WorldWideScience

Sample records for ozonation-biological coupled processes

  1. Effect of ozonation on the biological treatability of a textile mill effluent.

    Science.gov (United States)

    Karahan, O; Dulkadiroglu, H; Kabdasli, I; Sozen, S; Babuna, F Germirli; Orhon, D

    2002-12-01

    Ozonation applied prior to biological processes, has proved to be a very effective chemical treatment step mostly for colour removal when soluble dyes are used in textile finishing operations. Its impact on biological treatability however has not been fully evaluated yet. This study evaluates the effect of ozonation on the quality of wastewater from a textile mill involving bleaching and reactive dyeing of cotton and synthetic knit fabric. The effect of ozonation on COD fractionation and kinetic coefficients defining major biological processes is emphasised. The results indicate that the extent of ozone applied greatly affects the remaining organic carbon composition in the wastewater. The relative magnitude of different COD fractions varies as a function of the ozone dose. Ozonation does not however exert a measurable impact on the rate of major biological processes.

  2. Effect of ozone on the performance of a hybrid ceramic membrane-biological activated carbon process.

    Science.gov (United States)

    Guo, Jianning; Hu, Jiangyong; Tao, Yi; Zhu, Jia; Zhang, Xihui

    2014-04-01

    Two hybrid processes including ozonation-ceramic membrane-biological activated carbon (BAC) (Process A) and ceramic membrane-BAC (Process B) were compared to treat polluted raw water. The performance of hybrid processes was evaluated with the removal efficiencies of turbidity, ammonia and organic matter. The results indicated that more than 99% of particle count was removed by both hybrid processes and ozonation had no significant effect on its removal. BAC filtration greatly improved the removal of ammonia. Increasing the dissolved oxygen to 30.0 mg/L could lead to a removal of ammonia with concentrations as high as 7.80 mg/L and 8.69 mg/L for Processes A and B, respectively. The average removal efficiencies of total organic carbon and ultraviolet absorbance at 254 nm (UV254, a parameter indicating organic matter with aromatic structure) were 49% and 52% for Process A, 51% and 48% for Process B, respectively. Some organic matter was oxidized by ozone and this resulted in reduced membrane fouling and increased membrane flux by 25%-30%. However, pre-ozonation altered the components of the raw water and affected the microorganisms in the BAC, which may impact the removals of organic matter and nitrite negatively. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  3. Effects of ozone-vegetation coupling on surface ozone air quality via biogeochemical and meteorological feedbacks

    Science.gov (United States)

    Sadiq, Mehliyar; Tai, Amos P. K.; Lombardozzi, Danica; Martin, Maria Val

    2017-02-01

    Tropospheric ozone is one of the most hazardous air pollutants as it harms both human health and plant productivity. Foliage uptake of ozone via dry deposition damages photosynthesis and causes stomatal closure. These foliage changes could lead to a cascade of biogeochemical and biogeophysical effects that not only modulate the carbon cycle, regional hydrometeorology and climate, but also cause feedbacks onto surface ozone concentration itself. In this study, we implement a semi-empirical parameterization of ozone damage on vegetation in the Community Earth System Model to enable online ozone-vegetation coupling, so that for the first time ecosystem structure and ozone concentration can coevolve in fully coupled land-atmosphere simulations. With ozone-vegetation coupling, present-day surface ozone is simulated to be higher by up to 4-6 ppbv over Europe, North America and China. Reduced dry deposition velocity following ozone damage contributes to ˜ 40-100 % of those increases, constituting a significant positive biogeochemical feedback on ozone air quality. Enhanced biogenic isoprene emission is found to contribute to most of the remaining increases, and is driven mainly by higher vegetation temperature that results from lower transpiration rate. This isoprene-driven pathway represents an indirect, positive meteorological feedback. The reduction in both dry deposition and transpiration is mostly associated with reduced stomatal conductance following ozone damage, whereas the modification of photosynthesis and further changes in ecosystem productivity are found to play a smaller role in contributing to the ozone-vegetation feedbacks. Our results highlight the need to consider two-way ozone-vegetation coupling in Earth system models to derive a more complete understanding and yield more reliable future predictions of ozone air quality.

  4. Enhanced pharmaceutical removal from water in a three step bio-ozone-bio process.

    Science.gov (United States)

    de Wilt, Arnoud; van Gijn, Koen; Verhoek, Tom; Vergnes, Amber; Hoek, Mirit; Rijnaarts, Huub; Langenhoff, Alette

    2018-07-01

    Individual treatment processes like biological treatment or ozonation have their limitations for the removal of pharmaceuticals from secondary clarified effluents with high organic matter concentrations (i.e. 17 mg TOC/L). These limitations can be overcome by combining these two processes for a cost-effective pharmaceutical removal. A three-step biological-ozone-biological (BO 3 B) treatment process was therefore designed for the enhanced pharmaceutical removal from wastewater effluent. The first biological step removed 38% of ozone scavenging TOC, thus proportionally reducing the absolute ozone input for the subsequent ozonation. Complementariness between biological and ozone treatment, i.e. targeting different pharmaceuticals, resulted in cost-effective pharmaceutical removal by the overall BO 3 B process. At a low ozone dose of 0.2 g O 3 /g TOC and an HRT of 1.46 h in the biological reactors, the removal of 8 out of 9 pharmaceuticals exceeded 85%, except for metoprolol (60%). Testing various ozone doses and HRTs revealed that pharmaceuticals were ineffectively removed at 0.1 g O3/g TOC and an HRT of 0.3 h. At HRTs of 0.47 and 1.46 h easily and moderately biodegradable pharmaceuticals such as caffeine, gemfibrozil, ibuprofen, naproxen and sulfamethoxazole were over 95% removed by biological treatment. The biorecalcitrant carbamazepine was completely ozonated at a dose of 0.4 g O 3 /g TOC. Ozonation products are likely biodegraded in the last biological reactor as a 17% TOC removal was found. No appreciable acute toxicity towards D. magna, P. subcapitata and V. fischeri was found after exposure to the influents and effluents of the individual BO 3 B reactors. The BO 3 B process is estimated to increase the yearly wastewater treatment tariff per population equivalent in the Netherlands by less than 10%. Overall, the BO 3 B process is a cost-effective treatment process for the removal of pharmaceuticals from secondary clarified effluents. Copyright

  5. The chemical and biological characteristics of coke-oven wastewater by ozonation

    International Nuclear Information System (INIS)

    Chang, E.-E.; Hsing, H.-J.; Chiang, P.-C.; Chen, M.-Y.; Shyng, J.-Y.

    2008-01-01

    A bench-scale bubble column reactor was used to investigate the biological and chemical characteristics of coke-oven wastewater after ozonation treatment through the examination of selected parameters. Color and thiocyanate could be removed almost entirely; however, organic matter and cyanide could not, due to the inadequate oxidation ability of ozone to remove ozonated byproducts under given experimental conditions. The removal of cyanide and total organic carbon were pH-dependent and were found to be efficient under neutral to alkaline conditions. The removal rate for thiocyanate was about five times that of cyanide. The ozone consumption ratio approached to about 1 at the early stage of ozonation (time TOC ) increased to 30%, indicating that easily degraded pollutants were degraded almost entirely. The effect of ozonation on the subsequent biological treatment unit (i.e., activated sludge process) was determined by observing the ratio of 5-day biological oxygen demand to chemical oxygen demand (BOD 5 /COD) and the specific oxygen utilization rate (SOUR). The results indicated that the contribution of ozonation to inhibition reduction was very significant but limited to the enhancement of biodegradation. The operation for ozonation of coke-oven wastewater was feasible under neutral condition and short ozone contact time in order to achieve better performance and cost savings

  6. Intermittent Ozonation to Reduce Excess Biological Sludge in SBR

    Directory of Open Access Journals (Sweden)

    Afshin Takdastan

    2009-09-01

    Full Text Available A combination of ozonation and an aerobic biological process such as the activated sludge has been recently developed as an alternative solution for sludge reduction with the objective of minimizing the excess biological sludge production. In this study, two SBR reactors each with a capacity of 20 liters and controlled by an on-line system are used. Once the steady state conditions were set in the reactors, sampling and testing of such parameters as COD, MLSS, MLVSS, DO, SOUR, SVI, residual ozone, and Y coefficient were performed over the 8 months of research. Results showed that during the solid retention time of 10 days, the kinetic coefficients of Y and Kd were 0.58 mg biomass/mg COD and 0.058 1/day, respectively. In the next stage of the study, different concentrations of ozone in the reactor were intermittently used to reduce the excess biological sludge production. The results showed that 22 mg of ozone per 1 gram of MLSS in the reactor was able to reduce the yield coefficient Y from 0.58 to 0.23 mg Biomass/mg COD. In other words, the excess biological sludge reduced by 60% but the soluble COD increased slightly in the effluent and the removal percentage decreased from 92 in the blank reactor to 76 in the test reactor. While the amount of SVI and SOUR for this level of ozone concentration reached 6 mgO2/h.gVSS and 27 ml/g, respectively. No excess sludge was observed in the reactor for an ozone concentration of 27 mg per 1 gram of MLSS.

  7. Application of Ozone MBBR Process in Refinery Wastewater Treatment

    Science.gov (United States)

    Lin, Wang

    2018-01-01

    Moving Bed Biofilm Reactor (MBBR) is a kind of sewage treatment technology based on fluidized bed. At the same time, it can also be regarded as an efficient new reactor between active sludge method and the biological membrane method. The application of ozone MBBR process in refinery wastewater treatment is mainly studied. The key point is to design the ozone +MBBR combined process based on MBBR process. The ozone +MBBR process is used to analyze the treatment of concentrated water COD discharged from the refinery wastewater treatment plant. The experimental results show that the average removal rate of COD is 46.0%~67.3% in the treatment of reverse osmosis concentrated water by ozone MBBR process, and the effluent can meet the relevant standard requirements. Compared with the traditional process, the ozone MBBR process is more flexible. The investment of this process is mainly ozone generator, blower and so on. The prices of these items are relatively inexpensive, and these costs can be offset by the excess investment in traditional activated sludge processes. At the same time, ozone MBBR process has obvious advantages in water quality, stability and other aspects.

  8. Kinetics of pulp mill effluent treatment by ozone-based processes

    International Nuclear Information System (INIS)

    Ko, Chun-Han; Hsieh, Po-Hung; Chang, Meng-Wen; Chern, Jia-Ming; Chiang, Shih-Min; Tzeng, Chewn-Jeng

    2009-01-01

    The wastewaters generated from wood pulping and paper production processes are traditionally treated by biological and physicochemical processes. In order to reduce chemical oxygen demand (COD) and color to meet increasingly strict discharge standards, advanced oxidation processes (AOPs) are being adapted as polishing treatment units. Various ozone-based processes were used in this study to treat simulated wastewaters prepared from black liquor from a hardwood Kraft pulp mill in Taiwan. The experimental results showed that the COD and color were primarily removed by direct ozone oxidation and activated carbon adsorption. While the addition of activated carbon could enhance the COD and color removal during ozonation, the addition of hydrogen peroxide improved the color removal only. For the various ozone-based treatment processes, kinetic models were developed to satisfactorily predict the COD and color removal rates. According to the kinetic parameters obtained from the various ozone-based processes, the enhanced COD and color removal of ozonation in the presence of activated carbon was attributed to the regeneration of the activated carbon by ozonation. These kinetic models can be used for reactor design and process design to treat pulping wastewater using ozone-based processes.

  9. Impacts of ozone-vegetation coupling and feedbacks on global air quality, ecosystems and food security

    Science.gov (United States)

    Tai, A. P. K.

    2016-12-01

    Surface ozone is an air pollutant of significant concerns due to its harmful effects on human health, vegetation and crop productivity. Chronic ozone exposure is shown to reduce photosynthesis and interfere with gas exchange in plants, thereby influencing surface energy balance and biogeochemical fluxes with important ramifications for climate and atmospheric composition, including possible feedbacks onto ozone itself that are not well understood. Ozone damage on crops has been well documented, but a mechanistic understanding is not well established. Here we present several results pertaining to the effects of ozone-vegetation coupling on air quality, ecosystems and agriculture. Using the Community Earth System Model (CESM), we find that inclusion of ozone damage on plants reduces the global land carbon sink by up to 5%, while simulated ozone is enhanced by up to 6 ppbv North America, Europe and East Asia. This strong positive feedback on ozone air quality via ozone-vegetation coupling arises mainly from reduced stomatal conductance, which induces two feedback pathways: 1) reduced dry deposition and ozone uptake; and 2) reduced evapotranspiration that enhances vegetation temperature and thus isoprene emission. Using the same ozone-vegetation scheme in a crop model within CESM, we further examine the impacts of historical ozone exposure on global crop production. We contrast our model results with a separate statistical analysis designed to characterize the spatial variability of crop-ozone-temperature relationships and account for the confounding effect of ozone-temperature covariation, using multidecadal global datasets of crop yields, agroclimatic variables and ozone exposures. We find that several crops (especially C4 crops such as maize) exhibit stronger sensitivities to ozone than found by field studies or in CESM simulations. We also find a strong anticorrelation between crop sensitivities and average ozone levels, reflecting biological adaptive ozone

  10. Ozone dosing alters the biological potential and therapeutic outcomes of plasma rich in growth factors.

    Science.gov (United States)

    Anitua, E; Zalduendo, M M; Troya, M; Orive, G

    2015-04-01

    Until now, ozone has been used in a rather empirical way. This in-vitro study investigates, for the first time, whether different ozone treatments of plasma rich in growth factors (PRGF) alter the biological properties and outcomes of this autologous platelet-rich plasma. Human plasma rich in growth factors was treated with ozone using one of the following protocols: a continuous-flow method; or a syringe method in which constant volumes of ozone and PRGF were mixed. In both cases, ozone was added before, during and after the addition of calcium chloride. Three ozone concentrations, of the therapeutic range 20, 40 and 80 μg/mL, were tested. Fibrin clot properties, growth factor content and the proliferative effect on primary osteoblasts and gingival fibroblasts were evaluated. Ozone treatment of PRGF using the continuous flow protocol impaired formation of the fibrin scaffold, drastically reduced the levels of growth factors and significantly decreased the proliferative potential of PRGF on primary osteoblasts and gingival fibroblasts. In contrast, treatment of PRGF with ozone using the syringe method, before, during and after the coagulation process, did not alter the biological outcomes of the autologous therapy. These findings suggest that ozone dose and the way that ozone combines with PRGF may alter the biological potential and therapeutic outcomes of PRGF. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Field-analysis of potable water quality and ozone efficiency in ozone-assisted biological filtration systems for surface water treatment.

    Science.gov (United States)

    Zanacic, Enisa; Stavrinides, John; McMartin, Dena W

    2016-11-01

    Potable water treatment in small communities is challenging due to a complexity of factors starting with generally poor raw water sources, a smaller tax and consumption base that limit capital and operating funds, and culminating in what is typically a less sophisticated and robust water treatment plant for production and delivery of safe, high quality potable water. The design and optimization of modular ozone-assisted biological filtration systems can address some of these challenges. In surface water treatment, the removal of organic matter (e.g., dissolved organic carbon - DOC), inorganic nutrients and other exposure-related contaminants (e.g., turbidity and dissolved solids) from the raw water source is essential. Thus, a combination of chemical and biological oxidation processes can produce an effective and efficient water treatment plant design that is also affordable and robust. To that end, the ozone-assisted biological filtration water treatment plants in two communities were evaluated to determine the efficacy of oxidation and contaminant removal processes. The results of testing for in-field system performance indicate that plant performance is particularly negatively impacted by high alkalinity, high organics loading, and turbidity. Both bicarbonate and carbonate alkalinity were observed to impede ozone contact and interaction with DOC, resulting in lower than anticipated DOC oxidation efficiency and bioavailability. The ozone dosage at both water treatment plants must be calculated on a more routine basis to better reflect both the raw water DOC concentration and presence of alkalinities to ensure maximized organics oxidation and minimization of trihalomethanes production. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Treatment of high strength distillery wastewater (cherry stillage) by integrated aerobic biological oxidation and ozonation.

    Science.gov (United States)

    Beltrán, F J; Alvarez, P M; Rodríguez, E M; García-Araya, J F; Rivas, J

    2001-01-01

    The performance of integrated aerobic digestion and ozonation for the treatment of high strength distillery wastewater (i.e., cherry stillage) is reported. Experiments were conducted in laboratory batch systems operating in draw and fill mode. For the biological step, activated sludge from a municipal wastewater treatment facility was used as inoculum, showing a high degree of activity to distillery wastewater. Thus, BOD and COD overall conversions of 95% and 82% were achieved, respectively. However, polyphenol content and absorbance at 254 nm (A(254)) could not be reduced more than 35% and 15%, respectively, by means of single biological oxidation. By considering COD as substrate, the aerobic digestion process followed a Contois' model kinetics, from which the maximum specific growth rate of microorganisms (mu(max)) and the inhibition factor, beta, were then evaluated at different conditions of temperature and pH. In the combined process, the effect of a post-ozonation stage was studied. The main goals achieved by the ozonation step were the removal of polyphenols and A(254). Therefore, ozonation was shown to be an appropriate technology to aid aerobic biological oxidation in the treatment of cherry stillage.

  13. Effect of coupled anthropogenic perturbations on stratospheric ozone

    International Nuclear Information System (INIS)

    Wuebbles, D.J.; Luther, F.M.; Penner, J.E.

    1992-01-01

    Since 1976 the greatest concern about potential perturbations to stratospheric ozone has been in regard to the atmospheric release of chlorofluorocarbons. Consequently, atmospheric measurements of ozone have usually been compared with model calculations in which only chlorocarbon perturbations are considered. However, in order to compare theoretical calculations with recent measurements of ozone and to project expected changes to atmospheric ozone levels over the next few decades, one must consider the effect from other perturbations as well. In this paper, the authors consider the coupling between several possible anthropogenic atmospheric perturbations. Namely, they examine the effects of past and possible future increases of chlorocarbons, CO 2 , N 2 O, and NO x . The focus of these calculations is on the potential changes in ozone due to chlorocarbon emissions, how other anthropogenic perturbations may have influenced the actual change in ozone over the last decade, and how these perturbations may influence future changes in ozone. Although calculations including future chlorocarbon emissions alone result in significant reductions in ozone, there is very little change in total ozone over the coming decades when other anthropogenic sources are included. Increasing CO 2 concentrations have the largest offsetting effect on the change in total ozone due to chlorocarbons. Owing to the necessity of considering emissions from a number of trace gases simultaneously, determining expected global-scale chemical and climatic effects is more complex than was previously recognized

  14. Elimination of micropollutants and transformation products from a wastewater treatment plant effluent through pilot scale ozonation followed by various activated carbon and biological filters.

    Science.gov (United States)

    Knopp, Gregor; Prasse, Carsten; Ternes, Thomas A; Cornel, Peter

    2016-09-01

    Conventional wastewater treatment plants are ineffective in removing a broad range of micropollutants, resulting in the release of these compounds into the aquatic environment, including natural drinking water resources. Ozonation is a suitable treatment process for micropollutant removal, although, currently, little is known about the formation, behavior, and removal of transformation products (TP) formed during ozonation. We investigated the elimination of 30 selected micropollutants (pharmaceuticals, X-ray contrast media, industrial chemicals, and TP) by biological treatment coupled with ozonation and, subsequently, in parallel with two biological filters (BF) or granular activated carbon (GAC) filters. The selected micropollutants were removed to very different extents during the conventional biological wastewater treatment process. Ozonation (specific ozone consumption: 0.87 ± 0.29 gO3 gDOC(-1), hydraulic retention time: 17 ± 3 min) eliminated a large number of the investigated micropollutants. Although 11 micropollutants could still be detected after ozonation, most of these were eliminated in subsequent GAC filtration at bed volumes (BV) of approximately 25,000 m(3) m(-3). In contrast, no additional removal of micropollutants was achieved in the BF. Ozonation of the analgesic tramadol led to the formation of tramadol-N-oxide that is effectively eliminated by GAC filters, but not by BF. For the antiviral drug acyclovir, the formation of carboxy-acyclovir was observed during activated sludge treatment, with an average concentration of 3.4 ± 1.4 μg L(-1) detected in effluent samples. Subsequent ozonation resulted in the complete elimination of carboxy-acyclovir and led to the formation of N-(4-carbamoyl-2-imino-5-oxo imidazolidin)-formamido-N-methoxyacetetic acid (COFA; average concentration: 2.6 ± 1.0 μg L(-1)). Neither the BF nor the GAC filters were able to remove COFA. These results highlight the importance of considering TP in the

  15. COUPLING OF MEMBRANE BIOREACTOR AND OZONATION FOR REMOVAL OF ANTIBIOTICS FROM HOSPITAL WASTEWATER

    Directory of Open Access Journals (Sweden)

    Bui Xuan Thanh

    2016-02-01

    Full Text Available Antibiotic residues in the environment and their potential toxic effects have been considered as one of the emerging research area in the environmental field. Their continuous introduction in our environment may increase their negative impacts on human health.  In this study, the eliminations of antibiotic such as Norfloxacin (NOR, Ciprofloxacin (CIP, Ofloxacin (OFL and Sulfamethoxazole (SMZ in wastewater of hospital were processed by membrane bioreactor (MBR coupled with ozonation process. In particular, the MBR was applied for the antibiotic removals followed by ozonation process as a post-treatment stage to create an adequate integration to enhance removal efficiency. Achieved results after MBR treatment showed that the removal efficiency of NOR, CIP, OFL and SMZ were 90 ± 4.0% , 83 ± 13% , 81 ± 13 % and  39 ± 6%, respectivley. In addition, those antibiotic matters were continously removed by ozonation process with the removal efficiency of 87±9.0% , 83±1.0% , 81±2.3% and 66±2.3% for NOR, CIP, OFL and SMZ, respectively. In summary, antibiotics could be basically limited by the combination of MBR and ozonation before discharging in aquatic environment.

  16. From ozone depletion to biological UV damage

    Energy Technology Data Exchange (ETDEWEB)

    Tamm, E; Thomalla, E; Koepke, P [Munich Univ. (Germany). Meteorological Inst.

    1996-12-31

    Based on the ozone data from the Meteorological Observatory Hohenpeissenberg (MOHP: 47.8 deg N, 11.01 deg E) and corresponding mean atmospheric conditions, high resolution UV spectra are calculated with a complex radiation transfer model STAR. Biologically weighted UV spectra are investigated as integrated irradiances (dose rates) for maximum zenith angles and as daily integrals for selected days of the year. Ozone variation and uncertainty of action spectra are investigated

  17. From ozone depletion to biological UV damage

    Energy Technology Data Exchange (ETDEWEB)

    Tamm, E.; Thomalla, E.; Koepke, P. [Munich Univ. (Germany). Meteorological Inst.

    1995-12-31

    Based on the ozone data from the Meteorological Observatory Hohenpeissenberg (MOHP: 47.8 deg N, 11.01 deg E) and corresponding mean atmospheric conditions, high resolution UV spectra are calculated with a complex radiation transfer model STAR. Biologically weighted UV spectra are investigated as integrated irradiances (dose rates) for maximum zenith angles and as daily integrals for selected days of the year. Ozone variation and uncertainty of action spectra are investigated

  18. Ozone pretreatment of process waste water generated in course of fluoroquinolone production.

    Science.gov (United States)

    Daoud, Fares; Pelzer, David; Zuehlke, Sebastian; Spiteller, Michael; Kayser, Oliver

    2017-10-01

    During production of active pharmaceutical ingredients, process waste water is generated at several stages of manufacturing. Whenever possible, the resulting waste water will be processed by conventional waste water treatment plants. Currently, incineration of the process waste water is the method to eliminate compounds with high biological activity. Thus, ozone treatment followed by biological waste water treatment was tested as an alternative method. Two prominent representatives of the large group of fluoroquinolone antibiotics (ciprofloxacin and moxifloxacin) were investigated, focussing on waste water of the bulk production. Elimination of the target compounds and generation of their main transformation products were determined by liquid chromatography - high resolution mass spectrometry (LC-HRMS). The obtained results demonstrated, that the concentration of moxifloxacin and its metabolites can be effectively reduced (>99.7%) prior entering the receiving water. On the contrary, the concentration of ciprofloxacin and its metabolites remained too high for safe discharge, necessitating application of prolonged ozonation for its further degradation. The required ozonation time can be estimated based on the determined kinetics. To assure a low biological activity the ecotoxicity of the ozonated waste water was investigated using three trophic levels. By means of multiple-stage mass spectrometry (MS n ) experiments several new transformation products of the fluoroquinolones were identified. Thus, previously published proposed structures could be corrected or confirmed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. The Use of Al, Cu, and Fe in an Integrated Electrocoagulation-Ozonation Process

    Directory of Open Access Journals (Sweden)

    Carlos E. Barrera Díaz

    2015-01-01

    Full Text Available This study presents the effect of supplying electrochemically generated metallic ions (Al, Cu, and Fe during an ozonation process for treating industrial wastewater. The pollutant removal efficiencies of the electrocoagulation (EC, ozonation, and coupled EC-ozonation processes were examined by the decrease in chemical oxygen demand (COD as a function of treatment time. The EC was performed in a raw industrial wastewater, which has contributions from 39 chemical, 34 metal finishing, 22 textile, 11 leather, and 5 automotive plants, at pH (7.3 using a current density of 150 A/m2 for 60 min, giving a 45% reduction in COD. The ozonation process was more effective with the same wastewater, reducing the COD by 52% after 60 min of treatment. Combining the EC and ozonation methods resulted in a synergistic process that improves the reduction of COD in a shorter time. In just 12 min the integrated process reduced the COD by 88%. Thus, the combination of EC and ozonation processes improves noticeably the wastewater quality, decreasing the treatment time and also reducing the sludge production.

  20. Impact of ozonation and biological activated carbon filtration on ceramic membrane fouling.

    Science.gov (United States)

    Ibn Abdul Hamid, Khaled; Sanciolo, Peter; Gray, Stephen; Duke, Mikel; Muthukumaran, Shobha

    2017-12-01

    Ozone pre-treatment (ozonation, ozonisation) and biological activated carbon (BAC) filtration pre-treatment for the ceramic microfiltration (CMF) treatment of secondary effluent (SE) were studied. Ozone pre-treatment was found to result in higher overall removal of UV absorbance (UVA 254 ) and colour, and higher permeability than BAC pre-treatment or the combined use of ozone and BAC (O3+BAC) pre-treatment. The overall removal of colour and UVA 254 by ceramic filtration of the ozone pre-treated water was 97% and 63% respectively, compared to 86% and 48% respectively for BAC pre-treatment and 29% and 6% respectively for the untreated water. Ozone pre-treatment, however, was not effective in removal of dissolved organic carbon (DOC). The permeability of the ozone pre-treated water through the ceramic membrane was found to decrease to 50% of the original value after 200 min of operation, compared to approximately 10% of the original value for the BAC pre-treated, O3+BAC pre-treated water and the untreated water. The higher permeability of the ozone pre-treated water was attributed to the excellent removal of biopolymer particles (100%) and high removal of humic substances (84%). The inclusion of a BAC stage between ozone pre-treatment and ceramic filtration was detrimental. The O3+BAC+CMF process was found to yield higher biopolymer removal (96%), lower humic substance (HS) component removal (66%) and lower normalized permeability (0.1) after 200 min of operation than the O3+CMF process (86%, 84% and 0.5 respectively). This was tentatively attributed to the chemical oxidation effect of ozone on the BAC biofilm and adsorbed components, leading to the generation of foulants that are not generated in the O3+CMF process. This study demonstrated the potential of ozone pre-treatment for reducing organic fouling and thus improving flux for the CMF of SE compared to O3+BAC pre-treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Degradation and COD removal of catechol in wastewater using the catalytic ozonation process combined with the cyclic rotating-bed biological reactor.

    Science.gov (United States)

    Aghapour, Ali Ahmad; Moussavi, Gholamreza; Yaghmaeian, Kamyar

    2015-07-01

    The effect of ozonation catalyzed with MgO/granular activated carbon (MgO/GAC) composite as a pretreatment process on the performance of cyclic rotating-bed biological reactor (CRBR) for the catechol removal from wastewater has been investigated. CRBR with acclimated biomasses could efficiently remove catechol and its related COD from wastewater at organic loading rate (OLR) of 7.82 kg COD/m(3).d (HRT of 9 h). Then, OLR increased to 15.64 kg COD/m(3).d (HRT of 4.5 h) and CRBR failed. Catalytic ozonation process (COP) used as a pre-treatment and could improve the performance of the failed CRBR. The overall removal efficiency of the combined process attained respective steady states of 91% and 79% for degradation and COD removal of catechol. Therefore, the combined process is more effective in degradation and COD removal of catechol; it is also a viable alternative for upgrading industrial wastewater treatment plant. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Biologically resistant contaminants, primary treatment with ozone

    Energy Technology Data Exchange (ETDEWEB)

    Echegaray, Diego F [White Martins Gases Industriais do Nordeste S.A., Salvador, BA (Brazil); Olivieri, Nadja F [White Martins Gases Industriais S.A., Cordovil, RJ (Brazil)

    1994-12-31

    Organic effluent oxidation tests were conducted in petrochemical companies, in Camacari Petrochemical Complex (Northeast Brazil), to reduce treatment costs and improve the primary treatment efficiency in each industrial process. Ozone achieved 99.96 percent benzene reduction and 100 percent ethyl benzene and toluene reduction. Process efficiency is strongly dependent on the wastewater chemical composition and concentration. For this reason it is necessary to run pilot trials for each specific case. Ozone was obtained feeding commercial oxygen through a corona discharge generator and dissolved in the effluent with a bubble column. Commercial oxygen was used instead of air to increase 250 percent the ozone production, using the same ozone generator. (author). 4 figs., 2 tabs.

  3. Biologically resistant contaminants, primary treatment with ozone

    Energy Technology Data Exchange (ETDEWEB)

    Echegaray, Diego F. [White Martins Gases Industriais do Nordeste S.A., Salvador, BA (Brazil); Olivieri, Nadja F. [White Martins Gases Industriais S.A., Cordovil, RJ (Brazil)

    1993-12-31

    Organic effluent oxidation tests were conducted in petrochemical companies, in Camacari Petrochemical Complex (Northeast Brazil), to reduce treatment costs and improve the primary treatment efficiency in each industrial process. Ozone achieved 99.96 percent benzene reduction and 100 percent ethyl benzene and toluene reduction. Process efficiency is strongly dependent on the wastewater chemical composition and concentration. For this reason it is necessary to run pilot trials for each specific case. Ozone was obtained feeding commercial oxygen through a corona discharge generator and dissolved in the effluent with a bubble column. Commercial oxygen was used instead of air to increase 250 percent the ozone production, using the same ozone generator. (author). 4 figs., 2 tabs.

  4. Phenol wastewater remediation: advanced oxidation processes coupled to a biological treatment.

    Science.gov (United States)

    Rubalcaba, A; Suárez-Ojeda, M E; Stüber, F; Fortuny, A; Bengoa, C; Metcalfe, I; Font, J; Carrera, J; Fabregat, A

    2007-01-01

    Nowadays, there are increasingly stringent regulations requiring more and more treatment of industrial effluents to generate product waters which could be easily reused or disposed of to the environment without any harmful effects. Therefore, different advanced oxidation processes were investigated as suitable precursors for the biological treatment of industrial effluents containing phenol. Wet air oxidation and Fenton process were tested batch wise, while catalytic wet air oxidation and H2O2-promoted catalytic wet air oxidation processes were studied in a trickle bed reactor, the last two using over activated carbon as catalyst. Effluent characterisation was made by means of substrate conversion (using high liquid performance chromatography), chemical oxygen demand and total organic carbon. Biodegradation parameters (i.e. maximum oxygen uptake rate and oxygen consumption) were obtained from respirometric tests using activated sludge from an urban biological wastewater treatment plant (WWTP). The main goal was to find the proper conditions in terms of biodegradability enhancement, so that these phenolic effluents could be successfully treated in an urban biological WWTP. Results show promising research ways for the development of efficient coupled processes for the treatment of wastewater containing toxic or biologically non-degradable compounds.

  5. Micropollutant removal during biological wastewater treatment and a subsequent ozonation step

    Energy Technology Data Exchange (ETDEWEB)

    Schaar, Heidemarie, E-mail: hschaar@iwag.tuwien.ac.a [Institute of Water Quality, Resources and Waste Management, Vienna University of Technology, Karlsplatz 13/226, 1040 Vienna (Austria); Clara, Manfred; Gans, Oliver [Umweltbundesamt, Spittelauer Lande 5, 1090 Vienna (Austria); Kreuzinger, Norbert [Institute of Water Quality, Resources and Waste Management, Vienna University of Technology, Karlsplatz 13/226, 1040 Vienna (Austria)

    2010-05-15

    The design criteria for wastewater treatment plants (WWTP) and the sludge retention time, respectively, have a significant impact on micropollutant removal. The upgrade of an Austrian municipal WWTP to nitrogen removal (best available technology, BAT) resulted in increased elimination of most of the analyzed micropollutants. Substances, such as bisphenol-A, 17alpha-ethinylestradiol and the antibiotics erythromycin and roxithromycin were only removed after the upgrade of the WWTP. Nevertheless, the BAT was not sufficient to completely eliminate these compounds. Thus, a pilot scale ozonation plant was installed for additional treatment of the effluent. The application of 0.6 g O{sub 3} g DOC{sup -1} increased the removal of most of the micropollutants, especially for compounds that were not degraded in the previous biological process, as for example carbamazepine and diclofenac. These results indicated that the ozonation of WWTP effluent is a promising technology to further decrease emissions of micropollutants from the treatment process. - SRT is an important criterion for micropollutant removal in wastewater treatment and the application of ozone is suitable for further removal of micropollutants.

  6. Micropollutant removal during biological wastewater treatment and a subsequent ozonation step

    International Nuclear Information System (INIS)

    Schaar, Heidemarie; Clara, Manfred; Gans, Oliver; Kreuzinger, Norbert

    2010-01-01

    The design criteria for wastewater treatment plants (WWTP) and the sludge retention time, respectively, have a significant impact on micropollutant removal. The upgrade of an Austrian municipal WWTP to nitrogen removal (best available technology, BAT) resulted in increased elimination of most of the analyzed micropollutants. Substances, such as bisphenol-A, 17α-ethinylestradiol and the antibiotics erythromycin and roxithromycin were only removed after the upgrade of the WWTP. Nevertheless, the BAT was not sufficient to completely eliminate these compounds. Thus, a pilot scale ozonation plant was installed for additional treatment of the effluent. The application of 0.6 g O 3 g DOC -1 increased the removal of most of the micropollutants, especially for compounds that were not degraded in the previous biological process, as for example carbamazepine and diclofenac. These results indicated that the ozonation of WWTP effluent is a promising technology to further decrease emissions of micropollutants from the treatment process. - SRT is an important criterion for micropollutant removal in wastewater treatment and the application of ozone is suitable for further removal of micropollutants.

  7. Combined anaerobic–ozonation process for treatment of textile wastewater: Removal of acute toxicity and mutagenicity

    Energy Technology Data Exchange (ETDEWEB)

    Punzi, Marisa, E-mail: marisa.punzi@biotek.lu.se [Department of Biotechnology, Lund University, P.O. Box 124, SE-221 00 Lund (Sweden); Nilsson, Filip [Water and Environmental Engineering at the Department of Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund (Sweden); Anbalagan, Anbarasan [Department of Biotechnology, Lund University, P.O. Box 124, SE-221 00 Lund (Sweden); Svensson, Britt-Marie [School of Education and Environment, Kristianstad University, SE-291 88 Kristianstad (Sweden); Jönsson, Karin [Water and Environmental Engineering at the Department of Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund (Sweden); Mattiasson, Bo; Jonstrup, Maria [Department of Biotechnology, Lund University, P.O. Box 124, SE-221 00 Lund (Sweden)

    2015-07-15

    Highlights: • COD and UV absorbance were effectively reduced. • The treated effluents were non-toxic to Artemia salina and Vibrio fischeri. • The real textile wastewater was mutagenic. • Mutagenicity persisted after bio treatment and even more after a short ozonation. • Higher ozone doses completely remove mutagenicity. - Abstract: A novel set up composed of an anaerobic biofilm reactor followed by ozonation was used for treatment of artificial and real textile effluents containing azo dyes. The biological treatment efficiently removed chemical oxygen demand and color. Ozonation further reduced the organic content of the effluents and was very important for the degradation of aromatic compounds, as shown by the reduction of UV absorbance. The acute toxicity toward Vibrio fischeri and the shrimp Artemia salina increased after the biological treatment. No toxicity was detected after ozonation with the exception of the synthetic effluent containing the highest concentration, 1 g/l, of the azo dye Remazol Red. Both untreated and biologically treated textile effluents were found to have mutagenic effects. The mutagenicity increased even further after 1 min of ozonation. No mutagenicity was however detected in the effluents subjected to longer exposure to ozone. The results of this study suggest that the use of ozonation as short post-treatment after a biological process can be beneficial for the degradation of recalcitrant compounds and the removal of toxicity of textile wastewater. However, monitoring of toxicity and especially mutagenicity is crucial and should always be used to assess the success of a treatment strategy.

  8. Attribution of ozone changes to dynamical and chemical processes in CCMs and CTMs

    Directory of Open Access Journals (Sweden)

    H. Garny

    2011-04-01

    Full Text Available Chemistry-climate models (CCMs are commonly used to simulate the past and future development of Earth's ozone layer. The fully coupled chemistry schemes calculate the chemical production and destruction of ozone interactively and ozone is transported by the simulated atmospheric flow. Due to the complexity of the processes acting on ozone it is not straightforward to disentangle the influence of individual processes on the temporal development of ozone concentrations. A method is introduced here that quantifies the influence of chemistry and transport on ozone concentration changes and that is easily implemented in CCMs and chemistry-transport models (CTMs. In this method, ozone tendencies (i.e. the time rate of change of ozone are partitioned into a contribution from ozone production and destruction (chemistry and a contribution from transport of ozone (dynamics. The influence of transport on ozone in a specific region is further divided into export of ozone out of that region and import of ozone from elsewhere into that region. For this purpose, a diagnostic is used that disaggregates the ozone mixing ratio field into 9 separate fields according to in which of 9 predefined regions of the atmosphere the ozone originated. With this diagnostic the ozone mass fluxes between these regions are obtained. Furthermore, this method is used here to attribute long-term changes in ozone to chemistry and transport. The relative change in ozone from one period to another that is due to changes in production or destruction rates, or due to changes in import or export of ozone, are quantified. As such, the diagnostics introduced here can be used to attribute changes in ozone on monthly, interannual and long-term time-scales to the responsible mechanisms. Results from a CCM simulation are shown here as examples, with the main focus of the paper being on introducing the method.

  9. Improved simulation of tropospheric ozone by a global-multi-regional two-way coupling model system

    Directory of Open Access Journals (Sweden)

    Y. Yan

    2016-02-01

    Full Text Available Small-scale nonlinear chemical and physical processes over pollution source regions affect the tropospheric ozone (O3, but these processes are not captured by current global chemical transport models (CTMs and chemistry–climate models that are limited by coarse horizontal resolutions (100–500 km, typically 200 km. These models tend to contain large (and mostly positive tropospheric O3 biases in the Northern Hemisphere. Here we use the recently built two-way coupling system of the GEOS-Chem CTM to simulate the regional and global tropospheric O3 in 2009. The system couples the global model (at 2.5° long.  ×  2° lat. and its three nested models (at 0.667° long.  ×  0.5° lat. covering Asia, North America and Europe, respectively. Specifically, the nested models take lateral boundary conditions (LBCs from the global model, better capture small-scale processes and feed back to modify the global model simulation within the nested domains, with a subsequent effect on their LBCs. Compared to the global model alone, the two-way coupled system better simulates the tropospheric O3 both within and outside the nested domains, as found by evaluation against a suite of ground (1420 sites from the World Data Centre for Greenhouse Gases (WDCGG, the United States National Oceanic and Atmospheric Administration (NOAA Earth System Research Laboratory Global Monitoring Division (GMD, the Chemical Coordination Centre of European Monitoring and Evaluation Programme (EMEP, and the United States Environmental Protection Agency Air Quality System (AQS, aircraft (the High-performance Instrumented Airborne Platform for Environmental Research (HIAPER Pole-to-Pole Observations (HIPPO and Measurement of Ozone and Water Vapor by Airbus In- Service Aircraft (MOZAIC and satellite measurements (two Ozone Monitoring Instrument (OMI products. The two-way coupled simulation enhances the correlation in day-to-day variation of afternoon mean surface O3

  10. Removal of selected nitrogenous heterocyclic compounds in biologically pretreated coal gasification wastewater (BPCGW) using the catalytic ozonation process combined with the two-stage membrane bioreactor (MBR).

    Science.gov (United States)

    Zhu, Hao; Han, Yuxing; Ma, Wencheng; Han, Hongjun; Ma, Weiwei

    2017-12-01

    Three identical anoxic-aerobic membrane bioreactors (MBRs) were operated in parallel for 300 consecutive days for raw (R 1 ), ozonated (R 2 ) and catalytic ozonated (R 3 ) biologically pretreated coal gasification wastewater (BPCGW) treatment. The results demonstrated that catalytic ozonation process (COP) applied asa pretreatment remarkably improved the performance of the unsatisfactory single MBR. The overall removal efficiencies of COD, NH 3 -N and TN in R 3 were 92.7%, 95.6% and 80.6%, respectively. In addition, typical nitrogenous heterocyclic compounds (NHCs) of quinoline, pyridine and indole were completely removed in the integrated process. Moreover, COP could alter sludge properties and reshape microbial community structure, thus delaying the occurrence of membrane fouling. Finally, the total cost for this integrated process was estimated to be lower than that of single MBR. The results of this study suggest that COP is a good option to enhance pollutants removal and alleviate membrane fouling in the MBR for BPCGW treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Enhanced pharmaceutical removal from water in a three step bio-ozone-bio process

    NARCIS (Netherlands)

    Wilt, de Arnoud; Gijn, van Koen; Verhoek, Tom; Vergnes, Amber; Hoek, Mirit; Rijnaarts, Huub; Langenhoff, Alette

    2018-01-01

    Individual treatment processes like biological treatment or ozonation have their limitations for the removal of pharmaceuticals from secondary clarified effluents with high organic matter concentrations (i.e. 17 mg TOC/L). These limitations can be overcome by combining these two processes for a

  12. Toward a biologically significant and usable standard for ozone that will also protect plants

    International Nuclear Information System (INIS)

    Paoletti, Elena; Manning, William J.

    2007-01-01

    Ozone remains an important phytotoxic air pollutant and is also recognized as a significant greenhouse gas. In North America, Europe, and Asia, incidence of high concentrations is decreasing, but background levels are steadily rising. There is a need to develop a biologically significant and usable standard for ozone. We compare the strengths and weaknesses of concentration-based, exposure-based and threshold-based indices, such as SUM60 and AOT40, and examine the O 3 flux concept. We also present major challenges to the development of an air quality standard for ozone that has both biological significance and practicality in usage. - Current standards do not protect vegetation from ozone, but progress is being made

  13. Advanced oxidation process-biological system for wastewater containing a recalcitrant pollutant.

    Science.gov (United States)

    Oller, I; Malato, S; Sánchez-Pérez, J A; Maldonado, M I; Gernjak, W; Pérez-Estrada, L A

    2007-01-01

    Two advanced oxidation processes (AOPs), ozonation and photo-Fenton, combined with a pilot aerobic biological reactor at field scale were employed for the treatment of industrial non-biodegradable saline wastewater (TOC around 200 mgL(-1)) containing a biorecalcitrant compound, alpha-methylphenylglycine (MPG), at a concentration of 500 mgL(-1). Ozonation experiments were performed in a 50-L reactor with constant inlet ozone of 21.9 g m(-3). Solar photo-Fenton tests were carried out in a 75-L pilot plant made up of four compound parabolic collector (CPC) units. The catalyst concentration employed in this system was 20 mgL(-1) of Fe2+ and the H2O2 concentration was kept in the range of 200-500mgL(-1). Complete degradation of MPG was attained after 1,020 min of ozone treatment, while only 195 min were required for photo-Fenton. Samples from different stages of both AOPs were taken for Zahn-Wellens biocompatibility tests. Biodegradability enhancement of the industrial saline wastewater was confirmed (>70% biodegradability). Biodegradable compounds generated during the preliminary oxidative processes were biologically mineralised in a 170-L aerobic immobilised biomass reactor (IBR). The global efficiency of both AOP/biological combined systems was 90% removal of an initial TOC of over 500 mgL(-1).

  14. Investigating the effect of gas flow rate, inlet ozone concentration and relative humidity on the efficacy of catalytic ozonation process in the removal of xylene from waste airstream

    Directory of Open Access Journals (Sweden)

    H.R. MokaramI

    2010-10-01

    Full Text Available Background and aimsThe catalytic ozonation is an efficient process for the degradation of volatile organic compounds from contaminated air stream. This study was aimed at investigating the efficacy of catalytic ozonation process in removal of xylene from the polluted air stream andthe influence of retention time (gas flow rate, inlet ozone dose and relative humidity on this performanceMethodsthe catalytic ozonation of xylene was conducted using a bench scale set-up consisted of a syringe pump,an air pump, an ozone generator, and a glass reactor packed with activated carbon. Several experimental run was defined to investigate the influence of the selectedoperational variables.ResultsThe results indicated that the efficiency of catalytic ozonation was greater than that of single adsorption in removal of xylene under similar inlet concentration and relative humidity. We found a significant catalytic effect for activated carbon when used in combination with ozonation process, leading to improvement of xylene removal percentage. In addition, the elimination capacity of the system improved with the increase of inlet ozone dose as well as gas flow rate. The relative humidity showed a positive effect of the xylene removal at the range of 5 to 50%, while the higher humidity (more than 50% resulted in reduction of the performance.ConclusionThe findings of the present work revealed that the catalytic ozonation process can be an efficient technique for treating the air streams containing industrial concentrations of xylene. Furthermore, there is a practical potential to retrofit the present adsorption systems intothe catalytic ozonation simply by coupling them with the ozonation system. the catalytic ozonation of xylene was conducted using a bench scale set-up consisted of a syringe pump,an air pump, an ozone generator, and a glass reactor packed with activated carbon. Several experimental run was defined to investigate the influence of the selected

  15. Dependence of biologically active UV radiation on the atmospheric ozone in 2000 - 2001 over Stara Zagora, Bulgaria

    International Nuclear Information System (INIS)

    Gogosheva, Tz.; Petkov, B.; Mendeva, B.; Krastev, D.

    2003-01-01

    This study investigates how the changes in simultaneously measured ozone columns influence the biologically active UV irradiance. Spectral ground-based measurements of direct solar ultraviolet radiation performed at Stara Zagora (42 o N, 25 o E), Bulgaria in 2000 - 2001 are used in conjunction with the total ozone content to investigate the relation to the biologically active UV radiation, depending on the solar zenith angle (SZA) and the ozone. The device measures the direct solar radiation in the range 290 - 360 nm at 1 nm resolution. The direct sun UV doses for some specific biological effects (erythema and eyes) are obtained as the integral in the wavelength interval between 290 and 330 nm of the UV solar spectrum weighted with an action spectrum, typical of each effect. For estimation of the sensitivity of biological doses to the atmospheric ozone we calculate the radiation amplification factor (RAF) defined as the percentage increase in the column amount of the atmospheric ozone. The biological doses increase significantly with the decrease of the SZA. The doses of SZA=20 o are about three times larger than doses at SZA=50 o . The RAF derived from our spectral measurements shows an increase of RAF along with the decreasing ozone. For example, the ozone reduction by 1% increases the erythemal dose by about 2%. (authors)

  16. Biological couplings: Classification and characteristic rules

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The phenomena that biological functions originate from biological coupling are the important biological foundation of multiple bionics and the significant discoveries in the bionic fields. In this paper, the basic concepts related to biological coupling are introduced from the bionic viewpoint. Constitution, classification and characteristic rules of biological coupling are illuminated, the general modes of biological coupling studies are analyzed, and the prospects of multi-coupling bionics are predicted.

  17. Biological UV-doses and the effect on an ozone layer depletion

    International Nuclear Information System (INIS)

    Dahlback, A.; Henriksen, T.

    1988-08-01

    Effective UV-doses were calculated based on the integrated product of the biological action spectrum and the solar radiation. The calculations included absorption and scattering of UV-radiation in the atmosphere, both for normal ozone conditions as well as for a depleted ozone layer. The effective annual UV-dose increases by approximately 4% per degree of latitude towards the equator. An ozone depletion of 1% increases the annual UV-dose by approximately 1% at 60 o N. A large depletion of 50% over Scandinavia (60 o N) would give this region an effective UV-dose similar to that obtained, with normal ozone conditions, at a latitude of 40 o N (California or the Mediterranean countries). The Antarctic ozone hole increases the annual UV-dose by 20 to 25% which is a similar increase as that attained by moving 5 to 6 degrees of latitude nearer the equator. The annual UV-dose on higher latitudes is mainly determined by the summer values of ozone. Both the ozone values and the effective UV-doses vary from one year to another (within ±4%). No positive or negative trend is observed for Scandinavia from 1978 to 1988

  18. Ozone depletion calculations

    International Nuclear Information System (INIS)

    Luther, F.M.; Chang, J.S.; Wuebbles, D.J.; Penner, J.E.

    1992-01-01

    Models of stratospheric chemistry have been primarily directed toward an understanding of the behavior of stratospheric ozone. Initially this interest reflected the diagnostic role of ozone in the understanding of atmospheric transport processes. More recently, interest in stratospheric ozone has arisen from concern that human activities might affect the amount of stratospheric ozone, thereby affecting the ultraviolet radiation reaching the earth's surface and perhaps also affecting the climate with various potentially severe consequences for human welfare. This concern has inspired a substantial effort to develop both diagnostic and prognostic models of stratospheric ozone. During the past decade, several chemical agents have been determined to have potentially significant impacts on stratospheric ozone if they are released to the atmosphere in large quantities. These include oxides of nitrogen, oxides of hydrogen, chlorofluorocarbons, bromine compounds, fluorine compounds and carbon dioxide. In order to assess the potential impact of the perturbations caused by these chemicals, mathematical models have been developed to handle the complex coupling between chemical, radiative, and dynamical processes. Basic concepts in stratospheric modeling are reviewed

  19. Oxidative treatment of a waste water stream from a molasses processing using ozone and advanced oxidation technologies

    International Nuclear Information System (INIS)

    Gehringer, P.; Szinovatz, W.; Eschweiler, H.; Haberl, R.

    1994-08-01

    The discoloration of a biologically pretreated waste water stream from a molasses processing by ozonation and two advanced oxidation processes (O 3 /H 2 O 2 and O 3 /γ-irradiation, respectively) was studied. Colour removal occurred with all three processes with almost the same efficiency. The main difference of the methods applied was reflected by the BOD increase during the discoloration period. By ozonation it was much higher than by AOPs but it also appeared with AOPs. AOPs were, therefore, not apt for an effective BOD control during discoloration. (authors)

  20. Degradation alternatives for a commercial fungicide in water: biological, photo-Fenton, and coupled biological photo-Fenton processes.

    Science.gov (United States)

    López-Loveira, Elsa; Ariganello, Federico; Medina, María Sara; Centrón, Daniela; Candal, Roberto; Curutchet, Gustavo

    2017-11-01

    Imazalil (IMZ) is a widely used fungicide for the post-harvest treatment of citrus, classified as "likely to be carcinogenic in humans" for EPA, that can be only partially removed by conventional biological treatment. Consequently, specific or combined processes should be applied to prevent its release to the environment. Biological treatment with adapted microorganism consortium, photo-Fenton, and coupled biological photo-Fenton processes were tested as alternatives for the purification of water containing high concentration of the fungicide and the coadjutants present in the commercial formulation. IMZ-resistant consortium with the capacity to degrade IMZ in the presence of a C-rich co-substrate was isolated from sludge coming from a fruit packaging company wastewater treatment plant. This consortium was adapted to resist and degrade the organics present in photo-Fenton-oxidized IMZ water solution. Bacteria colonies from the consortia were isolated and identified. The effect of H 2 O 2 initial concentration and dosage on IMZ degradation rate, average oxidation state (AOS), organic acid concentration, oxidation, and mineralization percentage after photo-Fenton process was determined. The application of biological treatment to the oxidized solutions notably decreased the total organic carbon (TOC) in solution. The effect of the oxidation degree, limited by H 2 O 2 concentration and dosage, on the percentage of mineralization obtained after the biological treatment was determined and explained in terms of changes in AOS. The concentration of H 2 O 2 necessary to eliminate IMZ by photo-Fenton and to reduce TOC and chemical oxygen demand (COD) by biological treatment, in order to allow the release of the effluents to rivers with different flows, was estimated.

  1. Heterogeneous catalytic ozonation of biologically pretreated Lurgi coal gasification wastewater using sewage sludge based activated carbon supported manganese and ferric oxides as catalysts.

    Science.gov (United States)

    Zhuang, Haifeng; Han, Hongjun; Hou, Baolin; Jia, Shengyong; Zhao, Qian

    2014-08-01

    Sewage sludge of biological wastewater treatment plant was converted into sewage sludge based activated carbon (SBAC) with ZnCl₂ as activation agent, which supported manganese and ferric oxides as catalysts (including SBAC) to improve the performance of ozonation of real biologically pretreated Lurgi coal gasification wastewater. The results indicated catalytic ozonation with the prepared catalysts significantly enhanced performance of pollutants removal and the treated wastewater was more biodegradable and less toxic than that in ozonation alone. On the basis of positive effect of higher pH and significant inhibition of radical scavengers in catalytic ozonation, it was deduced that the enhancement of catalytic activity was responsible for generating hydroxyl radicals and the possible reaction pathway was proposed. Moreover, the prepared catalysts showed superior stability and most of toxic and refractory compounds were eliminated at successive catalytic ozonation runs. Thus, the process with economical, efficient and sustainable advantages was beneficial to engineering application. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. A MODELING AND SIMULATION LANGUAGE FOR BIOLOGICAL CELLS WITH COUPLED MECHANICAL AND CHEMICAL PROCESSES.

    Science.gov (United States)

    Somogyi, Endre; Glazier, James A

    2017-04-01

    Biological cells are the prototypical example of active matter. Cells sense and respond to mechanical, chemical and electrical environmental stimuli with a range of behaviors, including dynamic changes in morphology and mechanical properties, chemical uptake and secretion, cell differentiation, proliferation, death, and migration. Modeling and simulation of such dynamic phenomena poses a number of computational challenges. A modeling language describing cellular dynamics must naturally represent complex intra and extra-cellular spatial structures and coupled mechanical, chemical and electrical processes. Domain experts will find a modeling language most useful when it is based on concepts, terms and principles native to the problem domain. A compiler must then be able to generate an executable model from this physically motivated description. Finally, an executable model must efficiently calculate the time evolution of such dynamic and inhomogeneous phenomena. We present a spatial hybrid systems modeling language, compiler and mesh-free Lagrangian based simulation engine which will enable domain experts to define models using natural, biologically motivated constructs and to simulate time evolution of coupled cellular, mechanical and chemical processes acting on a time varying number of cells and their environment.

  3. Enhanced treatment of secondary municipal wastewater effluent: comparing (biological) filtration and ozonation in view of micropollutant removal, unselective effluent toxicity, and the potential for real-time control.

    Science.gov (United States)

    Chys, Michael; Demeestere, Kristof; Ingabire, Ange Sabine; Dries, Jan; Van Langenhove, Herman; Van Hulle, Stijn W H

    2017-07-01

    Ozonation and three (biological) filtration techniques (trickling filtration (TF), slow sand filtration (SSF) and biological activated carbon (BAC) filtration) have been evaluated in different combinations as tertiary treatment for municipal wastewater effluent. The removal of 18 multi-class pharmaceuticals, as model trace organic contaminants (TrOCs), has been studied. (Biological) activated carbon filtration could reduce the amount of TrOCs significantly (>99%) but is cost-intensive for full-scale applications. Filtration techniques mainly depending on biodegradation mechanisms (TF and SSF) are found to be inefficient for TrOCs removal as a stand alone technique. Ozonation resulted in 90% removal of the total amount of quantified TrOCs, but a post-ozonation step is needed to cope with an increased unselective toxicity. SSF following ozonation showed to be the only technique able to reduce the unselective toxicity to the same level as before ozonation. In view of process control, innovative correlation models developed for the monitoring and control of TrOC removal during ozonation, are verified for their applicability during ozonation in combination with TF, SSF or BAC. Particularly for the poorly ozone reactive TrOCs, statistically significant models were obtained that correlate TrOC removal and reduction in UVA 254 as an online measured surrogate parameter.

  4. Combination of ozonation, activated carbon, and biological aerated filter for advanced treatment of dyeing wastewater for reuse.

    Science.gov (United States)

    Zou, Xiao-Ling

    2015-06-01

    Laboratorial scale experiments were performed to investigate and evaluate the performance and removal characteristics of organics, color, and genotoxicity by an integrated process including ozonation, activated carbon (AC), and biological aerated filter (BAF) for recycling biotreated dyeing wastewater (BTDW) collected from a cotton textile factory. Influent chemical oxygen demand (COD) in the range of 156 - 252 mg/L, 5-day biochemical oxygen demand (BOD5) of 13.5 - 21.7 mg/L, and color of 58 - 76° were observed during the 20-day continuous operation. Outflows with average COD of 43 mg/L, BOD5 of 6.6 mg/L, and color of 5.6° were obtained after being decontaminated by the hybrid system with ozone dosage of 0.25 mg O3applied/mg COD0, 40 min ozonation contact time, 30 min hydraulic retention time (HRT) for AC treatment, and 2.5 h HRT for BAF treatment. More than 82 % of the genotoxicity of BTDW was eliminated in the ozonation unit. The genotoxicity of the BAF effluent was less than 1.33 μg 4-nitroquinoline-N-oxide/L. Ozonation could change the organics molecular structures, destroy chromophores, increase the biodegradability, and obviously reduce the genotoxicity of BTDW. Results showed that the combined process could guarantee water reuse with high quality.

  5. Advanced treatment of biologically pretreated coal chemical industry wastewater using the catalytic ozonation process combined with a gas-liquid-solid internal circulating fluidized bed reactor.

    Science.gov (United States)

    Li, Zhipeng; Liu, Feng; You, Hong; Ding, Yi; Yao, Jie; Jin, Chao

    2018-04-01

    This paper investigated the performance of the combined system of catalytic ozonation and the gas-liquid-solid internal circulating fluidized bed reactor for the advanced treatment of biologically pretreated coal chemical industry wastewater (CCIW). The results indicated that with ozonation alone for 60min, the removal efficiency of chemical oxygen demand (COD) could reach 34%. The introduction of activated carbon, pumice, γ-Al 2 O 3 carriers improved the removal performance of COD, and the removal efficiency was increased by 8.6%, 4.2%, 2%, respectively. Supported with Mn, the catalytic performance of activated carbon and γ-Al 2 O 3 were improved significantly with COD removal efficiencies of 46.5% and 41.3%, respectively; however, the promotion effect of pumice supported with Mn was insignificant. Activated carbon supported with Mn had the best catalytic performance. The catalytic ozonation combined system of MnO X /activated carbon could keep ozone concentration at a lower level in the liquid phase, and promote the transfer of ozone from the gas phase to the liquid phase to improve ozonation efficiency.

  6. The biological effects of ozone on representative members of five groups of animal viruses

    Energy Technology Data Exchange (ETDEWEB)

    Bolton, D.C.; Zee, Y.C.; Osebold, J.W.

    1982-04-01

    In an effort to establish the biological relevance of the reactions of ozone with soluble proteins and lipid bilayer membrane systems, representative viruses from five major virus groups were exposed to moderate concentrations of ozone. The virus suspensions were exposed at 37/sup 0/C to 0.00, 0.16, and 0.64 ppm ozone in the gas phase. The ozone reacted with the virus suspensions as a thin film of fluid on the surface of a rotating culture bottle as the gas was drawn through the bottle at a flow rate of 2 liters/min. The three enveloped viruses tested exhibited different susceptibilities to ozone inactivation which correlated with their thermolability in the absence of ozone. The order of susceptibility to ozone inactivation of the enveloped viruses was vesicular stomatitis virus (VSV) (Rhabdoviridae) > influenza A virus (WSN strain) (Orthomyxoviridae) > infectious bovine rhinotracheitis virus (IBRV) (Herpesviridae). The inactivation reactions of the enveloped viruses with ozone showed pseudo-first-order kinetics. A simple reaction model was used to derive a reaction rate expression from which rate constrants and reaction stoichiometry were estimated. In contrast to the enveloped viruses, the two nonenveloped viruses examined were relatively resistant to ozone inactivation. Polio virus type I (Picornaviridae) was found to be completely resistant to ozone inactivation after 60 hr exposure to either ozone concentration, while infectious canine hepatitis virus (Adenoviridae) showed only slight inactivation after exposure to 0.64 ppm ozone for 66 hr. The significance of these results with regard to the reactions of ozone with cell membranes and other components is discussed.

  7. Determination of Biological Treatability Processes of Textile Wastewater and Implementation of a Fuzzy Logic Model

    Directory of Open Access Journals (Sweden)

    Harun Akif Kabuk

    2015-01-01

    Full Text Available This study investigated the biological treatability of textile wastewater. For this purpose, a membrane bioreactor (MBR was utilized for biological treatment after the ozonation process. Due to the refractory organic contents of textile wastewater that has a low biodegradability capacity, ozonation was implemented as an advanced oxidation process prior to the MBR system to increase the biodegradability of the wastewater. Textile wastewater, oxidized by ozonation, was fed to the MBR at different hydraulic retention times (HRT. During the process, color, chemical oxygen demand (COD, and biochemical oxygen demand (BOD removal efficiencies were monitored for 24-hour, 12-hour, 6-hour, and 3-hour retention times. Under these conditions, 94% color, 65% COD, and 55% BOD removal efficiencies were obtained in the MBR system. The experimental outputs were modeled with multiple linear regressions (MLR and fuzzy logic. MLR results suggested that color removal is more related to COD removal relative to BOD removal. A surface map of this issue was prepared with a fuzzy logic model. Furthermore, fuzzy logic was employed to the whole modeling of the biological system treatment. Determination coefficients for COD, BOD, and color removal efficiencies were 0.96, 0.97, and 0.92, respectively.

  8. Photochemical processes and ozone production in Finnish conditions

    Energy Technology Data Exchange (ETDEWEB)

    Laurila, T; Hakola, H [Finnish Meteorological Inst., Helsinki (Finland). Air Quality Dept.

    1997-12-31

    Photochemical ozone production is observed in March-September. Highest ozone concentrations and production efficiencies are observed in spring in the northern parts and in summer in the southern parts of the country. VOC concentrations are relatively low compared to continental areas in general. During the growing season a substantial part of the total reactive mass of VOCs is of biogenic origin. Large forest areas absorb ozone substantially, decreasing the ambient ozone concentrations in central and northern parts of Finland where long-range transport of ozone is relatively important compared to local production. The aim of the work conducted at Finnish Meteorological Institute has been to characterise concentrations of photochemically active species in the boundary layer and their photochemical formation and deposition including the effects on vegetation. Also interactions between the boundary layer and free troposphere of ozone have been studied. In the future, fluxes of both biogenic species and air pollutants will be measured and the models will be further developed so that the photochemical and micrometeorological processes could be better understood

  9. Photochemical processes and ozone production in Finnish conditions

    Energy Technology Data Exchange (ETDEWEB)

    Laurila, T.; Hakola, H. [Finnish Meteorological Inst., Helsinki (Finland). Air Quality Dept.

    1996-12-31

    Photochemical ozone production is observed in March-September. Highest ozone concentrations and production efficiencies are observed in spring in the northern parts and in summer in the southern parts of the country. VOC concentrations are relatively low compared to continental areas in general. During the growing season a substantial part of the total reactive mass of VOCs is of biogenic origin. Large forest areas absorb ozone substantially, decreasing the ambient ozone concentrations in central and northern parts of Finland where long-range transport of ozone is relatively important compared to local production. The aim of the work conducted at Finnish Meteorological Institute has been to characterise concentrations of photochemically active species in the boundary layer and their photochemical formation and deposition including the effects on vegetation. Also interactions between the boundary layer and free troposphere of ozone have been studied. In the future, fluxes of both biogenic species and air pollutants will be measured and the models will be further developed so that the photochemical and micrometeorological processes could be better understood

  10. Ozone production process in pulsed positive dielectric barrier discharge

    Science.gov (United States)

    Ono, Ryo; Oda, Tetsuji

    2007-01-01

    The ozone production process in a pulsed positive dielectric barrier discharge (DBD) is studied by measuring the spatial distribution of ozone density using a two-dimensional laser absorption method. DBD occurs in a 6 mm point-to-plane gap with a 1 mm-thick glass plate placed on the plane electrode. First, the propagation of DBD is observed using a short-gated ICCD camera. It is shown that DBD develops in three phases: primary streamer, secondary streamer and surface discharge phases. Next, the spatial distribution of ozone density is measured. It is shown that ozone is mostly produced in the secondary streamer and surface discharge, while only a small amount of ozone is produced in the primary streamer. The rate coefficient of the ozone production reaction, O + O2 + M → O3 + M, is estimated to be 2.5 × 10-34 cm6 s-1.

  11. Ozone production process in pulsed positive dielectric barrier discharge

    International Nuclear Information System (INIS)

    Ono, Ryo; Oda, Tetsuji

    2007-01-01

    The ozone production process in a pulsed positive dielectric barrier discharge (DBD) is studied by measuring the spatial distribution of ozone density using a two-dimensional laser absorption method. DBD occurs in a 6 mm point-to-plane gap with a 1 mm-thick glass plate placed on the plane electrode. First, the propagation of DBD is observed using a short-gated ICCD camera. It is shown that DBD develops in three phases: primary streamer, secondary streamer and surface discharge phases. Next, the spatial distribution of ozone density is measured. It is shown that ozone is mostly produced in the secondary streamer and surface discharge, while only a small amount of ozone is produced in the primary streamer. The rate coefficient of the ozone production reaction, O + O 2 + M → O 3 + M, is estimated to be 2.5 x 10 -34 cm 6 s -1

  12. Modeling coupled interactions of carbon, water, and ozone exchange between terrestrial ecosystems and the atmosphere. I: Model description

    International Nuclear Information System (INIS)

    Nikolov, Ned; Zeller, Karl F.

    2003-01-01

    A new biophysical model (FORFLUX) is presented to link ozone deposition with carbon and water cycles in terrestrial ecosystems. - A new biophysical model (FORFLUX) is presented to study the simultaneous exchange of ozone, carbon dioxide, and water vapor between terrestrial ecosystems and the atmosphere. The model mechanistically couples all major processes controlling ecosystem flows trace gases and water implementing recent concepts in plant eco-physiology, micrometeorology, and soil hydrology. FORFLUX consists of four interconnected modules-a leaf photosynthesis model, a canopy flux model, a soil heat-, water- and CO 2 - transport model, and a snow pack model. Photosynthesis, water-vapor flux and ozone uptake at the leaf level are computed by the LEAFC3 sub-model. The canopy module scales leaf responses to a stand level by numerical integration of the LEAFC3 model over canopy leaf area index (LAI). The integration takes into account (1) radiative transfer inside the canopy, (2) variation of foliage photosynthetic capacity with canopy depth, (3) wind speed attenuation throughout the canopy, and (4) rainfall interception by foliage elements. The soil module uses principles of the diffusion theory to predict temperature and moisture dynamics within the soil column, evaporation, and CO 2 efflux from soil. The effect of soil heterogeneity on field-scale fluxes is simulated employing the Bresler-Dagan stochastic concept. The accumulation and melt of snow on the ground is predicted using an explicit energy balance approach. Ozone deposition is modeled as a sum of three fluxes- ozone uptake via plant stomata, deposition to non-transpiring plant surfaces, and ozone flux into the ground. All biophysical interactions are computed hourly while model projections are made at either hourly or daily time step. FORFLUX represents a comprehensive approach to studying ozone deposition and its link to carbon and water cycles in terrestrial ecosystems

  13. Ozone production process in pulsed positive dielectric barrier discharge

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Ryo [High Temperature Plasma Center, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 227-8568 (Japan); Oda, Tetsuji [Department of Electrical Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656 (Japan)

    2007-01-07

    The ozone production process in a pulsed positive dielectric barrier discharge (DBD) is studied by measuring the spatial distribution of ozone density using a two-dimensional laser absorption method. DBD occurs in a 6 mm point-to-plane gap with a 1 mm-thick glass plate placed on the plane electrode. First, the propagation of DBD is observed using a short-gated ICCD camera. It is shown that DBD develops in three phases: primary streamer, secondary streamer and surface discharge phases. Next, the spatial distribution of ozone density is measured. It is shown that ozone is mostly produced in the secondary streamer and surface discharge, while only a small amount of ozone is produced in the primary streamer. The rate coefficient of the ozone production reaction, O + O{sub 2} + M {yields} O{sub 3} + M, is estimated to be 2.5 x 10{sup -34} cm{sup 6} s{sup -1}.

  14. Removal of nalidixic acid and its degradation products by an integrated MBR-ozonation system.

    Science.gov (United States)

    Pollice, A; Laera, G; Cassano, D; Diomede, S; Pinto, A; Lopez, A; Mascolo, G

    2012-02-15

    Chemical-biological degradation of a widely spread antibacterial (nalidixic acid) was successfully obtained by an integrated membrane bioreactor (MBR)-ozonation process. The composition of the treated solution simulated the wastewater from the production of the target pharmaceutical, featuring high salinity and a relevant concentration of sodium acetate. Aim of treatment integration was to exploit the synergistic effects of chemical oxidation and bioprocesses, by adopting the latter to remove most of the COD and the ozonation biodegradable products. Integration was achieved by placing ozonation in the recirculation stream of the bioreactor effluent. The recirculation flow rate was three-fold the MBR feed, and the performance of the integrated system was compared to the standard polishing configuration (single ozonation step after the MBR). Results showed that the introduction of the ozonation step did not cause relevant drawbacks to both biological and filtration processes. nalidixic acid passed undegraded through the MBR and was completely removed in the ozonation step. Complete degradation of most of the detected ozonation products was better achieved with the integrated MBR-ozonation process than using the sequential treatment configuration, i.e. ozone polishing after MBR, given the same ozone dosage. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Occurrence of emerging pollutants in urban wastewater and their removal through biological treatment followed by ozonation.

    Science.gov (United States)

    Rosal, Roberto; Rodríguez, Antonio; Perdigón-Melón, José Antonio; Petre, Alice; García-Calvo, Eloy; Gómez, María José; Agüera, Ana; Fernández-Alba, Amadeo R

    2010-01-01

    This work reports a systematic survey of over seventy individual pollutants in a Sewage Treatment Plant (STP) receiving urban wastewater. The compounds include mainly pharmaceuticals and personal care products, as well as some metabolites. The quantification in the ng/L range was performed by Liquid Chromatography-QTRAP-Mass Spectrometry and Gas Chromatography coupled to Mass Spectrometry. The results showed that paraxanthine, caffeine and acetaminophen were the main individual pollutants usually found in concentrations over 20 ppb. N-formyl-4-amino-antipiryne and galaxolide were also detected in the ppb level. A group of compounds including the beta-blockers atenolol, metoprolol and propanolol; the lipid regulators bezafibrate and fenofibric acid; the antibiotics erythromycin, sulfamethoxazole and trimethoprim, the antiinflammatories diclofenac, indomethacin, ketoprofen and mefenamic acid, the antiepileptic carbamazepine and the antiacid omeprazole exhibited removal efficiencies below 20% in the STP treatment. Ozonation with doses lower than 90 microM allowed the removal of many individual pollutants including some of those more refractory to biological treatment. A kinetic model allowed the determination of second order kinetic constants for the ozonation of bezafibrate, cotinine, diuron and metronidazole. The results show that the hydroxyl radical reaction was the major pathway for the oxidative transformation of these compounds. (c) 2009 Elsevier Ltd. All rights reserved.

  16. Ozone/electron beam process for water treatment: design, limitations and economic considerations

    International Nuclear Information System (INIS)

    Gehringer, P.; Eschweiler, H.

    1996-01-01

    Electron beam irradiation of water is the easiest way to generate OH free radicals but the efficiency of the irradiation process as advanced oxidation process (AOP) is deteriorated by reducing species formed simultaneously with the OH free radicals. Addition of ozone to the water before or during irradiation improves the efficiency essentially by converting the reducing species into OH free radicals and turning by that the irradiation process into a full AOP. The main reaction pathways of the primary species formed by the action of ionizing radiation on water in a natural groundwater with and without the presence of ozone are reviewed. Based on these data an explanation of both the dose rate effect and the ozone effect is attempted. New data is presented which illustrates the effect of alkalinity on the way in which ozone is introduced into the water, and the impact of both water matrix and chemical structure of the pollutants to the efficacy of the ozone/electron beam process. (author)

  17. Biologically inspired coupled antenna beampattern design

    Energy Technology Data Exchange (ETDEWEB)

    Akcakaya, Murat; Nehorai, Arye, E-mail: makcak2@ese.wustl.ed, E-mail: nehorai@ese.wustl.ed [Department of Electrical and Systems Engineering, Washington University in St Louis, St Louis, MO 63130 (United States)

    2010-12-15

    We propose to design a small-size transmission-coupled antenna array, and corresponding radiation pattern, having high performance inspired by the female Ormia ochracea's coupled ears. For reproduction purposes, the female Ormia is able to locate male crickets' call accurately despite the small distance between its ears compared with the incoming wavelength. This phenomenon has been explained by the mechanical coupling between the Ormia's ears, which has been modeled by a pair of differential equations. In this paper, we first solve these differential equations governing the Ormia ochracea's ear response, and convert the response to the pre-specified radio frequencies. We then apply the converted response of the biological coupling in the array factor of a uniform linear array composed of finite-length dipole antennas, and also include the undesired electromagnetic coupling due to the proximity of the elements. Moreover, we propose an algorithm to optimally choose the biologically inspired coupling for maximum array performance. In our numerical examples, we compute the radiation intensity of the designed system for binomial and uniform ordinary end-fire arrays, and demonstrate the improvement in the half-power beamwidth, sidelobe suppression and directivity of the radiation pattern due to the biologically inspired coupling.

  18. Ozonation for source treatment of pharmaceuticals in hospital wastewater - ozone lifetime and required ozone dose

    DEFF Research Database (Denmark)

    Hansen, Kamilla Marie Speht; Spiliotopoulou, Aikaterini; Chhetri, Ravi Kumar

    2016-01-01

    Ozonation aimed at removing pharmaceuticals was studied in an effluent from an experimental pilot system using staged moving bed biofilm reactor (MBBR) tanks for the optimal biological treatment of wastewater from a medical care unit of Aarhus University Hospital. Dissolved organic carbon (DOC......) and pH in samples varied considerably, and the effect of these two parameters on ozone lifetime and the efficiency of ozone in removing pharmaceuticals were determined. The pH in the effluent varied from 5.0 to 9.0 resulting in approximately a doubling of the required ozone dose at the highest p......H for each pharmaceutical. DOC varied from 6 to 20 mg-DOC/L. The ozone required for removing each pharmaceutical, varied linearly with DOC and thus, ozone doses normalized to DOC (specific ozone dose) agreed between water samples (typically within 15%). At neutral pH the specific ozone dose required...

  19. The Ecophysiology Of A Pinus Ponderosa Ecosystem Exposed To High Tropospheric Ozone: Implications For Stomatal And Non-Stomatal Ozone Fluxes

    Science.gov (United States)

    Fares, S.; McKay, M.; Goldstein, A.

    2008-12-01

    Ecosystems remove ozone from the troposphere through both stomatal and non-stomatal deposition. The portion of ozone taken up through stomata has an oxidative effect causing damage. We used a multi-year dataset to assess the physiological controls over ozone deposition. Environmental parameters, CO2 and ozone fluxes were measured continuously from January 2001 to December 2006 above a ponderosa pine plantation near Blodgett Forest, Georgetown, California. We studied the dynamic of NEE (Net Ecosystem Exchange, -838 g C m-2 yr-1) and water evapotranspiration on an annual and daily basis. These processes are tightly coupled to stomatal aperture which also controlled ozone fluxes. High levels of ozone concentrations (~ 100 ppb) were observed during the spring-summer period, with corresponding high levels of ozone fluxes (~ 30 μmol m-2 h-1). During the summer season, a large portion of the total ozone flux was due to non-stomatal processes, and we propose that a plant physiological control, releasing BVOC (Biogenic Volatile Organic Compounds), is mainly responsible. We analyzed the correlations of common ozone exposure metrics based on accumulation of concentrations (AOT40 and SUM0) with ozone fluxes (total, stomatal and non-stomatal). Stomatal flux showed poorer correlation with ozone concentrations than non-stomatal flux during summer and fall seasons, which largely corresponded to the growing period. We therefore suggest that AOT40 and SUM0 are poor predictors of ozone damage and that a physiologically based metric would be more effective.

  20. Removal of color and chemical oxygen demand using a coupled coagulation-electrocoagulation-ozone treatment of industrial wastewater that contains offset printing dyes

    International Nuclear Information System (INIS)

    Roa M, G.; Barrera D, C.; Balderas H, P.; Zaldumbide O, F.; Reyes P, H.; Bilyeu, B.

    2014-01-01

    Industrial offset printing processes generate wastewater with highly colored obtaining values of 5 x 10 6 Pt-Co units and great values of chemical oxygen demand (COD) 5.3 x 10 -5 mg L -1 . Thus, conventional technologies such as biologicals treatment fail in reaching the discharge limits. In this research, a sequential treatment was applied: coagulation with aluminum hydroxychloride (AHC), electrocoagulation with Al anodes and finally ozonation. Optimal conditions are found when adding 20 mg L -1 AHC, followed by electrocoagulation at 4 A for 50 min, and finally alkaline ozonation for 15 min, resulting in an overall color removal of 99.99% color and 99.35 COD. The sludge generated by the coagulation process was analyzed by scanning electron microscopy and energy dispersive X-ray (EDX) microanalysis. (Author)

  1. Removal of color and chemical oxygen demand using a coupled coagulation-electrocoagulation-ozone treatment of industrial wastewater that contains offset printing dyes

    Energy Technology Data Exchange (ETDEWEB)

    Roa M, G.; Barrera D, C.; Balderas H, P.; Zaldumbide O, F. [Centro Conjunto de Investigacion en Quimica Sustentable UAEM-UNAM, Km 14.5 Carretera Toluca-Atlacomulco, 50200 San Cayetano-Toluca, Estado de Mexico (Mexico); Reyes P, H. [Universidad Autonoma del Estado de Mexico, Facultad de Quimica, Paseo Colon y Paseo Tollocan s/n, 50120 Toluca, Estado de Mexico (Mexico); Bilyeu, B., E-mail: groam@uaemex.mx [Xavier University of Louisiana, Department of Chemistry, 1 Drexel Drive, New Orleans, LA 70125 (United States)

    2014-07-01

    Industrial offset printing processes generate wastewater with highly colored obtaining values of 5 x 10{sup 6}Pt-Co units and great values of chemical oxygen demand (COD) 5.3 x 10{sup -5} mg L{sup -1}. Thus, conventional technologies such as biologicals treatment fail in reaching the discharge limits. In this research, a sequential treatment was applied: coagulation with aluminum hydroxychloride (AHC), electrocoagulation with Al anodes and finally ozonation. Optimal conditions are found when adding 20 mg L{sup -1} AHC, followed by electrocoagulation at 4 A for 50 min, and finally alkaline ozonation for 15 min, resulting in an overall color removal of 99.99% color and 99.35 COD. The sludge generated by the coagulation process was analyzed by scanning electron microscopy and energy dispersive X-ray (EDX) microanalysis. (Author)

  2. Combined treatment of mezcal vinasses by ozonation and activated sludge.

    Science.gov (United States)

    2017-10-18

    In Mexico, mezcal production generates huge amounts of vinasses (MV) that cause negative environmental impacts. Thus, MV treatment is necessary before discharge to water bodies. Although there is no information for mezcal vinasses, similar effluents have been treated by biological processes (i.e. anaerobic and aerobic) usually complemented by oxidative chemical pretreatments (ozonation) and physico-chemical methods. In this work MV were first ozonated and followed by batch aerobic biological degradation. In the ozonation stage, organic matter removals were 4.5-11 % as COD, whereas the removal of aromatic compounds and phenols were 16-32 % and 48-83 % respectively. In the aerobic post-treatment, COD depletions up to 85 % were achieved; removals in ozone pre-treated vinasses were higher (80 to 85 %) than that of raw vinasse (69 %). It seems that ozonation preferentially attacked the recalcitrant fraction of organic matter present in the vinasses and increased its aerobic biodegradability.

  3. Ozonation of estrogenic chemicals in biologically treated sewage

    DEFF Research Database (Denmark)

    Hansen, Kamilla Marie Speht; Andersen, Henrik Rasmus; Ledin, Anna

    2010-01-01

    The present study shows that ozonation of effluents from municipal wastewater treatment plants (WWTPs) is likely to be a future treatment solution to remove estrogens and xeno-estrogens. The required ozone dose and electrical energy for producing the ozone were determined in two WWTP effluents fo...

  4. Characterization of natural organic matter treated by iron oxide nanoparticle incorporated ceramic membrane-ozonation process.

    Science.gov (United States)

    Park, Hosik; Kim, Yohan; An, Byungryul; Choi, Heechul

    2012-11-15

    In this study, changes in the physical and structural properties of natural organic matter (NOM) were observed during hybrid ceramic membrane processes that combined ozonation with ultrafiltration ceramic membrane (CM) or with a reactive ceramic membrane (RM), namely, an iron oxide nanoparticles (IONs) incorporated-CM. NOM from feed water and NOM from permeate treated with hybrid ceramic membrane processes were analyzed by employing several NOM characterization techniques. Specific ultraviolet absorbance (SUVA), high-performance size exclusion chromatography (HPSEC) and fractionation analyses showed that the hybrid ceramic membrane process effectively removed and transformed relatively high contents of aromatic, high molecular weight and hydrophobic NOM fractions. Fourier transform infrared spectroscopy (FTIR) and 3-dimensional excitation-emission matrix (EEM) fluorescence spectroscopy revealed that this process caused a significant decrease of the aromaticity of humic-like structures and an increase in electron withdrawing groups. The highest removal efficiency (46%) of hydroxyl radical probe compound (i.e., para-Chlorobenzoic acid (pCBA)) in RM-ozonation process compared with that in CM without ozonation process (8%) revealed the hydroxyl radical formation by the surface-catalyzed reaction between ozone and IONs on the surface of RM. In addition, experimental results on flux decline showed that fouling of RM-ozonation process (15%) was reduced compared with that of CM without ozonation process (30%). These results indicated that the RM-ozonation process enhanced the destruction of NOM and reduced the fouling by generating hydroxyl radicals from the catalytic ozonation in the RM-ozonation process. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Solar cycle variations of stratospheric ozone and temperature in simulations of a coupled chemistry-climate model

    Directory of Open Access Journals (Sweden)

    J. Austin

    2007-01-01

    Full Text Available The results from three 45-year simulations of a coupled chemistry climate model are analysed for solar cycle influences on ozone and temperature. The simulations include UV forcing at the top of the atmosphere, which includes a generic 27-day solar rotation effect as well as the observed monthly values of the solar fluxes. The results are analysed for the 27-day and 11-year cycles in temperature and ozone. In accordance with previous results, the 27-day cycle results are in good qualitative agreement with observations, particularly for ozone. However, the results show significant variations, typically a factor of two or more in sensitivity to solar flux, depending on the solar cycle. In the lower and middle stratosphere we show good agreement also between the modelled and observed 11-year cycle results for the ozone vertical profile averaged over low latitudes. In particular, the minimum in solar response near 20 hPa is well simulated. In comparison, experiments of the model with fixed solar phase (solar maximum/solar mean and climatological sea surface temperatures lead to a poorer simulation of the solar response in the ozone vertical profile, indicating the need for variable phase simulations in solar sensitivity experiments. The role of sea surface temperatures and tropical upwelling in simulating the ozone minimum response are also discussed.

  6. Issues in Stratospheric Ozone Depletion.

    Science.gov (United States)

    Lloyd, Steven Andrew

    Following the announcement of the discovery of the Antarctic ozone hole in 1985 there have arisen a multitude of questions pertaining to the nature and consequences of polar ozone depletion. This thesis addresses several of these specific questions, using both computer models of chemical kinetics and the Earth's radiation field as well as laboratory kinetic experiments. A coupled chemical kinetic-radiative numerical model was developed to assist in the analysis of in situ field measurements of several radical and neutral species in the polar and mid-latitude lower stratosphere. Modeling was used in the analysis of enhanced polar ClO, mid-latitude diurnal variation of ClO, and simultaneous measurements of OH, HO_2, H_2 O and O_3. Most importantly, such modeling was instrumental in establishing the link between the observed ClO and BrO concentrations in the Antarctic polar vortex and the observed rate of ozone depletion. The principal medical concern of stratospheric ozone depletion is that ozone loss will lead to the enhancement of ground-level UV-B radiation. Global ozone climatology (40^circS to 50^ circN latitude) was incorporated into a radiation field model to calculate the biologically accumulated dosage (BAD) of UV-B radiation, integrated over days, months, and years. The slope of the annual BAD as a function of latitude was found to correspond to epidemiological data for non-melanoma skin cancers for 30^circ -50^circN. Various ozone loss scenarios were investigated. It was found that a small ozone loss in the tropics can provide as much additional biologically effective UV-B as a much larger ozone loss at higher latitudes. Also, for ozone depletions of > 5%, the BAD of UV-B increases exponentially with decreasing ozone levels. An important key player in determining whether polar ozone depletion can propagate into the populated mid-latitudes is chlorine nitrate, ClONO_2 . As yet this molecule is only indirectly accounted for in computer models and field

  7. Development of a global 1-D chemically radiatively coupled model and an introduction to the development of a chemically coupled General Circulation Model

    International Nuclear Information System (INIS)

    Akiyoshi, H.

    1997-01-01

    A global one-dimensional, chemically and radiatively coupled model has been developed. The basic concept of the coupled model, definition of globally averaged zenith angles, the formulation of the model chemistry, radiation, the coupled processes, and profiles and diurnal variations of temperature and chemical species at a normal steady state are presented. Furthermore, a suddenly doubled CO 2 experiment and a Pinatubo aerosol increase experiment were performed with the model. The time scales of variations in ozone and temperature in the lower stratosphere of the coupled system in the doubled CO 2 experiment was long, due to a feedback process among ultra violet radiation, O(1D), NO y , NO x , and O 3 . From the Pinatubo aerosol experiment, a delay of maximum ozone decrease from the maximum aerosol loading is shown and discussed. Developments of 3-D chemical models with coupled processes are briefly described, and the ozone distribution from the first version of the 3-D model are presented. Chemical model development in National Institute for Environmental Studies (NIES) are briefly described. (author)

  8. Study of Use Ozone Oxydan at Liquid Waste Processing of Prawn Industry

    International Nuclear Information System (INIS)

    Isyuniarto; Agus-Purwadi

    2006-01-01

    Study of use ozone oxidant at liquid waste processing prawn industry was done. This research target is to study the influence of utilization of ozone oxidant to degrade the BOD, COD and TSS in liquid waste processing of prawn industrial. Waste volume for every treatment is 500 ml, ozonization time 10 minute, with the variation of pH: 7; 8; 9; 10 and 11 by gift calcify. With pH optimal then used for the treatment variation of time of ozone gift: 0; 5; 10; 15; 20; and 25 minute. From the experiment it was obtained that the optimal condition is reached at pH = 9 and time of ozonization 20 minute. At this condition is obtained the three following parameters: BOD = 41 mg/l, COD = 54 mg/l, and TSS = 25 mg/l. The parameter have pursuant to permanent standard quality of industrial liquid waste processing of prawn according to Decree of The State's Minister of Environment No. Piece. 51/MENLH/10/1995 and Decision of Gubernur DIY No. 281/KPTS/1998, as conditions of waste of faction III. (author)

  9. Ozone sensitivity to varying greenhouse gases and ozone-depleting substances in CCMI-1 simulations

    Directory of Open Access Journals (Sweden)

    O. Morgenstern

    2018-01-01

    Full Text Available Ozone fields simulated for the first phase of the Chemistry-Climate Model Initiative (CCMI-1 will be used as forcing data in the 6th Coupled Model Intercomparison Project. Here we assess, using reference and sensitivity simulations produced for CCMI-1, the suitability of CCMI-1 model results for this process, investigating the degree of consistency amongst models regarding their responses to variations in individual forcings. We consider the influences of methane, nitrous oxide, a combination of chlorinated or brominated ozone-depleting substances, and a combination of carbon dioxide and other greenhouse gases. We find varying degrees of consistency in the models' responses in ozone to these individual forcings, including some considerable disagreement. In particular, the response of total-column ozone to these forcings is less consistent across the multi-model ensemble than profile comparisons. We analyse how stratospheric age of air, a commonly used diagnostic of stratospheric transport, responds to the forcings. For this diagnostic we find some salient differences in model behaviour, which may explain some of the findings for ozone. The findings imply that the ozone fields derived from CCMI-1 are subject to considerable uncertainties regarding the impacts of these anthropogenic forcings. We offer some thoughts on how to best approach the problem of generating a consensus ozone database from a multi-model ensemble such as CCMI-1.

  10. Ozone Sensitivity to Varying Greenhouse Gases and Ozone-Depleting Substances in CCMI-1 Simulations

    Science.gov (United States)

    Morgenstern, Olaf; Stone, Kane A.; Schofield, Robyn; Akiyoshi, Hideharu; Yamashita, Yousuke; Kinnison, Douglas E.; Garcia, Rolando R.; Sudo, Kengo; Plummer, David A.; Scinocca, John; hide

    2018-01-01

    Ozone fields simulated for the first phase of the Chemistry-Climate Model Initiative (CCMI-1) will be used as forcing data in the 6th Coupled Model Intercomparison Project. Here we assess, using reference and sensitivity simulations produced for CCMI-1, the suitability of CCMI-1 model results for this process, investigating the degree of consistency amongst models regarding their responses to variations in individual forcings. We consider the influences of methane, nitrous oxide, a combination of chlorinated or brominated ozone-depleting substances, and a combination of carbon dioxide and other greenhouse gases. We find varying degrees of consistency in the models' responses in ozone to these individual forcings, including some considerable disagreement. In particular, the response of total-column ozone to these forcings is less consistent across the multi-model ensemble than profile comparisons. We analyse how stratospheric age of air, a commonly used diagnostic of stratospheric transport, responds to the forcings. For this diagnostic we find some salient differences in model behaviour, which may explain some of the findings for ozone. The findings imply that the ozone fields derived from CCMI-1 are subject to considerable uncertainties regarding the impacts of these anthropogenic forcings. We offer some thoughts on how to best approach the problem of generating a consensus ozone database from a multi-model ensemble such as CCMI-1.

  11. Enhanced WWTP effluent organic matter removal in hybrid ozonation-coagulation (HOC) process catalyzed by Al-based coagulant

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Xin [School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, Xi’an, Shaanxi Province, 710055 (China); Jin, Pengkang, E-mail: pkjin@hotmail.com [School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, Xi’an, Shaanxi Province, 710055 (China); Hou, Rui [School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, Xi’an, Shaanxi Province, 710055 (China); Yang, Lei [Department of Materials Science and Engineering, Monash University, Clayton, VIC, 3800 (Australia); Wang, Xiaochang C., E-mail: xcwang@xauat.edu.cn [School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, Xi’an, Shaanxi Province, 710055 (China)

    2017-04-05

    Highlights: • A novel HOC process was firstly put forward to apply in wastewater reclamation. • Interactions between ozone and Al-based coagulants was found in the HOC process. • Ozonation can be catalyzed and enhanced by Al-based coagulants in the HOC process. • HOC process showed better organics removal than pre-ozonation-coagulation process. - Abstract: A novel hybrid ozonation-coagulation (HOC) process was developed for application in wastewater reclamation. In this process, ozonation and coagulation occurred simultaneously within a single unit. Compared with the conventional pre-ozonation-coagulation process, the HOC process exhibited much better performance in removing dissolved organic matters. In particular, the maximal organic matters removal efficiency was obtained at the ozone dosage of 1 mgO{sub 3}/mg DOC at each pH value (pH 5, 7 and 9). In order to interpret the mechanism of the HOC process, ozone decomposition was monitored. The results indicated that ozone decomposed much faster in the HOC process. Moreover, by using the reagent of O{sub 3}-resistant hydroxyl radical (·OH) probe compound, para-chlorobenzoic acid (pCBA), and electron paramagnetic resonance (EPR) analysis, it was observed that the HOC process generated higher content of ·OH compared with pre-ozonation process. This indicates that the ·OH oxidation reaction as the key step can be catalyzed and enhanced by Al-based coagulants and their hydrolyzed products in this developed process. Thus, based on the catalytic effects of Al-based coagulants on ozonation, the HOC process provides a promising alternative to the conventional technology for wastewater reclamation in terms of higher efficiency.

  12. Coupling aerosol surface and bulk chemistry with a kinetic double layer model (K2-SUB: oxidation of oleic acid by ozone

    Directory of Open Access Journals (Sweden)

    C. Pfrang

    2010-05-01

    Full Text Available We present a kinetic double layer model coupling aerosol surface and bulk chemistry (K2-SUB based on the PRA framework of gas-particle interactions (Pöschl-Rudich-Ammann, 2007. K2-SUB is applied to a popular model system of atmospheric heterogeneous chemistry: the interaction of ozone with oleic acid. We show that our modelling approach allows de-convoluting surface and bulk processes, which has been a controversial topic and remains an important challenge for the understanding and description of atmospheric aerosol transformation. In particular, we demonstrate how a detailed treatment of adsorption and reaction at the surface can be coupled to a description of bulk reaction and transport that is consistent with traditional resistor model formulations.

    From literature data we have derived a consistent set of kinetic parameters that characterise mass transport and chemical reaction of ozone at the surface and in the bulk of oleic acid droplets. Due to the wide range of rate coefficients reported from different experimental studies, the exact proportions between surface and bulk reaction rates remain uncertain. Nevertheless, the model results suggest an important role of chemical reaction in the bulk and an approximate upper limit of ~10−11 cm2 s−1 for the surface reaction rate coefficient. Sensitivity studies show that the surface accommodation coefficient of the gas-phase reactant has a strong non-linear influence on both surface and bulk chemical reactions. We suggest that K2-SUB may be used to design, interpret and analyse future experiments for better discrimination between surface and bulk processes in the oleic acid-ozone system as well as in other heterogeneous reaction systems of atmospheric relevance.

  13. Microbubble enhanced ozonation process for advanced treatment of wastewater produced in acrylic fiber manufacturing industry

    KAUST Repository

    Zheng, Tianlong

    2015-02-02

    This work investigated microbubble-ozonation for the treatment of a refractory wet-spun acrylic fiber wastewater in comparison to macrobubble-ozonation. CODcr, NH3-N, and UV254 of the wastewater were removed by 42%, 21%, and 42%, respectively in the microbubble-ozonation, being 25%, 9%, and 35% higher than the removal rates achieved by macrobubble-ozonation at the same ozone dose. The microbubbles (with average diameter of 45μm) had a high concentration of 3.9×105 counts/mL at a gas flow rate of 0.5L/min. The gas holdup, total ozone mass-transfer coefficient, and average ozone utilization efficiency in the microbubble-ozonation were 6.6, 2.2, and 1.5 times higher than those of the macrobubble-ozonation. Greater generation of hydroxyl radicals and a higher zeta potential of the bubbles were also observed in the microbubble ozonation process. The biodegradability of the wastewater was also significantly improved by microbubble-ozonation, which was ascribed to the enhanced degradation of alkanes, aromatic compounds, and the many other bio-refractory organic compounds in the wastewater. Microbubble-ozonation can thus be a more effective treatment process than traditional macrobubble-ozonation for refractory wastewater produced by the acrylic fiber manufacturing industry.

  14. Modeling of thermodynamic properties of refrigerant/absorbent couples using data mining process

    International Nuclear Information System (INIS)

    Sencan, Arzu

    2007-01-01

    In this paper, in order to determine thermodynamic properties of two alternative refrigerant/absorbent couples (methanol/LiBr and methanol/LiCl), a data mining process was used. These fluid couples can be used in absorption heat pump systems, and their main advantage is that they do not cause ozone depletion. In order to train the network, limited experimental measurements were used as training and test data. In the present study, linear regression (LR), pace regression (PR), sequential minimal optimization (SMO), M5 model tree, M5'Rules and back propagation neural network (BPNN) models are applied within the data mining process for determining the specific volume of the methanol/LiBr and methanol/LiCl fluid couples. The best result was obtained by using the back propagation model. A new formulation is presented for determination of the specific volumes of the two refrigerant/absorbent couples. The use of this new formulation, which can be employed with any programming language or spreadsheet program for estimation of the specific volumes of fluid couples, as described in this paper, may make the use of dedicated BPNN software unnecessary

  15. Low temperature ozone oxidation of solid waste surrogates

    Science.gov (United States)

    Nabity, James A.; Lee, Jeffrey M.

    2015-09-01

    Solid waste management presents a significant challenge to human spaceflight and especially, long-term missions beyond Earth orbit. A six-month mission will generate over 300 kg of solid wastes per crewmember that must be dealt with to eliminate the need for storage and prevent it from becoming a biological hazard to the crew. There are several methods for the treatment of wastes that include oxidation via ozone, incineration, microbial oxidation or pyrolysis and physical methods such as microwave drying and compaction. In recent years, a low temperature oxidation process using ozonated water has been developed for the chemical conversion of organic wastes to CO2 and H2O. Experiments were conducted to evaluate the rate and effectiveness with which ozone oxidized several different waste materials. Increasing the surface area by chopping or shredding the solids into small pieces more than doubled the rate of oxidation. A greater flow of ozone and agitation of the ozonated water system also increased processing rates. Of the materials investigated, plastics have proven the most difficult to oxidize. The processing of plastics above the glass transition temperatures caused the plastics to clump together which reduced the exposed surface area, while processing at lower temperatures reduced surface reaction kinetics.

  16. Partial degradation of five pesticides and an industrial pollutant by ozonation in a pilot-plant scale reactor

    International Nuclear Information System (INIS)

    Maldonado, M.I.; Malato, S.; Perez-Estrada, L.A.; Gernjak, W.; Oller, I.; Domenech, Xavier; Peral, Jose

    2006-01-01

    Aqueous solutions of a mixture of several pesticides (alachlor, atrazine, chlorfenvinphos, diuron and isoproturon), considered PS (priority substances) by the European Commission, and an intermediate product of the pharmaceutical industry (α-methylphenylglycine, MPG) chosen as a model industrial pollutant, have been degraded at pilot-plant scale using ozonation. This study is part of a large research project [CADOX Project, A Coupled Advanced Oxidation-Biological Process for Recycling of Industrial Wastewater Containing Persistent Organic Contaminants, Contract No.: EVK1-CT-2002-00122, European Commission, http://www.psa.es/webeng/projects/cadox/index.html[1

  17. Partial degradation of five pesticides and an industrial pollutant by ozonation in a pilot-plant scale reactor

    Energy Technology Data Exchange (ETDEWEB)

    Maldonado, M.I. [PSA - Plataforma Solar de Almeria, CIEMAT, Crta Senes km 4, Tabernas, Almeria 04200 (Spain); Malato, S. [PSA - Plataforma Solar de Almeria, CIEMAT, Crta Senes km 4, Tabernas, Almeria 04200 (Spain); Perez-Estrada, L.A. [PSA - Plataforma Solar de Almeria, CIEMAT, Crta Senes km 4, Tabernas, Almeria 04200 (Spain); Gernjak, W. [PSA -Plataforma Solar de Almeria, CIEMAT, Crta Senes km 4, Tabernas, Almeria 04200 (Spain); Oller, I. [PSA - Plataforma Solar de Almeria, CIEMAT, Crta Senes km 4, Tabernas, Almeria 04200 (Spain); Domenech, Xavier [Departament de Quimica, Edifici Cn, Universitat Autonoma de Barcelona, E-08193 Bellaterra, Barcelona (Spain); Peral, Jose [Departament de Quimica, Edifici Cn, Universitat Autonoma de Barcelona, E-08193 Bellaterra, Barcelona (Spain)]. E-mail: jose.peral@uab.es

    2006-11-16

    Aqueous solutions of a mixture of several pesticides (alachlor, atrazine, chlorfenvinphos, diuron and isoproturon), considered PS (priority substances) by the European Commission, and an intermediate product of the pharmaceutical industry ({alpha}-methylphenylglycine, MPG) chosen as a model industrial pollutant, have been degraded at pilot-plant scale using ozonation. This study is part of a large research project [CADOX Project, A Coupled Advanced Oxidation-Biological Process for Recycling of Industrial Wastewater Containing Persistent Organic Contaminants, Contract No.: EVK1-CT-2002-00122, European Commission, http://www.psa.es/webeng/projects/cadox/index.html[1

  18. Treatment of aqueous wastes contaminated with Congo Red dye by electrochemical oxidation and ozonation processes

    International Nuclear Information System (INIS)

    Faouzi Elahmadi, Mohammed; Bensalah, Nasr; Gadri, Abdellatif

    2009-01-01

    Synthetic aqueous wastes polluted with Congo Red (CR) have been treated by two advanced oxidation processes: electrochemical oxidation on boron doped diamond anodes (BDD-EO) and ozonation under alkaline conditions. For same concentrations, galvanostatic electrolyses have led to total COD and TOC removals but ozonation process can reach only 85% and 81% of COD and TOC removals, respectively. UV-vis qualitative analyses have shown different behaviors of CR molecules towards ozonation and electrochemical oxidation. Rapid discoloration has been observed during ozonation, whereas color persistence till the end of galvanostatic electrolyses has been seen during BDD-EO process. It seems that the oxidation mechanisms involved in the two processes are different: simultaneous destruction of azoic groups is suggested during ozonation process but consecutive destruction of these groups is proposed during BDD-EO. However, energetic study has evidenced that BDD-EO appears more efficient and more economic than ozonation in terms of TOC removals. These results have been explained by the fact that during BDD-EO, other strong oxidants electrogenerated from the electrolyte oxidation such as persulfates and direct-oxidation of CR and its byproducts on BDD anodes complement the hydroxyl radicals mediated oxidation to accomplish the total mineralization of organics.

  19. Ozone and membrane filtration based strategies for the treatment of cork processing wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Benitez, F. Javier [Departamento de Ingenieria Quimica, Universidad de Extremadura, 06071 Badajoz (Spain)], E-mail: javben@unex.es; Acero, Juan L.; Leal, Ana I.; Real, Francisco J. [Departamento de Ingenieria Quimica, Universidad de Extremadura, 06071 Badajoz (Spain)

    2008-03-21

    The degradation of the pollutant organic matter present in the cork processing wastewater was studied by combining chemical treatments, which used ozone and some Advanced Oxidation Processes, and membrane filtration procedures. Two schemes were conducted: firstly, a single ozonation stage followed by an UF stage; and secondly, a membrane filtration stage, using different MF and UF membranes, followed by a chemical oxidation stage, where ozone, UV radiation, and the AOPs constituted by ozone plus UV radiation and ozone plus hydrogen peroxide, were used. The membrane filtration stages were carried out in tangential filtration laboratory equipment, and the membranes used were two MF membranes with pores sizes of 0.65 and 0.1 {mu}m, and three UF membranes with molecular weights cut-off of 300, 10, and 5 kDa. The effectiveness of the different stages (conversions in the chemical procedures and rejection coefficients in the membrane processes) were evaluated in terms of several parameters which measure the global pollutant content of the wastewater: COD, absorbance at 254 nm, tannins content, color, and ellagic acid. In the ozonation/UF combined process the following removals were achieved: 100% for ellagic acid and color, 90% for absorbance at 254 nm, more than 80% for tannins, and 42-57% for COD reduction. In the filtration/chemical oxidation combined process, 100% elimination of ellagic acid, more than 90% elimination in color, absorbance at 254 nm and tannins, and removal higher than 80% in COD were reached, which indicates a greater purification power of this combination.

  20. Advanced treatment of acrylic fiber manufacturing wastewater with a combined microbubble-ozonation/ultraviolet irradiation process

    KAUST Repository

    Zheng, Tianlong; Zhang, Tao; Wang, Qunhui; Tian, Yanli; Shi, Zhining; Smale, Nicholas; Xu, Banghua

    2015-01-01

    This work investigated the effectiveness of a combination of microbubble-ozonation and ultraviolet (UV) irradiation for the treatment of secondary wastewater effluent of a wet-spun acrylic fiber manufacturing plant. Under reactor condition (ozone dosage of 48 mg L-1, UV fluence rate of 90 mW cm-2, initial pH of 8.0, and reaction time of 120 min), the biodegradability (represented as BOD5/CODcr) of the wastewater improved from 0.18 to 0.47. This improvement in biodegradability is related to the degradation of alkanes, aromatic compounds, and other bio-refractory organic compounds. The combination of microbubble-ozonation and UV irradiation synergistically improved treatment efficiencies by 228%, 29%, and 142% for CODcr, UV254 removal and BOD5/CODcr respectively after 120 min reaction time, as compared with the sum efficiency of microbubble-ozonation alone and UV irradiation alone. Hydroxyl radical production in the microbubble-ozonation/UV process was about 1.8 times higher than the sum production in microbubble-ozonation alone and UV irradiation alone. The ozone decomposition rate in the combined process was about 4.1 times higher than that in microbubble-ozonation alone. The microbubble-ozonation/UV process could be a promising technique for the treatment of bio-refractory organics in the acrylic fiber manufacturing industry. © 2015 Royal Society of Chemistry.

  1. Ozone from fireworks: Chemical processes or measurement interference?

    Science.gov (United States)

    Xu, Zheng; Nie, Wei; Chi, Xuguang; Huang, Xin; Zheng, Longfei; Xu, Zhengning; Wang, Jiaping; Xie, Yuning; Qi, Ximeng; Wang, Xinfeng; Xue, Likun; Ding, Aijun

    2018-08-15

    Fireworks have been identified as one ozone source by photolyzing NO 2 or O 2 and are believed to potentially be important for the nighttime ozone during firework events. In this study, we conducted both lab and field experiments to test two types of fireworks with low and high energy with the goal to distinguish whether the visible ozone signal during firework displays is real. The results suggest that previous understanding of the ozone formation mechanism during fireworks is misunderstood. Ultraviolet ray (UV)-based ozone monitors are interfered by aerosols and some specific VOCs. High-energy fireworks emit high concentrations of particular matters and low VOCs that the artificial ozone can be easily removed by an aerosol filter. Low-energy fireworks emit large amounts of VOCs mostly from the combustion of the cardboard from fireworks that largely interferes with the ozone monitor. Benzene and phenol might be major contributors to the artificial ozone signal. We further checked the nighttime ozone concentration in Jinan and Beijing, China, during Chinese New Year, a period with intense fireworks. A signal of 3-8ppbv ozone was detected and positively correlated to NO and SO 2 , suggesting a considerable influence of these chemicals in interfering with ambient ozone monitoring. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Treatment of slaughter wastewater by coagulation sedimentation-anaerobic biological filter and biological contact oxidation process

    Science.gov (United States)

    Sun, M.; Yu, P. F.; Fu, J. X.; Ji, X. Q.; Jiang, T.

    2017-08-01

    The optimal process parameters and conditions for the treatment of slaughterhouse wastewater by coagulation sedimentation-AF - biological contact oxidation process were studied to solve the problem of high concentration organic wastewater treatment in the production of small and medium sized slaughter plants. The suitable water temperature and the optimum reaction time are determined by the experiment of precipitation to study the effect of filtration rate and reflux ratio on COD and SS in anaerobic biological filter and the effect of biofilm thickness and gas water ratio on NH3-N and COD in biological contact oxidation tank, and results show that the optimum temperature is 16-24°C, reaction time is 20 min in coagulating sedimentation, the optimum filtration rate is 0.6 m/h, and the optimum reflux ratio is 300% in anaerobic biological filter reactor. The most suitable biological film thickness range of 1.8-2.2 mm and the most suitable gas water ratio is 12:1-14:1 in biological contact oxidation pool. In the coupling process of continuous operation for 80 days, the average effluent’s mass concentrations of COD, TP and TN were 15.57 mg/L, 40 mg/L and 0.63 mg/L, the average removal rates were 98.93%, 86.10%, 88.95%, respectively. The coupling process has stable operation effect and good effluent quality, and is suitable for the industrial application.

  3. Removal of organic matter and toxicity in hospital wastewaters by ozone

    International Nuclear Information System (INIS)

    Grisales Penagos, Dayana; Ortega Lopez, Joela; Rodriguez Chaparro, Tatiana

    2012-01-01

    Hospital wastewaters are considered to be one of the major sources of emergent contaminants as result of the dairy activities and excretion of the patients. Several studies have demonstrated that these compounds are not easily removed in conventional wastewater treatments that use biological process. This study evaluated the removal of the organic matter present in real hospital effluent applying ozone at different pH conditions (3,0, 6,7, 10). Parameters such as UV254, biodegradability ratio (COD/BOD) and color (VIS436) were measured. Moreover, it was assessed the acute toxicity with Allium cepa L. The results demonstrated that with an ozone dosage of 187 mgO3/h and pH = 10 the biodegradability increased by 70% and the acute toxicity decreased by 62%, whereas for pH =3,0 both UV254 and color removal was notable. The ozone application seems to be a viable alternative to treat hospital effluents as a pretreatment of a biological process.

  4. Removal of organic matter and toxicity in hospital wastewaters by ozone

    International Nuclear Information System (INIS)

    Grisales Penagos Dayana; Ortega Lopez Joela; Rodriguez Chaparro Tatiana

    2012-01-01

    Hospital wastewaters are considered to be one of the major sources of emergent contaminants as result of the dairy activities and excretion of the patients. Several studies have demonstrated that these compounds are not easily removed in conventional wastewater treatments that use biological process. This study evaluated the removal of the organic matter present in real hospital effluent applying ozone at different pH conditions (3,0, 6,7, 10). Parameters such as UV254, biodegradability ratio (COD/BOD) and color (VIS436) were measured. Moreover, it was assessed the acute toxicity with Allium cepa L. The results demonstrated that with an ozone dosage of 187 MgO 3 /h and pH = 10 the biodegradability increased by 70% and the acute toxicity decreased by 62%, whereas for pH =3,0 both UV254 and color removal was notable. The ozone application seems to be a viable alternative to treat hospital effluents as a pretreatment of a biological process. Allium cepa L., biodegradability, emergent compounds, recalcitrance

  5. Plasmachemical and heterogeneous processes in ozonizers with oxygen activation by a dielectric barrier discharge

    Energy Technology Data Exchange (ETDEWEB)

    Mankelevich, Yu. A., E-mail: ymankelevich@mics.msu.su; Voronina, E. N.; Poroykov, A. Yu.; Rakhimov, T. V.; Voloshin, D. G.; Chukalovsky, A. A. [Moscow State University, Skobeltsyn Institute of Nuclear Physics (Russian Federation)

    2016-10-15

    Plasmachemical and heterogeneous processes of generation and loss of ozone in the atmosphericpressure dielectric barrier discharge in oxygen are studied theoretically. Plasmachemical and electronic kinetics in the stage of development and decay of a single plasma filament (microdischarge) are calculated numerically with and without allowance for the effects of ozone vibrational excitation and high initial ozone concentration. The developed analytical approach is applied to determine the output ozone concentration taking into account ozone heterogeneous losses on the Al{sub 2}O{sub 3} dielectric surface. Using the results of quantummechanical calculations by the method of density functional theory, a multistage catalytic mechanism of heterogeneous ozone loss based on the initial passivation of a pure Al{sub 2}O{sub 3} surface by ozone and the subsequent interaction of O{sub 3} molecules with the passivated surface is proposed. It is shown that the conversion reaction 2O{sub 3} → 3O{sub 2} of a gas-phase ozone molecule with a physically adsorbed ozone molecule can result in the saturation of the maximum achievable ozone concentration at high specific energy depositions, the nonstationarity of the output ozone concentration, and its dependence on the prehistory of ozonizer operation.

  6. 4D-Var data assimilation system for a coupled physical-biological ...

    Indian Academy of Sciences (India)

    A 3-compartment model of phytoplankton growth dynamics has been coupled with a primitive-equation circulation model to better understand and quantify physical and biological processes in the Adriatic Sea. This paper presents the development and application of a data assimilation procedure based on optimal.

  7. Making equipment to process paddy water for providing drinking water by using Ozone-UVC& Ultrafiltration

    Science.gov (United States)

    Styani, E.; Dja'var, N.; Irawan, C.; Hanafi

    2018-01-01

    This study focuses on making equipment which is useful to process paddy water to be consumable as drinking water by using ozone-UVC and ultrafiltration. The equipment which is made by the process of ozone-UVC and ultrafiltration or reverse osmosis is driven by electric power generated from solar panels. In the experiment, reverse osmosis system with ozone-UVC reactor proves to be good enough in producing high quality drinking water.

  8. Assessing the application of advanced oxidation processes, and their combination with biological treatment, to effluents from pulp and paper industry.

    Science.gov (United States)

    Merayo, Noemí; Hermosilla, Daphne; Blanco, Laura; Cortijo, Luis; Blanco, Angeles

    2013-11-15

    The closure of water circuits within pulp and paper mills has resulted in a higher contamination load of the final mill effluent, which must consequently be further treated in many cases to meet the standards imposed by the legislation in force. Different treatment strategies based on advanced oxidation processes (ozonation and TiO2-photocatalysis), and their combination with biological treatment (MBR), are herein assessed for effluents of a recycled paper mill and a kraft pulp mill. Ozone treatment achieved the highest efficiency of all. The consumption of 2.4 g O3 L(-1) resulted in about a 60% COD reduction treating the effluent from the kraft pulp mill at an initial pH=7; although it only reached about a 35% COD removal for the effluent of the recycled paper mill. Otherwise, photocatalysis achieved about a 20-30% reduction of the COD for both type of effluents. In addition, the effluent from the recycled paper mill showed a higher biodegradability, so combinations of these AOPs with biological treatment were tested. As a result, photocatalysis did not report any significant COD reduction improvement whether being performed as pre- or post-treatment of the biological process; whereas the use of ozonation as post-biological treatment enhanced COD removal a further 10%, summing up a total 90% reduction of the COD for the combined treatment, as well as it also supposed an increase of the presence of volatile fatty acids, which might ultimately enable the resultant wastewater to be recirculated back to further biological treatment. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. 4D-Var data assimilation system for a coupled physical biological ...

    Indian Academy of Sciences (India)

    A 3-compartment model of phytoplankton growth dynamics has been coupled with a primitive-equation circulation model to better understand and quantify physical and biological processes in the Adriatic Sea. This paper presents the development and application of a data assimilation procedure based on optimal control ...

  10. Oil refinery wastewater treatment using coupled electrocoagulation and fixed film biological processes

    Science.gov (United States)

    Pérez, Laura S.; Rodriguez, Oscar M.; Reyna, Silvia; Sánchez-Salas, José Luis; Lozada, J. Daniel; Quiroz, Marco A.; Bandala, Erick R.

    2016-02-01

    Oil refinery wastewater was treated using a coupled treatment process including electrocoagulation (EC) and a fixed film aerobic bioreactor. Different variables were tested to identify the best conditions using this procedure. After EC, the effluent was treated in an aerobic biofilter. EC was capable to remove over 88% of the overall chemical oxygen demand (COD) in the wastewater under the best working conditions (6.5 V, 0.1 M NaCl, 4 electrodes without initial pH adjustment) with total petroleum hydrocarbon (TPH) removal slightly higher than 80%. Aluminum release from the electrodes to the wastewater was found an important factor for the EC efficiency and closely related with several operational factors. Application of EC allowed to increase the biodegradability of the sample from 0.015, rated as non-biodegradable, up to 0.5 widely considered as biodegradable. The effluent was further treated using an aerobic biofilter inoculated with a bacterial consortium including gram positive and gram negative strains and tested for COD and TPH removal from the EC treated effluent during 30 days. Cell count showed the typical bacteria growth starting at day three and increasing up to a maximum after eight days. After day eight, cell growth showed a plateau which agreed with the highest decrease on contaminant concentration. Final TPHs concentration was found about 600 mgL-1 after 30 days whereas COD concentration after biological treatment was as low as 933 mgL-1. The coupled EC-aerobic biofilter was capable to remove up to 98% of the total TPH amount and over 95% of the COD load in the oil refinery wastewater.

  11. Interconnection of reactive oxygen species chemistry across the interfaces of atmospheric, environmental, and biological processes.

    Science.gov (United States)

    Anglada, Josep M; Martins-Costa, Marilia; Francisco, Joseph S; Ruiz-López, Manuel F

    2015-03-17

    Oxidation reactions are ubiquitous and play key roles in the chemistry of the atmosphere, in water treatment processes, and in aerobic organisms. Ozone (O3), hydrogen peroxide (H2O2), hydrogen polyoxides (H2Ox, x > 2), associated hydroxyl and hydroperoxyl radicals (HOx = OH and HO2), and superoxide and ozonide anions (O2(-) and O3(-), respectively) are the primary oxidants in these systems. They are commonly classified as reactive oxygen species (ROS). Atmospheric chemistry is driven by a complex system of chain reactions of species, including nitrogen oxides, hydroxyl and hydroperoxide radicals, alkoxy and peroxy radicals, and ozone. HOx radicals contribute to keeping air clean, but in polluted areas, the ozone concentration increases and creates a negative impact on plants and animals. Indeed, ozone concentration is used to assess air quality worldwide. Clouds have a direct effect on the chemical composition of the atmosphere. On one hand, cloud droplets absorb many trace atmospheric gases, which can be scavenged by rain and fog. On the other hand, ionic species can form in this medium, which makes the chemistry of the atmosphere richer and more complex. Furthermore, recent studies have suggested that air-cloud interfaces might have a significant impact on the overall chemistry of the troposphere. Despite the large differences in molecular composition, concentration, and thermodynamic conditions among atmospheric, environmental, and biological systems, the underlying chemistry involving ROS has many similarities. In this Account, we examine ROS and discuss the chemical characteristics common to all of these systems. In water treatment, ROS are key components of an important subset of advanced oxidation processes. Ozonation, peroxone chemistry, and Fenton reactions play important roles in generating sufficient amounts of hydroxyl radicals to purify wastewater. Biochemical processes within living organisms also involve ROS. These species can come from pollutants in

  12. Ozone generation by negative corona discharge: the effect of Joule heating

    International Nuclear Information System (INIS)

    Yanallah, K; Castellanos, A; Pontiga, F; Fernandez-Rueda, A; Belasri, A

    2008-01-01

    Ozone generation in pure oxygen using a wire-to-cylinder corona discharge reactor is experimentally and numerically investigated. Ozone concentration is determined by means of direct UV spectroscopy and the effects of Joule heating and ozone decomposition on the electrodes are analysed for different discharge gaps. The numerical model combines the physical processes in the corona discharge with the chemistry of ozone formation and destruction. The chemical kinetics model and the electrical model are coupled through Poisson's equation, and the current-voltage (CV) characteristic measured in experiments is used as input data to the numerical simulation. The numerical model is able to predict the radial distributions of electrons, ions, atoms and molecules for each applied voltage of the CV characteristic. In particular, the evolution of ozone density inside the discharge cell has been investigated as a function of current intensity and applied voltage

  13. Ozone generation by negative corona discharge: the effect of Joule heating

    Science.gov (United States)

    Yanallah, K.; Pontiga, F.; Fernández-Rueda, A.; Castellanos, A.; Belasri, A.

    2008-10-01

    Ozone generation in pure oxygen using a wire-to-cylinder corona discharge reactor is experimentally and numerically investigated. Ozone concentration is determined by means of direct UV spectroscopy and the effects of Joule heating and ozone decomposition on the electrodes are analysed for different discharge gaps. The numerical model combines the physical processes in the corona discharge with the chemistry of ozone formation and destruction. The chemical kinetics model and the electrical model are coupled through Poisson's equation, and the current-voltage (CV) characteristic measured in experiments is used as input data to the numerical simulation. The numerical model is able to predict the radial distributions of electrons, ions, atoms and molecules for each applied voltage of the CV characteristic. In particular, the evolution of ozone density inside the discharge cell has been investigated as a function of current intensity and applied voltage.

  14. Effects of a modular two-step ozone-water and annealing process on silicon carbide graphene

    Energy Technology Data Exchange (ETDEWEB)

    Webb, Matthew J., E-mail: matthew.webb@cantab.net; Lundstedt, Anna; Grennberg, Helena [Department of Chemistry—BMC, Uppsala University, Box 576, SE-751 23 Uppsala (Sweden); Polley, Craig; Niu, Yuran; Zakharov, Alexei A.; Balasubramanian, Thiagarajan [MAX IV Laboratory, Lund University, 22100 Lund (Sweden); Dirscherl, Kai [DFM—Danish Fundamental Metrology, Matematiktorvet 307, DK-2800 Lyngby (Denmark); Burwell, Gregory; Guy, Owen J. [College of Engineering, Faraday Tower, Singleton Park, Swansea University, Swansea SA2 8PP (United Kingdom); Palmgren, Pål [VG Scienta Scientific AB, Box 15120, Vallongatan 1, SE-750 15 Uppsala (Sweden); Yakimova, Rositsa [Department of Physics, Chemistry, and Biology, Linköping University, SE-581 83 Linköping (Sweden)

    2014-08-25

    By combining ozone and water, the effect of exposing epitaxial graphene on silicon carbide to an aggressive wet-chemical process has been evaluated after high temperature annealing in ultra high vacuum. The decomposition of ozone in water produces a number of oxidizing species, however, despite long exposure times to the aqueous-ozone environment, no graphene oxide was observed after the two-step process. The systems were comprehensively characterized before and after processing using Raman spectroscopy, core level photoemission spectroscopy, and angle resolved photoemission spectroscopy together with low energy electron diffraction, low energy electron microscopy, and atomic force microscopy. In spite of the chemical potential of the aqueous-ozone reaction environment, the graphene domains were largely unaffected raising the prospect of employing such simple chemical and annealing protocols to clean or prepare epitaxial graphene surfaces.

  15. Assessment of Fenton's reagent and ozonation as pre-treatments for increasing the biodegradability of aqueous diethanolamine solutions from an oil refinery gas sweetening process.

    Science.gov (United States)

    Durán-Moreno, A; García-González, S A; Gutiérrez-Lara, M R; Rigas, F; Ramírez-Zamora, R M

    2011-02-28

    The aim of this work was to evaluate the efficiency of three chemical oxidation processes for increasing the biodegradability of aqueous diethanolamine solutions (aqueous DEA solutions), to be used as pre-treatments before a biological process. The raw aqueous DEA solution, sourced from a sour gas sweetening plant at a Mexican oil refinery, was first characterized by standardized physico-chemical methods. Then experiments were conducted on diluted aqueous DEA solutions to test the effects of Fenton's reagent, ozone and ozone-hydrogen peroxide on the removal of some physicochemical parameters of these solutions. Lastly, biodegradability tests based on Dissolved Organic Carbon Die Away OECD301-A, were carried out on a dilution of the raw aqueous DEA solution and on the treated aqueous DEA solutions, produced by applying the best experimental conditions determined during the aforementioned oxidation tests. Experimental results showed that for aqueous DEA solutions treated with Fenton's reagent, the best degradation rate (70%) was obtained at pH 2.8, with Fe(2+) and H(2)O(2) at doses of 1000 and 10,000 mg/L respectively. In the ozone process, the best degradation (60%) was observed in aqueous DEA solution (100 mg COD/L), using 100 mg O(3)/L at pH 5. In the ozone-hydrogen peroxide process, no COD or DOC removals were observed. The diluted spent diethanolamine solution showed its greatest increase in biodegradability after a reaction period of 28 days when treated with Fenton's reagent, but after only 15 days in the case of ozonation. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Optimization of stabilized leachate treatment using ozone/persulfate in the advanced oxidation process

    International Nuclear Information System (INIS)

    Abu Amr, Salem S.; Aziz, Hamidi Abdul; Adlan, Mohd Nordin

    2013-01-01

    Highlights: ► Ozone and persulfate reagent (O 3 /S 2 O 8 2- ) was used to treat stabilized leachate. ► Central composite design (CCD) with response surface methodology (RSM) was applied. ► Operating variables including ozone and persulfate dosage, pH variance, and reaction time. ► Optimum removal of COD, color, and NH 3 –N was 72%, 96%, and 76%, respectively. ► A good value of ozone consumption (OC) obtained with 0.60 (kg O 3 /kg COD). - Abstract: The objective of this study was to investigate the performance of employing persulfate reagent in the advanced oxidation of ozone to treat stabilized landfill leachate in an ozone reactor. A central composite design (CCD) with response surface methodology (RSM) was applied to evaluate the relationships between operating variables, such as ozone and persulfate dosages, pH, and reaction time, to identify the optimum operating conditions. Quadratic models for the following four responses proved to be significant with very low probabilities ( 3 –N, and ozone consumption (OC). The obtained optimum conditions included a reaction time of 210 min, 30 g/m 3 ozone, 1 g/1 g COD 0 /S 2 O 8 2- ratio, and pH 10. The experimental results were corresponded well with predicted models (COD, color, and NH 3 –N removal rates of 72%, 96%, and 76%, respectively, and 0.60 (kg O 3 /kg COD OC). The results obtained in the stabilized leachate treatment were compared with those from other treatment processes, such as ozone only and persulfate S 2 O 8 2- only, to evaluate its effectiveness. The combined method (i.e., O 3 /S 2 O 8 2- ) achieved higher removal efficiencies for COD, color, and NH 3 –N compared with other studied applications. Furthermore, the new method is more efficient than ozone/Fenton in advanced oxidation process in the treatment of the same studied leachate

  17. Effects of ozonation and temperature on biodegradation of natural organic matter in biological granular activated carbon filters

    NARCIS (Netherlands)

    Van der Aa, L.T.J.; Rietveld, L.C.; Van Dijk, J.C.

    2010-01-01

    Four pilot (biological) granular activated carbon ((B)GAC) filters were operated to quantify the effects of ozonation and water temperature on the biodegradation of natural organic matter (NOM) in (B)GAC filters. Removal of dissolved organic carbon (DOC), assimilable organic carbon (AOC) and oxygen

  18. Ozone using outlook for efficiency increasing of transportation and processing of high viscous petroleum raw materials

    International Nuclear Information System (INIS)

    Nadirov, N.K.; Zajkina, R.F.; Mamonova, T.B.

    1997-01-01

    Main types of oxidation reactions preceding during petroleum feedstock ozonization are generalized. The slight ozone high paraffin-content petroleum processing sites in shown on the example will make possible to rise the pipe transport efficiency and to increase the light fraction contents in petroleums. The prospects are discussed to application of ozone forming as a by-product of radiation-chemical facilities action for petroleum feedstock processing. (author)

  19. Leading research report for fiscal 1998. Research and study of ozone-aided technologies for creating amenity-rich environments; 1998 nendo sendo chosa kenkyu hokokusho. Ozon riyo kaiteki kankyo sozo gijutsu no chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Researches were conducted aiming at the establishment of an ozone-aided highly efficient decomposition process for the persistent organic matters in municipal sewage and industrial wastewater. Tested for verification were advanced water treatment technologies of the biological function acceleration type and the effect of their combination with the accelerated oxidation method, conditions necessary for efficient operation, and water treatment apparatuses and systems for operating them at high efficiency. Some findings are stated below. With an ozone-aided process performed at the first stage of biological treatment, biological decomposition is accelerated for a rise in the persistent organic matter decomposition rate. This is nothing but a finding in the laboratory, however, and much remains to be disclosed concerning the optimum conditions, reforming of sludge to be generated, volume reduction of the same, etc. Another finding involves the acceleration of decomposition of persistent organic matters using ozone in combination with hydrogen peroxide, ultraviolet radiation, titanium oxide, and the like. There still remain numerous tasks to carry out, however, which relate to the investigation of the reaction mechanism, establishment of operating conditions and criteria for selecting oxidants, etc. As for ozone, remaining to be solved are the problems of generation cost, storage and preservation, and safety. (NEDO)

  20. Understanding the biological underpinnings of ecohydrological processes

    Science.gov (United States)

    Huxman, T. E.; Scott, R. L.; Barron-Gafford, G. A.; Hamerlynck, E. P.; Jenerette, D.; Tissue, D. T.; Breshears, D. D.; Saleska, S. R.

    2012-12-01

    Climate change presents a challenge for predicting ecosystem response, as multiple factors drive both the physical and life processes happening on the land surface and their interactions result in a complex, evolving coupled system. For example, changes in surface temperature and precipitation influence near-surface hydrology through impacts on system energy balance, affecting a range of physical processes. These changes in the salient features of the environment affect biological processes and elicit responses along the hierarchy of life (biochemistry to community composition). Many of these structural or process changes can alter patterns of soil water-use and influence land surface characteristics that affect local climate. Of the many features that affect our ability to predict the future dynamics of ecosystems, it is this hierarchical response of life that creates substantial complexity. Advances in the ability to predict or understand aspects of demography help describe thresholds in coupled ecohydrological system. Disentangling the physical and biological features that underlie land surface dynamics following disturbance are allowing a better understanding of the partitioning of water in the time-course of recovery. Better predicting the timing of phenology and key seasonal events allow for a more accurate description of the full functional response of the land surface to climate. In addition, explicitly considering the hierarchical structural features of life are helping to describe complex time-dependent behavior in ecosystems. However, despite this progress, we have yet to build an ability to fully account for the generalization of the main features of living systems into models that can describe ecohydrological processes, especially acclimation, assembly and adaptation. This is unfortunate, given that many key ecosystem services are functions of these coupled co-evolutionary processes. To date, both the lack of controlled measurements and experimentation

  1. Degradation of methylparaben in water by corona plasma coupled with ozonation.

    Science.gov (United States)

    Dobrin, D; Magureanu, M; Bradu, C; Mandache, N B; Ionita, P; Parvulescu, V I

    2014-11-01

    The degradation of methylparaben (MeP) in water was investigated using a pulsed corona discharge generated in oxygen, above the liquid. A comparison was made between results obtained in semi-batch corona (SBC) configuration (stationary solution, continuous gas flow) and results obtained in a semi-batch corona with recirculation combined with ozonation (SBCR + O3), where the liquid is continuously circulated between a solution reservoir and the plasma reactor and the effluent gas containing ozone is bubbled through the solution in the reservoir. It was found that MeP was completely degraded after 10-15 min of treatment in both configurations. Oxidation by ozone alone, in the absence of plasma, was a slower process. The energy efficiency for MeP removal (Y MeP) and for mineralization (Y TOC) was significantly higher in the SBCR + O3 configuration (Y MeP = 7.1 g/kWh at 90 % MeP removal and Y TOC = 0.41 g/kWh at 50 % total organic carbon (TOC) removal) than in the SBC configuration (Y MeP = 0.6 g/kWh at 90 % MeP removal and Y TOC = 0.11 g/kWh at 50 % TOC removal).

  2. Decolorization of malachite green, decolorization kinetics and stoichiometry of ozone-malachite green and removal of antibacterial activity with ozonation processes

    International Nuclear Information System (INIS)

    Kusvuran, Erdal; Gulnaz, Osman; Samil, Ali; Yildirim, Ozlem

    2011-01-01

    This study aimed to identify degradation intermediates and to investigate the stoichiometry of decolorization and degradation, decolorization kinetics, and removal of antibacterial activity of malachite green (MG) using ozonization processes. The decolorization of MG was optimal at an acidic pH value of 3 based on molecular ozone attack on MG molecules. The stoichiometric ratio of decolorization between ozone and MG was calculated to be 7.0 with a regression coefficient of 0.995, whereas the ratio for degradation was calculated as 13.1 with a regression coefficient of 0.998. With MG concentrations in the range of 0.30-1.82 mM, the concentration of decolorized MG increased with higher initial concentrations of MG, whereas the ozonolytic decolorization rates of MG, decreased with increasing initial concentration. The pseudo-first-order degradation rate constants (k') decreased with the initial concentration and ranged from 0.769 to 0.223 min -1 . Twelve different intermediates were produced during the ozonation of MG with ozonation times between 5 min and 30 min and were identified by GC-MS. Although 86% of MG in the reaction mixture was removed by ozonation after 10 min, the decrease of antibacterial activity was very low (10%) for Bacillus subtilis and Staphylococcus epidermidis because the degradation intermediates, phenol and benzoic acid, also have antibacterial activity. The antibacterial activity of both MG and its intermediates were removed successfully with ozonation times above 26 min.

  3. Decolorization of malachite green, decolorization kinetics and stoichiometry of ozone-malachite green and removal of antibacterial activity with ozonation processes

    Energy Technology Data Exchange (ETDEWEB)

    Kusvuran, Erdal, E-mail: erdalkusvuran@yahoo.com [Chemistry Department, Arts and Sciences Faculty, Cukurova University, 01330 Balcali, Adana (Turkey); Gulnaz, Osman [Biology Department, Arts and Sciences Faculty, Cukurova University, 01330 Balcali, Adana (Turkey); Samil, Ali [Chemistry Department, Arts and Sciences Faculty, Sutcu Imam University, 46100 Kahramanmaras (Turkey); Yildirim, Ozlem [Chemistry Department, Arts and Sciences Faculty, Cukurova University, 01330 Balcali, Adana (Turkey)

    2011-02-15

    This study aimed to identify degradation intermediates and to investigate the stoichiometry of decolorization and degradation, decolorization kinetics, and removal of antibacterial activity of malachite green (MG) using ozonization processes. The decolorization of MG was optimal at an acidic pH value of 3 based on molecular ozone attack on MG molecules. The stoichiometric ratio of decolorization between ozone and MG was calculated to be 7.0 with a regression coefficient of 0.995, whereas the ratio for degradation was calculated as 13.1 with a regression coefficient of 0.998. With MG concentrations in the range of 0.30-1.82 mM, the concentration of decolorized MG increased with higher initial concentrations of MG, whereas the ozonolytic decolorization rates of MG, decreased with increasing initial concentration. The pseudo-first-order degradation rate constants (k') decreased with the initial concentration and ranged from 0.769 to 0.223 min{sup -1}. Twelve different intermediates were produced during the ozonation of MG with ozonation times between 5 min and 30 min and were identified by GC-MS. Although 86% of MG in the reaction mixture was removed by ozonation after 10 min, the decrease of antibacterial activity was very low (10%) for Bacillus subtilis and Staphylococcus epidermidis because the degradation intermediates, phenol and benzoic acid, also have antibacterial activity. The antibacterial activity of both MG and its intermediates were removed successfully with ozonation times above 26 min.

  4. Growth of Chironomus dilutus larvae exposed to ozone-treated and untreated oil sands process water

    International Nuclear Information System (INIS)

    Anderson, J.; Wiseman, S.; Franz, E.; Jones, P.; Liber, K.; Giesy, J.; Gamal El-Din, M.; Marin, J.

    2010-01-01

    Oil sand processing operations require large quantities of freshwater and produce large volumes of oil sands process water (OSPW) which must be stored on-site. This presentation reviewed various treatment methods for remediating OSPW in order to eliminate downstream toxicity. Naphthenic acids are the most important target fractions for treatment because they are primarily responsible for the acute toxicity of OSPW. Although ozonation has shown promise for reducing OSPW toxicity, the effects of ozonation on aquatic invertebrates remain unknown. This study investigated the effects of exposure to untreated and ozonated OSPW in Chironomus dilutus larvae. OSPW was treated with either a 50 or 80 mg O 3 /L dose of ozonation. The effects of ozonation levels on C. dilutus survival and growth were examined. The study showed that after a 10-day exposure, there were pronounced effects on survival of larvae exposed to ozone-treated or untreated OSPW. Larvae exposed to OSPW were 64-77 percent smaller than their respective controls, but the mean wet mass of organisms exposed to 50 mg O 3 /L ozonated OSPW was not much different from that of the controls. Larvae exposed to 80 mg O 3 /L ozone-treated OSPW were 40 percent smaller than the freshwater controls, and the mean wet mass was also much larger than the untreated OSPW. It was concluded that the toxicity of OSPW to benthic invertebrates may be reduced by ozone treatment.

  5. Chemical and Spectral Characterization of The Ozonation Products of κ-Carrageenan

    Directory of Open Access Journals (Sweden)

    Prasetyaningrum Aji

    2018-01-01

    Full Text Available Kappa (κ- carrageenan oligomers are known to have several biological activities. Recent progress in the development of modified κ-carrageenan has resulted low molecular of κ-carrageenan. Ozone is a powerful oxidant and considered for depolymerization of κ-carrageenan. However, few studies have investigated the changes in κ-carrageenan properties associated with ozone treatment. This study would investigate on the changes in chemical structure after ozonation process. The experiments were carried out in a glass reactor equipped with an ozone bubble diffuser. Ozone with concentration of 80 ± 2 was bubbled into the solution. The ozone treatment was conducted at different times, i.e., 0 (control, 5, 10, 15, and 20 minutes. The experiments were conducted at pH 7 and constant stirring speed (200 rpm. Ozone-treated κ-carrageenan was dried at 60 ºC for 24 h in a forced air oven. The chemical and spectral analyses of κ-carrageenan after ozonation process were carried out using UV-Vis and FT-IR spectroscopy. These changes are seen in the UV spectra as a high intensity of absorbance peak at 290 nm. It is shows that ozonation of κ-carrageenan leads to some chemical changes such as the formation of carbonyl, carboxyl or double bonds.The FT-IR spectra reveals that the chemical structure of degraded κ-carrageenan, in term of sulfate content, is only slightly affected by the ozone treatment.

  6. Ozone generation by negative corona discharge: the effect of Joule heating

    Energy Technology Data Exchange (ETDEWEB)

    Yanallah, K; Castellanos, A [Departamento de Electronica y Electromagnetismo, Universidad de Sevilla (Spain); Pontiga, F; Fernandez-Rueda, A [Departamento de Fisica Aplicada II, Universidad de Sevilla (Spain); Belasri, A [Laboratoire de Physique des Plasmas, des Materiaux Conducteur et Leurs Applications, Universite d' Oran (Algeria)

    2008-10-07

    Ozone generation in pure oxygen using a wire-to-cylinder corona discharge reactor is experimentally and numerically investigated. Ozone concentration is determined by means of direct UV spectroscopy and the effects of Joule heating and ozone decomposition on the electrodes are analysed for different discharge gaps. The numerical model combines the physical processes in the corona discharge with the chemistry of ozone formation and destruction. The chemical kinetics model and the electrical model are coupled through Poisson's equation, and the current-voltage (CV) characteristic measured in experiments is used as input data to the numerical simulation. The numerical model is able to predict the radial distributions of electrons, ions, atoms and molecules for each applied voltage of the CV characteristic. In particular, the evolution of ozone density inside the discharge cell has been investigated as a function of current intensity and applied voltage.

  7. Ozone kinetics in low-pressure discharges: vibrationally excited ozone and molecule formation on surfaces

    Science.gov (United States)

    Marinov, Daniil; Guerra, Vasco; Guaitella, Olivier; Booth, Jean-Paul; Rousseau, Antoine

    2013-10-01

    A combined experimental and modeling investigation of the ozone kinetics in the afterglow of pulsed direct current discharges in oxygen is carried out. The discharge is generated in a cylindrical silica tube of radius 1 cm, with short pulse durations between 0.5 and 2 ms, pressures in the range 1-5 Torr and discharge currents ˜40-120 mA. Time-resolved absolute concentrations of ground-state atoms and ozone molecules were measured simultaneously in situ, by two-photon absorption laser-induced fluorescence and ultraviolet absorption, respectively. The experiments were complemented by a self-consistent model developed to interpret the results and, in particular, to evaluate the roles of vibrationally excited ozone and of ozone formation on surfaces. It is found that vibrationally excited ozone, O_3^{*} , plays an important role in the ozone kinetics, leading to a decrease in the ozone concentration and an increase in its formation time. In turn, the kinetics of O_3^{*} is strongly coupled with those of atomic oxygen and O2(a 1Δg) metastables. Ozone formation at the wall does not contribute significantly to the total ozone production under the present conditions. Upper limits for the effective heterogeneous recombination probability of O atoms into ozone are established.

  8. Ozone kinetics in low-pressure discharges: vibrationally excited ozone and molecule formation on surfaces

    International Nuclear Information System (INIS)

    Marinov, Daniil; Guaitella, Olivier; Booth, Jean-Paul; Rousseau, Antoine; Guerra, Vasco

    2013-01-01

    A combined experimental and modeling investigation of the ozone kinetics in the afterglow of pulsed direct current discharges in oxygen is carried out. The discharge is generated in a cylindrical silica tube of radius 1 cm, with short pulse durations between 0.5 and 2 ms, pressures in the range 1–5 Torr and discharge currents ∼40–120 mA. Time-resolved absolute concentrations of ground-state atoms and ozone molecules were measured simultaneously in situ, by two-photon absorption laser-induced fluorescence and ultraviolet absorption, respectively. The experiments were complemented by a self-consistent model developed to interpret the results and, in particular, to evaluate the roles of vibrationally excited ozone and of ozone formation on surfaces. It is found that vibrationally excited ozone, O 3 * , plays an important role in the ozone kinetics, leading to a decrease in the ozone concentration and an increase in its formation time. In turn, the kinetics of O 3 * is strongly coupled with those of atomic oxygen and O 2 (a 1 Δ g ) metastables. Ozone formation at the wall does not contribute significantly to the total ozone production under the present conditions. Upper limits for the effective heterogeneous recombination probability of O atoms into ozone are established. (paper)

  9. Application of ozonation for pharmaceuticals and personal care products removal from water.

    Science.gov (United States)

    Gomes, João; Costa, Raquel; Quinta-Ferreira, Rosa M; Martins, Rui C

    2017-05-15

    Due to the shortening on natural water resources, reclaimed wastewater will be an important water supply source. However, suitable technologies must be available to guaranty its proper detoxification with special concern for the emerging pharmaceutical and personal care products that are continuously reaching municipal wastewater treatment plants. While conventional biological systems are not suitable to remove these compounds, ozone, due to its interesting features involving molecular ozone oxidation and the possibility of generating unselective hydroxyl radicals, has a wider range of action on micropollutants removal and water disinfection. This paper aims to review the studies dealing with ozone based processes for water reuse by considering municipal wastewater reclamation as well as natural and drinking water treatment. A comparison with alternative technologies is given. The main drawback of ozonation is related with the low mineralization achieved that may lead to the production of reaction intermediates with toxic features. The use of hydrogen peroxide and light aided systems enhance ozone action over pollutants. Moreover, scientific community is focused on the development of solid catalysts able to improve the mineralization level achieved by ozone. Special interest is now being given to solar light catalytic ozonation systems with interesting results both for chemical and biological contaminants abatement. Nowadays the integration between ozonation and sand biofiltration seems to be the most interesting cost effective methodology for water treatment. However, further studies must be performed to optimize this system by understanding the biofiltration mechanisms. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Ozone therapy in periodontics.

    Science.gov (United States)

    Gupta, G; Mansi, B

    2012-02-22

    Gingival and Periodontal diseases represent a major concern both in dentistry and medicine. The majority of the contributing factors and causes in the etiology of these diseases are reduced or treated with ozone in all its application forms (gas, water, oil). The beneficial biological effects of ozone, its anti-microbial activity, oxidation of bio-molecules precursors and microbial toxins implicated in periodontal diseases and its healing and tissue regeneration properties, make the use of ozone well indicated in all stages of gingival and periodontal diseases. The primary objective of this article is to provide a general review about the clinical applications of ozone in periodontics. The secondary objective is to summarize the available in vitro and in vivo studies in Periodontics in which ozone has been used. This objective would be of importance to future researchers in terms of what has been tried and what the potentials are for the clinical application of ozone in Periodontics.

  11. Ozonation and advanced oxidation by the peroxone process of ciprofloxacin in water

    International Nuclear Information System (INIS)

    Witte, Bavo de; Dewulf, Jo; Demeestere, Kristof; Langenhove, Herman van

    2009-01-01

    A bubble reactor was used for ozonation of the antibiotic ciprofloxacin. Effects of process parameters ozone inlet concentration, ciprofloxacin concentration, temperature, pH and H 2 O 2 concentration were tested. Desethylene ciprofloxacin was identified, based on HPLC-MS analysis, as one of the degradation products. Formation of desethylene ciprofloxacin was highly dependent on pH, with the highest concentration measured at pH 10. Radical scavengers t-butanol and parachlorobenzoic acid were added in order to gain mechanistic understanding. Radical species other than hydroxyl radicals were suggested to occur at acidic pH which can explain fast ciprofloxacin ozonation at pH 3

  12. Novel Water Treatment Processes Based on Hybrid Membrane-Ozonation Systems: A Novel Ceramic Membrane Contactor for Bubbleless Ozonation of Emerging Micropollutants

    Directory of Open Access Journals (Sweden)

    Stylianos K. Stylianou

    2015-01-01

    Full Text Available The aim of this study is the presentation of novel water treatment systems based on ozonation combined with ceramic membranes for the treatment of refractory organic compounds found in natural water sources such as groundwater. This includes, firstly, a short review of possible membrane based hybrid processes for water treatment from various sources. Several practical and theoretical aspects for the application of hybrid membrane-ozonation systems are discussed, along with theoretical background regarding the transformation of target organic pollutants by ozone. Next, a novel ceramic membrane contactor, bringing into contact the gas phase (ozone and water phase without the creation of bubbles (bubbleless ozonation, is presented. Experimental data showing the membrane contactor efficiency for oxidation of atrazine, endosulfan, and methyl tert-butyl ether (MTBE are shown and discussed. Almost complete endosulfan degradation was achieved with the use of the ceramic contactor, whereas atrazine degradation higher than 50% could not be achieved even after 60 min of reaction time. Single ozonation of water containing MTBE could not result in a significant MTBE degradation. MTBE mineralization by O3/H2O2 combination increased at higher pH values and O3/H2O2 molar ratio of 0.2 reaching a maximum of around 65%.

  13. Effects of ozonation and temperature on the biodegradation of natural organic matter in biological granular activated carbon filters

    NARCIS (Netherlands)

    Van der Aa, L.T.J.; Rietveld, L.C.; Van Dijk, J.C.

    2011-01-01

    Four pilot (biological) granular activated carbon ((B)GAC) filters were operated to quantify the effects of ozonation and water temperature on the biodegradation of natural organic matter (NOM) in (B)GAC filters. The removal of dissolved organic carbon (DOC), assimilable organic carbon (AOC) and

  14. Ozonation of nanofiltration permeate of whey before processing by reverse osmosis

    Directory of Open Access Journals (Sweden)

    Zmievskii Yurii G.

    2017-01-01

    Full Text Available During nanofiltration processing of whey a significant amount of permeate is generated. In some cases this permeate is treated by reverse osmosis to get purified water for technological needs. Dry substances are not used, because they contain practically the same amount of organic and inorganic components. Mineral substances can be used for the mineralization of drinking water purified by reverse osmosis. However, the presence of organic compounds complicates the process of separation, as well as reduces the specific productivity of reverse osmosis membranes at the concentration stage. Therefore, the search for methods of destruction and removal of organic components is grounded. In the presented work, experimental studies of ozonation and sorption of organic compounds by activated carbon were carried. It has been shown that ozonation improves the degree of sorption purification by six times. Sequential treatment with ozone and subsequent filtration through the layer of activated carbon improves the specific productivity of reverse osmosis membranes by 30% at the stage of treatment of the nanofiltration permeate, while their selectivity remains unchanged.

  15. Process Analysis of Typhoon Related Ozone Pollution over the Pearl River Delta during the PRIDE-PRD2006

    Science.gov (United States)

    Li, Y.; Wang, X.; Zhang, Y.

    2014-12-01

    There were two typhoon processes during Campaign PRIDE-PRD2006 in July 2006 and serious ozone pollution episodes occurred before the landing of the typhoons. Chemical transport model CMAQ was employed in this work to simulate the ozone pollution episode related by the typhoon KAEMI. According to the meteorological conditions, the pollution episode could be divided into three phases with the movement of the typhoon, which were (1) far away from the continent; (2) coming close to the continent; (3) before landing. Process analysis was applied to get the contributions of physical and chemical processes for the ozone. It revealed that transport process was dominant during this pollution episode, and the influence of chemical process increased in the second phase. Three typical regions, northern rural area, urban area and Hong Kong area, were selected to study the contribution of each chemical and physical process. In the first phase, the primary process in northern rural area and the urban area was vertical diffusion, accounting for 47% and 46% respectively. In the second phase, the primary process in northern rural area and the urban area was chemical process, accounting for 33% and 31% respectively. In the third phase, the region of high concentration ozone moved southward. For Hong Kong area, the western inflow was prominent as 40%. Sensitivity study showed that urban areas were VOCs-limited regime with decreased ozone concentration when reducing the emission of VOCs. On the contrary, the ozone concentration in downwind rural areas decreased with the reduction of NOx, and the reason may be the decrement of the accumulated precursors.

  16. Pesticide Removal by Combined Ozonation and Granular Activated Carbon Filtration

    NARCIS (Netherlands)

    Orlandini, E.

    1999-01-01

    This research aimed to idendfy and understand mechanisms that underlie the beneficial effect of ozonation on removal of pesdcides and other micropoUutants by Granular Activated Carbon (GAC) filtradon. This allows optimization of the combination of these two processes, termed Biological Activated

  17. Microbubble enhanced ozonation process for advanced treatment of wastewater produced in acrylic fiber manufacturing industry

    KAUST Repository

    Zheng, Tianlong; Wang, Qunhui; Zhang, Tao; Shi, Zhining; Tian, Yanli; Shi, Shanshan; Smale, Nicholas; Wang, Juan

    2015-01-01

    zeta potential of the bubbles were also observed in the microbubble ozonation process. The biodegradability of the wastewater was also significantly improved by microbubble-ozonation, which was ascribed to the enhanced degradation of alkanes, aromatic

  18. Effect of Ozonation and Biological Activated Carbon Treatment of Wastewater Effluents on Formation of N-nitrosamines and Halogenated Disinfection Byproducts.

    Science.gov (United States)

    Chuang, Yi-Hsueh; Mitch, William A

    2017-02-21

    Ozonation followed by biological activated carbon (O 3 /BAC) is being considered as a key component of reverse osmosis-free advanced treatment trains for potable wastewater reuse. Using a laboratory-scale O 3 /BAC system treating two nitrified wastewater effluents, this study characterized the effect of different ozone dosages (0-1.0 mg O 3 /mg dissolved organic carbon) and BAC empty bed contact times (EBCT; 15-60 min) on the formation after chlorination or chloramination of 35 regulated and unregulated halogenated disinfection byproducts (DBPs), 8 N-nitrosamines, and bromate. DBP concentrations were remarkably similar between the two wastewaters across O 3 /BAC conditions. Ozonation increased bromate, TCNM, and N-nitrosodimethylamine, but ozonation was less significant for other DBPs. DBP formation generally decreased significantly with BAC treatment at 15 min EBCT, but little further reduction was observed at higher EBCT where low dissolved oxygen concentrations may have limited biological activity. The O 3 /BAC-treated wastewaters met regulatory levels for trihalomethanes (THMs), haloacetic acids (HAAs), and bromate, although N-nitrosodimethylamine exceeded the California Notification Level in one case. Regulated THMs and HAAs dominated by mass. When DBP concentrations were weighted by measures of their toxic potencies, unregulated haloacetonitriles, haloacetaldehydes, and haloacetamides dominated. Assuming toxicity is additive, the calculated DBP-associated toxicity of the O 3 /BAC-treated chloraminated effluents were comparable or slightly higher than those calculated in a recent evaluation of Full Advanced Treatment trains incorporating reverse osmosis.

  19. Efficiency of Ciprofloxacin (CIP Removal from Pharmaceutical Effluents Using the Ozone/Persulfate(O3/PS Process

    Directory of Open Access Journals (Sweden)

    Alirezi Rahmani

    2016-03-01

    Full Text Available A newly emerging environmental problem is the discharge of pharmaceutical effluents containing antibiotic compounds. Compared to common methods, the ozone/persulfate process is a novel measure for treating persistent pollutants. This process is highly efficient in removing pollutants by using the free radicals of sulfates as powerful oxidants. In this study, a semi-continuous reactor with a useful volume of 1 L was used to evaluate the performance of the ozone/persulfate process in treating the ciprofloxacin antibiotic at concentrations from 10 to 100 mg/L in the presence of 0 to 15 mM of persulfate in 30 min. The results showed that under the optimized operating conditions of pH = 3, persulfate dose = 10 mM, ozone dose = 1 g/h, and an initial antibiotic concentration of 10 mg/L, this method was capable of removing 96% of the contaminant. Moreover, the efficiency of the process was found to be a function of experimental conditions. Based on the results of this study, it may be concluded that the ozone/persulfate process can be considered as an appropriate process for treating persistent and non-biodegradable pollutants.

  20. Ozonation kinetics of winery wastewater in a pilot-scale bubble column reactor.

    Science.gov (United States)

    Lucas, Marco S; Peres, José A; Lan, Bing Yan; Li Puma, Gianluca

    2009-04-01

    The degradation of organic substances present in winery wastewater was studied in a pilot-scale, bubble column ozonation reactor. A steady reduction of chemical oxygen demand (COD) was observed under the action of ozone at the natural pH of the wastewater (pH 4). At alkaline and neutral pH the degradation rate was accelerated by the formation of radical species from the decomposition of ozone. Furthermore, the reaction of hydrogen peroxide (formed from natural organic matter in the wastewater) and ozone enhances the oxidation capacity of the ozonation process. The monitoring of pH, redox potential (ORP), UV absorbance (254 nm), polyphenol content and ozone consumption was correlated with the oxidation of the organic species in the water. The ozonation of winery wastewater in the bubble column was analysed in terms of a mole balance coupled with ozonation kinetics modeled by the two-film theory of mass transfer and chemical reaction. It was determined that the ozonation reaction can develop both in and across different kinetic regimes: fast, moderate and slow, depending on the experimental conditions. The dynamic change of the rate coefficient estimated by the model was correlated with changes in the water composition and oxidant species.

  1. [Degradation of p-nitrophenol by high voltage pulsed discharge and ozone processes].

    Science.gov (United States)

    Pan, Li-li; Yan, Guo-qi; Zheng, Fei-yan; Liang, Guo-wei; Fu, Jian-jun

    2005-11-01

    The vigorous oxidation by ozone and the high energy by pulsed discharge are utilized to degrade the big hazardous molecules. And these big hazardous molecules become small and less hazardous by this process in order to improve the biodegradability. When pH value is 8-9, the concentration of p-nitrophenol solution can be degraded by 96.8% and the degradation efficiency of TOC is 38.6% by ozone and pulsed discharge treatment for 30 mins. The comparison results show that the combination treatment efficiency is higher than the separate, so the combination of ozone and pulsed discharge has high synergism. It is approved that the phenyl degradation efficiency is high and the degradation efficiency of linear molecules is relative low.

  2. Removal of Furfural From Wastewater Using Integrated Catalytic Ozonation and Biological Approaches

    Directory of Open Access Journals (Sweden)

    Mostafa Leili

    2014-12-01

    Full Text Available Furfural with a chemical formula of C5H4O2 is a toxic compound which has several health problems for both humans and environment. It has a few exposure routes for entering the human body such as oral, dermal or nasal. In the present study, the efficacies of an integrated catalytic ozonation process (COP and novel cyclic biological reactor (CBR were explored for the removal of furfural from aqueous solutions. Activated carbon was purchased from Merck Company. It had a Brunauer, Emmett, and Teller (BET specific surface area of 1100 m2/g, with an average micropore volume and size of 0.385 cm3/g and 595 µm, respectively. The results indicated that 30% pretreatment with COP could increase furfural and chemical oxygen demand (COD removal efficiency with CBR 5.56% and 27.01%, respectively. With 70% pretreatment by COP, 98.57% furfural and 95.34% COD removal efficiencies happen in CBR. Generally, batch and continuous experiments showed that the integrated COP/CBR could be efficient in eliminating furfural from wastewater and thus may be a promising technique for treating furfural-containing wastewater.

  3. Efficiency of combined process of ozone and bio-filtration in the treatment of secondary effluent.

    Science.gov (United States)

    Tripathi, Smriti; Tripathi, B D

    2011-07-01

    The present work was aimed at studying the efficiency of the combined process of biofiltration with ozonation to improve the quality of secondary effluent. The secondary effluent from the Dinapur Sewage Treatment Plant Varanasi, India was used in this work. The process of biofiltration with the plant species of Eichornia crassipes and Lemna minor, at a flow rate of 262 ml min(-1) and plant density of 30 mg L(-1) for 48 h, in combination with the process of ozonation with ozone dose of 10 mg L(-1) and contact time of 5 min was applied. Results revealed that combined process was statistically most suitable for the highest degradation of physico-chemical and microbial parameters with improving BDOC value. The biofiltration process is able to remove highest percentage of toxic heavy metals from the secondary effluent without production of toxicity. This technique is highly recommendable for tropical wastewater where sewage is mixed with industrial effluents. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Effects on Water Management and Quality Characteristics of Ozone Application in Chicory Forcing Process: A Pilot System

    Directory of Open Access Journals (Sweden)

    Carlo Nicoletto

    2017-04-01

    Full Text Available Agriculture is the largest user of world water resources, accounting for 70% of all consumption. Reducing water consumption and increasing water use efficiency in agriculture are two of the main challenges that need to be faced in the coming decades. Radicchio Rosso di Treviso Tardivo (RTT is a vegetable that requires a water forcing process prior to final commercialization which presents a significant environmental impact due to the high water volumes used and then dispersed into the environment. The experiment was aimed at reducing the water use in the forcing process of RTT, by developing a pilot system with recycled water in a closed loop through ozone treatment. Concerning water quality, the redox potential value was higher in the ozonized system, whereas turbidity, pH and electrical conductivity of the ozonized system did not change significantly from the control. Yield and quality of plants obtained in the ozonized system did not significantly differ from the control plants except for the antioxidant activity that was higher in plants forced using the water treated with ozone. Our initial results suggest that the ozone treatment could be applied in the forcing process and is suitable for growers, saving up to 95% of water volumes normally used for this cultivation practice.

  5. Ozone kinetics in low-pressure discharges

    Science.gov (United States)

    Guerra, Vasco; Marinov, Daniil; Guaitella, Olivier; Rousseau, Antoine

    2012-10-01

    Ozone kinetics is quite well established at atmospheric pressure, due to the importance of ozone in atmospheric chemistry and to the development of industrial ozone reactors. However, as the pressure is decreased and the dominant three-body reactions lose importance, the main mechanisms involved in the creation and destruction of ozone are still surrounded by important uncertainties. In this work we develop a self-consistent model for a pulsed discharge and its afterglow operating in a Pyrex reactor with inner radius 1 cm, at pressures in the range 1-5 Torr and discharge currents of 40-120 mA. The model couples the electron Boltzmann equation with a system of equations for the time evolution of the heavy particles. The calculations are compared with time-dependent measurements of ozone and atomic oxygen. Parametric studies are performed in order to clarify the role of vibrationally excited ozone in the overall kinetics and to establish the conditions where ozone production on the surface may become important. It is shown that vibrationally excited ozone does play a significant role, by increasing the time constants of ozone formation. Moreover, an upper limit for the ozone formation at the wall in these conditions is set at 10(-4).

  6. Application of a novel decontamination process using gaseous ozone

    Energy Technology Data Exchange (ETDEWEB)

    Moat, J.; Shone, J.; Upton, M. [Manchester Univ., School of Medecine, Manchester (United Kingdom). Medical Microbiology, Translation Medicine; Cargill, J. [Old Medical School, Leeds (United Kingdom). Dept. of Microbiology

    2009-08-15

    Hospital surfaces that are touched regularly by staff carry bacterial spores and pathogens. Environmental disinfection of health care facilities is an important aspect of infection control. This paper presented a recent innovation aimed at improving hospital hygiene and decontamination of laboratory equipment. The vapour- and gas-based treatment was developed to penetrate rooms or soft furnishings and reach places inaccessible by conventional approaches. Surfaces seeded with a range of vegetative cells and spores of bacteria of clinical relevance were decontaminated using the ozone-based treatment. The efficiency of the approach for room sanitization was also evaluated. A quenching agent was used to rapidly reduce ozone concentrations to safe levels allowing treatment times of less than 1 h for most of the organisms tested. Bacteria was seeded onto agar plates and solid surfaces. Reductions in bacterial load of greater than 3 log values were then recorded for a number of organisms including Escherichia coli and methicillin-resistant Staphylococcus aureus. Application of the process in a 30 m{sup 3} room showed similar reductions in viable counts for these organisms and for Clostridium difficile spores. It was concluded that ozone-based decontamination of healthcare environments could prove to be a highly cost-effective intervention. 35 refs., 1 tab., 3 figs.

  7. Bromate Formation Characteristics of UV Irradiation, Hydrogen Peroxide Addition, Ozonation, and Their Combination Processes

    Directory of Open Access Journals (Sweden)

    Naoyuki Kishimoto

    2012-01-01

    Full Text Available Bromate formation characteristics of six-physicochemical oxidation processes, UV irradiation, single addition of hydrogen peroxide, ozonation, UV irradiation with hydrogen peroxide addition (UV/H2O2, ozonation with hydrogen peroxide addition (O3/H2O2, and ozonation with UV irradiation (O3/UV were investigated using 1.88 μM of potassium bromide solution with or without 6.4 μM of 4-chlorobenzoic acid. Bromate was not detected during UV irradiation, single addition of H2O2, and UV/H2O2, whereas ozone-based treatments produced . Hydroxyl radicals played more important role in bromate formation than molecular ozone. Acidification and addition of radical scavengers such as 4-chlorobenzoic acid were effective in inhibiting bromate formation during the ozone-based treatments because of inhibition of hydroxyl radical generation and consumption of hydroxyl radicals, respectively. The H2O2 addition was unable to decompose 4-chlorobenzoic acid, though O3/UV and O3/H2O2 showed the rapid degradation, and UV irradiation and UV/H2O2 showed the slow degradation. Consequently, if the concentration of organic contaminants is low, the UV irradiation and/or UV/H2O2 are applicable to organic contaminants removal without bromate formation. However, if the concentration of organic contaminants is high, O3/H2O2 and O3/UV should be discussed as advanced oxidation processes because of their high organic removal efficiency and low bromate formation potential at the optimum condition.

  8. Iron decreases biological effects of ozone exposure

    Science.gov (United States)

    CONTEXT: Ozone (0(3)) exposure is associated with a disruption of iron homeostasis and increased availability of this metal which potentially contributes to an oxidative stress and biologicaleffects. OBJECTIVE: We tested the postulate that increased concentrations of iron in c...

  9. Inactivation characteristics of ozone and electrolysis process for ballast water treatment using B. subtilis spores as a probe.

    Science.gov (United States)

    Jung, Youmi; Yoon, Yeojoon; Hong, Eunkyung; Kwon, Minhwan; Kang, Joon-Wun

    2013-07-15

    Since ballast water affects the ocean ecosystem, the International Maritime Organization (IMO) sets a standard for ballast water management and might impose much tighter regulations in the future. The aim of this study is to evaluate the inactivation efficiency of ozonation, electrolysis, and an ozonation-electrolysis combined process, using B. subtilis spores. In seawater ozonation, HOBr is the key active substance for inactivation, because of rapid reactivity of ozone with Br(-) in seawater. In seawater electrolysis, it is also HOBr, but not HOCl, because of the rapid reaction of HOCl with Br(-), which has not been recognized carefully, even though many electrolysis technologies have been approved by the IMO. Inactivation pattern was different in ozonation and electrolysis, which has some limitations with the tailing or lag-phase, respectively. However, each deficiency can be overcome with a combined process, which is most effective as a sequential application of ozonation followed by electrolysis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Ozone-UV-catalysis based advanced oxidation process for wastewater treatment.

    Science.gov (United States)

    Tichonovas, Martynas; Krugly, Edvinas; Jankunaite, Dalia; Racys, Viktoras; Martuzevicius, Dainius

    2017-07-01

    A bench-scale advanced oxidation (AO) reactor was investigated for the degradation of six pollutants (2-naphthol, phenol, oxalic acid, phthalate, methylene blue, and D-glucose) in a model wastewater at with the aim to test opportunities for the further upscale to industrial applications. Six experimental conditions were designed to completely examine the experimental reactor, including photolysis, photocatalysis, ozonation, photolytic ozonation, catalytic ozonation, and photocatalytic ozonation. The stationary catalyst construction was made from commercially available TiO 2 nanopowder by mounting it on a glass support and subsequently characterized for morphology (X-ray diffraction analysis and scanning electron microscopy) as well as durability. The ozone was generated in a dielectrical barrier discharge reactor using air as a source of oxygen. The degradation efficiency was estimated by the decrease in total organic carbon (TOC) concentration as well as toxicity using Daphnia magna, and degradation by-products by ultra-performance liquid chromatography-mass spectrometry. The photocatalytic ozonation was the most effective for the treatment of all model wastewater. The photocatalytic ozonation was most effective against ozonation and photolytic ozonation at tested pH values. A complete toxicity loss was obtained after the treatment using photocatalytic ozonation. The possible degradation pathway of the phthalate by oxidation was suggested based on aromatic ring opening reactions. The catalyst used at this experiment confirmed as a durable for continuous use with almost no loss of activity over time. The design of the reactor was found to be very effective for water treatment using photocatalytic ozonation. Such design has a high potential and can be further upscaled to industrial applications due to the simplicity and versatility of manufacturing and maintenance.

  11. Oxidative treatment characteristics of biotreated textile-dyeing wastewater and chemical agents used in a textile-dyeing process by advanced oxidation process.

    Science.gov (United States)

    Lim, B R; Hu, H Y; Ahn, K H; Fujie, K

    2004-01-01

    The oxidative treatment characteristics of biotreated textile-dyeing wastewater and typical chemicals such as desizing, scouring, dispersing and swelling agents used in the textile-dyeing process by advanced oxidation process were experimentally studied. The refractory organic matters remained in the effluent of biological treatment process without degradation may be suitable for the improvement of biodegradability and mineralized to CO2 by combined ozonation with and without hydrogen peroxide. On the other hand, the refractory chemicals contained in the scouring agent A and swelling agent may not be mineralized and their biodegradability may not be improved by ozonation. However, the BOD/DOC ratio of scouring agent B increased from 0.3 to 0.45 after ozonation. Based on the results described above, advanced treatment process involving the ozonation without and with the addition of hydrogen peroxide, followed by biological treatment was proposed for the treatment of refractory wastewater discharged from the textile-dyeing process.

  12. Disappearing threat to ozone

    Energy Technology Data Exchange (ETDEWEB)

    Gribbin, J

    1979-02-15

    Concern that human activities might disturb the dynamic natural equilibrium of the ozone layer has stemmed from the fact that this layer plays a key part in the ecology of the earth by absorbing harmful ultraviolet radiation which would otherwise penetrate to the ground. Apparently, however, a decline of as much at 15% in total global ozone would have very little effect on climate. A 50% reduction would produce a marked cooling of the stratosphere at 40 km altitude over the tropics, but barely detectable changes in temperature and rainfall in the lower atmosphere. Therefore, biological effects of more uv light at ground level is the only hazard associated with ozone depletion on the scale which might take place.

  13. Simulation of stratospheric water vapor trends: impact on stratospheric ozone chemistry

    Directory of Open Access Journals (Sweden)

    A. Stenke

    2005-01-01

    Full Text Available A transient model simulation of the 40-year time period 1960 to 1999 with the coupled climate-chemistry model (CCM ECHAM4.L39(DLR/CHEM shows a stratospheric water vapor increase over the last two decades of 0.7 ppmv and, additionally, a short-term increase after major volcanic eruptions. Furthermore, a long-term decrease in global total ozone as well as a short-term ozone decline in the tropics after volcanic eruptions are modeled. In order to understand the resulting effects of the water vapor changes on lower stratospheric ozone chemistry, different perturbation simulations were performed with the CCM ECHAM4.L39(DLR/CHEM feeding the water vapor perturbations only to the chemistry part. Two different long-term perturbations of lower stratospheric water vapor, +1 ppmv and +5 ppmv, and a short-term perturbation of +2 ppmv with an e-folding time of two months were applied. An additional stratospheric water vapor amount of 1 ppmv results in a 5–10% OH increase in the tropical lower stratosphere between 100 and 30 hPa. As a direct consequence of the OH increase the ozone destruction by the HOx cycle becomes 6.4% more effective. Coupling processes between the HOx-family and the NOx/ClOx-family also affect the ozone destruction by other catalytic reaction cycles. The NOx cycle becomes 1.6% less effective, whereas the effectiveness of the ClOx cycle is again slightly enhanced. A long-term water vapor increase does not only affect gas-phase chemistry, but also heterogeneous ozone chemistry in polar regions. The model results indicate an enhanced heterogeneous ozone depletion during antarctic spring due to a longer PSC existence period. In contrast, PSC formation in the northern hemisphere polar vortex and therefore heterogeneous ozone depletion during arctic spring are not affected by the water vapor increase, because of the less PSC activity. Finally, this study shows that 10% of the global total ozone decline in the transient model run

  14. Use characterisation of a diatomite catalyst impregnated with iron in the heterogeneous catalytic ozonization process

    International Nuclear Information System (INIS)

    Garcia Herrera, Walter

    2014-01-01

    Advanced oxidation processes have had a promising option in the treatment of wastewater, mainly in the presence of emerging and persistent pollutants. Among these processes have highlighted the catalytic ozonization, which has showed positive results in water treatment. Heterogeneous catalytic ozonization was characterized using diatomite impregnated with iron at the Universidad de Costa Rica. Contaminant degradation model was quantified (spectrophotometrically) for ozonization process and catalytic ozonization with the catalyst studied (1.000 g / L) at three different pH 4, 7 and 10. The effect of the catalyst concentration in the solution (0.250, 0.500, 1000, 1500 and 2.000 g/L) was determined under the conditions of pH with better performance of the catalyst. Runs in the presence of tert-butyl alcohol (TBA), known hydroxyl radical scavenger were performed to evaluate the effect on ozone indirect reactions. The degree of mineralization obtained was measured in the catalytic process.The variation of the COD of the solution was quantified under the best working conditions obtained. Finally, the performance of the catalyst in 4 cycles of reuse was studied by monitoring the leached iron of the catalyst, which has turned out to be 12%. Most degradation of contaminant model in ozonization process was obtained at pH 10, in accordance with the above theory (Buhler, Stachelin, & Hoigne, 1984). In contrast, at pH 4 the catalyst has presented the best efficiency, to the 3 minutes the noncatalytic process was curettaged 35% of dye, while the catalytic process by 60% in the same time. The degradation of the contaminant was improved even in the case of noncatalytic process at pH 10, which the 3 minutes was degradated to 44%. The presence of the catalyst at initial pH of 7 and 10, has showed without significant improvements in the process. The solution concentration of catalyst has presented the best efficiency of degradation has been 2,000 g/L, which has increased 70% to 3

  15. Ozonation for degradation of pharmaceutical in hospital wastewater

    DEFF Research Database (Denmark)

    Bester, Kai; Hansen, Kamilla S; Spiliotopoulou, Aikaterini

    -pollutants (Antoniou et al., 2013). In the present work, ozonation of biological treated hospital wastewater spiked with pharmaceuticals were performed to determine the required ozone dose for 90 % removal of the investigated pharmaceuticals. Effluents with different DOC level were used to investigate the effect...... of DOC on the removal of the pharmaceuticals. Furthermore, the effect of pH on ozone decomposition was investigated in relevant pH range....

  16. Impacts of Atmosphere-Ocean Coupling on Southern Hemisphere Climate Change

    Science.gov (United States)

    Li, Feng; Newman, Paul; Pawson, Steven

    2013-01-01

    Climate in the Southern Hemisphere (SH) has undergone significant changes in recent decades. These changes are closely linked to the shift of the Southern Annular Mode (SAM) towards its positive polarity, which is driven primarily by Antarctic ozone depletion. There is growing evidence that Antarctic ozone depletion has significant impacts on Southern Ocean circulation change. However, it is poorly understood whether and how ocean feedback might impact the SAM and climate change in the SH atmosphere. This outstanding science question is investigated using the Goddard Earth Observing System Coupled Atmosphere-Ocean-Chemistry Climate Model(GEOS-AOCCM).We perform ensemble simulations of the recent past (1960-2010) with and without the interactive ocean. For simulations without the interactive ocean, we use sea surface temperatures and sea ice concentrations produced by the interactive ocean simulations. The differences between these two ensemble simulations quantify the effects of atmosphere-ocean coupling. We will investigate the impacts of atmosphere-ocean coupling on stratospheric processes such as Antarctic ozone depletion and Antarctic polar vortex breakup. We will address whether ocean feedback affects Rossby wave generation in the troposphere and wave propagation into the stratosphere. Another focuson this study is to assess how ocean feedback might affect the tropospheric SAM response to Antarctic ozone depletion

  17. Investigation of the temporal development of the stratospheric ozone layer with an interactively coupled chemistry-climate model; Untersuchung der zeitlichen Entwicklung der stratosphaerischen Ozonschicht mit einem interaktiv gekoppelten Klima-Chemie-Modell

    Energy Technology Data Exchange (ETDEWEB)

    Schnadt, C

    2001-07-01

    The impact of climate change and stratospheric chlorine loading on the stratospheric ozone layer is estimated by evaluating three multi-annual simulations of the interactively coupled global chemistry-climate model ECUAM4.L39 (DLR)/CHEM. Two experiments of the near past were carried out representing the early 1980s and 1990s, respectively. An additional scenario was conducted which is characterised by increased greenhouse gas concentrations and a slightly reduced stratospheric chlorine loading with respect to its value measured in the year 1990, according to current projections. The model is able to describe dynamic and chemical processes of the 1980s and 1990s realistically, and it is capable in reproducing the observed stratospheric temperature, water vapour, and ozone temperature trends of this time period. With increasing greenhouse gas concentrations, the model produces an enhancing stratospheric cooling for the years 1980 to 2015. Despite the reduced stratospheric chlorine loading in 2015, the decreased stratospheric temperatures will cause a continued reduction of stratospheric ozone in the southern hemisphere. In the northern hemisphere, tropospheric warming results in a changed excitation of planetary waves. Their vertical propagation and breaking in the stratosphere causes the polar vortex to become more unstable in 2015. This overcompensates the radiative stratospheric cooling so that stratospheric ozone recovers. (orig.)

  18. Processing of Unsaturated Organic Acid Aerosols by Ozone

    Science.gov (United States)

    Aloisio, S.; Donaldson, D. J.; Eliason, T. L.; Cziczo, D.; Vaida, V.

    2002-05-01

    We present results of in-situ studies of the oxidative "processing" of organic aerosols composed of unsaturated organic compounds. Aerosol samples of 2-octenoic acid and undecylenic acid were exposed to approx. 10 mbar ozone in a room temperature, atmospheric pressure flow tube reactor. In-situ spectroscopic probing of the reaction mixture, as well as GC-MS analysis of the flow tube effluent, shows evidence of efficient oxidation of double bonds in the organic species, with production of gas-phase and aerosol phase ozonolysis products.

  19. Coupling chemical and biological catalysis: a flexible paradigm for producing biobased chemicals.

    Science.gov (United States)

    Schwartz, Thomas J; Shanks, Brent H; Dumesic, James A

    2016-04-01

    Advances in metabolic engineering have allowed for the development of new biological catalysts capable of selectively de-functionalizing biomass to yield platform molecules that can be upgraded to biobased chemicals using high efficiency continuous processing allowed by heterogeneous chemical catalysis. Coupling these disciplines overcomes the difficulties of selectively activating COH bonds by heterogeneous chemical catalysis and producing petroleum analogues by biological catalysis. We show that carboxylic acids, pyrones, and alcohols are highly flexible platforms that can be used to produce biobased chemicals by this approach. More generally, we suggest that molecules with three distinct functionalities may represent a practical upper limit on the extent of functionality present in the platform molecules that serve as the bridge between biological and chemical catalysis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Process-scale modeling of elevated wintertime ozone in Wyoming.

    Energy Technology Data Exchange (ETDEWEB)

    Kotamarthi, V. R.; Holdridge, D. J.; Environmental Science Division

    2007-12-31

    Measurements of meteorological variables and trace gas concentrations, provided by the Wyoming Department of Environmental Quality for Daniel, Jonah, and Boulder Counties in the state of Wyoming, were analyzed for this project. The data indicate that highest ozone concentrations were observed at temperatures of -10 C to 0 C, at low wind speeds of about 5 mph. The median values for nitrogen oxides (NOx) during these episodes ranged between 10 ppbv and 20 ppbv (parts per billion by volume). Measurements of volatile organic compounds (VOCs) during these periods were insufficient for quantitative analysis. The few available VOCs measurements indicated unusually high levels of alkanes and aromatics and low levels of alkenes. In addition, the column ozone concentration during one of the high-ozone episodes was low, on the order of 250 DU (Dobson unit) as compared to a normal column ozone concentration of approximately 300-325 DU during spring for this region. Analysis of this observation was outside the scope of this project. The data analysis reported here was used to establish criteria for making a large number of sensitivity calculations through use of a box photochemical model. Two different VOCs lumping schemes, RACM and SAPRC-98, were used for the calculations. Calculations based on this data analysis indicated that the ozone mixing ratios are sensitive to (a) surface albedo, (b) column ozone, (c) NOx mixing ratios, and (d) available terminal olefins. The RACM model showed a large response to an increase in lumped species containing propane that was not reproduced by the SAPRC scheme, which models propane as a nearly independent species. The rest of the VOCs produced similar changes in ozone in both schemes. In general, if one assumes that measured VOCs are fairly representative of the conditions at these locations, sufficient precursors might be available to produce ozone in the range of 60-80 ppbv under the conditions modeled.

  1. Tropospheric ozone annual variation and possible troposphere-stratosphere coupling in the Arctic and Antarctic as derived from ozone soundings at Resolute and Amundsen-Scott stations

    Energy Technology Data Exchange (ETDEWEB)

    Gruzdev, A.N.; Sitnov, S.A. (Russian Academy of Sciences, Moscow (Russian Federation). Inst. of Atmospheric Physics)

    1993-01-01

    The tropospheric ozone annual variation in the northern and southern polar regions is analyzed from ozone sounding data obtained at Resolute during a 15-year period and Amundsen-Scott during a 7-year period. The phase of ozone annual variation above Resolute changes (increases) gradually from the stratosphere across the tropopause to the middle troposphere. Unlike this, the phase of the Antarctic ozone annual harmonic has a discontinuity in the layer of the changing tropopause level, so that the annual harmonic in the upper troposphere, lower stratosphere is 4-to-5 months out of phase (earlier) to that above and beneath. Above both the Arctic and Antarctic stations, the ozone mixing ratio and its vertical gradient evolve in a similar manner in the wide layer from the lower stratosphere to the middle troposphere. This likely points out that ozone in this layer is controlled from above. An indication of the stratospheric-tropospheric ozone exchange above Resolute is noted from mid-winter to spring. The analysis of columnar tropospheric ozone changes gives a lower estimate of the cross-tropopause ozone flux up to 5x10[sup 10] mol cm[sup -2] s[sup -1]. Above the South Pole, the cross-tropopause ozone flux is not usually large. There is also some evidence that early in the spring, when the stratospheric ozone 'hole' is developed, the stratospheric-tropospheric exchange conducts the influence of the 'hole' into the upper troposphere, where the integrated ozone destruction is estimated to be 8x10[sup 10] mol cm[sup -2] s[sup -1]. Correlation analysis gives no ozone-tropopause correlation in the Antarctic in winter, while in other seasons as well as during all seasons in the Arctic, there are negative correlation peaks just above the tropopause. (19 refs., 6 figs.).

  2. Studies on the Biological Effects of Ozone: 10. Release of Factors from Ozonated Human Platelets

    Directory of Open Access Journals (Sweden)

    G. Valacchi

    1999-01-01

    Full Text Available In a previous work we have shown that heparin, in the presence of ozone (O3, promotes a dose-dependent platelet aggregation, while after Ca2+ chelation with citrate, platelet aggregation is almost negligible. These results led us to think that aggregation may enhance the release of platelet components. We have here shown that indeed significantly higher amount of platelet-derived growth factor (PDGF, transforming growth factor β1 (TGF-β1 and interleukin-8(IL-8 are released in a dose-dependent manner after ozonation of heparinised platelet-rich plasma samples. These findings may explain the enhanced healing of torpid ulcers in patients with chronic limbischemia treated with O3 autohaemoteraphy (O3-AHT.

  3. Potential For Stratospheric Ozone Depletion During Carboniferous

    Science.gov (United States)

    Bill, M.; Goldstein, A. H.

    Methyl bromide (CH3Br) constitutes the largest source of bromine atoms to the strato- sphere whereas methyl chloride (CH3Cl) is the most abundant halocarbon in the tro- posphere. Both gases play an important role in stratospheric ozone depletion. For in- stance, Br coupled reactions are responsible for 30 to 50 % of total ozone loss in the polar vortex. Currently, the largest natural sources of CH3Br and CH3Cl appear to be biological production in the oceans, inorganic production during biomass burning and plant production in salt marsh ecosystems. Variations of paleofluxes of CH3Br and CH3Cl can be estimated by analyses of oceanic paleoproductivity, stratigraphic analyses of frequency and distribution of fossil charcoal indicating the occurrence of wildfires, and/or by paleoreconstruction indicating the extent of salt marshes. Dur- ing the lower Carboniferous time (Tournaisian-Visean), the southern margin of the Laurasian continent was characterized by charcoal deposits. Estimation on frequency of charcoal layers indicates that wildfires occur in a range of 3-35 years (Falcon-Lang 2000). This suggests that biomass burning could be an important source of CH3Br and CH3Cl during Tournaisian-Viesan time. During Tounaisian and until Merame- cian carbon and oxygen isotope records have short term oscillations (Bruckschen et al. 1999, Mii et al. 1999). Chesterian time (mid- Carboniferous) is marked by an in- crease in delta18O values ( ~ 2 permil) and an increase of glacial deposit frequency suggesting lower temperatures. The occurrence of glacial deposits over the paleopole suggests polar conditions and the associated special features of polar mete- orology such as strong circumpolar wind in the stratosphere (polar vortex) and polar stratospheric clouds. Thus, conditions leading to polar statospheric ozone depletion can be found. Simultaneously an increase in delta13C values is documented. We interpret the positive shift in delta13C as a result of higher bioproductivity

  4. Branching processes in biology

    CERN Document Server

    Kimmel, Marek

    2015-01-01

    This book provides a theoretical background of branching processes and discusses their biological applications. Branching processes are a well-developed and powerful set of tools in the field of applied probability. The range of applications considered includes molecular biology, cellular biology, human evolution and medicine. The branching processes discussed include Galton-Watson, Markov, Bellman-Harris, Multitype, and General Processes. As an aid to understanding specific examples, two introductory chapters, and two glossaries are included that provide background material in mathematics and in biology. The book will be of interest to scientists who work in quantitative modeling of biological systems, particularly probabilists, mathematical biologists, biostatisticians, cell biologists, molecular biologists, and bioinformaticians. The authors are a mathematician and cell biologist who have collaborated for more than a decade in the field of branching processes in biology for this new edition. This second ex...

  5. The Tropospheric Ozone Assessment Report (TOAR): A community-wide effort to quantify tropospheric ozone in a rapidly changing world

    Science.gov (United States)

    Cooper, O. R.; Schultz, M.; Paoletti, E.; Galbally, I. E.; Naja, M. K.; Tarasick, D. W.; Evans, M. J.; Thompson, A. M.

    2017-12-01

    Tropospheric ozone is a greenhouse gas and pollutant detrimental to human health and crop and ecosystem productivity. Since 1990 a large portion of the anthropogenic emissions that react in the atmosphere to produce ozone has shifted from North America and Europe to Asia. This rapid shift, coupled with limited ozone monitoring in developing nations, left scientists unable to answer the most basic questions: Which regions of the world have the greatest human and plant exposure to ozone pollution? Is ozone continuing to decline in nations with strong emissions controls? To what extent is ozone increasing in the developing world? How can the atmospheric sciences community facilitate access to the ozone metrics necessary for quantifying ozone's impact on human health and crop/ecosystem productivity? To answer these questions the International Global Atmospheric Chemistry Project (IGAC) initiated the Tropospheric Ozone Assessment Report (TOAR). With over 220 member scientists and air quality specialists from 36 nations, TOAR's mission is to provide the research community with an up-to-date scientific assessment of tropospheric ozone's global distribution and trends from the surface to the tropopause. TOAR has also built the world's largest database of surface ozone observations and generated ozone exposure and dose metrics at thousands of measurement sites around the world, freely accessible for research on the global-scale impact of ozone on climate, human health and crop/ecosystem productivity. Plots of these metrics show the regions of the world with the greatest ozone exposure for humans and crops/ecosystems, at least in areas where observations are available. The results also highlight regions where air quality is improving and where it has degraded. TOAR has also conducted the first intercomparison of tropospheric column ozone from ozonesondes and multiple satellite instruments, which provide similar estimates of the present-day tropospheric ozone burden.

  6. Performance assessment of coupled processes

    International Nuclear Information System (INIS)

    Pigford, T.H.

    1987-01-01

    The author considers all processes to be coupled. For example, a waste package heats the surrounding rock and its pore water, creating gradients in density and pressure that result in increased water flow. That process can be described as coupled, in that the flow is a consequence of heating. In a narrower sense, one speaks also of the more weakly coupled transport processes, expressed by the Onsager reciprocal relations, that state that a transport current, i.e., flux, of heat is accompanied by a small transport current of material, as evidenced in isotope separation by thermal diffusion, the Thompson effect in thermoelectricity, etc. This paper presents a performance assessment of coupled processes

  7. Mineralization of 2-chlorophenol by sequential electrochemical reductive dechlorination and biological processes

    Energy Technology Data Exchange (ETDEWEB)

    Arellano-González, Miguel Ángel; González, Ignacio [Universidad Autónoma Metropolitana-Iztapalapa, Departamento de Química, Av. San Rafael Atlixco No. 186, Col. Vicentina, 09340 Mexico D.F. (Mexico); Texier, Anne-Claire, E-mail: actx@xanum.uam.mx [Universidad Autónoma Metropolitana-Iztapalapa, Departamento de Biotecnología, Av. San Rafael Atlixco No. 186, Col. Vicentina, 09340 Mexico, D.F. (Mexico)

    2016-08-15

    Highlights: • Dechlorination of 2-chlorophenol to phenol was 100% efficient on Pd-Ni/Ti electrode. • An ECCOCEL reactor was efficient and selective to obtain phenol from 2-chlorophenol. • Phenol was totally mineralized in a coupled denitrifying biorreactor. • Global time of 2-chlorophenol mineralization in the combined system was 7.5 h. - Abstract: In this work, a novel approach was applied to obtain the mineralization of 2-chlorophenol (2-CP) in an electrochemical-biological combined system where an electrocatalytic dehydrogenation process (reductive dechlorination) was coupled to a biological denitrification process. Reductive dechlorination of 2-CP was conducted in an ECCOCEL-type reactor on a Pd-Ni/Ti electrode at a potential of −0.40 V vs Ag/AgCl{sub (s)}/KCl{sub (sat)}, achieving 100 percent transformation of 2-CP into phenol. The electrochemically pretreated effluent was fed to a rotating cylinder denitrifying bioreactor where the totality of phenol was mineralized by denitrification, obtaining CO{sub 2} and N{sub 2} as the end products. The total time required for 2-CP mineralization in the combined electrochemical-biological process was 7.5 h. This value is close to those previously reported for electrochemical and advanced oxidation processes but in this case, an efficient process was obtained without accumulation of by-products or generation of excessive energy costs due to the selective electrochemical pretreatment. This study showed that the use of electrochemical reductive pretreatment combined with biological processes could be a promising technology for the removal of recalcitrant molecules, such as chlorophenols, from wastewaters by more efficient, rapid, and environmentally friendly processes.

  8. Clinical processes in behavioral couples therapy.

    Science.gov (United States)

    Fischer, Daniel J; Fink, Brandi C

    2014-03-01

    Behavioral couples therapy is a broad term for couples therapies that use behavioral techniques based on principles of operant conditioning, such as reinforcement. Behavioral shaping and rehearsal and acceptance are clinical processes found across contemporary behavioral couples therapies. These clinical processes are useful for assessment and case formulation, as well as teaching couples new methods of conflict resolution. Although these clinical processes assist therapists in achieving efficient and effective therapeutic change with distressed couples by rapidly stemming couples' corrosive affective exchanges, they also address the thoughts, emotions, and issues of trust and intimacy that are important aspects of the human experience in the context of a couple. Vignettes are provided to illustrate the clinical processes described. (PsycINFO Database Record (c) 2014 APA, all rights reserved).

  9. Limitations of the removal of cyanide from coking wastewater by ozonation and by the hydrogen peroxide-ozone process.

    Science.gov (United States)

    Pueyo, N; Miguel, N; Ovelleiro, J L; Ormad, M P

    The purpose of this study is to compare the efficiency of ozonation and the hydrogen peroxide-ozone process for the removal of cyanide from coking wastewater. The most efficient oxidation process is combined with coagulation-flocculation-decantation and lime-soda ash softening pretreatments. The oxidation in aqueous solution and industrial wastewater (at pH 9.5-12.3) by O3 was carried out using a range of concentration of consumed O3 from 10 to 290 mg/L. A molar ratio of H2O2/O3 from 0.1 to 5.2 with different concentrations of O3 constants was used for the H2O2-O3 process. The maximum cyanide removal obtained in coking wastewater was 90% using a mass ratio of O3/CN(-) of 9.5. Using lower concentrations of O3, cyanide is not removed and can even be generated due to the presence of other cyanide precursor organic micropollutants in the industrial matrix. The concentration of O3 is reduced to half for the same cyanide removal efficiency if the pretreatments are applied to reduce the carbonate and bicarbonate ions. The cyanide removal efficiency in coking wastewater is not improved if the O3 is combined with the H2O2. However, the preliminary cyanide removal treatment in aqueous solution showed an increase in the cyanide removal efficiency for the H2O2-O3 process.

  10. What would have happened to the ozone layer if chlorofluorocarbons (CFCs had not been regulated?

    Directory of Open Access Journals (Sweden)

    P. A. Newman

    2009-03-01

    Full Text Available Ozone depletion by chlorofluorocarbons (CFCs was first proposed by Molina and Rowland in their 1974 Nature paper. Since that time, the scientific connection between ozone losses and CFCs and other ozone depleting substances (ODSs has been firmly established with laboratory measurements, atmospheric observations, and modeling studies. This science research led to the implementation of international agreements that largely stopped the production of ODSs. In this study we use a fully-coupled radiation-chemical-dynamical model to simulate a future world where ODSs were never regulated and ODS production grew at an annual rate of 3%. In this "world avoided" simulation, 17% of the globally-averaged column ozone is destroyed by 2020, and 67% is destroyed by 2065 in comparison to 1980. Large ozone depletions in the polar region become year-round rather than just seasonal as is currently observed in the Antarctic ozone hole. Very large temperature decreases are observed in response to circulation changes and decreased shortwave radiation absorption by ozone. Ozone levels in the tropical lower stratosphere remain constant until about 2053 and then collapse to near zero by 2058 as a result of heterogeneous chemical processes (as currently observed in the Antarctic ozone hole. The tropical cooling that triggers the ozone collapse is caused by an increase of the tropical upwelling. In response to ozone changes, ultraviolet radiation increases, more than doubling the erythemal radiation in the northern summer midlatitudes by 2060.

  11. Study on the Ozonation of Organic Wastes (1)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki Hong; Kang, Il Sik; Hong, Dae Seok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Ozone is often used in combination with H{sub 2}O{sub 2}, UV, peroxides, and the catalyst. These combined processes have the purpose to increase OH radicals, so this combination process is called the advanced oxidation process (AOP, Advanced Oxidation Process). In this study, the possibility of the oxidation treatment of LSC Cocktail solution by using a combination of ozone and hydrogen peroxide was investigated. The addition of a suitable amount of hydrogen peroxide increases the efficiency of the oxidation process during ozonation of the organic materials. But on the contrary, the excess addition of hydrogen they can play a role as a scavenger consuming the hydroxyl radicals generated during the ozonation process. So it is very important to find the amount of volume of hydrogen peroxide. The efficiency of oxidation treatment of organic materials is greatly depended on the properties of liquid waste (pH, concentration and chemical type of organics), the process temperature, the flow rate (waste and ozone gas), the ozone concentration, the hydrogen peroxide concentration and the presence or absence of scavengers. In this study, by using an ozone contactor (hydrophobic hollow fiber membrane type), the basic experiments were carried out to evaluate the applicability of ozonation to the organic wastes. First of all, the oxidation treatment was evaluated by ozone alone, and secondly was evaluated according to the changes of the amount of hydrogen peroxide and a pH of wastes.

  12. Study on the Ozonation of Organic Wastes (1)

    International Nuclear Information System (INIS)

    Kim, Ki Hong; Kang, Il Sik; Hong, Dae Seok

    2014-01-01

    Ozone is often used in combination with H 2 O 2 , UV, peroxides, and the catalyst. These combined processes have the purpose to increase OH radicals, so this combination process is called the advanced oxidation process (AOP, Advanced Oxidation Process). In this study, the possibility of the oxidation treatment of LSC Cocktail solution by using a combination of ozone and hydrogen peroxide was investigated. The addition of a suitable amount of hydrogen peroxide increases the efficiency of the oxidation process during ozonation of the organic materials. But on the contrary, the excess addition of hydrogen they can play a role as a scavenger consuming the hydroxyl radicals generated during the ozonation process. So it is very important to find the amount of volume of hydrogen peroxide. The efficiency of oxidation treatment of organic materials is greatly depended on the properties of liquid waste (pH, concentration and chemical type of organics), the process temperature, the flow rate (waste and ozone gas), the ozone concentration, the hydrogen peroxide concentration and the presence or absence of scavengers. In this study, by using an ozone contactor (hydrophobic hollow fiber membrane type), the basic experiments were carried out to evaluate the applicability of ozonation to the organic wastes. First of all, the oxidation treatment was evaluated by ozone alone, and secondly was evaluated according to the changes of the amount of hydrogen peroxide and a pH of wastes

  13. The Ozone Budget in the Upper Troposphere from Global Modeling Initiative (GMI)Simulations

    Science.gov (United States)

    Rodriquez, J.; Duncan, Bryan N.; Logan, Jennifer A.

    2006-01-01

    Ozone concentrations in the upper troposphere are influenced by in-situ production, long-range tropospheric transport, and influx of stratospheric ozone, as well as by photochemical removal. Since ozone is an important greenhouse gas in this region, it is particularly important to understand how it will respond to changes in anthropogenic emissions and changes in stratospheric ozone fluxes.. This response will be determined by the relative balance of the different production, loss and transport processes. Ozone concentrations calculated by models will differ depending on the adopted meteorological fields, their chemical scheme, anthropogenic emissions, and treatment of the stratospheric influx. We performed simulations using the chemical-transport model from the Global Modeling Initiative (GMI) with meteorological fields from (It)h e NASA Goddard Institute for Space Studies (GISS) general circulation model (GCM), (2) the atmospheric GCM from NASA's Global Modeling and Assimilation Office(GMAO), and (3) assimilated winds from GMAO . These simulations adopt the same chemical mechanism and emissions, and adopt the Synthetic Ozone (SYNOZ) approach for treating the influx of stratospheric ozone -. In addition, we also performed simulations for a coupled troposphere-stratosphere model with a subset of the same winds. Simulations were done for both 4degx5deg and 2degx2.5deg resolution. Model results are being tested through comparison with a suite of atmospheric observations. In this presentation, we diagnose the ozone budget in the upper troposphere utilizing the suite of GMI simulations, to address the sensitivity of this budget to: a) the different meteorological fields used; b) the adoption of the SYNOZ boundary condition versus inclusion of a full stratosphere; c) model horizontal resolution. Model results are compared to observations to determine biases in particular simulations; by examining these comparisons in conjunction with the derived budgets, we may pinpoint

  14. The pollution by ozone

    International Nuclear Information System (INIS)

    1997-09-01

    Air pollution by ozone is increasing in spite of several points to reduce it. If the process of ozone formation are complex, the sources of this pollution are well known: first, mobile sources with automobiles (49%), boats , trains and planes (13%), then are following paints and solvents(18%), thermal power plants(11%), and finally industry processing with 5%. (N.C.)

  15. Investigation of olive mill wastewater (OMW) ozonation efficiency with the use of a battery of selected ecotoxicity and human toxicity assays

    Energy Technology Data Exchange (ETDEWEB)

    Siorou, Sofia [Section of Animal Biology, Department of Biology, Faculty of Sciences, University of Patras, GR-26500 Patras (Greece); Vgenis, Theodoros T.; Dareioti, Margarita A. [Laboratory of Biochemical Engineering and Environmental Technology, Department of Chemical Engineering, University of Patras, 1 Karatheodori Str., University Campus, GR-26500 Patras (Greece); Vidali, Maria-Sophia; Efthimiou, Ioanna [Department of Environmental and Natural Resources Management, University of Patras, 2 Seferi Str., GR-30100 Agrinio (Greece); Kornaros, Michael [Laboratory of Biochemical Engineering and Environmental Technology, Department of Chemical Engineering, University of Patras, 1 Karatheodori Str., University Campus, GR-26500 Patras (Greece); Vlastos, Dimitris [Department of Environmental and Natural Resources Management, University of Patras, 2 Seferi Str., GR-30100 Agrinio (Greece); Dailianis, Stefanos, E-mail: sdailianis@upatras.gr [Section of Animal Biology, Department of Biology, Faculty of Sciences, University of Patras, GR-26500 Patras (Greece)

    2015-07-15

    Highlights: • Raw- and ozonated-olive mill wastewater (OMW) toxic effects were investigated. • A battery of biological assays and toxic endpoints were used. • Ozonation for up to 300 min attenuates OMW toxicity, following phenols’ reduction. • Further OMW ozonation (>300 min) could enhance OMW toxicity. • OMW ozonation efficacy depends on OMW-derived intermediates and high NO{sub 3}{sup −}–N levels. - Abstract: The effects of olive mill wastewater (OMW) on a battery of biological assays, before and during the ozonation process, were investigated in order to assess ozone’s efficiency in removing phenolic compounds from OMW and decreasing the concomitant OMW toxicity. Specifically, ozonated-OMW held for 0, 60, 120, 300, 420, 540 min in a glass bubble reactor, showed a drastic reduction of OMW total phenols (almost 50%) after 300 min of ozonation with a concomitant decrease of OMW toxicity. In particular, the acute toxicity test primarily performed in the fairy shrimp Thamnocephalus platyurus (Thamnotoxkit F™ screening toxicity test) showed a significant attenuation of OMW-induced toxic effects, after ozonation for a period of 120 and in a lesser extent 300 min, while further treatment resulted in a significant enhancement of ozonated-OMW toxic effects. Furthermore, ozonated-OMW-treated mussel hemocytes showed a significant attenuation of the ability of OMW to cause cytotoxic (obtained by the use of NRRT assay) effects already after an ozonation period of 120 and to a lesser extent 300 min. In accordance with the latter, OMW-mediated oxidative (enhanced levels of superoxide anions and lipid peroxidation by-products) and genotoxic (induction of DNA damage) effects were diminished after OMW ozonation for the aforementioned periods of time. The latter was also revealed by the use of cytokinesis block micronucleus (CBMN) assay in human lymphocytes exposed to different concentrations of both raw- and ozonated-OMW for 60, 120 and 300 min. Those findings

  16. Evaluation of the potential of ozone as a power plant biocide

    Energy Technology Data Exchange (ETDEWEB)

    Mattice, J.S.; Trabalka, J.R.; Adams, S.M.; Faust, R.A.; Jolley, R.L.

    1978-09-01

    A review of the literature on the chemistry and biological effects of ozone was conducted to evaluate the potential of ozone to function as a power plant biocide. Evaluation of this potential is dependent upon determining the ability of ozone to maintain the integrity of both the condenser cooling system and the associated ecosystem. The well-known bactericidal capacity of ozone and the limited biofouling control studies conducted thus far suggest that ozone can control both slime and macroinvertebrate fouling at power plants. However, full-scale demonstrations of the minimum levels of ozone required and of solution of the practical aspects of application have not been performed.

  17. Performance Evaluation of Ozonation Combined with Persulfate Application for Removal of Furfural from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Alireza Rahmani

    2017-03-01

    Full Text Available Background: Furfural is an organic compound which derived from a variety industrial, including petrochemicals, pulping, pharmaceutical, food. Also is a main agent in many industries and aromatic organic compounds entrance in the environment. There are several methods of treating including physical, chemical, biological and physicochemical for remove this matter. Among advanced oxidation methods can be combined ozonation process with persulfate catalytic are noted. The purpose of this study was to evaluate the efficiency of ozonation process with the use of persulfate in removal furfural from aqueous solution. Materials and Methods: In this study, the efficiency of the process with a concentration furfural 5 to 30 mg/L, concentration persulfate 4 to 15 mM, pH = 3-11 and reaction time of 35 minutes in the semi-continuous reactor with a capacity of one liter was obtained. Results: The results of this study have been shown in  conditions of operation optimal , pH =,3 persulfate dosage 12 mM, ozone dosage of 1 g/min and the initial concentration of furfural  5 mg/L, this process is capable  remove of %93/34 percent Furfural and %70 of the initial COD. Conclusion: The results of this study showed that the ozone/persulfate process can be a suitable process for the removal of organic aromatic compounds including pollutants of interest.

  18. Quantifying the contributions to stratospheric ozone changes from ozone depleting substances and greenhouse gases

    Directory of Open Access Journals (Sweden)

    D. A. Plummer

    2010-09-01

    Full Text Available A state-of-the-art chemistry climate model coupled to a three-dimensional ocean model is used to produce three experiments, all seamlessly covering the period 1950–2100, forced by different combinations of long-lived Greenhouse Gases (GHGs and Ozone Depleting Substances (ODSs. The experiments are designed to quantify the separate effects of GHGs and ODSs on the evolution of ozone, as well as the extent to which these effects are independent of each other, by alternately holding one set of these two forcings constant in combination with a third experiment where both ODSs and GHGs vary. We estimate that up to the year 2000 the net decrease in the column amount of ozone above 20 hPa is approximately 75% of the decrease that can be attributed to ODSs due to the offsetting effects of cooling by increased CO2. Over the 21st century, as ODSs decrease, continued cooling from CO2 is projected to account for more than 50% of the projected increase in ozone above 20 hPa. Changes in ozone below 20 hPa show a redistribution of ozone from tropical to extra-tropical latitudes with an increase in the Brewer-Dobson circulation. In addition to a latitudinal redistribution of ozone, we find that the globally averaged column amount of ozone below 20 hPa decreases over the 21st century, which significantly mitigates the effect of upper stratospheric cooling on total column ozone. Analysis by linear regression shows that the recovery of ozone from the effects of ODSs generally follows the decline in reactive chlorine and bromine levels, with the exception of the lower polar stratosphere where recovery of ozone in the second half of the 21st century is slower than would be indicated by the decline in reactive chlorine and bromine concentrations. These results also reveal the degree to which GHG-related effects mute the chemical effects of N2O on ozone in the standard future scenario used for the WMO Ozone Assessment. Increases in the

  19. Ozone aeration impact on the maturation phase in the process of green waste composting

    Directory of Open Access Journals (Sweden)

    Gliniak Maciej

    2018-01-01

    Full Text Available The paper presents work results on optimization of stabilization phase in the biomass composting process. In these studies, it was examined the influence of two doses of ozone (10 and 20 mgO3·dm-3 in the air used for aeration of stabilization. The results showed the ability to reduce compost maturation time by more than 50%. Application of these ozone doses resulted in a reduction of organic matter content in the stabilizer by 30 to 60%, while reduction of moisture in the material by 20%.

  20. Remedial Process Optimization and Green In-Situ Ozone Sparging for Treatment of Groundwater Impacted with Petroleum Hydrocarbons

    Science.gov (United States)

    Leu, J.

    2012-12-01

    A former natural gas processing station is impacted with TPH and BTEX in groundwater. Air sparging and soil vapor extraction (AS/AVE) remediation systems had previously been operated at the site. Currently, a groundwater extraction and treatment system is operated to remove the chemicals of concern (COC) and contain the groundwater plume from migrating offsite. A remedial process optimization (RPO) was conducted to evaluate the effectiveness of historic and current remedial activities and recommend an approach to optimize the remedial activities. The RPO concluded that both the AS/SVE system and the groundwater extraction system have reached the practical limits of COC mass removal and COC concentration reduction. The RPO recommended an in-situ chemical oxidation (ISCO) study to evaluate the best ISCO oxidant and approach. An ISCO bench test was conducted to evaluate COC removal efficiency and secondary impacts to recommend an application dosage. Ozone was selected among four oxidants based on implementability, effectiveness, safety, and media impacts. The bench test concluded that ozone demand was 8 to 12 mg ozone/mg TPH and secondary groundwater by-products of ISCO include hexavalent chromium and bromate. The pH also increased moderately during ozone sparging and the TDS increased by approximately 20% after 48 hours of ozone treatment. Prior to the ISCO pilot study, a capture zone analysis (CZA) was conducted to ensure containment of the injected oxidant within the existing groundwater extraction system. The CZA was conducted through a groundwater flow modeling using MODFLOW. The model indicated that 85%, 90%, and 95% of an injected oxidant could be captured when a well pair is injecting and extracting at 2, 5, and 10 gallons per minute, respectively. An ISCO pilot test using ozone was conducted to evaluate operation parameters for ozone delivery. The ozone sparging system consisted of an ozone generator capable of delivering 6 lbs/day ozone through two ozone

  1. Ozone bioindicator sampling and estimation

    Science.gov (United States)

    Gretchen C, Smith; William D. Smith; John W. Coulston

    2007-01-01

    Ozone is an important forest stressor that has been measured at known phytotoxic levels at forest locations across the United States. The percent forest exhibiting negative impacts from ozone air pollution is one of the Montreal Process indicators of forest health and vitality. The ozone bioindicator data of the U.S. Forest Service Forest Inventory and Analysis Program...

  2. Stratospheric ozone chemistry in the Antarctic: what determines the lowest ozone values reached and their recovery?

    Directory of Open Access Journals (Sweden)

    J.-U. Grooß

    2011-12-01

    Full Text Available Balloon-borne observations of ozone from the South Pole Station have been reported to reach ozone mixing ratios below the detection limit of about 10 ppbv at the 70 hPa level by late September. After reaching a minimum, ozone mixing ratios increase to above 1 ppmv on the 70 hPa level by late December. While the basic mechanisms causing the ozone hole have been known for more than 20 yr, the detailed chemical processes determining how low the local concentration can fall, and how it recovers from the minimum have not been explored so far. Both of these aspects are investigated here by analysing results from the Chemical Lagrangian Model of the Stratosphere (CLaMS. As ozone falls below about 0.5 ppmv, a balance is maintained by gas phase production of both HCl and HOCl followed by heterogeneous reaction between these two compounds in these simulations. Thereafter, a very rapid, irreversible chlorine deactivation into HCl can occur, either when ozone drops to values low enough for gas phase HCl production to exceed chlorine activation processes or when temperatures increase above the polar stratospheric cloud (PSC threshold. As a consequence, the timing and mixing ratio of the minimum ozone depends sensitively on model parameters, including the ozone initialisation. The subsequent ozone increase between October and December is linked mainly to photochemical ozone production, caused by oxygen photolysis and by the oxidation of carbon monoxide and methane.

  3. Chemical processes related to net ozone tendencies in the free troposphere

    Science.gov (United States)

    Bozem, Heiko; Butler, Tim M.; Lawrence, Mark G.; Harder, Hartwig; Martinez, Monica; Kubistin, Dagmar; Lelieveld, Jos; Fischer, Horst

    2017-09-01

    Ozone (O3) is an important atmospheric oxidant, a greenhouse gas, and a hazard to human health and agriculture. Here we describe airborne in situ measurements and model simulations of O3 and its precursors during tropical and extratropical field campaigns over South America and Europe, respectively. Using the measurements, net ozone formation/destruction tendencies are calculated and compared to 3-D chemistry-transport model simulations. In general, observation-based net ozone tendencies are positive in the continental boundary layer and the upper troposphere at altitudes above ˜ 6 km in both environments. On the other hand, in the marine boundary layer and the middle troposphere, from the top of the boundary layer to about 6-8 km altitude, net O3 destruction prevails. The ozone tendencies are controlled by ambient concentrations of nitrogen oxides (NOx). In regions with net ozone destruction the available NOx is below the threshold value at which production and destruction of O3 balance. While threshold NO values increase with altitude, in the upper troposphere NOx concentrations are generally higher due to the integral effect of convective precursor transport from the boundary layer, downward transport from the stratosphere and NOx produced by lightning. Two case studies indicate that in fresh convective outflow of electrified thunderstorms net ozone production is enhanced by a factor 5-6 compared to the undisturbed upper tropospheric background. The chemistry-transport model MATCH-MPIC generally reproduces the pattern of observation-based net ozone tendencies but mostly underestimates the magnitude of the net tendency (for both net ozone production and destruction).

  4. Removal of the antiviral agent oseltamivir and its biological activity by oxidative processes

    International Nuclear Information System (INIS)

    Mestankova, Hana; Schirmer, Kristin; Escher, Beate I.; Gunten, Urs von

    2012-01-01

    The antiviral agent oseltamivir acid (OA, the active metabolite of Tamiflu ® ) may occur at high concentrations in wastewater during pandemic influenza events. To eliminate OA and its antiviral activity from wastewater, ozonation and advanced oxidation processes were investigated. For circumneutral pH, kinetic measurements yielded second-order rate constants of 1.7 ± 0.1 × 10 5 and 4.7 ± 0.2 × 10 9 M −1 s −1 for the reaction of OA with ozone and hydroxyl radical, respectively. During the degradation of OA by both oxidants, the antiviral activity of the treated aqueous solutions was measured by inhibition of neuraminidase activity of two different viral strains. A transient, moderate (two-fold) increase in antiviral activity was observed in solutions treated up to a level of 50% OA transformation, while for higher degrees of transformation the activity corresponded to that caused exclusively by OA. OA was efficiently removed by ozonation in a wastewater treatment plant effluent, suggesting that ozonation can be applied to remove OA from wastewater. - Highlights: ► Oseltamivir acid (OA) is oxidized by ozone and hydroxyl radical. ► Kinetics: We determined rate constants for the reaction with these oxidants. ► The specific activity of OA as neuraminidase inhibitor disappeared during oxidation. ► Ozonation and advanced oxidation can effectively remove OA from wastewaters. - Ozone and hydroxyl radical treatment processes can degrade aqueous oseltamivir acid and remove its antiviral activity.

  5. Ground-Level Ozone Following Astrophysical Ionizing Radiation Events: An Additional Biological Hazard?

    Science.gov (United States)

    Thomas, Brian C; Goracke, Byron D

    2016-01-01

    Astrophysical ionizing radiation events such as supernovae, gamma-ray bursts, and solar proton events have been recognized as a potential threat to life on Earth, primarily through depletion of stratospheric ozone and subsequent increase in solar UV radiation at Earth's surface and in the upper levels of the ocean. Other work has also considered the potential impact of nitric acid rainout, concluding that no significant threat is likely. Not yet studied to date is the potential impact of ozone produced in the lower atmosphere following an ionizing radiation event. Ozone is a known irritant to organisms on land and in water and therefore may be a significant additional hazard. Using previously completed atmospheric chemistry modeling, we examined the amount of ozone produced in the lower atmosphere for the case of a gamma-ray burst and found that the values are too small to pose a significant additional threat to the biosphere. These results may be extended to other ionizing radiation events, including supernovae and extreme solar proton events.

  6. What Would Have Happened to the Ozone Layer if Chlorofluorocarbons (CFCs) had not been Regulated?

    Science.gov (United States)

    Newman, Paul A.; Oman, L. D.; Douglass, A. R.; Fleming, E. L.; Frith, S. M.; Hurwitz, M. M.; Kawa, S. R.; Jackman, C. H.; Krotkov, N. A.; Nash, E. R.; hide

    2008-01-01

    Ozone depletion by chlorofluorocarbons (CFCs) was first proposed by Molina and Rowland in their 1974 Nature paper. Since that time, the sci entific connection between ozone losses and CFCs and other ozone depl eting substances (ODSs) has been firmly established with laboratory m easurements, atmospheric observations, and modeling research. This science research led to the implementation of international agreements t hat largely stopped the production of ODSs. In this study we use a fu lly-coupled radiation-chemical-dynamical model to simulate a future world where ODSs were never regulated and ODS production grew at an ann ual rate of 3%. In this "world avoided" simulation 1.7 % of the globa lly-average column ozone is destroyed by 2020, and 67% is destroyed b y 2065 in comparison to 1980. Large ozone depletions in the polar region become year-round rather than just seasonal as is currently observ ed in the Antarctic ozone hole. Very large temperature decreases are observed in response to circulation changes and decreased shortwave radiation absorption by ozone. Ozone levels in the tropical lower strat osphere remain constant until about 2053 and then collapse to near ze ro by 2058 as a result of heterogeneous chemical processes (as curren tly observed in the Antarctic ozone hole). The tropical cooling that triggers the ozone collapse is caused by an increase of the tropical upwelling. In response to ozone changes, ultraviolet radiation increa ses, more than doubling the erythemal radiation in the northern summer midlatitudes by 2060.

  7. Two-phase ozonation of chlorinated organics

    International Nuclear Information System (INIS)

    Bhattacharyya, D.; Freshour, A.; West, D.

    1995-01-01

    In the last few years the amount of research being conducted in the field of single-phase ozonation has grown extensively. However, traditional aqueous-phase ozonation systems are limited by a lack of selective oxidation potential, low ozone solubility in water, and slow intermediate decomposition rates. Furthermore, ozone may decompose before it can be utilized for pollutant destruction since ozone can be highly unstable in aqueous solutions. Naturally occurring compounds such as NaHCO 3 also affect ozone reactions by inhibiting the formation of OH-free radicals. To compensate for these factors, excess ozone is typically supplied to a reactor. Since ozone generation requires considerable electric power consumption (16 - 24 kWh/kg of O 3 ), attempts to enhance the ozone utilization rate and stability should lead to more efficient application of this process to hazardous waste treatment. To improve the process, ozonation may be more efficiently carried out in a two-phase system consisting of an inert solvent (saturated with O 3 ) contacted with an aqueous phase containing pollutants. The non-aqueous phase must meet the following criteria: (1) non-toxic, (2) very low vapor pressure, (3) high density (for ease of separation), (4) complete insolubility in water, (5) reusability, (6) selective pollutant extractability, (7) high oxidant solubility, and (8) extended O 3 stability. Previously published studies (1) have indicated that a number of fluorinated hydrocarbon compounds fit these criteria. For this project, FC40 (a product of 3M Co.) was chosen due to its low vapor pressure (3 mm Hg) and high specific gravity (1.9). The primary advantages of the FC40 solvent are that it is non-toxic, reusable, has an ozone solubility 10 times that of water, and that 85 % of the ozone remains in the solvent even after 2 hours. This novel two-phase process has been utilized to study the rapid destruction of organic chlorine compounds and organic mixtures

  8. Co-ordinated ozone and UV project COZUV

    International Nuclear Information System (INIS)

    Braathen, Geir

    1999-01-01

    The project encompasses all the major Norwegian research groups in the field of stratospheric ozone and UV research. the duration is from the 1st January 1999 to the 31st December 2000. The tasks carried out will include investigations of the ozone layer over the North Polar and middle latitudes, 3-D chemical modelling, diagnosis of chemical ozone loss, investigations of transport mechanisms between the polar vortex and middle latitudes, study of the coupling between ozone change and climate change in the stratosphere and upper troposphere, scenario calculations in order to investigate the consequences of temperature change in the stratosphere, development of methods to measure global, direct and radiance distribution of UV, to improve UV dose calculations, investigate the influence of clouds on the surface UV radiation and to use existing surface UV radiation measurements together with existing radiation models to investigate the connection between UV radiation and ozone, clouds and surface albedo. The results will be published in various publications, progress reports, by participation in international conferences, through information to the environmental authorities and through information on the Internet

  9. Fouling reduction by ozone-enhanced backwashing process in ultrafiltration of petroleum-based oil in water emulsion

    Science.gov (United States)

    Aryanti, Nita; Prihatiningtyas, Indah; Kusworo, Tutuk Djoko

    2017-06-01

    Ultrafiltration membrane has been successfully applied for oily waste water treatment. However, one significant drawback of membrane technology is fouling which is responsible for permeate flux decline as well as reducing membrane performance. One method commonly used to reduce fouling is a backwashing process. The backwashing is carried out by a push of reversed flow from permeate side to the feed side of a membrane to remove fouling on the membrane pore and release fouling release fouling layer on the external side. However, for adsorptive fouling, the backwashing process was not effective. On the other hand, Ozone demonstrated great performance for reducing organics fouling. Hence this research was focused on backwashing process with ozone for removing fouling due to ultrafiltration of petroleum based oil emulsion. Gasoline and diesel oil were selected as dispersed phase, while as continuous phase was water added with Tween 80 as a surfactant. This research found that the Ozone backwashing was effective to improve flux recovery. In ultrafiltration of gasoline emulsion, the flux recovery after Ozone backwashing was in the range of 42-74%. For ultrafiltration of diesel oil emulsion, the permeate flux recovery was about 35-84%. In addition, foulant deposition was proposed and predicting that foulant deposition for ultrafiltration of gasoline-in-water emulsion was surfactant as the top layer and the oil was underneath the surfactant. On the other hand, for ultrafiltration of diesel oil-in-water emulsion, the oil was predicted as a top layer above the surfactant foulant.

  10. Ozone pretreatment and fermentative hydrolysis of wheat straw

    Science.gov (United States)

    Ben'ko, E. M.; Chukhchin, D. G.; Lunin, V. V.

    2017-11-01

    Principles of the ozone pretreatment of wheat straw for subsequent fermentation into sugars are investigated. The optimum moisture contents of straw in the ozonation process are obtained from data on the kinetics of ozone absorbed by samples with different contents of water. The dependence of the yield of reducing sugars in the fermentative reaction on the quantity of absorbed ozone is established. The maximum conversion of polysaccharides is obtained at ozone doses of around 3 mmol/g of biomass, and it exceeds the value for nonozonated samples by an order of magnitude. The yield of sugar falls upon increasing the dose of ozone. The process of removing lignin from the cell walls of straw during ozonation is visualized by means of scanning electron microscopy.

  11. Medium-high frequency ultrasound and ozone based advanced oxidation for amoxicillin removal in water.

    Science.gov (United States)

    Kıdak, Rana; Doğan, Şifa

    2018-01-01

    In this study, treatment of an antibiotic compound amoxicillin by medium-high frequency ultrasonic irradiation and/or ozonation has been studied. Ultrasonic irradiation process was carried out in a batch reactor for aqueous amoxicillin solutions at three different frequencies (575, 861 and 1141kHz). The applied ultrasonic power was 75W and the diffused power was calculated as 14.6W/L. The highest removal was achieved at 575kHz ultrasonic frequency (>99%) with the highest pseudo first order reaction rate constant 0.04min -1 at pH 10 but the mineralization achieved was around 10%. Presence of alkalinity and humic acid species had negative effect on the removal efficiency (50% decrease). To improve the poor outcomes, ozonation had been applied with or without ultrasound. Ozone removed the amoxicillin at a rate 50 times faster than ultrasound. Moreover, due to the synergistic effect, coupling of ozone and ultrasound gave rise to rate constant of 2.5min -1 (625 times higher than ultrasound). In the processes where ozone was used, humic acid did not show any significant effect because the rate constant was so high that ozone has easily overcome the scavenging effects of natural water constituents. Furthermore, the intermediate compounds, after the incomplete oxidation mechanisms, has been analyzed to reveal the possible degradation pathways of amoxicillin through ultrasonic irradiation and ozonation applications. The outcomes of the intermediate compounds experiments and the toxicity was investigated to give a clear explanation about the safety of the resulting solution. The relevance of all the results concluded that hybrid advanced oxidation system was the best option for amoxicillin removal. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. The Influence of Ozonization For DO, BOD and Bacterial Growth in The Liquid Waste From Tanning Leather Industry

    International Nuclear Information System (INIS)

    M-Yazid; Aris-Bastianudin; Widdi-Usada

    2007-01-01

    The research of ozonization influence of dissolved oxygen (DO), biological oxygen demand (BOD) and the bacterial growth in the liquid waste from tanning leather industry has been done. The objectives of this research was to studied the influence of ozonization for decomposition process of the organic compound in these waste by indicator of BOD decreased, increased of DO and decomposer bacterial growth. The ozonization was carried out by time variation 0, 15, 30, 45, 60, 75, 90, 105, 120, 135, 150, 165, 180, 195 and 210 minutes. Each samples of the waste has been ozonized keep in the sterile reaction tube for isolated of bacterial and the other keep in the bottle for BOD and DO measurement. These research results show that ozonization with 16.243 x 10 -4 mg/second debit for 3 hours can decreased of BOD were 19.61 %, and ozonization for 3.5 hours can increased of DO were 82.5%. The other hand, 3 hours ozonization can decreased of kind of bacterial growth were 80 %. (author)

  13. 2D/2D nano-hybrids of γ-MnO{sub 2} on reduced graphene oxide for catalytic ozonation and coupling peroxymonosulfate activation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuxian [National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Beijing Engineering Research Center of Process Pollution Control, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Department of Chemical Engineering, Curtin University, GPO Box U1987, Perth, WA 6845 (Australia); Xie, Yongbing, E-mail: ybxie@ipe.ac.cn [National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Beijing Engineering Research Center of Process Pollution Control, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Sun, Hongqi [Department of Chemical Engineering, Curtin University, GPO Box U1987, Perth, WA 6845 (Australia); Xiao, Jiadong; Cao, Hongbin [National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Beijing Engineering Research Center of Process Pollution Control, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Wang, Shaobin, E-mail: shaobin.wang@curtin.edu.au [Department of Chemical Engineering, Curtin University, GPO Box U1987, Perth, WA 6845 (Australia)

    2016-01-15

    Highlights: • 2D γ-MnO{sub 2}/2D rGO hybrids (MnO{sub 2}/rGO) via a facile hydrothermal route were prepared. • MnO{sub 2}/rGO exhibits high activity in catalytic ozonation of 4-nitrophenol. • ·O{sub 2}{sup ̄} and {sup 1}O{sub 2} are the major radicals for 4-nitrophenol degradation and mineralization. • A synergistic effect of ozonation and peroxymonosulfate oxidation was evaluated. - Abstract: Two-dimensional reduced graphene oxide (2D rGO) was employed as both a shape-directing medium and support to fabricate 2D γ-MnO{sub 2}/2D rGO nano-hybrids (MnO{sub 2}/rGO) via a facile hydrothermal route. For the first time, the 2D/2D hybrid materials were used for catalytic ozonation of 4-nitrophenol. The catalytic efficiency of MnO{sub 2}/rGO was much higher than either MnO{sub 2} or rGO only, and rGO was suggested to play the role for promoting electron transfers. Quenching tests using tert-butanol, p-benzoquinone, and sodium azide suggested that the major radicals responsible for 4-nitrophenol degradation and mineralization are O{sub 2}{sup ̄} and {sup 1}O{sub 2}, but not ·OH. Reusability tests demonstrated a high stability of the materials in catalytic ozonation with minor Mn leaching below 0.5 ppm. Degradation mechanism, reaction kinetics, reusability and a synergistic effect between catalytic ozonation and coupling peroxymonosulfate (PMS) activation were also discussed.

  14. A finite element simulation of biological conversion processes in landfills

    International Nuclear Information System (INIS)

    Robeck, M.; Ricken, T.; Widmann, R.

    2011-01-01

    Landfills are the most common way of waste disposal worldwide. Biological processes convert the organic material into an environmentally harmful landfill gas, which has an impact on the greenhouse effect. After the depositing of waste has been stopped, current conversion processes continue and emissions last for several decades and even up to 100 years and longer. A good prediction of these processes is of high importance for landfill operators as well as for authorities, but suitable models for a realistic description of landfill processes are rather poor. In order to take the strong coupled conversion processes into account, a constitutive three-dimensional model based on the multiphase Theory of Porous Media (TPM) has been developed at the University of Duisburg-Essen. The theoretical formulations are implemented in the finite element code FEAP. With the presented calculation concept we are able to simulate the coupled processes that occur in an actual landfill. The model's theoretical background and the results of the simulations as well as the meantime successfully performed simulation of a real landfill body will be shown in the following.

  15. Forests and ozone: productivity, carbon storage, and feedbacks.

    Science.gov (United States)

    Wang, Bin; Shugart, Herman H; Shuman, Jacquelyn K; Lerdau, Manuel T

    2016-02-22

    Tropospheric ozone is a serious air-pollutant, with large impacts on plant function. This study demonstrates that tropospheric ozone, although it damages plant metabolism, does not necessarily reduce ecosystem processes such as productivity or carbon sequestration because of diversity change and compensatory processes at the community scale ameliorate negative impacts at the individual level. This study assesses the impact of ozone on forest composition and ecosystem dynamics with an individual-based gap model that includes basic physiology as well as species-specific metabolic properties. Elevated tropospheric ozone leads to no reduction of forest productivity and carbon stock and to increased isoprene emissions, which result from enhanced dominance by isoprene-emitting species (which tolerate ozone stress better than non-emitters). This study suggests that tropospheric ozone may not diminish forest carbon sequestration capacity. This study also suggests that, because of the often positive relationship between isoprene emission and ozone formation, there is a positive feedback loop between forest communities and ozone, which further aggravates ozone pollution.

  16. Effects of ferric ions on the catalytic ozonation process on sanitary landfill leachates

    Directory of Open Access Journals (Sweden)

    Messias Borges Silva

    2013-04-01

    Full Text Available Leachates exhibiting an unstable ratio of biochemical oxygen demand (BOD and chemical oxygen demand (COD of approximately 0.45 are typical of new landfills in the City of Cachoeira Paulista, Brazil. Although the organic matter portion is bio-treatable, the presence of refractory leached organic material requires unconventional effluent-treatment processes. Leachate treatment with ozone oxidation, in the presence of ferric ions, acts as catalyst in the formation of hydroxyl radicals. Ozone was obtained by corona-discharge from high-purity O2 gas. The treatment was performed in natura in a jacketed borosilicate glass reactor containing 900 ml of leachate. The analyzed response variable was expressed as the concentration of dissolved organic carbon (DOC. In order to determine the optimal proportions to produce the greatest degradation rate for organic materials, variations in experimental O2 flow-fed to the generator, the Fe(iii concentration, and the output of the ozonator were conducted over two experimental runs. Experimental models showed a DOC degradation on the order of 81.25%.

  17. Algorithms and programs for processing of satellite data on ozone layer and UV radiation levels

    International Nuclear Information System (INIS)

    Borkovskij, N.B.; Ivanyukovich, V.A.

    2012-01-01

    Some algorithms and programs for automatic retrieving and processing ozone layer satellite data are discussed. These techniques are used for reliable short-term UV-radiation levels forecasting. (authors)

  18. Degradation of p-nitrotoluene in aqueous solution by ozonation combined with sonolysis

    International Nuclear Information System (INIS)

    Song Shuang; Xia Min; He Zhiqiao; Ying Haiping; Lue Bosheng; Chen Jianmeng

    2007-01-01

    p-Nitrotoluene (PNT) is a nitroaromatic compound that is hazardous to humans and is a suspected hormone disrupter. The degradation of PNT in aqueous solution by ozonation (O 3 ) combined with sonolysis (US) was investigated in laboratory-scale experiments in which pH, initial concentration of PNT, O 3 dose and temperature were varied. The degradation of PNT followed pseudo-first-order kinetics, and degradation products were monitored during the process. The maximum degradation was observed at pH 10.0. As the initial concentration of PNT decreased, the degradation rate increased. Both temperature and ozone dose had a positive effect on the degradation of PNT. Of the total organic carbon (TOC) reduction, 8, 68, and 85% were observed with US, O 3 , and a combination of US and O 3 after reaction for 90 min, respectively, proving that ozonation combined with sonolysis for removal of TOC is more efficient than ozonation alone or ultrasonic irradiation alone. Major by-products, including p-cresol, 4-hydroxybenzaldehyde, 4-hydroxybenzoic acid, 4-(oxomethylene) cyclohexa-2,5-dien-1-one, but-2-enedioic acid, and acetic acid were detected by gas chromatography coupled with mass spectrometry

  19. Application of ozonation process for the removal of Legionella pneumophila from water

    Directory of Open Access Journals (Sweden)

    Mohammad Safaee

    2015-09-01

    Full Text Available Background: Legionella pneumophila mortality and morbidity is a health concern worldwide. Due to the role of water in transmission of Legionenlla, several techniques have been used for water disinfection. This research was aimed to analyze the efficacy of ozonation process and the effects of bacterial density, contact time and pH on the removal of Legionella pneumophila from water. Methods: Legionella pneumophila was isolated from hospital water line and spiked into sterile drinking water with 300, 700 and 1000 CFU/ml densities. Ozonation was conducted within 1 L batch glass reactor with injection of 5 mg/h and contact time of 5 to 30 minutes at pH = 5, 7 and 9. Legionella culture was performed in supplemented BCYE containing GVPC and thermal treatment. After ozonation, the developed colonies were identified via biochemical and morphological tests. Results: In pH =5, the contact time 25 min and pH= 7 as well as the contact time 30 min, increase of legionella density from 300 to 1000 CFU/ml led to the reduction of removal efficiency from 100 to 87% and 100 to 82%, respectively. In pH=9 and contact time 20 min with the same bacterial density, 300 to 1000 CFU/ml, the disinfection efficacy was decreased from 100 to 91.5 %. Conclusion: Ozonation is an appropriate technique for elimination of legionella from water. The increased bacterial density led to the reduction of removal efficiency. The lowest and highest performance rates were obtained in pH=7 and 9, respectively.

  20. Effect of ozone gas processing on physical and chemical properties ...

    African Journals Online (AJOL)

    Purpose: To investigate the effects of ozone treatment on chemical and physical properties of wheat (Triticum aestivum L.) gluten, glutenin and gliadin. Methods: Wheat proteins isolated from wheat flour were treated with ozone gas. The physical and chemical properties of gluten proteins were investigated after treatment ...

  1. Effect of increased carbon dioxide concentrations on stratospheric ozone

    International Nuclear Information System (INIS)

    Boughner, R.E.

    1978-01-01

    During the past several years, much attention has been focused on the destruction of ozone by anthropogenic pollutants such as the nitrogen oxides and chlorofluoromethane. Little or no attention has been given to the influence on ozone of an increased carbon dioxide concentration for which a measurable growth has been observed. Increased carbon dioxide can directly affect ozone by perturbing atmospheric temperatures, which will alter ozone production, whose rate displays a fairly strong temperature dependence. This paper presents one-dimensional model results for the steady state ozone behavior when the CO 2 concentration is twice its ambient level which account for coupling between chemistry and temperature. When the CO 2 level doubled, the total ozone burden increased in relation to the ambient burden by 1.2--2.5%, depending on the vertical diffusion coefficient used. Above 30 km. In this region the relation variations were insensitive to the choice of diffusion coefficient. Below 30 km, ozone concentrations were smaller than the unperturbed values and were sensitive to the vertical diffusion profile in this region (10--30 km). Ozone decreases in the lower stratosphere because of a reduction in ozone-producing solar radiation, which results in smaller downward ozone fluxes from the region at 25--30 km relative to the flux values for the ambient atmosphere. These offsetting changes occurring in the upper and lower stratosphere act to minimize the variation in total ozone

  2. Development of a coupled physical-biological ecosystem model ECOSMO - Part I: Model description and validation for the North Sea

    DEFF Research Database (Denmark)

    Schrum, Corinna; Alekseeva, I.; St. John, Michael

    2006-01-01

    A 3-D coupled biophysical model ECOSMO (ECOSystem MOdel) has been developed. The biological module of ECOSMO is based on lower trophic level interactions between two phyto- and two zooplankton components. The dynamics of the different phytoplankton components are governed by the availability...... of the macronutrients nitrogen, phosphate and silicate as well as light. Zooplankton production is simulated based on the consumption of the different phytoplankton groups and detritus. The biological module is coupled to a nonlinear 3-D baroclinic model. The physical and biological modules are driven by surface...... showed that the model, based on consideration of limiting processes, is able to reproduce the observed spatial and seasonal variability of the North Sea ecosystem e.g. the spring bloom, summer sub-surface production and the fall bloom. Distinct differences in regional characteristics of diatoms...

  3. Quasi-biennial oscillation in atmospheric ozone, and its possible consequences for damaging UV-B radiation and for determination of long-term ozone trends

    Energy Technology Data Exchange (ETDEWEB)

    Gruzdev, A N [Russian Academy of Sciences, Moscow (Russian Federation). Inst. of Atmospheric Physics

    1996-12-31

    The quasi-biennial oscillation (QBO) in ozone is supposed to be related to the QBO of zonal wind in the tropical stratosphere, with an approximate period of 29 months. Generally speaking, mechanisms of QBO-related effects in the extratropical atmosphere should depend on season and region, resulting in other periodicities (e.g., a 20-month periodicity) due to nonlinear interaction between the `pure` QBO and an annual cycle. Seasonal and regional dependences of QBO-related effects in ozone not only influence the regime of ozone variability itself, but can have important consequences, for example, for interannual changes in biologically active UV-B radiation and for determination of long-term ozone trends. This work is concerned with these problems

  4. Quasi-biennial oscillation in atmospheric ozone, and its possible consequences for damaging UV-B radiation and for determination of long-term ozone trends

    Energy Technology Data Exchange (ETDEWEB)

    Gruzdev, A.N. [Russian Academy of Sciences, Moscow (Russian Federation). Inst. of Atmospheric Physics

    1995-12-31

    The quasi-biennial oscillation (QBO) in ozone is supposed to be related to the QBO of zonal wind in the tropical stratosphere, with an approximate period of 29 months. Generally speaking, mechanisms of QBO-related effects in the extratropical atmosphere should depend on season and region, resulting in other periodicities (e.g., a 20-month periodicity) due to nonlinear interaction between the `pure` QBO and an annual cycle. Seasonal and regional dependences of QBO-related effects in ozone not only influence the regime of ozone variability itself, but can have important consequences, for example, for interannual changes in biologically active UV-B radiation and for determination of long-term ozone trends. This work is concerned with these problems

  5. Comparison of pharmaceutical abatement in various water matrices by conventional ozonation, peroxone (O3/H2O2), and an electro-peroxone process.

    Science.gov (United States)

    Wang, Huijiao; Zhan, Juhong; Yao, Weikun; Wang, Bin; Deng, Shubo; Huang, Jun; Yu, Gang; Wang, Yujue

    2018-03-01

    Pharmaceutical abatement in a groundwater (GW), surface water (SW), and secondary effluent (SE) by conventional ozonation, the conventional peroxone (O 3 /H 2 O 2 ), and the electro-peroxone (E-peroxone) processes was compared in batch tests. SE had significantly more fast-reacting dissolved organic matter (DOM) moieties than GW and SW. Therefore, O 3 decomposed much faster in SE than in GW and SW. At specific ozone doses of 0.5-1.5 mg O 3 /mg dissolved organic carbon (DOC), the application of O 3 /H 2 O 2 and E-peroxone process (by adding external H 2 O 2 stocks or in-situ generating H 2 O 2 from cathodic O 2 reduction during ozonation) similarly enhanced the OH yield from O 3 decomposition by ∼5-12% and 5-7% in GW and SW, respectively, compared to conventional ozonation. In contrast, due to the slower reaction kinetics of O 3 with H 2 O 2 than O 3 with fast-reacting DOM moieties, the addition or electro-generation of H 2 O 2 hardly increased the OH yield (<4% increases) in SE. Corresponding to the changes in the OH yields, the abatement efficiencies of ozone-resistant pharmaceuticals (ibuprofen and clofibric acid) increased evidently in GW (up to ∼14-18% at a specific ozone dose of 1.5 mg O 3 /mg DOC), moderately in SW (up to 6-10% at 0.5 mg O 3 /mg DOC), and negligibly in SE during the O 3 /H 2 O 2 and E-peroxone treatment compared to conventional ozonation. These results indicate that similar to the conventional O 3 /H 2 O 2 process, the E-peroxone process can more pronouncedly enhance O 3 transformation to OH, and thus increase the abatement efficiency of ozone-resistant pharmaceuticals in water matrices exerting relatively high ozone stability (e.g., groundwater and surface water with low DOM contents). Therefore, by installing electrodes in existing ozone reactors, the E-peroxone process may provide a convenient way to enhance pharmaceutical abatement in drinking water applications, where groundwater and surface water with low DOM contents are used as

  6. IVF, same-sex couples and the value of biological ties

    DEFF Research Database (Denmark)

    Di Nucci, Ezio

    2016-01-01

    Ought parents, in general, to value being biologically tied to their children? Is it important, in particular, that both parents be biologically tied to their children? I will address these fundamental questions by looking at a fairly new practice within IVF treatments, so-called IVF......-with-ROPA (Reception of Oocytes from Partner), which allows lesbian couples to 'share motherhood', with one partner providing the eggs while the other becomes pregnant. I believe that IVF-with-ROPA is, just like other IVF treatments, morally permissible, but here I argue that the increased biological ties which IVF...

  7. Simultaneous waste activated sludge disintegration and biological hydrogen production using an ozone/ultrasound pretreatment.

    Science.gov (United States)

    Yang, Shan-Shan; Guo, Wan-Qian; Cao, Guang-Li; Zheng, He-Shan; Ren, Nan-Qi

    2012-11-01

    This paper offers an effective pretreatment method that can simultaneously achieve excess sludge reduction and bio-hydrogen production from sludge self-fermentation. Batch tests demonstrated that the combinative use of ozone/ultrasound pretreatment had an advantage over the individual ozone and ultrasound pretreatments. The optimal condition (ozone dose of 0.158 g O(3)/g DS and ultrasound energy density of 1.423 W/mL) was recommended by response surface methodology. The maximum hydrogen yield was achieved at 9.28 mL H(2)/g DS under the optimal condition. According to the kinetic analysis, the highest hydrogen production rate (1.84 mL/h) was also obtained using combined pretreatment, which well fitted the predicted equation (the squared regression statistic was 0.9969). The disintegration degrees (DD) were limited to 19.57% and 46.10% in individual ozone and ultrasound pretreatments, while it reached up to 60.88% in combined pretreatment. The combined ozone/ultrasound pretreatment provides an ideal and environmental friendly solution to the problem of sludge disposal. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Removal of dimethyl sulfide by the combination of non-thermal plasma and biological process.

    Science.gov (United States)

    Wei, Z S; Li, H Q; He, J C; Ye, Q H; Huang, Q R; Luo, Y W

    2013-10-01

    A bench scale system integrated with a non-thermal plasma (NTP) and a biotricking filtration (BTF) unit for the treatment of gases containing dimethyl sulfide (DMS) was investigated. DMS removal efficiency in the integrated system was up to 96%. Bacterial communities in the BTF were assessed by PCR-DGGE, which play the dominant role in the biological processes of metabolism, sulfur oxidation, sulfate-reducing and carbon oxidation. The addition of ozone from NTP made microbial community in BTF more complicated and active for DMS removal. The NTP oxidize DMS to simple compounds such as methanol and carbonyl sulfide; the intermediate organic products and DMS are further oxidized to sulfate, carbon dioxide, water vapors by biological degradation. These results show that NTP-BTF is achievable and open new possibilities for applying the integrated with NTP and BTF to odour gas treatment. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Process analysis of regional ozone formation over the Yangtze River Delta, China using the Community Multi-scale Air Quality modeling system

    Directory of Open Access Journals (Sweden)

    L. Li

    2012-11-01

    Full Text Available A high O3 episode was detected in urban Shanghai, a typical city in the Yangtze River Delta (YRD region in August 2010. The CMAQ integrated process rate method is applied to account for the contribution of different atmospheric processes during the high pollution episode. The analysis shows that the maximum concentration of ozone occurs due to transport phenomena, including vertical diffusion and horizontal advective transport. Gas-phase chemistry producing O3 mainly occurs at the height of 300–1500 m, causing a strong vertical O3 transport from upper levels to the surface layer. The gas-phase chemistry is an important sink for O3 in the surface layer, coupled with dry deposition. Cloud processes may contribute slightly to the increase of O3 due to convective clouds or to the decrease of O3 due to scavenging. The horizontal diffusion and heterogeneous chemistry contributions are negligible during the whole episode. Modeling results show that the O3 pollution characteristics among the different cities in the YRD region have both similarities and differences. During the buildup period, the O3 starts to appear in the city regions of the YRD and is then transported to the surrounding areas under the prevailing wind conditions. The O3 production from photochemical reaction in Shanghai and the surrounding area is most significant, due to the high emission intensity in the large city; this ozone is then transported out to sea by the westerly wind flow, and later diffuses to rural areas like Chongming island, Wuxi and even to Nanjing. The O3 concentrations start to decrease in the cities after sunset, due to titration of the NO emissions, but ozone can still be transported and maintain a significant concentration in rural areas and even regions outside the YRD region, where the NO emissions are very small.

  10. Automatic programmable air ozonizer

    International Nuclear Information System (INIS)

    Gubarev, S.P.; Klosovsky, A.V.; Opaleva, G.P.; Taran, V.S.; Zolototrubova, M.I.

    2015-01-01

    In this paper we describe a compact, economical, easy to manage auto air ozonator developed at the Institute of Plasma Physics of the NSC KIPT. It is designed for sanitation, disinfection of premises and cleaning the air from foreign odors. A distinctive feature of the developed device is the generation of a given concentration of ozone, approximately 0.7 maximum allowable concentration (MAC), and automatic maintenance of a specified level. This allows people to be inside the processed premises during operation. The microprocessor controller to control the operation of the ozonator was developed

  11. Tropospheric jet response to Antarctic ozone depletion: An update with Chemistry-Climate Model Initiative (CCMI) models

    Science.gov (United States)

    Son, Seok-Woo; Han, Bo-Reum; Garfinkel, Chaim I.; Kim, Seo-Yeon; Park, Rokjin; Abraham, N. Luke; Akiyoshi, Hideharu; Archibald, Alexander T.; Butchart, N.; Chipperfield, Martyn P.; Dameris, Martin; Deushi, Makoto; Dhomse, Sandip S.; Hardiman, Steven C.; Jöckel, Patrick; Kinnison, Douglas; Michou, Martine; Morgenstern, Olaf; O’Connor, Fiona M.; Oman, Luke D.; Plummer, David A.; Pozzer, Andrea; Revell, Laura E.; Rozanov, Eugene; Stenke, Andrea; Stone, Kane; Tilmes, Simone; Yamashita, Yousuke; Zeng, Guang

    2018-05-01

    The Southern Hemisphere (SH) zonal-mean circulation change in response to Antarctic ozone depletion is re-visited by examining a set of the latest model simulations archived for the Chemistry-Climate Model Initiative (CCMI) project. All models reasonably well reproduce Antarctic ozone depletion in the late 20th century. The related SH-summer circulation changes, such as a poleward intensification of westerly jet and a poleward expansion of the Hadley cell, are also well captured. All experiments exhibit quantitatively the same multi-model mean trend, irrespective of whether the ocean is coupled or prescribed. Results are also quantitatively similar to those derived from the Coupled Model Intercomparison Project phase 5 (CMIP5) high-top model simulations in which the stratospheric ozone is mostly prescribed with monthly- and zonally-averaged values. These results suggest that the ozone-hole-induced SH-summer circulation changes are robust across the models irrespective of the specific chemistry-atmosphere-ocean coupling.

  12. Seasonal Changes in Tropospheric Ozone Concentrations over South Korea and Its Link to Ozone Precursors

    Science.gov (United States)

    Jung, H. C.; Moon, B. K.; Wie, J.

    2017-12-01

    Concentration of tropospheric ozone over South Korea has steadily been on the rise in the last decades, mainly due to rapid industrializing and urbanizing in the Eastern Asia. To identify the characteristics of tropospheric ozone in South Korea, we fitted a sine function to the surface ozone concentration data from 2005 to 2014. Based on fitted sine curves, we analyzed the shifts in the dates on which ozone concentration reached its peak in the calendar year. Ozone monitoring sites can be classified into type types: where the highest annual ozone concentration kept occurring sooner (Esites) and those that kept occurring later (Lsites). The seasonal analysis shows that the surface ozone had increased more rapidly in Esites than in Lsites in the past decade during springtime and vice-versa during summertime. We tried to find the reason for the different seasonal trends with the relationship between ozone and ozone precursors. As a result, it was found that the changes in the ground-level ozone concentration in the spring and summer times are considerably influenced by changes in nitrogen dioxide concentration, and this is closely linked to the destruction (production) process of ozone by nitrogen dioxide in spring (summer). The link between tropospheric ozone and nitrogen dioxide discussed in this study will have to be thoroughly examined through climate-chemistry modeling in the future. Acknowledgements This research was supported by the Korea Ministry of Environment (MOE) as "Climate Change Correspondence Program."

  13. Fate of bulk and trace organics during a simulated aquifer recharge and recovery (ARR)-ozone hybrid process

    KAUST Repository

    Yoon, Min

    2013-11-01

    The attenuation of bulk organic matter and trace organic contaminants (TOrCs) was evaluated for various aquifer recharge and recovery (ARR)-ozone (O3) hybrid treatment process combinations using soil-batch reactor and bench-scale ozonation experiments as a proof of concept prior to pilot and/or field studies. In water reclamation and especially potable reuse, refractory bulk organic matter and TOrCs are of potential health concern in recycled waters. In this study, the role of biotransformation of bulk organic matter and TOrCs was investigated considering different simulated treatment combinations, including soil passage (ARR) alone, ARR after ozonation (O3-ARR), and ARR prior to ozonation (ARR-O3). During oxic (aerobic) ARR simulations, soluble microbial-like substances (e.g., higher molecular weight polysaccharides and proteins) were easily removed while (lower molecular weight) humic substances and aromatic organic matter were not efficiently removed. During ARR-ozone treatment simulations, removals of bulk organic matter and TOrCs were rapid and effective compared to ARR alone. A higher reduction of effluent-derived organic matter, including aromatic organic matter and humic substances, was observed in the ARR-O3 hybrid followed by the O3-ARR hybrid. An enhanced attenuation of recalcitrant TOrCs was observed while increasing the ozone dose slightly (O3: DOC=1). TOrC removal efficiency also increased during the post-ozone treatment combination (i.e., ARR-O3). In addition, the carcinogenic wastewater disinfection byproduct N-nitrosodimethylamine (NDMA) was eliminated below the method reporting limit (<5ngL-1) both during ARR treatment alone and the ARR-ozone hybrid. © 2013 Elsevier Ltd.

  14. Coupled Modeling of Rhizosphere and Reactive Transport Processes

    Science.gov (United States)

    Roque-Malo, S.; Kumar, P.

    2017-12-01

    The rhizosphere, as a bio-diverse plant root-soil interface, hosts many hydrologic and biochemical processes, including nutrient cycling, hydraulic redistribution, and soil carbon dynamics among others. The biogeochemical function of root networks, including the facilitation of nutrient cycling through absorption and rhizodeposition, interaction with micro-organisms and fungi, contribution to biomass, etc., plays an important role in myriad Critical Zone processes. Despite this knowledge, the role of the rhizosphere on watershed-scale ecohydrologic functions in the Critical Zone has not been fully characterized, and specifically, the extensive capabilities of reactive transport models (RTMs) have not been applied to these hydrobiogeochemical dynamics. This study uniquely links rhizospheric processes with reactive transport modeling to couple soil biogeochemistry, biological processes, hydrologic flow, hydraulic redistribution, and vegetation dynamics. Key factors in the novel modeling approach are: (i) bi-directional effects of root-soil interaction, such as simultaneous root exudation and nutrient absorption; (ii) multi-state biomass fractions in soil (i.e. living, dormant, and dead biological and root materials); (iii) expression of three-dimensional fluxes to represent both vertical and lateral interconnected flows and processes; and (iv) the potential to include the influence of non-stationary external forcing and climatic factors. We anticipate that the resulting model will demonstrate the extensive effects of plant root dynamics on ecohydrologic functions at the watershed scale and will ultimately contribute to a better characterization of efflux from both agricultural and natural systems.

  15. Study of ozone gas formed in the industrial radiation process with cobalt-60 and its impact on the environment

    International Nuclear Information System (INIS)

    Uzueli, Daniel Henrique

    2013-01-01

    The radiation processing is present in various products such as foods, medical disposable, electrical cables, gems, among others. This process aims to improve the properties, sterilize or sanitize irradiated products. In industrial irradiators facilities, electromagnetic radiation (gamma and X-rays) or electrons before they interact with the products in processing, there are a layer of air. To interact with this air layer, it causes radiolytic effects on the molecules present in the ambient atmosphere, and the main interaction are with the oxygen molecules that have their bonds broken, separating them into two highly reactive atoms that recombine with the other molecule of oxygen to form ozone gas. In this work it was studied the formation, decay and dispersion of ozone in industrial gamma irradiators facilities that use cobalt-60 as a source of radiation. The monitoring of ozone concentration was performed by optical absorption method in a commercial monitor. (author)

  16. Impact of diatomite on the slightly polluted algae-containing raw water treatment process using ozone oxidation coupled with polyaluminum chloride coagulation.

    Science.gov (United States)

    Hu, Wenchao; Wu, Chunde; Jia, Aiyin; Zhang, Zhilin; Chen, Fang

    2014-01-01

    The impact of adding diatomite on the treatment performance of slightly polluted algae-containing raw water using ozone pre-oxidation and polyaluminum chloride (PAC) coagulation was investigated. Results demonstrated that the addition of diatomite is advantageous due to reduction of the PAC dose (58.33%) and improvement of the removal efficiency of algae, turbidity, and dissolved organic matter (DOM) in raw water. When the ozone concentration was 1.0 mg L⁻¹ and the PAC dosage was 2.5 mg L⁻¹, the removal rates of algae, turbidity, UV254, and TOC were improved by 6.39%, 7.06%, 6.76%, and 4.03%, respectively, with the addition of 0.4 g L⁻¹ diatomite. It has been found that the DOM presented in the Pearl River raw water mainly consisted of small molecules ( 50 kDa). After adding diatomite (0.4 g L⁻¹), the additional removal of 5.77% TOC and 14.82% UV254 for small molecules (50 kDa) could be achieved, respectively, at an ozone concentration of 1.0 mg L⁻¹ and a PAC dose of 2.5 mg L⁻¹. The growth of anabaena flos-aquae (A.F.) was observed by an atomic force microscope (AFM) before and after adding diatomite. AFM images demonstrate that diatomite may have a certain adsorption on A.F.

  17. EFFECT OF OZONATION PROCESS ON PHYSICOCHEMICAL AND RHEOLOGICAL PROPERTIES OF κ-CARRAGEENAN

    Directory of Open Access Journals (Sweden)

    AJI PRASETYANINGRUM

    2017-03-01

    Full Text Available κ-Carrageenan is a sulfated galactan extracted from red algae (Rhodophyceae which has many functions. However, nonfood applications of κ-carrageenan have been limited by its superior gelling and viscosity properties. The effect of ozonation on physicochemical and rheological properties of κ-carrageenan solution at different pH was investigated. κ-Carrageenan solution was prepared in the ratio of 1:100 (w/v and was treated with dissolved ozone with concentration of 80±2 ppm. This ozonation was conducted at different times and pH. The viscosity of ozone-treated κ-carrageenan solution was analyzed using Brookfield viscometer and the sulfate content was determined using FT-IR spectra and barium chloride-gelatin method. The results show that the viscosity of ozone-treated κ-carrageenan decreases appreciably with time. The highest percentage reduction in viscosity occurs at pH 3, followed by pH 7 and 10. The FT-IR spectra reveals that the chemical structure of degraded κ-carrageenan, in term of sulfate content, is only slightly affected by the ozone treatment.

  18. Nonequilibrium thermodynamics transport and rate processes in physical, chemical and biological systems

    CERN Document Server

    Demirel, Yasar

    2014-01-01

    Natural phenomena consist of simultaneously occurring transport processes and chemical reactions. These processes may interact with each other and may lead to self-organized structures, fluctuations, instabilities, and evolutionary systems. Nonequilibrium Thermodynamics, 3rd edition emphasizes the unifying role of thermodynamics in analyzing the natural phenomena. This third edition updates and expands on the first and second editions by focusing on the general balance equations for coupled processes of physical, chemical, and biological systems. The new edition contains a new chapte

  19. The total ozone and UV solar radiation over Stara Zagora, Bulgaria

    Science.gov (United States)

    Mendeva, B. D.; Gogosheva, Ts. N.; Petkov, B. H.; Krastev, D. G.

    The results from direct ground-based solar UV irradiance measurements and the total ozone content (TOC) over Stara Zagora (42° 25'N, 25° 37'E), Bulgaria are presented. During the period 1999-2003 the TOC data show seasonal variations, typical for the middle latitudes - maximum in the spring and minimum in the autumn. The comparison between TOC ground-based data and Global Ozone Monitoring Experiment (GOME) satellite-borne ones shows a seasonal dependence of the differences between them. A strong negative relationship between the total ozone and the 305 nm wavelength irradiance was found. The dependence between the two variables is significant ( r = -0.62 ± 0.18) at 98% confidence level. The direct sun UV doses for some specific biological effects (erythema and eyes) are obtained. The estimation of the radiation amplification factor RAF shows that the ozone reduction by 1% increases the erythemal dose by 2.3%. The eye-damaging doses are more influenced by the TOC changes and in this case RAF = -2.7%. The amount of these biological doses depended on the solar altitude over the horizon. This dependence was not so strong when the total ozone content in the atmosphere was lower.

  20. Impacts of different characterizations of large-scale background on simulated regional-scale ozone over the continental United States

    Science.gov (United States)

    Hogrefe, Christian; Liu, Peng; Pouliot, George; Mathur, Rohit; Roselle, Shawn; Flemming, Johannes; Lin, Meiyun; Park, Rokjin J.

    2018-03-01

    This study analyzes simulated regional-scale ozone burdens both near the surface and aloft, estimates process contributions to these burdens, and calculates the sensitivity of the simulated regional-scale ozone burden to several key model inputs with a particular emphasis on boundary conditions derived from hemispheric or global-scale models. The Community Multiscale Air Quality (CMAQ) model simulations supporting this analysis were performed over the continental US for the year 2010 within the context of the Air Quality Model Evaluation International Initiative (AQMEII) and Task Force on Hemispheric Transport of Air Pollution (TF-HTAP) activities. CMAQ process analysis (PA) results highlight the dominant role of horizontal and vertical advection on the ozone burden in the mid-to-upper troposphere and lower stratosphere. Vertical mixing, including mixing by convective clouds, couples fluctuations in free-tropospheric ozone to ozone in lower layers. Hypothetical bounding scenarios were performed to quantify the effects of emissions, boundary conditions, and ozone dry deposition on the simulated ozone burden. Analysis of these simulations confirms that the characterization of ozone outside the regional-scale modeling domain can have a profound impact on simulated regional-scale ozone. This was further investigated by using data from four hemispheric or global modeling systems (Chemistry - Integrated Forecasting Model (C-IFS), CMAQ extended for hemispheric applications (H-CMAQ), the Goddard Earth Observing System model coupled to chemistry (GEOS-Chem), and AM3) to derive alternate boundary conditions for the regional-scale CMAQ simulations. The regional-scale CMAQ simulations using these four different boundary conditions showed that the largest ozone abundance in the upper layers was simulated when using boundary conditions from GEOS-Chem, followed by the simulations using C-IFS, AM3, and H-CMAQ boundary conditions, consistent with the analysis of the ozone fields

  1. From biological and social network metaphors to coupled bio-social wireless networks

    Science.gov (United States)

    Barrett, Christopher L.; Eubank, Stephen; Anil Kumar, V.S.; Marathe, Madhav V.

    2010-01-01

    Biological and social analogies have been long applied to complex systems. Inspiration has been drawn from biological solutions to solve problems in engineering products and systems, ranging from Velcro to camouflage to robotics to adaptive and learning computing methods. In this paper, we present an overview of recent advances in understanding biological systems as networks and use this understanding to design and analyse wireless communication networks. We expand on two applications, namely cognitive sensing and control and wireless epidemiology. We discuss how our work in these two applications is motivated by biological metaphors. We believe that recent advances in computing and communications coupled with advances in health and social sciences raise the possibility of studying coupled bio-social communication networks. We argue that we can better utilise the advances in our understanding of one class of networks to better our understanding of the other. PMID:21643462

  2. Measurement of Ozone Production Sensor

    Directory of Open Access Journals (Sweden)

    M. Cazorla

    2010-05-01

    Full Text Available A new ambient air monitor, the Measurement of Ozone Production Sensor (MOPS, measures directly the rate of ozone production in the atmosphere. The sensor consists of two 11.3 L environmental chambers made of UV-transmitting Teflon film, a unit to convert NO2 to O3, and a modified ozone monitor. In the sample chamber, flowing ambient air is exposed to the sunlight so that ozone is produced just as it is in the atmosphere. In the second chamber, called the reference chamber, a UV-blocking film over the Teflon film prevents ozone formation but allows other processes to occur as they do in the sample chamber. The air flows that exit the two chambers are sampled by an ozone monitor operating in differential mode so that the difference between the two ozone signals, divided by the exposure time in the chambers, gives the ozone production rate. High-efficiency conversion of NO2 to O3 prior to detection in the ozone monitor accounts for differences in the NOx photostationary state that can occur in the two chambers. The MOPS measures the ozone production rate, but with the addition of NO to the sampled air flow, the MOPS can be used to study the sensitivity of ozone production to NO. Preliminary studies with the MOPS on the campus of the Pennsylvania State University show the potential of this new technique.

  3. Study on an integrated process combining ozonation with ceramic ultra-filtration for decentralized supply of drinking water.

    Science.gov (United States)

    Zhu, Jia; Fan, Xiao J; Tao, Yi; Wei, De Q; Zhang, Xi H

    2014-09-19

    An integrated process was specifically developed for the decentralized supply of drinking water from micro-polluted surface water in the rural areas of China. The treatment process combined ozonation with ceramic ultra-filtration (UF), coagulation for pre-treatment and granular activated carbon filtration. A flat-sheet ceramic membrane was used with a cut-off of 60 nm and the measurement of 254 mm (length) × 240 mm (width) × 6 mm (thickness). Ozonation and ceramic UF was set up whthin one reactor. The experimental results showed that the removal efficiencies of the dissolved organic carbon (DOC) and the formation potential of trihalomethanes (THMs), haloacetic acids (HAAs) and ammonia were 80%, 76%, 70% and 90%, respectively; that the turbidity of the product water was below 0.2 NTU and the particle count number (particles larger than 2 μm) was less than 50 counts per mL. The result also showed that all the pathogenic microorganisms were retained by the ceramic and that UF. Ozonation played a critical role in the control of membrane fouling and the removal of contaminants. Exactly, the membrane fouling can be controlled in situ with 3 mg L(-1) ozone at the permeate flux of 80 L m(-2) h(-1), yet the required dosage of ozone was dependent on the quality of the raw water. Therefore, this study is able to provide a highly compacted system for decentralized supply of high-quality drinking water in terms of both chemical and microbiological safety for the rural areas in China.

  4. A finite element simulation of biological conversion processes in landfills.

    Science.gov (United States)

    Robeck, M; Ricken, T; Widmann, R

    2011-04-01

    Landfills are the most common way of waste disposal worldwide. Biological processes convert the organic material into an environmentally harmful landfill gas, which has an impact on the greenhouse effect. After the depositing of waste has been stopped, current conversion processes continue and emissions last for several decades and even up to 100years and longer. A good prediction of these processes is of high importance for landfill operators as well as for authorities, but suitable models for a realistic description of landfill processes are rather poor. In order to take the strong coupled conversion processes into account, a constitutive three-dimensional model based on the multiphase Theory of Porous Media (TPM) has been developed at the University of Duisburg-Essen. The theoretical formulations are implemented in the finite element code FEAP. With the presented calculation concept we are able to simulate the coupled processes that occur in an actual landfill. The model's theoretical background and the results of the simulations as well as the meantime successfully performed simulation of a real landfill body will be shown in the following. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Coupled Inverse Fluidized Bed Bioreactor with Advanced Oxidation Processes for Treatment of Vinasse

    Directory of Open Access Journals (Sweden)

    Karla E. Campos Díaz

    2017-11-01

    Full Text Available Vinasse is the wastewater generated from ethanol distillation; it is characterized by high levels of organic and inorganic matter, high exit temperature, dissolved salts and low pH. In this work the treatment of undiluted vinasse was achieved using sequentially-coupled biological and advanced oxidation processes. The initial characterization of vinasse showed a high Chemical Oxygen Demand (COD, 32 kg m-3, high Total Organic Carbon (TOC, 24.5 kg m-3 and low pH (2.5. The first stage of the biological treatment of the vinasse was carried out in an inverse fluidized bed bioreactor with a microbial consortium using polypropylene as support material. The fluidized bed bioreactor was kept at a constant temperature (37 ± 1ºC and pH (6.0 ± 0.5 for 90 days. After the biological process, the vinasse was continuously fed to the photoreactor using a peristaltic pump 2.8 × 10-3 kg of FeSO4•7H2O were added to the vinasse and allowed to dissolve in the dark for five minutes; after this time, 15.3 m3 of hydrogen peroxide (H2O2 (30% w/w were added, and subsequently, the UV radiation was allowed to reach the photoreactor to treat the effluent for 3600 s at pH = 3. Results showed that the maximum organic matter removed using the biological process, measured as COD, was 80% after 90 days. Additionally, 88% of COD removal was achieved using the photo-assisted Fenton oxidation. The overall COD removal after the sequentially-coupled processes reached a value as low as 0.194 kg m-3, achieving over 99% of COD removal as well as complete TOC removal.

  6. Modular and efficient ozone systems based on massively parallel chemical processing in microchannel plasma arrays: performance and commercialization

    Science.gov (United States)

    Kim, M.-H.; Cho, J. H.; Park, S.-J.; Eden, J. G.

    2017-08-01

    Plasmachemical systems based on the production of a specific molecule (O3) in literally thousands of microchannel plasmas simultaneously have been demonstrated, developed and engineered over the past seven years, and commercialized. At the heart of this new plasma technology is the plasma chip, a flat aluminum strip fabricated by photolithographic and wet chemical processes and comprising 24-48 channels, micromachined into nanoporous aluminum oxide, with embedded electrodes. By integrating 4-6 chips into a module, the mass output of an ozone microplasma system is scaled linearly with the number of modules operating in parallel. A 115 g/hr (2.7 kg/day) ozone system, for example, is realized by the combined output of 18 modules comprising 72 chips and 1,800 microchannels. The implications of this plasma processing architecture for scaling ozone production capability, and reducing capital and service costs when introducing redundancy into the system, are profound. In contrast to conventional ozone generator technology, microplasma systems operate reliably (albeit with reduced output) in ambient air and humidity levels up to 90%, a characteristic attributable to the water adsorption/desorption properties and electrical breakdown strength of nanoporous alumina. Extensive testing has documented chip and system lifetimes (MTBF) beyond 5,000 hours, and efficiencies >130 g/kWh when oxygen is the feedstock gas. Furthermore, the weight and volume of microplasma systems are a factor of 3-10 lower than those for conventional ozone systems of comparable output. Massively-parallel plasmachemical processing offers functionality, performance, and commercial value beyond that afforded by conventional technology, and is currently in operation in more than 30 countries worldwide.

  7. Application of ozone in the treatment of periodontal disease

    Science.gov (United States)

    Srikanth, Adusumilli; Sathish, Manthena; Sri Harsha, Anumolu Venkatanaga

    2013-01-01

    Gingivitis and periodontitis are most common inflammatory diseases of supporting tissues of teeth. Role of microbial etiology and host response in progression of gingival and periodontal diseases has been well established. Because of the beneficial biological effects of ozone, due to its antimicrobial and immunostimulating effect, it is well indicated in the treatment of gingival and periodontal diseases. The objective of this article is to provide a general review about clinical applications of ozone in treatment of periodontal diseases and to summarize the available in vitro and in vivo studies in Periodontics in which ozone has been used. PMID:23946585

  8. On the Size of the Antarctic Ozone Hole

    Science.gov (United States)

    Newman, Paul A.; Nash, Eric R.; Kawa, S. Randolph

    2002-01-01

    The Antarctic ozone hole is a region of extremely large ozone depletion that is roughly centered over the South Pole. Since 1979, the area coverage of the ozone hole has grown from near zero size to over 24 Million sq km. In the 8-year period from 1981 to 1989, the area expanded by 18 Million sq km. During the last 5 years, the hole has been observed to exceed 25 Million sq km over brief periods. In the spring of 2002, the size of the ozone hole barely reached 20 Million sq km for only a couple of days. We will review these size observations, the size trends, and the interannual variability of the size. The area is derived from the area enclosed by the 220 DU total ozone contour. We will discuss the rationale for the choice of 220 DU: 1) it is located near the steep gradient between southern mid-latitudes and the polar region, and 2) 220 DU is a value that is lower than the pre-1979 ozone observations over Antarctica during the spring period. The phenomenal growth of the ozone hole was directly caused by the increases of chlorine and bromine compounds in the stratosphere. In this talk, we will show the relationship of the ozone hole's size to the interannual variability of Antarctic spring temperatures. In addition, we will show the relationship of these same temperatures to planetary-scale wave forcings.

  9. Ozone treatment of textile wastewater relevant to toxic effect elimination in marine environment

    OpenAIRE

    Guendy, H.R.

    2007-01-01

    Ozone is a powerful oxidizing agent. The reaction of ozone with organic compounds in aqueous media has achieved a variety of treatment goals. The advantage of ozonation over the other oxidants is that the degradable products of ozonation are generally non-toxic, its final products are CO2 and H2O, and also the residual O3 in the system changes in few minutes to O2 .Convential treatment of textile wastewater includes various combinations of biological (activated sludge), physical and chemical ...

  10. Decolorization of industrial wastewater by ozonation followed by adsorption on activated carbon

    International Nuclear Information System (INIS)

    Konsowa, A.H.; Ossman, M.E.; Chen, Yongsheng; Crittenden, John C.

    2010-01-01

    The decolorization of industrial wastewater containing direct dye (Drimarene Red CL-3B) by advanced oxidation process using ozonation in a semi-batch bubble column reactor followed by granule activated carbon (GAC) adsorption process was studied. The effect of initial dye concentration, ozone concentration, pH and ozone-air flow rate on the rate of dye decolorization were investigated. It was found that the rate of dye decolorization increases with increasing ozone concentration, ozone-air flow rate, and pH but decreases with increasing initial dye concentration. This study is a hybrid system conducted in combination between ozonation process and GAC adsorption to reveal higher and efficient removal of color and TOC. The process started with ozonation for efficient and rapid decolorization of dyeing wastewater, followed by GAC adsorption process to gain efficient removal of color and TOC. The adsorption process was found to be very efficient in removal of ozonation residual TOC, in view of high TOC removal, up to 37% TOC removal was obtained. Numerical correlation using regression analysis for decolorization time with the operating conditions of the ozonation process were presented.

  11. The Effect of Ozone and Zeolite Concentration to the Performance of the Treatment of Wastewater Containing Heavy Metal Using Flotation Process

    Directory of Open Access Journals (Sweden)

    Eva Karamah

    2010-10-01

    Full Text Available Industrial wastewater which contains heavy metal cannot be disposed to the environment directly, due to its toxicity. In this research, separation of metal from wastewater was conducted by sorptive flotation method, using Lampung natural zeolite as bonding agent. The most common diffuser used in the flotation process is air or oxygen. In this research, ozone is used as diffuser because it is a stronger oxidant and more dissolvable in water than oxygen. Besides, ozone is a coagulant aid and disinfectant. With ozone as diffuser, it is expected that the process become faster with higher efficiency. This research was conducted to determine ozone effectiveness as diffuser, compared with other diffuser, and also to determine optimum concentration and effectiveness of zeolite in flotation of iron, nickel and copper. The research result shows that separation of iron with air diffuser is 90.8%, air-oxygen diffuser is 95.7%, air-ozone (from air diffuser is 99.7%, and air-ozone (from oxygen diffuser is 99.7%. Natural zeolite is effective as bonding agent with optimum concentration equal to 2 gram/liter, producing separation percentage for iron equal to 99.70%, copper equal to 88.98% and Nickel equal to 98.46%.

  12. Ozone depleting substances management inventory system

    Directory of Open Access Journals (Sweden)

    Felix Ivan Romero Rodríguez

    2018-02-01

    Full Text Available Context: The care of the ozone layer is an activity that contributes to the planet's environmental stability. For this reason, the Montreal Protocol is created to control the emission of substances that deplete the ozone layer and reduce its production from an organizational point of view. However, it is also necessary to have control of those that are already circulating and those present in the equipment that cannot be replaced yet because of the context of the companies that keep it. Generally, the control mechanisms for classifying the type of substances, equipment and companies that own them, are carried in physical files, spreadsheets and text documents, which makes it difficult to control and manage the data stored in them. Method: The objective of this research is to computerize the process of control of substances that deplete the ozone layer. An evaluation and description of all process to manage Ozone-Depleting Substances (ODS, and its alternatives, is done. For computerization, the agile development methodology SCRUM is used, and for the technological solution tools and free open source technologies are used. Result: As a result of the research, a computer tool was developed that automates the process of control and management of substances that exhaust the ozone layer and its alternatives. Conclusions: The developed computer tool allows to control and manage the ozone-depleting substances and the equipment that use them. It also manages the substances that arise as alternatives to be used for the protection of the ozone layer.

  13. Effect of Pulse Width on Oxygen-fed Ozonizer

    Science.gov (United States)

    Okada, Sho; Wang, Douyan; Namihira, Takao; Katsuki, Sunao; Akiyama, Hidenori

    Though general ozonizers based on silent discharge (barrier discharge) have been used to supply ozone at many industrial situations, there is still some problem, such as improvements of ozone yield. In this work, ozone was generated by pulsed discharge in order to improve the characteristics of ozone generation. It is known that a pulse width gives strong effect to the improvement of energy efficiency in exhaust gas processing. In this paper, the effect of pulse duration on ozone generation by pulsed discharge in oxygen would be reported.

  14. Seasonal Characteristics of Widespread Ozone Pollution in China and India: Current Model Capabilities and Source Attributions

    Science.gov (United States)

    Gao, M.; Song, S.; Beig, G.; Zhang, H.; Hu, J.; Ying, Q.; McElroy, M. B.

    2017-12-01

    Fast urbanization and industrialization in China and India have led to severe ozone pollution, threatening public health in these densely populated countries. We show the spatial and seasonal characteristics of ozone concentrations using nation-wide observations for these two countries in 2013. We used the Weather Research and Forecasting model coupled to chemistry (WRF-Chem) to conduct one-year simulations and to evaluate how current models capture the important photochemical processes using the exhaustive available datasets in China and India, including surface measurements, ozonesonde data and satellite retrievals. We also employed the factor separation approach to distinguish the contributions of different sectors to ozone during different seasons. The back trajectory model FLEXPART was applied to investigate the role of transport in highly polluted regions (e.g., North China Plain, Yangtze River delta, and Pearl River Delta) during different seasons. Preliminary results indicate that the WRF-Chem model provides a satisfactory representation of the temporal and spatial variations of ozone for both China and India. The factor separation approach offers valuable insights into relevant sources of ozone for both countries providing valuable guidance for policy options designed to mitigate the related problem.

  15. Investigation of In-Package Ozonation: The Effectiveness of Ozone to Inactive Salmonella enteritidis on Raw, Shell Eggs

    Directory of Open Access Journals (Sweden)

    Austin Donner

    2011-01-01

    Full Text Available Food production, handling, and distribution practices pose a constant threat to the quality and safety of food products. The objective of this research is to evaluate an innovative in-package ozonation process to reduce Salmonella enteritidis on raw, shell eggs. Previous research has shown that in-package ozonation eliminates contaminants from outside sources, reduces pathogens, and extends shelf life. In this study, raw, shell eggs were inoculated with Salmonella enteritidis and exposed to ozonation treatment. Microbial recoveries were then tested to determine bacterial reductions. Measurements included: relative humidity (34 percent at 5oC, surface temperatures (oC, ozone concentrations, bacterial reductions of Salmonella enteritidis, and quality assessment of eggs (Haugh Unit [HU], color, pH, and weight. After a 24-hour storage period, all treated samples indicated 3 log10 reductions on average (previous research has achieved up to 6log10. These results show effective in-package ozonation treatment reducing Salmonella enteritidis on raw, shell eggs without significant effect on measured egg quality over time. Benefits of in-package ozonation include no heating, low power requirements (less or equal to 50 Watts, short treatment time (seconds to minutes, and adaptability into existing processes. Given its ability to ensure the safety and longevity of food products, this technology has great potential for utilization in the food processing industry.

  16. Ozone depletion following future volcanic eruptions

    Science.gov (United States)

    Eric Klobas, J.; Wilmouth, David M.; Weisenstein, Debra K.; Anderson, James G.; Salawitch, Ross J.

    2017-07-01

    While explosive volcanic eruptions cause ozone loss in the current atmosphere due to an enhancement in the availability of reactive chlorine following the stratospheric injection of sulfur, future eruptions are expected to increase total column ozone as halogen loading approaches preindustrial levels. The timing of this shift in the impact of major volcanic eruptions on the thickness of the ozone layer is poorly known. Modeling four possible climate futures, we show that scenarios with the smallest increase in greenhouse gas concentrations lead to the greatest risk to ozone from heterogeneous chemical processing following future eruptions. We also show that the presence in the stratosphere of bromine from natural, very short-lived biogenic compounds is critically important for determining whether future eruptions will lead to ozone depletion. If volcanic eruptions inject hydrogen halides into the stratosphere, an effect not considered in current ozone assessments, potentially profound reductions in column ozone would result.

  17. The Effects of Acid Passivation, Tricresyl Phosphate Pre-Soak, and UV/Ozone Treatment on the Tribology of Perfluoropolyether-Lubricated 440C Stainless Steel Couples

    Science.gov (United States)

    Shogrin, Bradley A.; Jones, William R., Jr.; Herrera-Fierro, Pilar

    1997-01-01

    The boundary-lubrication performance of perfluoropolyether (PFPE) thin films in the presence of passivated 440 C stainless steel is presented. The study utilized a standard ball-on-disc tribometer. Stainless steel surfaces were passivated with one of four techniques: 1) submersion in a chromic acid bath for 30 minutes at 46 C, 2) submersion in a chromic acid bath for 60 minutes at 56 C, 3) submersion in a tricresyl phosphate (TCP) bath for 2 days at 107 C, or 4) UV/Ozone treated for 15 minutes. After passivation, each disc had a 400 A film of PFPE (hexafluoropropene oxide) applied to it reproducibly (+/- 20%) and uniformly (+/- 15%) using a film deposition device. The lifetimes of these films were quantified by measuring the number of sliding wear cycles required to induce an increase in the friction coefficient from an initial value characteristic of the lubricated wear couple to a final, or failure value, characteristic of an unlubricated, unpassivated wear couple. The lubricated lifetime of the 440 C couple was not altered as a result of the various passivation techniques. The resulting surface chemistry of each passivation technique was examined using X-ray Photoelectron Spectroscopy (XPS). It was found that chromic acid passivation altered the Cr to Fe ratio of the surface. TCP passivation resulted in a FePO4 layer on the surface, while UV/Ozone passivation only removed the carbonaceous contamination layer. None of the passivation techniques were found to dramatically increase the oxide film thickness.

  18. Investigation of the synergistic effects for p-nitrophenol mineralization by a combined process of ozonation and electrolysis using a boron-doped diamond anode

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Cuicui [School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084 (China); Yuan, Shi [School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084 (China); Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Li, Xiang; Wang, Huijiao; Bakheet, Belal [School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084 (China); Komarneni, Sridhar [Department of Ecosystem Science and Management and Material Research Institute, 205 MRL Building, The Pennsylvania State University, University Park, PA 16802 (United States); Wang, Yujue, E-mail: wangyujue@tsinghua.edu.cn [School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084 (China); Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China)

    2014-09-15

    Graphical abstract: - Highlights: • Combining electrolysis with ozonation greatly enhances nitrophenol mineralization. • O{sub 3} can rapidly degrade nitrophenol to carboxylic acids in the bulk solution. • Carboxylic acids can be mineralized by ·OH generated from multiple sources in the electrolysis-O{sub 3} process. • Electrolysis and ozonation can compensate for each other's weakness on pollutant degradation. - Abstract: Electrolysis and ozonation are two commonly used technologies for treating wastewaters contaminated with nitrophenol pollutants. However, they are often handicapped by their slow kinetics and low yields of total organic carbon (TOC) mineralization. To improve TOC mineralization efficiency, we combined electrolysis using a boron-doped diamond (BDD) anode with ozonation (electrolysis-O{sub 3}) to treat a p-nitrophenol (PNP) aqueous solution. Up to 91% TOC was removed after 60 min of the electrolysis-O{sub 3} process. In comparison, only 20 and 44% TOC was respectively removed by individual electrolysis and ozonation treatment conducted under similar reaction conditions. The result indicates that when electrolysis and ozonation are applied simultaneously, they have a significant synergy for PNP mineralization. This synergy can be mainly attributed to (i) the rapid degradation of PNP to carboxylic acids (e.g., oxalic acid and acetic acid) by O{sub 3}, which would otherwise take a much longer time by electrolysis alone, and (ii) the effective mineralization of the ozone-refractory carboxylic acids to CO{sub 2} by ·OH generated from multiple sources in the electrolysis-O{sub 3} system. The result suggests that combining electrolysis with ozonation can provide a simple and effective way to mutually compensate the limitations of the two processes for degradation of phenolic pollutants.

  19. Natural zeolite reactivity towards ozone: the role of compensating cations.

    Science.gov (United States)

    Valdés, Héctor; Alejandro, Serguei; Zaror, Claudio A

    2012-08-15

    Among indoor pollutants, ozone is recognised to pose a threat to human health. Recently, low cost natural zeolites have been applied as alternative materials for ozone abatement. In this work, the effect of compensating cation content of natural zeolite on ozone removal is studied. A Chilean natural zeolite is used here as starting material. The amount of compensating cations in the zeolite framework was modified by ion exchange using an ammonium sulphate solution (0.1 mol L(-1)). Characterisation of natural and modified zeolites were performed by X-ray powder diffraction (XRD), nitrogen adsorption at 77K, elemental analysis, X-ray fluorescence (XRF), thermogravimetric analysis coupled with mass spectroscopy (TGA-MS), and temperature-programmed desorption of ammonia (NH(3)-TPD). Ozone adsorption and/or decomposition on natural and modified zeolites were studied by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Results show that the zeolite compensating cation content affects ozone interaction with zeolite active sites. Ammonium ion-exchange treatments followed by thermal out-gassing at 823 K, reduces ozone diffusion resistance inside the zeolite framework, increasing ozone abatement on zeolite surface active sites. Weak and strong Lewis acid sites of zeolite surface are identified here as the main active sites responsible of ozone removal. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. A model study of ozone in the eastern Mediterranean free troposphere during MINOS (August 2001)

    NARCIS (Netherlands)

    Roelofs, GJ; Scheeren, HA; Heland, J; Ziereis, H; Lelieveld, J

    2003-01-01

    A coupled tropospheric chemistry-climate model is used to analyze tropospheric ozone distributions observed during the MINOS campaign in the eastern Mediterranean region ( August, 2001). Modeled ozone profiles are generally in good agreement with the observations. Our analysis shows that the

  1. Effects of process parameters on ozone washing for denim using 3/sup 3/ factorial design

    International Nuclear Information System (INIS)

    Asim, F.; Mahmood, M.

    2017-01-01

    Denim garment is getting popular day by day. It is highly demandable because of its versatility, comfort and durability. Different techniques of denim washing increase this demand drastically. Denim washing is the process to enhance the appearance of a garment. This enhanced appearance may be the aged look, faded look, greyer cast, or any other shade setting or resin application. The two most advanced washing techniques are; ozone wash and laser wash. The effects of ozone on environment as well as on the garment are significant and cannot be neglected because number of benefits achieved such as time saving, less energy consumption, chemical, labour cost reduction, less discharge of water and chemicals. Therefore, effects of process parameters on ozone washing for denim fabric have been investigated in this research work using three level factorial design. 33 factorial design has been designed and conducted to investigate the effect of gas concentration, time and speed on the response variables namely; Shrinkage, Tensile and Tear strength of ozone washing. The influence of individual factors and their interactions has been critically examined using software Design Expert 8.0. Prior to the analysis of variance model accuracy has been examined through various residuals plots. The study of residuals plots shown that the residuals are normally distributed and significant evidence of possible outliers was not found. So the model can be used to predicted results with 95% confidence interval. The results from the experiment suggest that two out of three factors were significant, which are speed and time that influences mainly on the tear strength of the denim garment. (author)

  2. Effects of black carbon and boundary layer interaction on surface ozone in Nanjing, China

    Directory of Open Access Journals (Sweden)

    J. Gao

    2018-05-01

    Full Text Available As an important solar radiation absorbing aerosol, the effect of black carbon (BC on surface ozone, via reducing photolysis rate, has been widely discussed by offline model studies. However, BC–boundary layer (BL interactions also influence surface ozone. Using the online model simulations and process analysis, we demonstrate the significant impact of BC–BL interaction on surface ozone in Nanjing. The absorbing effect of BC heats the air above the BL and suppresses and delays the development of the BL, which eventually leads to a change in surface ozone via a change in the contributions from chemical and physical processes (photochemistry, vertical mixing and advection. For chemical processes, the suppression of the BL leads to large amounts of ozone precursors being confined below the BL which has an increased effect on ozone chemical production and offsets the decrease caused by the reduction of the photolysis rate, thus enhancing ozone chemical formation from 10:00 to 12:00 LT. Furthermore, changes in physical processes, especially the vertical mixing process, show a more significant influence on surface ozone. The weakened turbulence, caused by the suppressed BL, entrains much less ozone aloft down to the surface. Finally, summing-up the changes in the processes, surface ozone reduces before noon and the maximum reduction reaches 16.4 ppb at 12:00 LT. In the afternoon, the changes in chemical process are small which inconspicuously influence surface ozone. However, change in the vertical mixing process still influences surface ozone significantly. Due to the delayed development of the BL, there are obvious ozone gradients around the top of BL. Therefore, high concentrations of ozone aloft can still be entrained down to the surface which offsets the reduction of surface ozone. Comparing the changes in the processes, the change in vertical mixing plays the most important role in impacting surface ozone. Our results highlight the

  3. Effects of black carbon and boundary layer interaction on surface ozone in Nanjing, China

    Science.gov (United States)

    Gao, Jinhui; Zhu, Bin; Xiao, Hui; Kang, Hanqing; Pan, Chen; Wang, Dongdong; Wang, Honglei

    2018-05-01

    As an important solar radiation absorbing aerosol, the effect of black carbon (BC) on surface ozone, via reducing photolysis rate, has been widely discussed by offline model studies. However, BC-boundary layer (BL) interactions also influence surface ozone. Using the online model simulations and process analysis, we demonstrate the significant impact of BC-BL interaction on surface ozone in Nanjing. The absorbing effect of BC heats the air above the BL and suppresses and delays the development of the BL, which eventually leads to a change in surface ozone via a change in the contributions from chemical and physical processes (photochemistry, vertical mixing and advection). For chemical processes, the suppression of the BL leads to large amounts of ozone precursors being confined below the BL which has an increased effect on ozone chemical production and offsets the decrease caused by the reduction of the photolysis rate, thus enhancing ozone chemical formation from 10:00 to 12:00 LT. Furthermore, changes in physical processes, especially the vertical mixing process, show a more significant influence on surface ozone. The weakened turbulence, caused by the suppressed BL, entrains much less ozone aloft down to the surface. Finally, summing-up the changes in the processes, surface ozone reduces before noon and the maximum reduction reaches 16.4 ppb at 12:00 LT. In the afternoon, the changes in chemical process are small which inconspicuously influence surface ozone. However, change in the vertical mixing process still influences surface ozone significantly. Due to the delayed development of the BL, there are obvious ozone gradients around the top of BL. Therefore, high concentrations of ozone aloft can still be entrained down to the surface which offsets the reduction of surface ozone. Comparing the changes in the processes, the change in vertical mixing plays the most important role in impacting surface ozone. Our results highlight the great impacts BC

  4. Investigation on thiosulfate-involved organics and nitrogen removal by a sulfur cycle-based biological wastewater treatment process.

    Science.gov (United States)

    Qian, Jin; Lu, Hui; Cui, Yanxiang; Wei, Li; Liu, Rulong; Chen, Guang-Hao

    2015-02-01

    Thiosulfate, as an intermediate of biological sulfate/sulfite reduction, can significantly improve nitrogen removal potential in a biological sulfur cycle-based process, namely the Sulfate reduction-Autotrophic denitrification-Nitrification Integrated (SANI(®)) process. However, the related thiosulfate bio-activities coupled with organics and nitrogen removal in wastewater treatment lacked detailed examinations and reports. In this study, S2O3(2-) transformation during biological SO4(2-)/SO3(2-) co-reduction coupled with organics removal as well as S2O3(2-) oxidation coupled with chemolithotrophic denitrification were extensively evaluated under different experimental conditions. Thiosulfate is produced from the co-reduction of sulfate and sulfite through biological pathway at an optimum pH of 7.5 for organics removal. And the produced S2O3(2-) may disproportionate to sulfide and sulfate during both biological S2O3(2-) reduction and oxidation most possibly carried out by Desulfovibrio-like species. Dosing the same amount of nitrate, pH was found to be the more direct factor influencing the denitritation activity than free nitrous acid (FNA) and the optimal pH for denitratation (7.0) and denitritation (8.0) activities were different. Spiking organics significantly improved both denitratation and denitritation activities while minimizing sulfide inhibition of NO3(-) reduction during thiosulfate-based denitrification. These findings in this study can improve the understanding of mechanisms of thiosulfate on organics and nitrogen removal in biological sulfur cycle-based wastewater treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. How initial representations shape coupled learning processes

    DEFF Research Database (Denmark)

    Puranam, Phanish; Swamy, M.

    2016-01-01

    Coupled learning processes, in which specialists from different domains learn how to make interdependent choices among alternatives, are common in organizations. We explore the role played by initial representations held by the learners in coupled learning processes using a formal agent-based model....... We find that initial representations have important consequences for the success of the coupled learning process, particularly when communication is constrained and individual rates of learning are high. Under these conditions, initial representations that generate incorrect beliefs can outperform...... one that does not discriminate among alternatives, or even a mix of correct and incorrect representations among the learners. We draw implications for the design of coupled learning processes in organizations. © 2016 INFORMS....

  6. 21 CFR 173.368 - Ozone.

    Science.gov (United States)

    2010-04-01

    ... CONSUMPTION (CONTINUED) SECONDARY DIRECT FOOD ADDITIVES PERMITTED IN FOOD FOR HUMAN CONSUMPTION Specific Usage Additives § 173.368 Ozone. Ozone (CAS Reg. No. 10028-15-6) may be safely used in the treatment, storage, and processing of foods, including meat and poultry (unless such use is precluded by standards of identity in 9...

  7. On the Climate Impacts of Upper Tropospheric and Lower Stratospheric Ozone

    Science.gov (United States)

    Xia, Yan; Huang, Yi; Hu, Yongyun

    2018-01-01

    The global warming simulations of the general circulation models (GCMs) are generally performed with different ozone prescriptions. We find that the differences in ozone distribution, especially in the upper tropospheric and lower stratospheric (UTLS) region, account for important model discrepancies shown in the ozone-only historical experiment of the Coupled Model Intercomparison Project Phase 5 (CMIP5). These discrepancies include global high cloud fraction, stratospheric temperature, and stratospheric water vapor. Through a set of experiments conducted by an atmospheric GCM with contrasting UTLS ozone prescriptions, we verify that UTLS ozone not only directly radiatively heats the UTLS region and cools the upper parts of the stratosphere but also strongly influences the high clouds due to its impact on relative humidity and static stability in the UTLS region and the stratospheric water vapor due to its impact on the tropical tropopause temperature. These consequences strongly affect the global mean effective radiative forcing of ozone, as noted in previous studies. Our findings suggest that special attention should be paid to the UTLS ozone when evaluating the climate effects of ozone depletion in the 20th century and recovery in the 21st century. UTLS ozone difference may also be important for understanding the intermodel discrepancy in the climate projections of the CMIP6 GCMs in which either prescribed or interactive ozone is used.

  8. Mathematical modeling of biological processes

    CERN Document Server

    Friedman, Avner

    2014-01-01

    This book on mathematical modeling of biological processes includes a wide selection of biological topics that demonstrate the power of mathematics and computational codes in setting up biological processes with a rigorous and predictive framework. Topics include: enzyme dynamics, spread of disease, harvesting bacteria, competition among live species, neuronal oscillations, transport of neurofilaments in axon, cancer and cancer therapy, and granulomas. Complete with a description of the biological background and biological question that requires the use of mathematics, this book is developed for graduate students and advanced undergraduate students with only basic knowledge of ordinary differential equations and partial differential equations; background in biology is not required. Students will gain knowledge on how to program with MATLAB without previous programming experience and how to use codes in order to test biological hypothesis.

  9. Piecewise deterministic processes in biological models

    CERN Document Server

    Rudnicki, Ryszard

    2017-01-01

    This book presents a concise introduction to piecewise deterministic Markov processes (PDMPs), with particular emphasis on their applications to biological models. Further, it presents examples of biological phenomena, such as gene activity and population growth, where different types of PDMPs appear: continuous time Markov chains, deterministic processes with jumps, processes with switching dynamics, and point processes. Subsequent chapters present the necessary tools from the theory of stochastic processes and semigroups of linear operators, as well as theoretical results concerning the long-time behaviour of stochastic semigroups induced by PDMPs and their applications to biological models. As such, the book offers a valuable resource for mathematicians and biologists alike. The first group will find new biological models that lead to interesting and often new mathematical questions, while the second can observe how to include seemingly disparate biological processes into a unified mathematical theory, and...

  10. Lidar Measurements of Ozone, Aerosols, and Clouds Observed in the Tropics Near Central America During TC4-Costa Rica

    Science.gov (United States)

    Hair, J. W.; Browell, E.; Butler, C.; Fenn, M.; Notari, A.; Simpson, S.; Ismail, S.; Avery, M.

    2007-12-01

    Large-scale measurements of ozone and aerosol distributions were made from the NASA DC-8 aircraft during the TC4 (Tropical Composition, Cloud, and Climate Coupling) field experiment conducted from June 28 - August 10, 2007 based in San Jose, Costa Rica. Remote measurements were made with an airborne lidar to provide ozone and multiple-wavelength aerosol and cloud backscatter profiles from near the surface to above the tropopause along the flight track. Aerosol depolarization measurements were also made for the detection of nonspherical aerosols, such as mineral dust, biomass burning, and recent emissions from South American volcanoes. Long-range transport of Saharan dust with depolarizing aerosols was frequently observed in the lower troposphere both over the Caribbean Sea and Pacific Ocean and within the marine boundary layer. In addition, visible and sub-visible cirrus clouds were observed with the multi-wavelength backscatter and depolarization measurements. Initial distributions of ozone, aerosol, and cloud are presented which will be used to interpret large-scale atmospheric processes. In situ measurements of ozone and aerosols made onboard the DC-8 will be compared to the remote lidar measurements. This paper provides a first look at the characteristics of ozone, aerosol, and cloud distributions that were encountered during this field experiment and provide a unique dataset that will be further related through satellite data, backward trajectories, and chemical transport models (CTM) to sources and sinks of ozone, aerosols, and clouds and to dynamical, chemical, and radiative processes.

  11. Catalyzed ozonation process with GAC and metal doped-GAC for removing organic pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Oh, B.S.; Kang, J.W.; Song, S.J. [Dept. of Environmental Engineering, Yonsei Univ., Wonju Campus, Hyeung-up Myon (Korea); Oh, H.J. [Water Resources and Environmental Research Div., Korea Inst. of Construction Technology, Kyonggi-do (Korea)

    2003-07-01

    This study investigates the catalytic role of granular activated carbon (GAC) and metal (Mn or Fe) doped-GAC in transforming ozone into more reactive secondary radicals such as OH radicals for the treatment of wastewater. The GAC doped with Mn showed the highest catalytic performance of ozone decomposition into OH radical (OH{sup .}) production. Likewise, activated carbon alone could accelerate ozone decomposition, resulting in the formation of OH{sup .}s. In the presence of promoters, ozone depletion rate was enhanced further by the Mn-GAC catalyst system even in an acidic pH aqueous condition. (orig.)

  12. TREATMENT OF LANDFILL LEACHATE BY COUPLING COAGULATION-FLOCCULATION OR OZONATION TO GRANULAR ACTIVATED CARBON ADSORPTION.

    Science.gov (United States)

    Oloibiri, Violet; Ufomba, Innocent; Chys, Michael; Audenaert, Wim; Demeestere, Kristof; Van Hulle, Stijn W H

    2015-01-01

    A major concern for landfilling facilities is the treatment of their leachate. To optimize organic matter removal from this leachate, the combination of two or more techniques is preferred in order to meet stringent effluent standards. In our study, coagulation-flocculation and ozonation are compared as pre- treatment steps for stabilized landfill leachate prior to granular activated carbon (GAC) adsorption. The efficiency of the pre treatment techniques is evaluated using COD and UVA254 measurements. For coagulation- flocculation, different chemicals are compared and optimal dosages are determined. After this, iron (III) chloride is selected for subsequent adsorption studies due to its high percentage of COD and UVA254 removal and good sludge settle-ability. Our finding show that ozonation as a single treatment is effective in reducing COD in landfill leachate by 66% compared to coagulation flocculation (33%). Meanwhile, coagulation performs better in UVA254 reduction than ozonation. Subsequent GAC adsorption of ozonated effluent, coagulated effluent and untreated leachate resulted in 77%, 53% and 8% total COD removal respectively (after 6 bed volumes). The effect of the pre-treatment techniques on GAC adsorption properties is evaluated experimentally and mathematically using Thomas and Yoon-Nelson models. Mathematical modelling of the experimental GAC adsorption data shows that ozonation increases the adsorption capacity and break through time with a factor of 2.5 compared to coagulation-flocculation.

  13. Diclofenac removal from water with ozone and activated carbon.

    Science.gov (United States)

    Beltrán, Fernando J; Pocostales, Pablo; Alvarez, Pedro; Oropesa, Ana

    2009-04-30

    Diclofenac (DCF) has been treated in water with ozone in the presence of various activated carbons. Activated carbon-free ozonation or single ozonation leads to a complete degradation of DCF in less than 15 min while in the presence of activated carbons higher degradation rates of TOC and DCF are noticeably achieved. Among the activated carbons used, P110 Hydraffin was found the most suitable for the catalytic ozonation of DCF. The influence of pH was also investigated. In the case of the single ozonation the increasing pH slightly increases the TOC removal rate. This effect, however, was not so clear in the presence of activated carbons where the influence of the adsorption process must be considered. Ecotoxicity experiments were performed, pointing out that single ozonation reduces the toxicity of the contaminated water but catalytic ozonation improved those results. As far as kinetics is concerned, DCF is removed with ozone in a fast kinetic regime and activated carbon merely acts as a simple adsorbent. However, for TOC removal the ozonation kinetic regime becomes slow. In the absence of the adsorbent, the apparent rate constant of the mineralization process was determined at different pH values. On the other hand, determination of the rate constant of the catalytic reaction over the activated carbon was not possible due to the effect of mass transfer resistances that controlled the process rate at the conditions investigated.

  14. A short comparison of electron and proton transfer processes in biological systems

    International Nuclear Information System (INIS)

    Bertrand, Patrick

    2005-01-01

    The main differences between electron and proton transfers that take place in biological systems are examined. The relation between the distance dependence of the rate constant and the mass of the transferred particle is analyzed in detail. Differences between the two processes have important consequences at the experimental level, which are discussed. The various mechanisms that ensure the coupling between electron and proton transfers are briefly described

  15. An investigation of the processes controlling ozone in the upper stratosphere

    International Nuclear Information System (INIS)

    Patten, K.O. Jr.; Connell, P.S.; Kinnison, D.E.; Wuebbles, D.J.; Waters, J.; Froidevaux, L.; Slanger, T.G.

    1992-01-01

    Photolysis of vibrationally excited oxygen produced by ultraviolet photolysis of ozone in the upper stratosphere is incorporated into the Lawrence Livermore National Laboratory 2-D zonally averaged chemical-radiative-transport model of the troposphere and stratosphere. The importance of this potential contributor of odd oxygen to the concentration of ozone is evaluated based upon recent information on vibrational distributions of excited oxygen and upon preliminary studies of energy transfer from the excited oxygen. When the energy transfer rate constants of previous work are assumed, increases in model ozone concentrations of up to 40 percent in the upper stratosphere are found, and the ozone concentrations of the model agree with measurements, including data from the Upper Atmosphere Research Satellite. However, the increase is about 0.4 percent when the larger energy transfer rate constants suggested by more recent experimental work are applied in the model. This indicates the importance of obtaining detailed information on vibrationally excited oxygen properties, particularly the state-specific energy transfer rate constants, to evaluation of tills precess for stratospheric modeling

  16. Unequivocal detection of ozone recovery in the Antarctic Ozone Hole through significant increases in atmospheric layers with minimum ozone

    Science.gov (United States)

    de Laat, Jos; van Weele, Michiel; van der A, Ronald

    2015-04-01

    An important new landmark in present day ozone research is presented through MLS satellite observations of significant ozone increases during the ozone hole season that are attributed unequivocally to declining ozone depleting substances. For many decades the Antarctic ozone hole has been the prime example of both the detrimental effects of human activities on our environment as well as how to construct effective and successful environmental policies. Nowadays atmospheric concentrations of ozone depleting substances are on the decline and first signs of recovery of stratospheric ozone and ozone in the Antarctic ozone hole have been observed. The claimed detection of significant recovery, however, is still subject of debate. In this talk we will discuss first current uncertainties in the assessment of ozone recovery in the Antarctic ozone hole by using multi-variate regression methods, and, secondly present an alternative approach to identify ozone hole recovery unequivocally. Even though multi-variate regression methods help to reduce uncertainties in estimates of ozone recovery, great care has to be taken in their application due to the existence of uncertainties and degrees of freedom in the choice of independent variables. We show that taking all uncertainties into account in the regressions the formal recovery of ozone in the Antarctic ozone hole cannot be established yet, though is likely before the end of the decade (before 2020). Rather than focusing on time and area averages of total ozone columns or ozone profiles, we argue that the time evolution of the probability distribution of vertically resolved ozone in the Antarctic ozone hole contains a better fingerprint for the detection of ozone recovery in the Antarctic ozone hole. The advantages of this method over more tradition methods of trend analyses based on spatio-temporal average ozone are discussed. The 10-year record of MLS satellite measurements of ozone in the Antarctic ozone hole shows a

  17. UASB reactor effluent disinfection by ozone and chlorine

    NARCIS (Netherlands)

    Ribeiro da Silvia, G.H.; Bruning, H.; Gerrity, D.; Daniel, L.A.

    2015-01-01

    This research studied the sequential ozone and chlorine process with respect to, the inactivation of indicator bacteria and the formation of ozone disinfection byproducts in sanitary wastewater effluent. The applied ozone doses were 5, 8 and 10 mg.O3.L-1, followed by chlorine doses of 10, 20 and 30

  18. Information content of ozone retrieval algorithms

    Science.gov (United States)

    Rodgers, C.; Bhartia, P. K.; Chu, W. P.; Curran, R.; Deluisi, J.; Gille, J. C.; Hudson, R.; Mateer, C.; Rusch, D.; Thomas, R. J.

    1989-01-01

    The algorithms are characterized that were used for production processing by the major suppliers of ozone data to show quantitatively: how the retrieved profile is related to the actual profile (This characterizes the altitude range and vertical resolution of the data); the nature of systematic errors in the retrieved profiles, including their vertical structure and relation to uncertain instrumental parameters; how trends in the real ozone are reflected in trends in the retrieved ozone profile; and how trends in other quantities (both instrumental and atmospheric) might appear as trends in the ozone profile. No serious deficiencies were found in the algorithms used in generating the major available ozone data sets. As the measurements are all indirect in someway, and the retrieved profiles have different characteristics, data from different instruments are not directly comparable.

  19. Polar Processes in a 50-year Simulation of Stratospheric Chemistry and Transport

    Science.gov (United States)

    Kawa, S.R.; Douglass, A. R.; Patrick, L. C.; Allen, D. R.; Randall, C. E.

    2004-01-01

    The unique chemical, dynamical, and microphysical processes that occur in the winter polar lower stratosphere are expected to interact strongly with changing climate and trace gas abundances. Significant changes in ozone have been observed and prediction of future ozone and climate interactions depends on modeling these processes successfully. We have conducted an off-line model simulation of the stratosphere for trace gas conditions representative of 1975-2025 using meteorology from the NASA finite-volume general circulation model. The objective of this simulation is to examine the sensitivity of stratospheric ozone and chemical change to varying meteorology and trace gas inputs. This presentation will examine the dependence of ozone and related processes in polar regions on the climatological and trace gas changes in the model. The model past performance is base-lined against available observations, and a future ozone recovery scenario is forecast. Overall the model ozone simulation is quite realistic, but initial analysis of the detailed evolution of some observable processes suggests systematic shortcomings in our description of the polar chemical rates and/or mechanisms. Model sensitivities, strengths, and weaknesses will be discussed with implications for uncertainty and confidence in coupled climate chemistry predictions.

  20. Cr(VI) formation during ozonation of Cr-containing materials in ...

    African Journals Online (AJOL)

    Ozonation, or advanced oxidation processes (utilising ozone decomposition products as oxidants) are widely used in industrial wastewater and drinking water treatment plants. In these applications the use of ozone is based on ozone and its decomposition by-products being strong oxidants. In this paper, the possible ...

  1. The Norwegian Climate and Ozone Research Programme

    Energy Technology Data Exchange (ETDEWEB)

    Dahlin, E. [ed.

    1996-03-01

    This report includes abstracts from a workshop arranged by the Norwegian Climate and Ozone Research Programme 11-12 March 1996. The abstracts are organized according to the sessions: (1) Regional effects of climate change with emphasis on ecology, (2) Climate research related to the North Atlantic, (3) What lessons can be drawn from paleoclimatology about changes in the current climate?, (4) Changes in the ozone layer and their effect on UV and biology. Abstracts of a selection of papers presented at the workshop can be found elsewhere in the present data base. 70 refs., 19 figs., 2 tabs.

  2. Activity of coals of different rank to ozone

    Directory of Open Access Journals (Sweden)

    Vladimir Kaminskii

    2017-12-01

    Full Text Available Coals of different rank were studied in order to characterize their activity to ozone decomposition and changes of their properties at interaction with ozone. Effects of coal rank on their reactivity to ozone were described by means of kinetic modeling. To this end, a model was proposed for evaluation of kinetic parameters describing coals activity to ozone. This model considers a case when coals surface properties change during interaction with ozone (deactivation processes. Two types of active sites (zones at the surface that are able to decompose ozone were introduced in the model differing by their deactivation rates. Activity of sites that are being deactivated at relatively higher rate increases with rank from 2400 1/min for lignite to 4000 1/min for anthracite. Such dependence is related to increase of micropores share in coals structure that grows from lignites to anthracites. Parameter characterizing initial total activity of coals to ozone decomposition also depends on rank by linear trend and vary between 2.40 for lignites up to 4.98 for anthracite. The proposed model could further be used in studies of coals oxidation processes and tendency to destruction under the weathering and oxidation conditions.

  3. Advanced treatment of biotreated textile industry wastewater with ozone, virgin/ozonated granular activated carbon and their combination.

    Science.gov (United States)

    Arslan-Alaton, Idil; Seremet, Ozden

    2004-01-01

    Biotreated textile wastewater (CODo = 248 mg L(-1); TOCo = 58 mg L(-1); A620 = 0.007 cm(-1); A525 = 0.181 cm(-1); A436 = 0.198 cm(-1)) was subjected to advanced treatment with ozonation, granular activated carbon (GAC) adsorption in serial and simultaneous applications. Experiments were conducted to investigate the effects of applied ozone dose, ozone absorption rate, specific ozone absorption efficiency, GAC dose, and reaction pH on the treatment performance of the selected tertiary treatment scheme. In separate experiments, the impact of virgin GAC ozonation on its adsorptive capacity for biotreated and biotreated + ozonated textile effluent was also investigated. Ozonation appeared to be more effective for decolorization (kd = 0.15 min(-1) at pH = 3), whereas GAC adsorption yielded higher COD removal rates (54% at pH = 3). It was also found that GAC addition (4 g/L) at pH = 7 and 9 enhanced the COD abatement rate of the ozonation process significantly and that the sequential application of ozonation (at pH = 3-11, 675 mg L(-1) O3) followed by GAC adsorption (at pH = 3-7, 10 g L(-1) GAC) resulted in the highest treatment performances both in terms of color and COD reduction. Simultaneous application of GAC and ozone at acidic and alkaline pH seriously inhibited COD abatement rates as a consequence of competitive adsorption and partial oxidation of textile components and GAC. It could also be established that ozone absorption efficiency decreased after color removal was complete. Ozonation of biotreated textile wastewater with 113 mg L(-1) ozone resulted in an appreciable enhancement of GAC adsorptive capacity in terms of residual color removal. Ozonation of GAC at relatively low doses (= 10.8 mg/g GAC) did not improve its overall adsorption capacity.

  4. A comparative study on the efficiency of ozonation and coagulation-flocculation as pretreatment to activated carbon adsorption of biologically stabilized landfill leachate.

    Science.gov (United States)

    Oloibiri, Violet; Ufomba, Innocent; Chys, Michael; Audenaert, Wim T M; Demeestere, Kristof; Van Hulle, Stijn W H

    2015-09-01

    The present work investigates the potential of coagulation-flocculation and ozonation to pretreat biologically stabilized landfill leachate before granular activated carbon (GAC) adsorption. Both iron (III) chloride (FeCl3) and polyaluminium chloride (PACl) are investigated as coagulants. Better organic matter removal is observed when leachate was treated with FeCl3. At a dose of 1mg FeCl3/mg CODo (CODo: initial COD content), the COD and α254 removal was 66% and 88%, respectively. Dosing 1mg PACl/mg CODo resulted in 44% COD and 72% α254 removal. The settle-ability of sludge generated by PACl leveled off at 252mL/g, while a better settle-ability of 154mL/g was obtained for FeCl3 after dosing 1mg coagulant/mg CODo. For ozonation, the percentage of COD and α254 removal increased as the initial COD concentration decreased. Respectively 44% COD and 77% α254 removal was observed at 112mg COD/L compared to 5% COD and 26% α254 removal at 1846mg COD/L. Subsequent activated carbon adsorption of ozonated, coagulated and untreated leachate resulted in 77%, 53% and 8% total COD removal after treatment of 6 bed volumes. Clearly showing the benefit of treating the leachate before GAC adsorption. Mathematical modeling of the experimental GAC adsorption data with Thomas and Yoon-Nelson models show that ozonation increases the adsorption capacity and breakthrough time of GAC by a factor of 2.5 compared to coagulation-flocculation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Ecosystem-scale trade-offs between impacts of ozone and reactive nitrogen

    Science.gov (United States)

    Rowe, Ed; Hayes, Felicity; Sawicka, Kasia; Mills, Gina; Jones, Laurence; Moldan, Filip; Sereina, Bassin; van Dijk, Netty; Evans, Chris

    2015-04-01

    Nitrogen (N) deposition stimulates plant productivity in many terrestrial ecosystems. This is clearly beneficial for production agriculture and forestry, but increased litterfall and decreased ground-level light availability reduce the suitability of habitats for many biota (Jones et al., 2014). This mechanism (Hautier et al., 2009), together with the acidifying effects of N (Stevens et al., 2010), has caused considerable biodiversity loss at global scale. Ozone, by contrast, has the effect of reducing plant production, and a simple assessment would suggest that this might mitigate the effects of N pollution. We explored the interactions between ozone and nitrogen at mechanistic level using a version of the MADOC model (Rowe et al., 2014) modified to include effects of ozone. The model was tested against data from long-term monitoring and experimental sites with a focus on nitrogen and/or ozone effects. Effects on biodiversity were assessed by coupling the MADOC model to the MultiMOVE plant species model. We used this model-chain to explore trade-offs and synergies between the impacts of nitrogen and ozone on biodiversity and ecosystem biogeochemistry. In a review of the effects of ozone on ecosystem processes, two consistent effects were found: decreased net primary production due to damage to photosynthetic mechanisms; and an increase in litter nitrogen apparently caused by interference of ozone with the retranslocation process (Mills, in prep.). Insufficient evidence was found to justify inclusion of posited interactive mechanisms such as increased ozone susceptibility with greater nitrogen supply. However, the MADOC model illustrated emergent ozone-nitrogen interactions at ecosystem scale, for example an increase in N leaching due to decreased plant demand and greater litter N content. Empirical evidence for interactive effects of nitrogen and ozone at ecosystem scale is severely lacking, but simulated results were consistent with soil and soil solution

  6. Foreign and Domestic Contributions to Springtime Ozone Pollution over China

    Science.gov (United States)

    Ni, R.; Lin, J.; Yan, Y.; Lin, W.; Chen, H.

    2017-12-01

    Ozone is a critical air pollutant that damages human health and vegetation. Previous studies for the United States and Europe have shown large influences of foreign emissions on domestic ozone levels, whereas the relative contributions of foreign versus domestic emissions are much less clear for China. Here, we use a global-regional two-way coupled model system based on GEOS-Chem to quantify the contributions to springtime ozone over China from anthropogenic emissions in major source regions across the globe. Our results indicate considerable influences of foreign anthropogenic pollution on China's ozone pollution. Together, foreign anthropogenic emissions enhance springtime surface ozone over China by 3 12 ppb. Of all ozone over China produced by global anthropogenic emissions, foreign emissions contribute 40% near the surface, and the contribution increases with altitude until a value of 80% in the upper troposphere. Impact from Japan and Korea is 1 2 ppb over east coastal regions, and negligible in inland. Anthropogenic emissions of South and South-East Asia increase ozone over Tibet and the Yunnan-Guizhou Plateau by up to 5 ppb, and their contribution increases with height due to strong vertical transport. Pollution from North America and Europe mainly accompanies strong westerly winds and frequent cyclonic activities that are favorable to long-range transport. European anthropogenic pollution enhances surface ozone by 1 3 ppb over West and North China. Despite a much longer transport distance, the contribution from North America is greater than European contribution due to the nearly doubled amount of anthropogenic NMVOC emissions. The high percentage contribution of foreign anthropogenic emissions to China's ozone pollution can be partly explained by excessive domestic NOx emissions that suppress ozone production efficiency and even destroy ozone. Our study is relevant to Chinese ozone pollution control and global environmental protection collaboration.

  7. By-passing acidification limitations during the biofiltration of high formaldehyde loads via the application of ozone pulses

    Energy Technology Data Exchange (ETDEWEB)

    García-Pérez, Teresa [División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica (IPICyT), Camino a la Presa San José 2055, Col. Lomas 4a Sección, San Luis Potosí, SLP 78216 (Mexico); Aizpuru, Aitor [Universidad del Mar, Puerto Ángel, Distrito de San Pedro Pochutla, Oaxaca, México C.P. 70902 (Mexico); Arriaga, Sonia, E-mail: sonia@ipicyt.edu.mx [División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica (IPICyT), Camino a la Presa San José 2055, Col. Lomas 4a Sección, San Luis Potosí, SLP 78216 (Mexico)

    2013-11-15

    Highlights: • Ozone addition permits to treat higher formaldehyde loads than ever reported. • Ozone addition acts as an indirect in situ pH regulator, minimizing the accumulation of acid byproducts. • Mineralization of formaldehyde occurs, which has never been reported. • Low ozone levels have no negative effects on biological degradation activity. • The use of hybrid processes allows overcoming biofiltration limitations. -- Abstract: A formaldehyde airstream was treated in a biofilter for an extended period of time. During the first 133 days, the reactor was operated without ozone, whereas over the following 82 days ozone was intermittently implemented. The maximum stable elimination capacity obtained without ozone was around 57 g m{sup −3} h{sup −1}. A greater load could not be treated under these conditions, and no significant formaldehyde removal was maintained for inlet loads greater than 65 g m{sup −3} h{sup −1}; the activity of microorganisms was then inhibited by the presence of acidic byproducts, and the media acidified (pH < 4). The implementation of ozone pulses allowed a stable elimination capacity to be obtained, even at greater loads (74 g m{sup −3} h{sup −1}). The effect of ozone on the extra cellular polymeric substances detachment from the biofilm could not be confirmed due to the too low biofilter biomass content. Thus, the results suggest that ozone acted as an in situ pH regulator, preventing acidic byproducts accumulation, and allowing the treatment of high loads of formaldehyde.

  8. Biologically active filters - An advanced water treatment process for contaminants of emerging concern.

    Science.gov (United States)

    Zhang, Shuangyi; Gitungo, Stephen W; Axe, Lisa; Raczko, Robert F; Dyksen, John E

    2017-05-01

    With the increasing concern of contaminants of emerging concern (CECs) in source water, this study examines the hypothesis that existing filters in water treatment plants can be converted to biologically active filters (BAFs) to treat these compounds. Removals through bench-scale BAFs were evaluated as a function of media, granular activated carbon (GAC) and dual media, empty bed contact time (EBCT), and pre-ozonation. For GAC BAFs, greater oxygen consumption, increased pH drop, and greater dissolved organic carbon removal normalized to adenosine triphosphate (ATP) were observed indicating increased microbial activity as compared to anthracite/sand dual media BAFs. ATP concentrations in the upper portion of the BAFs were as much as four times greater than the middle and lower portions of the dual media and 1.5 times greater in GAC. Sixteen CECs were spiked in the source water. At an EBCT of 18 min (min), GAC BAFs were highly effective with overall removals greater than 80% without pre-ozonation; exceptions included tri(2-chloroethyl) phosphate and iopromide. With a 10 min EBCT, the degree of CECs removal was reduced with less than half of the compounds removed at greater than 80%. The dual media BAFs showed limited CECs removal with only four compounds removed at greater than 80%, and 10 compounds were reduced by less than 50% with either EBCT. This study demonstrated that GAC BAFs with and without pre-ozonation are an effective and advanced technology for treating emerging contaminants. On the other hand, pre-ozonation is needed for dual media BAFs to remove CECs. The most cost effective operating conditions for dual media BAFs were a 10 min EBCT with the application of pre-ozonation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. A Comparative Electrochemical-Ozone Treatment for Removal of Phenolphthalein

    Directory of Open Access Journals (Sweden)

    V. M. García-Orozco

    2016-01-01

    Full Text Available The degradation of aqueous solutions containing phenolphthalein was carried out using ozone and electrochemical processes; the two different treatments were performed for 60 min at pH 3, pH 7, and pH 9. The electrochemical oxidation using boron-doped diamond electrodes processes was carried out using three current density values: 3.11 mA·cm−2, 6.22 mA·cm−2, and 9.33 mA·cm−2, whereas the ozone dose was constantly supplied at 5±0.5 mgL−1. An optimal degradation condition for the ozonation treatment is at alkaline pH, while the electrochemical treatment works better at acidic pH. The electrochemical process is twice better compared with ozonation.

  10. Effect of calcium-ozone treatment on chemical and biological properties of polyethylene terephthalate.

    Science.gov (United States)

    Rashid, Ahmed Nafis; Tsuru, Kanji; Ishikawa, Kunio

    2015-05-01

    Ozone (O3 ) treatment of polyethylene terephthalate (PET) in distilled water was performed in the presence and absence of calcium (Ca(2+) ). PET was oxidized and thus carboxylic and hydroxyl functional groups were introduced on its surface after O3 treatment, regardless of the presence or absence of Ca(2+) . In the case of O3 treatment with Ca(2+) , PET surface was modified with Ca(2+) . Ca(2+) immobilization was confirmed by X-ray photoelectron spectrometric analysis. Hydrophilicity was investigated by measuring contact angles (CA). CA of PET decreased significantly after ozonation. Surface topography of PET before and after ozone treatment was observed by scanning electron microscopy, and showed no morphological changes. In vitro studies showed enhanced rat bone marrow cell responses on the O3 -treated PET surface. Ca(2+) -O3 oxidation at 37°C for 6 h is expected to be an effective method to fabricate PET with good biocompatibility. © 2014 Wiley Periodicals, Inc.

  11. Sterilization of Microorganisms by Ozone and Ultrasound

    Science.gov (United States)

    Krasnyj, V. V.; Klosovskij, A. V.; Panasko, T. A.; Shvets, O. M.; Semenova, O. T.; Taran, V. S.; Tereshin, V. I.

    2008-03-01

    The results of recent experimental methods of sterilization of microorganisms with the use of ozone and ultrasound are presented. The main aim was to optimize the process of sterilization in water solution taking into account the ozone concentration, the power of ultrasonic emitter and the temperature of water. In the present work, the ultrasonic cavitation with simultaneous ozone generation has been used. The high ozone concentration in water solution was achieved by two-barrier glow discharge generated at atmospheric pressure and a cooling thermo-electric module. Such a sterilizer consists of ozone generator in a shape of flat electrodes covered with dielectric material and a high-voltage pulsed power supply of 250 W. The sterilization camera was equipped with ultrasonic source operated at 100 W. The experiments on the inactivation of bacteria of the Bacillus Cereus type were carried out in the distilled water saturated by ozone. The ozone concentration in the aqueous solution was 10 mg/1, whereas the ozone concentration at the output of ozone generator was 30 mg/1. The complete inactivation of spores took 15 min. Selection of the temperature of water, the ozone concentrations and ultrasonic power allowed to determine the time necessary for destroying the row of microorganisms.

  12. Fate of return activated sludge after ozonation: an optimization study for sludge disintegration.

    Science.gov (United States)

    Demir, Ozlem; Filibeli, Ayse

    2012-09-01

    The effects of ozonation on sludge disintegration should be investigated before the application of ozone during biological treatment, in order to minimize excess sludge production. In this study, changes in sludge and supernatant after ozonation of return activated sludge were investigated for seven different ozone doses. The optimum ozone dose to avoid inhibition of ozonation and high ozone cost was determined in terms of disintegration degree as 0.05 g O3/gTS. Suspended solid and volatile suspended solid concentrations of sludge decreased by 77.8% and 71.6%, respectively, at the optimum ozone dose. Ozonation significantly decomposed sludge flocs. The release of cell contents was proved by the increase of supernatant total nitrogen (TN) and phosphorus (TP). While TN increased from 7 mg/L to 151 mg/L, TP increased from 8.8 to 33 mg/L at the optimum ozone dose. The dewaterability and filterability characteristics of the ozonated sludge were also examined. Capillary suction time increased with increasing ozone dosage, but specific resistance to filtration increased to a specific value and then decreased dramatically. The particle size distribution changed significantly as a result of floc disruption at an optimum dose of 0.05 gO3/gTS.

  13. Evaluation of atmospheric aerosol and tropospheric ozone effects on global terrestrial ecosystem carbon dynamics

    Science.gov (United States)

    Chen, Min

    period of 2003-2010. Ecosystem heterotrophic respiration (RH) was negatively affected by the aerosol loading. These results support previous conclusions of the advantage of aerosol light scattering effect on plant productions in other studies but suggest there is strong spatial variation. This study finds indirect aerosol effects on terrestrial ecosystem carbon dynamics through affecting plant phenology, thermal and hydrological environments. All these evidences suggested that the aerosol direct radiative effect on global terrestrial ecosystem carbon dynamics should be considered to better understand the global carbon cycle and climate change. An ozone sub-model is developed in this dissertation and fully coupled with iTem. The coupled model, named iTemO3 considers the processes of ozone stomatal deposition, plant defense to ozone influx, ozone damage and plant repairing mechanism. By using a global atmospheric chemical transport model (GACTM) estimated ground-level ozone concentration data, the model estimated global annual stomatal ozone deposition is 234.0 Tg O3 yr-1 and indicates which regions have high ozone damage risk. Different plant functional types, sunlit and shaded leaves are shown to have different responses to ozone. The model predictions suggest that ozone has caused considerable change on global terrestrial ecosystem carbon storage and carbon exchanges over the study period 2004-2008. The study suggests that uncertainty of the key parameters in iTemO3 could result in large errors in model predictions. Thus more experimental data for better model parameterization is highly needed.

  14. Effects of ozone and ozone/peroxide on trace organic contaminants and NDMA in drinking water and water reuse applications.

    Science.gov (United States)

    Pisarenko, Aleksey N; Stanford, Benjamin D; Yan, Dongxu; Gerrity, Daniel; Snyder, Shane A

    2012-02-01

    An ozone and ozone/peroxide oxidation process was evaluated at pilot scale for trace organic contaminant (TOrC) mitigation and NDMA formation in both drinking water and water reuse applications. A reverse osmosis (RO) pilot was also evaluated as part of the water reuse treatment train. Ozone/peroxide showed lower electrical energy per order of removal (EEO) values for TOrCs in surface water treatment, but the addition of hydrogen peroxide increased EEO values during wastewater treatment. TOrC oxidation was correlated to changes in UV(254) absorbance and fluorescence offering a surrogate model for predicting contaminant removal. A decrease in N-nitrosodimethylamine (NDMA) formation potential (after chloramination) was observed after treatment with ozone and ozone/peroxide. However, during spiking experiments with surface water, ozone/peroxide achieved limited destruction of NDMA, while in wastewaters net direct formation of NDMA of 6-33 ng/L was observed after either ozone or ozone/peroxide treatment. Once formed during ozonation, NDMA passed through the subsequent RO membranes, which highlights the significance of the potential for direct NDMA formation during oxidation in reuse applications. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Treatment of diazo dye C.I. Reactive Black 5 in aqueous solution by combined process of interior microelectrolysis and ozonation.

    Science.gov (United States)

    Guo, Xiaoyan; Cai, Yaping; Wei, Zhongbo; Hou, Haifeng; Yang, Xi; Wang, Zunyao

    2013-01-01

    Interior microelectrolysis (IM) as a pretreatment process was effective to treat Reactive Black 5 (RB5) in this study. The removal rates of chemical oxygen demand (COD), total organic carbon (TOC) and color were 46.05, 39.99 and 98.77%, respectively, when this process was conducted under the following optimal conditions: the volumetric ratio between iron scraps and active carbon (AC) (V(Fe)/V(C)) 1.0, pH 2.0, aeration dosage 0.6 L/min, and reaction time 100 min. Contaminants could be further removed by ozonation. After subsequent ozonation for 200 min, the solution could be completely decolorized, and the COD and TOC removal rates were up to 77.78 and 66.51%, respectively. In addition, acute toxicity tests with Daphnia magna showed that pretreatment by IM generated effluents that were more toxic when compared with the initial wastewater, and the toxicity was reduced after subsequent ozonation.

  16. Natural zeolite reactivity towards ozone: The role of compensating cations

    International Nuclear Information System (INIS)

    Valdés, Héctor; Alejandro, Serguei; Zaror, Claudio A.

    2012-01-01

    Highlights: ► Chemical and thermal treatment enhances catalytic activity of natural zeolite. ► Modified natural zeolite exhibits high stability after thermal treatment. ► Reducing the compensating cation content leads to an increase on ozone abatement. ► Surface active atomic oxygen was detected using the DRIFT technique. ► The highest reactivity toward ozone was performed by NH4Z3 zeolite sample. - Abstract: Among indoor pollutants, ozone is recognised to pose a threat to human health. Recently, low cost natural zeolites have been applied as alternative materials for ozone abatement. In this work, the effect of compensating cation content of natural zeolite on ozone removal is studied. A Chilean natural zeolite is used here as starting material. The amount of compensating cations in the zeolite framework was modified by ion exchange using an ammonium sulphate solution (0.1 mol L −1 ). Characterisation of natural and modified zeolites were performed by X-ray powder diffraction (XRD), nitrogen adsorption at 77 K, elemental analysis, X-ray fluorescence (XRF), thermogravimetric analysis coupled with mass spectroscopy (TGA-MS), and temperature-programmed desorption of ammonia (NH 3 -TPD). Ozone adsorption and/or decomposition on natural and modified zeolites were studied by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Results show that the zeolite compensating cation content affects ozone interaction with zeolite active sites. Ammonium ion-exchange treatments followed by thermal out-gassing at 823 K, reduces ozone diffusion resistance inside the zeolite framework, increasing ozone abatement on zeolite surface active sites. Weak and strong Lewis acid sites of zeolite surface are identified here as the main active sites responsible of ozone removal.

  17. Seasonal and diurnal gas exchange differences in ozone-sensitive common milkweed (Asclepias syriaca L.) in relation to ozone uptake

    International Nuclear Information System (INIS)

    Bergweiler, Chris; Manning, William J.; Chevone, Boris I.

    2008-01-01

    Stomatal conductance and net photosynthesis of common milkweed (Asclepias syriaca L.) plants in two different soil moisture regimes were directly quantified and subsequently modeled over an entire growing season. Direct measurements captured the dynamic response of stomatal conductance to changing environmental conditions throughout the day, as well as declining gas exchange and carbon assimilation throughout the growth period beyond an early summer maximum. This phenomenon was observed in plants grown both with and without supplemental soil moisture, the latter of which should theoretically mitigate against harmful physiological effects caused by exposure to ozone. Seasonally declining rates of stomatal conductance were found to be substantial and incorporated into models, making them less susceptible to the overestimations of effective exposure that are an inherent source of error in ozone exposure indices. The species-specific evidence presented here supports the integration of dynamic physiological processes into flux-based modeling approaches for the prediction of ozone injury in vegetation. - Temporal variation in physiological processes underlying diurnal and seasonal ozone uptake are described for a key ozone bioindicator species of North America

  18. Seasonal and diurnal gas exchange differences in ozone-sensitive common milkweed (Asclepias syriaca L.) in relation to ozone uptake

    Energy Technology Data Exchange (ETDEWEB)

    Bergweiler, Chris [Department of Plant, Soil, and Insect Sciences, University of Massachusetts, Amherst, MA 01003 (United States)], E-mail: bergweiler@nre.umass.edu; Manning, William J. [Department of Plant, Soil, and Insect Sciences, University of Massachusetts, Amherst, MA 01003 (United States); Chevone, Boris I. [Department of Plant Pathology, Physiology, and Weed Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 (United States)

    2008-03-15

    Stomatal conductance and net photosynthesis of common milkweed (Asclepias syriaca L.) plants in two different soil moisture regimes were directly quantified and subsequently modeled over an entire growing season. Direct measurements captured the dynamic response of stomatal conductance to changing environmental conditions throughout the day, as well as declining gas exchange and carbon assimilation throughout the growth period beyond an early summer maximum. This phenomenon was observed in plants grown both with and without supplemental soil moisture, the latter of which should theoretically mitigate against harmful physiological effects caused by exposure to ozone. Seasonally declining rates of stomatal conductance were found to be substantial and incorporated into models, making them less susceptible to the overestimations of effective exposure that are an inherent source of error in ozone exposure indices. The species-specific evidence presented here supports the integration of dynamic physiological processes into flux-based modeling approaches for the prediction of ozone injury in vegetation. - Temporal variation in physiological processes underlying diurnal and seasonal ozone uptake are described for a key ozone bioindicator species of North America.

  19. Experimental and modeling study of the impact of vertical transport processes from the boundary-layer on the variability and the budget of tropospheric ozone

    International Nuclear Information System (INIS)

    Colette, A.

    2005-12-01

    Closing the tropospheric ozone budget requires a better understanding of the role of transport processes from the major reservoirs: the planetary boundary layer and the stratosphere. Case studies lead to the identification of mechanisms involved as well as their efficiency. However, their global impact on the budget must be addressed on a climatological basis. This manuscript is thus divided in two parts. First, we present case studies based on ozone LIDAR measurements performed during the ESCOMPTE campaign. This work consists in a data analysis investigation by means of a hybrid - Lagrangian study involving: global meteorological analyses, Lagrangian particle dispersion computation, and mesoscale, chemistry - transport, and Lagrangian photochemistry modeling. Our aim is to document the amount of observed ozone variability related to transport processes and, when appropriate, to infer the role of tropospheric photochemical production. Second, we propose a climatological analysis of the respective impact of transport from the boundary-layer and from the tropopause region on the tropospheric ozone budget. A multivariate analysis is presented and compared to a trajectography approach. Once validated, this algorithm is applied to the whole database of ozone profiles collected above Europe during the past 30 years in order to discuss the seasonal, geographical and temporal variability of transport processes as well as their impact on the tropospheric ozone budget. The variability of turbulent mixing and its impact on the persistence of tropospheric layers will also be discussed. (author)

  20. Ozone reaction on slime mold. [Physarum polycephalum

    Energy Technology Data Exchange (ETDEWEB)

    Kanoh, F.

    1972-01-01

    To determine the effect of ozone, the motive force responsible for protoplasmic streaming in the slime mold, Physarum polycephalum was measured by the Double chamber method which was developed by Kamiya. The effects of ozone on the motive force were investigated by comparison of the Dynamoplasmogram of controls with that of ozone exposure. In the case of high concentration exposure, thickening of plasmagel, inversion of the period of flow and reduction of the extreme point were observed. Succinoxidase of exposed homogenates showed stronger activity than that of controls. It is certain that the Pasteur reaction takes place when plasmodium is kept under high ozone exposure condition. It appears that ozone inhibited a part of the process of glycolysis. 32 references, 8 figures.

  1. Revisiting Antarctic Ozone Depletion

    Science.gov (United States)

    Grooß, Jens-Uwe; Tritscher, Ines; Müller, Rolf

    2015-04-01

    Antarctic ozone depletion is known for almost three decades and it has been well settled that it is caused by chlorine catalysed ozone depletion inside the polar vortex. However, there are still some details, which need to be clarified. In particular, there is a current debate on the relative importance of liquid aerosol and crystalline NAT and ice particles for chlorine activation. Particles have a threefold impact on polar chlorine chemistry, temporary removal of HNO3 from the gas-phase (uptake), permanent removal of HNO3 from the atmosphere (denitrification), and chlorine activation through heterogeneous reactions. We have performed simulations with the Chemical Lagrangian Model of the Stratosphere (CLaMS) employing a recently developed algorithm for saturation-dependent NAT nucleation for the Antarctic winters 2011 and 2012. The simulation results are compared with different satellite observations. With the help of these simulations, we investigate the role of the different processes responsible for chlorine activation and ozone depletion. Especially the sensitivity with respect to the particle type has been investigated. If temperatures are artificially forced to only allow cold binary liquid aerosol, the simulation still shows significant chlorine activation and ozone depletion. The results of the 3-D Chemical Transport Model CLaMS simulations differ from purely Lagrangian longtime trajectory box model simulations which indicates the importance of mixing processes.

  2. Ozone Layer Protection

    Science.gov (United States)

    ... and Research Centers Contact Us Share Ozone Layer Protection The stratospheric ozone layer is Earth’s “sunscreen” – protecting ... GreenChill Partnership Responsible Appliance Disposal (RAD) Program Ozone Protection vs. Ozone Pollution This website addresses stratospheric ozone ...

  3. Photocatalytic ozonation under visible light for the remediation of water effluents and its integration with an electro-membrane bioreactor.

    Science.gov (United States)

    Toledano Garcia, Diego; Ozer, Lütfiye Y; Parrino, Francesco; Ahmed, Menatalla; Brudecki, Grzegorz Przemyslaw; Hasan, Shadi W; Palmisano, Giovanni

    2018-06-06

    Photocatalysis and photocatalytic ozonation under visible light have been applied for the purification of a complex aqueous matrix such as the grey water of Masdar City (UAE), by using N-doped brookite-rutile catalysts. Preliminary runs on 4-nitrophenol (4-NP) solutions allowed to test the reaction system in the presence of a model pollutant and to afford the relevant kinetic parameters of the process. Subsequently, the remediation of grey water effluent has been evaluated in terms of the reduction of total organic carbon (TOC) and bacterial counts. The concentration of the most abundant inorganic ionic species in the effluent has been also monitored during reaction. Photocatalytic ozonation under visible light allowed to reduce the TOC content of the grey water by ca. 60% in the optimized experimental conditions and to reduce the total bacterial count by ca. 97%. The extent of TOC mineralization reached ca. 80% when the photocatalytic ozonation occurred downstream to a preliminary electro-membrane bioreactor (eMBR). Coupling the two processes enhanced the global efficiency. In fact, the eMBR treatment lowered the turbidity and the organic load of the effluent entering the photocatalytic ozonation treatment, which in turn enhanced the extent of purification and disinfection. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Hypocotyl shape in radishes - a useful impact criterion for biological indication of ozone?; Hypokotyl-Form bei Radieschen - ein sinnvolles Wirkungskriterium fuer die Bioindikation von Ozon?

    Energy Technology Data Exchange (ETDEWEB)

    Kostka-Rick, R.

    1992-12-31

    A consistent correlation between certain `source` leaves and specific `sink` regions in the root of Beta vulgaris L. justifies to study the impact of ozone (O{sub 3}) on the shape of the hypocotyl in radish (Raphanus sativus L.) and the potential use of shape variants as effect criteria. A 7-day period of exposure to O{sub 3} ranging within realistic immission levels caused a nonsignificant reduction of hypocotyl fresh weight in radish. Two out three of the shape indices under study were also changed by ozone exposure - sometimes significantly. A discriminance function derived from several shape indices with or without fresh weight allowed a significant separation between the two O{sub 3}-treatment variants. Treatment with the anti-oxidant ethylene diurea (EDU) had no essential effect on hypocotyl shape. The author discusses the use of shape variants for ozone bio-indication. (orig.) [Deutsch] Eine konsistente Beziehung zwischen bestimmten `source`-Blaettern und spezifischen `sink`-Regionen in der Wurzel von Beta vulgaris L. rechtfertigt die Ueberpruefung des Einflusses von Ozon (O{sub 3}) auf die Form des Hypokotyls bei Radies (Raphanus sativus L.) und der potentiellen Nutzung von Formvariablen als Wirkungskriterium. Eine 7taegige O{sub 3}-Belastung im Bereich realistischer Immissionskonzentrationen verursachte eine nicht-signifikante Minderung des Hypokotyl-Frischgewichtes von Radies. Zwei von drei der untersuchten Formindizes wurden durch die Ozon-Belastung ebenfalls, z.T. signifikant, veraendert. Eine Diskriminanzfunktion aus mehreren Formindizes, mit oder ohne Einbeziehung des Frischgewichtes, gestattete eine signifikante Trennung zwischen den beiden O{sub 3}-Behandlungsvarianten. Eine Behandlung mit dem Anti-oxidants Ethylendiurea (EDU) hatte keinen wesentlichen Einfluss auf die Hypokotylform. Die Moeglichkeiten des Einsatzes von Formvariablen in der Bioindikation von Ozon werden diskutiert. (orig.)

  5. Uncertainties in models of tropospheric ozone based on Monte Carlo analysis: Tropospheric ozone burdens, atmospheric lifetimes and surface distributions

    Science.gov (United States)

    Derwent, Richard G.; Parrish, David D.; Galbally, Ian E.; Stevenson, David S.; Doherty, Ruth M.; Naik, Vaishali; Young, Paul J.

    2018-05-01

    Recognising that global tropospheric ozone models have many uncertain input parameters, an attempt has been made to employ Monte Carlo sampling to quantify the uncertainties in model output that arise from global tropospheric ozone precursor emissions and from ozone production and destruction in a global Lagrangian chemistry-transport model. Ninety eight quasi-randomly Monte Carlo sampled model runs were completed and the uncertainties were quantified in tropospheric burdens and lifetimes of ozone, carbon monoxide and methane, together with the surface distribution and seasonal cycle in ozone. The results have shown a satisfactory degree of convergence and provide a first estimate of the likely uncertainties in tropospheric ozone model outputs. There are likely to be diminishing returns in carrying out many more Monte Carlo runs in order to refine further these outputs. Uncertainties due to model formulation were separately addressed using the results from 14 Atmospheric Chemistry Coupled Climate Model Intercomparison Project (ACCMIP) chemistry-climate models. The 95% confidence ranges surrounding the ACCMIP model burdens and lifetimes for ozone, carbon monoxide and methane were somewhat smaller than for the Monte Carlo estimates. This reflected the situation where the ACCMIP models used harmonised emissions data and differed only in their meteorological data and model formulations whereas a conscious effort was made to describe the uncertainties in the ozone precursor emissions and in the kinetic and photochemical data in the Monte Carlo runs. Attention was focussed on the model predictions of the ozone seasonal cycles at three marine boundary layer stations: Mace Head, Ireland, Trinidad Head, California and Cape Grim, Tasmania. Despite comprehensively addressing the uncertainties due to global emissions and ozone sources and sinks, none of the Monte Carlo runs were able to generate seasonal cycles that matched the observations at all three MBL stations. Although

  6. Reclaimed water quality during simulated ozone-managed aquifer recharge hybrid

    KAUST Repository

    Yoon, Min

    2014-06-17

    A synergistic hybrid of two treatment processes, managed aquifer recharge (MAR) combined with ozonation, was proposed for wastewater reclamation and water reuse applications. Batch reactor and soil-column experiments were performed to evaluate reclaimed water quality using various chemical and bacterial analyses. The ozone process was optimized at low ozone dose (0.5 mg O3/mg DOC) based on the control of N-nitrosodimethylamine (<5 ng L-1) and bromate (<10 μg L-1), and applied prior to (i.e., O3-MAR) and after MAR (i.e., MAR-O3). This work demonstrates that effluent organic matter (EfOM) and trace organic contaminants (TOrCs) are effectively removed during the hybrid process of MAR combined ozonation, compared to MAR only. Based on fluorescence excitation-emission matrices analyses, both MAR and ozonation reduce soluble microbial (protein-like) products while only ozonation contributes in reducing humic and fulvic substances. Even at low ozone dose of 0.5 mg O3/mg DOC, the O3-MAR hybrid significantly reduced UV absorbance by ≥2 m-1, BDOC by ≥64 %, and total (Σ) TOrC concentrations by ≥70 % in the effluent water quality. However, no significant improvement (<10 %) in the removal of Σ16 TOrC concentrations was observed for the increased ozone dose at 1.0 mg O3/mg DOC during MAR combined ozonation processes. Overall, O3-MAR was effective by 10-30 % in treating effluent water than MAR based on DOC, UV254 nm EfOM, TOrC and bacterial analyses. In addition, MAR-O3 was better than O3-MAR for the reduction of fluorescence (close MQ), TOrCs (≥74 %) and total bacteria cell concentrations (>3 log reduction). Therefore, implementing MAR prior to ozonation appears to remove the bio-amenable compounds that react rapidly with ozone, thereby reducing oxidant demand and treatment efficiency. © 2014 Springer-Verlag Berlin Heidelberg.

  7. Operational Research on Design and Process Optimization of Ozone Water Application in Kitchen

    Directory of Open Access Journals (Sweden)

    Lee Zhun Jing

    2018-01-01

    Full Text Available Food safety is a very important focus in the kitchen industry today, as bacteria such as E.Coli and Salmonella are very difficult to tackle. The objective of the present study was to optimize nozzle designs that use ozone technology to bring out the best results in cleaning and sterilizing the kitchen utensils in Taylor’s University School of Hospitality kitchen area. This includes customization of the Medklinn International Sdn Bhd ozone machine and nozzle profiles that improve the effectiveness of ozone generated. Reduction or elimination of chemicals and water usage would be a part of the study. This will bring a huge impact on cost effectiveness, time saving and safety of the users. Return on investment (ROI using ozone technology is calculated at the end of the research. To compare between the traditional way of cleaning and using ozone technology, the volume of water and dishwashing liquid used, and the Relative Light Units (RLU before and after washing were recorded. The RLU numbers are found using the 3M Clean Trace measuring equipment. RLU was recorded to determine the cleanliness of the kitchen utensils before and after washing. It has been proved that ozone water with the accompaniment of the selected nozzle prototype is as efficient as the traditional way of cleaning.

  8. IVF, same-sex couples and the value of biological ties.

    Science.gov (United States)

    Di Nucci, Ezio

    2016-12-01

    Ought parents, in general, to value being biologically tied to their children? Is it important, in particular, that both parents be biologically tied to their children? I will address these fundamental questions by looking at a fairly new practice within IVF treatments, so-called IVF-with-ROPA (Reception of Oocytes from Partner), which allows lesbian couples to 'share motherhood', with one partner providing the eggs while the other becomes pregnant. I believe that IVF-with-ROPA is, just like other IVF treatments, morally permissible, but here I argue that the increased biological ties which IVF-with-ROPA allows for do not have any particular value beside the satisfaction of a legitimate wish, because there is no intrinsic value in a biological tie between parents and children; further, I argue that equality within parental projects cannot be achieved by redistributing biological ties. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  9. Influences of the variation in inflow to East Asia on surface ozone over Japan during 1996–2005

    Directory of Open Access Journals (Sweden)

    S. Chatani

    2011-08-01

    Full Text Available Air quality simulations in which the global chemical transport model CHASER and the regional chemical transport model WRF/chem are coupled have been developed to consider the dynamic transport of chemical species across the boundaries of the domain of the regional chemical transport model. The simulation captures the overall seasonal variations of surface ozone, but overestimates its concentration over Japanese populated areas by approximately 20 ppb from summer to early winter. It is deduced that ozone formation around Northeast China and Japan in summer is overestimated in the simulation. On the other hand, the simulation well reproduces the interannual variability and the long-term trend of observed surface ozone over Japan. Sensitivity experiments have been performed to investigate the influence of the variation in inflow to East Asia on the interannual variability and the long-term trend of surface ozone over Japan during 1996–2005. The inflow defined in this paper includes the recirculation of species with sources within the East Asian region as well as the transport of species with sources out of the East Asian region. Results of sensitivity experiments suggest that inflow to East Asia accounts for approximately 30 % of the increasing trend of surface ozone, whereas it has much less influence on the interannual variability of observed surface ozone compared to meteorological processes within East Asia.

  10. Tropospheric Enhancement of Ozone over the UAE

    Science.gov (United States)

    Abbasi, Naveed Ali; Majeed, Tariq; Iqbal, Mazhar; Kaminski, Jacek; Struzewska, Joanna; Durka, Pawel; Tarasick, David; Davies, Jonathan

    2015-04-01

    We use the Global Environmental Multiscale - Air Quality (GEM-AQ) model to interpret the vertical profiles of ozone acquired with ozone sounding experiments at the meteorological site located at the Abu Dhabi airport. The purpose of this study is to gain insight into the chemical and dynamical structures in the atmosphere of this unique subtropical location (latitude 24.45N; longitude 54.22E). Ozone observations for years 2012 - 2013 reveal elevated ozone abundances in the range from 70 ppbv to 120 ppbv near 500-400 hPa during summer. The ozone abundances in other seasons are much lower than these values. The preliminary results indicate that summertime enhancement in ozone is associated with the Arabian anticyclones centered over the Zagros Mountains in Iran and the Asir and Hijaz Mountain ranges in Saudi Arabia, and is consistent with TES observations of deuterated water. The model also shows considerable seasonal variation in the tropospheric ozone which is transported from the stratosphere by dynamical processes. The domestic production of ozone in the middle troposphere is estimated and compared GEM-AQ model. It is estimated that about 40-50% of ozone in the UAE is transported from the neighbouring petrochemical industries in the Gulf region. We will present ozone sounding data and GEM-AQ results including a discussion on the high levels of the tropospheric ozone responsible for contaminating the air quality in the UAE. This work is supported by National Research Foundation, UAE.

  11. Performance analysis of ejector absorption heat pump using ozone safe fluid couple through artificial neural networks

    International Nuclear Information System (INIS)

    Soezen, Adnan; Arcaklioglu, Erol; Oezalp, Mehmet

    2004-01-01

    Thermodynamic analysis of absorption thermal systems is too complex because the analytic functions calculating the thermodynamic properties of fluid couples involve the solution of complex differential equations and simulation programs. This study aims at easing this complex situation and consists of three cases: (i) A special ejector, located at the absorber inlet, instead of the common location at the condenser inlet, to increase overall performance was used in the ejector absorption heat pump (EAHP). The ejector has two functions: Firstly, it aids the pressure recovery from the evaporator and then upgrades the mixing process and pre-absorption by the weak solution of the methanol coming from the evaporator. (ii) Use of artificial neural networks (ANNs) has been proposed to determine the properties of the liquid and two phase boiling and condensing of an alternative working fluid couple (methanol/LiCl), which does not cause ozone depletion. (iii) A comparative performance study of the EAHP was performed between the analytic functions and the values predicted by the ANN for the properties of the couple. The back propagation learning algorithm with three different variants and logistic sigmoid transfer function were used in the network. In order to train the neural network, limited experimental measurements were used as training and test data. In the input layer, there are temperature, pressure and concentration of the couples. Specific volume is in the output layer. After training, it was found that the maximum error was less than 3%, the average error was less than 1.2% and the R 2 values were about 0.9999. Additionally, in comparison of the analysis results between analytic equations obtained by using experimental data and by means of the ANN, the deviations of the refrigeration effectiveness of the system for cooling (COP r ), exergetic coefficient of performance of the system for cooling (ECOP r ) and circulation ratio (F) for all working temperatures were

  12. Enhanced biodegradation of petrochemical wastewater using ozonation and BAC advanced treatment system

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chi-Kang; Tsai, Tsung-Yueh; Liu, Jiunn-Ching; Chen, Mei-Chen [Energy and Resources Labs., ITRI, Hsinchu (Taiwan)

    2001-07-01

    The characteristics of degradation/conversion of bio-refractory and the growth of a biofilm are investigated in laboratory-scale pre-ozonation and lifted moving-bed biological activated carbon (BAC) advanced treatment processes treating phenol, benzoic acid, aminobenzoic acid and petrochemical industry wastewater which contains acrylonitrile butadiene styrene (ABS). The optimal reaction time and ozone dosage of pre-ozonation for bio-refractory conversion were determined to be 30 min and 100-200mg O{sub 3}/hr, respectively. After pre-ozonation of 30 min treatment, BOD{sub 5}/COD ratio of influent and effluent increased apparently from 20 to 35%, approximately. However, the change of pH in pre-ozonation was inconspicuous. The optimal flow rate of influent and air were controlled at 1.6 1/h and 120-l50nl/min in lifted moving-bed BAC advanced treatment reactor. A COD removal efficiency of 85-95% and 70-90% may be maintained by using an organic loading of 3.2-6.3kg COD/m{sup 3} day and 0.6-1.6 kg-COD/m{sup 3} day with an HRT of 6.0 h as secondary and advanced treatment system, respectively. The time required for the BAC bed to be regenerated by a thermal regeneration is prolonged 4-5 times more than that of GAC system. It can be estimated that the enhanced COD removal capability of the biofilm was not only due to the increase in the COD removal capability of acclimated bacteria, but also due to species succession of bacteria in bio-film ecosystem. (Author)

  13. Formulation based on artificial neural network of thermodynamic properties of ozone friendly refrigerant/absorbent couples

    International Nuclear Information System (INIS)

    Soezen, Adnan; Arcaklioglu, Erol; Oezalp, Mehmet

    2005-01-01

    This paper presents a new approach based on artificial neural networks (ANNs) to determine the properties of liquid and two phase boiling and condensing of two alternative refrigerant/absorbent couples (methanol/LiBr and methanol/LiCl). These couples do not cause ozone depletion and use in the absorption thermal systems (ATSs). ANNs are able to learn the key information patterns within multidimensional information domain. ANNs operate such as a 'black box' model, requiring no detailed information about the system. On the other hand, they learn the relationship between the input and the output. In order to train the neural network, limited experimental measurements were used as training data and test data. In this study, in input layer, there are temperatures in the range of 298-498 K, pressures (0.1-40 MPa) and concentrations of 2%, 7%, 12% of the couples; specific volume is in output layer. The back-propagation learning algorithm with three different variants, namely scaled conjugate gradient (SCG), Pola-Ribiere conjugate gradient (CGP), and Levenberg-Marquardt (LM), and logistic sigmoid transfer function were used in the network so that the best approach can find. The most suitable algorithm and neuron number in the hidden layer are found as SCG with 8 neurons. For this number level, after the training, it is found that maximum error is less than 3%, average error is about 1% and R 2 value are 99.999%. As seen from the results obtained the thermodynamic equations for each pair by using the weights of network have been obviously predicted within acceptable errors. This paper shows that values predicted with ANN can be used to define the thermodynamic properties instead of approximate and complex analytic equations

  14. Evaluation of the persistence of transformation products from ozonation of trace organic compounds - a critical review.

    Science.gov (United States)

    Hübner, Uwe; von Gunten, Urs; Jekel, Martin

    2015-01-01

    Ozonation is an efficient treatment system to reduce the concentration of trace organic compounds (TrOCs) from technical aquatic systems such as drinking water, wastewater and industrial water, etc. Although it is well established that ozonation generally improves the removal of organic matter in biological post-treatment, little is known about the biodegradability of individual transformation products resulting from ozonation of TrOCs. This publication provides a qualified assessment of the persistence of ozone-induced transformation products based on a review of published product studies and an evaluation of the biodegradability of transformation products with the biodegradability probability program (BIOWIN) and the University of Minnesota Pathway Prediction System (UM-PPS). The oxidation of TrOCs containing the four major ozone-reactive sites (olefins, amines, aromatics and sulfur-containing compounds) follows well described reaction pathways leading to characteristic transformation products. Assessment of biodegradability revealed a high sensitivity to the formed products and hence the ozone-reactive site present in the target compound. Based on BIOWIN, efficient removal can be expected for products from cleavage of olefin groups and aromatic rings. In contrast, estimations and literature indicate that hydroxylamines and N-oxides, the major products from ozonation of secondary and tertiary amines are not necessarily better removed in biological post-treatment. According to UM-PPS, degradation of these products might even occur via reformation of the corresponding amine. Some product studies with sulfide-containing TrOCs showed a stoichiometric formation of sulfoxides from oxygen transfer reactions. However, conclusions on the fate of transformation products in biological post-treatment cannot be drawn based on BIOWIN and UM-PPS.

  15. Comparative study of ozonized olive oil and ozonized sunflower oil

    Directory of Open Access Journals (Sweden)

    Díaz Maritza F.

    2006-01-01

    Full Text Available In this study the ozonized olive and sunflower oils are chemical and microbiologically compared. These oils were introduced into a reactor with bubbling ozone gas in a water bath at room temperature until they were solidified. The peroxide, acidity and iodine values along with antimicrobial activity were determined. Ozonization effects on the fatty acid composition of these oils were analyzed using Gas-Liquid Chromatographic Technique. An increase in peroxidation and acidity values was observed in both oils but they were higher in ozonized sunflower oil. Iodine value was zero in ozonized olive oil whereas in ozonized sunflower was 8.8 g Iodine per 100 g. The antimicrobial activity was similar for both ozonized oils except for Minimum Bactericidal Concentrations of Pseudomona aeruginosa. Composition of fatty acids in both ozonized oils showed gradual decrease in unsaturated fatty acids (C18:1, C18:2 with gradual increase in ozone doses.

  16. Antarctic ozone loss in 1989-2010: evidence for ozone recovery?

    Science.gov (United States)

    Kuttippurath, J.; Lefèvre, F.; Pommereau, J.-P.; Roscoe, H. K.; Goutail, F.; Pazmiño, A.; Shanklin, J. D.

    2012-04-01

    We present a detailed estimation of chemical ozone loss in the Antarctic polar vortex from 1989 to 2010. The analyses include ozone loss estimates for 12 Antarctic ground-based (GB) stations. All GB observations show minimum ozone in the late September-early October period. Among the stations, the lowest minimum ozone values are observed at South Pole and the highest at Dumont d'Urville. The ozone loss starts by mid-June at the vortex edge and then progresses towards the vortex core with time. The loss intensifies in August-September, peaks by the end of September-early October, and recovers thereafter. The average ozone loss in the Antarctic is revealed to be about 33-50% in 1989-1992 in agreement with the increase in halogens during this period, and then stayed at around 48% due to saturation of the loss. The ozone loss in the warmer winters (e.g. 2002, and 2004) is lower (37-46%) and in the colder winters (e.g. 2003, and 2006) is higher (52-55%). Because of small inter-annual variability, the correlation between ozone loss and the volume of polar stratospheric clouds yields ~0.51. The GB ozone and ozone loss values are in good agreement with those found from the space-based observations of the Total Ozone Mapping Spectrometer/Ozone Monitoring Instrument (TOMS/OMI), the Global Ozone Monitoring Experiment (GOME), the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY), and the Aura Microwave Limb Sounder (MLS), where the differences are within ±5% and are mostly within the error bars of the measurements. The piece-wise linear trends computed from the September-November vortex average GB and TOMS/OMI ozone show about -4 to -5.6 DU (Dobson Unit) yr-1 in 1989-1996 and about +1 DU yr-1 in 1997-2010. The trend during the former period is significant at 95% confidence intervals, but the trend in 1997-2010 is significant only at 85% confidence intervals. Our analyses suggest a period of about 9-10 yr to get the first detectable ozone

  17. Ozone and hydrogen peroxide applications for disinfection by-products control in drinking water

    International Nuclear Information System (INIS)

    Collivignarelli, C.; Sorlini, S.; Riganti, V.

    2001-01-01

    A great interest has been developed during the last years for ozone in drinking water treatments thanks to its strong oxidant and disinfectant power and for its efficiency in disinfection by-products (DBPs) precursors removal. However ozonization produces some specific DBPs, such as aldehydes and ketones; moreover, the presence of bromide in raw water engages ozone in a complex cycle in which both organic bromide and inorganic bromate are end products. In this paper the combination of hydrogen peroxide with ozone (known as peroxone process) and the ozone alone process were experimented on one surface water coming from the lake of Brugneto (Genova) in order to investigate bromate formation and trihalomethanes precursors removal during the oxidation process. The results show that the advanced peroxone process can be applied for bromate reduction (about 30-40%) with better results in comparison with the ozone alone process, while no advantages are shown for THMs precursors removal. The addition of in-line filtration step after pre-oxidation improves both bromate and THMs precursors removal, particularly with increasing hydrogen peroxide/ozone ratio in the oxidation step [it

  18. Impact of East Asian Summer Monsoon on Surface Ozone Pattern in China

    Science.gov (United States)

    Li, Shu; Wang, Tijian; Huang, Xing; Pu, Xi; Li, Mengmeng; Chen, Pulong; Yang, Xiu-Qun; Wang, Minghuai

    2018-01-01

    Tropospheric ozone plays a key role in regional and global atmospheric and climate systems. In East Asia, ozone can be affected both in concentration level and spatial pattern by typical monsoon climate. This paper uses three different indices to identify the strength of East Asian summer monsoon (EASM) and explores the possible impact of EASM intensity on the ozone pattern through synthetic and process analysis. The difference in ozone between three strong and three weak monsoon years was analyzed using the simulations from regional climate model RegCM4-Chem. It was found that EASM intensity can significantly influence the spatial distribution of ozone in the lower troposphere. When EASM is strong, ozone in the eastern part of China (28°N - 42° N) is reduced, but the inverse is detected in the north and south. The surface ozone difference ranges from -7 to 7 ppbv during the 3 months (June to August) of the EASM, with the most obvious difference in August. Difference of the 3 months' average ozone ranges from -3.5 to 4 ppbv. Process analysis shows that the uppermost factor controlling ozone level during summer monsoon seasons is the chemistry process. Interannual variability of EASM can impact the spatial distribution of ozone through wind in the lower troposphere, cloud cover, and downward shortwave radiation, which affect the transport and chemical formation of ozone. The phenomenon should be addressed when considering the interaction between ozone and the climate in East Asia region.

  19. Comparison of coagulation, ozone and ferrate treatment processes for color, COD and toxicity removal from complex textile wastewater.

    Science.gov (United States)

    Malik, Sameena N; Ghosh, Prakash C; Vaidya, Atul N; Waindeskar, Vishal; Das, Sera; Mudliar, Sandeep N

    2017-09-01

    In this study, the comparative performance of coagulation, ozone, coagulation + ozone + coagulation and potassium ferrate processes to remove chemical oxygen demand (COD), color, and toxicity from a highly polluted textile wastewater were evaluated. Experimental results showed that ferrate alone had no effect on COD, color and toxicity removal. Whereas, in combination with FeSO 4 , it has shown the highest removal efficiency of 96.5%, 83% and 75% for respective parameters at the optimal dose of 40 mgL -1 + 3 ml FeSO 4 (1 M) in comparison with other processes. A seed germination test using seeds of Spinach (Spinacia oleracea) also indicated that ferrate was more effective in removing toxicity from contaminated textile wastewater. Potassium ferrate also produces less sludge with maximum contaminant removal, thereby making the process more economically feasible. Fourier transform infrared spectroscopy (FTIR) analysis also shows the cleavage of the chromophore group and degradation of textile wastewater during chemical and oxidation treatment processes.

  20. Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer

    Science.gov (United States)

    Monks, P. S.; Archibald, A. T.; Colette, A.; Cooper, O.; Coyle, M.; Derwent, R.; Fowler, D.; Granier, C.; Law, K. S.; Mills, G. E.; Stevenson, D. S.; Tarasova, O.; Thouret, V.; von Schneidemesser, E.; Sommariva, R.; Wild, O.; Williams, M. L.

    2015-08-01

    Ozone holds a certain fascination in atmospheric science. It is ubiquitous in the atmosphere, central to tropospheric oxidation chemistry, yet harmful to human and ecosystem health as well as being an important greenhouse gas. It is not emitted into the atmosphere but is a byproduct of the very oxidation chemistry it largely initiates. Much effort is focused on the reduction of surface levels of ozone owing to its health and vegetation impacts, but recent efforts to achieve reductions in exposure at a country scale have proved difficult to achieve owing to increases in background ozone at the zonal hemispheric scale. There is also a growing realisation that the role of ozone as a short-lived climate pollutant could be important in integrated air quality climate change mitigation. This review examines current understanding of the processes regulating tropospheric ozone at global to local scales from both measurements and models. It takes the view that knowledge across the scales is important for dealing with air quality and climate change in a synergistic manner. The review shows that there remain a number of clear challenges for ozone such as explaining surface trends, incorporating new chemical understanding, ozone-climate coupling, and a better assessment of impacts. There is a clear and present need to treat ozone across the range of scales, a transboundary issue, but with an emphasis on the hemispheric scales. New observational opportunities are offered both by satellites and small sensors that bridge the scales.

  1. Hydromechanical coupling in geologic processes

    Science.gov (United States)

    Neuzil, C.E.

    2003-01-01

    Earth's porous crust and the fluids within it are intimately linked through their mechanical effects on each other. This paper presents an overview of such "hydromechanical" coupling and examines current understanding of its role in geologic processes. An outline of the theory of hydromechanics and rheological models for geologic deformation is included to place various analytical approaches in proper context and to provide an introduction to this broad topic for nonspecialists. Effects of hydromechanical coupling are ubiquitous in geology, and can be local and short-lived or regional and very long-lived. Phenomena such as deposition and erosion, tectonism, seismicity, earth tides, and barometric loading produce strains that tend to alter fluid pressure. Resulting pressure perturbations can be dramatic, and many so-called "anomalous" pressures appear to have been created in this manner. The effects of fluid pressure on crustal mechanics are also profound. Geologic media deform and fail largely in response to effective stress, or total stress minus fluid pressure. As a result, fluid pressures control compaction, decompaction, and other types of deformation, as well as jointing, shear failure, and shear slippage, including events that generate earthquakes. By controlling deformation and failure, fluid pressures also regulate states of stress in the upper crust. Advances in the last 80 years, including theories of consolidation, transient groundwater flow, and poroelasticity, have been synthesized into a reasonably complete conceptual framework for understanding and describing hydromechanical coupling. Full coupling in two or three dimensions is described using force balance equations for deformation coupled with a mass conservation equation for fluid flow. Fully coupled analyses allow hypothesis testing and conceptual model development. However, rigorous application of full coupling is often difficult because (1) the rheological behavior of geologic media is complex

  2. Estimation of surface UV levels based on Meteor-3/TOMS ozone data

    Energy Technology Data Exchange (ETDEWEB)

    Borisov, Y A [Central Aerological Observatory, Moscow (Russian Federation); Geogdzhaev, I V [Moscow Inst. of Physics and Technology, Moscow (Russian Federation); Khattatov, V U [Central Aerological Observatory, Moscow (Russian Federation)

    1996-12-31

    The major consequence of ozone layer depletion for the environment is an increase of harmful ultraviolet (UV) radiation on the Earth surface and in the upper ocean. This implies the importance of environmental UV monitoring. Since the direct global monitoring is not currently possible, indirect estimations of surface UV levels may be used based on satellite ozone data (Madronich, S. 1992). Total Ozone Mapping Spectrometer (TOMS) on board the METEOR-3 satellite provided regular set of data for such estimates. During the time of its operation (August, 1991 - December, 1994) the instrument registered several ozone hole events over Antarctica, when ozone levels dropped by as much as 60 % from their unperturbed values. Probably even more alarming ozone depletions were observed over highly populated regions of middle latitudes of northern hemisphere. Radiative transfer modeling was used to convert METEOR-3/TOMS daily ozone values into regional and global maps of biologically active UV. Calculations demonstrate the effect on surface UV levels produced by ozone hole over Antarctica and ozone depletions over the territory of Russia (March, 1994). UV contour lines deviate from the normal appearance which is determined by growing southward solar elevation. UV contour lines are almost perpendicular to the ozone ones in the ozone depletions areas. The 30 % ozone depletion, over Siberia caused more than 30 % increase in noontime erythemal UV levels, which is equivalent to 10-15 degrees southward latitude displacement. Higher UV radiation increases were found in ozone hole over South America (October 1992) equivalent to about 20 degrees southward displacement

  3. Estimation of surface UV levels based on Meteor-3/TOMS ozone data

    Energy Technology Data Exchange (ETDEWEB)

    Borisov, Y.A. [Central Aerological Observatory, Moscow (Russian Federation); Geogdzhaev, I.V. [Moscow Inst. of Physics and Technology, Moscow (Russian Federation); Khattatov, V.U. [Central Aerological Observatory, Moscow (Russian Federation)

    1995-12-31

    The major consequence of ozone layer depletion for the environment is an increase of harmful ultraviolet (UV) radiation on the Earth surface and in the upper ocean. This implies the importance of environmental UV monitoring. Since the direct global monitoring is not currently possible, indirect estimations of surface UV levels may be used based on satellite ozone data (Madronich, S. 1992). Total Ozone Mapping Spectrometer (TOMS) on board the METEOR-3 satellite provided regular set of data for such estimates. During the time of its operation (August, 1991 - December, 1994) the instrument registered several ozone hole events over Antarctica, when ozone levels dropped by as much as 60 % from their unperturbed values. Probably even more alarming ozone depletions were observed over highly populated regions of middle latitudes of northern hemisphere. Radiative transfer modeling was used to convert METEOR-3/TOMS daily ozone values into regional and global maps of biologically active UV. Calculations demonstrate the effect on surface UV levels produced by ozone hole over Antarctica and ozone depletions over the territory of Russia (March, 1994). UV contour lines deviate from the normal appearance which is determined by growing southward solar elevation. UV contour lines are almost perpendicular to the ozone ones in the ozone depletions areas. The 30 % ozone depletion, over Siberia caused more than 30 % increase in noontime erythemal UV levels, which is equivalent to 10-15 degrees southward latitude displacement. Higher UV radiation increases were found in ozone hole over South America (October 1992) equivalent to about 20 degrees southward displacement

  4. Ozone's impact on public health: Contributions from indoor exposures to ozone and products of ozone-initiated chemistry

    DEFF Research Database (Denmark)

    Weschler, Charles J.

    2006-01-01

    OBJECTIVES: The associations between ozone concentrations measured outdoors and both morbidity and mortality may be partially due to indoor exposures to ozone and ozone-initiated oxidation products. In this article I examine the contributions of such indoor exposures to overall ozone-related heal...

  5. Effects of Greenhouse Gas Increase and Stratospheric Ozone Depletion on Stratospheric Mean Age of Air in 1960-2010

    Science.gov (United States)

    Li, F.; Newman, P. A.; Pawson, S.; Perlwitz, J.

    2017-12-01

    The strength of the stratospheric Brewer-Dobson circulation (BDC) in a changing climate has been extensively studied, but the relative importance of greenhouse gas (GHG) increases and stratospheric ozone depletion in driving the BDC changes remains uncertain. This study separates the impacts of GHG and stratospheric ozone forcings on stratospheric mean age of air in the 1960-2010 period using the Goddard Earth Observing System Model (GEOS) Chemistry-Climate Model (CCM). The experiment compares a set of controlled simulations using a coupled atmosphere-ocean version of the GEOS CCM, in which either GHGs, or stratospheric ozone, or both factors evolve over time. The model results show that GHGs and stratospheric ozone have about equal contributions to the simulated mean age decrease. It is also found that GHG increases account for about two thirds of the enhanced strength of the lower stratospheric residual circulation. The results show that ozone depletion causes an increase in the mean age of air in the Antarctic summer lower stratosphere through two processes: 1) a seasonal delay in the Antarctic polar vortex breakup, that inhibits young mid-latitude air from mixing with the older air inside the vortex; and 2) enhanced Antarctic downwelling, that brings older air from middle and upper stratosphere into the lower stratosphere.

  6. The antioxidant EDU and Raphanus sativus L. - a new approach to biological indication of ozone?; Das Antioxidant EDU und Raphanus sativus L. - neue Moeglichkeiten der Bioindikation von Ozon?

    Energy Technology Data Exchange (ETDEWEB)

    Kostka-Rick, R; Manning, W J

    1993-12-31

    Studies on the effects of ozone on plants repeatedly suggested to use anti-oxidant agent-like ethylene diurea (EDU) as control treatment for exposure systems like open-top chambers. Radish (`Cherry Belle`) was exposed to ozone (135-225 {mu}g m{sup -3}, 7.5 h d{sup -1}, 7 d) in a controlled way in green-house tests run during three different developmental stages. Some plants received pretreatment with EDU (150 mg l{sup -1}). Up to 26% of the leaf surface was injured by ozone exposure in untreated plants; EDU-treated plants and control plants grown in filtered ais showed a maximum of 2% of leaf injury. The growth of the storage organ (hypocotyl) was significantly depressed by ozone exposure (without EDU) but compensatory processes largely redressed this loss after the exposure period. EDU caused some minor leaf injury and a nonsignificant stimulation of shoot growth. (orig.) [Deutsch] In O{sub 3}-Wirkungsuntersuchungen mit Pflanzen wurde wiederholt der Einsatz antioxidanter Wirkstoffe wie Ethylendiurea (EDU) als Kontrollbehandlung alternativ zu Expositionssystemen wie z.B. Open-Top-Kammern vorgeschlagen. Waehrend drei verschiedener Entwicklungsstadien wurden Radies (Sorte `Cherry Belle`) in einem Gewaechshausversuch kontrolliert mit O{sub 3} belastet (135-225 {mu}g m{sup -3}, 7.5 h d{sup -1}, 7 d), nachdem ein Teil der Pflanzen mit EDU behandelt worden war (150 mg l{sup -1}). Bei unbehandelten Pflanzen wurden bis zu 26% der Blattflaeche durch die O{sub 3}-Exposition geschaedigt; EDU-behandelte Pflanzen und Kontrollpflanzen in gefilterter Luft zeigten maximal 2% Blattschaedigung. Das Wachstum des Speicherorgans (Hypokotyl) war durch die O{sub 3}-Belastung (ohne EDU) signifikant vermindert, kompensatorische Prozesse glichen diesen Verlust nach der Belastungsphase jedoch weitgehend aus. EDU selbst loeste leichte Blattschaedigungen aus und bewirkte eine nicht-signifikante Stimulation des Sprosswachstums. (orig.)

  7. The antioxidant EDU and Raphanus sativus L. - a new approach to biological indication of ozone?; Das Antioxidant EDU und Raphanus sativus L. - neue Moeglichkeiten der Bioindikation von Ozon?

    Energy Technology Data Exchange (ETDEWEB)

    Kostka-Rick, R.; Manning, W.J.

    1992-12-31

    Studies on the effects of ozone on plants repeatedly suggested to use anti-oxidant agent-like ethylene diurea (EDU) as control treatment for exposure systems like open-top chambers. Radish (`Cherry Belle`) was exposed to ozone (135-225 {mu}g m{sup -3}, 7.5 h d{sup -1}, 7 d) in a controlled way in green-house tests run during three different developmental stages. Some plants received pretreatment with EDU (150 mg l{sup -1}). Up to 26% of the leaf surface was injured by ozone exposure in untreated plants; EDU-treated plants and control plants grown in filtered ais showed a maximum of 2% of leaf injury. The growth of the storage organ (hypocotyl) was significantly depressed by ozone exposure (without EDU) but compensatory processes largely redressed this loss after the exposure period. EDU caused some minor leaf injury and a nonsignificant stimulation of shoot growth. (orig.) [Deutsch] In O{sub 3}-Wirkungsuntersuchungen mit Pflanzen wurde wiederholt der Einsatz antioxidanter Wirkstoffe wie Ethylendiurea (EDU) als Kontrollbehandlung alternativ zu Expositionssystemen wie z.B. Open-Top-Kammern vorgeschlagen. Waehrend drei verschiedener Entwicklungsstadien wurden Radies (Sorte `Cherry Belle`) in einem Gewaechshausversuch kontrolliert mit O{sub 3} belastet (135-225 {mu}g m{sup -3}, 7.5 h d{sup -1}, 7 d), nachdem ein Teil der Pflanzen mit EDU behandelt worden war (150 mg l{sup -1}). Bei unbehandelten Pflanzen wurden bis zu 26% der Blattflaeche durch die O{sub 3}-Exposition geschaedigt; EDU-behandelte Pflanzen und Kontrollpflanzen in gefilterter Luft zeigten maximal 2% Blattschaedigung. Das Wachstum des Speicherorgans (Hypokotyl) war durch die O{sub 3}-Belastung (ohne EDU) signifikant vermindert, kompensatorische Prozesse glichen diesen Verlust nach der Belastungsphase jedoch weitgehend aus. EDU selbst loeste leichte Blattschaedigungen aus und bewirkte eine nicht-signifikante Stimulation des Sprosswachstums. (orig.)

  8. Ozone applied to the homogeneous charge compression ignition engine to control alcohol fuels combustion

    International Nuclear Information System (INIS)

    Masurier, J.-B.; Foucher, F.; Dayma, G.; Dagaut, P.

    2015-01-01

    Highlights: • Ozone was useful to control combustion phasing of alcohol fuels in HCCI engine. • Ozone helps to improve the combustion and advance its phasing. • Butanol is more impacted by ozone than methanol and ethanol. • HCCI combustion parameters may be controlled by managing ozone concentration. • Kinetics demonstrates that alcohol fuels are initially oxidized by O-atoms. - Abstract: The present investigation examines the impact of seeding the intake of an HCCI engine with ozone, one of the most oxidizing chemical species, on the combustion of three alcohol fuels: methanol, ethanol and n-butanol. The research was performed through engine experiments and constant volume computations. The results showed that increasing the ozone concentration led to an improvement in combustion coupled with a combustion advance. It was also observed, by comparing the results for each fuel selected, that n-butanol is the most impacted by ozone seeding and methanol the least. Further analyses of the experimental results showed that the alcohol fuel combustion can be controlled with ozone, which presents an interesting potential. Finally, computation results confirmed the experimental results observed. They also showed that in presence of ozone, alcohol fuels are not initially oxidized by molecular oxygen but by O-atoms coming from the ozone decomposition.

  9. Ozone modeling within plasmas for ozone sensor applications

    OpenAIRE

    Arshak, Khalil; Forde, Edward; Guiney, Ivor

    2007-01-01

    peer-reviewed Ozone (03) is potentially hazardous to human health and accurate prediction and measurement of this gas is essential in addressing its associated health risks. This paper presents theory to predict the levels of ozone concentration emittedfrom a dielectric barrier discharge (DBD) plasma for ozone sensing applications. This is done by postulating the kinetic model for ozone generation, with a DBD plasma at atmospheric pressure in air, in the form of a set of rate equations....

  10. Degradation of 2,4-dichlorophenoxyacetic acid in water by ozone-hydrogen peroxide process

    Institute of Scientific and Technical Information of China (English)

    YU Ying-hui; MA Jun; HOU Yan-jun

    2006-01-01

    This study reports an investigation into the degradation of 2,4-dichlorophenoxyacetic acid in bubble contactor column by O3/H2O2 process, which is widely used as a principal advanced oxidation process. The degradation of 2,4-dichlorophenoxyacetic acid was studied under different H2O2/O3 molar ratio and pH value. Meanwhile, TOC removal was investigated both in distilled water and tap water. The influences of ozone transfer and consumed hydrogen peroxide were also discussed. The degradation products and oxidation intermediates were identified by GC-MS and LC-MS. A possible reaction mechanism was thus proposed.

  11. From globally coupled maps to complex-systems biology

    Energy Technology Data Exchange (ETDEWEB)

    Kaneko, Kunihiko, E-mail: kaneko@complex.c.u-tokyo.ac.jp [Research Center for Complex Systems Biology, Graduate School of Arts and Sciences, The University of Tokyo 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902 (Japan)

    2015-09-15

    Studies of globally coupled maps, introduced as a network of chaotic dynamics, are briefly reviewed with an emphasis on novel concepts therein, which are universal in high-dimensional dynamical systems. They include clustering of synchronized oscillations, hierarchical clustering, chimera of synchronization and desynchronization, partition complexity, prevalence of Milnor attractors, chaotic itinerancy, and collective chaos. The degrees of freedom necessary for high dimensionality are proposed to equal the number in which the combinatorial exceeds the exponential. Future analysis of high-dimensional dynamical systems with regard to complex-systems biology is briefly discussed.

  12. Natural zeolite reactivity towards ozone: The role of compensating cations

    Energy Technology Data Exchange (ETDEWEB)

    Valdes, Hector, E-mail: hvaldes@ucsc.cl [Laboratorio de Tecnologias Limpias (F. Ingenieria), Universidad Catolica de la Santisima Concepcion, Alonso de Ribera 2850, Concepcion (Chile); Alejandro, Serguei; Zaror, Claudio A. [Departamento de Ingenieria Quimica (F. Ingenieria), Universidad de Concepcion, Concepcion (Chile)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Chemical and thermal treatment enhances catalytic activity of natural zeolite. Black-Right-Pointing-Pointer Modified natural zeolite exhibits high stability after thermal treatment. Black-Right-Pointing-Pointer Reducing the compensating cation content leads to an increase on ozone abatement. Black-Right-Pointing-Pointer Surface active atomic oxygen was detected using the DRIFT technique. Black-Right-Pointing-Pointer The highest reactivity toward ozone was performed by NH4Z3 zeolite sample. - Abstract: Among indoor pollutants, ozone is recognised to pose a threat to human health. Recently, low cost natural zeolites have been applied as alternative materials for ozone abatement. In this work, the effect of compensating cation content of natural zeolite on ozone removal is studied. A Chilean natural zeolite is used here as starting material. The amount of compensating cations in the zeolite framework was modified by ion exchange using an ammonium sulphate solution (0.1 mol L{sup -1}). Characterisation of natural and modified zeolites were performed by X-ray powder diffraction (XRD), nitrogen adsorption at 77 K, elemental analysis, X-ray fluorescence (XRF), thermogravimetric analysis coupled with mass spectroscopy (TGA-MS), and temperature-programmed desorption of ammonia (NH{sub 3}-TPD). Ozone adsorption and/or decomposition on natural and modified zeolites were studied by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Results show that the zeolite compensating cation content affects ozone interaction with zeolite active sites. Ammonium ion-exchange treatments followed by thermal out-gassing at 823 K, reduces ozone diffusion resistance inside the zeolite framework, increasing ozone abatement on zeolite surface active sites. Weak and strong Lewis acid sites of zeolite surface are identified here as the main active sites responsible of ozone removal.

  13. Impact of climate variability on tropospheric ozone

    International Nuclear Information System (INIS)

    Grewe, Volker

    2007-01-01

    A simulation with the climate-chemistry model (CCM) E39/C is presented, which covers both the troposphere and stratosphere dynamics and chemistry during the period 1960 to 1999. Although the CCM, by its nature, is not exactly representing observed day-by-day meteorology, there is an overall model's tendency to correctly reproduce the variability pattern due to an inclusion of realistic external forcings, like observed sea surface temperatures (e.g. El Nino), major volcanic eruption, solar cycle, concentrations of greenhouse gases, and Quasi-Biennial Oscillation. Additionally, climate-chemistry interactions are included, like the impact of ozone, methane, and other species on radiation and dynamics, and the impact of dynamics on emissions (lightning). However, a number of important feedbacks are not yet included (e.g. feedbacks related to biogenic emissions and emissions due to biomass burning). The results show a good representation of the evolution of the stratospheric ozone layer, including the ozone hole, which plays an important role for the simulation of natural variability of tropospheric ozone. Anthropogenic NO x emissions are included with a step-wise linear trend for each sector, but no interannual variability is included. The application of a number of diagnostics (e.g. marked ozone tracers) allows the separation of the impact of various processes/emissions on tropospheric ozone and shows that the simulated Northern Hemisphere tropospheric ozone budget is not only dominated by nitrogen oxide emissions and other ozone pre-cursors, but also by changes of the stratospheric ozone budget and its flux into the troposphere, which tends to reduce the simulated positive trend in tropospheric ozone due to emissions from industry and traffic during the late 80s and early 90s. For tropical regions the variability in ozone is dominated by variability in lightning (related to ENSO) and stratosphere-troposphere exchange (related to Northern Hemisphere Stratospheric

  14. Ozone and ultraviolet radiation. Observations and research in the Netherlands and Belgium

    International Nuclear Information System (INIS)

    1997-01-01

    An overview of recent scientific research in Belgium and the Netherlands on the title subject is given. After an overall introduction on ozone and ultraviolet radiation in chapter 1 attention is paid to observations and monitoring of ozone and UV-radiation in chapter 2 and recent research projects in the Netherlands and Belgium with respect to those quantities in chapter 3. In chapter 4 the biological effects of UV-radiation are described, while in chapter 5 the international policy to protect the ozone layer is discussed as well as the effects of such policy on the UV burden and public health. 10 refs

  15. Evaluation of the removal of antiestrogens and antiandrogens via ozone and granular activated carbon using bioassay and fluorescent spectroscopy.

    Science.gov (United States)

    Ma, Dehua; Chen, Lujun; Wu, Yuchao; Liu, Rui

    2016-06-01

    Antiestrogens and antiandrogens are relatively rarely studied endocrine disrupting chemicals which can be found in un/treated wastewaters. Antiestrogens and antiandrogens in the wastewater treatment effluents could contribute to sexual disruption of organisms. In this study, to assess the removal of non-specific antiestrogens and antiandrogens by advanced treatment processes, ozonation and adsorption to granular activated carbon (GAC), the biological activities and excitation emission matrix fluorescence spectroscopy of wastewater were evaluated. As the applied ozone dose increased to 12 mg/L, the antiestrogenic activity dramatically decreased to 3.2 μg 4-hydroxytamoxifen equivalent (4HEQ)/L, with a removal efficiency of 84.8%, while the antiandrogenic activity was 23.1 μg flutamide equivalent (FEQ)/L, with a removal efficiency of 75.5%. The removal of antiestrogenic/antiandrogenic activity has high correlation with the removal of fulvic acid-like materials and humic acid-like organics, suggesting that they can be used as surrogates for antiestrogenic/antiandrogenic activity during ozonation. The adsorption kinetics of antiestrogenic activity and antiandrogenic activity were well described by pseudo-second-order kinetics models. The estimated equilibrium concentration of antiestrogenic activity is 7.9 μg 4HEQ/L with an effective removal efficiency of 70.5%, while the equilibrium concentration of antiandrogenic activity is 33.7 μg FEQ/L with a removal efficiency of 67.0%. Biological activity evaluation of wastewater effluents is an attractive way to assess the removal of endocrine disrupting chemicals by different treatment processes. Fluorescence spectroscopy can be used as a surrogate measure of bioassays during ozonation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Impact of lower stratospheric ozone on seasonal prediction systems

    Directory of Open Access Journals (Sweden)

    Kelebogile Mathole

    2014-03-01

    Full Text Available We conducted a comparison of trends in lower stratospheric temperatures and summer zonal wind fields based on 27 years of reanalysis data and output from hindcast simulations using a coupled ocean-atmospheric general circulation model (OAGCM. Lower stratospheric ozone in the OAGCM was relaxed to the observed climatology and increasing greenhouse gas concentrations were neglected. In the reanalysis, lower stratospheric ozone fields were better represented than in the OAGCM. The spring lower stratospheric/ upper tropospheric cooling in the polar cap observed in the reanalysis, which is caused by a direct ozone depletion in the past two decades and is in agreement with previous studies, did not appear in the OAGCM. The corresponding summer tropospheric response also differed between data sets. In the reanalysis, a statistically significant poleward trend of the summer jet position was found, whereas no such trend was found in the OAGCM. Furthermore, the jet position in the reanalysis exhibited larger interannual variability than that in the OAGCM. We conclude that these differences are caused by the absence of long-term lower stratospheric ozone changes in the OAGCM. Improper representation or non-inclusion of such ozone variability in a prediction model could adversely affect the accuracy of the predictability of summer rainfall forecasts over South Africa.

  17. Simplified Modeling of Tropospheric Ozone Formation Considering Alternative Fuels Using

    Directory of Open Access Journals (Sweden)

    Leonardo Aragão Ferreira da Silva

    2014-07-01

    Full Text Available Brazilian cities have been constantly exposed to air quality episodes of high ozone concentrations (O3 . Known for not be emitted directly into the environment, O3 is a result of several chemical reactions of other pollutants emitted to atmosphere. The growth of vehicle fleet and government incentives for using alternative fuels like ethanol and Compressed Natural Gas (CNG are changing the Brazilian Metropolitan Areas in terms of acetaldehyde and formaldehyde emissions, Volatile Organic Compounds (VOC's present in the atmosphere and known to act on the kinetics of ozone. Driven by high concentrations of tropospheric ozone in urban/industry centers and its implications for environment and population health, the target of this work is understand the kinetics of ozone formation through the creation of a mathematical model in FORTRAN 90, describing a system of coupled ordinary differential equations able to represent a simplified mechanism of photochemical reactions in the Brazilian Metropolitan Area. Evaluating the concentration results of each pollutant were possible to observe the precursor’s influence on tropospheric ozone formation, which seasons were more conducive to this one and which are the influences of weather conditions on formation of photochemical smog.

  18. A new diagnostic for tropospheric ozone production

    Science.gov (United States)

    Edwards, Peter M.; Evans, Mathew J.

    2017-11-01

    Tropospheric ozone is important for the Earth's climate and air quality. It is produced during the oxidation of organics in the presence of nitrogen oxides. Due to the range of organic species emitted and the chain-like nature of their oxidation, this chemistry is complex and understanding the role of different processes (emission, deposition, chemistry) is difficult. We demonstrate a new methodology for diagnosing ozone production based on the processing of bonds contained within emitted molecules, the fate of which is determined by the conservation of spin of the bonding electrons. Using this methodology to diagnose ozone production in the GEOS-Chem chemical transport model, we demonstrate its advantages over the standard diagnostic. We show that the number of bonds emitted, their chemistry and lifetime, and feedbacks on OH are all important in determining the ozone production within the model and its sensitivity to changes. This insight may allow future model-model comparisons to better identify the root causes of model differences.

  19. A new diagnostic for tropospheric ozone production

    Directory of Open Access Journals (Sweden)

    P. M. Edwards

    2017-11-01

    Full Text Available Tropospheric ozone is important for the Earth's climate and air quality. It is produced during the oxidation of organics in the presence of nitrogen oxides. Due to the range of organic species emitted and the chain-like nature of their oxidation, this chemistry is complex and understanding the role of different processes (emission, deposition, chemistry is difficult. We demonstrate a new methodology for diagnosing ozone production based on the processing of bonds contained within emitted molecules, the fate of which is determined by the conservation of spin of the bonding electrons. Using this methodology to diagnose ozone production in the GEOS-Chem chemical transport model, we demonstrate its advantages over the standard diagnostic. We show that the number of bonds emitted, their chemistry and lifetime, and feedbacks on OH are all important in determining the ozone production within the model and its sensitivity to changes. This insight may allow future model–model comparisons to better identify the root causes of model differences.

  20. On the role of ozone feedback in the ENSO amplitude response under global warming.

    Science.gov (United States)

    Nowack, Peer J; Braesicke, Peter; Luke Abraham, N; Pyle, John A

    2017-04-28

    The El Niño-Southern Oscillation (ENSO) in the tropical Pacific Ocean is of key importance to global climate and weather. However, state-of-the-art climate models still disagree on the ENSO's response under climate change. The potential role of atmospheric ozone changes in this context has not been explored before. Here we show that differences between typical model representations of ozone can have a first-order impact on ENSO amplitude projections in climate sensitivity simulations. The vertical temperature gradient of the tropical middle-to-upper troposphere adjusts to ozone changes in the upper troposphere and lower stratosphere, modifying the Walker circulation and consequently tropical Pacific surface temperature gradients. We show that neglecting ozone changes thus results in a significant increase in the number of extreme ENSO events in our model. Climate modeling studies of the ENSO often neglect changes in ozone. We therefore highlight the need to understand better the coupling between ozone, the tropospheric circulation, and climate variability.

  1. Evidence for midwinter chemical ozone destruction over Antartica

    Energy Technology Data Exchange (ETDEWEB)

    Voemel, H. [Univ. of Colorado, Boulder, CO (United States); Hoffmann, D.J.; Oltmans, S.J.; Harris, J.M. [NOAA Climate Monitoring and Diagnostics Laboratory, Boulder, CO (United States)

    1995-09-01

    Two ozone profiles on June 15 and June 19, obtained over McMurdo, Antartica, showed a strong depletion in stratospheric ozone, and a simultaneous profile of water vapor on June 19 showed the first clear signs of dehydration. The observation of Polar Stratospheric Clouds (PSCs) beginning with the first sounding showing ozone depletion, the indication of rehydration layers, which could be a sign for recent dehydration, and trajectory calculations indicate that the observed low ozone was not the result of transport from lower latitudes. during this time the vortex was strongly distorted, transporting PSC processed air well into sunlit latitudes where photochemical ozone destruction may have occurred. The correlation of ozone depletion and dehydration indicates that water ice PSCs provided the dominant surface for chlorine activation. An analysis of the time when the observed air masses could have formed type II PSCs for the first time limits the time scale for the observed ozone destruction to about 4 days.

  2. Impact of parameterization choices on the restitution of ozone deposition over vegetation

    Science.gov (United States)

    Le Morvan-Quéméner, Aurélie; Coll, Isabelle; Kammer, Julien; Lamaud, Eric; Loubet, Benjamin; Personne, Erwan; Stella, Patrick

    2018-04-01

    Ozone is a potentially phyto-toxic air pollutant, which can cause leaf damage and drastically alter crop yields, causing serious economic losses around the world. The VULNOZ (VULNerability to OZone in Anthropised Ecosystems) project is a biology and modeling project that aims to understand how plants respond to the stress of high ozone concentrations, then use a set of models to (i) predict the impact of ozone on plant growth, (ii) represent ozone deposition fluxes to vegetation, and finally (iii) estimate the economic consequences of an increasing ozone background the future. In this work, as part of the VULNOZ project, an innovative representation of ozone deposition to vegetation was developed and implemented in the CHIMERE regional chemistry-transport model. This type of model calculates the average amount of ozone deposited on a parcel each hour, as well as the integrated amount of ozone deposited to the surface at the regional or country level. Our new approach was based on a refinement of the representation of crop types in the model and the use of empirical parameters specific to each crop category. The results obtained were compared with a conventional ozone deposition modeling approach, and evaluated against observations from several agricultural areas in France. They showed that a better representation of the distribution between stomatal and non-stomatal ozone fluxes was obtained in the empirical approach, and they allowed us to produce a new estimate of the total amount of ozone deposited on the subtypes of vegetation at the national level.

  3. Ozone in the food industry: Principles of ozone treatment, mechanisms of action, and applications: An overview.

    Science.gov (United States)

    Brodowska, Agnieszka Joanna; Nowak, Agnieszka; Śmigielski, Krzysztof

    2017-04-10

    The food contamination issue requires continuous control of food at each step of the production process. High quality and safety of products are equally important factors in the food industry. They may be achieved with several, more or less technologically advanced methodologies. In this work, we review the role, contribution, importance, and impact of ozone as a decontaminating agent used to control and eliminate the presence of microorganisms in food products as well as to extend their shelf-life and remove undesirable odors. Several researchers have been focusing on the ozone's properties and applications, proving that ozone treatment technology can be applied to all types of foods, from fruits, vegetables, spices, meat, and seafood products to beverages. A compilation of those works, presented in this review, can be a useful tool for establishing appropriate ozone treatment conditions, and factors affecting the improved quality and safety of food products. A critical evaluation of the advantages and disadvantages of ozone in the context of its application in the food industry is presented as well.

  4. An ozone episode over the Pearl River Delta in October 2008

    Science.gov (United States)

    Shen, Jin; Zhang, Yuanhang; Wang, Xuesong; Li, Jinfeng; Chen, Hao; Liu, Run; Zhong, Liuju; Jiang, Ming; Yue, Dingli; Chen, Duohong; Lv, Wei

    2015-12-01

    The north and east Pearl River Delta (PRD) is usually a clean, upwind area in autumn. Serious ozone pollution there in mid-late October 2008 was first discovered and then analyzed. Trajectory analysis, process analysis, ozone source apportionment technology, and sensitivity analysis were used to study this episode. Under the influence of a weak south wind, the precursors emitted in Guangzhou and Foshan were transported to the north and northeast PRD and formed ozone there, which resulted in high ozone concentration (>100 ppb). As the wind direction later transited to northerly, the precursors in the northeast PRD that originated from the central and west PRD were transported to the south, and caused severe ozone pollution in the southeast PRD. The ozone contributed by chemical processes reached >20 ppb/h in Jinguowan. More than 40 ppb ozone was contributed by the precursor emission in the central and west PRD during the episode. The ozone concentration was highly sensitive to the precursor emission in the PRD region in the high-ozone situations. This episode showed the complexity of regional pollution in the PRD. When the PRD is controlled by a low air pressure system and then cold air moves from northern China to the south, the risk of ozone pollution in the north and southeast PRD increases.

  5. Ozone decomposition

    Directory of Open Access Journals (Sweden)

    Batakliev Todor

    2014-06-01

    Full Text Available Catalytic ozone decomposition is of great significance because ozone is a toxic substance commonly found or generated in human environments (aircraft cabins, offices with photocopiers, laser printers, sterilizers. Considerable work has been done on ozone decomposition reported in the literature. This review provides a comprehensive summary of the literature, concentrating on analysis of the physico-chemical properties, synthesis and catalytic decomposition of ozone. This is supplemented by a review on kinetics and catalyst characterization which ties together the previously reported results. Noble metals and oxides of transition metals have been found to be the most active substances for ozone decomposition. The high price of precious metals stimulated the use of metal oxide catalysts and particularly the catalysts based on manganese oxide. It has been determined that the kinetics of ozone decomposition is of first order importance. A mechanism of the reaction of catalytic ozone decomposition is discussed, based on detailed spectroscopic investigations of the catalytic surface, showing the existence of peroxide and superoxide surface intermediates

  6. Ozone modelling in Eastern Austria

    Energy Technology Data Exchange (ETDEWEB)

    Stohl, A.; Wotawa, G.; Kromp-Kolb, H. [Univ. of Agriculture, Vienna (Austria). Inst. of Meteorology and Physics; Winiwater, W. [Austrian Research Centre, Seibersdorf (Austria); Baumann, R.; Spangl, W. [Federal Environmental Agency, Vienna (Austria)

    1995-12-31

    High ozone concentrations are frequently observed in Eastern Austria, often exceeding local as well as international health standards, both for short-term as well as for long-term exposures. The maximum concentrations are produced in urban plumes, e.g. of the city of Vienna, whereas regional-scale transport and production of ozone is more important for the long-term concentrations. The Pannonian Ozone Project (POP) is an Austrian research initiative to model photochemical processes on a regional as well as on a local scale with a Lagrangian model to better understand the mechanisms leading to the high ozone concentrations and to develop abatement strategies. Up to now, focus has been on the regional scale. Aircraft, tethered balloon, tetroon and intensified ground measurements are carried out to validate the model. Although the major measurement campaign will be held in summer 1995, first results from a measurement campaign in summer 1994 are already available

  7. Treatability study of the effluent containing reactive blue 21 dye by ozonation and the mass transfer study of ozone

    Science.gov (United States)

    Velpula, Priyadarshini; Ghuge, Santosh; Saroha, Anil K.

    2018-04-01

    Ozonation is a chemical treatment process in which ozone reacts with the pollutants present in the effluent by infusion of ozone into the effluent. This study includes the effect of various parameters such as inlet ozone dose, pH of solution and initial concentration of dye on decolorization of dye in terms CRE. The maximum CRE of 98.62% with the reaction rate constant of 0.26 min-1 is achieved in 18 minutes of reaction time at inlet ozone dose of 11.5 g/m3, solution pH of 11 and 30 mg/L of initial concentration of dye. The presence of radical scavenger (Tertiary Butyl Alcohol) suppressed the CRE from 98.62% to 95.4% at high pH values indicates that the indirect mechanism dominates due to the presence of hydroxyl radicals which are formed by the decomposition of ozone. The diffusive and convective mass transfer coefficients of ozone are calculated as 1.78 × 10-5 cm2/sec and 0.075 min-1. It is observed that the fraction of resistance offered by liquid is very much high compared to gas phase indicates that the ozonation is a liquid phase mass transfer controlled operation.

  8. Dissolved organic nitrogen and its biodegradable portion in a water treatment plant with ozone oxidation.

    Science.gov (United States)

    Wadhawan, Tanush; Simsek, Halis; Kasi, Murthy; Knutson, Kristofer; Prüβ, Birgit; McEvoy, John; Khan, Eakalak

    2014-05-01

    Biodegradability of dissolved organic nitrogen (DON) has been studied in wastewater, freshwater and marine water but not in drinking water. Presence of biodegradable DON (BDON) in water prior to and after chlorination may promote formation of nitrogenous disinfectant by-products and growth of microorganisms in the distribution system. In this study, an existing bioassay to determine BDON in wastewater was adapted and optimized, and its application was tested on samples from four treatment stages of a water treatment plant including ozonation and biologically active filtration. The optimized bioassay was able to detect BDON in 50 μg L(-1) as N of glycine and glutamic solutions. BDON in raw (144-275 μg L(-1) as N), softened (59-226 μg L(-1) as N), ozonated (190-254 μg L(-1) as N), and biologically filtered (17-103 μg L(-1) as N) water samples varied over a sampling period of 2 years. The plant on average removed 30% of DON and 68% of BDON. Ozonation played a major role in increasing the amount of BDON (31%) and biologically active filtration removed 71% of BDON in ozonated water. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Transportable lidar for the measurement of ozone concentration and flux profiles in the lower troposphere

    International Nuclear Information System (INIS)

    Zhao, Yanzeng; Howell, J.N.; Hardesty, R.M.

    1992-01-01

    In many areas of the United States, as well as in other industrial areas (such as Europe), elevated and potentially harmful levels of ozone are being measured during summer. Most of this ozone is photochemically produced. The relatively long lifetime of ozone allows industrially produced ozone to be transported on a hemispheric scale. Since the trends of tropospheric ozone are very likely dependent on the source strengths and distributions of the pollutants and the chemical/ transport process involved, a predictive understanding of tropospheric ozone climatology requires a focus on the chemical and transport processes that link regional emissions to hemispheric ozone trends and distributions. Of critical importance to these studies is a satisfactory data base of tropospheric ozone distribution from which global and regional tropospheric ozone climatology can be derived, and the processes controlling tropospheric ozone can be better understood. A transportable lidar for measuring ozone concentration and flux profiles in the lower troposphere is needed. One such system is being developed at the National Oceanic and Atmospheric Administration/Earth Resources Laboratory (NOAA/ERL) Wave Propagation Laboratory (WPL)

  10. Treatment of oilfield produced water by anaerobic process coupled with micro-electrolysis.

    Science.gov (United States)

    Li, Gang; Guo, Shuhai; Li, Fengmei

    2010-01-01

    Treatment of oilfield produced water was investigated using an anaerobic process coupled with micro-electrolysis (ME), focusing on changes in chemical oxygen demand (COD) and biodegradability. Results showed that COD exhibited an abnormal change in the single anaerobic system in which it increased within the first 168 hr, but then decreased to 222 mg/L after 360 hr. The biological oxygen demand (five-day) (BODs)/COD ratio of the water increased from 0.05 to 0.15. Hydrocarbons in the wastewater, such as pectin, degraded to small molecules during the hydrolytic acidification process. Comparatively, the effect of ME was also investigated. The COD underwent a slight decrease and the BOD5/COD ratio of the water improved from 0.05 to 0.17 after ME. Removal of COD was 38.3% under the idealized ME conditions (pH 6.0), using iron and active carbon (80 and 40 g/L, respectively). Coupling the anaerobic process with ME accelerated the COD removal ratio (average removal was 53.3%). Gas chromatography/mass spectrometry was used to analyze organic species conversion. This integrated system appeared to be a useful option for the treatment of water produced in oilfields.

  11. 2001 Ozone Design Value

    Data.gov (United States)

    U.S. Environmental Protection Agency — Ozone is generated by a complex atmoshperic chemical process. Industrial and automobile pollutants in the form of oxides of nitrogen and hydrocarbons react in the...

  12. California Baseline Ozone Transport Study (CABOTS): Ozonesonde Measurements

    Science.gov (United States)

    Eiserloh, A. J., Jr.; Chiao, S.; Spitze, J.; Cauley, S.; Clark, J.; Roberts, M.

    2016-12-01

    Because the EPA recently lowered the ambient air quality standard for the 8-hr average of ozone (O3) to70 ppbv, California must continue to achieve significant reductions in ozone precursor emissions and prepare for new State Implementation Plans (SIP) to demonstrate how ground-level ambient ozone will be reduced below the new health-based standard. Prior studies suggest that background levels of ozone traveling across the Pacific Ocean can significantly influence surface ozone throughout California, particularly during the spring. Evidence has been presented indicating that background levels of ozone continue to increase in the western United States over the recent few decades, implying more ozone exceedances in the future. To better understand the contributions of the external natural and anthropogenic pollution sources as well as atmospheric processes for surface ozone concentrations in California during the spring and summer months, the California Baseline Ozone Transport Study (CABOTS) has been established. One major goal of CABOTS is to implement near daily ozonesonde measurements along the California Coast to quantify background ozone aloft before entering the State during high ozone season. CABOTS has been ongoing from May through August of 2016 launching ozonesondes from Bodega Bay and Half Moon Bay, California. The temporal progression of ozonesonde measurements and subsequent analysis of the data will be discussed with a focus on the contribution of background ozone to surface ozone sites inland as well as likely origins of layers aloft. Comparisons of current ozonesondes versus prior ozonesonde studies of California will also be performed. A few selected cases of high ozone layers moving onshore from different sources will be discussed as well.

  13. MATHEMATICAL MODELING OF ELECTRO TECHNOLOGICAL OZONIZATION OF EGG STORES OF POULTRY FARMS

    OpenAIRE

    Voloshin A. P.

    2016-01-01

    Sanitization of eggs is an essential way to fight bacteria, fungi and other microorganisms. Hatchability of eggs and the safety of day-old chicks are dependent on the quality of eggs processing. Leading scientists of our country have proved high efficacy of ozone application for processing of hatching eggs. To obtain a positive result by this method of sanitizing hatching eggs ozone, it is necessary to create a uniform concentration of ozone around the egg store volume. Decrease in ozone conc...

  14. Compensation processes of Aleppo pine (Pinus halepensis Mill.) to ozone exposure and drought stress

    International Nuclear Information System (INIS)

    Inclan, R.; Gimeno, B.S.; Dizengremel, P.; Sanchez, M.

    2005-01-01

    A long-term experiment was performed to study the effects of O 3 and drought-stress (DS) on Aleppo pine seedlings (Pinus halepensis Mill.) exposed in open-top chambers. Ozone reduced gas exchange rates, ribulose-1,5-biphosphate carboxylase/oxygenase activity (Rubisco), aboveground C and needle N concentrations and C/N ratio and Ca concentrations of the twigs under 3 mm (twigs Pd ), C/N ratio, twigs<3 Ca, plant growth, aerial biomass and increased N, twigs with a diameter above 3 mm P and Mg concentrations. The combined exposure to both stresses increased N concentrations of twigs<3 and roots and aboveground biomass K content and decreased root C, maximum daily assimilation rate and instantaneous water use efficiency. The sensitivity of Aleppo pine to both stresses is determined by plant internal resource allocation and compensation mechanisms to cope with stress. - Ozone and drought stress induce the activation of similar processes related to C and N metabolism

  15. Light induced heterogeneous ozone processing on the pesticides adsorbed on silica particles

    Science.gov (United States)

    Socorro, J.; Désert, M.; Quivet, E.; Gligorovski, S.; Wortham, H.

    2013-12-01

    , delthamethrine, permethrine and pendimethaline, respectively. Concerning the other four pesticides under study i.e. difenoconazole, fipronil, oxadiazon and tetraconazole the obtained rate constants were extremely slow, < 3.9 10-19 [cm3 molecules-1 s-1]. In addition, we identified the condensed phase products in such heterogeneous reactions of ozone with the particulate pesticides by GC-MS coupled with the derivatization technique. The gas-phase products were followed on-line by PTR-MS-TOF. The obtained results will allow to recognize the impact of the pesticides and their degradation products on the human health, and to make recommendations in order to reduce population exposure to the pesticide plume. The results of this work will contribute to better describe and understand the pollution by phyto-sanitary products on the regional scale, which constitutes a necessary step in the development of environmental strategies. As a result the obtained results will help in the development of future environmental strategies to better understand and control phyto-sanitary product application and human exposure.

  16. Ozone decay in chemical reactor for ozone-dynamical disintegration of used tyres

    International Nuclear Information System (INIS)

    Golota, V.I.; Manuilenko, O.V.; Taran, G.V.; Dotsenko, Yu.V.; Pismenetskii, A.S.; Zamuriev, A.A.; Benitskaja, V.A.

    2011-01-01

    The ozone decay kinetics in the chemical reactor intended for used tyres disintegration is investigated experimentally and theoretically. Ozone was synthesized in barrierless ozonizers based on the streamer discharge. The chemical reactor for tyres disintegration in the ozone-air environment represents the cylindrical chamber, which feeds from the ozonizer by ozone-air mixture with the specified rate of volume flow, and with known ozone concentration. The output of the used mixture, which rate of volume flow is also known, is carried out through the ozone destructor. As a result of ozone decay in the volume and on the reactor walls, and output of the used mixture from the reactor, the ozone concentration in the reactor depends from time. In the paper, the analytical expression for dependence of ozone concentration in the reactor from time and from the parameters of a problem such as the volumetric feed rate, ozone concentration on the input in the reactor, volume flow rate of the used mixture, the volume of the reactor and the area of its internal surface is obtained. It is shown that experimental results coincide with good accuracy with analytical ones.

  17. Ozone pollution and ozone biomonitoring in European cities Part II. Ozone-induced plant injury and its relationship with descriptors of ozone pollution

    DEFF Research Database (Denmark)

    Klumpp, A.; Ansel, W.; Klumpp, G.

    2006-01-01

    within local networks were relatively small, but seasonal and inter-annual differences were strong due to the variability of meteorological conditions and related ozone concentrations. The 2001 data revealed a significant relationship between foliar injury degree and various descriptors of ozone...... pollution such as mean value, AOT20 and AOT40. Examining individual sites of the local monitoring networks separately, however, yielded noticeable differences. Some sites showed no association between ozone pollution and ozone-induced effects, whereas others featured almost linear relationships...

  18. Cyanide Containing Wastewater Treatment by Ozone Enhanced Catalytic Oxidation over Diatomite Catalysts

    Directory of Open Access Journals (Sweden)

    Lin Mingguo

    2018-01-01

    Full Text Available Cyanide containing wastewater that discharged from gold mining process creates environmental problems due to the toxicity of cyanide. As one of the promising advanced oxidation process, catalytic oxidation with ozone is considered to be effective on the purification of cyanide. Diatomite, a natural mineral, was used as catalyst in this study. The effect of O3 dosage, salinity, initial cyanide concentration and initial pH condition were investigated. It was observed that the removal rate of cyanide was much higher in the catalytic oxidation with ozone process than the one in zone alone process. Alkaline condition was especially favorable for cyanide in catalytic oxidation with ozone. The ozone and catalytic oxidation with ozone were simulated by pseudo-first-order kinetics model. The apparent first-order rate constant contribution of the diatomite catalyst was 0.0757 min-1, and the contribution percentage was 65.77%.

  19. Reconciliation of Halogen-Induced Ozone Loss with the Total-Column Ozone Record

    Science.gov (United States)

    Shepherd, T. G.; Plummer, D. A.; Scinocca, J. F.; Hegglin, M. I.; Fioletov, V. E.; Reader, M. C.; Remsberg, E.; von Clarmann, T.; Wang, H. J.

    2014-01-01

    The observed depletion of the ozone layer from the 1980s onwards is attributed to halogen source gases emitted by human activities. However, the precision of this attribution is complicated by year-to-year variations in meteorology, that is, dynamical variability, and by changes in tropospheric ozone concentrations. As such, key aspects of the total-column ozone record, which combines changes in both tropospheric and stratospheric ozone, remain unexplained, such as the apparent absence of a decline in total-column ozone levels before 1980, and of any long-term decline in total-column ozone levels in the tropics. Here we use a chemistry-climate model to estimate changes in halogen-induced ozone loss between 1960 and 2010; the model is constrained by observed meteorology to remove the eects of dynamical variability, and driven by emissions of tropospheric ozone precursors to separate out changes in tropospheric ozone. We show that halogen-induced ozone loss closely followed stratospheric halogen loading over the studied period. Pronounced enhancements in ozone loss were apparent in both hemispheres following the volcanic eruptions of El Chichon and, in particular, Mount Pinatubo, which significantly enhanced stratospheric aerosol loads. We further show that approximately 40% of the long-term non-volcanic ozone loss occurred before 1980, and that long-term ozone loss also occurred in the tropical stratosphere. Finally, we show that halogeninduced ozone loss has declined by over 10% since stratospheric halogen loading peaked in the late 1990s, indicating that the recovery of the ozone layer is well underway.

  20. Citrus processing waste water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Hawash, S; Hafez, A J; El-Diwani, G

    1988-02-01

    The process utilizes biological treatment to decompose organic matter and decreases the COD to a value of 230 ppm, using 161 of air per 1 of treated waste water for a contact time of 2.5 h. Ozone is used subsequently for further purification of the waste water by destroying refractory organics. This reduces the COD to a value of 40 ppm, and consequently also lowers the BOD. Ozone also effectively removed the yellow-brown colour due to humic substances in dissolved or colloidal form; their oxidation leaves the water sparkling. Iron and manganese are also eliminated.

  1. Improve the biodegradability of post-hydrothermal liquefaction wastewater with ozone: conversion of phenols and N-heterocyclic compounds.

    Science.gov (United States)

    Yang, Libin; Si, Buchun; Martins, Marcio Arêdes; Watson, Jamison; Chu, Huaqiang; Zhang, Yuanhui; Tan, Xiaobo; Zhou, Xuefei; Zhang, Yalei

    2017-04-01

    Hydrothermal liquefaction is a promising technology to convert wet biomass into bio-oil. However, post-hydrothermal liquefaction wastewater (PHWW) is also produced during the process. This wastewater contains a high concentration of organic compounds, including phenols and N-heterocyclic compounds which are two main inhibitors for biological treatment. Thus, proper treatment is required. In this work, ozone was used to convert phenols and N-heterocyclic compounds with a dosage range of 0-4.64 mg O 3 /mL PHWW. After ozone treatment, the phenols were fully converted, and acids were produced. However, N-heterocyclic compounds were found to have a low conversion rate (21.7%). The kinetic analysis for the degradation of phenols and N-heterocyclic compounds showed that the substitute played an important role in determining the priority of ozone reactions. The OH moiety in the ring compounds (phenols and pyridinol) may form hydroxyl radical, which lead to an efficient reaction. A substantial improved biodegradability of PHWW was observed after ozone treatment. The ratio of BOD 5 /COD was increased by about 32.36%, and reached a maximum of 0.41. The improved biodegradability of PHWW was justified by the conversion of phenols and N-heterocyclic compounds.

  2. Global budget of tropospheric ozone: Evaluating recent model advances with satellite (OMI), aircraft (IAGOS), and ozonesonde observations

    Science.gov (United States)

    Hu, Lu; Jacob, Daniel J.; Liu, Xiong; Zhang, Yi; Zhang, Lin; Kim, Patrick S.; Sulprizio, Melissa P.; Yantosca, Robert M.

    2017-10-01

    The global budget of tropospheric ozone is governed by a complicated ensemble of coupled chemical and dynamical processes. Simulation of tropospheric ozone has been a major focus of the GEOS-Chem chemical transport model (CTM) over the past 20 years, and many developments over the years have affected the model representation of the ozone budget. Here we conduct a comprehensive evaluation of the standard version of GEOS-Chem (v10-01) with ozone observations from ozonesondes, the OMI satellite instrument, and MOZAIC-IAGOS commercial aircraft for 2012-2013. Global validation of the OMI 700-400 hPa data with ozonesondes shows that OMI maintained persistent high quality and no significant drift over the 2006-2013 period. GEOS-Chem shows no significant seasonal or latitudinal bias relative to OMI and strong correlations in all seasons on the 2° × 2.5° horizontal scale (r = 0.88-0.95), improving on previous model versions. The most pronounced model bias revealed by ozonesondes and MOZAIC-IAGOS is at high northern latitudes in winter-spring where the model is 10-20 ppbv too low. This appears to be due to insufficient stratosphere-troposphere exchange (STE). Model updates to lightning NOx, Asian anthropogenic emissions, bromine chemistry, isoprene chemistry, and meteorological fields over the past decade have overall led to gradual increase in the simulated global tropospheric ozone burden and more active ozone production and loss. From simulations with different versions of GEOS meteorological fields we find that tropospheric ozone in GEOS-Chem v10-01 has a global production rate of 4960-5530 Tg a-1, lifetime of 20.9-24.2 days, burden of 345-357 Tg, and STE of 325-492 Tg a-1. Change in the intensity of tropical deep convection between these different meteorological fields is a major factor driving differences in the ozone budget.

  3. Cooling tower water ozonation at Southern University

    International Nuclear Information System (INIS)

    Chen, C.C.; Knecht, A.T.; Trahan, D.B.; Yaghi, H.M.; Jackson, G.H.; Coppenger, G.D.

    1990-01-01

    Cooling-tower water is a critical utility for many industries. In the past, inexpensive water coupled with moderate regulation of discharge water led to the neglect of the cooling tower as an energy resource. Now, with the increased cost of chemical treatment and tough EPA rules and regulations, this situation is rapidly changing. The operator of the DOE Y-12 Plant in Oak Ridge as well as many other industries are forced to develop an alternate method of water treatment. The cooling tower is one of the major elements in large energy systems. The savings accrued from a well engineered cooling tower can be a significant part of the overall energy conservation plan. During a short-term ozonation study between 1987-1988, the Y-12 Plant has been successful in eliminating the need for cooling tower treatment chemicals. However, the long-term impact was not available. Since April 1988, the ozone cooling water treatment study at the Y-12 Plant has been moved to the site at Southern University in Baton Rouge, Louisiana. The purpose of this continued study is to determine whether the use of ozonation on cooling towers is practical from an economic, technical and environmental standpoint. This paper discusses system design, operating parameter and performance testing of the ozonation system at Southern University

  4. The Extrapolar SWIFT model (version 1.0): fast stratospheric ozone chemistry for global climate models

    Science.gov (United States)

    Kreyling, Daniel; Wohltmann, Ingo; Lehmann, Ralph; Rex, Markus

    2018-03-01

    The Extrapolar SWIFT model is a fast ozone chemistry scheme for interactive calculation of the extrapolar stratospheric ozone layer in coupled general circulation models (GCMs). In contrast to the widely used prescribed ozone, the SWIFT ozone layer interacts with the model dynamics and can respond to atmospheric variability or climatological trends.The Extrapolar SWIFT model employs a repro-modelling approach, in which algebraic functions are used to approximate the numerical output of a full stratospheric chemistry and transport model (ATLAS). The full model solves a coupled chemical differential equation system with 55 initial and boundary conditions (mixing ratio of various chemical species and atmospheric parameters). Hence the rate of change of ozone over 24 h is a function of 55 variables. Using covariances between these variables, we can find linear combinations in order to reduce the parameter space to the following nine basic variables: latitude, pressure altitude, temperature, overhead ozone column and the mixing ratio of ozone and of the ozone-depleting families (Cly, Bry, NOy and HOy). We will show that these nine variables are sufficient to characterize the rate of change of ozone. An automated procedure fits a polynomial function of fourth degree to the rate of change of ozone obtained from several simulations with the ATLAS model. One polynomial function is determined per month, which yields the rate of change of ozone over 24 h. A key aspect for the robustness of the Extrapolar SWIFT model is to include a wide range of stratospheric variability in the numerical output of the ATLAS model, also covering atmospheric states that will occur in a future climate (e.g. temperature and meridional circulation changes or reduction of stratospheric chlorine loading).For validation purposes, the Extrapolar SWIFT model has been integrated into the ATLAS model, replacing the full stratospheric chemistry scheme. Simulations with SWIFT in ATLAS have proven that the

  5. Biological degradation of partially oxidated constituents of stabilized sapropel; Biologischer Abbau teiloxidierter Inhaltsstoffe stabilisierter Faulschlaemme

    Energy Technology Data Exchange (ETDEWEB)

    Scheminski, A.; Krull, R.; Hempel, D.C. [Technische Univ. Braunschweig (Germany). Inst. fuer Bioverfahrenstechnik

    1999-07-01

    Partial oxidation of sapropel with ozone destroys the cell walls of microorganisms in sludge and releases the cell constituents. Substances that are not biologically degraded because of the size or structure of their molecules are transformed into smaller, water-soluble and biologically degradable fractions by the reaction with ozone. The experiments aim to render the partially oxidated sewage sludge constituents highly biologically degradable using a minimum of oxidation agents. For the experiments described, stabilized sapropels with low biological activity are used. Hence the ozone is mainly used for the partial oxidation of recalcitrant constituents. (orig.) [German] Durch partielle Oxidation von Faulschlaemmen mit Ozon werden die Zellwaende der Mikroorganismen im Schlamm zerstoert und die Zellinhaltsstoffe freigesetzt. Dabei werden Substanzen, die aufgrund ihrer Molekuelgroesse oder -struktur biologisch nicht abgebaut werden, durch die Reaktion mit Ozon in kleinere, wasserloesliche und biologisch abbaubare Bruchstuecke ueberfuehrt. Ziel der Versuche ist es, durch den Einsatz moeglichst geringer Mengen an Oxidationsmitteln eine hohe biologische Abbaubarkeit der teiloxidierten Klaerschlamminhaltsstoffe zu erreichen. Fuer die hier vorgestellten Experimente wurden stabilisierte Faulschlaemme mit geringer biologischer Aktivitaet eingesetzt. Dadurch wird das Ozon vorwiegend zur Teiloxidation recalcitranter Inhaltsstoffe genutzt. (orig.)

  6. Oxidation of Ce(III) in Foam Decontaminant by Ozone

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Chong Hun; Yoon, I. H.; Choi, W. K.; Moon, J. K.; Yang, H. B. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, J. S. [Gachon University, Seongnam (Korea, Republic of)

    2016-10-15

    A nanoparticle-based foam decontaminant is composed of a surfactant and nanoparticles for the generation and maintenance of foam, and a chemical decontamination agent made of Ce(IV) dissolved in nitric acid. Ce(IV) will be reduced to Ce(III) through the decontamination process. Oxidizing cerium(III) can be reused as a decontamination agent, Ce(IV). Oxidation treatment technology by ozone uses its strong oxidizing power. It can be regarded as an environmentally friendly process, because ozone cannot be stored and transported like other industrial gases (because it quickly decays into diatomic oxygen) and must therefore be produced on site, and used ozone can decompose immediately. The ozonation treatment of Ce(III) in foam decontaminant containing a surfactant is necessary for the effective regeneration of Ce(III). Thus, the present study was undertaken to determine the optimal conditions for ozonation treatment in the regeneration of Ce(III) into Ce(IV) in the nanoparticle-based foam decontaminant containing surfactant. This study was undertaken to determine the optimal conditions for ozonation treatment in the regeneration of Ce(III) to Ce(IV) in nanoparticle-based foam decontaminant containing a TBS surfactant. The oxidation conversion rate of Ce(III) was increased with an increase in the flow rate of the gas mixture and ozone injection amount. The oxidation time required for the 100% oxidation conversion of Ce(III) to Ce(IV) at a specific ozone injection amount can be predicted from these experimental data.

  7. Oxidation of Ce(III) in Foam Decontaminant by Ozone

    International Nuclear Information System (INIS)

    Jung, Chong Hun; Yoon, I. H.; Choi, W. K.; Moon, J. K.; Yang, H. B.; Lee, J. S.

    2016-01-01

    A nanoparticle-based foam decontaminant is composed of a surfactant and nanoparticles for the generation and maintenance of foam, and a chemical decontamination agent made of Ce(IV) dissolved in nitric acid. Ce(IV) will be reduced to Ce(III) through the decontamination process. Oxidizing cerium(III) can be reused as a decontamination agent, Ce(IV). Oxidation treatment technology by ozone uses its strong oxidizing power. It can be regarded as an environmentally friendly process, because ozone cannot be stored and transported like other industrial gases (because it quickly decays into diatomic oxygen) and must therefore be produced on site, and used ozone can decompose immediately. The ozonation treatment of Ce(III) in foam decontaminant containing a surfactant is necessary for the effective regeneration of Ce(III). Thus, the present study was undertaken to determine the optimal conditions for ozonation treatment in the regeneration of Ce(III) into Ce(IV) in the nanoparticle-based foam decontaminant containing surfactant. This study was undertaken to determine the optimal conditions for ozonation treatment in the regeneration of Ce(III) to Ce(IV) in nanoparticle-based foam decontaminant containing a TBS surfactant. The oxidation conversion rate of Ce(III) was increased with an increase in the flow rate of the gas mixture and ozone injection amount. The oxidation time required for the 100% oxidation conversion of Ce(III) to Ce(IV) at a specific ozone injection amount can be predicted from these experimental data

  8. Imaging of Selenium by Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) in 2-D Electrophoresis Gels and Biological Tissues.

    Science.gov (United States)

    Cruz, Elisa Castañeda Santa; Susanne Becker, J; Sabine Becker, J; Sussulini, Alessandra

    2018-01-01

    Selenium and selenoproteins are important components of living organisms that play a role in different biological processes. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is a powerful analytical technique that has been employed to obtain distribution maps of selenium in biological tissues in a direct manner, as well as in selenoproteins, previously separated by their molecular masses and isoelectric points using two-dimensional polyacrylamide gel electrophoresis (2-D PAGE). In this chapter, we present the protocols to perform LA-ICP-MS imaging experiments, allowing the distribution visualization and determination of selenium and/or selenoproteins in biological systems.

  9. Stochastic processes in cell biology

    CERN Document Server

    Bressloff, Paul C

    2014-01-01

    This book develops the theory of continuous and discrete stochastic processes within the context of cell biology.  A wide range of biological topics are covered including normal and anomalous diffusion in complex cellular environments, stochastic ion channels and excitable systems, stochastic calcium signaling, molecular motors, intracellular transport, signal transduction, bacterial chemotaxis, robustness in gene networks, genetic switches and oscillators, cell polarization, polymerization, cellular length control, and branching processes. The book also provides a pedagogical introduction to the theory of stochastic process – Fokker Planck equations, stochastic differential equations, master equations and jump Markov processes, diffusion approximations and the system size expansion, first passage time problems, stochastic hybrid systems, reaction-diffusion equations, exclusion processes, WKB methods, martingales and branching processes, stochastic calculus, and numerical methods.   This text is primarily...

  10. CONTRIBUTION TO INDOOR OZONE LEVELS OF AN OZONE GENERATOR

    Science.gov (United States)

    This report gives results of a study of a commonly used commercially available ozone generator, undertaken to determine its impact on indoor ozone levels. xperiment were conducted in a typical mechanically ventilated office and in a test house. he generated ozone and the in-room ...

  11. Hybrid Thermochemical/Biological Processing

    Science.gov (United States)

    Brown, Robert C.

    The conventional view of biorefineries is that lignocellulosic plant material will be fractionated into cellulose, hemicellulose, lignin, and terpenes before these components are biochemically converted into market products. Occasionally, these plants include a thermochemical step at the end of the process to convert recalcitrant plant components or mixed waste streams into heat to meet thermal energy demands elsewhere in the facility. However, another possibility for converting high-fiber plant materials is to start by thermochemically processing it into a uniform intermediate product that can be biologically converted into a bio-based product. This alternative route to bio-based products is known as hybrid thermochemical/biological processing. There are two distinct approaches to hybrid processing: (a) gasification followed by fermentation of the resulting gaseous mixture of carbon monoxide (CO), hydrogen (H2), and carbon dioxide (CO2) and (b) fast pyrolysis followed by hydrolysis and/or fermentation of the anhydrosugars found in the resulting bio-oil. This article explores this "cart before the horse" approach to biorefineries.

  12. Development of Compact Ozonizer with High Ozone Output by Pulsed Power

    Science.gov (United States)

    Tanaka, Fumiaki; Ueda, Satoru; Kouno, Kanako; Sakugawa, Takashi; Akiyama, Hidenori; Kinoshita, Youhei

    Conventional ozonizer with a high ozone output using silent or surface discharges needs a cooling system and a dielectric barrier, and therefore becomes a large machine. A compact ozonizer without the cooling system and the dielectric barrier has been developed by using a pulsed power generated discharge. The wire to plane electrodes made of metal have been used. However, the ozone output was low. Here, a compact and high repetition rate pulsed power generator is used as an electric source of a compact ozonizer. The ozone output of 6.1 g/h and the ozone yield of 86 g/kWh are achieved at 500 pulses per second, input average power of 280 W and an air flow rate of 20 L/min.

  13. Atmospheric Ozone and Methane in a Changing Climate

    Directory of Open Access Journals (Sweden)

    Ivar S. A. Isaksen

    2014-07-01

    Full Text Available Ozone and methane are chemically active climate-forcing agents affected by climate–chemistry interactions in the atmosphere. Key chemical reactions and processes affecting ozone and methane are presented. It is shown that climate-chemistry interactions have a significant impact on the two compounds. Ozone, which is a secondary compound in the atmosphere, produced and broken down mainly in the troposphere and stratosphre through chemical reactions involving atomic oxygen (O, NOx compounds (NO, NO2, CO, hydrogen radicals (OH, HO2, volatile organic compounds (VOC and chlorine (Cl, ClO and bromine (Br, BrO. Ozone is broken down through changes in the atmospheric distribution of the afore mentioned compounds. Methane is a primary compound emitted from different sources (wetlands, rice production, livestock, mining, oil and gas production and landfills.Methane is broken down by the hydroxyl radical (OH. OH is significantly affected by methane emissions, defined by the feedback factor, currently estimated to be in the range 1.3 to 1.5, and increasing with increasing methane emission. Ozone and methane changes are affected by NOx emissions. While ozone in general increase with increases in NOx emission, methane is reduced, due to increases in OH. Several processes where current and future changes have implications for climate-chemistry interactions are identified. It is also shown that climatic changes through dynamic processes could have significant impact on the atmospheric chemical distribution of ozone and methane, as we can see through the impact of Quasi Biennial Oscillation (QBO. Modeling studies indicate that increases in ozone could be more pronounced toward the end of this century. Thawing permafrost could lead to important positive feedbacks in the climate system. Large amounts of organic material are stored in the upper layers of the permafrost in the yedoma deposits in Siberia, where 2 to 5% of the deposits could be organic material

  14. Wavelet data processing of micro-Raman spectra of biological samples

    Science.gov (United States)

    Camerlingo, C.; Zenone, F.; Gaeta, G. M.; Riccio, R.; Lepore, M.

    2006-02-01

    A wavelet multi-component decomposition algorithm is proposed for processing data from micro-Raman spectroscopy (μ-RS) of biological tissue. The μ-RS has been recently recognized as a promising tool for the biopsy test and in vivo diagnosis of degenerative human tissue pathologies, due to the high chemical and structural information contents of this spectroscopic technique. However, measurements of biological tissues are usually hampered by typically low-level signals and by the presence of noise and background components caused by light diffusion or fluorescence processes. In order to overcome these problems, a numerical method based on discrete wavelet transform is used for the analysis of data from μ-RS measurements performed in vitro on animal (pig and chicken) tissue samples and, in a preliminary form, on human skin and oral tissue biopsy from normal subjects. Visible light μ-RS was performed using a He-Ne laser and a monochromator with a liquid nitrogen cooled charge coupled device equipped with a grating of 1800 grooves mm-1. The validity of the proposed data procedure has been tested on the well-characterized Raman spectra of reference acetylsalicylic acid samples.

  15. Observing Tropospheric Ozone From Space

    Science.gov (United States)

    Fishman, Jack

    2000-01-01

    The importance of tropospheric ozone embraces a spectrum of relevant scientific issues ranging from local environmental concerns, such as damage to the biosphere and human health, to those that impact global change questions, Such is climate warming. From an observational perspective, the challenge is to determine the tropospheric ozone global distribution. Because its lifetime is short compared with other important greenhouse gases that have been monitored over the past several decades, the distribution of tropospheric ozone cannot be inferred from a relatively small set of monitoring stations. Therefore, the best way to obtain a true global picture is from the use of space-based instrumentation where important spatial gradients over vast ocean expanses and other uninhabited areas can be properly characterized. In this paper, the development of the capability to measure tropospheric ozone from space over the past 15 years is summarized. Research in the late 1980s successfully led to the determination of the climatology of tropospheric ozone as a function of season; more recently, the methodology has improved to the extent where regional air pollution episodes can be characterized. The most recent modifications now provide quasi-global (50 N) to 50 S) maps on a daily basis. Such a data set would allow for the study of long-range (intercontinental) transport of air pollution and the quantification of how regional emissions feed into the global tropospheric ozone budget. Future measurement capabilities within this decade promise to offer the ability to provide Concurrent maps of the precursors to the in situ formation of tropospheric ozone from which the scientific community will gain unprecedented insight into the processes that control global tropospheric chemistry

  16. Secondary maxima in ozone profiles

    Directory of Open Access Journals (Sweden)

    R. Lemoine

    2004-01-01

    Full Text Available Ozone profiles from balloon soundings as well as SAGEII ozone profiles were used to detect anomalous large ozone concentrations of ozone in the lower stratosphere. These secondary ozone maxima are found to be the result of differential advection of ozone-poor and ozone-rich air associated with Rossby wave breaking events. The frequency and intensity of secondary ozone maxima and their geographical distribution is presented. The occurrence and amplitude of ozone secondary maxima is connected to ozone variability and trend at Uccle and account for a large part of the total ozone and lower stratospheric ozone variability.

  17. The role of dissociation channels of excited electronic states in quantum optimal control of ozone isomerization: A three-state dynamical model

    Energy Technology Data Exchange (ETDEWEB)

    Kurosaki, Yuzuru, E-mail: kurosaki.yuzuru@jaea.go.jp [Quantum Beam Science Directorate, Tokai Research and Development Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Ho, Tak-San, E-mail: tsho@Princeton.EDU [Department of Chemistry, Princeton University, Princeton, NJ 08544 (United States); Rabitz, Herschel, E-mail: hrabitz@Princeton.EDU [Department of Chemistry, Princeton University, Princeton, NJ 08544 (United States)

    2016-05-01

    The prospect of performing the open → cyclic ozone isomerization has attracted much research attention. Here we explore this consideration theoretically by performing quantum optimal control calculations to demonstrate the important role that excited-state dissociation channels could play in the isomerization transformation. In the calculations we use a three-state, one-dimensional dynamical model constructed from the lowest five {sup 1}A′ potential energy curves obtained with high-level ab initio calculations. Besides the laser field-dipole couplings between all three states, this model also includes the diabatic coupling between the two excited states at an avoided crossing leading to competing dissociation channels that can further hinder the isomerization process. The present three-state optimal control simulations examine two possible control pathways previously considered in a two-state model, and reveal that only one of the pathways is viable, achieving a robust ∼95% yield to the cyclic target in the three-state model. This work represents a step towards an ultimate model for the open → cyclic ozone transformation capable of giving adequate guidance about the necessary experimental control field resources as well as an estimate of the ro-vibronic spectral character of cyclic ozone as a basis for an appropriate probe of its formation.

  18. Modeling Stomatal Conductance to Estimate Seasonal Uptake in the Ozone-Sensitive Bioindicator Plant Common Milkweed (A. syriaca L.)

    Science.gov (United States)

    Bergweiler, C.

    2008-12-01

    The US EPA National Ambient Air Quality Standard (NAAQS) was not conceived to nor does it provide an accurate definition of the absorbed ozone dose or baseline exposure level to protect vegetation. This research presents a multiplicative modeling approach based not only on atmospheric, but on equally important physiological, phenological, and environmental parameters. Physiological constraints on ozone uptake demonstrate that actual absorption is substantially lower than that assumed by a simple interpretation of hourly atmospheric ozone concentrations. Coupled with development of foliar injury expression this provides evidence that tropospheric ozone is more toxic to vegetation than is currently understood.

  19. Cool diffusion flames of butane isomers activated by ozone in the counterflow

    KAUST Repository

    Alfazazi, Adamu

    2018-02-02

    Ignition in low temperature combustion engines is governed by a coupling between low-temperature oxidation kinetics and diffusive transport. Therefore, a detailed understanding of the coupled effects of heat release, low-temperature oxidation chemistry, and molecular transport in cool flames is imperative to the advancement of new combustion concepts. This study provides an understanding of the low temperature cool flame behavior of butane isomers in the counterflow configuration through the addition of ozone. The initiation and extinction limits of butane isomers’ cool flames have been investigated under a variety of strain rates. Results revealed that, with ozone addition, establishment of butane cool diffusion flames was successful at low and moderate strain rates. iso-Butane has lower reactivity than n-butane, as shown by higher fuel mole fractions needed for cool flame initiation and lower extinction strain rate limits. Ozone addition showed a significant influence on the initiation and sustenance of cool diffusion flames; as ozone-less cool diffusion flame of butane isomers could not be established even at high fuel mole fractions. The structure of a stable n-butane cool diffusion flame was qualitatively examined using a time of flight mass spectrometer. Numerical simulations were performed using a detailed chemical kinetic model and molecular transport to simulate the extinction limits of the cool diffusion flames of the tested fuels. The model qualitatively captured experimental trends for both fuels and ozone levels, but over-predicted extinction limits of the flames. Reactions involving low-temperature species predominantly govern extinction limits of cool flames. The simulations were used to understand the effects of methyl branching on the behavior of n-butane and iso-butane cool diffusion flames.

  20. OZONE BLEACHING AT NEUTRAL PH – A NEW CONCEPT

    Directory of Open Access Journals (Sweden)

    Fernando de Carvalho

    2010-08-01

    Full Text Available The effect of medium consistency ozone stage pH was evaluated for brown and oxygen delignified eucalyptus kraft pulp samples obtained from VCP - Luiz Antônio pulp mill. These samples were used as such or previously treated with the hot acid stage (A. The main objective of this study was to determine the viability of increasing the ozone stage pH aiming at decreasing bleaching variable costs. The ozone stage was studied in the pH range of 2.5-9.0, taking into account some important variables which affect ozone bleaching: (1 pulp kappa number entering the ozone stage, (2 reactivity of ozone towards lignin versus hexenuronic acids (HexA´s, (3 pulp treatments prior to ozone stage (acid hydrolysis, and (4 pulp treatments after the ozone stage (extraction or a chlorine dioxide stage.  Therefore, the impact of ozone stage pH was investigated in bleaching process such as Z/DEop vs AZ/DEop, Z/DEopD vs AZ/DEopD, Z/E vs AZ/E. The results were interpreted based on ozone stage efficiency and selectivity, and overall bleaching performance measured by the total bleaching chemical consumption required to achieve full brightness, pulp quality and environmental impact. It was concluded that the increase of ozone stage pH from 2.5 to 7.0 has a slightly negative impact on the efficiency and selectivity, measured after Z/DEop sequence, but this effect is not expressive in the end of Z/DEopD bleaching sequence. The increase of ozone stage pH from 2.5 to 7.0 in the sequence Z/DEopD is cost-effective at industrial level because it represents expressive reduction of sulphuric acid and caustic soda demand for pH control in the bleaching plant. These gain areas achieved without any significant changes in pulp quality and effluent load discharge. Nevertheless, the increase of ozone stage pH from 2.5 to 7.0 has a very high negative impact on the efficiency and selectivity for the Z/E and AZ/E processes and it is not recommended in such cases.

  1. Communication: Biological applications of coupled-cluster frozen-density embedding

    Science.gov (United States)

    Heuser, Johannes; Höfener, Sebastian

    2018-04-01

    We report the implementation of the Laplace-transform scaled opposite-spin (LT-SOS) resolution-of-the-identity second-order approximate coupled-cluster singles and doubles (RICC2) combined with frozen-density embedding for excitation energies and molecular properties. In the present work, we furthermore employ the Hartree-Fock density for the interaction energy leading to a simplified Lagrangian which is linear in the Lagrangian multipliers. This approximation has the key advantage of a decoupling of the coupled-cluster amplitude and multipliers, leading also to a significant reduction in computation time. Using the new simplified Lagrangian in combination with efficient wavefunction models such as RICC2 or LT-SOS-RICC2 and density-functional theory (DFT) for the environment molecules (CC2-in-DFT) enables the efficient study of biological applications such as the rhodopsin and visual cone pigments using ab initio methods as routine applications.

  2. The stratospheric ozone and the ozone layer

    International Nuclear Information System (INIS)

    Zea Mazo, Jorge Anibal; Leon Aristizabal Gloria Esperanza; Eslava Ramirez Jesus Antonio

    2000-01-01

    An overview is presented of the principal characteristics of the stratospheric ozone in the Earth's atmosphere, with particular emphasis on the tropics and the ozone hole over the poles. Some effects produced in the atmosphere as a consequence of the different human activities will be described, and some data on stratospheric ozone will be shown. We point out the existence of a nucleus of least ozone in the tropics, stretching from South America to central Africa, with annual mean values less than 240 DU, a value lower than in the middle latitudes and close to the mean values at the South Pole. The existence of such a minimum is confirmed by mean values from measurements made on satellites or with earthbound instruments, for different sectors in Colombia, like Medellin, Bogota and Leticia

  3. The Solubility of Ozone in Deionized Water and its Cleaning Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Han, J.H.; Park, J.G. [Hanyang University, Seoul (Korea, Republic of); Kwak, Y.S. [Hanyang Technology Co., Ltd., Ansan (Korea, Republic of)

    1998-06-01

    The purpose of this study was to investigate the behavior of ozone in DI water and the reaction with wafers during the semiconductor wet cleaning process. The solubility of ozone in DI water was not only dependent on the temperature but also directly proportional to the input concentration of ozone. The lower the initial ozone concentration and the temperature, the longer the half-life time of ozone. The reaction order of ozone in DI water was calculated to be around 1.5. The redox potential reached a saturation value in 5min and slightly increased as the input ozone concentrations increased. The completely hydrophilic surface was created in 1min when HF etched silicon wafer was cleaned in ozonized DI water containing higher ozone concentrations than 2ppm. Spectroscopic ellipsometry measurements showed that the chemical oxide formed by ozonized DI water was measured to be thicker than that by piranha solution. The wafers contaminated with a non-ionic surfactant were more effectively cleaned in ozonized DI water than in piranha and ozonized piranha solutions. (author). 19 refs., 11 figs., 1 tab.

  4. Process-independent strong running coupling

    International Nuclear Information System (INIS)

    Binosi, Daniele; Mezrag, Cedric; Papavassiliou, Joannis; Roberts, Craig D.; Rodriguez-Quintero, Jose

    2017-01-01

    Here, we unify two widely different approaches to understanding the infrared behavior of quantum chromodynamics (QCD), one essentially phenomenological, based on data, and the other computational, realized via quantum field equations in the continuum theory. Using the latter, we explain and calculate a process-independent running-coupling for QCD, a new type of effective charge that is an analogue of the Gell-Mann–Low effective coupling in quantum electrodynamics. The result is almost identical to the process-dependent effective charge defined via the Bjorken sum rule, which provides one of the most basic constraints on our knowledge of nucleon spin structure. As a result, this reveals the Bjorken sum to be a near direct means by which to gain empirical insight into QCD's Gell-Mann–Low effective charge.

  5. Improvements in Total Column Ozone in GEOSCCM and Comparisons with a New Ozone-Depleting Substances Scenario

    Science.gov (United States)

    Oman, Luke D.; Douglass, Anne R.

    2014-01-01

    The evolution of ozone is examined in the latest version of the Goddard Earth Observing System Chemistry-Climate Model (GEOSCCM) using old and new ozone-depleting substances (ODS) scenarios. This version of GEOSCCM includes a representation of the quasi-biennial oscillation, a more realistic implementation of ozone chemistry at high solar zenith angles, an improved air/sea roughness parameterization, and an extra 5 parts per trillion of CH3Br to account for brominated very short-lived substances. Together these additions improve the representation of ozone compared to observations. This improved version of GEOSCCM was used to simulate the ozone evolution for the A1 2010 and the newStratosphere-troposphere Processes and their Role in Climate (SPARC) 2013 ODS scenario derived using the SPARC Lifetimes Report 2013. This new ODS scenario results in a maximum Cltot increase of 65 parts per trillion by volume (pptv), decreasing slightly to 60 pptv by 2100. Approximately 72% of the increase is due to the longer lifetime of CFC-11. The quasi-global (60degS-60degN) total column ozone difference is relatively small and less than 1Dobson unit on average and consistent with the 3-4% larger 2050-2080 average Cly in the new SPARC 2013 scenario. Over high latitudes, this small change in Cly compared to the relatively large natural variabilitymakes it not possible to discern a significant impact on ozone in the second half of the 21st century in a single set of simulations.

  6. Contributors to ozone episodes in three US/Mexico border twin-cities.

    Science.gov (United States)

    Shi, Chune; Fernando, H J S; Yang, Jie

    2009-09-01

    The Process Analysis tools of the Community Multiscale Air Quality (CMAQ) modeling system together with back-trajectory analysis were used to assess potential contributors to ozone episodes that occurred during June 1-4, 2006, in three populated U.S.-Mexico border twin cities: San Diego/Tijuana, Imperial/Mexicali and El Paso/Ciudad Juárez. Validation of CMAQ output against surface ozone measurements indicates that the predictions are acceptable with regard to commonly recommended statistical standards and comparable to other reported studies. The mean normalized bias test (MNBT) and mean normalized gross error (MNGE) for hourly ozone fall well within the US EPA suggested range of +/-15% and 35%, respectively, except MNBT for El Paso. The MNBTs for maximum 8-h average ozone are larger than those for hourly ozone, but all the simulated maximum 8-h average ozone are within a factor of 2 of those measured in all three regions. The process and back-trajectory analyses indicate that the main sources of daytime ground-level ozone are the local photochemical production and regional transport. By integrating the effects of each process over the depth of the daytime planetary boundary layer (PBL), it is found that in the San Diego area (SD), chemistry and vertical advection contributed about 36%/48% and 64%/52% for June 2 and 3, respectively. This confirms the previous finding that high-altitude regional transport followed by fumigation contributes significantly to ozone in SD. The back-trajectory analysis shows that this ozone was mostly transported from the coastal area of southern California. For the episodes in Imperial Valley and El Paso, respectively, ozone was transported from the coastal areas of southern California and Mexico and from northern Texas and Oklahoma.

  7. Investigating Dry Deposition of Ozone to Vegetation

    Science.gov (United States)

    Silva, Sam J.; Heald, Colette L.

    2018-01-01

    Atmospheric ozone loss through dry deposition to vegetation is a critically important process for both air quality and ecosystem health. The majority of atmospheric chemistry models calculate dry deposition using a resistance-in-series parameterization by Wesely (1989), which is dependent on many environmental variables and lookup table values. The uncertainties contained within this parameterization have not been fully explored, ultimately challenging our ability to understand global scale biosphere-atmosphere interactions. In this work, we evaluate the GEOS-Chem model simulation of ozone dry deposition using a globally distributed suite of observations. We find that simulated daytime deposition velocities generally reproduce the magnitude of observations to within a factor of 1.4. When correctly accounting for differences in land class between the observations and model, these biases improve, most substantially over the grasses and shrubs land class. These biases do not impact the global ozone burden substantially; however, they do lead to local absolute changes of up to 4 ppbv and relative changes of 15% in summer surface concentrations. We use MERRA meteorology from 1979 to 2008 to assess that the interannual variability in simulated annual mean ozone dry deposition due to model input meteorology is small (generally less than 5% over vegetated surfaces). Sensitivity experiments indicate that the simulation is most sensitive to the stomatal and ground surface resistances, as well as leaf area index. To improve ozone dry deposition models, more measurements are necessary over rainforests and various crop types, alongside constraints on individual depositional pathways and other in-canopy ozone loss processes.

  8. Coupled processes and the tropical climatology : part III : instabilities of the fully coupled climatology

    NARCIS (Netherlands)

    Dijkstra, H.A.; Neelin, J.D.

    1998-01-01

    Coupled processes between the equatorial ocean and atmosphere control the spatial structure of the annual mean state in the Pacific region,in particular the warm-pool/cold- tongue structure.At the same time,coupled processes are known to be responsible for the variability about this mean state,in

  9. Lignin transformations and reactivity upon ozonation in aqueous media

    Science.gov (United States)

    Khudoshin, A. G.; Mitrofanova, A. N.; Lunin, V. V.

    2012-03-01

    The reaction of ozone with lignin in aqueous acidic solutions is investigated. The Danckwerst model is used to describe the kinetics of gas/liquid processes occurring in a bubble reactor. The efficient ozonation rate of a soluble lignin analog, sodium lignosulfate, is determined. The main lines of the reaction between ozone and lignin are revealed on the basis of kinetic analysis results and IR and UV spectroscopy data.

  10. Evaluation of synergy and bacterial regrowth in photocatalytic ozonation disinfection of municipal wastewater.

    Science.gov (United States)

    Mecha, Achisa C; Onyango, Maurice S; Ochieng, Aoyi; Momba, Maggy N B

    2017-12-01

    The use of solar and ultraviolet titanium dioxide photocatalytic ozonation processes to inactivate waterborne pathogens (Escherichia coli, Salmonella species, Shigella species and Vibrio cholerae) in synthetic water and secondary municipal wastewater effluent is presented. The performance indicators were bacterial inactivation efficiency, post-disinfection regrowth and synergy effects (collaboration) between ozonation and photocatalysis (photocatalytic ozonation). Photocatalytic ozonation effectively inactivated the target bacteria and positive synergistic interactions were observed, leading to synergy indices (SI) of up to 1.86 indicating a performance much higher than that of ozonation and photocatalysis individually (SI≤1, no synergy; SI>1 shows synergy between the two processes). Furthermore, there was a substantial reduction in contact time required for complete bacterial inactivation by 50-75% compared to the individual unit processes of ozonation and photocatalysis. Moreover, no post-treatment bacterial regrowth after 24 and 48h in the dark was observed. Therefore, the combined processes overcame the limitations of the individual unit processes in terms of the suppression of bacterial reactivation and regrowth owing to the fact that bacterial cells were irreparably damaged. The treated wastewater satisfied the bacteriological requirements in treated wastewater for South Africa. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Video-documentation: 'The Pannonic ozon project'

    International Nuclear Information System (INIS)

    Loibl, W.; Cabela, E.; Mayer, H. F.; Schmidt, M.

    1998-07-01

    Goal of the project was the production of a video film as documentation of the Pannonian Ozone Project- POP. The main part of the video describes the POP-model consisting of the modules meteorology, emissions and chemistry, developed during the POP-project. The model considers the European emission patterns of ozone precursors and the actual wind fields. It calculates ozone build up and depletion within air parcels due to emission and weather situation along trajectory routes. Actual ozone concentrations are calculated during model runs simulating the photochemical processes within air parcels moving along 4 day trajectories before reaching the Vienna region. The model computations were validated during extensive ground and aircraft-based measurements of ozone precursors and ozone concentration within the POP study area. Scenario computations were used to determine how much ozone can be reduced in north-eastern Austria by emissions control measures. The video lasts 12:20 minutes and consists of computer animations and life video scenes, presenting the ozone problem in general, the POP model and the model results. The video was produced in co-operation by the Austrian Research Center Seibersdorf - Department of Environmental Planning (ARCS) and Joanneum Research - Institute of Informationsystems (JR). ARCS was responsible for idea, concept, storyboard and text while JR was responsible for computer animation and general video production. The speaker text was written with scientific advice by the POP - project partners: Institute of Meteorology and Physics, University of Agricultural Sciences- Vienna, Environment Agency Austria - Air Quality Department, Austrian Research Center Seibersdorf- Environmental Planning Department/System Research Division. The film was produced as German and English version. (author)

  12. Fluctuating Thermodynamics for Biological Processes

    Science.gov (United States)

    Ham, Sihyun

    Because biomolecular processes are largely under thermodynamic control, dynamic extension of thermodynamics is necessary to uncover the mechanisms and driving factors of fluctuating processes. The fluctuating thermodynamics technology presented in this talk offers a practical means for the thermodynamic characterization of conformational dynamics in biomolecules. The use of fluctuating thermodynamics has the potential to provide a comprehensive picture of fluctuating phenomena in diverse biological processes. Through the application of fluctuating thermodynamics, we provide a thermodynamic perspective on the misfolding and aggregation of the various proteins associated with human diseases. In this talk, I will present the detailed concepts and applications of the fluctuating thermodynamics technology for elucidating biological processes. This work was supported by Samsung Science and Technology Foundation under Project Number SSTF-BA1401-13.

  13. Time series analysis of ozone data in Isfahan

    Science.gov (United States)

    Omidvari, M.; Hassanzadeh, S.; Hosseinibalam, F.

    2008-07-01

    Time series analysis used to investigate the stratospheric ozone formation and decomposition processes. Different time series methods are applied to detect the reason for extreme high ozone concentrations for each season. Data was convert into seasonal component and frequency domain, the latter has been evaluated by using the Fast Fourier Transform (FFT), spectral analysis. The power density spectrum estimated from the ozone data showed peaks at cycle duration of 22, 20, 36, 186, 365 and 40 days. According to seasonal component analysis most fluctuation was in 1999 and 2000, but the least fluctuation was in 2003. The best correlation between ozone and sun radiation was found in 2000. Other variables which are not available cause to this fluctuation in the 1999 and 2001. The trend of ozone is increasing in 1999 and is decreasing in other years.

  14. Earth's ozone layer

    International Nuclear Information System (INIS)

    Lasa, J.

    1991-01-01

    The paper contain the actual results of investigations of the influence of the human activity on the Earth's ozone layer. History of the ozone measurements and of the changes in its concentrations within the last few years are given. The influence of the trace gases on both local and global ozone concentrations are discussed. The probable changes of the ozone concentrations are presented on the basis of the modelling investigations. The effect of a decrease in global ozone concentration on human health and on biosphere are also presented. (author). 33 refs, 36 figs, 5 tabs

  15. Urban Summertime Ozone of China: Peak Ozone Hour and Nighttime Mixing

    Science.gov (United States)

    Qu, H.; Wang, Y.; Zhang, R.

    2017-12-01

    We investigate the observed diurnal cycle of summertime ozone in the cities of China using a regional chemical transport model. The simulated daytime ozone is in general agreement with the observations. Model simulations suggest that the ozone peak time and peak concentration are a function of NOx (NO + NO2) and volatile organic compound (VOC) emissions. The differences between simulated and observed ozone peak time and peak concentration in some regions can be applied to understand biases in the emission inventories. For example, the VOCs emissions are underestimated over the Pearl River Delta (PRD) region, and either NOx emissions are underestimated or VOC emissions are overestimated over the Yangtze River Delta (YRD) regions. In contrast to the general good daytime ozone simulations, the simulated nighttime ozone has a large low bias of up to 40 ppbv. Nighttime ozone in urban areas is sensitive to the nocturnal boundary-layer mixing, and enhanced nighttime mixing (from the surface to 200-500 m) is necessary for the model to reproduce the observed level of ozone.

  16. Climate impact of idealized winter polar mesospheric and stratospheric ozone losses as caused by energetic particle precipitation

    Science.gov (United States)

    Meraner, Katharina; Schmidt, Hauke

    2018-01-01

    Energetic particles enter the polar atmosphere and enhance the production of nitrogen oxides and hydrogen oxides in the winter stratosphere and mesosphere. Both components are powerful ozone destroyers. Recently, it has been inferred from observations that the direct effect of energetic particle precipitation (EPP) causes significant long-term mesospheric ozone variability. Satellites observe a decrease in mesospheric ozone up to 34 % between EPP maximum and EPP minimum. Stratospheric ozone decreases due to the indirect effect of EPP by about 10-15 % observed by satellite instruments. Here, we analyze the climate impact of winter boreal idealized polar mesospheric and polar stratospheric ozone losses as caused by EPP in the coupled Max Planck Institute Earth System Model (MPI-ESM). Using radiative transfer modeling, we find that the radiative forcing of mesospheric ozone loss during polar night is small. Hence, climate effects of mesospheric ozone loss due to energetic particles seem unlikely. Stratospheric ozone loss due to energetic particles warms the winter polar stratosphere and subsequently weakens the polar vortex. However, those changes are small, and few statistically significant changes in surface climate are found.

  17. Total ozone changes in the 1987 Antarctic ozone hole

    Science.gov (United States)

    Krueger, Arlin J.; Schoeberl, Mark R.; Doiron, Scott D.; Sechrist, Frank; Galimore, Reginald

    1988-01-01

    The development of the Antarctic ozone minimum was observed in 1987 with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) instrument. In the first half of August the near-polar (60 and 70 deg S) ozone levels were similar to those of recent years. By September, however, the ozone at 70 and 80 deg S was clearly lower than any previous year including 1985, the prior record low year. The levels continued to decrease throughout September until October 5 when a new record low of 109 DU was established at a point near the South Pole. This value is 29 DU less than the lowest observed in 1985 and 48 DU less than the 1986 low. The zonal mean total ozone at 60 deg S remained constant throughout the time of ozone hole formation. The ozone decline was punctuated by local minima formed away from the polar night boundary at about 75 deg S. The first of these, on August 15 to 17, formed just east of the Palmer Peninsula and appears to be a mountain wave. The second major minimum formed on September 5 to 7 again downwind of the Palmer Peninsula. This event was larger in scale than the August minimum and initiated the decline of ozone across the polar region. The 1987 ozone hole was nearly circular and pole centered for its entire life. In previous years the hole was perturbed by intrusions of the circumpolar maximum into the polar regions, thus causing the hole to be elliptical. The 1987 hole also remained in place until the end of November, a few days longer than in 1985, and this persistence resulted in the latest time for recovery to normal values yet observed.

  18. Ozonation control and effects of ozone on water quality in recirculating aquaculture systems

    DEFF Research Database (Denmark)

    Spiliotopoulou, Aikaterini; Rojas-Tirado, Paula Andrea; Chetri, Ravi K.

    2018-01-01

    To address the undesired effect of chemotherapeutants in aquaculture, ozone has been suggested as an alternative to improve water quality. To ensure safe and robust treatment, it is vital to define the ozone demand and ozone kinetics of the specific water matrix to avoid ozone overdose. Different...... ozone dosages were applied to water in freshwater recirculating aquaculture systems (RAS). Experiments were performed to investigate ozone kinetics and demand, and to evaluate the effects on the water quality, particularly in relation to fluorescent organic matter. This study aimed at predicting...... a suitable ozone dosage for water treatment based on daily ozone demand via laboratory studies. These ozone dosages will be eventually applied and maintained at these levels in pilot-scale RAS to verify predictions. Selected water quality parameters were measured, including natural fluorescence and organic...

  19. Efforts to reduce stratospheric ozone loss affect agriculture

    International Nuclear Information System (INIS)

    Weare, B.C.

    1995-01-01

    Research has shown that the increased ultraviolet radiation reaching the Earth's surface resulting from stratospheric ozone loss poses a danger to everyone. Concern about ozone loss prompted many nations to ratify the Montreal Protocol, the most comprehensive international environmental agreement ever enacted. Several provisions of this protocol will have substantial, long-term effects on the agricultural industry. Agriculture contributes substantially to ozone depletion, primarily through its use of chlorofluorocarbons (CFCs) for refrigeration in processing, storage and transport of meats and produce. This paper is meant to serve as an overview of the scientific basis for ozone depletion concerns, a description of the current international policy agreement, and the possible consequences of that policy for agriculture. (author)

  20. Ozone modeling

    International Nuclear Information System (INIS)

    McIllvaine, C.M.

    1994-01-01

    Exhaust gases from power plants that burn fossil fuels contain concentrations of sulfur dioxide (SO 2 ), nitric oxide (NO), particulate matter, hydrocarbon compounds and trace metals. Estimated emissions from the operation of a hypothetical 500 MW coal-fired power plant are given. Ozone is considered a secondary pollutant, since it is not emitted directly into the atmosphere but is formed from other air pollutants, specifically, nitrogen oxides (NO), and non-methane organic compounds (NMOQ) in the presence of sunlight. (NMOC are sometimes referred to as hydrocarbons, HC, or volatile organic compounds, VOC, and they may or may not include methane). Additionally, ozone formation Alternative is a function of the ratio of NMOC concentrations to NO x concentrations. A typical ozone isopleth is shown, generated with the Empirical Kinetic Modeling Approach (EKMA) option of the Environmental Protection Agency's (EPA) Ozone Isopleth Plotting Mechanism (OZIPM-4) model. Ozone isopleth diagrams, originally generated with smog chamber data, are more commonly generated with photochemical reaction mechanisms and tested against smog chamber data. The shape of the isopleth curves is a function of the region (i.e. background conditions) where ozone concentrations are simulated. The location of an ozone concentration on the isopleth diagram is defined by the ratio of NMOC and NO x coordinates of the point, known as the NMOC/NO x ratio. Results obtained by the described model are presented

  1. Surface ozone seasonality under global change: Influence from dry deposition and isoprene emissions at northern mid-latitudes

    Science.gov (United States)

    Clifton, O.; Paulot, F.; Fiore, A. M.; Horowitz, L. W.; Malyshev, S.; Shevliakova, E.; Correa, G. J. P.; Lin, M.

    2017-12-01

    Identifying the contributions of nonlinear chemistry and transport to observed surface ozone seasonal cycles over land using global models relies on an accurate representation of ozone uptake by vegetation (dry deposition). It is well established that in the absence of ozone precursor emission changes, a warming climate will increase surface ozone in polluted regions, and that a rise in temperature-dependent isoprene emissions would exacerbate this "climate penalty". However, the influence of changes in ozone dry deposition, expected to evolve with climate and land use, is often overlooked in air quality projections. With a new scheme that represents dry deposition within the NOAA GFDL dynamic vegetation land model (LM3) coupled to the NOAA GFDL atmospheric chemistry-climate model (AM3), we simulate the impact of 21st century climate and land use on ozone dry deposition and isoprene emissions. This dry deposition parameterization is a version of the Wesely scheme, but uses parameters explicitly calculated by LM3 that respond to climate and land use (e.g., stomatal conductance, canopy interception of water, leaf area index). The parameterization includes a nonstomatal deposition dependence on humidity. We evaluate climatological present-day seasonal cycles of ozone deposition velocities and abundances with those observed at northern mid-latitude sites. With a set of 2010s and 2090s decadal simulations under a high climate warming scenario (RCP8.5) and a sensitivity simulation with well-mixed greenhouse gases following RCP8.5 but air pollutants held at 2010 levels (RCP8.5_WMGG), we examine changes in surface ozone seasonal cycles. We build on our previous findings, which indicate that strong reductions in anthropogenic NOx emissions under RCP8.5 cause the surface ozone seasonal cycle over the NE USA to reverse, shifting from a summer peak at present to a winter peak by 2100. Under RCP8.5_WMGG, we parse the separate effects of climate and land use on ozone dry

  2. Comment on "Tropospheric temperature response to stratospheric ozone recovery in the 21st century" by Hu et al. (2011

    Directory of Open Access Journals (Sweden)

    C. McLandress

    2012-03-01

    Full Text Available In a recent paper Hu et al. (2011 suggest that the recovery of stratospheric ozone during the first half of this century will significantly enhance free tropospheric and surface warming caused by the anthropogenic increase of greenhouse gases, with the effects being most pronounced in Northern Hemisphere middle and high latitudes. These surprising results are based on a multi-model analysis of CMIP3 model simulations with and without prescribed stratospheric ozone recovery. Hu et al. suggest that in order to properly quantify the tropospheric and surface temperature response to stratospheric ozone recovery, it is necessary to run coupled atmosphere-ocean climate models with stratospheric ozone chemistry. The results of such an experiment are presented here, using a state-of-the-art chemistry-climate model coupled to a three-dimensional ocean model. In contrast to Hu et al., we find a much smaller Northern Hemisphere tropospheric temperature response to ozone recovery, which is of opposite sign. We suggest that their result is an artifact of the incomplete removal of the large effect of greenhouse gas warming between the two different sets of models.

  3. Optimization of Industrial Ozone Generation with Pulsed Power

    Science.gov (United States)

    Lopez, Jose; Guerrero, Daniel; Freilich, Alfred; Ramoino, Luca; Seton Hall University Team; Degremont Technologies-Ozonia Team

    2013-09-01

    Ozone (O3) is widely used for applications ranging from various industrial chemical synthesis processes to large-scale water treatment. The consequent surge in world-wide demand has brought about the requirement for ozone generation at the rate of several hundreds grams per kilowatt hour (g/kWh). For many years, ozone has been generated by means of dielectric barrier discharges (DBD), where a high-energy electric field between two electrodes separated by a dielectric and gap containing pure oxygen or air produce various microplasmas. The resultant microplasmas provide sufficient energy to dissociate the oxygen molecules while allowing the proper energetics channels for the formation of ozone. This presentation will review the current power schemes used for large-scale ozone generation and explore the use of high-voltage nanosecond pulses with reduced electric fields. The created microplasmas in a high reduced electric field are expected to be more efficient for ozone generation. This is confirmed with the current results of this work which observed that the efficiency of ozone generation increases by over eight time when the rise time and pulse duration are shortened. Department of Physics, South Orange, NJ, USA.

  4. Antibiotic abatement in different advanced oxidation processes coupled with a biological sequencing batch biofilm reactor

    International Nuclear Information System (INIS)

    Esplugas, M.; Gonzalez, O.; Benito, J.; Sans, C.

    2009-01-01

    During the last decade, the lack of fresh water is becoming a major concern. Recently, the present of recalcitrant products such as pharmaceuticals has caused a special interest due to their undefined environmental impact. Among these antibiotics are one of the numerous recalcitrant pollutants present in surface waters that might not be completely removed in the biological stage of sewage treatment plants because of their antibacterial nature. Advanced Oxidation Processes (AOPs) have proved to be highly efficient for the degradation of most organic pollutants in wastewaters. (Author)

  5. Integrated Evaluation Concept to Assess the Efficacy of Advanced Wastewater Treatment Processes for the Elimination of Micropollutants and Pathogens.

    Science.gov (United States)

    Ternes, Thomas A; Prasse, Carsten; Eversloh, Christian Lütke; Knopp, Gregor; Cornel, Peter; Schulte-Oehlmann, Ulrike; Schwartz, Thomas; Alexander, Johannes; Seitz, Wolfram; Coors, Anja; Oehlmann, Jörg

    2017-01-03

    A multidisciplinary concept has been developed to compare advanced wastewater treatment processes for their efficacy of eliminating micropollutants and pathogens. The concept is based on (i) the removal/formation of selected indicator substances and their transformation products (TPs), (ii) the assessment of ecotoxicity via in vitro tests, and (iii) the removal of pathogens and antibiotic resistant bacteria. It includes substances passing biological wastewater treatment plants regulated or proposed to be regulated in the European Water Framework Directive, TPs formed in biological processes or during ozonation, agonistic/antagonistic endocrine activities, mutagenic/genotoxic activities, cytotoxic activities, further activities like neurotoxicity as well as antibiotics resistance genes, and taxonomic gene markers for pathogens. At a pilot plant, ozonation of conventionally treated wastewater resulted in the removal of micropollutants and pathogens and the reduction of estrogenic effects, whereas the in vitro mutagenicity increased. Subsequent post-treatment of the ozonated water by granular activated carbon (GAC) significantly reduced the mutagenic effects as well as the concentrations of remaining micropollutants, whereas this was not the case for biofiltration. The results demonstrate the suitability of the evaluation concept to assess processes of advanced wastewater treatment including ozonation and GAC by considering chemical, ecotoxicological, and microbiological parameters.

  6. Experimental investigation and numerical modelling of positive corona discharge: ozone generation

    Energy Technology Data Exchange (ETDEWEB)

    Yanallah, K; Castellanos, A [Departamento de Electronica y Electromagnetismo, Universidad de Sevilla (Spain); Pontiga, F; Fernandez-Rueda, A [Departamento de FIsica Aplicada II, Universidad de Sevilla (Spain)

    2009-03-21

    The spatial distribution of the species generated in a wire-cylinder positive corona discharge in pure oxygen has been computed using a plasma chemistry model that includes the most significant reactions between electrons, ions, atoms and molecules. The plasma chemistry model is included in the continuity equations of each species, which are coupled with Poisson's equation for the electric field and the energy conservation equation for the gas temperature. The current-voltage characteristic measured in the experiments has been used as an input data to the numerical simulation. The numerical model is able to reproduce the basic structure of the positive corona discharge and highlights the importance of Joule heating on ozone generation. The average ozone density has been computed as a function of current intensity and compared with the experimental measurements of ozone concentration determined by UV absorption spectroscopy.

  7. Experimental investigation and numerical modelling of positive corona discharge: ozone generation

    International Nuclear Information System (INIS)

    Yanallah, K; Castellanos, A; Pontiga, F; Fernandez-Rueda, A

    2009-01-01

    The spatial distribution of the species generated in a wire-cylinder positive corona discharge in pure oxygen has been computed using a plasma chemistry model that includes the most significant reactions between electrons, ions, atoms and molecules. The plasma chemistry model is included in the continuity equations of each species, which are coupled with Poisson's equation for the electric field and the energy conservation equation for the gas temperature. The current-voltage characteristic measured in the experiments has been used as an input data to the numerical simulation. The numerical model is able to reproduce the basic structure of the positive corona discharge and highlights the importance of Joule heating on ozone generation. The average ozone density has been computed as a function of current intensity and compared with the experimental measurements of ozone concentration determined by UV absorption spectroscopy.

  8. Experimental investigation and numerical modelling of positive corona discharge: ozone generation

    Science.gov (United States)

    Yanallah, K; Pontiga, F; Fernández-Rueda, A; Castellanos, A

    2009-03-01

    The spatial distribution of the species generated in a wire-cylinder positive corona discharge in pure oxygen has been computed using a plasma chemistry model that includes the most significant reactions between electrons, ions, atoms and molecules. The plasma chemistry model is included in the continuity equations of each species, which are coupled with Poisson's equation for the electric field and the energy conservation equation for the gas temperature. The current-voltage characteristic measured in the experiments has been used as an input data to the numerical simulation. The numerical model is able to reproduce the basic structure of the positive corona discharge and highlights the importance of Joule heating on ozone generation. The average ozone density has been computed as a function of current intensity and compared with the experimental measurements of ozone concentration determined by UV absorption spectroscopy.

  9. Effects of Greenhouse Gas Increase and Stratospheric Ozone Depletion on Stratospheric Mean Age of Air in 1960-2010

    Science.gov (United States)

    Li, Feng; Newman, Paul; Pawson, Steven; Perlwitz, Judith

    2018-01-01

    The relative impacts of greenhouse gas (GHG) increase and stratospheric ozone depletion on stratospheric mean age of air in the 1960-2010 period are quantified using the Goddard Earth Observing System Chemistry-�Climate Model. The experiment compares controlled simulations using a coupled atmosphere-�ocean version of the Goddard Earth Observing System Chemistry-�Climate Model, in which either GHGs or ozone depleting substances, or both factors evolve over time. The model results show that GHGs and ozone-depleting substances have about equal contributions to the simulated mean age decrease, but GHG increases account for about two thirds of the enhanced strength of the lower stratospheric residual circulation. It is also found that both the acceleration of the diabatic circulation and the decrease of the mean age difference between downwelling and upwelling regions are mainly caused by GHG forcing. The results show that ozone depletion causes an increase in the mean age of air in the Antarctic summer lower stratosphere through two processes: (1) a seasonal delay in the Antarctic polar vortex breakup that inhibits young midlatitude air from mixing with the older air inside the vortex, and (2) enhanced Antarctic downwelling that brings older air from middle and upper stratosphere into the lower stratosphere.

  10. Ozonation of hospital raw wastewaters for cytostatic compounds removal. Kinetic modelling and economic assessment of the process

    Energy Technology Data Exchange (ETDEWEB)

    Ferre-Aracil, J. [Universitat Politècnica de València – EPSA, Department of Chemical and Nuclear Engineering. Institute for Industrial, Radiophysical and Environmental Safety (ISIRYM), Pl. Ferrandiz i Carbonell, 03801 Alcoi, Alicante (Spain); Valcárcel, Y. [Environmental Health and Ecotoxicology Research Group, Universidad Rey Juan Carlos, Avd. Atenas s/n, Móstoles, 28922 Alcorcón (Spain); Negreira, N.; López de Alda, M. [Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C/ Jordi Girona 18-26, 08034 Barcelona (Spain); Barceló, D. [Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C/ Jordi Girona 18-26, 08034 Barcelona (Spain); Catalan Institute for Water Research (ICRA), H2O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101, 17003 Girona (Spain); Cardona, S.C. [Universitat Politècnica de València – EPSA, Department of Chemical and Nuclear Engineering. Institute for Industrial, Radiophysical and Environmental Safety (ISIRYM), Pl. Ferrandiz i Carbonell, 03801 Alcoi, Alicante (Spain); Navarro-Laboulais, J., E-mail: jnavarla@iqn.upv.es [Universitat Politècnica de València – EPSA, Department of Chemical and Nuclear Engineering. Institute for Industrial, Radiophysical and Environmental Safety (ISIRYM), Pl. Ferrandiz i Carbonell, 03801 Alcoi, Alicante (Spain)

    2016-06-15

    The kinetics of the ozone consumption for the pretreatment of hospital wastewater has been analysed in order to determine the reaction rate coefficients between the ozone and the readily oxidisabled organic matter and cytostatic compounds. The wastewater from a medium size hospital was treated with ozone and peroxone methodologies, varying the ozone concentration, the reaction time and the hydrogen peroxide doses. The analysis shows that there are four cytostatic compounds, i.e. irinotecan, ifosfamide, cyclophosphamide and capecitabine, detected in the wastewaters and they are completely removed with reasonably short times after the ozone treatment. Considering the reactor geometry, the gas hydrodynamics, the mass transfer of ozone from gas to liquid and the reaction of all oxidisable compounds of the wastewater it is possible to determine the chemical ozone demand, COzD, of the sample as 256 mg O{sub 3} L{sup −1} and the kinetic rate coefficient with the dissolved organic matter as 8.4 M{sup −1} s{sup −1}. The kinetic rate coefficient between the ozone and the cyclophosphamide is in the order of 34.7 M{sup −1} s{sup −1} and higher for the other cytostatics. The direct economic cost of the treatment was evaluated considering this reaction kinetics and it is below 0.3 €/m{sup 3} under given circumstances. - Highlights: • 17 cytostatic compounds were analysed and 4 detected by SPE-LC/MS-MS. • The ozonation is 100% effective on the removal of the detected cytostatics. • The kinetics of cytostatic ozonation reaction is modeled by competitive kinetics. • The economic cost of the treatment of hospital wastewater was assessed.

  11. Ozonation of hospital raw wastewaters for cytostatic compounds removal. Kinetic modelling and economic assessment of the process

    International Nuclear Information System (INIS)

    Ferre-Aracil, J.; Valcárcel, Y.; Negreira, N.; López de Alda, M.; Barceló, D.; Cardona, S.C.; Navarro-Laboulais, J.

    2016-01-01

    The kinetics of the ozone consumption for the pretreatment of hospital wastewater has been analysed in order to determine the reaction rate coefficients between the ozone and the readily oxidisabled organic matter and cytostatic compounds. The wastewater from a medium size hospital was treated with ozone and peroxone methodologies, varying the ozone concentration, the reaction time and the hydrogen peroxide doses. The analysis shows that there are four cytostatic compounds, i.e. irinotecan, ifosfamide, cyclophosphamide and capecitabine, detected in the wastewaters and they are completely removed with reasonably short times after the ozone treatment. Considering the reactor geometry, the gas hydrodynamics, the mass transfer of ozone from gas to liquid and the reaction of all oxidisable compounds of the wastewater it is possible to determine the chemical ozone demand, COzD, of the sample as 256 mg O 3 L −1 and the kinetic rate coefficient with the dissolved organic matter as 8.4 M −1 s −1 . The kinetic rate coefficient between the ozone and the cyclophosphamide is in the order of 34.7 M −1 s −1 and higher for the other cytostatics. The direct economic cost of the treatment was evaluated considering this reaction kinetics and it is below 0.3 €/m 3 under given circumstances. - Highlights: • 17 cytostatic compounds were analysed and 4 detected by SPE-LC/MS-MS. • The ozonation is 100% effective on the removal of the detected cytostatics. • The kinetics of cytostatic ozonation reaction is modeled by competitive kinetics. • The economic cost of the treatment of hospital wastewater was assessed.

  12. Physicochemical and Microbiological Analysis of Drinking Water Treated by Using Ozone

    International Nuclear Information System (INIS)

    Subedi, D.P.; Khadgi, A.; Tyata, R.B.; Wong, C.S.

    2012-01-01

    This study focused on the application of a Dielectric Barrier Discharge (DBD ) unit to produce highly oxidizing ozone molecules for the treatment of drinking water. The samples of water were collected from three different sources, namely tap, stone spout and tube-well in the Kathmandu valley. Various physical, chemical and micro-biological analyses were carried out to both the ozone treated and untreated samples of water for comparison. Our results indicated that ozone does not alter the physical characteristics, namely pH, conductivity and turbidity of water but it has significant effect on the chemical properties such as nitrate concentration, total hardness, calcium hardness, Fe(II) and Fe(III) concentration. It was observed that ozone efficiently precipitates ferrous ion into ferric ion and is effective in the removal of fecal coliform, a key element for various water related health problems in most of the developing countries. It is shown that the treatment with ozone leads to a significant reduction in the number of fecal coliform in the samples of drinking water from tap, stone spout and tube well with p values 0.00182, 0.026 and 5.8 x 10 -15 , respectively at 0.05 level of significance. (author)

  13. effect of ambient levels of ozone on photosynthetic components

    African Journals Online (AJOL)

    ACSS

    To clarify the long-term effects of ambient levels of tropospheric ozone (O3) on ... (Rubisco), thus contributing to the reduction in net photosynthetic rate at the .... USA). During the measurements, atmospheric. CO2 concentrations, air ...... productivity and implications for climate change. Annual Review of Plant Biology 63:.

  14. Tropospheric Ozone and Photochemical Smog

    Science.gov (United States)

    Sillman, S.

    2003-12-01

    emitted species, in a process that is driven by sunlight and is accelerated by warm temperatures. This smog is largely the product of gasoline-powered engines (especially automobiles), although coal-fired industry can also generate photochemical smog. The process of photochemical smog formation was first identified by Haagen-Smit and Fox (1954) in association with Los Angeles, a city whose geography makes it particularly susceptible to this type of smog formation. Sulfate aerosols and organic particulates are often produced concurrently with ozone, giving rise to a characteristic milky-white haze associated with this type of air pollution.Today ozone and particulates are recognized as the air pollutants that are most likely to affect human health adversely. In the United States, most major metropolitan areas have periodic air pollution events with ozone in excess of government health standards. Violations of local health standards also occur in major cities in Canada and in much of Europe. Other cities around the world (especially Mexico City) also experience very high ozone levels. In addition to urban-scale events, elevated ozone occurs in region-wide events in the eastern USA and in Western Europe, with excess ozone extending over areas of 1,000 km2 or more. Ozone plumes of similar extent are found in the tropics (especially in Central Africa) at times of high biomass burning (e.g., Jenkins et al., 1997; Chatfield et al., 1998). In some cases ozone associated with biomass burning has been identified at distances up to 104 km from its sources (Schultz et al., 1999).Ozone also has a significant impact on the global troposphere, and ozone chemistry is a major component of global tropospheric chemistry. Global background ozone concentrations are much lower than urban or regional concentrations during pollution events, but there is evidence that the global background has increased as a result of human activities (e.g., Wang and Jacob, 1998; Volz and Kley, 1988). A rise in

  15. Climate effect of ozone changes caused by present and future air traffic

    Energy Technology Data Exchange (ETDEWEB)

    Ponater, M.; Sausen, R.; Feneberg, B. [DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Wessling (Germany). Inst. fuer Physik der Atmosphaere; Roeckner, E. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany)

    1998-08-01

    The potential of aircraft-induced ozone changes to significantly enhance the climate impact of air traffic due to CO{sub 2}-emissions is investigated by means of simulations with an atmospheric general circulation model, coupled to a mixed layer ocean model. Results from several numerical experiments are presented, based on ozone increase patterns for 1992 aviation and on a future scenario for the year 2015. The climate signal is statistically significant for both time slices. Its strength is of comparable magnitude to that arising from aircraft CO{sub 2} emissions, thus meaning a nonnegligible contribution to the total effect. There are indications of a characteristic signature of the aircraft ozone related temperature response pattern, distinctly different from that typically associated with the increase of a well-mixed greenhouse gas. Likewise, the climate sensitivity to nonuniform ozone changes including a strong concentration perturbation at the tropopause appears to he higher than the climate sensitivity to uniform changes of a greenhouse gas. In a hierarchy of experiments based on an aircraft-related ozone perturbation with fixed structure (but increasing amplitude), the climate signal depends in a nonlinear way from the radiative forcing. (orig.) 44 refs.

  16. Biological-Physical Coupling in the Gulf of Maine: Satellite and Model Studies of Phytoplankton Variability

    Science.gov (United States)

    Thomas, Andrew C.; Chai, F.; Townsend, D. W.; Xue, H.

    2002-01-01

    The goals of this project were to acquire, process, QC, archive and analyze SeaWiFS chlorophyll fields over the Gulf of Maine and Scotia Shelf region. The focus of the analysis effort was to calculate and quantify seasonality and interannual. variability of SeaWiFS-measured phytoplankton biomass in the study area and compare these to physical forcing and hydrography. An additional focus within this effort was on regional differences within the heterogeneous biophysical regions of the Gulf of Maine / Scotia Shelf. Overall goals were approached through the combined use of SeaWiFS and AVHRR data and the development of a coupled biology-physical numerical model.

  17. Comparative evaluation of effects of ozonated and chlorinated thermal discharges on estuarine and freshwater organisms

    Energy Technology Data Exchange (ETDEWEB)

    Guerra, C.R.; Sugam, R.; Meldrim, J.W.; Holmstrom, E.R.; Balog, G.E.

    1980-08-01

    As a part of a program at PSE and G designed to examine the feasibility of ozonation as an alternative to chlorination for control of biofouling in once-through cooling systems, the biological effects of ozonated and chlorinated thermal discharges were evaluated with estuarine and freshwater organisms. Mortality at salinities between 0.5 to 2.5 ppt with mummichog and white perch indicated greater toxicity for chlorine while the alewife, spottail shiner, rainbow trout and white perch in freshwater were more sensitive to ozone. Behavioral and physograhic results were consistent with those observed in toxicity studies. Initial cough response and avoidance concentrations of mummicog and white perch in estuarine waters were lower when exposed to chlorine than to ozone. In freshwater, blueback herring, alewife, rainbow trout, spottail shiner, banded killifish, and white perch avoided lower concentrations of ozone than chlorine.

  18. The effect of increased ozone concentrations in the air on selected aspects of rat reproduction.

    Science.gov (United States)

    Jedlińska-Krakowska, M; Gizejewski, Z; Dietrich, G J; Jakubowski, K; Glogowski, J; Penkowski, A

    2006-01-01

    Five-month-old male rates were exposed to 0.5 ppm ozone for 50 days, 5 hours a day. A week before the completion of ozone exposure, a biological test was performed to determine the fertilization rate and the survival rate of newborns in both ozone-exposed and control animals. After 50 days, the rats were sacrificed with an overdose of halotane, and testes were collected to assess the morphology and motility of spermatozoa. Neither the morphology of spermatozoa nor motility parameters determined by the CASA (computer-assisted sperm analysis) system showed statistically significant differences between ozone-exposed and control males. The number of successful matings and the survival rate of newborns per litter within one year postpartum were also similar in both groups. However, sperm concentration was by 17% lower in ozone-exposed rats, compared with the control animals.

  19. Comparing Model Ozone Loss during the SOLVE and SOLVE-2 Winters

    Science.gov (United States)

    Drdla, K.

    2003-01-01

    Model simulations have been used to analyze the factors influencing ozone loss during the 1999-2000 and 2002-2003 js. For both winters, the evolution of the Arctic vortex from November to April has been simulated using a trajectory-based microphysical and photochemical model. Extensive PSC formation and strong ozone depletion are evident in both winters. However, the ozone loss begins earlier in the 2002-2003 winter, with significant ozone depletion by early January. Analysis of the model results shows that during December 2002 not only cold temperatures but also the vortex structure was critical, allowing PSC-processed air parcels to experience significant solar exposure. The resultant ozone loss can be differentiated from ozone loss that occurs in the springtime, in particular because of the continued exposure to PSCs. For example, chlorine reactivation by the PSCs causes ozone loss to be insensitive to denitrification. Therefore, diagnosing the extent of ozone loss early in the winter is critical In understanding the overall winter-long ozone depletion.

  20. Key drivers of ozone change and its radiative forcing over the 21st century

    Science.gov (United States)

    Iglesias-Suarez, Fernando; Kinnison, Douglas E.; Rap, Alexandru; Maycock, Amanda C.; Wild, Oliver; Young, Paul J.

    2018-05-01

    Over the 21st century changes in both tropospheric and stratospheric ozone are likely to have important consequences for the Earth's radiative balance. In this study, we investigate the radiative forcing from future ozone changes using the Community Earth System Model (CESM1), with the Whole Atmosphere Community Climate Model (WACCM), and including fully coupled radiation and chemistry schemes. Using year 2100 conditions from the Representative Concentration Pathway 8.5 (RCP8.5) scenario, we quantify the individual contributions to ozone radiative forcing of (1) climate change, (2) reduced concentrations of ozone depleting substances (ODSs), and (3) methane increases. We calculate future ozone radiative forcings and their standard error (SE; associated with inter-annual variability of ozone) relative to year 2000 of (1) 33 ± 104 m Wm-2, (2) 163 ± 109 m Wm-2, and (3) 238 ± 113 m Wm-2 due to climate change, ODSs, and methane, respectively. Our best estimate of net ozone forcing in this set of simulations is 430 ± 130 m Wm-2 relative to year 2000 and 760 ± 230 m Wm-2 relative to year 1750, with the 95 % confidence interval given by ±30 %. We find that the overall long-term tropospheric ozone forcing from methane chemistry-climate feedbacks related to OH and methane lifetime is relatively small (46 m Wm-2). Ozone radiative forcing associated with climate change and stratospheric ozone recovery are robust with regard to background climate conditions, even though the ozone response is sensitive to both changes in atmospheric composition and climate. Changes in stratospheric-produced ozone account for ˜ 50 % of the overall radiative forcing for the 2000-2100 period in this set of simulations, highlighting the key role of the stratosphere in determining future ozone radiative forcing.

  1. Artificially ionized region as a source of ozone in the stratosphere

    International Nuclear Information System (INIS)

    Gurevich, Aleksandr V; Litvak, Aleksandr G; Vikharev, A L; Ivanov, O A; Borisov, Nikolai D; Sergeichev, Konstantin F

    2000-01-01

    A set of physical and chemical processes occurring in a microwave stratospheric discharge of nanosecond duration is discussed in connection with the effect they may have locally on the ozone layer in the artificially ionized region (AIR) in the stratosphere. The AIR, to be created at altitudes of 18 - 20 km by the microwave breakdown of air with ground-produced powerful electromagnetic wave beams, is planned for use in the natural physical experiment aimed at active monitoring of the ozone layer (its internal state and a set of plasma-chemical and photochemical processes) by controllably generating a considerable amount of ozone in the stratosphere. Results of relevant theoretical studies are presented, as are those of a large series of laboratory experiments performed under conditions similar to those prevailing in the stratosphere. Discharge regimes securing the efficient growth of ozone concentration are identified and studied in detail. It is demonstrated that such a stratospheric ozonizer is about as efficient as the best ground-based ozonizers used at present. For typical stratospheric conditions (low pressures and temperatures T ∼ 200 - 220 K), it is shown that the intense generation of ozone in a microwave breakdown effected by groups of short nanosecond pulses does not virtually increase the density of nitrogen oxides - gases that play a vital role in catalytic ozone-decomposing reactions. The possibility of effectively producing ozone in prebreakdown electric fields is established experimentally. It is demonstrated that due to its long lifetime, ozone produced locally at altitudes of 18 - 20 km may spread widely under the action of winds and turbulent diffusion, thus leading to an additional - artificial - ozonization of the stratosphere. (reviews of topical problems)

  2. Tropical Tropospheric Ozone from SHADOZ (Southern Hemisphere ADditional Ozonesondes) Network: A Project for Satellite Research, Process Studies, Education

    Science.gov (United States)

    Thompson, Anne M.; Witte, Jacquelyn C.; Oltmans, Samuel J.; Schmidlin, Francis J.; Coetzee, G. J. R.; Hoegger, Bruno; Kirchhoff, V. W. J. H.; Ogawa, Toshihiro; Kawakami, Shuji; Posny, Francoise

    2002-01-01

    The first climatological overview of total, stratospheric and tropospheric ozone in the southern hemisphere tropical and subtropics is based on ozone sounding data from 10 sites comprising the Southern Hemisphere Additional OZonesondes (SHADOZ) network. The period covered is 1998-2000. Observations were made over: Ascension Island; Nairobi, Kenya; Irene, South Africa; Reunion Island; Watukosek, Java; Fiji; Tahiti; American Samoa; San Cristobal, Galapagos; Natal, Brazil. Campaign data were collected on a trans-Atlantic oceanographic cruise and during SAFARI-2000 in Zambia. The ozone data, with simultaneous temperature profiles to approx. 7 hPa and relative humidity to approx. 200 hPa, reside at: . SHADOZ ozone time-series and profiles give a perspective on tropical total, stratospheric and tropospheric ozone. Prominent features are highly variable tropospheric ozone and a zonal wave-one pattern in total (and tropospheric) column ozone. Total, stratospheric and tropospheric column ozone amounts peak between August and November and are lowest between March and May. Tropospheric ozone variability over the Indian and Pacific Ocean displays influences of the Indian Ocean Dipole and convective mixing. Pollution transport from Africa and South America is a seasonal feature. Tropospheric ozone seasonality over the Atlantic Basin shows effects of regional subsidence and recirculation as well as biomass burning. Dynamical and chemical influences appear to be of comparable magnitude though model studies are needed to quantify this.

  3. Experimental monitoring of ozone production in a PET cyclotron facility

    International Nuclear Information System (INIS)

    Zanibellato, L.; Cicoria, G.; Pancaldi, D.; Boschi, S.; Mostacci, D.; Marengo, M.

    2010-01-01

    Ozone produced from radiolytic processes was investigated as a possible health hazard in the working environment at the University Hospital 'S.Orsola-Malpighi' PET facility. Intense radiation fields can generate ozone, known to be the most toxic gas produced by ionizing radiation around a particle accelerator. To evaluate ozone concentration in air, two different measurement campaigns were conducted with passive diffusion detectors. Comparison of the results with the concentration limits recommended by American Conference of Governmental Industrial Hygienists (ACGIH) demonstrated that ozone poses no health hazard to workers around a biomedical cyclotron.

  4. Ozone modeling

    Energy Technology Data Exchange (ETDEWEB)

    McIllvaine, C M

    1994-07-01

    Exhaust gases from power plants that burn fossil fuels contain concentrations of sulfur dioxide (SO{sub 2}), nitric oxide (NO), particulate matter, hydrocarbon compounds and trace metals. Estimated emissions from the operation of a hypothetical 500 MW coal-fired power plant are given. Ozone is considered a secondary pollutant, since it is not emitted directly into the atmosphere but is formed from other air pollutants, specifically, nitrogen oxides (NO), and non-methane organic compounds (NMOQ) in the presence of sunlight. (NMOC are sometimes referred to as hydrocarbons, HC, or volatile organic compounds, VOC, and they may or may not include methane). Additionally, ozone formation Alternative is a function of the ratio of NMOC concentrations to NO{sub x} concentrations. A typical ozone isopleth is shown, generated with the Empirical Kinetic Modeling Approach (EKMA) option of the Environmental Protection Agency's (EPA) Ozone Isopleth Plotting Mechanism (OZIPM-4) model. Ozone isopleth diagrams, originally generated with smog chamber data, are more commonly generated with photochemical reaction mechanisms and tested against smog chamber data. The shape of the isopleth curves is a function of the region (i.e. background conditions) where ozone concentrations are simulated. The location of an ozone concentration on the isopleth diagram is defined by the ratio of NMOC and NO{sub x} coordinates of the point, known as the NMOC/NO{sub x} ratio. Results obtained by the described model are presented.

  5. Lower tropospheric ozone over India and its linkage to the South Asian monsoon

    Science.gov (United States)

    Lu, Xiao; Zhang, Lin; Liu, Xiong; Gao, Meng; Zhao, Yuanhong; Shao, Jingyuan

    2018-03-01

    Lower tropospheric (surface to 600 hPa) ozone over India poses serious risks to both human health and crops, and potentially affects global ozone distribution through frequent deep convection in tropical regions. Our current understanding of the processes controlling seasonal and long-term variations in lower tropospheric ozone over this region is rather limited due to spatially and temporally sparse observations. Here we present an integrated process analysis of the seasonal cycle, interannual variability, and long-term trends of lower tropospheric ozone over India and its linkage to the South Asian monsoon using the Ozone Monitoring Instrument (OMI) satellite observations for years 2006-2014 interpreted with a global chemical transport model (GEOS-Chem) simulation for 1990-2010. OMI observed lower tropospheric ozone over India averaged for 2006-2010, showing the highest concentrations (54.1 ppbv) in the pre-summer monsoon season (May) and the lowest concentrations (40.5 ppbv) in the summer monsoon season (August). Process analyses in GEOS-Chem show that hot and dry meteorological conditions and active biomass burning together contribute to 5.8 Tg more ozone being produced in the lower troposphere in India in May than January. The onset of the summer monsoon brings ozone-unfavorable meteorological conditions and strong upward transport, which all lead to large decreases in the lower tropospheric ozone burden. Interannually, we find that both OMI and GEOS-Chem indicate strong positive correlations (r = 0.55-0.58) between ozone and surface temperature in pre-summer monsoon seasons, with larger correlations found in high NOx emission regions reflecting NOx-limited production conditions. Summer monsoon seasonal mean ozone levels are strongly controlled by monsoon strengths. Lower ozone concentrations are found in stronger monsoon seasons mainly due to less ozone net chemical production. Furthermore, model simulations over 1990-2010 estimate a mean annual trend of 0

  6. A model study of ozone in the eastern Mediterranean free troposphere during MINOS (August 2001

    Directory of Open Access Journals (Sweden)

    G. J. Roelofs

    2003-01-01

    Full Text Available A coupled tropospheric chemistry-climate model is used to analyze tropospheric ozone distributions observed during the MINOS campaign in the eastern Mediterranean region (August, 2001. Modeled ozone profiles are generally in good agreement with the observations. Our analysis shows that the atmospheric dynamics in the region are strongly influenced by the occurrence of an upper tropospheric anti-cyclone, associated with the Asian summer monsoon and centered over the Tibetan Plateau. The anti-cyclone affects the chemical composition of the upper troposphere, where ozone concentrations of about 50 ppbv were measured, through advection of boundary layer air from South-East Asia. A layer between 4-6 km thickness was present beneath, containing up to 120 ppbv of ozone with substantial contributions by transport from the stratosphere and through lightning NOx. Additionally, pollutant ozone from North America was mixed in. Ozone in the lower troposphere originated mainly from the European continent. The stratospheric influence may be overestimated due to too strong vertical diffusion associated with the relatively coarse vertical resolution. The estimated tropospheric ozone column over the eastern Mediterranean is ~50 DU in summer, to which ozone from recent stratospheric origin contributes about 30%, ozone from lightning 13%, and from South-East Asia, North America and Europe about 7%, 8% and 14%, respectively, adding to a long-term hemispheric background of 25% of the column.

  7. Coupled processes in repository sealing

    International Nuclear Information System (INIS)

    Case, J.B.; Kelsall, P.C.

    1985-01-01

    The significance of coupled processes in repository sealing is evaluated. In most repository designs, shaft seals will be located in areas of relatively low temperature perturbation, in which case the coupling of temperature with stress and permeability may be less significant than the coupling between stress and permeability that occurs during excavation. Constitutive relationships between stress and permeability are reviewed for crystalline rock and rocksalt. These provide a basis for predicting the development of disturbed zones near excavations. Field case histories of the degree of disturbance are presented for two contrasting rock types - Stripa granite and Southeastern New Mexico rocksalt. The results of field investigations in both rock types confirm that hydraulic conductivity or permeability is stress dependent, and that shaft seal performance may be related to the degree that stresses are perturbed and restored near the seal

  8. Ozone Technology for Pathogenic Bacteria of Shrimp (Vibrio sp.) Disinfection

    Science.gov (United States)

    Wulansarie, Ria; Dyah Pita Rengga, Wara; Rustamadji

    2018-03-01

    One of important marine commodities in Indonesia, shrimps are susceptible with Vibrio sp bacteria infection. That infection must be cleared. One of the technologies for disinfecting Vibrio sp. is ozone technology. In this research, Vibrio sp. is a pathogenic bacterium which infects Penaeus vannamei. Ozone technology is applied for threatening Vibrio sp. In this research, ozonation was performed in different pH. Those are neutral, acid (pH=4), and base (pH=9). The sample was water from shrimp embankment from Balai Besar Perikanan Budidaya Air Payau (BBPBAP) located in Jepara. That water was the habitat of Penaeus vannamei shrimp. The brand of ozonator used in this research was “AQUATIC”. The used ozonator in this research had 0,0325 g/hour concentration. The flow rate of sample used in this research was 2 L/minute. The ozonation process was performed in continuous system. A tank, pipe, pump, which was connected with microfilter, flowmeter and ozone generator were the main tools in this research. It used flowmeter and valve to set the flow rate scalable as desired. The first step was the insert of 5 L sample into the receptacle. Then, by using a pump, a sample supplied to the microfilter to be filtered and passed into the flow meter. The flow rate was set to 2 LPM. Furthermore, gas from ozonator passed to the flow for the disinfection of bacteria and then was recycled to the tank and the process run continuously. Samples of the results of ozonation were taken periodically from time 0, 3, 7, 12, 18, 24 to 30 minutes. The samples of the research were analyzed using Total Plate Count (TPC) test in BBPBAP Jepara to determine the number of Vibrio sp. bacteria. The result of this research was the optimal condition for pathogenic bacteria of shrimp (Vibrio sp.) ozonation was in neutral condition.

  9. Solar photo-ozonation: A novel treatment method for the degradation of water pollutants

    International Nuclear Information System (INIS)

    Chávez, Ana M.; Rey, Ana; Beltrán, Fernando J.; Álvarez, Pedro M.

    2016-01-01

    Highlights: • Aqueous ozone decomposition is accelerated by solar radiation. • Hydrogen peroxide is identifies as a main intermediate of decomposition of aqueous ozone under solar irradiation. • Solar photo-ozonation leads to higher Rct ratios than single ozonation. • Solar photo-ozonation is a promising AOP for the degradation of water pollutants. - Abstract: The decomposition of aqueous ozone by UV–vis radiation has been investigated with focus on the impact of ozone photolysis on the degradation of water pollutants during solar ozonation processes. The apparent first-order rate constants of the decomposition of ozone (k_o_b_s) have been determined at various pHs in the 4–9 range using radiation of different wavelengths in the UV–vis range. It was found that UVA–visible radiation (λ > 320 nm) highly enhanced ozone decomposition, especially at pH 4, for which k_o_b_s was three-folded with respect to the process in the absence of radiation. Hydrogen peroxide was identified as a main intermediate of ozone photo-decomposition at pH 4. Experiments of degradation of oxalic acid by ozone showed that solar irradiation brings about an increase in the hydroxyl radical to ozone exposures ratio (R_c_t). Finally, photo-ozonation (λ > 300 nm) was shown advantageous over single ozonation in the mineralization of a selection of emerging contaminants (metoprolol, ibuprofen, N,N-diethyl-meta-toluamide and clofibric acid) in both ultrapure water and a synthetic secondary effluent. Thus, TOC removal in 2-h treatments increased from 10 to 25% in the absence of radiation to about 50% in the presence of radiation.

  10. Solar photo-ozonation: A novel treatment method for the degradation of water pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Chávez, Ana M.; Rey, Ana; Beltrán, Fernando J.; Álvarez, Pedro M., E-mail: pmalvare@unex.es

    2016-11-05

    Highlights: • Aqueous ozone decomposition is accelerated by solar radiation. • Hydrogen peroxide is identifies as a main intermediate of decomposition of aqueous ozone under solar irradiation. • Solar photo-ozonation leads to higher Rct ratios than single ozonation. • Solar photo-ozonation is a promising AOP for the degradation of water pollutants. - Abstract: The decomposition of aqueous ozone by UV–vis radiation has been investigated with focus on the impact of ozone photolysis on the degradation of water pollutants during solar ozonation processes. The apparent first-order rate constants of the decomposition of ozone (k{sub obs}) have been determined at various pHs in the 4–9 range using radiation of different wavelengths in the UV–vis range. It was found that UVA–visible radiation (λ > 320 nm) highly enhanced ozone decomposition, especially at pH 4, for which k{sub obs} was three-folded with respect to the process in the absence of radiation. Hydrogen peroxide was identified as a main intermediate of ozone photo-decomposition at pH 4. Experiments of degradation of oxalic acid by ozone showed that solar irradiation brings about an increase in the hydroxyl radical to ozone exposures ratio (R{sub ct}). Finally, photo-ozonation (λ > 300 nm) was shown advantageous over single ozonation in the mineralization of a selection of emerging contaminants (metoprolol, ibuprofen, N,N-diethyl-meta-toluamide and clofibric acid) in both ultrapure water and a synthetic secondary effluent. Thus, TOC removal in 2-h treatments increased from 10 to 25% in the absence of radiation to about 50% in the presence of radiation.

  11. The Antarctic ozone hole

    International Nuclear Information System (INIS)

    Jones, Anna E

    2008-01-01

    Since the mid 1970s, the ozone layer over Antarctica has experienced massive destruction during every spring. In this article, we will consider the atmosphere, and what ozone and the ozone layer actually are. We explore the chemistry responsible for the ozone destruction, and learn about why conditions favour ozone destruction over Antarctica. For the historical perspective, the events leading up to the discovery of the 'hole' are presented, as well as the response from the international community and the measures taken to protect the ozone layer now and into the future

  12. Evidence for a continuous decline in lower stratospheric ozone offsetting ozone layer recovery

    Science.gov (United States)

    Ball, William T.; Alsing, Justin; Mortlock, Daniel J.; Staehelin, Johannes; Haigh, Joanna D.; Peter, Thomas; Tummon, Fiona; Stübi, Rene; Stenke, Andrea; Anderson, John; Bourassa, Adam; Davis, Sean M.; Degenstein, Doug; Frith, Stacey; Froidevaux, Lucien; Roth, Chris; Sofieva, Viktoria; Wang, Ray; Wild, Jeannette; Yu, Pengfei; Ziemke, Jerald R.; Rozanov, Eugene V.

    2018-02-01

    Ozone forms in the Earth's atmosphere from the photodissociation of molecular oxygen, primarily in the tropical stratosphere. It is then transported to the extratropics by the Brewer-Dobson circulation (BDC), forming a protective ozone layer around the globe. Human emissions of halogen-containing ozone-depleting substances (hODSs) led to a decline in stratospheric ozone until they were banned by the Montreal Protocol, and since 1998 ozone in the upper stratosphere is rising again, likely the recovery from halogen-induced losses. Total column measurements of ozone between the Earth's surface and the top of the atmosphere indicate that the ozone layer has stopped declining across the globe, but no clear increase has been observed at latitudes between 60° S and 60° N outside the polar regions (60-90°). Here we report evidence from multiple satellite measurements that ozone in the lower stratosphere between 60° S and 60° N has indeed continued to decline since 1998. We find that, even though upper stratospheric ozone is recovering, the continuing downward trend in the lower stratosphere prevails, resulting in a downward trend in stratospheric column ozone between 60° S and 60° N. We find that total column ozone between 60° S and 60° N appears not to have decreased only because of increases in tropospheric column ozone that compensate for the stratospheric decreases. The reasons for the continued reduction of lower stratospheric ozone are not clear; models do not reproduce these trends, and thus the causes now urgently need to be established.

  13. Evidence for a Continuous Decline in Lower Stratospheric Ozone Offsetting Ozone Layer Recovery

    Science.gov (United States)

    Ball, William T.; Alsing, Justin; Mortlock, Daniel J.; Staehelin, Johannes; Haigh, Joanna D.; Peter, Thomas; Tummon, Fiona; Stuebi, Rene; Stenke, Andrea; Anderson, John; hide

    2018-01-01

    Ozone forms in the Earth's atmosphere from the photodissociation of molecular oxygen, primarily in the tropical stratosphere. It is then transported to the extratropics by the Brewer-Dobson circulation (BDC), forming a protective "ozone layer" around the globe. Human emissions of halogen-containing ozone-depleting substances (hODSs) led to a decline in stratospheric ozone until they were banned by the Montreal Protocol, and since 1998 ozone in the upper stratosphere is rising again, likely the recovery from halogen-induced losses. Total column measurements of ozone between the Earth's surface and the top of the atmosphere indicate that the ozone layer has stopped declining across the globe, but no clear increase has been observed at latitudes between 60degS and 60degN outside the polar regions (60-90deg). Here we report evidence from multiple satellite measurements that ozone in the lower stratosphere between 60degS and 60degN has indeed continued to decline since 1998. We find that, even though upper stratospheric ozone is recovering, the continuing downward trend in the lower stratosphere prevails, resulting in a downward trend in stratospheric column ozone between 60degS and 60degN. We find that total column ozone between 60degS and 60degN appears not to have decreased only because of increases in tropospheric column ozone that compensate for the stratospheric decreases. The reasons for the continued reduction of lower stratospheric ozone are not clear; models do not reproduce these trends, and thus the causes now urgently need to be established.

  14. The Effect of Ozonation Process on Bromide-Containing Groundwaters in Bandung Area and Its Surroundings

    Directory of Open Access Journals (Sweden)

    Mindriany Syafila

    2012-11-01

    Full Text Available Disinfection process was applied as the last step of the water treatment to kill pathogenic bacteria in the water. However, according to several studies, the ozonation disinfection process could form undesired by-products. One of the by-products potentially affecting human life is bromate produced from bromide ionic-containing water. This study was carried out to examine the effect of raw water characteristics and pH on bromate formation. Also, the performance of bromate formation for a period of exposure time was analyzed. Raw waters taken from four different areas around Bandung were exposed to ozone introduced to a reactor with a flow rate of 2 L/min. The pH of the raw waters varied from 4, 7 to 10. The results show that there was no evidence of an initial bromide ion concentration, whereas a change in pH value gives a significantly different outcome. In acidic condition (pH of 4 the bromate formation tends to decrease, whereas when the pH value increases to a pH of 10, the bromate formation increases. Therefore, for drinking water with a neutral pH, when bromide ions are detected in the raw water, the drinking water may be toxic due to the presence of bromate.

  15. Ozonated Olive Oils and Troubles

    Directory of Open Access Journals (Sweden)

    Bulent Uysal

    2014-04-01

    Full Text Available One of the commonly used methods for ozone therapy is ozonated oils. Most prominent type of used oils is extra virgin olive oil. But still, each type of unsaturated oils may be used for ozonation. There are a lot of wrong knowledge on the internet about ozonated oils and its use as well. Just like other ozone therapy studies, also the studies about ozone oils are inadequate to avoid incorrect knowledge. Current data about ozone oil and its benefits are produced by supplier who oversees financial interests and make misinformation. Despite the rapidly increasing ozone oil sales through the internet, its quality and efficacy is still controversial. Dozens of companies and web sites may be easily found to buy ozonated oil. But, very few of these products are reliable, and contain sufficiently ozonated oil. This article aimed to introduce the troubles about ozonated oils and so to inform ozonated oil users. [J Intercult Ethnopharmacol 2014; 3(2.000: 49-50

  16. Interactions of aqueous NOM with nanoscale TiO2: implications for ceramic membrane filtration-ozonation hybrid process.

    Science.gov (United States)

    Kim, Jeonghwan; Shan, Wenqian; Davies, Simon H R; Baumann, Melissa J; Masten, Susan J; Tarabara, Volodymyr V

    2009-07-15

    The combined effect of pH and calcium on the interactions of nonozonated and ozonated natural organic matter (NOM) with nanoscale TiO2 was investigated. The approach included characterization of TiO2 nanoparticles and NOM, extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) modeling of NOM-TiO2 and NOM-NOM interactions, batch study on the NOM adsorption onto TiO2 surface, and bench-scale study on the treatment of NOM-containing feed waters using a hybrid process that combines ozonation and ultrafiltration with a 5 kDa ceramic (TiO2 surface) membrane. It was demonstrated that depending on pH and TiO2 loading, the adsorption of NOM species is controlled by either the availability of divalent cations or by preozonation of NOM. XDLVO surface energy analysis predicts NOM adsorption onto TiO2 in the ozone-controlled regime but not in the calcium-controlled regime. In both regimes, short-range NOM-NOM and NOM-TiO2 interactions were governed by acid-base and van der Waals forces, whereas the role of electrostatic forces was relatively insignificant. Ozonation increased the surface energy of NOM, contributing to the hydrophilic repulsion component of the NOM-NOM and NOM-TiO2 interactions. In the calcium-controlled regime, neither NOM-TiO2 nor NOM-NOM interaction controlled adsorption. Non-XDLVO interactions such as intermolecular bridging by calcium were hypothesized to be responsible for the observed adsorption behavior. Adsorption data proved to be highly predictive of the permeate flux performance.

  17. Ozone Measurements Monitoring Using Data-Based Approach

    KAUST Repository

    Harrou, Fouzi; Kadri, Farid; Khadraoui, Sofiane; Sun, Ying

    2016-01-01

    The complexity of ozone (O3) formation mechanisms in the troposphere make the fast and accurate modeling of ozone very challenging. In the absence of a process model, principal component analysis (PCA) has been extensively used as a data-based monitoring technique for highly correlated process variables; however conventional PCA-based detection indices often fail to detect small or moderate anomalies. In this work, we propose an innovative method for detecting small anomalies in highly correlated multivariate data. The developed method combine the multivariate exponentially weighted moving average (MEWMA) monitoring scheme with PCA modelling in order to enhance anomaly detection performance. Such a choice is mainly motivated by the greater ability of the MEWMA monitoring scheme to detect small changes in the process mean. The proposed PCA-based MEWMA monitoring scheme is successfully applied to ozone measurements data collected from Upper Normandy region, France, via the network of air quality monitoring stations. The detection results of the proposed method are compared to that declared by Air Normand air monitoring association.

  18. Ozone Measurements Monitoring Using Data-Based Approach

    KAUST Repository

    Harrou, Fouzi

    2016-02-01

    The complexity of ozone (O3) formation mechanisms in the troposphere make the fast and accurate modeling of ozone very challenging. In the absence of a process model, principal component analysis (PCA) has been extensively used as a data-based monitoring technique for highly correlated process variables; however conventional PCA-based detection indices often fail to detect small or moderate anomalies. In this work, we propose an innovative method for detecting small anomalies in highly correlated multivariate data. The developed method combine the multivariate exponentially weighted moving average (MEWMA) monitoring scheme with PCA modelling in order to enhance anomaly detection performance. Such a choice is mainly motivated by the greater ability of the MEWMA monitoring scheme to detect small changes in the process mean. The proposed PCA-based MEWMA monitoring scheme is successfully applied to ozone measurements data collected from Upper Normandy region, France, via the network of air quality monitoring stations. The detection results of the proposed method are compared to that declared by Air Normand air monitoring association.

  19. Degradation of acephate using combined ultrasonic and ozonation method

    Directory of Open Access Journals (Sweden)

    Bin Wang

    2015-07-01

    Full Text Available The degradation of acephate in aqueous solutions was investigated with the ultrasonic and ozonation methods, as well as a combination of both. An experimental facility was designed and operation parameters such as the ultrasonic power, temperature, and gas flow rate were strictly controlled at constant levels. The frequency of the ultrasonic wave was 160 kHz. The ultraviolet-visible (UV-Vis spectroscopic and Raman spectroscopic techniques were used in the experiment. The UV-Vis spectroscopic results show that ultrasonication and ozonation have a synergistic effect in the combined system. The degradation efficiency of acephate increases from 60.6% to 87.6% after the solution is irradiated by a 160 kHz ultrasonic wave for 60 min in the ozonation process, and it is higher with the combined method than the sum of the separated ultrasonic and ozonation methods. Raman spectra studies show that degradation via the combined ultrasonic/ozonation method is more thorough than photocatalysis. The oxidability of nitrogen atoms is promoted under ultrasonic waves. Changes of the inorganic ions and degradation pathway during the degradation process were investigated in this study. Most final products are innocuous to the environment.

  20. Wastewater purification. Combined electron-beam and ozone action in the aerosol flow

    International Nuclear Information System (INIS)

    Podzorova, E.A.; Pikaev, A.K.

    1998-01-01

    Complete text of publication follows. Ozone is forming with high enough radiation chemical yield during work of electron accelerator. It is useful to use oxidizing properties of ozone with combination of ionizing radiation. The combined action of ionized radiation and ozone on aqueous solutions increases efficiency of water purification. But at the same time, this kind process of water purification is characterized by some limited stages: 1. Ozone mass transfer rate from gaseous phase (where it is formed) into liquid phase (where pollutants present); 2. Small solubility ozone in water; 3. High rate constant of radiation induced decomposition of ozone. We have proposed some optimizations for this kind of process. The most effective action of ionized radiation and radiolytic ozone on polluted water is running this process in aerosol flow. The highly developed surface of phase division is provided the maximum rate of reaction of ozone with pollutants. The volatile pollutants react with radiolytic ozone in gaseous phase in ozone creation moment. Ozonoradiolysis of real municipal wastewater in an aerosol flow was investigated on a facility with electron accelerator with electron energy E=0,3 MeV, power up to 15 kWatt, productivity 500 m 3 /day. Density of the irradiated aerosol was 0,02-0,05 g/cm 3 . It is increase low-energy electron range on 1-2 orders of magnitude as compared with liquid water and increases effective depth of uniformed irradiated layer. Because aerosol density is much higher compare with air density, it is clear, that water drops in aerosol flow absorbed main energy. The treated municipal wastewater in this facility was cleaned from organic and inorganic pollutants. COD and BOD values were reduced. Water disinfecting is achieved to sanitary standards

  1. SMM mesospheric ozone measurements

    Science.gov (United States)

    Aikin, A. C.

    1990-01-01

    The main objective was to understand the secular and seasonal behavior of ozone in the lower mesosphere, 50 to 70 km. This altitude region is important in understanding the factors which determine ozone behavior. A secondary objective is the study of stratospheric ozone in the polar regions. Use is made of results from the SBUV satellite borne instrument. In the Arctic the interaction between chlorine compounds and low molecular weight hydrocarbons is studied. More than 30,000 profiles were obtained using the UVSP instrument on the SMM spacecraft. Several orbits of ozone data per day were obtained allowing study of the current rise in solar activity from the minimum until the present. Analysis of Nimbus 7 SBUV data in Antarctic spring indicates that ozone is depleted within the polar vortex relative to ozone outside the vortex. This depletion confirms the picture of ozone loss at altitudes where polar stratospheric clouds exist. In addition, there is ozone loss above the cloud level indicating that there is another mechanism in addition to ozone loss initiated by heterogeneous chlorine reactions on cloud particles.

  2. Observation of enhanced ozone in an electrically active storm over Socorro, NM: Implications for ozone production from corona discharges

    Science.gov (United States)

    Minschwaner, K.; Kalnajs, L. E.; Dubey, M. K.; Avallone, L. M.; Sawaengphokai, P. C.; Edens, H. E.; Winn, W. P.

    2008-09-01

    Enhancements in ozone were observed between about 3 and 10 km altitude within an electrically active storm in central New Mexico. Measurements from satellite sensors and ground-based radar show cloud top pressures between 300 and 150 mb in the vicinity of an ozonesonde launched from Socorro, NM, and heavy precipitation with radar reflectivities exceeding 50 dBZ. Data from a lightning mapping array and a surface electric field mill show a large amount of electrical activity within this thunderstorm. The observed ozone enhancements are large (50% above the mean) and could have resulted from a number of possible processes, including the advection of polluted air from the urban environments of El Paso and Juarez, photochemical production by lightning-generated NOx from aged thunderstorm outflow, downward mixing of stratospheric air, or local production from within the thunderstorm. We find that a large fraction of the ozone enhancement is consistent with local production from corona discharges, either from cloud particles or by corona associated with lightning. The implied global source of ozone from thunderstorm corona discharge is estimated to be 110 Tg O3 a-1 with a range between 40 and 180 Tg O3 a-1. This value is about 21% as large as the estimated ozone production rate from lightning NOx, and about 3% as large as the total chemical production rate of tropospheric ozone. Thus while the estimated corona-induced production of ozone may be significant on local scales, it is unlikely to be as important to the global ozone budget as other sources.

  3. Effect of ozone gas processing on physical and chemical properties ...

    African Journals Online (AJOL)

    chemical properties of gluten proteins were investigated after treatment with .... differences in most of the visible bands among all samples. Figure 1: SDS-PAGE analysis of protein patterns in wheat gluten and glutenin, with and without ozone.

  4. Improved functionality of graphene and carbon nanotube hybrid foam architecture by UV-ozone treatment

    Science.gov (United States)

    Wang, Wei; Ruiz, Isaac; Lee, Ilkeun; Zaera, Francisco; Ozkan, Mihrimah; Ozkan, Cengiz S.

    2015-04-01

    Optimization of the electrode/electrolyte double-layer interface is a key factor for improving electrode performance of aqueous electrolyte based supercapacitors (SCs). Here, we report the improved functionality of carbon materials via a non-invasive, high-throughput, and inexpensive UV generated ozone (UV-ozone) treatment. This process allows precise tuning of the graphene and carbon nanotube hybrid foam (GM) transitionally from ultrahydrophobic to hydrophilic within 60 s. The continuous tuning of surface energy can be controlled by simply varying the UV-ozone exposure time, while the ozone-oxidized carbon nanostructure maintains its integrity. Symmetric SCs based on the UV-ozone treated GM foam demonstrated enhanced rate performance. This technique can be readily applied to other CVD-grown carbonaceous materials by taking advantage of its ease of processing, low cost, scalability, and controllability.Optimization of the electrode/electrolyte double-layer interface is a key factor for improving electrode performance of aqueous electrolyte based supercapacitors (SCs). Here, we report the improved functionality of carbon materials via a non-invasive, high-throughput, and inexpensive UV generated ozone (UV-ozone) treatment. This process allows precise tuning of the graphene and carbon nanotube hybrid foam (GM) transitionally from ultrahydrophobic to hydrophilic within 60 s. The continuous tuning of surface energy can be controlled by simply varying the UV-ozone exposure time, while the ozone-oxidized carbon nanostructure maintains its integrity. Symmetric SCs based on the UV-ozone treated GM foam demonstrated enhanced rate performance. This technique can be readily applied to other CVD-grown carbonaceous materials by taking advantage of its ease of processing, low cost, scalability, and controllability. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr06795a

  5. Stratospheric ozone changes under solar geoengineering: implications for UV exposure and air quality

    Science.gov (United States)

    Nowack, Peer Johannes; Abraham, Nathan Luke; Braesicke, Peter; Pyle, John Adrian

    2016-03-01

    Various forms of geoengineering have been proposed to counter anthropogenic climate change. Methods which aim to modify the Earth's energy balance by reducing insolation are often subsumed under the term solar radiation management (SRM). Here, we present results of a standard SRM modelling experiment in which the incoming solar irradiance is reduced to offset the global mean warming induced by a quadrupling of atmospheric carbon dioxide. For the first time in an atmosphere-ocean coupled climate model, we include atmospheric composition feedbacks for this experiment. While the SRM scheme considered here could offset greenhouse gas induced global mean surface warming, it leads to important changes in atmospheric composition. We find large stratospheric ozone increases that induce significant reductions in surface UV-B irradiance, which would have implications for vitamin D production. In addition, the higher stratospheric ozone levels lead to decreased ozone photolysis in the troposphere. In combination with lower atmospheric specific humidity under SRM, this results in overall surface ozone concentration increases in the idealized G1 experiment. Both UV-B and surface ozone changes are important for human health. We therefore highlight that both stratospheric and tropospheric ozone changes must be considered in the assessment of any SRM scheme, due to their important roles in regulating UV exposure and air quality.

  6. Abstraction of Drift-Scale Coupled Processes

    International Nuclear Information System (INIS)

    Francis, N.D.; Sassani, D.

    2000-01-01

    This Analysis/Model Report (AMR) describes an abstraction, for the performance assessment total system model, of the near-field host rock water chemistry and gas-phase composition. It also provides an abstracted process model analysis of potentially important differences in the thermal hydrologic (TH) variables used to describe the performance of a geologic repository obtained from models that include fully coupled reactive transport with thermal hydrology and those that include thermal hydrology alone. Specifically, the motivation of the process-level model comparison between fully coupled thermal-hydrologic-chemical (THC) and thermal-hydrologic-only (TH-only) is to provide the necessary justification as to why the in-drift thermodynamic environment and the near-field host rock percolation flux, the essential TH variables used to describe the performance of a geologic repository, can be obtained using a TH-only model and applied directly into a TSPA abstraction without recourse to a fully coupled reactive transport model. Abstraction as used in the context of this AMR refers to an extraction of essential data or information from the process-level model. The abstraction analysis reproduces and bounds the results of the underlying detailed process-level model. The primary purpose of this AMR is to abstract the results of the fully-coupled, THC model (CRWMS M andO 2000a) for effects on water and gas-phase composition adjacent to the drift wall (in the near-field host rock). It is assumed that drift wall fracture water and gas compositions may enter the emplacement drift before, during, and after the heating period. The heating period includes both the preclosure, in which the repository drifts are ventilated, and the postclosure periods, with backfill and drip shield emplacement at the time of repository closure. Although the preclosure period (50 years) is included in the process models, the postclosure performance assessment starts at the end of this initial period

  7. A Friendly-Biological Reactor SIMulator (BioReSIM for studying biological processes in wastewater treatment processes

    Directory of Open Access Journals (Sweden)

    Raul Molina

    2014-12-01

    Full Text Available Biological processes for wastewater treatments are inherently dynamic systems because of the large variations in the influent wastewater flow rate, concentration composition and the adaptive behavior of the involved microorganisms. Moreover, the sludge retention time (SRT is a critical factor to understand the bioreactor performances when changes in the influent or in the operation conditions take place. Since SRT are usually in the range of 10-30 days, the performance of biological reactors needs a long time to be monitored in a regular laboratory demonstration, limiting the knowledge that can be obtained in the experimental lab practice. In order to overcome this lack, mathematical models and computer simulations are useful tools to describe biochemical processes and predict the overall performance of bioreactors under different working operation conditions and variations of the inlet wastewater composition. The mathematical solution of the model could be difficult as numerous biochemical processes can be considered. Additionally, biological reactors description (mass balance, etc. needs models represented by partial or/and ordinary differential equations associated to algebraic expressions, that require complex computational codes to obtain the numerical solutions. Different kind of software for mathematical modeling can be used, from large degree of freedom simulators capable of free models definition (as AQUASIM, to closed predefined model structure programs (as BIOWIN. The first ones usually require long learning curves, whereas the second ones could be excessively rigid for specific wastewater treatment systems. As alternative, we present Biological Reactor SIMulator (BioReSIM, a MATLAB code for the simulation of sequencing batch reactors (SBR and rotating biological contactors (RBC as biological systems of suspended and attached biomass for wastewater treatment, respectively. This BioReSIM allows the evaluation of simple and complex

  8. Ozone and the oxidizing properties of the troposphere

    International Nuclear Information System (INIS)

    Megie, G.

    1996-01-01

    This article is about the rising concentration of ozone and photo-oxidizers observed in the troposphere, the atmosphere between the ground and a height of 10 to 15 km. This serious global environmental problem has up to now been less well known than the greenhouse effect or the decrease in stratospheric ozone. This is because it varies with time and place and involves many complicated physico-chemical and atmospheric processes. At our latitudes, the average ozone concentration in the air we breathe has quadrupled since the beginning of this century. In polluted areas it often exceeds the recommended norms. This increase in ozone concentrations in the lower atmosphere directly reflects the impact of man-made emissions of compounds like methane, carbon monoxide, hydrocarbons and nitrogen oxides. Sunlight acts on these compounds to form ozone via complicated chemical reactions. This change in oxidizing properties of the troposphere is beginning produce perceptible effects on vegetable production, human health and climate. (author). 24 refs., 5 figs., 4 tabs

  9. Combination of ozonation and photocatalysis for pharmaceutical wastewater treatment

    Science.gov (United States)

    Ratnawati, Enjarlis, Slamet

    2017-11-01

    The chemical oxygen demand (COD) and phenol removal from pharmaceutical wastewater were investigated using configuration of two circulation batch reactors in a series with ozonation and photocatalytic processes. The ozonation is conducted with O3/granulated activated carbon (O3/GAC), whereas photocatalysis with TiO2 that immobilized on pumice stone (PS-TiO2). The effect of circulation flow rate (10; 12; 15 L/min) and the amount PS-TiO2 (200 g, 250 g, 300 g) were examined. Wastewater of 20 L was circulated pass through the pipe that injected with O3 by the ozone generator, and subsequently flow through two GAC columns, and finally, go through photoreactor that contains photocatalyst PS-TiO2 which equipped with mercury lamp as a photon source. At a time interval, COD and phenol concentration were measured to assess the performance of the process. FESEM imaging confirmed that TiO2 was successfully impregnated on PS, as corroborated by EDX spectra. Meanwhile, degradation process indicated that the combined ozonation and photocatalytic processes (O3/GAC-TiO2) is more efficient compared to the ozonation and photocatalysis alone. For combination process with the circulation flow rate of 10 L/min and 300 g of PS-TiO2,the influent COD of around 1000 ppm are effectively degraded to a final effluent COD of 290 ppm (71% removal) and initial phenol concentration of 4.75 ppm down to 0 ppm for 4 h which this condition fulfill the discharge standards quality. Therefore, this portable prototype reactor is effective that can be used in the pharmaceutical wastewater treatment. For the future, this process condition will be developed for orientation on the industrial applications (portable equipment) since pharmaceutical industries produce wastewater relatively in the small amount.

  10. A closer look at Arctic ozone loss and polar stratospheric clouds

    Directory of Open Access Journals (Sweden)

    N. R. P. Harris

    2010-09-01

    Full Text Available The empirical relationship found between column-integrated Arctic ozone loss and the potential volume of polar stratospheric clouds inferred from meteorological analyses is recalculated in a self-consistent manner using the ERA Interim reanalyses. The relationship is found to hold at different altitudes as well as in the column. The use of a PSC formation threshold based on temperature dependent cold aerosol formation makes little difference to the original, empirical relationship. Analysis of the photochemistry leading to the ozone loss shows that activation is limited by the photolysis of nitric acid. This step produces nitrogen dioxide which is converted to chlorine nitrate which in turn reacts with hydrogen chloride on any polar stratospheric clouds to form active chlorine. The rate-limiting step is the photolysis of nitric acid: this occurs at the same rate every year and so the interannual variation in the ozone loss is caused by the extent and persistence of the polar stratospheric clouds. In early spring the ozone loss rate increases as the solar insolation increases the photolysis of the chlorine monoxide dimer in the near ultraviolet. However the length of the ozone loss period is determined by the photolysis of nitric acid which also occurs in the near ultraviolet. As a result of these compensating effects, the amount of the ozone loss is principally limited by the extent of original activation rather than its timing. In addition a number of factors, including the vertical changes in pressure and total inorganic chlorine as well as denitrification and renitrification, offset each other. As a result the extent of original activation is the most important factor influencing ozone loss. These results indicate that relatively simple parameterisations of Arctic ozone loss could be developed for use in coupled chemistry climate models.

  11. Climate impact of idealized winter polar mesospheric and stratospheric ozone losses as caused by energetic particle precipitation

    Directory of Open Access Journals (Sweden)

    K. Meraner

    2018-01-01

    Full Text Available Energetic particles enter the polar atmosphere and enhance the production of nitrogen oxides and hydrogen oxides in the winter stratosphere and mesosphere. Both components are powerful ozone destroyers. Recently, it has been inferred from observations that the direct effect of energetic particle precipitation (EPP causes significant long-term mesospheric ozone variability. Satellites observe a decrease in mesospheric ozone up to 34 % between EPP maximum and EPP minimum. Stratospheric ozone decreases due to the indirect effect of EPP by about 10–15 % observed by satellite instruments. Here, we analyze the climate impact of winter boreal idealized polar mesospheric and polar stratospheric ozone losses as caused by EPP in the coupled Max Planck Institute Earth System Model (MPI-ESM. Using radiative transfer modeling, we find that the radiative forcing of mesospheric ozone loss during polar night is small. Hence, climate effects of mesospheric ozone loss due to energetic particles seem unlikely. Stratospheric ozone loss due to energetic particles warms the winter polar stratosphere and subsequently weakens the polar vortex. However, those changes are small, and few statistically significant changes in surface climate are found.

  12. Is There Evidence that Mid-Latitude Stratospheric Ozone Depletion Occurs in Conjunction with North American Monsoon Convection?

    Science.gov (United States)

    Rosenlof, K. H.; Ray, E. A.; Portmann, R. W.

    2017-12-01

    A recent study suggests that during the period of the summertime North American Monsoon (NAM), ozone depletion could occur as a result of catalytic ozone destruction associated with the cold and wet conditions caused by overshooting convection. Aura Microwave Limb Sounder (MLS) water vapor measurements do show that the NAM region is wetter than other parts of the globe in regards to both the mean and extremes. However, definitive evidence of ozone depletion occurring in that region has not been presented. In this study, we examine coincident measurements of water vapor, ozone, and tropospheric tracers from aircraft data taken during the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) aircraft campaign looking specifically for ozone depletion in regions identified as impacted by overshooting convection. Although we do find evidence of lower ozone values in air impacted by convective overshoots, using tropospheric tracers we attribute those observations to input of tropospheric air rather than catalytic ozone destruction. Additionally, we explore the consequences of these lower ozone values on surface UV, and conclude that there is minimal impact on the UV index.

  13. [Mechanism of catalytic ozonation for the degradation of paracetamol by activated carbon].

    Science.gov (United States)

    Wang, Jia-Yu; Dai, Qi-Zhou; Yu, Jie; Yan, Yi-Zhou; Chen, Jian-Meng

    2013-04-01

    The degradation of paracetamol (APAP) in aqueous solution was studied with ozonation integrated with activated carbon (AC). The synergistic effect of ozonation/AC process was explored by comparing the degradation efficiency of APAP in three processes (ozonation alone, activated carbon alone and ozonation integrated with activated carbon). The operational parameters that affected the reaction rate were carefully optimized. Based on the intermediates detected, the possible pathway for catalytic degradation was discussed and the reaction mechanism was also investigated. The results showed that the TOC removal reached 55.11% at 60 min in the AC/O3 system, and was significantly better than the sum of ozonation alone (20.22%) and activated carbon alone (27.39%), showing the great synergistic effect. And the BOD5/COD ratio increased from 0.086 (before reaction) to 0.543 (after reaction), indicating that the biodegradability was also greatly improved. The effects of the initial concentration of APAP, pH value, ozone dosage and AC dosage on the variation of reaction rate were carefully discussed. The catalytic reaction mechanism was different at different pH values: the organic pollutions were removed by adsorption and direct ozone oxidation at acidic pH, and mainly by catalytic ozonation at alkaline pH.

  14. Disinfection technology with ozone for cryptosporidium; Cryptosporidium taisaku to shite no ozone shodoku gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Y.; Takahashi, K. [Fuji Electric Co. Ltd., Tokyo (Japan); Motoyama, N. [Fuji Electric Corporate Research and Development, Ltd., Kanagawa (Japan)

    1998-06-10

    Measures against Cryptosporidium parvum (C. parvum) in the waterworks are discussed. C. parvum is a pathogenic protozoan, and exists in the form of oocyst protected by a hard shell. It does not multiply in water or food, but does in human intestines and causes violent diarrhea and bellyache. A grave concern was created when many people were infected with the protozoan via tap water in Japan and the United States. Under such circumstances, ozone is used in an experiment to inactivate C. parvum. It is found that the C. parvum oocyst inactivation effect is evaluated by using a Ct value (disinfectant concentration Cmg/Ltimescontact time in minute) and that ozone treatment inactivates 90-99% of the protozoan. When various advanced water treatment technologies are being introduced for the purpose of serving safe and tasty water, the outcome of this study conveniently offers an ozone treatment method that will additionally inactivate pathogenic protozoa. Studies will be continued to elucidate the effects of factors of ozone treatment and water quality for the completion of an ideal disinfection process. Reference is made to an example of disinfection work implemented at a water purification plant of Milwaukie City, United States. 9 refs., 6 figs., 4 tabs.

  15. Experimental and modeling study of the impact of vertical transport processes from the boundary-layer on the variability and the budget of tropospheric ozone; Etude experimentale et numerique de l'influence des processus de transport depuis la couche-limite sur la variabilite et le bilan d'ozone tropospherique

    Energy Technology Data Exchange (ETDEWEB)

    Colette, A

    2005-12-15

    Closing the tropospheric ozone budget requires a better understanding of the role of transport processes from the major reservoirs: the planetary boundary layer and the stratosphere. Case studies lead to the identification of mechanisms involved as well as their efficiency. However, their global impact on the budget must be addressed on a climatological basis. This manuscript is thus divided in two parts. First, we present case studies based on ozone LIDAR measurements performed during the ESCOMPTE campaign. This work consists in a data analysis investigation by means of a hybrid - Lagrangian study involving: global meteorological analyses, Lagrangian particle dispersion computation, and mesoscale, chemistry - transport, and Lagrangian photochemistry modeling. Our aim is to document the amount of observed ozone variability related to transport processes and, when appropriate, to infer the role of tropospheric photochemical production. Second, we propose a climatological analysis of the respective impact of transport from the boundary-layer and from the tropopause region on the tropospheric ozone budget. A multivariate analysis is presented and compared to a trajectography approach. Once validated, this algorithm is applied to the whole database of ozone profiles collected above Europe during the past 30 years in order to discuss the seasonal, geographical and temporal variability of transport processes as well as their impact on the tropospheric ozone budget. The variability of turbulent mixing and its impact on the persistence of tropospheric layers will also be discussed. (author)

  16. Ozone Antimicrobial Efficacy

    Science.gov (United States)

    Ozone is a potent germicide that has been used extensively for water purification. In Europe, 90 percent of the municipal water systems are treated with ozone, and in France, ozone has been used to treat drinking water since 1903. However, there is limited information on the bioc...

  17. Evaluation of The Surface Ozone Concentrations In Greater Cairo Area With Emphasis On Helwan, Egypt

    International Nuclear Information System (INIS)

    Ramadan, A.; Kandil, A.T.; Abd Elmaged, S.M.; Mubarak, I.

    2011-01-01

    Various biogenic and anthropogenic sources emit huge quantities of surface ozone. The main purpose of this study is to evaluate the surface ozone levels present at Helwan area in order to improve the knowledge and understanding troposphere processes. Surface Ozone has been measured at 2 sites at Helwan; these sites cover the most populated area in Helwan. Ozone concentration is continuously monitored by UV absorption photometry using the equipment O 3 41 M UV Photometric Ozone Analyzer. The daily maximum values of the ozone concentration in the greater Cairo area have approached but did not exceeded the critical levels during the year 2008. Higher ozone concentrations at Helwan are mainly due to the transport of ozone from regions further to the north of greater Cairo and to a lesser extent of ozone locally generated by photochemical smog process. The summer season has the largest diurnal variation, with the tendency of the daily ozone maxima occur in the late afternoon. The night time concentration of ozone was significantly higher at Helwan because there are no fast acting sinks, destroying ozone since the average night time concentration of ozone is maintained at 40 ppb at the site. No correlation between the diurnal total suspended particulate (TSP) matter and the diurnal cumulative ozone concentration was observed during the Khamasin period

  18. Evaluating the Credibility of Transport Processes in Simulations of Ozone Recovery using the Global Modeling Initiative Three-dimensional Model

    Science.gov (United States)

    Strahan, Susan E.; Douglass, Anne R.

    2004-01-01

    The Global Modeling Initiative (GMI) has integrated two 36-year simulations of an ozone recovery scenario with an offline chemistry and tra nsport model using two different meteorological inputs. Physically ba sed diagnostics, derived from satellite and aircraft data sets, are d escribed and then used to evaluate the realism of temperature and transport processes in the simulations. Processes evaluated include barri er formation in the subtropics and polar regions, and extratropical w ave-driven transport. Some diagnostics are especially relevant to sim ulation of lower stratospheric ozone, but most are applicable to any stratospheric simulation. The global temperature evaluation, which is relevant to gas phase chemical reactions, showed that both sets of me teorological fields have near climatological values at all latitudes and seasons at 30 hPa and below. Both simulations showed weakness in upper stratospheric wave driving. The simulation using input from a g eneral circulation model (GMI(GCM)) showed a very good residual circulation in the tropics and Northern Hemisphere. The simulation with inp ut from a data assimilation system (GMI(DAS)) performed better in the midlatitudes than it did at high latitudes. Neither simulation forms a realistic barrier at the vortex edge, leading to uncertainty in the fate of ozone-depleted vortex air. Overall, tracer transport in the offline GML(GCM) has greater fidelity throughout the stratosphere tha n it does in the GMI(DAS)

  19. Catalytic ozonation not relying on hydroxyl radical oxidation: A selective and competitive reaction process related to metal-carboxylate complexes

    KAUST Repository

    Zhang, Tao

    2014-01-01

    Catalytic ozonation following non-hydroxyl radical pathway is an important technique not only to degrade refractory carboxylic-containing organic compounds/matter but also to avoid catalyst deactivation caused by metal-carboxylate complexation. It is unknown whether this process is effective for all carboxylates or selective to special molecule structures. In this work, the selectivity was confirmed using O3/(CuO/CeO2) and six distinct ozone-resistant probe carboxylates (i.e., acetate, citrate, malonate, oxalate, pyruvate and succinate). Among these probe compounds, pyruvate, oxalate, and citrate were readily degraded following the rate order of oxalate>citrate>pyruvate, while the degradation of acetate, malonate, and succinate was not promoted. The selectivity was independent on carboxylate group number of the probe compounds and solution pH. Competitive degradation was observed for carboxylate mixtures following the preference order of citrate, oxalate, and finally pyruvate. The competitive degradation was ascribed to competitive adsorption on the catalyst surface. It was revealed that the catalytically degradable compounds formed bidentate chelating or bridging complexes with surface copper sites of the catalyst, i.e., the active sites. The catalytically undegradable carboxylates formed monodentate complexes with surface copper sites or just electrostatically adsorbed on the catalyst surface. The selectivity, relying on the structure of surface metal-carboxylate complex, should be considered in the design of catalytic ozonation process. © 2013 Elsevier B.V.

  20. Reconstruction of daily erythemal UV radiation values for the last century - The benefit of modelled ozone

    Science.gov (United States)

    Junk, J.; Feister, U.; Rozanov, E.; Krzyścin, J. W.

    2013-05-01

    Solar erythemal UV radiation (UVER) is highly relevant for numerous biological processes that affect plants, animals, and human health. Nevertheless, long-term UVER records are scarce. As significant declines in the column ozone concentration were observed in the past and a recovery of the stratospheric ozone layer is anticipated by the middle of the 21st century, there is a strong interest in the temporal variation of UVER time series. Therefore, we combined groundbased measurements of different meteorological variables with modeled ozone data sets to reconstruct time series of daily totals of UVER at the Meteorological Observatory Potsdam, Germany. Artificial neural networks were trained with measured UVER, sunshine duration, the day of year, measured and modeled total column ozone, as well as the minimum solar zenith angle. This allows for the reconstruction of daily totals of UVER for the period from 1901 to 1999. Additionally, analyses of the long-term variations from 1901 until 1999 of the reconstructed, new UVER data set are presented. The time series of monthly and annual totals of UVER provide a long-term meteorological basis for epidemiological investigations in human health and occupational medicine for the region of Potsdam and Berlin. A strong benefit of our ANN-approach is the fact that it can be easily adapted to different geographical locations, as successfully tested in the framework of the COSTAction 726.

  1. Thermodynamically coupled mass transport processes in a saturated clay

    International Nuclear Information System (INIS)

    Carnahan, C.L.

    1984-01-01

    Gradients of temperature, pressure, and fluid composition in saturated clays give rise to coupled transport processes (thermal and chemical osmosis, thermal diffusion, ultrafiltration) in addition to the direct processes (advection and diffusion). One-dimension transport of water and a solute in a saturated clay subjected to mild gradients of temperature and pressure was simulated numerically. When full coupling was accounted for, volume flux (specific discharge) was controlled by thermal osmosis and chemical osmosis. The two coupled fluxes were oppositely directed, producing a point of stagnation within the clay column. Solute flows were dominated by diffusion, chemical osmosis, and thermal osmosis. Chemical osmosis produced a significant flux of solute directed against the gradient of solute concentration; this effect reduced solute concentrations relative to the case without coupling. Predictions of mass transport in clays at nuclear waste repositories could be significantly in error if coupled transport processes are not accounted for. 14 refs., 8 figs

  2. Thermodynamically coupled mass transport processes in a saturated clay

    International Nuclear Information System (INIS)

    Carnahan, C.L.

    1984-11-01

    Gradients of temperature, pressure, and fluid composition in saturated clays give rise to coupled transport processes (thermal and chemical osmosis, thermal diffusion, ultrafiltration) in addition to the direct processes (advection and diffusion). One-dimensional transport of water and a solute in a saturated clay subjected to mild gradients of temperature and pressure was simulated numerically. When full coupling was accounted for, volume flux (specific discharge) was controlled by thermal osmosis and chemical osmosis. The two coupled fluxes were oppositely directed, producing a point of stagnation within the clay column. Solute flows were dominated by diffusion, chemical osmosis, and thermal osmosis. Chemical osmosis produced a significant flux of solute directed against the gradient of solute concentration; this effect reduced solute concentrations relative to the case without coupling. Predictions of mass transport in clays at nuclear waste repositories could be significantly in error if coupled transport processes are not accounted for. 14 references, 8 figures, 1 table

  3. Fostering new relational experience: clinical process in couple psychotherapy.

    Science.gov (United States)

    Marmarosh, Cheri L

    2014-03-01

    One of the most critical goals for couple psychotherapy is to foster a new relational experience in the session where the couple feels safe enough to reveal more vulnerable emotions and to explore their defensive withdrawal, aggressive attacking, or blaming. The lived intimate experience in the session offers the couple an opportunity to gain integrative insight into their feelings, expectations, and behaviors that ultimately hinder intimacy. The clinical processes that are necessary include empathizing with the couple and facilitating safety within the session, looking for opportunities to explore emotions, ruptures, and unconscious motivations that maintain distance in the relationship, and creating a new relational experience in the session that has the potential to engender integrative insight. These clinical processes will be presented with empirical support. Experts from a session will be used to highlight how these processes influence the couple and promote increased intimacy. (PsycINFO Database Record (c) 2014 APA, all rights reserved).

  4. Quantifying Ozone Production throughout the Boundary Layer from High Frequency Tethered Profile Measurements during a High Ozone Episode in the Uinta Basin, Utah

    Science.gov (United States)

    Sterling, C. W.; Johnson, B.; Schnell, R. C.; Oltmans, S. J.; Cullis, P.; Hall, E. G.; Jordan, A. F.; Windell, J.; McClure-Begley, A.; Helmig, D.; Petron, G.

    2015-12-01

    During the Uinta Basin Winter Ozone Study (UBWOS) in Jan - Feb 2013, 735 tethered ozonesonde profiles were obtained at 3 sites including during high wintertime photochemical ozone production events that regularly exceeded 125 ppb. High resolution profiles of ozone and temperature with altitude, measured during daylight hours, showed the development of approximately week long high ozone episodes building from background levels of ~40 ppb to >150 ppb. The topography of the basin combined with a strong temperature inversion trapped oil and gas production effluents in the basin and the snow covered surface amplified the sun's radiation driving the photochemical ozone production at rates up to 13 ppb/hour in a cold layer capped at 1600-1700 meters above sea level. Beginning in mid-morning, ozone mixing ratios throughout the cold layer increased until late afternoon. Ozone mixing ratios were generally constant with height indicating that ozone production was nearly uniform throughout the depth of the cold pool. Although there was strong diurnal variation, ozone mixing ratios increased during the day more than decreased during the night, resulting in elevated levels the next morning; an indication that nighttime loss processes did not compensate for daytime production. Even though the 3 tethersonde sites were at elevations differing by as much as 140 m, the top of the high ozone layer was nearly uniform in altitude at the 3 locations. Mobile van surface ozone measurements across the basin confirmed this capped structure of the ozone layer; the vehicle drove out of high ozone mixing ratios at an elevation of ~1900 meters above sea level, above which free tropospheric ozone mixing ratios of ~50 ppb were measured. Exhaust plumes from a coal-fired power plant in the eastern portion of the basin were intercepted by the tethersondes. The structure of the profiles clearly showed that effluents in the plumes were not mixed downward and thus did not contribute precursor nitrogen

  5. Graphics processing units in bioinformatics, computational biology and systems biology.

    Science.gov (United States)

    Nobile, Marco S; Cazzaniga, Paolo; Tangherloni, Andrea; Besozzi, Daniela

    2017-09-01

    Several studies in Bioinformatics, Computational Biology and Systems Biology rely on the definition of physico-chemical or mathematical models of biological systems at different scales and levels of complexity, ranging from the interaction of atoms in single molecules up to genome-wide interaction networks. Traditional computational methods and software tools developed in these research fields share a common trait: they can be computationally demanding on Central Processing Units (CPUs), therefore limiting their applicability in many circumstances. To overcome this issue, general-purpose Graphics Processing Units (GPUs) are gaining an increasing attention by the scientific community, as they can considerably reduce the running time required by standard CPU-based software, and allow more intensive investigations of biological systems. In this review, we present a collection of GPU tools recently developed to perform computational analyses in life science disciplines, emphasizing the advantages and the drawbacks in the use of these parallel architectures. The complete list of GPU-powered tools here reviewed is available at http://bit.ly/gputools. © The Author 2016. Published by Oxford University Press.

  6. Effect of ozone concentration on silicon surface passivation by atomic layer deposited Al2O3

    International Nuclear Information System (INIS)

    Gastrow, Guillaume von; Li, Shuo; Putkonen, Matti; Laitinen, Mikko; Sajavaara, Timo; Savin, Hele

    2015-01-01

    Highlights: • The ALD Al 2 O 3 passivation quality can be controlled by the ozone concentration. • Ozone concentration affects the Si/Al 2 O 3 interface charge and defect density. • A surface recombination velocity of 7 cm/s is reached combining ozone and water ALD. • Carbon and hydrogen concentrations correlate with the surface passivation quality. - Abstract: We study the impact of ozone-based Al 2 O 3 Atomic Layer Deposition (ALD) on the surface passivation quality of crystalline silicon. We show that the passivation quality strongly depends on the ozone concentration: the higher ozone concentration results in lower interface defect density and thereby improved passivation. In contrast to previous studies, our results reveal that too high interface hydrogen content can be detrimental to the passivation. The interface hydrogen concentration can be optimized by the ozone-based process; however, the use of pure ozone increases the harmful carbon concentration in the film. Here we demonstrate that low carbon and optimal hydrogen concentration can be achieved by a single process combining the water- and ozone-based reactions. This process results in an interface defect density of 2 × 10 11 eV −1 cm −2 , and maximum surface recombination velocities of 7.1 cm/s and 10 cm/s, after annealing and after an additional firing at 800 °C, respectively. In addition, our results suggest that the effective oxide charge density can be optimized in a simple way by varying the ozone concentration and by injecting water to the ozone process.

  7. Stability enhancement of ozone-assisted laminar premixed Bunsen flames in nitrogen co-flow

    KAUST Repository

    Vu, Tran Manh

    2014-04-01

    Ozone (O3) is known as one of the strongest oxidizers and therefore is widely used in many applications. Typically in the combustion field, a combination of non-thermal plasma and combustion systems have been studied focusing on the effects of ozone on flame propagation speeds and ignition characteristics. Here, we experimentally investigated the effects of ozone on blowoff of premixed methane/air and propane/air flames over a full range of equivalence ratios at room temperature and atmospheric pressure by using a co-flow burner and a dielectric barrier discharge. The results with ozone showed that a nozzle exit jet velocity at the moment of flame blowoff (blowoff velocity) significantly increased, and flammability limits for both fuel-lean and rich mixtures were also extended. Ozone had stronger effects of percent enhancement in the blowoff velocity for off-stoichiometric mixtures, while minimum enhancements could be observed around stoichiometric conditions for both fuels showing linear positive dependence on a tested range of ozone concentration up to 3810ppm. Through chemical kinetic simulations, the experimentally observed trends of the enhancement in blowoff velocity were identified as a result of the modification of the laminar burning velocity. Two ozone decomposition pathways of O3+N2→O+O2+N2 and O3+H→O2+OH were identified as the most controlling steps. These reactions, coupled with fuel consumption characteristics of each fuel determined the degree of promotion in laminar burning velocities, supporting experimental observations on blowoff velocities with ozone addition. © 2013 The Combustion Institute.

  8. Is it true that ozone is always toxic? The end of a dogma

    International Nuclear Information System (INIS)

    Bocci, Velio

    2006-01-01

    There are a number of good experimental studies showing that exposure by inhalation to prolonged tropospheric ozone damages the respiratory system and extrapulmonary organs. The skin, if extensively exposed, may also contribute to the damage. The undoubtful strong reactivity of ozone has contributed to establish the dogma that ozone is always toxic and its medical application must be proscribed. Although it is less known, judiciously practiced ozonetherapy is becoming very useful either on its own or applied in combination with orthodox medicine in a broad range of pathologies. The opponents of ozonetherapy base their judgment on the ozone chemistry, and physicians, without any knowledge of the problem, are often skeptical. During the last 15 years, a clear understanding of the action of ozone in biology and medicine has been gained, allowing today to argue if it is true that ozone is always toxic. The fundamental points that are discussed in this paper are: the topography, anatomical and biochemical characteristics of the organs daily exposed to ozone versus the potent antioxidant capacity of blood exposed to a small and precisely calculated dose of ozone only for a few minutes. It is becoming clear how the respiratory system undergoing a chronic oxidative stress can release slowly, but steadily, a huge amount of toxic compounds able to enter the circulation and cause serious damage. The aim of this paper is to objectively evaluate this controversial issue

  9. Biological activation of carbon filters.

    Science.gov (United States)

    Seredyńska-Sobecka, Bozena; Tomaszewska, Maria; Janus, Magdalena; Morawski, Antoni W

    2006-01-01

    To prepare biological activated carbon (BAC), raw surface water was circulated through granular activated carbon (GAC) beds. Biological activity of carbon filters was initiated after about 6 months of filter operation and was confirmed by two methods: measurement of the amount of biomass attached to the carbon and by the fluorescein diacetate (FDA) test. The effect of carbon pre-washing on WG-12 carbon properties was also studied. For this purpose, the nitrogen adsorption isotherms at 77K and Fourier transform-infrared (FT-IR) spectra analyses were performed. Moreover, iodine number, decolorizing power and adsorption properties of carbon in relation to phenol were studied. Analysis of the results revealed that after WG-12 carbon pre-washing its BET surface increased a little, the pH value of the carbon water extract decreased from 11.0 to 9.4, decolorizing power remained at the same level, and the iodine number and phenol adsorption rate increased. In preliminary studies of the ozonation-biofiltration process, a model phenol solution with concentration of approximately 10mg/l was applied. During the ozonation process a dose of 1.64 mg O(3)/mg TOC (total organic carbon) was employed and the contact time was 5 min. Four empty bed contact times (EBCTs) in the range of 2.4-24.0 min were used in the biofiltration experiment. The effectiveness of purification was measured by the following parameters: chemical oxygen demand (COD(Mn)), TOC, phenol concentration and UV(254)-absorbance. The parameters were found to decrease with EBCT.

  10. Effect of ozone oxidative preconditioning in preventing early radiation-induced lung injury in rats

    Energy Technology Data Exchange (ETDEWEB)

    Bakkal, B.H. [Department of Radiation Oncology, School of Medicine, Bulent Ecevit University, Kozlu, Zonguldak (Turkey); Gultekin, F.A. [Department of General Surgery, School of Medicine, Bulent Ecevit University, Kozlu, Zonguldak (Turkey); Guven, B. [Department of Biochemistry, School of Medicine, Bulent Ecevit University, Kozlu, Zonguldak (Turkey); Turkcu, U.O. [Mugla School of Health Sciences, Mugla Sitki Kocman University, Mugla (Turkey); Bektas, S. [Department of Pathology, School of Medicine, Bulent Ecevit University, Kozlu, Zonguldak (Turkey); Can, M. [Department of Biochemistry, School of Medicine, Bulent Ecevit University, Kozlu, Zonguldak (Turkey)

    2013-09-27

    Ionizing radiation causes its biological effects mainly through oxidative damage induced by reactive oxygen species. Previous studies showed that ozone oxidative preconditioning attenuated pathophysiological events mediated by reactive oxygen species. As inhalation of ozone induces lung injury, the aim of this study was to examine whether ozone oxidative preconditioning potentiates or attenuates the effects of irradiation on the lung. Rats were subjected to total body irradiation, with or without treatment with ozone oxidative preconditioning (0.72 mg/kg). Serum proinflammatory cytokine levels, oxidative damage markers, and histopathological analysis were compared at 6 and 72 h after total body irradiation. Irradiation significantly increased lung malondialdehyde levels as an end-product of lipoperoxidation. Irradiation also significantly decreased lung superoxide dismutase activity, which is an indicator of the generation of oxidative stress and an early protective response to oxidative damage. Ozone oxidative preconditioning plus irradiation significantly decreased malondialdehyde levels and increased the activity of superoxide dismutase, which might indicate protection of the lung from radiation-induced lung injury. Serum tumor necrosis factor alpha and interleukin-1 beta levels, which increased significantly following total body irradiation, were decreased with ozone oxidative preconditioning. Moreover, ozone oxidative preconditioning was able to ameliorate radiation-induced lung injury assessed by histopathological evaluation. In conclusion, ozone oxidative preconditioning, repeated low-dose intraperitoneal administration of ozone, did not exacerbate radiation-induced lung injury, and, on the contrary, it provided protection against radiation-induced lung damage.

  11. Effect of ozone oxidative preconditioning in preventing early radiation-induced lung injury in rats

    International Nuclear Information System (INIS)

    Bakkal, B.H.; Gultekin, F.A.; Guven, B.; Turkcu, U.O.; Bektas, S.; Can, M.

    2013-01-01

    Ionizing radiation causes its biological effects mainly through oxidative damage induced by reactive oxygen species. Previous studies showed that ozone oxidative preconditioning attenuated pathophysiological events mediated by reactive oxygen species. As inhalation of ozone induces lung injury, the aim of this study was to examine whether ozone oxidative preconditioning potentiates or attenuates the effects of irradiation on the lung. Rats were subjected to total body irradiation, with or without treatment with ozone oxidative preconditioning (0.72 mg/kg). Serum proinflammatory cytokine levels, oxidative damage markers, and histopathological analysis were compared at 6 and 72 h after total body irradiation. Irradiation significantly increased lung malondialdehyde levels as an end-product of lipoperoxidation. Irradiation also significantly decreased lung superoxide dismutase activity, which is an indicator of the generation of oxidative stress and an early protective response to oxidative damage. Ozone oxidative preconditioning plus irradiation significantly decreased malondialdehyde levels and increased the activity of superoxide dismutase, which might indicate protection of the lung from radiation-induced lung injury. Serum tumor necrosis factor alpha and interleukin-1 beta levels, which increased significantly following total body irradiation, were decreased with ozone oxidative preconditioning. Moreover, ozone oxidative preconditioning was able to ameliorate radiation-induced lung injury assessed by histopathological evaluation. In conclusion, ozone oxidative preconditioning, repeated low-dose intraperitoneal administration of ozone, did not exacerbate radiation-induced lung injury, and, on the contrary, it provided protection against radiation-induced lung damage

  12. Multi-model assessment of stratospheric ozone return dates and ozone recovery in CCMVal-2 models

    Directory of Open Access Journals (Sweden)

    V. Eyring

    2010-10-01

    Full Text Available Projections of stratospheric ozone from a suite of chemistry-climate models (CCMs have been analyzed. In addition to a reference simulation where anthropogenic halogenated ozone depleting substances (ODSs and greenhouse gases (GHGs vary with time, sensitivity simulations with either ODS or GHG concentrations fixed at 1960 levels were performed to disaggregate the drivers of projected ozone changes. These simulations were also used to assess the two distinct milestones of ozone returning to historical values (ozone return dates and ozone no longer being influenced by ODSs (full ozone recovery. The date of ozone returning to historical values does not indicate complete recovery from ODSs in most cases, because GHG-induced changes accelerate or decelerate ozone changes in many regions. In the upper stratosphere where CO2-induced stratospheric cooling increases ozone, full ozone recovery is projected to not likely have occurred by 2100 even though ozone returns to its 1980 or even 1960 levels well before (~2025 and 2040, respectively. In contrast, in the tropical lower stratosphere ozone decreases continuously from 1960 to 2100 due to projected increases in tropical upwelling, while by around 2040 it is already very likely that full recovery from the effects of ODSs has occurred, although ODS concentrations are still elevated by this date. In the midlatitude lower stratosphere the evolution differs from that in the tropics, and rather than a steady decrease in ozone, first a decrease in ozone is simulated from 1960 to 2000, which is then followed by a steady increase through the 21st century. Ozone in the midlatitude lower stratosphere returns to 1980 levels by ~2045 in the Northern Hemisphere (NH and by ~2055 in the Southern Hemisphere (SH, and full ozone recovery is likely reached by 2100 in both hemispheres. Overall, in all regions except the tropical lower stratosphere, full ozone recovery from ODSs occurs significantly later than the

  13. Adjuvant combined ozone therapy for extensive wound over tibia

    Directory of Open Access Journals (Sweden)

    Prasham Shah

    2011-01-01

    Full Text Available Disinfectant and antibacterial properties of ozone are utilized in the treatment of nonhealing or ischemic wounds. We present here a case of 59 years old woman with compartment syndrome following surgical treatment of stress fracture of proximal tibia with extensively infected wound and exposed tibia to about 4/5 of its extent. The knee joint was also infected with active pus draining from a medial wound. At presentation the patient had already taken treatment for 15 days in the form of repeated wound debridements and parenteral antibiotics, which failed to heal the wound and she was advised amputation. Topical ozone therapy twice daily and ozone autohemotherapy once daily were given to the patient along with daily dressings and parenteral antibiotics. Within 5 days, the wound was healthy enough for spilt thickness skin graft to provide biological dressing to the exposed tibia bone. Topical ozone therapy was continued for further 5 days till the knee wound healed. On the 15th day, implant removal, intramedullary nailing, and latissimus dorsi pedicle flap were performed. Both the bone and the soft tissue healed without further complications and at 20 months follow-up, the patient was walking independently with minimal disability.

  14. Vegetation-mediated Climate Impacts on Historical and Future Ozone Air Quality

    Science.gov (United States)

    Tai, A. P. K.; Fu, Y.; Mickley, L. J.; Heald, C. L.; Wu, S.

    2014-12-01

    Changes in climate, natural vegetation and human land use are expected to significantly influence air quality in the coming century. These changes and their interactions have important ramifications for the effectiveness of air pollution control strategies. In a series of studies, we use a one-way coupled modeling framework (GEOS-Chem driven by different combinations of historical and future meteorological, land cover and emission data) to investigate the effects of climate-vegetation changes on global and East Asian ozone air quality from 30 years ago to 40 years into the future. We find that future climate and climate-driven vegetation changes combine to increase summertime ozone by 2-6 ppbv in populous regions of the US, Europe, East Asia and South Asia by year 2050, but including the interaction between CO2 and biogenic isoprene emission reduces the climate impacts by more than half. Land use change such as cropland expansion has the potential to either mostly offset the climate-driven ozone increases (e.g., in the US and Europe), or greatly increase ozone (e.g., in Southeast Asia). The projected climate-vegetation effects in East Asia are particularly uncertain, reflecting a less understood ozone production regime. We thus further study how East Asian ozone air quality has evolved since the early 1980s in response to climate, vegetation and emission changes to shed light on its likely future course. We find that warming alone has led to a substantial increase in summertime ozone in populous regions by 1-4 ppbv. Despite significant cropland expansion and urbanization, increased summertime leafiness of vegetation in response to warming and CO2 fertilization has reduced ozone by 1-2 ppbv, driven by enhanced ozone deposition dominating over elevated biogenic emission and partially offsetting the warming effect. The historical role of CO2-isoprene interaction in East Asia, however, remains highly uncertain. Our findings demonstrate the important roles of land cover

  15. Degradation mechanism of alachlor during direct ozonation and O(3)/H(2)O(2) advanced oxidation process.

    Science.gov (United States)

    Qiang, Zhimin; Liu, Chao; Dong, Bingzhi; Zhang, Yalei

    2010-01-01

    The degradation of alachlor by direct ozonation and advanced oxidation process O(3)/H(2)O(2) was investigated in this study with focus on identification of degradation byproducts. The second-order reaction rate constant between ozone and alachlor was determined to be 2.5+/-0.1M(-1)s(-1) at pH 7.0 and 20 degrees C. Twelve and eight high-molecular-weight byproducts (with the benzene ring intact) from alachlor degradation were identified during direct ozonation and O(3)/H(2)O(2), respectively. The common degradation byproducts included N-(2,6-diethylphenyl)-methyleneamine, 8-ethyl-3,4-dihydro-quinoline, 8-ethyl-quinoline, 1-chloroacetyl-2-hydro-3-ketone-7-acetyl-indole, 2-chloro-2',6'-diacetyl-N-(methoxymethyl)acetanilide, 2-chloro-2'-acetyl-6'-ethyl-N-(methoxymethyl)-acetanilide, and two hydroxylated alachlor isomers. In direct ozonation, four more byproducts were also identified including 1-chloroacetyl-2,3-dihydro-7-ethyl-indole, 2-chloro-2',6'-ethyl-acetanilide, 2-chloro-2',6'-acetyl-acetanilide and 2-chloro-2'-ethyl-6'-acetyl-N-(methoxymethyl)-acetanilide. Degradation of alachlor by O(3) and O(3)/H(2)O(2) also led to the formation of low-molecular-weight byproducts including formic, acetic, propionic, monochloroacetic and oxalic acids as well as chloride ion (only detected in O(3)/H(2)O(2)). Nitrite and nitrate formation was negligible. Alachlor degradation occurred via oxidation of the arylethyl group, N-dealkylation, cyclization and cleavage of benzene ring. After O(3) or O(3)/H(2)O(2) treatment, the toxicity of alachlor solution examined by the Daphnia magna bioassay was slightly reduced. 2009 Elsevier Ltd. All rights reserved.

  16. Merged SAGE II, Ozone_cci and OMPS ozone profile dataset and evaluation of ozone trends in the stratosphere

    Directory of Open Access Journals (Sweden)

    V. F. Sofieva

    2017-10-01

    Full Text Available In this paper, we present a merged dataset of ozone profiles from several satellite instruments: SAGE II on ERBS, GOMOS, SCIAMACHY and MIPAS on Envisat, OSIRIS on Odin, ACE-FTS on SCISAT, and OMPS on Suomi-NPP. The merged dataset is created in the framework of the European Space Agency Climate Change Initiative (Ozone_cci with the aim of analyzing stratospheric ozone trends. For the merged dataset, we used the latest versions of the original ozone datasets. The datasets from the individual instruments have been extensively validated and intercompared; only those datasets which are in good agreement, and do not exhibit significant drifts with respect to collocated ground-based observations and with respect to each other, are used for merging. The long-term SAGE–CCI–OMPS dataset is created by computation and merging of deseasonalized anomalies from individual instruments. The merged SAGE–CCI–OMPS dataset consists of deseasonalized anomalies of ozone in 10° latitude bands from 90° S to 90° N and from 10 to 50 km in steps of 1 km covering the period from October 1984 to July 2016. This newly created dataset is used for evaluating ozone trends in the stratosphere through multiple linear regression. Negative ozone trends in the upper stratosphere are observed before 1997 and positive trends are found after 1997. The upper stratospheric trends are statistically significant at midlatitudes and indicate ozone recovery, as expected from the decrease of stratospheric halogens that started in the middle of the 1990s and stratospheric cooling.

  17. Tropospheric Ozone from the TOMS TDOT (TOMS-Direct-Ozone-in-Troposphere) Technique During SAFARI-2000

    Science.gov (United States)

    Stone, J. B.; Thompson, A. M.; Frolov, A. D.; Hudson, R. D.; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    There are a number of published residual-type methods for deriving tropospheric ozone from TOMS (Total Ozone Mapping Spectrometer). The basic concept of these methods is that within a zone of constant stratospheric ozone, the tropospheric ozone column can be computed by subtracting stratospheric ozone from the TOMS Level 2 total ozone column, We used the modified-residual method for retrieving tropospheric ozone during SAFARI-2000 and found disagreements with in-situ ozone data over Africa in September 2000. Using the newly developed TDOT (TOMS-Direct-Ozone-in-Troposphere) method that uses TOMS radiances and a modified lookup table based on actual profiles during high ozone pollution periods, new maps were prepared and found to compare better to soundings over Lusaka, Zambia (15.5 S, 28 E), Nairobi and several African cities where MOZAIC aircraft operated in September 2000. The TDOT technique and comparisons are described in detail.

  18. Ozonation of Cephalexin Antibiotic Using Granular Activated Carbon in a Circulating Reactor

    International Nuclear Information System (INIS)

    Amin, N. S.; Akhtar, J.

    2015-01-01

    A circulating reactor was used to decompose cephalexin during catalytic ozonation. The effect of ozone supply and granular activated carbon (GAC) catalyst was investigated for removal of CEX and COD. The regeneration of exhausted activated carbon was investigated during in-situ ozonation. According to results, ozone supply appeared as the most influencing variable followed by dosage of granular activated carbon. The BET surface area, thermogravimetric analysis (TGA) and temperature programmed desorption (TPD) curves indicated that solid phase regeneration of activated carbon using ozone gas followed by mild thermal decomposition was very effective. The adsorption capacity of regenerated activated carbon was slightly lower than virgin activated carbon. The overall study revealed that catalytic ozonation was effective in removing cephalexin from solution and the method can be applied for in-situ ozonation processes. (author)

  19. A Review of Atmospheric Ozone and Current Thinking on the Antarctic Ozone Hole.

    Science.gov (United States)

    1987-01-01

    UNIVERSITY OF CALIFORNIA 0 A Review of Atmospheric ozone and Current Thinking on the Antartic Ozone Hole A thesis submitted in partial satisfaction of the...4. TI TLE (Pit 5,1tlfie) S. TYPE OF REPORT & PFRIOO COVERED A Review of Atmospheric Ozone and Current THESIS/DA/;J.At1AAU00 Thinking on the Antartic ...THESIS A Review of Atmospheric Ozone and Current Thinking on the Antartic Ozone Hole by Randolph Antoine Fix Master of Science in Atmospheric Science

  20. Ozone Decline and Recovery: The Significance of Uncertainties

    Science.gov (United States)

    Harris, N. R. P.

    2017-12-01

    Stratospheric ozone depletion has been one of the leading environmental issues of the last 40 years. It has required research scientists, industry and government to work together to address it successfully. Steps have been taken to reduce the emissions of ozone depleting substances (ODS) under successive revisions of the measures in the 30 year old Montreal Protocol. These have led to a reduction in atmospheric ODS concentrations and so are expected over time to result in a reduction of chemical ozone depletion by ODS. This 'recovery' is being influenced by a number of other factors (natural variability, climate change, other changes in stratospheric chemistry) which makes it hard to provide good, quantitative estimates of the impact of the recent ODS reductions on stratospheric ozone. In this presentation, I discuss how ozone trends were linked to ODS during the period of ozone depletion and during the recent period of 'recovery', i.e. before and after the peak in atmospheric ODS. It is important to be as rigorous as possible in order to give public confidence in the advice provided through the scientific assessment process. We thus need to be as critical of our analyses of the recent data as possible, even though there is a strong expectation and hope from all sides that stratospheric ozone is recovering. I will describe in outline the main challenges that exist now and looking forward.

  1. Identification of intermediates and assessment of ecotoxicity in the oxidation products generated during the ozonation of clofibric acid.

    Science.gov (United States)

    Rosal, Roberto; Gonzalo, María S; Boltes, Karina; Letón, Pedro; Vaquero, Juan J; García-Calvo, E

    2009-12-30

    The degradation of an aqueous solution of clofibric acid was investigated during catalytic and non-catalytic ozonation. The catalyst, TiO(2), enhanced the production of hydroxyl radicals from ozone and raised the fraction or clofibric acid degraded by hydroxyl radicals. The rate constant for the reaction of clofibric acid and hydroxyl radicals was not affected by the presence of the catalyst. The toxicity of the oxidation products obtained during the reaction was assessed by means of Vibrio fischeri and Daphnia magna tests in order to evaluate the potential formation of toxic by-products. The results showed that the ozonation was enhanced by the presence of TiO(2,) the clofibric acid being removed completely after 15 min at pH 5. The evolution of dissolved organic carbon, specific ultraviolet absorption at 254 nm and the concentration of carboxylic acids monitored the degradation process. The formation of 4-chlorophenol, hydroquinone, 4-chlorocatechol, 2-hydroxyisobutyric acid and three non-aromatic compounds identified as a product of the ring-opening reaction was assessed by exact mass measurements performed by liquid chromatography coupled to time-of-flight mass spectrometry (LC-TOF-MS). The bioassays showed a significant increase in toxicity during the initial stages of ozonation following a toxicity pattern closely related to the formation of ring-opening by-products.

  2. Proposed standardized definitions for vertical resolution and uncertainty in the NDACC lidar ozone and temperature algorithms - Part 2: Ozone DIAL uncertainty budget

    Science.gov (United States)

    Leblanc, Thierry; Sica, Robert J.; van Gijsel, Joanna A. E.; Godin-Beekmann, Sophie; Haefele, Alexander; Trickl, Thomas; Payen, Guillaume; Liberti, Gianluigi

    2016-08-01

    A standardized approach for the definition, propagation, and reporting of uncertainty in the ozone differential absorption lidar data products contributing to the Network for the Detection for Atmospheric Composition Change (NDACC) database is proposed. One essential aspect of the proposed approach is the propagation in parallel of all independent uncertainty components through the data processing chain before they are combined together to form the ozone combined standard uncertainty. The independent uncertainty components contributing to the overall budget include random noise associated with signal detection, uncertainty due to saturation correction, background noise extraction, the absorption cross sections of O3, NO2, SO2, and O2, the molecular extinction cross sections, and the number densities of the air, NO2, and SO2. The expression of the individual uncertainty components and their step-by-step propagation through the ozone differential absorption lidar (DIAL) processing chain are thoroughly estimated. All sources of uncertainty except detection noise imply correlated terms in the vertical dimension, which requires knowledge of the covariance matrix when the lidar signal is vertically filtered. In addition, the covariance terms must be taken into account if the same detection hardware is shared by the lidar receiver channels at the absorbed and non-absorbed wavelengths. The ozone uncertainty budget is presented as much as possible in a generic form (i.e., as a function of instrument performance and wavelength) so that all NDACC ozone DIAL investigators across the network can estimate, for their own instrument and in a straightforward manner, the expected impact of each reviewed uncertainty component. In addition, two actual examples of full uncertainty budget are provided, using nighttime measurements from the tropospheric ozone DIAL located at the Jet Propulsion Laboratory (JPL) Table Mountain Facility, California, and nighttime measurements from the JPL

  3. Evaluation of Fenton Oxidation Process Coupled with Biological Treatment for the Removal of Reactive Black 5 from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Pegah Bahmani

    2013-06-01

    Full Text Available Biodegradation of azo dyes is difficult due to their complex structures and low BOD to COD ratios. In the present study, the efficiency of using Fenton’s reagent (H2O2 + Fe2+ as a pretreatment process to enhance microbial transformation of reactive black 5 (RB5 in an aqueous system was evaluated. The RB5 with an initial concentration of 250 mg/L was decolorized up to 90% in 60 h by using a bacterial consortium. Fenton’s reagent at a Fe2+ concentration of 0.5 mM and H2O2 concentration of 2.9 mM (molar ratio, 1:5.8 was most effective for decolorization at pH = 3.0. The extent of RB5 removal by the combined Fenton–biotreatment was about 2 times higher than that of biotreatment alone. The production of some aromatic amines intermediates implied partial mineralization of the RB5 in Fenton treatment alone; in addition, decreasing of GC-MS peaks suggested that dearomatization occurred in Fenton-biological process. Fenton pretreatment seems to be a cost–effective option for the biotreatment of azo dyes, due mainly to the lower doses of chemicals, lower sludge generation, and saving of time. Our results demonstrated positive effects of inoculating bacterial consortium which was capable of dye biodegradation with a Fenton’s pretreatment step as well as the benefits of low time required for the biological process. In addition, the potential of field performance of Fenton-biological process because of using bacterial consortium is an other positive effect of it.

  4. Operational Research on Design and Process Optimization of Ozone Water Application in Kitchen

    OpenAIRE

    Lee Zhun Jing; Chou Pui May; Hoo Choon Lih; Lu Daniel

    2018-01-01

    Food safety is a very important focus in the kitchen industry today, as bacteria such as E.Coli and Salmonella are very difficult to tackle. The objective of the present study was to optimize nozzle designs that use ozone technology to bring out the best results in cleaning and sterilizing the kitchen utensils in Taylor’s University School of Hospitality kitchen area. This includes customization of the Medklinn International Sdn Bhd ozone machine and nozzle profiles that improve the effective...

  5. Stratospheric ozone changes under solar geoengineering: implications for UV exposure and air quality

    Directory of Open Access Journals (Sweden)

    P. J. Nowack

    2016-03-01

    Full Text Available Various forms of geoengineering have been proposed to counter anthropogenic climate change. Methods which aim to modify the Earth's energy balance by reducing insolation are often subsumed under the term solar radiation management (SRM. Here, we present results of a standard SRM modelling experiment in which the incoming solar irradiance is reduced to offset the global mean warming induced by a quadrupling of atmospheric carbon dioxide. For the first time in an atmosphere–ocean coupled climate model, we include atmospheric composition feedbacks for this experiment. While the SRM scheme considered here could offset greenhouse gas induced global mean surface warming, it leads to important changes in atmospheric composition. We find large stratospheric ozone increases that induce significant reductions in surface UV-B irradiance, which would have implications for vitamin D production. In addition, the higher stratospheric ozone levels lead to decreased ozone photolysis in the troposphere. In combination with lower atmospheric specific humidity under SRM, this results in overall surface ozone concentration increases in the idealized G1 experiment. Both UV-B and surface ozone changes are important for human health. We therefore highlight that both stratospheric and tropospheric ozone changes must be considered in the assessment of any SRM scheme, due to their important roles in regulating UV exposure and air quality.

  6. Use of ozone in a water reuse system for salmonids

    Science.gov (United States)

    Williams, R.C.; Hughes, S.G.; Rumsey, G.L.

    1982-01-01

    A water reuse system is described in which ozone is used in addition to biological filters to remove toxic metabolic wastes from the water. The system functions at a higher rate of efficiency than has been reported for other reuse systems and supports excellent growth of rainbow trout (Salmo gairdneri).

  7. [Ozone concentration distribution of urban].

    Science.gov (United States)

    Yin, Yong-quan; Li, Chang-mei; Ma, Gui-xia; Cui, Zhao-jie

    2004-11-01

    The increase of ozone concentration in urban is one of the most important research topics on environmental science. With the increase of nitrogen oxides and hydrogen-carbon compounds which are exhausted from cars, the ozone concentration in urban is obviously increased on sunlight, and threat of photochemistry smog will be possible. Therefore, it is very important to monitor and study the ozone concentration distribution in urban. The frequency-distribution, diurnal variation and monthly variation of ozone concentration were studied on the campus of Shandong University during six months monitoring. The influence of solar radiation and weather conditions on ozone concentration were discussed. The frequency of ozone concentration less than 200 microg/m3 is 96.88%. The ozone concentration has an obvious diurnal variation. The ozone concentration in the afternoon is higher than in the morning and in the evening. The maximum appears in June, when it is the strong solar radiation and high air-temperature. The weather conditions also influence the ozone concentration. The ozone concentration in clear day is higher than in rainy and cloudy day.

  8. Beginning of the ozone recovery over Europe? − Analysis of the total ozone data from the ground-based observations, 1964−2004

    Directory of Open Access Journals (Sweden)

    J. W. Krzyścin

    2005-07-01

    Full Text Available The total ozone variations over Europe (~50° N in the period 1964–2004 are analyzed for detection of signals of ozone recovery. The ozone deviations from the long-term monthly means (1964–1980 for selected European stations, where the ozone observations (by the Dobson spectrophotometers have been carried out continuously for at least 3–4 decades, are averaged and examined by a regression model. A new method is proposed to disclose both the ozone trend variations and date of the trend turnaround. The regression model contains a piecewise linear trend component and the terms describing the ozone response to forcing by "natural" changes in the atmosphere. Standard proxies for the dynamically driven ozone variations are used. The Multivariate Adaptive Regression Splines (MARS methodology and principal component analysis are used to find an optimal set of the explanatory variables and the trend pattern. The turnaround of the ozone trend in 1994 is suggested from the pattern of the piecewise linear trend component. Thus, the changes in the ozone mean level are calculated over the periods 1970–1994 and 1994–2003, for both the original time series and the time series having "natural" variations removed. Statistical significance of the changes are derived by bootstrapping. A first stage of recovery (according to the definition of the International Ozone Commission, i.e. lessening of a negative trend, is found over Europe. It seems possible that the increase in the ozone mean level since 1994 of about 1–2% is due to superposition of the "natural" processes. Comparison of the total ozone ground-based network (the Dobson and Brewer spectrophotometers and the satellite (TOMS, version 8 data over Europe shows the small bias in the mean values for the period 1996–2004, but the differences between the daily ozone values from these instruments are not trendless, and this may hamper an identification of the next stage of the ozone recovery over

  9. The benefit of modeled ozone data for the reconstruction of a 99-year UV radiation time series

    Science.gov (United States)

    Junk, J.; Feister, U.; Helbig, A.; GöRgen, K.; Rozanov, E.; KrzyśCin, J. W.; Hoffmann, L.

    2012-08-01

    Solar erythemal UV radiation (UVER) is highly rele