WorldWideScience

Sample records for oxygenated p-menthane monoterpenes

  1. Demonstration that limonene is the first cyclic intermediate in the biosynthesis of oxygenated p-menthane monoterpenes in Mentha piperita and other Mentha species

    International Nuclear Information System (INIS)

    Croteau, R.; Kjonaas, R.

    1983-01-01

    The volatile oil of mature Mentha piperita (peppermint) leaves contains as major components the oxygenated p-menthane monoterpenes l-menthol (47%) and l-menthone (24%) as well as very low levels of the monoterpene olefins limonene (1%) and terpinolene (0.1%), which are considered to be probable precursors of the oxygenated derivatives. Immature leaves, which are actively synthesizing monoterpenes, produce an oil with comparatively higher levels of limonene approx.3%), and isolation of the pure olefin showed this compound to consist of approx.80% of the l-(4S)-enantiomer and approx.20% of the d-(4R)-enantiomer. The time course of incorporation of [U- 14 C]sucrose into the monoterpenes of M. piperita shoot tips was consistent with the inital formation of limonene and its subsequent conversion to menthone via pulegone. d,l-[9- 3 H]Limonene and [9,10- 3 H]terpinolene were prepared and tested directly as precursors of oxygenated p-menthane monoterpenes in M. piperita shoot tips. Limonene was readily incorporated into pulegone, menthone, and other oxygenated derivatives, whereas terpinolene was not appreciably incorporated into these compounds. Similarly, d,l-[9- 3 H]limonene was specifically incorporated into pulegone in Mentha pulegium and into the C-2-oxygenated derivative carvone in Mentha spicata, confirming the role of this olefin as the essential precursor of oxygenated p-menthane monoterpenes. Soluble enzyme preparations from the epidermis of immature M. piperita leaves converted the acyclic terpenoid precursor [1- 3 H]geranyl pyrophosphate to limonene as the major cyclic product

  2. Evaluation of the Cytotoxicity of Structurally Correlated p-Menthane Derivatives

    Directory of Open Access Journals (Sweden)

    Luciana Nalone Andrade

    2015-07-01

    Full Text Available Compounds isolated from essential oils play an important role in the prevention and treatment of cancer. Monoterpenes are natural products, and the principal constituents of many essential oils. The aim of this study was to investigate the cytotoxic potential of p-menthane derivatives. Additionally, analogues of perillyl alcohol, a monoterpene with known anticancer activity, were evaluated to identify the molecular characteristics which contribute to their cytotoxicity, which was tested against OVCAR-8, HCT-116, and SF-295 human tumor cell lines, using the MTT assay. The results of this study showed that (−-perillaldehyde 8,9-epoxide exhibited the highest percentage inhibition of cell proliferation (GI = 96.32%–99.89%. Perillyl alcohol exhibited high cytotoxic activity (90.92%–95.82%, while (+-limonene 1,2-epoxide (GI = 58.48%–93.10%, (−-perillaldehyde (GI = 59.28%–83.03%, and (−-8-hydroxycarvotanacetone (GI = 61.59%–94.01% showed intermediate activity. All of the compounds tested were less cytotoxic than perillyl alcohol, except (−-perillaldehyde 8,9-epoxide (IC50 = 1.75–1.03 µL/mg. In general, replacement of C-C double bonds by epoxide groups in addition to the aldehyde group increases cytotoxicity. Furthermore, stereochemistry seems to play an important role in cytotoxicity. We have demonstrated the cytotoxic influence of chemical substituents on the p-menthane structure, and analogues of perillyl alcohol.

  3. Germacranes and m-Menthane from Illicium lanceolatum

    Directory of Open Access Journals (Sweden)

    Ming Zhao

    2014-04-01

    Full Text Available Three new germacrane sesquiterpenes and a new m-menthane monoterpene were isolated together with four known compounds from the pericarp of Illicium lanceolatum, an adulterant to star anise (Illicium verum. All compounds were isolated from Illicium plants for the first time. The absolute stereochemistry of all germacranes and m-menthane was established by a combination of NMR and the modified Mosher’s ester method. The biological activity was evaluated on SH-SY5Y neuroblastoma cell line. (1S,5R,7R-1,5-Dihydroxygermacra-4(15,10(14,11(12-triene (at 62.5 µM and (1R,5R,7R-1,5-dihydroxygermacra-4(15,10(14,11(12-triene (at 15.6 µM promoted the proliferation of SH-SY5Y by 36.2% and 45.8%, respectively, after 48 h incubation, indicating potential neurotrophic activity.

  4. In vitro analysis of radioprotective effect of monoterpenes

    International Nuclear Information System (INIS)

    Ken-ichi Kudo; Tadashi Hanafusa; Toshiro Ono

    2017-01-01

    Monoterpenes are naturally occurring hydrocarbons composed of two units of isoprenes. They exhibit antioxidant activity to scavenge reactive oxygen species, such as hydroxyl radicals. We investigated the potential of monoterpenes such as thymol, linalool, and menthol to act as radioprotectants. The proliferation of EL4 cells, a mouse lymphoma cell line, treated with linalool at a concentration of 500 μM or more was not affected by X-ray irradiation. Plasmid-nicking assay performed using formamidopyrimidine-DNA glycosylase showed that linalool prevented single strand breaks and oxidized purines on pUC19 plasmid DNA. These findings indicate that linalool has the ability to scavenge reactive oxygen species and is a potential radioprotector. (author)

  5. Supercritical CO2 Extraction of Lavandula angustifolia Mill. Flowers: Optimisation of Oxygenated Monoterpenes, Coumarin and Herniarin Content.

    Science.gov (United States)

    Jerković, Igor; Molnar, Maja; Vidović, Senka; Vladić, Jelena; Jokić, Stela

    2017-11-01

    Lavandula angustifolia is good source of oxygenated monoterpenes containing coumarins as well, which are all soluble in supercritical CO 2 (SC-CO 2 ). The study objective is to investigate SC-CO 2 extraction parameters on: the total yield; GC-MS profile of the extracts; relative content of oxygenated monoterpenes; the amount of coumarin and herniarin; and to determine optimal SC-CO 2 extraction conditions by response surface methodology (RSM). SC-CO 2 extraction was performed under different pressure, temperature and CO 2 flow rate determined by Box-Behnken design (BBD). The sample mass and the extraction time were kept constant. The chemical profiles and relative content of oxygenated monoterpenes (as coumarin equivalents, CE) were determined by GC-MS. Coumarin and herniarin concentrations were dosed by HPLC. SC-CO 2 extracts contained linalool (57.4-217.9 mg CE/100 g), camphor (10.6-154.4 mg CE/100 g), borneol (6.2-99.9 mg CE/100 g), 1,8-cineole (5.0-70.4 mg CE/100 g), linalyl acetate (86.1-267.9 mg CE/100 g), coumarin (0.95-18.16 mg/100 g), and herniarin (0.95-13.63 mg/100 g). The interaction between the pressure and CO 2 flow rate as well as between the temperature and CO 2 flow rate showed statistically significant influence on the extraction yield. Applying BBD, the optimum extraction conditions for higher monoterpenes and lower coumarin content were at 10 MPa, 41°C and CO 2 flow rate 2.3 kg/h, and at 30 MPa, 50°C and CO 2 flow rate 3 kg/h for higher monoterpenes and coumarin content. SC-CO 2 extraction is a viable technique for obtaining lavender extracts with desirable flavour components. The second-order model based on BBD predicts the results for SC-CO 2 extraction quite satisfactorily. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  6. Structural relationships and vasorelaxant activity of monoterpenes

    Directory of Open Access Journals (Sweden)

    Cardoso Lima Tamires

    2012-09-01

    Full Text Available Abstract Background and purpose of the study The hypotensive activity of the essential oil of Mentha x villosa and its main constituent, the monoterpene rotundifolone, have been reported. Therefore, our objective was to evaluate the vasorelaxant effect of monoterpenes found in medicinal plants and establish the structure-activity relationship of rotundifolone and its structural analogues on the rat superior mesenteric artery. Methods Contractions of the vessels were induced with 10 μM of phenylephine (Phe in rings with endothelium. During the tonic phase of the contraction, the monoterpenes (10-8 - 10-3, cumulatively were added to the organ bath. The extent of relaxation was expressed as the percentage of Phe-induced contraction. Results The results from the present study showed that both oxygenated terpenes (rotundifolone, (+-limonene epoxide, pulegone epoxide, carvone epoxide, and (+-pulegone and non-oxygenated terpene ((+-limonene exhibit relaxation activity. The absence of an oxygenated molecular structure was not a critical requirement for the molecule to be bioactive. Also it was found that the position of ketone and epoxide groups in the monoterpene structures influence the vasorelaxant potency and efficacy. Major conclusion The results suggest that the presence of functional groups in the chemical structure of rotundifolone is not essential for its vasorelaxant activity.

  7. Measurement and modelling of the solubility of carbon dioxide in aqueous 1,8-p-menthane-diamine solution

    International Nuclear Information System (INIS)

    Li, Jie; Lin, Xiao; Ning, Peng-Ge; Cao, Hong-Bin; Zhang, Yi

    2014-01-01

    Highlights: • Solubility of CO 2 was measured in aqueous MDA up to 1.97 CO 2 loading. • KE model was used to correlate VLE data in α 1 regions separately. • Four chemical equilibrium constants were determined. • Sterically hindering effect for MDA in CO 2 absorption was demonstrated. • MDA absorption efficiency was compared with MEA, MDEA and PZ. -- Abstract: The solubility of CO 2 in aqueous 1,8-p-menthane-diamine (MDA) solution with substance concentrations of 0.625 and 1.25 mol · L −1 was measured at temperatures (313.15, 333.15 and 353.15) K with CO 2 partial pressures ranging from (0.55 to 776.0) kPa and CO 2 loading ranging from (0.120 to 1.97) mol CO 2 per mol MDA. The gas solubility results are expressed as the partial pressure of CO 2 (P CO 2 ) against its mole ratio, i.e.α CO 2 (mol CO 2 per mol MDA). The chemical absorption reaction and thermodynamic model have been proposed. The physicochemical Kent–Eisenberg model was used to correlate all the experimental results of the solubility of CO 2 in the aqueous MDA solutions under investigation. The chemical equilibrium constants and model parameters were determined by fitting the VLE data

  8. Inhibition of the NorA multi-drug transporter by oxygenated monoterpenes.

    Science.gov (United States)

    Coêlho, Mayara Ladeira; Ferreira, Josie Haydée Lima; de Siqueira Júnior, José Pinto; Kaatz, Glenn W; Barreto, Humberto Medeiros; de Carvalho Melo Cavalcante, Ana Amélia

    2016-10-01

    The aim of this study was to investigate intrinsic antimicrobial activity of three monoterpenes nerol, dimethyl octanol and estragole, against bacteria and yeast strains, as well as, investigate if these compounds are able to inhibit the NorA efflux pump related to fluoroquinolone resistance in Staphylococcus aureus. Minimal inhibitory concentrations (MICs) of the monoterpenes against Staphylococcus aureus, Escherichia coli and Candida albicans strains were determined by micro-dilution assay. MICs of the norfloxacin against a S. aureus strain overexpressing the NorA protein were determined in the absence or in the presence of the monoterpenes at subinhibitory concentrations, aiming to verify the ability of this compounds act as efflux pump inhibitors. The monoterpenes were inactive against S. aureus however the nerol was active against E. coli and C. albicans. The addition of the compounds to growth media at sub-inhibitory concentrations enhanced the activity of norfloxacin against S. aureus SA1199-B. This result shows that bioactives tested, especially the nerol, are able to inhibit NorA efflux pump indicating a potential use as adjuvants of norfloxacin for therapy of infections caused by multi-drug resistant S. aureus strains. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Anti-Leishmania and cytotoxic activities of perillaldehyde epoxide synthetic positional isomers.

    Science.gov (United States)

    Keesen, Tatjana Souza Lima; da Silva, Larisse Virgolino; da Câmara Rocha, Juliana; Andrade, Luciana Nalone; Lima, Tamires Cardoso; de Sousa, Damião Pergentino

    2018-03-13

    Leishmaniasis belongs to a complex of zoonotic disease caused by protozoa of the genus Leishmania and is considered a major public health problem. Several essential oil chemical components have inhibitory effect against protozoa, including Leishmania donovani. Thus, the aim of this study was to evaluate for the first time the anti-Leishmania activity of two p-menthane monoterpene isomers (EPER-1: perillaldehyde 1,2-epoxide and EPER-2: perillaldehyde 8,9-epoxide) against L. donovani promastigotes as well as evaluating cytotoxic effect on mononuclear peripheral blood cells. Results of anti-Leishmania assay revealed that EPER-2 (IC 50  = 3.8 μg.mL -1 ) was 16-fold more potent than its isomer EPER-1 (IC 50  = 64.6 μg.mL -1 ). In contrast to PBMC cells, EPER-2 was not cytotoxic (IC 50  > 400 μg.mL -1 ) when compared to positive control. These data suggest that the disposition of epoxide group into the p-menthane skeleton affects the anti-Leishmania activity, being that the presence of the exocyclic epoxide group considerably increased potency. Thus, it was possible to observe that the location of the epoxide group into the p-menthane skeleton resulted in different potencies.

  10. Activité larvicide sur Anopheles gambiae Giles et composition chimique des huiles essentielles extraites de quatre plantes cultivées au Cameroun

    Directory of Open Access Journals (Sweden)

    Tchoumbougnang F.

    2009-01-01

    Full Text Available Larvicidal activity against Anopheles gambiae Giles and chemical composition of essential oils from four plants cultivated in Cameroon. The chemical composition of the essential oils obtained by hydrodistillation of dry leaves from Cymbopogon citrates (DC. Stapf, Ocimum canum Sims, Ocimum gratissimum L. var 'gratissimum' L. and Thymus vulgaris L. cultivated in Cameroon were analyzed and their larvicidal activity against fourth instar larvae of Anopheles gambiae Giles were determined. The yields of extraction indicate that T. vulgaris (0.95% was richer in essential oil than C. citratus (0.67%. O. canum and O. gratissimum have approximately the same content in volatile constituents (0.59% and 0.60%, respectively. The analyses by GC and GC/MS showed that these oils are monoterpenic (86.8-97.4%. Oxygenated monoterpenes predominate in C. citratus and O. canum (81.6% and 68.9%, respectively while O. gratissimum oil contains a majority of monoterpene hydrocarbons (61.0%. T. vulgaris is characterized by the same proportion of monoterpene hydrocarbons (45.6% and oxygenated monoterpenes (48.9%. The main compounds found in the essential oil of C. citratus are acyclic monoterpenes such as geraniol (15.6%, geranial (39.3%, neral (21.9% and myrcene (14.0%. The essential oil of T. vulgaris is characterized by p-menthane structures given by thymol (40.1%, p-cymene (23.4% and γ-terpinene (15.1%; p-cymene (32.1% and thymol (24.3% were also the constituents quantitatively important in O. gratissimum essential oil while linalool (56.3% and limonene (10.9% were predominant in O. canum. Bioassay test done by the World Health Organization standard protocol revealed that these essential oils have remarkable larvicidal properties as they could induce 100% mortality in the larvae of A. gambiae at the concentration of 100 ppm for C. citratus, 200 ppm with T. vulgaris, 350 ppm for O. gratissimum and 400 ppm for O. canum. Their LC50 and LC80 show the same reactivity order

  11. Structure Odour Relationship Study of Acyclic Monoterpene Alcohols, their Acetates and Synthesized Oxygenated Derivatives

    OpenAIRE

    Elsharif, Shaimaa

    2017-01-01

    The replacement of synthetic conventional compounds by natural ingredients; whether in medicine, food, or cosmetics; has been increasingly requested by consumers, especially since the last decade. Terpenes in general and monoterpenes in particular are secondary metabolites in plants, and they may be a promising natural alternative. Monoterpenes, the main constituents of plants’ essential oils, are odorous compounds that play a significant ecological role in plant evolution. The...

  12. In-situ ambient quantification of monoterpenes, sesquiterpenes, and related oxygenated compounds during BEARPEX 2007: implications for gas- and particle-phase chemistry

    Directory of Open Access Journals (Sweden)

    N. C. Bouvier-Brown

    2009-08-01

    Full Text Available We quantified ambient mixing ratios of 9 monoterpenes, 6 sesquiterpenes, methyl chavicol, the oxygenated terpene linalool, and nopinone using an in-situ gas chromatograph with a quadrupole mass spectrometer (GC-MS. These measurements were a part of the 2007 Biosphere Effects on AeRosols and Photochemistry EXperiment (BEARPEX at Blodgett Forest, a ponderosa pine forest in the Sierra Nevada Mountains of California. To our knowledge, these observations represent the first direct in-situ ambient quantification of the sesquiterpenes α-bergamotene, longifolene, α-farnesene, and β-farnesene. From average diurnal mixing ratio profiles, we show that α-farnesene emissions are dependent mainly on temperature whereas α-bergamotene and β-farnesene emissions are temperature- and light-dependent. The amount of sesquiterpene mass quantified above the canopy was small (averaging a total of 3.3 ppt during the day, but nevertheless these compounds contributed 7.6% to the overall ozone-olefin loss rate above the canopy. Assuming that the monoterpene-to-sesquiterpene emission rate in the canopy is similar to that observed in branch enclosure studies at the site during comparable weather conditions, and the average yield of aerosol mass from these sesquiterpenes is 10–50%, the amount of sesquiterpene mass reacted within the Blodgett Forest canopy alone accounts for 6–32% of the total organic aerosol mass measured during BEARPEX. The oxygenated monoterpene linalool was also quantified for the first time at Blodgett Forest. The linalool mass contribution was small (9.9 ppt and 0.74 ppt within and above the canopy, respectively, but it contributed 1.1% to the total ozone-olefin loss rate above the canopy. Reactive and semi-volatile compounds, especially sesquiterpenes, significantly impact the gas- and particle-phase chemistry of the atmosphere at Blodgett Forest and should be included in both biogenic volatile organic carbon emission and atmospheric chemistry

  13. Monoterpenes Support Systemic Acquired Resistance within and between Plants.

    Science.gov (United States)

    Riedlmeier, Marlies; Ghirardo, Andrea; Wenig, Marion; Knappe, Claudia; Koch, Kerstin; Georgii, Elisabeth; Dey, Sanjukta; Parker, Jane E; Schnitzler, Jörg-Peter; Vlot, A Corina

    2017-06-01

    This study investigates the role of volatile organic compounds in systemic acquired resistance (SAR), a salicylic acid (SA)-associated, broad-spectrum immune response in systemic, healthy tissues of locally infected plants. Gas chromatography coupled to mass spectrometry analyses of SAR-related emissions of wild-type and non-SAR-signal-producing mutant plants associated SAR with monoterpene emissions. Headspace exposure of Arabidopsis thaliana to a mixture of the bicyclic monoterpenes α-pinene and β-pinene induced defense, accumulation of reactive oxygen species, and expression of SA- and SAR-related genes, including the SAR regulatory AZELAIC ACID INDUCED1 ( AZI1 ) gene and three of its paralogs. Pinene-induced resistance was dependent on SA biosynthesis and signaling and on AZI1 Arabidopsis geranylgeranyl reductase1 mutants with reduced monoterpene biosynthesis were SAR-defective but mounted normal local resistance and methyl salicylate-induced defense responses, suggesting that monoterpenes act in parallel with SA The volatile emissions from SAR signal-emitting plants induced defense in neighboring plants, and this was associated with the presence of α-pinene, β-pinene, and camphene in the emissions of the "sender" plants. Our data suggest that monoterpenes, particularly pinenes, promote SAR, acting through ROS and AZI1 , and likely function as infochemicals in plant-to-plant signaling, thus allowing defense signal propagation between neighboring plants. © 2017 American Society of Plant Biologists. All rights reserved.

  14. Cardiovascular effects of monoterpenes: a review

    Directory of Open Access Journals (Sweden)

    Márcio R. V. Santos

    2011-07-01

    Full Text Available The monoterpenes are secondary metabolites of plants. They have various pharmacological properties including antifungal, antibacterial, antioxidant, anticancer, anti-spasmodic, hypotensive, and vasorelaxant. The purpose of this research was to review the cardiovascular effects of monoterpenes. The data in this resarch were collected using the Internet portals Pubmed, Scopus, and ISI Web of Knowledge between the years 1987 and 2010. In the study 33 monoterpenes were included, which were related to each of the thirteen individual words: artery, cardiovascular, heart, myocyte, vasorelaxant, vessel, hypotension, hypotensive, cardiomyocyte, ventricular, vasodilatory, aorta, and aortic. The research utilized 22 articles published mainly in the journals Phytomedicine, Fundamental Clinical Pharmacology, Planta Medica, Life Science, European Journal of Pharmacology, and Brazilian Journal of Medical and Biological Research. Of the 33 monoterpenes studied surveyed, sixteen of them had already been studied for their effects on the cardiovascular system: carvacrol, citronellol, p-cymene, eucalyptol (1,8-cineole, linalool, menthol, myrtenal, myrtenol, α-pinene, rotundifolone (piperitenone oxide, sobrerol, thymol, α-limonene, α-terpinen-4-ol, α-terpineol, and perillyl alcohol. The main effects observed were vasorelaxation, decreased heart rate and blood pressure. This review showed that the monoterpenes may be considered promising agents for prevention or treatment of diseases of the cardiovascular system.

  15. Cardiovascular effects of monoterpenes: a review

    Directory of Open Access Journals (Sweden)

    Márcio R. V. Santos

    2011-08-01

    Full Text Available The monoterpenes are secondary metabolites of plants. They have various pharmacological properties including antifungal, antibacterial, antioxidant, anticancer, anti-spasmodic, hypotensive, and vasorelaxant. The purpose of this research was to review the cardiovascular effects of monoterpenes. The data in this resarch were collected using the Internet portals Pubmed, Scopus, and ISI Web of Knowledge between the years 1987 and 2010. In the study 33 monoterpenes were included, which were related to each of the thirteen individual words: artery, cardiovascular, heart, myocyte, vasorelaxant, vessel, hypotension, hypotensive, cardiomyocyte, ventricular, vasodilatory, aorta, and aortic. The research utilized 22 articles published mainly in the journals Phytomedicine, Fundamental Clinical Pharmacology, Planta Medica, Life Science, European Journal of Pharmacology, and Brazilian Journal of Medical and Biological Research. Of the 33 monoterpenes studied surveyed, sixteen of them had already been studied for their effects on the cardiovascular system: carvacrol, citronellol, p-cymene, eucalyptol (1,8-cineole, linalool, menthol, myrtenal, myrtenol, α-pinene, rotundifolone (piperitenone oxide, sobrerol, thymol, α-limonene, α-terpinen-4-ol, α-terpineol, and perillyl alcohol. The main effects observed were vasorelaxation, decreased heart rate and blood pressure. This review showed that the monoterpenes may be considered promising agents for prevention or treatment of diseases of the cardiovascular system.

  16. The Antigerminative Activity of Twenty-Seven Monoterpenes

    Directory of Open Access Journals (Sweden)

    Laura De Martino

    2010-09-01

    Full Text Available Monoterpenes, the main constituents of essential oils, are known for their many biological activities. The present work studied the potential biological activity of twenty-seven monoterpenes, including monoterpene hydrocarbons and oxygenated ones, against seed germination and subsequent primary radicle growth of Raphanus sativus L. (radish and Lepidium sativum L. (garden cress, under laboratory conditions. The compounds, belonging to different chemical classes, showed different potency in affecting both parameters evaluated. The assayed compounds demonstrated a good inhibitory activity in a dose-dependent way. In general, radish seed is more sensitive than garden cress and its germination appeares more inhibited by alcohols; at the highest concentration tested, the more active substances were geraniol, borneol, (±-β-citronellol and α-terpineol. Geraniol and carvone inhibited, in a significant way, the germination of garden cress, at the highest concentration tested. Radicle elongation of two test species was inhibited mainly by alcohols and ketones. Carvone inhibited the radicle elongation of both seeds, at almost all concentrations assayed, while 1,8-cineole inhibited their radicle elongation at the lowest concentrations (10−5 M, 10−6 M.

  17. Structurally Related Monoterpenes p-Cymene, Carvacrol and Thymol Isolated from Essential Oil from Leaves of Lippia sidoides Cham. (Verbenaceae) Protect Mice against Elastase-Induced Emphysema.

    Science.gov (United States)

    Games, Ellen; Guerreiro, Marina; Santana, Fernanda R; Pinheiro, Nathalia M; de Oliveira, Emerson A; Lopes, Fernanda D T Q S; Olivo, Clarice R; Tibério, Iolanda F L C; Martins, Mílton A; Lago, João Henrique G; Prado, Carla M

    2016-10-20

    Chronic obstructive pulmonary disease (COPD) is characterized by irreversible airflow obstruction and inflammation. Natural products, such as monoterpenes, displayed anti-inflammatory and anti-oxidant activities and can be used as a source of new compounds to COPD treatment. Our aim was to evaluate, in an elastase-induced pulmonary emphysema in mice, the effects of and underlying mechanisms of three related natural monoterpenes ( p -cymene, carvacrol and thymol) isolated from essential oil from leaves Lippia sidoides Cham. (Verbenaceae). Mices received porcine pancreatic elastase (PPE) and were treated with p -cymene, carvacrol, thymol or vehicle 30 min later and again on 7th, 14th and 28th days. Lung inflammatory profile and histological sections were evaluated. In the elastase-instilled animals, the tested monoterpenes reduced alveolar enlargement, macrophages and the levels of IL-1β, IL-6, IL-8 and IL-17 in bronchoalveolar lavage fluid (BALF), and collagen fibers, MMP-9 and p-65-NF-κB-positive cells in lung parenchyma ( p < 0.05). All treatments attenuated levels of 8-iso-PGF2α but only thymol was able to reduced exhaled nitric oxide ( p < 0.05). Monoterpenes p -cymene, carvacrol and thymol reduced lung emphysema and inflammation in mice. No significant differences among the three monoterpenes treatments were found, suggesting that the presence of hydroxyl group in the molecular structure of thymol and carvacrol do not play a central role in the anti-inflammatory effects.

  18. Biocatalytic conversion of turpentine - a wood processing waste - into oxygenated monoterpenes

    Czech Academy of Sciences Publication Activity Database

    Dvořáková, Marcela; Valterová, Irena; Vaněk, Tomáš

    2011-01-01

    Roč. 29, č. 5 (2011), s. 204-211 ISSN 1024-2422 R&D Projects: GA MŠk ME08070; GA MŠk 2B08058 Institutional research plan: CEZ:AV0Z50380511; CEZ:AV0Z40550506 Keywords : biotransformation * monoterpene * Picea abies Subject RIV: EI - Biotechnology ; Bionics Impact factor: 0.905, year: 2011

  19. Anaerobic Degradation of Bicyclic Monoterpenes in Castellaniella defragrans

    Directory of Open Access Journals (Sweden)

    Edinson Puentes-Cala

    2018-02-01

    Full Text Available The microbial degradation pathways of bicyclic monoterpenes contain unknown enzymes for carbon–carbon cleavages. Such enzymes may also be present in the betaproteobacterium Castellaniella defragrans, a model organism to study the anaerobic monoterpene degradation. In this study, a deletion mutant strain missing the first enzyme of the monocyclic monoterpene pathway transformed cometabolically the bicyclics sabinene, 3-carene and α-pinene into several monocyclic monoterpenes and traces of cyclic monoterpene alcohols. Proteomes of cells grown on bicyclic monoterpenes resembled the proteomes of cells grown on monocyclic monoterpenes. Many transposon mutants unable to grow on bicyclic monoterpenes contained inactivated genes of the monocyclic monoterpene pathway. These observations suggest that the monocyclic degradation pathway is used to metabolize bicyclic monoterpenes. The initial step in the degradation is a decyclization (ring-opening reaction yielding monocyclic monoterpenes, which can be considered as a reverse reaction of the olefin cyclization of polyenes.

  20. Monoterpenes as inhibitors of digestive enzymes and counter-adaptations in a specialist avian herbivore.

    Science.gov (United States)

    Kohl, Kevin D; Pitman, Elizabeth; Robb, Brecken C; Connelly, John W; Dearing, M Denise; Forbey, Jennifer Sorensen

    2015-05-01

    Many plants produce plant secondary metabolites (PSM) that inhibit digestive enzymes of herbivores, thus limiting nutrient availability. In response, some specialist herbivores have evolved digestive enzymes that are resistant to inhibition. Monoterpenes, a class of PSMs, have not been investigated with respect to the interference of specific digestive enzymes, nor have such interactions been studied in avian herbivores. We investigated this interaction in the Greater Sage-Grouse (Phasianidae: Centrocercus urophasianus), which specializes on monoterpene-rich sagebrush species (Artemisia spp.). We first measured the monoterpene concentrations in gut contents of free-ranging sage-grouse. Next, we compared the ability of seven individual monoterpenes present in sagebrush to inhibit a protein-digesting enzyme, aminopeptidase-N. We also measured the inhibitory effects of PSM extracts from two sagebrush species. Inhibition of aminopeptidase-N in sage-grouse was compared to inhibition in chickens (Gallus gallus). We predicted that sage-grouse enzymes would retain higher activity when incubated with isolated monoterpenes or sagebrush extracts than chicken enzymes. We detected unchanged monoterpenes in the gut contents of free-ranging sage-grouse. We found that three isolated oxygenated monoterpenes (borneol, camphor, and 1,8-cineole) inhibited digestive enzymes of both bird species. Camphor and 1,8-cineole inhibited enzymes from chickens more than from sage-grouse. Extracts from both species of sagebrush had similar inhibition of chicken enzymes, but did not inhibit sage-grouse enzymes. These results suggest that specific monoterpenes may limit the protein digestibility of plant material by avian herbivores. Further, this work presents additional evidence that adaptations of digestive enzymes to plant defensive compounds may be a trait of specialist herbivores.

  1. A comparison of new measurements of total monoterpene flux with improved measurements of speciated monoterpene flux

    Directory of Open Access Journals (Sweden)

    A. Lee

    2005-01-01

    Full Text Available Many monoterpenes have been identified in forest emissions using gas chromatography (GC. Until now, it has been impossible to determine whether all monoterpenes are appropriately measured using GC techniques. We used a proton transfer reaction mass spectrometer (PTR-MS coupled with the eddy covariance (EC technique to measure mixing ratios and fluxes of total monoterpenes above a ponderosa pine plantation. We compared PTR-MS-EC results with simultaneous measurements of eight speciated monoterpenes, β-pinene, α-pinene, 3-carene, d-limonene, β-phellandrene, α-terpinene, camphene, and terpinolene, made with an automated, in situ gas chromatograph with flame ionization detectors (GC-FID, coupled to a relaxed eddy accumulation system (REA. Monoterpene mixing ratios and fluxes measured by PTR-MS averaged 30±2.3% and 31±9.2% larger than by GC-FID, with larger mixing ratio discrepancies between the two techniques at night than during the day. Two unidentified peaks that correlated with β-pinene were resolved in the chromatograms and completely accounted for the daytime difference and reduced the nighttime mixing ratio difference to 20±2.9%. Measurements of total monoterpenes by PTR-MS-EC indicated that GC-FID-REA measured the common, longer-lived monoterpenes well, but that additional terpenes were emitted from the ecosystem that represented an important contribution to the total mixing ratio above the forest at night.

  2. Long-term dynamics of monoterpene synthase activities, monoterpene storage pools and emissions in boreal Scots pine

    OpenAIRE

    Vanhatalo, Anni; Ghirardo, Andrea; Juurola, Eija; Schnitzler, Jörg-Peter; Zimmer, Ina; Hellén, Heidi; Hakola, Hannele; Bäck, Jaana

    2018-01-01

    Seasonal variations in monoterpene emissions from Scots pine (Pinus sylvestris) are well documented, and emissions are often shown to follow the incident temperatures due to effects on compound volatility. Recent studies have indicated a link between monoterpene emissions and physiological drivers such as photosynthetic capacity during needle development. The complex interplay between the dynamic changes in the biosynthetic capacity to produce monoterpenes and the temperature-dependent evapor...

  3. A novel fast gas chromatography method for higher time resolution measurements of speciated monoterpenes in air

    Science.gov (United States)

    Jones, C. E.; Kato, S.; Nakashima, Y.; Kajii, Y.

    2014-05-01

    Biogenic emissions supply the largest fraction of non-methane volatile organic compounds (VOC) from the biosphere to the atmospheric boundary layer, and typically comprise a complex mixture of reactive terpenes. Due to this chemical complexity, achieving comprehensive measurements of biogenic VOC (BVOC) in air within a satisfactory time resolution is analytically challenging. To address this, we have developed a novel, fully automated Fast Gas Chromatography (Fast-GC) based technique to provide higher time resolution monitoring of monoterpenes (and selected other C9-C15 terpenes) during plant emission studies and in ambient air. To our knowledge, this is the first study to apply a Fast-GC based separation technique to achieve quantification of terpenes in ambient air. Three chromatography methods have been developed for atmospheric terpene analysis under different sampling scenarios. Each method facilitates chromatographic separation of selected BVOC within a significantly reduced analysis time compared to conventional GC methods, whilst maintaining the ability to quantify individual monoterpene structural isomers. Using this approach, the C9-C15 BVOC composition of single plant emissions may be characterised within a 14.5 min analysis time. Moreover, in-situ quantification of 12 monoterpenes in unpolluted ambient air may be achieved within an 11.7 min chromatographic separation time (increasing to 19.7 min when simultaneous quantification of multiple oxygenated C9-C10 terpenoids is required, and/or when concentrations of anthropogenic VOC are significant). These analysis times potentially allow for a twofold to fivefold increase in measurement frequency compared to conventional GC methods. Here we outline the technical details and analytical capability of this chromatographic approach, and present the first in-situ Fast-GC observations of 6 monoterpenes and the oxygenated BVOC (OBVOC) linalool in ambient air. During this field deployment within a suburban forest

  4. Metabolism of monoterpenes: early steps in the metabolism of d-neomenthyl-β-D-glucoside in peppermint (Mentha piperita) rhizomes

    International Nuclear Information System (INIS)

    Croteau, R.; Sood, V.K.; Renstroem, B.; Bhushan, R.

    1984-01-01

    Previous studies have shown that the monoterpene ketone l-[G- 3 H] menthone is reduced to the epimeric alcohols l-menthol and d-neomenthol in leaves of flowering peppermint (Mentha piperita L.), and that a portion of the menthol is converted to methyl acetate while the bulk of the neomenthol is transformed to neomenthyl-β-D-glucoside which is then transported to the rhizome. Analysis of the disposition of l-[G] 3 H]menthone applied to midstem leaves of intact flowering plants allowed the kinetics of synthesis and transport of the monoterpenyl glucoside to be determined, and gave strong indication that the glucoside was subsequently metabolized in the rhizome. Studies with d-[G- 3 H]neomenthyl-β-D-glucoside as substrate, using excised rhizomes or rhizome segments, confirmed the hydrolysis of the glucoside as an early step in metabolism at this site, and revealed that the terpenoid moiety was further converted to a series of ether-soluble, methanol-soluble, and water-soluble products. The conversion of menthone to the lactone, and of the lactone to more polar products, were confirmed in vivo using l-[G- 3 H]menthone and l-[G- 3 H]-3,4-menthone lactone as substrates. Additional oxidation products were formed in vivo via the desaturation of labeled neomenthol and/or menthone, but none of these transformations appeared to lead to ring opening of the p-menthane skeleton. Each step in the main reaction sequence, from hydrolysis of neomenthyl glucoside to lactonization of menthone, was demonstrated in cell-free extracts from the rhizomes of flowering mint plants. The lactomization step is of particular significance in providing a means of cleaving the p-methane ring to afford an acyclic carbon skeleton that can be further degraded by modifications of the well-known β-oxidation sequence. 41 references, 3 figures, 1 table

  5. Modeling biogenic secondary organic aerosol (BSOA) formation from monoterpene reactions with NO3: A case study of the SOAS campaign using CMAQ

    Science.gov (United States)

    Qin, Momei; Hu, Yongtao; Wang, Xuesong; Vasilakos, Petros; Boyd, Christopher M.; Xu, Lu; Song, Yu; Ng, Nga Lee; Nenes, Athanasios; Russell, Armistead G.

    2018-07-01

    Monoterpenes react with nitrate radicals (NO3), contributing substantially to nighttime organic aerosol (OA) production. In this study, the role of reactions of monoterpenes + NO3 in forming biogenic secondary organic aerosol (BSOA) was examined using the Community Multiscale Air Quality (CMAQ) model, with extended emission profiles of biogenic volatile organic compounds (BVOCs), species-specific representations of BSOA production from individual monoterpenes and updated aerosol yields for monoterpene + NO3. The model results were compared to detailed measurements from the Southern Oxidants and Aerosol Study (SOAS) at Centreville, Alabama. With the more detailed model, monoterpene-derived BSOA increased by ∼1 μg m-3 at night, accounting for one-third of observed less-oxidized oxygenated OA (LO-OOA), more closely agreeing with observations (lower error, stronger correlation). Implementation of a multigenerational oxidation approach resulted in the model capturing elevated OA episodes. With the aging model, aged semi-volatile organic compounds (ASVOCs) contributed over 60% of the monoterpene-derived BSOA, followed by SOA formation via nitrate radical chemistry, making up to 34% of that formed at night. Among individual monoterpenes, β-pinene and limonene contributed most to the monoterpene-derived BSOA from nighttime reactions.

  6. Microbial monoterpene transformations – A review

    Directory of Open Access Journals (Sweden)

    Robert eMarmulla

    2014-07-01

    Full Text Available Isoprene and monoterpenes constitute a significant fraction of new plant biomass. Emission rates into the atmosphere alone are estimated to be over 500 Tg per year. These natural hydrocarbons are mineralized annually in similar quantities. In the atmosphere, abiotic photochemical processes cause lifetimes of minutes to hours. Microorganisms encounter isoprene, monoterpenes and other volatiles of plant origin while living in and on plants, in the soil and in aquatic habitats. Below toxic concentrations, the compounds can serve as carbon and energy source for aerobic and anaerobic microorganisms. Besides these catabolic reactions, transformations may occur as part of detoxification processes. Initial transformations of monoterpenes involve the introduction of functional groups, oxidation reactions and molecular rearrangements catalyzed by various enzymes. Pseudomonas and Rhodococcus strains and members of the genera Castellaniella and Thauera have become model organisms for the elucidation of biochemical pathways. We review here the enzymes and their genes together with microorganisms known for a monoterpene metabolism, with a strong focus on microorganisms that are taxonomically validly described and currently available from culture collections. Metagenomes of microbiomes with a monoterpene-rich diet confirmed the ecological relevance of monoterpene metabolism and raised concerns on the quality of our insights based on the limited biochemical knowledge.

  7. A novel Fast Gas Chromatography based technique for higher time resolution measurements of speciated monoterpenes in air

    Science.gov (United States)

    Jones, C. E.; Kato, S.; Nakashima, Y.; Kajii, Y.

    2013-12-01

    Biogenic emissions supply the largest fraction of non-methane volatile organic compounds (VOC) from the biosphere to the atmospheric boundary layer, and typically comprise a complex mixture of reactive terpenes. Due to this chemical complexity, achieving comprehensive measurements of biogenic VOC (BVOC) in air within a satisfactory time resolution is analytically challenging. To address this, we have developed a novel, fully automated Fast Gas Chromatography (Fast-GC) based technique to provide higher time resolution monitoring of monoterpenes (and selected other C9-C15 terpenes) during plant emission studies and in ambient air. To our knowledge, this is the first study to apply a Fast-GC based separation technique to achieve quantification of terpenes in air. Three chromatography methods have been developed for atmospheric terpene analysis under different sampling scenarios. Each method facilitates chromatographic separation of selected BVOC within a significantly reduced analysis time compared to conventional GC methods, whilst maintaining the ability to quantify individual monoterpene structural isomers. Using this approach, the C10-C15 BVOC composition of single plant emissions may be characterised within a ~ 14 min analysis time. Moreover, in situ quantification of 12 monoterpenes in unpolluted ambient air may be achieved within an ~ 11 min chromatographic separation time (increasing to ~ 19 min when simultaneous quantification of multiple oxygenated C9-C10 terpenoids is required, and/or when concentrations of anthropogenic VOC are significant). This corresponds to a two- to fivefold increase in measurement frequency compared to conventional GC methods. Here we outline the technical details and analytical capability of this chromatographic approach, and present the first in situ Fast-GC observations of 6 monoterpenes and the oxygenated BVOC linalool in ambient air. During this field deployment within a suburban forest ~ 30 km west of central Tokyo, Japan, the

  8. Metabolic engineering of monoterpene biosynthesis in plants

    NARCIS (Netherlands)

    Lücker, J.

    2002-01-01

    <p>Monoterpenes are a large group of compounds that belong to the terpenoid family of natural compounds in plants. They are small, volatile, lipophilic substances of which around one thousand different structures have been

  9. Highly reactive light-dependent monoterpenes in the Amazon

    Science.gov (United States)

    Jardine, A. B.; Jardine, K. J.; Fuentes, J. D.; Martin, S. T.; Martins, G.; Durgante, F.; Carneiro, V.; Higuchi, N.; Manzi, A. O.; Chambers, J. Q.

    2015-03-01

    Despite orders of magnitude difference in atmospheric reactivity and great diversity in biological functioning, little is known about monoterpene speciation in tropical forests. Here we report vertically resolved ambient air mixing ratios for 12 monoterpenes in a central Amazon rainforest including observations of the highly reactive cis-β-ocimene (160 ppt), trans-β-ocimene (79 ppt), and terpinolene (32 ppt) which accounted for an estimated 21% of total monoterpene composition yet 55% of the upper canopy monoterpene ozonolysis rate. All 12 monoterpenes showed a mixing ratio peak in the upper canopy, with three demonstrating subcanopy peaks in 7 of 11 profiles. Leaf level emissions of highly reactive monoterpenes accounted for up to 1.9% of photosynthesis confirming light-dependent emissions across several Amazon tree genera. These results suggest that highly reactive monoterpenes play important antioxidant roles during photosynthesis in plants and serve as near-canopy sources of secondary organic aerosol precursors through atmospheric photooxidation via ozonolysis.

  10. Generation and Functional Evaluation of Designer Monoterpene Synthases.

    Science.gov (United States)

    Srividya, N; Lange, I; Lange, B M

    2016-01-01

    Monoterpene synthases are highly versatile enzymes that catalyze the first committed step in the pathways toward terpenoids, the structurally most diverse class of plant natural products. Recent advancements in our understanding of the reaction mechanism have enabled engineering approaches to develop mutant monoterpene synthases that produce specific monoterpenes. In this chapter, we are describing protocols to introduce targeted mutations, express mutant enzyme catalysts in heterologous hosts, and assess their catalytic properties. Mutant monoterpene synthases have the potential to contribute significantly to synthetic biology efforts aimed at producing larger amounts of commercially attractive monoterpenes. © 2016 Elsevier Inc. All rights reserved.

  11. Conifer-Derived Monoterpenes and Forest Walking

    OpenAIRE

    Sumitomo, Kazuhiro; Akutsu, Hiroaki; Fukuyama, Syusei; Minoshima, Akiho; Kukita, Shin; Yamamura, Yuji; Sato, Yoshiaki; Hayasaka, Taiki; Osanai, Shinobu; Funakoshi, Hiroshi; Hasebe, Naoyuki; Nakamura, Masao

    2015-01-01

    Conifer and broadleaf trees emit volatile organic compounds in the summer. The major components of these emissions are volatile monoterpenes. Using solid phase microextraction fiber as the adsorbant, monoterpenes were successfully detected and identified in forest air samples. Gas chromatography/mass chromatogram of monoterpenes in the atmosphere of a conifer forest and that of serum from subjects who were walking in a forest were found to be similar each other. The amounts of α-pinene in the...

  12. Monoterpene oxidation in an oxidative flow reactor: SOA yields and the relationship between bulk gas-phase properties and organic aerosol growth

    Science.gov (United States)

    Friedman, B.; Link, M.; Farmer, D.

    2016-12-01

    We use an oxidative flow reactor (OFR) to determine the secondary organic aerosol (SOA) yields of five monoterpenes (alpha-pinene, beta-pinene, limonene, sabinene, and terpinolene) at a range of OH exposures. These OH exposures correspond to aging timescales of a few hours to seven days. We further determine how SOA yields of beta-pinene and alpha-pinene vary as a function of seed particle type (organic vs. inorganic) and seed particle mass concentration. We hypothesize that the monoterpene structure largely accounts for the observed variance in SOA yields for the different monoterpenes. We also use high-resolution time-of-flight chemical ionization mass spectrometry to calculate the bulk gas-phase properties (O:C and H:C) of the monoterpene oxidation systems as a function of oxidant concentrations. Bulk gas-phase properties can be compared to the SOA yields to assess the capability of the precursor gas-phase species to inform the SOA yields of each monoterpene oxidation system. We find that the extent of oxygenated precursor gas-phase species corresponds to SOA yield.

  13. Monoterpene emissions from an understory species, Pteridium aquilinum

    Science.gov (United States)

    Madronich, Monica B.; Greenberg, James P.; Wessman, Carol A.; Guenther, Alex B.

    2012-07-01

    Monoterpene emissions from the dominant understory species Pteridium aquilinum (Bracken fern) in a mixed temperate forest were measured in the field during the summers of 2006, 2007 and 2008. The results showed that Bracken fern emitted monoterpenes at different rates depending if the plants were located in the understory or in open areas. Understory plants emitted monoterpene levels ranging from 0.002 to 13 μgC gdw-1 h-1. Open area plants emitted monoterpene levels ranging from 0.005 to 2.21 μgC gdw-1 h-1. During the summer of 2008 greenhouse studies were performed to complement the field studies. Only 3% of the greenhouse Bracken fern plants emitted substantial amounts of monoterpenes. The average emission, 0.15 μgC gdw-1 h-1 ± 0.9 μgC gdw-1 h-1, was much lower than that observed in the field. The factors controlling monoterpene emissions are not clear, but this study provides evidence of the potential importance of understory vegetation to ecosystem total hydrocarbon emissions and emphasizes the need for longer-term field studies.

  14. Engineered protein degradation of farnesyl pyrophosphate synthase is an effective regulatory mechanism to increase monoterpene production in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Peng, Bingyin; Nielsen, Lars K.; Kampranis, Sotirios C

    2018-01-01

    Monoterpene production in Saccharomyces cerevisae requires the introduction of heterologous monoterpene synthases (MTSs). The endogenous farnesyl pyrosphosphate synthase (FPPS; Erg20p) competes with MTSs for the precursor geranyl pyrophosphate (GPP), which limits the production of monoterpenes. ERG......20 is an essential gene that cannot be deleted and transcriptional down-regulation of ERG20 has failed to improve monoterpene production. Here, we investigated an N-degron-dependent protein degradation strategy to down-regulate Erg20p activity. Degron tagging decreased GFP protein half......-life drastically to 1 h (degron K3K15) or 15 min (degrons KN113 and KN119). Degron tagging of ERG20 was therefore paired with a sterol responsive promoter to ensure sufficient metabolic flux to essential downstream sterols despite the severe destabilisation effect of degron tagging. A dual monoterpene...

  15. Microbial monoterpene transformations—a review

    OpenAIRE

    Marmulla, Robert; Harder, Jens

    2014-01-01

    Isoprene and monoterpenes constitute a significant fraction of new plant biomass. Emission rates into the atmosphere alone are estimated to be over 500 Tg per year. These natural hydrocarbons are mineralized annually in similar quantities. In the atmosphere, abiotic photochemical processes cause lifetimes of minutes to hours. Microorganisms encounter isoprene, monoterpenes, and other volatiles of plant origin while living in and on plants, in the soil and in aquatic habitats. Below toxic conc...

  16. Comparative study of the antitumor effect of natural monoterpenes: relationship to cell cycle analysis

    Directory of Open Access Journals (Sweden)

    Abdeslam Jaafari

    2012-06-01

    Full Text Available Monoterpenes have been identified as responsible of important therapeutic effects of plant-extracts. In this work, we try to compare the cytotoxic effect of six monoterpenes (carvacrol, thymol, carveol, carvone, eugenol and isopulegol as well as their molecular mechanisms. The in vitro antitumor activity of the tested products, evaluated against five tumor cell lines, show that the carvacrol is the most cytotoxic monoterpene. The investigation of an eventual synergistic effect of the six natural monoterpenes with two anticancer drugs revealed that there is a significant synergy between them (p<5%. On the other hand, the effect of the tested products on cell cycle progression was examined by flow cytometry after DNA staining in order to investigate the molecular mechanism of their cytotoxic activity. The results revealed that carvacrol and carveol stopped the cell cycle progression in S phase; however, thymol and isopulegol stopped it in G0/G1 phase. Regarding carvone and eugenol, no effect on cell cycle was observed.

  17. Seasonal influence on gene expression of monoterpene synthases in Salvia officinalis (Lamiaceae).

    Science.gov (United States)

    Grausgruber-Gröger, Sabine; Schmiderer, Corinna; Steinborn, Ralf; Novak, Johannes

    2012-03-01

    Garden sage (Salvia officinalis L., Lamiaceae) is one of the most important medicinal and aromatic plants and possesses antioxidant, antimicrobial, spasmolytic, astringent, antihidrotic and specific sensorial properties. The essential oil of the plant, formed mainly in very young leaves, is in part responsible for these activities. It is mainly composed of the monoterpenes 1,8-cineole, α- and β-thujone and camphor synthesized by the 1,8-cineole synthase, the (+)-sabinene synthase and the (+)-bornyl diphosphate synthase, respectively, and is produced and stored in epidermal glands. In this study, the seasonal influence on the formation of the main monoterpenes in young, still expanding leaves of field-grown sage plants was studied in two cultivars at the level of mRNA expression, analyzed by qRT-PCR, and at the level of end-products, analyzed by gas chromatography. All monoterpene synthases and monoterpenes were significantly influenced by cultivar and season. 1,8-Cineole synthase and its end product 1,8-cineole remained constant until August and then decreased slightly. The thujones increased steadily during the vegetative period. The transcript level of their corresponding terpene synthase, however, showed its maximum in the middle of the vegetative period and declined afterwards. Camphor remained constant until August and then declined, exactly correlated with the mRNA level of the corresponding terpene synthase. In summary, terpene synthase mRNA expression and respective end product levels were concordant in the case of 1,8-cineole (r=0.51 and 0.67 for the two cultivars, respectively; p<0.05) and camphor (r=0.75 and 0.82; p<0.05) indicating basically transcriptional control, but discordant for α-/β-thujone (r=-0.05 and 0.42; p=0.87 and 0.13, respectively). Copyright © 2011 Elsevier GmbH. All rights reserved.

  18. A Dual Repeat Cis-Element Determines Expression of GERANYL DIPHOSPHATE SYNTHASE for Monoterpene Production in Phalaenopsis Orchids

    Directory of Open Access Journals (Sweden)

    Yu-Chen Chuang

    2018-06-01

    Full Text Available Phalaenopsis bellina is a scented orchid emitting large amount of monoterpenes. GERANYL DIPHOSPHATE SYNTHASE (PbGDPS is the key enzyme for monoterpene biosynthesis, and shows concomitant expression with the emission of monoterpenes during flower development in P. bellina. Here, we identified a dual repeat cis-element in the GDPS promoter that is critical for monoterpene biosynthesis in Phalaenopsis orchids. A strong correlation between the dual repeat and the monoterpene production was revealed by examination of the GDPS promoter fragments over 12 Phalaenopsis species. Serial-deletion of the 2-kb GDPS promoter fragments demonstrated that the integrity of the dual repeat was crucial for its promoter activities. By screening the Arabidopsis transcription factors (TFs cDNA library using yeast one-hybrid assay, AtbZIP18, a member of group I of bZIP TFs, was identified to be able to bind the dual repeat. We then identified PbbZIP4 in the transcriptome of P. bellina, showing 83% identity in the DNA binding region with that of AtbZIP18, and the expression level of PbbZIP4 was higher in the scented orchids. In addition, PbbZIP4 transactivated the GDPS promoter fragment containing the dual repeat in dual luciferase assay. Furthermore, transient ectopic expression of PbbZIP4 induced a 10-fold production of monoterpenoids in the scentless orchid. In conclusion, these results indicate that the dual repeat is a real TF-bound cis-element significant for GDPS gene expression, and thus subsequent monoterpene biosynthesis in the scented Phalaenopsis orchids.

  19. Emission and Accumulation of Monoterpene and the Key Terpene Synthase (TPS) Associated with Monoterpene Biosynthesis in Osmanthus fragrans Lour

    Science.gov (United States)

    Zeng, Xiangling; Liu, Cai; Zheng, Riru; Cai, Xuan; Luo, Jing; Zou, Jingjing; Wang, Caiyun

    2016-01-01

    Osmanthus fragrans is an ornamental and economically important plant known for its magnificent aroma, and the most important aroma-active compounds in flowers are monoterpenes, mainly β-ocimene, linalool and linalool derivatives. To understand the molecular mechanism of monoterpene production, we analyzed the emission and accumulation patterns of these compounds and the transcript levels of the genes involved in their biosynthesis in two O. fragrans cultivars during flowering stages. The results showed that both emission and accumulation of monoterpenes varied with flower development and glycosylation had an important impact on floral linalool emission during this process. Gene expression demonstrated that the transcript levels of terpene synthase (TPS) genes probably played a key role in monoterpene production, compared to the genes in the MEP pathway. Phylogenetic analysis showed that OfTPS1 and OfTPS2 belonged to a TPS-g subfamily, and OfTPS3 and OfTPS4 clustered into a TPS-b subfamily. Their transient and stable expression in tobacco leaves suggested that OfTPS1 and OfTPS2 exclusively produced β-linalool, and trans-β-ocimene was the sole product from OfTPS3, while OfTPS4, a predictive sesquiterpene synthase, produced α-farnesene. These results indicate that OfTPS1, OfTPS2, and OfTPS3 could account for the major floral monoterpenes, linalool and trans-β-ocimene, produced in O. fragrans flowers. PMID:26793212

  20. Emission and accumulation of monoterpene and the key terpene synthase (TPS associated with monoterpene biosynthesis in Osmanthus fragrans Lour.

    Directory of Open Access Journals (Sweden)

    Xaingling eZeng

    2016-01-01

    Full Text Available Osmanthus fragrans is an ornamental and economically important plant known for its magnificent aroma, and the most important aroma-active compounds in flowers are monoterpenes, mainly β-ocimene, linalool and linalool derivatives. To understand the molecular mechanism of monoterpene production, we analyzed the emission and accumulation patterns of these compounds and the transcript levels of the genes involved in their biosynthesis in two O. fragrans cultivars during flowering stages. The results showed that both emission and accumulation of monoterpenes varied with flower development and glycosylation had an important impact on floral linalool emission during this process. Gene expression demonstrated that the transcript levels of terpene synthase (TPS genes probably played a key role in monoterpene production, compared to the genes in the MEP pathway. Phylogenetic analysis showed that OfTPS1 and OfTPS2 belonged to a TPS-g subfamily, and OfTPS3 and OfTPS4 clustered into a TPS-b subfamily. Their transient and stable expression in tobacco leaves suggested that OfTPS1 and OfTPS2 exclusively produced β-linalool, and trans-β-ocimene was the sole product from OfTPS3, while OfTPS4, a predictive sesquiterpene synthase, produced α-farnesene. These results indicate that OfTPS1, OfTPS2 and OfTPS3 could account for the major floral monoterpenes, linalool and trans-β-ocimene, produced in O. fragrans flowers.

  1. Effects of soil water content and elevated CO2 concentration on the monoterpene emission rate of Cryptomeria japonica.

    Science.gov (United States)

    Mochizuki, Tomoki; Amagai, Takashi; Tani, Akira

    2018-04-11

    Monoterpenes emitted from plants contribute to the formation of secondary pollution and affect the climate system. Monoterpene emission rates may be affected by environmental changes such as increasing CO 2 concentration caused by fossil fuel burning and drought stress induced by climate change. We measured monoterpene emissions from Cryptomeria japonica clone saplings grown under different CO 2 concentrations (control: ambient CO 2 level, elevated CO 2 : 1000μmolmol -1 ). The saplings were planted in the ground and we did not artificially control the SWC. The relationship between the monoterpene emissions and naturally varying SWC was investigated. The dominant monoterpene was α-pinene, followed by sabinene. The monoterpene emission rates were exponentially correlated with temperature for all measurements and normalized (35°C) for each measurement day. The daily normalized monoterpene emission rates (E s0.10 ) were positively and linearly correlated with SWC under both control and elevated CO 2 conditions (control: r 2 =0.55, elevated CO 2 : r 2 =0.89). The slope of the regression line of E s0.10 against SWC was significantly higher under elevated CO 2 than under control conditions (ANCOVA: P<0.01), indicating that the effect of CO 2 concentration on monoterpene emission rates differed by soil water status. The monoterpene emission rates estimated by considering temperature and SWC (Improved G93 algorithm) better agreed with the measured monoterpene emission rates, when compared with the emission rates estimated by considering temperature alone (G93 algorithm). Our results demonstrated that the combined effects of SWC and CO 2 concentration are important for controlling the monoterpene emissions from C. japonica clone saplings. If these relationships can be applied to the other coniferous tree species, our results may be useful to improve accuracy of monoterpene emission estimates from the coniferous forests as affected by climate change in the present and

  2. The influence of monoterpene synthase transformation on the odour of tabacco.

    NARCIS (Netherlands)

    Tamer, el M.K.; Smeets, M.A.M.; Holthuysen, N.T.E.; Lucker, J.; Tang, A.; Roozen, J.P.; Bouwmeester, H.J.; Voragen, A.G.J.

    2003-01-01

    Monoterpenes are an important class of terpenoids that are commonly present in plant essential oils. These can be extracted from plants and are used in the flavouring and perfumery industry. Monoterpene synthases are the key enzymes in monoterpene biosynthesis, as they catalyse the cyclisation of

  3. [Field efficacy of repellent formulation containing para-menthane-3,8-diol and lemongrass against Culicoides pachymerus (Diptera: Ceratopogonidae) in Colombia].

    Science.gov (United States)

    Santamaría, Erika; Cabrera, Olga Lucía; Zipa, Yaneth; Pardo, Raúl Hernando

    2012-09-01

    Culicoides pachymerus is a major pest species for the inhabitants of the western Boyacá province of Colombia. The effect of a repellent lotion based on p-menthane-3,8-diol (16%) and lemongrass oil (2%) was evaluated against the bites of C. pachymerus. The repellent lotion was compared simultaneously with a control (no treatment) by human landing catches of C. pachymerus on the forearms of paired volunteers situated near human dwellings. Protection percentage and protection time for 3 to 6 h after repellent application was calculated. The test was repeated ten times. Only two females of C. pachymerus were collected on arms with the repellent treatment. In contrast, the mean biting rate in the untreated control was 47.7 midges/person/10 min. Mean protection percentage of the repellent was 100% up to 4 h and 99.5% up to 5 h. Protection time was 332.2 and 338.2 min in the two replicates where bites of C. pachymerus were confirmed. In the remaining eight replicates protection time exceeded the test duration. The repellent showed high efficacy against C. pachymerus, up to 5 h post-application.

  4. Isolation and Characterization of Three New Monoterpene Synthases from Artemisia annua

    Science.gov (United States)

    Ruan, Ju-Xin; Li, Jian-Xu; Fang, Xin; Wang, Ling-Jian; Hu, Wen-Li; Chen, Xiao-Ya; Yang, Chang-Qing

    2016-01-01

    Artemisia annua, an annual herb used in traditional Chinese medicine, produces a wealth of monoterpenes and sesquiterpenes, including the well-known sesquiterpene lactone artemisinin, an active ingredient in the treatment for malaria. Here we report three new monoterpene synthases of A. annua. From a glandular trichome cDNA library, monoterpene synthases of AaTPS2, AaTPS5, and AaTPS6, were isolated and characterized. The recombinant proteins of AaTPS5 and AaTPS6 produced multiple products with camphene and 1,8-cineole as major products, respectively, and AaTPS2 produced a single product, β-myrcene. Although both Mg2+ and Mn2+ were able to support their catalytic activities, altered product spectrum was observed in the presence of Mn2+ for AaTPS2 and AaTPS5. Analysis of extracts of aerial tissues and root of A. annua with gas chromatography–mass spectrometry detected more than 20 monoterpenes, of which the three enzymes constituted more than 1/3 of the total. Mechanical wounding induced the expression of all three monoterpene synthase genes, and transcript levels of AaTPS5 and AaTPS6 were also elevated after treatments with phytohormones of methyl jasmonate, salicylic acid, and gibberellin, suggesting a role of these monoterpene synthases in plant–environment interactions. The three new monoterpene synthases reported here further our understanding of molecular basis of monoterpene biosynthesis and regulation in plant. PMID:27242840

  5. Isolation and characterization of three new monoterpene synthases from Artemisia annua

    Directory of Open Access Journals (Sweden)

    Ju-Xin eRuan

    2016-05-01

    Full Text Available Artemisia annua, an annual herb used in traditional Chinese medicine, produces a wealth of monoterpenes and sesquiterpenes, including the well-known sesquiterpene lactone artemisinin, an active ingredient in the treatment for malaria. Here we report three new monoterpene synthases of A. annua. From a glandular trichome cDNA library, monoterpene synthases of AaTPS2, AaTPS5 and AaTPS6, were isolated and characterized. The recombinant proteins of AaTPS5 and AaTPS6 produced multiple products with camphene and 1,8-cineole as major products, respectively, and AaTPS2 produced a single product, β-myrcene. Although both Mg2+ and Mn2+ were able to support their catalytic activities, altered product spectrum was observed in the presence of Mn2+ for AaTPS2 and AaTPS5. Analysis of extracts of aerial tissues and root of A. annua with gas chromatography-mass spectrometry (GC-MS detected more than 20 monoterpenes, of which the three enzymes constituted more than 1/3 of the total. Mechanical wounding induced the expression of all three monoterpene synthase genes, and transcript levels of AaTPS5 and AaTPS6 were also elevated after treatments with phytohormones of methyl jasmonate (MeJA, salicylic acid (SA and gibberellin (GA, suggesting a role of these monoterpene synthases in plant-environment interactions. The three new monoterpene synthases reported here further our understanding of molecular basis of monoterpene biosynthesis and regulation in plant.

  6. Metabolism of monoterpenes in cell cultures of common sage (Salvia officinalis)

    International Nuclear Information System (INIS)

    Falk, K.L.; Gershenzon, J.; Croteau, R.

    1990-01-01

    Leaves of common sage (Salvia officinalis) accumulate monoterpenes in glandular trichomes at levels exceeding 15 milligrams per gram fresh weight at maturity, whereas sage cells in suspension culture did not accumulate detectable levels of monoterpenes ( 14 C]sucrose was also virtually undetectable in this cell culture system. In vitro assay of each of the enzymes required for the sequential conversion of the ubiquitous isoprenoid precursor geranyl pyrophosphate to (+)-camphor (a major monoterpene product of sage) in soluble extracts of the cells revealed the presence of activity sufficient to produce (+)-camphor at a readily detectable level (>0.3 micrograms per gram fresh weight) at the late log phase of growth. Other monoterpene synthetic enzymes were present as well. In vivo measurement of the ability to catabolize (+)-camphor in these cells indicated that degradative capability exceeded biosynthetic capacity by at least 1,000-fold. Therefore, the lack of monoterpene accumulation in undifferentiated sage cultures could be attributed to a low level of biosynthetic activity (relative to the intact plant) coupled to a pronounced capacity for monoterpene catabolism

  7. Emission and Accumulation of Monoterpene and the Key Terpene Synthase (TPS) Associated with Monoterpene Biosynthesis in Osmanthus fragrans Lour

    OpenAIRE

    Zeng, Xiangling; Liu, Cai; Zheng, Riru; Cai, Xuan; Luo, Jing; Zou, Jingjing; Wang, Caiyun

    2016-01-01

    Osmanthus fragrans is an ornamental and economically important plant known for its magnificent aroma, and the most important aroma-active compounds in flowers are monoterpenes, mainly β-ocimene, linalool and linalool derivatives. To understand the molecular mechanism of monoterpene production, we analyzed the emission and accumulation patterns of these compounds and the transcript levels of the genes involved in their biosynthesis in two O. fragrans cultivars during flowering stages. The resu...

  8. Flowery odor formation revealed by differential expression of monoterpene biosynthetic genes and monoterpene accumulation in rose (Rosa rugosa Thunb.).

    Science.gov (United States)

    Feng, Liguo; Chen, Chen; Li, Tinglin; Wang, Meng; Tao, Jun; Zhao, Daqiu; Sheng, Lixia

    2014-02-01

    Rosa rugosa is an important ornamental and economical plant. In this paper, four genes encoding 1-deoxy-D-xylulose-5-phosphate synthase (DXS), 1-deoxy-d-xylulose-5-phosphate reductoisomerase (DXR), alcohol acyltransferase (AAT) and linalool synthase (LIS) involved in the monoterpene biosynthesis pathways were isolated from R. rugosa 'Tangzi', and the expression patterns of these genes in different flower development stages and different parts of floral organs were determined by real-time quantitative fluorescence PCR. Furthermore, a comprehensive analysis was carried out into the relationship between expression of four monoterpene synthesis genes and accumulation of main volatile monoterpenes and their acetic acid ester derivatives. The results showed that the genes RrDXS, RrDXR and RrLIS showed consistent expressions during the development process for R. rugosa flower from budding to withering stage, the overall expression levels of gene RrDXS and RrLIS were obviously lower as compared with those of gene RrDXR and RrAAT. Although the gene RrDXS, RrDXR, RrAAT and RrLIS were expressed in all parts of R. rugosa floral organs, the expression levels varied significantly. The variations in the constituent and content of volatile monoterpenes including citronellol, geraniol, nerol, linalool, citronellyl acetate, geranyl acetate and neryl acetate at different development stages and parts of floral organs were significantly different. On this basis, we concluded that the gene RrDXR and RrAAT might play a key role in the biosynthesis of volatile monoterpenes in R. rugosa flowers, and the two genes are important candidate genes for the regulation of secondary metabolism for rose aromatic components. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  9. Effects of salicylic acid on monoterpene production and antioxidant ...

    African Journals Online (AJOL)

    Salicylic acid (SA) plays important roles in plant defense responses. However, little is available about its effects on monoterpene responses. Therefore, monoterpene contents and antioxidant systems were measured three days after foliar application of SA with different concentrations in Houttuynia cordata. SA at low ...

  10. Is forest management a significant source of monoterpenes into the boreal atmosphere?

    Science.gov (United States)

    Haapanala, S.; Hakola, H.; Hellén, H.; Vestenius, M.; Levula, J.; Rinne, J.

    2012-04-01

    Volatile organic compounds (VOCs) including terpenoids are emitted into the atmosphere from various natural sources. Damaging the plant tissue is known to strongly increase their monoterpene release. We measured the terpenoid emissions caused by timber felling, i.e. those from stumps and logging residue. The emissions from stumps were studied using enclosures and those from the whole felling area using an ecosystem-scale micrometeorological method, disjunct eddy accumulation (DEA). The compounds analyzed were isoprene, monoterpenes and sesquiterpenes. Strong emissions of monoterpenes were measured from both the stumps and from the whole felling area. The emission rate decreased rapidly within a few months after the logging. In addition to fresh logging residue, the results suggest also other strong monoterpene sources may be present in the felling area. These could include pre-existing litter, increased microbial activity and remaining undergrowth. In order to evaluate the possible importance of monoterpenes emitted annually from cut Scots pine forests in Finland, we conducted a rough upscaling calculation. The resulting monoterpene release was approximated to be on the order of 15 kilotonnes per year, which corresponds to about one tenth of the monoterpene release from intact forests in Finland.

  11. Is forest management a significant source of monoterpenes into the boreal atmosphere?

    Directory of Open Access Journals (Sweden)

    S. Haapanala

    2012-04-01

    Full Text Available Volatile organic compounds (VOCs including terpenoids are emitted into the atmosphere from various natural sources. Damaging the plant tissue is known to strongly increase their monoterpene release. We measured the terpenoid emissions caused by timber felling, i.e. those from stumps and logging residue. The emissions from stumps were studied using enclosures and those from the whole felling area using an ecosystem-scale micrometeorological method, disjunct eddy accumulation (DEA. The compounds analyzed were isoprene, monoterpenes and sesquiterpenes. Strong emissions of monoterpenes were measured from both the stumps and from the whole felling area. The emission rate decreased rapidly within a few months after the logging. In addition to fresh logging residue, the results suggest also other strong monoterpene sources may be present in the felling area. These could include pre-existing litter, increased microbial activity and remaining undergrowth. In order to evaluate the possible importance of monoterpenes emitted annually from cut Scots pine forests in Finland, we conducted a rough upscaling calculation. The resulting monoterpene release was approximated to be on the order of 15 kilotonnes per year, which corresponds to about one tenth of the monoterpene release from intact forests in Finland.

  12. Analysis of monoterpene hydrocarbons in rural atmospheres

    International Nuclear Information System (INIS)

    Holdren, M.W.; Westberg, H.H.; Zimmerman, P.R.

    1979-01-01

    Gas chromatographic/mass spectrometric analysis of monoterpenes from a rural forested site in the northwestern United States is described. Use of a glass capillary column provided excellent resolution of the hydrocarbons. Increased sensitivity and specificity of the mass spectrometer detector over the flame ionization detector were demonstrated for trace (parts per trillion) atmospheric hydrocarbons. As little as 10 ppt of compound was detectable in 100-cc air samples. Two analytical methods (cryogenic and solid adsorbent--Tenax-GC) were used in the collection of ambient air. Analytical results from the two techniques compared very well. Rural concentrations of the monoterpenes varied considerably depending upon location within the forest canopy. The concentration of individual species never exceeded 1 ppb of compound during a 10-month sampling period. The monoterpene total for all samples fell in the range of 0.5- to 16-ppb compound for C 10 terpene

  13. Isolation and expression of cytochrome P450 genes in the antennae and gut of pine beetle Dendroctonus rhizophagus (Curculionidae: Scolytinae) following exposure to host monoterpenes

    Science.gov (United States)

    Claudia Cano-Ramirez; Maria Fernanda Lopez; Ana K. Cesar-Ayala; Veronica Pineda-Martinez; Brian T. Sullivan; Gerardo and Zuniga

    2013-01-01

    Bark beetles oxidize the defensive monoterpenes of their host trees both to detoxify them and convert them into components of their pheromone system. This oxidation is catalyzed by cytochrome P450 enzymes and occurs in different tissues of the insect, including the gut (i.e., the site where the beetle's pheromones are produced and accumulated) and the antennae (i....

  14. Predictors of monoterpene exposure in the Danish furniture industry.

    Science.gov (United States)

    Hagström, Katja; Jacobsen, Gitte; Sigsgaard, Torben; Schaumburg, Inger; Erlandsen, Mogens; Schlunssen, Vivi

    2012-04-01

    Individuals who work with pine in the furniture industry may be exposed to monoterpenes, the most abundant of which are α-pinene, β-pinene, and Δ(3)-carene. Monoterpenes are suspected to cause dermatitis and to harm the respiratory system. An understanding of the predictors of monoterpene exposure is therefore important in preventing these adverse effects. These predictors may include general characteristics of the work environment and specific work operations. We sought to assess the extent to which workers are exposed to monoterpenes and to identify possible predictors of monoterpene exposure in the pine furniture industry in Denmark. Passive measurements of the levels of selected monoterpenes (α-pinene, β-pinene, and Δ(3)-carene) were performed on 161 subjects from 17 pine furniture factories in Viborg County, Denmark; one sample was acquired from each worker. Additionally, wood dust samples were collected from 145 workers. Data on potential predictors of exposure were acquired over the course of the day on which the exposure measurements were recorded and could be assigned to one of four hierarchic ordered levels: worker, machine, department, and factory. In addition to univariate analyses, a mixed model was used to account for imbalances within the data and random variation with each of the hierarchically ordered levels. The geometric mean (GM) monoterpene content observed over the 161 measurements was 7.8 mg m(-3) [geometric standard deviation (GSD): 2.4]; the GM wood dust level over 145 measurements was 0.58 mg m(-3) (GSD: 1.49). None of the measured samples exceeded the occupational exposure limit for terpenes in Denmark (25 ppm, 150 mg m(-3)). In the univariate analyses, half of the predictors tested were found to be significant; the multivariate model indicated that only three of the potential predictors were significant. These were the recirculation of air in rooms used for the processing of wood (a factory level predictor), the presence of a

  15. Cloning and Characterizing Genes Involved in Monoterpene Induced Mammary Tumor Regression.

    Science.gov (United States)

    1996-10-01

    AD GRANT NUMBER DAMDI7-94-J-4041 TITLE: Cloning and Characterizing Genes Involved in Monoterpene Induced Mammary Tumor Regression PRINCIPAL...October 1996 Annual (1 Sep 95 - 31 Aug 96) 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS Cloning and Characterizing Genes Involved in Monoterpene Induced... Monoterpene -induced/repressed genes were identified in regressing rat mammary carcinomas treated with dietary limonene using a newly developed method

  16. In situ measurements of isoprene and monoterpenes within a south-east Asian tropical rainforest

    Directory of Open Access Journals (Sweden)

    C. E. Jones

    2011-07-01

    Full Text Available Biogenic volatile organic compounds (BVOCs emitted from tropical rainforests comprise a substantial fraction of global atmospheric VOC emissions, however there are only relatively limited measurements of these species in tropical rainforest regions. We present observations of isoprene, α-pinene, camphene, Δ-3-carene, γ-terpinene and limonene, as well as oxygenated VOCs (OVOCs of biogenic origin such as methacrolein, in ambient air above a tropical rainforest in Malaysian Borneo during the Oxidant and Particle Photochemical Processes above a south-east Asian tropical rainforest (OP3 project in 2008. Daytime composition was dominated by isoprene, with an average mixing ratio of the order of ~1 ppb. γ-terpinene, limonene and camphene were the most abundant monoterpenes, with average daytime mixing ratios of 102, 71 and 66 ppt respectively, and with an average monoterpene toisoprene ratio of 0.3 during sunlit hours, compared to 2.0 at night. Limonene and camphene abundances were seen to be related to both temperature and light conditions. In contrast, γ-terpinene emission continued into the late afternoon/evening, under relatively low temperature and light conditions. The contributions of isoprene, monoterpenes and other classes of VOC to the volatile carbon budget and OH reactivity have been summarised for this rainforest location. We observe good agreement between surface and aircraft measurements of boundary layer isoprene and methacrolein above the natural rainforest, suggesting that the ground-level observations are broadly representative of isoprene emissions from this region.

  17. PLANT VOLATILES. Biosynthesis of monoterpene scent compounds in roses.

    Science.gov (United States)

    Magnard, Jean-Louis; Roccia, Aymeric; Caissard, Jean-Claude; Vergne, Philippe; Sun, Pulu; Hecquet, Romain; Dubois, Annick; Hibrand-Saint Oyant, Laurence; Jullien, Frédéric; Nicolè, Florence; Raymond, Olivier; Huguet, Stéphanie; Baltenweck, Raymonde; Meyer, Sophie; Claudel, Patricia; Jeauffre, Julien; Rohmer, Michel; Foucher, Fabrice; Hugueney, Philippe; Bendahmane, Mohammed; Baudino, Sylvie

    2015-07-03

    The scent of roses (Rosa x hybrida) is composed of hundreds of volatile molecules. Monoterpenes represent up to 70% percent of the scent content in some cultivars, such as the Papa Meilland rose. Monoterpene biosynthesis in plants relies on plastid-localized terpene synthases. Combining transcriptomic and genetic approaches, we show that the Nudix hydrolase RhNUDX1, localized in the cytoplasm, is part of a pathway for the biosynthesis of free monoterpene alcohols that contribute to fragrance in roses. The RhNUDX1 protein shows geranyl diphosphate diphosphohydrolase activity in vitro and supports geraniol biosynthesis in planta. Copyright © 2015, American Association for the Advancement of Science.

  18. Biotransformation of a monoterpene mixture by in vitro cultures of selected conifer species

    Czech Academy of Sciences Publication Activity Database

    Dvořáková, Marcela; Valterová, Irena; Vaněk, Tomáš

    2007-01-01

    Roč. 2, č. 3 (2007), s. 233-238 ISSN 1934-578X R&D Projects: GA MŠk 1P04OC926.001; GA MŠk 1P05ME731 Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z50380511 Keywords : biotransformation * monoterpenes * P. abies * P. baccata Subject RIV: CC - Organic Chemistry Impact factor: 0.435, year: 2007

  19. Remote sensing estimation of isoprene and monoterpene emissions generated by natural vegetation in Monterrey, Mexico.

    Science.gov (United States)

    Gastelum, Sandra L; Mejía-Velázquez, G M; Lozano-García, D Fabián

    2016-06-01

    In addition to oxygen, hydrocarbons are the most reactive chemical compounds produced by plants into the atmosphere. These compounds are part of the family of volatile organic compounds (VOCs) and are discharged in a great variety of forms. Among the VOCs produced by natural sources such as vegetation, the most studied until today are the isoprene and monoterpene. These substances can play an important role in the chemical balance of the atmosphere of a region. In this project, we develop a methodology to estimate the natural (vegetation) emission of isoprene and monoterpenes and applied it to the Monterrey Metropolitan Area, Mexico and its surrounding areas. Landsat-TM data was used to identify the dominant vegetation communities and field work to determine the foliage biomass density of key species. The studied communities were submontane scrub, oak, and pine forests and a combination of both. We carried out the estimation of emissions for isoprene and monoterpenes compounds in the different plant communities, with two different criteria: (1) taking into account the average foliage biomass density obtained from the various sample point in each vegetation community, and (2) using the foliage biomass density obtained for each transect, associated to an individual spectral class within a particular vegetation type. With this information, we obtained emission maps for each case. The results show that the main producers of isoprene are the communities that include species of the genus Quercus, located mainly on the Sierra Madre Oriental and Sierra de Picachos, with average isoprene emissions of 314.6 ton/day and 207.3 ton/day for the two methods utilized. The higher estimates of monoterpenes were found in the submontane scrub areas distributed along the valley of the metropolitan zone, with an estimated average emissions of 47.1 ton/day and 181.4 tons for the two methods respectively.

  20. Isolation and characterization of three new monoterpene synthases from Artemisia annua

    OpenAIRE

    Ju-Xin eRuan; Jian-Xu eLi; Xin eFang; Ling-Jian eWang; Wen-Li eHu; Xiao-Ya eChen; Changqing eYang

    2016-01-01

    Artemisia annua, an annual herb used in traditional Chinese medicine, produces a wealth of monoterpenes and sesquiterpenes, including the well-known sesquiterpene lactone artemisinin, an active ingredient in the treatment for malaria. Here we report three new monoterpene synthases of A. annua. From a glandular trichome cDNA library, monoterpene synthases of AaTPS2, AaTPS5 and AaTPS6, were isolated and characterized. The recombinant proteins of AaTPS5 and AaTPS6 produced multiple products with...

  1. Thermodynamic study of selected monoterpenes

    Czech Academy of Sciences Publication Activity Database

    Štejfa, V.; Fulem, Michal; Růžička, K.; Červinka, C.; Rocha, M.A.A.; Santos, L.M.N.B.F.; Schröder, B.

    2013-01-01

    Roč. 60, MAY (2013), 117-125 ISSN 0021-9614 Institutional support: RVO:68378271 Keywords : monoterpenes * pinene * vapor pressure * heat capacity * vaporization and sublimation enthalpy * ideal - gas thermodynamic Subject RIV: BJ - Thermodynamics Impact factor: 2.423, year: 2013

  2. New zwitterionic monoterpene indole alkaloids from Uncaria rhynchophylla.

    Science.gov (United States)

    Guo, Qiang; Yang, Hongshuai; Liu, Xinyu; Si, Xiali; Liang, Hong; Tu, Pengfei; Zhang, Qingying

    2018-01-31

    Four new zwitterionic monoterpene indole alkaloids, rhynchophyllioniums A-D (1-4), together with eight known alkaloids (5-12), were isolated from the hook-bearing stems of Uncaria rhynchophylla. Their structures were elucidated by extensive spectroscopic data analysis of MS, 1D and 2D NMR, and ECD, and the zwitterionic forms and absolute configurations of 1 and 2 were unambiguously confirmed by single crystal X-ray diffraction analysis. All the isolates, including the monoterpene indole alkaloids with free C-22 carboxyl group and those with C-22 carboxyl methyl ester, were proved to be naturally coexisting in the herb by LC-MS analysis. This is the first report of monoterpene indole alkaloids that exist in the form of zwitterion. Additionally, the cytotoxic activities of all isolates against A549, HepG2, and MCF-7 cell lines are reported. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Airborne measurements of isoprene and monoterpene emissions from southeastern U.S. forests

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Haofei; Guenther, Alex; Gu, Dasa; Warneke, Carsten; Geron, Chris; Goldstein, Allen; Graus, Martin; Karl, Thomas; Kaser, Lisa; Misztal, Pawel; Yuan, Bin

    2017-10-01

    Isoprene and monoterpene emission rates are essential inputs for atmospheric chemistry models that simulate atmospheric oxidant and particle distributions. Process studies of the biochemical and physiological mechanisms controlling these emissions are advancing our understanding and the accuracy of model predictions but efforts to quantify regional emissions have been limited by a lack of constraints on regional distributions of ecosystem emission capacities. We used an airborne wavelet-based eddy covariance measurement technique to characterize isoprene and monoterpene fluxes with high spatial resolution during the 2013 SAS (Southeast Atmosphere Study) in the southeastern United States. The fluxes measured by direct eddy covariance were comparable to emissions independently estimated using an indirect inverse modeling approach. Isoprene emission factors based on the aircraft wavelet flux estimates for high isoprene chemotypes (e.g., oaks) were similar to the MEGAN2.1 biogenic emission model estimates for landscapes dominated by oaks. Aircraft flux measurement estimates for landscapes with fewer isoprene emitting trees (e.g., pine plantations), were about a factor of two lower than MEGAN2.1 model estimates. The tendency for high isoprene emitters in these landscapes to occur in the shaded understory, where light dependent isoprene emissions are diminished, may explain the lower than expected emissions. This result demonstrates the importance of accurately representing the vertical profile of isoprene emitting biomass in biogenic emission models. Airborne measurement-based emission factors for high monoterpene chemotypes agreed with MEGAN2.1 in landscapes dominated by pine (high monoterpene chemotype) trees but were more than a factor of three higher than model estimates for landscapes dominated by oak (relatively low monoterpene emitting) trees. This results suggests that unaccounted processes, such as floral emissions or light dependent monoterpene emissions, or

  4. The Biosynthetic Origin of Irregular Monoterpenes in Lavandula

    Science.gov (United States)

    Demissie, Zerihun A.; Erland, Lauren A. E.; Rheault, Mark R.; Mahmoud, Soheil S.

    2013-01-01

    Lavender essential oils are constituted predominantly of regular monoterpenes, for example linalool, 1,8-cineole, and camphor. However, they also contain irregular monoterpenes including lavandulol and lavandulyl acetate. Although the majority of genes responsible for the production of regular monoterpenes in lavenders are now known, enzymes (including lavandulyl diphosphate synthase (LPPS)) catalyzing the biosynthesis of irregular monoterpenes in these plants have not been described. Here, we report the isolation and functional characterization of a novel cis-prenyl diphosphate synthase cDNA, termed Lavandula x intermedia lavandulyl diphosphate synthase (LiLPPS), through a homology-based cloning strategy. The LiLPPS ORF, encoding for a 305-amino acid long protein, was expressed in Escherichia coli, and the recombinant protein was purified by nickel-nitrilotriacetic acid affinity chromatography. The approximately 34.5-kDa bacterially produced protein specifically catalyzed the head-to-middle condensation of two dimethylallyl diphosphate units to LPP in vitro with apparent Km and kcat values of 208 ± 12 μm and 0.1 s−1, respectively. LiLPPS is a homodimeric enzyme with a sigmoidal saturation curve and Hill coefficient of 2.7, suggesting a positive co-operative interaction among its catalytic sites. LiLPPS could be used to modulate the production of lavandulol and its derivatives in plants through metabolic engineering. PMID:23306202

  5. Antinociceptive and anticonvulsant effects of the monoterpene linalool oxide.

    Science.gov (United States)

    Souto-Maior, Flávia Negromonte; Fonsêca, Diogo Vilar da; Salgado, Paula Regina Rodrigues; Monte, Lucas de Oliveira; de Sousa, Damião Pergentino; de Almeida, Reinaldo Nóbrega

    2017-12-01

    Linalool oxide (OXL) (a monoterpene) is found in the essential oils of certain aromatic plants, or it is derived from linalool. The motivation for this work is the lack of psychopharmacological studies on this substance. To evaluate OXL's acute toxicity, along with its anticonvulsant and antinociceptive activities in male Swiss mice. OXL (50, 100 and 150 mg/kg, i.p.) was investigated for acute toxicity and in the Rota-rod test. Antinociceptive activity was evaluated by the acetic acid-induced writhing test, and by formalin testing. Anticonvulsant effects were demonstrated by testing for pentylenetetrazol (PTZ)-induced seizures and by Maximum Electroshock headset (MES) test. OXL was administered to the animals intraperitoneally 30 min before for pharmacological tests. OXL showed an LD 50 of ∼721 (681-765) mg/kg. In the Rota-rod test, it was observed that OXL caused no damage to the animal's motor coordination. OXL significantly reduced (p monoterpene may lead to the development of a new molecule with even higher potency and selectivity.

  6. Antitumor Activity of Monoterpenes Found in Essential Oils

    Directory of Open Access Journals (Sweden)

    Marianna Vieira Sobral

    2014-01-01

    Full Text Available Cancer is a complex genetic disease that is a major public health problem worldwide, accounting for about 7 million deaths each year. Many anticancer drugs currently used clinically have been isolated from plant species or are based on such substances. Accumulating data has revealed anticancer activity in plant-derived monoterpenes. In this review the antitumor activity of 37 monoterpenes found in essential oils is discussed. Chemical structures, experimental models, and mechanisms of action for bioactive substances are presented.

  7. Do monoterpenes released from feverfew (Tanacetum parthenium) plants cause airborne Compositae dermatitis?

    DEFF Research Database (Denmark)

    Paulsen, E.; Christensen, Lars Porskjær; Andersen, K.E.

    2002-01-01

    The Compositae plant feverfew (Tanacetum parthenium) is an important sensitizer in Europe and has been suspected of causing airborne Compositae dermatitis. A previous investigation of substances emitted from feverfew plants detected no sesquiterpene lactones, however, but mainly monoterpenes...... airborne dermatitis, mimicking photosensitivity, and the disappearance of symptoms upon removal of feverfew plants suggest monoterpenes as a possible contributing factor. Similar associations between doubtful positive monoterpene reactions and clinical patterns, fragrance/colophonium allergy and relevance...

  8. Synthesis of monoterpene piperidines from the iridoid glucoside antirrhinoside

    DEFF Research Database (Denmark)

    Franzyk, Henrik; Frederiksen, Signe Maria; Jensen, Søren Rosendal

    1997-01-01

    Synthesis of five novel piperidine monoterpene alkaloids using the iridoid glucoside antirrhinoside as a synthon is described. Two strategies for their preparation were investigated: the first possible pathway involved an intermediate diol from which the piperidine ring was expected to be constru......Synthesis of five novel piperidine monoterpene alkaloids using the iridoid glucoside antirrhinoside as a synthon is described. Two strategies for their preparation were investigated: the first possible pathway involved an intermediate diol from which the piperidine ring was expected...... to be constructed via reaction of its ditosylate with an amine; the second strategy involved a double reductive amination as the key step to the piperidine ring, which proved successful. The stereochemistry of C-5 and C-9 in the obtained piperidine monoterpenes was the same as that reported for alfa...

  9. Dynamics of Monoterpene Formation in Spike Lavender Plants

    Directory of Open Access Journals (Sweden)

    Isabel Mendoza-Poudereux

    2017-12-01

    Full Text Available The metabolic cross-talk between the mevalonate (MVA and the methylerythritol phosphate (MEP pathways was analyzed in spike lavender (Lavandula latifolia Med on the basis of 13CO2-labelling experiments using wildtype and transgenic plants overexpressing the 3-hydroxy-3-methylglutaryl CoA reductase (HMGR, the first and key enzyme of the MVA pathway. The plants were labelled in the presence of 13CO2 in a gas chamber for controlled pulse and chase periods of time. GC/MS and NMR analysis of 1,8-cineole and camphor, the major monoterpenes present in their essential oil, indicated that the C5-precursors, isopentenyl diphosphate (IPP and dimethylallyl diphosphate (DMAPP of both monoterpenes are predominantly biosynthesized via the MEP pathway. Surprisingly, overexpression of HMGR did not have significant impact upon the crosstalk between the MVA and MEP pathways indicating that the MEP route is the preferred pathway for the synthesis of C5 monoterpene precursors in spike lavender.

  10. Gene Coexpression Analysis Reveals Complex Metabolism of the Monoterpene Alcohol Linalool in Arabidopsis FlowersW

    NARCIS (Netherlands)

    Ginglinger, J.F.; Boachon, B.; Hofer, R.; Paetz, C.; Kollner, T.G.; Miesch, L.; Lugan, R.; Baltenweck, R.; Mutterer, J.; Ullman, P.; Verstappen, F.W.A.; Bouwmeester, H.J.

    2013-01-01

    The cytochrome P450 family encompasses the largest family of enzymes in plant metabolism, and the functions of many of its members in Arabidopsis thaliana are still unknown. Gene coexpression analysis pointed to two P450s that were coexpressed with two monoterpene synthases in flowers and were thus

  11. Changes in monoterpene mixing ratios during summer storms in rural New Hampshire (USA)

    Science.gov (United States)

    Haase, K.B.; Jordan, C.; Mentis, E.; Cottrell, L.; Mayne, H.R.; Talbot, R.; Sive, B.C.

    2011-01-01

    Monoterpenes are an important class of biogenic hydrocarbons that influence ambient air quality and are a principle source of secondary organic aerosol (SOA). Emitted from vegetation, monoterpenes are a product of photosynthesis and act as a response to a variety of environmental factors. Most parameterizations of monoterpene emissions are based on clear weather models that do not take into account episodic conditions that can drastically change production and release rates into the atmosphere. Here, the ongoing monoterpene dataset from the rural Thompson Farm measurement site in Durham, New Hampshire is examined in the context of a set of known severe storm events. While some storm systems had a negligible influence on ambient monoterpene mixing ratios, the average storm event increased mixing ratios by 0.59 ?? 0.21 ppbv, a factor of 93 % above pre-storm levels. In some events, mixing ratios reached the 10's of ppbv range and persisted overnight. These mixing ratios correspond to increases in the monoterpene emission rate, ranging from 120 to 1240 g km-2 h -1 compared to an estimated clear weather rate of 116 to 193 g km-2 h-1. Considering the regularity of storm events over most forested areas, this could be an important factor to consider when modeling global monoterpene emissions and their resulting influence on the formation of organic aerosols. ?? 2011 Author(s).

  12. Potential contribution of exposed resin to ecosystem emissions of monoterpenes

    Science.gov (United States)

    Eller, Allyson S. D.; Harley, Peter; Monson, Russell K.

    2013-10-01

    Conifers, especially pines, produce and store under pressure monoterpene-laden resin in canals located throughout the plant. When the plants are damaged and resin canals punctured, the resin is exuded and the monoterpenes are released into the atmosphere, a process that has been shown to influence ecosystem-level monoterpene emissions. Less attention has been paid to the small amounts of resin that are exuded from branches, expanding needles, developing pollen cones, and terminal buds in the absence of any damage. The goal of this study was to provide the first estimate of the potential of this naturally-exposed resin to influence emissions of monoterpenes from ponderosa pine (Pinus ponderosa) ecosystems. When resin is first exuded as small spherical beads from undamaged tissues it emits monoterpenes to the atmosphere at a rate that is four orders of magnitude greater than needle tissue with an equivalent exposed surface area and the emissions from exuded beads decline exponentially as the resin dries. We made measurements of resin beads on the branches of ponderosa pine trees in the middle of the growing season and found, on average, 0.15 cm2 of exposed resin bead surface area and 1250 cm2 of total needle surface area per branch tip. If the resin emerged over the course of 10 days, resin emissions would make up 10% of the ecosystem emissions each day. Since we only accounted for exposed resin at a single point in time, this is probably an underestimate of how much total resin is exuded from undamaged pine tissues over the course of a growing season. Our observations, however, reveal the importance of this previously unrecognized source of monoterpenes emitted from pine forests and its potential to influence regional atmospheric chemistry dynamics.

  13. Oxygen and xenobiotic reductase activities of cytochrome P450.

    NARCIS (Netherlands)

    Goeptar, A.R.; Scheerens, H.; Vermeulen, N.P.E.

    1995-01-01

    The oxygen reductase and xenobiotic reductase activities of cytochrome P450 (P450) are reviewed. During the oxygen reductase activity of P450, molecular oxygen is reduced to superoxide anion radicals (O

  14. Airborne measurements of isoprene and monoterpene emissions from southeastern U.S. forests.

    Science.gov (United States)

    Yu, Haofei; Guenther, Alex; Gu, Dasa; Warneke, Carsten; Geron, Chris; Goldstein, Allen; Graus, Martin; Karl, Thomas; Kaser, Lisa; Misztal, Pawel; Yuan, Bin

    2017-10-01

    Isoprene and monoterpene emission rates are essential inputs for atmospheric chemistry models that simulate atmospheric oxidant and particle distributions. Process studies of the biochemical and physiological mechanisms controlling these emissions are advancing our understanding and the accuracy of model predictions but efforts to quantify regional emissions have been limited by a lack of constraints on regional distributions of ecosystem emission capacities. We used an airborne wavelet-based eddy covariance measurement technique to characterize isoprene and monoterpene fluxes with high spatial resolution during the 2013 SAS (Southeast Atmosphere Study) in the southeastern United States. The fluxes measured by direct eddy covariance were comparable to emissions independently estimated using an indirect inverse modeling approach. Isoprene emission factors based on the aircraft wavelet flux estimates for high isoprene chemotypes (e.g., oaks) were similar to the MEGAN2.1 biogenic emission model estimates for landscapes dominated by oaks. Aircraft flux measurement estimates for landscapes with fewer isoprene emitting trees (e.g., pine plantations), were about a factor of two lower than MEGAN2.1 model estimates. The tendency for high isoprene emitters in these landscapes to occur in the shaded understory, where light dependent isoprene emissions are diminished, may explain the lower than expected emissions. This result demonstrates the importance of accurately representing the vertical profile of isoprene emitting biomass in biogenic emission models. Airborne measurement-based emission factors for high monoterpene chemotypes agreed with MEGAN2.1 in landscapes dominated by pine (high monoterpene chemotype) trees but were more than a factor of three higher than model estimates for landscapes dominated by oak (relatively low monoterpene emitting) trees. This results suggests that unaccounted processes, such as floral emissions or light dependent monoterpene emissions, or

  15. Changes in monoterpene mixing ratios during summer storms in rural New Hampshire (USA

    Directory of Open Access Journals (Sweden)

    K. B. Haase

    2011-11-01

    Full Text Available Monoterpenes are an important class of biogenic hydrocarbons that influence ambient air quality and are a principle source of secondary organic aerosol (SOA. Emitted from vegetation, monoterpenes are a product of photosynthesis and act as a response to a variety of environmental factors. Most parameterizations of monoterpene emissions are based on clear weather models that do not take into account episodic conditions that can drastically change production and release rates into the atmosphere. Here, the monoterpene dataset from the rural Thompson Farm measurement site in Durham, New Hampshire is examined in the context of a set of known severe storm events. While some storm systems had a negligible influence on ambient monoterpene mixing ratios, the average storm event increased mixing ratios by 0.59 ± 0.21 ppbv, a factor of 93% above pre-storm levels. In some events, mixing ratios reached the 10's of ppbv range and persisted overnight. These mixing ratios correspond to increases in the monoterpene emission rate, ranging from 120 to 1240 g km−2 h−1 compared to an estimated clear weather rate of 116 to 193 g km−2 h−1. Considering the regularity of storm events over most forested areas, this could be an important factor to consider when modeling global monoterpene emissions and their resulting influence on the formation of organic aerosols.

  16. Antifungal activity and mechanism of action of monoterpenes against dermatophytes and yeasts

    Directory of Open Access Journals (Sweden)

    Diogo Miron

    Full Text Available Dermatomycosis causes highly frequent dermal lesions, and volatile oils have been proven to be promising as antifungal agents. The antifungal activity of geraniol, nerol, citral, neral and geranial (monoterpenes, and terbinafine and anidulafungin (control drugs against seven opportunistic pathogenic yeasts and four dermatophyte species was evaluated by the Clinical and Laboratory Standards Institute microdilution tests. Monoterpenes were more active against dermatophytes than yeasts (geometric mean of minimal inhibitory concentration (GMIC of 34.5 and 100.4 µg.ml-1, respectively. Trichophyton rubrum was the fungal species most sensitive to monoterpenes (GMIC of 22.9 µg.ml-1. The trans isomers showed higher antifungal activity than the cis. The mechanism of action was investigated evaluating damage in the fungal cell wall (Sorbitol Protection Assay and in the cell membrane (Ergosterol Affinity Assay. No changes were observed in the MIC of monoterpenes in the sorbitol protection assay.The MIC of citral and geraniol was increased from 32 to 160 µg.ml-1 when the exogenous ergosterol concentrations was zero and 250 µg.ml-1, respectively. The monoterpenes showed an affinity for ergosterol relating their mechanism of action to cell membrane destabilization.

  17. Challenges in modelling isoprene and monoterpene emission dynamics of Arctic plants

    DEFF Research Database (Denmark)

    Tang, Jing; Schurgers, Guy; Valolahti, Hanna Maritta

    2016-01-01

    test. The model showed reasonable agreement to the observed vegetation CO2 fluxes in the main growing season as well as day-to-day variability of isoprene and monoterpene emissions. The observed relatively high WRs were better captured by the adjusted T response curve than by the common one. During...... 1999-2012, the modelled annual mean isoprene and monoterpene emissions were 20 and 8 mg C mg-2 yrg-1, with an increase by 55 and 57 % for 2 °C summertime warming, respectively. Warming by 4 and 8 °C for the same period further elevated isoprene emission for all years, but the impacts on monoterpene...

  18. Improving monoterpene geraniol production through geranyl diphosphate synthesis regulation in Saccharomyces cerevisiae.

    Science.gov (United States)

    Zhao, Jianzhi; Bao, Xiaoming; Li, Chen; Shen, Yu; Hou, Jin

    2016-05-01

    Monoterpenes have wide applications in the food, cosmetics, and medicine industries and have recently received increased attention as advanced biofuels. However, compared with sesquiterpenes, monoterpene production is still lagging in Saccharomyces cerevisiae. In this study, geraniol, a valuable acyclic monoterpene alcohol, was synthesized in S. cerevisiae. We evaluated three geraniol synthases in S. cerevisiae, and the geraniol synthase Valeriana officinalis (tVoGES), which lacked a plastid-targeting peptide, yielded the highest geraniol production. To improve geraniol production, synthesis of the precursor geranyl diphosphate (GPP) was regulated by comparing three specific GPP synthase genes derived from different plants and the endogenous farnesyl diphosphate synthase gene variants ERG20 (G) (ERG20 (K197G) ) and ERG20 (WW) (ERG20 (F96W-N127W) ), and controlling endogenous ERG20 expression, coupled with increasing the expression of the mevalonate pathway by co-overexpressing IDI1, tHMG1, and UPC2-1. The results showed that overexpressing ERG20 (WW) and strengthening the mevalonate pathway significantly improved geraniol production, while expressing heterologous GPP synthase genes or down-regulating endogenous ERG20 expression did not show positive effect. In addition, we constructed an Erg20p(F96W-N127W)-tVoGES fusion protein, and geraniol production reached 66.2 mg/L after optimizing the amino acid linker and the order of the proteins. The best strain yielded 293 mg/L geraniol in a fed-batch cultivation, a sevenfold improvement over the highest titer previously reported in an engineered S. cerevisiae strain. Finally, we showed that the toxicity of geraniol limited its production. The platform developed here can be readily used to synthesize other monoterpenes.

  19. Cyclic monoterpene mediated modulations of Arabidopsis thaliana phenotype

    Science.gov (United States)

    Kriegs, Bettina; Jansen, Marcus; Hahn, Katrin; Peisker, Helga; Šamajová, Olga; Beck, Martina; Braun, Silvia; Ulbrich, Andreas; Baluška, František

    2010-01-01

    Monoterpenes at high atmospheric concentrations are strong growth inhibitors in allelopathic interactions. Effects depend on dose, molecular structure of the monoterpene and on the species of the receiver plant. Stomata are among the first targets affected by camphor and menthol. Previously, it could be demonstrated that the compounds induce swelling of the protoplasts, prevent stomatal closure and enhance transpiration. In this study, we show that the block of stomatal closure is accompanied by changes to the cytoskeleton, which has a direct role in stomatal movements. Although MPK3 (MAP3 kinase) and ABF4 gene expressions are induced within six hours, stomatal closure is prevented. In contrast to ABF4, ABF2 (both transcription factors) is not induced. MPK3 and ABF4 both encode for proteins involved in the process of stomatal closure. The expression of PEPCase, an enzyme important for stomatal opening, is downregulated. The leaves develop stress symptoms, mirrored by transient changes in the expression profile of additional genes: lipoxygenase 2 (LOX2), CER5, CER6 (both important for wax production) and RD29B (an ABA inducible stress protein). Non-invasive methods showed a fast response of the plant to camphor fumigations both in a rapid decrease of the quantum yield and in the relative growth rate. Repeated exposures to the monoterpenes resulted finally in growth reduction and a stress related change in the phenotype. It is proposed that high concentrations or repeated exposure to monoterpenes led to irreversible damages, whereas low concentrations or short-term fumigations may have the potential to strengthen the plant fitness. PMID:20484979

  20. Induction of senescence and identification of differentially expressed genes in tomato in response to monoterpene.

    Directory of Open Access Journals (Sweden)

    Sumit Ghosh

    Full Text Available Monoterpenes, which are among the major components of plant essential oils, are known for their ecological roles as well for pharmaceutical properties. Geraniol, an acyclic monoterpene induces cell cycle arrest and apoptosis/senescence in various cancer cells and plants; however, the genes involved in the process and the underlying molecular mechanisms are not well understood. In this study, we demonstrate that treatment of tomato plants with geraniol results in induction of senescence due to a substantial alteration in transcriptome. We have identified several geraniol-responsive protein encoding genes in tomato using suppression subtractive hybridization (SSH approach. These genes comprise of various components of signal transduction, cellular metabolism, reactive oxygen species (ROS, ethylene signalling, apoptosis and DNA damage response. Upregulation of NADPH oxidase and antioxidant genes, and increase in ROS level after geraniol treatment point towards the involvement of ROS in geraniol-mediated senescence. The delayed onset of seedling death and induced expression of geraniol-responsive genes in geraniol-treated ethylene receptor mutant (Nr suggest that geraniol-mediated senescence involves both ethylene dependent and independent pathways. Moreover, expression analysis during tomato ripening revealed that geraniol-responsive genes are also associated with the natural organ senescence process.

  1. Induction of Senescence and Identification of Differentially Expressed Genes in Tomato in Response to Monoterpene

    Science.gov (United States)

    Kumar, Vinay; Kumar, Anil; Irfan, Mohammad; Chakraborty, Niranjan; Chakraborty, Subhra; Datta, Asis

    2013-01-01

    Monoterpenes, which are among the major components of plant essential oils, are known for their ecological roles as well for pharmaceutical properties. Geraniol, an acyclic monoterpene induces cell cycle arrest and apoptosis/senescence in various cancer cells and plants; however, the genes involved in the process and the underlying molecular mechanisms are not well understood. In this study, we demonstrate that treatment of tomato plants with geraniol results in induction of senescence due to a substantial alteration in transcriptome. We have identified several geraniol-responsive protein encoding genes in tomato using suppression subtractive hybridization (SSH) approach. These genes comprise of various components of signal transduction, cellular metabolism, reactive oxygen species (ROS), ethylene signalling, apoptosis and DNA damage response. Upregulation of NADPH oxidase and antioxidant genes, and increase in ROS level after geraniol treatment point towards the involvement of ROS in geraniol-mediated senescence. The delayed onset of seedling death and induced expression of geraniol-responsive genes in geraniol-treated ethylene receptor mutant (Nr) suggest that geraniol-mediated senescence involves both ethylene dependent and independent pathways. Moreover, expression analysis during tomato ripening revealed that geraniol-responsive genes are also associated with the natural organ senescence process. PMID:24098759

  2. Cytosolic monoterpene biosynthesis is supported by plastid-generated geranyl diphosphate substrate in transgenic tomato fruits.

    Science.gov (United States)

    Gutensohn, Michael; Orlova, Irina; Nguyen, Thuong T H; Davidovich-Rikanati, Rachel; Ferruzzi, Mario G; Sitrit, Yaron; Lewinsohn, Efraim; Pichersky, Eran; Dudareva, Natalia

    2013-08-01

    Geranyl diphosphate (GPP), the precursor of most monoterpenes, is synthesized in plastids from dimethylallyl diphosphate and isopentenyl diphosphate by GPP synthases (GPPSs). In heterodimeric GPPSs, a non-catalytic small subunit (GPPS-SSU) interacts with a catalytic large subunit, such as geranylgeranyl diphosphate synthase, and determines its product specificity. Here, snapdragon (Antirrhinum majus) GPPS-SSU was over-expressed in tomato fruits under the control of the fruit ripening-specific polygalacturonase promoter to divert the metabolic flux from carotenoid formation towards GPP and monoterpene biosynthesis. Transgenic tomato fruits produced monoterpenes, including geraniol, geranial, neral, citronellol and citronellal, while exhibiting reduced carotenoid content. Co-expression of the Ocimum basilicum geraniol synthase (GES) gene with snapdragon GPPS-SSU led to a more than threefold increase in monoterpene formation in tomato fruits relative to the parental GES line, indicating that the produced GPP can be used by plastidic monoterpene synthases. Co-expression of snapdragon GPPS-SSU with the O. basilicum α-zingiberene synthase (ZIS) gene encoding a cytosolic terpene synthase that has been shown to possess both sesqui- and monoterpene synthase activities resulted in increased levels of ZIS-derived monoterpene products compared to fruits expressing ZIS alone. These results suggest that re-direction of the metabolic flux towards GPP in plastids also increases the cytosolic pool of GPP available for monoterpene synthesis in this compartment via GPP export from plastids. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  3. Thermodynamic study of selected monoterpenes II

    Czech Academy of Sciences Publication Activity Database

    Štejfa, V.; Fulem, Michal; Růžička, K.; Červinka, C.

    2014-01-01

    Roč. 79, Dec (2014), 272-279 ISSN 0021-9614 Institutional support: RVO:68378271 Keywords : monoterpenes * vapor pressure * heat capacity * ideal - gas thermodynamic properties * vaporization and sublimation enthalpy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.679, year: 2014

  4. Thermodynamic study of selected monoterpenes III

    Czech Academy of Sciences Publication Activity Database

    Štejfa, V.; Fulem, Michal; Růžička, K.; Červinka, C.

    2014-01-01

    Roč. 79, Dec (2014), 280-289 ISSN 0021-9614 Institutional support: RVO:68378271 Keywords : monoterpenes * vapor pressure * heat capacity * ideal - gas thermodynamic properties * vaporization and sublimation enthalpy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.679, year: 2014

  5. Oxidative stress and production of bioactive monoterpene indole alkaloids: biotechnological implications.

    Science.gov (United States)

    Matsuura, Hélio Nitta; Rau, Mariana Ritter; Fett-Neto, Arthur Germano

    2014-02-01

    Monoterpene indole alkaloids (MIAs) encompass plant natural products with important pharmacological relevance. They include the anti-tumoral MIAs found in Catharanthus roseus and Camptotheca acuminata. The often low yields of bioactive alkaloids in plants has prompted research to identify the factors regulating MIA production. Oxidative stress is a general response associated with biotic and abiotic stresses leading to several secondary responses, including elicitation of MIA production. These changes in secondary metabolism may take place directly or via second messengers, such as Ca(2+) and reactive oxygen species (ROS). H2O2 is the main ROS that participates in MIA biosynthesis. This review analyzes the links between oxidative stress, elicitation of bioactive MIA production and their potential roles in antioxidant defense, as well as exploring the implications to developing biotechnological strategies relevant for alkaloid supply.

  6. Monoterpene biosynthesis in lemon (Citrus limon) cDNA isolation and functional analysis of four monoterpene synthases

    NARCIS (Netherlands)

    Lücker, J.; Tamer, El M.K.; Schwab, W.; Verstappen, F.W.A.; Plas, van der L.H.W.; Bouwmeester, H.J.; Verhoeven, H.A.

    2002-01-01

    Citrus limon possesses a high content and large variety of monoterpenoids, especially in the glands of the fruit flavedo. The genes responsible for the production of these monoterpenes have never been isolated. By applying a random sequencing approach to a cDNA library from mRNA isolated from the

  7. Process-based modelling of biogenic monoterpene emissions combining production and release from storage

    NARCIS (Netherlands)

    Schurgers, G.; Arneth, A.; Holzinger, R.|info:eu-repo/dai/nl/337989338; Goldstein, A.H.

    2009-01-01

    Monoterpenes, primarily emitted by terrestrial vegetation, can influence atmospheric ozone chemistry, and can form precursors for secondary organic aerosol. The short-term emissions of monoterpenes have been well studied and understood, but their long-term variability, which is particularly

  8. Gene Coexpression Analysis Reveals Complex Metabolism of the Monoterpene Alcohol Linalool in Arabidopsis Flowers[W][OPEN

    Science.gov (United States)

    Ginglinger, Jean-François; Boachon, Benoit; Höfer, René; Paetz, Christian; Köllner, Tobias G.; Miesch, Laurence; Lugan, Raphael; Baltenweck, Raymonde; Mutterer, Jérôme; Ullmann, Pascaline; Beran, Franziska; Claudel, Patricia; Verstappen, Francel; Fischer, Marc J.C.; Karst, Francis; Bouwmeester, Harro; Miesch, Michel; Schneider, Bernd; Gershenzon, Jonathan; Ehlting, Jürgen; Werck-Reichhart, Danièle

    2013-01-01

    The cytochrome P450 family encompasses the largest family of enzymes in plant metabolism, and the functions of many of its members in Arabidopsis thaliana are still unknown. Gene coexpression analysis pointed to two P450s that were coexpressed with two monoterpene synthases in flowers and were thus predicted to be involved in monoterpenoid metabolism. We show that all four selected genes, the two terpene synthases (TPS10 and TPS14) and the two cytochrome P450s (CYP71B31 and CYP76C3), are simultaneously expressed at anthesis, mainly in upper anther filaments and in petals. Upon transient expression in Nicotiana benthamiana, the TPS enzymes colocalize in vesicular structures associated with the plastid surface, whereas the P450 proteins were detected in the endoplasmic reticulum. Whether they were expressed in Saccharomyces cerevisiae or in N. benthamiana, the TPS enzymes formed two different enantiomers of linalool: (−)-(R)-linalool for TPS10 and (+)-(S)-linalool for TPS14. Both P450 enzymes metabolize the two linalool enantiomers to form different but overlapping sets of hydroxylated or epoxidized products. These oxygenated products are not emitted into the floral headspace, but accumulate in floral tissues as further converted or conjugated metabolites. This work reveals complex linalool metabolism in Arabidopsis flowers, the ecological role of which remains to be determined. PMID:24285789

  9. Quadruple labelled dual oxygen and pH-sensitive ratiometric nanosensors

    Directory of Open Access Journals (Sweden)

    Veeren M. Chauhan

    2016-05-01

    Full Text Available Nanosensors capable of simultaneously measuring dissolved oxygen concentrations from 0 to 100% saturation and pH over the full physiological range, from pH 3.5 to 7.5, that advance the methods towards understanding of key biological gradients, were synthesised. A library of water soluble oxygen-sensitive porphyrins, with three substituted charged functional groups and a chemically flexible carboxylate functional group were spectroscopically analysed to assess their sensitivity to changes in dissolved oxygen concentrations as free species in solution and in suspension as nanoparticle conjugates. A platinum cationic porphyrin was taken forward to fabricate ratiometric oxygen-sensitive nanosensors, using 5-(and-6-carboxytetramethylrhodamine (TAMRA as internal standard. In addition, quadruple labelled dual oxygen and pH-sensitive nanosensors were synthesised using the cationic Pt porphyrin, pH-sensitive fluorescein dyes, carboxyfluorescein (FAM and Oregon Green (OG, in a 1:1 ratio, and TAMRA. We envisage the dual oxygen and pH nanosensors will find broad utility in the characterisation of diverse microenvironments, where there are complex interactions between molecular oxygen and pH. Keywords: Fluorescent, Phosphorescent, Nanosensor, Oxygen, pH, Ratiometric, Platinum metalloporphyrin

  10. Co-expression of peppermint geranyl diphosphate synthase small subunit enhances monoterpene production in transgenic tobacco plants.

    Science.gov (United States)

    Yin, Jun-Lin; Wong, Woon-Seng; Jang, In-Cheol; Chua, Nam-Hai

    2017-02-01

    Monoterpenes are important for plant survival and useful to humans. In addition to their function in plant defense, monoterpenes are also used as flavors, fragrances and medicines. Several metabolic engineering strategies have been explored to produce monoterpene in tobacco but only trace amounts of monoterpenes have been detected. We investigated the effects of Solanum lycopersicum 1-deoxy-d-xylulose-5-phosphate synthase (SlDXS), Arabidopsis thaliana geranyl diphosphate synthase 1 (AtGPS) and Mentha × piperita geranyl diphosphate synthase small subunit (MpGPS.SSU) on production of monoterpene and geranylgeranyl diphosphate (GGPP) diversities, and plant morphology by transient expression in Nicotiana benthamiana and overexpression in transgenic Nicotiana tabacum. We showed that MpGPS.SSU could enhance the production of various monoterpenes such as (-)-limonene, (-)-linalool, (-)-α-pinene/β-pinene or myrcene, in transgenic tobacco by elevating geranyl diphosphate synthase (GPS) activity. In addition, overexpression of MpGPS.SSU in tobacco caused early flowering phenotype and increased shoot branching by elevating contents of GA 3 and cytokinins due to upregulated transcript levels of several plastidic 2-C-methyl-d-erythritol-4-phosphate (MEP) pathway genes, geranylgeranyl diphosphate synthases 3 (GGPPS3) and GGPPS4. Our method would allow the identification of new monoterpene synthase genes using transient expression in N. benthamiana and the improvement of monoterpene production in transgenic tobacco plants. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  11. Host-Tree Monoterpenes and Biosynthesis of Aggregation Pheromones in the Bark Beetle Ips paraconfusus

    Directory of Open Access Journals (Sweden)

    John A. Byers

    2012-01-01

    Full Text Available A paradigm developed in the 1970s that Ips bark beetles biosynthesize their aggregation pheromone components ipsenol and ipsdienol by hydroxylating myrcene, a host tree monoterpene. Similarly, host α-pinene was hydroxylated to a third pheromone component cis-verbenol. In 1990, however, we reported that amounts of ipsenol and ipsdienol produced by male Ips paraconfusus (Coleoptera: Scolytinae feeding in five host pine species were nearly the same, even though no detectable myrcene precursor was detected in one of these pines (Pinus sabiniana. Subsequent research showed ipsenol and ipsdienol are also biosynthesized from smaller precursors such as acetate and mevalonate, and this de novo pathway is the major one, while host tree myrcene conversion by the beetle is the minor one. We report concentrations of myrcene, α-pinene and other major monoterpenes in five pine hosts (Pinus ponderosa, P. lambertiana, P. jeffreyi, P. sabiniana, and P. contorta of I. paraconfusus. A scheme for biosynthesis of ipsdienol and ipsenol from myrcene and possible metabolites such as ipsenone is presented. Mass spectra and quantities of ipsenone are reported and its possible role in biosynthesis of aggregation pheromone. Coevolution of bark beetles and host trees is discussed in relation to pheromone biosynthesis, host plant selection/suitability, and plant resistance.

  12. Simple proxies for estimating the concentrations of monoterpenes and their oxidation products at a boreal forest site

    Directory of Open Access Journals (Sweden)

    J. Kontkanen

    2016-10-01

    Full Text Available The oxidation products of monoterpenes likely have a crucial role in the formation and growth of aerosol particles in boreal forests. However, the continuous measurements of monoterpene concentrations are usually not available on decadal timescales, and the direct measurements of the concentrations of monoterpene oxidation product have so far been scarce. In this study we developed proxies for the concentrations of monoterpenes and their oxidation products at a boreal forest site in Hyytiälä, southern Finland. For deriving the proxies we used the monoterpene concentration measured with a proton transfer reaction mass spectrometer (PTR-MS during 2006–2013. Our proxies for the monoterpene concentration take into account the temperature-controlled emissions from the forest ecosystem, the dilution caused by the mixing within the boundary layer and different oxidation processes. All the versions of our proxies captured the seasonal variation of the monoterpene concentration, the typical proxy-to-measurements ratios being between 0.8 and 1.3 in summer and between 0.6 and 2.6 in winter. In addition, the proxies were able to describe the diurnal variation of the monoterpene concentration rather well, especially in summer months. By utilizing one of the proxies, we calculated the concentration of oxidation products of monoterpenes by considering their production in the oxidation and their loss due to condensation on aerosol particles. The concentration of oxidation products was found to have a clear seasonal cycle, with a maximum in summer and a minimum in winter. The concentration of oxidation products was lowest in the morning or around noon and highest in the evening. In the future, our proxies for the monoterpene concentration and their oxidation products can be used, for example, in the analysis of new particle formation and growth in boreal environments.

  13. Monoterpene ‘thermometer’ of tropical forest-atmosphere response to climate warming

    OpenAIRE

    Jardine, KJ; Jardine, AB; Holm, JA; Lombardozzi, DL; Negron-Juarez, RI; Martin, ST; Beller, HR; Gimenez, BO; Higuchi, N; Chambers, JQ

    2017-01-01

    © 2016 John Wiley & Sons Ltd Tropical forests absorb large amounts of atmospheric CO 2 through photosynthesis but elevated temperatures suppress this absorption and promote monoterpene emissions. Using 13 CO 2 labeling, here we show that monoterpene emissions from tropical leaves derive from recent photosynthesis and demonstrate distinct temperature optima for five groups (Groups 1–5), potentially corresponding to different enzymatic temperature-dependent reaction mechanisms within β-ocimen...

  14. Local and regional variation in the monoterpenes of ponderosa pine wood oleoresin

    Science.gov (United States)

    R.H. Smith; R.L. Peloquin; P.C. Passof

    1969-01-01

    A gas chromatographic analysis of the mono-terpenes of 927 ponderosa pines, representing to some degree a major portion of the species' range, showed considerable local and regional diversity in composition. Five major monoterpenes— α-pinene, β-pinene, 3-carene, myrcene, and limonene—were analyzed. There is some evidence to support the...

  15. Monoterpene biosynthesis potential of plant subcellular compartments

    NARCIS (Netherlands)

    Dong, L.; Jongedijk, E.J.; Bouwmeester, H.J.; Krol, van der A.R.

    2016-01-01

    Subcellular monoterpene biosynthesis capacity based on local geranyl diphosphate (GDP) availability or locally boosted GDP production was determined for plastids, cytosol and mitochondria. A geraniol synthase (GES) was targeted to plastids, cytosol, or mitochondria. Transient expression in Nicotiana

  16. Impact of drought stress on specialised metabolism: Biosynthesis and the expression of monoterpene synthases in sage (Salvia officinalis).

    Science.gov (United States)

    Radwan, Alzahraa; Kleinwächter, Maik; Selmar, Dirk

    2017-09-01

    In previous experiments, we demonstrated that the amount of monoterpenes in sage is increased massively by drought stress. Our current study is aimed to elucidate whether this increase is due, at least in part, to elevated activity of the monoterpene synthases responsible for the biosynthesis of essential oils in sage. Accordingly, the transcription rates of the monoterpene synthases were analyzed. Salvia officinalis plants were cultivated under moderate drought stress. The concentrations of monoterpenes as well as the expression of the monoterpene synthases were analyzed. The amount of monoterpenes massively increased in response to drought stress; it doubled after just two days of drought stress. The observed changes in monoterpene content mostly match with the patterns of monoterpene synthase expressions. The expression of bornyl diphosphate synthase was strongly up-regulated; its maximum level was reached after two days. Sabinene synthase increased gradually and reached a maximum after two weeks. In contrast, the transcript level of cineole synthase continuously declined. This study revealed that the stress related increase of biosynthesis is not only due to a "passive" shift caused by the stress related over-reduced status, but also is due - at least in part-to an "active" up-regulation of the enzymes involved. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Global isoprene and monoterpene emissions under changing climate, vegetation, CO2 and land use

    DEFF Research Database (Denmark)

    Hantson, Stijn; Knorr, Wolfgang; Schurgers, Guy

    2017-01-01

    Plants emit large quantities of isoprene and monoterpenes, the main components of global biogenic volatile organic compound (BVOC) emissions. BVOCs have an important impact on the atmospheric composition of methane, and of short-lived radiative forcing agents (e.g. ozone, aerosols etc.). It is th......Plants emit large quantities of isoprene and monoterpenes, the main components of global biogenic volatile organic compound (BVOC) emissions. BVOCs have an important impact on the atmospheric composition of methane, and of short-lived radiative forcing agents (e.g. ozone, aerosols etc.......). It is therefore necessary to know how isoprene and monoterpene emissions have changed over the past and how future changes in climate, land-use and other factors will impact them. Here we present emission estimates of isoprene and monoterpenes over the period 1901–2 100 based on the dynamic global vegetation...... model LPJ-GUESS, including the effects of all known important drivers. We find that both isoprene and monoterpene emissions at the beginning of the 20th century were higher than at present. While anthropogenic land-use change largely drives the global decreasing trend for isoprene over the 20th century...

  18. Quantitative and enantioselective analysis of monoterpenes from plant chambers and in ambient air using SPME

    Directory of Open Access Journals (Sweden)

    N. Yassaa

    2010-11-01

    Full Text Available A headspace solid-phase microextraction (HS-SPME and gas chromatography/mass spectrometry (GC/MS system has been developed for quantifying enantiomeric and nonenantiomeric monoterpenes in plant chamber studies and ambient air. Performance of this system was checked using a capillary diffusion system to produce monoterpene standards. The adsorption efficiency, competitive adsorption and chromatographic peak resolution of monoterpene enantiomer pairs were compared for three SPME fibre coatings: 75 μm Carboxen-PDMS (CAR-PDMS, 50/30 μm divinylbenzene-carboxen-polydimethylsiloxane (DVB-CAR-PDMS and 65 μm divinylbenzene-polydimethylsiloxane (DVB-PDMS. Key parameters such as the linearity and reproducibility of the SPME system have been investigated in this work. The best compromise between the enantiomeric separation of monoterpenes and competitive adsorption of the isoprenoids on the solid SPME fibre coating was found for DVB-PDMS fibres. The optimum conditions using DVB-PDMS fibres were applied to measure the exchange rates of monoterpenes in the emission of Quercus ilex using a laboratory whole plant enclosure under light and dark conditions, as well as in ambient air. With 592 and 223 ng m−2 s−1 respectively, β-myrcene and limonene were the predominant monoterpenes in the emission of Q. ilex. These values were closely comparable to those obtained using a zNose and cartridge GC-FID systems.

  19. Quantitative and enantioselective analysis of monoterpenes from plant chambers and in ambient air using SPME

    Science.gov (United States)

    Yassaa, N.; Custer, T.; Song, W.; Pech, F.; Kesselmeier, J.; Williams, J.

    2010-11-01

    A headspace solid-phase microextraction (HS-SPME) and gas chromatography/mass spectrometry (GC/MS) system has been developed for quantifying enantiomeric and nonenantiomeric monoterpenes in plant chamber studies and ambient air. Performance of this system was checked using a capillary diffusion system to produce monoterpene standards. The adsorption efficiency, competitive adsorption and chromatographic peak resolution of monoterpene enantiomer pairs were compared for three SPME fibre coatings: 75 μm Carboxen-PDMS (CAR-PDMS), 50/30 μm divinylbenzene-carboxen-polydimethylsiloxane (DVB-CAR-PDMS) and 65 μm divinylbenzene-polydimethylsiloxane (DVB-PDMS). Key parameters such as the linearity and reproducibility of the SPME system have been investigated in this work. The best compromise between the enantiomeric separation of monoterpenes and competitive adsorption of the isoprenoids on the solid SPME fibre coating was found for DVB-PDMS fibres. The optimum conditions using DVB-PDMS fibres were applied to measure the exchange rates of monoterpenes in the emission of Quercus ilex using a laboratory whole plant enclosure under light and dark conditions, as well as in ambient air. With 592 and 223 ng m-2 s-1 respectively, β-myrcene and limonene were the predominant monoterpenes in the emission of Q. ilex. These values were closely comparable to those obtained using a zNose and cartridge GC-FID systems.

  20. Pd(OAc)2/Ph3P-catalyzed dimerization of isoprene and synthesis of monoterpenic heterocycles.

    Science.gov (United States)

    Kellner, Dominik; Weger, Maximilian; Gini, Andrea; Mancheño, Olga García

    2017-01-01

    The palladium-catalyzed dimerization of isoprene is a practical approach of synthesizing monoterpenes. Though several highly selective methods have been reported, most of them still required pressure or costly ligands for attaining the active system and desired selectivity. Herein, we present a simple and economical procedure towards the tail-to-tail dimer using readily available Pd(OAc) 2 and inexpensive triphenylphosphine as ligand. Furthermore, simple screw cap vials are employed, allowing carrying out the reaction at low pressure. In addition, the potential of the dimer as a chemical platform for the preparation of heterocyclic terpenes by subsequent (hetero)-Diels-Alder or [4 + 1]-cycloadditions with nitrenes is also depicted.

  1. Mechanism of monoterpene volatilization in Salvia mellifera

    Energy Technology Data Exchange (ETDEWEB)

    Dement, W A; Tyson, B J; Mooney, H A

    1975-01-01

    Monoterpene volatilization in Salvia mellifera is primarily dependent on the vapor pressures of the terpenes as they are influenced by temperature, the humidity of the air surrounding the leaf and the surface area of oil present on the leaf. 12 references, 1 figure, 2 tables.

  2. Laboratory studies of monoterpene secondary organic aerosol formation and evolution

    Science.gov (United States)

    Thornton, J. A.; D'Ambro, E.; Zhao, Y.; Lee, B. H.; Pye, H. O. T.; Schobesberger, S.; Shilling, J.; Liu, J.

    2017-12-01

    We have conducted a series of chamber experiments to study the molecular composition and properties of secondary organic aerosol (SOA) formed from monoterpenes under a range of photochemical and dark conditions. We connect variations in the SOA mass yield to molecular composition and volatility, and use a detailed Master Chemical Mechanism (MCM) based chemical box model with dynamic gas-particle partitioning to examine the importance of various peroxy radical reaction mechanisms in setting the SOA yield and properties. We compare the volatility distribution predicted by the model to that inferred from isothermal room-temperature evaporation experiments using the FIGAERO-CIMS where SOA particles collected on a filter are allowed to evaporate under humidified pure nitrogen flow stream for up to 24 hours. We show that the combination of results requires prompt formation of low volatility SOA from predominantly gas-phase mechanisms, with important differences between monoterpenes (alpha-Pinene and delta-3-Carene) followed by slower non-radical particle phase chemistry that modulates both the chemical and physical properties of the SOA. Implications for the regional evolution of atmospheric monoterpene SOA are also discussed.

  3. Production of aromas and fragrances through microbial oxidation of monoterpenes

    Directory of Open Access Journals (Sweden)

    H. F. Rozenbaum

    2006-09-01

    Full Text Available Aromas and fragrances can be obtained through the microbial oxidation of monoterpenes. Many microorganisms can be used to carry out extremely specific conversions using substrates of low commercial value. However, for many species, these substrates are highly toxic, consequently inhibiting their metabolism. In this work, the conversion ability of Aspergillus niger IOC-3913 for terpenic compounds was examined. This species was preselected because of its high resistance to toxic monoterpenic substrates. Though it has been grown in media containing R-limonene (one of the cheapest monoterpenic hydrocarbons, which is widely available on the market, the species has not shown the ability to metabolize it, since biotransformation products were not detected in high resolution gas chromatography analyses. For this reason, other monoterpenes (alpha-pinene, beta-pinene and camphor were used as substrates. These compounds were shown to be metabolized by the selected strain, producing oxidized compounds. Four reaction systems were used: a biotransformation in a liquid medium with cells in growth b with pre-grown cultures c with cells immobilized in a synthetic polymer network and d in a solid medium to which the substrate was added via the gas phase. The main biotransformation products were found in all the reaction systems, although the adoption of previously cultivated cells seemed to favor biotransformation. Cell immobilization seemed to be a feasible strategy for alleviating the toxic effect of the substrate. Through mass spectrometry it was possible to identify verbenone and alpha-terpineol as the biotransformation products of alpha-pinene and beta-pinene, respectively. The structures of the other oxidation products are described.

  4. Host-tree monoterpenes and biosynthesis of aggregation pheromones in the bark beetle ips paraconfusus

    Science.gov (United States)

    In the 1970-80s, vapors of the common conifer tree monoterpenes, myrcene and a-pinene, were shown to serve as precursors of ipsenol, ipsdienol and cis-verbenol, aggregation pheromone components of Ips paraconfusus. A paradigm developed that Ips bark beetles utilize pre-formed monoterpene precursors ...

  5. One-step Multiple Component Isolation from the Oil of Crinitaria tatarica (Less.) Sojak by Preparative Capillary Gas Chromatography with Characterization by Spectroscopic and Spectrometric Techniques and Evaluation of Biological Activity

    Science.gov (United States)

    2012-01-01

    d, e Total 98.5 Monoterpene hydrocarbons 62.2 Oxygenated monoterpenes 6.6 Sesquiterpene hydrocarbons 1.4 Oxygenated sesquiterpenes 2.2 Isocoumarins...sabinene (32.1%), -pinene (8.8%), and two unknown (M+200) com- pounds I (21.4%) and II (3.4%) (Fig. 1). Monoterpene hydro- carbons, oxygenated... monoterpenes , sesquiterpene hydrocar- bons, oxygenated sesquiterpenes, and isocoumarins were the main groups present in the oil. Monoterpene hydrocarbons were

  6. Monoterpene separation by coupling proton transfer reaction time-of-flight mass spectrometry with fastGC.

    Science.gov (United States)

    Materić, Dušan; Lanza, Matteo; Sulzer, Philipp; Herbig, Jens; Bruhn, Dan; Turner, Claire; Mason, Nigel; Gauci, Vincent

    2015-10-01

    Proton transfer reaction mass spectrometry (PTR-MS) is a well-established technique for real-time analysis of volatile organic compounds (VOCs). Although it is extremely sensitive (with sensitivities of up to 4500 cps/ppbv, limits of detection monoterpenes, which belong to the most important plant VOCs, still cannot be distinguished so more traditional technologies, such as gas chromatography mass spectrometry (GC-MS), have to be utilised. GC-MS is very time consuming (up to 1 h) and cannot be used for real-time analysis. Here, we introduce a sensitive, near-to-real-time method for plant monoterpene research-PTR-MS coupled with fastGC. We successfully separated and identified six of the most abundant monoterpenes in plant studies (α- and β-pinenes, limonene, 3-carene, camphene and myrcene) in less than 80 s, using both standards and conifer branch enclosures (Norway spruce, Scots pine and black pine). Five monoterpenes usually present in Norway spruce samples with a high abundance were separated even when the compound concentrations were diluted to 20 ppbv. Thus, fastGC-PTR-ToF-MS was shown to be an adequate one-instrument solution for plant monoterpene research.

  7. Successful Colonization of Lodgepole Pine Trees by Mountain Pine Beetle Increased Monoterpene Production and Exhausted Carbohydrate Reserves.

    Science.gov (United States)

    Roth, Marla; Hussain, Altaf; Cale, Jonathan A; Erbilgin, Nadir

    2018-02-01

    Lodgepole pine (Pinus contorta) forests have experienced severe mortality from mountain pine beetle (MPB) (Dendroctonus ponderosae Hopkins) in western North America for the last several years. Although the mechanisms by which beetles kill host trees are unclear, they are likely linked to pine defense monoterpenes that are synthesized from carbohydrate reserves. However, how carbohydrates and monoterpenes interact in response to MPB colonization is unknown. Understanding this relationship could help to elucidate how pines succumb to bark beetle attack. We compared concentrations of individual and total monoterpenes and carbohydrates in the phloem of healthy pine trees with those naturally colonized by MPB. Trees attacked by MPB had nearly 300% more monoterpenes and 40% less carbohydrates. Total monoterpene concentrations were most strongly associated with the concentration of sugars in the phloem. These results suggest that bark beetle colonization likely depletes carbohydrate reserves by increasing the production of carbon-rich monoterpenes, and other carbon-based secondary compounds. Bark beetle attacks also reduce water transport causing the disruption of carbon transport between tree foliage and roots, which restricts carbon assimilation. Reduction in carbohydrate reserves likely contributes to tree mortality.

  8. Monoterpene and herbivore-induced emissions from cabbage plants grown at elevated atmospheric CO 2 concentration

    Science.gov (United States)

    Vuorinen, Terhi; Reddy, G. V. P.; Nerg, Anne-Marja; Holopainen, Jarmo K.

    The warming of the lower atmosphere due to elevating CO 2 concentration may increase volatile organic compound (VOC) emissions from plants. Also, direct effects of elevated CO 2 on plant secondary metabolism are expected to lead to increased VOC emissions due to allocation of excess carbon on secondary metabolites, of which many are volatile. We investigated how growing at doubled ambient CO 2 concentration affects emissions from cabbage plants ( Brassica oleracea subsp. capitata) damaged by either the leaf-chewing larvae of crucifer specialist diamondback moth ( Plutella xylostella L.) or generalist Egyptian cotton leafworm ( Spodoptera littoralis (Boisduval)). The emission from cabbage cv. Lennox grown in both CO 2 concentrations, consisted mainly of monoterpenes (sabinene, limonene, α-thujene, 1,8-cineole, β-pinene, myrcene, α-pinene and γ-terpinene). ( Z)-3-Hexenyl acetate, sesquiterpene ( E, E)- α-farnesene and homoterpene ( E)-4,8-dimethyl-1,3,7-nonatriene (DMNT) were emitted mainly from herbivore-damaged plants. Plants grown at 720 μmol mol -1 of CO 2 had significantly lower total monoterpene emissions per shoot dry weight than plants grown at 360 μmol mol -1 of CO 2, while damage by both herbivores significantly increased the total monoterpene emissions compared to intact plants. ( Z)-3-Hexenyl acetate, ( E, E)- α-farnesene and DMNT emissions per shoot dry weight were not affected by the growth at elevated CO 2. The emission of DMNT was significantly enhanced from plants damaged by the specialist P. xylostella compared to the plants damaged by the generalist S. littoralis. The relative proportions of total monoterpenes and total herbivore-induced compounds of total VOCs did not change due to the growth at elevated CO 2, while insect damage increased significantly the proportion of induced compounds. The results suggest that VOC emissions that are induced by the leaf-chewing herbivores will not be influenced by elevated CO 2 concentration.

  9. Untangling the primary drivers of pinyon monoterpene production and emissions under predicted drought

    Science.gov (United States)

    Trowbridge, A. M.; Adams, H. D.; Breshears, D. D.; Monson, R. K.

    2012-04-01

    Climate and insect herbivory have important consequences for plant function, atmospheric composition, and the functioning of ecosystems and ecological communities. Within the last decade, pinyon-juniper woodlands throughout the southwestern U.S. have suffered large-scale mortality, especially of pinyon pine, due to drought and associated insect outbreaks. While much research has focused on the primary metabolic mechanisms underlying pinyon's sensitivity to drought, there remains a gap in our knowledge concerning how the resulting shift in carbon allocation toward plant secondary compounds, particularly monoterpenes, affects atmospheric process and ecological interactions. Monoterpenes are the principal constituents of pinyon resin. Because of their large global emission rates and effect on atmospheric chemistry, particularly ozone creation, identifying controls over emissions and sensitivities to environmental change is critical for global emission models. Furthermore, monoterpenes are known to impact insect behavior and act as defense compounds against herbivores, contributing to insect population fluctuations either directly through toxicity, or indirectly by influencing parasitism susceptibility. Pinyon mortality events are thought to be exacerbated by their susceptibility to herbivores resulting from weakened secondary chemical defenses, but the impact of current and predicted drought on the chemical defense status of pinyons and subsequent atmospheric and ecological consequences remain unknown. A field study was developed to examine the impact of seasonality and climate, particularly drought, on pinyon pine physiology and chemistry in the context of tiger moth (Lophocampa ingens) herbivory in pinyon-juniper woodlands. We demonstrate the importance of geography and seasonality, particularly mid-summer drought and late summer monsoons, in driving physiology and monoterpene concentrations and emissions. Emission rates significantly decreased throughout the summer

  10. Pd(OAc2/Ph3P-catalyzed dimerization of isoprene and synthesis of monoterpenic heterocycles

    Directory of Open Access Journals (Sweden)

    Dominik Kellner

    2017-08-01

    Full Text Available The palladium-catalyzed dimerization of isoprene is a practical approach of synthesizing monoterpenes. Though several highly selective methods have been reported, most of them still required pressure or costly ligands for attaining the active system and desired selectivity. Herein, we present a simple and economical procedure towards the tail-to-tail dimer using readily available Pd(OAc2 and inexpensive triphenylphosphine as ligand. Furthermore, simple screw cap vials are employed, allowing carrying out the reaction at low pressure. In addition, the potential of the dimer as a chemical platform for the preparation of heterocyclic terpenes by subsequent (hetero-Diels–Alder or [4 + 1]-cycloadditions with nitrenes is also depicted.

  11. Monoterpenes in the glandular trichomes of tomato are synthesized from a neryl diphosphate precursor rather than geranyl diphosphate.

    Science.gov (United States)

    Schilmiller, Anthony L; Schauvinhold, Ines; Larson, Matthew; Xu, Richard; Charbonneau, Amanda L; Schmidt, Adam; Wilkerson, Curtis; Last, Robert L; Pichersky, Eran

    2009-06-30

    We identified a cis-prenyltransferase gene, neryl diphosphate synthase 1 (NDPS1), that is expressed in cultivated tomato (Solanum lycopersicum) cultivar M82 type VI glandular trichomes and encodes an enzyme that catalyzes the formation of neryl diphosphate from isopentenyl diphosphate and dimethylallyl diphosphate. mRNA for a terpene synthase gene, phellandrene synthase 1 (PHS1), was also identified in these glands. It encodes an enzyme that uses neryl diphosphate to produce beta-phellandrene as the major product as well as a variety of other monoterpenes. The profile of monoterpenes produced by PHS1 is identical with the monoterpenes found in type VI glands. PHS1 and NDPS1 map to chromosome 8, and the presence of a segment of chromosome 8 derived from Solanum pennellii LA0716 causes conversion from the M82 gland monoterpene pattern to that characteristic of LA0716 plants. The data indicate that, contrary to the textbook view of geranyl diphosphate as the "universal" substrate of monoterpene synthases, in tomato glands neryl diphosphate serves as a precursor for the synthesis of monoterpenes.

  12. De novo production of six key grape aroma monoterpenes by a geraniol synthase-engineered S. cerevisiae wine strain.

    Science.gov (United States)

    Pardo, Ester; Rico, Juan; Gil, José Vicente; Orejas, Margarita

    2015-09-16

    Monoterpenes are important contributors to grape and wine aroma. Moreover, certain monoterpenes have been shown to display health benefits with antimicrobial, anti-inflammatory, anticancer or hypotensive properties amongst others. The aim of this study was to construct self-aromatizing wine yeasts to overproduce de novo these plant metabolites in wines. Expression of the Ocimum basilicum (sweet basil) geraniol synthase (GES) gene in a Saccharomyces cerevisiae wine strain substantially changed the terpene profile of wine produced from a non-aromatic grape variety. Under microvinification conditions, and without compromising other fermentative traits, the recombinant yeast excreted geraniol de novo at an amount (~750 μg/L) well exceeding (>10-fold) its threshold for olfactory perception and also exceeding the quantities present in wines obtained from highly aromatic Muscat grapes. Interestingly, geraniol was further metabolized by yeast enzymes to additional monoterpenes and esters: citronellol, linalool, nerol, citronellyl acetate and geranyl acetate, resulting in a total monoterpene concentration (~1,558 μg/L) 230-fold greater than that of the control. We also found that monoterpene profiles of wines derived from mixed fermentations were found to be determined by the composition of the initial yeast inocula suggesting the feasibility of producing 'à la carte' wines having predetermined monoterpene contents. Geraniol synthase-engineered yeasts demonstrate potential in the development of monoterpene enhanced wines.

  13. The role of ecophysiology in determining monoterpene concentrations and emissions from pinyon pine under drought conditions

    Science.gov (United States)

    Trowbridge, A. M.; Adams, H. D.; Breshears, D. D.; Stoy, P.; Monson, R. K.

    2012-12-01

    While much research has focused on the primary metabolic mechanisms underlying pinyon pine's sensitivity to severe and abrupt drought conditions, there remains a gap in our knowledge concerning how the resulting shift in carbon allocation toward plant secondary compounds, particularly monoterpenes, affects both atmospheric process and ecological species interactions. Because of the large global emission rate of monoterpenes and their effect on atmospheric chemistry, identifying the primary controls over and sensitivities to environmental change is critical for global emission models. Furthermore, monoterpenes are also known to impact insect behavior and act as defense compounds against herbivores, contributing to fluctuations in the population densities of herbivores either directly through toxicity, or indirectly by influencing an insect's susceptibility to parasitism. While pinyon mortality events are thought to be exacerbated by their susceptibility to herbivores resulting from weakened secondary chemical defenses, the impact of current and predicted drought on the chemical defense status of pinyons and the potential consequences for atmospheric composition and ecological interactions remains unknown. We performed a manipulative field study to untangle the effects of drought on plant carbon assimilation, growth, and defense throughout the year. Transplanting pinyons from their natural habitat into a desert environment, we were able to increase mean annual temperature by ~4 degrees C. Throughout the growing season, we measured pinyon physiology and monoterpene composition and emissions under different water (well-watered, ambient, or drought-stresed) and temperature (natural pinyon habitat or desert transplants) regimes. We hypothesized that increased drought would increase tissue concentrations in accordance with the carbon-nutrient balance hypothesis (CNBH). Furthermore, we predicted that higher temperatures and lower water availability together would influence

  14. The contribution of wine-derived monoterpene glycosides to retronasal odour during tasting.

    Science.gov (United States)

    Parker, Mango; Black, Cory A; Barker, Alice; Pearson, Wes; Hayasaka, Yoji; Francis, I Leigh

    2017-10-01

    This study investigated the sensory significance of monoterpene glycosides during tasting, by retronasal perception of odorant aglycones released in-mouth. Monoterpene glycosides were isolated from Gewürztraminer and Riesling juices and wines, chemically characterised and studied using sensory time-intensity methodology, together with a synthesised monoterpene glucoside. When assessed in model wine at five times wine-like concentration, Gewürztraminer glycosides and geranyl glucoside gave significant fruity flavour, although at wine-like concentrations, or in the presence of wine volatiles, the effect was not significant. Gewürztraminer glycosides, geranyl glucoside and guaiacyl glucoside were investigated using a sensory panel (n=39), revealing large inter-individual variability, with 77% of panellists responding to at least one glycoside. The study showed for the first time that grape-derived glycosides can contribute perceptible fruity flavour, providing a means of enhancing flavour in wines, and confirms the results of previous studies that the effect is highly variable across individuals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Stomatal uptake and stomatal deposition of ozone in isoprene and monoterpene emitting plants.

    Science.gov (United States)

    Fares, S; Loreto, F; Kleist, E; Wildt, J

    2008-01-01

    Volatile isoprenoids were reported to protect plants against ozone. To understand whether this could be the result of a direct scavenging of ozone by these molecules, the stomatal and non-stomatal uptake of ozone was estimated in plants emitting isoprene or monoterpenes. Ozone uptake by holm oak (Quercus ilex, a monoterpene emitter) and black poplar (Populus nigra, an isoprene emitter) was studied in whole plant enclosures (continuously stirred tank reactors, CSTR). The ozone uptake by plants was estimated measuring ozone concentration at the inlet and outlet of the reactors, after correcting for the uptake of the enclosure materials. Destruction of ozone at the cuticle or at the plant stems was found to be negligible compared to the ozone uptake through the stomata. For both plant species, a relationship between stomatal conductance and ozone uptake was found. For the poplar, the measured ozone losses were explained by the uptake of ozone through the stomata only, and ozone destruction by gas phase reactions with isoprene was negligible. For the oak, gas phase reactions of ozone with the monoterpenes emitted by the plants contributed significantly to ozone destruction. This was confirmed by two different experiments showing a) that in cases of high stomatal conductance but under low CO(2) concentration, a reduction of monoterpene emission was still associated with reduced O(3) uptake; and b) that ozone losses due to the gas phase reactions only can be measured when using the exhaust from a plant chamber to determine the gas phase reactivity in an empty reaction chamber. Monoterpenes can therefore relevantly scavenge ozone at leaf level contributing to protection against ozone.

  16. Sesquiterpene lactones and monoterpene glucosides from plant species Picris echoides

    Directory of Open Access Journals (Sweden)

    MILUTIN STEFANOVIC

    2000-11-01

    Full Text Available Investigation of the constituents of the aerial parts of domestic plant species Picris echoides afforded the sesquiterpene lactones, i.e., guaianolides jacquilenin (1, 11-epi-jacquilenin (2, achillin (3 and eudesmanolide telekin (4. The chemical indentification of the two monoterpene glucosides (–-cis-chrysanthenol-b-D-glucopyranoside (5 and its 6’-acetate 6 is also repoted. The guaianolide achillin (3 and the two monoterpene glucosides 5 and 6 were isolated for the first time from this plant species. Isolation was achieved by column chromatography and the structures were established mainly by the interpretation of their physical and spectral data, which were in agreement with those in the literature.

  17. An NPF transporter exports a central monoterpene indole alkaloid intermediate from the vacuole

    DEFF Research Database (Denmark)

    Payne, Richard; Xu, Deyang; Foureau, Emilien

    2017-01-01

    Plants sequester intermediates of metabolic pathways into different cellular compartments, but the mechanisms by which these molecules are transported remain poorly understood. Monoterpene indole alkaloids, a class of specialized metabolites that includes the anticancer agent vincristine, antimal......Plants sequester intermediates of metabolic pathways into different cellular compartments, but the mechanisms by which these molecules are transported remain poorly understood. Monoterpene indole alkaloids, a class of specialized metabolites that includes the anticancer agent vincristine...

  18. Herbivory and climate interact serially to control monoterpene emissions from pinyon pine forests.

    Science.gov (United States)

    Trowbridge, Amy M; Daly, Ryan W; Helmig, Detlev; Stoy, Paul C; Monson, Russell K

    2014-06-01

    The emission of volatile monoterpenes from coniferous trees impacts the oxidative state of the troposphere and multi-trophic signaling between plants and animals. Previous laboratory studies have revealed that climate anomalies and herbivory alter the rate of tree monoterpene emissions. However, no studies to date have been conducted to test these relations in situ. We conducted a two-year field experiment at two semiarid sites dominated by pinyon pine (Pinus edulis) during outbreaks of a specialist herbivore, the southwestern tiger moth (Lophocampa ingens: Arctiidae). We discovered that during the early spring, when herbivory rates were highest, monoterpene emission rates were approximately two to six times higher from undamaged needles on damaged trees, with this increase in emissions due to alpha-pinene, beta-pinene, and camphene at both sites. During mid-summer, emission rates did not differ between previously damaged and undamaged trees at the site on the Western Slope of the Rocky Mountains, but rather tracked changes in the temperature and precipitation regime characteristic of the region. As the mid-summer drought progressed at the Eastern Slope site, emission rates were low, but differences between previously damaged and undamaged trees were not statistically significant. Despite no difference in emissions, mid-summer tissue monoterpene concentrations were significantly lower in previously damaged trees at both sites. With the onset of monsoon rains during late summer, emission rates from previously damaged trees increased to levels higher than those of undamaged trees despite the lack of herbivory. We conclude that (1) herbivory systemically increases the flux of terpenes to the atmosphere during the spring, (2) drought overrides the effect of past herbivory as the primary control over emissions during the mid-summer, and (3) a release from drought and the onset of late-summer rains is correlated with a secondary increase in emissions, particularly from

  19. Genetic and biochemical characterization of a novel monoterpene epsilon-lactone hydrolase from Rhodococcus erythropolis DCL14

    NARCIS (Netherlands)

    Vlugt-Bergmans, van der C.J.B.; Werf, van der M.J.

    2001-01-01

    A monoterpene ε-lactone hydrolase (MLH) from Rhodococcus erythropolis DCL14, catalyzing the ring opening of lactones which are formed during degradation of several monocyclic monoterpenes, including carvone and menthol, was purified to apparent homogeneity. It is a monomeric enzyme of 31 kDa that is

  20. Genetic and biochemical characterization of a novel monoterpene e-lactone hydrolase from Rhodococcus erythropolis DCL14

    NARCIS (Netherlands)

    Vlugt-Bergmans, C.J.B. van der; Werf, M.J. van der

    2001-01-01

    A monoterpene ε-lactone hydrolase (MLH) from Rhodococcus erythropolis DCL14, catalyzing the ring opening of lactones which are formed during degradation of several monocyclic monoterpenes, including carvone and menthol, was purified to apparent homogeneity. It is a monomeric enzyme of 31 kDa that is

  1. Pheromone Production by an Invasive Bark Beetle Varies with Monoterpene Composition of its Naïve Host.

    Science.gov (United States)

    Taft, Spencer; Najar, Ahmed; Erbilgin, Nadir

    2015-06-01

    The secondary chemistry of host plants can have cascading impacts on the establishment of new insect herbivore populations, their long-term population dynamics, and their invasion potential in novel habitats. Mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae) has recently expanded its range into forests of jack pine, Pinus banksiana Lamb., in western Canada. We investigated whether variations in jack pine monoterpenes affect beetle pheromone production, as the primary components of the beetle's aggregation pheromone, (-)-trans-verbenol and anti-aggregation pheromone (-)-verbenone, are biosynthesized from the host monoterpene α-pinene. Jack pine bolts were collected from five Canadian provinces east of the beetle's current range, live D. ponderosae were introduced into them, and their monoterpene compositions were characterized. Production of (-)-trans-verbenol and (-)-verbenone emitted by beetles was measured to determine whether pheromone production varies with monoterpene composition of jack pines. Depending on particular ratios of major monoterpenes in host phloem, jack pine could be classified into three monoterpenoid groups characterized by high amounts of (+)-α-pinene, 3-carene, or a more moderate blend of monoterpenes, and beetle pheromone production varied among these groups. Specifically, beetles reared in trees characterized by high (+)-α-pinene produced the most (-)-trans-verbenol and (-)-verbenone, while beetles in trees characterized by high 3-carene produced the least. Our results indicate that pheromone production by D. ponderosae will remain a significant aspect and important predictor of its survival and persistence in the boreal forest.

  2. Monoterpene emissions from a Ponderosa Pine forest. Does age matter?

    Science.gov (United States)

    Madronich, M. B.; Guenther, A. B.; Wessman, C. A.

    2011-12-01

    Determining the emissions rate of biogenic volatile organic carbon (BVOC) from plants is a challenge. Biological variability makes it difficult to assess accurately those emissions rates. It is known that photosynthetic active radiation (PAR), temperature, nutrients as well as the biology of the plant affect emissions. However, less is known about the variability of the emissions with respect to the life cycle of the plants. This study is focusing on the difference of monoterpene emission rates from mature Ponderosa Pine trees and saplings in the field. Preliminary calculations show that there is a significant difference between total monoterpene emissions in mature trees (0.24±0.04 μgC/gdwh) and saplings (0.37±0.02 μgC/gdwh).

  3. Low temperature fluidized wood chip drying with monoterpene analysis

    Science.gov (United States)

    Bridget N. Bero; Alarick Reiboldt; Ward Davis; Natalie Bedard; Evan Russell

    2011-01-01

    This paper describes the drying of ponderosa pine wood chips at low (20°C and 50°C) temperatures using a bench-scale batch pulsed fluidizer to evaluate both volatile pine oils (monoterpenes) and moisture losses during drying.

  4. Monoterpene emissions from Pinus halepensis forests in a semi-arid region (Israel)

    Science.gov (United States)

    Seco, R.; Karl, T.; Turnipseed, A. A.; Greenberg, J.; Guenther, A. B.; Llusia, J.; Penuelas, J.; Kim, S.; Dicken, U.; Rotenberg, E.; Rohatyn, S.; Preisler, Y.; Yakir, D.

    2013-12-01

    Atmospheric volatile organic compounds (VOCs) have key environmental and biological roles, and can affect atmospheric chemisty, secondary aerosol formation, and as a consequence also climate. At the same time, global changes in climate arising from human activities can modify the VOC emissions of vegetation in the coming years. Monoterpene emission fluxes were measured during April 2013 at two forests in the semi-arid climate of Israel. Both forests were dominated by the same pine species, Pinus halepensis, but differed in the amount of annual average precipitation received (280 and 800 mm at Yatir and Birya, respectively). Measurements performed included leaf-level sampling as well as canopy-level flux calculations. Leaf level monoterpene emissions were sampled from leaf cuvettes with adsorbent cartridges and later analyzed by GC-MS. Canopy scale fluxes were calculated with the Disjunct Eddy Covariance technique by means of a Quadrupole PTRMS. We report the differences observed between the two forests in terms of photosynthetic activity and monoterpene emissions, aiming to see the effect of the different precipitation regimes at each location.

  5. Differential effects of plant ontogeny and damage type on phloem and foliage monoterpenes in jack pine (Pinus banksiana).

    Science.gov (United States)

    Erbilgin, Nadir; Colgan, L Jessie

    2012-08-01

    Coniferous trees have both constitutive and inducible defences that deter or kill herbivores and pathogens. We investigated constitutive and induced monoterpene responses of jack pine (Pinus banksiana Lamb.) to a number of damage types: a fungal associate of the mountain pine beetle (Dendroctonus ponderosae Hopkins), Grosmannia clavigera (Robinson-Jeffrey & R.W. Davidson); two phytohormones, methyl jasmonate (MJ) and methyl salicylate (MS); simulated herbivory; and mechanical wounding. We only included the fungal, MJ and mechanical wounding treatments in the field experiments while all treatments were part of the greenhouse studies. We focused on both constitutive and induced responses between juvenile and mature jack pine trees and differences in defences between phloem and needles. We found that phytohormone applications and fungal inoculation resulted in the greatest increase in monoterpenes in both juvenile and mature trees. Additionally, damage types differentially affected the proportions of individual monoterpenes: MJ-treated mature trees had higher myrcene and β-pinene than fungal-inoculated mature trees, while needles of juveniles inoculated with the fungus contained higher limonene than MJ- or MS-treated juveniles. Although the constitutive monoterpenes were higher in the phloem of juveniles than mature jack pine trees, the phloem of mature trees had a much higher magnitude of induction. Further, induced monoterpene concentrations in juveniles were higher in phloem than in needles. There was no difference in monoterpene concentration between phytohormone applications and G. clavigera inoculation in mature trees, while in juvenile trees MJ was different from both G. clavigera and simulated herbivory in needle monoterpenes, but there was no difference between phytohormone applications and simulated herbivory in the phloem.

  6. Limonene dehydrogenase hydroxylates the allylic methyl group of cyclic monoterpenes in the anaerobic terpene degradation by Castellaniella defragrans.

    Science.gov (United States)

    Puentes-Cala, Edinson; Liebeke, Manuel; Markert, Stephanie; Harder, Jens

    2018-05-01

    The enzymatic functionalization of hydrocarbons is a central step in the global carbon cycle initiating the mineralization of methane, isoprene and monoterpenes, the most abundant biologically produced hydrocarbons. Also, terpene-modifying enzymes have found many applications in the energy-economic biotechnological production of fine chemicals. Here we describe a limonene dehydrogenase that was purified from the facultatively anaerobic betaproteobacterium Castellaniella defragrans 65Phen grown on monoterpenes under denitrifying conditions in the absence of molecular oxygen. The purified limonene:ferrocenium oxidoreductase activity hydroxylated the methyl group of limonene (1-methyl-4-(1-methylethenyl)-cyclohex-1-ene) yielding perillyl alcohol ([4-(prop-1-en-2-yl)cyclohex-1-en-1-yl]methanol). The enzyme had a dithiothreitol:perillyl alcohol oxidoreductase activity yielding limonene. Mass spectrometry and molecular size determinations revealed a heterodimeric enzyme comprising CtmA and CtmB. Recently the two proteins had been identified by transposon mutagenesis and proteomics as part of the cyclic terpene metabolism ( ctm ) in Castellaniella defragrans and were annotated as FAD-dependent oxidoreductases of the protein domain family phytoene dehydrogenases and related proteins (COG1233). CtmAB is the first heterodimeric enzyme in this protein superfamily. Flavins in the purified CtmAB are oxidized by ferrocenium and are reduced by limonene. Heterologous expression of CtmA, CtmB and CtmAB in E. coli demonstrated that limonene dehydrogenase activity required both subunits carrying each a flavin cofactor. Native CtmAB oxidized a wide range of monocyclic monoterpenes containing the allylic methyl group motif (1-methyl-cyclohex-1-ene). In conclusion, we have identified CtmAB as a hydroxylating limonene dehydrogenase and the first heteromer in a family of FAD-dependent dehydrogenases acting on allylic methylene or methyl CH-bonds. We suggest a placement in EC 1

  7. Monoterpenes released from fruit, plant, and vegetable systems.

    Science.gov (United States)

    Iqbal, Mohammad Asif; Kim, Ki-Hyun; Ahn, Jeong Hyeon

    2014-09-29

    To quantify the emission rate of monoterpenes (MTs) from diverse natural sources, the sorbent tube (ST)-thermal desorption (TD) method was employed to conduct the collection and subsequent detection of MTs by gas chromatography. The calibration of MTs, when made by both mass spectrometric (MS) and flame ionization detector (FID), consistently exhibited high coefficient of determination values (R2 > 0.99). This approach was employed to measure their emission rate from different fruit/plant/vegetable (F/P/V) samples with the aid of an impinger-based dynamic headspace sampling system. The results obtained from 10 samples (consisting of carrot, pine needle (P. sylvestris), tangerine, tangerine peel, strawberry, sepals of strawberry, plum, apple, apple peel, and orange juice) marked α-pinene, β-pinene, myrcene, α-terpinene, R-limonene, γ-terpinene, and p-cymene as the most common MTs. R-limonene was the major species emitted from citrus fruits and beverages with its abundance exceeding 90%. In contrast, α-pinene was the most abundant MT (37%) for carrot, while it was myrcene (31%) for pine needle. The overall results for F/P/V samples confirmed α-pinene, β-pinene, myrcene, α-terpinene, and γ-terpinene as common MTs. Nonetheless, the types and magnitude of MTs released from fruits were distinguished from those of vegetables and plants.

  8. Monoterpene persistence in the sapwood and heartwood of longleaf pine stumps: assessment of differences in composition and stability under field conditions

    Science.gov (United States)

    Thomas L. Eberhardt; Philip M. Sheridan; Jolie M. Mahfouz

    2009-01-01

    Monoterpenes in exudates, phloem and sapwood have received considerable attention relative to the active defenses of pine trees. However, little is known about the composition and function of the heartwood monoterpenes. To address this deficiency, monoterpene contents and relative compositions were determined for sapwood and heartwood samples from longleaf pine (Pinus...

  9. The Differential Effects of the Blue-Stain Fungus Leptographium qinlingensis on Monoterpenes and Sesquiterpenes in the Stem of Chinese White Pine (Pinus armandi Saplings

    Directory of Open Access Journals (Sweden)

    Thanh Pham

    2014-11-01

    Full Text Available When conifers such as Chinese white pine (Pinus armandi Fr. are attacked by insects or pathogens, they respond by increasing their content of monoterpenes and sesquiterpenes. In this study, we determined the effects of the blue-stain fungus Leptographium qinlingensis Tang and Chen on monoterpenes and sesquiterpenes in the phloem and xylem of the stem of P. armandi saplings. We found that the total monoterpene concentrations in the phloem and xylem of the stem and the total sesquiterpene concentrations in the xylem of the stem were significantly higher in L. qinlingensis-inoculated saplings than in control (mechanically wounded saplings or untreated saplings. Additionally, the proportions of β-pinene in the xylem of the stem and limonene + β-phellandrene in the phloem and xylem of the stem were significantly higher in L. qinlingensis-inoculated saplings than in both control and untreated saplings. The proportions of individual sesquiterpenes in the phloem and xylem of the stem were significantly greater in L. qinlingensis-inoculated saplings than in untreated saplings. Based on the results of this study, we suggest that increases in total monoterpene and sesquiterpene concentrations, as well as increases in the concentrations of β-pinene and limonene + β-phellandrene, may play an important defensive role against blue-stain fungus L. qinlingensis inoculation.

  10. Ca²⁺ signal contributing to the synthesis and emission of monoterpenes regulated by light intensity in Lilium 'siberia'.

    Science.gov (United States)

    Hu, Zenghui; Li, Tianjiao; Zheng, Jian; Yang, Kai; He, Xiangfeng; Leng, Pingsheng

    2015-06-01

    The floral scent is an important part of plant volatile compounds, and is influenced by environmental factors. The emission of monoterpenes of Lilium 'siberia' is regulated by light intensity, but the mechanism is large unknown. In this study, the expression of Li-mTPS, a monoterpene synthase gene in the tepals of Lilium 'siberia', and net Ca(2+) flux were investigated after exposure to different levels of light intensity (0, 100, 300, 600, 1000, and 1500 μmol m(-2) s(-1)). Moreover the effect of LaCl3 and ethylene glycol-bis-(2-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA) on the Li-mTPS expression, monoterpene emission, and net Ca(2+) flux were examined at 600 μmol m(-2) s(-1). The results showed that along with the enhancement of light intensity, the expression level of Li-mTPS increased gradually, and the net Ca(2+) influx was also enhanced showing a similar pattern. It was found that LaCl3 and EGTA effectively inhibited the increase in expression of Li-mTPS and the net Ca(2+) influx induced by light treatment. Moreover, the release amounts of monoterpenes decreased significantly after treatment with LaCl3 and EGTA. So it can be concluded that Ca(2+) signal contributed to the biosynthesis and emission of monoterpenes regulated by light intensity in Lilium 'siberia' tepals. The increased light intensity firstly triggered the Ca(2+) influx to cytoplasm, and then the gene expression of monoterpene synthases downstream was activated to regulate the biosynthesis and emission of monoterpenes. But in the signaling pathway other mechanisms were thought to be involved in the emission of monoterpenes regulated by light intensity, which need to be investigated in future research. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  11. Monoterpene engineering in a woody plant Eucalyptus camaldulensis using a limonene synthase cDNA.

    Science.gov (United States)

    Ohara, Kazuaki; Matsunaga, Etsuko; Nanto, Kazuya; Yamamoto, Kyoko; Sasaki, Kanako; Ebinuma, Hiroyasu; Yazaki, Kazufumi

    2010-01-01

    Metabolic engineering aimed at monoterpene production has become an intensive research topic in recent years, although most studies have been limited to herbal plants including model plants such as Arabidopsis. The genus Eucalyptus includes commercially important woody plants in terms of essential oil production and the pulp industry. This study attempted to modify the production of monoterpenes, which are major components of Eucalyptus essential oil, by introducing two expression constructs containing Perilla frutescens limonene synthase (PFLS) cDNA, whose gene products were designed to be localized in either the plastid or cytosol, into Eucalyptus camaldulensis. The expression of the plastid-type and cytosol-type PFLS cDNA in transgenic E. camaldulensis was confirmed by real-time polymerase chain reaction (PCR). Gas chromatography with a flame ionization detector analyses of leaf extracts revealed that the plastidic and cytosolic expression of PFLS yielded 2.6- and 4.5-times more limonene than that accumulated in wild-type E. camaldulensis, respectively, while the ectopic expression of PFLS had only a small effect on the emission of limonene from the leaves of E. camaldulensis. Surprisingly, the high level of PFLS in Eucalyptus was accompanied by a synergistic increase in the production of 1,8-cineole and alpha-pinene, two major components of Eucalyptus monoterpenes. This genetic engineering of monoterpenes demonstrated a new potential for molecular breeding in woody plants.

  12. Development of oxygen and pH sensors for aqueous systems

    International Nuclear Information System (INIS)

    Stvartak, C.; Alcock, C.B.; Li, B.; Wang, L.; Fergus, J.W.; Bakshi, N.

    1994-04-01

    Corrosion science has long recognized that two of the most important parameters in characterizing the corrosivity of an aqueous environment are oxygen chemical potential and pH. These parameters not only determine the thermodynamic driving forces for various corrosion reactions, but also characterize the rates of these reactions and hence the lifetime of a particular component. The primary goal of this project is to develop an electrochemical oxygen and pH sensor for continuous use in the cycle chemistry control of power plants. In the past year, electrochemical sensors with a metal/metal oxide or metal/metal hydride internal reference electrode and a fluoride-based electrolyte tube have been developed and tested in this laboratory. The corrosion tests showed that the LaF 3 -based solid electrolyte was very stable both chemically and physically in water. Furthermore, its electrical conductivity is 4 to 5 orders of magnitude higher than that of stabilized zirconia below 573 K (300 degree C), which is the main advantage of a fluoride-based electrolyte at low temperatures. With this electrolyte and the selected internal oxygen reference electrode (Ag/Ag 2 O), the electrochemical probe demonstrated Nernstian responses to the oxygen chemical potential and pH of the aqueous solution with good reproducibility. A similar cell with Zr/ZrH 1+x as the internal hydrogen reference electrode showed promising pH sensing characteristics. It is proposed that these two cells be combined to form a double-headed electrochemical probe to determine oxygen chemical potential and pH in the solution simultaneously

  13. Monoterpenes Released from Fruit, Plant, and Vegetable Systems

    Directory of Open Access Journals (Sweden)

    Mohammad Asif Iqbal

    2014-09-01

    Full Text Available To quantify the emission rate of monoterpenes (MTs from diverse natural sources, the sorbent tube (ST-thermal desorption (TD method was employed to conduct the collection and subsequent detection of MTs by gas chromatography. The calibration of MTs, when made by both mass spectrometric (MS and flame ionization detector (FID, consistently exhibited high coefficient of determination values (R2 > 0.99. This approach was employed to measure their emission rate from different fruit/plant/vegetable (F/P/V samples with the aid of an impinger-based dynamic headspace sampling system. The results obtained from 10 samples (consisting of carrot, pine needle (P. sylvestris, tangerine, tangerine peel, strawberry, sepals of strawberry, plum, apple, apple peel, and orange juice marked α-pinene, β-pinene, myrcene, α-terpinene, R-limonene, γ-terpinene, and p-cymene as the most common MTs. R-limonene was the major species emitted from citrus fruits and beverages with its abundance exceeding 90%. In contrast, α-pinene was the most abundant MT (37% for carrot, while it was myrcene (31% for pine needle. The overall results for F/P/V samples confirmed α-pinene, β-pinene, myrcene, α-terpinene, and γ-terpinene as common MTs. Nonetheless, the types and magnitude of MTs released from fruits were distinguished from those of vegetables and plants.

  14. Capturing of the monoterpene olefin limonene produced in Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Jongedijk, E.J.; Cankar, K.; Ranzijn, J.; Krol, van der A.R.; Bouwmeester, H.J.; Beekwilder, M.J.

    2015-01-01

    Monoterpene olefins such as limonene are plant compounds with applications as flavouring and fragrance agents, as solvents and potentially also in polymer and fuel chemistry. We engineered baker's yeast Saccharomyces cerevisiae to express a (-)-limonene synthase from Perilla frutescens and a

  15. The ratio and concentration of two monoterpenes mediate fecundity of the pinewood nematode and growth of its associated fungi.

    Directory of Open Access Journals (Sweden)

    Hongtao Niu

    Full Text Available The pinewood nematode (PWN Bursaphelenchus xylophilus, vectored primarily by the sawyer beetle, Monochamus alternatus, is an important invasive pest and causal agent of pine wilt disease of Chinese Masson pine, Pinus massoniana. Previous work demonstrated that the ratios and concentrations of α-pinene:β-pinene differed between healthy trees and those trees containing blue-stain fungus (and M. alternatus pupae. However, the potential influence of the altered monoterpene ratios and concentrations on PWN and associated fungi remained unknown. Our current results show that low concentrations of the monoterpenes within petri dishes reduced PWN propagation, whereas the highest concentration of the monoterpenes increased PWN propagation. The propagation rate of PWN treated with the monoterpene ratio representative of blue-stain infected pine (α-pinene:β-pinene = 1:0.8, 137.6 mg/ml was significantly higher than that (α-pinene:β-pinene = 1:0.1, 137.6 mg/ml representative of healthy pines or those damaged by M. alternatus feeding, but without blue stain. Furthermore, inhibition of mycelial growth of associated fungi increased with the concentration of the monoterpenes α-pinene and β-pinene. Additionally, higher levels of β-pinene (α-pinene:β-pinene = 1:0.8 resulted in greater inhibition of the growth of the associated fungi Sporothrix sp.2 and Ophiostoma ips strains, but had no significant effects on the growth of Sporothrix sp.1, which is the best food resource for PWN. These results suggest that host monoterpenes generally reduce the reproduction of PWN. However, PWN utilizes high monoterpene concentrations and native blue-stain fungus Sporothrix sp.1 to improve its own propagation and overcome host resistance, which may provide clues to understanding the ecological mechanisms of PWN's successful invasion.

  16. Metabolic engineering of monoterpene biosynthesis in tomato fruits via introduction of the non-canonical substrate neryl diphosphate.

    Science.gov (United States)

    Gutensohn, Michael; Nguyen, Thuong T H; McMahon, Richard D; Kaplan, Ian; Pichersky, Eran; Dudareva, Natalia

    2014-07-01

    Recently it was shown that monoterpenes in tomato trichomes (Solanum lycopersicum) are synthesized by phellandrene synthase 1 (PHS1) from the non-canonical substrate neryl diphosphate (NPP), the cis-isomer of geranyl diphosphate (GPP). As PHS1 accepts both NPP and GPP substrates forming different monoterpenes, it was overexpressed in tomato fruits to test if NPP is also available in a tissue highly active in carotenoid production. However, transgenic fruits overexpressing PHS1 produced only small amounts of GPP-derived PHS1 monoterpene products, indicating the absence of endogenous NPP. Therefore, NPP formation was achieved by diverting the metabolic flux from carotenoids via expression of tomato neryl diphosphate synthase 1 (NDPS1). NDPS1 transgenic fruits produced NPP-derived monoterpenes, including nerol, neral and geranial, while displaying reduced lycopene content. NDPS1 co-expression with PHS1 resulted in a monoterpene blend, including β-phellandrene, similar to that produced from NPP by PHS1 in vitro and in trichomes. Unexpectedly, PHS1×NDPS1 fruits showed recovery of lycopene levels compared to NDPS1 fruits, suggesting that redirection of metabolic flux is only partially responsible for the reduction in carotenoids. In vitro assays demonstrated that NPP serves as an inhibitor of geranylgeranyl diphosphate synthase, thus its consumption by PHS1 leads to recovery of lycopene levels. Monoterpenes produced in PHS1×NDPS1 fruits contributed to direct plant defense negatively affecting feeding behavior of the herbivore Helicoverpa zea and displaying antifungal activity against Botrytis cinerea. These results show that NPP-derived terpenoids can be produced in plant tissues; however, NPP has to be consumed to avoid negative impacts on plant metabolism. Copyright © 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  17. Hygroscopicity of secondary organic aerosols formed by oxidation of cycloalkenes, monoterpenes, sesquiterpenes, and related compounds

    Directory of Open Access Journals (Sweden)

    V. Varutbangkul

    2006-01-01

    Full Text Available A series of experiments has been conducted in the Caltech indoor smog chamber facility to investigate the water uptake properties of aerosol formed by oxidation of various organic precursors. Secondary organic aerosol (SOA from simple and substituted cycloalkenes (C5-C8 is produced in dark ozonolysis experiments in a dry chamber (RH~5%. Biogenic SOA from monoterpenes, sesquiterpenes, and oxygenated terpenes is formed by photooxidation in a humid chamber (~50% RH. Using the hygroscopicity tandem differential mobility analyzer (HTDMA, we measure the diameter-based hygroscopic growth factor (GF of the SOA as a function of time and relative humidity. All SOA studied is found to be slightly hygroscopic, with smaller water uptake than that of typical inorganic aerosol substances. The aerosol water uptake increases with time early in the experiments for the cycloalkene SOA, but decreases with time for the sesquiterpene SOA. This behavior could indicate competing effects between the formation of more highly oxidized polar compounds (more hygroscopic, and formation of longer-chained oligomers (less hygroscopic. All SOA also exhibit a smooth water uptake with RH with no deliquescence or efflorescence. The water uptake curves are found to be fitted well with an empirical three-parameter functional form. The measured pure organic GF values at 85% RH are between 1.09–1.16 for SOA from ozonolysis of cycloalkenes, 1.01–1.04 for sesquiterpene photooxidation SOA, and 1.06–1.10 for the monoterpene and oxygenated terpene SOA. The GF of pure SOA (GForg in experiments in which inorganic seed aerosol is used is determined by assuming volume-weighted water uptake (Zdanovskii-Stokes-Robinson or 'ZSR' approach and using the size-resolved organic mass fraction measured by the Aerodyne Aerosol Mass Spectrometer. Knowing the water content associated with the inorganic fraction yields GForg values. However, for each precursor, the GForg values computed from different

  18. Interplay of tumor vascular oxygenation and tumor pO2 observed using near-infrared spectroscopy, an oxygen needle electrode, and 19F MR pO2 mapping.

    Science.gov (United States)

    Kim, Jae G; Zhao, Dawen; Song, Yulin; Constantinescu, Anca; Mason, Ralph P; Liu, Hanli

    2003-01-01

    This study investigates the correlation of tumor blood oxygenation and tumor pO(2) with respect to carbogen inhalation. After having refined and validated the algorithms for calculating hemoglobin concentrations, we used near-infrared spectroscopy (NIRS) to measure changes of oxygenated hemoglobin concentration (delta[HbO(2)]) and used an oxygen needle electrode and (19)F MRI for pO(2) measurements in tumors. The measurements were taken from Dunning prostate R3327 tumors implanted in rats, while the anesthetized rats breathed air or carbogen. The NIRS results from tumor measurements showed significant changes in tumor vascular oxygenation in response to carbogen inhalation, while the pO(2) electrode results showed an apparent heterogeneity for tumor pO(2) response to carbogen inhalation, which was also confirmed by (19)F MR pO(2) mapping. Furthermore, we developed algorithms to estimate hemoglobin oxygen saturation, sO(2), during gas intervention based on the measured values of delta[HbO(2)] and pO(2). The algorithms have been validated through a tissue-simulating phantom and used to estimate the values of sO(2) in the animal tumor measurement based on the NIRS and global mean pO(2) values. This study demonstrates that the NIRS technology can provide an efficient, real-time, noninvasive approach to monitoring tumor physiology and is complementary to other techniques, while it also demonstrates the need for an NIR imaging technique to study spatial heterogeneity of tumor vasculature under therapeutic interventions. Copyright 2003 Society of Photo-Optical Instrumentation Engineers

  19. Xylem monoterpenes of pines: distribution, variation, genetics, function

    Science.gov (United States)

    Richard Smith

    2000-01-01

    The monoterpenes of about 16,000 xylem resin samples of pine (Pinus) speciesand hybrids—largely from the western United States—were analyzed in this long-term study of the resistance of pines to attack by bark beetles (Coleoptera:Scolytidae), with special emphasis on resistance to the western pine beetle(Dendroctonus brevicomis). The samples were analyzed by gas liquid...

  20. Laboratory and field measurements of enantiomeric monoterpene emissions as a function of chemotype, light and temperature

    Science.gov (United States)

    Song, W.; Staudt, M.; Bourgeois, I.; Williams, J.

    2014-03-01

    Plants emit significant amounts of monoterpenes into the earth's atmosphere, where they react rapidly to form a multitude of gas phase species and particles. Many monoterpenes exist in mirror-image forms or enantiomers. In this study the enantiomeric monoterpene profile for several representative plants (Quercus ilex L., Rosmarinus officinalis L., and Pinus halepensis Mill.) was investigated as a function of chemotype, light and temperature both in the laboratory and in the field. Analysis of enantiomeric monoterpenes from 19 Quercus ilex individuals from Southern France and Spain revealed four regiospecific chemotypes (genetically fixed emission patterns). In agreement with previous work, only Quercus ilex emissions increased strongly with light. However, for all three plant species no consistent enantiomeric variation was observed as a function of light, and the enantiomeric ratio of α-pinene was found to vary by less than 20% from 100 and 1000 μmol m-2 s-1 PAR (photosynthetically active radiation). The rate of monoterpene emission increased with temperature from all three plant species, but little variation in the enantiomeric distribution of α-pinene was observed with temperature. There was more enantiomeric variability between individuals of the same species than could be induced by either light or temperature. Field measurements of α-pinene enantiomer mixing ratios in the air, taken at a Quercus ilex forest in Southern France, and several other previously reported field enantiomeric ratio diel cycle profiles are compared. All show smoothly varying diel cycles (some positive and some negative) even over changing wind directions. This is surprising in comparison with variations of enantiomeric emission patterns shown by individuals of the same species.

  1. Increased and Altered Fragrance of Tobacco Plants after Metabolic Engineering Using Three Monoterpene Synthases from Lemon

    Science.gov (United States)

    Lücker, Joost; Schwab, Wilfried; van Hautum, Bianca; Blaas, Jan; van der Plas, Linus H. W.; Bouwmeester, Harro J.; Verhoeven, Harrie A.

    2004-01-01

    Wild-type tobacco (Nicotiana tabacum) plants emit low levels of terpenoids, particularly from the flowers. By genetic modification of tobacco cv Petit Havana SR1 using three different monoterpene synthases from lemon (Citrus limon L. Burm. f.) and the subsequent combination of these three into one plant by crossings, we show that it is possible to increase the amount and alter the composition of the blend of monoterpenoids produced in tobacco plants. The transgenic tobacco plant line with the three introduced monoterpene synthases is emitting β-pinene, limonene, and γ-terpinene and a number of side products of the introduced monoterpene synthases, from its leaves and flowers, in addition to the terpenoids emitted by wild-type plants. The results show that there is a sufficiently high level of substrate accessible for the introduced enzymes. PMID:14718674

  2. Structural Basis of Catalysis in the Bacterial Monoterpene Synthases Linalool Synthase and 1,8-Cineole Synthase

    OpenAIRE

    Karuppiah, Vijaykumar; Ranaghan, Kara E.; Leferink, Nicole G. H.; Johannissen, Linus O.; Shanmugam, Muralidharan; Ní Cheallaigh, Aisling; Bennett, Nathan J.; Kearsey, Lewis J.; Takano, Eriko; Gardiner, John M.; van der Kamp, Marc W.; Hay, Sam; Mulholland, Adrian J.; Leys, David; Scrutton, Nigel S.

    2017-01-01

    Terpenoids form the largest and stereochemically most diverse class of natural products, and there is considerable interest in producing these by biocatalysis with whole cells or purified enzymes, and by metabolic engineering. The monoterpenes are an important class of terpenes and are industrially important as flavors and fragrances. We report here structures for the recently discovered Streptomyces clavuligerus monoterpene synthases linalool synthase (bLinS) and 1,8-cineole synthase (bCinS)...

  3. Effects of Acute Ozone Exposure and Methyl Jasmonate Treatment on White Pine Monoterpene and Sesquiterpene Emission Rates

    Science.gov (United States)

    Faiola, C. L.; Wagner, D.; Allwine, E.; Harley, P. C.; Vanreken, T. M.

    2010-12-01

    Biogenic volatile organic compounds (BVOCs) are produced by plants and include monoterpenes, sesquiterpenes, and their oxygenated derivatives. These BVOCs are one of the principal factors influencing the oxidative capacity of the atmosphere in forested regions, and impact both ozone concentration and secondary organic aerosol formation. Under unstressed conditions, the release of BVOCs to the atmosphere is primarily controlled by the vapor pressure of the relevant compounds within the plant tissue, which is in turn dependent on temperature as well as complex biochemical production processes. However, various natural and anthropogenic stressors can alter both the quantity and composition of the BVOCs emitted by plants. Many potential stressors are expected to become stronger as climate change effects escalate. The impacts of most stressors on BVOC emissions have not been well characterized, particularly in a field setting where changes in BVOC emissions could have influential feedbacks with climate. This study investigated the effects of two stressors on monoterpene and sesquiterpene emission rates at a field site in northern Michigan: acute ozone exposure and treatment with methyl jasmonate, an herbivory proxy. The study included six repetitions of the same experiment, each time using a new set of sub-canopy eastern white pine specimens. For each experiment, dynamic branch enclosures were simultaneously used on three specimens for sample collection: one ozone treatment tree, one methyl jasmonate treatment tree, and one control tree. Sampling lines were placed in each enclosure and VOCs were collected onto cartridges packed with Tenax GR adsorbent. Samples were collected several times per day for at least two days before treatment and for five days after treatment. Cartridges were analyzed via thermodesorption with an Agilent GC/MS/FID. This analysis allowed the identification and quantification of several monoterpene and sesquiterpene species in the samples

  4. Effect of the Topical Repellent para-Menthane-3,8-diol on Blood Feeding Behavior and Fecundity of the Dengue Virus Vector Aedes aegypti

    Directory of Open Access Journals (Sweden)

    Jugyeong Lee

    2018-06-01

    Full Text Available Dengue fever is an acute disease caused by the dengue virus and transmitted primarily by the mosquito Aedes aegypti. The current strategy for dengue prevention is vector control including the use of topical repellents to reduce mosquito biting. Although N,N-diethyl-m-methylbenzamide (DEET is the most common active ingredient in topical repellent products, para-menthane-3,8-diol (PMD is also used commercially. Studies have indicated PMD reduced biting by 90–95% for up to 6–8 h, similar to the efficacy of DEET, depending on the testing environment. The purpose of this study was to evaluate the behavioral effects of PMD on Ae. aegypti blood feeding and fecundity to explore the potential impact of PMD on downstream mosquito life-history traits. Two experiments were performed. In both experiments, cohorts of female Ae. aegypti (Belize strain were exposed to 20% PMD or ethanol for 10 min in a closed system and introduced to an artificial membrane feeding system. Following a 30min feed time, mosquitoes of Experiment 1 were killed and weighed as a proxy measure of blood meal, whereas mosquitoes of Experiment 2 were monitored for oviposition, a measure of fecundity. Results showed a statistically significant reduction (p < 0.001 in the percentage of Ae. aegypti that blood-fed when exposed to PMD (38% compared to those non-exposed (49%. No significant difference in fecundity between test populations was indicated. These findings suggest that exposure of Ae. aegypti to 20% PMD may influence the probability of subsequent blood feeding but of those mosquitoes that do blood feed, egg-lay density is not affected. Further studies are warranted to investigate the full range of effects of PMD exposure on other Ae. aegypti life-history traits such as mating, to continue characterizing the potential effects of PMD to impact overall vector population dynamics.

  5. Isotopically sensitive branching in the formation of cyclic monoterpenes: proof that (-)-alpha-pinene and (-)-beta-pinene are synthesized by the same monoterpene cyclase via deprotonation of a common intermediate

    International Nuclear Information System (INIS)

    Croteau, R.B.; Wheeler, C.J.; Cane, D.E.; Ebert, R.; Ha, H.J.

    1987-01-01

    To determine whether the bicyclic monoterpene olefins (-)-alpha-pinene and (-)-beta-pinene arise biosynthetically from the same monoterpene cyclase by alternate deprotonations of a common carbocationic intermediate, the product distributions arising from the acyclic precursor [10- 2 H 3 ,1- 3 H]geranyl pyrophosphate were compared with those resulting from incubation of [1-3H]geranyl pyrophosphate with (-)-pinene cyclase from Salvia officinalis. Alteration in proportions of the olefinic products generated by the partially purified pinene cyclase resulted from the suppression of the formation of (-)-beta-pinene (C10 deprotonation) by a primary deuterium isotope effect with a compensating stimulation of the formation of (-)-alpha-pinene (C4 deprotonation). (-)-Pinene cyclase as well as (+)-pinene cyclase also exhibited a decrease in the proportion of the acyclic olefin myrcene generated from the deuteriated substrate, accompanied by a corresponding increase in the commitment to cyclized products. The observation of isotopically sensitive branching, in conjunction with quantitation of the magnitude of the secondary deuterium isotope effect on the overall rate of product formation by the (+)- and (-)-pinene cyclases as well as two other monoterpene cyclases from the same tissue, supports the biosynthetic origin of (-)-alpha-pinene and (-)-beta-pinene by alternative deprotonations of a common enzymatic intermediate. A biogenetic scheme consistent with these results is presented, and alternate proposals for the origin of the pinenes are addressed

  6. Above Canopy Emissions of Isoprene and Monoterpenes from a Southeast Asian Tropical Forest

    Science.gov (United States)

    Baker, B.; Johnson, C.; Cai, Z.; Guenther, A.; Greenberg, J.; Bai, J.; Li, Q.

    2003-12-01

    Fluxes of isoprene were measured using the eddy covariance technique and an ozone chemiluminescence isoprene sensor above a secondary tropical forest/rubber tree plantation located in the Xishuangbanna region of southern China during the wet and dry seasons. Fluxes of monoterpenes were inferred from ambient boundary layer concentrations (wet season) and from relaxed eddy accumulation measurements (dry season). Isoprene emissions were comparable to what has been observed from other tropical forests in Africa and South America. In this forest, monoterpene emissions were much higher during the wet season due to the senescence of the rubber trees during the dry season. These flux measurements represent the first ecosystem level flux measurements reported from Southeast Asian tropical forests.

  7. Analysis of trends in isoprene and monoterpenes in a remote forest and an anthropogenic influenced forest

    Science.gov (United States)

    Usenko, S.; Sheesley, R. J.; Winfield, Z.; Yoon, S.; Erickson, M.; Flynn, J. H., III; Alvarez, S. L.; Wallace, H. W., IV; Griffin, R. J.

    2017-12-01

    The University of Houston Mobile Air Quality Laboratory (MAQL) was deployed to the University of Michigan Biological Station (UMBS) in July 2016 as part of the PROPHET-AMOS study and then was deployed to Jones Forest located north of Houston, TX from August 12 through September 23, 2016. Both sites are heavily forested, but UMBS is remote with no anthropogenic influence while Jones Forest sees frequent pollution transport from Houston. UMBS experienced periods of high isoprene:monoterpenes and periods of equivalent isoprene:monoterpenes, while Jones Forest had a consistently high isoprene:monoterpenes. This provided for a test bed to look at the interactions within two forested environments as well as the influence of anthropogenic sources. The MAQL was outfitted to measure O3 (2B Technology), NOy and SO2 (Thermo Scientific), NO/NOx (Air Quality Design), CO (Los Gatos), and select biogenic volatile organic carbon (BVOC) with their oxidation products (Ionicon PTR-MS). The instruments sampled from MAQL's 6 m tower at both sites. The UMBS site was below canopy and the Jones Forest site was in an open field surrounded by forest. The trends in isoprene and monoterpenes were explored in relation to time-of-day, temperature, and precipitation for both locations. In addition, the production of methyl vinyl ketone and methacrolein under these different conditions of meteorology, trace gas composition and BVOC composition was explored.

  8. Role of de novo biosynthesis in ecosystem scale monoterpene emissions from a boreal Scots pine forest

    Directory of Open Access Journals (Sweden)

    R. Taipale

    2011-08-01

    Full Text Available Monoterpene emissions from Scots pine have traditionally been assumed to originate as evaporation from specialized storage pools. More recently, the significance of de novo emissions, originating directly from monoterpene biosynthesis, has been recognized. To study the role of biosynthesis at the ecosystem scale, we measured monoterpene emissions from a Scots pine dominated forest in southern Finland using the disjunct eddy covariance method combined with proton transfer reaction mass spectrometry. The interpretation of the measurements was based on a correlation analysis and a hybrid emission algorithm describing both de novo and pool emissions. During the measurement period May–August 2007, the monthly medians of daytime emissions were 200, 290, 180, and 200 μg m−2 h−1. The emissions were partly light dependent, probably due to de novo biosynthesis. The emission potential for both de novo and pool emissions exhibited a decreasing summertime trend. The ratio of the de novo emission potential to the total emission potential varied between 30 % and 46 %. Although the monthly changes were not significant, the ratio always differed statistically from zero, suggesting that the role of de novo biosynthesis was observable. Given the uncertainties in this study, we conclude that more accurate estimates of the contribution of de novo emissions are required for improving monoterpene emission algorithms for Scots pine dominated forests.

  9. Investigations on Avocado Leaf Oil

    OpenAIRE

    ŞARER, Engin; KÖKDİL, Gamze

    1990-01-01

    Persea americana Mill.(P.gratissima Gârtn.) (Lauraceae) "Avoca - d o " is a small tree native to tropical America and cultivated in southern Turkey. In this study, the volatile oil from the leaves of P.americana has been analyzed by LSC, GLC and GC-MS methods. A light yellow volatile oil with a spicy odour has been obtained with a proportion of 3.0% (v /w) from leaves of P.americana by hydrodistillation. 11 monoterpene hydrocarbon compounds and 9 oxygen containing monoterpenes and s...

  10. Variations in the monoterpene composition of ponderosa pine wood oleoresin

    Science.gov (United States)

    Richard H. Smith

    1964-01-01

    A wide range in quantitative composition of the wood oleoresin monoterpenes was found among 64 ponderosa pines in the central Sierra Nevada by gas chromatographic analysis. An inverse relationship was found in the amount of β-pinene and Δ3-carene. Practically no difference in composition could be associated with (a) type of...

  11. CCN activity and droplet growth kinetics of fresh and aged monoterpene secondary organic aerosol

    Directory of Open Access Journals (Sweden)

    G. J. Engelhart

    2008-07-01

    Full Text Available The ability of secondary organic aerosol (SOA produced from the ozonolysis of α-pinene and monoterpene mixtures (α-pinene, β-pinene, limonene and 3-carene to become cloud droplets was investigated. A static CCN counter and a Scanning Mobility CCN Analyser (a Scanning Mobility Particle Sizer coupled with a Continuous Flow counter were used for the CCN measurements. Consistent with previous studies monoterpene SOA is quite active and would likely be a good source of cloud condensation nuclei (CCN in the atmosphere. A decrease in CCN activation diameter for α-pinene SOA of approximately 3 nm hr−1 was observed as the aerosol continued to react with oxidants. Hydroxyl radicals further oxidize the SOA particles thereby enhancing the particle CCN activity with time. The initial concentrations of ozone and monoterpene precursor (for concentrations lower than 40 ppb do not appear to affect the activity of the resulting SOA. Köhler Theory Analysis (KTA is used to infer the molar mass of the SOA sampled online and offline from atomized filter samples. The estimated average molar mass of online SOA was determined to be 180±55 g mol−1 (consistent with existing SOA speciation studies assuming complete solubility. KTA suggests that the aged aerosol (both from α-pinene and the mixed monoterpene oxidation is primarily water-soluble (around 65%. CCN activity measurements of the SOA mixed with (NH42SO4 suggest that the organic can depress surface tension by as much as 10 N m−1 (with respect to pure water. The droplet growth kinetics of SOA samples are similar to (NH42SO4, except at low supersaturation, where SOA tends to grow more slowly. The CCN activation diameter of α-pinene and mixed monoterpene SOA can be modelled to within 10–15% of experiments by a simple implementation of Köhler theory, assuming complete dissolution of the particles, no

  12. Microfabricated Collector-Generator Electrode Sensor for Measuring Absolute pH and Oxygen Concentrations.

    Science.gov (United States)

    Dengler, Adam K; Wightman, R Mark; McCarty, Gregory S

    2015-10-20

    Fast-scan cyclic voltammetry (FSCV) has attracted attention for studying in vivo neurotransmission due to its subsecond temporal resolution, selectivity, and sensitivity. Traditional FSCV measurements use background subtraction to isolate changes in the local electrochemical environment, providing detailed information on fluctuations in the concentration of electroactive species. This background subtraction removes information about constant or slowly changing concentrations. However, determination of background concentrations is still important for understanding functioning brain tissue. For example, neural activity is known to consume oxygen and produce carbon dioxide which affects local levels of oxygen and pH. Here, we present a microfabricated microelectrode array which uses FSCV to detect the absolute levels of oxygen and pH in vitro. The sensor is a collector-generator electrode array with carbon microelectrodes spaced 5 μm apart. In this work, a periodic potential step is applied at the generator producing transient local changes in the electrochemical environment. The collector electrode continuously performs FSCV enabling these induced changes in concentration to be recorded with the sensitivity and selectivity of FSCV. A negative potential step applied at the generator produces a transient local pH shift at the collector. The generator-induced pH signal is detected using FSCV at the collector and correlated to absolute solution pH by postcalibration of the anodic peak position. In addition, in oxygenated solutions a negative potential step at the generator produces hydrogen peroxide by reducing oxygen. Hydrogen peroxide is detected with FSCV at the collector electrode, and the magnitude of the oxidative peak is proportional to absolute oxygen concentrations. Oxygen interference on the pH signal is minimal and can be accounted for with a postcalibration.

  13. Influence of gibberellin and daminozide on the expression of terpene synthases and on monoterpenes in common sage (Salvia officinalis).

    Science.gov (United States)

    Schmiderer, Corinna; Grausgruber-Gröger, Sabine; Grassi, Paolo; Steinborn, Ralf; Novak, Johannes

    2010-07-01

    Common sage (Salvia officinalis L., Lamiaceae) is one of the most important medicinal and aromatic plants, with antioxidant, antimicrobial, spasmolytic, astringent, antihidrotic and specific sensorial properties. The essential oil of the plant, composed mainly of the monoterpenes 1,8-cineole, alpha-thujone, beta-thujone and camphor, is responsible for some of these effects. Gibberellins regulate diverse physiological processes in plants, such as seed germination, shoot elongation and cell division. In this study, we analyzed the effect of exogenously applied plant growth regulators, namely gibberellic acid (GA(3)) and daminozide, on leaf morphology and essential oil formation of two leaf stages during the period of leaf expansion. Essential oil content increased with increasing levels of gibberellins and decreased when gibberellin biosynthesis was blocked with daminozide. With increasing levels of gibberellins, 1,8-cineole and camphor contents increased. Daminozide blocked the accumulation of alpha- and beta-thujone. GA(3) at the highest level applied also led to a significant decrease of alpha- and beta-thujone. Monoterpene synthases are a class of enzymes responsible for the first step in monoterpene biosynthesis, competing for the same substrate geranylpyrophosphate. The levels of gene expression of the three most important monoterpene synthases in sage were investigated, 1,8-cineole synthase leading directly to 1,8-cineole, (+)-sabinene synthase responsible for the first step in the formation of alpha- and beta-thujone, and (+)-bornyl diphosphate synthase, the first step in camphor biosynthesis. The foliar application of GA(3) increased, while daminozide significantly decreased gene expression of the monoterpene synthases. The amounts of two of the end products, 1,8-cineole and camphor, were directly correlated with the levels of gene expression of the respective monoterpene synthases, indicating transcriptional control, while the formation of alpha- and beta

  14. Alpha-Terpineol, a natural monoterpene: A review of its biological properties

    Science.gov (United States)

    Terpineols are monocyclic monoterpene tertiary alcohols and they are naturally present in plant species. There are five common isomers of terpineols, alpha-, beta-, gamma-, delta- and terpinen-4-ol, of which alpha-terpineol and its isomer terpinen-4-ol are the most common terpineols found in nature....

  15. Monoterpene composition of pine species and hybrids...some preliminary findings

    Science.gov (United States)

    Richard H. Smith

    1967-01-01

    Xylem resin samples, obtained from 72 freshly cut pine stumps at the Institute of Forest Genetics, Placerville, Calif., were analyzed for monoterpenes by gasliquid chromatography. Very little or no qualitative or quantitative variation could be attributed to annual ring, time of securing sample, and period of storage of sample up to 1 year. The 34 hybrids sampled...

  16. Cerebral interstitial tissue oxygen tension, pH, HCO3, CO2.

    Science.gov (United States)

    Charbel, F T; Hoffman, W E; Misra, M; Hannigan, K; Ausman, J I

    1997-10-01

    There are many techniques for monitoring the injured brain following trauma, subarachnoid hemorrhage, or surgery. It is thought that the major determinants for recovery of injured cerebral tissue are oxygen, glucose delivery, and the clearance of metabolites. These factors, at optimal levels, are probably responsible for the regaining of neuronal functions. These parameters are in turn dependent on the tissue's blood flow and metabolism. We have been using a single, compact, polyethylene sensor, the Paratrend 7 for the measurement of cerebral oxygen tension, CO2, pH, and temperature. This sensor is designed for continuous blood gas analysis to aid in monitoring neurosurgical patients, both during surgery and in the intensive care unit. Using the Paratrend 7 sensor, we found the normal range of values to be: PO2 33 +/- 11 mm Hg; PCO2 48 +/- 7 mm Hg; pH 7.19 +/- 0.11. Critical measurements are considered to be tissue PO2 60 mm Hg, and pH effective method of measuring tissue cerebral oxygen tension, along with carbon dioxide levels, pH, and temperature.

  17. Scales and sources of pH and dissolved oxygen variability in a shallow, upwelling-driven ecosystem

    Science.gov (United States)

    Tanner, C. A.; Martz, T.; Levin, L. A.

    2011-12-01

    In the coastal zone extreme variability in carbonate chemistry and oxygen is driven by fluctuations in temperature, salinity, air-sea gas exchange, mixing processes, and biology. This variability appears to be magnified in upwelling-driven ecosystems where low oxygen and low pH waters intrude into shallow depths. The oxygen and carbon chemistry signal can be further confounded by highly productive ecosystems such as kelp beds where photosynthesis and respiration consume and release significant amounts of dissolved inorganic carbon and oxygen. This variability poses a challenge for scientists assessing the impacts of climate change on nearshore ecosystems. We deployed physical & biogeochemical sensors in order to observe these processes in situ. The "SeapHOx" instruments used in this study consist of a modified Honeywell Durafet° ISFET pH sensor, an Aanderra Optode Oxygen sensor, and a SBE-37 conductivity, temperature, pressure sensor. The instruments were deployed on and around the La Jolla Kelp Forest at a variety of depths. Our goals were to (a) characterize the link between pH and oxygen and identify the magnitude of pH and oxygen variability over a range of intra-annual time scales and (b) investigate spatial patterns of pH and oxygen variability associated with depth, proximity to shore, and presence of kelp. Results thus far reveal a strong relationship between oxygen and pH. Temporal variability is greatest at the semidiurnal frequency where pH (at 7 m) can range up to 0.3 units and oxygen can change 50% over 6 h. Diurnal variability is a combination of the diurnal tidal component and diel cycles of production and respiration. Event-scale dynamics associated with upwelling can maintain pH and oxygen below 7.8 units and 200 μmol kg-1, respectively, for multiple days. Frequent current reversals drive changes in the observed oxygen and pH variability. When alongshore currents are flowing southward, driven by upwelling-favorable winds, the magnitude of

  18. Comparable Monoterpene emission from pine forests across 500 mm precipitation gradient in the semi-arid transition zone

    Science.gov (United States)

    Seco, Roger; Karl, Thomas; Turnipseed, Andrew; Greenberg, Jim; Guenther, Alex; Llusia, Joan; Penuelas, Josep; Dicken, Uri; Rotenberg, Eyal; Rohatyn, Shani; Preisler, Yakir; Yakir, Dan

    2014-05-01

    Atmospheric volatile organic compounds (VOCs) have key environmental and biological roles, and can affect atmospheric chemistry, secondary aerosol formation, and as a consequence also climate. At the same time, global changes in climate arising from human activities can modify the VOC emissions of vegetation in the coming years. Monoterpene emission fluxes were measured during April 2013 at two forests in the semi-arid climate of Israel. Both forests were dominated by Pinus halepensis trees of similar age, but differed in the amount of annual average precipitation received (~276 and ~760 mm at the Yatir and Birya sites, respectively). Measurements performed included leaf-level sampling and gas exchange, as well as canopy-level flux calculations. Leaf level monoterpene emissions were sampled from leaf cuvettes with adsorbent cartridges and later analyzed by GC-MS. Canopy scale fluxes were calculated with the Disjunct Eddy Covariance technique by means of a Quadrupole PTRMS and eddy-covariance system. We report the differences observed between the two forests in terms of photosynthetic activity and monoterpene emissions, aiming to see the effect of the different climatic regimes at each location. Significantly higher emission rates of monoterpenes were observed in the wetter site during mid-day, in both the leaf scale and canopy scale measurements. Remarkably, however, normalized to 30C and corrected for tree density differences between the sites indicated comparable emission rates for both sites, with higher emission rated in the evening hours in the dry site at the edge of the Negev Desert. Modeling the monoterpene emission rates using MEGAN v2.1 indicated better agreement with observations in the wetter site then in the dry site, especially with respect to fluxes during the evening hours.

  19. Monoterpene emissions in response to long-term night-time warming, elevated CO2 and extended summer drought in a temperate heath ecosystem

    DEFF Research Database (Denmark)

    Tiiva, Päivi; Tang, Jing; Michelsen, Anders

    2017-01-01

    Monoterpenes emitted from plants have an important role in atmospheric chemistry through changing atmospheric oxidative capacity, forming new particles and secondary organic aerosols. The emission rates and patterns can be affected by changing climate. In this study, emission responses to six years...... of climatic manipulations (elevated CO2, extended summer drought and night-time warming) were investigated in a temperate semi-natural heath ecosystem. Samples for monoterpene analysis were collected in seven campaigns during an entire growing season (April-November, 2011). The results showed...... that the temperate heath ecosystem was a considerable source of monoterpenes to the atmosphere, with the emission averaged over the 8month measurement period of 21.7±6.8μgm(-2)groundareah(-1) for the untreated heath. Altogether, 16 monoterpenes were detected, of which the most abundant were α-pinene, δ-3-carene...

  20. Dermal exposure to monoterpenes during wood work.

    Science.gov (United States)

    Eriksson, Kare; Wiklund, Leif

    2004-06-01

    The dermal exposure to the suspected allergenic monoterpenes [small alpha]-pinene, [small beta]-pinene and [capital Delta](3)-carene was assessed with a patch sampling technique. The patch used was made of activated charcoal sandwiched between two layers of cotton cloth. Patches were fastened at 12 different spots on a sampling overall and at the front of a cap to estimate the potential exposure of the body. Fastening two patches on a cotton glove, one patch representing the dorsal side and one patch representing the palm of the hand respectively, assessed the exposure on the hands. Sampling was carried out during collecting of pine and spruce boards in sawmills and during sawing of pine wood pieces in joinery shops respectively. The potential dermal exposure of the total body was 29.0-1 890 mg h(-1) with a geometric mean (GM) of 238 mg h(-1) during sawing. During collecting the GM was estimated to 100 mg h(-1) with a range of 12.2-959 mg h(-1). The hands had a mean exposure of 9.24 mg h(-1) during sawing and 3.25 mg h(-1) during collecting respectively. The good correlation between the mass of contamination on the individual body parts and the potential body exposure indicates that sampling can be performed on one body part to give a good estimation of the potential body exposure. Monoterpenes were detected at patches fastened underneath the protective clothing indicating a contamination of the skin of the worker. The patch used may overestimate the dermal exposure.

  1. α,β-Unsaturated monoterpene acid glucose esters: structural diversity, bioactivities and functional roles.

    Science.gov (United States)

    Goodger, Jason Q D; Woodrow, Ian E

    2011-12-01

    The glycosylation of lipophilic small molecules produces many important plant secondary metabolites. The majority of these are O-glycosides with relatively fewer occurring as glucose esters of aromatic or aliphatic acids. In particular, monoterpene acid glucose esters have much lower structural diversity and distribution compared to monoterpene glycosides. Nevertheless, there have been over 20 monoterpene acid glucose esters described from trees in the genus Eucalyptus (Myrtaceae) in recent years, all based on oleuropeic acid, menthiafolic acid or both. Here we review all of the glucose esters containing these monoterpenoids identified in plants to date. Many of the compounds contain phenolic aglycones and all contain at least one α,β-unsaturated carbonyl, affording a number of important potential therapeutic reactivities such as anti-tumor promotion, carcinogenesis suppression, and anti-oxidant and anti-inflammatory activities. Additional properties such as cytotoxicity, bitterness, and repellency are suggestive of a role in plant defence, but we also discuss their localization to the exterior of foliar secretory cavity lumina, and suggest they may also protect secretory cells from toxic terpenes housed within these structures. Finally we discuss how the use of a recently developed protocol to isolate secretory cavities in a functional state could be used in conjunction with systems biology approaches to help characterize their biosynthesis and roles in plants. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Isoprene and monoterpene emissions in south-east Australia: comparison of a multi-layer canopy model with MEGAN and with atmospheric observations

    Directory of Open Access Journals (Sweden)

    K. M. Emmerson

    2018-05-01

    Full Text Available One of the key challenges in atmospheric chemistry is to reduce the uncertainty of biogenic volatile organic compound (BVOC emission estimates from vegetation to the atmosphere. In Australia, eucalypt trees are a primary source of biogenic emissions, but their contribution to Australian air sheds is poorly quantified. The Model of Emissions of Gases and Aerosols from Nature (MEGAN has performed poorly against Australian isoprene and monoterpene observations. Finding reasons for the MEGAN discrepancies and strengthening our understanding of biogenic emissions in this region is our focus. We compare MEGAN to the locally produced Australian Biogenic Canopy and Grass Emissions Model (ABCGEM, to identify the uncertainties associated with the emission estimates and the data requirements necessary to improve isoprene and monoterpene emissions estimates for the application of MEGAN in Australia. Previously unpublished, ABCGEM is applied as an online biogenic emissions inventory to model BVOCs in the air shed overlaying Sydney, Australia. The two models use the same meteorological inputs and chemical mechanism, but independent inputs of leaf area index (LAI, plant functional type (PFT and emission factors. We find that LAI, a proxy for leaf biomass, has a small role in spatial, temporal and inter-model biogenic emission variability, particularly in urban areas for ABCGEM. After removing LAI as the source of the differences, we found large differences in the emission activity function for monoterpenes. In MEGAN monoterpenes are partially light dependent, reducing their dependence on temperature. In ABCGEM monoterpenes are not light dependent, meaning they continue to be emitted at high rates during hot summer days, and at night. When the light dependence of monoterpenes is switched off in MEGAN, night-time emissions increase by 90–100 % improving the comparison with observations, suggesting the possibility that monoterpenes emitted from Australian

  3. Evident elevation of atmospheric monoterpenes due to degradation-induced species changes in a semi-arid grassland.

    Science.gov (United States)

    Wang, Hongjun; Wang, Xinming; Zhang, Yanli; Mu, Yujing; Han, Xingguo

    2016-01-15

    Biogenic volatile organic compounds (BVOCs) emitted from plants have substantial effects on atmospheric chemistry/physics and feedbacks on ecosystem function. The on-going climate change and anthropogenic disturbance have been confirmed to cause the evident degradation of grassland with shift of plant community, and hence BVOCs emissions were suspected to be altered due to the different BOVCs emission potentials of different species. In this study, we investigated BVOCs concentration above ground surface during growing season in a degraded semi-arid grassland (41°2' N-45°6' N, 113°5'-117°8') in Inner Mongolia. The observed monoterpenes' concentrations varied from 0.10 to 215.78 μg m(-3) (34.88 ± 9.73 μg m(-3) in average) across 41 sites. Compared to non-degraded grassland, concentrations of monoterpenes were about 180 times higher at the sites dominated by subshrub--Artemisia frigida, a preponderant species under drought stress and over-grazing. The biomass of A. frigida explained 51.39% of the variation of monoterpenes' concentrations. α-pinene, β-pinene and γ-terpinene dominated in the 10 determined monoterpenes, accounting for 37.72 ± 2.98%, 14.65 ± 2.55% and 10.50 ± 2.37% of the total monoterpenes concentration, respectively. Low isoprene concentrations (≤ 3.25 μg m(-3)) were found and sedge biomass contributed about 51.76% to their spatial variation. α-pinene and isoprene emissions at noon were as high as 515.53 ± 88.34 μg m(-2)h(-1) and 7606.19 ± 1073.94 μg m(-2) h(-1) in A. frigida- and sedge-dominated areas where their biomass were 236.90 g m(-2) and 72.37 g m(-2), respectively. Our results suggested that the expansion of A. frigida and sedge caused by over-grazing and climatic stresses may increase local ambient BVOCs concentration in grassland. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Direct and indirect impact of sewage sludge compost spreading on Quercus coccifera monoterpene emissions in a Mediterranean shrubland

    Energy Technology Data Exchange (ETDEWEB)

    Olivier, Romain [Aix-Marseille Universite - Institut Mediterraneen d' Ecologie et de Paleoecologie (IMEP), UMR 6111, Equipe Diversite Fonctionnelle des Communautes Vegetales - Centre de St Charles, Case 4, 13331 Marseille Cedex 03 (France); Staudt, Michael [Departement Fonctionnement des Ecosystemes, Centre d' Ecologie Fonctionnelle et Evolutive (CEFE, UMR 5175), 1919 Route de Mende, 34293 Montpellier Cedex 5 (France); Lavoir, Anne-Violette; Ormeno, Elena; Rizvi, Syed Hussain; Baldy, Virginie; Rivoal, Annabelle; Greff, Stephane; Lecareux, Caroline [Aix-Marseille Universite - Institut Mediterraneen d' Ecologie et de Paleoecologie (IMEP), UMR 6111, Equipe Diversite Fonctionnelle des Communautes Vegetales - Centre de St Charles, Case 4, 13331 Marseille Cedex 03 (France); Fernandez, Catherine, E-mail: catherine.fernandez@univ-provence.fr [Aix-Marseille Universite - Institut Mediterraneen d' Ecologie et de Paleoecologie (IMEP), UMR 6111, Equipe Diversite Fonctionnelle des Communautes Vegetales - Centre de St Charles, Case 4, 13331 Marseille Cedex 03 (France)

    2011-04-15

    Monoterpene emissions of Quercus coccifera L. were repeatedly measured during the two years following the spreading of a sewage sludge compost at rates of 50 Mg ha{sup -1} and 100 Mg ha{sup -1}, in a twelve-year-old post-fire Mediterranean shrubland. We also monitored the patterns of change in soil and leaf nutrient content, plant water potential, chlorophyll fluorescence, and plant growth. Compost spreading resulted in weak changes in leaf nutrient content and plant water status, and therefore no significant effect on monoterpene emissions at leaf scale, except during one summer sampling, probably related to advanced leaf maturity with the highest compost rate. However, compost increased plant growth, particularly the leaf biomass. The results suggest that compost spreading in Mediterranean shrublands has no strong short-term effect on Q. coccifera monoterpene emissions at leaf level, but may indirectly increase volatile organic compound fluxes at the stand scale, which may contribute to regional ozone pollution. - Research highlights: > Compost spreading had weak effects on leaf terpene emissions of Quercus coccifera. > Compost spreading increased leaf biomass of Q. coccifera. > Compost spreading indirectly increased Q. coccifera biogenic emissions, at the landscape scale. - Compost spreading in Mediterranean shrublands has no strong short-term effect on Q. coccifera monoterpene emissions at leaf level.

  5. Direct and indirect impact of sewage sludge compost spreading on Quercus coccifera monoterpene emissions in a Mediterranean shrubland

    International Nuclear Information System (INIS)

    Olivier, Romain; Staudt, Michael; Lavoir, Anne-Violette; Ormeno, Elena; Rizvi, Syed Hussain; Baldy, Virginie; Rivoal, Annabelle; Greff, Stephane; Lecareux, Caroline; Fernandez, Catherine

    2011-01-01

    Monoterpene emissions of Quercus coccifera L. were repeatedly measured during the two years following the spreading of a sewage sludge compost at rates of 50 Mg ha -1 and 100 Mg ha -1 , in a twelve-year-old post-fire Mediterranean shrubland. We also monitored the patterns of change in soil and leaf nutrient content, plant water potential, chlorophyll fluorescence, and plant growth. Compost spreading resulted in weak changes in leaf nutrient content and plant water status, and therefore no significant effect on monoterpene emissions at leaf scale, except during one summer sampling, probably related to advanced leaf maturity with the highest compost rate. However, compost increased plant growth, particularly the leaf biomass. The results suggest that compost spreading in Mediterranean shrublands has no strong short-term effect on Q. coccifera monoterpene emissions at leaf level, but may indirectly increase volatile organic compound fluxes at the stand scale, which may contribute to regional ozone pollution. - Research highlights: → Compost spreading had weak effects on leaf terpene emissions of Quercus coccifera. → Compost spreading increased leaf biomass of Q. coccifera. → Compost spreading indirectly increased Q. coccifera biogenic emissions, at the landscape scale. - Compost spreading in Mediterranean shrublands has no strong short-term effect on Q. coccifera monoterpene emissions at leaf level.

  6. Onset of photosynthesis in spring speeds up monoterpene synthesis and leads to emission bursts.

    Science.gov (United States)

    Aalto, J; Porcar-Castell, A; Atherton, J; Kolari, P; Pohja, T; Hari, P; Nikinmaa, E; Petäjä, T; Bäck, J

    2015-11-01

    Emissions of biogenic volatile organic compounds (BVOC) by boreal evergreen trees have strong seasonality, with low emission rates during photosynthetically inactive winter and increasing rates towards summer. Yet, the regulation of this seasonality remains unclear. We measured in situ monoterpene emissions from Scots pine shoots during several spring periods and analysed their dynamics in connection with the spring recovery of photosynthesis. We found high emission peaks caused by enhanced monoterpene synthesis consistently during every spring period (monoterpene emission bursts, MEB). The timing of the MEBs varied relatively little between the spring periods. The timing of the MEBs showed good agreement with the photosynthetic spring recovery, which was studied with simultaneous measurements of chlorophyll fluorescence, CO2 exchange and a simple, temperature history-based proxy for state of photosynthetic acclimation, S. We conclude that the MEBs were related to the early stages of photosynthetic recovery, when the efficiency of photosynthetic carbon reactions is still low whereas the light harvesting machinery actively absorbs light energy. This suggests that the MEBs may serve a protective functional role for the foliage during this critical transitory state and that these high emission peaks may contribute to atmospheric chemistry in the boreal forest in springtime. © 2015 John Wiley & Sons Ltd.

  7. Variation in monoterpene content among geographic sources of eastern white pine

    Science.gov (United States)

    A.R. Gilmore; J.J. Jokela

    1977-01-01

    Variations of monoterpenes in cortical oleoresins and foliar samples were determined for seed from 16 provenances of eastern white pine (Pinus strobus L.). The experiment was analyzed using the "raw" and the arcsine "transformed" data. Alpha-pinene, camphene, and β-pinene varied between seed sources when "raw" data were analyzed...

  8. Geographic variation in shortleaf pine (Pinus echinata Mill.) - cortical monoterpenes

    Science.gov (United States)

    R.C. Schmidtling; J.H. Myszewski; C.E. McDaniel

    2005-01-01

    Cortical monoterpenes were assayed in bud tissue from 16 Southwide Southern Pine Seed Source Study (SSPSS) sources and from 6 seed orchard sources fiom across the natural range of the species, to examine geogaphic variation in shortleaf pine. Spruce pine and pond pine were also sampled. The results show geographic differences in all of the major terpenes. There was no...

  9. Impact of heat stress on the emissions of monoterpenes, sesquiterpenes, phenolic BVOC and green leaf volatiles from several tree species

    Science.gov (United States)

    Kleist, E.; Mentel, T. F.; Andres, S.; Bohne, A.; Folkers, A.; Kiendler-Scharr, A.; Rudich, Y.; Springer, M.; Tillmann, R.; Wildt, J.

    2012-07-01

    Changes in the biogenic volatile organic compound (BVOC) emissions from European beech, Palestine oak, Scots pine, and Norway spruce exposed to heat stress were measured in a laboratory setup. In general, heat stress decreased the de novo emissions of monoterpenes, sesquiterpenes and phenolic BVOC. Decreasing emission strength with heat stress was independent of the tree species and whether the de novo emissions being constitutive or induced by biotic stress. In contrast, heat stress induced emissions of green leaf volatiles. It also amplified the release of monoterpenes stored in resin ducts of conifers probably due to heat-induced damage of these resin ducts. The increased release of monoterpenes could be strong and long lasting. But, despite of such strong monoterpene emission pulses, the net effect of heat stress on BVOC emissions from conifers can be an overall decrease. In particular during insect attack on conifers the plants showed de novo emissions of sesquiterpenes and phenolic BVOC which exceeded constitutive monoterpene emissions from pools. The heat stress induced decrease of these de novo emissions was larger than the increased release caused by damage of resin ducts. We project that global change induced heat waves may cause increased BVOC emissions only in cases where the respective areas are predominantly covered with conifers that do not emit high amounts of sesquiterpenes and phenolic BVOC. Otherwise the overall effect of heat stress will be a decrease in BVOC emissions.

  10. Influence of ambient air toxics in open-top chambers on the monoterpene emission of Picea abies. Diurnal and seasonal variation of emissions, and differentiation of needles and bark as emission sources. Der Einfluss natuerlich-phytotoxischer Luft auf die Monoterpen-Emission bei Picea abies in Open-Top-Kammern. Tages- und Jahresgang der Emission und Differenzierung von Nadel- und Rindenemissionen

    Energy Technology Data Exchange (ETDEWEB)

    Juettner, F. (Max-Planck-Institut fuer Limnologie, Ploen (Germany, F.R.). Abt. Oekophysiologie)

    1990-04-01

    Open-top chambers, in which each a 19-years old spruce tree (Picea abies) was growing, were used to determine monoterpene emissions by mass fragmentography. The annual dynamics of the monoterpene emissions corresponded to the air temperature. However, the diurnal dynamics did not follow the course of the temperature. Physiological reactions of the needles are responsible for the temperature independent emission of monoterpenes during the day. (orig.).

  11. Enhanced Oxidation of Isoprene and Monoterpenes in High and Low NOx Conditions

    Science.gov (United States)

    Tokarek, T. W.; Gilman, J.; Lerner, B. M.; Koss, A.; Yuan, B.; Taha, Y. M.; Osthoff, H. D.; Warneke, C.; De Gouw, J. A.

    2015-12-01

    In the troposphere, the photochemical oxidation of volatile organic compounds (VOCs) is primarily initiated by their reactions with the hydroxyl radical (OH) which yields peroxy radicals (HO2 and RO2). Concentrations of OH and the rates of VOC oxidation depend on the efficiency of peroxy radical recycling to OH. Radical recycling mainly occurs through reaction of HO2 with NO to produce NO2 and, ultimately, ozone (O3). Hence, the rate of VOC oxidation is dependent on NOx (=NO+NO2) concentration. The Shale Oil and Natural Gas Nexus (SONGNEX) campaign was conducted from March 17 to April 29, 2015 with the main goal of identifying and quantifying industrial sources of pollutants throughout the United States, in particular those associated with the production of oil and natural gas. In this work, a case study of biogenic VOC oxidation within and outside a power plant plume in the Haynesville basin near the border of Texas and Louisiana is presented. Isoprene, monoterpenes and their oxides were measured by H3O+ chemical ionization mass spectrometry (H3O+ CIMS) in high time resolution (1 s). Further, an improved Whole Air Sampler (iWAS) was used to collect samples for post-flight analysis by gas chromatography mass spectrometric detection (GC-MS) and yielded speciated quantification of biogenic VOCs. The monoterpene oxide to monoterpene ratio follows the spatial extent of the plume as judged by another tracer (NOx), tracking the enhancement of oxidation rates by NOx. The observations are rationalized with the aid of box modeling using the Master Chemical Mechanism (MCM).

  12. Molecular cloning and expression levels of the monoterpene synthase gene (ZMM1 in Cassumunar ginger (Zingiber montanum (Koenig Link ex Dietr.

    Directory of Open Access Journals (Sweden)

    Bua-In Saowaluck

    2014-01-01

    Full Text Available Cassumunar ginger (Zingiber montanum (Koenig Link ex Dietr. is a native Thai herb with a high content and large variety of terpenoids in its essential oil. Improving the essential oil content and quality of cassumunar ginger is difficult for a breeder due to its clonally propagated nature. In this research, we describe the isolation and expression level of the monoterpene synthase gene that controls the key step of essential oil synthesis in this plant and evaluate the mechanical wounding that may influence the transcription level of the monoterpene synthase gene. To isolate the gene, the selected clones from DNA derived from young leaves were sequenced and analyzed and the monoterpene synthase gene from cassumunar ginger (ZMM1 was identified. The ZMM1 CDS containing 1 773 bp (KF500399 is predicted to encode a protein of 590 amino acids. The deduced amino acid sequence is 40-74% identical with known sequences of other angiosperm monoterpene synthases belonging to the isoprenoid biosynthesis C1 superfamily. A transcript of ZMM1 was detected almost exclusively in the leaves and was related to leaf wounding. The results of this research offer insight into the control of monoterpene synthesis in this plant. This finding can be applied to breeding programs or crop management of cassumunar ginger for better yield and quality of essential oil.

  13. Monoterpene and sesquiterpene emissions from Quercus coccifera exhibit interacting responses to light and temperature

    Directory of Open Access Journals (Sweden)

    M. Staudt

    2011-09-01

    Full Text Available Light and temperature are known to be the most important environmental factors controlling biogenic volatile organic compound (BVOC emissions from plants, but little is known about their interdependencies especially for BVOCs other than isoprene. We studied light responses at different temperatures and temperature responses at different light levels of foliar BVOC emissions, photosynthesis and chlorophyll fluorescence on Quercus coccifera, an evergreen oak widespread in Mediterranean shrublands. More than 50 BVOCs were detected in the emissions from Q. coccifera leaves most of them being isoprenoids plus a few green leaf volatiles (GLVs. Under standard conditions non-oxygenated monoterpenes (MT-hc accounted for about 90% of the total BVOC release (mean ± SD: 738 ± 378 ng m−2 projected leaf area s−1 or 13.1 ± 6.9 μg g−1 leaf dry weight h−1 and oxygenated monoterpenes (MT-ox and sesquiterpenes (SQTs accounted for the rest in about equal proportions. Except GLVs, emissions of all BVOCs responded positively to light and temperature. The light responses of MT and SQT emissions resembled that of CO2-assimilation and were little influenced by the assay temperature: at high assay temperature, MT-hc emissions saturated at lower light levels than at standard assay temperature and tended even to decrease in the highest light range. The emission responses to temperature showed mostly Arrhenius-type response curves, whose shapes in the high temperature range were clearly affected by the assay light level and were markedly different between isoprenoid classes: at non-saturating light, all isoprenoids showed a similar temperature optimum (~43 °C, but, at higher temperatures, MT-hc emissions decreased faster than MT-ox and SQT emissions. At saturating light, MT-hc emissions peaked around 37 °C and rapidly dropped at higher temperatures, whereas MT-ox and SQT emissions strongly increased between 40 and 50 °C accompanied by a burst of GLVs. In all

  14. MOLECULAR OXYGEN IN OORT CLOUD COMET 1P/HALLEY

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, M.; Altwegg, K. [Physikalisches Institut, University of Bern, Sidlerstrasse 5, CH-3012 Bern (Switzerland); Dishoeck, E. F. van [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Schwehm, G. [ESA (retired) Science Operations Department, ESTEC, Keplerlaan 1, 2201 AZ Noordwijk (Netherlands)

    2015-12-10

    Recently, the ROSINA mass spectrometer suite on board the European Space Agency's Rosetta spacecraft discovered an abundant amount of molecular oxygen, O{sub 2}, in the coma of Jupiter family comet 67P/Churyumov–Gerasimenko of O{sub 2}/H{sub 2}O = 3.80 ± 0.85%. It could be shown that O{sub 2} is indeed a parent species and that the derived abundances point to a primordial origin. Crucial questions are whether the O{sub 2} abundance is peculiar to comet 67P/Churyumov–Gerasimenko or Jupiter family comets in general, and also whether Oort cloud comets such as comet 1P/Halley contain similar amounts of molecular oxygen. We investigated mass spectra obtained by the Neutral Mass Spectrometer instrument during the flyby by the European Space Agency's Giotto probe of comet 1P/Halley. Our investigation indicates that a production rate of O{sub 2} of 3.7 ± 1.7% with respect to water is indeed compatible with the obtained Halley data and therefore that O{sub 2} might be a rather common and abundant parent species.

  15. Amperometric micro pH measurements in oxygenated saliva.

    Science.gov (United States)

    Chaisiwamongkhol, Korbua; Batchelor-McAuley, Christopher; Compton, Richard G

    2017-07-24

    An amperometric micro pH sensor has been developed based on the chemical oxidation of carbon fibre surfaces (diameter of 9 μm and length of ca. 1 mm) to enhance the population of surface quinone groups for the measurement of salivary pH. The pH analysis utilises the electrochemically reversible two-electron, two-proton behaviour of surface quinone groups on the micro-wire electrodes. A Nernstian response is observed across the pH range 2-8 which is the pH range of many biological fluids. We highlight the measurement of pH in small volumes of biological fluids without the need for oxygen removal and specifically the micro pH electrode is examined by measuring the pH of commercial synthetic saliva and authentic human saliva samples. The results correspond well with those obtained by using commercial glass pH electrodes on large volume samples.

  16. Susceptibility to Verticillium longisporum is linked to monoterpene production by TPS23/27 in Arabidopsis.

    Science.gov (United States)

    Roos, Jonas; Bejai, Sarosh; Mozūraitis, Raimondas; Dixelius, Christina

    2015-02-01

    The fungus Verticillium longisporum is a soil-borne plant pathogen of increasing economic importance, and information on plant responses to it is limited. To identify the genes and components involved in the early stages of infection, transcripts in roots of V. longisporum-challenged Arabidopsis Col-0 and the susceptible NON-RACE SPECIFIC DISEASE RESISTANCE 1 (ndr1-1) mutant were compared using ATH1 gene chips. The analysis revealed altered transcript levels of several terpene biosynthesis genes, including the monoterpene synthase TPS23/27. When transgenic 35S:TPS23/27 and TPS23/27-amiRNA plants were monitored the over-expresser line showed enhanced fungal colonization whereas the silenced genotype was indistinguishable from Col-0. Transcript analysis of terpene biosynthesis genes suggested that only the TPS23/27 pathway is affected in the two transgenic genotypes. To confirm changes in monoterpene production, emitted volatiles were determined using solid-phase microextraction and gas chromatography-mass spectrometry. Levels of all identified TPS23/27 monoterpene products were significantly altered in the transgenic plants. A stimulatory effect on conidial germination and hyphal growth of V. longisporum was also seen in co-cultivation with 35S:TPS23/27 plants and upon exposure to 1,8-cineole, the main product of TPS23/27. Methyl jasmonate treatments of myc2-1 and myc2-2 mutants and analysis of TPS23/27:uidA in the myc2-2 background suggested a dependence on jasmonic acid mediated by the transcription factor MYC2. Taken together, our results show that TPS23/27-produced monoterpenes stimulate germination and subsequent invasion of V. longisporum in Arabidopsis roots. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  17. Dually Fluorescent Sensing of pH and Dissolved Oxygen Using a Membrane Made from Polymerizable Sensing Monomers

    OpenAIRE

    Tian, Yanqing; Shumway, Bradley R.; Youngbull, A. Cody; Li, Yongzhong; Jen, Alex K.-Y.; Johnson, Roger H.; Meldrum, Deirdre R.

    2010-01-01

    Using a thermal polymerization approach and polymerizable pH and oxygen sensing monomers with green and red emission spectra, respectively, new pH, oxygen, and their dual sensing membranes were prepared using poly(2-hydroxyethyl methacrylate)-co-poly(acrylamide) as a matrix. The sensors were grafted on acrylate-modified quartz glass and characterized under different pH values, oxygen concentrations, ion strengths, temperatures and cell culture media. The pH and oxygen sensors were excited usi...

  18. Synthesis and Biological Evaluation of Novel Phosphatidylcholine Analogues Containing Monoterpene Acids as Potent Antiproliferative Agents.

    Directory of Open Access Journals (Sweden)

    Anna Gliszczyńska

    Full Text Available The synthesis of novel phosphatidylcholines with geranic and citronellic acids in sn-1 and sn-2 positions is described. The structured phospholipids were obtained in high yields (59-87% and evaluated in vitro for their cytotoxic activity against several cancer cell lines of different origin: MV4-11, A-549, MCF-7, LOVO, LOVO/DX, HepG2 and also towards non-cancer cell line BALB/3T3 (normal mice fibroblasts. The phosphatidylcholines modified with monoterpene acid showed a significantly higher antiproliferative activity than free monoterpene acids. The highest activity was observed for the terpene-phospholipids containing the isoprenoid acids in sn-1 position of phosphatidylcholine and palmitic acid in sn-2.

  19. Controlled oxygen vacancy induced p-type conductivity in HfO{sub 2-x} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Hildebrandt, Erwin; Kurian, Jose; Mueller, Mathis M.; Kleebe, Hans-Joachim; Alff, Lambert [Institute of Materials Science, Technische Universitaet Darmstadt, 64287 Darmstadt (Germany); Schroeder, Thomas [IHP, 15236 Frankfurt/Oder (Germany)

    2011-09-12

    We have synthesized highly oxygen deficient HfO{sub 2-x} thin films by controlled oxygen engineering using reactive molecular beam epitaxy. Above a threshold value of oxygen vacancies, p-type conductivity sets in with up to 6 times 10{sup 21} charge carriers per cm{sup 3}. At the same time, the band-gap is reduced continuously by more than 1 eV. We suggest an oxygen vacancy induced p-type defect band as origin of the observed behavior.

  20. Chemical analysis of particulate and gaseous products from the monoterpene oxidation in the SAPHIR chamber during the EUCAARI campaign 2008

    Science.gov (United States)

    Kahnt, A.; Iinuma, Y.; Herrmann, H.; Mentel, T. F.; Fisseha, R.; Kiendler-Scharr, A.

    2009-04-01

    The atmospheric oxidation of monoterpenes leads to multifunctional products with lower vapour pressure. These products condense and coagulate to existing particles leading to particle formation and growth. In order to obtain better insights into the mechanisms and the importance of sources to organic aerosol, a mixture of monoterpenes was oxidised in the SAPHIR outdoor chamber during the EUCAARI campaign in 2008. The mixture was made of α-pinene, β-pinene, limonene, 3-carene and ocimene, representing a typical monoterpene emission from a boreal forest. In addition, two sesquiterpenes (α-farnesene and caryophyllene) were reacted together with the monoterpene mixture in some experiments. The VOC (volatile organic compound) mixture was reacted under tropospheric oxidation and light conditions in a prolonged time scale over two days. In the present study, a special emphasis is put on the detection of carbonyl compounds from the off-line analysis of collected filter and denuder samples from the campaign in 2008. The oxidation products which contain carbonyl groups are important first stable intermediates during the monoterpene and sesquiterpene oxidation. They react further with atmospheric oxidants to form lower volatile acidic compounds, contributing to secondary organic aerosol (SOA). Commonly used methods for the analysis of carbonyl compounds involve derivatisation steps prior to separation and subsequent UV or MS detection. In the present study, 2,4-dinitrophenylhydrazine (DNPH) was used to derivatise the extracted filter and denuder samples. The DNPH converts aldehyde- and keto-groups to stable hydrazones, which can be purified afterwards using a solid phase extraction (SPE) cartridge. The derivatised samples were analysed with HPLC/ESI-TOFMS which allowed us to determine the exact chemical formula of unknown products. In addition to known carbonyl compounds from monoterpene oxidation such as pinonaldehyde and nopinon, previously unreported molecular masses

  1. Hyperthermal surface ionization mass spectrometry of organic molecules: monoterpenes

    International Nuclear Information System (INIS)

    Kishi, Hiroshi; Fujii, Toshihiro.

    1997-01-01

    This paper describes an experimental study on the influence of kinetic energy of fast monoterpene molecules on the surface ionization efficiency and on the mass spectral patterns, using rhenium oxide (ReO 2 ) surface. Molecular kinetic energy, given to the molecules through the acceleration in the seeded supersonic molecular beam, ranged from 1 to 10 eV. Hyperthermal surface ionization mass spectra (HSIMS) were taken for various incident kinetic energies and surface temperatures. The observed mass spectra were interpreted in a purely empirical way, by means of evidence from the previous investigations, and they were compared with conventional EI techniques and with the thermal energy surface ionization technique (SIOMS; Surface Ionization Organic Mass Spectrometry). Ionization efficiency (β) was also studied. Under hyperthermal surface ionization (HSI) conditions, many kinds of fragment ions, including quite abundant odd electron ions (OE +· ) are observed. HSIMS patterns of monoterpenes are different among 6-isomers, contrary to those of SIOMS and EIMS, where very similar patterns for isomers are observed. HSIMS patterns are strongly dependent on the molecular kinetic energies. The surface temperature does not affect much the spectral patterns, but it controls the total amount of ion formation. We conclude from these mass spectral findings, HSI-mechanism contains an impulsive process of ion formation, followed by the fragmentation process as a results of the internal energies acquired through the collision processes. (author)

  2. Direct suppression of a rice bacterial blight (Xanthomonas oryzae pv. oryzae) by monoterpene (S)-limonene.

    Science.gov (United States)

    Lee, Gun Woong; Chung, Moon-Soo; Kang, Mihyung; Chung, Byung Yeoup; Lee, Sungbeom

    2016-05-01

    Rice bacterial blight, caused by Xanthomonas oryzae pv. oryzae (Xoo), is a severe disease of rice plants. Upon pathogen infection, rice biosynthesizes phytoalexins, including diterpenoids such as momilactones, phytocassanes, and oryzalexins. However, information on headspace volatiles in response to Xoo infection is limited. We have examined headspace volatile terpenes, induced by the infection of Xoo, and investigated their biological roles in the rice plant. Monoterpenes α-thujene, α-pinene, sabinene, myrcene, α-terpene, and (S)-limonene and sesquiterpenes cyclosativene, α-copaene, and β-elemene were detected from 1-week-old Xoo-infected rice seedlings, by solid-phase microextraction-gas chromatography-mass spectrometry. All monoterpenes were constitutively released from rice seedlings before Xoo infection. However, (S)-limonene emission was further elicited after exposure of the seedlings to Xoo in coincidence with upregulation of limonene synthase gene (OsTPS20) transcripts. Only the stereospecific (S)-limonene [and not (R)-limonene or other monoterpenes] severely inhibited Xoo growth, as confirmed by disc diffusion and liquid culture assays. Rice seedlings showed suppressed pathogenic symptoms suggestive of resistance to Xoo infection after foliar treatment with (S)-limonene. Collectively, our findings suggest that (S)-limonene is a volatile phytoanticipin, which plays a significant role in suppressing Xoo growth in rice seedlings.

  3. Borneol, a Bicyclic Monoterpene Alcohol, Reduces Nociceptive Behavior and Inflammatory Response in Mice

    Directory of Open Access Journals (Sweden)

    Jackson Roberto Guedes da Silva Almeida

    2013-01-01

    Full Text Available Borneol, a bicyclic monoterpene, has been evaluated for antinociceptive and anti-inflammatory activities. Antinociceptive and anti-inflammatory activities were studied by measuring nociception by acetic acid, formalin, hot plate, and grip strength tests, while inflammation was prompted by carrageenan-induced peritonitis. The rotarod test was used to evaluate motor coordination. Borneol produced a significant (P<0.01 reduction of the nociceptive behavior at the early and late phases of paw licking and reduced the writhing reflex in mice (formalin and writhing tests, resp.. When the hot plate test was conducted, borneol (in higher dose produced an inhibition (P<0.05 of the nociceptive behavior. Such results were unlikely to be provoked by motor abnormality. Additionally, borneol-treated mice reduced the carrageenan-induced leukocytes migration to the peritoneal cavity. Together, our results suggest that borneol possess significant central and peripheral antinociceptive activity; it has also anti-inflammatory activity. In addition, borneol did not impair motor coordination.

  4. Dually Fluorescent Sensing of pH and Dissolved Oxygen Using a Membrane Made from Polymerizable Sensing Monomers.

    Science.gov (United States)

    Tian, Yanqing; Shumway, Bradley R; Youngbull, A Cody; Li, Yongzhong; Jen, Alex K-Y; Johnson, Roger H; Meldrum, Deirdre R

    2010-06-03

    Using a thermal polymerization approach and polymerizable pH and oxygen sensing monomers with green and red emission spectra, respectively, new pH, oxygen, and their dual sensing membranes were prepared using poly(2-hydroxyethyl methacrylate)-co-poly(acrylamide) as a matrix. The sensors were grafted on acrylate-modified quartz glass and characterized under different pH values, oxygen concentrations, ion strengths, temperatures and cell culture media. The pH and oxygen sensors were excited using the same excitation wavelength and exhibited well-separated emission spectra. The pH-sensing films showed good response over the pH range 5.5 to 8.5, corresponding to pK(a) values in the biologically-relevant range between 6.9 and 7.1. The oxygen-sensing films exhibited linear Stern-Volmer quenching responses to dissolved oxygen. As the sensing membranes were prepared using thermally initiated polymerization of sensing moiety-containing monomers, no leaching of the sensors from the membranes to buffers or medium was observed. This advantageous characteristic accounts in part for the sensors' biocompatibility without apparent toxicity to HeLa cells after 40 hours incubation. The dual-sensing membrane was used to measure pH and dissolved oxygen simultaneously. The measured results correlated with the set-point values.

  5. Transcriptome Sequencing Analysis Reveals a Difference in Monoterpene Biosynthesis between Scented Lilium ‘Siberia’ and Unscented Lilium ‘Novano’

    Directory of Open Access Journals (Sweden)

    Zenghui Hu

    2017-08-01

    Full Text Available Lilium is a world famous fragrant bulb flower with high ornamental and economic values, and significant differences in fragrance are found among different Lilium genotypes. In order to explore the mechanism underlying the different fragrances, the floral scents of Lilium ‘Sibeia’, with a strong fragrance, and Lilium ‘Novano’, with a very faint fragrance, were collected in vivo using a dynamic headspace technique. These scents were identified using automated thermal desorption—gas chromatography/mass spectrometry (ATD-GC/MS at different flowering stages. We used RNA-Seq technique to determine the petal transcriptome at the full-bloom stage and analyzed differentially expressed genes (DEGs to investigate the molecular mechanism of floral scent biosynthesis. The results showed that a significantly higher amount of Lilium ‘Siberia’ floral scent was released compared with Lilium ‘Novano’. Moreover, monoterpenes played a dominant role in the floral scent of Lilium ‘Siberia’; therefore, it is believed that the different emissions of monoterpenes mainly contributed to the difference in the floral scent between the two Lilium genotypes. Transcriptome sequencing analysis indicated that ~29.24 Gb of raw data were generated and assembled into 124,233 unigenes, of which 35,749 unigenes were annotated. Through a comparison of gene expression between these two Lilium genotypes, 6,496 DEGs were identified. The genes in the terpenoid backbone biosynthesis pathway showed significantly different expression levels. The gene expressions of 1-deoxy-D-xylulose 5-phosphate synthase (DXS, 1-deoxy-D-xylulose-5-phosphate reductoisomerase (DXR, 4-hydroxy-3-methylbut-2-enyl diphosphate synthase (HDS, 4-hydroxy-3-methylbut-2-enyl diphosphate reductase (HDR, isopentenyl diphosphate isomerase (IDI, and geranyl diphosphate synthase (GPS/GGPS, were upregulated in Lilium ‘Siberia’ compared to Lilium ‘Novano’, and two monoterpene synthase genes

  6. ORIGIN OF MOLECULAR OXYGEN IN COMET 67P/CHURYUMOV–GERASIMENKO

    Energy Technology Data Exchange (ETDEWEB)

    Mousis, O.; Ronnet, T.; Brugger, B.; Vernazza, P. [Aix Marseille Université, CNRS, LAM (Laboratoire d’Astrophysique de Marseille) UMR 7326, F-13388, Marseille (France); Ozgurel, O.; Pauzat, F.; Ellinger, Y.; Markovits, A. [Laboratoire de Chimie Théorique, Sorbonne Universités, UPMC Univ. Paris 06, CNRS UMR 7616, F-75252 Paris CEDEX 05 (France); Maggiolo, R. [Royal Institute for Space Aeronomy, 3 Avenue Circulaire, Brussels (Belgium); Wurz, P.; Altwegg, K.; Bieler, A.; Rubin, M. [Physikalisches Institut, University of Bern, Sidlerstrasse 5, CH-3012 Bern (Switzerland); Lunine, J. I. [Department of Astronomy and Carl Sagan Institute, Space Sciences Building Cornell University, Ithaca, NY 14853 (United States); Luspay-Kuti, A.; Mandt, K. E., E-mail: olivier.mousis@lam.fr [Department of Space Research, Southwest Research Institute, 6220 Culebra Rd., San Antonio, TX 78228 (United States)

    2016-06-01

    Molecular oxygen has been detected in the coma of comet 67P/Churyumov–Gerasimenko with abundances in the 1%–10% range by the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis-Double Focusing Mass Spectrometer instrument on board the Rosetta spacecraft. Here we find that the radiolysis of icy grains in low-density environments such as the presolar cloud may induce the production of large amounts of molecular oxygen. We also show that molecular oxygen can be efficiently trapped in clathrates formed in the protosolar nebula (PSN), and that its incorporation as crystalline ice is highly implausible, because this would imply much larger abundances of Ar and N{sub 2} than those observed in the coma. Assuming that radiolysis has been the only O{sub 2} production mechanism at work, we conclude that the formation of comet 67P/Churyumov–Gerasimenko is possible in a dense and early PSN in the framework of two extreme scenarios: (1) agglomeration from pristine amorphous icy grains/particles formed in ISM and (2) agglomeration from clathrates that formed during the disk’s cooling. The former scenario is found consistent with the strong correlation between O{sub 2} and H{sub 2}O observed in comet 67P/Churyumov-Gerasimenko’s coma while the latter scenario requires that clathrates formed from ISM icy grains that crystallized when entering the PSN.

  7. ORIGIN OF MOLECULAR OXYGEN IN COMET 67P/CHURYUMOV–GERASIMENKO

    International Nuclear Information System (INIS)

    Mousis, O.; Ronnet, T.; Brugger, B.; Vernazza, P.; Ozgurel, O.; Pauzat, F.; Ellinger, Y.; Markovits, A.; Maggiolo, R.; Wurz, P.; Altwegg, K.; Bieler, A.; Rubin, M.; Lunine, J. I.; Luspay-Kuti, A.; Mandt, K. E.

    2016-01-01

    Molecular oxygen has been detected in the coma of comet 67P/Churyumov–Gerasimenko with abundances in the 1%–10% range by the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis-Double Focusing Mass Spectrometer instrument on board the Rosetta spacecraft. Here we find that the radiolysis of icy grains in low-density environments such as the presolar cloud may induce the production of large amounts of molecular oxygen. We also show that molecular oxygen can be efficiently trapped in clathrates formed in the protosolar nebula (PSN), and that its incorporation as crystalline ice is highly implausible, because this would imply much larger abundances of Ar and N_2 than those observed in the coma. Assuming that radiolysis has been the only O_2 production mechanism at work, we conclude that the formation of comet 67P/Churyumov–Gerasimenko is possible in a dense and early PSN in the framework of two extreme scenarios: (1) agglomeration from pristine amorphous icy grains/particles formed in ISM and (2) agglomeration from clathrates that formed during the disk’s cooling. The former scenario is found consistent with the strong correlation between O_2 and H_2O observed in comet 67P/Churyumov-Gerasimenko’s coma while the latter scenario requires that clathrates formed from ISM icy grains that crystallized when entering the PSN.

  8. Temperature Dependency of the Correlation between Secondary Organic Aerosol and Monoterpenes Concentrations at a Boreal Forest Site in Finland

    Science.gov (United States)

    Zhou, Y.; Zhang, W.; Rinne, J.

    2016-12-01

    Climate feedbacks represent the large uncertainty in the climate projection partly due to the difficulties to quantify the feedback mechanisms in the biosphere-atmosphere interaction. Recently, a negative climate feedback mechanism whereby higher temperatures and CO2-levels boost continental biomass production, leading to increased biogenic secondary organic aerosol (SOA) and cloud condensation nuclei concentrations, tending to cause cooling, has been attached much attention. To quantify the relationship between biogenic organic compounds (BVOCs) and SOA, a five-year data set (2008, 2010-2011,2013-2014) for SOA and monoterpenes concentrations (the dominant fraction of BVOCs) measured at the SMEAR II station in Hyytiälä, Finland, is analyzed. Our results show that there is a moderate linear correlation between SOA and monoterpenes concentration with the correlation coefficient (R) as 0.66. To rule out the influence of anthropogenic aerosols, the dataset is further filtered by selecting the data at the wind direction of cleaner air mass, leading to an improved R as 0.68. As temperature is a critical factor for vegetation growth, BVOC emissions, and condensation rate, the correlation between SOA and monoterpenes concentration at different temperature windows are studied. The result shows a higher R and slope of linear regression as temperature increases. To identify the dominant oxidant responsible for the BVOC-SOA conversion, the correlations between SOA concentration and the monoterpenes oxidation rates by O3 and OH are compared, suggesting more SOA is contributed by O3 oxidation process. Finally, the possible processes and factors such as the atmospheric boundary layer depth, limiting factor in the monoterpenes oxidation process, as well as temperature sensitivity in the condensation process contributing to the temperature dependence of correlation between BVOA and SOA are investigated.

  9. Monoterpene concentrations in fresh, senescent, and decaying foliage of singleleaf pinyon (Pinus monophylla Torr. & Frem.: Pinaceae) from the western Great Basin.

    Science.gov (United States)

    Wilt, F M; Miller, G C; Everett, R L; Hackett, M

    1993-02-01

    Senescent foliage from pines is potentially a large contributor to the total monoterpene content of the litter layer, and the availability of these compounds as phytotoxins may result from release of these compounds into the vapor phase. In order to determine the fate of several monoterpene hydrocarbons in the natural environment, we examined their concentrations in fresh, senescent, and decaying needles from 32 single-leaf pinyon pine (Pinus monophylla Torr. & Frem.: Pinaceae) trees growing at two different locations. Total monoterpene content was highest in the fresh needles (mean=5.6 ± 2.2 mg/g extracted air dry weight), but also remained relatively high in senescent needles (mean=3.6 ±1.8 mg/g extracted air dry weight), either still attached to the tree or forming the freshest layer of understory litter. Decaying needles within a dark decomposing layer of litter material 5-20 cm from the surface were found to contain much lower amounts of total monoterpenes (average: =0.12 ±0.06 mg/g extracted air dry weight). Further investigation of the fate of these compounds in the pinyon understory is required to determine if these hydrocarbons are indeed exerting phytotoxic characteristics.

  10. Wet effluent diffusion denuder: The tool for determination of monoterpenes in forest

    Czech Academy of Sciences Publication Activity Database

    Křůmal, Kamil; Mikuška, Pavel; Večeřová, Kristýna; Urban, Otmar; Pallozzi, E.; Večeřa, Zbyněk

    2016-01-01

    Roč. 153, JUN (2016), s. 260-267 ISSN 0039-9140 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:68081715 ; RVO:67179843 Keywords : diffusion denuder * monoterpene * biogenic volatile organic compounds * tenax tubes Subject RIV: CB - Analytical Chemistry , Separation; EH - Ecology, Behaviour (UEK-B) Impact factor: 4.162, year: 2016

  11. Wet effluent diffusion denuder: The tool for determination of monoterpenes in forest

    Czech Academy of Sciences Publication Activity Database

    Křůmal, Kamil; Mikuška, Pavel; Večeřová, Kristýna; Urban, Otmar; Pallozzi, E.; Večeřa, Zbyněk

    2016-01-01

    Roč. 153, JUN (2016), s. 260-267 ISSN 0039-9140 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:68081715 ; RVO:67179843 Keywords : diffusion denuder * monoterpene * biogenic volatile organic compounds * tenax tubes Subject RIV: CB - Analytical Chemistry, Separation; EH - Ecology, Behaviour (UEK-B) Impact factor: 4.162, year: 2016

  12. Gene discovery for enzymes involved in limonene modification or utilization by the mountain pine beetle-associated pathogen Grosmannia clavigera.

    Science.gov (United States)

    Wang, Ye; Lim, Lynette; Madilao, Lina; Lah, Ljerka; Bohlmann, Joerg; Breuil, Colette

    2014-08-01

    To successfully colonize and eventually kill pine trees, Grosmannia clavigera (Gs cryptic species), the main fungal pathogen associated with the mountain pine beetle (Dendroctonus ponderosae), has developed multiple mechanisms to overcome host tree chemical defenses, of which terpenoids are a major component. In addition to a monoterpene efflux system mediated by a recently discovered ABC transporter, Gs has genes that are highly induced by monoterpenes and that encode enzymes that modify or utilize monoterpenes [especially (+)-limonene]. We showed that pine-inhabiting Ophiostomale fungi are tolerant to monoterpenes, but only a few, including Gs, are known to utilize monoterpenes as a carbon source. Gas chromatography-mass spectrometry (GC-MS) revealed that Gs can modify (+)-limonene through various oxygenation pathways, producing carvone, p-mentha-2,8-dienol, perillyl alcohol, and isopiperitenol. It can also degrade (+)-limonene through the C-1-oxygenated pathway, producing limonene-1,2-diol as the most abundant intermediate. Transcriptome sequencing (RNA-seq) data indicated that Gs may utilize limonene 1,2-diol through beta-oxidation and then valine and tricarboxylic acid (TCA) metabolic pathways. The data also suggested that at least two gene clusters, located in genome contigs 108 and 161, were highly induced by monoterpenes and may be involved in monoterpene degradation processes. Further, gene knockouts indicated that limonene degradation required two distinct Baeyer-Villiger monooxygenases (BVMOs), an epoxide hydrolase and an enoyl coenzyme A (enoyl-CoA) hydratase. Our work provides information on enzyme-mediated limonene utilization or modification and a more comprehensive understanding of the interaction between an economically important fungal pathogen and its host's defense chemicals.

  13. The impact of bark beetle infestations on monoterpene emissions and secondary organic aerosol formation in western North America

    Directory of Open Access Journals (Sweden)

    A. R. Berg

    2013-03-01

    Full Text Available Over the last decade, extensive beetle outbreaks in western North America have destroyed over 100 000 km2 of forest throughout British Columbia and the western United States. Beetle infestations impact monoterpene emissions through both decreased emissions as trees are killed (mortality effect and increased emissions in trees under attack (attack effect. We use 14 yr of beetle-induced tree mortality data together with beetle-induced monoterpene emission data in the National Center for Atmospheric Research (NCAR Community Earth System Model (CESM to investigate the impact of beetle-induced tree mortality and attack on monoterpene emissions and secondary organic aerosol (SOA formation in western North America. Regionally, beetle infestations may have a significant impact on monoterpene emissions and SOA concentrations, with up to a 4-fold increase in monoterpene emissions and up to a 40% increase in SOA concentrations in some years (in a scenario where the attack effect is based on observed lodgepole pine response. Responses to beetle attack depend on the extent of previous mortality and the number of trees under attack in a given year, which can vary greatly over space and time. Simulated enhancements peak in 2004 (British Columbia and 2008 (US. Responses to beetle attack are shown to be substantially larger (up to a 3-fold localized increase in summertime SOA concentrations in a scenario based on bark-beetle attack in spruce trees. Placed in the context of observations from the IMPROVE network, the changes in SOA concentrations due to beetle attack are in most cases small compared to the large annual and interannual variability in total organic aerosol which is driven by wildfire activity in western North America. This indicates that most beetle-induced SOA changes are not likely detectable in current observation networks; however, these changes may impede efforts to achieve natural visibility conditions in the national parks and wilderness

  14. The atmospheric impacts of monoterpene ozonolysis on global stabilised Criegee intermediate budgets and SO2 oxidation: experiment, theory and modelling

    Directory of Open Access Journals (Sweden)

    M. J. Newland

    2018-05-01

    CHOO. The experimental results are interpreted through theoretical studies of the SCI unimolecular reactions and bimolecular reactions with H2O, characterised for α-pinene and β-pinene at the M06-2X/aug-cc-pVTZ level of theory. The theoretically derived rates agree with the experimental results within the uncertainties. A global modelling study, applying the experimental results within the GEOS-Chem chemical transport model, suggests that > 97 % of the total monoterpene-derived global SCI burden is comprised of SCIs with a structure that determines that they react slowly with water and that their atmospheric fate is dominated by unimolecular reactions. Seasonally averaged boundary layer concentrations of monoterpene-derived SCIs reach up to 1.4  ×  104 cm−3 in regions of elevated monoterpene emissions in the tropics. Reactions of monoterpene-derived SCIs with SO2 account for < 1 % globally but may account for up to 60 % of the gas-phase SO2 removal over areas of tropical forests, with significant localised impacts on the formation of sulfate aerosol and hence the lifetime and distribution of SO2.

  15. The atmospheric impacts of monoterpene ozonolysis on global stabilised Criegee intermediate budgets and SO2 oxidation: experiment, theory and modelling

    Science.gov (United States)

    Newland, Mike J.; Rickard, Andrew R.; Sherwen, Tomás; Evans, Mathew J.; Vereecken, Luc; Muñoz, Amalia; Ródenas, Milagros; Bloss, William J.

    2018-05-01

    interpreted through theoretical studies of the SCI unimolecular reactions and bimolecular reactions with H2O, characterised for α-pinene and β-pinene at the M06-2X/aug-cc-pVTZ level of theory. The theoretically derived rates agree with the experimental results within the uncertainties. A global modelling study, applying the experimental results within the GEOS-Chem chemical transport model, suggests that > 97 % of the total monoterpene-derived global SCI burden is comprised of SCIs with a structure that determines that they react slowly with water and that their atmospheric fate is dominated by unimolecular reactions. Seasonally averaged boundary layer concentrations of monoterpene-derived SCIs reach up to 1.4 × 104 cm-3 in regions of elevated monoterpene emissions in the tropics. Reactions of monoterpene-derived SCIs with SO2 account for < 1 % globally but may account for up to 60 % of the gas-phase SO2 removal over areas of tropical forests, with significant localised impacts on the formation of sulfate aerosol and hence the lifetime and distribution of SO2.

  16. A process-based model to estimate gas exchange and monoterpene emission rates in the mediterranean maquis - comparisons between modelled and measured fluxes at different scales

    Science.gov (United States)

    Vitale, M.; Matteucci, G.; Fares, S.; Davison, B.

    2009-02-01

    This paper concerns the application of a process-based model (MOCA, Modelling of Carbon Assessment) as an useful tool for estimating gas exchange, and integrating the empirical algorithms for calculation of monoterpene fluxes, in a Mediterranean maquis of central Italy (Castelporziano, Rome). Simulations were carried out for a range of hypothetical but realistic canopies of the evergreen Quercus ilex (holm oak), Arbutus unedo (strawberry tree) and Phillyrea latifolia. More, the dependence on total leaf area and leaf distribution of monoterpene fluxes at the canopy scale has been considered in the algorithms. Simulation of the gas exchange rates showed higher values for P. latifolia and A. unedo (2.39±0.30 and 3.12±0.27 gC m-2 d-1, respectively) with respect to Q. ilex (1.67±0.08 gC m-2 d-1) in the measuring campaign (May-June). Comparisons of the average Gross Primary Production (GPP) values with those measured by eddy covariance were well in accordance (7.98±0.20 and 6.00±1.46 gC m-2 d-1, respectively, in May-June), although some differences (of about 30%) were evident in a point-to-point comparison. These differences could be explained by considering the non uniformity of the measuring site where diurnal winds blown S-SW direction affecting thus calculations of CO2 and water fluxes. The introduction of some structural parameters in the algorithms for monoterpene calculation allowed to simulate monoterpene emission rates and fluxes which were in accord to those measured (6.50±2.25 vs. 9.39±4.5μg g-1DW h-1 for Q. ilex, and 0.63±0.207μg g-1DW h-1 vs. 0.98±0.30μg g-1DW h-1 for P. latifolia). Some constraints of the MOCA model are discussed, but it is demonstrated to be an useful tool to simulate physiological processes and BVOC fluxes in a very complicated plant distributions and environmental conditions, and necessitating also of a low number of input data.

  17. Field Bioassays of Synthetic Pheromones and Host Monoterpenes for Conophthorus coniperda (Coleoptera: Scolytidae)

    Science.gov (United States)

    Peter de Groot; Gary L. DeBarr; Goran Birgersson

    1998-01-01

    Four major monoterpenes, (±)-a-pinene,1 (S)-(-)-ß-pinene,(R)-(+)-limonene, and myrcene are found in the cones of eastern white pines, Pinus strobus L. Mixtures ofthese, as well as. a-pinene or ß-pinene alone. increased catches of male white pine cone...

  18. A comparison of GC-FID and PTR-MS toluene measurements in ambient air under conditions of enhanced monoterpene loading

    Directory of Open Access Journals (Sweden)

    J. L. Ambrose

    2010-07-01

    Full Text Available Toluene was measured using both a gas chromatographic system (GC, with a flame ionization detector (FID, and a proton transfer reaction-mass spectrometer (PTR-MS at the AIRMAP atmospheric monitoring station Thompson Farm (THF in rural Durham, NH during the summer of 2004. Simultaneous measurements of monoterpenes, including α- and β-pinene, camphene, Δ 3-carene, and d-limonene, by GC-FID demonstrated large enhancements in monoterpene mixing ratios relative to toluene, with median and maximum enhancement ratios of ~2 and ~30, respectively. A detailed comparison between the GC-FID and PTR-MS toluene measurements was conducted to test the specificity of PTR-MS for atmospheric toluene measurements under conditions often dominated by biogenic emissions. We derived quantitative estimates of potential interferences in the PTR-MS toluene measurements related to sampling and analysis of monoterpenes, including fragmentation of the monoterpenes and some of their primary carbonyl oxidation products via reactions with H3O+, O2+ and NO+ in the PTR-MS drift tube. The PTR-MS and GC-FID toluene measurements were in good quantitative agreement and the two systems tracked one another well from the instrumental limits of detection to maximum mixing ratios of ~0.5 ppbv. A correlation plot of the PTR-MS versus GC-FID toluene measurements was described by the least squares regression equation y=(1.13± 0.02x−(0.008±0.003 ppbv, suggesting a small ~13% positive bias in the PTR-MS measurements. The bias corresponded with a ~0.055 ppbv difference at the highest measured toluene level. The two systems agreed quantitatively within the combined 1σ measurement precisions for 60% of the measurements. Discrepancies in the measured mixing ratios were not well correlated with enhancements in the monoterpenes. Better quantitative agreement between the two systems was obtained by

  19. [Analysis of variation of monoterpene glycosides and polyhydroxy compounds in paeoniae radix alba during preliminary processing].

    Science.gov (United States)

    Xu, Yuan; Liu, Pei; Yan, Hui; Qian, Da-Wei; Duan, Jin-Ao

    2014-05-01

    To investigate variation of monoterpene glycosides and polyhydroxy compounds in Paeoniae Radix Alba dried by different processing methods. The crude drugs were processed sequentially as washed, removed the head, tail, fine roots and dried. The samples were divided into eight groups by whether peeled and decocted or not. Each group was dried by 35, 45, 60, 80,100, 120 degrees C, sun-dried and shade-dried. HPLC-PDA method was adopted to determine the content of monoterpene glycosides compounds (paeoniflorin alibiflorin, oxypaeoniflorin and benzoylpaeoniflorin), polyhydroxy compounds (catechin and gallic acid) and benzoic acid. Chromatographic conditions: Phecad C18 column (250 mm x 4.6 mm, 5 microm). A principal component analysis (PCA) method was used subsequently to get data processed. The retained content of seven constituents decreased in those peeled crude drug, and after cooked, monoterpene glycosides and polyhydroxy compounds increased while the benzoic acid decreased. It was believed that rele- vant enzymes were inactivated while being cooked so that drying temperature showed little influence on the biotransformation. Contents of effective ingredients in Paeoniae Radix Alba are influenced by drying processing. The preferable method shows to be that crude drug should be cooked before being peeled and dried. As a matter of processing convtence, it is suggested to be peeled and sliced before being dried.

  20. Pondering the monoterpene composition of Pinus serotina Michx.: can limonene be used as a chemotaxonomic marker for the identification of old turpentine stumps?

    Science.gov (United States)

    Thomas L. Eberhardt; Jolie M. Mahfouz; Philip M. Sheridan

    2010-01-01

    Wood samples from old turpentine stumps in Virginia were analyzed by GC-MS to determine if the monoterpene compositions could be used for species identification. Given that limonene is reported to be the predominant monoterpene for pond pine (Pinus serotina Michx.), low relative proportions of limonene in these samples appeared to suggest that these...

  1. A new bioactive monoterpene-flavonoid from Satureja khuzistanica.

    Science.gov (United States)

    Malmir, Maryam; Gohari, Ahmad Reza; Saeidnia, Soodabeh; Silva, Olga

    2015-09-01

    A new monoterpene-flavonoid, saturejin (3'-(2,5-dihydroxy-p-cymene) 5,7,4'-trihydroxy flavone) (4), together with twelve known flavonoids consist of two flavanonols (aromadendrin (8) and taxifolin (12)), two flavanones (naringenin (3) and 5,7,3',5'-tetrahydroxy flavanone (9)) and eight flavones (xanthomicrol (1), acacetin (2), cirsimaritin (5), 7-methoxy luteolin (6), apigenin (7), cirsilineol (10), diosmetin (11) and 6-hydroxyluteolin 7,3'-dimethyl ether (13)), were isolated from an ethyl acetate extract and identified for the first time in the dried aerial parts of Satureja khuzistanica Jamzad, an endemic medicinal plant traditionally used as dental anesthetic, oral antiseptic and anti-inflammatory among the nomadic inhabitants of southwestern Iran. The structures of these compounds were determined using the usual spectroscopic methods including 2D-NMR and MS analyses. Saturejin showed a significant β-glucosidase inhibitory activity at concentration of 10 μg as well as positive antioxidant activity at the amount of 1 μg. These results could be correlated with the in vitro and in vivo anti-inflammatory, anti-oxidant and anti-diabetic properties reported from this medicinal plant. Similar activities were also described for some of the other isolated compounds. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Xylem monoterpenes of some hard pines of Western North America: three studies

    Science.gov (United States)

    Richard H. Smith

    1982-01-01

    Monoterpene composition was studied in a number of hard pine species and results were compared with earlier work. (1) Intratree measurements showed strong constancy of composition in both single-stemmed and forked trees of ponderosa, Jeffrey, Coulter, and Jeffrey x ponderosa pines. In grafts of these and other pines, the scion influenced the root stock, but not the...

  3. Isolation of Monoterpene Dihydrochalcones from Piper montealegreanum Yuncker (Piperaceae).

    Science.gov (United States)

    Alves, Harley da Silva; Rocha, Wilma Raianny Vieira da; Braz-Filho, Raimundo; Chaves, Maria Célia de Oliveira

    2017-06-09

    Four new compounds were isolated from the branches of Piper montealegreanum Yuncker, a shrub found in the Amazon rainforest, including two new dihydrochalcones named claricine ( 1 ) and maisine ( 2 ), a cinnamic acid derivative 3 and a phenylalkanoid 4 , along with a porphyrin identified as the known compound phaeophytin a ( 5 ). The structures were established using spectroscopic experiments, including 1D and 2D NMR and HRESIMS experiments, performed on the two monoterpene dihydrochalcones and their monoacetyl derivatives. The structural diversity of these substances is very important for the Piper genus chemotaxonomy.

  4. Characterization of two monoterpene synthases involved in floral scent formation in Hedychium coronarium.

    Science.gov (United States)

    Yue, Yuechong; Yu, Rangcai; Fan, Yanping

    2014-10-01

    Hedychium coronarium, a perennial herb belonging to the family Zingiberaceae, is cultivated as a garden plant or cut flower as well as for medicine and aromatic oil. Its flowers emit a fresh and inviting scent, which is mainly because of monoterpenes present in the profile of the floral volatiles. However, fragrance produced as a result of monoterpenes has not been well studied. In the present study, two novel terpene synthase (TPS) genes (HcTPS7 and HcTPS8) were isolated to study the biosynthesis of monoterpenes in H. coronarium. In vitro characterization showed that the recombinant HcTPS7 was capable of generating sabinene as its main product, in addition to nine sub-products from geranyl diphosphate (GPP). Recombinant HcTPS8 almost specifically catalyzed the formation of linalool from GPP, while it converted farnesyl diphosphate (FPP) to α-bergamotene, cis-α-bisabolene, β-farnesene and other ten sesquiterpenes. Subcellular localization experiments revealed that HcTPS7 and HcTPS8 were located in plastids. Real-time PCR analyses showed that HcTPS7 and HcTPS8 genes were highly expressed in petals and sepals, but were almost undetectable in vegetative organs. The changes of their expression levels in petals were positively correlated with the emission patterns of sabinene and linalool, respectively, during flower development. The results indicated that HcTPS7 and HcTPS8 were involved in the biosynthesis of sabinene and linalool in H. coronarium flowers. Results on these two TPSs first characterized from H. coronarium provide new insights into molecular mechanisms of terpene biosynthesis in this species and also lay the basis for biotechnological modification of floral scent profile in Hedychium.

  5. Do multiple herbivores maintain chemical diversity of Scots pine monoterpenes?

    Science.gov (United States)

    Iason, Glenn R.; O'Reilly-Wapstra, Julianne M.; Brewer, Mark J.; Summers, Ron W.; Moore, Ben D.

    2011-01-01

    A central issue in our understanding of the evolution of the diversity of plant secondary metabolites (PSMs) is whether or not compounds are functional, conferring an advantage to the plant, or non-functional. We examine the hypothesis that the diversity of monoterpene PSMs within a plant species (Scots pine Pinus sylvestris) may be explained by different compounds acting as defences against high-impact herbivores operating at different life stages. We also hypothesize that pairwise coevolution, with uncorrelated interactions, is more likely to result in greater PSM diversity, than diffuse coevolution. We tested whether up to 13 different monoterpenes in Scots pine were inhibitory to herbivory by slugs (Arion ater), bank voles (Clethrionomys glareolus), red deer (Cervus elaphus) and capercaillie (Tetrao urogallus), each of which attack trees at a different life stage. Plants containing more α-pinene were avoided by both slugs and capercaillie, which may act as reinforcing selective agents for this dominant defensive compound. Herbivory by red deer and capercaillie were, respectively, weakly negatively associated with δ3-carene, and strongly negatively correlated with the minor compound β-ocimene. Three of the four herbivores are probably contributory selective agents on some of the terpenes, and thus maintain some, but by no means all, of the phytochemical diversity in the species. The correlated defensive function of α-pinene against slugs and capercaillie is consistent with diffuse coevolutionary processes. PMID:21444308

  6. The Use of Monoterpenes as Kairomones by Ips latidens (LeConte) (Coleoptera: Scolytidae)

    Science.gov (United States)

    D.R. Miller; J.H. Borden

    1990-01-01

    The responses of Ips lutidens (LeConte) to multiple-funnel traps baited with various monoterpenes were determined in stands of lodgepole pine in British Columbia. ß-Phellandrene was attractive to I. lutidens in the absence of the pheromone ipsenol ß-Phellandrene increased the attraction of I. lutidens to...

  7. Thermodynamic study of selected monoterpenes III

    International Nuclear Information System (INIS)

    Štejfa, Vojtěch; Fulem, Michal; Růžička, Květoslav; Červinka, Ctirad

    2014-01-01

    Highlights: • (−)-trans-Pinane, (+)-Δ-carene, eucalyptol, and limonene were studied. • New thermodynamic data were measured and calculated. • Many of thermodynamic data are reported for the first time. - Abstract: A thermodynamic study of selected monoterpenes, (−)-trans-pinane, (+)-Δ-carene, eucalyptol, (+)-limonene, and (−)-limonene, is presented in this work. The vapor pressure measurements were performed using the static method over the environmentally important temperature range (238 to 308) K. Liquid heat capacities were measured by Tian–Calvet calorimetry in the temperature interval (258 to 355) K. The phase behavior was investigated by differential scanning calorimetry (DSC) from T = 183 K. The thermodynamic properties in the ideal-gas state were calculated by combining statistical thermodynamic and density functional theory (DFT) calculations. Calculated ideal-gas heat capacities and experimental data for vapor pressures and condensed phase heat capacities were treated simultaneously to obtain a consistent thermodynamic description

  8. Soil microorganisms alleviate the allelochemical effects of a thyme monoterpene on the performance of an associated grass species.

    Science.gov (United States)

    Ehlers, Bodil K

    2011-01-01

    Plant allelochemicals released into the soil can significantly impact the performance of associated plant species thereby affecting their competitive ability. Soil microbes can potentially affect the interaction between plant and plant chemicals by degrading the allelochemicals. However, most often plant-plant chemical interactions are studied using filter paper bioassays examining the pair-wise interaction between a plant and a plant chemical, not taking into account the potential role of soil microorganisms. To explore if the allelopathic effects on a grass by the common thyme monoterpene "carvacrol" are affected by soil microorganisms. Seedlings of the grass Agrostis capillaris originating from 3 different thyme sites were raised in the greenhouse. Seedlings were grown under four different soil treatments in a 2*2 fully factorial experiment. The monoterpene carvacrol was either added to standard greenhouse soil or left out, and soil was either sterilized (no soil microorganisms) or not (soil microorganisms present in soil). The presence of carvacrol in the soil strongly increased mortality of Agrostis plants, and this increase was highest on sterile soil. Plant biomass was reduced on soil amended with carvacrol, but only when the soil was also sterilized. Plants originating from sites where thyme produces essential oils containing mostly carvacrol had higher survival on soil treated with that monoterpene than plants originating from a site where thyme produced different types of terpenes, suggesting an adaptive response to the locally occurring terpene. The study shows that presence of soil microorganisms can alleviate the negative effect of a common thyme monoterpene on the performance of an associated plant species, emphasizing the role of soil microbes in modulating plant-plant chemical interactions.

  9. Soil microorganisms alleviate the allelochemical effects of a thyme monoterpene on the performance of an associated grass species.

    Directory of Open Access Journals (Sweden)

    Bodil K Ehlers

    Full Text Available Plant allelochemicals released into the soil can significantly impact the performance of associated plant species thereby affecting their competitive ability. Soil microbes can potentially affect the interaction between plant and plant chemicals by degrading the allelochemicals. However, most often plant-plant chemical interactions are studied using filter paper bioassays examining the pair-wise interaction between a plant and a plant chemical, not taking into account the potential role of soil microorganisms.To explore if the allelopathic effects on a grass by the common thyme monoterpene "carvacrol" are affected by soil microorganisms. Seedlings of the grass Agrostis capillaris originating from 3 different thyme sites were raised in the greenhouse. Seedlings were grown under four different soil treatments in a 2*2 fully factorial experiment. The monoterpene carvacrol was either added to standard greenhouse soil or left out, and soil was either sterilized (no soil microorganisms or not (soil microorganisms present in soil. The presence of carvacrol in the soil strongly increased mortality of Agrostis plants, and this increase was highest on sterile soil. Plant biomass was reduced on soil amended with carvacrol, but only when the soil was also sterilized. Plants originating from sites where thyme produces essential oils containing mostly carvacrol had higher survival on soil treated with that monoterpene than plants originating from a site where thyme produced different types of terpenes, suggesting an adaptive response to the locally occurring terpene.The study shows that presence of soil microorganisms can alleviate the negative effect of a common thyme monoterpene on the performance of an associated plant species, emphasizing the role of soil microbes in modulating plant-plant chemical interactions.

  10. Soil Microorganisms Alleviate the Allelochemical Effects of a Thyme Monoterpene on the Performance of an Associated Grass Species

    Science.gov (United States)

    Ehlers, Bodil K.

    2011-01-01

    Background Plant allelochemicals released into the soil can significantly impact the performance of associated plant species thereby affecting their competitive ability. Soil microbes can potentially affect the interaction between plant and plant chemicals by degrading the allelochemicals. However, most often plant-plant chemical interactions are studied using filter paper bioassays examining the pair-wise interaction between a plant and a plant chemical, not taking into account the potential role of soil microorganisms. Methodology/Principal findings To explore if the allelopathic effects on a grass by the common thyme monoterpene “carvacrol” are affected by soil microorganisms. Seedlings of the grass Agrostis capillaris originating from 3 different thyme sites were raised in the greenhouse. Seedlings were grown under four different soil treatments in a 2*2 fully factorial experiment. The monoterpene carvacrol was either added to standard greenhouse soil or left out, and soil was either sterilized (no soil microorganisms) or not (soil microorganisms present in soil). The presence of carvacrol in the soil strongly increased mortality of Agrostis plants, and this increase was highest on sterile soil. Plant biomass was reduced on soil amended with carvacrol, but only when the soil was also sterilized. Plants originating from sites where thyme produces essential oils containing mostly carvacrol had higher survival on soil treated with that monoterpene than plants originating from a site where thyme produced different types of terpenes, suggesting an adaptive response to the locally occurring terpene. Conclusions/Significance The study shows that presence of soil microorganisms can alleviate the negative effect of a common thyme monoterpene on the performance of an associated plant species, emphasizing the role of soil microbes in modulating plant-plant chemical interactions. PMID:22125596

  11. Synthesis of 'cineole cassette' monoterpenes in Nicotiana section Alatae: gene isolation, expression, functional characterization and phylogenetic analysis.

    Science.gov (United States)

    Fähnrich, Anke; Brosemann, Anne; Teske, Laura; Neumann, Madeleine; Piechulla, Birgit

    2012-08-01

    The scent bouquets of flowers of Nicotiana species, particularly those of section Alatae, are rich in monoterpenes, including 1,8-cineole, limonene, β-myrcene, α- and β-pinene, sabinene, and α-terpineol. New terpene synthase genes were isolated from flowers of Nicotiana bonariensis, N. forgetiana, N. longiflora, and N. mutabilis. The recombinant enzymes synthesize simultaneously the characteristic 'cineole cassette' monoterpenes with 1,8-cineole as the dominant volatile product. Interestingly, amino acid sequence comparison and phylogenetic tree construction clustered the newly isolated cineole synthases (CIN) of section Alatae together with the catalytically similar CIN of N. suaveolens of section Suaveolentes, thus suggesting a common ancestor. These CIN genes of N. bonariensis, N. forgetiana, N. longiflora, and N. mutabilis are distinct from the terpineol synthases (TERs) of the taxonomically related N. alata and N. langsdorfii (both Alatae), thus indicating gene diversification of monoterpene synthases in section Alatae. Furthermore, the presence of CINs in species of the American section Alatae supports the hypothesis that one parent of the Australian section Suaveolentes was a member of the present section Alatae. Amino acid sequences of the Nicotiana CINs and TERs were compared to identify relevant amino acids of the cyclization reaction from α-terpineol to 1,8-cineole.

  12. Fluctuations in pO2 in poorly and well-oxygenated spontaneous canine tumors before and during fractionated radiation therapy.

    Science.gov (United States)

    Brurberg, Kjetil G; Skogmo, Hege K; Graff, Bjørn A; Olsen, Dag R; Rofstad, Einar K

    2005-11-01

    The spatial heterogeneity in oxygen tension (pO2) in tumor tissue has been studied extensively, whereas, the information about the temporal heterogeneity is sparse. The purpose of the present study was to search for pO2 fluctuations in untreated and irradiated spontaneous canine tumors, and to investigate whether there is a relationship between overall tumor oxygenation status and pO2 fluctuation pattern. Six dogs scheduled for radiation therapy of head and neck cancer were included in the study. The primary tumors were irradiated with 18 fractions of 3 Gy. Eppendorf polarographic electrodes and OxyLite fluorescence probes were used to measure overall oxygenation status and pO2 fluctuation pattern, respectively. Tissue pO2 was recorded at three subsequent days prior to treatment, and immediately before radiation fraction 4, 7, and 10. Overall oxygenation status differed substantially among the tumors. Radiation therapy had no consistent effect on overall oxygenation status. Fluctuations in pO2 were detected in untreated as well as irradiated tumors, and independent of whether the tumors were poorly or well oxygenated. Fluctuations in pO2 can occur in untreated and irradiated spontaneous canine tumors. There is no correlation between pO2 fluctuation pattern and overall tumor oxygenation status.

  13. Design and Fabrication of a Ratiometric Planar Optode for Simultaneous Imaging of pH and Oxygen

    Directory of Open Access Journals (Sweden)

    Zike Jiang

    2017-06-01

    Full Text Available This paper presents a simple, high resolution imaging approach utilizing ratiometric planar optode for simultaneous measurement of dissolved oxygen (DO and pH. The planar optode comprises a plastic optical film coated with oxygen indicator Platinum(II octaethylporphyrin (PtOEP and reference quantum dots (QDs embedded in polystyrene (PS, pH indicator 5-Hexadecanoylamino-fluorescein (5-Fluorescein embedded in Hydromed D4 matrix. The indicator and reference dyes are excited by utilizing an LED (Light Emitting Diode source with a central wavelength of 405 nm, the emission respectively matches the different channels (red, green, and blue of a 3CCD camera after eliminating the excitation source by utilizing the color filter. The result shows that there is low cross-sensitivity between the two analytes dissolved oxygen and pH, and it shows good performance in the dynamic response ranges of 0–12 mg/L and a dynamic range of pH 6−8. The optode has been tested with regard to the response times, accuracy, photostability and stability. The applied experiment for detecting pH/Oxygen of sea-water under the influence of the rain drops is demonstrated. It is shown that the planar optode measuring system provides a simple method with low cross-talk for pH/Oxygen imaging in aqueous applications.

  14. An antimutagenic monoterpene from Malachra fasciata (Malvaveae)

    International Nuclear Information System (INIS)

    Ragasa, Consolacion Y.; Agbayani, Virgilio; Hernandez, Reynan B.; Rideout, John A.

    1997-01-01

    A monoterpene was isolated from the leaves of Malachra fasciata by gravity column chromatography. Its structure was elucidated by extensive1D and 2D NMR spectroscopy. It was identified as loliolide by comparison of its 1 H and 1 3 C NMR spectral data with those found in the literature. The compound was tested for its antimutagenicity potential by the use of the micronucleus test. Results of the study indicated a 64.4% reduction in micronucleated polychromatic erythrocytes induced by mitomycin C, when loliolide at a dosage of 14.8 mg/kg was administered to mice of the Swiss strain. Another isolate from the leaves of the plant was stigmasterol which structure was determined by comparison of its 1 H NMR spectal data with those found in the literature. (Author)

  15. Relations between pH, oxygen partial pressure and growth in cultured cell spheroids.

    Science.gov (United States)

    Carlsson, J; Acker, H

    1988-11-15

    The pH gradients, oxygen partial-pressure gradients and growth curves were measured for 7 different types of spheroids. Growth curves were measured in liquid overlay culture and thereafter the spheroids were attached to cover glasses and transferred to a chamber for micro-electrode measurements. The spheroids were randomly divided for pH or pO2 measurements which then were made under conditions as identical as possible. The decreases in pO2 and pH, delta pO2 and delta pH were calculated as the difference between the values in the culture medium and the values 200 micron inside the spheroids. Each type of spheroid had a certain relation between delta pO2 and delta pH. The human colon carcinoma HT29, the mouse mammary carcinoma EMT6 and the hamster lung V79-379A spheroids had high values of the quotient delta pO2/delta pH. The human thyroid carcinoma HTh7 spheroids and the 3 types of human glioma spheroids had lower quotients. There was a tendency for fast-growing spheroids to have high quotients. Two extreme types of spheroids, HT29 (high quotient) and U-118 MG (low quotient) were analyzed for lactate production and oxygen consumption. The U-118 MG spheroids produced about 3 times more lactate and consumed about 3 times less oxygen than the HT29 spheroids. The differences in lactate production could not be explained by differences in the pyruvate Km values of lactate dehydrogenase. The results indicate that there are significant metabolic differences between the spheroid systems studied.

  16. Thermodynamic study of selected monoterpenes II

    International Nuclear Information System (INIS)

    Štejfa, Vojtěch; Fulem, Michal; Růžička, Květoslav; Červinka, Ctirad

    2014-01-01

    Highlights: • (−)-Borneol, (−)-camphor, (±)-camphene, and (+)-fenchone were studied. • New thermodynamic data were measured and calculated. • Most of thermodynamic data are reported for the first time. - Abstract: A thermodynamic study of selected monoterpenes, (−)-borneol, (−)-camphor, (±)-camphene, and (+)-fenchone is presented in this work. The vapor pressure measurements were performed using the static method over the environmentally important temperature range from (238 to 308) K. Heat capacities of condensed phases were measured by Tian–Calvet calorimetry in the temperature interval from (258 to 355) K. The phase behavior was investigated by differential scanning calorimetry (DSC) from subambient temperatures up to the fusion temperatures. The thermodynamic properties in the ideal-gas state were calculated by combining statistical thermodynamic and density functional theory (DFT) calculations. Calculated ideal-gas heat capacities and experimental data for vapor pressures and condensed phase heat capacities were treated simultaneously to obtain a consistent thermodynamic description

  17. Secondary organic aerosols over oceans via oxidation of isoprene and monoterpenes from Arctic to Antarctic.

    Science.gov (United States)

    Hu, Qi-Hou; Xie, Zhou-Qing; Wang, Xin-Ming; Kang, Hui; He, Quan-Fu; Zhang, Pengfei

    2013-01-01

    Isoprene and monoterpenes are important precursors of secondary organic aerosols (SOA) in continents. However, their contributions to aerosols over oceans are still inconclusive. Here we analyzed SOA tracers from isoprene and monoterpenes in aerosol samples collected over oceans during the Chinese Arctic and Antarctic Research Expeditions. Combined with literature reports elsewhere, we found that the dominant tracers are the oxidation products of isoprene. The concentrations of tracers varied considerably. The mean average values were approximately one order of magnitude higher in the Northern Hemisphere than in the Southern Hemisphere. High values were generally observed in coastal regions. This phenomenon was ascribed to the outflow influence from continental sources. High levels of isoprene could emit from oceans and consequently have a significant impact on marine SOA as inferred from isoprene SOA during phytoplankton blooms, which may abruptly increase up to 95 ng/m³ in the boundary layer over remote oceans.

  18. The antimutagenic effect of monoterpenes against UV-irradiation-, 4NQO- and t-BOOH-induced mutagenesis in coli

    Directory of Open Access Journals (Sweden)

    Nikolić Biljana

    2011-01-01

    Full Text Available The aim of this work was to investigate the antimutagenic potential of monoterpenes from sage and basil in Escherichia coli. The mutagenic potential of monoterpenes was pre-screened with Salmonella/microsome reversion assay in strain TA100 and no mutagenic effect was detected. The antimutagenic potential against UV- 4NQO- and t-BOOH induced mutagenesis was evaluated in E. coli K12 and E. coli WP2 by reversion assays. The obtained results indicate that camphor and thujone reduce UV- and 4NQO-induced mutations; myrcene reduces t-BOOH-induced mutations, while eucalyptol and linalool reduce mutagenicity by all tested mutagens. Considering evolutionary conservation of DNA repair and antioxidative protection, the obtained results indicate that further antigenotoxicity studies should be undertaken in eukaryotes.

  19. The biosynthetic origin of irregular monoterpenes in Lavandula: isolation and biochemical characterization of a novel cis-prenyl diphosphate synthase gene, lavandulyl diphosphate synthase.

    Science.gov (United States)

    Demissie, Zerihun A; Erland, Lauren A E; Rheault, Mark R; Mahmoud, Soheil S

    2013-03-01

    Lavender essential oils are constituted predominantly of regular monoterpenes, for example linalool, 1,8-cineole, and camphor. However, they also contain irregular monoterpenes including lavandulol and lavandulyl acetate. Although the majority of genes responsible for the production of regular monoterpenes in lavenders are now known, enzymes (including lavandulyl diphosphate synthase (LPPS)) catalyzing the biosynthesis of irregular monoterpenes in these plants have not been described. Here, we report the isolation and functional characterization of a novel cis-prenyl diphosphate synthase cDNA, termed Lavandula x intermedia lavandulyl diphosphate synthase (LiLPPS), through a homology-based cloning strategy. The LiLPPS ORF, encoding for a 305-amino acid long protein, was expressed in Escherichia coli, and the recombinant protein was purified by nickel-nitrilotriacetic acid affinity chromatography. The approximately 34.5-kDa bacterially produced protein specifically catalyzed the head-to-middle condensation of two dimethylallyl diphosphate units to LPP in vitro with apparent Km and kcat values of 208 ± 12 μm and 0.1 s(-1), respectively. LiLPPS is a homodimeric enzyme with a sigmoidal saturation curve and Hill coefficient of 2.7, suggesting a positive co-operative interaction among its catalytic sites. LiLPPS could be used to modulate the production of lavandulol and its derivatives in plants through metabolic engineering.

  20. Monoterpene chemical speciation in a tropical rainforest:variation with season, height, and time of dayat the Amazon Tall Tower Observatory (ATTO)

    Science.gov (United States)

    María Yáñez-Serrano, Ana; Nölscher, Anke Christine; Bourtsoukidis, Efstratios; Gomes Alves, Eliane; Ganzeveld, Laurens; Bonn, Boris; Wolff, Stefan; Sa, Marta; Yamasoe, Marcia; Williams, Jonathan; Andreae, Meinrat O.; Kesselmeier, Jürgen

    2018-03-01

    Speciated monoterpene measurements in rainforest air are scarce, but they are essential for understanding the contribution of these compounds to the overall reactivity of volatile organic compound (VOC) emissions towards the main atmospheric oxidants, such as hydroxyl radicals (OH), ozone (O3) and nitrate radicals (NO3). In this study, we present the chemical speciation of gas-phase monoterpenes measured in the tropical rainforest at the Amazon Tall Tower Observatory (ATTO, Amazonas, Brazil). Samples of VOCs were collected by two automated sampling systems positioned on a tower at 12 and 24 m height and analysed using gas chromatography-flame ionization detection. The samples were collected in October 2015, representing the dry season, and compared with previous wet and dry season studies at the site. In addition, vertical profile measurements (at 12 and 24 m) of total monoterpene mixing ratios were made using proton-transfer-reaction mass spectrometry. The results showed a distinctly different chemical speciation between day and night. For instance, α-pinene was more abundant during the day, whereas limonene was more abundant at night. Reactivity calculations showed that higher abundance does not generally imply higher reactivity. Furthermore, inter- and intra-annual results demonstrate similar chemodiversity during the dry seasons analysed. Simulations with a canopy exchange modelling system show simulated monoterpene mixing ratios that compare relatively well with the observed mixing ratios but also indicate the necessity of more experiments to enhance our understanding of in-canopy sinks of these compounds.

  1. Electrochemical Studies of Monoterpenic Thiosemicarbazones as Corrosion Inhibitor for Steel in 1 M HCl

    Directory of Open Access Journals (Sweden)

    R. Idouhli

    2018-01-01

    Full Text Available We have studied the inhibitory effect of some Monoterpenic Thiosemicarbazones on steel corrosion in 1 M HCl solution. The potentiodynamic polarization and electrochemical impedance spectroscopy were used. The Monoterpenic Thiosemicarbazones have inhibited significantly the dissolution of steel. The inhibition efficiency increased with increasing inhibitor concentration and also with the increase in temperature (293–323 K. Furthermore, the results obtained revealed that the adsorption of inhibitor on steel surface obeys Langmuir adsorption model and the thermodynamic parameters such as enthalpy and activation energy were determined. The scanning electron microscopy combined with dispersive X-ray spectroscopy examinations were used to see the shape of the surface morphology and to determine the elemental composition. Scanning electron microscope (SEM images show that the surface damage decreases when the inhibitor is added. The quantum chemical calculations using density functional theory (DFT were performed in order to provide some insights into the electronic density distribution as well as the nature of inhibitor-steel interaction.

  2. Capturing of the monoterpene olefin limonene produced in Saccharomyces cerevisiae.

    Science.gov (United States)

    Jongedijk, Esmer; Cankar, Katarina; Ranzijn, Jorn; van der Krol, Sander; Bouwmeester, Harro; Beekwilder, Jules

    2015-01-01

    Monoterpene olefins such as limonene are plant compounds with applications as flavouring and fragrance agents, as solvents and potentially also in polymer and fuel chemistry. We engineered baker's yeast Saccharomyces cerevisiae to express a (-)-limonene synthase from Perilla frutescens and a (+)-limonene synthase from Citrus limon. Both proteins were expressed either with their native plastid targeting signal or in a truncated form in which the plastidial sorting signal was removed. The yeast host strain for expression was AE9 K197G, which expresses a mutant Erg20 enzyme. This enzyme catalyses the formation of geranyl diphosphate, which is the precursor for monoterpenes. Several methods were tested to capture limonene produced by the yeast. Extraction from the culture medium by pentane, or by the addition of CaCl2 followed by solid-phase micro-extraction, did not lead to detectable limonene, indicating that limonene is rapidly lost from the culture medium. Volatile terpenes such as limonene may also be trapped in a dodecane phase added to the medium during fermentation. This method resulted in recovery of 0.028 mg/l (+)-limonene and 0.060 mg/l (-)-limonene in strains using the truncated Citrus and Perilla synthases, respectively. Trapping the headspace during culture of the limonene synthase-expressing strains resulted in higher titres, at 0.12 mg/l (+)-limonene and 0.49 mg/l (-)-limonene. These results show that the volatile properties of the olefins produced require specific methods for efficient recovery of these molecules from biotechnological production systems. Copyright © 2014 John Wiley & Sons, Ltd.

  3. Microwave assisted bi-functional activation of β-bromo-tert-alcohols

    Indian Academy of Sciences (India)

    Spice and Flavour Science Department, CSIR-Central Food Technological Research Institute, .... ethanol at 2 atm pressure to afford (-)-p-menthane. α-. Terpineol was ..... time (min) Temp (◦C). 1. 52. 75 ... and 1c is the choice of the metal salt.

  4. Two new monoterpene glucosides from Xanthium strumarium subsp. sibiricum with their anti-inflammatory activity.

    Science.gov (United States)

    Jiang, Hai; Xing, Xudong; Yan, Meiling; Guo, Xinyue; Yang, Lin; Yang, Liu

    2018-06-01

    Two new monoterpene glucosides: xanmonoter A (1) and xanmonoter B (2) were isolated from Xanthium strumarium. Their structures were elucidated on the basis of 1D and 2D NMR, MS and CD analysis. Compounds 1 and 2 were tested for their anti-inflammatory activity with IC 50 values of 17.4, 22.1 μM, respectively.

  5. The Antibacterial Activity of Chitosan Products Blended with Monoterpenes and Their Biofilms against Plant Pathogenic Bacteria

    Directory of Open Access Journals (Sweden)

    Mohamed E. I. Badawy

    2016-01-01

    Full Text Available This study focuses on the biological activities of eleven chitosan products with a viscosity-average molecular weight ranging from 22 to 846 kDa in combination with the most active monoterpenes (geraniol and thymol, out of 10 tested, against four plant pathogenic bacteria, Agrobacterium tumefaciens, Erwinia carotovora, Corynebacterium fascians, and Pseudomonas solanacearum. The antibacterial activity was evaluated in vitro by the agar dilution technique as a minimum inhibitory concentration (MIC that was found to be dependent on the type of the microorganism tested. The most active product of chitosan was used for biofilm production enriched with geraniol and thymol (0.1 and 0.5% and the films were also evaluated against the tested bacteria. The biological bioactivities summarized here may provide novel insights into the functions of chitosan and some monoterpenes and potentially allow their use for food protection from microbial attack.

  6. The effects of lead, water hardness and pH on oxygen consumption ...

    African Journals Online (AJOL)

    Closed system respirometry was performed on captive juvenile Tilapia sparrmanii exposed for 96 hours to a range of Pb-acetate concentrations in hard and soft water to determine the effect of Pb in relation to water hardness and pH. For hard and soft water with a pH above 7.51 no change in the resting specific oxygen ...

  7. Assessment of the repellent effect of Lippia alba essential oil and major monoterpenes on the cattle tick Rhipicephalus microplus.

    Science.gov (United States)

    Lima, A da Silva; Carvalho, J F de; Peixoto, M G; Blank, A F; Borges, L M F; Costa Junior, L M

    2016-03-01

    The control of Rhipicephalus microplus (Ixodida: Ixodidae) is achieved using synthetic acaricides. However, resistant tick populations are widespread around the world. Plant essential oils can act as repellents, keeping ticks away from hosts and decreasing the selection pressure on synthetic acaricides. The aim of this study was to evaluate the in vitro repellent effect of Lippia alba essential oil on R. microplus larvae. Leaves from two L. alba genotypes maintained under the same agronomic and environmental conditions were collected. Essential oil was extracted by hydrodistillation and analysed by gas chromatography-mass spectrometry (GC-MS). The major monoterpenes detected in the chemical analysis were commercially acquired and tested. For the repellency test, a glass rod was vertically fixed to measure active climbing of approximately 30 R. microplus larvae aged 14-21 days in response to essential oils and monoterpenes. Repellency was evaluated at 1 h, 3 h and 5 h after treatment. Variation in repellent action was detected between the genotypes. The major monoterpenes identified in the essential oils (limonene and carvone) showed low repellent effects in comparison with intact essential oils. Thus, the present results showed that L. alba essential oil contains bioactive compounds with great repellent activity against ticks that varies according to the plant genotype. © 2015 The Royal Entomological Society.

  8. Release of lipoxygenase products and monoterpenes by tomato plants as an indicator of Botrytis cinerea-induced stress.

    Science.gov (United States)

    Jansen, R M C; Miebach, M; Kleist, E; van Henten, E J; Wildt, J

    2009-11-01

    Changes in emission of volatile organic compounds (VOCs) from tomato induced by the fungus Botrytis cinerea were studied in plants inoculated by spraying with suspensions containing B. cinerea spores. VOC emissions were analysed using on-line gas chromatography-mass spectrometry, with a time resolution of about 1 h, for up to 2 days after spraying. Four phases were delimited according to the starting point and the applied day/night rhythm of the experiments. These phases were used to demonstrate changes in VOC flux caused by B. cinerea infestation. Tomato plants inoculated with B. cinerea emitted a different number and amount of VOCs after inoculation compared to control plants that had been sprayed with a suspension without B. cinerea spores. The changes in emissions were dependent on time after inoculation as well as on the severity of infection. The predominant VOCs emitted after inoculation were volatile products from the lipoxygenase pathway (LOX products). The increased emission of LOX products proved to be a strong indicator of a stress response, indicating that VOC emissions can be used to detect plant stress at an early stage. Besides emission of LOX products, there were also increases in monoterpene emissions. However, neither increased emission of LOX products nor of monoterpenes is specific for B. cinerea attack. The emission of LOX products is also induced by other stresses, and increased emission of monoterpenes seems to be the result of mechanical damage induced by secondary stress impacts on leaves.

  9. Lycopene cyclase paralog CruP protects against reactive oxygen species in oxygenic photosynthetic organisms.

    Science.gov (United States)

    Bradbury, Louis M T; Shumskaya, Maria; Tzfadia, Oren; Wu, Shi-Biao; Kennelly, Edward J; Wurtzel, Eleanore T

    2012-07-03

    In photosynthetic organisms, carotenoids serve essential roles in photosynthesis and photoprotection. A previous report designated CruP as a secondary lycopene cyclase involved in carotenoid biosynthesis [Maresca J, et al. (2007) Proc Natl Acad Sci USA 104:11784-11789]. However, we found that cruP KO or cruP overexpression plants do not exhibit correspondingly reduced or increased production of cyclized carotenoids, which would be expected if CruP was a lycopene cyclase. Instead, we show that CruP aids in preventing accumulation of reactive oxygen species (ROS), thereby reducing accumulation of β-carotene-5,6-epoxide, a ROS-catalyzed autoxidation product, and inhibiting accumulation of anthocyanins, which are known chemical indicators of ROS. Plants with a nonfunctional cruP accumulate substantially higher levels of ROS and β-carotene-5,6-epoxide in green tissues. Plants overexpressing cruP show reduced levels of ROS, β-carotene-5,6-epoxide, and anthocyanins. The observed up-regulation of cruP transcripts under photoinhibitory and lipid peroxidation-inducing conditions, such as high light stress, cold stress, anoxia, and low levels of CO(2), fits with a role for CruP in mitigating the effects of ROS. Phylogenetic distribution of CruP in prokaryotes showed that the gene is only present in cyanobacteria that live in habitats characterized by large variation in temperature and inorganic carbon availability. Therefore, CruP represents a unique target for developing resilient plants and algae needed to supply food and biofuels in the face of global climate change.

  10. Cytotoxicity of InP/ZnS quantum dots related to reactive oxygen species generation

    Science.gov (United States)

    Chibli, Hicham; Carlini, Lina; Park, Soonhyang; Dimitrijevic, Nada M.; Nadeau, Jay L.

    2011-06-01

    Indium phosphide (InP) quantum dots (QDs) have emerged as a presumably less hazardous alternative to cadmium-based particles, but their cytotoxicity has not been well examined. Although their constituent elements are of very low toxicity to cells in culture, they nonetheless exhibit phototoxicity related to generation of reactive oxygen species by excited electrons and/or holes interacting with water and molecular oxygen. Using spin-trap electron paramagnetic resonance (EPR) spectroscopy and reporter assays, we find a considerable amount of superoxide and a small amount of hydroxyl radical formed under visible illumination of biocompatible InP QDs with a single ZnS shell, comparable to what is seen with CdTe. A double thickness shell reduces the reactive oxygen species concentration approximately two-fold. Survival assays in five cell lines correspondingly indicate a distinct reduction in toxicity with the double-shell InP QDs. Toxicity varies significantly across cell lines according to the efficiency of uptake, being overall significantly less than what is seen with CdTe or CdSe/ZnS. This indicates that InP QDs are a useful alternative to cadmium-containing QDs, while remaining capable of electron-transfer processes that may be undesirable or which may be exploited for photosensitization applications.

  11. Cytotoxicity of InP/ZnS quantum dots related to reactive oxygen species generation.

    Energy Technology Data Exchange (ETDEWEB)

    Chibli, H.; Carlini, L.; Park, S.; Dimitrijevic, N. M.; Nadeau, J. L. (Center for Nanoscale Materials); ( CSE); (McGill Univ.)

    2011-01-01

    Indium phosphide (InP) quantum dots (QDs) have emerged as a presumably less hazardous alternative to cadmium-based particles, but their cytotoxicity has not been well examined. Although their constituent elements are of very low toxicity to cells in culture, they nonetheless exhibit phototoxicity related to generation of reactive oxygen species by excited electrons and/or holes interacting with water and molecular oxygen. Using spin-trap electron paramagnetic resonance (EPR) spectroscopy and reporter assays, we find a considerable amount of superoxide and a small amount of hydroxyl radical formed under visible illumination of biocompatible InP QDs with a single ZnS shell, comparable to what is seen with CdTe. A double thickness shell reduces the reactive oxygen species concentration approximately two-fold. Survival assays in five cell lines correspondingly indicate a distinct reduction in toxicity with the double-shell InP QDs. Toxicity varies significantly across cell lines according to the efficiency of uptake, being overall significantly less than what is seen with CdTe or CdSe/ZnS. This indicates that InP QDs are a useful alternative to cadmium-containing QDs, while remaining capable of electron-transfer processes that may be undesirable or which may be exploited for photosensitization applications.

  12. Increased and altered fragrance of tobacco plants after metabolic engineering using three monoterpene synthases from lemon

    NARCIS (Netherlands)

    Lücker, J.; Schwab, W.; Hautum, van B.; Blaas, J.; Plas, van der L.H.W.; Bouwmeester, H.J.; Verhoeven, H.A.

    2004-01-01

    Wild-type tobacco (Nicotiana tabacum) plants emit low levels of terpenoids, particularly from the flowers. By genetic modification of tobacco cv Petit Havana SR1 using three different monoterpene synthases from lemon (Citrus limon L. Burm. f.) and the subsequent combination of these three into one

  13. Chemical composition and biological activities of the essential oil of Skimmia laureola leaves.

    Science.gov (United States)

    Barkatullah; Ibrar, Muhammad; Muhammad, Naveed; De Feo, Vincenzo

    2015-03-16

    The composition of the essential oil from leaves of Skimmia laureola was determined by GC and GC-MS. Twenty-eight components were identified, accounting for 93.9% of the total oil. The oil is mainly composed of monoterpenes (93.5%), of which monoterpene hydrocarbons and oxygenated monoterpenes represent 11.0% and 82.5%, respectively. Sesquiterpenes constitute only 0.3% of the total oil. Linalyl acetate is the main component (50.5%), with linalool (13.1%), geranyl acetate (8.5%) and cis-p-menth-2-en-1-ol (6.2%) as other principal constituents. The essential oil showed a significant antispasmodic activity, in a dose range of 0.03-10 mg/mL. The essential oil also possesses antibacterial and antifungal activities against some pathogenic strains. The phytotoxic and cytotoxic activities were also assessed.

  14. Irreversible impacts of heat on the emissions of monoterpenes, sesquiterpenes, phenolic BVOC and green leaf volatiles from several tree species

    Directory of Open Access Journals (Sweden)

    E. Kleist

    2012-12-01

    Full Text Available Climate change will induce extended heat waves to parts of the vegetation more frequently. High temperatures may act as stress (thermal stress on plants changing emissions of biogenic volatile organic compounds (BVOCs. As BVOCs impact the atmospheric oxidation cycle and aerosol formation, it is important to explore possible alterations of BVOC emissions under high temperature conditions. Applying heat to European beech, Palestine oak, Scots pine, and Norway spruce in a laboratory setup either caused the well-known exponential increases of BVOC emissions or induced irreversible changes of BVOC emissions. Considering only irreversible changes of BVOC emissions as stress impacts, we found that high temperatures decreased the de novo emissions of monoterpenes, sesquiterpenes and phenolic BVOC. This behaviour was independent of the tree species and whether the de novo emissions were constitutive or induced by biotic stress.

    In contrast, application of thermal stress to conifers amplified the release of monoterpenes stored in resin ducts of conifers and induced emissions of green leaf volatiles. In particular during insect attack on conifers, the plants showed de novo emissions of sesquiterpenes and phenolic BVOCs, which exceeded constitutive monoterpene emissions from pools. The heat-induced decrease of de novo emissions was larger than the increased monoterpene release caused by damage of resin ducts. For insect-infested conifers the net effect of thermal stress on BVOC emissions could be an overall decrease.

    Global change-induced heat waves may put hard thermal stress on plants. If so, we project that BVOC emissions increase is more than predicted by models only in areas predominantly covered with conifers that do not emit high amounts of sesquiterpenes and phenolic BVOCs. Otherwise overall effects of high temperature stress will be lower increases of BVOC emissions than predicted by algorithms that do

  15. Survey of foliar monoterpenes across the range of jack pine reveal three widespread chemotypes: implications to host expansion of invasive mountain pine beetle

    Directory of Open Access Journals (Sweden)

    Spencer eTaft

    2015-05-01

    Full Text Available The secondary compounds of pines (Pinus can strongly affect the physiology, ecology and behaviors of the bark beetles (Coleoptera: Curculionidae, Scolytinae that feed on sub-cortical tissues of hosts. Jack pine (Pinus banksiana has a wide natural distribution range in North America (Canada and USA and thus variations in its secondary compounds, particularly monoterpenes, could affect the host expansion of invasive mountain pine beetle (Dendroctonus ponderosae, which has recently expanded its range into the novel jack pine boreal forest. We investigated monoterpene composition of 601 jack pine trees from natural and provenance forest stands representing 63 populations from Alberta to the Atlantic coast. Throughout its range, jack pine exhibited three chemotypes characterized by high proportions of α-pinene, β-pinene, or limonene. The frequency with which the α-pinene and β-pinene chemotypes occurred at individual sites was correlated to climatic variables, such as continentality and mean annual precipitation, as were the individual α-pinene and β-pinene concentrations. However, other monoterpenes were generally not correlated to climatic variables or geographic distribution. Finally, while the enantiomeric ratios of β-pinene and limonene remained constant across jack pine’s distribution, (‒:(+-α-pinene exhibited two separate trends, thereby delineating two α-pinene phenotypes, both of which occurred across jack pine’s range. These significant variations in jack pine monoterpene composition may have cascading effects on the continued eastward spread and success of D. ponderosae in the Canadian boreal forest.

  16. Monoterpene synthase from Dracocephalum kotschyi and SPME-GC-MS analysis of its aroma profile

    Directory of Open Access Journals (Sweden)

    S. Saeidnia

    2014-04-01

    Full Text Available Dracocephalum kotschyi (Lamiaceae, as one of the remarkable aromatic plants, widely grows and also is cultivated in various temperate regions of Iran. There are diverse reports about the composition of the oil of this plant representing limonene derivatives as its major compounds. There is no report on cloning of mono- or sesquiterpene synthases from this plant. In the present study, the aroma profile of D. kotschyi has been extracted and analyzed via Headspace Solid-Phase Microextraction technique coupled with Gas Chromatography- Mass Spectroscopy. In order to determine the sequence of the active terpene synthase in this plant, first mRNA was prepared and cloning was performed by 3’ and 5’-RACEs-PCR method, then cDNA was sequenced and finally aligned with other recognized terpene synthases. The results showed that the plant leaves mainly comprised geranial (37.2%, limonene-10-al (28.5%, limonene (20.1% and 1,1-dimethoxy decane (14.5%. Sequencing the cDNA cloned from this plant revealed the presence of a monoterpene synthase absolutely similar to limonene synthase, responsible in formation of limonene, terpinolene, camphene and some other cyclic monoterpenes in its young leaves.

  17. Retinal Vessel Oxygen Saturation during 100% Oxygen Breathing in Healthy Individuals.

    Directory of Open Access Journals (Sweden)

    Olof Birna Olafsdottir

    Full Text Available To detect how systemic hyperoxia affects oxygen saturation in retinal arterioles and venules in healthy individuals.Retinal vessel oxygen saturation was measured in 30 healthy individuals with a spectrophotometric retinal oximeter (Oxymap T1. Oximetry was performed during breathing of room air, 100% oxygen (10 minutes, 6L/min and then again room air (10 minutes recovery.Mean oxygen saturation rises modestly in retinal arterioles during 100% oxygen breathing (94.5%±3.8 vs. 92.0%±3.7% at baseline, p<0.0001 and dramatically in retinal venules (76.2%±8.0% vs. 51.3%±5.6%, p<0.0001. The arteriovenous difference decreased during 100% oxygen breathing (18.3%±9.0% vs. 40.7%±5.7%, p<0.0001. The mean diameter of arterioles decreased during 100% oxygen breathing compared to baseline (9.7±1.4 pixels vs. 10.3±1.3 pixels, p<0.0001 and the same applies to the mean venular diameter (11.4±1.2 pixels vs. 13.3±1.5 pixels, p<0.0001.Breathing 100% oxygen increases oxygen saturation in retinal arterioles and more so in venules and constricts them compared to baseline levels. The dramatic increase in oxygen saturation in venules reflects oxygen flow from the choroid and the unusual vascular anatomy and oxygen physiology of the eye.

  18. Composition of essential oils isolated from the needles of Pinus uncinata and P. uliginosa grown in Poland.

    Science.gov (United States)

    Bonikowski, Radosław; Celiński, Konrad; Wojnicka-Półtorak, Aleksandra; Maliński, Tomasz

    2015-02-01

    The compositions of mountain pine (Pinus uncinata) and peat-bog pine (P. uliginosa) needle essential oils were investigated. Enantiomeric compositions of selected monoterpene hydrocarbons were also examined. Respectively, fifty-three and seventy-six components of the essential oils were identified using GC-MS and retention indexes. The main group of essential oil components of mountain pine needles were monoterpenes, and bornyl acetate constituted approximately 30% (46.3 g/100 g) of the oil. In peat-bog pine essential oil, monoterpenes and sesquiterpenes exhibited a similar content (ca. 40%). Bornyl acetate and α-pinene were the main constituents of both essential oils. In the essential oil of P. uncinata needles, limonene, camphene, myrcene and (E)-β-caryophyllene were also noticeable, while in the essential oil of P. uliginosa needles, Δ-car-3-ene, (E)-β-caryophyllene, germacrene D, δ-cadinene, germacrene D 4-ol and α-cadinol were present in notable quantities. In both essential oils, borneol propionate, isobutyrate, 2-methylbutyrate and isovalerate were detected. Their presence was confirmed by synthesis and analysis of the standards; retention indexes on a non-polar column are published herein.

  19. Transcriptome resources and functional characterization of monoterpene synthases for two host species of the mountain pine beetle, lodgepole pine (Pinus contorta) and jack pine (Pinus banksiana)

    Science.gov (United States)

    2013-01-01

    Background The mountain pine beetle (MPB, Dendroctonus ponderosae) epidemic has affected lodgepole pine (Pinus contorta) across an area of more than 18 million hectares of pine forests in western Canada, and is a threat to the boreal jack pine (Pinus banksiana) forest. Defence of pines against MPB and associated fungal pathogens, as well as other pests, involves oleoresin monoterpenes, which are biosynthesized by families of terpene synthases (TPSs). Volatile monoterpenes also serve as host recognition cues for MPB and as precursors for MPB pheromones. The genes responsible for terpene biosynthesis in jack pine and lodgepole pine were previously unknown. Results We report the generation and quality assessment of assembled transcriptome resources for lodgepole pine and jack pine using Sanger, Roche 454, and Illumina sequencing technologies. Assemblies revealed transcripts for approximately 20,000 - 30,000 genes from each species and assembly analyses led to the identification of candidate full-length prenyl transferase, TPS, and P450 genes of oleoresin biosynthesis. We cloned and functionally characterized, via expression of recombinant proteins in E. coli, nine different jack pine and eight different lodgepole pine mono-TPSs. The newly identified lodgepole pine and jack pine mono-TPSs include (+)-α-pinene synthases, (-)-α-pinene synthases, (-)-β-pinene synthases, (+)-3-carene synthases, and (-)-β-phellandrene synthases from each of the two species. Conclusion In the absence of genome sequences, transcriptome assemblies are important for defence gene discovery in lodgepole pine and jack pine, as demonstrated here for the terpenoid pathway genes. The product profiles of the functionally annotated mono-TPSs described here can account for the major monoterpene metabolites identified in lodgepole pine and jack pine. PMID:23679205

  20. Transcriptome resources and functional characterization of monoterpene synthases for two host species of the mountain pine beetle, lodgepole pine (Pinus contorta) and jack pine (Pinus banksiana).

    Science.gov (United States)

    Hall, Dawn E; Yuen, Macaire M S; Jancsik, Sharon; Quesada, Alfonso Lara; Dullat, Harpreet K; Li, Maria; Henderson, Hannah; Arango-Velez, Adriana; Liao, Nancy Y; Docking, Roderick T; Chan, Simon K; Cooke, Janice Ek; Breuil, Colette; Jones, Steven Jm; Keeling, Christopher I; Bohlmann, Jörg

    2013-05-16

    The mountain pine beetle (MPB, Dendroctonus ponderosae) epidemic has affected lodgepole pine (Pinus contorta) across an area of more than 18 million hectares of pine forests in western Canada, and is a threat to the boreal jack pine (Pinus banksiana) forest. Defence of pines against MPB and associated fungal pathogens, as well as other pests, involves oleoresin monoterpenes, which are biosynthesized by families of terpene synthases (TPSs). Volatile monoterpenes also serve as host recognition cues for MPB and as precursors for MPB pheromones. The genes responsible for terpene biosynthesis in jack pine and lodgepole pine were previously unknown. We report the generation and quality assessment of assembled transcriptome resources for lodgepole pine and jack pine using Sanger, Roche 454, and Illumina sequencing technologies. Assemblies revealed transcripts for approximately 20,000 - 30,000 genes from each species and assembly analyses led to the identification of candidate full-length prenyl transferase, TPS, and P450 genes of oleoresin biosynthesis. We cloned and functionally characterized, via expression of recombinant proteins in E. coli, nine different jack pine and eight different lodgepole pine mono-TPSs. The newly identified lodgepole pine and jack pine mono-TPSs include (+)-α-pinene synthases, (-)-α-pinene synthases, (-)-β-pinene synthases, (+)-3-carene synthases, and (-)-β-phellandrene synthases from each of the two species. In the absence of genome sequences, transcriptome assemblies are important for defence gene discovery in lodgepole pine and jack pine, as demonstrated here for the terpenoid pathway genes. The product profiles of the functionally annotated mono-TPSs described here can account for the major monoterpene metabolites identified in lodgepole pine and jack pine.

  1. Quasifree (p , 2 p ) Reactions on Oxygen Isotopes: Observation of Isospin Independence of the Reduced Single-Particle Strength

    Science.gov (United States)

    Atar, L.; Paschalis, S.; Barbieri, C.; Bertulani, C. A.; Díaz Fernández, P.; Holl, M.; Najafi, M. A.; Panin, V.; Alvarez-Pol, H.; Aumann, T.; Avdeichikov, V.; Beceiro-Novo, S.; Bemmerer, D.; Benlliure, J.; Boillos, J. M.; Boretzky, K.; Borge, M. J. G.; Caamaño, M.; Caesar, C.; Casarejos, E.; Catford, W.; Cederkall, J.; Chartier, M.; Chulkov, L.; Cortina-Gil, D.; Cravo, E.; Crespo, R.; Dillmann, I.; Elekes, Z.; Enders, J.; Ershova, O.; Estrade, A.; Farinon, F.; Fraile, L. M.; Freer, M.; Galaviz Redondo, D.; Geissel, H.; Gernhäuser, R.; Golubev, P.; Göbel, K.; Hagdahl, J.; Heftrich, T.; Heil, M.; Heine, M.; Heinz, A.; Henriques, A.; Hufnagel, A.; Ignatov, A.; Johansson, H. T.; Jonson, B.; Kahlbow, J.; Kalantar-Nayestanaki, N.; Kanungo, R.; Kelic-Heil, A.; Knyazev, A.; Kröll, T.; Kurz, N.; Labiche, M.; Langer, C.; Le Bleis, T.; Lemmon, R.; Lindberg, S.; Machado, J.; Marganiec-Gałązka, J.; Movsesyan, A.; Nacher, E.; Nikolskii, E. Y.; Nilsson, T.; Nociforo, C.; Perea, A.; Petri, M.; Pietri, S.; Plag, R.; Reifarth, R.; Ribeiro, G.; Rigollet, C.; Rossi, D. M.; Röder, M.; Savran, D.; Scheit, H.; Simon, H.; Sorlin, O.; Syndikus, I.; Taylor, J. T.; Tengblad, O.; Thies, R.; Togano, Y.; Vandebrouck, M.; Velho, P.; Volkov, V.; Wagner, A.; Wamers, F.; Weick, H.; Wheldon, C.; Wilson, G. L.; Winfield, J. S.; Woods, P.; Yakorev, D.; Zhukov, M.; Zilges, A.; Zuber, K.; R3B Collaboration

    2018-01-01

    Quasifree one-proton knockout reactions have been employed in inverse kinematics for a systematic study of the structure of stable and exotic oxygen isotopes at the R3B /LAND setup with incident beam energies in the range of 300 - 450 MeV /u . The oxygen isotopic chain offers a large variation of separation energies that allows for a quantitative understanding of single-particle strength with changing isospin asymmetry. Quasifree knockout reactions provide a complementary approach to intermediate-energy one-nucleon removal reactions. Inclusive cross sections for quasifree knockout reactions of the type O A (p ,2 p )N-1A have been determined and compared to calculations based on the eikonal reaction theory. The reduction factors for the single-particle strength with respect to the independent-particle model were obtained and compared to state-of-the-art ab initio predictions. The results do not show any significant dependence on proton-neutron asymmetry.

  2. Quasifree (p, 2p) Reactions on Oxygen Isotopes: Observation of Isospin Independence of the Reduced Single-Particle Strength.

    Science.gov (United States)

    Atar, L; Paschalis, S; Barbieri, C; Bertulani, C A; Díaz Fernández, P; Holl, M; Najafi, M A; Panin, V; Alvarez-Pol, H; Aumann, T; Avdeichikov, V; Beceiro-Novo, S; Bemmerer, D; Benlliure, J; Boillos, J M; Boretzky, K; Borge, M J G; Caamaño, M; Caesar, C; Casarejos, E; Catford, W; Cederkall, J; Chartier, M; Chulkov, L; Cortina-Gil, D; Cravo, E; Crespo, R; Dillmann, I; Elekes, Z; Enders, J; Ershova, O; Estrade, A; Farinon, F; Fraile, L M; Freer, M; Galaviz Redondo, D; Geissel, H; Gernhäuser, R; Golubev, P; Göbel, K; Hagdahl, J; Heftrich, T; Heil, M; Heine, M; Heinz, A; Henriques, A; Hufnagel, A; Ignatov, A; Johansson, H T; Jonson, B; Kahlbow, J; Kalantar-Nayestanaki, N; Kanungo, R; Kelic-Heil, A; Knyazev, A; Kröll, T; Kurz, N; Labiche, M; Langer, C; Le Bleis, T; Lemmon, R; Lindberg, S; Machado, J; Marganiec-Gałązka, J; Movsesyan, A; Nacher, E; Nikolskii, E Y; Nilsson, T; Nociforo, C; Perea, A; Petri, M; Pietri, S; Plag, R; Reifarth, R; Ribeiro, G; Rigollet, C; Rossi, D M; Röder, M; Savran, D; Scheit, H; Simon, H; Sorlin, O; Syndikus, I; Taylor, J T; Tengblad, O; Thies, R; Togano, Y; Vandebrouck, M; Velho, P; Volkov, V; Wagner, A; Wamers, F; Weick, H; Wheldon, C; Wilson, G L; Winfield, J S; Woods, P; Yakorev, D; Zhukov, M; Zilges, A; Zuber, K

    2018-02-02

    Quasifree one-proton knockout reactions have been employed in inverse kinematics for a systematic study of the structure of stable and exotic oxygen isotopes at the R^{3}B/LAND setup with incident beam energies in the range of 300-450  MeV/u. The oxygen isotopic chain offers a large variation of separation energies that allows for a quantitative understanding of single-particle strength with changing isospin asymmetry. Quasifree knockout reactions provide a complementary approach to intermediate-energy one-nucleon removal reactions. Inclusive cross sections for quasifree knockout reactions of the type ^{A}O(p,2p)^{A-1}N have been determined and compared to calculations based on the eikonal reaction theory. The reduction factors for the single-particle strength with respect to the independent-particle model were obtained and compared to state-of-the-art ab initio predictions. The results do not show any significant dependence on proton-neutron asymmetry.

  3. Oxygen partial pressure effects on the RF sputtered p-type NiO hydrogen gas sensors

    Science.gov (United States)

    Turgut, Erdal; Çoban, Ömer; Sarıtaş, Sevda; Tüzemen, Sebahattin; Yıldırım, Muhammet; Gür, Emre

    2018-03-01

    NiO thin films were grown by Radio Frequency (RF) Magnetron Sputtering method under different oxygen partial pressures, which are 0.6 mTorr, 1.3 mTorr and 2.0 mTorr. The effects of oxygen partial pressures on the thin films were analyzed through Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS) and Hall measurements. The change in the surface morphology of the thin films has been observed with the SEM and AFM measurements. While nano-pyramids have been obtained on the thin film grown at the lowest oxygen partial pressure, the spherical granules lower than 60 nm in size has been observed for the samples grown at higher oxygen partial pressures. The shift in the dominant XRD peak is realized to the lower two theta angle with increasing the oxygen partial pressures. XPS measurements showed that the Ni2p peak involves satellite peaks and two oxidation states of Ni, Ni2+ and Ni3+, have been existed together with the corresponding splitting in O1s spectrum. P-type conductivity of the grown NiO thin films are confirmed by the Hall measurements with concentrations on the order of 1013 holes/cm-3. Gas sensor measurements revealed minimum of 10% response to the 10 ppm H2 level. Enhanced responsivity of the gas sensor devices of NiO thin films is shown as the oxygen partial pressure increases.

  4. p53-competent cells and p53-deficient cells display different susceptibility to oxygen functionalized graphene cytotoxicity and genotoxicity.

    Science.gov (United States)

    Petibone, Dayton M; Mustafa, Thikra; Bourdo, Shawn E; Lafont, Andersen; Ding, Wei; Karmakar, Alokita; Nima, Zeid A; Watanabe, Fumiya; Casciano, Daniel; Morris, Suzanne M; Dobrovolsky, Vasily N; Biris, Alexandru S

    2017-11-01

    Due to the distinctive physical, electrical, and chemical properties of graphene nanomaterials, numerous efforts pursuing graphene-based biomedical and industrial applications are underway. Oxidation of pristine graphene surfaces mitigates its otherwise hydrophobic characteristic thereby improving its biocompatibility and functionality. Yet, the potential widespread use of oxidized graphene derivatives raises concern about adverse impacts on human health. The p53 tumor suppressor protein maintains cellular and genetic stability after toxic exposures. Here, we show that p53 functional status correlates with oxygen functionalized graphene (f-G) cytotoxicity and genotoxicity in vitro. The f-G exposed p53-competent cells, but not p53-deficient cells, initiated G 0 /G 1 phase cell cycle arrest, suppressed reactive oxygen species, and entered apoptosis. There was p53-dependent f-G genotoxicity evident as increased structural chromosome damage, but not increased gene mutation or chromatin loss. In conclusion, the cytotoxic and genotoxic potential for f-G in exposed cells was dependent on the p53 functional status. These findings have broad implications for the safe and effective implementation of oxidized graphene derivatives into biomedical and industrial applications. Published 2017. This article has been contributed to by US Government employees and their work is in the public domain in the USA. Published 2017. This article has been contributed to by US Government employees and their work is in the public domain in the USA.

  5. Bark beetles, pityogenes bidentatus, orienting to aggregation pheromone avoid conifer monoterpene odors when flying but not when walking

    Science.gov (United States)

    Previous studies have provided evidence that monoterpene odors from healthy host Scotch pine (Pinus sylvestris) and non-host Norway spruce (Picea abies) significantly reduce the attraction of flying bark beetles, Pityogenes bidentatus, to their aggregation pheromone components (grandisol and cis-ver...

  6. pH-Sensitive Amphiphilic Block-Copolymers for Transport and Controlled Release of Oxygen

    KAUST Repository

    Patil, Yogesh Raghunath

    2017-05-31

    Saturated fluorocarbons, their derivatives and emulsions are capable of dissolving anomalously high amounts of oxygen and other gases. The mechanistic aspects of this remarkable effect remain to be explored experimentally. Here, the synthesis of a library of amphiphilic fluorous block-copolymers incorporating different fluorinated monomers is described, and the capacity of these copolymers for oxygen transport in water is systematically investigated. The structure of the fluorous monomer employed was found to have a profound effect on both the oxygen-carrying capacity and the gas release kinetics of the polymer emulsions. Furthermore, the release of O2 from the polymer dispersions could be triggered by changing the pH of the solution. This is the first example of a polymer-based system for controlled release of a non-polar, non-covalently entrapped respiratory gas.

  7. pH-Sensitive Amphiphilic Block-Copolymers for Transport and Controlled Release of Oxygen

    KAUST Repository

    Patil, Yogesh Raghunath; Almahdali, Sarah; Vu, Khanh B.; Zapsas, Georgios; Hadjichristidis, Nikolaos; Rodionov, Valentin

    2017-01-01

    Saturated fluorocarbons, their derivatives and emulsions are capable of dissolving anomalously high amounts of oxygen and other gases. The mechanistic aspects of this remarkable effect remain to be explored experimentally. Here, the synthesis of a library of amphiphilic fluorous block-copolymers incorporating different fluorinated monomers is described, and the capacity of these copolymers for oxygen transport in water is systematically investigated. The structure of the fluorous monomer employed was found to have a profound effect on both the oxygen-carrying capacity and the gas release kinetics of the polymer emulsions. Furthermore, the release of O2 from the polymer dispersions could be triggered by changing the pH of the solution. This is the first example of a polymer-based system for controlled release of a non-polar, non-covalently entrapped respiratory gas.

  8. Data of oxygen- and pH-dependent oxidation of resveratrol

    Directory of Open Access Journals (Sweden)

    Annabell Plauth

    2016-12-01

    Full Text Available We show here if under physiologically relevant conditions resveratrol (RSV remains stable or not. We further show under which circumstances various oxidation products of RSV such as ROS can be produced. For example, in addition to the widely known effect of bicarbonate ions, high pH values promote the decay of RSV. Moreover, we analyse the impact of reduction of the oxygen partial pressure on the pH-dependent oxidation of RSV. For further interpretation and discussion of these focused data in a broader context we refer to the article “Hormetic shifting of redox environment by pro-oxidative resveratrol protects cells against stress” (Plauth et al., in press [1].

  9. Chemical composition and antibacterial activity of Origanum saccatum P.H. Davis essential oil obtained by solvent-free microwave extraction: comparison with hydrodistillation.

    Science.gov (United States)

    Sozmen, Fazli; Uysal, Burcu; Oksal, Birsen S; Kose, Elif Odabas; Deniz, I Gokhan

    2011-01-01

    The components of the essential oils (EOs) obtained by solvent-free microwave extraction (SFME) and hydrodistillation (HD) from endemic Origanum saccatum P.H. Davis were identified by using GC/MS. The main constituents of both EOs obtained by SFME and HD, respectively, from O. saccatum were p-cymene (72.5 and 70.6%), thymol (9.32 and 8.11%), and carvacrol (7.18 and 6.36%). The EO obtained by SFME contained substantially higher amounts of oxygenated compounds and lower amounts of monoterpenes than did the EO obtained by HD. The antibacterial activities of the EOs obtained by SFME and HD were evaluated with the disc diffusion method by comparison with 10 different bacterial strains. The antibacterial activity of the EO extracted by SFME was found to be more effective than that of the EO extracted by HD against seven of the tested bacteria.

  10. Metabolism of the intervertebral disc: effects of low levels of oxygen, glucose, and pH on rates of energy metabolism of bovine nucleus pulposus cells.

    Science.gov (United States)

    Bibby, Susan R S; Jones, Deborah A; Ripley, Ruth M; Urban, Jill P G

    2005-03-01

    In vitro measurements of metabolic rates of isolated bovine nucleus pulposus cells at varying levels of oxygen, glucose, and pH. To obtain quantitative information on the interactions between oxygen and glucose concentrations and pH, and the rates of oxygen and glucose consumption and lactic acid production, for disc nucleus cells. Disc cells depend on diffusion from blood vessels at the disc margins for supply of nutrients. Loss of supply is thought to lead to disc degeneration, but how loss of supply affects nutrient concentrations in the disc is not known; nutrient concentrations within discs can normally only be calculated, because concentration measurements are invasive. However, realistic predictions cannot be made until there are data from measurements of metabolic rates at conditions found in the disc in vivo, i.e., at low levels of oxygen, glucose, and pH. A metabolism chamber was designed to allow simultaneous recording of oxygen and glucose concentrations and of pH. These concentrations were measured electrochemically with custom-built glucose and oxygen sensors; lactic acid was measured biochemically. Bovine nucleus pulposus cells were isolated and inserted into the chamber, and simultaneous rates of oxygen and glucose consumption and of lactic acid production were measured over a range of glucose, oxygen, and pH levels. There were strong interactions between rates of metabolism and oxygen consumption and pH. At atmospheric oxygen levels, oxygen consumption rate at pH 6.2 was 32% of that at pH 7.4. The rate fell by 60% as oxygen concentration was decreased from 21 to 5% at pH 7.4, but only by 20% at pH 6.2. Similar interactions were seen for lactic acid production and glucose consumption rates; we found that glycolysis rates fell at low oxygen and glucose concentrations and low pH. Equations were derived that satisfactorily predict the effect of nutrient and metabolite concentrations on rates of lactic acid production rate and oxygen consumption. Disc

  11. Wet effluent diffusion denuder technique and the determination of volatile organic compounds in air. II. Monoterpenes

    Czech Academy of Sciences Publication Activity Database

    Sklenská, Jana; Broškovičová, Anna; Večeřa, Zbyněk

    2002-01-01

    Roč. 973, 1-2 (2002), s. 211-216 ISSN 0021-9673 R&D Projects: GA ČR GA203/98/0943 Grant - others:SPSDII(XE) EV/02/11 Institutional research plan: CEZ:AV0Z4031919 Keywords : wet effluent denuder technique * volatile organic compounds * monoterpenes Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.098, year: 2002

  12. Alkanes and terpenes in wood and leaves of Pinus jeffreyi and P. sabiniana

    Science.gov (United States)

    Robert P. Adams; Jessica W. Wright

    2012-01-01

    The wood oils of Pinus jeffreyi and P. sabiniana contain considerable amounts of heptane (76.6%, 92%), on a monoterpene basis. However, when entire wood extractables is considered, the amounts drop considerably (3.4%, 36.8%) with the major portion of the wood oils being diterpene acids. The leaf oil of P. jeffreyi...

  13. The influence of propofol on P-selectin expression and nitric oxide production in re-oxygenated human umbilical vein endothelial cells.

    LENUS (Irish Health Repository)

    Corcoran, T B

    2012-02-03

    BACKGROUND: Reperfusion injury is characterized by free radical production and endothelial inflammation. Neutrophils mediate much of the end-organ injury that occurs, requiring P-selectin-mediated neutrophil-endothelial adhesion, and this is associated with decreased endothelial nitric oxide production. Propofol has antioxidant properties in vitro which might abrogate this inflammation. METHODS: Cultured human umbilical vein endothelial cells were exposed to 20 h of hypoxia and then returned to normoxic conditions. Cells were treated with saline, Diprivan 5 microg\\/l or propofol 5 microg\\/l for 4 h after re-oxygenation and were then examined for P-selectin expression and supernatant nitric oxide concentrations for 24 h. P-selectin was determined by flow cytometry, and culture supernatant nitric oxide was measured as nitrite. RESULTS: In saline-treated cells, a biphasic increase in P-selectin expression was demonstrated at 30 min (P = 0.01) and 4 h (P = 0.023) after re-oxygenation. Propofol and Diprivan prevented these increases in P-selectin expression (P < 0.05). Four hours after re-oxygenation, propofol decreased endothelial nitric oxide production (P = 0.035). CONCLUSION: This is the first study to demonstrate an effect of propofol upon endothelial P-selectin expression. Such an effect may be important in situations of reperfusion injury such as cardiac transplantation and coronary artery bypass surgery. We conclude that propofol attenuates re-oxygenation-induced endothelial inflammation in vitro.

  14. Oxygen limitation modulates pH regulation of catabolism and hydrogenases, multidrug transporters, and envelope composition in Escherichia coli K-12

    Directory of Open Access Journals (Sweden)

    Radmacher Michael D

    2006-10-01

    Full Text Available Abstract Background In Escherichia coli, pH regulates genes for amino-acid and sugar catabolism, electron transport, oxidative stress, periplasmic and envelope proteins. Many pH-dependent genes are co-regulated by anaerobiosis, but the overall intersection of pH stress and oxygen limitation has not been investigated. Results The pH dependence of gene expression was analyzed in oxygen-limited cultures of E. coli K-12 strain W3110. E. coli K-12 strain W3110 was cultured in closed tubes containing LBK broth buffered at pH 5.7, pH 7.0, and pH 8.5. Affymetrix array hybridization revealed pH-dependent expression of 1,384 genes and 610 intergenic regions. A core group of 251 genes showed pH responses similar to those in a previous study of cultures grown with aeration. The highly acid-induced gene yagU was shown to be required for extreme-acid resistance (survival at pH 2. Acid also up-regulated fimbriae (fimAC, periplasmic chaperones (hdeAB, cyclopropane fatty acid synthase (cfa, and the "constitutive" Na+/H+ antiporter (nhaB. Base up-regulated core genes for maltodextrin transport (lamB, mal, ATP synthase (atp, and DNA repair (recA, mutL. Other genes showed opposite pH responses with or without aeration, for example ETS components (cyo,nuo, sdh and hydrogenases (hya, hyb, hyc, hyf, hyp. A hypF strain lacking all hydrogenase activity showed loss of extreme-acid resistance. Under oxygen limitation only, acid down-regulated ribosome synthesis (rpl,rpm, rps. Acid up-regulated the catabolism of sugar derivatives whose fermentation minimized acid production (gnd, gnt, srl, and also a cluster of 13 genes in the gadA region. Acid up-regulated drug transporters (mdtEF, mdtL, but down-regulated penicillin-binding proteins (dacACD, mreBC. Intergenic regions containing regulatory sRNAs were up-regulated by acid (ryeA, csrB, gadY, rybC. Conclusion pH regulates a core set of genes independently of oxygen, including yagU, fimbriae, periplasmic chaperones, and nha

  15. Respiratory symptoms and lung function in relation to wood dust and monoterpene exposure in the wood pellet industry.

    Science.gov (United States)

    Löfstedt, Håkan; Hagström, Katja; Bryngelsson, Ing-Liss; Holmström, Mats; Rask-Andersen, Anna

    2017-06-01

    Wood pellets are used as a source of renewable energy for heating purposes. Common exposures are wood dust and monoterpenes, which are known to be hazardous for the airways. The purpose of this study was to study the effect of occupational exposure on respiratory health in wood pellet workers. Thirty-nine men working with wood pellet production at six plants were investigated with a questionnaire, medical examination, allergy screening, spirometry, and nasal peak expiratory flow (nasal PEF). Exposure to wood dust and monoterpenes was measured. The wood pellet workers reported a higher frequency of nasal symptoms, dry cough, and asthma medication compared to controls from the general population. There were no differences in nasal PEF between work and leisure time. A lower lung function than expected (vital capacity [VC], 95%; forced vital capacity in 1 second [FEV 1 ], 96% of predicted) was noted, but no changes were noted during shifts. There was no correlation between lung function and years working in pellet production. Personal measurements of wood dust at work showed high concentrations (0.16-19 mg/m 3 ), and exposure peaks when performing certain work tasks. Levels of monoterpenes were low (0.64-28 mg/m 3 ). There was no association between exposure and acute lung function effects. In this study of wood pellet workers, high levels of wood dust were observed, and that may have influenced the airways negatively as the study group reported upper airway symptoms and dry cough more frequently than expected. The wood pellet workers had both a lower VC and FEV 1 than expected. No cross-shift changes were found.

  16. Oxygen release technique as a method for the determination of "δ-pO2-T" diagrams for MIEC oxides.

    Science.gov (United States)

    Starkov, Ilya; Bychkov, Sergey; Matvienko, Alexander; Nemudry, Alexander

    2014-03-28

    A new approach to the determination of oxygen nonstoichiometry (δ) of MIEC oxides as a continuous function of pO2 at high temperatures was developed. The description of the model allowing one to distinguish the contribution of oxygen released from the samples to the partial pressure of oxygen at the outlet of the continuous-flow fixed-bed reactor after the stepwise change of the oxygen partial pressure of inlet gas from 0.2 to 10(-5) atm and to calculate the dependence of δ on pO2 is presented. The criterion for assessing the achievement of quasi equilibrium release of oxygen from the MIEC oxides is proposed. The adequacy of the method was confirmed by comparing the obtained and published data for well-studied SrCo0.8Fe0.2O3-δ and SrFeO3-δ MIEC oxides.

  17. Oxygenation measurements in head and neck cancers during hyperbaric oxygenation

    International Nuclear Information System (INIS)

    Becker, A.; Kuhnt, T.; Dunst, J.; Liedtke, H.; Krivokuca, A.; Bloching, M.

    2002-01-01

    Background: Tumor hypoxia has proven prognostic impact in head and neck cancers and is associated with poor response to radiotherapy. Hyperbaric oxygenation (HBO) offers an approach to overcome hypoxia. We have performed pO 2 measurements in selected patients with head and neck cancers under HBO to determine in how far changes in the oxygenation occur and whether a possible improvement of oxygenation parameters is maintained after HBO. Patients and Methods: Seven patients (five male, two female, age 51-63 years) with squamous cell cancers of the head and neck were investigated (six primaries, one local recurrence). The median pO 2 prior to HBO was determined with the Eppendorf histograph. Sites of measurement were enlarged cervical lymph nodes (n = 5), the primary tumor (n = 1) and local recurrence (n = 1). Patients then underwent HBO (100% O 2 at 240 kPa for 30 minutes) and the continuous changes in the oxygenation during HBO were determined with a Licox probe. Patients had HBO for 30 minutes (n = 6) to 40 minutes (n = 1). HBO was continued because the pO 2 had not reached a steady state after 30 minutes. After decompression, patients ventilated pure oxygen under normobaric conditions and the course of the pO 2 was further measured over about 15 minutes. Results: Prior to HBO, the median tumor pO 2 in the Eppendorf histography was 8.6 ± 5.4 mm Hg (range 3-19 mm Hg) and the pO 2 measured with the Licox probe was 17.3 ± 25.5 mm Hg (range 0-73 mm Hg). The pO 2 increased significantly during HBO to 550 ± 333 mm Hg (range 85-984 mm Hg, p = 0.018). All patients showed a marked increase irrespective of the oxygenation prior to HBO. The maximum pO 2 in the tumor was reached after 10-33 minutes (mean 17 minutes). After leaving the hyperbaric chamber, the pO 2 was 282 ± 196 mm Hg. All patients maintained an elevated pO 2 for further 5-25 minutes (138 ± 128 mm Hg, range 42-334 mm Hg, p = 0.028 vs the pO 2 prior to HBO). Conclusions: Hyperbaric oxygenation resulted in a

  18. Natural variation in monoterpene synthesis in kiwifruit: transcriptional regulation of terpene synthases by NAC and ETHYLENE-INSENSITIVE3-like transcription factors.

    Science.gov (United States)

    Nieuwenhuizen, Niels J; Chen, Xiuyin; Wang, Mindy Y; Matich, Adam J; Perez, Ramon Lopez; Allan, Andrew C; Green, Sol A; Atkinson, Ross G

    2015-04-01

    Two kiwifruit (Actinidia) species with contrasting terpene profiles were compared to understand the regulation of fruit monoterpene production. High rates of terpinolene production in ripe Actinidia arguta fruit were correlated with increasing gene and protein expression of A. arguta terpene synthase1 (AaTPS1) and correlated with an increase in transcript levels of the 2-C-methyl-D-erythritol 4-phosphate pathway enzyme 1-deoxy-D-xylulose-5-phosphate synthase (DXS). Actinidia chinensis terpene synthase1 (AcTPS1) was identified as part of an array of eight tandemly duplicated genes, and AcTPS1 expression and terpene production were observed only at low levels in developing fruit. Transient overexpression of DXS in Nicotiana benthamiana leaves elevated monoterpene synthesis by AaTPS1 more than 100-fold, indicating that DXS is likely to be the key step in regulating 2-C-methyl-D-erythritol 4-phosphate substrate flux in kiwifruit. Comparative promoter analysis identified potential NAC (for no apical meristem [NAM], Arabidopsis transcription activation factor [ATAF], and cup-shaped cotyledon [CUC])-domain transcription factor) and ETHYLENE-INSENSITIVE3-like transcription factor (TF) binding sites in the AaTPS1 promoter, and cloned members of both TF classes were able to activate the AaTPS1 promoter in transient assays. Electrophoretic mobility shift assays showed that AaNAC2, AaNAC3, and AaNAC4 bind a 28-bp fragment of the proximal NAC binding site in the AaTPS1 promoter but not the A. chinensis AcTPS1 promoter, where the NAC binding site was mutated. Activation could be restored by reintroducing multiple repeats of the 12-bp NAC core-binding motif. The absence of NAC transcriptional activation in ripe A. chinensis fruit can account for the low accumulation of AcTPS1 transcript, protein, and monoterpene volatiles in this species. These results indicate the importance of NAC TFs in controlling monoterpene production and other traits in ripening fruits. © 2015 American

  19. Measurements of partial oxygen pressure pO2 using the OxyLite system in R3327-AT tumors under isoflurane anesthesia.

    Science.gov (United States)

    Wen, Bixiu; Urano, Muneyasu; O'Donoghue, Joseph A; Ling, C Clifton

    2006-09-01

    The presence of oxygen-deficient tumor cells is a critical issue in cancer therapy. To identify tumor hypoxia, tissue partial oxygen pressure (pO2) can be measured directly. The OxyLite system allows determination of pO2 in tumors and permits continuous measurements of pO2 at a fixed point. In this study, this system was used to continuously measure pO2 in R3327-AT tumors in animals anesthetized with isoflurane. In addition, continuous pO2 measurement was performed in the muscle in non-tumor-bearing animals. In animals breathing isoflurane balanced by air, tumor pO2 at fixed positions decreased rapidly within 1-2 min of probe positioning but remained stable thereafter. In animals breathing isoflurane balanced by pure oxygen, tumor pO2 was higher and remained high. We also measured pO2 values at multiple positions in R3327-AT tumors of various sizes, with anesthetized animals breathing either air or pure oxygen. Our data showed that the frequency of pO2 measurements below 2.5 or 5.0 mmHg was significantly higher in animals breathing air than in animals breathing pure oxygen. Measurements in different-sized tumors showed that the mean pO2 value decreased as tumor volume increased, with the largest change occurring between tumor volumes of 100 and 200 mm3. Our data demonstrate that the OxyLite system, when used with isoflurane anesthesia, is a valuable tool in the study of tumor hypoxia.

  20. The effects of intermittent exposure to low pH and oxygen conditions on survival and growth of juvenile red abalone

    Science.gov (United States)

    Kim, T. W.; Barry, J. P.; Micheli, F.

    2013-02-01

    Exposure of nearshore animals to hypoxic, low pH waters upwelled from below the continental shelf and advected near the coast may be stressful to marine organisms and lead to impaired physiological performance. We mimicked upwelling conditions in the laboratory and tested the effect of fluctuating exposure to water with low pH and/or low oxygen levels on the mortality and growth of juvenile red abalone (Haliotis rufescens, shell length 5-10 mm). Mortality rates of juvenile abalone exposed to low pH (7.5, total scale) and low O2 (40% saturation, 5 mg L-1) conditions for periods of 3 to 6 h every 3-5 days over 2 weeks did not differ from those exposed to control conditions (O2: 100% saturation, 12 mg L-1; pH 8.0). However, when exposure was extended to 24 h repeated twice over a 15 day period, juveniles experienced higher mortality in the low oxygen treatments compared to control conditions, regardless of pH levels (pH 7.5 vs. 8.0). Growth rates were reduced significantly when juveniles were exposed to low pH or low oxygen treatments and the growth was lowest when low pH exposure was combined with low O2. Furthermore, individual variation of growth rate increased when they were exposed to low pH and low O2 conditions. These results indicate that prolonged exposure to low oxygen levels is detrimental for the survival of red abalone, whereas both pH and oxygen is a crucial factor for their growth. However, given the higher individual variation in growth rate, they may have an ability to adapt to extended exposure to upwelling conditions.

  1. Indoor secondary organic aerosols formation from ozonolysis of monoterpene: An example of d-limonene with ammonia and potential impacts on pulmonary inflammations.

    Science.gov (United States)

    Niu, Xinyi; Ho, Steven Sai Hang; Ho, Kin Fai; Huang, Yu; Cao, Junji; Shen, Zhenxing; Sun, Jian; Wang, Xiumei; Wang, Yu; Lee, Shuncheng; Huang, Rujin

    2017-02-01

    Monoterpene is one class of biogenic volatile organic compounds (BVOCs) which widely presents in household cleaning products and air fresheners. It plays reactive role in secondary organic aerosols (SOAs) formation with ozone (O 3 ) in indoor environments. Such ozonolysis can be influenced by the presence of gaseous pollutants such as ammonia (NH 3 ). This study focuses on investigations of ozone-initiated formation of indoor SOAs with d-limonene, one of the most abundant indoor monoterpenes, in a large environmental chamber. The maximum total particle number concentration from the ozonolysis in the presence of NH 3 was 60% higher than that in the absence of NH 3 . Both of the nuclei coagulation and condensation involve in the SOAs growth. The potential risks of pulmonary injury for the exposure to the secondary particles formed were presented with the indexes of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-10 (IL-10) expression levels in bronchoalveolar lavage fluid (BALF) upon intratracheal instillation in mice lung for 6 and 12h. The results indicated that there was 22-39% stronger pulmonary inflammatory effect on the particles generated with NH 3 . This is a pilot study which demonstrates the toxicities of the indoor SOAs formed from the ozonolysis of a monoterpene. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. The effects of intermittent exposure to low-pH and low-oxygen conditions on survival and growth of juvenile red abalone

    Science.gov (United States)

    Kim, T. W.; Barry, J. P.; Micheli, F.

    2013-11-01

    Exposure of nearshore animals to hypoxic, low-pH waters upwelled from below the continental shelf and advected near the coast may be stressful to marine organisms and lead to impaired physiological performance. We mimicked upwelling conditions in the laboratory and tested the effect of fluctuating exposure to water with low-pH and/or low-oxygen levels on the mortality and growth of juvenile red abalone (Haliotis rufescens, shell length 5-10 mm). Mortality rates of juvenile abalone exposed to low-pH (7.5, total scale) and low-O2 (40% saturation, mg L-1) conditions for periods of 3 to 6 h every 3-5 days over 2 weeks did not differ from those exposed to control conditions (O2: 100% saturation, 12 mg L-1; pH 8.0). However, when exposure was extended to 24 h, twice over a 15-day period, juveniles experienced 5-20% higher mortality in the low-oxygen treatments compared to control conditions. Growth rates were reduced significantly when juveniles were exposed to low-oxygen and low-pH treatments. Furthermore, individual variation of growth rate increased when juveniles were exposed simultaneously to low-pH and low-O2 conditions. These results indicate that prolonged exposure to low-oxygen levels is detrimental for the survival of red abalone, whereas pH is a crucial factor for their growth. However, the high individual variation in growth rate under low levels of both pH and oxygen suggests that cryptic phenotypic plasticity may promote resistance to prolonged upwelling conditions by a portion of the population.

  3. Dose-Dependent and Species-Specific Responses of Pine Bark Beetles (Coeoptera: Scolytidae) to Monoterpenes in Association with Phermones

    Science.gov (United States)

    Daniel R. Miller; John H. Borden

    2000-01-01

    Monoterpenes affected the attraction of three sympatric species of bark beetles (Coleoptera: Scolytidae) to pheromone-baited multiple-funnel traps in stands of lodgepole pine. Catches of Ips pini(Say) in traps baited with its pheromone, ipsdienol, were directly related to the release rates of 3-carene, ß-pphellandrene, and ß-pinene. Catches of

  4. Natural Variation in Monoterpene Synthesis in Kiwifruit: Transcriptional Regulation of Terpene Synthases by NAC and ETHYLENE-INSENSITIVE3-Like Transcription Factors1

    Science.gov (United States)

    Nieuwenhuizen, Niels J.; Chen, Xiuyin; Wang, Mindy Y.; Matich, Adam J.; Perez, Ramon Lopez; Allan, Andrew C.; Green, Sol A.; Atkinson, Ross G.

    2015-01-01

    Two kiwifruit (Actinidia) species with contrasting terpene profiles were compared to understand the regulation of fruit monoterpene production. High rates of terpinolene production in ripe Actinidia arguta fruit were correlated with increasing gene and protein expression of A. arguta terpene synthase1 (AaTPS1) and correlated with an increase in transcript levels of the 2-C-methyl-d-erythritol 4-phosphate pathway enzyme 1-deoxy-d-xylulose-5-phosphate synthase (DXS). Actinidia chinensis terpene synthase1 (AcTPS1) was identified as part of an array of eight tandemly duplicated genes, and AcTPS1 expression and terpene production were observed only at low levels in developing fruit. Transient overexpression of DXS in Nicotiana benthamiana leaves elevated monoterpene synthesis by AaTPS1 more than 100-fold, indicating that DXS is likely to be the key step in regulating 2-C-methyl-d-erythritol 4-phosphate substrate flux in kiwifruit. Comparative promoter analysis identified potential NAC (for no apical meristem [NAM], Arabidopsis transcription activation factor [ATAF], and cup-shaped cotyledon [CUC])-domain transcription factor) and ETHYLENE-INSENSITIVE3-like transcription factor (TF) binding sites in the AaTPS1 promoter, and cloned members of both TF classes were able to activate the AaTPS1 promoter in transient assays. Electrophoretic mobility shift assays showed that AaNAC2, AaNAC3, and AaNAC4 bind a 28-bp fragment of the proximal NAC binding site in the AaTPS1 promoter but not the A. chinensis AcTPS1 promoter, where the NAC binding site was mutated. Activation could be restored by reintroducing multiple repeats of the 12-bp NAC core-binding motif. The absence of NAC transcriptional activation in ripe A. chinensis fruit can account for the low accumulation of AcTPS1 transcript, protein, and monoterpene volatiles in this species. These results indicate the importance of NAC TFs in controlling monoterpene production and other traits in ripening fruits. PMID:25649633

  5. A theoretical model for the effects of reduced hemoglobin-oxygen affinity on tumor oxygenation

    International Nuclear Information System (INIS)

    Kavanagh, Brian D.; Secomb, Timothy W.; Hsu, Richard; Lin, P.-S.; Venitz, Jurgen; Dewhirst, Mark W.

    2002-01-01

    Purpose: To develop a theoretical model for oxygen delivery to tumors, and to use the model to simulate the effects of changing the affinity of hemoglobin for oxygen on tumor oxygenation. Methods and Materials: Hemoglobin affinity is expressed in terms of P 50 , the partial pressure of oxygen (Po 2 ) at half saturation. Effects of changing P 50 on arterial Po 2 are predicted using an effective vessel approach to describe diffusive oxygen transport in the lungs, assuming fixed systemic oxygen demand and fixed blood flow rate. The decline in oxygen content of blood as it flows through normal tissue before entering the tumor region is assumed fixed. The hypoxic fraction of the tumor region is predicted using a three-dimensional simulation of diffusion from a network of vessels whose geometry is derived from observations of tumor microvasculature in the rat. Results: In air-breathing rats, predicted hypoxic fraction decreases with moderate increases in P 50 , but increases with further increases of P 50 , in agreement with previous experimental results. In rats breathing hyperoxic gases, and in humans breathing either normoxic or hyperoxic gases, increased P 50 is predicted to improve tumor oxygenation. Conclusions: The results support the administration of synthetic agents to increase P 50 during radiation treatment of tumors

  6. Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants.

    Science.gov (United States)

    Degenhardt, Jörg; Köllner, Tobias G; Gershenzon, Jonathan

    2009-01-01

    The multitude of terpene carbon skeletons in plants is formed by enzymes known as terpene synthases. This review covers the monoterpene and sesquiterpene synthases presenting an up-to-date list of enzymes reported and evidence for their ability to form multiple products. The reaction mechanisms of these enzyme classes are described, and information on how terpene synthase proteins mediate catalysis is summarized. Correlations between specific amino acid motifs and terpene synthase function are described, including an analysis of the relationships between active site sequence and cyclization type and a discussion of whether specific protein features might facilitate multiple product formation.

  7. Formation and annealing of metastable (interstitial oxygen)-(interstitial carbon) complexes in n- and p-type silicon

    CERN Document Server

    Makarenko, L F; Lastovskii, S B; Murin, L I; Moll, M; Pintilie, I

    2014-01-01

    It is shown experimentally that, in contrast to the stable configuration of (interstitial carbon)-(interstitial oxygen) complexes (CiOi), the corresponding metastable configuration (CiOi{*}) cannot be found in n-Si based structures by the method of capacitance spectroscopy. The rates of transformation CiOi{*} -> CiOi are practically the same for both n- and p-Si with a concentration of charge carriers of no higher than 10(13) cm(-3). It is established that the probabilities of the simultaneous formation of stable and metastable configurations of the complex under study in the case of the addition of an atom of interstitial carbon to an atom of interstitial oxygen is close to 50\\%. This is caused by the orientation dependence of the interaction potential of an atom of interstitial oxygen with an interstitial carbon atom, which diffuses to this oxygen atom.

  8. Monoterpene concentration in Douglas-fir in relation to geographic location and resistance to attack by the Douglas-fir beetle

    Science.gov (United States)

    J.W. Hanover; M.M. Furniss

    1966-01-01

    The concentration of monoterpenes in Pinus monticola Dougl. has been shown to be genetically controlled (Hanover, in preparation). Genetic control of terpene concentration has been implied, also, from analyses of parents or interspecies hybrids in other species (Bannister et al. 1959; Williams and Bannister 1962; Smith 1964, and Forde 1964). Evidence...

  9. WET AND DRY SEASON ECOSYSTEM LEVEL FLUXES OF ISOPRENE AND MONOTERPENES FROM A SOUTHEAST ASIAN SECONDARY FOREST AND RUBBER TREE PLANTATION

    Science.gov (United States)

    Canopy scale fluxes of isoprene and monoterpenes were investigated in both wet and dry seasons above a rubber tree (Hevea brasiliensis)/secondary tropical forest in the Yunnan province of southwestern China. Drought conditions were unusually high during the dry season experiment....

  10. Response of brain oxygenation and metabolism to deep hypothermic circulatory arrest in newborn piglets: comparison of pH-stat and alpha-stat strategies.

    Science.gov (United States)

    Markowitz, Scott D; Mendoza-Paredes, Alberto; Liu, Huiping; Pastuszko, Peter; Schultz, Steven P; Schears, Gregory J; Greeley, William J; Wilson, David F; Pastuszko, Anna

    2007-07-01

    To determine the effect of pH-stat as compared with alpha-stat management on brain oxygenation, level of striatal extracellular dopamine, phosphorylation, and levels of protein kinase B (Akt) and cyclic adenosine 3', 5'-monophosphate response element-binding protein (CREB), and levels of extracellular signal-regulated kinase (ERK)1/2, Bcl-2, and Bax in a piglet model of deep hypothermic circulatory arrest (DHCA). The piglets were placed on cardiopulmonary bypass (CPB), cooled with pH-stat or alpha-stat to 18 degrees C, subjected to 90 minutes of DHCA, rewarmed, weaned from CPB, and maintained for two hours recovery. The cortical oxygen was measured by: quenching of phosphorescence; dopamine by microdialysis; phosphorylation of CREB (p-CREB), ERK (p-ERK) 1/2, Akt (p-Akt), and level of Bcl-2, Bax by Western blots. Oxygen pressure histograms for the microvasculature of the cortex show substantially higher oxygen levels during cooling and during the oxygen depletion period after cardiac arrest (up to 15 minutes) when using pH-stat compared with alpha-stat management. Significant increases in dopamine occurred at 45 minutes and 60 minutes of DHCA in the alpha-stat and pH-stat groups, respectively. The p-CREB and p-Akt in the pH-stat group were significantly higher than in the alpha-stat group (140 +/- 9%, p model, prolongs "safe" time of DHCA and provides some brain protection against ischemic injury.

  11. High-performance liquid chromatographic enantioseparation of monoterpene-based 2-amino carboxylic acids on macrocyclic glycopeptide-based phases.

    Science.gov (United States)

    Sipos, László; Ilisz, István; Pataj, Zoltán; Szakonyi, Zsolt; Fülöp, Ferenc; Armstrong, Daniel W; Péter, Antal

    2010-10-29

    The enantiomers of five monoterpene-based 2-amino carboxylic acids were directly separated on chiral stationary phases containing macrocyclic glycopeptide antibiotics such as teicoplanin (Astec Chirobiotic T and T2) and teicoplanin aglycone (Chirobiotic TAG) as chiral selectors. The effects of pH, the mobile phase composition, the structure of the analyte and temperature on the separations were investigated. Experiments were performed at constant mobile phase compositions in the temperature range 10-40°C to study the effects of temperature and thermodynamic parameters on separations. Apparent thermodynamic parameters and T(iso) values were calculated from plots of ln k or ln α versus 1/T. Some mechanistic aspects of the chiral recognition process are discussed with respect to the structures of the analytes. It was found that the enantioseparations were in most cases enthalpy driven. The sequence of elution of the enantiomers was determined in all cases. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Activity and stability trends of perovskite oxides for oxygen evolution catalysis at neutral pH

    OpenAIRE

    Ling, Chen; Jia, Hongfei; Han, Binghong; Risch, Marcel; Lee, Yueh Lin; Shao-Horn, Yang

    2015-01-01

    Perovskite oxides (ABO[subscript 3]) have been studied extensively to promote the kinetics of the oxygen evolution reaction (OER) in alkaline electrolytes. However, developing highly active catalysts for OER at near-neutral pH is desirable for many photoelectrochemical/electrochemical devices. In this paper, we systematically studied the activity and stability of well-known perovskite oxides for OER at pH 7. Previous activity descriptors established for perovskite oxides at pH 13, such as hav...

  13. Influence of oxygen, albumin and pH on copper dissolution in a simulated uterine fluid.

    Science.gov (United States)

    Bastidas, D M; Cano, E; Mora, E M

    2005-06-01

    The aim of this paper is to study the influence of albumin content, from 5 to 45 g/L, on copper dissolution and compounds composition in a simulated uterine solution. Experiments were performed in atmospheric pressure conditions and with an additional oxygen pressure of 0.2 atmospheres, at 6.3 and 8.0 pH values, and at a temperature of 37 +/- 0.1 degrees C for 1, 3, 7, and 30 days experimentation time. The copper dissolution rate has been determined using absorbance measurements, finding the highest value for pH 8.0, 35 g/L albumin, and with an additional oxygen pressure of 0.2 atmospheres: 674 microg/day for 1 day, and 301 microg/day for 30 days. X-ray photoelectron spectroscopy (XPS) results show copper(II) as the main copper oxidation state at pH 8.0; and copper(I) and metallic copper at pH 6.3. The presence of albumin up to 35 g/L, accelerates copper dissolution. For high albumin content a stabilisation on the copper dissolution takes place. Corrosion product layer morphology is poorly protective, showing paths through which copper ions can release.

  14. Analysis of enantiomeric and non-enantiomeric monoterpenes in plant emissions using portable dynamic air sampling/solid-phase microextraction (PDAS-SPME) and chiral gas chromatography/mass spectrometry

    Science.gov (United States)

    Yassaa, Noureddine; Williams, Jonathan

    A portable dynamic air sampler (PDAS) using a porous polymer solid-phase microextraction (SPME) fibre has been validated for the determination of biogenic enantiomeric and non-enantiomeric monoterpenes in air. These compounds were adsorbed in the field, and then thermally desorbed at 250 °C in a gas chromatograph injector port connected via a β-cyclodextrin capillary separating column to a mass spectrometer. The optimized method has been applied for investigating the emissions of enantiomeric monoterpenes from Pseudotsuga menziesii (Douglas-fir), Rosmarinus officinalis (Rosemary) and Lavandula lanata (Lavender) which were selected as representative of coniferous trees and aromatic plants, respectively. The enantiomers of α-pinene, sabinene, camphene, δ-3-carene, β-pinene, limonene, β-phellandrene, 4-carene and camphor were successfully determined in the emissions from the three plants. While Douglas-fir showed a strong predominance toward (-)-enantiomers, Rosemary and Lavender demonstrated a large variation in enantiomeric distribution of monoterpenes. The simplicity, rapidity and sensitivity of dynamic sampling with porous polymer coated SPME fibres coupled to chiral capillary gas chromatography/mass spectrometry (GC/MS) makes this method potentially useful for in-field investigations of atmosphere-biosphere interactions and studies of optically explicit atmospheric chemistry.

  15. Effects of salinity and pH on the activity and oxygen consumption of Brachionus plicatilis (rotatoria)

    Energy Technology Data Exchange (ETDEWEB)

    Epp, R.W.; Winston, P.W.

    1978-01-01

    Activity and respiratory rates of the rotifer, Brachionus plicatilis, were determined following exposure to pH values of 6.5, 7.5 and 8.5 and to concentrations of 10, 50 and 100 mosm. Changes in the hydrogen-ion concentration had no detectable effect on either activity or metabolism. Acute reduction in osmolarity of the medium resulted in a reduction in oxygen consumption and activity. Both activity and oxygen consumption increased upon acclimatization to osmolarities of 50 and 100 mosm.

  16. Natural abundance deuterium nuclear magnetic resonance spectroscopy: Study of the biosynthesis of monoterpenes

    International Nuclear Information System (INIS)

    Leopold, M.F.

    1990-01-01

    Deuterium NMR spectroscopy at natural abundance (D NMR-na) is a new technique for exploring the biosynthesis of small molecules such as monoterpenes. The analysis of relative site-specific deuterium integration values is an effective means of measuring isotope effects, and examining the regio- and stereochemistry of biosynthetic reactions. The deuterium integration values of linalyl acetate and limonene isolated from the same source were consistent and showed that proton abstraction from the postulated α-terpinyl cation intermediate to form limonene is regioselective from the methyl derived from the Cs methyl of the precursor, geranyl diphosphate. This regiochemistry was observed in limonene samples from different sources and the measured primary kinetic isotope effect ranged from 0.25 to in excess of 100 (no deuterium was removed within experimental error). Various α- and β-pinene samples were isolated and D NMR-na analysis showed evidence of isotopically sensitive partitioning of the pinylcation in the formation of these products. This spectral analysis supported published radiolabeling studies but did not require synthesis of substrates or enzyme purification. The formation of 3-carene occurs without isomerization of the double bond which was previously postulated. The olefinic deuterium of the bicyclic compound was traced to the depleted deuterium at C 2 of isopentyl diphosphate by D NMR-na data and this supported unpublished radiolabeling studies. Study of irregular monoterpenes, chrysanthemyl acetate and lyratyl acetate, showed partitioning of dimethylallyl diphosphate (DMAPP) by chrysanthemyl cyclase. The α-secondary kinetic isotope effect of 1.06-1.12, obtained from relative deuterium integration values, suggested that S N 1 ionization of one molecule of DMAPP is the first step in the condensation reaction

  17. Mitigation of acrylamide-induced behavioral deficits, oxidative impairments and neurotoxicity by oral supplements of geraniol (a monoterpene) in a rat model.

    Science.gov (United States)

    Prasad, Sathya N; Muralidhara

    2014-11-05

    In the recent past, several phytoconstituents are being explored for their potential neuromodulatory effects in neurological diseases. Repeated exposure of acrylamide (ACR) leads to varying degree of neuronal damage in experimental animals and humans. In view of this, the present study investigated the efficacy of geraniol (GE, a natural monoterpene) to mitigate acrylamide (ACR)-induced oxidative stress, mitochondrial dysfunction and neurotoxicity in a rat model and compared its efficacy to that of curcumin (CU, a spice active principle with multiple biological activities). ACR administration (50mg/kg bw, i.p. 3times/week) for 4weeks to growing rats caused typical symptoms of neuropathy. ACR rats provided with daily oral supplements of phytoconstituents (GE: 100mg/kg bw/d; CU: 50mg/kg bw/d, 4weeks) exhibited marked improvement in behavioral tests. Both phytoconstituents markedly attenuated ACR-induced oxidative stress as evidenced by the diminished levels of reactive oxygen species, malondialdehyde and nitric oxide and restored the reduced glutathione levels in sciatic nerve (SN) and brain regions (cortex - Ct, cerebellum - Cb). Further, both phytoconstituents effectively diminished ACR-induced elevation in cytosolic calcium levels in SN and Cb. Furthermore, diminution in the levels of oxidative markers in the mitochondria was associated with elevation in the activities of antioxidant enzymes. While ACR mediated elevation in the acetylcholinesterase activity was reduced by both actives, the depletion in dopamine levels was restored only by CU in brain regions. Taken together our findings for the first time demonstrate that the neuromodulatory propensity of GE is indeed comparable to that of CU and may be exploited as a therapeutic adjuvant in the management of varied human neuropathy conditions. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Oxygen radical detoxification enzymes in doxorubicin-sensitive and -resistant P388 murine leukemia cells

    International Nuclear Information System (INIS)

    Ramu, A.; Cohen, L.; Glaubiger, D.

    1984-01-01

    One of the proposed mechanisms for the cytotoxic effects of anthracycline compounds suggests that the effect is mediated through the formation of intracellular superoxide radicals. It is therefore possible that doxorubicin resistance is associated with increased intracellular enzyme capacity to convert these superoxide radicals to inactive metabolites. We have measured the relative activities of superoxide dismutase, glutathione peroxidase, and catalase in P388 mouse leukemia cells and in a doxorubicin-resistant subline. Since oxygen-reactive metabolites also play a role in mediating the cytotoxicity of ionizing radiation, the radiosensitivity of both cell lines was also studied. No significant differences in superoxide dismutase activity between these cell lines was observed, indicating that they have a similar capacity to convert superoxide anion radicals to hydrogen peroxide. P388 cells that are resistant to doxorubicin have 1.5 times the glutathione content and 1.5 times the activity of glutathione peroxidase measured in drug-sensitive P388 cells. However, incubation with 1-chloro-2,4-dinitrobenzene, which covalently binds glutathione, had no effect on the sensitivity of either cell line to doxorubicin. Measured catalase activity in drug-resistant P388 cells was one-third of the activity measured in doxorubicin-sensitive P388 cells. The activity of this enzyme was much higher than that of glutathione peroxidase in terms of H 2 O 2 deactivation in both cell lines. It is therefore unlikely that doxorubicin-resistant P388 cells have an increased ability to detoxify reactive oxygen metabolites when compared to drug-sensitive cells. Doxorubicin-resistant P388 cells were significantly more sensitive to X-irradiation than were drug-sensitive P388 cells. These observations suggest that the difference in catalase activity in these cell lines may be associated with the observed differences in radiosensitivity

  19. Secondary organic aerosol production from pinanediol, a semi-volatile surrogate for first-generation oxidation products of monoterpenes

    Science.gov (United States)

    Ye, Penglin; Zhao, Yunliang; Chuang, Wayne K.; Robinson, Allen L.; Donahue, Neil M.

    2018-05-01

    We have investigated the production of secondary organic aerosol (SOA) from pinanediol (PD), a precursor chosen as a semi-volatile surrogate for first-generation oxidation products of monoterpenes. Observations at the CLOUD facility at CERN have shown that oxidation of organic compounds such as PD can be an important contributor to new-particle formation. Here we focus on SOA mass yields and chemical composition from PD photo-oxidation in the CMU smog chamber. To determine the SOA mass yields from this semi-volatile precursor, we had to address partitioning of both the PD and its oxidation products to the chamber walls. After correcting for these losses, we found OA loading dependent SOA mass yields from PD oxidation that ranged between 0.1 and 0.9 for SOA concentrations between 0.02 and 20 µg m-3, these mass yields are 2-3 times larger than typical of much more volatile monoterpenes. The average carbon oxidation state measured with an aerosol mass spectrometer was around -0.7. We modeled the chamber data using a dynamical two-dimensional volatility basis set and found that a significant fraction of the SOA comprises low-volatility organic compounds that could drive new-particle formation and growth, which is consistent with the CLOUD observations.

  20. Evaluation of measurement uncertainty for purity of a monoterpenic acid by small-scale coulometry

    Science.gov (United States)

    Norte, L. C.; de Carvalho, E. M.; Tappin, M. R. R.; Borges, P. P.

    2018-03-01

    Purity of the perylic acid (HPe) which is a monoterpenic acid from natural product (NP) with anti-inflammatory and anticancer properties was analyzed by small-scale coulometry (SSC), due to the low availability of HPe on the pharmaceutic market and its high cost. This work aims to present the evaluation of the measurements uncertainty from the purity of HPe by using SSC. Coulometric mean of purity obtained from 5 replicates resulted in 94.23% ± 0.88% (k = 2.06, for an approximately 95% confidence level). These studies aim in the future to develop the production of certified reference materials from NPs.

  1. Variations in tumour oxygen tension (pO2) during accelerated radiotherapy of head and neck carcinoma

    International Nuclear Information System (INIS)

    Guichard, M.; Eschwege, F.; Luboinski, B.; Wibault, P.; Weeger, P.; Lusinchi, A.; Lartigau, E.

    1998-01-01

    The study was performed to assess the effect of accelerated radiotherapy on oxygenation of primary tumours and metastatic nodes in patients with advanced head and neck tumours. In 14 patients with head and neck tumour, oxygen tension (pO 2 ) was evaluated in normal tissues and tumours (primary tumour or metastatic neck node) before (0 Gy) and after 2 weeks (32 Gy) of accelerated radiotherapy (70 Gy in 3.5 weeks, with three daily fractions). Radiotherapy was combined with carbogen breathing in 5 patients. pO 2 was measured using a polarographic technique. For pooled normal tissues, median pO 2 was 38 mmHg before treatment and 46 mmHg after 2 weeks. For tumours, very low values ( 2 12 mmHg before treatment versus 26 mmHg after 2 weeks, P 2 was 44 mmHg at 2 weeks, compared with 13.5 mmHg before treatment (P=0.05). Very low pO 2 values, corresponding to tumour hypoxia, were found in the tumours (primary and metastatic neck nodes) prior to accelerated treatment. During the first 2 weeks of accelerated treatment, an increase in median pO 2 was found in nine of the 14 tumours, together with a decrease in the frequency of very low values. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  2. In vivo integrated photoacoustic and confocal microscopy of hemoglobin oxygen saturation and oxygen partial pressure.

    Science.gov (United States)

    Wang, Yu; Hu, Song; Maslov, Konstantin; Zhang, Yu; Xia, Younan; Wang, Lihong V

    2011-04-01

    We developed dual-modality microscope integrating photoacoustic microscopy (PAM) and fluorescence confocal microscopy (FCM) to noninvasively image hemoglobin oxygen saturation (sO₂) and oxygen partial pressure (pO₂) in vivo in single blood vessels with high spatial resolution. While PAM measures sO₂ by imaging hemoglobin optical absorption at two wavelengths, FCM quantifies pO₂ using phosphorescence quenching. The variations of sO₂ and pO₂ values in multiple orders of vessel branches under hyperoxic (100% oxygen) and normoxic (21% oxygen) conditions correlate well with the oxygen-hemoglobin dissociation curve. In addition, the total concentration of hemoglobin is imaged by PAM at an isosbestic wavelength.

  3. High-resolution MALDI mass spectrometry imaging of gallotannins and monoterpene glucosides in the root of Paeonia lactiflora

    DEFF Research Database (Denmark)

    Li, Bin; Bhandari, Dhaka Ram; Römpp, Andreas

    2016-01-01

    histochemical studies of tannins using unspecific staining reagents, individual gallotannin species were accurately localized and unequivocally discriminated from other phenolic components in the root tissues. High-quality ion images were obtained, providing significant clues for understanding the biosynthetic...... pathway of gallotannins and monoterpene glucosides and possibly helping to decipher the role of tannins in xylem cells differentiation and in the defence mechanisms of plants, as well as to investigate the interrelationship between tannins and lignins....

  4. Novel polymeric micelles for insect pest control: encapsulation of essential oil monoterpenes inside a triblock copolymer shell for head lice control

    Directory of Open Access Journals (Sweden)

    Alejandro Lucia

    2017-04-01

    Full Text Available Background Essential oil components (EOCs are molecules with interesting application in pest control, these have been evaluated against different insect pest from more than 100 years, but their practical use is rather limited. Thus, the enhancement of their bioavailability and manageability due to their dispersion in water can open new perspective for the preparation of formulations for the control of insect pest. In this work, we studied the encapsulation of different monoterpenes in a poloxamer shell in order to prepare aqueous formulations that can be used for the development of platforms used in pest control. Methods Micellar systems containing a 5 wt% of poloxamer 407 and 1.25 wt% of the different monoterpenes were prepared. Dynamic Light Scattering (DLS experiments were carried out to characterize the dispersion of the EOCs in water. The pediculicidal activity of these micellar systems was tested on head lice using an ex vivo immersion test. Results The poloxamers allowed the dispersion of EOCs in water due to their encapsulation inside the hydrophobic core of the copolymer micelles. From this study, we concluded that it is possible to make stable micellar systems containing water (>90 wt%, 1.25 wt% of different monoterpenes and a highly safe polymer (5wt% Poloxamer 407. These formulations were effective against head lice with mortality ranging from 30 to 60%, being the most effective emulsions those containing linalool, 1,8-cineole, α-terpineol, thymol, eugenol, geraniol and nonyl alcohol which lead to mortalities above 50%. Discussion Since these systems showed good pediculicidal activity and high physicochemical stability, they could be a new route for the green fabrication of biocompatible and biosustainable insecticide formulations.

  5. Effects of Soil Oxygen Conditions and Soil pH on Remediation of DDT-contaminated Soil by Laccase from White Rot Fungi

    Directory of Open Access Journals (Sweden)

    Yuechun Zhao

    2010-04-01

    Full Text Available High residues of DDT in agricultural soils are of concern because they present serious threats to food security and human health. This article focuses on remediation of DDT-contaminated soil using laccase under different soil oxygen and soil pH conditions. The laboratory experiment results showed significant effects of soil oxygen conditions and soil pH on remediation of DDT-contaminated soil by laccase at the end of a 25-d incubation period. This study found the positive correlation between the concentration of oxygen in soil and the degradation of DDT by laccase. The residue of DDTs in soil under the atmosphere of oxygen decreased by 28.1% compared with the atmosphere of nitrogen at the end of the incubation with laccase. A similar pattern was observed in the remediation of DDT-contaminated soil by laccase under different flooding conditions, the higher the concentrations of oxygen in soil, the lower the residues of four DDT components and DDTs in soils. The residue of DDTs in the nonflooding soil declined by 16.7% compared to the flooded soil at the end of the incubation. The residues of DDTs in soils treated with laccase were lower in the pH range 2.5–4.5.

  6. Monoterpene biosynthesis potential of plant subcellular compartments.

    Science.gov (United States)

    Dong, Lemeng; Jongedijk, Esmer; Bouwmeester, Harro; Van Der Krol, Alexander

    2016-01-01

    Subcellular monoterpene biosynthesis capacity based on local geranyl diphosphate (GDP) availability or locally boosted GDP production was determined for plastids, cytosol and mitochondria. A geraniol synthase (GES) was targeted to plastids, cytosol, or mitochondria. Transient expression in Nicotiana benthamiana indicated local GDP availability for each compartment but resulted in different product levels. A GDP synthase from Picea abies (PaGDPS1) was shown to boost GDP production. PaGDPS1 was also targeted to plastids, cytosol or mitochondria and PaGDPS1 and GES were coexpressed in all possible combinations. Geraniol and geraniol-derived products were analyzed by GC-MS and LC-MS, respectively. GES product levels were highest for plastid-targeted GES, followed by mitochondrial- and then cytosolic-targeted GES. For each compartment local boosting of GDP biosynthesis increased GES product levels. GDP exchange between compartments is not equal: while no GDP is exchanged from the cytosol to the plastids, 100% of GDP in mitochondria can be exchanged to plastids, while only 7% of GDP from plastids is available for mitochondria. This suggests a direct exchange mechanism for GDP between plastids and mitochondria. Cytosolic PaGDPS1 competes with plastidial GES activity, suggesting an effective drain of isopentenyl diphosphate from the plastids to the cytosol. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  7. Selective oxidation of n-butane to maleic anhydride under oxygen-deficient conditions over V-P-O mixed oxides

    NARCIS (Netherlands)

    Bosch, H.; Bruggink, A.A.; Ross, J.R.H.

    1987-01-01

    The selective oxidation of n-butane to maleic anhydride over V-P-O mixed oxides was studied under oxygen deficient conditions. The mixed oxides were prepared with P/V atomic ratios ranging from 0.7 to 1.0. Catalysts with P/V <1.0 did not show any selectivity to maleic anhydride formation, regardless

  8. Variation of essential oil composition of Eucalyptus camaldulensis (myrtaceae from the Montengero coastline

    Directory of Open Access Journals (Sweden)

    Grbović Slavenko

    2010-01-01

    Full Text Available In the current study the essential oil obtained from the leaves of Eucalyptus camaldulensis plants collected from five localities of the Montenegro coastline was analyzed. The oil yield varied from 0.63 % (Kotor up to 1.59% (Tivat. The chemical composition of the leaf essential oil was analyzed using GC-MS technique. Monoterpene hydrocarbons were a major class of compounds. Among them, dominant compounds were p-cymene (17.38-28.60%, ß-phellandrene (12.35-14.47% and ß-pinene (0.94-11.48%. The second largest group was oxygenated monoterpenes with cryptone (4.97-7.25 and terpinene-4-ol (2.75-4.21% as predominant. Besides high content of sesquiterpene alcohol spathulenol (7.83-14.15% was found. According to the results obtained E. camaldulensis from Montenegro can be classified in the chemotype with low 1,8-cineole and high p-cymene and cryptone ratio.

  9. The influence of systemic hemodynamics and oxygen transport on cerebral oxygen saturation in neonates after the Norwood procedure.

    Science.gov (United States)

    Li, Jia; Zhang, Gencheng; Holtby, Helen; Guerguerian, Anne-Marie; Cai, Sally; Humpl, Tilman; Caldarone, Christopher A; Redington, Andrew N; Van Arsdell, Glen S

    2008-01-01

    Ischemic brain injury is an important morbidity in neonates after the Norwood procedure. Its relationship to systemic hemodynamic oxygen transport is poorly understood. Sixteen neonates undergoing the Norwood procedure were studied. Continuous cerebral oxygen saturation was measured by near-infrared spectroscopy. Continuous oxygen consumption was measured by respiratory mass spectrometry. Pulmonary and systemic blood flow, systemic vascular resistance, oxygen delivery, and oxygen extraction ratio were derived with measurements of arterial, and superior vena cava and pulmonary venous gases and pressures at 2- to 4-hour intervals during the first 72 hours in the intensive care unit. Mean cerebral oxygen saturation was 66% +/- 12% before the operation, reduced to 51% +/- 13% on arrival in the intensive care unit, and remained low during the first 8 hours; it increased to 56% +/- 9% at 72 hours, still significantly lower than the preoperative level (P blood flow and oxygen delivery (P blood flow (P = .001) and hemoglobin (P = .02) and negatively correlated with systemic vascular resistance (P = .003). It was not correlated with oxygen consumption (P > .05). Cerebral oxygen saturation decreased significantly in neonates during the early postoperative period after the Norwood procedure and was significantly influenced by systemic hemodynamic and metabolic events. As such, hemodynamic interventions to modify systemic oxygen transport may provide further opportunities to reduce the risk of cerebral ischemia and improve neurodevelopmental outcomes.

  10. Oxygen Tension in the Aqueous Humor of Human Eyes under Different Oxygenation Conditions

    Directory of Open Access Journals (Sweden)

    Farideh Sharifipour

    2013-01-01

    Full Text Available Purpose: To measure oxygen tension in the aqueous humor of human eyes under different oxygenation conditions. Methods: This prospective comparative interventional case series consisted of two parts. In the first part, 120 consecutive patients scheduled for cataract surgery were randomized into group I (control group in which surgery was performed under local anesthesia inhaling 21% oxygen; group II in whom general anesthesia using 50% oxygen was employed; and group III receiving general anesthesia with 100% oxygen. After aspirating 0.2 ml aqueous humor under sterile conditions, the aqueous sample and a simultaneously drawn arterial blood sample were immediately analyzed using a blood gas analyzer. In part II the same procedures were performed in 10 patients after fitting a contact lens and patching the eye for 20 minutes (group IV and in 10 patients after transcorneal delivery of oxygen at a flow rate of 5 L/min (group V. Results: Mean aqueous PO2 in groups I, II and III was 112.3±6.2, 141.1±20.4, and 170.1±27 mmHg, respectively (P values <0.001 and mean arterial PO2 was 85.7±7.9, 184.6±46, and 379.1±75.9 mmHg, respectively (P values <0.001. Aqueous PO2 was 77.2±9.2 mmHg in group IV and 152.3±10.9 mmHg in group V (P values <0.001. There was a significant correlation between aqueous and blood PO2 (r=0.537, P<0.001. The contribution of atmospheric oxygen to aqueous PO2 was 23.7%. Conclusion: Aqueous oxygen tension is mostly dependent on the systemic circulation and in part on the atmosphere. Increasing inspiratory oxygen and transcorneal oxygen delivery both increase aqueous PO2 levels.

  11. Aircraft Oxygen Generation

    Science.gov (United States)

    2012-02-01

    An Oxygen Enriched Air System for the AV-8A Harrier (NADC-81198-60).” 70 Horch , T., et. al. “The F-16 Onboard Oxygen Generating System: Performance...Only and Safety Privileged). Horch , T., Miller, R., Bomar, J., Tedor, J., Holden, R., Ikels, K., & Lozano, P. (1983). The F-16 Onboard Oxygen

  12. Chiral ligands derived from monoterpenes: application in the synthesis of optically pure secondary alcohols via asymmetric catalysis.

    Science.gov (United States)

    El Alami, Mohammed Samir Ibn; El Amrani, Mohamed Amin; Agbossou-Niedercorn, Francine; Suisse, Isabelle; Mortreux, André

    2015-01-19

    The preparation of optically pure secondary alcohols in the presence of catalysts based on chiral ligands derived from monoterpenes, such as pinenes, limonenes and carenes, is reviewed. A wide variety of these ligands has been synthesized and used in several catalytic reactions, including hydrogen transfer, C-C bond formation via addition of organozinc compounds to aldehydes, hydrosilylation, and oxazaborolidine reduction, leading to high activities and enantioselectivities. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Antimicrobial, antibiofilm and antitumor activities of essential oil of Agastache rugosa from Xinjiang, China

    Directory of Open Access Journals (Sweden)

    Gong Haiyan

    2016-07-01

    Full Text Available In the study, we evaluated chemical composition and antimicrobial, antibiofilm, and antitumor activities of essential oils from dried leaf essential oil of leaf and flower of Agastache rugosa for the first time. Essential oil of leaf and flower was evaluated with GC and GC–MS methods, and the essential oil of flower revealed the presence of 21 components, whose major compounds were pulegone (34.1%, estragole (29.5%, and p-Menthan-3-one (19.2%. 26 components from essential oil of leaf were identified, the major compounds were p-Menthan-3-one (48.8% and estragole (20.8%. At the same time, essential oil of leaf, there is a very effective antimicrobial activity with MIC ranging from 9.4 to 42 μg ml−1 and potential antibiofilm, antitumor activities for essential oils of flower and leaf essential oil of leaf. The study highlighted the diversity in two different parts of A. rugosa grown in Xinjiang region and other places, which have different active constituents. Our results showed that this native plant may be a good candidate for further biological and pharmacological investigations.

  14. Kinetics of an oxygen – iodine active medium with iodine atoms optically pumped on the {sup 2}P{sub 1/2} – {sup 2}P{sub 3/2} transition

    Energy Technology Data Exchange (ETDEWEB)

    Zagidullin, M V; Azyazov, V N [Samara Branch of the P.N. Lebedev Physical Institute, Russian Academy of Sciences, Samara (Russian Federation); Malyshev, M S [S.P. Korolev Samara State Aerospace University, Samara (Russian Federation)

    2015-08-31

    The kinetics of the processes occurring in an O{sub 2} – I{sub 2} – He – H{sub 2}O gas flow in which photodissociation of molecular iodine at a wavelength close to 500 nm and excitation of atomic iodine on the {sup 2}P{sub 1/2} – {sup 2}P{sub 3/2} transition by narrow-band radiation near 1315 nm are implemented successively has been analysed. It is shown that implementation of these processes allows one to form an oxygen – iodine medium with a high degree of dissociation of molecular iodine and a relative content of singlet oxygen O{sub 2}(a{sup 1}Δ) exceeding 10%. Having formed a supersonic gas flow with a temperature ∼100 K from this medium, one can reach a small-signal gain of about 10{sup -2} cm{sup -1} on the {sup 2}P{sub 1/2} – {sup 2}P{sub 3/2} transition in iodine atoms. The specific power per unit flow cross section in the oxygen – iodine laser with this active medium may reach ∼100 W cm{sup -2}. (active media)

  15. Improved arterial blood oxygenation following intravenous infusion of cold supersaturated dissolved oxygen solution.

    Science.gov (United States)

    Grady, Daniel J; Gentile, Michael A; Riggs, John H; Cheifetz, Ira M

    2014-01-01

    One of the primary goals of critical care medicine is to support adequate gas exchange without iatrogenic sequelae. An emerging method of delivering supplemental oxygen is intravenously rather than via the traditional inhalation route. The objective of this study was to evaluate the gas-exchange effects of infusing cold intravenous (IV) fluids containing very high partial pressures of dissolved oxygen (>760 mm Hg) in a porcine model. Juvenile swines were anesthetized and mechanically ventilated. Each animal received an infusion of cold (13 °C) Ringer's lactate solution (30 mL/kg/hour), which had been supersaturated with dissolved oxygen gas (39.7 mg/L dissolved oxygen, 992 mm Hg, 30.5 mL/L). Arterial blood gases and physiologic measurements were repeated at 15-minute intervals during a 60-minute IV infusion of the supersaturated dissolved oxygen solution. Each animal served as its own control. Five swines (12.9 ± 0.9 kg) were studied. Following the 60-minute infusion, there were significant increases in PaO2 and SaO2 (P < 0.05) and a significant decrease in PaCO2 (P < 0.05), with a corresponding normalization in arterial blood pH. Additionally, there was a significant decrease in core body temperature (P < 0.05) when compared to the baseline preinfusion state. A cold, supersaturated dissolved oxygen solution may be intravenously administered to improve arterial blood oxygenation and ventilation parameters and induce a mild therapeutic hypothermia in a porcine model.

  16. Multiple approaches for enhancing all-organic electronics photoluminescent sensors: Simultaneous oxygen and pH monitoring

    International Nuclear Information System (INIS)

    Liu, Rui; Xiao, Teng; Cui, Weipan; Shinar, Joseph; Shinar, Ruth

    2013-01-01

    Graphical abstract: -- Highlights: •Novel simply-fabricated all-organic electronics pH and oxygen optical monitor. •Excitation sources: directionally emitting, narrowed multicolor microcavity OLEDs. •Photodetectors: small molecule- or polymer-based with selective spectral responses. •Sensor film: structured high molecular weight polystyrene:polyethylene glycol blend. •×1.9 sensitivity enhancement and ×2.7 increase in the photoluminescence for oxygen. -- Abstract: Key issues in using organic light emitting diodes (OLEDs) as excitation sources in structurally integrated photoluminescence (PL)-based sensors are the low forward light outcoupling, the OLEDs’ broad electroluminescence (EL) bands, and the long-lived remnant EL that follows an EL pulse. The outcoupling issue limits the detection sensitivity (S) as only ∼20% of the light generated within standard OLEDs can be forward outcoupled and used for sensor probe excitation. The EL broad band interferes with the analyte-sensitive PL, leading to a background that reduces S and dynamic range. In particular, these issues hinder designing compact sensors, potentially miniaturizable, that are devoid of optical filters and couplers. We address these shortcomings by introducing easy-to-employ multiple approaches for outcoupling improvement, PL enhancement, and background EL reduction leading to novel, compact all-organic device architectures demonstrated for simultaneous monitoring of oxygen and pH. The sensor comprises simply-fabricated, directionally-emitting, narrower-band, multicolor microcavity OLED excitation and small molecule- and polymer-based organic photodetectors (OPDs) with a more selective spectral response. Additionally, S and PL intensity for oxygen are enhanced by using polystyrene (PS):polyethylene glycol (PEG) blends as the sensing film matrix. By utilizing higher molecular weight PS, the ratio τ 0 /τ 100 (PL decay time τ at 0% O 2 /τ at 100% O 2 ) that is often used to express S

  17. Effect of soil application of humic acid on nutrients uptake, essential oil and chemical compositions of garden thyme (Thymus vulgaris L.) under greenhouse conditions.

    Science.gov (United States)

    Noroozisharaf, Alireza; Kaviani, Maryam

    2018-05-01

    Humic acid is natural biological organic, which has a high effect on plant growth and quality. However, the mechanisms of the promoting effect of humic acid on the volatile composition were rarely reported. In this study, the effects of soil application of humic acid on the chemical composition and nutrients uptake of Thymus vulgaris were investigated. Treatments comprised 0, 50, 75 and 100 g m -2 . Essential oil was extracted by hydrodistillation and analyzed using GC-MS and GC-FID. Essential oil content was enhanced by increase of the humic acid level and its content ranged from 0.8% (control) to 2.0% (75 g m -2 ). Thirty-two volatile compounds were identified and these compounds were considerably affected by humic acid. The highest percentage of thymol (74.15%), carvacrol (6.20%), p -cymene (4.24%), borneol (3.42%), trans -caryophyllene (1.70%) and cis -sabinene hydrate (1.35%) as major compounds were observed in T. vulgaris under 100 g m -2 humic acid. There was a linear relationship ( R 2  = 97%) between humic acid levels and thymol as a major compound. The oils were dominated by oxygenated monoterpenes followed by monoterpene hydrocarbons and sesquiterpene hydrocarbons. Based on the path coefficient analysis, the highest direct effects on essential oil content were observed in monoterpene esters (3.465) and oxygenated sesquiterpenes (3.146). The humic acid application also enhanced the uptake of N, P, K, Mg and Fe in garden thyme. The highest N (2.42%), P (0.75%), K (2.63%), Mg (0.23%) and Fe (1436.58 ppm) were observed in medium supplemented with 100 g m -2 humic acid. In all, the utilization of humic acid could positively change nutrients uptake, essential oil content and its major constituents in T. vulgaris .

  18. Effect of elevated CO2 on monoterpene emission of young Quercus ilex trees and its relation to structural and ecophysiological parameters

    International Nuclear Information System (INIS)

    Staudt, M.; Joffre, R.; Rambal, S.; Kesselmeier, J.

    2001-01-01

    Growth, leaf monoterpene emission, gas exchange, leaf structure and leaf chemical composition of one year-old oak seedlings grown in ambient and elevated carbon dioxide concentrations were investigated. Results of the various measurements and experiments are discussed in the context of resource acquisition and allocation by oak seedlings, and evaluated in terms of emission predictions. From the findings it was concluded that oak seedlings grown in elevated carbon dioxide have an increased emission capacity and increased foliage biomass. It was predicted that in a future world, characterized by high carbon dioxide concentrations, the atmospheric load of monoterpenes from Mediterranean forests will rise, although mature trees native to environments with elevated carbon dioxide will likely respond differently than the oak seedlings used in this study. The impacts of climatic change are uncertain, but it is suspected that trees grown near carbon dioxide springs benefit from increased resistance to water stress. There are indications that the increased capacity to tolerate water limitations in response to growth in elevated carbon dioxide environments could indirectly promote emissions. 39 refs., 4 tabs., 1 fig

  19. Electrolyte Engineering Toward Efficient Hydrogen Production Electrocatalysis with Oxygen-crossover Regulation under Densely Buffered Near-neutral pH Conditions

    KAUST Repository

    Shinagawa, Tatsuya; Takanabe, Kazuhiro

    2015-01-01

    This study tackles the core issues associated with near-neutral pH water splitting, particularly regarding electrolyte engineering in the electrocatalysis and product cross-over. We demonstrate that solute engineering has a major impact on water splitting electrocatalysis because the diffusion component, often not well integrated into performance descriptions, largely determines the overall performance. The hydrogen evolution reaction (HER) was investigated on Pt, Ni and NiMo catalysts in various concentrations of cations (Li+, K+, Na+) and anions (H2PO4−, HPO42−, PO43− and HCO3−) to describe its performance by quantifying kinetics, diffusion and solution resistance. In fact, the choice of electrolyte in terms of its identity and activity drastically altered the HER rate and oxygen mass-transport flux at near-neutral pH. Electrolyte properties (activity coefficient, kinematic viscosity and diffusion coefficient) accurately described the diffusion contribution, which can be easily isolated when a highly active Pt catalyst was used for the HER. By analyzing these properties, we maximized the HER rate on the Pt by tuning the solute concentration (typically 1.5 – 2.0 M). Moreover, the kinematic viscosity and oxygen solubility in such densely buffered conditions governed the oxygen mass-transport flux in the electrolyte, which in turn tuned the cross-over flux. At near-neutral pH, as high as 90 % selectivity toward the HER was achieved even under an oxygen saturated condition, where only a 40 mV overpotential was needed to achieve 10 mA cm−2 for the HER. This information can be regarded as an important milestone for achieving a highly efficient water splitting system at near-neutral pH.

  20. Electrolyte Engineering Toward Efficient Hydrogen Production Electrocatalysis with Oxygen-crossover Regulation under Densely Buffered Near-neutral pH Conditions

    KAUST Repository

    Shinagawa, Tatsuya

    2015-12-30

    This study tackles the core issues associated with near-neutral pH water splitting, particularly regarding electrolyte engineering in the electrocatalysis and product cross-over. We demonstrate that solute engineering has a major impact on water splitting electrocatalysis because the diffusion component, often not well integrated into performance descriptions, largely determines the overall performance. The hydrogen evolution reaction (HER) was investigated on Pt, Ni and NiMo catalysts in various concentrations of cations (Li+, K+, Na+) and anions (H2PO4−, HPO42−, PO43− and HCO3−) to describe its performance by quantifying kinetics, diffusion and solution resistance. In fact, the choice of electrolyte in terms of its identity and activity drastically altered the HER rate and oxygen mass-transport flux at near-neutral pH. Electrolyte properties (activity coefficient, kinematic viscosity and diffusion coefficient) accurately described the diffusion contribution, which can be easily isolated when a highly active Pt catalyst was used for the HER. By analyzing these properties, we maximized the HER rate on the Pt by tuning the solute concentration (typically 1.5 – 2.0 M). Moreover, the kinematic viscosity and oxygen solubility in such densely buffered conditions governed the oxygen mass-transport flux in the electrolyte, which in turn tuned the cross-over flux. At near-neutral pH, as high as 90 % selectivity toward the HER was achieved even under an oxygen saturated condition, where only a 40 mV overpotential was needed to achieve 10 mA cm−2 for the HER. This information can be regarded as an important milestone for achieving a highly efficient water splitting system at near-neutral pH.

  1. Effects of recoil-implanted oxygen on depth profiles of defects and annealing processes in P{sup +}-implanted Si studied using monoenergetic positron beams

    Energy Technology Data Exchange (ETDEWEB)

    Uedono, Akira; Moriya, Tsuyoshi; Tanigawa, Shoichiro [Tsukuba Univ., Ibaraki (Japan). Inst. of Materials Science; Kitano, Tomohisa; Watanabe, Masahito; Kawano, Takao; Suzuki, Ryoichi; Ohdaira, Toshiyuki; Mikado, Tomohisa

    1996-04-01

    Effects of oxygen atoms recoiled from SiO{sub 2} films on depth profiles of defects and annealing processes in P{sup +}-implanted Si were studied using monoenergetic positron beams. For an epitaxial Si specimen, the depth profile of defects was found to be shifted toward the surface by recoil implantation of oxygen atoms. This was attributed to the formation of vacancy-oxygen complexes and a resultant decrease in the diffusion length of vacancy-type defects. The recoiled oxygen atoms stabilized amorphous regions introduced by P{sup +}-implantation, and the annealing of these regions was observed after rapid thermal annealing (RTA) at 700degC. For a Czochralski-grown Si specimen fabricated by through-oxide implantation, the recoiled oxygen atoms introduced interstitial-type defects upon RTA below the SiO{sub 2}/Si interface, and such defects were dissociated by annealing at 1000degC. (author)

  2. Biosensors for EVA: Muscle Oxygen and pH During Walking, Running and Simulated Reduced Gravity

    Science.gov (United States)

    Lee, S. M. C.; Ellerby, G.; Scott, P.; Stroud, L.; Norcross, J.; Pesholov, B.; Zou, F.; Gernhardt, M.; Soller, B.

    2009-01-01

    During lunar excursions in the EVA suit, real-time measurement of metabolic rate is required to manage consumables and guide activities to ensure safe return to the base. Metabolic rate, or oxygen consumption (VO2), is normally measured from pulmonary parameters but cannot be determined with standard techniques in the oxygen-rich environment of a spacesuit. Our group developed novel near infrared spectroscopic (NIRS) methods to calculate muscle oxygen saturation (SmO2), hematocrit, and pH, and we recently demonstrated that we can use our NIRS sensor to measure VO2 on the leg during cycling. Our NSBRI-funded project is looking to extend this methodology to examine activities which more appropriately represent EVA activities, such as walking and running and to better understand factors that determine the metabolic cost of exercise in both normal and lunar gravity. Our 4 year project specifically addresses risk: ExMC 4.18: Lack of adequate biomedical monitoring capability for Constellation EVA Suits and EPSP risk: Risk of compromised EVA performance and crew health due to inadequate EVA suit systems.

  3. Influence of methanol/sorbitol co-feeding rate on pAOX1 induction in a Pichia pastoris Mut+ strain in bioreactor with limited oxygen transfer rate.

    Science.gov (United States)

    Carly, F; Niu, H; Delvigne, F; Fickers, P

    2016-04-01

    High Pichia pastoris biomass density could be obtained using high co-feeding rate of methanol and sorbitol in a fed-batch or continuous culture, while further higher feeding rate finally leads to oxygen limitation in bioreactor. In the literature, there is lack of report about AOX1 promoter regulation with regard to dissolved oxygen level (DO). Therefore, in this work, chemostat cultures were performed to investigate the cell growth, metabolism and regulation of the AOX1 promoter (pAOX1) regarding co-feeding rate of optimized methanol/sorbitol mixture (methanol fraction 0.60 C-mol/C-mol) using a P. pastoris Mut+/pAOX1-lacZ strain. The oxygen transfer rates (OTR) in bioreactor were kept in the range of typical values of large bioreactor, i.e., 4-8 g/(L h) if DO equals 30 % saturation or 5-10 g/(L h) if DO nears zero. For DO >0, an increase of the carbon fed led to an increase of pAOX1 induction. By contrast, when dissolved oxygen was completely depleted, methanol accumulated, causing a 30 % decrease of pAOX1 induction. However, this decrease is more likely to be lined to methanol accumulation than to low level of dissolved oxygen (sorbitol co-feeding allowed cells to adapt to oxygen transient limitations that often occur at industrial scale with reduced effect on pAOX1 induction. The optimal feeding rate tested here was 6.6 mmol C (DCW h)(-1) at an OTR of 8.28 g O2(L h)(-1) with over fivefold pAOX1 induction (probably directly associated with target protein productivity) compared with previous work.

  4. Versatile common instrumentation for optical detection of pH and dissolved oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Sardesai, Neha [Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250 (United States); Rao, Govind [Center for Advanced Sensor Technology and Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250 (United States); Kostov, Yordan, E-mail: kostov@umbc.edu [Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250 (United States); Center for Advanced Sensor Technology and Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250 (United States)

    2015-07-15

    The recent trend toward use of disposable and miniature bioreactors requires the use of appropriate sensors. pH and dissolved oxygen (DO) are often measured using optical chemical sensors due to their small form factor and convenience in use. These sensors are often interrogated using a specialized opto-electronic transducer that is designed around the optical sensor. In this contribution, we are presenting a new class of opto-electronic transducers that are usable with several different chemical sensors without the need to switch the optics or hardware when changing the type of the chemical sensor. This allows flexibility closer to the lab-grade devices while the size is closer to a dedicated sensor. This versatile instrumentation is capable of seamlessly switching between the pH and DO measurement modes and is capable of auto recognition of the sensor type. The principle of ratiometric fluorescence is used for pH measurements, and that of fluorescence lifetime for DO measurements. An approach to obtain identical calibrations between several devices is also presented. The described hardware constitutes common instrumentation for measuring either pH or DO and has been tested in actual bioprocesses. It has been found adequate for continuous bioprocess monitoring.

  5. Versatile common instrumentation for optical detection of pH and dissolved oxygen

    International Nuclear Information System (INIS)

    Sardesai, Neha; Rao, Govind; Kostov, Yordan

    2015-01-01

    The recent trend toward use of disposable and miniature bioreactors requires the use of appropriate sensors. pH and dissolved oxygen (DO) are often measured using optical chemical sensors due to their small form factor and convenience in use. These sensors are often interrogated using a specialized opto-electronic transducer that is designed around the optical sensor. In this contribution, we are presenting a new class of opto-electronic transducers that are usable with several different chemical sensors without the need to switch the optics or hardware when changing the type of the chemical sensor. This allows flexibility closer to the lab-grade devices while the size is closer to a dedicated sensor. This versatile instrumentation is capable of seamlessly switching between the pH and DO measurement modes and is capable of auto recognition of the sensor type. The principle of ratiometric fluorescence is used for pH measurements, and that of fluorescence lifetime for DO measurements. An approach to obtain identical calibrations between several devices is also presented. The described hardware constitutes common instrumentation for measuring either pH or DO and has been tested in actual bioprocesses. It has been found adequate for continuous bioprocess monitoring

  6. Ambient oxygen promotes tumorigenesis.

    Directory of Open Access Journals (Sweden)

    Ho Joong Sung

    2011-05-01

    Full Text Available Oxygen serves as an essential factor for oxidative stress, and it has been shown to be a mutagen in bacteria. While it is well established that ambient oxygen can also cause genomic instability in cultured mammalian cells, its effect on de novo tumorigenesis at the organismal level is unclear. Herein, by decreasing ambient oxygen exposure, we report a ∼50% increase in the median tumor-free survival time of p53-/- mice. In the thymus, reducing oxygen exposure decreased the levels of oxidative DNA damage and RAG recombinase, both of which are known to promote lymphomagenesis in p53-/- mice. Oxygen is further shown to be associated with genomic instability in two additional cancer models involving the APC tumor suppressor gene and chemical carcinogenesis. Together, these observations represent the first report directly testing the effect of ambient oxygen on de novo tumorigenesis and provide important physiologic evidence demonstrating its critical role in increasing genomic instability in vivo.

  7. Pilot study of a new device to titrate oxygen flow in hypoxic patients on long-term oxygen therapy.

    Science.gov (United States)

    Cirio, Serena; Nava, Stefano

    2011-04-01

    The O(2) Flow Regulator (Dima, Bologna, Italy) is a new automated oxygen regulator that titrates the oxygen flow based on a pulse-oximetry signal to maintain a target S(pO(2)). We tested the device's safety and efficacy. We enrolled 18 subjects with chronic lung disease, exercise-induced desaturation, and on long-term oxygen therapy, in a randomized crossover study with 2 constant-work-load 15-min cycling exercise tests, starting with the patient's previously prescribed usual oxygen flow. In one test the oxygen flow was titrated manually by the respiratory therapist, and in the other test the oxygen flow was titrated by the O(2) Flow Regulator, to maintain an S(pO(2)) of 94%. We measured S(pO(2)) throughout each test, the time spent by the respiratory therapist to set the device or to manually regulate the oxygen flow, and the total number of respiratory-therapist titration interventions during the trial. There were no differences in symptoms or heart rate between the exercise tests. Compared to the respiratory-therapist-controlled tests, during the O(2) Flow Regulator tests S(pO(2)) was significantly higher (95 ± 2% vs 93 ± 3%, P = .04), significantly less time was spent below the target S(pO(2)) (171 ± 187 s vs 340 ± 220 s, P less respiratory therapist time (5.6 ± 3.7 min vs 2.0 ± 0.1 min, P = .005). The O(2) Flow Regulator may be a safe and effective alternative to manual oxygen titration during exercise in hypoxic patients. It provided stable S(pO(2)) and avoided desaturations in our subjects.

  8. Relating oxygen partial pressure, saturation and content: the haemoglobin-oxygen dissociation curve.

    Science.gov (United States)

    Collins, Julie-Ann; Rudenski, Aram; Gibson, John; Howard, Luke; O'Driscoll, Ronan

    2015-09-01

    The delivery of oxygen by arterial blood to the tissues of the body has a number of critical determinants including blood oxygen concentration (content), saturation (S O2 ) and partial pressure, haemoglobin concentration and cardiac output, including its distribution. The haemoglobin-oxygen dissociation curve, a graphical representation of the relationship between oxygen satur-ation and oxygen partial pressure helps us to understand some of the principles underpinning this process. Historically this curve was derived from very limited data based on blood samples from small numbers of healthy subjects which were manipulated in vitro and ultimately determined by equations such as those described by Severinghaus in 1979. In a study of 3524 clinical specimens, we found that this equation estimated the S O2 in blood from patients with normal pH and S O2 >70% with remarkable accuracy and, to our knowledge, this is the first large-scale validation of this equation using clinical samples. Oxygen saturation by pulse oximetry (S pO2 ) is nowadays the standard clinical method for assessing arterial oxygen saturation, providing a convenient, pain-free means of continuously assessing oxygenation, provided the interpreting clinician is aware of important limitations. The use of pulse oximetry reduces the need for arterial blood gas analysis (S aO2 ) as many patients who are not at risk of hypercapnic respiratory failure or metabolic acidosis and have acceptable S pO2 do not necessarily require blood gas analysis. While arterial sampling remains the gold-standard method of assessing ventilation and oxygenation, in those patients in whom blood gas analysis is indicated, arterialised capillary samples also have a valuable role in patient care. The clinical role of venous blood gases however remains less well defined.

  9. Antifungal Monoterpene Derivatives from the Plant Endophytic Fungus Pestalotiopsis foedan.

    Science.gov (United States)

    Xu, Dan; Zhang, Bing-Yang; Yang, Xiao-Long

    2016-10-01

    A new monoterpene lactone, (1R,4R,5R,8S)-8-hydroxy-4,8-dimethyl-2-oxabicyclo[3.3.1]nonan-3-one (1), along with one related known compound, (2R)-2-[(1R)-4-methylcyclohex-3-en-1-yl]propanoic acid (2), were isolated from the liquid culture of the plant endophytic fungus Pestalotiopsis foedan obtained from the branch of Bruguiera sexangula. The structure and absolute configuration of 1 were determined on the basis of extensive analysis of NMR spectra combined with computational methods via calculation of the optical rotation (OR) and 13 C-NMR. Both compounds exhibited strong antifungal activities against Botrytis cinerea and Phytophthora nicotianae with MIC values of 3.1 and 6.3 μg/ml, respectively, which are comparable to those of the known antifungal drug ketoconazole. Compound 2 also showed modest antifungal activity against Candida albicans with a MIC value of 50 μg/ml. © 2016 Wiley-VHCA AG, Zürich.

  10. In-tube collision-induced dissociation for selected ion flow-drift tube mass spectrometry, SIFDT-MS: a case study of NO+ reactions with isomeric monoterpenes

    Czech Academy of Sciences Publication Activity Database

    Spesyvyi, Anatolii; Sovová, Kristýna; Španěl, Patrik

    2016-01-01

    Roč. 30, č. 18 (2016), s. 2009-2016 ISSN 0951-4198 R&D Projects: GA ČR GA13-28882S Institutional support: RVO:61388955 Keywords : mass spectroscopy * SIFDT-MS * isomeric monoterpenes Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.998, year: 2016

  11. Spearmint R2R3-MYB transcription factor MsMYB negatively regulates monoterpene production and suppresses the expression of geranyl diphosphate synthase large subunit (MsGPPS.LSU).

    Science.gov (United States)

    Reddy, Vaishnavi Amarr; Wang, Qian; Dhar, Niha; Kumar, Nadimuthu; Venkatesh, Prasanna Nori; Rajan, Chakravarthy; Panicker, Deepa; Sridhar, Vishweshwaran; Mao, Hui-Zhu; Sarojam, Rajani

    2017-09-01

    Many aromatic plants, such as spearmint, produce valuable essential oils in specialized structures called peltate glandular trichomes (PGTs). Understanding the regulatory mechanisms behind the production of these important secondary metabolites will help design new approaches to engineer them. Here, we identified a PGT-specific R2R3-MYB gene, MsMYB, from comparative RNA-Seq data of spearmint and functionally characterized it. Analysis of MsMYB-RNAi transgenic lines showed increased levels of monoterpenes, and MsMYB-overexpressing lines exhibited decreased levels of monoterpenes. These results suggest that MsMYB is a novel negative regulator of monoterpene biosynthesis. Ectopic expression of MsMYB, in sweet basil and tobacco, perturbed sesquiterpene- and diterpene-derived metabolite production. In addition, we found that MsMYB binds to cis-elements of MsGPPS.LSU and suppresses its expression. Phylogenetic analysis placed MsMYB in subgroup 7 of R2R3-MYBs whose members govern phenylpropanoid pathway and are regulated by miR858. Analysis of transgenic lines showed that MsMYB is more specific to terpene biosynthesis as it did not affect metabolites derived from phenylpropanoid pathway. Further, our results indicate that MsMYB is probably not regulated by miR858, like other members of subgroup 7. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  12. Quenching of porous silicon photoluminescence by molecular oxygen and dependence of this phenomenon on storing media and method of preparation of pSi photosensitizer

    Science.gov (United States)

    Balaguer, María; Matveeva, Eugenia

    2010-10-01

    The quenching of porous silicon photoluminescence (pSi PL) by molecular oxygen has been studied in different storing media in an attempt to clarify the mechanism of the energy transfer from the silicon photosensitizer to the oxygen acceptor. Luminescent materials have been prepared by two methods: electrochemical anodizing and chemical etching. Different structural forms were used: porous layers on silicon wafer and two kinds of differently prepared powder. Dry air and liquid water were employed as storing media; quenching behaviour was under observation until total degradation of quenching properties. Singlet oxygen molecules generation through energy transfer from photoluminescent pSi was the only photosensitizing mechanism observed under dry gas conditions. This PL quenching process was preferentially developed at 760 nm (1.63 eV) that corresponds to the formation of the 1Σ singlet oxygen state. Oxidation of the pSi photosensitizer was the main factor that led to its total deactivation in a time scale of few weeks. Regarding water medium, different photosensitizing behaviour was observed. In watery conditions, two preferred energy levels were found: the one detected in dry gas and another centred at approximately 2.2 eV (550 nm). Formation of reactive oxygen species (ROS) different from singlet oxygen, such as superoxide anion or superoxide radical, can be responsible for the second one. This second quenching process developed gradually after the initial contact of pSi photosensitizer with water and then degraded. The process lasted only several hours. Therefore, functionalization of the pSi photosensitizer is probably required to stabilize its PL and quenching properties in the watery physiological conditions required for biomedical applications.

  13. Quenching of porous silicon photoluminescence by molecular oxygen and dependence of this phenomenon on storing media and method of preparation of pSi photosensitizer

    Energy Technology Data Exchange (ETDEWEB)

    Balaguer, Maria, E-mail: mabara@itq.upv.e [Technical University of Valencia, Nanophotonics Technology Center (Spain); Matveeva, Eugenia, E-mail: eumat@em-silicon.co [EM-Silicon Nano-Technologies, S.L. (Spain)

    2010-10-15

    The quenching of porous silicon photoluminescence (pSi PL) by molecular oxygen has been studied in different storing media in an attempt to clarify the mechanism of the energy transfer from the silicon photosensitizer to the oxygen acceptor. Luminescent materials have been prepared by two methods: electrochemical anodizing and chemical etching. Different structural forms were used: porous layers on silicon wafer and two kinds of differently prepared powder. Dry air and liquid water were employed as storing media; quenching behaviour was under observation until total degradation of quenching properties. Singlet oxygen molecules generation through energy transfer from photoluminescent pSi was the only photosensitizing mechanism observed under dry gas conditions. This PL quenching process was preferentially developed at 760 nm (1.63 eV) that corresponds to the formation of the {sup 1{Sigma}} singlet oxygen state. Oxidation of the pSi photosensitizer was the main factor that led to its total deactivation in a time scale of few weeks. Regarding water medium, different photosensitizing behaviour was observed. In watery conditions, two preferred energy levels were found: the one detected in dry gas and another centred at approximately 2.2 eV (550 nm). Formation of reactive oxygen species (ROS) different from singlet oxygen, such as superoxide anion or superoxide radical, can be responsible for the second one. This second quenching process developed gradually after the initial contact of pSi photosensitizer with water and then degraded. The process lasted only several hours. Therefore, functionalization of the pSi photosensitizer is probably required to stabilize its PL and quenching properties in the watery physiological conditions required for biomedical applications.

  14. Luminescence materials for pH and oxygen sensing in microbial cells - structures, optical properties, and biological applications.

    Science.gov (United States)

    Zou, Xianshao; Pan, Tingting; Chen, Lei; Tian, Yanqing; Zhang, Weiwen

    2017-09-01

    Luminescence including fluorescence and phosphorescence sensors have been demonstrated to be important for studying cell metabolism, and diagnosing diseases and cancer. Various design principles have been employed for the development of sensors in different formats, such as organic molecules, polymers, polymeric hydrogels, and nanoparticles. The integration of the sensing with fluorescence imaging provides valuable tools for biomedical research and applications at not only bulk-cell level but also at single-cell level. In this article, we critically reviewed recent progresses on pH, oxygen, and dual pH and oxygen sensors specifically for their application in microbial cells. In addition, we focused not only on sensor materials with different chemical structures, but also on design and applications of sensors for better understanding cellular metabolism of microbial cells. Finally, we also provided an outlook for future materials design and key challenges in reaching broad applications in microbial cells.

  15. Anti-inflammatory and healing action of oral gel containing borneol monoterpene in chemotherapy-induced mucositis in rats ( Rattus norvegicus

    Directory of Open Access Journals (Sweden)

    Braz José do Nascimento-Júnior

    2017-07-01

    Full Text Available ABSTRACT The aim of this study was to investigate the effect of gels containing the monoterpene borneol in induced oral mucositis using an animal model. Gels were prepared with borneol at 1.2% and 2.4% (w/w. Oral mucositis was induced by administration of three doses of 5-fluorouracil (30 mg/kg, i.p. and injury with acetic acid (50%, v/v soaked in filter paper applied to right cheek mucosa for 60s. Four subgroups comprising 12 animals each were formed. Six animals from each group were sacrificed at days seven and fourteen after oral mucositis induction. Mucous samples were processed and stained with hematoxylin-eosin and Masson’s Trichrome. The semiquantitative evaluation involved observation of inflammatory parameters. ImageJ® software was used in the quantitative evaluation. For statistical analyses, Two-way ANOVA, followed by Tukey’s post-test (p <0.05, were employed. Borneol 2.4% gel proved effective in the treatment of oral mucositis with statistically significant differences between groups for angiogenesis control, inflammatory cell count reduction and percentage neoformed collagen increase. The confirmation of anti-inflammatory and healing action of borneol in oral mucositis in rats renders it a good marker for predicting this activity for plant extracts rich in this substance.

  16. Two New Monoterpene Glycosides from Qing Shan Lu Shui Tea with Inhibitory Effects on Leukocyte-Type 12-Lipoxygenase Activity

    Directory of Open Access Journals (Sweden)

    Ding Zhi Fang

    2013-04-01

    Full Text Available We evaluated the inhibitory effect of 12 Chinese teas on leukocyte-type 12-lipoxygenase (LOX activity. Tea catechins such as epigallocatechin gallate have been known to exhibit leukocyte-type 12-LOX inhibition. Qing Shan Lu Shui, which contains lower catechin levels than the other tested teas, suppressed leukocyte-type 12-LOX activity. To characterize the bioactive components of Qing Shan Lu Shui, leukocyte-type 12-LOX inhibitory activity–guided fractionation of the aqueous ethanol extract of the tea was performed, resulting in the isolation of two new monoterpene glycosides: liguroside A (1 and B (2. The structures of compounds 1 and 2 were characterized as (2E,5E-7-hydroperoxy-3,7-dimethyl-2,5-octadienyl-O-(α-L-rhamnopyranosyl-(1″→3′-(4′″-O-trans-p-coumaroyl-β-D-glucopyranoside and (2E,5E-7-hydroperoxy-3,7-dimethyl-2,5-octa-dienyl- O-(α-L-rhamnopyranosyl-(1″→3′-(4′″-O-cis-p-coumaroyl-β-D-glucopyranoside, respectively, based on spectral and chemical evidence. Ligurosides A (1 and B (2 showed inhibitory effects on leukocyte-type 12-LOX activity, with IC50 values of 1.7 and 0.7 μM, respectively.

  17. Pinus halepensis, Pinus pinaster, Pinus pinea and Pinus sylvestris Essential Oils Chemotypes and Monoterpene Hydrocarbon Enantiomers, before and after Inoculation with the Pinewood Nematode Bursaphelenchus xylophilus.

    Science.gov (United States)

    Rodrigues, Ana M; Mendes, Marta D; Lima, Ana S; Barbosa, Pedro M; Ascensão, Lia; Barroso, José G; Pedro, Luis G; Mota, Manuel M; Figueiredo, A Cristina

    2017-01-01

    Pinewood nematode (PWN), Bursaphelenchus xylophilus, is the causal agent of pine wilt disease, a serious threat to global forest populations of conifers, especially Pinus spp. A time-course study of the essential oils (EOs) of 2-year-old Pinus halepensis, Pinus pinaster, Pinus pinea and Pinus sylvestris following inoculation with the PWN was performed. The constitutive and nematode inoculation induced EOs components were analyzed at both the wounding or inoculation areas and at the whole plant level. The enantiomeric ratio of optically active main EOs components was also evaluated. External symptoms of infection were observed only in P. pinaster and P. sylvestris 21 and 15 days after inoculation, respectively. The EO composition analysis of uninoculated and unwounded plants revealed the occurrence of chemotypes for P. pinaster, P. halepensis and P. sylvestris, whereas P. pinea showed a homogenous EO composition. When whole plants were evaluated for EO and monoterpene hydrocarbon enantiomeric chemical composition, no relevant qualitative and quantitative differences were found. Instead, EO analysis of inoculated and uninoculated wounded areas revealed an increase of sesquiterpenes and diterpenic compounds, especially in P. pinea and P. halepensis, comparatively to healthy whole plants EOs. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  18. Chemical composition and biological activities of leaf and fruit essential oils from Eucalyptus camaldulensis.

    Science.gov (United States)

    Dogan, Gulden; Kara, Nazan; Bagci, Eyup; Gur, Seher

    2017-10-26

    The chemical composition of the essential oils from the leaves and fruit of Eucalyptus camaldulensis grown in Mersin, Turkey was analyzed using gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) techniques. The biological activities (antibacterial and antifungal) were examined using the agar well diffusion method. The main leaf oil constituents were p-cymene (42.1%), eucalyptol (1,8-cineole) (14.1%), α-pinene (12.7%) and α-terpinol (10.7%). The main constituents of the fruit oil were eucalyptol (1,8-cineole) (34.5%), p-cymene (30.0%), α-terpinol (15.1%) and α-pinene (9.0%). Our results showed that both types of oils are rich in terms of monoterpene hydrocarbons and oxygenated monoterpenes. The leaf and fruit essential oils of E. camaldulensis significantly inhibited the growth of Gram-positive (Staphylococcus aureus and Bacillus subtilis) and Gram-negative (Escherichia coli and Streptococcus sp.) bacteria (poils also showed fungicidal activity against Candida tropicalis and C. globrata. Leaf essential oils showed more activity than fruit essential oils, probably due to the higher p-cymene concentration in leaves.

  19. Measurement of pO2 in a Pre-clinical Model of Rabbit Tumor Using OxyChip, a Paramagnetic Oxygen Sensor.

    Science.gov (United States)

    Hou, H; Khan, N; Kuppusamy, P

    2017-01-01

    The objective of this work was to establish a novel and robust technology, based on electron paramagnetic resonance (EPR) oximetry, as a practical tool for measurement of tumor oxygen. Previously, we have reported on the development of oxygen-sensing paramagnetic crystals (LiNc-BuO) encapsulated in a biocompatible polymer, called OxyChip. In this report we present our recent data on the use of OxyChip for pO 2 measurements in the tumor of a pre-clinical, large-animal rabbit model. The results establish that OxyChip is capable of noninvasive and repeated measurement of pO 2 in a large animal model.

  20. Caracterização química de extratos de Ocimum basilicum L. obtidos através de extração com CO2 a altas pressões

    Directory of Open Access Journals (Sweden)

    Marcio Mazutti

    2006-12-01

    Full Text Available This work reports extraction yield and chemical characterization of the extracts obtained by high-pressure CO2 extraction of a cultivar of Ocimum basilicum L. The experiments were performed in the temperature range of 20 to 50 °C, from 100 to 250 atm of pressure. Chemical analyses were carried out by gas chromatography coupled to mass spectrometry, permitting to identify 23 compounds that were grouped into five chemical classes. Results showed that temperature and solvent density influenced positively the extraction yield. At 20 °C and 0.41 g cm-3 occurred a rise in the concentration of monoterpenes, oxygenated monoterpenes, sesquiterpenes and oxygenated sesquiterpenes.

  1. Essential Oils’ Chemical Characterization and Investigation of Some Biological Activities: A Critical Review

    Science.gov (United States)

    Dhifi, Wissal; Bellili, Sana; Jazi, Sabrine; Bahloul, Nada; Mnif, Wissem

    2016-01-01

    This review covers literature data summarizing, on one hand, the chemistry of essential oils and, on the other hand, their most important activities. Essential oils, which are complex mixtures of volatile compounds particularly abundant in aromatic plants, are mainly composed of terpenes biogenerated by the mevalonate pathway. These volatile molecules include monoterpenes (hydrocarbon and oxygenated monoterpens), and also sesquiterpenes (hydrocarbon and oxygenated sesquiterpens). Furthermore, they contain phenolic compounds, which are derived via the shikimate pathway. Thanks to their chemical composition, essential oils possess numerous biological activities (antioxidant, anti-inflammatory, antimicrobial, etc…) of great interest in food and cosmetic industries, as well as in the human health field. PMID:28930135

  2. Use of deuterium and oxygen-18 in hydrological problems at Villa de Reyes, S.L.P. Mexico

    International Nuclear Information System (INIS)

    Morales, P.; Castillo C, R.

    1983-01-01

    A survey of an initial study in order to understand the general behaviour of ground water at Villa de Reyes, S.L.P. Mexico is presented. Deuterium and oxygen results are discussed and two geothermometers were used in order to search for a geothermal area. (author)

  3. Electrocatalytic reduction of oxygen at glassy carbon electrode modified by polypyrrole/anthraquinones composite film in various pH media

    International Nuclear Information System (INIS)

    Valarselvan, S.; Manisankar, P.

    2011-01-01

    Graphical abstract: The electrocatalytic reduction of dioxygen by one mono and four dihydroxy derivatives of 9,10-anthraquinone (AQ) incorporated in polypyrrole (PPy) matrix on glassy carbon electrode has been investigated. AQ and PPy composite film showed excellent electrocatalytic performance for the reduction of O 2 to H 2 O 2 . Highlights: → Hydroxyl derivatives of anthraquinones as electrocatalysts for dioxygen reduction. → AQ/PPy composite film on GC electrode exhibits potent electrocatalytic activity. → Substituent groups influence electrocatalytic dioxygen reduction. → Surface coverage varies the rate of electrocatalytic dioxygen reduction. - Abstract: The electrocatalytic reduction of dioxygen by one mono and four dihydroxy derivatives of 9,10-anthraquinone (AQ) incorporated in polypyrrole (PPy) matrix on glassy carbon electrode has been investigated. The electrochemical behaviour of the modified electrodes was examined in various pH media and both the formal potential of anthraquinones and reduction potential of dioxygen exhibited pH dependence. AQ and PPy composite film showed excellent electrocatalytic performance for the reduction of O 2 to H 2 O 2 . pH 6.0 was chosen as the most suitable medium to study the electrocatalysis by comparing the peak potential of oxygen reduction and enhancement in peak current for oxygen reduction. The diffusion coefficient values of AQ at the modified electrodes and the number of electrons involved in AQ reduction were evaluated by chronoamperometric and chronocoulometric techniques, respectively. In addition, hydrodynamic voltammetric studies showed the involvement of two electrons in O 2 reduction. The mass specific activity of AQ used, the diffusion coefficient of oxygen and the heterogeneous rate constants for the oxygen reduction at the surface of modified electrodes were also determined by rotating disk voltammetry.

  4. In vitro inhibition of the bovine viral diarrhoea virus by the essential oil of Ocimum basilicum (basil) and monoterpenes.

    Science.gov (United States)

    Kubiça, Thaís F; Alves, Sydney H; Weiblen, Rudi; Lovato, Luciane T

    2014-01-01

    The bovine viral diarrhoea virus (BVDV) is suggested as a model for antiviral studies of the hepatitis C virus (HCV). The antiviral activity of the essential oil of Ocimum basilicum and the monoterpenes camphor, thymol and 1,8-cineole against BVDV was investigated. The cytotoxicities of the compounds were measured by the MTT (3-(4.5-dimethylthiazol-2-yl)-2.5-diphenyltetrazolium bromide) test, and the antiviral activities were tested by the plaque reduction assay. The oil or compounds were added to the assay in three different time points: a) pre-treatment of the virus (virucidal assay); b) pre-treatment of the cells; or c) post-treatment of the cells (after virus inoculation). The percentage of plaques inhibition for each compound was determined based on the number of plaques in the viral control. The results were expressed by CC50 (50% cytotoxic concentration), IC50 (inhibitory concentration for 50% of plaques) and SI (selectivity index = CC50/IC50). Camphor (CC50 = 4420.12 μg mL(-1)) and 1,8-cineole (CC50 = 2996.10 μg mL(-1)) showed the lowest cytotoxicities and the best antiviral activities (camphor SI = 13.88 and 1,8-cineol SI = 9.05) in the virucidal assay. The higher activities achieved by the monoterpenes in the virucidal assay suggest that these compounds act directly on the viral particle.

  5. Formulation of sage essential oil (Salvia officinalis, L.) monoterpenes into chitosan hydrogels and permeation study with GC-MS analysis.

    Science.gov (United States)

    Kodadová, Alexandra; Vitková, Zuzana; Herdová, Petra; Ťažký, Anton; Oremusová, Jarmila; Grančai, Daniel; Mikuš, Peter

    2015-01-01

    This study deals with the formulation of natural drugs into hydrogels. For the first time, compounds from the sage essential oil were formulated into chitosan hydrogels. A sample preparation procedure for hydrophobic volatile analytes present in a hydrophilic water matrix along with an analytical method based on the gas chromatography coupled with the mass spectrometry (GC-MS) was developed and applied for the evaluation of the identity and quantity of essential oil components in the hydrogels and saline samples. The experimental results revealed that the chitosan hydrogels are suitable for the formulation of sage essential oil. The monoterpene release can be effectively controlled by both chitosan and caffeine concentration in the hydrogels. Permeation experiment, based on a hydrogel with the optimized composition [3.5% (w/w) sage essential oil, 2.0% (w/w) caffeine, 2.5% (w/w) chitosan and 0.1% (w/w) Tween-80] in donor compartment, saline solution in acceptor compartment, and semi-permeable cellophane membrane, demonstrated the useful permeation selectivity. Here, (according to lipophilicity) an enhanced permeation of the bicyclic monoterpenes with antiflogistic and antiseptic properties (eucalyptol, camphor and borneol) and, at the same time, suppressed permeation of toxic thujone (not exceeding its permitted applicable concentration) was observed. These properties highlight the pharmaceutical importance of the developed chitosan hydrogel formulating sage essential oil in the dermal applications.

  6. Why are estimates of global terrestrial isoprene emissions so similar (and why is this not so for monoterpenes?

    Directory of Open Access Journals (Sweden)

    A. Arneth

    2008-08-01

    Full Text Available Emissions of biogenic volatile organic compounds (BVOC are a chief uncertainty in calculating the burdens of important atmospheric compounds like tropospheric ozone or secondary organic aerosol, reflecting either imperfect chemical oxidation mechanisms or unreliable emission estimates, or both. To provide a starting point for a more systematic discussion we review here global isoprene and monoterpene emission estimates to-date. We note a surprisingly small variation in the predictions of global isoprene emission rate that is in stark contrast with our lack of process understanding and the small number of observations for model parameterisation and evaluation. Most of the models are based on similar emission algorithms, using fixed values for the emission capacity of various plant functional types. In some cases, these values are very similar but differ substantially in other models. The similarities with regard to the global isoprene emission rate would suggest that the dominant parameters driving the ultimate global estimate, and thus the dominant determinant of model sensitivity, are the specific emission algorithm and isoprene emission capacity. But the models also differ broadly with regard to their representation of net primary productivity, method of biome coverage determination and climate data. Contrary to isoprene, monoterpene estimates show significantly larger model-to-model variation although variation in terms of leaf algorithm, emission capacities, the way of model upscaling, vegetation cover or climatology used in terpene models are comparable to those used for isoprene. From our summary of published studies there appears to be no evidence that the terrestrial modelling community has been any more successful in "resolving unknowns" in the mechanisms that control global isoprene emissions, compared to global monoterpene emissions. Rather, the proliferation of common parameterization schemes within a large variety of model platforms

  7. Oxygen therapy reduces postoperative tachycardia

    DEFF Research Database (Denmark)

    Stausholm, K; Kehlet, H; Rosenberg, J

    1995-01-01

    Concomitant hypoxaemia and tachycardia in the postoperative period is unfavourable for the myocardium. Since hypoxaemia per se may be involved in the pathogenesis of postoperative tachycardia, we have studied the effect of oxygen therapy on tachycardia in 12 patients randomly allocated to blinded...... air or oxygen by facemask on the second or third day after major surgery. Inclusion criteria were arterial hypoxaemia (oxygen saturation 90 beat.min-1). Each patient responded similarly to oxygen therapy: an increase in arterial oxygen saturation and a decrease...... in heart rate (p oxygen has a positive effect on the cardiac oxygen delivery and demand balance....

  8. Novel pathway of SO2 oxidation in the atmosphere: reactions with monoterpene ozonolysis intermediates and secondary organic aerosol

    Science.gov (United States)

    Ye, Jianhuai; Abbatt, Jonathan P. D.; Chan, Arthur W. H.

    2018-04-01

    Ozonolysis of monoterpenes is an important source of atmospheric biogenic secondary organic aerosol (BSOA). While enhanced BSOA formation has been associated with sulfate-rich conditions, the underlying mechanisms remain poorly understood. In this work, the interactions between SO2 and reactive intermediates from monoterpene ozonolysis were investigated under different humidity conditions (10 % vs. 50 %). Chamber experiments were conducted with ozonolysis of α-pinene or limonene in the presence of SO2. Limonene SOA formation was enhanced in the presence of SO2, while no significant changes in SOA yields were observed during α-pinene ozonolysis. Under dry conditions, SO2 primarily reacted with stabilized Criegee intermediates (sCIs) produced from ozonolysis, but at 50 % RH heterogeneous uptake of SO2 onto organic aerosol was found to be the dominant sink of SO2, likely owing to reactions between SO2 and organic peroxides. This SO2 loss mechanism to organic peroxides in SOA has not previously been identified in experimental chamber studies. Organosulfates were detected and identified using an electrospray ionization-ion mobility spectrometry-high-resolution time-of-flight mass spectrometer (ESI-IMS-TOF) when SO2 was present in the experiments. Our results demonstrate the synergistic effects between BSOA formation and SO2 oxidation through sCI chemistry and SO2 uptake onto organic aerosol and illustrate the importance of considering the chemistry of organic and sulfur-containing compounds holistically to properly account for their reactive sinks.

  9. Low temperature alkaline pH hydrolysis of oxygen-free Titan tholins

    Science.gov (United States)

    Brassé, Coralie; Buch, Arnaud; Raulin, François; Coll, Patrice; Poch, Olivier; Ramirez, Sandra

    2014-05-01

    The largest moon of Saturn, Titan, is known for its dense, nitrogen-rich atmosphere. The organic aerosols which are produced in Titan's atmosphere are of great astrobiological interest, particularly because of their potential evolution when they reach the surface and may interact with putative ammonia-water cryomagma[1]. In this context we have followed the evolution of alkaline pH hydrolysis (25wt% ammonia-water) of Titan tholins (produced by an experimental setup using a plasma DC discharge named PLASMA) at low temperature. Urea has been identified as one of the main product of tholins hydrolysis along with several amino acids (alanine, glycine and aspartic acid). However, those molecules have also been detected in non-hydrolyzed tholins. One explanation is a possible oxygen leak in the PLASMA reactor during the tholins synthesis[2]. Following this preliminary study the synthesis protocol has been improved by isolating the whole device in a specially designed glove box which protect the PLASMA experiment from the laboratory atmosphere. Once we confirmed the non-presence of oxygen in tholins, we performed alkaline pH hydrolysis of oxygen-free tholins. Then we verify that the organic compounds cited above are still produced in-situ. Moreover, a recent study shows that the subsurface ocean may contain a lower fraction of ammonia (about 5wt% or less[3]), than the one used until now in this kind of experimental study[2, 4]. Thus, we have carried out new hydrolysis experiments which take this lower value into account. Additional studies have provided new highlights on the bulk composition of Titan for various gas species. Indeed, the observed Saturn's atmosphere enrichment constrains the composition of the planetesimals present in the feeding zone of Saturn. The enrichment in volatiles in Saturn's atmosphere has been reproduced by assuming the presence of specific gas species[5, 6], in particular CO2 and H2S. In the present study we assume that those gas species have

  10. MR Imaging-derived Oxygen-Hemoglobin Dissociation Curves and Fetal-Placental Oxygen-Hemoglobin Affinities.

    Science.gov (United States)

    Avni, Reut; Golani, Ofra; Akselrod-Ballin, Ayelet; Cohen, Yonni; Biton, Inbal; Garbow, Joel R; Neeman, Michal

    2016-07-01

    Purpose To generate magnetic resonance (MR) imaging-derived, oxygen-hemoglobin dissociation curves and to map fetal-placental oxygen-hemoglobin affinity in pregnant mice noninvasively by combining blood oxygen level-dependent (BOLD) T2* and oxygen-weighted T1 contrast mechanisms under different respiration challenges. Materials and Methods All procedures were approved by the Weizmann Institutional Animal Care and Use Committee. Pregnant mice were analyzed with MR imaging at 9.4 T on embryonic days 14.5 (eight dams and 58 fetuses; imprinting control region ICR strain) and 17.5 (21 dams and 158 fetuses) under respiration challenges ranging from hyperoxia to hypoxia (10 levels of oxygenation, 100%-10%; total imaging time, 100 minutes). A shorter protocol with normoxia to hyperoxia was also performed (five levels of oxygenation, 20%-100%; total imaging time, 60 minutes). Fast spin-echo anatomic images were obtained, followed by sequential acquisition of three-dimensional gradient-echo T2*- and T1-weighted images. Automated registration was applied to align regions of interest of the entire placenta, fetal liver, and maternal liver. Results were compared by using a two-tailed unpaired Student t test. R1 and R2* values were derived for each tissue. MR imaging-based oxygen-hemoglobin dissociation curves were constructed by nonlinear least square fitting of 1 minus the change in R2*divided by R2*at baseline as a function of R1 to a sigmoid-shaped curve. The apparent P50 (oxygen tension at which hemoglobin is 50% saturated) value was derived from the curves, calculated as the R1 scaled value (x) at which the change in R2* divided by R2*at baseline scaled (y) equals 0.5. Results The apparent P50 values were significantly lower in fetal liver than in maternal liver for both gestation stages (day 14.5: 21% ± 5 [P = .04] and day 17.5: 41% ± 7 [P hemoglobin dissociation curves with a shorter protocol that excluded the hypoxic periods was demonstrated. Conclusion MR imaging

  11. Combination of On-line pH and Oxygen Transfer Rate Measurement in Shake Flasks by Fiber Optical Technique and Respiration Activity MOnitoring System (RAMOS

    Directory of Open Access Journals (Sweden)

    Jochen Büchs

    2007-12-01

    Full Text Available Shake flasks are commonly used for process development in biotechnologyindustry. For this purpose a lot of information is required from the growth conditions duringthe fermentation experiments. Therefore, Anderlei et al. developed the RAMOS technology[1, 2], which proviedes on-line oxygen and carbondioxide transfer rates in shake flasks.Besides oxygen consumption, the pH in the medium also plays an important role for thesuccessful cultivation of micro-organisms and for process development. For online pHmeasurement fiber optical methods based on fluorophores are available. Here a combinationof the on-line Oxygen Transfer Rate (OTR measurements in the RAMOS device with anon-line, fiber optical pH measurement is presented. To demonstrate the application of thecombined measurement techniques, Escherichia coli cultivations were performed and on-line pH measurements were compared with off-line samples. The combination of on-lineOTR and pH measurements gives a lot of information about the cultivation and, therefore, itis a powerful technique for monitoring shake flask experiments as well as for processdevelopment.

  12. Monoterpene synthases from common sage (Salvia officinalis)

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, Rodney Bruce (Pullman, WA); Wise, Mitchell Lynn (Pullman, WA); Katahira, Eva Joy (Pullman, WA); Savage, Thomas Jonathan (Christchurch 5, NZ)

    1999-01-01

    cDNAs encoding (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase from common sage (Salvia officinalis) have been isolated and sequenced, and the corresponding amino acid sequences has been determined. Accordingly, isolated DNA sequences (SEQ ID No:1; SEQ ID No:3 and SEQ ID No:5) are provided which code for the expression of (+)-bornyl diphosphate synthase (SEQ ID No:2), 1,8-cineole synthase (SEQ ID No:4) and (+)-sabinene synthase SEQ ID No:6), respectively, from sage (Salvia officinalis). In other aspects, replicable recombinant cloning vehicles are provided which code for (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase, or for a base sequence sufficiently complementary to at least a portion of (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase. Thus, systems and methods are provided for the recombinant expression of the aforementioned recombinant monoterpene synthases that may be used to facilitate their production, isolation and purification in significant amounts. Recombinant (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase may be used to obtain expression or enhanced expression of (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase in plants in order to enhance the production of monoterpenoids, or may be otherwise employed for the regulation or expression of (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase, or the production of their products.

  13. Inhibition of β-Secretase Activity by Monoterpenes, Sesquiterpenes, and C13 Norisoprenoids.

    Science.gov (United States)

    Marumoto, Shinsuke; Okuno, Yoshiharu; Miyazawa, Mitsuo

    2017-08-01

    Inhibition of β-secretase (BACE1) is currently regarded as the leading treatment strategy for Alzheimer's disease. In the present study, we aimed to screen the in vitro inhibitory activity of 80 types of aroma compounds (monoterpenes, sesquiterpenes, and C 13 norisoprenoids), including plant-based types, at a 200-μM concentration against a recombinant human BACE1. The results showed that the most potent inhibitor of BACE1 was geranyl acetone followed by (+)-camphor, (-)-fenchone, (+)-fenchone, and (-)-camphor with the half-maximal inhibitory concentration (IC 50 ) values of 51.9 ± 3.9, 95.9 ± 11.0, 106.3 ± 14.9, 117.0 ± 18.6, and 134.1 ± 16.4 μM, respectively. Furthermore, the mechanism of inhibition of BACE1 by geranyl acetone was analyzed using Dixon kinetics plus Cornish-Bowden plots, which revealed mixed-type mode. Therefore aroma compounds may be used as potential lead molecules for designing anti-BACE1 agents.

  14. Residual oxygen time model for oxygen partial pressure near 130 kPa (1.3 atm).

    Science.gov (United States)

    Shykoff, Barbara E

    2015-01-01

    A two-part residual oxygen time model predicts the probability of detectible pulmonary oxygen toxicity P(P[O2tox]) after dives with oxygen partial pressure (PO2) approximately 130 kPa, and provides a tool to plan dive series with selected risk of P[O2tox]. Data suggest that pulmonary oxygen injury at this PO2 is additive between dives. Recovery begins after a delay and continues during any following dive. A logistic relation expresses P(P[O2tox]) as a function of dive duration (T(dur)) [hours]: P(P[O2tox]) = 100/[1+exp (3.586-0.49 x T(dur))] This expression maps T(dur) to P(P[O2tox]) or, in the linear mid-portion of the curve, P(P[O2tox]) usefully to T(dur). For multiple dives or during recovery, it maps to an equivalent dive duration, T(eq). T(eq) was found after second dives of duration T(dur 2). Residual time from the first dive t(r) = T(eq) - T(dur2). With known t(r), t and T(dur) a recovery model was fitted. t(r) = T(dur) x exp [-k x((t-5)/T(dur)2], where t = t - 5 hours, k = 0.149 for resting, and 0.047 for exercising divers, and t represents time after surfacing. The fits were assessed for 1,352 man-dives. Standard deviations of the residuals were 8.5% and 18.3% probability for resting or exercise dives, respectively.

  15. Essential oil composition of some plants of family zygophyllaceae and euphorbiaceae

    International Nuclear Information System (INIS)

    Dastagir, G.

    2014-01-01

    Our objectives were to find out the chemical constituents of some selected plants of family Zygophyllaceae and Euphorbiaceae collected from Peshawar and Attock Hills during 2009, by GC/MS. The oil obtained from three analysed plants of family Zygophyllaceae showed that oxygenated monoterpenes were the highest (90.99%) in Tribulus terrestris, followed by Fagonia cretica (89.94%) and the lowest (36.01%) found in Peganum harmala. Peganum harmala had maximum esters (11.58%) followed by Tribulus terrestris (5.8%) and Fagonia cretica (5.5%). Monoterpenes hydrocarbons were the highest (1.22%) in Fagonia cretica followed by Peganum harmala and absent in Tribulus terrestris. Sesquiterpenes hydrocarbons were maximum (11.01%) in Peganum harmala and absent in Tribulus terrestris. The analysis of essential oils revealed that Fagonia cretica oils had 17 compounds that constituted 100% of the oil composition. Oxygenated monoterpenes (89.94%), were a major group of compounds. Peganum harmala oil had 18 compounds. There were 10 compounds in Tribulus terrestris oil that consisted 100% of the total oil composition. Eight compounds were identified in Chrozophora tinctoria oils giving complete oil composition. It had oxygenated monoterpenes (86.93%), constituting 2(4H) - Benzofuranone, 5, 6, 7, 7a tetrahydro-4, 4, 7a-trimethy (50.718%). Ricinus communis . oil had 8 compounds with 100% of the oil composition. The present study exhibited that phytochemical attributes and chemical composition of the studied plants have potential uses for food, pharmaceutical and cosmetic industry in future. Detailed research work on the antioxidant principles and biological activities of the studied plants is further recommended. (author)

  16. The legacy of attack: implications of high phloem resin monoterpene levels in lodgepole pines following mass attack by mountain pine beetle, Dendroctonus ponderosae Hopkins.

    Science.gov (United States)

    Clark, E L; Huber, D P W; Carroll, A L

    2012-04-01

    The mountain pine beetle (Dendroctonus ponderosae Hopkins) is the most serious pest of pines (Pinus) in western North America. Host pines protect themselves from attack by producing a complex mixture of terpenes in their resin. We sampled lodgepole pine (Pinus contorta variety latifolia) phloem resin at four widely separated locations in the interior of British Columbia, Canada, both just before (beginning of July) and substantially after (end of August) the mountain pine beetle dispersal period. The sampled trees then were observed the next spring for evidence of survival, and the levels of seven resin monoterpenes were compared between July and August samples. Trees that did not survive consistently had significantly higher phloem resin monoterpene levels at the end of August compared with levels in July. Trees that did survive mainly did not exhibit a significant difference between the two sample dates. The accumulation of copious defense-related secondary metabolites in the resin of mountain pine beetle-killed lodgepole pine has important implications for describing the environmental niche that the beetle offspring survive in as well as that of parasitoids, predators, and other associates.

  17. Kinetic therapy improves oxygenation in critically ill pediatric patients.

    Science.gov (United States)

    Schultz, Theresa Ryan; Lin, Richard; Francis, Barbara A; Hales, Roberta L; Colborn, Shawn; Napoli, Linda A; Helfaer, Mark A

    2005-07-01

    To compare changes in oxygenation after manual turning and percussion (standard therapy) and after automated rotation and percussion (kinetic therapy). Randomized crossover trial. General and cardiac pediatric intensive care units. Intubated and mechanically ventilated pediatric patients who had an arterial catheter and no contraindications to using a PediDyne bed. Patients were placed on a PediDyne bed (Kinetic Concepts) and received 18 hrs blocks of standard and kinetic therapy in an order determined by randomization. Arterial blood gases were measured every 2 hrs during each phase of therapy. Oxygenation index and arterial-alveolar oxygen tension difference [P(A-a)O(2)] were calculated. Indexes calculated at baseline and after each 18-hr phase of therapy were analyzed. Fifty patients were enrolled. Data from 15 patients were either not collected or not used due to reasons that included violation of protocol and inability to tolerate the therapies in the study. Indexes of oxygenation were not normally distributed and were compared using Wilcoxon signed rank testing. Both therapies led to improvements in oxygenation, but only those from kinetic therapy achieved statistical significance. In patients receiving kinetic therapy first, median oxygenation index decreased from 7.4 to 6.19 (p = .015). The median P(A-a)O(2) decreased from 165.2 to 126.4 (p = .023). There were continued improvements in oxygenation after the subsequent period of standard therapy, with the median oxygenation index decreasing to 5.52 and median P(A-a)O(2) decreasing to 116.0, but these changes were not significant (p = .365 and .121, respectively). When standard therapy was first, the median oxygenation index decreased from 8.83 to 8.71 and the median P(a-a)o(2) decreased from 195.4 to 186.6. Neither change was significant. Median oxygenation index after the subsequent period of kinetic therapy was significantly lower (7.91, p = .044) and median P(A-a)O(2) trended lower (143.4, p = .077

  18. The impact of the Danish Oxygen Register on adherence to guidelines for long-term oxygen therapy in COPD patients

    DEFF Research Database (Denmark)

    Ringbæk, Thomas Jørgen; Lange, Peter

    2006-01-01

    OBJECTIVES: To evaluate the impact of The Danish Oxygen Register on COPD patients' treatment modalities, survival, and adherence to guidelines for long-term oxygen therapy (LTOT). DESIGN: The Danish Oxygen Register. SUBJECTS: 8487 COPD patients who received LTOT in the study period from November 1...... with the possibility of re-evaluation of the criteria for LTOT and adjustment for oxygen flow, with no change during the study period (P=0.43). In a representative subsample, 77.1% had smoking habits or measurement of CO-level registered in 1995 compared to 79.6% in year 2000 (P=0.65), and 25.1% vs. 21.2% (P=0.......34) were considered current smokers. The median survival increased from 1.07 to 1.40 years (P=0.032). CONCLUSIONS: Adherence to guidelines for LTOT has improved concerning administration of oxygen, but has remained poor concerning follow-up of the patients and smoking cessation. Survival of COPD patients...

  19. Asthma and hemoglobinopathy: when is supplemental oxygen required?

    Science.gov (United States)

    Joseph, Leon; Brickner-Braun, Inbal; Pinshow, Berry; Goldberg, Shmuel; Miskin, Hagit; Picard, Elie

    2013-10-01

    Asthma is the most common reason for referral to the emergency department in childhood. In severe attacks, supplemental O2 is given when oxygen saturation level is asthma attack. Simultaneously, P(a)O2 was normal. A diagnosis of abnormal hemoglobin with decreased oxygen affinity (hemoglobin Seattle) was made on hemoglobin electrophoresis and genetic analysis. To ascertain when supplemental oxygen was needed, an oxygen dissociation curve was plotted using the tonometer technique, and it was found that an S(p)O2 of 70% is parallel to a P(a)O2 of 60 mmHg. Plotting an oxygen dissociation curve is a simple reproducible method to determine when supplemental oxygen is required for a child with a hemoglobinopathy. © 2013 The Authors. Pediatrics International © 2013 Japan Pediatric Society.

  20. Implantable oxygen microelectrode suitable for medium-term investigations of post-surgical tissue hypoxia and changes in tumor tissue oxygenation produced by radiotherapy

    International Nuclear Information System (INIS)

    Burke, T.R.; Johnson, R.J.; Krishnamsetty, C.B.; Sako, K.; Karakousis, C.; Wojtas, F.

    1980-01-01

    Teflon-covered platinum oxygen probes were used to monitor tissue oxygen levels in post-surgical cancer patients and those treated with radiotherapy. Progressive wound healing was usually accompanied by a decrease in tissue pO2. Radiotherapy produced a slight increase in pO2 while hyperthermia effected a significant increase in the oxygen level during 100% oxygen breathing

  1. Molecular cloning and expression levels of the monoterpene synthase gene (ZMM1) in Cassumunar ginger (Zingiber montanum (Koenig) Link ex Dietr.)

    OpenAIRE

    Bua-In Saowaluck; Paisooksantivatana Yingyong; Weimer Bart C.; Chowpongpang Srimek

    2014-01-01

    Cassumunar ginger (Zingiber montanum (Koenig) Link ex Dietr.) is a native Thai herb with a high content and large variety of terpenoids in its essential oil. Improving the essential oil content and quality of cassumunar ginger is difficult for a breeder due to its clonally propagated nature. In this research, we describe the isolation and expression level of the monoterpene synthase gene that controls the key step of essential oil synthesis in this plant an...

  2. Oxygen dependency of germinating Brassica seeds

    Science.gov (United States)

    Park, Myoung Ryoul; Hasenstein, Karl H.

    2016-02-01

    Establishing plants in space, Moon or Mars requires adaptation to altered conditions, including reduced pressure and composition of atmospheres. To determine the oxygen requirements for seed germination, we imbibed Brassica rapa seeds under varying oxygen concentrations and profiled the transcription patterns of genes related to early metabolism such as starch degradation, glycolysis, and fermentation. We also analyzed the activity of lactate dehydrogenase (LDH) and alcohol dehydrogenase (ADH), and measured starch degradation. Partial oxygen pressure (pO2) greater than 10% resulted in normal germination (i.e., protrusion of radicle about 18 hours after imbibition) but lower pO2 delayed and reduced germination. Imbibition in an oxygen-free atmosphere for three days resulted in no germination but subsequent transfer to air initiated germination in 75% of the seeds and the root growth rate was transiently greater than in roots germinated under ambient pO2. In hypoxic seeds soluble sugars degraded faster but the content of starch after 24 h was higher than at ambient oxygen. Transcription of genes related to starch degradation, α-amylase (AMY) and Sucrose Synthase (SUS), was higher under ambient O2 than under hypoxia. Glycolysis and fermentation pathway-related genes, glucose phosphate isomerase (GPI), 6-phosphofructokinase (PFK), fructose 1,6-bisphosphate aldolase (ALD), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), pyruvate decarboxylase (PDC), LDH, and ADH, were induced by low pO2. The activity of LDH and ADH was the highest in anoxic seeds. Germination under low O2 conditions initiated ethanolic fermentation. Therefore, sufficient oxygen availability is important for germination before photosynthesis provides necessary oxygen and the determination of an oxygen carrying capacity is important for uniform growth in space conditions.

  3. SUN family proteins Sun4p, Uth1p and Sim1p are secreted from Saccharomyces cerevisiae and produced dependently on oxygen level.

    Directory of Open Access Journals (Sweden)

    Evgeny Kuznetsov

    Full Text Available The SUN family is comprised of proteins that are conserved among various yeasts and fungi, but that are absent in mammals and plants. Although the function(s of these proteins are mostly unknown, they have been linked to various, often unrelated cellular processes such as those connected to mitochondrial and cell wall functions. Here we show that three of the four Saccharomyces cerevisiae SUN family proteins, Uth1p, Sim1p and Sun4p, are efficiently secreted out of the cells in different growth phases and their production is affected by the level of oxygen. The Uth1p, Sim1p, Sun4p and Nca3p are mostly synthesized during the growth phase of both yeast liquid cultures and colonies. Culture transition to slow-growing or stationary phases is linked with a decreased cellular concentration of Sim1p and Sun4p and with their efficient release from the cells. In contrast, Uth1p is released mainly from growing cells. The synthesis of Uth1p and Sim1p, but not of Sun4p, is repressed by anoxia. All four proteins confer cell sensitivity to zymolyase. In addition, Uth1p affects cell sensitivity to compounds influencing cell wall composition and integrity (such as Calcofluor white and Congo red differently when growing on fermentative versus respiratory carbon sources. In contrast, Uth1p is essential for cell resistance to boric acids irrespective of carbon source. In summary, our novel findings support the hypothesis that SUN family proteins are involved in the remodeling of the yeast cell wall during the various phases of yeast culture development and under various environmental conditions. The finding that Uth1p is involved in cell sensitivity to boric acid, i.e. to a compound that is commonly used as an important antifungal in mycoses, opens up new possibilities of investigating the mechanisms of boric acid's action.

  4. Future changes in the Baltic Sea acid–base (pH and oxygen balances

    Directory of Open Access Journals (Sweden)

    Anders Omstedt

    2012-12-01

    Full Text Available Possible future changes in Baltic Sea acid–base (pH and oxygen balances were studied using a catchment–sea coupled model system and numerical experiments based on meteorological and hydrological forcing datasets and scenarios. By using objective statistical methods, climate runs for present climate conditions were examined and evaluated using Baltic Sea modelling. The results indicate that increased nutrient loads will not inhibit future Baltic Sea acidification; instead, the seasonal pH cycle will be amplified by increased biological production and mineralization. All examined scenarios indicate future acidification of the whole Baltic Sea that is insensitive to the chosen global climate model. The main factor controlling the direction and magnitude of future pH changes is atmospheric CO2 concentration (i.e. emissions. Climate change and land-derived changes (e.g. nutrient loads affect acidification mainly by altering the seasonal cycle and deep-water conditions. Apart from decreasing pH, we also project a decreased saturation state of calcium carbonate, decreased respiration index and increasing hypoxic area – all factors that will threaten the marine ecosystem. We demonstrate that substantial reductions in fossil-fuel burning are needed to minimise the coming pH decrease and that substantial reductions in nutrient loads are needed to reduce the coming increase in hypoxic and anoxic waters.

  5. Challenges in modelling isoprene and monoterpene emission dynamics of Arctic plants: a case study from a subarctic tundra heath

    Science.gov (United States)

    Tang, Jing; Schurgers, Guy; Valolahti, Hanna; Faubert, Patrick; Tiiva, Päivi; Michelsen, Anders; Rinnan, Riikka

    2016-12-01

    The Arctic is warming at twice the global average speed, and the warming-induced increases in biogenic volatile organic compounds (BVOCs) emissions from Arctic plants are expected to be drastic. The current global models' estimations of minimal BVOC emissions from the Arctic are based on very few observations and have been challenged increasingly by field data. This study applied a dynamic ecosystem model, LPJ-GUESS, as a platform to investigate short-term and long-term BVOC emission responses to Arctic climate warming. Field observations in a subarctic tundra heath with long-term (13-year) warming treatments were extensively used for parameterizing and evaluating BVOC-related processes (photosynthesis, emission responses to temperature and vegetation composition). We propose an adjusted temperature (T) response curve for Arctic plants with much stronger T sensitivity than the commonly used algorithms for large-scale modelling. The simulated emission responses to 2 °C warming between the adjusted and original T response curves were evaluated against the observed warming responses (WRs) at short-term scales. Moreover, the model responses to warming by 4 and 8 °C were also investigated as a sensitivity test. The model showed reasonable agreement to the observed vegetation CO2 fluxes in the main growing season as well as day-to-day variability of isoprene and monoterpene emissions. The observed relatively high WRs were better captured by the adjusted T response curve than by the common one. During 1999-2012, the modelled annual mean isoprene and monoterpene emissions were 20 and 8 mg C m-2 yr-1, with an increase by 55 and 57 % for 2 °C summertime warming, respectively. Warming by 4 and 8 °C for the same period further elevated isoprene emission for all years, but the impacts on monoterpene emissions levelled off during the last few years. At hour-day scale, the WRs seem to be strongly impacted by canopy air T, while at the day-year scale, the WRs are a combined

  6. Biogenic volatile organic compound (BVOC) emissions from forested areas in Turkey: Determination of specific emission rates for thirty-one tree species

    International Nuclear Information System (INIS)

    Aydin, Yagmur Meltem; Yaman, Baris; Koca, Husnu; Dasdemir, Okan; Kara, Melik; Altiok, Hasan; Dumanoglu, Yetkin; Bayram, Abdurrahman; Tolunay, Doganay; Odabasi, Mustafa; Elbir, Tolga

    2014-01-01

    Normalized biogenic volatile organic compound (BVOC) emission rates for thirty one tree species that cover the 98% of national forested areas in Turkey were determined. Field samplings were performed at fourteen different forested areas in Turkey using a specific dynamic enclosure system. The selected branches of tree species were enclosed in a chamber consisted of a transparent Nalofan bag. The air-flows were sampled from both inlet and outlet of the chamber by Tenax-filled sorbent tubes during photosynthesis of trees under the presence of sunlight. Several environmental parameters (temperature, humidity, photosynthetically active radiation-PAR, and CO 2 ) were continuously monitored inside and outside the enclosure chamber during the samplings. Collected samples were analyzed using a gas chromatography mass spectrometry (GC/MS) system equipped with a thermal desorber (TD). Sixty five BVOCs classified in five major groups (isoprene, monoterpenes, sesquiterpenes, oxygenated sesquiterpenes, and other oxygenated compounds) were analyzed. Emission rates were determined by normalization to standard conditions (1000 μmol/m 2 s PAR and 30 °C temperature for isoprene and 30 °C temperature for the remaining compounds). In agreement with the literature, isoprene was mostly emitted by broad-leaved trees while coniferous species mainly emitted monoterpenes. Several tree species such as Sweet Chestnut, Silver Lime, and European Alder had higher monoterpene emissions although they are broad-leaved species. High isoprene emissions were also observed for a few coniferous species such as Nordmann Fir and Oriental Spruce. The highest normalized total BVOC emission rate of 27.1 μg/g h was observed for Oriental Plane while South European Flowering Ash was the weakest BVOC emitter with a total normalized emission rate of 0.031 μg/g h. Monoterpene emissions of broad-leaved species mainly consisted of sabinene, limonene and trans-beta-ocimene, while alpha-pinene, beta-pinene and

  7. Biogenic volatile organic compound (BVOC) emissions from forested areas in Turkey: Determination of specific emission rates for thirty-one tree species

    Energy Technology Data Exchange (ETDEWEB)

    Aydin, Yagmur Meltem; Yaman, Baris; Koca, Husnu; Dasdemir, Okan; Kara, Melik; Altiok, Hasan; Dumanoglu, Yetkin; Bayram, Abdurrahman [Department of Environmental Engineering, Faculty of Engineering, Dokuz Eylul University, Tinaztepe Campus, Buca, Izmir (Turkey); Tolunay, Doganay [Department of Soil Science and Ecology, Faculty of Forestry, Istanbul University, Bahcekoy, Istanbul (Turkey); Odabasi, Mustafa [Department of Environmental Engineering, Faculty of Engineering, Dokuz Eylul University, Tinaztepe Campus, Buca, Izmir (Turkey); Elbir, Tolga, E-mail: tolga.elbir@deu.edu.tr [Department of Environmental Engineering, Faculty of Engineering, Dokuz Eylul University, Tinaztepe Campus, Buca, Izmir (Turkey)

    2014-08-15

    Normalized biogenic volatile organic compound (BVOC) emission rates for thirty one tree species that cover the 98% of national forested areas in Turkey were determined. Field samplings were performed at fourteen different forested areas in Turkey using a specific dynamic enclosure system. The selected branches of tree species were enclosed in a chamber consisted of a transparent Nalofan bag. The air-flows were sampled from both inlet and outlet of the chamber by Tenax-filled sorbent tubes during photosynthesis of trees under the presence of sunlight. Several environmental parameters (temperature, humidity, photosynthetically active radiation-PAR, and CO{sub 2}) were continuously monitored inside and outside the enclosure chamber during the samplings. Collected samples were analyzed using a gas chromatography mass spectrometry (GC/MS) system equipped with a thermal desorber (TD). Sixty five BVOCs classified in five major groups (isoprene, monoterpenes, sesquiterpenes, oxygenated sesquiterpenes, and other oxygenated compounds) were analyzed. Emission rates were determined by normalization to standard conditions (1000 μmol/m{sup 2} s PAR and 30 °C temperature for isoprene and 30 °C temperature for the remaining compounds). In agreement with the literature, isoprene was mostly emitted by broad-leaved trees while coniferous species mainly emitted monoterpenes. Several tree species such as Sweet Chestnut, Silver Lime, and European Alder had higher monoterpene emissions although they are broad-leaved species. High isoprene emissions were also observed for a few coniferous species such as Nordmann Fir and Oriental Spruce. The highest normalized total BVOC emission rate of 27.1 μg/g h was observed for Oriental Plane while South European Flowering Ash was the weakest BVOC emitter with a total normalized emission rate of 0.031 μg/g h. Monoterpene emissions of broad-leaved species mainly consisted of sabinene, limonene and trans-beta-ocimene, while alpha-pinene, beta

  8. The monoterpene terpinolene from the oil of Pinus mugo L. in concert with alpha-tocopherol and beta-carotene effectively prevents oxidation of LDL.

    Science.gov (United States)

    Grassmann, J; Hippeli, S; Spitzenberger, R; Elstner, E F

    2005-06-01

    Antioxidants from several nutrients, e.g. vitamin E, beta-carotene, or flavonoids, inhibit the oxidative modification of low-density lipoproteins. This protective effect could possibly retard atherogenesis and in consequence avoid coronary heart diseases. Some studies have shown a positive effect of those antioxidants on cardiovascular disease. Another class of naturally occurring antioxidants are terpenoids, which are found in essential oils. The essential oil of Pinus mugo and the contained monoterpene terpinolene effectively prevent low-density lipoprotein (LDL)-oxidation. In order to test the mechanism by which terpinolene protects LDL from oxidation, LDL from human blood plasma enriched in terpinolene was isolated. In this preparation not only the lipid part of LDL is protected against copper-induced oxidation--as proven by following the formation of conjugated dienes, but also the oxidation of the protein part is inhibited, since loss of tryptophan fluorescence is strongly delayed. This inhibition is due to a retarded oxidation of intrinsic carotenoids of LDL, and not, as in the case of some flavonoids, attributable to a protection of intrinsic alpha-tocopherol. These results are in agreement with our previous results, which showed the same effects for a monoterpene from lemon oil, i.e. gamma-terpinene.

  9. Promoting effect of oxygen for hydrogenation of butadiene over Ni/sub 2/P catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Nozaki, F.; Kitoh, T.; Sodesawa, T.

    1980-04-01

    When 0-10 mm Hg of oxygen were added to the reaction of 75 mm Hg butadiene and 225 mm Hg hydrogen over dinickel phosphide in a closed circulation system at 40/sup 0/C, increasing amounts of oxygen caused increasing lengths of induction periods followed by hydrogenation at reaction rates which had a maximum at 3 mm Hg oxygen. This maximum rate was about six times higher than the rate without oxygen addition. Adsorption, temperature-programed desorption, IR spectroscopy, and the product distribution of butadiene deuteration showed that two types of oxygen adsorbed on the dinickel phosphide catalyst; molecular oxygen on nickel, which desorbed on evacuation below 50/sup 0/C and which could be displaced by butadiene, was responsible for the induction period; molecular oxygen on phosphorus atoms, which promoted hydrogen adsorption, was responsible for the increased hydrogenation rate.

  10. 1,8-Cineole ameliorates oxygen-glucose deprivation/reoxygenation-induced ischaemic injury by reducing oxidative stress in rat cortical neuron/glia.

    Science.gov (United States)

    Ryu, Sangwoo; Park, Hyeon; Seol, Geun Hee; Choi, In-Young

    2014-12-01

    1,8-Cineole, the main monoterpene in many essential oils, has been used as an ingredient in flavourings and medicine. 1,8-Cineole has been shown to possess pharmacological properties, including anti-oxidative, anti-inflammatory and anti-nociceptive actions. However, to date, no studies have examined the potential of 1,8-cineole to protect against cerebral ischaemic injury. In this study, we investigated the neuroprotective effects of 1,8-cineole against cortical neuronal/glial cell injury caused by oxygen-glucose deprivation/reoxygenation (OGD/R) in an in-vitro model of ischaemia. 1,8-Cineole significantly attenuated OGD/R-induced cortical cell injury, as well as reduced n-methyl-d-aspartate (NMDA)-induced cell injury. However, it did not inhibit NMDA-induced cytosolic calcium overload. Nevertheless, 1,8-cineole significantly reduced the OGD/R- and NMDA-induced overproduction of reactive oxygen species (ROS). These results indicate that 1,8-cineole exerts neuroprotection through its anti-oxidative rather than its anti-excitotoxic, properties. The decrease in OGD/R-induced intracellular superoxide in 1,8-cineole-treated cortical cells was associated with the upregulation of superoxide dismutase activity. Moreover, 1,8-cineole showed direct ROS scavenging activity in an assay of oxygen radical absorbance capacity. Collectively, these results suggest 1,8-cineole as a potentially effective neuroprotective and anti-oxidative candidate for the treatment of patients with ischaemic stroke. © 2014 Royal Pharmaceutical Society.

  11. Oxygen effects on the interfacial electronic structure of titanyl phthalocyanine film: p-Type doping, band bending and Fermi level alignment

    International Nuclear Information System (INIS)

    Nishi, Toshio; Kanai, Kaname; Ouchi, Yukio; Willis, Martin R.; Seki, Kazuhiko

    2006-01-01

    The effect of oxygen doping on titanyl phthalocyanine (TiOPc) film was investigated by ultraviolet photoelectron spectroscopy (UPS). The electronic structure of the interface formed between TiOPc films deposited on highly oriented pyrolytic graphite (HOPG) was clearly different between the films prepared in ultrahigh vacuum (UHV) and under O 2 atmosphere (1.3 x 10 -2 Pa). The film deposited in UHV showed downward band bending characteristic of n-type semiconductor, possibly due to residual impurities working as unintentional n-type dopants. On the other hand, the film deposited under O 2 atmosphere showed upward band bending characteristic of p-type semiconductor. Such trends, including the conversion from n- to p-type, are in excellent correspondence with reported field effect transistor characteristics of TiOPc, and clearly demonstrates that bulk TiOPc film was p-doped with oxygen. In order to examine the Fermi level alignment between TiOPc film and the substrate, the energy of the highest occupied molecular orbital (HOMO) of TiOPc relative to the Fermi level of the conductive substrate was determined for various substrates. The alignment between the Fermi level of conductive substrate and Fermi level of TiOPc film at fixed energy in the bandgap was not observed for the TiOPc film prepared in UHV, possibly because of insufficient charge density in the TiOPc film. This situation was drastically changed when the TiOPc film exposed to O 2 , and clear alignment of the Fermi level fixed at 0.6 eV above the HOMO with the Fermi level of the conducting substrate was observed, probably by p-type doping effect of oxygen. These are the first direct and quantitative information about bulk oxygen doping from the viewpoint of the electronic structure. These results suggest that similar band bending with Fermi level alignment may be also achieved for other organic semiconductors under practical device conditions, and also call for caution at the comparison of experimental

  12. Exposure to elevated pCO2 does not exacerbate reproductive suppression of Aurelia aurita jellyfish polyps in low oxygen environments

    KAUST Repository

    Treible, LM

    2017-08-15

    Eutrophication-induced hypoxia is one of the primary anthropogenic threats to coastal ecosystems. Under hypoxic conditions, a deficit of O2 and a surplus of CO2 will concurrently decrease pH, yet studies of hypoxia have seldom considered the potential interactions with elevated pCO2 (reduced pH). Previous studies on gelatinous organisms concluded that they are fairly robust to low oxygen and reduced pH conditions individually, yet the combination of stressors has only been examined for ephyrae. The goals of this study were to determine the individual and interactive effects of hypoxia and elevated pCO2 on the asexual reproduction and aerobic respiration rates of polyps of the scyphozoan Aurelia aurita during a manipulative experiment that ran for 36 d. pCO2 and pO2 were varied on a diel basis to closely mimic the diel conditions observed in the field. Exposure to low dissolved oxygen (DO) reduced asexual budding of polyps by ~50% relative to control conditions. Under hypoxic conditions, rates of respiration were elevated during an initial acclimation period (until Day 8), but respiration rates did not differ between DO levels under prolonged exposure. There was no significant effect of increased pCO2 on either asexual reproduction or aerobic respiration, suggesting that elevated pCO2 (reduced pH) did not exacerbate the negative reproductive effects of hypoxia on A. aurita polyps.

  13. Exposure to elevated pCO2 does not exacerbate reproductive suppression of Aurelia aurita jellyfish polyps in low oxygen environments

    KAUST Repository

    Treible, LM; Pitt, KA; Klein, SG; Condon, RH

    2017-01-01

    Eutrophication-induced hypoxia is one of the primary anthropogenic threats to coastal ecosystems. Under hypoxic conditions, a deficit of O2 and a surplus of CO2 will concurrently decrease pH, yet studies of hypoxia have seldom considered the potential interactions with elevated pCO2 (reduced pH). Previous studies on gelatinous organisms concluded that they are fairly robust to low oxygen and reduced pH conditions individually, yet the combination of stressors has only been examined for ephyrae. The goals of this study were to determine the individual and interactive effects of hypoxia and elevated pCO2 on the asexual reproduction and aerobic respiration rates of polyps of the scyphozoan Aurelia aurita during a manipulative experiment that ran for 36 d. pCO2 and pO2 were varied on a diel basis to closely mimic the diel conditions observed in the field. Exposure to low dissolved oxygen (DO) reduced asexual budding of polyps by ~50% relative to control conditions. Under hypoxic conditions, rates of respiration were elevated during an initial acclimation period (until Day 8), but respiration rates did not differ between DO levels under prolonged exposure. There was no significant effect of increased pCO2 on either asexual reproduction or aerobic respiration, suggesting that elevated pCO2 (reduced pH) did not exacerbate the negative reproductive effects of hypoxia on A. aurita polyps.

  14. Multiple approaches for enhancing all-organic electronics photoluminescent sensors: Simultaneous oxygen and pH monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Rui; Xiao, Teng; Cui, Weipan [Ames Laboratory-USDOE and Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); Shinar, Joseph, E-mail: jshinar@iastate.edu [Ames Laboratory-USDOE and Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); Shinar, Ruth, E-mail: rshinar@iastate.edu [Microelectronics Research Center and Department of Electrical and Computer Engineering, Iowa State University, Ames, IA 50011 (United States)

    2013-05-17

    Graphical abstract: -- Highlights: •Novel simply-fabricated all-organic electronics pH and oxygen optical monitor. •Excitation sources: directionally emitting, narrowed multicolor microcavity OLEDs. •Photodetectors: small molecule- or polymer-based with selective spectral responses. •Sensor film: structured high molecular weight polystyrene:polyethylene glycol blend. •×1.9 sensitivity enhancement and ×2.7 increase in the photoluminescence for oxygen. -- Abstract: Key issues in using organic light emitting diodes (OLEDs) as excitation sources in structurally integrated photoluminescence (PL)-based sensors are the low forward light outcoupling, the OLEDs’ broad electroluminescence (EL) bands, and the long-lived remnant EL that follows an EL pulse. The outcoupling issue limits the detection sensitivity (S) as only ∼20% of the light generated within standard OLEDs can be forward outcoupled and used for sensor probe excitation. The EL broad band interferes with the analyte-sensitive PL, leading to a background that reduces S and dynamic range. In particular, these issues hinder designing compact sensors, potentially miniaturizable, that are devoid of optical filters and couplers. We address these shortcomings by introducing easy-to-employ multiple approaches for outcoupling improvement, PL enhancement, and background EL reduction leading to novel, compact all-organic device architectures demonstrated for simultaneous monitoring of oxygen and pH. The sensor comprises simply-fabricated, directionally-emitting, narrower-band, multicolor microcavity OLED excitation and small molecule- and polymer-based organic photodetectors (OPDs) with a more selective spectral response. Additionally, S and PL intensity for oxygen are enhanced by using polystyrene (PS):polyethylene glycol (PEG) blends as the sensing film matrix. By utilizing higher molecular weight PS, the ratio τ{sub 0}/τ{sub 100} (PL decay time τ at 0% O{sub 2}/τ at 100% O{sub 2}) that is often used

  15. Ultrasound-assisted interaction between chlorin-e6 and human serum albumin: pH dependence, singlet oxygen production, and formulation effect

    Science.gov (United States)

    Mocanu, Mihaela N.; Yan, Fei

    2018-02-01

    The interaction between chlorin e6 (Ce6) and human serum albumin (HSA) in the presence and absence of ultrasound have been investigated by ultraviolet-visible absorption spectroscopy and fluorescence spectroscopy. Ce6 is found to bind strongly to HSA at or near physiological pH conditions, but the strength of the binding is significantly weakened at lower pHs. The intrinsic fluorescence of HSA is incrementally quenched with increasing concentration of Ce6, and the quenching is enhanced after exposure to high-frequency ultrasound. Our experimental results suggest that Ce6-induced sonodynamic oxidation of HSA is mainly mediated by singlet oxygen. The formulation of Ce6 by high molecular weight polyvinylpyrrolidone (PVP) increased its stability in aqueous solutions and its quantum yield of singlet oxygen under ultrasound irradiation.

  16. Oxygen-transfer performance of a newly designed, very low-volume membrane oxygenator.

    Science.gov (United States)

    Burn, Felice; Ciocan, Sorin; Carmona, Natalia Mendez; Berner, Marion; Sourdon, Joevin; Carrel, Thierry P; Tevaearai Stahel, Hendrik T; Longnus, Sarah L

    2015-09-01

    Oxygenation of blood and other physiological solutions are routinely required in fundamental research for both in vitro and in vivo experimentation. However, very few oxygenators with suitable priming volumes (parallel-oriented microporous polypropylene hollow fibres, placed inside a hollow shell with a lateral-luer outlet, and sealed at both extremities. With this design, perfusate is delivered via the core-tube to the centre of the mini-oxygenator, and exits via the luer port. A series of mini-oxygenators were constructed and tested in an in vitro perfusion circuit by monitoring oxygen transfer using modified Krebs-Henseleit buffer or whole porcine blood. Effects of perfusion pressure and temperature over flows of 5-60 ml × min(-1) were assessed. Twelve mini-oxygenators with a mean priming volume of 1.5 ± 0.3 ml were evaluated. With buffer, oxygen transfer reached a maximum of 14.8 ± 1.0 ml O2 × l(-1) (pO2: 450 ± 32 mmHg) at perfusate flow rates of 5 ml × min(-1) and decreased with an increase in perfusate flow to 7.8 ± 0.7 ml ml O2 × l(-1) (pO2: 219 ± 24 mmHg) at 60 ml × min(-1). Similarly, with blood perfusate, oxygen transfer also decreased as perfusate flow increased, ranging from 33 ± 5 ml O2 × l(-1) at 5 ml × min(-1) to 11 ± 2 ml O2 × l(-1) at 60 ml × min(-1). Furthermore, oxygen transfer capacity remained stable with blood perfusion over a period of at least 2 h. We have developed a new miniaturized membrane oxygenator with an ultra-low priming volume (circuits, such as small animal extracorporeal circulation and ex vivo organ perfusion. © The Author 2015. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  17. The Gymnosperm Cytochrome P450 CYP750B1 Catalyzes Stereospecific Monoterpene Hydroxylation of (+)-Sabinene in Thujone Biosynthesis in Western Redcedar1[OPEN

    Science.gov (United States)

    Blaukopf, Markus; Yuen, Macaire M.S.; Withers, Stephen G.; Mattsson, Jim; Russell, John H.; Bohlmann, Jörg

    2015-01-01

    Western redcedar (WRC; Thuja plicata) produces high amounts of oxygenated thujone monoterpenoids associated with resistance against herbivore feeding, particularly ungulate browsing. Thujones and other monoterpenoids accumulate in glandular structures in the foliage of WRC. Thujones are produced from (+)-sabinene by sabinol and sabinone. Using metabolite analysis, enzyme assays with WRC tissue extracts, cloning, and functional characterization of cytochrome P450 monooxygenases, we established that trans-sabin-3-ol but not cis-sabin-3-ol is the intermediate in thujone biosynthesis in WRC. Based on transcriptome analysis, full-length complementary DNA cloning, and characterization of expressed P450 proteins, we identified CYP750B1 and CYP76AA25 as the enzymes that catalyze the hydroxylation of (+)-sabinene to trans-sabin-3-ol. Gene-specific transcript analysis in contrasting WRC genotypes producing high and low amounts of monoterpenoids, including a glandless low-terpenoid clone, as well as assays for substrate specificity supported a biological role of CYP750B1 in α- and β-thujone biosynthesis. This P450 belongs to the apparently gymnosperm-specific CYP750 family and is, to our knowledge, the first member of this family to be functionally characterized. In contrast, CYP76AA25 has a broader substrate spectrum, also converting the sesquiterpene farnesene and the herbicide isoproturon, and its transcript profiles are not well correlated with thujone accumulation. PMID:25829465

  18. Effect of oxygen incorporation on the vibrational properties of Al0.2Ga0.3In0.5P:Be films

    International Nuclear Information System (INIS)

    Soubervielle-Montalvo, C.; Vital-Ochoa, O.; Anda, F. de; Vazquez-Cortes, D.; Rodriguez, A.G.; Melendez-Lira, M.; Mendez-Garcia, V.H.

    2011-01-01

    The vibrational properties of Al 0.2 Ga 0.3 In 0.5 P:Be films grown on (100) GaAs substrates by solid source molecular beam epitaxy varying the phosphorous cracking-zone temperature (PCT) were studied by Raman spectroscopy. The Raman-intensity ratio between the allowed longitudinal optical and the forbidden transverse optical (TO) phonons, and the full width at half maximum of their Lorentzian fits were used to characterize the crystalline quality of the films. The Raman spectra from the samples show changes in the shape and intensity of phonon resonances depending on the PCT variation, indicating that the disorder in the lattice increases with PCT. The increasing disorder is related to the inclusion of oxygen, which act as a non-intentional perturbing impurity in the lattice. In addition, a vibrational mode located at 598 cm -1 related to a forbidden InP-like TO phonon resonance was correlated with oxygen-induced disorder. Photoluminescence at room temperature shows that the high inclusion of oxygen also deteriorates the optical properties of the samples, by introducing non-radiative recombination centers.

  19. A Comparative pO2 Probe and [18F]-Fluoro-Azomycinarabino-Furanoside ([18F]FAZA) PET Study Reveals Anesthesia-Induced Impairment of Oxygenation and Perfusion in Tumor and Muscle.

    Science.gov (United States)

    Mahling, Moritz; Fuchs, Kerstin; Thaiss, Wolfgang M; Maier, Florian C; Feger, Martina; Bukala, Daniel; Harant, Maren; Eichner, Martin; Reutershan, Jörg; Lang, Florian; Reischl, Gerald; Pichler, Bernd J; Kneilling, Manfred

    2015-01-01

    CT26 colon carcinoma-bearing mice were anesthetized with isoflurane (IF) or ketamine/xylazine (KX) while breathing air or oxygen (O2). We performed 10 min static PET scans 1 h, 2 h and 3 h after [18F]FAZA injection and calculated the [18F]FAZA-uptake and tumor-to-muscle ratios (T/M). In another experimental group, we placed a pO2 probe in the tumor as well as in the gastrocnemius muscle to measure the pO2 and perfusion. Ketamine/xylazine-anesthetized mice yielded up to 3.5-fold higher T/M-ratios compared to their isoflurane-anesthetized littermates 1 h, 2 h and 3 h after [18F]FAZA injection regardless of whether the mice breathed air or oxygen (3 h, KX-air: 7.1 vs. IF-air: 1.8, p = 0.0001, KX-O2: 4.4 vs. IF-O2: 1.4, p pO2 probe measurements yielded enhanced intra-tumoral pO2 values in air- and oxygen-breathing ketamine/xylazine-anesthetized mice compared to isoflurane-anesthetized mice (KX-air: 1.01 mmHg, IF-air: 0.45 mmHg; KX-O2 9.73 mmHg, IF-O2: 6.25 mmHg). Muscle oxygenation was significantly higher in air-breathing isoflurane-anesthetized (56.9 mmHg) than in ketamine/xylazine-anesthetized mice (33.8 mmHg, p = 0.0003). [18F]FAZA tumor uptake was highest in ketamine/xylazine-anesthetized mice regardless of whether the mice breathed air or oxygen. The generally lower [18F]FAZA whole-body uptake in isoflurane-anesthetized mice could be due to the higher muscle pO2-values in these mice compared to ketamine/xylazine-anesthetized mice. When performing preclinical in vivo hypoxia PET studies, oxygen should be avoided, and ketamine/xylazine-anesthesia might alleviate the identification of tumor hypoxia areals.

  20. Quantification of photocatalytic oxygenation of human blood.

    Science.gov (United States)

    Subrahmanyam, Aryasomayajula; Thangaraj, Paul R; Kanuru, Chandrasekhar; Jayakumar, Albert; Gopal, Jayashree

    2014-04-01

    Photocatalytic oxygenation of human blood is an emerging concept based on the principle of photocatalytic splitting of water into oxygen and hydrogen. This communication reports: (i) a design of a photocatalytic cell (PC) that separates the blood from UV (incident) radiation source, (ii) a pH, temperature and flow controlled circuit designed for quantifying the oxygenation of human blood by photocatalysis and (iii) measuring the current efficacy of ITO/TiO2 nano thin films in oxygenating human blood in a dynamic circuit in real time. The average increase in oxygen saturation was around 5% above baseline compared to control (p<0.0005). We believe this is one of the first attempts to quantify photocatalytic oxygenation of human blood under controlled conditions. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.

  1. Assessment of the in vitro and in vivo genotoxicity of extracts and indole monoterpene alkaloid from the roots of Galianthe thalictroides (Rubiaceae).

    Science.gov (United States)

    Fernandes, L M; Garcez, W S; Mantovani, M S; Figueiredo, P O; Fernandes, C A; Garcez, F R; Guterres, Z R

    2013-09-01

    Roots of Galianthe thalictroides K. Schum. (Rubiaceae) are used in folk medicine in the State of Mato Grosso do Sul, Brazil, for treating and preventing cancer. To gain information about the genotoxicity of extracts (aqueous and EtOH), the CHCl₃ phase resulting from partition of the EtOH extract and the indole monoterpene alkaloid 1 obtained from this plant. The genotoxicity of 1 and extracts was evaluated in vivo through the Drosophila melanogaster wing Somatic Mutation and Recombination Test - SMART, while in vitro cytotoxic (MTT) and Comet assays were performed only with alkaloid 1. The results obtained with the SMART test indicated that the aqueous extract had no genotoxic activity. The EtOH extract was not genotoxic to ST descendants but genotoxic to HB ones. The CHCl₃ phase was genotoxic and cytotoxic. Alkaloid 1 showed significant mutational events with SMART, in the cytotoxicity assay (MTT), it showed a high cytotoxicity for human hepatoma cells (HepG2), whereas for the Comet assay, not showing genotoxic activity. The ethanol extract was shown to be genotoxic to HB descendants in the SMART assay, while the results obtained in this test for the monoterpene indole alkaloid 1 isolated from this extract. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Bioassay-Guided Investigation of Two Monarda Essential Oils as Repellents of Yellow Fever Mosquito Aedes aegypti

    Science.gov (United States)

    2013-08-06

    suppressed the postprandial elevation of blood triacylglycerol concentrations in mice in vivo; however, five other monoterpene glycosides that were isolated...components, leading to the isolation of compounds with mosquito repellent activity, but without any cytotoxicity. The monoterpene hydrocarbon p-cymene...Kobayashi, K.; Miyase, T.; Yoshizaki, F. A lipase inhibitor monoterpene and monoterpene glycosides from Monarda punctata. Phytochemistry 2010, 71, 1884

  3. ODH, oxygen deficiency hazard cryogenic analysis

    International Nuclear Information System (INIS)

    Augustynowicz, S.D.

    1994-01-01

    An oxygen deficiency exists when the concentration of oxygen, by volume, drops to a level at which atmosphere supplying respiratory protection must be provided. Since liquid cryogens can expand by factors of 700 (LN 2 ) to 850 (LH e ), the uncontrolled release into an enclosed space can easily cause an oxygen-deficient condition. An oxygen deficiency hazard (ODH) fatality rate per hour (OE) is defined as: OE = Σ N i P i F i , where N i = number of components, P i = probability of failure or operator error, and F i = fatality factor. ODHs range from open-quotes unclassifiedclose quotes (OE -9 1/h) to class 4, which is the most hazardous (OE>10 -1 1/h). For Superconducting Super Collider Laboratory (SSCL) buildings where cryogenic systems exist, failure rate, fatality factor, reduced oxygen ratio, and fresh air circulation are examined

  4. Essential-Oil Variability in Natural Populations of Pinus mugo Turra from the Julian Alps.

    Science.gov (United States)

    Bojović, Srdjan; Jurc, Maja; Ristić, Mihailo; Popović, Zorica; Matić, Rada; Vidaković, Vera; Stefanović, Milena; Jurc, Dušan

    2016-02-01

    The composition and variability of the terpenes and their derivatives isolated from the needles of a representative pool of 114 adult trees originating from four natural populations of dwarf mountain pine (Pinus mugo Turra) from the Julian Alps were investigated by GC-FID and GC/MS analyses. In total, 54 of the 57 detected essential-oil components were identified. Among the different compound classes present in the essential oils, the chief constituents belonged to the monoterpenes, comprising an average content of 79.67% of the total oil composition (74.80% of monoterpene hydrocarbons and 4.87% of oxygenated monoterpenes). Sesquiterpenes were present in smaller amounts (average content of 19.02%), out of which 16.39% were sesquiterpene hydrocarbons and 2.62% oxygenated sesquiterpenes. The most abundant components in the needle essential oils were the monoterpenes δ-car-3-ene, β-phellandrene, α-pinene, β-myrcene, and β-pinene and the sesquiterpene β-caryophyllene. From the total data set of 57 detected compounds, 40 were selected for principal-component analysis (PCA), discriminant analysis (DA), and cluster analysis (CA). The overlap tendency of the four populations suggested by PCA, was as well observed by DA. CA also demonstrated similarity among the populations, which was the highest between Populations I and II. Copyright © 2016 Verlag Helvetica Chimica Acta AG, Zürich.

  5. Perillanolides A and B, new monoterpene glycosides from the leaves of Perilla frutescens

    Directory of Open Access Journals (Sweden)

    Yang Liu

    Full Text Available Abstract Two new monoterpene glycosides, perillanolides A and B, together with a known compound reported from the genus Perilla for the first time were isolated and characterized from the leaves of Perilla frutescens (L. Britton, Lamiaceae, a garnish and colorant for foods as well as commonly used for traditional medicine. The structures of the isolated compounds were elucidated on the basis of extensive spectroscopic evidences derived from nuclear magnetic resonance experiments, mass spectrometry and by comparing their physical and spectroscopic data of literature. These compounds, together with the previously isolated secondary metabolites of this species, were investigated for their inhibitory effects on xanthine oxidase in vitro. Of the compounds, luteolin showed the strongest inhibitory activity with an IC50 value of 2.18 µM. Esculetin and scutellarein moderately inhibited the enzyme, while perillanolides A and B, and 4-(3,4-dihydroxybenzoyloxymethylphenyl-O-β-D-glucopyranoside exerted weak activities.

  6. Enhanced oxygen delivery induced by perfluorocarbon emulsions in capillary tube oxygenators.

    Science.gov (United States)

    Vaslef, S N; Goldstick, T K

    1994-01-01

    Previous studies showed that a new generation of perfluorocarbon (PFC) emulsions increased tissue PO2 in the cat retina to a degree that could not be explained by the small increase in arterial O2 content seen after the infusion of low doses of 1 g PFC/kg body weight. It seems that increased O2 delivery at the tissue level after PFC infusion is caused by a local effect in the microcirculation. The authors studies this effect in vitro at steady state in a closed loop circuit, consisting of one of two types of capillary tube oxygenators, deoxygenator(s), a reservoir bag filled with anticoagulated bovine blood or saline (control), and a roller pump, to see if the addition of PFC would have an effect on the PO2 difference (delta PO2) across the capillary tube membrane oxygenator at a blood flow rate of 3 l/min. Perfluorocarbon was added in three incremental doses, each giving about 0.7 vol% of PFC. The delta PO2 across the oxygenator was measured before and after each dose. The mean percent increases in delta PO2 in blood for two types of oxygenators were 19.2 +/- 8% (mean +/- SD, n = 6, P = 0.002) and 9.9 +/- 4% (n = 3, P = 0.05), respectively, whereas the mean percent change in delta PO2 in saline was -4.9 +/- 2% (n = 2, P = 0.2). Inlet PO2s to the oxygenator were only minimally increased. The authors conclude that O2 delivery was significantly enhanced after injection of PFC in blood in this capillary tube model. A near wall excess of PFC particles may account for the augmentation of O2 diffusion in this model.

  7. Oxygen and minority carrier lifetimes in N-and P-type AL0.2GA0.8AS grown by metal organics vapor phase epitaxy

    International Nuclear Information System (INIS)

    Zahraman, Khaled; Leroux, M.; Gibart, P.; Zaidi, M.A.; Bremond, G.; Guillot, G.

    2000-01-01

    author.The minority carrier lifetimes in Al x Ga 1-x As grown by Metal-Organics Vapor Phase Epitaxy (MOVPE) is generally lower than in GaAs. This is believed to be due to oxygen incorporation in the layers. We describe a study of radiative and non radiative minority carriers lifetimes in n-and p-type Al 0.2 Ga 0.8 As as a function of growth parameters, in correlation with oxygen concentration measurements and deep level transient spectroscopy (DLTS) studies. Long non radiative lifetimes and low oxygen contents are achieved using temperature growth. A main minority hole lifetime killer appears to be 0.4 eV deep O related electron trap detected by DLTS at concentrations three orders of magnitude lower than the atomic oxygen one. Record lifetimes in MOVPE grown n-and p-type Al 0.2 Ga 0.8 As are obtained. An Al 0.85 Ga 0.15 As/Al 0.2 Ga 0.8 As surface recombination velocity lower than 4.5x10 3 cm.s -1 is measured

  8. Hypercapnic Respiratory Acidosis During An In-Flight Oxygen Assessment.

    Science.gov (United States)

    Spurling, Kristofer J; Moonsie, Ian K; Perks, Joseph L

    2016-02-01

    Patients with respiratory disease are at risk of excessive hypoxemia in the hypobaric commercial aircraft cabin environment, and the consensus is that this is easily corrected with supplementary oxygen. However, despite the risks of hypercapnia with increasing inspired oxygen in some patients being well established, this issue is not currently addressed in medical guidelines for air travel. A 76-yr-old woman with chronic type 2 respiratory failure underwent hypoxic challenge testing (HCT) to assess in-flight oxygen requirements. She is stable on home ventilation, and baseline arterial blood gases showed mild hypoxemia (Pao2 9.12 kPa), normal P(a)co(2) (5.64 kPa) and pH (7.36) with 98% S(p)O(2). HCT was performed delivering 15% FIo(2) via a mask, and the patient desaturated to respiratory acidosis (pH 7.25). The patient was advised against flying due to hypoxemia during HCT and the precipitous drop in pH on oxygen. It is possible to hyperoxygenate patients with type 2 respiratory failure in flight with the minimum level of supplementary oxygen available on many aircraft. In these cases P(a)co(2) and pH should be scrutinized during HCT before recommending in-flight oxygen. No current guidelines discuss the risk of hypercapnia from in-flight oxygen; it is therefore recommended that this be addressed in future revisions of medical air travel guidelines, should further research indicate it.

  9. Environmental science: Oceans lose oxygen

    Science.gov (United States)

    Gilbert, Denis

    2017-02-01

    Oxygen is essential to most life in the ocean. An analysis shows that oxygen levels have declined by 2% in the global ocean over the past five decades, probably causing habitat loss for many fish and invertebrate species. See Letter p.335

  10. Effects of normobaric versus hyperbaric oxygen on cell injury induced by oxygen and glucose deprivation in acute brain slices

    Directory of Open Access Journals (Sweden)

    Laurent Chazalviel

    2016-01-01

    Full Text Available Normobaric oxygen (NBO and hyperbaric oxygen (HBO are emerging as a possible co-treatment of acute ischemic stroke. Both have been shown to reduce infarct volume, to improve neurologic outcome, to promote endogenous tissue plasminogen activator-induced thrombolysis and cerebral blood flow, and to improve tissue oxygenation through oxygen diffusion in the ischemic areas, thereby questioning the interest of HBO compared to NBO. In the present study, in order to investigate and compare the oxygen diffusion effects of NBO and HBO on acute ischemic stroke independently of their effects at the vascular level, we used acute brain slices exposed to oxygen and glucose deprivation, an ex vivo model of brain ischemia that allows investigating the acute effects of NBO (partial pressure of oxygen (pO 2 = 1 atmospheres absolute (ATA = 0.1 MPa and HBO (pO 2 = 2.5 ATA = 0.25 MPa through tissue oxygenation on ischemia-induced cell injury as measured by the release of lactate dehydrogenase. We found that HBO, but not NBO, reduced oxygen and glucose deprivation-induced cell injury, indicating that passive tissue oxygenation (i.e. without vascular support of the brain parenchyma requires oxygen partial pressure higher than 1 ATA.

  11. Distribution of Primary and Specialized Metabolites in Nigella sativa Seeds, a Spice with Vast Traditional and Historical Uses

    Directory of Open Access Journals (Sweden)

    Efraim Lev

    2012-08-01

    Full Text Available Black cumin (Nigella sativa L., Ranunculaceae is an annual herb commonly used in the Middle East, India and nowadays gaining worldwide acceptance. Historical and traditional uses are extensively documented in ancient texts and historical documents. Black cumin seeds and oil are commonly used as a traditional tonic and remedy for many ailments as well as in confectionery and bakery. Little is known however about the mechanisms that allow the accumulation and localization of its active components in the seed. Chemical and anatomical evidence indicates the presence of active compounds in seed coats. Seed volatiles consist largely of olefinic and oxygenated monoterpenes, mainly p-cymene, thymohydroquinone, thymoquinone, γ-terpinene and α-thujene, with lower levels of sesquiterpenes, mainly longifolene. Monoterpene composition changes during seed maturation. γ-Terpinene and α-thujene are the major monoterpenes accumulated in immature seeds, and the former is gradually replaced by p-cymene, carvacrol, thymo-hydroquinone and thymoquinone upon seed development. These compounds, as well as the indazole alkaloids nigellidine and nigellicine, are almost exclusively accumulated in the seed coat. In contrast, organic and amino acids are primarily accumulated in the inner seed tissues. Sugars and sugar alcohols, as well as the amino alkaloid dopamine and the saponin α-hederin accumulate both in the seed coats and the inner seed tissues at different ratios. Chemical analyses shed light to the ample traditional and historical uses of this plant.

  12. Temperature effects on hemocyanin oxygen binding in an antarctic cephalopod.

    Science.gov (United States)

    Zielinski, S; Sartoris, F J; Pörtner, H O

    2001-02-01

    The functional relevance of oxygen transport by hemocyanin of the Antarctic octopod Megaleledone senoi and of the eurythermal cuttlefish Sepia officinalis was analyzed by continuous and simultaneous recordings of changes in pH and hemocyanin oxygen saturation in whole blood at various temperatures. These data were compared to literature data on other temperate and cold-water cephalopods (octopods and giant squid). In S. officinalis, the oxygen affinity of hemocyanin changed at deltaP50/degrees C = 0.12 kPa (pH 7.4) with increasing temperatures; this is similar to observations in temperate octopods. In M. senoi, thermal sensitivity was much smaller (delta log P50/delta pH) increased with increasing temperature in both the cuttlefish and the Antarctic octopod. At low PO2 (1.0 kPa) and pH (7.2), the presence of a large venous oxygen reserve (43% saturation) insensitive to pH reflects reduced pH sensitivity and high oxygen affinity in M. senoi hemocyanin at 0 degrees C. In S. officinalis, this reserve was 19% at pH 7.4, 20 degrees C, and 1.7 kPa O2, a level still higher than in squid. These findings suggest that the lower metabolic rate of octopods and cuttlefish compared to squid is reflected in less pH-dependent oxygen transport. Results of the hemocyanin analysis for the Antarctic octopod were similar to those reported for Vampyroteuthis--an extremely high oxygen affinity supporting a very low metabolic rate. In contrast to findings in cold-adapted giant squid, the minimized thermal sensitivity of oxygen transport in Antarctic octopods will reduce metabolic scope and thereby contribute to their stenothermality.

  13. Chemical Composition of the Essential Oil from Aerial Parts of Javanian Pimpinella pruatjan Molk. and Its Molecular Phylogeny

    Directory of Open Access Journals (Sweden)

    Agustina D. R. Nurcahyanti

    2016-07-01

    Full Text Available The species-rich and diverse genus Pimpinella is mainly distributed in Europe and Asia; a few species occur in Africa. Yet, the Javanian Pimpinella, P. pruatjan, which has been used as an aphrodisiac in Indonesian traditional medicine, was studied for the first time in the context of chemical composition, as well as phylogeny analysis and antimicrobial activity. We examined the chemical composition of the essential oil (EO from aerial parts of P. pruatjan by gas liquid chromatography-mass spectrometry (GLC-MS. The main component of EO was (Z-γ-bisabolene. Several oxygenated monoterpenes, oxygenated sesquiterpenes, and sesquiterpenes were also detected. The genetic relationship of Pimpinella pruatjan Molk. to other Pimpinella species was reconstructed using nucleotide sequences of the nuclear DNA marker ITS (Internal Transcribed Spacer. P. pruatjan clusters as a sister group to the African Pimpinella species. The EO did not exhibit an apparent antimicrobial activity.

  14. Tumor oxygenation in a transplanted rat rhabdomyosarcoma during fractionated irradiation

    International Nuclear Information System (INIS)

    Zywietz, Friedrich; Reeker, Wolfram; Kochs, Eberhard

    1995-01-01

    Purpose: To quantify the changes in tumor oxygenation in the course of a fractionated radiation treatment extending over 4 weeks. Methods and Materials: Rhabdomyosarcomas R1H of the rat were irradiated with 60 Co-γ-rays with a total dose of 60 Gy, given in 20 fractions over 4 weeks. Oxygen partial pressure (pO 2 ) in tumors was measured at weekly intervals using polarographic needle probes in combination with a microprocessor-controlled device (pO 2 -Histograph/KIMOC). The pO 2 measurements were carried out in anesthetized animals under mechanical ventilation and in respiratory and hemodynamic steady state. Tumor pO 2 values were correlated to the arterial oxygen pressure p a O 2 , arterial pCO 2 , and pH determined with a blood gas analyzer. Results: Tumor oxygenation did not change significantly during the 3 weeks of irradiation (up to 45 Gy), from a median pO 2 of 23 ± 2 mmHg in untreated controls to 19 ± 4 mmHg after the third week. The decrease of the number of pO 2 values between 0 and 5 mmHg indicated that an improved oxygenation in the tumors occurred. However, with increasing radiation dose (fourth week, 60 Gy) a significant decrease in tumor oxygenation to a median pO 2 of 8 ± 2 mmHg and a rapid increase in the frequency of pO 2 values (35 ± 4%) between 0 and 5 mmHg was found. Conclusion: Improved oxygenation in rhabdomyosarcomas R1H was only present in the early phase of the fractionated irradiation. Radiation doses above 45 Gy led to a considerable decrease of tumor oxygenation in the later phase of irradiation

  15. Adult and newborn rat inner retinal oxygenation during carbogen and 100% oxygen breathing. Comparison using magnetic resonance imaging delta Po2 mapping.

    Science.gov (United States)

    Berkowitz, B A

    1996-09-01

    To test the hypothesis that breathing carbogen (95% O2-5% CO2) oxygenates the inner retina better than breathing 100% oxygen using an magnetic resonance imaging (MRI) method that noninvasively measures inner retinal oxygenation in normal adult and newborn rats. Urethane-anesthetized adult and newborn (day 18) rats were studied. Sequential images were acquired in room air combined with either 100% oxygen or carbogen breathing. Normalized vitreous signal intensity changes were converted to oxygen tension changes (delta PO2) either on a pixel-by-pixel basis or in specific regions of interest. Systemic levels of hyperoxia during carbogen or 100% oxygen breathing were not significantly different (P > 0.05). In the adult rat, a significant difference (P = 0.017) was found in the preretinal vitreous delta PO2 during the breathing of either carbogen (130 +/- 9 mm Hg, mean +/- SEM; n = 5) or 100% oxygen (88 +/- 16 mm Hg; n = 5). Agreement was found between the MRI-determined delta PO2 values and literature oxygen microelectrodes data. In the newborn rat, significant differences (P delta PO2 were found during carbogen (164 +/- 23 mm Hg; n = 3) and oxygen breathing (91 +/- 8 mm Hg; n = 3). MRI delta PO2 mapping demonstrated for the first time that in the normal adult and newborn rat eye, carbogen breathing oxygenates the inner retina better than 100% oxygen breathing.

  16. Role of active oxygen species in the photodestruction of microsomal cytochrome P-450 and associated monooxygenases by hematoporphyrin derivative in rats

    International Nuclear Information System (INIS)

    Das, M.; Dixit, R.; Mukhtar, H.; Bickers, D.R.

    1985-01-01

    The cytochrome P-450 in hepatic microsomes prepared from rats pretreated with hematoporphyrin derivative was shown to be rapidly destroyed in the presence of long-wave ultraviolet light. The photocatalytic destruction of the heme-protein was dependent on both the dose of ultraviolet light and of hematoporphyrin derivative administered to the animals. The destructive reaction was accompanied by increased formation of cytochrome P-420, loss of microsomal heme content, and diminished catalytic activity of cytochrome P-450-dependent monooxygenases such as aryl hydrocarbon hydroxylase and 7-ethoxycoumarin O-deethylase. The specificity of the effect on cytochrome P-450 was confirmed by the observation that other heme-containing moieties such as myoglobin and cytochrome c were not susceptible to photocatalytic destruction. The destruction of cytochrome P-450 was a photodynamic process requiring oxygen since quenchers of singlet oxygen, including 2,5-dimethylfuran, histidine, and beta-carotene, each substantially diminished the reaction. Scavengers of superoxide anion such as superoxide dismutase and of H 2 O 2 such as catalase did not protect against photodestruction of cytochrome P-450, whereas inhibitors of the hydroxyl radical, including benzoate, mannitol, and ethyl alcohol, did afford protection. These results indicate that lipid-rich microsomal membranes and the heme-protein cytochrome P-450 embedded therein are potential targets of injury in cells exposed to hematoporphyrin derivative photosensitization

  17. Generalized cytochrome P450-mediated oxidation and oxygenation reactions in aromatic substrates with activated N-H, O-H, C-H, or S-H substituents

    NARCIS (Netherlands)

    Koymans, L.; Donné-Op den Kelder, G M; te Koppele, J.M.; Vermeulen, N P

    1. The general mechanism of metabolic oxidation of substrates by cytochromes P450 (P450s) appears to consist of sequential one-electron oxidation steps rather than of a single concerted transfer of activated oxygen species from P450 to substrates. 2. In case of the acetanilides paracetamol (PAR),

  18. IGF-I enhances cellular senescence via the reactive oxygen species-p53 pathway

    Energy Technology Data Exchange (ETDEWEB)

    Handayaningsih, Anastasia-Evi; Takahashi, Michiko; Fukuoka, Hidenori; Iguchi, Genzo; Nishizawa, Hitoshi; Yamamoto, Masaaki; Suda, Kentaro [Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe (Japan); Takahashi, Yutaka, E-mail: takahash@med.kobe-u.ac.jp [Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe (Japan)

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer Cellular senescence plays an important role in tumorigenesis and aging process. Black-Right-Pointing-Pointer We demonstrated IGF-I enhanced cellular senescence in primary confluent cells. Black-Right-Pointing-Pointer IGF-I enhanced cellular senescence in the ROS and p53-dependent manner. Black-Right-Pointing-Pointer These results may explain the underlying mechanisms of IGF-I involvement in tumorigenesis and in regulation of aging. -- Abstract: Cellular senescence is characterized by growth arrest, enlarged and flattened cell morphology, the expression of senescence-associated {beta}-galactosidase (SA-{beta}-gal), and by activation of tumor suppressor networks. Insulin-like growth factor-I (IGF-I) plays a critical role in cellular growth, proliferation, tumorigenesis, and regulation of aging. In the present study, we show that IGF-I enhances cellular senescence in mouse, rat, and human primary cells in the confluent state. IGF-I induced expression of a DNA damage marker, {gamma}H2AX, the increased levels of p53 and p21 proteins, and activated SA-{beta}-gal. In the confluent state, an altered downstream signaling of IGF-I receptor was observed. Treatment with a reactive oxygen species (ROS) scavenger, N-acetylcystein (NAC) significantly suppressed induction of these markers, indicating that ROS are involved in the induction of cellular senescence by IGF-I. In p53-null mouse embryonic fibroblasts, the IGF-I-induced augmentation of SA-{beta}-gal and p21 was inhibited, demonstrating that p53 is required for cellular senescence induced by IGF-I. Thus, these data reveal a novel pathway whereby IGF-I enhances cellular senescence in the ROS and p53-dependent manner and may explain the underlying mechanisms of IGF-I involvement in tumorigenesis and in regulation of aging.

  19. IGF-I enhances cellular senescence via the reactive oxygen species–p53 pathway

    International Nuclear Information System (INIS)

    Handayaningsih, Anastasia-Evi; Takahashi, Michiko; Fukuoka, Hidenori; Iguchi, Genzo; Nishizawa, Hitoshi; Yamamoto, Masaaki; Suda, Kentaro; Takahashi, Yutaka

    2012-01-01

    Highlights: ► Cellular senescence plays an important role in tumorigenesis and aging process. ► We demonstrated IGF-I enhanced cellular senescence in primary confluent cells. ► IGF-I enhanced cellular senescence in the ROS and p53-dependent manner. ► These results may explain the underlying mechanisms of IGF-I involvement in tumorigenesis and in regulation of aging. -- Abstract: Cellular senescence is characterized by growth arrest, enlarged and flattened cell morphology, the expression of senescence-associated β-galactosidase (SA-β-gal), and by activation of tumor suppressor networks. Insulin-like growth factor-I (IGF-I) plays a critical role in cellular growth, proliferation, tumorigenesis, and regulation of aging. In the present study, we show that IGF-I enhances cellular senescence in mouse, rat, and human primary cells in the confluent state. IGF-I induced expression of a DNA damage marker, γH2AX, the increased levels of p53 and p21 proteins, and activated SA-β-gal. In the confluent state, an altered downstream signaling of IGF-I receptor was observed. Treatment with a reactive oxygen species (ROS) scavenger, N-acetylcystein (NAC) significantly suppressed induction of these markers, indicating that ROS are involved in the induction of cellular senescence by IGF-I. In p53-null mouse embryonic fibroblasts, the IGF-I-induced augmentation of SA-β-gal and p21 was inhibited, demonstrating that p53 is required for cellular senescence induced by IGF-I. Thus, these data reveal a novel pathway whereby IGF-I enhances cellular senescence in the ROS and p53-dependent manner and may explain the underlying mechanisms of IGF-I involvement in tumorigenesis and in regulation of aging.

  20. Photoacoustic Imaging in Oxygen Detection

    Directory of Open Access Journals (Sweden)

    Fei Cao

    2017-12-01

    Full Text Available Oxygen level, including blood oxygen saturation (sO2 and tissue oxygen partial pressure (pO2, are crucial physiological parameters in life science. This paper reviews the importance of these two parameters and the detection methods for them, focusing on the application of photoacoustic imaging in this scenario. sO2 is traditionally detected with optical spectra-based methods, and has recently been proven uniquely efficient by using photoacoustic methods. pO2, on the other hand, is typically detected by PET, MRI, or pure optical approaches, yet with limited spatial resolution, imaging frame rate, or penetration depth. Great potential has also been demonstrated by employing photoacoustic imaging to overcome the existing limitations of the aforementioned techniques.

  1. Mass-spectrometric analysis of trace oxygen in carbon dioxide; Analyse de traces d'oxygene dans le gaz carbonique par spectrometrie de masse

    Energy Technology Data Exchange (ETDEWEB)

    Nief, G; Severin, M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-07-01

    The mass spectrum of pure CO{sub 2} contains a peak of weight 32 whose relationship to peak at 44 varies greatly depending on the previous history of the source of ions and even during the course of an analysis. The fact that this peak is more or less proportional to the pressure and that its appearance potential is the same as that of oxygen leads us to suppose that it is produced from oxygen formed by dissociation of the carbon dioxide on the tungsten filament. A prior treatment of the ion source with acetylene reduces the ratio 32/44 to a value of about 15.10{sup -5}. This same treatment also stabilises the spectrometer's sensitivity to oxygen. Two lines of introduction enable pure carbon dioxide, the specimen to be estimated and a reference mixture of known oxygen content to be sent into the mass spectrometer in quick succession. Oxygen in the carbon dioxide in amounts ranging between 0 and 500 p.p.m. can thus be determined to an accuracy of {+-} 5 p.p.m., the analysis taking 30 minutes. (author) [French] Le spectre de masse de CO{sub 2} pur contient un pic de masse 32 dont le rapport au pic 44 varie enormement suivant l'histoire anterieure de la source d'ions et meme au cours d'une analyse. Le fait que ce pic soit grossierement proportionnel a la pression et que son potentiel d'apparition soit le meme que celui de l'oxygene permet de supposer qu'il est engendre a partir de l'oxygene produit par dissociation du gaz carbonique sur le filament de tungstene. Un conditionnement prealable de la source d'ions avec de l'acetylene reduit le rapport 32/44 a une valeur d'environ 15.10{sup -5}. Ce meme traitement stabilise egalement la sensibilite du spectrometre vis-a-vis de l'oxygene. Une double ligne d'introduction de gaz permet d'envoyer en successions rapides dans le spectrometre de masse le gaz carbonique pur, l'echantillon a doser et un melange de reference de teneur en oxygene connue. On arrive ainsi a doser l'oxygene dans le gaz carbonique dans la gamme de 0 a

  2. Oxygen discharge and post-discharge kinetics experiments and modeling for the electric oxygen-iodine laser system.

    Science.gov (United States)

    Palla, A D; Zimmerman, J W; Woodard, B S; Carroll, D L; Verdeyen, J T; Lim, T C; Solomon, W C

    2007-07-26

    Laser oscillation at 1315 nm on the I(2P1/2)-->I(2P3/2) transition of atomic iodine has been obtained by a near resonant energy transfer from O2(a1Delta) produced using a low-pressure oxygen/helium/nitric oxide discharge. In the electric discharge oxygen-iodine laser (ElectricOIL) the discharge production of atomic oxygen, ozone, and other excited species adds levels of complexity to the singlet oxygen generator (SOG) kinetics which are not encountered in a classic purely chemical O2(a1Delta) generation system. The advanced model BLAZE-IV has been introduced to study the energy-transfer laser system dynamics and kinetics. Levels of singlet oxygen, oxygen atoms, and ozone are measured experimentally and compared with calculations. The new BLAZE-IV model is in reasonable agreement with O3, O atom, and gas temperature measurements but is under-predicting the increase in O2(a1Delta) concentration resulting from the presence of NO in the discharge and under-predicting the O2(b1Sigma) concentrations. A key conclusion is that the removal of oxygen atoms by NOX species leads to a significant increase in O2(a1Delta) concentrations downstream of the discharge in part via a recycling process; however, there are still some important processes related to the NOX discharge kinetics that are missing from the present modeling. Further, the removal of oxygen atoms dramatically inhibits the production of ozone in the downstream kinetics.

  3. The Role of Ru Redox in pH-Dependent Oxygen Evolution on Rutile Ruthenium Dioxide Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Stoerzinger, Kelsey A.; Rao, Reshma R.; Wang, Xiao Renshaw; Hong, Wesley T.; Rouleau, Christopher M.; Shao-Horn, Yang

    2017-05-01

    Rutile RuO2 is known to exhibit high catalytic activity for the oxygen evolution reaction (OER) and large pseudocapacitance associated with redox of surface Ru, however the mechanistic link between these properties and the role of pH is yet to be understood. Here we report that the OER activities of the (101), (001) and (111) RuO2 surfaces were found to increase while the potential of a pseudocapacitive feature just prior to OER shifted to lower potentials (“super-Nernstian” shift) with increasing pH on the reversible hydrogen electrode (RHE) scale. This behavior is in contrast to the (100) and (110) surfaces that have pH-independent Ru redox and OER activity. The link in catalytic and pseudocapacitive behavior illustrates the importance of this redox feature in generating active sites, building new mechanistic understanding of the OER.

  4. Effects of dissolved oxygen and pH on nitrous oxide production rates in autotrophic partial nitrification granules.

    Science.gov (United States)

    Rathnayake, Rathnayake M L D; Oshiki, Mamoru; Ishii, Satoshi; Segawa, Takahiro; Satoh, Hisashi; Okabe, Satoshi

    2015-12-01

    The effects of dissolved oxygen (DO) and pH on nitrous oxide (N2O) production rates and pathways in autotrophic partial nitrification (PN) granules were investigated at the granular level. N2O was primarily produced by betaproteobacterial ammonia-oxidizing bacteria, mainly Nitrosomonas europaea, in the oxic surface layer (production increased with increasing bulk DO concentration owing to activation of the ammonia (i.e., hydroxylamine) oxidation in this layer. The highest N2O emissions were observed at pH 7.5, although the ammonia oxidation rate was unchanged between pH 6.5 and 8.5. Overall, the results of this study suggest that in situ analyses of PN granules are essential to gaining insight into N2O emission mechanisms in a granule. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Blood oxygen and carbon dioxide transport in man

    OpenAIRE

    McElderry, Linda A.

    1981-01-01

    The effect of long term domiciliary oxygen therapy on the position and shape of the oxygen dissociation curve, together with other haematologic variables such as 2,3- diphosphoglycerate (2,3-DPG), haemoglobin concentration, packed cell volume, mean corpuscular haemoglobin concentration, and arterial blood gas and pH values, has been studied in patients with chronic bronchitis. Twenty-six patients were randomly allocated to receive either no oxygen therapy or 15 hours p...

  6. Production of pulsed atomic oxygen beams via laser vaporization methods

    International Nuclear Information System (INIS)

    Brinza, D.E.; Coulter, D.R.; Liang, R.H.; Gupta, A.

    1987-01-01

    Energetic pulsed atomic oxygen beams were generated by laser-driven evaporation of cryogenically frozen ozone/oxygen films and thin films of indium-tin oxide (ITO). Mass and energy characterization of beams from the ozone/oxygen films were carried out by mass spectrometry. The peak flux, found to occur at 10 eV, is estimated from this data to be 3 x 10(20) m(-2) s(-1). Analysis of the time-of-flight data indicates a number of processes contribute to the formation of the atomic oxygen beam. The absence of metastable states such as the 2p(3) 3s(1) (5S) level of atomic oxygen blown off from ITO films is supported by the failure to observe emission at 777.3 nm from the 2p(3) 3p(1) (5P/sub J/) levels. Reactive scattering experiments with polymer film targets for atomic oxygen bombardment are planned using a universal crossed molecular beam apparatus

  7. Ultraviolet-B and photosynthetically active radiation interactively affect yield and pattern of monoterpenes in leaves of peppermint (Mentha x piperita L.).

    Science.gov (United States)

    Behn, Helen; Albert, Andreas; Marx, Friedhelm; Noga, Georg; Ulbrich, Andreas

    2010-06-23

    Solar radiation is a key environmental signal in regulation of plant secondary metabolism. Since metabolic responses to light and ultraviolet (UV) radiation exposure are known to depend on the ratio of spectral ranges (e.g., UV-B/PAR), we examined effects of different UV-B radiation (280-315 nm) and photosynthetically active radiation (PAR, 400-700 nm) levels and ratios on yield and pattern of monoterpenoid essential oil of peppermint. Experiments were performed in exposure chambers, technically equipped for realistic simulation of natural climate and radiation. The experimental design comprised four irradiation regimes created by the combination of two PAR levels including or excluding UV-B radiation. During flowering, the highest essential oil yield was achieved at high PAR (1150 micromol m(-2) s(-1)) and approximate ambient UV-B radiation (0.6 W m(-2)). Regarding the monoterpene pattern, low PAR (550 micromol m(-2) s(-1)) and the absence of UV-B radiation led to reduced menthol and increased menthone contents and thereby to a substantial decrease in oil quality. Essential oil yield could not be correlated with density or diameter of peltate glandular trichomes, the epidermal structures specialized on biosynthesis, and the accumulation of monoterpenes. The present results lead to the conclusion that production of high quality oils (fulfilling the requirements of the Pharmacopoeia Europaea) requires high levels of natural sunlight. In protected cultivation, the use of UV-B transmitting covering materials is therefore highly recommended.

  8. Passive Adsorption of Volatile Monoterpene in Pest Control: Aided by Proximity and Disrupted by Ozone.

    Science.gov (United States)

    Mofikoya, Adedayo O; Kim, Tae Ho; Abd El-Raheem, Ahmed M; Blande, James D; Kivimäenpää, Minna; Holopainen, Jarmo K

    2017-11-08

    Plant volatiles mediate a range of interactions across and within trophic levels, including plant-plant interactions. Volatiles emitted by a plant may trigger physiological responses in neighboring plants or adhere to their surfaces, which, in turn, may affect the responses of the neighboring plant to herbivory. These volatiles are subject to chemical reactions during transport in air currents, especially in a polluted atmosphere. We conducted a field experiment to test for the adsorption of dispenser-released myrcene on the surfaces of cabbage plants and the effects of distance from the dispenser and elevated ozone levels (1.4× ambient) on the process. We also tested the effects of the same treatments on oviposition on cabbage plants by naturally occurring Plutella xylostella. Under low ambient ozone conditions of central Finland, there was evidence for the adsorption and re-release of myrcene by cabbage plants growing at a distance of 50 cm from myrcene dispensers. This effect was absent at elevated ozone levels. The number of eggs deposited by P. xylostella was generally lower in plots under elevated ozone compared to ambient control plots. Our results indicate that passive adsorption and re-release of a volatile monoterpene can occur in nature; however, this process is dependent upon the distance between emitter source and receiver plants as well as the concentration of atmospheric pollutants in the air. We conclude that, in the development of field-scale use of plant volatiles in modern pest control, the effects of distances and air pollution should be considered.

  9. Oxygen diffusion in zircon

    Science.gov (United States)

    Watson, E. B.; Cherniak, D. J.

    1997-05-01

    Oxygen diffusion in natural, non-metamict zircon was characterized under both dry and water-present conditions at temperatures ranging from 765°C to 1500°C. Dry experiments were performed at atmospheric pressure by encapsulating polished zircon samples with a fine powder of 18O-enriched quartz and annealing the sealed capsules in air. Hydrothermal runs were conducted in cold-seal pressure vessels (7-70 MPa) or a piston cylinder apparatus (400-1000 MPa) on zircon samples encapsulated with both 18O-enriched quartz and 18O water. Diffusive-uptake profiles of 18O were measured in all samples with a particle accelerator, using the 18O(p, α) 15N reaction. For dry experimental conditions at 1100-1500°C, the resulting oxygen diffusivities (24 in all) are well described by: D dry (m 2/s) = 1.33 × 10 -4exp(-53920/T) There is no suggestion of diffusive anisotropy. Under wet conditions at 925°C, oxygen diffusion shows little or no dependence upon P H 2O in the range 7-1000 MPa, and is insensitive to total pressure as well. The results of 27 wet experiments at 767-1160°C and 7-1000 MPa can be described a single Arrhenius relationship: D wet (m 2/s) = 5.5 × 10 -12exp(-25280/T) The insensitivity of oxygen diffusion to P H 2O means that applications to geologic problems can be pursued knowing only whether the system of interest was 'wet' (i.e., P H 2O > 7MPa ) or 'dry'. Under dry conditions (presumably rare in the crust), zircons are extremely retentive of their oxygen isotopic signatures, to the extent that δ 18O would be perturbed at the center of a 200 μm zircon only during an extraordinarily hot and protracted event (e.g., 65 Ma at 900°C). Under wet conditions, δ 18O may or may not be retained in the central regions of individual crystals, cores or overgrowth rims, depending upon the specific thermal history of the system.

  10. High oxygen as an additional factor in food preservation

    NARCIS (Netherlands)

    Amanatidou, A.

    2001-01-01

    <p> p>>In this thesis, the efficacy of high oxygen as an additional hurdle for food preservation is studied. At high oxygen conditions and at low temperature, significant impairment of growth and viability of bacterial cells is found to occur as the result of free

  11. Transparent anodes for polymer photovoltaics: Oxygen permeability of PEDOT

    DEFF Research Database (Denmark)

    Andersen, M.; Carlé, Jon Eggert; Cruys-Bagger, N.

    2007-01-01

    The oxygen permeability of the transparent organic anode poly(3,4,-ethylene dioxythiophene) with paratoluenesulphonate as the anion (PEDOT:pTS) was determined to be 2.5 +/- 0.7 x 10(-15) cm(3) (STP) CM cm(-2) S-1 Pa-1, and is thus comparable in magnitude to the oxygen permeability of polyethylene......The oxygen permeability of the transparent organic anode poly(3,4,-ethylene dioxythiophene) with paratoluenesulphonate as the anion (PEDOT:pTS) was determined to be 2.5 +/- 0.7 x 10(-15) cm(3) (STP) CM cm(-2) S-1 Pa-1, and is thus comparable in magnitude to the oxygen permeability...... of polyethyleneterephthalate (PET). The oxygen diffusion through bilayers of polyethylene (PE) and PEDOT:pTS and bilayers of PET and PEDOT:pTS was established. The bilayer structures were applied as the carrier substrate and the transparent anode in polymer-based photovoltaic devices employing a mixture of poly(1-methoxy-4......-(2-ethylhexyloxy)-p-phenylenevinylene) (MEH-PPV) and [6,6]-phenyt-C-61-butanoicacidmethylester (PCBM) as the active layer and aluminium as the cathode. The oxygen permeability of the layers and the aluminium cathode was correlated with the lifetime of the solar cell devices. It was found that the performance...

  12. Effect of supplemental oxygen versus dobutamine administration on liver oxygen tension in dPP-guided normovolemic pigs.

    Science.gov (United States)

    Pestel, G; Fukui, K; Hager, H; Kurz, A; Hiltebrand, L

    2009-01-01

    Difference in pulse pressure (dPP) confirms adequate intravascular filling as a prerequisite for tissue perfusion. We hypothesized that both oxygen and dobutamine increase liver tissue oxygen tension (ptO(2)). Eight anesthetized pigs received dPP-guided fluid management. Hepatic pO(2) was measured with Clark-type electrodes placed subcapsularly, and on the liver surface. Pigs received: (1) supplemental oxygen (F(i)O(2) 1.0); (2) dobutamine 2.5 microg/kg/min, and (3) dobutamine 5 microg/kg/min. Data were analyzed using repeated-measures ANOVA followed by a Tukey post-test for multiple comparisons. ptO(2 )measured subcapsularly and at the liver surface were compared using the Bland-Altman plot. Variation in F(i)O(2) changed local hepatic tissue ptO(2) [subcapsular measurement: 39 +/- 12 (F(i)O(2) 0.3), 89 +/- 35 mm Hg (F(i)O(2) 1.0, p = 0.01 vs. F(i)O(2) 0.3), 44 +/- 10 mm Hg (F(i)O(2) 0.3, p = 0.05 vs. F(i)O(2) 1.0); surface measurement: 52 +/- 35 (F(i)O(2) 0.3), 112 +/- 24 mm Hg (F(i)O(2) 1.0, p = 0.001 vs. F(i)O(2) 0.3), 54 +/- 24 mm Hg (F(i)O(2) 0.3, p = 0.001 vs. F(i)O(2) 1.0)]. Surface measurements were widely scattered compared to subcapsular measurements (bias: -15 mm Hg, precision: 76.3 mm Hg). Dobutamine did not affect hepatic oxygenation. Supplemental oxygen increased hepatic tissue pO(2) while dobutamine did not. Although less invasive, the use of surface measurements is discouraged. Copyright 2009 S. Karger AG, Basel.

  13. Comprehensive GC–FID, GC–MS and FT-IR spectroscopic analysis of the volatile aroma constituents of Artemisia indica and Artemisia vestita essential oils

    Directory of Open Access Journals (Sweden)

    Manzoor A. Rather

    2017-05-01

    Full Text Available In the current study, the leaf volatile constituents of the essential oils of Artemisia indica Willd. and Artemisia vestita Wall were studied using a combination of capillary GC–FID, GC–MS and FT-IR (Fourier-Transform Infra-Red analytical techniques. The analysis led to the identification of 42 compounds in the essential oil of A. indica, representing 96.6% of the essential oil and the major components were found to be artemisia ketone (42.1%, germacrene D (8.6%, borneol (6.1% and cis-chrysanthenyl acetate (4.8%. The essential oil was dominated by the presence of oxygenated monoterpenes constituting 65.2% of the total oil composition followed by sesquiterpene hydrocarbons and monoterpene hydrocarbons constituting 15.7% and 10.7%, respectively of the total oil composition. The essential oil composition of A. vestita was found to contain a total of 18 components representing 94.2% of the total oil composition. The principal components were found to be 1,8-cineole (46.8%, (E-citral (13.7%, limonene (9.8%, α-phellandrene (6.4%, camphor (5.0%, (Z and (E-thujones (3.0% each. Oxygenated monoterpenes were the dominant group of terpenes in the essential oil constituting 73.1% of the total oil composition followed by monoterpene hydrocarbons (17.3%. The results of the current study reveal remarkable differences in the essential oil compositions of these two Artemisia species already reported in the literature from other parts of the globe.

  14. Long-term measurements of biogenic VOCs in an Austrian valley - discussion of seasonal fluctuations of isoprene and monoterpene concentrations

    International Nuclear Information System (INIS)

    Dunkl, J.; Schnitzhofer, R.; Beauchamp, J.; Wisthaler, A; Hansel, A.

    2006-01-01

    Full text: A proton-transfer-reaction mass spectrometer (PTR-MS) was set up at a monitoring station in the river Inn valley (Vomp, Tirol, Austria) for a year-long measurement (February 2004-May 2005) of volatile organic compounds (VOCs) in the local valley air. Measurements of PM 10 , NO x and CO, and certain meteorological parameters were additionally made. Together, these data-sets enabled relationships between VOC abundances, meteorological conditions and anthropogenic emissions (primarily from automobile emissions) to be examined. The work presented here focuses on the biogenic VOCs measured under these real-world outdoor conditions. Initially, data needed to be separated between VOCs of anthropogenic and of biogenic origin. This was achieved by generating a model for the PTR-MS VOC data-set. A clear correlation between benzene and CO concentrations - indicating benzene's predominance from anthropogenic sources - allowed benzene to be used as a tracer for anthropogenic compounds. The model thus allowed a regression to be made whereby the maximum anthropogenic contributions of almost all VOCs could be established relative to benzene. The maximum contribution from biogenic emissions to each VOC could thus be determined as the difference between the total individual VOC signal and the corresponding maximum anthropogenic share. The two biogenic VOCs of principle interest here were isoprene and the monoterpenes (detected by PTR-MS at masses 69 amu and 137 amu, respectively). As expected, abundances of isoprene and the monoterpenes displayed a late-summer maximum (despite good vertical valley air dilution that acts to reduce VOC levels) when temperatures were high and sunlight hours long. Preliminary results will be presented and discussed. (author)

  15. Combined impact of water column oxygen and temperature on internal oxygen status and growth of Zostera marina seedlings and adult shoots

    DEFF Research Database (Denmark)

    Raun, Ane-Marie Løvendahl; Borum, Jens

    2013-01-01

    Eelgrass (Zostera marina L.) occasionally experiences severe die-offs during warm summer periods with variable water column oxygen partial pressures (pO). Eelgrass is known to be very intolerant to tissue anoxia with reduced growth and increasing mortality after ≤12h anoxia in the dark...... at temperatures of ≥25°C. In the present study we experimentally examine the impact of combined water column oxygen and temperature on oxygen dynamics in leaf meristems of seedlings and adult shoots to better understand how stressful environmental conditions affect eelgrass oxygen dynamics and subsequent growth...... and mortality. There was a strong interaction between water column oxygen and temperature on meristem pO implying that eelgrass is rather resistant to unfavorable oxygen conditions in winter but becomes increasingly vulnerable in summer, especially at high temperatures. At 25°C meristems became anoxic...

  16. K-shell auger decay of atomic oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Stolte, W.C.; Lu, Y.; Samson, J.A.R. [Univ. of Nebraska, Lincoln, NE (United States)] [and others

    1997-04-01

    The aim of the present research is to understand the interaction between the ejected photoelectron and Auger electron produced by the Auger decay of a 1s hole in atomic oxygen, and to understand the influence this interaction has on the shape of the ionization cross sections. To accomplish this the authors have measured the relative ion yields (ion/photon) in the vicinity of the oxygen K-shell (525 - 533 eV) for O{sup +} and O{sup 2+}. The measurements were performed at the ALS on beamline, 6.3.2. The atomic oxygen was produced by passing molecular oxygen through a microwave-driven discharge. A Rydberg analysis of the two series leading to the [1s]2s{sup 2}2p{sup 4}({sup 4}P) and [1s]2s{sup 2}2p{sup 4}({sup 2}P) limits were obtained. This analysis shows some differences to the recently published results by Menzel et al. The energy position of the main 1s{sup 1}2s{sup 2}2p{sup 5}({sup 3}P) resonance differs by approximately 1 eV from the authors value, all members of the ({sup 2}P)np series differ by 0.3 eV, but the members of the ({sup 4}P)np series agree. The molecular resonance at 530.5 eV and those between 539 eV and 543 eV, measured with the microwave discharge off show identical results in both experiments.

  17. Oxygen determination in materials by {sup 18}O(p,αγ){sup 15}N nuclear reaction

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sanjiv, E-mail: sanjucccm@rediffmail.com [National Centre for Compositional Characterization of Materials, BARC, ECIL Post, Hyderabad 500062 (India); Sunitha, Y.; Reddy, G.L.N.; Sukumar, A.A.; Ramana, J.V.; Sarkar, A. [National Centre for Compositional Characterization of Materials, BARC, ECIL Post, Hyderabad 500062 (India); Verma, Rakesh [Analytical Chemistry Division, BARC, Mumbai 400085 (India)

    2016-07-01

    The paper presents a proton induced γ-ray emission method based on {sup 18}O(p,αγ){sup 15}N nuclear reaction to determine bulk oxygen in materials. The determination involves the measurement of 5.27 MeV γ-rays emitted following the de-excitation of {sup 15}N nuclei. A description of the energetics of the reaction is given to provide an insight into the origin of 5.27 MeV γ-rays. In addition, thick target γ-ray yields and the limits of detection are measured to ascertain the analytical potential of the reaction. The thick-target γ-ray yields are measured with a high purity germanium detector and a bismuth germanate detector at 0° as well as 90° angles in 3.0–4.2 MeV proton energy region. The best limit of detection of about 1.3 at.% is achieved at 4.2 MeV proton energy for measurements at 0° as well 90° angles with the bismuth germanate detector while the uncertainty in quantitative analysis is <8%. The reaction has a probing depth of several tens of microns. Interferences can arise from fluorine due to the occurrence of {sup 19}F(p,αγ){sup 16}O reaction that emits 6–7 MeV γ-rays. The analytical potential of the methodology is demonstrated by determining oxygen in several oxide as well as non-oxide materials.

  18. Intraportal islet oxygenation.

    Science.gov (United States)

    Suszynski, Thomas M; Avgoustiniatos, Efstathios S; Papas, Klearchos K

    2014-05-01

    Islet transplantation (IT) is a promising therapy for the treatment of diabetes. The large number of islets required to achieve insulin independence limit its cost-effectiveness and the number of patients who can be treated. It is believed that >50% of islets are lost in the immediate post-IT period. Poor oxygenation in the early post-IT period is recognized as a possible reason for islet loss and dysfunction but has not been extensively studied. Several key variables affect oxygenation in this setting, including (1) local oxygen partial pressure (pO(2)), (2) islet oxygen consumption, (3) islet size (diameter, D), and (4) presence or absence of thrombosis on the islet surface. We discuss implications of oxygen-limiting conditions on intraportal islet viability and function. Of the 4 key variables, the islet size appears to be the most important determinant of the anoxic and nonfunctional islet volume fractions. Similarly, the effect of thrombus formation on the islet surface may be substantial. At the University of Minnesota, average size distribution data from clinical alloislet preparations (n = 10) indicate that >150-µm D islets account for only ~30% of the total islet number, but >85% of the total islet volume. This suggests that improved oxygen supply to the islets may have a profound impact on islet survivability and function since most of the β-cell volume is within large islets which are most susceptible to oxygen-limiting conditions. The assumption that the liver is a suitable islet transplant site from the standpoint of oxygenation should be reconsidered. © 2014 Diabetes Technology Society.

  19. Effect of pH and Water Structure on the Oxygen Reduction Reaction on platinum electrodes

    International Nuclear Information System (INIS)

    Briega-Martos, Valentín; Herrero, Enrique; Feliu, Juan M.

    2017-01-01

    The oxygen reduction reaction (ORR) at different pH values has been studied at platinum single crystal electrodes using the hanging meniscus rotating disk electrode (HMRDE) configuration. The use of NaF/HClO 4 mixtures allows investigating the reaction up to pH = 6 in solutions with enough buffering capacity and in the absence of anion specific adsorption. The analysis of the currents shows that the kinetic current density measured at 0.85 V for the Pt(111) electrode follows a volcano curve with the maximum located around pH = 9. This maximum activity for pH = 9 can be related to the effects of the electrode charge and/or water structure in the ORR. On the other hand, the catalytic activity for the other basal planes shows a monotonic behavior with a small dependence of the activity with pH. For stepped surfaces with (111) terraces, the behavior with pH changes gets closer to that of the Pt(111) surface as the terrace length increases. Additionally, the ORR curves show a dependence of the limiting diffusion current with pH. It is observed that the limiting current density diminishes as the pH increases in a potential region where hydrogen peroxide is readily reduced. These results suggest the existence of a bifurcation point in the mechanism previous to peroxide formation, in which OOH • is proposed as the bifurcation intermediate. The reduction of OOH • requires proton addition and would be more difficult at neutral pH values, justifying the diminution of the limiting currents.

  20. Regional acidification trends in Florida shellfish estuaries: A 20+ year look at pH, oxygen, temperature, and salinity

    Science.gov (United States)

    Robbins, Lisa L.; Lisle, John T.

    2018-01-01

    Increasing global CO2 and local land use changes coupled with increased nutrient pollution are threatening estuaries worldwide. Local changes of estuarine chemistry have been documented, but regional associations and trends comparing multiple estuaries latitudinally have not been evaluated. Rapid climate change has impacted the annual and decadal chemical trends in estuaries, with local ecosystem processes enhancing or mitigating the responses. Here, we compare pH, dissolved oxygen, temperature, and salinity data from 10 Florida shellfish estuaries and hundreds of shellfish bed stations. Over 80,000 measurements, spanning from 1980 to 2008, taken on Atlantic Ocean and West Florida coast showed significant regional trends of consistent pH decreases in 8 out of the 10 estuaries, with an average rate of decrease on the Gulf of Mexico side estuaries of Florida of 7.3 × 10−4 pH units year−1, and average decrease on the Atlantic Coast estuaries of 5.0 × 10−4 pH units year−1. The rates are approximately 2–3.4 times slower than observed in pH decreases associated with ocean acidification in the Atlantic and Pacific. Other significant trends observed include decreasing dissolved oxygen in 9 out of the 10 estuaries, increasing salinity in 6 out of the 10, and temperature increases in 3 out of the 10 estuaries. The data provide a synoptic regional view of Florida estuary trends which reflect the complexity of changing climate and coastal ocean acidification superimposed on local conditions. These data provide context for understanding, and interpreting the past and predicting future of regional water quality health of shellfish and other organisms of commercial and ecological significance along Florida’s coasts.

  1. Regional acidification trends in Florida shellfish estuaries: A 20+ year look at pH, oxygen, temperature and salinity

    Science.gov (United States)

    Robbins, Lisa L.; Lisle, John T.

    2018-01-01

    Increasing global CO2 and local land use changes coupled with increased nutrient pollution are threatening estuaries worldwide. Local changes of estuarine chemistry have been documented, but regional associations and trends comparing multiple estuaries latitudinally have not been evaluated. Rapid climate change has impacted the annual and decadal chemical trends in estuaries, with local ecosystem processes enhancing or mitigating the responses. Here, we compare pH, dissolved oxygen, temperature, and salinity data from 10 Florida shellfish estuaries and hundreds of shellfish bed stations. Over 80,000 measurements, spanning from 1980 to 2008, taken on Atlantic Ocean and West Florida coast showed significant regional trends of consistent pH decreases in 8 out of the 10 estuaries, with an average rate of decrease on the Gulf of Mexico side estuaries of Florida of 7.3 × 10−4 pH units year−1, and average decrease on the Atlantic Coast estuaries of 5.0 × 10−4 pH units year−1. The rates are approximately 2–3.4 times slower than observed in pH decreases associated with ocean acidification in the Atlantic and Pacific. Other significant trends observed include decreasing dissolved oxygen in 9 out of the 10 estuaries, increasing salinity in 6 out of the 10, and temperature increases in 3 out of the 10 estuaries. The data provide a synoptic regional view of Florida estuary trends which reflect the complexity of changing climate and coastal ocean acidification superimposed on local conditions. These data provide context for understanding, and interpreting the past and predicting future of regional water quality health of shellfish and other organisms of commercial and ecological significance along Florida’s coasts.

  2. The Effect of Arterial pH on Oxygenation Persists Even in Infants Treated with Inhaled Nitric Oxide

    Directory of Open Access Journals (Sweden)

    Aimee M. Barton

    2011-01-01

    Full Text Available Objective. To validate the empiric observation that pH has an important effect on oxygenation in infants receiving iNO. Study Design. Demographics, ventilator settings, arterial blood gases (ABG, and interventions for up to 96 hours of life were extracted from the charts of 51 infants receiving iNO. Need for ECMO and survival to discharge were noted. Mean blood pressure (MBP and mean airway pressure (MAP were recorded. The arterial/alveolar (a/A ratio was used as the primary outcome. Analysis was by simple linear regression and multiple linear regression analyses and Fisher's exact test. pH responsiveness was arbitrarily defined as a correlation coefficient (CC of >0.40 with 7.55. Of 11 patients requiring ECMO, only 3 exhibited responsiveness at any time in their course. Three responders required ECMO. Conclusion. This small study suggests that failure or inability to optimize pH may account for observed unresponsiveness to iNO. Maintaining a pH > 7.5 using hyperventilation is not recommended.

  3. Electron Paramagnetic Resonance pO2 Image Tumor Oxygen-Guided Radiation Therapy Optimization.

    Science.gov (United States)

    Epel, Boris; Maggio, Matt; Pelizzari, Charles; Halpern, Howard J

    2017-01-01

    Modern standards for radiation treatment do not take into account tumor oxygenation for radiation treatment planning. Strong correlation between tumor oxygenation and radiation treatment success suggests that oxygen-guided radiation therapy (OGRT) may be a promising enhancement of cancer radiation treatment. We have developed an OGRT protocol for rodents. Electron paramagnetic resonance (EPR) imaging is used for recording oxygen maps with high spatial resolution and excellent accuracy better than 1 torr. Radiation is delivered with an animal intensity modulated radiation therapy (IMRT) XRAD225Cx micro-CT/ therapy system. The radiation plan is delivered in two steps. First, a uniform 15% tumor control dose (TCD 15 ) is delivered to the whole tumor. In the second step, an additional booster dose amounting to the difference between TCD 98 and TCD 15 is delivered to radio-resistant, hypoxic tumor regions. Delivery of the booster dose is performed using a multiport conformal beam protocol. For radiation beam shaping we used individual radiation blocks 3D-printed from tungsten infused ABS polymer. Calculation of beam geometry and the production of blocks is performed next to the EPR imager, immediately after oxygen imaging. Preliminary results demonstrate the sub-millimeter precision of the radiation delivery and high dose accuracy. The efficacy of the radiation treatment is currently being tested on syngeneic FSa fibrosarcoma tumors grown in the legs of C3H mice.

  4. Extract of Croton zambesicus in Rats

    African Journals Online (AJOL)

    Samuel Olaleye

    ornamental tree grown in villages and towns in Nigeria. It is a Guineo ... stem rich in monoterpenes, while that of the root bark contains .... reduce mucosal damage in the indomethacin–induced .... Removing oxygen derived free radicals.

  5. Accumulation of Fe oxyhydroxides in the Peruvian oxygen deficient zone implies non-oxygen dependent Fe oxidation

    Science.gov (United States)

    Heller, Maija I.; Lam, Phoebe J.; Moffett, James W.; Till, Claire P.; Lee, Jong-Mi; Toner, Brandy M.; Marcus, Matthew A.

    2017-08-01

    Oxygen minimum zones (OMZs) have been proposed to be an important source of dissolved iron (Fe) into the interior ocean. However, previous studies in OMZs have shown a sharp decrease in total dissolved Fe (dFe) and/or dissolved Fe(II) (dFe(II)) concentrations at the shelf-break, despite constant temperature, salinity and continued lack of oxygen across the shelf-break. The loss of both total dFe and dFe(II) suggests a conversion of the dFe to particulate form, but studies that have coupled the reduction-oxidation (redox) speciation of both dissolved and particulate phases have not previously been done. Here we have measured the redox speciation and concentrations of both dissolved and particulate forms of Fe in samples collected during the U.S. GEOTRACES Eastern tropical Pacific Zonal Transect (EPZT) cruise in 2013 (GP16). This complete data set allows us to assess possible mechanisms for loss of dFe. We observed an offshore loss of dFe(II) within the oxygen deficient zone (ODZ), where dissolved oxygen is undetectable, accompanied by an increase in total particulate Fe (pFe). Total pFe concentrations were highest in the upper ODZ. X-ray absorption spectroscopy revealed that the pFe maximum was primarily in the Fe(III) form as Fe(III) oxyhydroxides. The remarkable similarity in the distributions of total particulate iron and nitrite suggests a role for nitrite in the oxidation of dFe(II) to pFe(III). We present a conceptual model for the rapid redox cycling of Fe that occurs in ODZs, despite the absence of oxygen.

  6. Oxygen consumption rates in hovering hummingbirds reflect substrate-dependent differences in P/O ratios: carbohydrate as a 'premium fuel'.

    Science.gov (United States)

    Welch, Kenneth C; Altshuler, Douglas L; Suarez, Raul K

    2007-06-01

    The stoichiometric relationship of ATP production to oxygen consumption, i.e. the P/O ratio, varies depending on the nature of the metabolic substrate used. The latest estimates reveal a P/O ratio approximately 15% higher when glucose is oxidized compared with fatty acid oxidation. Because the energy required to produce aerodynamic lift for hovering is independent of the metabolic fuel oxidized, we hypothesized that the rate of oxygen consumption, VO2, should decline as the respiratory quotient, RQ (VCO2/VO2), increases from 0.71 to 1.0 as hummingbirds transition from a fasted to a fed state. Here, we show that hovering VO2 values in rufous (Selasphorus rufus) and Anna's hummingbirds (Calypte anna) are significantly greater when fats are metabolized (RQ=0.71) than when carbohydrates are used (RQ=1.0). Because hummingbirds gained mass during our experiments, making mass a confounding variable, we estimated VO2 per unit mechanical power output. Expressed in this way, the difference in VO2 when hummingbirds display an RQ=0.71 (fasted) and an RQ=1.0 (fed) is between 16 and 18%, depending on whether zero or perfect elastic energy storage is assumed. These values closely match theoretical expectations, indicating that a combination of mechanical power estimates and ;indirect calorimetry', i.e. the measurement of rates of gas exchange, enables precise estimates of ATP turnover and metabolic flux rates in vivo. The requirement for less oxygen when oxidizing carbohydrate suggests that carbohydrate oxidation may facilitate hovering flight in hummingbirds at high altitude.

  7. Temperature dependencies of Henry's law constants and octanol/water partition coefficients for key plant volatile monoterpenoids.

    Science.gov (United States)

    Copolovici, Lucian O; Niinemets, Ulo

    2005-12-01

    To model the emission dynamics and changes in fractional composition of monoterpenoids from plant leaves, temperature dependencies of equilibrium coefficients must be known. Henry's law constants (H(pc), Pa m3 mol(-1) and octanol/water partition coefficients (K(OW), mol mol(-1)) were determined for 10 important plant monoterpenes at physiological temperature ranges (25-50 degrees C for H(pc) and 20-50 degrees C for K(OW)). A standard EPICS procedure was established to determine H(pc) and a shake flask method was used for the measurements of K(OW). The enthalpy of volatilization (deltaH(vol)) varied from 18.0 to 44.3 kJ mol(-1) among the monoterpenes, corresponding to a range of temperature-dependent increase in H(pc) between 1.3- and 1.8-fold per 10 degrees C rise in temperature. The enthalpy of water-octanol phase change varied from -11.0 to -23.8 kJ mol(-1), corresponding to a decrease of K(OW) between 1.15- and 1.32-fold per 10 degrees C increase in temperature. Correlations among physico-chemical characteristics of a wide range of monoterpenes were analyzed to seek the ways of derivation of H(pc) and K(OW) values from other monoterpene physico-chemical characteristics. H(pc) was strongly correlated with monoterpene saturated vapor pressure (P(v)), and for lipophilic monoterpenes, deltaH(vol) scaled positively with the enthalpy of vaporization that characterizes the temperature dependence of P(v) Thus, P(v) versus temperature relations may be employed to derive the temperature relations of H(pc) for these monoterpenes. These data collectively indicate that monoterpene differences in H(pc) and K(OW) temperature relations can importantly modify monoterpene emissions from and deposition on plant leaves.

  8. Recombination and detachment in oxygen discharges: the role of metastable oxygen molecules

    International Nuclear Information System (INIS)

    Gudmundsson, J T

    2004-01-01

    A global (volume averaged) model of oxygen discharges is used to study the transition from a recombination dominated discharge to a detachment dominated discharge. The model includes the metastable oxygen molecules O 2 (a 1 Δ g ) and O 2 (b 1 Σ g + ) and the three Herzberg states O 2 (A 3 Σ u + , A' 3 Δ u , c 1 Σ u - ). Dissociative attachment of the oxygen molecule in the ground state O 2 ( 3 Σ g - ) and the metastable oxygen molecule O 2 (a 1 Δ g ) are the dominating channels for creation of the negative oxygen ion O - . At high pressures, dissociative attachment of the Herzberg states contributes significantly to the creation of the negative oxygen ion, O - . The detachment by a collision of the metastable oxygen molecule O 2 (b 1 Σ g + ) with the oxygen ion, O - , is a significant loss process for the O - at pressures above 10 mTorr. Its contribution to the loss is more significant at a lower applied power, but at the higher pressures it is always significant. Detachment by collision with O( 3 P) is also an important loss mechanism for O - . We find that ion-ion recombination is the dominating loss process for negative ions in oxygen discharges at low pressures and calculate the critical pressure where the contributions of recombination reactions and detachment reactions are equal. This critical pressure depends on the applied power, increases with applied power and is in the range 5-14 mTorr in the pressure and power range investigated

  9. Suppression of new particle formation from monoterpene oxidation by NOx

    Science.gov (United States)

    Wildt, J.; Mentel, T. F.; Kiendler-Scharr, A.; Hoffmann, T.; Andres, S.; Ehn, M.; Kleist, E.; Müsgen, P.; Rohrer, F.; Rudich, Y.; Springer, M.; Tillmann, R.; Wahner, A.

    2014-03-01

    The impact of nitrogen oxides (NOx = NO + NO2) on new particle formation (NPF) and on photochemical ozone production from real plant volatile organic compound (BVOC) emissions was studied in a laboratory setup. At high NOx conditions ([BVOC] / [NOx] 23 ppb) new particle formation was suppressed. Instead, photochemical ozone formation was observed resulting in higher hydroxyl radical (OH) and lower nitrogen monoxide (NO) concentrations. When [NO] was reduced back to levels below 1 ppb by OH reactions, NPF was observed. Adding high amounts of NOx caused NPF to be slowed by orders of magnitude compared to analogous experiments at low NOx conditions ([NOx] ~300 ppt), although OH concentrations were higher. Varying NO2 photolysis enabled showing that NO was responsible for suppression of NPF. This suggests that peroxy radicals are involved in NPF. The rates of NPF and photochemical ozone production were related by power law dependence with an exponent approaching -2. This exponent indicated that the overall peroxy radical concentration must have been similar when NPF occurred. Thus, permutation reactions of first-generation peroxy radicals cannot be the rate limiting step in NPF from monoterpene oxidation. It was concluded that permutation reactions of higher generation peroxy-radical-like intermediates limit the rate of new particle formation. In contrast to the strong effects on the particle numbers, the formation of particle mass was substantially less sensitive to NOx concentrations. If at all, yields were reduced by about an order of magnitude only at very high NOx concentrations.

  10. Diffusion coefficients of oxygen and hemoglobin as obtained simultaneously from photometric determination of the oxygenation of layers of hemoglobin solutions

    NARCIS (Netherlands)

    Spaan, J. A.; Kreuzer, F.; van Wely, F. K.

    1980-01-01

    The oxygenation of layers of deoxygenated hemoglobin solutions after a sudden exposure to a gas containing oxygen at a partial pressure P1 has been studied by a photometric method. Layer thicknesses varied between 50 and 250 micron, hemoglobin concentrations between 0.1 and 0.34kg/l, and oxygen

  11. Oxygen Transport Membranes

    Energy Technology Data Exchange (ETDEWEB)

    S. Bandopadhyay

    2008-08-30

    The focus of this research was to develop new membrane materials by synthesizing different compounds and determining their defect structures, crystallographic structures and electrical properties. In addition to measuring electrical conductivity, oxygen vacancy concentration was also evaluated using thermogravimetry, Neutron diffraction and Moessbauer Spectroscopy. The reducing conditions (CO{sub 2}/CO/H{sub 2} gas mixtures with steam) as encountered in a reactor environment can be expected to have significant influence on the mechanical properties of the oxides membranes. Various La based materials with and without Ti were selected as candidate membrane materials for OTM. The maximum electrical conductivity of LSF in air as a function of temperature was achieved at < 600 C and depends on the concentration of Sr (acceptor dopant). Oxygen occupancy in LSF was estimated using Neutron diffractometry and Moessbauer Spectroscopy by measuring magnetic moment changes depending on the Fe{sup 3+} and Fe{sup 4+} ratio. After extensive studies of candidate materials, lanthanum ferrites (LSF and LSFT) were selected as the favored materials for the oxygen transport membrane (OTM). LSF is a very good material for an OTM because of its high electronic and oxygen ionic conductivity if long term stability and mechanical strength are improved. LSFT not only exhibits p-type behavior in the high oxygen activity regime, but also has n-type conduction in reducing atmospheres. Higher concentrations of oxygen vacancies in the low oxygen activity regime may improve the performance of LSFT as an OTM. The hole concentration is related to the difference in the acceptor and donor concentration by the relation p = [Sr'{sub La}]-[Ti{sm_bullet}{sub Fe}]. The chemical formulation predicts that the hole concentration is, p = 0.8-0.45 or 0.35. Experimental measurements indicated that p is about {approx} 0.35. The activation energy of conduction is 0.2 eV which implies that LSCF conducts via the

  12. Effect of oxygen treatment on heart rate after abdominal surgery

    DEFF Research Database (Denmark)

    Rosenberg-Adamsen, S; Lie, C; Bernhard, A

    1999-01-01

    BACKGROUND: Cardiac complications are common during the postoperative period and may be associated with hypoxemia and tachycardia. Preliminary studies in high-risk patients after operation have shown a possible beneficial effect of oxygen therapy on arterial oxygen saturation and heart rate....... METHODS: The authors studied the effect of oxygen therapy on arterial oxygen saturation and heart rate in 100 consecutive unselected patients randomly and double blindly allocated to receive air or oxygen therapy between the first and fourth day after major abdominal surgery. RESULTS: The median arterial...... oxygen saturation rate increased significantly from 96% to 99% (P heart rate decreased significantly from 85 beats/min to 81 beats/min (P heart rate occurred...

  13. Mathematical modeling of dissolved oxygen in fish ponds ...

    African Journals Online (AJOL)

    Mathematical modeling of dissolved oxygen in fish ponds. WJS Mwegoha, ME Kaseva, SMM Sabai. Abstract. A mathematical model was developed to predict the effects of wind speed, light, pH, Temperature, dissolved carbon dioxide and chemical oxygen demand (COD) on Dissolved Oxygen (DO) in fish ponds. The effects ...

  14. Regulation of H+ Extrusion and Cytoplasmic pH in Maize Root Tips Acclimated to a Low-Oxygen Environment.

    Science.gov (United States)

    Xia, J. H.; Roberts, JKM.

    1996-05-01

    We tested the hypothesis that H+ extrusion contributes to cytoplasmic pH regulation and tolerance of anoxia in maize (Zea mays) root tips. We studied root tips of whole seedlings that were acclimated to a low-oxygen environment by pretreatment in 3% (v/v) O2. Acclimated root tips characteristically regulate cytoplasmic pH near neutrality and survive prolonged anoxia, whereas nonacclimated tips undergo severe cytoplasmic acidosis and die much more quickly. We show that the plasma membrane H+-ATPase can operate under anoxia and that net H+ extrusion increases when cytoplasmic pH falls. However, at an external pH near 6.0, H+ extrusion contributes little to cytoplasmic pH regulation. At more acidic external pH values, net H+ flux into root tips increases dramatically, leading to a decrease in cytoplasmic pH and reduced tolerance of anoxia. We present evidence that, under these conditions, H+ pumps are activated to partly offset acidosis due to H+ influx and, thereby, contribute to cytoplasmic pH regulation and tolerance of anoxia. The regulation of H+ extrusion under anoxia is discussed with respect to the acclimation response and mechanisms of intracellular pH regulation in aerobic plant cells.

  15. Genetic and metabolite diversity of Sardinian populations of Helichrysum italicum.

    Science.gov (United States)

    Melito, Sara; Sias, Angela; Petretto, Giacomo L; Chessa, Mario; Pintore, Giorgio; Porceddu, Andrea

    2013-01-01

    Helichrysum italicum (Asteraceae) is a small shrub endemic to the Mediterranean Basin, growing in fragmented and diverse habitats. The species has attracted attention due to its secondary metabolite content, but little effort has as yet been dedicated to assessing the genetic and metabolite diversity present in these populations. Here, we describe the diversity of 50 H. italicum populations collected from a range of habitats in Sardinia. H. italicum plants were AFLP fingerprinted and the composition of their leaf essential oil characterized by GC-MS. The relationships between the genetic structure of the populations, soil, habitat and climatic variables and the essential oil chemotypes present were evaluated using Bayesian clustering, contingency analyses and AMOVA. The Sardinian germplasm could be partitioned into two AFLP-based clades. Populations collected from the southwestern region constituted a homogeneous group which remained virtually intact even at high levels of K. The second, much larger clade was more diverse. A positive correlation between genetic diversity and elevation suggested the action of natural purifying selection. Four main classes of compounds were identified among the essential oils, namely monoterpenes, oxygenated monoterpenes, sesquiterpenes and oxygenated sesquiterpenes. Oxygenated monoterpene levels were significantly correlated with the AFLP-based clade structure, suggesting a correspondence between gene pool and chemical diversity. The results suggest an association between chemotype, genetic diversity and collection location which is relevant for the planning of future collections aimed at identifying valuable sources of essential oil.

  16. Genetic and metabolite diversity of Sardinian populations of Helichrysum italicum.

    Directory of Open Access Journals (Sweden)

    Sara Melito

    Full Text Available BACKGROUND: Helichrysum italicum (Asteraceae is a small shrub endemic to the Mediterranean Basin, growing in fragmented and diverse habitats. The species has attracted attention due to its secondary metabolite content, but little effort has as yet been dedicated to assessing the genetic and metabolite diversity present in these populations. Here, we describe the diversity of 50 H. italicum populations collected from a range of habitats in Sardinia. METHODS: H. italicum plants were AFLP fingerprinted and the composition of their leaf essential oil characterized by GC-MS. The relationships between the genetic structure of the populations, soil, habitat and climatic variables and the essential oil chemotypes present were evaluated using Bayesian clustering, contingency analyses and AMOVA. KEY RESULTS: The Sardinian germplasm could be partitioned into two AFLP-based clades. Populations collected from the southwestern region constituted a homogeneous group which remained virtually intact even at high levels of K. The second, much larger clade was more diverse. A positive correlation between genetic diversity and elevation suggested the action of natural purifying selection. Four main classes of compounds were identified among the essential oils, namely monoterpenes, oxygenated monoterpenes, sesquiterpenes and oxygenated sesquiterpenes. Oxygenated monoterpene levels were significantly correlated with the AFLP-based clade structure, suggesting a correspondence between gene pool and chemical diversity. CONCLUSIONS: The results suggest an association between chemotype, genetic diversity and collection location which is relevant for the planning of future collections aimed at identifying valuable sources of essential oil.

  17. Sensitive monitoring of monoterpene metabolites in human urine using two-step derivatisation and positive chemical ionisation-tandem mass spectrometry

    International Nuclear Information System (INIS)

    Schmidt, Lukas; Belov, Vladimir N.; Göen, Thomas

    2013-01-01

    Highlights: •Sensitive monitoring of 10 metabolites of (R)-limonene, α-pinene, and Δ 3 -carene in human urine samples. •Fast and simple sample preparation and derivatisation procedure using two-step silylation for unreactive tertiary hydroxyl groups. •Synthesis of reference substances and isotopically labelled internal standards of (R)-limonene, α-pinene, and Δ 3 -carene metabolites. •Study on (R)-limonene, α-pinene, and Δ 3 -carene metabolite background exposure of 36 occupationally unexposed volunteers. -- Abstract: A gas chromatographic–positive chemical ionisation-tandem mass spectrometric (GC–PCI-MS/MS) method for the simultaneous determination of 10 oxidative metabolites of the monoterpenoid hydrocarbons α-pinene, (R)-limonene, and Δ 3 -carene ((+)-3-carene) in human urine was developed and tested for the monoterpene biomonitoring of the general population (n = 36). The method involves enzymatic cleavage of the glucuronides followed by solid-supported liquid–liquid extraction and derivatisation using a two-step reaction with N,O-bis(trimethylsilyl)-trifluoroacetamide and N-(trimethylsilyl)imidazole. The method proved to be both sensitive and reliable with detection limits ranging from 0.1 to 0.3 μg L −1 . In contrast to the frequent and distinct quantities of (1S,2S,4R)-limonene-1,2-diol, the (1R,2R,4R)-stereoisomer could not be detected. The expected metabolite of (+)-3-carene, 3-caren-10-ol was not detected in any of the samples. All other metabolites were detected in almost all urine samples. The procedure enables for the first time the analysis of trace levels of a broad spectrum of mono- and bicyclic monoterpenoid metabolites (alcohols, diols, and carboxylic acids) in human urine. This analytical procedure is a powerful tool for population studies as well as for the discovery of human metabolism and toxicokinetics of monoterpenes

  18. Sensitive monitoring of monoterpene metabolites in human urine using two-step derivatisation and positive chemical ionisation-tandem mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Lukas [Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, University of Erlangen-Nuremberg, Schillerstrasse 25/29, 91054 Erlangen (Germany); Belov, Vladimir N. [Max Planck Institute for Biophysical Chemistry, Facility for Synthetic Chemistry, Am Fassberg 11, 37077 Göttingen (Germany); Göen, Thomas, E-mail: Thomas.Goeen@ipasum.med.uni-erlangen.de [Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, University of Erlangen-Nuremberg, Schillerstrasse 25/29, 91054 Erlangen (Germany)

    2013-09-02

    Highlights: •Sensitive monitoring of 10 metabolites of (R)-limonene, α-pinene, and Δ{sup 3}-carene in human urine samples. •Fast and simple sample preparation and derivatisation procedure using two-step silylation for unreactive tertiary hydroxyl groups. •Synthesis of reference substances and isotopically labelled internal standards of (R)-limonene, α-pinene, and Δ{sup 3}-carene metabolites. •Study on (R)-limonene, α-pinene, and Δ{sup 3}-carene metabolite background exposure of 36 occupationally unexposed volunteers. -- Abstract: A gas chromatographic–positive chemical ionisation-tandem mass spectrometric (GC–PCI-MS/MS) method for the simultaneous determination of 10 oxidative metabolites of the monoterpenoid hydrocarbons α-pinene, (R)-limonene, and Δ{sup 3}-carene ((+)-3-carene) in human urine was developed and tested for the monoterpene biomonitoring of the general population (n = 36). The method involves enzymatic cleavage of the glucuronides followed by solid-supported liquid–liquid extraction and derivatisation using a two-step reaction with N,O-bis(trimethylsilyl)-trifluoroacetamide and N-(trimethylsilyl)imidazole. The method proved to be both sensitive and reliable with detection limits ranging from 0.1 to 0.3 μg L{sup −1}. In contrast to the frequent and distinct quantities of (1S,2S,4R)-limonene-1,2-diol, the (1R,2R,4R)-stereoisomer could not be detected. The expected metabolite of (+)-3-carene, 3-caren-10-ol was not detected in any of the samples. All other metabolites were detected in almost all urine samples. The procedure enables for the first time the analysis of trace levels of a broad spectrum of mono- and bicyclic monoterpenoid metabolites (alcohols, diols, and carboxylic acids) in human urine. This analytical procedure is a powerful tool for population studies as well as for the discovery of human metabolism and toxicokinetics of monoterpenes.

  19. GC/MS analysis, antimicrobial and in vitro anti-cholinesterase activities of the essential oil from Buddleja asiatica

    Directory of Open Access Journals (Sweden)

    Farman Ali Khan

    2015-12-01

    Full Text Available Buddleja asiatica essential oil from the leaves by hydrodistillation was subjected to gas chromatography/mass spectrometery analysis which revealed the presence of 17 constituents out of which 14 were identified as: four monoterpenes hydrocarbons, four oxygenated monoterpenes, one hydrocarbon sesquiterpenes and five oxygenated sesquiterpenes. The major constituent being found was 1,8-cineole (38.1% while β-sinensal, 1, 10-seco-1-hydroxy-calamenen-10-one and α-phellandrene were found to be in 11.8%, 10.2% and 5.8%, respectively. The essential oil exhibited 66% strong antibacterial activity against Shigella boydii while in fungicidal assay, it revealed an outstanding 79% inhibition against Aspergillus flavus. The essential oil showed outstanding acetylcholinesterase (IC50 5.2 μM and butyrylcholinesterase inhibitory effect (IC50 27.9 μM as compared to standard drugs respectively.

  20. Strategies for engineering plant natural products: the iridoid-derived monoterpene indole alkaloids of Catharanthus roseus.

    Science.gov (United States)

    O'Connor, Sarah E

    2012-01-01

    The manipulation of pathways to make unnatural variants of natural compounds, a process often termed combinatorial biosynthesis, has been robustly successful in prokaryotic systems. The development of approaches to generate new-to-nature compounds from plant-based pathways is, in comparison, much less advanced. Success will depend on the specific chemistry of the pathway, as well as on the suitability of the plant system for transformation and genetic manipulation. As plant pathways are elucidated, and can be heterologously expressed in hosts that are more amenable to genetic manipulation, biosynthetic production of new-to-nature compounds from plant pathways will become more widespread. In this chapter, some of the key strategies that have been developed for metabolic engineering of plant pathways, namely directed biosynthesis, mutasynthesis, and pathway incorporation of engineered enzymes are highlighted. The iridoid-derived monoterpene indole alkaloids from C. roseus, which are the focus of this chapter, provide an excellent system for developing these strategies. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Effects of motexafin gadolinium on tumor oxygenation and cellular oxygen consumption

    International Nuclear Information System (INIS)

    Donnelly, E.T.; Liu, Y.; Rockwell, S.; Magda, D.

    2003-01-01

    Full text: Recent work in our laboratory showed that motexafin gadolinium (MGd, Xcytrin), a drug currently in Phase III clinical trials as an adjuvant to radiation therapy, modulates the oxygen tensions in EMT6 tumors. The median pO 2 increased from the control value of 1.5±0.4 mmHg to 7.4 ± 3.8 mmHg six hours after treatment with 40 μmol/kg MGd and the percentage of severely hypoxic readings in the tumors ( 7 plateau phase EMT6 cells in 3 mL Dulbecco's Modified Eagle's Medium supplemented with 10% dialyzed fetal bovine serum, which contains no ascorbic acid. In the absence of ascorbic acid, 100 μM MGd did not alter the cellular oxygen consumption rate for EMT6 cells significantly. Marked inhibition of cellular oxygen consumption was observed when cells were incubated with 100 μM MGd in medium supplemented with equimolar ascorbic acid (a 31.5% decrease in consumption was observed after 6 hours of treatment). The 5% mannitol vehicle solution with equimolar ascorbic acid had no discernible effect on cellular oxygen consumption. Ascorbic acid may facilitate cellular uptake of MGd via the intermediate formation of a MGd-oxalate complex. These studies suggest that changes in cellular oxygen consumption could contribute to the changes in tumor oxygenation seen after administration of MGd. These experiments were supported by Pharmacyclics and training grant T32CA09085 from the NIH (E.T.D.). We thank Dr. Raymond Russell for allowing us to use his oxygen electrode apparatus

  2. Ammonium excretion and oxygen respiration of tropical copepods and euphausiids exposed to oxygen minimum zone conditions

    Science.gov (United States)

    Kiko, Rainer; Hauss, Helena; Buchholz, Friedrich; Melzner, Frank

    2016-04-01

    Calanoid copepods and euphausiids are key components of marine zooplankton communities worldwide. Most euphausiids and several copepod species perform diel vertical migrations (DVMs) that contribute to the export of particulate and dissolved matter to midwater depths. In vast areas of the global ocean, and in particular in the eastern tropical Atlantic and Pacific, the daytime distribution depth of many migrating organisms corresponds to the core of the oxygen minimum zone (OMZ). At depth, the animals experience reduced temperature and oxygen partial pressure (pO2) and an increased carbon dioxide partial pressure (pCO2) compared to their near-surface nighttime habitat. Although it is well known that low oxygen levels can inhibit respiratory activity, the respiration response of tropical copepods and euphausiids to relevant pCO2, pO2, and temperature conditions remains poorly parameterized. Further, the regulation of ammonium excretion at OMZ conditions is generally not well understood. It was recently estimated that DVM-mediated ammonium supply could fuel bacterial anaerobic ammonium oxidation - a major loss process for fixed nitrogen in the ocean considerably. These estimates were based on the implicit assumption that hypoxia or anoxia in combination with hypercapnia (elevated pCO2) does not result in a down-regulation of ammonium excretion. We exposed calanoid copepods from the Eastern Tropical North Atlantic (ETNA; Undinula vulgaris and Pleuromamma abdominalis) and euphausiids from the Eastern Tropical South Pacific (ETSP; Euphausia mucronata) and the ETNA (Euphausia gibboides) to different temperatures, carbon dioxide and oxygen levels to study their survival, respiration and excretion rates at these conditions. An increase in temperature by 10 °C led to an approximately 2-fold increase of the respiration and excretion rates of U. vulgaris (Q10, respiration = 1.4; Q10, NH4-excretion = 1.6), P. abdominalis (Q10, respiration = 2.0; Q10, NH4-excretion = 2.4) and

  3. Repeated assessment of orthotopic glioma pO2 by multi-site EPR oximetry: A technique with the potential to guide therapeutic optimization by repeated measurements of oxygen

    Science.gov (United States)

    Khan, Nadeem; Mupparaju, Sriram; Hou, Huagang; Williams, Benjamin B.; Swartz, Harold

    2011-01-01

    Tumor hypoxia plays a vital role in therapeutic resistance. Consequently, measurements of tumor pO2 could be used to optimize the outcome of oxygen-dependent therapies, such as, chemoradiation. However, the potential optimizations are restricted by the lack of methods to repeatedly and quantitatively assess tumor pO2 during therapies, particularly in gliomas. We describe the procedures for repeated measurements of orthotopic glioma pO2 by multi-site electron paramagnetic resonance (EPR) oximetry. This oximetry approach provides simultaneous measurements of pO2 at more than one site in the glioma and contralateral cerebral tissue. The pO2 of intracerebral 9L, C6, F98 and U251 tumors, as well as contralateral brain, were measured repeatedly for five consecutive days. The 9L glioma was well oxygenated with pO2 of 27 - 36 mm Hg, while C6, F98 and U251 glioma were hypoxic with pO2 of 7 - 12 mm Hg. The potential of multi-site EPR oximetry to assess temporal changes in tissue pO2 was investigated in rats breathing 100% O2. A significant increase in F98 tumor and contralateral brain pO2 was observed on day 1 and day 2, however, glioma oxygenation declined on subsequent days. In conclusion, EPR oximetry provides the capability to repeatedly assess temporal changes in orthotopic glioma pO2. This information could be used to test and optimize the methods being developed to modulate tumor hypoxia. Furthermore, EPR oximetry could be potentially used to enhance the outcome of chemoradiation by scheduling treatments at times of increase in glioma pO2. PMID:22079559

  4. Myoglobin oxygen affinity in aquatic and terrestrial birds and mammals.

    Science.gov (United States)

    Wright, Traver J; Davis, Randall W

    2015-07-01

    Myoglobin (Mb) is an oxygen binding protein found in vertebrate skeletal muscle, where it facilitates intracellular transport and storage of oxygen. This protein has evolved to suit unique physiological needs in the muscle of diving vertebrates that express Mb at much greater concentrations than their terrestrial counterparts. In this study, we characterized Mb oxygen affinity (P50) from 25 species of aquatic and terrestrial birds and mammals. Among diving species, we tested for correlations between Mb P50 and routine dive duration. Across all species examined, Mb P50 ranged from 2.40 to 4.85 mmHg. The mean P50 of Mb from terrestrial ungulates was 3.72±0.15 mmHg (range 3.70-3.74 mmHg). The P50 of cetaceans was similar to terrestrial ungulates ranging from 3.54 to 3.82 mmHg, with the exception of the melon-headed whale, which had a significantly higher P50 of 4.85 mmHg. Among pinnipeds, the P50 ranged from 3.23 to 3.81 mmHg and showed a trend for higher oxygen affinity in species with longer dive durations. Among diving birds, the P50 ranged from 2.40 to 3.36 mmHg and also showed a trend of higher affinities in species with longer dive durations. In pinnipeds and birds, low Mb P50 was associated with species whose muscles are metabolically active under hypoxic conditions associated with aerobic dives. Given the broad range of potential globin oxygen affinities, Mb P50 from diverse vertebrate species appears constrained within a relatively narrow range. High Mb oxygen affinity within this range may be adaptive for some vertebrates that make prolonged dives. © 2015. Published by The Company of Biologists Ltd.

  5. Cell respiration under hypoxia: facts and artefacts in mitochondrial oxygen kinetics.

    Science.gov (United States)

    Scandurra, Francesca M; Gnaiger, Erich

    2010-01-01

    When oxygen supply to tissues is limiting, mitochondrial respiration and ATP production are compromised. To assess the bioenergetic consequences under normoxia and hypoxia, quantitative evaluation of mitochondrial oxygen kinetics is required. Using high-resolution respirometry, the "apparent K (m)" for oxygen or p (50) of respiration in 32D cells was determined at 0.05 +/- 0.01 kPa (0.4 mmHg, 0.5 microM, 0.25% air saturation). Close agreement with p (50) of isolated mitochondria indicates that intracellular gradients are small in small cells at routine activity. At intracellular p (O2) respiration is limited by >2% with a p (50) of 0.05 kPa. Over-estimation of p (50) at 0.4 kPa (3 mmHg) would imply significant (>17%) oxygen limitation of respiration under intracellular normoxia. Based on a critical review, we conclude that p (50) ranges from 0.01 to 0.10 kPa in mitochondria and small cells in the absence of inhibitors of cytochrome c oxidase, whereas experimental artefacts explain the controversial >200-fold range of p (50) in the literature on mitochondrial oxygen kinetics.

  6. Effect of epidural blockade and oxygen therapy on changes in subcutaneous oxygen tension after abdominal surgery

    DEFF Research Database (Denmark)

    Rosenberg, J; Pedersen, U; Erichsen, C J

    1994-01-01

    The effect of oxygen therapy (37% by face mask) and epidural local anesthetic blockade (9 ml 0.5% bupivacaine at Th9-11 level) on wound oxygenation was evaluated in eight otherwise healthy patients undergoing elective colorectal resection. The patients were monitored continuously for subcutaneous...... without epidural blockade and 15 (10-20) min with blockade (P surgery....

  7. Kinetics of oxygen exchange between bisulfite ion and water as studied by oxygen-17 nuclear magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Horner, D.A.

    1984-08-01

    The nuclear magnetic relaxation times of oxygen-17 have been measured in aqueous sodium bisulfite solutions in the pH range from 2.5 to 5 as a function of temperature, pH, and S(IV) concentration, at an ionic strength of 1.0 m. The rate law for oxygen exchange between bisulfite ion and water was obtained from an analysis of the data, and is consistent with oxygen exchange occurring via the reaction SO 2 + H 2 O right reversible H + + SHO 3 - . The value of k/sub -1/ is in agreement with relaxation measurements. Direct spectroscopic evidence was found for the existence of two isomers of bisulfite ion: one with the proton bonded to the sulfur (HSO 3 - ) and the other with the proton bonded to an oxygen (SO 3 H - ). (The symbol SHO 3 - in the above chemical equation refers to both isomeric forms of bisulfite ion.) The relative amounts of the two isomers were determined as a function of temperature, and the rate and mechanism of oxygen exchange between the two was investigated. One of the two isomers, presumably SO 3 H - , exchanges oxygens with water much more rapidly than does the other. A two-pulse sequence was developed which greatly diminished the solvent peak in the NMR spectrum

  8. Oxygen enhancement of groundwater using an oxygen releasing compound in a funnel-and-gate system

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, D G

    1994-01-01

    ORC is a fine white MgO[sub 2] powder treated with a patented process so that a slow, relatively steady release of oxygen occurs when the powder is in contact with water. Recent work suggests ORC could potentially be used to increase the dissolved oxygen (DO) concentration of ground water, thereby enhancing the biodegradation of dissolved phase contaminants such as benzene and toluene from gasoline spills. Field and laboratory tests were performed to evaluate the oxygen release characteristics of ORC when mixed with filter sand and exposed to groundwater from an aquifer in Ontario. Quasi steady state oxygen release rates of 0.013-0.030 and 0.030 mg O[sub 2]/d per g of ORC were determined from the column and field tests respectively. The column tests indicated that steady state oxygen release conditions from the ORC required ca 90 d after initial contact with water, but field data indicated that oxygen release rate may continue to decrease. Falling head permeameter tests indicated that a maximum drop in hydraulic conductivity occurred within the first 48 h of exposure of ORC to water. Both laboratory and field studies indicated that ORC-contacted water increased in pH. Field studies further suggested an inverse correlation between pH increases and the ability of ORC to enhance DO concentration of ground water. The use of ORC in a funnel-and-gate scheme appears to be an effective means of increasing the DO concentration in ground water, thereby stimulating the in-situ bioremediation of many organic contaminants. 30 refs., 17 figs., 12 tabs.

  9. Effect of hemodialysis on factors influencing oxygen transport.

    Science.gov (United States)

    Hirszel, P; Maher, J F; Tempel, G E; Mengel, C E

    1975-06-01

    Ten patients underwent 4 study hemodialyses, one with standard dialysis conditions, one with an isophosphate dialysate, one with simultaneous ammonium chloride loading, and other, after pretreatment, with sodium bicarbonate. Measurement of hemoglobin oxygen affinity (P-50), erythrocyte 2,3-DPG, blood-gasses, and serum chemistries revealed biochemically effective hemodialyses and slight changes in oxygen transport parameters. The P-50 (in vivo) values decreased slightly but significantly (p greater than 0.05) with dialysis. When corrected to pH 7.4, eliminating the Bohr effect, P-50 increased (p greater than 0.05). With unmodified dialysis elevated values of 2,3-DPG (in comparison to normal) decreased, a change that did not correlate with delta-p-50, delta-serum phosphate, or delta-serum creatinine. With standard and isophosphate dialyses Po-2 decreased significantly. The decrease correlated with delta-hydrogen ion concentration and did not occur with dialyses designed to maintain pH constant. Thus, hemodialysis influences many factors that affect oxygen transport in different and counterbalancing directions. These changes are not totally explained by alterations in 2,3-DPG, pH or serum phosphate. Maintenance of acidosis or hyperphosphatemia during dialysis is not recommended.

  10. Prolonged triglyceride storage in macrophages: pHo trumps pO2 and TLR4.

    Science.gov (United States)

    Lu, Mingfang; Kho, Terry; Munford, Robert S

    2014-08-01

    Lipid-laden macrophages contribute to pathologies as diverse as atherosclerosis and tuberculosis. Three common stimuli are known to promote macrophage lipid storage: low tissue oxygen tension (pO2), low extracellular pH (pHo), and exposure to agonists such as bacterial LPS. Noting that cells responding to low pO2 or agonistic bacterial molecules often decrease pHo by secreting lactic and other carboxylic acids, we studied how pHo influences the stimulation of triacylglycerol (TAG) storage by low pO2 and LPS. We found that TAG retention after incubation for 48-72 h was inversely related to pHo when primary macrophages were cultured in 21% oxygen, 4% oxygen, or with LPS at either oxygen concentration. Maintaining pHo at ~7.4 was sufficient to prevent the increase in prolonged TAG storage induced by either low pO2 or LPS. The strong influence of pHo on TAG retention may explain why lipid-laden macrophages are found in some tissue environments and not in others. It is also possible that other long-term cellular changes currently attributed to low pO2 or bacterial agonists may be promoted, at least in part, by the decrease in pHo that these stimuli induce.

  11. Selenoprotein P Inhibits Radiation-Induced Late Reactive Oxygen Species Accumulation and Normal Cell Injury

    Energy Technology Data Exchange (ETDEWEB)

    Eckers, Jaimee C.; Kalen, Amanda L.; Xiao, Wusheng; Sarsour, Ehab H.; Goswami, Prabhat C., E-mail: prabhat-goswami@uiowa.edu

    2013-11-01

    Purpose: Radiation is a common mode of cancer therapy whose outcome is often limited because of normal tissue toxicity. We have shown previously that the accumulation of radiation-induced late reactive oxygen species (ROS) precedes cell death, suggesting that metabolic oxidative stress could regulate cellular radiation response. The purpose of this study was to investigate whether selenoprotein P (SEPP1), a major supplier of selenium to tissues and an antioxidant, regulates late ROS accumulation and toxicity in irradiated normal human fibroblasts (NHFs). Methods and Materials: Flow cytometry analysis of cell viability, cell cycle phase distribution, and dihydroethidium oxidation, along with clonogenic assays, were used to measure oxidative stress and toxicity. Human antioxidant mechanisms array and quantitative real-time polymerase chain reaction assays were used to measure gene expression during late ROS accumulation in irradiated NHFs. Sodium selenite addition and SEPP1 overexpression were used to determine the causality of SEPP1 regulating late ROS accumulation and toxicity in irradiated NHFs. Results: Irradiated NHFs showed late ROS accumulation (4.5-fold increase from control; P<.05) that occurs after activation of the cell cycle checkpoint pathways and precedes cell death. The mRNA levels of CuZn- and Mn-superoxide dismutase, catalase, peroxiredoxin 3, and thioredoxin reductase 1 increased approximately 2- to 3-fold, whereas mRNA levels of cold shock domain containing E1 and SEPP1 increased more than 6-fold (P<.05). The addition of sodium selenite before the radiation treatment suppressed toxicity (45%; P<.05). SEPP1 overexpression suppressed radiation-induced late ROS accumulation (35%; P<.05) and protected NHFs from radiation-induced toxicity (58%; P<.05). Conclusion: SEPP1 mitigates radiation-induced late ROS accumulation and normal cell injury.

  12. Investigation of a Quantitative Method for the Analysis of Chiral Monoterpenes in White Wine by HS-SPME-MDGC-MS of Different Wine Matrices

    Directory of Open Access Journals (Sweden)

    Mei Song

    2015-04-01

    Full Text Available A valid quantitative method for the analysis of chiral monoterpenes in white wine using head-space solid phase micro-extraction-MDGC-MS (HS-SPME-MDGC-MS with stable isotope dilution analysis was established. Fifteen compounds: (S-(−-limonene, (R-(+-limonene, (+-(2R,4S-cis-rose oxide, (−-(2S,4R-cis-rose oxide, (−-(2R,4R-trans-rose oxide, (+-(2S,4S-cis-rose oxide, furanoid (+-trans-linalool oxide, furanoid (−-cis-linalool oxide, furanoid (−-trans-linalool oxide, furanoid (+-cis-linalool oxide, (−-linalool, (+-linalool, (−-α-terpineol, (+-α-terpineol and (R-(+-β-citronellol were quantified. Two calibration curves were plotted for different wine bases, with varying residual sugar content, and three calibration curves for each wine base were investigated during a single fiber’s lifetime. This was needed as both sugar content and fiber life impacted the quantification of the chiral terpenes. The chiral monoterpene content of six Pinot Gris wines and six Riesling wines was then analyzed using the verified method. ANOVA with Tukey multiple comparisons showed significant differences for each of the detected chiral compounds in all 12 wines. PCA score plots showed a clear separation between the Riesling and Pinot Gris wines. Riesling wines had greater number of chiral terpenes in comparison to Pinot Gris wines. Beyond total terpene content it is possible that the differences in chiral terpene content may be driving the aromatic differences in white wines.

  13. Oxygen status of cervical cancers prior and during definitive radiotherapy: possible impact of pretreatment with INF-α-2a/retinol acid on oxygenation

    International Nuclear Information System (INIS)

    Haensgen, Gabriele; Haensgen, Klaus; Dunst, Juergen

    1996-01-01

    Objective: Modern techniques have raised the possibility to measure intratumoral pO 2 with needle electrodes. We have investigated the oxygenation status of cervical cancers in patients undergoing definitive radiotherapy. Materials and Methods: From July 1995 through February 1996, 28 patients with squamous cell carcinoma of the cervix uteri FIGO II/III underwent polarographic measurement of tumor oxygenation prior to and during definitive radiotherapy. All received combined external irradiation and HDR-brachytherapy. 14 patients were enrolled in a phase II-protocol and received additional treatment with interferon-alpha-2a (INF-α-2a, daily dose 6x10 6 IU s.c. over 12 days) and cis-retinol acid (cRA, daily dose 1 mg/kg orally) starting 12 days before radiotherapy. During radiotherapy, INF-α-2a was given three times weekly in a dosage of 3x10 6 IU s.c. and cRA in daily doses of 0.5 mg/kg. Tumor oxygenation was measured with an Eppendorf-pO 2 -histograph prior to radiotherapy, after 20Gy and after completion of radiotherapy. Results: We found a broad range of pO 2 -values in the 28 patients. Significant hypoxic areas were detectable in about one third of the patients. The mean and median pO 2 -values did not correlate with tumor stage or tumor volume. At the beginning of radiotherapy, the patients with INF-α-2a/cRA-pretreatment had significant higher mean pO 2 -values as compared to patients without INF-α-2a/cRA-pretreatment: mean pO 2 34.7 ± 25.9 mmHg versus 18.0 ± 9.9 mmHg, p=0.03, median pO 2 28.6 versus 17.3 mmHg). Only two patients had pO 2 -measurements before and after INF-α-2a/cRA-pretreatment; in both the mean pO 2 increased threefold during INF-α-2a/cRA. During radiotherapy, the median pO 2 -value increased in both groups of patients. In patients with primary hypoxia, different patterns of oxygenation were detectable after 20Gy showing persistent hypoxia or an increase in the mean pO 2 . Persistent hypoxia without 'reoxygenation' was associated with

  14. Comparison of pulseoximetry oxygen saturation and arterial oxygen saturation in open heart intensive care unit

    Directory of Open Access Journals (Sweden)

    Alireza Mahoori

    2013-08-01

    Full Text Available Background: Pulseoximetry is widely used in the critical care setting, currently used to guide therapeutic interventions. Few studies have evaluated the accuracy of SPO2 (puls-eoximetry oxygen saturation in intensive care unit after cardiac surgery. Our objective was to compare pulseoximetry with arterial oxygen saturation (SaO2 during clinical routine in such patients, and to examine the effect of mild acidosis on this relationship.Methods: In an observational prospective study 80 patients were evaluated in intensive care unit after cardiac surgery. SPO2 was recorded and compared with SaO2 obtained by blood gas analysis. One or serial arterial blood gas analyses (ABGs were performed via a radial artery line while a reliable pulseoximeter signal was present. One hundred thirty seven samples were collected and for each blood gas analyses, SaO2 and SPO2 we recorded.Results: O2 saturation as a marker of peripheral perfusion was measured by Pulseoxim-etry (SPO2. The mean difference between arterial oxygen saturation and pulseoximetry oxygen saturation was 0.12%±1.6%. A total of 137 paired readings demonstrated good correlation (r=0.754; P<0.0001 between changes in SPO2 and those in SaO2 in samples with normal hemoglobin. Also in forty seven samples with mild acidosis, paired readings demonstrated good correlation (r=0.799; P<0.0001 and the mean difference between SaO2 and SPO2 was 0.05%±1.5%.Conclusion: Data showed that in patients with stable hemodynamic and good signal quality, changes in pulseoximetry oxygen saturation reliably predict equivalent changes in arterial oxygen saturation. Mild acidosis doesn’t alter the relation between SPO2 and SaO2 to any clinically important extent. In conclusion, the pulse oximeter is useful to monitor oxygen saturation in patients with stable hemodynamic.

  15. Relating oxygen partial pressure, saturation and content: the haemoglobin–oxygen dissociation curve

    Directory of Open Access Journals (Sweden)

    Julie-Ann Collins

    2015-09-01

    The delivery of oxygen by arterial blood to the tissues of the body has a number of critical determinants including blood oxygen concentration (content, saturation (SO2 and partial pressure, haemoglobin concentration and cardiac output, including its distribution. The haemoglobin–oxygen dissociation curve, a graphical representation of the relationship between oxygen satur­ation and oxygen partial pressure helps us to understand some of the principles underpinning this process. Historically this curve was derived from very limited data based on blood samples from small numbers of healthy subjects which were manipulated in vitro and ultimately determined by equations such as those described by Severinghaus in 1979. In a study of 3524 clinical specimens, we found that this equation estimated the SO2 in blood from patients with normal pH and SO2 >70% with remarkable accuracy and, to our knowledge, this is the first large-scale validation of this equation using clinical samples. Oxygen saturation by pulse oximetry (SpO2 is nowadays the standard clinical method for assessing arterial oxygen saturation, providing a convenient, pain-free means of continuously assessing oxygenation, provided the interpreting clinician is aware of important limitations. The use of pulse oximetry reduces the need for arterial blood gas analysis (SaO2 as many patients who are not at risk of hypercapnic respiratory failure or metabolic acidosis and have acceptable SpO2 do not necessarily require blood gas analysis. While arterial sampling remains the gold-standard method of assessing ventilation and oxygenation, in those patients in whom blood gas analysis is indicated, arterialised capillary samples also have a valuable role in patient care. The clinical role of venous blood gases however remains less well defined.

  16. In vitro cell culture pO2 is significantly different from incubator pO2.

    Science.gov (United States)

    Bambrick, L L; Kostov, Y; Rao, G

    2011-07-01

    Continuous noninvasive monitoring of peri-cellular liquid phase pO2 in adherent cultures is described. For neurons and astrocytes, this approach demonstrates that there is a significant difference between predicted and observed liquid phase pO2. Particularly at low gas phase pO2s, cell metabolism shifts liquid phase pO2 significantly lower than would be predicted from the O2 gas/air equilibrium coefficient, indicating that the cellular oxygen uptake rate exceeds the oxygen diffusion rate. The results demonstrate the need for direct pO2 measurements at the peri-cellular level, and question the widely adopted current practice of relying on setting the incubator gas phase level as means of controlling pericellular oxygen tension, particularly in static culture systems that are oxygen mass transfer limited. Copyright © 2011 American Institute of Chemical Engineers (AIChE).

  17. Oxygen sensitive polymeric nanocapsules for optical dissolved oxygen sensors

    Science.gov (United States)

    Sun, Zhijuan; Cai, Chenxin; Guo, Fei; Ye, Changhuai; Luo, Yingwu; Ye, Shuming; Luo, Jianchao; Zhu, Fan; Jiang, Chunyue

    2018-04-01

    Immobilization of the oxygen-sensitive probes (OSPs) in the host matrix greatly impacts the performance and long-term usage of the optical dissolved oxygen (DO) sensors. In this work, fluorescent dyes, as the OSPs, were encapsulated with a crosslinked fluorinated polymer shell by interfacial confined reversible addition fragmentation chain transfer miniemulsion polymerization to fabricate oxygen sensitive polymeric nanocapsules (NCs). The location of fluorescent dyes and the fluorescent properties of the NCs were fully characterized by fourier transform infrared spectrometer, x-ray photoelectron spectrometer and fluorescent spectrum. Dye-encapsulated capacity can be precisely tuned from 0 to 1.3 wt% without self-quenching of the fluorescent dye. The crosslinked fluorinated polymer shell is not only extremely high gas permeability, but also prevents the fluorescent dyes from leakage in aqueous as well as in various organic solvents, such as ethanol, acetone and tetrahydrofuran (THF). An optical DO sensor based on the oxygen sensitive NCs was fabricated, showing high sensitivity, short response time, full reversibility, and long-term operational stability of online monitoring DO. The sensitivity of the optical DO sensor is 7.02 (the ratio of the response value in fully deoxygenated and saturated oxygenated water) in the range 0.96-14.16 mg l-1 and the response time is about 14.3 s. The sensor’s work curve was fit well using the modified Stern-Volmer equation by two-site model, and its response values are hardly affected by pH ranging from 2 to 12 and keep constant during continuous measurement for 3 months. It is believed that the oxygen sensitive polymeric NCs-based optical DO sensor could be particularly useful in long-term online DO monitoring in both aqueous and organic solvent systems.

  18. Essential oils composition of Pinus peuce Griseb. (Pinaceae growing on Pelister Mtn., Republic of Macedonia

    Directory of Open Access Journals (Sweden)

    Marija Karapandzova

    2011-06-01

    Full Text Available The composition of essential oils obtained by hydrodistillation from needles, from branches without needles and from branches with needles of Pinus peuce Griseb. (Pinaceae from Pelister Mtn. (R. Macedonia was analyzed by GC/FID/MS. One hundred and seven components (40 monoterpenes, 37 sesquiterpenes, 9 diterpenes and 21 other components - aliphatic and cyclic hydrocarbons; aliphatic alcohols, aldehydes, and acids; phenols and other oxygenated benzene derivates were identified. The most abundant constituents were terpene hydrocarbons, encompassing the monoterpenes: α-pinene, β-pinene, limonene + β-phellandrene and bornyl acetate and the sesquiterpenes: trans (E-caryophyllene and germacrene D.

  19. Breast Cancer Resistance to Cyclophosphamide and Other Oxazaphosphorines.

    Science.gov (United States)

    1997-10-01

    human breast adenocarcinoma MCF-7/0 cells. d-Limonene, a monoterpene abundantly present in citrus fruits and various other foods common to most diets...and ARE-B. e.g., catechol, inducers, Figure 12 and Table 3, vide supra. Given the foregoing, the expectation was that the monoterpenes would induce the...less effectively than ALDH-1 (data not shown). r I r I I (I) o 300 7 I~Cl) S20 E -- 0 1 O 25 cc 1 2 3 1 2 3 Monoterpene , log iM Monoterpene , log pM

  20. A determination of the oxygen non-stoichiometry of the oxygen storage materials LnBaMn2O5+δ (Ln=Gd, Pr)

    Science.gov (United States)

    Jeamjumnunja, Kannika; Gong, Wenquan; Makarenko, Tatyana; Jacobson, Allan J.

    2016-07-01

    The A-site ordered double-perovskite oxides, LnBaMn2O5+δ (Ln=Gd, Pr), were synthesized and investigated to understand the effect of A site cation substitution on the oxygen storage properties of these materials. The present results are compared with our previous data for YBaMn2O5+δ. The results clearly reveal that changing the Ln cation strongly influences the oxidation/reduction behavior of LnBaMn2O5+δ. Based on thermogravimetric analysis data, oxygen uptake begins at lower temperatures in both air and oxygen in compounds with Ln3+ ions larger than Y3+. These oxides exhibit almost complete and reversible oxygen uptake/release between fully-reduced LnBaMn2O5 and fully-oxidized LnBaMn2O6 during changes of the oxygen partial pressure between air and 1.99% H2/Ar. In addition, the oxygen non-stoichiometries of GdBaMn2O5+δ and PrBaMn2O5+δ were determined as a function of pO2 at 600, 650, 700 and 750 °C by Coulometric titration at near-equilibrium conditions. The results confirm that these materials have two distinct phases on oxidation/reduction with δ≈0, 0.5 and a third phase with a range of composition with an oxygen content (5+δ) approaching 6. The stabilities of the LnBaMn2O5+δ phases extend over a wide range of oxygen partial pressures (∼10-25≤pO2 (atm)≤∼1) depending on temperature. Isothermal experiments show that the larger the Ln3+ cation the lower pO2 for phase conversion. At some temperatures and pO2 conditions, the LnBaMn2O5+δ compounds are unstable with respect to decomposition to BaMnO3-δ and LnMnO3. This instability is more apparent in Coulometric titration experiments than in thermogravimetric analysis. The Coulometric titration experiments are necessarily slow in order to achieve equilibrium oxygen compositions.

  1. Differences in breast tissue oxygenation following radiotherapy

    International Nuclear Information System (INIS)

    Dornfeld, Ken; Gessert, Charles E.; Renier, Colleen M.; McNaney, David D.; Urias, Rodolfo E.; Knowles, Denise M.; Beauduy, Jean L.; Widell, Sherry L.; McDonald, Bonita L.

    2011-01-01

    Tissue perfusion and oxygenation changes following radiotherapy may result from and/or contribute to the toxicity of treatment. Breast tissue oxygenation levels were determined in the treated and non-treated breast 1 year after radiotherapy for breast conserving treatment. Transcutaneous oxygenation varied between subjects in both treated and non-treated breast. Subjects without diabetes mellitus (n = 16) had an average oxygenation level of 64.8 ± 19.9 mmHg in the irradiated breast and an average of 72.3 ± 18.1 mmHg (p = 0.018) at the corresponding location in the control breast. Patients with diabetes (n = 4) showed a different oxygenation pattern, with lower oxygenation levels in control tissue and no decrease in the irradiated breast. This study suggests oxygenation levels in normal tissues vary between patients and may respond differently after radiotherapy.

  2. Carbon dioxide, oxygen, and pH detection in animal adipose tissue by means of extracorporeal microdialysis

    Science.gov (United States)

    Baldini, F.; Bizzarri, A.; Cajlakovic, M.; Feichtner, F.; Gianesello, L.; Giannetti, A.; Gori, G.; Konrad, C.; Mencaglia, A. A.; Mori, E.; Pavoni, V.; Perna, A. M.; Trono, C.

    2007-05-01

    Atypical physiological symptoms can be developed in healthy people under critically ill conditions. pH, pO II and pCO II are informative indicators of the conditions of a living system and can be valuable in determining the physiologic status of the critically ill patients. The continuous monitoring of these small molecules into the interstitial fluid (ISF) is a promising approach to reduce diagnostic blood loss and painful stress associated with blood sampling. Microdialysis is the approach followed for the extraction of the sample from the subcutaneous adipose tissue; the drawn interstitial fluid flows through a microfluidic circuit formed by the microdialysis catheter in series with a glass capillary on the internal wall of which the appropriate chemistry for sensing is immobilised. Absorption changes for pH sensor and modulation of the fluorescence lifetime for pO II and pCO II are the working principle. Phenol red covalently bound into the internal wall of a glass capillary by means of the Mannich reaction and platinum(II) tetrakis-pentafluorophenyl-porphyrine entrapped within a polymerised polystyrene layer are the chemical transducers used for pH and oxygen detection; the ion pair 8- hydroxypyrene-1,3,6-trisulfonic acid trisodium salt/ tetraoctylammonium hydroxide, dissolved in a silicon-based polymeric matrix, is used for the carbon dioxide detection. A suitable hemorrhagic shock model was developed in order to validate clinically the developed sensors in the condition of extreme stress and the obtained results show that the adipose tissue can become an alternative site for the continuous oitoring of pH, pO II and pCO II.

  3. Measuring interstitial pH and pO2 in mouse tumors.

    Science.gov (United States)

    Jain, Rakesh K; Munn, Lance L; Fukumura, Dai

    2013-07-01

    This protocol outlines methods to measure two extravascular parameters, interstitial pH and partial pressure of oxygen (pO2), in mouse tumors. The method for measuring interstitial pH uses fluorescence ratio imaging microscopy (FRIM) of the pH-sensitive fluorescent dye 2',7'-bis-(2-carboxyethyl)-5,6-carboxyfluorescein (BCECF). The method for measuring interstitial pO2 is based on the oxygen-dependent quenching of the phosphorescence of albumin-bound palladium meso-tetra(4-carboxyphenyl)porphyrin, and can be used to measure microvascular as well as interstitial pO2. In addition, the two methods can be used sequentially to measure both pH and pO2 in the same tissues.

  4. Evaluation of multi-exponential curve fitting analysis of oxygen-quenched phosphorescence decay traces for recovering microvascular oxygen tension histograms

    NARCIS (Netherlands)

    Bezemer, Rick; Faber, Dirk J.; Almac, Emre; Kalkman, Jeroen; Legrand, Matthieu; Heger, Michal; Ince, Can

    2010-01-01

    Although it is generally accepted that oxygen-quenched phosphorescence decay traces can be analyzed using the exponential series method (ESM), its application until now has been limited to a few (patho)physiological studies, probably because the reliability of the recovered oxygen tension (pO(2))

  5. Effect of oxygen incorporation on the vibrational properties of Al{sub 0.2}Ga{sub 0.3}In{sub 0.5}P:Be films

    Energy Technology Data Exchange (ETDEWEB)

    Soubervielle-Montalvo, C., E-mail: csober22@gmail.com [Area de Computacion e Informatica, Facultad de Ingenieria, Universidad Autonoma de San Luis Potosi, Av. Dr. Manuel Nava 8, Zona Universitaria, C.P. 78290, San Luis Potosi, S.L.P (Mexico); Vital-Ochoa, O. [Area de Computacion e Informatica, Facultad de Ingenieria, Universidad Autonoma de San Luis Potosi, Av. Dr. Manuel Nava 8, Zona Universitaria, C.P. 78290, San Luis Potosi, S.L.P (Mexico); Anda, F. de [Instituto de Investigacion en Comunicacion Optica, Universidad Autonoma de San Luis Potosi, Av. Karakorum 1470, Lomas 4a Secc., C.P. 78210, San Luis Potosi, S.L.P. (Mexico); Vazquez-Cortes, D.; Rodriguez, A.G. [Coordinacion para la Innovacion y Aplicacion de la Ciencia y Tecnologia, Universidad Autonoma de San Luis Potosi, Av. Karakorum 1470, Lomas 4a Secc., C.P. 78210, San Luis Potosi, S.L.P. (Mexico); Melendez-Lira, M. [Physics Department, Centro de Investigacion y de Estudios Avanzados del IPN, Av. Instituto Politecnico Nacional 2508, San Pedro Zacatenco, C.P. 07360, Mexico, D.F. (Mexico); Mendez-Garcia, V.H. [Coordinacion para la Innovacion y Aplicacion de la Ciencia y Tecnologia, Universidad Autonoma de San Luis Potosi, Av. Karakorum 1470, Lomas 4a Secc., C.P. 78210, San Luis Potosi, S.L.P. (Mexico)

    2011-10-31

    The vibrational properties of Al{sub 0.2}Ga{sub 0.3}In{sub 0.5}P:Be films grown on (100) GaAs substrates by solid source molecular beam epitaxy varying the phosphorous cracking-zone temperature (PCT) were studied by Raman spectroscopy. The Raman-intensity ratio between the allowed longitudinal optical and the forbidden transverse optical (TO) phonons, and the full width at half maximum of their Lorentzian fits were used to characterize the crystalline quality of the films. The Raman spectra from the samples show changes in the shape and intensity of phonon resonances depending on the PCT variation, indicating that the disorder in the lattice increases with PCT. The increasing disorder is related to the inclusion of oxygen, which act as a non-intentional perturbing impurity in the lattice. In addition, a vibrational mode located at 598 cm{sup -1} related to a forbidden InP-like TO phonon resonance was correlated with oxygen-induced disorder. Photoluminescence at room temperature shows that the high inclusion of oxygen also deteriorates the optical properties of the samples, by introducing non-radiative recombination centers.

  6. Renal Blood Flow, Glomerular Filtration Rate, and Renal Oxygenation in Early Clinical Septic Shock.

    Science.gov (United States)

    Skytte Larsson, Jenny; Krumbholz, Vitus; Enskog, Anders; Bragadottir, Gudrun; Redfors, Bengt; Ricksten, Sven-Erik

    2018-06-01

    Data on renal hemodynamics, function, and oxygenation in early clinical septic shock are lacking. We therefore measured renal blood flow, glomerular filtration rate, renal oxygen consumption, and oxygenation in patients with early septic shock. Prospective comparative study. General and cardiothoracic ICUs. Patients with norepinephrine-dependent early septic shock (n = 8) were studied within 24 hours after arrival in the ICU and compared with postcardiac surgery patients without acute kidney injury (comparator group, n = 58). None. Data on systemic hemodynamics and renal variables were obtained during two 30-minute periods. Renal blood flow was measured by the infusion clearance of para-aminohippuric acid, corrected for renal extraction of para-aminohippuric acid. Renal filtration fraction was measured by renal extraction of chromium-51 labeled EDTA. Renal oxygenation was estimated from renal oxygen extraction. Renal oxygen delivery (-24%; p = 0.037) and the renal blood flow-to-cardiac index ratio (-21%; p = 0.018) were lower, renal vascular resistance was higher (26%; p = 0.027), whereas renal blood flow tended to be lower (-19%; p = 0.068) in the septic group. Glomerular filtration rate (-32%; p = 0.006) and renal sodium reabsorption (-29%; p = 0.014) were both lower in the septic group. Neither renal filtration fraction nor renal oxygen consumption differed significantly between groups. Renal oxygen extraction was significantly higher in the septic group (28%; p = 0.022). In the septic group, markers of tubular injury were elevated. In early clinical septic shock, renal function was lower, which was accompanied by renal vasoconstriction, a lower renal oxygen delivery, impaired renal oxygenation, and tubular sodium reabsorption at a high oxygen cost compared with controls.

  7. Pressure broadening of atomic oxygen two-photon absorption laser induced fluorescence

    NARCIS (Netherlands)

    Marinov, D.; Drag, C.; Blondel, C.; Guaitella, O.; Golda, J.; Klarenaar, B.L.M.; Engeln, R.A.H.; Schulz-von der Gathen, V.; Booth, J.-P.

    2016-01-01

    Atomic oxygen, considered to be a determining reactant in plasma applications at ambient pressure, is routinely detected by two-photon absorption laser induced fluorescence (TALIF). Here, pressure broadening of the (2p 4 3 P 2  →  3p 3 P J=0,1,2) two-photon transition in oxygen atoms was

  8. Design and Characterization of a Sensorized Microfluidic Cell-Culture System with Electro-Thermal Micro-Pumps and Sensors for Cell Adhesion, Oxygen, and pH on a Glass Chip

    Directory of Open Access Journals (Sweden)

    Sebastian M. Bonk

    2015-07-01

    Full Text Available We combined a multi-sensor glass-chip with a microfluidic channel grid for the characterization of cellular behavior. The grid was imprinted in poly-dimethyl-siloxane. Mouse-embryonal/fetal calvaria fibroblasts (MC3T3-E1 were used as a model system. Thin-film platinum (Pt sensors for respiration (amperometric oxygen electrode, acidification (potentiometric pH electrodes and cell adhesion (interdigitated-electrodes structures, IDES allowed us to monitor cell-physiological parameters as well as the cell-spreading behavior. Two on-chip electro-thermal micro-pumps (ETμPs permitted the induction of medium flow in the system, e.g., for medium mixing and drug delivery. The glass-wafer technology ensured the microscopic observability of the on-chip cell culture. Connecting Pt structures were passivated by a 1.2 μm layer of silicon nitride (Si3N4. Thin Si3N4 layers (20 nm or 60 nm were used as the sensitive material of the pH electrodes. These electrodes showed a linear behavior in the pH range from 4 to 9, with a sensitivity of up to 39 mV per pH step. The oxygen sensors were circular Pt electrodes with a sensor area of 78.5 μm2. Their sensitivity was 100 pA per 1% oxygen increase in the range from 0% to 21% oxygen (air saturated. Two different IDES geometries with 30- and 50-μm finger spacings showed comparable sensitivities in detecting the proliferation rate of MC3T3 cells. These cells were cultured for 11 days in vitro to test the biocompatibility, microfluidics and electric sensors of our system under standard laboratory conditions.

  9. Temperature-dependent enthalpy of oxygenation in Antarctic fish hemoglobins

    DEFF Research Database (Denmark)

    Fago, A.; Wells, R.M.G.; Weber, Roy E.

    1997-01-01

    The effect of temperature on the oxygen-binding properties of the hemoglobins of three cold-adapted Antarctic fish species, Dissostichus mawsoni, Pagothenia borchgrevinki and Trematomus, sp., has been investigated under different pH values and buffer conditions. A clear non linear van't Hoff plot...... (logP(50) vs 1/T) of D. mawsoni hemoglobin indicates that the enthalpy of oxygenation (slope of the plot) is temperature dependent and that at high temperatures oxygen-binding becomes less exothermic. Nearly linear relationships were found in the hemoglobins of the other two species. The data were...... oxygen binding. The degree of the temperature dependence of the heat of oxygenation observed in these hemoglobins seems to reflect the differences in their allosteric effects rather than a specific molecular adaptation to low temperatures. Moreover, this study indicates that the disagreement between...

  10. The effect of 50% compared to 100% inspired oxygen fraction on brain oxygenation and post cardiac arrest mitochondrial function in experimental cardiac arrest.

    Science.gov (United States)

    Nelskylä, Annika; Nurmi, Jouni; Jousi, Milla; Schramko, Alexey; Mervaala, Eero; Ristagno, Giuseppe; Skrifvars, Markus B

    2017-07-01

    We hypothesised that the use of 50% compared to 100% oxygen maintains cerebral oxygenation and ameliorates the disturbance of cardiac mitochondrial respiration during cardiopulmonary resuscitation (CPR). Ventricular fibrillation (VF) was induced electrically in anaesthetised healthy adult pigs and left untreated for seven minutes followed by randomisation to manual ventilation with 50% or 100% oxygen and mechanical chest compressions (LUCAS ® ). Defibrillation was performed at thirteen minutes and repeated if necessary every two minutes with 1mg intravenous adrenaline. Cerebral oxygenation was measured with near-infrared spectroscopy (rSO 2 , INVOS™5100C Cerebral Oximeter) and with a probe (NEUROVENT-PTO, RAUMEDIC) in the frontal brain cortex (PbO 2 ). Heart biopsies were obtained 20min after the return of spontaneous circulation (ROSC) with an analysis of mitochondrial respiration (OROBOROS Instruments Corp., Innsbruck, Austria), and compared to four control animals without VF and CPR. Brain rSO 2 and PbO 2 were log transformed and analysed with a mixed linear model and mitochondrial respiration with an analysis of variance. Of the twenty pigs, one had a breach of protocol and was excluded, leaving nine pigs in the 50% group and ten in the 100% group. Return of spontaneous circulation (ROSC) was achieved in six pigs in the 50% group and eight in the 100% group. The rSO 2 (p=0.007) was lower with FiO 2 50%, but the PbO 2 was not (p=0.93). After ROSC there were significant interactions between time and FiO 2 regarding both rSO 2 (p=0.001) and PbO 2 (p=0.004). Compared to the controls, mitochondrial respiration was decreased, with adenosine diphosphate (ADP) levels of 57 (17)pmols -1 mg -1 compared to 92 (23)pmols -1 mg -1 (p=0.008), but there was no difference between different oxygen fractions (p=0.79). The use of 50% oxygen during CPR results in lower cerebral oximetry values compared to 100% oxygen but there is no difference in brain tissue oxygen. Cardiac

  11. Low temperature (< 100 °C) deposited P-type cuprous oxide thin films: Importance of controlled oxygen and deposition energy

    International Nuclear Information System (INIS)

    Li, Flora M.; Waddingham, Rob; Milne, William I.; Flewitt, Andrew J.; Speakman, Stuart; Dutson, James; Wakeham, Steve; Thwaites, Mike

    2011-01-01

    With the emergence of transparent electronics, there has been considerable advancement in n-type transparent semiconducting oxide (TSO) materials, such as ZnO, InGaZnO, and InSnO. Comparatively, the availability of p-type TSO materials is more scarce and the available materials are less mature. The development of p-type semiconductors is one of the key technologies needed to push transparent electronics and systems to the next frontier, particularly for implementing p–n junctions for solar cells and p-type transistors for complementary logic/circuits applications. Cuprous oxide (Cu 2 O) is one of the most promising candidates for p-type TSO materials. This paper reports the deposition of Cu 2 O thin films without substrate heating using a high deposition rate reactive sputtering technique, called high target utilisation sputtering (HiTUS). This technique allows independent control of the remote plasma density and the ion energy, thus providing finer control of the film properties and microstructure as well as reducing film stress. The effect of deposition parameters, including oxygen flow rate, plasma power and target power, on the properties of Cu 2 O films are reported. It is known from previously published work that the formation of pure Cu 2 O film is often difficult, due to the more ready formation or co-formation of cupric oxide (CuO). From our investigation, we established two key concurrent criteria needed for attaining Cu 2 O thin films (as opposed to CuO or mixed phase CuO/Cu 2 O films). First, the oxygen flow rate must be kept low to avoid over-oxidation of Cu 2 O to CuO and to ensure a non-oxidised/non-poisoned metallic copper target in the reactive sputtering environment. Secondly, the energy of the sputtered copper species must be kept low as higher reaction energy tends to favour the formation of CuO. The unique design of the HiTUS system enables the provision of a high density of low energy sputtered copper radicals/ions, and when combined with a

  12. Relationship Between Cerebral Oxygenation and Hemodynamic and Oxygen Transport Parameters in Surgery for Acquired Heart Diseases

    Directory of Open Access Journals (Sweden)

    A. I. Lenkin

    2012-01-01

    heart defects both during perfusion and in the postop erative period. Key words: oxygen te^pOT^ cerebral oxygenation, cerebral oximetry, acquired heart diseases, cardiac surgery.

  13. Metabolic Prosthesis for Oxygenation of Ischemic Tissue

    Energy Technology Data Exchange (ETDEWEB)

    Greenbaum, Elias [ORNL

    2009-01-01

    This communication discloses new ideas and preliminary results on the development of a "metabolic prosthesis" for local oxygenation of ischemic tissue under physiological neutral conditions. We report for the first time the selective electrolysis of physiological saline by repetitively pulsed charge-limited electrolysis for the production of oxygen and suppression of free chlorine. For example, using 800 A amplitude current pulses and <200 sec pulse durations, we demonstrated prompt oxygen production and delayed chlorine production at the surface of a shiny 0.85 mm diameter spherical platinum electrode. The data, interpreted in terms of the ionic structure of the electric double layer, suggest a strategy for in situ production of metabolic oxygen via a new class of "smart" prosthetic implants for dealing with ischemic disease such as diabetic retinopathy. We also present data indicating that drift of the local pH of the oxygenated environment can be held constant using a feedback-controlled three electrode electrolysis system that chooses anode and cathode pair based on pH data provided by local microsensors. The work is discussed in the context of diabetic retinopathy since surgical techniques for multielectrode prosthetic implants aimed at retinal degenerative diseases have been developed.

  14. Oxygen 18 concentration profile measurements near the surface by 18O(p,α)15N resonance reaction

    International Nuclear Information System (INIS)

    Amsel, G.; David, D.

    1975-01-01

    The method of spectrum reduction in nuclear reaction microanalysis does not allow to obtain depth resolutions better than the order of 2000A. Resolutions of the order of 200A may be obtained by using the narrow resonance technique, when applied to thin films. The latter technique was extended to thick targets, with deep concentration profiles presenting a sharp gradient near the surface. This method is presented and illustrated by the study of 18 O profiles in oxygen diffusion measurements in growing ZrO 2 , using the 629keV resonance of the reaction 18 O(p,α) 15 N [fr

  15. Oxygenation of spontaneous canine tumors during fractionated radiation therapy

    International Nuclear Information System (INIS)

    Achermann, R.E.; Ohlerth, S.M.; Bley, C.R.; Inteeworn, N.; Schaerz, M.; Wergin, M.C.; Kaser-Hotz, B.; Gassmann, M.; Roos, M.

    2004-01-01

    Background and purpose: tumor oxygenation predicts treatment outcome, and reoxygenation is considered important in the efficacy of fractionated radiation therapy. Therefore, the purpose of this study was to document the changes of the oxygenation status in spontaneous canine tumors during fractionated radiation therapy using polarographic needle electrodes. Material and methods: tumor oxygen partial pressure (pO 2 ) measurements were performed with the eppendorf-pO 2 -Histograph. The measurements were done under general anesthesia, and probe tracks were guided with ultrasound. pO 2 was measured before radiation therapy in all dogs. In patients treated with curative intent, measurements were done sequentially up to eight times (total dose: 45-59.5 Gy). Oxygenation status of the palliative patient group was examined before each fraction of radiation therapy up to five times (total dose: 24-30 Gy). Results: 15/26 tumors had a pretreatment median pO 2 ≤ 10 mmHg. The pO 2 values appeared to be quite variable in individual tumors during fractionated radiation therapy. The pO 2 of initially hypoxic tumors (pretreatment median pO 2 ≤ 10 mmHg) remained unchanged during fractionated radiotherapy, whereas in initially normoxic tumors the pO 2 decreased. Conclusion: hypoxia is common in spontaneous canine tumors, as 57.7% of the recorded values were ≥ 10 mmHg. The data of this study showed that initially hypoxic tumors remained hypoxic, whereas normoxic tumors became more hypoxic. (orig.)

  16. Biogenic volatile organic compound (BVOC) emissions from forested areas in Turkey: determination of specific emission rates for thirty-one tree species.

    Science.gov (United States)

    Aydin, Yagmur Meltem; Yaman, Baris; Koca, Husnu; Dasdemir, Okan; Kara, Melik; Altiok, Hasan; Dumanoglu, Yetkin; Bayram, Abdurrahman; Tolunay, Doganay; Odabasi, Mustafa; Elbir, Tolga

    2014-08-15

    Normalized biogenic volatile organic compound (BVOC) emission rates for thirty one tree species that cover the 98% of national forested areas in Turkey were determined. Field samplings were performed at fourteen different forested areas in Turkey using a specific dynamic enclosure system. The selected branches of tree species were enclosed in a chamber consisted of a transparent Nalofan bag. The air-flows were sampled from both inlet and outlet of the chamber by Tenax-filled sorbent tubes during photosynthesis of trees under the presence of sunlight. Several environmental parameters (temperature, humidity, photosynthetically active radiation-PAR, and CO2) were continuously monitored inside and outside the enclosure chamber during the samplings. Collected samples were analyzed using a gas chromatography mass spectrometry (GC/MS) system equipped with a thermal desorber (TD). Sixty five BVOCs classified in five major groups (isoprene, monoterpenes, sesquiterpenes, oxygenated sesquiterpenes, and other oxygenated compounds) were analyzed. Emission rates were determined by normalization to standard conditions (1000 μmol/m(2)s PAR and 30 °C temperature for isoprene and 30 °C temperature for the remaining compounds). In agreement with the literature, isoprene was mostly emitted by broad-leaved trees while coniferous species mainly emitted monoterpenes. Several tree species such as Sweet Chestnut, Silver Lime, and European Alder had higher monoterpene emissions although they are broad-leaved species. High isoprene emissions were also observed for a few coniferous species such as Nordmann Fir and Oriental Spruce. The highest normalized total BVOC emission rate of 27.1 μg/gh was observed for Oriental Plane while South European Flowering Ash was the weakest BVOC emitter with a total normalized emission rate of 0.031 μg/gh. Monoterpene emissions of broad-leaved species mainly consisted of sabinene, limonene and trans-beta-ocimene, while alpha-pinene, beta-pinene and beta

  17. High-temperature vaporization behavior of oxygen-deficient thoria

    International Nuclear Information System (INIS)

    Ackermann, R.J.; Tetenbaum, M.

    1979-01-01

    The experimental results of the present study on the vaporization behavior of oxygen-deficient thoria are directed toward a more precise and detailed study of the lower phase boundary (l.p.b.) and congruently vaporizing composition (c.v.c), and intermediate compositions, and the corresponding oxygen potentials and total pressure at temperatures above 2000K. The l.p.b. and c.v.c. values were found to fit an equation of the form log x = A + (B/T), where x is the stoichiometric defect in ThO 2 -x. Oxygen potentials corresponding to the l.p.b. and c.v.c. have been estimated from vapor pressures and thermodynamic data. A very sharp decrease in oxygen potential occurs when thoria isreduced only slightly from the stoichiometric composition. In the temperature range from 2400 to 2655 K, the oxygen partial pressure dependency of x in ThO 2 -x was found to be approximately proportional to PO 2 - 1 /4to PO 2 - 1 /. The small extent of reduction over a wide range of oxygen potentials at these temperatures is a clear illustration of the higher stability of the ThO 2 -x phase compared with that of UO 2 -x. Values of ΔHO 2 and ΔSO 2 have been estimated for selected compositions from the dependence of the measured oxygen potential on temperature. Estimates of the standard free energy of formation of bivariant ThO 2 -x compositions have been made. A substantial increase in the total pressure of thorium-bearing species occurs when stoichiometric thoria is reduced toward the lower phase boundary. (orig.) [de

  18. Ergonomic evaluation of pilot oxygen mask designs

    NARCIS (Netherlands)

    Lee, W.; Yang, Xiaopeng; Jung, Daehan; Park, Seikwon; Kim, Heeeun; You, Heecheon

    2018-01-01

    <p>A revised pilot oxygen mask design was developed for better fit to the Korean Air Force pilots’ faces. The present study compared an existing pilot oxygen mask and a prototype of the revised mask design with 88 Korean Air Force pilots in terms of subjective discomfort, facial contact pressure,

  19. Oxygen-sensitive 3He-MRI in bronchiolitis obliterans after lung transplantation

    International Nuclear Information System (INIS)

    Gast, Klaus K.; Biedermann, Alexander; Herweling, Annette; Schreiber, Wolfgang G.; Schmiedeskamp, Joerg; Mayer, Eckhard; Heussel, Claus P.; Markstaller, Klaus; Eberle, Balthasar; Kauczor, Hans-Ulrich

    2008-01-01

    Oxygen-sensitive 3 He-MRI was studied for the detection of differences in intrapulmonary oxygen partial pressure (pO 2 ) between patients with normal lung transplants and those with bronchiolitis obliterans syndrome (BOS). Using software developed in-house, oxygen-sensitive 3 He-MRI datasets from patients with normal lung grafts (n = 8) and with BOS (n = 6) were evaluated quantitatively. Datasets were acquired on a 1.5-T system using a spoiled gradient echo pulse sequence. Underlying diseases were pulmonary emphysema (n 10 datasets) and fibrosis (n = 4). BOS status was verified by pulmonary function tests. Additionally, 3 He-MRI was assessed blindedly for ventilation defects. Median intrapulmonary pO 2 in patients with normal lung grafts was 146 mbar compared with 108 mbar in patients with BOS. Homogeneity of pO2 distribution was greater in normal grafts (standard deviation pO2 34 versus 43 mbar). Median oxygen decrease rate during breath hold was higher in unaffected patients (-1.75 mbar/s versus -0.38 mbar/s). Normal grafts showed fewer ventilation defects (5% versus 28%, medians). Oxygen-sensitive 3 He-MRI appears capable of demonstrating differences of intrapulmonary pO2 between normal lung grafts and grafts affected by BOS. Oxygen-sensitive 3 He-MRI may add helpful regional information to other diagnostic techniques for the assessment and follow-up of lung transplant recipients. (orig.)

  20. Oxygen diffusion-concentration in phospholipidic model membranes. An ESR-saturation study

    International Nuclear Information System (INIS)

    Vachon, A.; Lecomte, C.; Berleur, F.

    1986-04-01

    Fully hydrated liposomes of dipalmitoyl-phosphatidylcholine were labelled with 5 (or 7, 10, 12, 16)-doxyl stearic acid at pH 6 and 8, and studied by the continuous wave ESR-saturation technique. The ESR spectral magnitude depends on the hyperfrequency power P and on both T 1 and T 2 relaxation times. Saturation, i.e. the non linearity of the spectral magnitude plotted versus √P can be quantified by a P1/2 parameter (power at which the signal is half as great as it would be without saturation). If we assume T 2 weakly modified by spin exchange between paramagnetic spin probe and oxygen in triplet state, P1/2 is inversely proportional to T 1 , and becomes a sensitive parameter to appreciate the oxygen transport (oxygen diffusion-concentration product) inside the bilayers. According to the DPPC bilayer phase transition diagrams, P1/2 (oxygen diffusion-concentration) is related to the thermodynamic state of the membrane. This technique provides further informations on a particular property of a radioprotective agent, cysteamine, which seems to inhibit spin-triplet exchange and hence maximizes T 1 (minimizes P1/2). Since radioprotective agents are known to act by scavenging radiation-induced free radicals and by inhibiting oxygen-dependent free radical processes, such a result may contribute to elucidate radioprotecting mechanisms

  1. Comparative Phytochemical Analysis of Essential Oils from Different Biological Parts of Artemisia herba alba and Their Cytotoxic Effect on Cancer Cells

    Science.gov (United States)

    Tilaoui, Mounir; Ait Mouse, Hassan; Jaafari, Abdeslam; Zyad, Abdelmajid

    2015-01-01

    Purpose Carrying out the chemical composition and antiproliferative effects against cancer cells from different biological parts of Artemisia herba alba. Methods Essential oils were studied by gas chromatography coupled to mass spectrometry (GC–MS) and their antitumoral activity was tested against P815 mastocytoma and BSR kidney carcinoma cell lines; also, in order to evaluate the effect on normal human cells, oils were tested against peripheral blood mononuclear cells PBMCs. Results Essential oils from leaves and aerial parts (mixture of capitulum and leaves) were mainly composed by oxygenated sesquiterpenes 39.89% and 46.15% respectively; capitulum oil contained essentially monoterpenes (22.86%) and monocyclic monoterpenes (21.48%); esters constituted the major fraction (62.8%) of stem oil. Essential oils of different biological parts studied demonstrated a differential antiproliferative activity against P815 and BSR cancer cells; P815 cells are the most sensitive to the cytotoxic effect. Leaves and capitulum essential oils are more active than aerial parts. Interestingly, no cytotoxic effect of these essential oils was observed on peripheral blood mononuclear cells. Conclusion Our results showed that the chemical composition variability of essential oils depends on the nature of botanical parts of Artemisia herba alba. Furthermore, we have demonstrated that the differential cytotoxic effect depends not only on the essential oils concentration, but also on the target cells and the botanical parts of essential oils used. PMID:26196123

  2. Quenching of I(2P1/2) by O3 and O(3P).

    Science.gov (United States)

    Azyazov, Valeriy N; Antonov, Ivan O; Heaven, Michael C

    2007-04-26

    Oxygen-iodine lasers that utilize electrical or microwave discharges to produce singlet oxygen are currently being developed. The discharge generators differ from conventional chemical singlet oxygen generators in that they produce significant amounts of atomic oxygen. Post-discharge chemistry includes channels that lead to the formation of ozone. Consequently, removal of I(2P1/2) by O atoms and O3 may impact the efficiency of discharge driven iodine lasers. In the present study, we have measured the rate constants for quenching of I(2P1/2) by O(3P) atoms and O3 using pulsed laser photolysis techniques. The rate constant for quenching by O3, (1.8 +/- 0.4) x 10(-12) cm3 s-1, was found to be a factor of 5 smaller than the literature value. The rate constant for quenching by O(3P) was (1.2 +/- 0.2) x 10(-11) cm3 s-1.

  3. Consumo de oxigênio pós-prandial de juvenis do pampo Trachinotus marginatus Postprandial oxygen consumption of juvenile pompano Trachinotus marginatus

    Directory of Open Access Journals (Sweden)

    Viviana Lisboa Cunha

    2009-07-01

    Full Text Available Para determinar a viabilidade do cultivo de uma espécie, é importante o conhecimento dos fatores limitantes para sua produção. Conhecer a taxa de consumo de oxigênio pós-prandial pode auxiliar na determinação da freqüência alimentar ideal para as espécies cultivadas. O objetivo deste trabalho foi estudar a taxa de consumo de oxigênio pós-prandial para juvenis do pampo Trachinotus marginatus. A avaliação do consumo de oxigênio foi feita a 24°C e 33‰, com pampos (9,64±0,2g alimentados com 12% da biomassa por dia com dieta NRD INVE (59% proteína. Foi observado um pico de consumo de oxigênio 30min após a alimentação (1,06mgO2 g-1 h-1 e seu retorno ao nível de jejum (0,79mgO2 g-1 h-1 depois de decorridos mais 120min. A alimentação de juvenis de pampo pode ser realizada com uma freqüência de aproximadamente oito vezes por dia, pois a cada 2,5h a taxa de consumo de oxigênio já não mostra a elevação característica da fase pós-prandial, sugerindo que os processos de digestão e assimilação dos nutrientes estejam finalizados.In order to determine the viability of new species for aquaculture, it is important to know the limiting factors for its production. The knowledge about postprandial oxygen consumption of fish is useful to estimate the time for returning to appetite and allows to estimate the proper feeding frequency. The objective of this research was to study the postprandial oxygen consumption of juvenile pompano Trachinotus marginatus. Oxygen consumption rate was determined at 24°C and 33‰ and fish (9.64±0.2g were fed daily with 12% total of biomass NRD INVE diet (59% protein. Postprandial increase in oxygen consumption was observed 30min after feeding (1.06mgO2 g-1 h-1, and it returned to the routine metabolic rate (0.79mgO2 g-1 h-1 within the next 120min. According to these results, it seems appropriated to feed juvenile pompano 8 times per day, because every 2.5h the oxygen consumption rate declines to

  4. Disjunct eddy covariance measurements of volatile organic compound fluxes using proton transfer reaction mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Taipale, R.

    2011-07-01

    Volatile organic compounds (VOCs) are emitted into the atmosphere from natural and anthropogenic sources, vegetation being the dominant source on a global scale. Some of these reactive compounds are deemed major contributors or inhibitors to aerosol particle formation and growth, thus making VOC measurements essential for current climate change research. This thesis discusses ecosystem scale VOC fluxes measured above a boreal Scots pine dominated forest in southern Finland. The flux measurements were performed using the micrometeorological disjunct eddy covariance (DEC) method combined with proton transfer reaction mass spectrometry (PTR-MS), which is an online technique for measuring VOC concentrations. The measurement, calibration, and calculation procedures developed in this work proved to be well suited to long-term VOC concentration and flux measurements with PTR-MS. A new averaging approach based on running averaged covariance functions improved the determination of the lag time between wind and concentration measurements, which is a common challenge in DEC when measuring fluxes near the detection limit. The ecosystem scale emissions of methanol, acetaldehyde, and acetone were substantial. These three oxygenated VOCs made up about half of the total emissions, with the rest comprised of monoterpenes. Contrary to the traditional assumption that monoterpene emissions from Scots pine originate mainly as evaporation from specialized storage pools, the DEC measurements indicated a significant contribution from de novo biosynthesis to the ecosystem scale monoterpene emissions. This thesis offers practical guidelines for long-term DEC measurements with PTR-MS. In particular, the new averaging approach to the lag time determination seems useful in the automation of DEC flux calculations. Seasonal variation in the monoterpene biosynthesis and the detailed structure of a revised hybrid algorithm, describing both de novo and pool emissions, should be determined in

  5. Intramyocardial oxygen transport by quantitative diffuse reflectance spectroscopy in calves

    Science.gov (United States)

    Lindbergh, Tobias; Larsson, Marcus; Szabó, Zoltán; Casimir-Ahn, Henrik; Strömberg, Tomas

    2010-03-01

    Intramyocardial oxygen transport was assessed during open-chest surgery in calves by diffuse reflectance spectroscopy using a small intramuscular fiber-optic probe. The sum of hemo- and myoglobin tissue fraction and oxygen saturation, the tissue fraction and oxidation of cytochrome aa3, and the tissue fraction of methemoglobin were estimated using a calibrated empirical light transport model. Increasing the oxygen content in the inhaled gas, 21%-50%-100%, in five calves (group A) gave an increasing oxygen saturation of 19+/-4%, 24+/-5%, and 28+/-8% (panimals increased with LVAD pump speed (p<0.001, ANOVA) and with oxygen content in inhaled gas (p<0.001, ANOVA). The cytochrome aa3 oxidation level was above 96% in both group A and group B calves, including the two cases involving cardiac arrest. In conclusion, the estimated tissue fractions and oxygenation/oxidation levels of the myocardial chromophores during respiratory and hemodynamic provocations were in agreement with previously presented results, demonstrating the potential of the method.

  6. Real-time monitoring of nitric oxide (NO) and pO2 levels under ischemic conditions associated with small bowel ischemia/reperfusion injury using selective electrodes for NO and oxygen molecules.

    Science.gov (United States)

    Watanabe, T; Owada, S; Kobayashi, H; Ishiuchi, A; Nakano, H; Asakuta, T; Shimamura, T; Asano, T; Koizumi, S; Jinnouchi, Y; Katayama, M; Kamibayasi, M; Murakami, E; Otsubo, T

    2007-12-01

    The present study demonstrated the feasibility of monitoring nitric oxide (NO) and pO2 levels under ischemic conditions associated with small bowel ischemia/reperfusion (I/R) injury through the use of selective electrodes for NO and oxygen molecules. NO levels gradually increased during ischemia. When reperfusion was started, the NO level decreased suddenly and returned to pre-ischemia values within 10 minutes. After clamping, pO2 decreased rapidly. When reperfusion was started, pO2 increased suddenly, returning to pre-ischemia values within 10 minutes. We concluded that it is feasible to monitor NO and pO2 levels under ischemic conditions of small bowel I/R injury through the use of electrodes selective for NO and oxygen molecules.

  7. Oxygen-Dependent Transcriptional Regulator Hap1p Limits Glucose Uptake by Repressing the Expression of the Major Glucose Transporter Gene RAG1 in Kluyveromyces lactis▿

    Science.gov (United States)

    Bao, Wei-Guo; Guiard, Bernard; Fang, Zi-An; Donnini, Claudia; Gervais, Michel; Passos, Flavia M. Lopes; Ferrero, Iliana; Fukuhara, Hiroshi; Bolotin-Fukuhara, Monique

    2008-01-01

    The HAP1 (CYP1) gene product of Saccharomyces cerevisiae is known to regulate the transcription of many genes in response to oxygen availability. This response varies according to yeast species, probably reflecting the specific nature of their oxidative metabolism. It is suspected that a difference in the interaction of Hap1p with its target genes may explain some of the species-related variation in oxygen responses. As opposed to the fermentative S. cerevisiae, Kluyveromyces lactis is an aerobic yeast species which shows different oxygen responses. We examined the role of the HAP1-equivalent gene (KlHAP1) in K. lactis. KlHap1p showed a number of sequence features and some gene targets (such as KlCYC1) in common with its S. cerevisiae counterpart, and KlHAP1 was capable of complementing the hap1 mutation. However, the KlHAP1 disruptant showed temperature-sensitive growth on glucose, especially at low glucose concentrations. At normal temperature, 28°C, the mutant grew well, the colony size being even greater than that of the wild type. The most striking observation was that KlHap1p repressed the expression of the major glucose transporter gene RAG1 and reduced the glucose uptake rate. This suggested an involvement of KlHap1p in the regulation of glycolytic flux through the glucose transport system. The ΔKlhap1 mutant showed an increased ability to produce ethanol during aerobic growth, indicating a possible transformation of its physiological property to Crabtree positivity or partial Crabtree positivity. Dual roles of KlHap1p in activating respiration and repressing fermentation may be seen as a basis of the Crabtree-negative physiology of K. lactis. PMID:18806211

  8. Chemical investigation of the volatile constituents of Cleome viscosa from Nigeria

    Directory of Open Access Journals (Sweden)

    Gabriel Olatunji

    2005-06-01

    Full Text Available The major volatile constituents of the oils from the integral parts of Cleome viscosa L. from Nigeria have been identified by GC, GC/MS and 1H NMR. The main constituents of the non-polar fraction of the oils were monoterpene hydrocarbons (21% in stem/leaves, 15% in seed/fruits, 12% in roots and some oxygenated derivatives (3% in leaves/stem; 1% in seeds/fruits and 1.5% in roots. The monoterpenes occurred frequently in the oils. Fatty acid esters especially ethyl palmitate which constituted a major constituent in the oil from the seeds/fruits was not detected in the oils from the roots.

  9. Sweet Marjoram

    Science.gov (United States)

    Bina, Fatemeh; Rahimi, Roja

    2016-01-01

    Origanum majorana L. commonly known as sweet marjoram has been used for variety of diseases in traditional and folklore medicines, including gastrointestinal, ocular, nasopharyngeal, respiratory, cardiac, rheumatologic, and neurological disorders. Essential oil containing monoterpene hydrocarbons and oxygenated monoterpenes as well as phenolic compounds are chemical constituents isolated and detected in O majorana. Wide range of pharmacological activities including antioxidant, hepatoprotective, cardioprotective, anti-platelet, gastroprotective, antibacterial and antifungal, antiprotozoal, antiatherosclerosis, anti-inflammatory, antimetastatic, antitumor, antiulcer, and anticholinesterase inhibitory activities have been reported from this plant in modern medicine. This article summarizes comprehensive information concerning traditional uses, phytochemistry, and pharmacological activities of sweet marjoram. PMID:27231340

  10. A first-principles study of oxygen adsorption on Ir(111) surface

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Hengjiao, E-mail: gaohengjiao@163.com; Xiong, Yuqing, E-mail: xiongyq@hotmail.com; Liu, Xiaoli, E-mail: shantianzi@126.com; Zhao, Dongcai, E-mail: zhaodongc@163.com; Feng, Yudong, E-mail: yudong_feng@sina.com; Wang, Lanxi, E-mail: wanglanxi@live.com; Wang, Jinxiao, E-mail: coldwind716@gmail.com

    2016-12-15

    Highlights: • Adsorption of oxygen on Ir(111) surface was studied by density functional theory. • The most stable adsorption site was determined by adsorption energy calculation. • Adsorption of oxygen at bridge and top site on Ir surface was the most stable ones. • Interaction of O 2p and Ir 5d orbits is relatively strong and formed hybridization. - Abstract: In order to understand deposition mechanism of iridium thin film by atomic layer deposition, the adsorption of oxygen on Ir(111) surface was studied by use of density functional theory and a periodical slab model. By calculating the adsorption energy and structure of oxygen at four adsorption sites (top, bridge, fcc-hollow and hcp-hollow) on Ir(111) surface, the most stable adsorption site was determined. On this basis, the banding mechanism of O and Ir atoms was studied by density of states of oxygen and iridium atoms. Oxygen adsorbed at hcp(parallel) site on Ir(111) surface was the most stable one according to the adsorption energy calculation results. Orbital charge analysis indicate that charge transferred from 5p and 5d orbit to 2p orbit of adsorbed O atoms, and 6s orbit of iridium atoms. Meanwhile, density of state study indicated that adsorption of oxygen on Ir(111) surface is mainly due to the interaction between 2p orbit of O atoms and 5d orbit of iridium atoms.

  11. Hyperbaric Oxygen Environment Can Enhance Brain Activity and Multitasking Performance

    Directory of Open Access Journals (Sweden)

    Dor Vadas

    2017-09-01

    Full Text Available Background: The Brain uses 20% of the total oxygen supply consumed by the entire body. Even though, <10% of the brain is active at any given time, it utilizes almost all the oxygen delivered. In order to perform complex tasks or more than one task (multitasking, the oxygen supply is shifted from one brain region to another, via blood perfusion modulation. The aim of the present study was to evaluate whether a hyperbaric oxygen (HBO environment, with increased oxygen supply to the brain, will enhance the performance of complex and/or multiple activities.Methods: A prospective, double-blind randomized control, crossover trial including 22 healthy volunteers. Participants were asked to perform a cognitive task, a motor task and a simultaneous cognitive-motor task (multitasking. Participants were randomized to perform the tasks in two environments: (a normobaric air (1 ATA 21% oxygen (b HBO (2 ATA 100% oxygen. Two weeks later participants were crossed to the alternative environment. Blinding of the normobaric environment was achieved in the same chamber with masks on while hyperbaric sensation was simulated by increasing pressure in the first minute and gradually decreasing to normobaric environment prior to tasks performance.Results: Compared to the performance at normobaric conditions, both cognitive and motor single tasks scores were significantly enhanced by HBO environment (p < 0.001 for both. Multitasking performance was also significantly enhanced in HBO environment (p = 0.006 for the cognitive part and p = 0.02 for the motor part.Conclusions: The improvement in performance of both single and multi-tasking while in an HBO environment supports the hypothesis which according to, oxygen is indeed a rate limiting factor for brain activity. Hyperbaric oxygenation can serve as an environment for brain performance. Further studies are needed to evaluate the optimal oxygen levels for maximal brain performance.

  12. Insulin resistance and maximal oxygen uptake

    DEFF Research Database (Denmark)

    Seibaek, Marie; Vestergaard, Henrik; Burchardt, Hans

    2003-01-01

    BACKGROUND: Type 2 diabetes, coronary atherosclerosis, and physical fitness all correlate with insulin resistance, but the relative importance of each component is unknown. HYPOTHESIS: This study was undertaken to determine the relationship between insulin resistance, maximal oxygen uptake......, and the presence of either diabetes or ischemic heart disease. METHODS: The study population comprised 33 patients with and without diabetes and ischemic heart disease. Insulin resistance was measured by a hyperinsulinemic euglycemic clamp; maximal oxygen uptake was measured during a bicycle exercise test. RESULTS......: There was a strong correlation between maximal oxygen uptake and insulin-stimulated glucose uptake (r = 0.7, p = 0.001), and maximal oxygen uptake was the only factor of importance for determining insulin sensitivity in a model, which also included the presence of diabetes and ischemic heart disease. CONCLUSION...

  13. Hyperbaric Oxygen Environment Can Enhance Brain Activity and Multitasking Performance.

    Science.gov (United States)

    Vadas, Dor; Kalichman, Leonid; Hadanny, Amir; Efrati, Shai

    2017-01-01

    Background: The Brain uses 20% of the total oxygen supply consumed by the entire body. Even though, multitasking), the oxygen supply is shifted from one brain region to another, via blood perfusion modulation. The aim of the present study was to evaluate whether a hyperbaric oxygen (HBO) environment, with increased oxygen supply to the brain, will enhance the performance of complex and/or multiple activities. Methods: A prospective, double-blind randomized control, crossover trial including 22 healthy volunteers. Participants were asked to perform a cognitive task, a motor task and a simultaneous cognitive-motor task (multitasking). Participants were randomized to perform the tasks in two environments: (a) normobaric air (1 ATA 21% oxygen) (b) HBO (2 ATA 100% oxygen). Two weeks later participants were crossed to the alternative environment. Blinding of the normobaric environment was achieved in the same chamber with masks on while hyperbaric sensation was simulated by increasing pressure in the first minute and gradually decreasing to normobaric environment prior to tasks performance. Results: Compared to the performance at normobaric conditions, both cognitive and motor single tasks scores were significantly enhanced by HBO environment ( p Multitasking performance was also significantly enhanced in HBO environment ( p = 0.006 for the cognitive part and p = 0.02 for the motor part). Conclusions: The improvement in performance of both single and multi-tasking while in an HBO environment supports the hypothesis which according to, oxygen is indeed a rate limiting factor for brain activity. Hyperbaric oxygenation can serve as an environment for brain performance. Further studies are needed to evaluate the optimal oxygen levels for maximal brain performance.

  14. Ammonium excretion and oxygen respiration of tropical copepods and euphausiids exposed to oxygen minimum zone conditions

    Science.gov (United States)

    Kiko, R.; Hauss, H.; Buchholz, F.; Melzner, F.

    2015-10-01

    Calanoid copepods and euphausiids are key components of marine zooplankton communities worldwide. Most euphausiids and several copepod species perform diel vertical migrations (DVMs) that contribute to the export of particulate and dissolved matter to midwater depths. In vast areas of the global ocean, and in particular in the eastern tropical Atlantic and Pacific, the daytime distribution depth of many migrating organisms corresponds to the core of the oxygen minimum zone (OMZ). At depth, the animals experience reduced temperature and oxygen partial pressure (pO2) and an increased carbon dioxide partial pressure (pCO2) compared to their near-surface nighttime habitat. Although it is well known that low oxygen levels can inhibit respiratory activity, the respiration response of tropical copepods and euphausiids to relevant pCO2, pO2 and temperature conditions remains poorly parameterized. Further, the regulation of ammonium excretion at OMZ conditions is generally not well understood. It was recently estimated that DVM-mediated ammonium supply considerably fuels bacterial anaerobic ammonium oxidation - a major loss process for fixed nitrogen in the ocean. These estimates were based on the implicit assumption that hypoxia or anoxia in combination with hypercapnia (elevated pCO2) does not result in a downregulation of ammonium excretion. Here we show that exposure to OMZ conditions can result in strong depression of respiration and ammonium excretion in calanoid copepods and euphausiids from the Eastern Tropical North Atlantic and the Eastern Tropical South Pacific. These physiological responses need to be taken into account when estimating DVM-mediated fluxes of carbon and nitrogen into OMZs.

  15. Biogeochemical modelling of dissolved oxygen in a changing ocean

    Science.gov (United States)

    Andrews, Oliver; Buitenhuis, Erik; Le Quéré, Corinne; Suntharalingam, Parvadha

    2017-08-01

    Secular decreases in dissolved oxygen concentration have been observed within the tropical oxygen minimum zones (OMZs) and at mid- to high latitudes over the last approximately 50 years. Earth system model projections indicate that a reduction in the oxygen inventory of the global ocean, termed ocean deoxygenation, is a likely consequence of on-going anthropogenic warming. Current models are, however, unable to consistently reproduce the observed trends and variability of recent decades, particularly within the established tropical OMZs. Here, we conduct a series of targeted hindcast model simulations using a state-of-the-art global ocean biogeochemistry model in order to explore and review biases in model distributions of oceanic oxygen. We show that the largest magnitude of uncertainty is entrained into ocean oxygen response patterns due to model parametrization of pCO2-sensitive C : N ratios in carbon fixation and imposed atmospheric forcing data. Inclusion of a pCO2-sensitive C : N ratio drives historical oxygen depletion within the ocean interior due to increased organic carbon export and subsequent remineralization. Atmospheric forcing is shown to influence simulated interannual variability in ocean oxygen, particularly due to differences in imposed variability of wind stress and heat fluxes. This article is part of the themed issue 'Ocean ventilation and deoxygenation in a warming world'.

  16. The Volatile Composition of Portuguese Propolis Towards its Origin Discrimination

    Directory of Open Access Journals (Sweden)

    Soraia I. Falcão

    2016-03-01

    Full Text Available The volatiles from thirty six propolis samples collected from six different geographical locations in Portugal (mainland, Azores archipelago and Madeira Island were evaluated. Populus x canadensis Moenchen leaf-buds and Cistus ladanifer L. branches essential oils were comparatively analysed. The essential oils were isolated by hydrodistillation and analysed by Gas Chromatography (GC and Gas Chromatography-Mass Spectrometry (GC-MS. Cluster analysis based on propolis samples volatiles chemical composition defined three main clusters, not related to sample site collection. Cluster I grouped 28 samples with high relative amounts of oxygen-containing sesquiterpenes (20-77%, while cluster II grouped 7 samples rich in oxygen-containing monoterpenes (9-65% and the only sample from cluster III was monoterpene hydrocarbons rich (26%. Although Populus x canadensis and Cistus ladanifer were associated as resin sources of Portuguese propolis, other Populus species as well as plants like Juniperus genus may contribute to the resin in specific geographical locations.

  17. Chemical compositions and antioxidant/antimicrobial activities of various samples prepared from Schinus terebinthifolius leaves cultivated in Egypt.

    Science.gov (United States)

    El-Massry, Khaled F; El-Ghorab, Ahmed H; Shaaban, Hamdy A; Shibamoto, Takayuki

    2009-06-24

    Essential oil, dichloromethane extract, and ethanol extract were prepared from fresh Schinus terebinthifolius leaves cultivated in Egypt. The essential oil was analyzed by gas chromatography and gas chromatography/mass spectrometry. The essential oil comprised 4.97% monoterpenes, 56.96% sesquiterpenes, 34.37% oxygenated monoterpenes, and 3.32% oxygenated sesquiterpenes. The major compounds in the essential oil were cis-beta-terpineol (GC peak area%, 17.87%), (E)-caryophyllene (17.56%), beta-cedrene (9.76%), and citronellal (7.03%). The major phenolic compounds identified in the ethanol extract were caffeic acid (5.07 mg/100 mg extract), coumaric acid (1.64 mg), and syringic acid (1.59 mg). The antioxidant activity of ethanol extract, which was comparable with that of butylhydroquinone, was superior to essential oil and dichloromethane extract in 2,2-diphenylpicrylhydrazyl and beta-carotene/bleaching assays. The dichloromethane extract exhibited the greatest antimicrobial activity against 6 strains, followed by the ethanol extract and the essential oil.

  18. SU-F-P-14: Oxygen Inhalation Should Be the Conventional Approach in the Treatment of Thoracic and Abdominal Cancer by Radiotherapy with Active Breathing Control (ABC)

    Energy Technology Data Exchange (ETDEWEB)

    Gong, G; Guo, Y; Yin, Y [Shandong Cancer Hospital and Institute, Jinan, Shandong (China)

    2016-06-15

    Purpose: To investigate the feasibility and potential benefit of oxygen inhalation (OI) during radiotherapy applying an active breathing control (ABC) device, by analyzing the blood oxygen saturation (SpO2) and the instantaneous heart rate (IHR) variation in breath holding with OI and oxygen non-inhalation (ONI). Methods: The 27 healthy volunteers (16 males, 11 females) who were involved in this trial were all required to hold their breath for 10 times, non-inhaling and inhaling oxygen successively. The breath-holding time (BHT), rest time (RT), SpO2 and IHR under different oxygen status were recorded and compared. Results: The volunteers were divided into two groups according to SpO2 variations in breath-holding: group A (12 cases), with less than2% decline of SpO2; group B (15 cases), with a decline that surpassed 2%, and which could reach 3–6%. The BHT of group A, without inhaling oxygen, was significantly longer than that of group B (mean 33.77s Vs 30.51s, p<0.05); and was extended by 26.6% and 27.85%, after inhaling oxygen, in groups A and B, respectively. The SpO2 decreased in all volunteers during RT with ONI, to an extent that could reach up to 6%. The IHR of all volunteers showed the fast-slow-fast variation rule, and the oxygen had little effect. More than 70% of the volunteers stated that oxygen made them feel more comfortable and were more cooperative when ABC was used. Conclusion: The SpO2 declines during breath holding and RT could not be ignored while applying ABC, oxygen inhalation should become a conventional method with lengthening BHT and shortening RT, which yielded the benefit of improving the stability and reproducibility.

  19. SU-F-P-14: Oxygen Inhalation Should Be the Conventional Approach in the Treatment of Thoracic and Abdominal Cancer by Radiotherapy with Active Breathing Control (ABC)

    International Nuclear Information System (INIS)

    Gong, G; Guo, Y; Yin, Y

    2016-01-01

    Purpose: To investigate the feasibility and potential benefit of oxygen inhalation (OI) during radiotherapy applying an active breathing control (ABC) device, by analyzing the blood oxygen saturation (SpO2) and the instantaneous heart rate (IHR) variation in breath holding with OI and oxygen non-inhalation (ONI). Methods: The 27 healthy volunteers (16 males, 11 females) who were involved in this trial were all required to hold their breath for 10 times, non-inhaling and inhaling oxygen successively. The breath-holding time (BHT), rest time (RT), SpO2 and IHR under different oxygen status were recorded and compared. Results: The volunteers were divided into two groups according to SpO2 variations in breath-holding: group A (12 cases), with less than2% decline of SpO2; group B (15 cases), with a decline that surpassed 2%, and which could reach 3–6%. The BHT of group A, without inhaling oxygen, was significantly longer than that of group B (mean 33.77s Vs 30.51s, p<0.05); and was extended by 26.6% and 27.85%, after inhaling oxygen, in groups A and B, respectively. The SpO2 decreased in all volunteers during RT with ONI, to an extent that could reach up to 6%. The IHR of all volunteers showed the fast-slow-fast variation rule, and the oxygen had little effect. More than 70% of the volunteers stated that oxygen made them feel more comfortable and were more cooperative when ABC was used. Conclusion: The SpO2 declines during breath holding and RT could not be ignored while applying ABC, oxygen inhalation should become a conventional method with lengthening BHT and shortening RT, which yielded the benefit of improving the stability and reproducibility.

  20. Mevalonosomes: specific vacuoles containing the mevalonate pathway in Plocamium brasiliense cortical cells (Rhodophyta).

    Science.gov (United States)

    Paradas, Wladimir Costa; Crespo, Thalita Mendes; Salgado, Leonardo Tavares; de Andrade, Leonardo Rodrigues; Soares, Angélica Ribeiro; Hellio, Claire; Paranhos, Ricardo Rogers; Hill, Lilian Jorge; de Souza, Geysa Marinho; Kelecom, Alphonse Germaine Albert Charles; Da Gama, Bernardo Antônio Perez; Pereira, Renato Crespo; Amado-Filho, Gilberto Menezes

    2015-04-01

    This paper has identified, for the first time in a member of the Rhodophyta, a vacuolar organelle containing enzymes that are involved in the mevalonate pathway-an important step in red algal isoprenoid biosynthesis. These organelles were named mevalonosomes (Mev) and were found in the cortical cells (CC) of Plocamium brasiliense, a marine macroalgae that synthesizes several halogenated monoterpenes. P. brasiliense specimens were submitted to a cytochemical analysis of the activity of the 3-hydroxy-3-methylglutaryl-CoA synthase (HMGS). Using transmission electron microscopy (TEM), we confirmed the presence of HMGS activity within the Mev. Because HMGS is necessary for the biosynthesis of halogenated monoterpenes, we isolated a hexanic fraction (HF) rich in halogenated monoterpenes from P. brasiliense that contained a pentachlorinated monoterpene as a major metabolite. Because terpenes are often related to chemical defense, the antifouling (AF) activity of pentachlorinated monoterpene was tested. We found that the settlement of the mussel Perna perna was reduced by HF treatment (2.25 times less than control; 40% and 90% of fouled surface, respectively; P = 0.001; F9,9 = 1.13). The HF (at 10 μg · mL(-1) ) also inhibited three species of fouling microalgae (Chlorarachnion reptans, Cylindrotheca cloisterium, and Exanthemachrysis gayraliae), while at a higher concentration (50 μg · mL(-1) ), it inhibited the bacteria Halomonas marina, Polaribacter irgensii, Pseudoalteromonas elyakovii, Shewanella putrefaciens, and Vibrio aestuarianus. The AF activity of P. brasiliense halogenated monoterpenes and the localization of HMGS activity inside Mev suggest that this cellular structure found in CC may play a role in thallus protection against biofouling. © 2015 Phycological Society of America.

  1. Tumor Oxygen Dynamics: Correlation of In Vivo MRI with Histological Findings

    Directory of Open Access Journals (Sweden)

    Dawen Zhao

    2003-07-01

    Full Text Available Tumor oxygenation has long been recognized as a significant factor influencing cancer therapy. We recently established a novel magnetic resonance in vivo approach to measuring regional tumor oxygen tension, FREDOM (Fluorocarbon Relaxometry Using Echo Planar Imaging for Dynamic Oxygen Mapping, using hexafluorobenzene (HFB as the reporter molecule. We have now investigated oxygen dynamics in the two Dunning prostate R3327 rat tumor sublines, AT1 and H. FREDOM revealed considerable intratumoral heterogeneity in the distribution of pO2 values in both sublines. The anaplastic fastergrowing AT1 tumors were more hypoxic compared with the size-matched, well-differentiated, and slower-growing H tumors. Respiratory challenge with oxygen produced significant increases in mean and median pO2 in all the H tumors (P3 cm3. Immunohistochemical studies using the hypoxia marker, pimonidazole, and the vascular endothelial cell marker, CD31, confirmed that the H tumors had more extensive vasculature and less hypoxia than the AT1 tumors. These results further validate the utilization of FREDOM to monitor tumor oxygenation and concur with the hypothesis that the level of hypoxia is related to tumor growth rate and poor vascularity.

  2. Influence of pH and oxygen content of buffer solutions on the corrosion behaviour of metallic materials

    International Nuclear Information System (INIS)

    Wiedemann, K.H.

    1977-05-01

    The application of solutions to the decontamination of materials in nuclear installations is based on the condition that their corrosion behaviour is clearly understood. Since electrochemical corrosion is due to cathodic and anodic partial reactions which are influenced in different ways by the pH of the solution and the oxygen content it is suggested that the results of electrochemical experiments with buffer solutions be used as a model for predicting the corrosion behaviour of materials in other solutions. In the tests described here potentio-kinetic current-potential-curves have been traced and galvanic corrosion tests have been made. The results obtained in ascorbic acid, potassium hydrogen phthalate, ammonium citrate and acetate, sodium and potassium tartrate, ammonium hydrogen phosphate, sodium carbonate, hexamethylene tetramin, ethylene diamine enable - on the basis of summarized current-potential-curves - the metals studied to be classified in four groups characterized by clear differences concerning the influence of pH on the corrosion behaviour. (Auth.)

  3. Composition and Biological Activity of Picea pungens and Picea orientalis Seed and Cone Essential Oils.

    Science.gov (United States)

    Wajs-Bonikowska, Anna; Szoka, Łukasz; Karna, Ewa; Wiktorowska-Owczarek, Anna; Sienkiewicz, Monika

    2017-03-01

    The increasing consumption of natural products lead us to discover and study new plant materials, such as conifer seeds and cones, which could be easily available from the forest industry as a waste material, for their potential uses. The chemical composition of the essential oils of Picea pungens and Picea orientalis was fully characterized by GC and GC/MS methods. Seed and cone oils of both tree species were composed mainly of monoterpene hydrocarbons, among which limonene, α- and β-pinene were the major, but in different proportions in the examined conifer essential oils. The levorotary form of chiral monoterpene molecules was predominant over the dextrorotary form. The composition of oils from P. pungens seeds and cones was similar, while the hydrodistilled oils of P. orientalis seeds and cones differed from each other, mainly by a higher amount of oxygenated derivatives of monoterpenes and by other higher molar mass terpenes in seed oil. The essential oils showed mild antimicrobial action, however P. orientalis cone oil exhibited stronger antimicrobial properties against tested bacterial species than those of P. pungens. Effects of the tested cone essential oils on human skin fibroblasts and microvascular endothelial cells (HMEC-1) were similar: in a concentration of 0 - 0.075 μl/ml the oils were rather safe for human skin fibroblasts and 0 - 0.005 μl/ml for HMEC-1 cells. IC 50 value of Picea pungens oils was 0.115 μl/ml, while that of Picea orientalis was 0.105 μl/ml. The value of IC 50 of both oils were 0.035 μl/ml for HMEC-1 cells. The strongest effect on cell viability had the oil from Picea orientalis cones, while on DNA synthesis the oil from Picea pungens cones. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  4. Blood conservation with membrane oxygenators and dipyridamole.

    Science.gov (United States)

    Teoh, K H; Christakis, G T; Weisel, R D; Madonik, M M; Ivanov, J; Wong, P Y; Mee, A V; Levitt, D; Benak, A; Reilly, P

    1987-07-01

    Cardiopulmonary bypass induces platelet activation and dysfunction, which result in platelet deposition and depletion. Reduced platelet numbers and abnormal platelet function may contribute to postoperative bleeding. A membrane oxygenator may preserve platelets and reduce bleeding more than a bubble oxygenator, and the antiplatelet agent dipyridamole may protect platelets intraoperatively and reduce bleeding postoperatively. A prospective randomized trial was performed in 44 patients undergoing elective coronary artery bypass grafting to assess the effects of the membrane oxygenator and dipyridamole on platelet counts, platelet activation products, and postoperative bleeding. Patients who were randomized to receive a bubble oxygenator and no dipyridamole had the lowest postoperative platelet counts, the greatest blood loss, and the most blood products transfused. Platelet counts were highest and blood loss was least in patients randomized to receive a membrane oxygenator and dipyridamole (p less than .05). A bubble oxygenator with dipyridamole and a membrane oxygenator without dipyridamole resulted in intermediate postoperative platelet counts and blood loss. Arterial thromboxane B2 and platelet factor 4 concentrations were elevated on cardiopulmonary bypass in all groups. Both the membrane oxygenator and dipyridamole were independently effective (by multivariate analysis) in preserving platelets. Optimal blood conservation was achieved with a membrane oxygenator and dipyridamole.

  5. Antibacterial Activity of Daucus crinitus Essential Oils along the Vegetative Life of the Plant

    Directory of Open Access Journals (Sweden)

    Amel Bendiabdellah

    2013-01-01

    Full Text Available The essential oils from the aerial parts of Daucus crinitus Desf. were analyzed at three developmental stages (early vegetative, early flowering, and full flowering. Oil yield was found to vary depending on the stage of development, and the highest content of oil (0.15% w/w was obtained at full flowering. The chemical composition of essential oils studied by GC and GC-MS showed a total of 71 compounds: 27 aliphatic compounds, 18 sesquiterpene hydrocarbons, 9 hydrocarbons monoterpene, 5 oxygenated monoterpenes, 5 phenolic compounds, 4 oxygenated sesquiterpenes, 2 oxygenated diterpenes, and 01 diterpene hydrocarbons. Whatever the analyzed stage, phenolic compounds were the most abundant group. Their level significantly increased during ripening and varied from 36.4 to 82.1%. Antimicrobial activities of oils were tested on four different microorganisms. The oils of various phenological stages showed high activity against Candida albicans (30 mm and Staphylococcus aureus (11–28 mm bacteria strains which are deemed very dangerous and very difficult to eliminate. Thus, they represent an inexpensive source of natural antibacterial substances that may potentially be used in pathogenic systems.

  6. Electrical property studies of oxygen in Czochralski-grown neutron-transmutation-doped silicon

    International Nuclear Information System (INIS)

    Cleland, J.W.; Fukuoka, N.

    1980-10-01

    Electically active oxygen-related donors can be formed in Czochralski (Cz) Si either during crystal growth or during subsequent heat treatment; conventional n- or p-type dopant carrier concentrations are altered if these oxygen donors are present. Neutron transmutation doping (NTD) has been used to introduce a uniform concentration of 31 P in Si. However, oxygen donors can also be formed in NTD Cz Si during the process of annealing to remove NTD radiation damage. In the present experiments, the carrier concentration of Cz and NTD Cz Si samples was determined as a function of the initial dopant, oxygen, and 31 P concentration before and after isothermal or isochronal annealing. It is shown that low temperature (350 to 500 0 C) heat treatment can introduce a significant oxygen donor concentration in Cz Si and in NTD Cz Si that contains radiation-induced lattice defects. Intermediate temperature (550 to 750 0 C) heat treatment, which is intended to remove oxygen donors or lattice defects, can introduce other oxygen donors; annealing above 750 0 C is required to remove any of these oxygen donors. Extended (20 h) high-temperature (1000 to 1200 0 C) annealing can remove oxygen donors and lattice defects, but a significant concentration of oxygen donors can still be introduced by subsequent low temperature heat treatment. These results suggest that oxygen-related donor formation in NTD Cz Si at temperatures below 750 0 C may serve to mask any annealing study of lattice defects. It is concluded that annealing for 30 min at 750 0 C is sufficient to remove radiation damage in NTD Cz Si when the separate effects of oxygen donor formation are included

  7. Benthic phosphorus cycling in the Peruvian oxygen minimum zone

    Science.gov (United States)

    Lomnitz, Ulrike; Sommer, Stefan; Dale, Andrew W.; Löscher, Carolin R.; Noffke, Anna; Wallmann, Klaus; Hensen, Christian

    2016-03-01

    Oxygen minimum zones (OMZs) that impinge on continental margins favor the release of phosphorus (P) from the sediments to the water column, enhancing primary productivity and the maintenance or expansion of low-oxygen waters. A comprehensive field program in the Peruvian OMZ was undertaken to identify the sources of benthic P at six stations, including the analysis of particles from the water column, surface sediments, and pore fluids, as well as in situ benthic flux measurements. A major fraction of solid-phase P was bound as particulate inorganic P (PIP) both in the water column and in sediments. Sedimentary PIP increased with depth in the sediment at the expense of particulate organic P (POP). The ratio of particulate organic carbon (POC) to POP exceeded the Redfield ratio both in the water column (202 ± 29) and in surface sediments (303 ± 77). However, the POC to total particulate P (TPP = POP + PIP) ratio was close to Redfield in the water column (103 ± 9) and in sediment samples (102 ± 15). This suggests that the relative burial efficiencies of POC and TPP are similar under low-oxygen conditions and that the sediments underlying the anoxic waters on the Peru margin are not depleted in P compared to Redfield. Benthic fluxes of dissolved P were extremely high (up to 1.04 ± 0.31 mmol m-2 d-1), however, showing that a lack of oxygen promotes the intensified release of dissolved P from sediments, whilst preserving the POC / TPP burial ratio. Benthic dissolved P fluxes were always higher than the TPP rain rate to the seabed, which is proposed to be caused by transient P release by bacterial mats that had stored P during previous periods when bottom waters were less reducing. At one station located at the lower rim of the OMZ, dissolved P was taken up by the sediments, indicating ongoing phosphorite formation. This is further supported by decreasing porewater phosphate concentrations with sediment depth, whereas solid-phase P concentrations were comparatively

  8. Singlet oxygen quenching by oxygen in tetraphenyl-porphyrin solutions

    International Nuclear Information System (INIS)

    Dedic, Roman; Korinek, Miloslav; Molnar, Alexander; Svoboda, Antonin; Hala, Jan

    2006-01-01

    Time-resolved measurement of singlet oxygen infrared phosphorescence is a powerful tool for determination of quantum yields and kinetics of its photosensitization. This technique was employed to investigate in detail the previously observed effect of singlet oxygen quenching by oxygen. The question whether the singlet oxygen is quenched by oxygen in ground or in excited state was addressed by study of two complementary dependencies of singlet oxygen lifetimes: on dissolved oxygen concentration and on excitation intensity. Oxygen concentration dependence study of meso-tetra(4-sulphonato)phenylporphyrin (TPPS 4 ) phosphorescence kinetics showed linearity of the dependence of TPPS 4 triplet state rate-constant. Corresponding bimolecular quenching constant of (1.5±0.1)x10 9 l/mol s was obtained. On the other hand, rate constants of singlet oxygen depopulation exhibit nonlinear dependence on oxygen concentration. Comparison of zero oxygen concentration-extrapolated value of singlet oxygen lifetime of (6.5±0.4) μs to (3.7±0.1) μs observed under air-saturated conditions indicates importance of the effect of quenching of singlet oxygen by oxygen. Upward-sloping dependencies of singlet oxygen depopulation rate-constant on excitation intensity evidence that singlet oxygen is predominantly quenched by oxygen in excited singlet state

  9. Effect of oxygen-breathing during a decompression-stop on bubble-induced platelet activation after an open-sea air dive: oxygen-stop decompression.

    Science.gov (United States)

    Pontier, J-M; Lambrechts, K

    2014-06-01

    We highlighted a relationship between decompression-induced bubble formation and platelet micro-particle (PMP) release after a scuba air-dive. It is known that decompression protocol using oxygen-stop accelerates the washout of nitrogen loaded in tissues. The aim was to study the effect of oxygen deco-stop on bubble formation and cell-derived MP release. Healthy experienced divers performed two scuba-air dives to 30 msw for 30 min, one with an air deco-stop and a second with 100% oxygen deco-stop at 3 msw for 9 min. Bubble grades were monitored with ultrasound and converted to the Kisman integrated severity score (KISS). Blood samples for cell-derived micro-particle analysis (AnnexinV for PMP and CD31 for endothelial MP) were taken 1 h before and after each dive. Mean KISS bubble score was significantly lower after the dive with oxygen-decompression stop, compared to the dive with air-decompression stop (4.3 ± 7.3 vs. 32.7 ± 19.9, p air-breathing decompression stop, we observed an increase of the post-dive mean values of PMP (753 ± 245 vs. 381 ± 191 ng/μl, p = 0.003) but no significant change in the oxygen-stop decompression dive (329 ± 215 vs. 381 +/191 ng/μl, p = 0.2). For the post-dive mean values of endothelial MP, there was no significant difference between both the dives. The Oxygen breathing during decompression has a beneficial effect on bubble formation accelerating the washout of nitrogen loaded in tissues. Secondary oxygen-decompression stop could reduce bubble-induced platelet activation and the pro-coagulant activity of PMP release preventing the thrombotic event in the pathogenesis of decompression sickness.

  10. Surface Wettability of Oxygen Plasma Treated Porous Silicon

    Directory of Open Access Journals (Sweden)

    Lei Jiang

    2014-01-01

    Full Text Available Oxygen plasma treatment on porous silicon (p-Si surfaces was studied as a practical and effective means to modify wetting properties of as-fabricated p-Si surfaces, that is, contact angles of the p-Si materials. P-Si samples spanning a wide range of surface nanostructures have been fabricated which were subjected to a series of oxygen plasma treatments. Reduction of the p-Si surface contact angles has been systematically observed, and the surface activation rate constant as a function of different pore geometries has been analyzed to achieve an empirical equation. The underlying diffusion mechanisms have been discussed by taking into account of different pore diameters of p-Si samples. It is envisaged that such an approach as well as the corresponding empirical equation may be used to provide relevant process guidance in order to achieve precise control of p-Si contact angles, which is essential for many p-Si applications especially in biosensor areas.

  11. Neonatal oxidative stress depends on oxygen blood pressure in umbilical artery.

    Science.gov (United States)

    Proietti, F; De Bernardo, G; Longini, M; Sordino, D; Scaramuzzini, G; Tataranno, M L; Belvisi, E; Bazzini, F; Perrone, S; Buonocore, G

    2016-01-01

    With advancing gestation, partial pressure of oxygen (pO2) and pH fall significantly. Hypoxia is a main factor inducing free radical generation and thereby oxidative stress (OS). Placental and fetal tissue response when oxygen becomes restricted is complex and partially known. We tested the hypothesis that changes in umbilical artery and vein blood gas concentrations modulate OS occurrence in the newborn. Seventy umbilical artery and vein plasma samples were collected from healthy term newborns immediately after delivery. F2 Isoprostanes (F2-Isop) were measured in all samples as reliable markers of lipid peroxidation. Significantly lower pCO2 and higher pO2 and pH were found in umbilical vein than in artery, as expected. A positive correlation was detected between pH and pO2 only in umbilical artery (p=0.019). F2-Isop levels were no different between artery and vein in cord blood. Significant correlations were found between F2-Isop and pCO2 (p=0.025) as well as between F2-Isop and pH in umbilical vein (p=0.027). F2-Isop correlated with pCO2 (p=0.007) as well as with pO2 values (p=0.005) in umbilical artery blood. Oxidative stress (OS) in newborns depends on oxygen concentrations in umbilical artery. OS biomarkers significantly correlate with pO2 and in umbilical artery but not in umbilical vein. In normoxic conditions fetal-maternal gas exchanges occurring in placenta re-establish normal higher oxygen levels in umbilical vein than artery, with a normal production of free radicals without any deleterious effects.

  12. Generation of Free Oxygen Atoms O(3P) in Solution by Photolysis of 4-Benzoylpyridine N-Oxide

    Energy Technology Data Exchange (ETDEWEB)

    Carraher, Jack M. [Ames Lab., Ames, IA (United States); Iowa State Univ., Ames, IA (United States); Bakac, Andreja [Ames Lab., Ames, IA (United States); Iowa State Univ., Ames, IA (United States)

    2014-08-04

    Laser flash photolysis of 4-benzoylpyridine N-oxide (BPyO) at 308 nm in aqueous solutions generates a triplet excited state 3BPyO* that absorbs strongly in the visible, λmax 490 and 380 nm. 3BPyO* decays with the rate law kdecay/s-1 = (3.3 ± 0.9) × 104 + (1.5 ± 0.2) × 109 [BPyO] to generate a mixture of isomeric hydroxylated benzoylpyridines, BPy(OH), in addition to small amounts of oxygen atoms, O(3P). Molecular oxygen quenches 3BPyO*, kQ = 1.4 × 109 M-1 s-1, but the yields of O(3P) increase in O2-saturated solutions to 36%. Other triplet quenchers have a similar effect, which rules out the observed 3BPyO* as a source of O(3P). It is concluded that O(3P) is produced from either 1BPyO* or a short-lived, unobserved, higher energy triplet generated directly from 1BPyO*. 3BPyO* is reduced by Fe2+ and by ABTS2- to the radical anion BPyO.- which exhibits a maximum at 510 nm, ε = 2200 M-1 cm-1. The anion engages in back electron transfer with ABTS.- with k = 1.7 × 109 M-1 s-1. The same species can be generated by reducing ground state BPyO with .C(CH3)2OH. The photochemistry of BPyO in acetonitrile is similar to that in aqueous solutions.

  13. Oxygen concentrators performance with nitrous oxide at 50:50 volume

    Directory of Open Access Journals (Sweden)

    Jorge Ronaldo Moll

    2014-06-01

    Full Text Available Background and objectives: Few investigations have addressed the safety of oxygen from concentrators for use in anesthesia in association with nitrous oxide. This study evaluated the percent of oxygen from a concentrator in association with nitrous oxide in a semi-closed rebreathing circuit. Methods: Adult patients undergoing low risk surgery were randomly allocated into two groups, receiving a fresh gas flow of oxygen from concentrators (O293 or of oxygen from concentrators and nitrous oxide (O293N2O. The fraction of inspired oxygen and the percentage of oxygen from fresh gas flow were measured every 10 min. The ratio of FiO2/oxygen concentration delivered was compared at various time intervals and between the groups. Results: Thirty patients were studied in each group. There was no difference in oxygen from concentrators over time for both groups, but there was a significant improvement in the FiO2 (p < 0.001 for O293 group while a significant decline (p < 0.001 for O293N2O. The FiO2/oxygen ratio varied in both groups, reaching a plateau in the O293 group. Pulse oximetry did not fall below 98.5% in either group. Conclusion: The FiO2 in the mixture of O293 and nitrous oxide fell during the observation period although oxygen saturation was higher than 98.5% throughout the study. Concentrators can be considered a stable source of oxygen for use during short anesthetic procedures, either pure or in association with nitrous oxide at 50:50 volume.

  14. Discrepancies between measured changes of radiobiological hypoxic fraction and oxygen tension monitoring using two assay systems

    International Nuclear Information System (INIS)

    Sasai, K.; Brown, J.M.

    1994-01-01

    This study was conducted to assess the ability of computerized pO 2 histography to measure changes in tumor oxygenation produced by low oxygen breathing. Female syngeneic C3H/Km mice bearing SCC VII/St carcinomas were used in these experiments. Changes in tumor oxygenation produced by the mice breathing 10% oxygen were assessed with computerized pO2 histography, 3 H-misonidazole binding, and the paired survival curve assay of radiosensitivity. The hypoxic cell fraction of the tumors in mice breathing 10% oxygen was 3.1 times higher than that of tumors in mice breathing normal air determined by an in vivo-in vitro clonogenic assay. Binding of radiolabeled misonidazole to the tumors in mice breathing 10% oxygen was also significantly higher than that to tumors in mice breathing normal air (p 2 value for the tumor. The number of pO 2 readings lower than 5 mmHg in the tumor was not affected by the 10% oxygen breathing. These findings indicate that increases in radiobiological hypoxic fraction produced by lower blood oxygen levels may not correlate well with the results of polarographic measurements of tumor pO 2 levels. 29 refs., 4 figs., 1 tab

  15. Paraquat-induced reactive oxygen species inhibit neutrophil apoptosis via a p38 MAPK/NF-κB-IL-6/TNF-α positive-feedback circuit.

    Directory of Open Access Journals (Sweden)

    Xiaolong Wang

    Full Text Available Paraquat (PQ, a widely used herbicide and potent reactive oxygen species (ROS inducer, can injure multiple tissues and organs, especially the lung. However, the underlying mechanism is still poorly understood. According to previous reports, neutrophil aggregation and excessive ROS production might play pivotal pathogenetic roles. In the present study, we found that PQ could prolong neutrophil lifespan and induce ROS generation in a concentration-independent manner. Activated nuclear factor-κB (NF-κB, p38 mitogen-activated kinase (p38 MAPK, and myeloid cell leukemia sequence 1 (Mcl-1 but not Akt signaling pathways were involved in this process, as well as increasing levels of interleukin-6 (IL-6, tumor necrosis factor-α (TNF-α, and IL-1β. Furthermore, the proinflammatory mediators IL-6 and TNF-α could in turn promote ROS generation, creating a vicious cycle. The existence of such a feedback loop is supported by our finding that neutrophil apoptosis is attenuated by PQ in a concentration-independent manner and could partially explain the clinical dilemma why oxygen therapy will exacerbate PQ induced tissue injury.

  16. Cerebral oxygenation is reduced during hyperthermic exercise in humans

    DEFF Research Database (Denmark)

    Rasmussen, Peter; Nybo, Lars; Volianitis, S.

    2010-01-01

    Abstract Aim: Cerebral mitochondrial oxygen tension (P(mito)O(2)) is elevated during moderate exercise, while it is reduced when exercise becomes strenuous, reflecting an elevated cerebral metabolic rate for oxygen (CMRO(2)) combined with hyperventilation-induced attenuation of cerebral blood flo...

  17. Enhanced Photocatalytic Activity of Vacuum-activated TiO2 Induced by Oxygen Vacancies.

    Science.gov (United States)

    Dong, Guoyan; Wang, Xin; Chen, Zhiwu; Lu, Zhenya

    2018-05-01

    TiO 2 (Degussa P25) photocatalysts harboring abundant oxygen vacancies (Vacuum P25) were manufactured using a simple and economic Vacuum deoxidation process. Control experiments showed that temperature and time of vacuum deoxidation had a significant effect on Vacuum P25 photocatalytic activity. After 240 min of visible light illumination, the optimal Vacuum P25 photocatalysts (vacuum deoxidation treated at 330 °C for 3 h) reach as high as 94% and 88% of photodegradation efficiency for rhodamine B (RhB) and tetracycline, respectively, which are around 4.5 and 4.9 times as that of pristine P25. The XPS, PL and EPR analyses indicated that the oxygen vacancies were produced in the Vacuum P25 during the vacuum deoxidation process. The oxygen vacancy states can produce vacancy energy level located below the conduction band minimum, which resulting in the bandgap narrowing, thus extending the photoresponse wavelength range of Vacuum P25. The positron annihilation analysis indicated that the concentrations ratio of bulk and surface oxygen vacancies could be adjusted by changing the vacuum deoxidation temperature and time. Decreasing the ratio of bulk and surface oxygen vacancies was shown to improve photogenerated electron-hole pair separation efficiency, which leads to an obvious enhancement of the visible photocatalytic activities of Vacuum P25. © 2017 The American Society of Photobiology.

  18. Ethylbenzene induces microsomal oxygen free radical generation: antibody-directed characterization of the responsible cytochrome P450 enzymes.

    Science.gov (United States)

    Serron, S C; Dwivedi, N; Backes, W L

    2000-05-01

    Small aromatic hydrocarbons cause changes in oxidative metabolism by modulating the levels of cytochrome P450 enzymes, with the changes in these enzymes being responsible for qualitative changes in aromatic hydrocarbon metabolism. The goal of this study was to determine if exposure to the small alkylbenzene ethylbenzene (EB) leads to an increase in hepatic free radical production. Male F344 rats were treated with ip injections of EB (10 mmol/kg) and compared to corn oil controls. Hepatic free radical production was examined by measuring the conversion of 2',7'-dichlorofluorescin diacetate (DCFH-DA) to its fluorescent product 2',7'-dichlorofluorescein (DCF). A significant elevation of fluorescent DCF production was observed after treatment with EB, despite the lack of effect on overall cytochrome P450 levels. This process was shown to be inhibitable by metyrapone, an inhibitor of P450. DCF production was also inhibited by catalase, suggesting that hydrogen peroxide (H(2)O(2)) is one of the reactive oxygen intermediates involved in EB-mediated reactive oxygen species (ROS) formation. Interestingly, superoxide dismutase (SOD) did not inhibit DCF production in corn oil-treated rats but was an effective inhibitor in the EB-treated groups. In an effort to determine if the increase in ROS production was related to changes in specific P450 enzymes, DCF production was measured in the presence of anti-CYP2B, anti-CYP2C11, anti-CYP2E1, and anti-CYP3A2 inhibitory antibodies. Anti-CYP2B antibodies inhibited DCF production in EB-treated, but not corn oil groups, which is consistent with the low constitutive levels of this enzyme and its induction by EB. The data also demonstrate that CYP2B contributes to ROS production. Anti-CYP2C11 did not influence DCF production in either group. ROS formation in corn oil-treated rats as well as in ethylbenzene-treated rats was also inhibited with antibodies to anti-CYP2E1 and anti-CYP3A2. These results suggest that CYP2C11 does not appear to

  19. The apical oxygen influence on critical temperature of Hg-based superconducting cuprates

    International Nuclear Information System (INIS)

    Myasojedov, Yu.M.; Lutsyiv, R.V.; Skyira, A.B.

    1997-01-01

    The analysis of changes in critical temperature (T c ) as a function of structural parameters is performed for the Hg-based superconductors. We found that there exists a correlation between T c and Madelung potential difference (ΔV) for holes (p) at apical oxygen (O A ) and oxygen (O p ) sites in the (CuO 2 ) plane. A change of the Madelung potential of holes for the varying occupancy factor of oxygen in the Hg-plane was calculated. We showed that a parabolic dependence of T c (p) for Hg-1201 is transformed to a 'boomerang' like dependence for Hg-1223

  20. Efficacy of Lippia alba (Mill.) N.E. Brown essential oil and its monoterpene aldehyde constituents against fungi isolated from some edible legume seeds and aflatoxin B1 production.

    Science.gov (United States)

    Shukla, Ravindra; Kumar, Ashok; Singh, Priyanka; Dubey, Nawal Kishore

    2009-10-31

    The present study deals with evaluation of antifungal properties of Lippia alba essential oil (EO) and two of its monoterpene aldehyde constituents against legume-contaminating fungi. Seventeen different fungal species were isolated from 11 varieties of legumes, and aflatoxigenic isolates of Aspergillus flavus were identified. Hydrodistillation method was used to extract the EO from fresh leaves. The GC and GC-MS analysis of EO revealed the monoterpene aldehydes viz. geranial (22.2%) and neral (14.2%) as the major components. The antifungal activity of EO, geranial and neral was evaluated by contact assay on Czapek's-dox agar. The EO (0.25-1 microL/mL) and its two constituents (1 microL/mL) showed remarkable antifungal effects against all the fungal isolates (growth inhibition range 32.1-100%). Their minimal inhibitory (MIC) and fungicidal (MFC) concentrations for A. flavus were lower than those of the systemic fungicide Bavistin. Aflatoxin B(1) (AFB(1)) production by three isolates of A. flavus was strongly inhibited even at the lower fungistatic concentration of EO and its constituents. There was no adverse effect of treatments on seed germination, and rather, there was enhanced seedling growth in the EO-treated seeds. It is concluded that L. alba EO and two of its constituents could be safely used as effective preservative for food legumes against fungal infections and mycotoxins.