in the formation and growth of aerosol particles and are estimated to have a negative radiative effect on the climate (i.e. a cooling). These reactions also deplete OH, increasing the atmospheric lifetime of CH 4 , and directly affect concentrations of O 3 ; the latter two being greenhouse gases which impose a positive radiative effect (i.e. a warming) on the climate. Our previous work assessing idealised deforestation scenarios found a positive radiative effect due to changes in SLCFs; however, since the radiative effects associated with changes to SLCFs result from a combination of non-linear processes it may not be appropriate to scale radiative effects from complete deforestation scenarios according to the deforestation extent. Here we combine a land-surface model, a chemical transport model, a global aerosol model, and a radiative transfer model to assess the net radiative effect of changes in SLCFs due to historical LUC between the years 1850 and 2000.

  3. Uncertainty and Climate Change

    OpenAIRE

    Berliner, L. Mark

    2003-01-01

    Anthropogenic, or human-induced, climate change is a critical issue in science and in the affairs of humankind. Though the target of substantial research, the conclusions of climate change studies remain subject to numerous uncertainties. This article presents a very brief review of the basic arguments regarding anthropogenic climate change with particular emphasis on uncertainty.

  4. Climate@Home: Crowdsourcing Climate Change Research

    Science.gov (United States)

    Xu, C.; Yang, C.; Li, J.; Sun, M.; Bambacus, M.

    2011-12-01

    Climate change deeply impacts human wellbeing. Significant amounts of resources have been invested in building super-computers that are capable of running advanced climate models, which help scientists understand climate change mechanisms, and predict its trend. Although climate change influences all human beings, the general public is largely excluded from the research. On the other hand, scientists are eagerly seeking communication mediums for effectively enlightening the public on climate change and its consequences. The Climate@Home project is devoted to connect the two ends with an innovative solution: crowdsourcing climate computing to the general public by harvesting volunteered computing resources from the participants. A distributed web-based computing platform will be built to support climate computing, and the general public can 'plug-in' their personal computers to participate in the research. People contribute the spare computing power of their computers to run a computer model, which is used by scientists to predict climate change. Traditionally, only super-computers could handle such a large computing processing load. By orchestrating massive amounts of personal computers to perform atomized data processing tasks, investments on new super-computers, energy consumed by super-computers, and carbon release from super-computers are reduced. Meanwhile, the platform forms a social network of climate researchers and the general public, which may be leveraged to raise climate awareness among the participants. A portal is to be built as the gateway to the climate@home project. Three types of roles and the corresponding functionalities are designed and supported. The end users include the citizen participants, climate scientists, and project managers. Citizen participants connect their computing resources to the platform by downloading and installing a computing engine on their personal computers. Computer climate models are defined at the server side. Climate

  5. China's response to climate change issues after Paris Climate Change Conference

    Directory of Open Access Journals (Sweden)

    Yun Gao

    2016-12-01

    Full Text Available The Paris Climate Change Conference was successfully concluded with the Paris Agreement, which is a milestone for the world in collectively combating climate change. By participating in IPCC assessments and conducting national climate change assessments, China has been increasing its understanding of the issue. For the first time, China's top leader attended the Conference of the Parties, which indicates the acknowledgement of the rationality and necessity of climate change response by China at different levels. Moreover, this participation reflects China's commitment to including climate change in its ecology improvement program and pursuing a low-carbon society and economy. In order to ensure the success of the Paris Conference, China has contributed significantly. China's constructive participation in global governance shows that China is a responsible power. These principles such as the creation of a future of win–win cooperation with each country contributing to the best of its ability; a future of the rule of law, fairness, and justice; and a future of inclusiveness, mutual learning, and common development will serve as China's guidelines in its efforts to facilitate the implementation of the Paris Agreement and participate in the design of international systems.

  6. China's response to climate change issues after Paris Climate Change Conference

    Institute of Scientific and Technical Information of China (English)

    GAO Yun

    2016-01-01

    The Paris Climate Change Conference was successfully concluded with the Paris Agreement, which is a milestone for the world in collectively combating climate change. By participating in IPCC assessments and conducting national climate change assessments, China has been increasing its understanding of the issue. For the first time, China's top leader attended the Conference of the Parties, which indicates the acknowledgement of the rationality and necessity of climate change response by China at different levels. Moreover, this participation reflects China's commitment to including climate change in its ecology improvement program and pursuing a low-carbon society and economy. In order to ensure the success of the Paris Conference, China has contributed significantly. China's constructive participation in global governance shows that China is a responsible power. These principles such as the creation of a future of winewin cooperation with each country contributing to the best of its ability;a future of the rule of law, fairness, and justice;and a future of inclusiveness, mutual learning, and common development will serve as China's guidelines in its efforts to facilitate the implementation of the Paris Agreement and participate in the design of international systems.

  7. Update of the Polar SWIFT model for polar stratospheric ozone loss (Polar SWIFT version 2

    Directory of Open Access Journals (Sweden)

    I. Wohltmann

    2017-07-01

    Full Text Available The Polar SWIFT model is a fast scheme for calculating the chemistry of stratospheric ozone depletion in polar winter. It is intended for use in global climate models (GCMs and Earth system models (ESMs to enable the simulation of mutual interactions between the ozone layer and climate. To date, climate models often use prescribed ozone fields, since a full stratospheric chemistry scheme is computationally very expensive. Polar SWIFT is based on a set of coupled differential equations, which simulate the polar vortex-averaged mixing ratios of the key species involved in polar ozone depletion on a given vertical level. These species are O3, chemically active chlorine (ClOx, HCl, ClONO2 and HNO3. The only external input parameters that drive the model are the fraction of the polar vortex in sunlight and the fraction of the polar vortex below the temperatures necessary for the formation of polar stratospheric clouds. Here, we present an update of the Polar SWIFT model introducing several improvements over the original model formulation. In particular, the model is now trained on vortex-averaged reaction rates of the ATLAS Chemistry and Transport Model, which enables a detailed look at individual processes and an independent validation of the different parameterizations contained in the differential equations. The training of the original Polar SWIFT model was based on fitting complete model runs to satellite observations and did not allow for this. A revised formulation of the system of differential equations is developed, which closely fits vortex-averaged reaction rates from ATLAS that represent the main chemical processes influencing ozone. In addition, a parameterization for the HNO3 change by denitrification is included. The rates of change of the concentrations of the chemical species of the Polar SWIFT model are purely chemical rates of change in the new version, whereas in the original Polar SWIFT model, they included a transport effect

  8. The Ozone Monitoring Instrument: overview of 14 years in space

    Science.gov (United States)

    Levelt, Pieternel F.; Joiner, Joanna; Tamminen, Johanna; Pepijn Veefkind, J.; Bhartia, Pawan K.; Stein Zweers, Deborah C.; Duncan, Bryan N.; Streets, David G.; Eskes, Henk; van der A, Ronald; McLinden, Chris; Fioletov, Vitali; Carn, Simon; de Laat, Jos; DeLand, Matthew; Marchenko, Sergey; McPeters, Richard; Ziemke, Jerald; Fu, Dejian; Liu, Xiong; Pickering, Kenneth; Apituley, Arnoud; González Abad, Gonzalo; Arola, Antti; Boersma, Folkert; Miller, Christopher Chan; Chance, Kelly; de Graaf, Martin; Hakkarainen, Janne; Hassinen, Seppo; Ialongo, Iolanda; Kleipool, Quintus; Krotkov, Nickolay; Li, Can; Lamsal, Lok; Newman, Paul; Nowlan, Caroline; Suleiman, Raid; Gijsbert Tilstra, Lieuwe; Torres, Omar; Wang, Huiqun; Wargan, Krzysztof

    2018-04-01

    This overview paper highlights the successes of the Ozone Monitoring Instrument (OMI) on board the Aura satellite spanning a period of nearly 14 years. Data from OMI has been used in a wide range of applications and research resulting in many new findings. Due to its unprecedented spatial resolution, in combination with daily global coverage, OMI plays a unique role in measuring trace gases important for the ozone layer, air quality, and climate change. With the operational very fast delivery (VFD; direct readout) and near real-time (NRT) availability of the data, OMI also plays an important role in the development of operational services in the atmospheric chemistry domain.

  9. The application of remote sensing techniques for air pollution analysis and climate change on Indian subcontinent

    Science.gov (United States)

    Palve, S. N.; Nemade, P. D., Dr.; Ghude, S. D., Dr.

    2016-06-01

    India is home to an extraordinary variety of climatic regions, ranging from tropical in the south to temperate and alpine in the Himalayan north, where elevated regions receive sustained winter snowfall. The subcontinent is characterized by high levels of air pollution due to intensively developing industries and mass fuel consumption for domestic purposes. The main tropospheric pollutants (O3, NO2, CO, formaldehyde (HCHO) and SO2) and two major greenhouse gases (tropospheric O3 and methane (CH4)) and important parameters of aerosols, which play a key role in climate change and affecting on the overall well-being of subcontinent residents. In light of considering these facts this paper aims to investigate possible impact of air pollutants over the climate change on Indian subcontinent. Satellite derived column aerosol optical depth (AOD) is a cost effective way to monitor and study aerosols distribution and effects over a long time period. AOD is found to be increasing rapidly since 2000 in summer season that may cause adverse effect to the agricultural crops and also to the human health. Increased aerosol loading may likely affect the rainfall which is responsible for the observed drought conditions over the Indian subcontinent. Carbon monoxide is emitted into the atmosphere by biomass burning activities and India is the second largest contributor of CO emissions in Asia. The MOPITT CO retrievals at 850 hPa show large CO emission from the IG region. The development of convective activity associated with the ASM leads to large scale vertical transport of the boundary layer CO from the Indian region into the upper troposphere. TCO over the Indian subcontinent during 2007 has a systematic and gradual variation, spatial as well as temporal. Higher amount of TCO in the northern latitudes and simultaneous lower TCO at near equatorial latitudes indicates depletion of ozone near the equator and accumulation at higher latitudes within the subcontinent. In addition, changes

  10. Climate of Tajikistan in connection with global climate change

    International Nuclear Information System (INIS)

    Khakimov, F.Kh.; Mirzokhonova, S.O.; Mirzokhonava, N.A.

    2006-01-01

    The analysis of global climate change for different periods and its consequences on regional climate is given. The chronology of climate change in Tajikistan in various regions and the reasons leading or resulted to these changes are changes are shown as well

  11. Communities under climate change

    DEFF Research Database (Denmark)

    Nogues, David Bravo; Rahbek, Carsten

    2011-01-01

    The distribution of species on Earth and the interactions among them are tightly linked to historical and contemporary climate, so that global climate change will transform the world in which we live. Biological models can now credibly link recent decadal trends in field data to climate change......, but predicting future impacts on biological communities is a major challenge. Attempts to move beyond general macroecological predictions of climate change impact on one hand, and observations from specific, local-scale cases, small-scale experiments, or studies of a few species on the other, raise a plethora...... of unanswered questions. On page 1124 of this issue, Harley (1) reports results that cast new light on how biodiversity, across different trophic levels, responds to climate change....

  12. Potential impact of a US climate policy and air quality regulations on future air quality and climate change

    Directory of Open Access Journals (Sweden)

    Y. Lee

    2016-04-01

    Full Text Available We have investigated how future air quality and climate change are influenced by the US air quality regulations that existed or were proposed in 2013 and a hypothetical climate mitigation policy that aims to reduce 2050 CO2 emissions to be 50 % below 2005 emissions. Using the NASA GISS ModelE2 general circulation model, we look at the impacts for year 2030 and 2055. The US energy-sector emissions are from the GLIMPSE project (GEOS-Chem LIDORT Integrated with MARKAL (MARKet ALlocation for the Purpose of Scenario Exploration, and other US emissions data sets and the rest of the world emissions data sets are based on the RCP4.5 scenario. The US air quality regulations are projected to have a strong beneficial impact on US air quality and public health in year 2030 and 2055 but result in positive radiative forcing. Under this scenario, no more emission constraints are added after 2020, and the impacts on air quality and climate change are similar between year 2030 and 2055. Surface particulate matter with a diameter smaller than 2.5 µm (PM2.5 is reduced by ∼ 2 µg m−3 on average over the USA, and surface ozone by ∼ 8 ppbv. The improved air quality prevents about 91 400 premature deaths in the USA, mainly due to the PM2.5 reduction (∼ 74 200 lives saved. The air quality regulations reduce the light-reflecting aerosols (i.e., sulfate and organic matter more than the light-absorbing species (i.e., black carbon and ozone, leading to a strong positive radiative forcing (RF over the USA by both aerosols' direct and indirect forcing: the total RF is  ∼ 0.04 W m−2 over the globe, and ∼ 0.8 W m−2 over the USA. Under the hypothetical climate policy, a future CO2 emissions cut is achieved in part by relying less on coal, and thus SO2 emissions are noticeably reduced. This provides air quality co-benefits, but it could lead to potential climate disbenefits over the USA. In 2055, the US mean total RF is +0.22

  13. Climate change research in Canada

    International Nuclear Information System (INIS)

    Dawson, K.

    1994-01-01

    The current consensus on climatic change in Canada is briefly summarized, noting the results of modelling of the effects of a doubling of atmospheric CO 2 , the nonuniformity of climate change across the country, the uncertainties in local responses to change, and the general agreement that 2-4 degrees of warming will occur for each doubling of CO 2 . Canadian government response includes programs aimed at reducing the uncertainties in the scientific understanding of climate change and in the socio-economic response to such change. Canadian climate change programs include participation in large-scale experiments on such topics as heat transport in the ocean, and sources and sinks of greenhouse gases; development of next-generation climate models; studying the social and economic effects of climate change in the Great Lakes Basin and Mackenzie River Basin; investigation of paleoclimates; and analysis of climate data for long-term trends

  14. Strategy for Climate Change Adaptation

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn

    2013-01-01

    . This absence of an agreement calls for adaptation to climate change. Emphasis should be put on buildings, as they play a vital economic and social role in society and are vulnerable to climate change. Therefore, the building stock deserves its own policy and implementation plans as well as tools that enable...... adequate and cost-efficient adaptation to climate change. This paper explains the need for climate change adaptation of the building stock and suggests a pattern for a strategic approach to how to reach the climate change adaptation needed. The suggested and presented need of a strategic approach is based...... on three main initiatives consisting of the need to examine the potential impacts of climate change on the building stock, the need to assess and develop a roadmap of current and future adaptation measures that can withstand the effects of climate change, and the need to engage relevant stakeholders...

  15. Strategy for Climate Change Adaptation

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn

    2014-01-01

    . This absence of an agreement calls for adaptation to climate change. Emphasis should be put on buildings, as they play a vital economic and social role in society and are vulnerable to climate change. Therefore, the building stock deserves its own policy and implementation plans as well as tools that enable...... adequate and cost-efficient adaptation to climate change. This paper explains the need for climate change adaptation of the building stock and suggests a pattern for a strategic approach to how to reach the climate change adaptation needed. The suggested and presented need of a strategic approach is based...... on three main initiatives consisting of the need to examine the potential impacts of climate change on the building stock, the need to assess and develop a roadmap of current and future adaptation measures that can withstand the effects of climate change, and the need to engage relevant stakeholders...

  16. 2007 status of climate change: Mitigation of Climate Change. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Summary for Policy-makers; Bilan 2007 des changements climatiques: l'attenuation des changements climatiques. Contribution du Groupe de travail 3 au quatrieme rapport d'evaluation du Groupe d'Experts Intergouvernemental sur l'Evolution du Climat (GIEC). Resume a l'attention des decideurs

    Energy Technology Data Exchange (ETDEWEB)

    Barker, T.; Bashmakov, I.; Bernstein, L.; Bogner, J.; Bosch, P.; Dave, R.; Davidson, O.; Fisher, B.; Grubb, M.; Gupta, S.; Halsnaes, K.; Heij, B.; Kahn Ribeiro, S.; Kobayashi, S.; Levine, M.; Martino, D.; Masera Cerutti, O.; Metz, B.; Meyer, L.; Nabuurs, G.J.; Najam, A.; Nakicenovic, N.; Holger Rogner, H.; Roy, J.; Sathaye, J.; Schock, R.; Shukla, P.; Sims, R.; Smith, P.; Swart, R.; Tirpak, D.; Urge-Vorsatz, D.; Dadi, Z

    2007-07-01

    The Working Group III contribution to the IPCC Fourth Assessment Report (AR4) focuses on new literature on the scientific, technological, environmental, economic and social aspects of mitigation of climate change, published since the IPCC Third Assessment Report (TAR) and the Special Reports on CO{sub 2} Capture and Storage (SRCCS) and on Safeguarding the Ozone Layer and the Global Climate System (SROC).The main aim of this summary report is to assess options for mitigating climate change. Several aspects link climate change with development issues. This report explores these links in detail, and illustrates where climate change and sustainable development are mutually reinforcing. Economic development needs, resource endowments and mitigative and adaptive capacities differ across regions. There is no one-size-fits-all approach to the climate change problem, and solutions need to be regionally differentiated to reflect different socio-economic conditions and, to a lesser extent, geographical differences. Although this report has a global focus, an attempt is made to differentiate the assessment of scientific and technical findings for the various regions. Given that mitigation options vary significantly between economic sectors, it was decided to use the economic sectors to organize the material on short- to medium-term mitigation options. Contrary to what was done in the Third Assessment Report, all relevant aspects of sectoral mitigation options, such as technology, cost, policies etc., are discussed together, to provide the user with a comprehensive discussion of the sectoral mitigation options. The report is organised into six sections after the introduction: - Greenhouse gas (GHG) emission trends; - Mitigation in the short and medium term, across different economic sectors (until 2030); - Mitigation in the long-term (beyond 2030); - Policies, measures and instruments to mitigate climate change; - Sustainable development and climate change mitigation; - Gaps in

  17. Climate Change in China : Exploring Informants' Perceptions of Climate Change through a Qualitative Approach

    OpenAIRE

    Lipin, Tan

    2016-01-01

    Climate change is not only a natural phenomenon, but also a global social issue. Many studies try to explore the mechanisms behind climate change and the consequences of climate change, and provide information for developing the measures to mitigate or adapt to it. For example, the IPCC reviews and assesses climate-change-related scientific information produced worldwide, thus aiming to support decision-making from a scientific perspective. However, though various international and regional c...

  18. The social construct of climate and climate change

    International Nuclear Information System (INIS)

    Stehr, N.

    1994-01-01

    Different time scales of climate change and their differential perception in society are discussed. A historical examination of natural climate changes during the past millennium suggests that short-term changes, especially crucial changes, trigger a significant response in and by society. Short-term changes correspond to the 'time horizon of everyday life', that is, to a time scale from days and weeks to a few years. The anticipated anthropogenic climate changes, however, are expected to occur on a longer time scale. They require a response by society not on the basis of primary experience but on the basis of scientifically constructed scenarios and ways in which such information is represented in the modern media for example. Socio-economic impact research relies on concepts that are based on the premise of perfectly informed actors for the development of optimal adaptation strategies. In contrast to such a conception, we develop the concept of a 'social construct of climate' as decisive for the public perception of scientific knowledge about climate and for public policy on climate change. The concept is illustrated using a number of examples. (orig.)

  19. The neurobiology of climate change.

    Science.gov (United States)

    O'Donnell, Sean

    2018-01-06

    Directional climate change (global warming) is causing rapid alterations in animals' environments. Because the nervous system is at the forefront of animals' interactions with the environment, the neurobiological implications of climate change are central to understanding how individuals, and ultimately populations, will respond to global warming. Evidence is accumulating for individual level, mechanistic effects of climate change on nervous system development and performance. Climate change can also alter sensory stimuli, changing the effectiveness of sensory and cognitive systems for achieving biological fitness. At the population level, natural selection forces stemming from directional climate change may drive rapid evolutionary change in nervous system structure and function.

  20. The neurobiology of climate change

    Science.gov (United States)

    O'Donnell, Sean

    2018-02-01

    Directional climate change (global warming) is causing rapid alterations in animals' environments. Because the nervous system is at the forefront of animals' interactions with the environment, the neurobiological implications of climate change are central to understanding how individuals, and ultimately populations, will respond to global warming. Evidence is accumulating for individual level, mechanistic effects of climate change on nervous system development and performance. Climate change can also alter sensory stimuli, changing the effectiveness of sensory and cognitive systems for achieving biological fitness. At the population level, natural selection forces stemming from directional climate change may drive rapid evolutionary change in nervous system structure and function.

  1. Trees and Climate Change

    OpenAIRE

    Dettenmaier, Megan; Kuhns, Michael; Unger, Bethany; McAvoy, Darren

    2017-01-01

    This fact sheet describes the complex relationship between forests and climate change based on current research. It explains ways that trees can mitigate some of the risks associated with climate change. It details the impacts that forests are having on the changing climate and discuss specific ways that trees can be used to reduce or counter carbon emissions directly and indirectly.

  2. Climate Change Action Fund: public education and outreach. Change: think climate

    International Nuclear Information System (INIS)

    2001-05-01

    This illustrated booklet provides a glimpse of the many creative approaches being adopted by educators, community groups, industry associations and governments at all levels to inform Canadians about the causes and effects of climate change. It also provides suggestions about how each individual person can contribute to reduce greenhouse gas emissions through residential energy efficiency, by participating in ride-share programs, by planting trees and a myriad of other community action projects and public awareness campaigns. The booklet describes educational resources and training available to teachers, science presentations, climate change workshops, public awareness initiatives, community action on climate change, and sector-specific actions underway in the field of transportation and in improving energy efficiency in residential and large buildings. Descriptive summaries of the activities of organizations involved in climate change advocacy and promotion, and a list of contacts for individual projects also form part of the volume

  3. In Brief: Monitoring ozone in Qatar

    Science.gov (United States)

    Showstack, Randy

    2008-12-01

    Qatar is establishing an ozone and pollution monitoring ground station in West Asia, following discussions between the government, the Qatar Foundation, and the United Nations Environment Programme, according to a 19 November announcement. The station will assist in understanding whether the ozone layer is actually recovering after being damaged by ozone-depleting chemicals. Qatar also announced plans to establish a global center of excellence for research and development of ozone and climate-friendly technology, equipment, and appliances. UNEP executive director Achim Steiner said the announcements by Qatar ``will help plug key data gaps relating to information gathering in West Asia and the Gulf to the benefit of the region and the world.''

  4. Changing Climates @ Colorado State: 100 (Multidisciplinary) Views of Climate Change

    Science.gov (United States)

    Campbell, S.; Calderazzo, J.; Changing Climates, Cmmap Education; Diversity Team

    2011-12-01

    We would like to talk about a multidisciplinary education and outreach program we co-direct at Colorado State University, with support from an NSF-funded STC, CMMAP, the Center for Multiscale Modeling of Atmospheric Processes. We are working to raise public literacy about climate change by providing information that is high quality, up to date, thoroughly multidisciplinary, and easy for non-specialists to understand. Our primary audiences are college-level students, their teachers, and the general public. Our motto is Climate Change is Everybody's Business. To encourage and help our faculty infuse climate-change content into their courses, we have organized some 115 talks given by as many different speakers-speakers drawn from 28 academic departments, all 8 colleges at CSU, and numerous other entities from campus, the community, and farther afield. We began with a faculty-teaching-faculty series and then broadened our attentions to the whole campus and surrounding community. Some talks have been for narrowly focused audiences such as extension agents who work on energy, but most are for more eclectic groups of students, staff, faculty, and citizens. We count heads at most events, and our current total is roughly 6,000. We have created a website (http://changingclimates.colostate.edu) that includes videotapes of many of these talks, short videos we have created, and annotated sources that we judge to be accurate, interesting, clearly written, and aimed at non-specialists, including books, articles and essays, websites, and a few items specifically for college teachers (such as syllabi). Pages of the website focus on such topics as how the climate works / how it changes; what's happening / what might happen; natural ecosystems; agriculture; impacts on people; responses from ethics, art, literature; communication; daily life; policy; energy; and-pulling all the pieces together-the big picture. We have begun working on a new series of very short videos that can be

  5. Climate change

    NARCIS (Netherlands)

    Marchal, V.; Dellink, R.; Vuuren, D.P. van; Clapp, C.; Chateau, J.; Magné, B.; Lanzi, E.; Vliet, J. van

    2012-01-01

    This chapter analyses the policy implications of the climate change challenge. Are current emission reduction pledges made in Copenhagen/Cancun enough to stabilise the climate and limit global average temperature increase to 2 oC? If not, what will the consequences be? What alternative growth

  6. The ozone hole and the 1995 Nobel prize in chemistry; Trou d`ozone et Prix Nobel 1995 de chimie

    Energy Technology Data Exchange (ETDEWEB)

    Berger, A. [Universite Catholique de Louvain (UCL), Louvain-la-Neuve (Belgium). Inst. d`Astronomie et de Geophysique G. Lemaitre

    1996-03-01

    To mark to award of the 1995 Nobel Prize in chemistry to three world renowned atmospheric chemists, this paper recalls the history of scientific progress in stratospheric ozone chemistry. Then it summarizes current knowledge of ozone-layer depletion and its impact on climate, vegetation and human health. (author). 21 refs., 12 figs.

  7. Changes in the Perceived Risk of Climate Change: Evidence from Sudden Climatic Events

    Science.gov (United States)

    Anttila-Hughes, J. K.

    2009-12-01

    In the course of the past two decades the threat of anthropogenic climate change has moved from a scientific concern of relative obscurity to become one of the largest environmental and public goods problems in history. During this period public understanding of the risk of climate change has shifted from negligible to quite large. In this paper I propose a means of quantifying this change by examining how sudden events supporting the theory of anthropogenic climate change have affected carbon intensive companies' stock prices. Using CAPM event study methodology for companies in several carbon-intensive industries, I find strong evidence that markets have been reacting to changes in the scientific evidence for climate change for some time. Specifically, the change in magnitude of response over time seems to indicate that investors believed climate change was a potentially serious risk to corporate profits as early as the mid 1990s. Moreover, market reaction dependence on event type indicates that investors are differentiating between different advances in the scientific knowledge. Announcements by NASA GISS that the previous year was a “record hot year” for the globe are associated with negative excess returns, while news of ice shelf collapses are associated with strong positive excess returns. These results imply that investors are aware of how different aspects of climate change will affect carbon intensive companies, specifically in terms of the link between warming in general and polar ice cover. This implies that policy choices based on observable public opinion have lagged actual private concern over climate change's potential threat.

  8. Chemistry and climate change

    International Nuclear Information System (INIS)

    Bernier, Jean-Claude; Brasseur, Guy; Brechet, Yves; Candel, Sebastien; Cazenave, Anny; Courtillot, Vincent; Fontecave, Marc; Garnier, Emmanuel; Goebel, Philippe; Legrand, Jack; Legrand, Michel; Le Treut, Herve; Mauberger, Pascal; Dinh-Audouin, Minh-Thu; Olivier, Daniele; Rigny, Paul; Bigot, Bernard

    2016-01-01

    In its first part, this collective publication addresses the decennial and centuries-old variations of climate: perspectives and implications of climate change for the 21. century, questions remaining about the understanding of climate change from its sources to its modelling, extreme climate variations and societies during the last millennium. The contributions of the second part outline how chemistry is a tool to study climate change: ice chemistry as an archive of our past environment, observations and predictions on sea level rise, relationship between atmosphere chemistry and climate. The third set of contributions discusses the transformation of the energy system for a cleaner atmosphere and the management of the climate risk: the chemical processing of CO_2, actions of chemical companies to support the struggle against climate change, relationship between barrel price and renewable energies, relationship between grid complexity and green energy. The last part outlines the role chemistry can have to be able to do without fossil fuels: chemistry in front of challenges of transformation of the energy system, the use of micro-algae, the use of hydrogen as a vector of energy transition

  9. Improved attribution of climate forcing to emissions by pollutant and sector

    Science.gov (United States)

    Shindell, D. T.

    2009-12-01

    Evaluating multi-component climate change mitigation strategies requires knowledge of the diverse direct and indirect effects of emissions. Methane, ozone and aerosols are linked through atmospheric chemistry so that emissions of a single pollutant can affect several species. I will show new calculations of atmospheric composition changes, radiative forcing, and the global warming potential (GWP) for increased emissions of tropospheric ozone and aerosol precursors in a coupled composition-climate model. The results demonstrate that gas-aerosol interactions substantially alter the relative importance of the various emissions, suggesting revisions to the GWPs used in international carbon trading. Additionally, I will present results showing how the net climate impact of particular activities depends strongly upon non-CO2 forcing agents for some sectors. These results will be highlighted by discussing the interplay between air quality emissions controls and climate for the case of emissions from coal-fired power plants. The changing balance between CO2 and air quality pollutants from coal plants may have contributed to the 20th century spatial and temporal patterns of climate change, and is likely to continue to do so as more and more plants are constructed in Asia.

  10. Climate change refugia as a tool for climate adaptation

    Science.gov (United States)

    Climate change refugia, areas relatively buffered from contemporary climate change so as to increase persistence of valued physical, ecological, and cultural resources, are considered as potential adaptation options in the face of anthropogenic climate change. In a collaboration ...

  11. Climate change. Climate in Medieval time.

    Science.gov (United States)

    Bradley, Raymond S; Hughes, Malcolm K; Diaz, Henry F

    2003-10-17

    Many papers have referred to a "Medieval Warm Period." But how well defined is climate in this period, and was it as warm as or warmer than it is today? In their Perspective, Bradley et al. review the evidence and conclude that although the High Medieval (1100 to 1200 A.D.) was warmer than subsequent centuries, it was not warmer than the late 20th century. Moreover, the warmest Medieval temperatures were not synchronous around the globe. Large changes in precipitation patterns are a particular characteristic of "High Medieval" time. The underlying mechanisms for such changes must be elucidated further to inform the ongoing debate on natural climate variability and anthropogenic climate change.

  12. Papers of the CWRA climate change symposium : understanding climate change impacts on Manitoba's water resources

    International Nuclear Information System (INIS)

    2003-01-01

    This symposium provided an opportunity for discussions on climate change issues with particular reference to the impacts on Manitoba's water resources. The presentations addressed issues of importance to governments, scientists, academics, managers, consultants and the general public. Topics of discussion ranged from climate change impacts on water quality, wetlands, hydropower, fisheries and drought, to adaptation to climate change. Recent advances in global and regional climate modelling were highlighted along with paleo-environmental indicators of climate change. The objective was to provide a better understanding of the science of climate change. The conference featured 16 presentations of which 1 was indexed separately for inclusion in this database. refs., tabs., figs

  13. Impacts of transportation sector emissions on future U.S. air quality in a changing climate. Part II: Air quality projections and the interplay between emissions and climate change.

    Science.gov (United States)

    Campbell, Patrick; Zhang, Yang; Yan, Fang; Lu, Zifeng; Streets, David

    2018-07-01

    In Part II of this work we present the results of the downscaled offline Weather Research and Forecasting/Community Multiscale Air Quality (WRF/CMAQ) model, included in the "Technology Driver Model" (TDM) approach to future U.S. air quality projections (2046-2050) compared to a current-year period (2001-2005), and the interplay between future emission and climate changes. By 2046-2050, there are widespread decreases in future concentrations of carbon monoxide (CO), nitrogen oxides (NO x  = NO + NO 2 ), volatile organic compounds (VOCs), ammonia (NH 3 ), sulfur dioxide (SO 2 ), and particulate matter with an aerodynamic diameter ≤ 2.5 μm (PM 2.5 ) due mainly to decreasing on-road vehicle (ORV) emissions near urban centers as well as decreases in other transportation modes that include non-road engines (NRE). However, there are widespread increases in daily maximum 8-hr ozone (O 3 ) across the U.S., which are due to enhanced greenhouse gases (GHG) including methane (CH 4 ) and carbon dioxide (CO 2 ) under the Intergovernmental Panel on Climate Change (IPCC) A1B scenario, and isolated areas of larger reduction in transportation emissions of NO x compared to that of VOCs over regions with VOC-limited O 3 chemistry. Other notable future changes are reduced haze and improved visibility, increased primary organic to elemental carbon ratio, decreases in PM 2.5 and its species, decreases and increases in dry deposition of SO 2 and O 3 , respectively, and decreases in total nitrogen (TN) deposition. There is a tendency for transportation emission and CH 4 changes to dominate the increases in O 3 , while climate change may either enhance or mitigate these increases in the west or east U.S., respectively. Climate change also decreases PM 2.5 in the future. Other variable changes exhibit stronger susceptibility to either emission (e.g., CO, NO x , and TN deposition) or climate changes (e.g., VOC, NH 3 , SO 2 , and total sulfate deposition), which also have a strong

  14. Effects of anthropogenic emissions on tropospheric ozone and its radiative forcing

    Energy Technology Data Exchange (ETDEWEB)

    Berntsen, T.; Isaksen, I.S.A.; Fuglestvedt, J.S.; Myhre, G.; Larsen, T. Alsvik; Stordal, F.; Freckleton, R.S.; Shine, K.P.

    1997-12-31

    As described in this report, changes in tropospheric ozone since pre-industrial times due to changes in emissions have been calculated by the University of Oslo global three-dimensional photochemical model. The radiative forcing caused by the increase in ozone has been calculated by means of two independent radiative transfer models: the University of Reading model (Reading), and the University of Oslo/Norwegian Institute for Air Research model (OsloRad). Significant increases in upper tropospheric ozone concentrations are found at northern mid-latitudes at about 10 km altitude. In the tropical regions the largest increase is found at about 15 km altitude. The increase is found to be caused mainly by enhanced in situ production due to transport of precursors from the boundary layer, with a smaller contribution from increased transport of ozone produced in the boundary layer. The lifetime of ozone in the troposphere decreased by about 35% as a result of enhanced concentrations of HO{sub 2}. The calculated increase in surface ozone in Europe is in good agreement with observations. The calculations of radiative forcing include the effect of clouds and allow for thermal adjustment in the stratosphere. The global and annual averaged radiative forcing at the tropopause from both models are in the lower part of the Intergovernmental Panel on Climate Change estimated range. The calculated radiative forcing is similar in magnitude to the negative radiative forcing by sulfate aerosols, but displaced southward in source regions at northern mid-latitudes. The increase in tropospheric ozone is calculated to have cooled the lower stratosphere by up to 0.9 K, with possibly half of this cooling occurring in the past 2 to 3 decades. 76 refs., 16 figs., 9 tabs.

  15. Climate change and human health

    DEFF Research Database (Denmark)

    Warren, John A; Berner, James E; Curtis, Tine

    2005-01-01

    In northern regions, climate change can include changes in precipitation magnitude and frequency, reductions in sea ice extent and thickness, and climate warming and cooling. These changes can increase the frequency and severity of storms, flooding, or erosion; other changes may include drought...... or degradation of permafrost. Climate change can result in damage to sanitation infrastructure resulting in the spread of disease or threatening a community's ability to maintain its economy, geographic location and cultural tradition, leading to mental stress. Through monitoring of some basic indicators...... communities can begin to develop a response to climate change. With this information, planners, engineers, health care professionals and governments can begin to develop approaches to address the challenges related to climate change....

  16. Climate Change Adaptation

    DEFF Research Database (Denmark)

    Hudecz, Adriána

    The European Union ROADEX Project 1998 – 2012 was a trans-national roads co-operation aimed at developing ways for interactive and innovative management of low traffic volume roads throughout the cold climate regions of the Northern Periphery Area of Europe. Its goals were to facilitate co......-operation and research into the common problems of the Northern Periphery. This report is an output of the ROADEX “Implementing Accessibility” project (2009-2012). It gives a summary of the results of research into adaptation measures to combat climate change effects on low volume roads in the Northern Periphery...... causes changes in other climatic variables such as rainfall, humidity and wind speed that impact on the functioning of infrastructure such road networks. This paper discusses the climate changes predicted by the world’s meteorological organisations and considers how these may impact on the public...

  17. Analysis and detection of climate change

    International Nuclear Information System (INIS)

    Thejll, P.; Stendel, M.

    2001-01-01

    The authors first discuss the concepts 'climate' and 'climate change detection', outlining the difficulties of the latter in terms of the properties of the former. In more detail they then discuss the analysis and detection, carried out at the Danish Climate Centre, of anthropogenic climate change and the nonanthropogenic changes regarding anthropogenic climate change the emphasis is on the improvement of global and regional climate models, and the reconstruction of past climates regarding non-anthropogenic changes the authors describe two case studies of potential solar influence on climate. (LN)

  18. Yukon Government climate change action plan

    International Nuclear Information System (INIS)

    2009-02-01

    This Climate Change Action Plan described the measures that are being taken by the Yukon Government to adapt to, understand, and reduce contributions to climate change. The action plan is the result of input received from more than 100 individuals and organizations and provides clear direction for a strategy that will minimize the negative impacts of climate change and provide economic, social and other environmental benefits through climate change mitigation. The Yukon government has already taken many actions that respond to climate change, such as: developing the Yukon Cold Climate Innovation Centre; supporting the Northern Climate Exchange for public education and outreach; funding community recycling depots and other groups that reduce waste generation, promote public awareness and divert solid waste; and working with provincial and territorial counterparts to enhance national building standards. The main objectives of the climate change actions are to enhance knowledge and understanding of climate change; adapt to climate change; reduce greenhouse gas emissions; and lead Yukon action in response to climate change. tabs., figs.

  19. Ozone zonal asymmetry and planetary wave characterization during Antarctic spring

    Directory of Open Access Journals (Sweden)

    I. Ialongo

    2012-03-01

    Full Text Available A large zonal asymmetry of ozone has been observed over Antarctica during winter-spring, when the ozone hole develops. It is caused by a planetary wave-driven displacement of the polar vortex. The total ozone data by OMI (Ozone Monitoring Instrument and the ozone profiles by MLS (Microwave Limb Sounder and GOMOS (Global Ozone Monitoring by Occultation of Stars were analysed to characterize the ozone zonal asymmetry and the wave activity during Antarctic spring. Both total ozone and profile data have shown a persistent zonal asymmetry over the last years, which is usually observed from September to mid-December. The largest amplitudes of planetary waves at 65° S (the perturbations can achieve up to 50% of zonal mean values is observed in October. The wave activity is dominated by the quasi-stationary wave 1 component, while the wave 2 is mainly an eastward travelling wave. Wave numbers 1 and 2 generally explain more than the 90% of the ozone longitudinal variations. Both GOMOS and MLS ozone profile data show that ozone zonal asymmetry covers the whole stratosphere and extends up to the altitudes of 60–65 km. The wave amplitudes in ozone mixing ratio decay with altitude, with maxima (up to 50% below 30 km.

    The characterization of the ozone zonal asymmetry has become important in the climate research. The inclusion of the polar zonal asymmetry in the climate models is essential for an accurate estimation of the future temperature trends. This information might also be important for retrieval algorithms that rely on ozone a priori information.

  20. Climate change and nutrition: creating a climate for nutrition security.

    Science.gov (United States)

    Tirado, M C; Crahay, P; Mahy, L; Zanev, C; Neira, M; Msangi, S; Brown, R; Scaramella, C; Costa Coitinho, D; Müller, A

    2013-12-01

    Climate change further exacerbates the enormous existing burden of undernutrition. It affects food and nutrition security and undermines current efforts to reduce hunger and promote nutrition. Undernutrition in turn undermines climate resilience and the coping strategies of vulnerable populations. The objectives of this paper are to identify and undertake a cross-sectoral analysis of the impacts of climate change on nutrition security and the existing mechanisms, strategies, and policies to address them. A cross-sectoral analysis of the impacts of climate change on nutrition security and the mechanisms and policies to address them was guided by an analytical framework focused on the three 'underlying causes' of undernutrition: 1) household food access, 2) maternal and child care and feeding practices, 3) environmental health and health access. The analytical framework includes the interactions of the three underlying causes of undernutrition with climate change,vulnerability, adaptation and mitigation. Within broad efforts on climate change mitigation and adaptation and climate-resilient development, a combination of nutrition-sensitive adaptation and mitigation measures, climate-resilient and nutrition-sensitive agricultural development, social protection, improved maternal and child care and health, nutrition-sensitive risk reduction and management, community development measures, nutrition-smart investments, increased policy coherence, and institutional and cross-sectoral collaboration are proposed as a means to address the impacts of climate change to food and nutrition security. This paper proposes policy directions to address nutrition in the climate change agenda and recommendations for consideration by the UN Framework Convention on Climate Change (UNFCCC). Nutrition and health stakeholders need to be engaged in key climate change adaptation and mitigation initiatives, including science-based assessment by the Intergovernmental Panel on Climate Change (IPCC

  1. An overview of climate change

    International Nuclear Information System (INIS)

    Masson-Delmotte, V.; Paillard, D.

    2004-01-01

    We describe briefly here the main mechanisms and time scales involved in natural and anthropogenic climate variability, based on quantitative paleo-climatic reconstructions from natural archives and climate model simulations: the large glacial-interglacial cycles of the last million years (the Quaternary), lasting typically a hundred thousand years, triggered by changes in the solar radiation received by the Earth due to its position around the Sun; the century-long climatic changes occurring during last glacial period and triggered by recurrent iceberg discharges of the large northern hemisphere ice caps, massive freshwater flux to the north Atlantic, and changes in the ocean heat transport. We show the strong coupling between past climatic changes and global biogeochemical cycles, namely here atmospheric greenhouse gases. We also discuss the decadal climatic fluctuations during the last thousand years, showing an unprecedented warming attributed to the anthropogenic greenhouse gas emissions. We show the range of atmospheric greenhouse concentrations forecasted for the end of the 21. century and the climate model predictions for global temperature changes during the 21. century. We also discuss the possible climatic changes at longer time scales involving the possibility of north Atlantic heat transport collapse (possibility of abrupt climate change), and the duration of the current interglacial period. (author)

  2. Couplings between changes in the climate system and biogeochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Menon, Surabi; Denman, Kenneth L.; Brasseur , Guy; Chidthaisong, Amnat; Ciais, Philippe; Cox, Peter M.; Dickinson, Robert E.; Hauglustaine, Didier; Heinze, Christoph; Holland, Elisabeth; Jacob , Daniel; Lohmann, Ulrike; Ramachandran, Srikanthan; Leite da Silva Dias, Pedro; Wofsy, Steven C.; Zhang, Xiaoye

    2007-10-01

    The Earth's climate is determined by a number of complex connected physical, chemical and biological processes occurring in the atmosphere, land and ocean. The radiative properties of the atmosphere, a major controlling factor of the Earth's climate, are strongly affected by the biophysical state of the Earth's surface and by the atmospheric abundance of a variety of trace constituents. These constituents include long-lived greenhouse gases (LLGHGs) such as carbon dioxide (CO{sub 2}), methane (CH{sub 4}) and nitrous oxide (N{sub 2}O), as well as other radiatively active constituents such as ozone and different types of aerosol particles. The composition of the atmosphere is determined by processes such as natural and anthropogenic emissions of gases and aerosols, transport at a variety of scales, chemical and microphysical transformations, wet scavenging and surface uptake by the land and terrestrial ecosystems, and by the ocean and its ecosystems. These processes and, more generally the rates of biogeochemical cycling, are affected by climate change, and involve interactions between and within the different components of the Earth system. These interactions are generally nonlinear and may produce negative or positive feedbacks to the climate system. An important aspect of climate research is to identify potential feedbacks and assess if such feedbacks could produce large and undesired responses to perturbations resulting from human activities. Studies of past climate evolution on different time scales can elucidate mechanisms that could trigger nonlinear responses to external forcing. The purpose of this chapter is to identify the major biogeochemical feedbacks of significance to the climate system, and to assess current knowledge of their magnitudes and trends. Specifically, this chapter will examine the relationships between the physical climate system and the land surface, the carbon cycle, chemically reactive atmospheric gases and aerosol

  3. Using Web GIS "Climate" for Adaptation to Climate Change

    Science.gov (United States)

    Gordova, Yulia; Martynova, Yulia; Shulgina, Tamara

    2015-04-01

    A work is devoted to the application of an information-computational Web GIS "Climate" developed by joint team of the Institute of Monitoring of Climatic and Ecological Systems SB RAS and Tomsk State University to raise awareness about current and future climate change as a basis for further adaptation. Web-GIS "Climate» (http://climate.scert.ru/) based on modern concepts of Web 2.0 provides opportunities to study regional climate change and its consequences by providing access to climate and weather models, a large set of geophysical data and means of processing and visualization. Also, the system is used for the joint development of software applications by distributed research teams, research based on these applications and undergraduate and graduate students training. In addition, the system capabilities allow creating information resources to raise public awareness about climate change, its causes and consequences, which is a necessary step for the subsequent adaptation to these changes. Basic information course on climate change is placed in the public domain and is aimed at local population. Basic concepts and problems of modern climate change and its possible consequences are set out and illustrated in accessible language. Particular attention is paid to regional climate changes. In addition to the information part, the course also includes a selection of links to popular science network resources on current issues in Earth Sciences and a number of practical tasks to consolidate the material. These tasks are performed for a particular territory. Within the tasks users need to analyze the prepared within the "Climate" map layers and answer questions of direct interest to the public: "How did the minimum value of winter temperatures change in your area?", "What are the dynamics of maximum summer temperatures?", etc. Carrying out the analysis of the dynamics of climate change contributes to a better understanding of climate processes and further adaptation

  4. Roles of transport and chemistry processes in global ozone change on interannual and multidecadal time scales

    Science.gov (United States)

    Sekiya, T.; Sudo, K.

    2014-04-01

    This study investigates ozone changes and the individual impacts of transport and chemistry on those changes. We specifically examine (1) variation related to El Niño Southern Oscillation, which is a dominant mode of interannual variation of tropospheric ozone, and (2) long-term change between the 2000s and 2100s. During El Niño, the simulated ozone shows an increase (1 ppbv/K) over Indonesia, a decrease (2-10 ppbv/K) over the eastern Pacific in the tropical troposphere, and an increase (50 ppbv/K) over the eastern Pacific in the midlatitude lower stratosphere. These variations fundamentally agree with those observed by Microwave Limb Sounder/Tropospheric Emission Spectrometer instruments. The model demonstrates that tropospheric chemistry has a strong impact on the variation over the eastern Pacific in the tropical lower troposphere and that transport dominates the variation in the midlatitude lower stratosphere. Between the 2000s and 2100s, the model predicts an increase in the global burden of stratospheric ozone (0.24%/decade) and a decrease in the global burden of tropospheric ozone (0.82%/decade). The increase in the stratospheric burden is controlled by stratospheric chemistry. Tropospheric chemistry reduces the tropospheric burden by 1.07%/decade. However, transport (i.e., stratosphere-troposphere exchange and tropospheric circulation) causes an increase in the burden (0.25%/decade). Additionally, we test the sensitivity of ozone changes to increased horizontal resolution of the representation of atmospheric circulation and advection apart from any aspects of the nonlinearity of chemistry sensitivity to horizontal resolution. No marked difference is found in medium-resolution or high-resolution simulations, suggesting that the increased horizontal resolution of transport has a minor impact.

  5. Climates Past, Present, and Yet-to-Come Shape Climate Change Vulnerabilities.

    Science.gov (United States)

    Nadeau, Christopher P; Urban, Mark C; Bridle, Jon R

    2017-10-01

    Climate change is altering life at multiple scales, from genes to ecosystems. Predicting the vulnerability of populations to climate change is crucial to mitigate negative impacts. We suggest that regional patterns of spatial and temporal climatic variation scaled to the traits of an organism can predict where and why populations are most vulnerable to climate change. Specifically, historical climatic variation affects the sensitivity and response capacity of populations to climate change by shaping traits and the genetic variation in those traits. Present and future climatic variation can affect both climate change exposure and population responses. We provide seven predictions for how climatic variation might affect the vulnerability of populations to climate change and suggest key directions for future research. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Increasing surface ozone concentrations in the background atmosphere of Southern China, 1994–2007

    Directory of Open Access Journals (Sweden)

    T. Wang

    2009-08-01

    Full Text Available Tropospheric ozone is of great importance with regard to air quality, atmospheric chemistry, and climate change. In this paper we report the first continuous record of surface ozone in the background atmosphere of South China. The data were obtained from 1994 to 2007 at a coastal site in Hong Kong, which is strongly influenced by the outflow of Asian continental air during the winter and the inflow of maritime air from the subtropics in the summer. Three methods are used to derive the rate of change in ozone. A linear fit to the 14-year record shows that the ozone concentration increased by 0.58 ppbv/yr, whereas comparing means in years 1994–2000 and 2001–2007 gives an increase of 0.87 ppbv/yr for a 7-year period. The ozone changes in air masses from various source regions are also examined. Using local wind and carbon monoxide (CO data to filter out local influence, we find that ozone increased by 0.94 ppbv/yr from 1994–2000 to 2001–2007 in air masses from Eastern China, with similar changes in the other two continent-influenced air-mass groups, but no statistically significant change in the marine air. An examination of the nitrogen dioxide (NO2 column obtained from GOME and SCIAMACHY reveals an increase in atmospheric NO2 in China's three fastest developing coastal regions, whereas NO2 in other parts of Asia decreased during the same period, and no obvious trend over the main shipping routes in the South China Sea was indicated. Thus the observed increase in background ozone in Hong Kong is most likely due to the increased emissions of NO2 (and possibly volatile organic compounds (VOCs as well in the upwind coastal regions of mainland China. The CO data at Hok Tsui showed less definitive changes compared to the satellite NO2 column. The increase in background ozone likely made a strong contribution (81% to the rate of increase in "total ozone" at an urban site in Hong Kong

  7. Abrupt climate change: Past, present and the search for precursors as an aid to predicting events in the future (Hans Oeschger Medal Lecture)

    Science.gov (United States)

    Mayewski, Paul Andrew

    2016-04-01

    The demonstration using Greenland ice cores that abrupt shifts in climate, Dansgaard-Oeschger (D-O) events, existed during the last glacial period has had a transformational impact on our understanding of climate change in the naturally forced world. The demonstration that D-O events are globally distributed and that they operated during previous glacial periods has led to extensive research into the relative hemispheric timing and causes of these events. The emergence of civilization during our current interglacial, the Holocene, has been attributed to the "relative climate quiescence" of this period relative to the massive, abrupt shifts in climate that characterized glacial periods in the form of D-O events. But, everything is relative and climate change is no exception. The demise of past civilizations, (eg., Mesopatamian, Mayan and Norse) is integrally tied to abrupt climate change (ACC) events operating at regional scales. Regionally to globally distributed ACC events have punctuated the Holocene and extreme events have always posed significant challenges to humans and ecosystems. Current warming of the Arctic, in terms of length of the summer season, is as abrupt and massive, albeit not as extensive, as the transition from the last major D-O event, the Younger Dryas into the Holocene (Mayewski et al., 2013). Tropospheric source greenhouse gas rise and ozone depletion in the stratosphere over Antarctica are triggers for the modern advent of human emission instigated ACCs. Arctic warming and Antarctic ozone depletion have resulted in significance changes to the atmospheric circulation systems that transport heat, moisture, and pollutants in both hemispheres. Climate models offer a critical tool for assessing trends, but they cannot as yet predict ACC events, as evidenced by the inability of these models to predict the rapid onset of Arctic warming and resulting changes in atmospheric circulation; and in the model vs past analog differences in projections for

  8. The Inuit and climate change

    Energy Technology Data Exchange (ETDEWEB)

    Fenge, T.

    2001-12-31

    Marked climate change has been forecast for regions in high latitudes by global climate models presented by the Intergovernmental Panel on Climate Change. Observations and reports of significant alterations to the natural environment of Canada's north have been reported by Inuit and other indigenous peoples using their traditional ecological knowledge as a reference. Global climate change appears to be the cause for the changes noted. Many aspects of climate change need to be addressed, such as research, outreach, impacts, adaptations and international negotiations. Based on the strong partnership that had been developed between the Inuit and four federal agencies, three territorial governments and four indigenous people's organizations in support of the Northern Contaminants Program, Inuit are now seeking a partnership with the federal government to address the issues mentioned above concerning climate change. refs., 1 tab.

  9. Adapting to climate change

    DEFF Research Database (Denmark)

    Arndt, Channing; Strzepek, Kenneth; Tarp, Finn

    2011-01-01

    Mozambique, like many African countries, is already highly susceptible to climate variability and extreme weather events. Climate change threatens to heighten this vulnerability. In order to evaluate potential impacts and adaptation options for Mozambique, we develop an integrated modeling...... framework that translates atmospheric changes from general circulation model projections into biophysical outcomes via detailed hydrologic, crop, hydropower and infrastructure models. These sector models simulate a historical baseline and four extreme climate change scenarios. Sector results are then passed...... down to a dynamic computable general equilibrium model, which is used to estimate economy-wide impacts on national welfare, as well as the total cost of damages caused by climate change. Potential damages without changes in policy are significant; our discounted estimates range from US2.3 to US2.3toUS7...

  10. Ozone, greenhouse effect

    International Nuclear Information System (INIS)

    Aviam, A.M.; Arthaut, R.

    1992-01-01

    This file is made of eight general papers on environment (climates under observation, research on photo-oxidizing pollution, scientific aspects of stratospheric ozone layer, urban engineering and environment, glory of public gardens, earths not very natural, darwinism and society, economical data on environment). (A.B.). refs., 3 tabs

  11. Climate change research - Danish contributions

    International Nuclear Information System (INIS)

    Joergensen, A.M.K.; Fenger, J.; Halsnaes, K.

    2001-01-01

    The book describes a series of Danish scientific and technical studies. They broadly reflect the fields and disciplines embraced by assessments of the Intergovernmental Panel on Climate Change (IPCC), but with an emphasis on natural sciences (i.e. climate investigations and impact studies). After the general introduction, that presents the issue and gives a summary of the content of the book, the chapters are organised in four parts: 1. The Climate System and Climate Variations. 2. Climate Change Scenarios. 3. Impacts of Climate Change. 4. Policy Aspects. Each chapter is indexed separately. (LN)

  12. Climate engineering research : A precautionary response to climate change?

    NARCIS (Netherlands)

    Reynolds, J.L.; Fleurke, F.M.

    2013-01-01

    In the face of dire forecasts for anthropogenic climate change, climate engineering is increasingly discussed as a possible additional set of responses to reduce climate change’s threat. These proposals have been controversial, in part because they – like climate change itself – pose uncertain risks

  13. Air quality in Europe during the summer of 2003 as a prototype of air quality in a warmer climate

    International Nuclear Information System (INIS)

    Vautard, R.; Beekmann, M.; Desplat, J.; Morel, S.; Hodzic, A.

    2007-01-01

    The extremely warm summer of 2003, with its August heat wave, is taken as a prototype of future summer weather in Europe. The stagnant circulation led to accumulation of heat and pollutants, increased forest fires, and induced high ozone and particulate matter levels. After a description of the meteorological conditions encountered, we review here the effects of the heat-wave meteorology on photochemistry, wild fires, and particulate matter, at the continental and urban scales. We discuss the extent to which this special summer can be taken for projecting air quality in a future warmer climate, especially in the perspective of changes in regional and global emissions. For ozone, the effect of regional reduction of emissions will dominate over summer climate change, but the increase in baseline ozone should significantly raise the mean ozone levels. (authors)

  14. Particulate Matter and Ozone Prediction and Source Attribution for U.S. Air Quality Management in a Changing World

    Science.gov (United States)

    Sanyal, S.; Wuebbles, D. J.

    2017-12-01

    In this study, the focus is on how global changes in climate and emissions will affect the U.S. air quality, especially on fine particulate matter and ozone, projecting their future trends and quantifying key source attribution. We are conducting three primary experiments : (1) historical simulations for period 1994-2013 to establish the credibility of the system and refine process-level understanding of U.S. regional air quality; (2) projections for period 2041-2060 to quantify individual and combined impacts of global climate and emissions changes under multiple scenarios; (3) sensitivity analyses to determine future changes in pollution sources and their relative contributions from anthropogenic and natural emissions, long-range pollutant transport, and climate change effects. Here we will present the result from the first experiment with the global model CESM1.2 (with fully coupled chemistry using CAM-chem5) driven by NASA Modern-Era Retrospective analysis for Research and Applications (MERRA) reanalysis data at 0.9o x 1.25o resolution. We will present the comparison between the results from model simulation with observation data from EPA database. Since there is always a challenge in comparing gridded prediction from model data with point data from the observation databases, because the model simulations calculate the average outcome over a grid for a given set of conditions while the stochastic component (e.g. sub-grid variations) embedded in the observations are not accounted for, we are using extensive statistical measure to do the comparison. We will also determine relative contributions from multiscale (local, regional, global) processes, major source regions (Mexico, Canada, Asia, Africa) and types (natural, anthropogenic) and associated uncertainties (climate decadal oscillations/interannual variations, emissions and model structure errors).

  15. Climate change, conflict and health.

    Science.gov (United States)

    Bowles, Devin C; Butler, Colin D; Morisetti, Neil

    2015-10-01

    Future climate change is predicted to diminish essential natural resource availability in many regions and perhaps globally. The resulting scarcity of water, food and livelihoods could lead to increasingly desperate populations that challenge governments, enhancing the risk of intra- and interstate conflict. Defence establishments and some political scientists view climate change as a potential threat to peace. While the medical literature increasingly recognises climate change as a fundamental health risk, the dimension of climate change-associated conflict has so far received little attention, despite its profound health implications. Many analysts link climate change with a heightened risk of conflict via causal pathways which involve diminishing or changing resource availability. Plausible consequences include: increased frequency of civil conflict in developing countries; terrorism, asymmetric warfare, state failure; and major regional conflicts. The medical understanding of these threats is inadequate, given the scale of health implications. The medical and public health communities have often been reluctant to interpret conflict as a health issue. However, at times, medical workers have proven powerful and effective peace advocates, most notably with regard to nuclear disarmament. The public is more motivated to mitigate climate change when it is framed as a health issue. Improved medical understanding of the association between climate change and conflict could strengthen mitigation efforts and increase cooperation to cope with the climate change that is now inevitable. © The Royal Society of Medicine.

  16. Long-term trends of surface ozone and its influencing factors at the Mt Waliguan GAW station, China - Part 1: Overall trends and characteristics

    Science.gov (United States)

    Xu, Wanyun; Lin, Weili; Xu, Xiaobin; Tang, Jie; Huang, Jianqing; Wu, Hao; Zhang, Xiaochun

    2016-05-01

    Tropospheric ozone is an important atmospheric oxidant, greenhouse gas and atmospheric pollutant at the same time. The oxidation capacity of the atmosphere, climate, human and vegetation health can be impacted by the increase of the ozone level. Therefore, long-term determination of trends of baseline ozone is highly needed information for environmental and climate change assessment. So far, studies on the long-term trends of ozone at representative sites are mainly available for European and North American sites. Similar studies are lacking for China and many other developing countries. Measurements of surface ozone were carried out at a baseline Global Atmospheric Watch (GAW) station in the north-eastern Tibetan Plateau region (Mt Waliguan, 36°17' N, 100°54' E, 3816 m a.s.l.) for the period of 1994 to 2013. To uncover the variation characteristics, long-term trends and influencing factors of surface ozone at this remote site in western China, a two-part study has been carried out, with this part focusing on the overall characteristics of diurnal, seasonal and long-term variations and the trends of surface ozone. To obtain reliable ozone trends, we performed the Mann-Kendall trend test and the Hilbert-Huang transform (HHT) analysis on the ozone data. Our results confirm that the mountain-valley breeze plays an important role in the diurnal cycle of surface ozone at Waliguan, resulting in higher ozone values during the night and lower ones during the day, as was previously reported. Systematic diurnal and seasonal variations were found in mountain-valley breezes at the site, which were used in defining season-dependent daytime and nighttime periods for trend calculations. Significant positive trends in surface ozone were detected for both daytime (0.24 ± 0.16 ppbv year-1) and nighttime (0.28 ± 0.17 ppbv year-1). The largest nighttime increasing rate occurred in autumn (0.29 ± 0.11 ppbv year-1), followed by spring (0.24 ± 0.12 ppbv year-1), summer (0.22 ± 0

  17. Interactive Photochemistry in Earth System Models to Assess Uncertainty in Ozone and Greenhouse Gases. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Prather, Michael J. [Univ. of California, Irvine, CA (United States); Hsu, Juno [Univ. of California, Irvine, CA (United States); Nicolau, Alex [Univ. of California, Irvine, CA (United States); Veidenbaum, Alex [Univ. of California, Irvine, CA (United States); Smith, Philip Cameron [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bergmann, Dan [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-11-07

    Atmospheric chemistry controls the abundances and hence climate forcing of important greenhouse gases including N2O, CH4, HFCs, CFCs, and O3. Attributing climate change to human activities requires, at a minimum, accurate models of the chemistry and circulation of the atmosphere that relate emissions to abundances. This DOE-funded research provided realistic, yet computationally optimized and affordable, photochemical modules to the Community Earth System Model (CESM) that augment the CESM capability to explore the uncertainty in future stratospheric-tropospheric ozone, stratospheric circulation, and thus the lifetimes of chemically controlled greenhouse gases from climate simulations. To this end, we have successfully implemented Fast-J (radiation algorithm determining key chemical photolysis rates) and Linoz v3.0 (linearized photochemistry for interactive O3, N2O, NOy and CH4) packages in LLNL-CESM and for the first time demonstrated how change in O2 photolysis rate within its uncertainty range can significantly impact on the stratospheric climate and ozone abundances. From the UCI side, this proposal also helped LLNL develop a CAM-Superfast Chemistry model that was implemented for the IPCC AR5 and contributed chemical-climate simulations to CMIP5.

  18. Forestry Canada's perspectives on climate change

    International Nuclear Information System (INIS)

    Hall, J.P.; Carlson, L.W.

    1990-01-01

    The impacts of climatic change on Canada's forestry sector are discussed, in the context of major research priorities relating to forecasting climate, forecasting forest responses, monitoring changes, mitigating effects, and understanding the forest carbon balance. There are five major concerns that affect policy decisions: effects of climatic change on forests; adaptation to climate change; impacts of changing crops on forestry; changing forestry values in changing sociological settings; and international implications of the changing climate. A scientific program to respond to climate change issues is required, and should include the following concentrations of research effort. Planning requires projections of likely future climates, and efforts should concern relations between pre-historic climates and forest ecosystems and integrating data into predictive models. Forecasting of response of forests should include tree physiology, factors controlling reforestation, variations in forest trees, effects of pollutants, damage to forests, and forest decline

  19. JPL's Role in Advancing Earth System Science to Meet the Challenges of Climate and Environmental Change

    Science.gov (United States)

    Evans, Diane

    2012-01-01

    Objective 2.1.1: Improve understanding of and improve the predictive capability for changes in the ozone layer, climate forcing, and air quality associated with changes in atmospheric composition. Objective 2.1.2: Enable improved predictive capability for weather and extreme weather events. Objective 2.1.3: Quantify, understand, and predict changes in Earth s ecosystems and biogeochemical cycles, including the global carbon cycle, land cover, and biodiversity. Objective 2.1.4: Quantify the key reservoirs and fluxes in the global water cycle and assess water cycle change and water quality. Objective 2.1.5: Improve understanding of the roles of the ocean, atmosphere, land and ice in the climate system and improve predictive capability for its future evolution. Objective 2.1.6: Characterize the dynamics of Earth s surface and interior and form the scientific basis for the assessment and mitigation of natural hazards and response to rare and extreme events. Objective 2.1.7: Enable the broad use of Earth system science observations and results in decision-making activities for societal benefits.

  20. Ozone distribution in remote ecologically vulnerable terrain of the southern Sierra Nevada, CA

    International Nuclear Information System (INIS)

    Panek, Jeanne; Saah, David; Esperanza, Annie; Bytnerowicz, Andrzej; Fraczek, Witold; Cisneros, Ricardo

    2013-01-01

    Ozone concentration spatial patterns remain largely uncharacterized across the extensive wilderness areas of the Sierra Nevada, CA, despite being downwind of major pollution sources. These natural areas, including four national parks and four national forests, contain forest species that are susceptible to ozone injury. Forests stressed by ozone are also more vulnerable to other agents of mortality, including insects, pathogens, climate change, and ultimately fire. Here we analyze three years of passive ozone monitor data from the southern Sierra Nevada and interpolate landscape-scale spatial and temporal patterns during the summer-through-fall high ozone concentration period. Segmentation analysis revealed three types of ozone exposure sub-regions: high, low, and variable. Consistently high ozone exposure regions are expected to be most vulnerable to forest mortality. One high exposure sub-region has been documented elsewhere as being further vulnerable to increased drought and fire potential. Identifying such hot-spots of forest vulnerability has utility for prioritizing management. -- Highlights: •Three years of passive ozone sampler data over 49,000 km 2 were analyzed spatially. •Spatial and temporal ozone patterns were mapped across the Sierra Nevada, CA. •Sub-regions of consistently high, low and variable ozone exposure were identified. •The 1700–2400 m elevation band delineated a distinct break in ozone concentration. •This approach has utility for prioritizing management across vulnerable landscapes. -- A passive ozone sampler network in combination with spatial analysis techniques was used to characterize landscape-scale ozone patterns and dynamics, identifying regions of consistently high and low ozone exposure for forest management prioritization

  1. Climate Change Indicators

    Science.gov (United States)

    Presents information, charts and graphs showing measured climate changes across 40 indicators related to greenhouse gases, weather and climate, oceans, snow and ice, heath and society, and ecosystems.

  2. Effects of Acute Ozone Exposure and Methyl Jasmonate Treatment on White Pine Monoterpene and Sesquiterpene Emission Rates

    Science.gov (United States)

    Faiola, C. L.; Wagner, D.; Allwine, E.; Harley, P. C.; Vanreken, T. M.

    2010-12-01

    Biogenic volatile organic compounds (BVOCs) are produced by plants and include monoterpenes, sesquiterpenes, and their oxygenated derivatives. These BVOCs are one of the principal factors influencing the oxidative capacity of the atmosphere in forested regions, and impact both ozone concentration and secondary organic aerosol formation. Under unstressed conditions, the release of BVOCs to the atmosphere is primarily controlled by the vapor pressure of the relevant compounds within the plant tissue, which is in turn dependent on temperature as well as complex biochemical production processes. However, various natural and anthropogenic stressors can alter both the quantity and composition of the BVOCs emitted by plants. Many potential stressors are expected to become stronger as climate change effects escalate. The impacts of most stressors on BVOC emissions have not been well characterized, particularly in a field setting where changes in BVOC emissions could have influential feedbacks with climate. This study investigated the effects of two stressors on monoterpene and sesquiterpene emission rates at a field site in northern Michigan: acute ozone exposure and treatment with methyl jasmonate, an herbivory proxy. The study included six repetitions of the same experiment, each time using a new set of sub-canopy eastern white pine specimens. For each experiment, dynamic branch enclosures were simultaneously used on three specimens for sample collection: one ozone treatment tree, one methyl jasmonate treatment tree, and one control tree. Sampling lines were placed in each enclosure and VOCs were collected onto cartridges packed with Tenax GR adsorbent. Samples were collected several times per day for at least two days before treatment and for five days after treatment. Cartridges were analyzed via thermodesorption with an Agilent GC/MS/FID. This analysis allowed the identification and quantification of several monoterpene and sesquiterpene species in the samples

  3. When climate science became climate politics: British media representations of climate change in 1988.

    Science.gov (United States)

    Jaspal, Rusi; Nerlich, Brigitte

    2014-02-01

    Climate change has become a pressing environmental concern for scientists, social commentators and politicians. Previous social science research has explored media representations of climate change in various temporal and geographical contexts. Through the lens of Social Representations Theory, this article provides a detailed qualitative thematic analysis of media representations of climate change in the 1988 British broadsheet press, given that this year constitutes an important juncture in this transition of climate change from the domain of science to that of the socio-political sphere. The following themes are outlined: (i) "Climate change: a multi-faceted threat"; (ii) "Collectivisation of threat"; (iii) "Climate change and the attribution of blame"; and (iv) "Speculative solutions to a complex socio-environmental problem." The article provides detailed empirical insights into the "starting-point" for present-day disputes concerning climate change and lays the theoretical foundations for tracking the continuities and discontinuities characterising social representations of climate change in the future.

  4. The Ozone Monitoring Instrument: overview of 14 years in space

    Directory of Open Access Journals (Sweden)

    P. F. Levelt

    2018-04-01

    Full Text Available This overview paper highlights the successes of the Ozone Monitoring Instrument (OMI on board the Aura satellite spanning a period of nearly 14 years. Data from OMI has been used in a wide range of applications and research resulting in many new findings. Due to its unprecedented spatial resolution, in combination with daily global coverage, OMI plays a unique role in measuring trace gases important for the ozone layer, air quality, and climate change. With the operational very fast delivery (VFD; direct readout and near real-time (NRT availability of the data, OMI also plays an important role in the development of operational services in the atmospheric chemistry domain.

  5. Impact of increasing heat waves on U.S. ozone episodes in the 2050s: Results from a multimodel analysis using extreme value theory

    Science.gov (United States)

    Shen, L.; Mickley, L. J.; Gilleland, E.

    2016-04-01

    We develop a statistical model using extreme value theory to estimate the 2000-2050 changes in ozone episodes across the United States. We model the relationships between daily maximum temperature (Tmax) and maximum daily 8 h average (MDA8) ozone in May-September over 2003-2012 using a Point Process (PP) model. At ~20% of the sites, a marked decrease in the ozone-temperature slope occurs at high temperatures, defined as ozone suppression. The PP model sometimes fails to capture ozone-Tmax relationships, so we refit the ozone-Tmax slope using logistic regression and a generalized Pareto distribution model. We then apply the resulting hybrid-extreme value theory model to projections of Tmax from an ensemble of downscaled climate models. Assuming constant anthropogenic emissions at the present level, we find an average increase of 2.3 d a-1 in ozone episodes (>75 ppbv) across the United States by the 2050s, with a change of +3-9 d a-1 at many sites.

  6. Natural emissions under future climate condition and their effects on surface ozone in the Yangtze River Delta region, China

    Science.gov (United States)

    Xie, Min; Shu, Lei; Wang, Ti-jian; Liu, Qian; Gao, Da; Li, Shu; Zhuang, Bing-liang; Han, Yong; Li, Meng-meng; Chen, Pu-long

    2017-02-01

    The natural emissions of ozone precursors (NOx and VOCs) are sensitive to climate. Future climate change can impact O3 concentrations by perturbing these emissions. To better estimate the variation of natural emissions under different climate conditions and understand its effect on surface O3, we model the present and the future air quality over the Yangtze River Delta (YRD) region by running different simulations with the aid of the WRF-CALGRID model system that contains a natural emission module. Firstly, we estimate the natural emissions at present and in IPCC A1B scenario. The results show that biogenic VOC emission and soil NOx emission over YRD in 2008 is 657 Gg C and 19.1 Gg N, respectively. According to climate change, these emissions in 2050 will increase by 25.5% and 11.5%, respectively. Secondly, the effects of future natural emissions and meteorology on surface O3 are investigated and compared. It is found that the variations in meteorological fields can significantly alter the spatial distribution of O3 over YRD, with the increases of 5-15 ppb in the north and the decreases of -5 to -15 ppb in the south. However, only approximately 20% of the surface O3 increases caused by climate change can be attributed to the natural emissions, with the highest increment up to 2.4 ppb. Finally, Ra (the ratio of impacts from NOx and VOCs on O3 formation) and H2O2/HNO3 (the ratio between the concentrations of H2O2 and HNO3) are applied to study the O3 sensitivity in YRD. The results show that the transition value of H2O2/HNO3 will turn from 0.3 to 0.5 in 2008 to 0.4-0.8 in 2050. O3 formation in the YRD region will be insensitive to VOCs under future climate condition, implying more NOx need to be cut down. Our findings can help us understand O3 variation trend and put forward the reasonable and effective pollution control policies in these famous polluted areas.

  7. Reasons for the variability of the climate sensitivity parameter regarding spatially inhomogeneous ozone perturbation; Ursachen der Variabilitaet des Klimasensitivitaetsparameters fuer raeumlich inhomogene Ozonstoerungen

    Energy Technology Data Exchange (ETDEWEB)

    Stuber, N.

    2003-07-01

    A reduction of anthropogenic greenhouse gas emissions is a condition precedent for implementing the framework convention on climate change. ''Metrics'' allow for a comparison of different emissions with regard to their potential effects on global climate and, hence, are a prerequisite for political decisions. Currently ''radiative forcing'' is the most common metric: Global, annual mean radiative forcing resulting from some perturbation of the climate system is proportional to equilibrium surface temperature response. The coefficient of proportionality, {lambda}, is called the ''climate sensitivity parameter''. However, several studies have indicated that for spatially inhomogeneous perturbations {lambda} can no longer be regarded as a constant. This doctoral thesis examines the reasons for the non-linear relationship between radiative forcing and climate response. The response to several idealized ozone perturbations has been analysed. The equilibrium response of some radiatively relevant parameters features a characteristic signature, implying that the respective feedback mechanisms act quite differently in the various experiments. Accordingly, equality of radiative forcing is not sufficient to guarantee comparability of the gross effect of all feedback mechanisms. Analysis shows that the variability of {lambda} is largely due to the very different strength of stratospheric water vapor and sea-ice albedo feedback for the various experiments. (orig.)

  8. Sociology of tourism: tourist system addressing climate change / Sociología del turismo: el sistema turístico frente al cambio climático

    Directory of Open Access Journals (Sweden)

    Rubén José Pérez Redondo

    2010-10-01

    Full Text Available It is clear that today we face a situation of climate change. Temperatures are extreme, the water level of the sea increases, the ozone layer disappears, and so on. We do not care about the causes of this change. What interests us is to analyze how these changes affect the tourist map, that is, we argue how climate change affects tourism flows and sets new targets in relation to their needs and expectations of travelers. The rising temperatures are causing some areas that were previously lost a good tourist purely competitive edge for others who were in the final positions. But we must also bear in mind that if one link in the chain of the tourism system is altered, the others also suffer alterations. In short, this article will analyze the changes that will be placed under the tourism climate metamorphosis.

  9. Our knowledge on climate change

    International Nuclear Information System (INIS)

    Turkenburg, W.C.; Van Wijk, A.J.M.

    1991-01-01

    A workshop was organised to evaluate and discuss the report 'Scientific Assessment of Climate Change (1990)' of the Intergovernmental Panel on Climate Change (IPCC). Thirty prominent Dutch experts in the field attended the workshop. The introductions and discussions held on our knowledge of climatic change as a result of the growth of the greenhouse effect caused by the emission of greenhouse gases from human actions are presented. It is concluded that the IPCC-report shows in a clear and balanced way the certainties and uncertainties in our knowledge of climate change. There is a large chance that the earth's climate will change considerably, if the policy remains unamended. 15 figs., 2 apps

  10. Study nonlinear dynamics of stratospheric ozone concentration at Pakistan Terrestrial region

    Science.gov (United States)

    Jan, Bulbul; Zai, Muhammad Ayub Khan Yousuf; Afradi, Faisal Khan; Aziz, Zohaib

    2018-03-01

    This study investigates the nonlinear dynamics of the stratospheric ozone layer at Pakistan atmospheric region. Ozone considered now the most important issue in the world because of its diverse effects on earth biosphere, including human health, ecosystem, marine life, agriculture yield and climate change. Therefore, this paper deals with total monthly time series data of stratospheric ozone over the Pakistan atmospheric region from 1970 to 2013. Two approaches, basic statistical analysis and Fractal dimension (D) have adapted to study the nature of nonlinear dynamics of stratospheric ozone level. Results obtained from this research have shown that the Hurst exponent values of both methods of fractal dimension revealed an anti-persistent behavior (negatively correlated), i.e. decreasing trend for all lags and Rescaled range analysis is more appropriate as compared to Detrended fluctuation analysis. For seasonal time series all month follows an anti-persistent behavior except in the month of November which shown persistence behavior i.e. time series is an independent and increasing trend. The normality test statistics also confirmed the nonlinear behavior of ozone and the rejection of hypothesis indicates the strong evidence of the complexity of data. This study will be useful to the researchers working in the same field in the future to verify the complex nature of stratospheric ozone.

  11. Global Environmental Change: An integrated modelling approach

    International Nuclear Information System (INIS)

    Den Elzen, M.

    1993-01-01

    Two major global environmental problems are dealt with: climate change and stratospheric ozone depletion (and their mutual interactions), briefly surveyed in part 1. In Part 2 a brief description of the integrated modelling framework IMAGE 1.6 is given. Some specific parts of the model are described in more detail in other Chapters, e.g. the carbon cycle model, the atmospheric chemistry model, the halocarbon model, and the UV-B impact model. In Part 3 an uncertainty analysis of climate change and stratospheric ozone depletion is presented (Chapter 4). Chapter 5 briefly reviews the social and economic uncertainties implied by future greenhouse gas emissions. Chapters 6 and 7 describe a model and sensitivity analysis pertaining to the scientific uncertainties and/or lacunae in the sources and sinks of methane and carbon dioxide, and their biogeochemical feedback processes. Chapter 8 presents an uncertainty and sensitivity analysis of the carbon cycle model, the halocarbon model, and the IMAGE model 1.6 as a whole. Part 4 presents the risk assessment methodology as applied to the problems of climate change and stratospheric ozone depletion more specifically. In Chapter 10, this methodology is used as a means with which to asses current ozone policy and a wide range of halocarbon policies. Chapter 11 presents and evaluates the simulated globally-averaged temperature and sea level rise (indicators) for the IPCC-1990 and 1992 scenarios, concluding with a Low Risk scenario, which would meet the climate targets. Chapter 12 discusses the impact of sea level rise on the frequency of the Dutch coastal defence system (indicator) for the IPCC-1990 scenarios. Chapter 13 presents projections of mortality rates due to stratospheric ozone depletion based on model simulations employing the UV-B chain model for a number of halocarbon policies. Chapter 14 presents an approach for allocating future emissions of CO 2 among regions. (Abstract Truncated)

  12. Climate change: biological and human aspects

    Energy Technology Data Exchange (ETDEWEB)

    Jonathan Cowie

    2007-07-15

    The textbook provides a broad review of past, present and likely future climate change from the viewpoints of biology, ecology and human ecology. Contents are: 1. An introduction to climate change; 2. Principal indicators of past climates; 3. Past climate change; 4. The Oligocene to the Quaternary: climate and biology; 5. Present climate and biological change; 6. Current warming and likely future impacts; 7. Human ecology of climate change; 8. Sustainability and policy; Appendix 1. Glossary and acronyms; Appendix 2. Bio-geological timescale; Appendix 3. Calculations of energy demand/supply, and orders of magnitude; Index. 69 figs.

  13. Our Changing Climate: A Brand New Way to Study Climate Science

    Science.gov (United States)

    Brey, J. A.; Kauffman, C.; Geer, I.; Nugnes, K. A.; Mills, E. W.

    2014-12-01

    Earth's climate is inherently variable, but is currently changing at rates unprecedented in recent Earth history. Human activity plays a major role in this change and is projected to do so well into the future. This is the stance taken in Our Changing Climate, the brand new climate science ebook from the American Meteorological Society (AMS). Our Changing Climate investigates Earth's climate system, explores humans' impact on it, and identifies actions needed in response to climate change. Released in August 2014, Our Changing Climate is the result of a year's worth of intensive research and writing, incorporating the latest scientific understandings of Earth's climate system from reports such as IPCC AR5 and the Third National Climate Assessment. To encourage additional exploration of climate science information, scientific literature, from which chapter content was derived, is cited at the conclusion of each chapter. In addition, Topic In Depth sections appear throughout each chapter and lead to more extensive information related to various topics. For example, a Topic In Depth in Chapter 11 describes the effect of climate extremes on ranching enterprises in Nebraska. Climate science is multi-disciplinary and therefore Our Changing Climate covers a breadth of topics. From understanding basic statistics and geospatial tools used to investigate Earth's climate system to examining the psychological and financial reasons behind climate change denial, the AMS believes that a multi-disciplinary approach is the most effective way to increase climate literacy. Our Changing Climate is part of the AMS Climate Studies course which is intended for undergraduate-level students. Other course materials include an eInvestigations Manual and access to the RealTime Climate Portal, both of which provide weekly activities corresponding to that week's chapter content. The RealTime Climate Portal also has links to climate data as well as societal interactions and climate policy

  14. Using Transport Diagnostics to Understand Chemistry Climate Model Ozone Simulations

    Science.gov (United States)

    Strahan, S. E.; Douglass, A. R.; Stolarski, R. S.; Akiyoshi, H.; Bekki, S.; Braesicke, P.; Butchart, N.; Chipperfield, M. P.; Cugnet, D.; Dhomse, S.; hide

    2010-01-01

    We demonstrate how observations of N2O and mean age in the tropical and midlatitude lower stratosphere (LS) can be used to identify realistic transport in models. The results are applied to 15 Chemistry Climate Models (CCMs) participating in the 2010 WMO assessment. Comparison of the observed and simulated N2O/mean age relationship identifies models with fast or slow circulations and reveals details of model ascent and tropical isolation. The use of this process-oriented N2O/mean age diagnostic identifies models with compensating transport deficiencies that produce fortuitous agreement with mean age. We compare the diagnosed model transport behavior with a model's ability to produce realistic LS O3 profiles in the tropics and midlatitudes. Models with the greatest tropical transport problems show the poorest agreement with observations. Models with the most realistic LS transport agree more closely with LS observations and each other. We incorporate the results of the chemistry evaluations in the SPARC CCMVal Report (2010) to explain the range of CCM predictions for the return-to-1980 dates for global (60 S-60 N) and Antarctic column ozone. Later (earlier) Antarctic return dates are generally correlated to higher (lower) vortex Cl(sub y) levels in the LS, and vortex Cl(sub y) is generally correlated with the model's circulation although model Cl(sub y) chemistry or Cl(sub y) conservation can have a significant effect. In both regions, models that have good LS transport produce a smaller range of predictions for the return-to-1980 ozone values. This study suggests that the current range of predicted return dates is unnecessarily large due to identifiable model transport deficiencies.

  15. Growth responses of Populus tremuloides clones to interacting elevated carbon dioxide and tropospheric ozone

    Science.gov (United States)

    J. G. Isebrands; E. P. McDonald; E. Kruger; G. Hendrey; K. Percy; K. Pregitzer; J. Sober; D. F. Karnosky

    2001-01-01

    The Intergovernmental Panel of Climate Change (IPCC) has concluded that the greenhouse gases carbon dioxide (CO2) and tropospheric ozone (O3) are increasing concomitantly globally. Little is known about the effect of these interacting gases on growth, survival, and productivity of forest ecosystems. In this study we assess...

  16. Climate change and One Health.

    Science.gov (United States)

    Zinsstag, Jakob; Crump, Lisa; Schelling, Esther; Hattendorf, Jan; Maidane, Yahya Osman; Ali, Kadra Osman; Muhummed, Abdifatah; Umer, Abdurezak Adem; Aliyi, Ferzua; Nooh, Faisal; Abdikadir, Mohammed Ibrahim; Ali, Seid Mohammed; Hartinger, Stella; Mäusezahl, Daniel; de White, Monica Berger Gonzalez; Cordon-Rosales, Celia; Castillo, Danilo Alvarez; McCracken, John; Abakar, Fayiz; Cercamondi, Colin; Emmenegger, Sandro; Maier, Edith; Karanja, Simon; Bolon, Isabelle; de Castañeda, Rafael Ruiz; Bonfoh, Bassirou; Tschopp, Rea; Probst-Hensch, Nicole; Cissé, Guéladio

    2018-06-01

    The journal The Lancet recently published a countdown on health and climate change. Attention was focused solely on humans. However, animals, including wildlife, livestock and pets, may also be impacted by climate change. Complementary to the high relevance of awareness rising for protecting humans against climate change, here we present a One Health approach, which aims at the simultaneous protection of humans, animals and the environment from climate change impacts (climate change adaptation). We postulate that integrated approaches save human and animal lives and reduce costs when compared to public and animal health sectors working separately. A One Health approach to climate change adaptation may significantly contribute to food security with emphasis on animal source foods, extensive livestock systems, particularly ruminant livestock, environmental sanitation, and steps towards regional and global integrated syndromic surveillance and response systems. The cost of outbreaks of emerging vector-borne zoonotic pathogens may be much lower if they are detected early in the vector or in livestock rather than later in humans. Therefore, integrated community-based surveillance of zoonoses is a promising avenue to reduce health effects of climate change.

  17. Estimating changes in urban ozone concentrations due to life cycle emissions from hydrogen transportation systems

    Science.gov (United States)

    Wang, Guihua; Ogden, Joan M.; Chang, Daniel P. Y.

    Hydrogen has been proposed as a low polluting alternative transportation fuel that could help improve urban air quality. This paper examines the potential impact of introducing a hydrogen-based transportation system on urban ambient ozone concentrations. This paper considers two scenarios, where significant numbers of new hydrogen vehicles are added to a constant number of gasoline vehicles. In our scenarios hydrogen fuel cell vehicles (HFCVs) are introduced in Sacramento, California at market penetrations of 9% and 20%. From a life cycle analysis (LCA) perspective, considering all the emissions involved in producing, transporting, and using hydrogen, this research compares three hypothetical natural gas to hydrogen pathways: (1) on-site hydrogen production; (2) central hydrogen production with pipeline delivery; and (3) central hydrogen production with liquid hydrogen truck delivery. Using a regression model, this research shows that the daily maximum temperature correlates well with atmospheric ozone formation. However, increases in initial VOC and NO x concentrations do not necessarily increase the peak ozone concentration, and may even cause it to decrease. It is found that ozone formation is generally limited by NO x in the summer and is mostly limited by VOC in the fall in Sacramento. Of the three hydrogen pathways, the truck delivery pathway contributes the most to ozone precursor emissions. Ozone precursor emissions from the truck pathway at 9% market penetration can cause additional 3-h average VOC (or NO x) concentrations up to approximately 0.05% (or 1%) of current pollution levels, and at 20% market penetration up to approximately 0.1% (or 2%) of current pollution levels. However, all of the hydrogen pathways would result in very small (either negative or positive) changes in ozone air quality. In some cases they will result in worse ozone air quality (mostly in July, August, and September), and in some cases they will result in better ozone air quality

  18. Estimating changes in urban ozone concentrations due to life cycle emissions from hydrogen transportation systems

    International Nuclear Information System (INIS)

    Guihua Wang; Ogden, Joan M.; Chang, Daniel P.Y.

    2007-01-01

    Hydrogen has been proposed as a low polluting alternative transportation fuel that could help improve urban air quality. This paper examines the potential impact of introducing a hydrogen-based transportation system on urban ambient ozone concentrations. This paper considers two scenarios, where significant numbers of new hydrogen vehicles are added to a constant number of gasoline vehicles. In our scenarios hydrogen fuel cell vehicles (HFCVs) are introduced in Sacramento, California at market penetrations of 9% and 20%. From a life cycle analysis (LCA) perspective, considering all the emissions involved in producing, transporting, and using hydrogen, this research compares three hypothetical natural gas to hydrogen pathways: (1) on-site hydrogen production; (2) central hydrogen production with pipeline delivery; and (3) central hydrogen production with liquid hydrogen truck delivery. Using a regression model, this research shows that the daily maximum temperature correlates well with atmospheric ozone formation. However, increases in initial VOC and NO x concentrations do not necessarily increase the peak ozone concentration, and may even cause it to decrease. It is found that ozone formation is generally limited by NO x in the summer and is mostly limited by VOC in the fall in Sacramento. Of the three hydrogen pathways, the truck delivery pathway contributes the most to ozone precursor emissions. Ozone precursor emissions from the truck pathway at 9% market penetration can cause additional 3-h average VOC (or NO x ) concentrations up to approximately 0.05% (or 1%) of current pollution levels, and at 20% market penetration up to approximately 0.1% (or 2%) of current pollution levels. However, all of the hydrogen pathways would result in very small (either negative or positive) changes in ozone air quality. In some cases they will result in worse ozone air quality (mostly in July, August, and September), and in some cases they will result in better ozone air

  19. Physiological responses of Pinus sylvestris to changing carbon dioxide and ozone concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Holopainen, T [Kuopio Univ. (Finland). Dept. of Ecology and Environmental Science; Palomaeki, V [Joensuu Univ. (Finland). Faculty of Forestry; Helmisaari, H S [Finnish Forest Research Inst., Helsinki (Finland); and others

    1997-12-31

    The objective of this research is to study the effects of elevated ozone, carbon dioxide and their combination on ultrastructural, physiological and biochemical responses of Scots pine needles and how these effects are reflected to photosynthesis, carbohydrate and nutrient allocation and finally to shoot and root growth of trees. In addition the interactions of the studied trees and mycorrhizal fungi as well as insect herbivores are studied. The exposures have been running only for two growing periods and it seems necessary to continue the experiment over the third growing season in 1996. Since the analyses are partially incomplete, only preliminary conclusions are possible at the moment. The slightly increased shoot growth and needle width and increased amount of starch in chloroplasts point to the slight stimulating effect of elevated CO{sub 2} among the chamber treatments. Altogether the growth of the seedlings was best in the chamberless treatment indicating a negative chamber effect. The elevated ozone significantly increased the chlorotic mottling and overall yellowing of second year needles as well as caused increased density of chloroplast stroma and declined photosynthesis, all these responses being often related to ozone exposures. The ozone related responses appeared at both CO{sub 2} levels indicating no clear protection due to elevated CO{sub 2}. The ozone or carbon dioxide treatments were not able to significantly change nutrient concentrations, insect herbivory or carbon allocation among the secondary compounds of needles. A tendency of increased carbon allocation to fine roots due to ozone but not so clearly to CO{sub 2} was observed

  20. Physiological responses of Pinus sylvestris to changing carbon dioxide and ozone concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Holopainen, T. [Kuopio Univ. (Finland). Dept. of Ecology and Environmental Science; Palomaeki, V. [Joensuu Univ. (Finland). Faculty of Forestry; Helmisaari, H.S. [Finnish Forest Research Inst., Helsinki (Finland)] [and others

    1996-12-31

    The objective of this research is to study the effects of elevated ozone, carbon dioxide and their combination on ultrastructural, physiological and biochemical responses of Scots pine needles and how these effects are reflected to photosynthesis, carbohydrate and nutrient allocation and finally to shoot and root growth of trees. In addition the interactions of the studied trees and mycorrhizal fungi as well as insect herbivores are studied. The exposures have been running only for two growing periods and it seems necessary to continue the experiment over the third growing season in 1996. Since the analyses are partially incomplete, only preliminary conclusions are possible at the moment. The slightly increased shoot growth and needle width and increased amount of starch in chloroplasts point to the slight stimulating effect of elevated CO{sub 2} among the chamber treatments. Altogether the growth of the seedlings was best in the chamberless treatment indicating a negative chamber effect. The elevated ozone significantly increased the chlorotic mottling and overall yellowing of second year needles as well as caused increased density of chloroplast stroma and declined photosynthesis, all these responses being often related to ozone exposures. The ozone related responses appeared at both CO{sub 2} levels indicating no clear protection due to elevated CO{sub 2}. The ozone or carbon dioxide treatments were not able to significantly change nutrient concentrations, insect herbivory or carbon allocation among the secondary compounds of needles. A tendency of increased carbon allocation to fine roots due to ozone but not so clearly to CO{sub 2} was observed

  1. Revisiting the contribution of land transport and shipping emissions to tropospheric ozone

    Science.gov (United States)

    Mertens, Mariano; Grewe, Volker; Rieger, Vanessa S.; Jöckel, Patrick

    2018-04-01

    We quantify the contribution of land transport and shipping emissions to tropospheric ozone for the first time with a chemistry-climate model including an advanced tagging method (also known as source apportionment), which considers not only the emissions of nitrogen oxides (NOx, NO, and NO2), carbon monoxide (CO), and volatile organic compounds (VOC) separately, but also their non-linear interaction in producing ozone. For summer conditions a contribution of land transport emissions to ground-level ozone of up to 18 % in North America and Southern Europe is estimated, which corresponds to 12 and 10 nmol mol-1, respectively. The simulation results indicate a contribution of shipping emissions to ground-level ozone during summer on the order of up to 30 % in the North Pacific Ocean (up to 12 nmol mol-1) and 20 % in the North Atlantic Ocean (12 nmol mol-1). With respect to the contribution to the tropospheric ozone burden, we quantified values of 8 and 6 % for land transport and shipping emissions, respectively. Overall, the emissions from land transport contribute around 20 % to the net ozone production near the source regions, while shipping emissions contribute up to 52 % to the net ozone production in the North Pacific Ocean. To put these estimates in the context of literature values, we review previous studies. Most of them used the perturbation approach, in which the results for two simulations, one with all emissions and one with changed emissions for the source of interest, are compared. For a better comparability with these studies, we also performed additional perturbation simulations, which allow for a consistent comparison of results using the perturbation and the tagging approach. The comparison shows that the results strongly depend on the chosen methodology (tagging or perturbation approach) and on the strength of the perturbation. A more in-depth analysis for the land transport emissions reveals that the two approaches give different results

  2. Deducing Climatic Elasticity to Assess Projected Climate Change Impacts on Streamflow Change across China

    Science.gov (United States)

    Liu, Jianyu; Zhang, Qiang; Zhang, Yongqiang; Chen, Xi; Li, Jianfeng; Aryal, Santosh K.

    2017-10-01

    Climatic elasticity has been widely applied to assess streamflow responses to climate changes. To fully assess impacts of climate under global warming on streamflow and reduce the error and uncertainty from various control variables, we develop a four-parameter (precipitation, catchment characteristics n, and maximum and minimum temperatures) climatic elasticity method named PnT, based on the widely used Budyko framework and simplified Makkink equation. We use this method to carry out the first comprehensive evaluation of the streamflow response to potential climate change for 372 widely spread catchments in China. The PnT climatic elasticity was first evaluated for a period 1980-2000, and then used to evaluate streamflow change response to climate change based on 12 global climate models under Representative Concentration Pathway 2.6 (RCP2.6) and RCP 8.5 emission scenarios. The results show that (1) the PnT climatic elasticity method is reliable; (2) projected increasing streamflow takes place in more than 60% of the selected catchments, with mean increments of 9% and 15.4% under RCP2.6 and RCP8.5 respectively; and (3) uncertainties in the projected streamflow are considerable in several regions, such as the Pearl River and Yellow River, with more than 40% of the selected catchments showing inconsistent change directions. Our results can help Chinese policy makers to manage and plan water resources more effectively, and the PnT climatic elasticity should be applied to other parts of the world.

  3. Europeans' attitudes towards climate change

    International Nuclear Information System (INIS)

    2009-07-01

    This report presents the results of a survey on Europeans' attitudes towards climate change which was carried out in January and February 2009. The survey focuses on: Citizens' perceptions of climate change in relation to other world problems; Citizens' perceptions of the seriousness of climate change; The extent to which citizens feel informed about climate change - its causes, consequences and ways of fighting it; Citizens' attitudes towards alternative fuels and CO2 emissions; Whether citizens feel that climate change is stoppable or has been exaggerated, and what impact it has on the European economy; Whether citizens have taken personal action to fight climate change. This Eurobarometer survey was carried out by TNS Opinion and Social network between 16 January and 22 February 2009. The interviews were conducted among 26,718 citizens in the 27 Member States of the European Union, the three candidate countries for accession to the European Union (Croatia, Turkey and the Former Yugoslav Republic of Macedonia) and in the Turkish Cypriot Community.

  4. Climate change and climate policy; Klimaendringer og klimapolitikk

    Energy Technology Data Exchange (ETDEWEB)

    Alfsen, Knut H.; Kolshus, Hans H.; Torvanger, Asbjoern

    2000-08-01

    The climate issue is a great political and scientific challenge for several reasons: (1) There are many uncertain aspects of the climate problem, such as future emission of climate gases, the response of the climate system upon these gases, and the effects of climate changes. (2) It is probable, however, that anthropogenic emission of climate gases, deforestation etc. will cause noticeable climate changes in the future. This might be observed as increased frequency of extreme weather situations. This appears to be a greater threat than a gradual increase of temperature and precipitation. (3) Since the climate system is large and react only relatively slowly on changes in for instance the emission of climate gases, the climate problem can only be solved by means of long-term measures. (4) The climate changes may be irreversible. A rational short-term strategy is to ensure maximum flexibility, which can be done by ''slowing down'' (curtailing emissions) and by avoiding irreversible actions as much as possible. The long-term challenge is to develop an economically responsible alternative to the present fossil-based energy system that permits carbon-efficient technologies to compete on price with coal and unconventional oil and gas. Norway is in a special position by being a large exporter of fossil fuel and at the same time wanting to appear responsible in environmental matters. This combination may incur considerable expenses upon Norway and it is therefore important that environmental commitments like the Kyoto agreement can be honoured to the lowest possible cost. The costs can be minimized by: (1) minimizing the measure costs in Norway, (2) working to make the international quota price as low as possible, and (3) reducing the loss of petroleum income as much as possible. This report describes the earth's climate history, the forces behind climatic changes and what the prospects for the future look like. It also reviews what is being done

  5. Climate change: against despair

    OpenAIRE

    McKinnon, Catriona

    2014-01-01

    In the face of accelerating climate change and the parlous state of its politics, despair is tempting. This paper analyses two manifestations of despair about climate change related to (1) the inefficacy of personal emissions reductions, and (2) the inability to make a difference to climate change through personal emissions reductions. On the back of an analysis of despair as a loss of hope, the paper argues that the judgements grounding each form of despair are unsound. The paper concludes w...

  6. Climate change in China and China’s policies and actions for addressing climate change

    Directory of Open Access Journals (Sweden)

    Luo Y.

    2010-12-01

    Full Text Available Since the first assessment report (FAR of Inter-Governmental Panel on Climate Change (IPCC in 1990, the international scientific community has made substantial progresses in climate change sciences. Changes in components of climate system, including the atmosphere, oceans and cryosphere, indicate that global warming is unequivocal. Instrumental records demonstrate that the global mean temperature has a significant increasing trend during the 20th century and in the latest 50 years the warming become faster. In the meantime, the global sea level has a strong increasing trend, as well as the snow coverage of Northern Hemisphere showed an obvious downward trend. Moreover, the global warming plays a key role in significantly affecting the climate system and social-economy on both global and regional scales, such as sea level rise, melting of mountain glaciers and ice sheets, desertification, deforestation, increase of weather extremes (typhoon, hurricane and rainstorm and so on. The state of the art understanding of IPCC Fourth Assessment Report (AR4 was most of the observed increase in global average temperatures since the mid-20th century is very likely due to the observed increase in the concentrations of anthropogenic greenhouse gases. Climate change issues, as a grave challenge to the sustainable development of the human society, have received ever greater attention from the international community. Deeply cognizant of the complexity and extensive influence of these issues and fully aware of the arduousness and urgency of the task of addressing climate change, the Chinese government is determined to address climate change in the process of pursuing sustainable development. The facts of climate change in China and its impacts, and China’s policies and actions for addressing climate change are introduced in this paper.

  7. Climate change matters.

    Science.gov (United States)

    Macpherson, Cheryl Cox

    2014-04-01

    One manifestation of climate change is the increasingly severe extreme weather that causes injury, illness and death through heat stress, air pollution, infectious disease and other means. Leading health organisations around the world are responding to the related water and food shortages and volatility of energy and agriculture prices that threaten health and health economics. Environmental and climate ethics highlight the associated challenges to human rights and distributive justice but rarely address health or encompass bioethical methods or analyses. Public health ethics and its broader umbrella, bioethics, remain relatively silent on climate change. Meanwhile global population growth creates more people who aspire to Western lifestyles and unrestrained socioeconomic growth. Fulfilling these aspirations generates more emissions; worsens climate change; and undermines virtues and values that engender appreciation of, and protections for, natural resources. Greater understanding of how virtues and values are evolving in different contexts, and the associated consequences, might nudge the individual and collective priorities that inform public policy toward embracing stewardship and responsibility for environmental resources necessary to health. Instead of neglecting climate change and related policy, public health ethics and bioethics should explore these issues; bring transparency to the tradeoffs that permit emissions to continue at current rates; and offer deeper understanding about what is at stake and what it means to live a good life in today's world.

  8. Tropospheric ozone observations - How well can we assess tropospheric ozone changes?

    Science.gov (United States)

    Tarasick, D. W.; Galbally, I. E.; Ancellet, G.; Leblanc, T.; Wallington, T. J.; Ziemke, J. R.; Steinbacher, M.; Stähelin, J.; Vigouroux, C.; Hannigan, J. W.; García, O. E.; Foret, G.; Zanis, P.; Liu, X.; Weatherhead, E. C.; Petropavlovskikh, I. V.; Worden, H. M.; Osman, M.; Liu, J.; Lin, M.; Cooper, O. R.; Schultz, M. G.; Granados-Muñoz, M. J.; Thompson, A. M.; Cuesta, J.; Dufour, G.; Thouret, V.; Hassler, B.; Trickl, T.

    2017-12-01

    Since the early 20th century, measurements of ozone in the free troposphere have evolved and changed. Data records have different uncertainties and biases, and differ with respect to coverage, information content, and representativeness. Almost all validation studies employ ECC ozonesondes. These have been compared to UV-absorption measurements in a number of intercomparison studies, and show a modest ( 1-5%) high bias in the troposphere, with an uncertainty of 5%, but no evidence of a change over time. Umkehr, lidar, FTIR, and commercial aircraft all show modest low biases relative to the ECCs, and so -- if the ECC biases are transferable -- all agree within 1σ with the modern UV standard. Relative to the UV standard, Brewer-Mast sondes show a 20% increase in sensitivity from 1970-1995, while Japanese KC sondes show an increase of 5-10%. Combined with the shift of the global ozonesonde network to ECCs, this can induce a false positive trend, in analyses based on sonde data. Passive sounding methods -- Umkehr, FTIR and satellites -- have much lower vertical resolution than active methods, and this can limit the attribution of trends. Satellite biases are larger than those of other measurement systems, ranging between -10% and +20%, and standard deviations are large: about 10-30%, versus 5-10% for sondes, aircraft, lidar and ground-based FTIR. There is currently little information on measurement drift for satellite measurements of tropospheric ozone. This is an evident area of concern if satellite retrievals are used for trend studies. The importance of ECC sondes as a transfer standard for satellite validation means that efforts to homogenize existing records, by correcting for known changes and by adopting strict standard operating procedures, should continue, and additional research effort should be put into understanding and reducing sonde uncertainties. Representativeness is also a potential source of large errors, which are difficult to quantify. The global

  9. Climate Change and Natural Disasters

    NARCIS (Netherlands)

    Merkouris, Panos; Negri, Stefania; Maljean-Dubois, Sandrine

    2014-01-01

    Only 21 years ago, in 1992, the first ever convention on climate change, the United Nations Framework Convention on Climate Change (UNFCCC) was signed. The science behind studying climate change and its effects on the environment is not only mind-boggling but still in its infancy. It should come

  10. Metabolic changes associated with ozone injury of bean leaves

    Energy Technology Data Exchange (ETDEWEB)

    Craker, L.E.; Starbuck, J.S.

    1972-07-01

    Metabolic processes in primary leaves of bean plants (Phaseolus vulgaris) were altered by ozone stress. Decreases in levels of ribonucleic acid (RNA) and protein, and increases in ribonuclease (RNase) and free amine groups were associated with visible oxidant injury to the leaves. It appears that some air pollution injury to plants may result from changes in metabolic processes. 23 references, 5 figures, 2 tables.

  11. Changes in US background ozone due to global anthropogenic emissions from 1970 to 2020

    Science.gov (United States)

    Nopmongcol, Uarporn; Jung, Jaegun; Kumar, Naresh; Yarwood, Greg

    2016-09-01

    Estimates of North American and US Background (NAB and USB) ozone (O3) are critical in setting and implementing the US National Ambient Air Quality Standards (NAAQS) and therefore influence population exposure to O3 across the US. NAB is defined as the O3 concentration in the absence of anthropogenic O3 precursor emissions from North America whereas USB excludes anthropogenic emissions inside the US alone. NAB and USB vary geographically and with time of year. Analyses of O3 trends at rural locations near the west coast suggest that background O3 is rising in response to increasing non-US emissions. As the O3 NAAQS is lowered, rising background O3 would make attaining the NAAQS more difficult. Most studies of changing US background O3 have inferred trends from observations whereas air quality management decisions tend to rely on models. Thus, it is important that the models used to develop O3 management strategies are able to represent the changes in background O3 in order to increase confidence that air quality management strategies will succeed. We focus on how changing global emissions influence USB rather than the effects of inter-annual meteorological variation or long-term climate change. We use a regional model (CAMx) nested within a global model (GEOS-Chem) to refine our grid resolution over high terrain in the western US and near US borders where USB tends to be higher. We determine USB from CAMx simulations that exclude US anthropogenic emissions. Over five decades, from 1970 to 2020, estimated USB for the annual fourth highest maximum daily 8-h average O3 (H4MDA8) in the western US increased from mostly in the range of 40-55 ppb to 45-60 ppb, but remained below 45 ppb in the eastern US. USB increases in the southwestern US are consistent with rising emissions in Asia and Mexico. USB decreases in the northeast US after 1990 follow declining Canadian emissions. Our results show that the USB increases both for the top 30 MDA8 days and the H4MDA8 (the former

  12. Physicochemical changes in minimal ozone-treated fresh shrimp ...

    African Journals Online (AJOL)

    treated fresh shrimp were evaluated tandem with microbiological efficacy of treatment during iced storage of up to 10 days. Safely discharged from commercially available domestic-type ozone facility, a previously defined minimal ozone treatment ...

  13. European air quality in the 2030's and 2050's: Impacts of global and regional emission trends and of climate change

    International Nuclear Information System (INIS)

    Lacressonniere, G.; Peuch, V.H.; Vautard, R.

    2014-01-01

    A chemistry-transport model using two-way nested regional (Europe) and global domains is used to evaluate the effects of climate and emission changes on air quality over Europe for the 2030's and 2050's, by comparison with the emissions and climate of the recent past. We investigated the pollutant levels under the implementations of reduced anthropogenic emissions (NOx, SO 2 , etc) over Europe and, at the global scale, under the Representative Concentrations Pathways (RCP8.5) scenario produced by the Fifth Assessment Report (AR5) of IPCC. The simulations show an increase in surface ozone in northwestern Europe and a decrease in southern areas in the future horizons studied here. Over Europe, average O 3 levels steadily increase with a rate of around 3 mg m 3 per decade in summer. For this pollutant, the contributions of long range transport over the Northern Hemisphere and climate changes have been assessed and appear to counterbalance and even slightly outweigh the effects of European reductions in precursors' anthropogenic emissions. The tropospheric ozone budget is found to be dominated by enhanced stratosphere-troposphere exchanges in future climate while the chemical budget is significantly reduced. Our results show that a NOx-limited chemical regime will stretch over most of Europe, including especially Western France in the future. These findings allow supporting efficient future precursor emissions abatement strategies in order to limit O 3 pollution and maintain or improve air quality standards in Europe. (authors)

  14. The influence of negative climate changes on physical development of urban and rural areas in Bosnia and Herzegovina

    Directory of Open Access Journals (Sweden)

    Rahman NURKOVIĆ

    2014-11-01

    Full Text Available The influence of negative climate changes on physical development of urban and rural areas of Bosnia and Herzegovina has been analysed in the paper. So, economy and society in urban and rural areas of Bosnia and Herzegovina are susceptible to environmental consequences of climate changes. In practice, this means that poorer countries in development of economic activities will suffer most due to climate changes, while some developed countries can be in a position to use new commercial possibilities. Presently, there is a significant scientific consensus that human activity affected the increase of atmospheric concentration of greenhouse gases, respectively the carbon dioxide, methane, nitrous oxide, ozone and chlorofluorocarbon, as a result of global changes of climate that will probably change dramatically during the next centuries in Bosnia and Herzegovina. More and more intensive industrialisation and urbanisation, as well as tourism, a growing phenomenon of the 21st century, have numerous negative direct, indirect and multiplicative effects on flora and fauna habitats of Bosnia and Herzegovina. For all mentioned above, this paper tries to indicate to a need for more significant investing into tourism development, which is presently at a very low level of development in Bosnia and Herzegovina. In the past ten years a dynamical development of tertiary activities in urban and rural areas has been distinguished; among which shopping centres take a significant position. 

  15. Climate change, climatic variation and extreme biological responses.

    Science.gov (United States)

    Palmer, Georgina; Platts, Philip J; Brereton, Tom; Chapman, Jason W; Dytham, Calvin; Fox, Richard; Pearce-Higgins, James W; Roy, David B; Hill, Jane K; Thomas, Chris D

    2017-06-19

    Extreme climatic events could be major drivers of biodiversity change, but it is unclear whether extreme biological changes are (i) individualistic (species- or group-specific), (ii) commonly associated with unusual climatic events and/or (iii) important determinants of long-term population trends. Using population time series for 238 widespread species (207 Lepidoptera and 31 birds) in England since 1968, we found that population 'crashes' (outliers in terms of species' year-to-year population changes) were 46% more frequent than population 'explosions'. (i) Every year, at least three species experienced extreme changes in population size, and in 41 of the 44 years considered, some species experienced population crashes while others simultaneously experienced population explosions. This suggests that, even within the same broad taxonomic groups, species are exhibiting individualistic dynamics, most probably driven by their responses to different, short-term events associated with climatic variability. (ii) Six out of 44 years showed a significant excess of species experiencing extreme population changes (5 years for Lepidoptera, 1 for birds). These 'consensus years' were associated with climatically extreme years, consistent with a link between extreme population responses and climatic variability, although not all climatically extreme years generated excess numbers of extreme population responses. (iii) Links between extreme population changes and long-term population trends were absent in Lepidoptera and modest (but significant) in birds. We conclude that extreme biological responses are individualistic, in the sense that the extreme population changes of most species are taking place in different years, and that long-term trends of widespread species have not, to date, been dominated by these extreme changes.This article is part of the themed issue 'Behavioural, ecological and evolutionary responses to extreme climatic events'. © 2017 The Authors.

  16. Accounting for multiple climate components when estimating climate change exposure and velocity

    Science.gov (United States)

    Nadeau, Christopher P.; Fuller, Angela K.

    2015-01-01

    The effect of anthropogenic climate change on organisms will likely be related to climate change exposure and velocity at local and regional scales. However, common methods to estimate climate change exposure and velocity ignore important components of climate that are known to affect the ecology and evolution of organisms.We develop a novel index of climate change (climate overlap) that simultaneously estimates changes in the means, variation and correlation between multiple weather variables. Specifically, we estimate the overlap between multivariate normal probability distributions representing historical and current or projected future climates. We provide methods for estimating the statistical significance of climate overlap values and methods to estimate velocity using climate overlap.We show that climates have changed significantly across 80% of the continental United States in the last 32 years and that much of this change is due to changes in the variation and correlation between weather variables (two statistics that are rarely incorporated into climate change studies). We also show that projected future temperatures are predicted to be locally novel (using climate overlap compared to 1·4 km yr−1 when estimated using traditional methods.Our results suggest that accounting for changes in the means, variation and correlation between multiple weather variables can dramatically affect estimates of climate change exposure and velocity. These climate components are known to affect the ecology and evolution of organisms, but are ignored by most measures of climate change. We conclude with a set of future directions and recommend future work to determine which measures of climate change exposure and velocity are most related to biological responses to climate change.

  17. Global 3-D modeling of atmospheric ozone in the free troposphere and the stratosphere with emphasis on midlatitude regions. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Brasseur, G.; Tie, X.; Walters, S.

    1999-03-01

    The authors have used several global chemical/transport models (1) to study the contribution of various physical, chemical, and dynamical processes to the budget of mid-latitude ozone in the stratosphere and troposphere; (2) to analyze the potential mechanisms which are responsible for the observed ozone perturbations at mid-latitudes of the lower stratosphere and in the upper troposphere; (3) to calculate potential changes in atmospheric ozone response to anthropogenic changes (e.g., emission of industrially manufactured CFCs, CO, and NO{sub x}) and to natural perturbations (e.g., volcanic eruptions and biomass burning); and (4) to estimate the impact of these changes on the radiative forcing to the climate system and on the level of UV-B radiation at the surface.

  18. Biodiversity and Climate Change

    International Nuclear Information System (INIS)

    Onyango, J.C.O.; Ojoo-Massawa, E.; Abira, M.A.

    1997-01-01

    Biological diversity or biodiversity is crucial for ecological stability including regulation of climate change, recreational and medicinal use; and scientific advancement. Kenya like other developing countries, especially, those in Sub-Saharan Africa, will continue to depend greatly on her biodiversity for present and future development. This important resource must, therefore be conserved. This chapter presents an overview of Kenya's biodiversity; its importance and initiatives being undertaken for its conservation; and in detail, explores issues of climate change and biodiversity, concentrating on impacts of climate change

  19. Comparative scenario study of tropospheric ozone climate interactions using a global model. A 1% global increase rate, the IS92a IPCC scenario and a simplified aircraft traffic increase scenario

    Energy Technology Data Exchange (ETDEWEB)

    Chalita, S [Centre National de la Recherche Scientifique (CNRS), 75 - Paris (France). Service d` Aeronomie; Le Treut, H [Centre National de la Recherche Scientifique (CNRS), 75 - Paris (France). Lab. de Meteorologie Dynamique

    1998-12-31

    Sensitivity studies have been made to establish the relationship between different scenarios of tropospheric ozone increase and radiative forcing. Some aspects of the ozone-climate interactions for past and future scenarios are investigated. These calculations employ IMAGES tropospheric ozone concentrations for a pre-industrial, present and future atmospheres. The averaged last 10 years of the 25-year seasonal integrations were analyzed. The results of this study are preliminary. Ozone forcing is basically different from the CO{sub 2} forcing, for its regional and temporal structured nature and for its rather weak intensity. (R.P.) 14 refs.

  20. Comparative scenario study of tropospheric ozone climate interactions using a global model. A 1% global increase rate, the IS92a IPCC scenario and a simplified aircraft traffic increase scenario

    Energy Technology Data Exchange (ETDEWEB)

    Chalita, S. [Centre National de la Recherche Scientifique (CNRS), 75 - Paris (France). Service d`Aeronomie; Le Treut, H. [Centre National de la Recherche Scientifique (CNRS), 75 - Paris (France). Lab. de Meteorologie Dynamique

    1997-12-31

    Sensitivity studies have been made to establish the relationship between different scenarios of tropospheric ozone increase and radiative forcing. Some aspects of the ozone-climate interactions for past and future scenarios are investigated. These calculations employ IMAGES tropospheric ozone concentrations for a pre-industrial, present and future atmospheres. The averaged last 10 years of the 25-year seasonal integrations were analyzed. The results of this study are preliminary. Ozone forcing is basically different from the CO{sub 2} forcing, for its regional and temporal structured nature and for its rather weak intensity. (R.P.) 14 refs.

  1. Climate and Global Change

    International Nuclear Information System (INIS)

    Duplessy, J.C.; Pons, A.; Fantechi, R.

    1991-01-01

    The present volume contains the lessons delivered at the course held in Arles, France, on the subject Climate and Global Change: natural variability of the geosphere and biosphere systems, biogeochemical cycles and their perturbation by human activities, monitoring and forecasting global changes (satellite observations, modelling,...). Short presentations of students' own research activities are also proposed (climatic fluctuation in the Mediterranean area, climate/vegetation relations, etc.)

  2. Climate change experiments in Hamburg

    Energy Technology Data Exchange (ETDEWEB)

    Gubasch, U [DKRZ, Hamburg (Germany)

    1996-12-31

    Nowadays the anthropogenic climate change is been simulated world wide with a fair number of coupled ocean atmosphere general circulation models (IPCC, 1995). Typical model problems do not only blur the estimates of the anthropogenic climate change, but they also cause errors in the estimates of the natural variability. An accurate representation of the natural variability of the climate system is, however, essential for the detection of the anthropogenic climate change. All model simulations world wide show, even though they differ considerably in their technical details and the experimental setup and the forcing data, similar amplitudes and pattern of the predicted climate change. In the model world it is already at the beginning of the next century possible to detect the anthropogenic climate change in the global mean. If the model results are applied in a `fingerprint analysis`, then it is possible to prove that the climate change during the last 30 years is with a significance of 95 % larger than any other climate change during the last 100 years. The experiments performed in Hamburg show that the experimental conditions are of great importance for the estimate of the future climate. The usual starting point of most of the simulations with present day conditions (1980-1990) is too late, because then a considerable part of the warming since the beginning of the industrialization (ca. 1750) has been neglected. Furthermore it has only recently become clear that the sulphat-aerosols play an important role in the present day climate and in the future climate. The effect of the sulphat aerosols has first been simulated in a number of equilibrium simulations with mixed layer models, but nowadays with globally coupled ocean-atmosphere circulation models

  3. Climate change experiments in Hamburg

    Energy Technology Data Exchange (ETDEWEB)

    Gubasch, U. [DKRZ, Hamburg (Germany)

    1995-12-31

    Nowadays the anthropogenic climate change is been simulated world wide with a fair number of coupled ocean atmosphere general circulation models (IPCC, 1995). Typical model problems do not only blur the estimates of the anthropogenic climate change, but they also cause errors in the estimates of the natural variability. An accurate representation of the natural variability of the climate system is, however, essential for the detection of the anthropogenic climate change. All model simulations world wide show, even though they differ considerably in their technical details and the experimental setup and the forcing data, similar amplitudes and pattern of the predicted climate change. In the model world it is already at the beginning of the next century possible to detect the anthropogenic climate change in the global mean. If the model results are applied in a `fingerprint analysis`, then it is possible to prove that the climate change during the last 30 years is with a significance of 95 % larger than any other climate change during the last 100 years. The experiments performed in Hamburg show that the experimental conditions are of great importance for the estimate of the future climate. The usual starting point of most of the simulations with present day conditions (1980-1990) is too late, because then a considerable part of the warming since the beginning of the industrialization (ca. 1750) has been neglected. Furthermore it has only recently become clear that the sulphat-aerosols play an important role in the present day climate and in the future climate. The effect of the sulphat aerosols has first been simulated in a number of equilibrium simulations with mixed layer models, but nowadays with globally coupled ocean-atmosphere circulation models

  4. Ozone sensitivity to varying greenhouse gases and ozone-depleting substances in CCMI-1 simulations

    Directory of Open Access Journals (Sweden)

    O. Morgenstern

    2018-01-01

    Full Text Available Ozone fields simulated for the first phase of the Chemistry-Climate Model Initiative (CCMI-1 will be used as forcing data in the 6th Coupled Model Intercomparison Project. Here we assess, using reference and sensitivity simulations produced for CCMI-1, the suitability of CCMI-1 model results for this process, investigating the degree of consistency amongst models regarding their responses to variations in individual forcings. We consider the influences of methane, nitrous oxide, a combination of chlorinated or brominated ozone-depleting substances, and a combination of carbon dioxide and other greenhouse gases. We find varying degrees of consistency in the models' responses in ozone to these individual forcings, including some considerable disagreement. In particular, the response of total-column ozone to these forcings is less consistent across the multi-model ensemble than profile comparisons. We analyse how stratospheric age of air, a commonly used diagnostic of stratospheric transport, responds to the forcings. For this diagnostic we find some salient differences in model behaviour, which may explain some of the findings for ozone. The findings imply that the ozone fields derived from CCMI-1 are subject to considerable uncertainties regarding the impacts of these anthropogenic forcings. We offer some thoughts on how to best approach the problem of generating a consensus ozone database from a multi-model ensemble such as CCMI-1.

  5. Ozone Sensitivity to Varying Greenhouse Gases and Ozone-Depleting Substances in CCMI-1 Simulations

    Science.gov (United States)

    Morgenstern, Olaf; Stone, Kane A.; Schofield, Robyn; Akiyoshi, Hideharu; Yamashita, Yousuke; Kinnison, Douglas E.; Garcia, Rolando R.; Sudo, Kengo; Plummer, David A.; Scinocca, John; hide

    2018-01-01

    Ozone fields simulated for the first phase of the Chemistry-Climate Model Initiative (CCMI-1) will be used as forcing data in the 6th Coupled Model Intercomparison Project. Here we assess, using reference and sensitivity simulations produced for CCMI-1, the suitability of CCMI-1 model results for this process, investigating the degree of consistency amongst models regarding their responses to variations in individual forcings. We consider the influences of methane, nitrous oxide, a combination of chlorinated or brominated ozone-depleting substances, and a combination of carbon dioxide and other greenhouse gases. We find varying degrees of consistency in the models' responses in ozone to these individual forcings, including some considerable disagreement. In particular, the response of total-column ozone to these forcings is less consistent across the multi-model ensemble than profile comparisons. We analyse how stratospheric age of air, a commonly used diagnostic of stratospheric transport, responds to the forcings. For this diagnostic we find some salient differences in model behaviour, which may explain some of the findings for ozone. The findings imply that the ozone fields derived from CCMI-1 are subject to considerable uncertainties regarding the impacts of these anthropogenic forcings. We offer some thoughts on how to best approach the problem of generating a consensus ozone database from a multi-model ensemble such as CCMI-1.

  6. Greenland climate change

    DEFF Research Database (Denmark)

    Masson-Delmotte, Valérie; Swingedouw, Didier; Landais, Amaëlle

    2012-01-01

    Climate archives available from deep-sea and marine shelf sediments, glaciers, lakes and ice cores in and around Greenland allow us to place the current trends in regional climate, ice sheet dynamics, and land surface changes in a broader perspective. We show that during the last decade (2000s......), atmospheric and sea-surface temperatures are reaching levels last encountered millennia ago when northern high latitude summer insolation was higher due to a different orbital configuration. Concurrently, records from lake sediments in southern Greenland document major environmental and climatic conditions...... regional climate and ice sheet dynamics. The magnitude and rate of future changes in Greenland temperature, in response to increasing greenhouse gas emissions, may be faster than any past abrupt events occurring under interglacial conditions. Projections indicate that within one century Greenland may...

  7. Climate changes over the past millennium: Relationships with Mediterranean climates

    International Nuclear Information System (INIS)

    Mann, M.E.

    2006-01-01

    Evidence is reviewed for climate change and its causes over the interval spanning roughly the past millennium. Particular emphasis is placed on patterns of climate change influencing Mediterranean climates of the Northern Hemisphere. The evidence is taken from studies using high-resolution climate proxy data sources, and climate modeling simulations. The available evidence suggests that forced changes in dynamical modes of variability including the North Atlantic Oscillation (NAO) and El Nino/Southern Oscillation (ENSO) have played a key role in the patterns of climate variability in Mediterranean regions over the past millennium

  8. Climate Change and Health

    Science.gov (United States)

    ... Home / News / Fact sheets / Detail WHO /A. Craggs Climate change and health 1 February 2018 ","datePublished":"2018-02- ... in improved health, particularly through reduced air pollution. Climate change Over the last 50 years, human activities – particularly ...

  9. Adaptability and climate change

    International Nuclear Information System (INIS)

    Sprague, M.W.

    1991-01-01

    The potential social, economic and environmental impacts of climate change are reviewed, with emphasis on agricultural implications. Impact analyses must be done on the scale of watersheds or river basins. For agriculture, climate change effects on water resources are likely to be more important than temperature changes, and climatic variability is also equally important. Another set of critical climatic variables are the frequencies, magnitudes and timing of extreme events such as floods, droughts, etc. A carbon dioxide enriched atmosphere will increase water use efficiency and confer increased tolerance to drought, salinity and air pollution. Better understanding and accounting is required for the effects of increased carbon dioxide on all plant life, including crops. Adaptability of agriculture to change must be taken into account in predicting impacts of climate change, with technological innovation and infrastructure giving agriculture a dynamic nature. Limitations and adaptations must be considered when formulating public policy, to ensure that marginal costs do not exceed marginal benefits. Monoculture plantation forests may be the most efficient sinks of atmospheric carbon dioxide, yet widespread reliance on them may harm biological diversity. Actions the U.S. is currently taking under a no-regrets policy are summarized

  10. Challenges and solutions for climate change

    CERN Document Server

    Gaast, Wytze

    2012-01-01

    The latest scientific knowledge on climate change indicates that higher greenhouse gas concentrations in the atmosphere through unchecked emissions will provoke severe climate change and ocean acidification threatening environmental structures on which humanity relies. Climate change therefore poses major socio-economic, technical and environmental challenges which will have serious impacts on countries’ pathways towards sustainable development. As a result, climate change and sustainable development have increasingly become interlinked. A changing climate makes achieving Millennium Development Goals more difficult and expensive, so there is every reason to achieve development goals with low greenhouse gas emissions. This leads to the following five challenges discussed by Challenges and Solutions for Climate Change: To place climate negotiations in the wider context of sustainability, equity and social change so that development benefits can be maximised at the same time as decreasing greenhouse gas emissi...

  11. Struggle against climate change

    International Nuclear Information System (INIS)

    2009-01-01

    This document first proposes a presentation of the cross-cutting policy defined for the struggle against climate change. It notably presents its various programs. It describes the implemented strategy which aims at reducing on a short term greenhouse gas emissions with the available technologies, at making the climate challenge a driver for economic competitiveness, at developing the knowledge on climatic change and at preparing the necessary adaptation measures, and at stating on the international scene the French commitment and its dynamic role in front of the climate challenge

  12. Increasing Mississippi river discharge throughout the twenty-first century influenced by changes in climate, land use and atmospheric CO2

    Science.gov (United States)

    Tao, B.; Tian, H.; Ren, W.; Yang, J.; Yang, Q.; He, R.; Cai, W. J.; Lohrenz, S. E.

    2014-12-01

    Previous studies have demonstrated that changes in temperature and precipitation (hereafter climate change) would influence river discharge, but the relative importance of climate change, land use, and elevated atmospheric CO2 have not yet been fully investigated. Here we examined how river discharge in the Mississippi River basin in the 21st century might be influenced by these factors using the Dynamic Land Ecosystem Model driven by atmospheric CO2, downscaled GCMs climate and land use scenarios. Our results suggest that river discharge would be substantially enhanced (10.7-59.8%) by the 2090s compared to the recent decade (2000s), though large discrepancies exist among different climate, atmospheric CO2, and land use change scenarios. Our factorial analyses further indicate that the combined effects of land use change and human-induced atmospheric CO2 elevation on river discharge would outweigh climate change effect under the high emission scenario (A2) of Intergovernmental Panel for Climate Change. Our study offers the first attempt to project potential changes in river discharge in response to multiple future environmental changes. It demonstrates the importance of land use change and atmospheric CO2 concentrations in projecting future changes in hydrologic processes. The projected increase river discharge implies that riverine fluxes of carbon, nutrients and pesticide from the MRB to the coastal regions would increase in the future, and thus may influence the states of ocean acidification and hypoxia and deteriorate ocean water quality. Further efforts will also be needed to account for additional environmental factors (such as nitrogen deposition, tropospheric ozone pollution, dam construction, etc.) in projecting changes in the hydrological cycle.

  13. Climate change issues in China

    Energy Technology Data Exchange (ETDEWEB)

    Ye Ruqiu (China National Environmental Protection Agency, Beijing (China))

    China is vulnerable to global climate change because of its specific geographical and climatic conditions. Recent climate change trends in China are briefly described. To deal with climate change and reduce the increase in greenhouse gas emissions, a set of strategic measures aimed at harmonizing environmental protection and economic development have been worked out. Special attention has been given to the analysis of problems of energy efficiency and energy structure. Preliminary policy consideration is discussed. 8 refs., 3 tabs.

  14. Climate change and the biosphere

    Science.gov (United States)

    F. Stuart Chapin

    2008-01-01

    Scientific assessments now clearly demonstrate the ecologic and societal consequences of human induced climate change, as detailed by the most recent Intergovernmental Panel on Climate Change (IPCC) report. Global warming spells danger for Earth's biomes, which in turn play an important role in climate change. On the following pages, you will read about some of...

  15. Climate change: Recent findings

    International Nuclear Information System (INIS)

    Hesselmans, G.H.F.M.

    1993-08-01

    In the late eighties several reports have been published on climate change and sea level rise. In the meantime insights may have changed due to the availability of better and more observations and/or more advanced climate models. The aim of this report is to present the most recent findings with respect to climate change, in particular of sea level rise, storm surges and river peak flows. These climate factors are important for the safety of low-lying areas with respect to coastal erosion and flooding. In the first chapters a short review is presented of a few of the eighties reports. Furthermore, the predictions by state of the art climate models at that time are given. The reports from the eighties should be considered as 'old' information, whereas the IPCC supplement and work, for example, by Wigley should be considered as new information. To assess the latest findings two experts in this field were interviewed: dr J. Oerlemans and dr C.J.E. Schuurmans, a climate expert from the Royal Netherlands Meteorological Institute (KNMI). Their views are presented together with results published in recent papers on the subject. On the basis of this assessment, the report presents current knowledge regarding predictions of climate change (including sea-level rise) over the next century, together with an assessment of the uncertainties associated with these predictions. 14 figs., 11 tabs., 24 refs

  16. Geopolitics of climate change: A review

    Directory of Open Access Journals (Sweden)

    Bošnjaković Branko

    2012-01-01

    Full Text Available The paper reviews the geopolitical elements of the emerging discourse on how to control, and cope with climate change. Two complementary approaches may be distinguished: the actor-related approach analyses the positioning of states and interest groups, which develop strategies on coping with climate change; the other approach addresses processes and problem areas (physical, economic, demographic… emerging in the geographic space as a consequence of, or linked to climate change. With failing mitigation policies and instruments, the urgency of adaptation to climate change is increasing. Assessment of regional consequences of climate change includes the perceptions and motivations of presumed losers or winners. New security implications related to climate change are emerging in the Arctic, South-East Asia, Africa and the Pacific. Energy supply security is a dominant factor in geopolitical considerations. The geopolitics of climate change is inextricably linked to many other issues of globalization. Significant shift of global power raises the discussion of ethical responsibility. Climate change is evolving as a testing ground for competitiveness and innovation potential of political and economic models in achieving sustainability.

  17. Responsible investors acting on climate change. Investors acting on climate change. Climate: Investors take action

    International Nuclear Information System (INIS)

    Simon, Marie; Blanc, Dominique; Husson-Traore, Anne-Catherine; Amiell, Alison; Barochez, Aurelie de; Conti, Sophie; Kamelgarn, Yona; Bonnet, Olivier; Braman, Stuart; Chenet, Hugues; Fisher, Remco; Hellier, Mickael; Horster, Maximilian; Kindelbacher, Sophie; Leaton, James; Lieblich, Sebastien; Neuneyer, Dustin; Lenoel, Benjamin; Smart, Lauren; Torklep Meisingset, Christine

    2015-02-01

    Some investors are willing to lower the carbon emission financed by their investment, recognizing that climate change has financial impacts. At first they measure the carbon footprint of their portfolio, than initiate shareholder engagement actions at oil and gas companies, publish list of exclusion composed of the most carbon-intensive companies and ask for ex fossil fuels indices. In June 2015, Novethic launches the first actualisation of its study released on February 2015 on the mobilisation of investors on climate change over the whole 2015 year. The trend is gaining momentum since more than 200 additional investors publicly disclosed commitments to integrate climate risk into their investment and management practices. In September 2015, for its second update of the report on how investors are taking action on climate change, more than 800 entities were screened. As a key result, investor's actions gain momentum: approaches are growing in number and becoming more expert, divestments are widespread in Europe, and green investments promises are more ambitious. The last edition of November 2015 highlights and scans an exclusive panel of 960 investors worth Euro 30 trillion of assets who have made steps forward to tackle climate change. During the last 8 months, their number has almost increased twofold. This document brings together the first edition of Novethic's study and its three updates

  18. Global climate change and international security

    Energy Technology Data Exchange (ETDEWEB)

    Rice, M.

    1991-01-01

    On May 8--10, 1991, the Midwest Consortium of International Security Studies (MCISS) and Argonne National Laboratory cosponsored a conference on Global Climate Change and International Security. The aim was to bring together natural and social scientists to examine the economic, sociopolitical, and security implications of the climate changes predicted by the general circulation models developed by natural scientists. Five themes emerged from the papers and discussions: (1) general circulation models and predicted climate change; (2) the effects of climate change on agriculture, especially in the Third World; (3) economic implications of policies to reduce greenhouse gas emissions; (4) the sociopolitical consequences of climate change; and (5) the effect of climate change on global security.

  19. Climate Change Through a Poverty Lens

    Science.gov (United States)

    Rozenberg, J.; Hallegatte, S.

    2017-12-01

    Analysis of the economic impact of climate change typically considers regional or national economies and assesses its impact on macroeconomic aggregates such as gross domestic product. These studies therefore do not investigate the distributional impacts of climate change within countries or the impacts on poverty. This Perspective aims to close this gap and provide an assessment of climate change impacts at the household level to investigate the consequences of climate change for poverty and for poor people. It does so by combining assessments of the physical impacts of climate change in various sectors with household surveys. In particular, it highlights how rapid and inclusive development can reduce the future impact of climate change on poverty.

  20. Climate change in Nova Scotia : a background paper to guide Nova Scotia's climate change action plan

    International Nuclear Information System (INIS)

    2007-10-01

    Climate change causes changes in the temperature of the earth, the level of the sea, and the frequency of extreme weather conditions. The province of Nova Scotia recently released an act related to environmental goals and sustainable prosperity. Addressing climate change is a key element in achieving Nova Scotia's sustainable prosperity goals outlined in the act. The Nova Scotia Department of Energy is working towards developing both policy and action, to help meet its target of a 10 per cent reduction in greenhouse gases from 1990 levels by the year 2020. Two major plans are underway, notably a climate change action plan and a renewed energy strategy. This report provided background information on Nova Scotia's climate change action plan. It discussed climate change issues affecting Nova Scotia, air pollutants, energy sources in Nova Scotia, energy consumers in the province, and Nova Scotia's approach to climate change. The report also discussed actions underway and funding sources. It was concluded that in order for the climate change action plan to be successful, Nova Scotians must use energy more efficiently; use renewable energy; use cleaner energy; and plan for change. 13 refs., 2 tabs., 6 figs., 4 appendices