WorldWideScience

Sample records for oxygen-natural gas-fired soda-lime-silica

  1. A study on the plasticity of soda-lime silica glass via molecular dynamics simulations

    Science.gov (United States)

    Urata, Shingo; Sato, Yosuke

    2017-11-01

    Molecular dynamics (MD) simulations were applied to construct a plasticity model, which enables one to simulate deformations of soda-lime silica glass (SLSG) by using continuum methods. To model the plasticity, stress induced by uniaxial and a variety of biaxial deformations was measured by MD simulations. We found that the surfaces of yield and maximum stresses, which are evaluated from the equivalent stress-strain curves, are reasonably represented by the Mohr-Coulomb ellipsoid. Comparing a finite element model using the constructed plasticity model to a large scale atomistic model on a nanoindentation simulation of SLSG reveals that the empirical method is accurate enough to evaluate the SLSG mechanical responses. Furthermore, the effect of ion-exchange on the SLSG plasticity was examined by using MD simulations. As a result, it was demonstrated that the effects of the initial compressive stress on the yield and maximum stresses are anisotropic contrary to our expectations.

  2. OD bands in the IR spectra of a deuterated soda-lime-silica glass

    Energy Technology Data Exchange (ETDEWEB)

    Peuker, C.; Brzezinka, K.W.; Gaber, M.; Kohl, A.; Geissler, H. [Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin (Germany)

    2001-07-01

    IR spectra of a deuterated glass of the composition (in mol%) 16 Na{sub 2}O . 10 CaO . 74 SiO{sub 2} complete earlier spectroscopic studies on water-poor soda-lime-silica glasses. The approved IR spectroscopic method of the deuterium exchange allows a reliable assignment of the hydroxyl bands also in the case of glasses. By spectra comparison the assignment of the IR bands at 3500 and 2800 cm{sup -1} to hydroxyl groups with different hydrogen bonding is verified. The IR band at about 4500 cm{sup -1} is interpreted as both a combination of the stretching vibrations {nu}O-H and {nu}Si-OH and a combination of the stretching vibration {nu}O-H and the deformation vibration {delta}SiOH. The bands at 1763 and 1602 cm{sup -1} are attributed to combination vibrations of the glass network. (orig.)

  3. Fabrication and characterization of bioactive glass-ceramic using soda-lime-silica waste glass.

    Science.gov (United States)

    Abbasi, Mojtaba; Hashemi, Babak

    2014-04-01

    Soda-lime-silica waste glass was used to synthesize a bioactive glass-ceramic through solid-state reactions. In comparison with the conventional route, that is, the melt-quenching and subsequent heat treatment, the present work is an economical technique. Structural and thermal properties of the samples were examined by X-ray diffraction (XRD) and differential thermal analysis (DTA). The in vitro test was utilized to assess the bioactivity level of the samples by Hanks' solution as simulated body fluid (SBF). Bioactivity assessment by atomic absorption spectroscopy (AAS) and scanning electron microscopy (SEM) was revealed that the samples with smaller amount of crystalline phase had a higher level of bioactivity. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Effects of ion implantation on the hardness and friction behaviour of soda-lime silica glass

    International Nuclear Information System (INIS)

    Bull, S.J.; Page, T.F.

    1992-01-01

    Ion implantation-induced changes in the near-surface mechanical properties of soda-lime silica glass have been investigated by indentation and scratch testing and have been found to be more complicated than changes in the corresponding properties of crystalline ceramic materials. Argon, nitrogen, carbon and potassium ions were used with energies in the range 45-300 keV. Hardness and scratch friction tests were performed under ambient laboratory conditions. At low doses, a decrease in hardness and an increase in both friction and surface stress are observed which are attributed to the electronic damage produced by ion implantation. At higher doses, the hardness increases again and a maximum is produced similar to the behaviour observed for crystalline materials. Similarly there is found to be a second stress and friction peak at this dose. This behaviour is shown to be due to the build-up of displacement damage produced by ion implantation and is thus very similar to the radiation hardening (and eventual amorphization) behaviour of ion-implanted crystalline ceramics. For glass, ''amorphization'' probably corresponds to some change in the existing amorphous state which, in turn, is responsible for the reduction in hardness, stress and friction at the highest doses. (author)

  5. Effect of sintering on crystallization and structural properties of soda lime silica glass

    Directory of Open Access Journals (Sweden)

    Zaid Mohd Hafiz Mohd

    2017-01-01

    Full Text Available The effect of sintering temperatures on crystallization and structural of the soda lime silica (SLS glass was reported. Elemental weight composition of the SLS glass powder was identified through Energy dispersive X-ray fluorescence (EDXRF analysis while the thermal behavior of the glass was determined using Differential thermal analysis (DTA technique. Archimedes’ method and direct geometric measurement were respectively used to determine bulk density and linear shrinkage of the glass samples. Crystallisation behavior of the samples was investigated by X-ray diffraction (XRD analysis and chemical bonds present in the samples were measured using Fourier Transform Infrared (FTIR spectroscopy. Results showed an increase in the density and linear shrinkage of the samples as a function of the sintering temperature. The XRD analysis revealed the formation of α-quartz (SiO2 and a minor amount of devitrite phases in the samples and these were further verified through the detection of chemical bonds by FTIR after sintering at 800ºC. The properties of the glass-ceramics can be explained on the basis of crystal chemistry which indicated that the alkali ions formed as carriers in the random network structure and can be recommended for the manufacture of glass fiber or toughened glass-ceramic insulators.

  6. Studies on the Potential of Waste Soda Lime Silica Glass in Glass Ionomer Cement Production

    Directory of Open Access Journals (Sweden)

    V. W. Francis Thoo

    2013-01-01

    Full Text Available Glass ionomer cements (GIC are produced through acid base reaction between calcium-fluoroaluminosilicate glass powder and polyacrylic acid (PAA. Soda lime silica glasses (SLS, mainly composed of silica (SiO2, have been utilized in this study as the source of SiO2 for synthesis of Ca-fluoroaluminosilicate glass. Therefore, the main objective of this study was to investigate the potential of SLS waste glass in producing GIC. Two glasses, GWX 1 (analytical grade SiO2 and GWX 2 (replacing SiO2 with waste SLS, were synthesized and then characterized using X-ray diffraction (XRD and energy dispersive X-ray (EDX. Synthesized glasses were then used to produce GIC, in which the properties were characterized using Fourier transform infrared spectroscopy (FT-IR and compressive test (from 1 to 28 days. XRD results showed that amorphous glass was produced by using SLS waste glass (GWX 2, which is similar to glass produced using analytical grade SiO2 (GWX 1. Results from FT-IR showed that the setting reaction of GWX 2 cements is slower compared to cement GWX 1. Compressive strengths for GWX 1 cements reached up to 76 MPa at 28 days, whereas GWX 2 cements showed a slightly higher value, which is 80 MPa.

  7. Alkali passivation mechanism of sol-gel derived TiO2-SiO2 films coated on soda-lime-silica glass substrates

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, A; Matsuno, Y; Katayama, S; Tsuno, T [Nippon Steel Glass Co. Ltd., Tokyo (Japan); Toge, N; Minami, T [University of Osaka Prefecture, Osaka (Japan). College of Engineering

    1992-09-01

    TiO2-SiO2 films prepared by the sol-gel method serves as an effective alkali passivation layer on a soda-lime-silica glass substrate and the film is superior to a sol-gel derived pure SiO2 film from the view point of weathering resistance improvement. To clarify the reason, alkali passivation mechanism of sol-gel derived TiO2-SiO2 glass films with different TiO2 contents coated on a soda-lime-silica glass substrate was studied by SIMS (secondary ion mass spectroscopy) and XPS (X-ray photoelectron spectroscopy) analyses, and compared with the results of a sol-gel derived pure SiO2 film. As a result, the following conclusions were obtained: An increase in TiO2 content in the TiO2 SiO2 film increases the sodium concentration in the film, which was induced by sodium migration from the glass substrate during the heat-treatment. Because of the presence of sodium the TiO2 -SiO2 films serve not as a barrier but as an effective getter of alkali ions and thereby effectively improve the weathering resistance Of the glass substrate. 10 refs., 6 figs.

  8. Effect of sintering temperature on physical, structural and optical properties of wollastonite based glass-ceramic derived from waste soda lime silica glasses

    Directory of Open Access Journals (Sweden)

    Karima Amer Almasri

    Full Text Available The impact of different sintering temperatures on physical, optical and structural properties of wollastonite (CaSiO3 based glass-ceramics were investigated for its potential application as a building material. Wollastonite based glass-ceramics was provided by a conventional melt-quenching method and followed by a controlled sintering process. In this work, soda lime silica glass waste was utilized as a source of silicon. The chemical composition and physical properties of glass were characterized by using Energy Dispersive X-ray Fluorescence (EDXRF and Archimedes principle. The Archimedes measurement results show that the density increased with the increasing of sintering temperature. The generation of CaSiO3, morphology, size and crystal phase with increasing the heat-treatment temperature were examined by field emission scanning electron microscopy (FESEM, Fourier transforms infrared reflection spectroscopy (FTIR, and X-ray diffraction (XRD. The average calculated crystal size gained from XRD was found to be in the range 60 nm. The FESEM results show a uniform distribution of particles and the morphology of the wollastonite crystal is in relict shapes. The appearance of CaO, SiO2, and Ca-O-Si bands disclosed from FTIR which showed the formation of CaSiO3 crystal phase. In addition to the calculation of the energy band gap which found to be increased with increasing sintering temperature. Keywords: Soda lime silica glass, Wollastonite, Sintering, Structural properties, Optical properties

  9. The Fracture Process of Tempered Soda-Lime-Silica Glass

    DEFF Research Database (Denmark)

    Nielsen, Jens Henrik; Olesen, John Forbes; Stang, Henrik

    2009-01-01

    This work presents experimental observations of the characteristic fracture process of tempered glass. Square specimens with a side length of 300 mm, various thicknesses and a residual stress state characterized by photoelastic measurements were used. Fracture was initiated using a 2.5 mm diamond...

  10. Crystallization kinetics of a soda lime silica glass with TiO2 addition

    International Nuclear Information System (INIS)

    De la Parra A, S. M.; Alvarez M, A.; Torres G, L. C.; Sanchez, E. M.

    2009-01-01

    Studies conducted into Na 2 O-CaO-3SiO 2 glass composition suggest that its phase transformation occurs from the surface towards the interior of the sample. In a study carried out in 1982, it was reported that no addition of nucleating agents modified the mechanism. Taking advantage of the disposition materials synthesized by nanotechnology, in this study TiO 2 in nanometer size was used with the idea that, because of its qualities, it could modify the crystallization mechanism. The glasses obtained as well as the thermally treated samples, were evaluated by the X-ray diffraction (XRD) powder method, differential thermal analysis (DTA), and by optical microscopy and high resolution transmission electron microscopy (HRTEM). Within the range of TiO 2 concentration studied (0 - 10 wt %), 10 wt % of TiO 2 considerably reduced the Na 2 O-2CaO-3SiO 2 phase crystallization process. The crystallization mechanism was not modified and TiO 2 did not form compounds with the matrix components. (Author)

  11. Reaction of soda-lime-silica glass melt with water vapour at melting temperatures

    Czech Academy of Sciences Publication Activity Database

    Vernerová, Miroslava; Kloužek, Jaroslav; Němec, Lubomír

    2015-01-01

    Roč. 416, MAY 15 (2015), s. 21-30 ISSN 0022-3093 R&D Projects: GA TA ČR TA01010844 Institutional support: RVO:67985891 Keywords : glass melt * sulfate * water vapour * bubble nucleation * melt foaming * glass melting Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 1.825, year: 2015

  12. Sulphate decomposition and sodium oxide activity in soda-lime-silica glass metls

    NARCIS (Netherlands)

    Beerkens, R.G.C.

    2003-01-01

    Reaction equilibrium constants for the sulfate decomposition process, which releases oxygen and sulfur oxide gas in sodalimesilica glass melts, have been determined. The chemical solubility of SO2, probably in the form of sulfite ions in sodalimesilica melts, has also been determined. The chemical

  13. Structural and optical properties of Eu3+ activated low cost zinc soda lime silica glasses

    Directory of Open Access Journals (Sweden)

    Nur Alia Sheh Omar

    Full Text Available A low cost method was employed to synthesize ZnO-SLS:xEu3+ phosphors using recyclable bottle glass as silica source. The structural and optical properties of ZnO-SLS:xEu3+ (x = 0, 1, 2, 3, 4 and 5 wt.% glasses were determined using X-ray diffraction (XRD, Fourier transform infrared reflectance (FTIR, UV-visible (Uv-Vis and photoluminescence (PL spectroscopy. Structural investigation using XRD measurement had broadened the halo peak with the doping of dopants. FTIR spectra showed the glass system consists of –OH and SiO4 bands. Meanwhile, the optical measurement using UV-Vis absorption has been induced a blue shift of the electronic absorption edge. The emission peak intensity of ZnO-SLS:xEu3+ phosphors was enhanced with the progression of doping concentration and thus, revealed their potential as red emitting phosphors under 400 nm excitation. Keywords: Eu3+ doped ZnO-SLS glasses, Solid state method, Optical band gap, Photoluminescence

  14. Gas fired heat pumps

    International Nuclear Information System (INIS)

    Seifert, M.

    2006-01-01

    The condensing gas boiler is now state of the art and there is no more room for improvement in performance, technically speaking. The next logical step to improve the overall efficiency is to exploit ambient heat in combination with the primary source of energy, natural gas. That means using natural-gas driven heat pumps and gas-fired heat pumps. Based on this, the Swiss Gas Industry decided to set up a practical test programme enjoying a high priority. The aim of the project 'Gas-fired heat pump practical test' is to assess by field tests the characteristics and performance of the foreign serial heat pumps currently on the market and to prepare and promote the introduction on the market place of this sustainable natural-gas technology. (author)

  15. Gas fired boilers and atmospheric pollution

    International Nuclear Information System (INIS)

    Chiaranello, J.M.

    1991-01-01

    A general analysis concerning atmospheric pollution is presented: chemical composition and vertical distribution of atmosphere and pollutants, chemical reactions, ozone destruction and production cycles, COx, NOx and SOx pollutions. The gas fired boiler number and repartition in France are presented and the associated pollution is analyzed (CO2, CO, NOx) and quantified. Various pollution control technics concerning gas fired boiler pollutants are described and a pollution criterion for clean gas fired generators is proposed

  16. Gas fired advanced turbine system

    Science.gov (United States)

    Lecren, R. T.; White, D. J.

    The basic concept thus derived from the Ericsson cycle is an intercooled, recuperated, and reheated gas turbine. Theoretical performance analyses, however, showed that reheat at high turbine rotor inlet temperatures (TRIT) did not provide significant efficiency gains and that the 50 percent efficiency goal could be met without reheat. Based upon these findings, the engine concept adopted as a starting point for the gas-fired advanced turbine system is an intercooled, recuperated (ICR) gas turbine. It was found that, at inlet temperatures greater than 2450 F, the thermal efficiency could be maintained above 50%, provided that the turbine cooling flows could be reduced to 7% of the main air flow or lower. This dual and conflicting requirement of increased temperatures and reduced cooling will probably force the abandonment of traditional air cooled turbine parts. Thus, the use of either ceramic materials or non-air cooling fluids has to be considered for the turbine nozzle guide vanes and turbine blades. The use of ceramic components for the proposed engine system is generally preferred because of the potential growth to higher temperatures that is available with such materials.

  17. Gas-fired electric power generating technologies

    International Nuclear Information System (INIS)

    1994-09-01

    The workshop that was held in Madrid 25-27 May 1994 included participation by experts from 16 countries. They represented such diverse fields and disciplines as technology, governmental regulation, economics, and environment. Thus, the participants provided an excellent cross section of key areas and a diversity of viewpoints. At the workshop, a broad range of topics regarding gas-fired electric power generation was discussed. These included political, regulatory and financial issues as well as more specific technical questions regarding the environment, energy efficiency, advanced generation technologies and the status of competitive developments. Important technological advances in gas-based power and CHP technologies have already been achieved including higher energy efficiency and lower emissions, with further improvements expected in the near future. Advanced technology trends include: (a) The use of gas technology to reduce emissions from existing coal-fired power plants. (b) The wide-spread application of combined-cycle gas turbines in new power plants and the growing use of aero-derivative gas turbines in CHP applications. (c) Phosphoric acid fuel cells that are being introduced commercially. Their market penetration will grow over the next 10 years. The next generation of fuel cells (solid oxide and molten carbonate) is expected to enter the market around the year 2000. (EG)

  18. Gas-fired Power Generation in India: Challenges and opportunities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    India's fast growing economy needs to add 100,000 MW power generating capacity between 2002-2012. Given limitations to the use of coal in terms of environmental considerations, quality and supply constraints, gas is expected to play an increasingly important role in India's power sector. This report briefs NMC Delegates on the potential for gas-fired power generation in India and describes the challenges India faces to translate the potential for gas-fired power generation into reality.

  19. Dynamics and control of a gas-fired furnace

    NARCIS (Netherlands)

    Roffel, B.; Rijnsdorp, J.E.

    1974-01-01

    A non-linear model has been developed for a gas-fired furnace in which oil is heated. The model is applicable from minimum to maximum heat load of the furnace. The dynamics of the model have been compared to experimental results, which were obtained for a pilot-scale furnace. They are in good

  20. Development of a cylindrical gas-fired furnace for reycling ...

    African Journals Online (AJOL)

    This study presents the development of a cylindrical gas-fired furnace, which could be used for recycling aluminum in small-scale foundries in Nigeria. The crucible, combustion chamber, suspension shaft and bearings were appropriately sized. The furnace chamber was 410 mm high and 510 mm diameter and had a ...

  1. The potential for gas fired generation in Atlantic Canada

    International Nuclear Information System (INIS)

    MacDonald, T.

    2002-01-01

    The objective of this presentation was to stimulate discussion regarding the potential for Maritimes based gas fired power generation. It was noted that although the subject is complex, simplified assumptions are presented. The topics of discussion include the move to restructure the electric power industry in Nova Scotia and New Brunswick, the interest in gas fired generation in Atlantic Canada, the expected increase in natural gas consumption, and the issue of whether there is sufficient supply and adequate infrastructure to support demand. Other topics of discussion included the impact of regulations on the industry, and the future outlook of natural gas supply as it relates to power generation. The efforts of the natural gas industry to meet US natural gas generating requirements were also discussed. 3 tabs., 8 figs

  2. Gas-fired power. IEA ETSAP technology brief E02

    Energy Technology Data Exchange (ETDEWEB)

    Seebregts, A.J. [Energy research Centre of the Netherlands (Netherlands)], E-mail: seebregts@ecn.nl

    2010-04-15

    This technology brief on gas-fired power is part of a series produced by the IEA called the energy technology data source (E-Tech-DS). The E-Tech-DS series consists of a number of 5-10 page technology briefs similar to the IEA Energy Technology Essentials. Based on the data collected for the models that the Energy Technology Systems Analysis Programme (ETSAP) is known for, ETSAP also prepares technology briefs, called E-TechDS. The E-TechDS briefs are standardized presentations of basic information (process, status, performance, costs, potential, and barriers) for key energy technology clusters. Each brief includes an overview of the technology, charts and graphs, and a summary data table, and usually ending with some key references and further information. The E TechDS briefs are intended to offer essential, reliable and quantitative information to energy analysts, experts, policymakers, investors and media from both developed and developing countries. This specific brief focuses on the state of combined-cycle gas turbines (CCGT). CCGT's have become the technology of choice for new gas-fired power plants since the 1990's.

  3. Gas supply planning for new gas-fired electricity generation facilities

    International Nuclear Information System (INIS)

    Slocum, J.C.

    1990-01-01

    This paper explores several key issues in gas supply planning for new gas fired electric generation facilities. This paper will have two main sections, as follows: developing the gas supply plan for a gas-fired electricity generation facility and exploring key gas supply contract pricing issues

  4. Gas-Fired Distributed Energy Resource Technology Characterizations

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, L.; Hedman, B.; Knowles, D.; Freedman, S. I.; Woods, R.; Schweizer, T.

    2003-11-01

    The U. S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) is directing substantial programs in the development and encouragement of new energy technologies. Among them are renewable energy and distributed energy resource technologies. As part of its ongoing effort to document the status and potential of these technologies, DOE EERE directed the National Renewable Energy Laboratory to lead an effort to develop and publish Distributed Energy Technology Characterizations (TCs) that would provide both the department and energy community with a consistent and objective set of cost and performance data in prospective electric-power generation applications in the United States. Toward that goal, DOE/EERE - joined by the Electric Power Research Institute (EPRI) - published the Renewable Energy Technology Characterizations in December 1997.As a follow-up, DOE EERE - joined by the Gas Research Institute - is now publishing this document, Gas-Fired Distributed Energy Resource Technology Characterizations.

  5. General conditions for gas-fired power plants in Europe

    International Nuclear Information System (INIS)

    Hugi, Ch.; Fuessler, J.; Sommerhalder, M.

    2006-11-01

    This comprehensive report for the Swiss Federal Office of Energy (SFOE) takes a look at the general conditions for the installation of gas-fired power plants in Europe. Combined cycle power stations are characterised and the associated power production costs are discussed. Also, the prices resulting from the internalisation of external costs are noted. The problems associated with carbon dioxide emissions are discussed and the trading of emission certificates is looked at. Also, nitrogen oxide emissions are examined and discussed. The use of waste heat from the combined cycle power stations is also examined. Further topics include subsidies and special credits for the gas industry in Europe and the granting of permission for the planning, construction, operation and dismantling of the power station facilities. The situation in various European countries is examined and the associated market distortion is commented on

  6. Carbon dioxide recovery from gas-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Ricardo Salgado; Barbosa, Joao Roberto [Centro Tecnico Aeroespacial, Sao Jose dos Campos, SP (Brazil). Inst. Tecnologico de Aeronautica. Dept. de Energia]. E-mails: martinsr@epenergy.com; barbosa@mec.ita.br; Prado, Eduardo Lanari [Rice Univ., Houston, TX (United States). Jones Graduate School of Business]. E-mail: pradoe@epenergy.com; Vieira, Adriana de Moura [Instituto Brasileiro de Mercado de Capitais (IBMEC), Rio de Janeiro, RJ (Brazil). Dept. de Financas]. E-mail: vieiraa@epenergy.com

    2000-07-01

    Since 1996 the Brazilian electric sector has undergone a major restructuring. The aim of such change is to reduce the State's participation in the sector, and to induce the growth of private investments. In particular, this event created several opportunities for thermal power plant projects, leading to competition at the generation level. In this scenario of increased competition, the power plant efficiency becomes a key element for determining the feasibility and profitability of the project. Moreover, the utilization of the plant's own effluents as feedstock or as a source of additional revenue will impact positively in its economics. As an example, long term additional revenues could be created by the sale of CO{sub 2} extracted from the combustion products of thermal power plants. The production of CO{sub 2} also contributes to mitigate the environmental impacts of the power plant project by significantly reducing its airborne emissions. This paper shows how a gas-fired power plant can extract and utilize CO{sub 2} to generate additional revenue, contributing to a more competitive power plant. (author)

  7. Environmental optimisation of natural gas fired engines. Main report

    Energy Technology Data Exchange (ETDEWEB)

    Kvist, T. et al.

    2010-10-15

    The overall aim of the project has been to assess to which extent it is possible to reduce the emissions by adjusting the different engines examined and to determine the cost of the damage caused by emissions from natural gas combustion. However, only health and climate effects are included. The emissions of NO{sub x}, CO and UHC as well as the composition of the hydrocarbon emissions were measured for four different stationary lean-burn natural-gas fired engines installed at different combined heat and power (CHP) units in Denmark. The units were chosen to be representative of the natural gas fired engine-based power production in Denmark. The measurements showed that NO{sub x} emissions were relatively more sensitive to engine setting than UHC, CO and formaldehyde emissions. By reducing the NO{sub x} emissions to 40 % of the initial value (from 500 to 200 mg/m3(n) at 5 % O{sub 2}) the UHC emission was increased by 10 % to 50 % of the initial value. The electrical efficiency was reduced by 0.5 to 1.0 percentage point. Externalities in relation to power production are defined as the costs, which are not directly included in the price of the produced power. Health effects related to air pollution from power plants fall under this definition and usually dominate the results on external costs. For determination of these effects the exposure of the population, the impact of the exposure and the societal costs accompanying the impacts have been evaluated. As expected, it was found that when the engines are adjusted in order to reduce NO{sub x} emissions, the emission of UHC increases and vice versa. It was found that at high NO{sub x} emission levels (500 mg/m3{sub n} at 5 % O{sub 2}) the external costs related to the NO{sub x} emissions are 15 to 25 times the costs related to UHC emissions. At low NO{sub x} emission levels (200 mg/m3{sub n} at 5 % O{sub 2}) the costs related to NO{sub x} are 5 to 8 times the costs related to UHC emissions. Apparently, the harmfulness

  8. Fuel strategies for natural gas fired cogeneration and IPP projects

    International Nuclear Information System (INIS)

    Gottlieb, J.W.

    1992-01-01

    This paper as published is the outline of a presentation on managing the risk of varying fuel costs as part of a successful fuel strategy for natural gas fired cogeneration and Independent Power Producer (IPP) projects. So long as the fuel cost that electric utilities recover from their ratepayers differs from the fuel costs incurred by IPP and Qualifying Facility (QF) plant operators, the largest variable cost risk of any QF or IPP will continue to be the cost of fuel. Managing that risk is the mission of any successful fuel procurement strategy. Unfortunately, a quick review of the last 20 years in the oil and gas industry reveals dramatic and substantial changes in price and fuel availability that few, if any, industry experts could have predicted in 1971. Recognizing that the fuel cost risk to a QF or IPP investor also spans a 20 year period, the typical term of a QF or IPP power purchase contract, a successful fuel procurement strategy must consider and address the likelihood of future changes. Due to federal and state regulatory changes made from 1978 to 1989, the current structure of the oil and gas industry appears to provide end-users with the tools to improve the manageability of fuel cost risks. QF and IPP developers can choose the type of service they desire and can negotiate most of the contractual elements of that service. Until electric utilities are allowed to flow through their rates the fuel costs incurred by QFs and IPPs, a thorough analysis of the available fuel procurement options prior to development of a QF or IPP will continue to be absolutely necessary

  9. Holden gas-fired furnace baseline data. Revision 1

    International Nuclear Information System (INIS)

    Weatherspoon, K.A.

    1996-11-01

    The Holden gas-fired furnace is used in the enriched uranium recovery process to dry and combust small batches of combustibles. The ash is further processed. The furnace operates by allowing a short natural gas flame to burn over the face of a wall of porous fire brick on two sides of the furnace. Each firing wall uses two main burners and a pilot burner to heat the porous fire brick to a luminous glow. Regulators and orifice valves are used to provide a minimum gas pressure of 4 in. water column at a rate of approximately 1,450 scf/h to the burners. The gas flow rate was calculated by determining the gas flow appropriate for the instrumentation in the gas line. Observed flame length and vendor literature were used to calculate pilot burner gas consumption. Air for combustion, purging, and cooling is supplied by a single blower. Rough calculations of the air-flow distribution in piping entering the furnace show that air flow to the burners approximately agrees with the calculated natural gas flow. A simple on/off control loop is used to maintain a temperature of 1,000 F in the furnace chamber. Hoods and glove boxes provide contamination control during furnace loading and unloading and ash handling. Fan EF-120 exhausts the hoods, glove boxes, and furnace through filters to Stack 33. A review of the furnace safety shows that safety is ensured by design, interlocks, procedure, and a safety system. Recommendations for safety improvements include installation of both a timed ignition system and a combustible-gas monitor near the furnace. Contamination control in the area could be improved by redesigning the loading hood face and replacing worn gaskets throughout the system. 33 refs., 16 figs

  10. Gas to Power in China. Gas-fired Power in China. Clearing the policy bottleneck

    International Nuclear Information System (INIS)

    Chen, Xavier

    2005-12-01

    Policy for gas-fired power is the single most serious and common issue that needs urgent resolution for all China's current and future gas projects, including LNG projects. This was the main conclusion of a national seminar on gas industry development policy that was held in July 2004. At the time of writing this paper, such a policy is still missing. In order to reduce pollution, improve energy security and meet the needs of the ever-growing economy for high-quality energies, the Chinese government has declared its firm intention to develop a natural gas market. The official target is to develop a gas market of 200 bcm/a by 2020, five times of the current size of around 40 bcm/a. Domestic supply is expected to provide 120 bcm/a, with the rest (80 bcm/a) by gas imports either in the form of piped gas or LNG. Gas-fired power generation plays a critical role in developing a sizeable gas market, especially for large-scale pipeline and LNG projects. Similar to the Guangdong and Fujian LNG projects where gas-fired power accounts for approximately 60% and 70% respectively of the first phase gas volume, each of the proposed LNG projects has allocated a large portion of the gas off-take volume to the power sector. In addition to the first two commercial CCGT plants that were commissioned in 2005, there are over 20 projects totalling 18 GW of capacity under construction. By 2020, China's planners foresee a total gas-fired power capacity of 60 GW, accounting for around 6% of the total installed capacity in the country. Despite these impressive projections, gas-fired power faces significant uncertainties in China: (1) there is an ongoing debate on whether China should develop gas-fired power, given the relative scarcity and higher cost of gas; (2) high gas prices and imported equipment limit the competitiveness of gas-fired power relative to a coal-fired one; (3) it lacks policy support. For the moment, gas-fired power plants are required to participate in a yet

  11. Dioxin and furan emissions from landfill gas-fired combustion units

    International Nuclear Information System (INIS)

    Caponi, F.R.; Wheless, E.; Frediani, D.

    1998-01-01

    The 1990 Federal Clean Air Act Amendments require the development of maximum achievable control technology standards (MACT) for sources of hazardous air pollutants, including landfill gas-fired combustion sources. The Industrial Combustion Coordinated Rulemaking (ICCR) Federal Advisory Committee is a group of stakeholders from the public and private sector whose charge is to develop recommendations for a unified set of federal toxic air emissions regulations. Specifically, the group will establish MACT standards for industrial-commercial-institutional combustion sources. The ICCR proceedings have given rise to considerable interest in potential dioxin and furan emissions from landfill gas-fired combustion units. In order to establish the potential of dioxin and furan emissions from this group of combustion sources, a world-wide literature search was conducted. A total of 22 references were evaluated. The references covered a wide range of test programs, testing methodologies and combustion equipment type. The most abundant data were for landfill gas-fired flares (shrouded and afterburners) and I.C. engines. Because of limitations in obtaining actual test reports with complete lab data and QA/QC results, and a lack of knowledge as to the exact types of waste received at the European landfills, the test data from these sources, for the purposes of this paper, are considered qualitative. The conclusion reached from review of the test data is that there is a potential for dioxin and furan emissions from landfill gas-fired combustion units, but at very low levels for well operated systems

  12. Application of gas-fired infra-red radiator to thermal disinfection of horticultural substrate

    International Nuclear Information System (INIS)

    Wawer, M.; Osiński, A.

    1998-01-01

    The studies were carried out on heating horticultural substrate (moor peat - bark, 1:1 by volume) with a gas-fired infra-red radiator to destroy the pests and pathogens. Minimum distance between radiator and substrate surface was determined considering assumed time of heating. Dynamics of substrate heating was determined depending on its layer thickness and kind of surface under substrate layer; black rubber, ground steel sheet and aluminium foil were used as the surface. Considerable decreasing of infra-red radiation penetrability through the substrate layer above 7 mm thick was found as well as an significant effect of the radiation reflected from the surface under substrate layer on the intensity of its heating. It was also stated that heating horticultural substrates with the gas-fired infra-red radiator enables to rise the temperature of thin substrate layer up to 70 degree of C within relatively short time [pl

  13. Selective catalytic reduction (SCR) NOx control for small natural gas-fired prime movers

    International Nuclear Information System (INIS)

    Shareef, G.S.; Stone, D.K.; Ferry, K.R.; Johnson, K.L.; Locke, K.S.

    1992-01-01

    The application of selective catalytic reduction (SCR) to small natural gas-fired prime movers at cogeneration facilities and compressor stations could possibly increase due to regulatory forces to limit NO x from such sources. The natural gas industry is presently without a current database with which to evaluate the cost and operating characteristics of SCR under the conditions anticipated for small prime movers. This paper presents the results from a two-phase study undertaken to document SCR applications with emphasis on SCR system performance and costs. The database of small natural gas-fired prime mover SCR experience, focusing on prime mover characterization, SCR system performance, and SCR system costs will be described. Result from analysis of performance and cost data will be discussed, including analytical tools developed to project SCR system performance and costs

  14. Economic potential of natural gas-fired cogeneration in Brazil: two case studies

    Energy Technology Data Exchange (ETDEWEB)

    Szklo, Alexandre Salem; Soares, Jeferson Borghetti; Tolmasquim, Mauricio Tiomno [Rio de Janeiro Federal Univ., Energy Planning Program (COPPE), Rio de Janeiro (Brazil); Cidade Univ., Ilha do Fundao, Rio de Janeiro (Brazil)

    2000-11-01

    Recent restructuring of Brazil's power sector, allied to the expected larger share of natural gas in the nation's grid and the cost reductions of gas-fired power generation technologies, has introduced a set of situations apparently favorable to the expansion of natural gas-fired cogeneration. However, electricity self-generation applications are restricted to specific cases in Brazil. In order to deal with this issue, the COGEN model was developed to assess the economic potential of cogeneration ventures from the standpoint of the investor and guide incentive public policies. This model has been applied to two cases in Brazil -- a chemical plant and a shopping mall -- showing that the highest economic potential for gas-fired cogeneration in Brazil is found in industrial plants faced with high values of loss of load. In the commercial sector, measures reshaping the load curve of enterprises -- such as cold storage --- might be much more interesting than fired cogeneration. (Author)

  15. Greenhouse gas emission measurement and economic analysis of Iran natural gas fired power plants

    International Nuclear Information System (INIS)

    Shahsavari Alavijeh, H.; Kiyoumarsioskouei, A.; Asheri, M.H.; Naemi, S.; Shahsavari Alavije, H.; Basirat Tabrizi, H.

    2013-01-01

    This study attempts to examine the natural gas fired power plants in Iran. The required data from natural gas fired power plants were gathered during 2008. The characteristics of thirty two gas turbine power plants and twenty steam power plants have been measured. Their emission factor values were then compared with the standards of Energy Protection Agency, Euro Union and World Bank. Emission factors of gas turbine and steam power plants show that gas turbine power plants have a better performance than steam power plants. For economic analysis, fuel consumption and environmental damages caused by the emitted pollutants are considered as cost functions; and electricity sales revenue are taken as benefit functions. All of these functions have been obtained according to the capacity factor. Total revenue functions show that gas turbine and steam power plants are economically efficient at 98.15% and 90.89% of capacity factor, respectively; this indicates that long operating years of power plants leads to reduction of optimum capacity factor. The stated method could be implemented to assess the economic status of a country’s power plants where as efficient capacity factor close to one means that power plant works in much better condition. - Highlights: • CO 2 and NO x emissions of Iran natural gas fired power plants have been studied. • CO 2 and NO x emission factors are compared with EPA, EU and World Bank standards. • Costs and benefit as economic functions are obtained according to capacity factor. • Maximum economic profit is obtained for gas turbine and steam power plants. • Investment in CO 2 reduction is recommended instead of investment in NO x reduction

  16. Comparative funding consequences of large versus small gas-fired power generation units

    International Nuclear Information System (INIS)

    Johnson, N.G.

    1995-01-01

    Gas producers are increasingly looking to privately-owned gas-fired power generation as a major growth market to support the development of new fields being discovered across Australia. Gas-fired generating technology is more environmentally friendly than coal-fired power stations, has lower unit capital costs and has higher efficiency levels. With the recent downward trends in gas prices for power generation (especially in Western Australia) it is likely that gas will indeed be the consistently preferred fuel for generation in Australia. Gas producers should be sensitive to the different financial and risk characteristics of the potential market represented by large versus small gas-fired private power stations. These differences are exaggerated by the much sharper focus given by the private sector to quantify risk and to its allocation to the parties best able to manage it. The significant commercial differences between classes of generation projects result in gas producers themselves being exposed to diverging risk profiles through their gas supply contracts with generating companies. Selling gas to larger generation units results in gas suppliers accepting proportionately (i.e. not just prorata to the larger installed capacity) higher levels of financial risk. Risk arises from the higher probability of a project not being completed, from the increased size of penalty payments associated with non-delivery of gas and from the rising level of competition between gas suppliers. Gas producers must fully understand the economics and risks of their potential electricity customers and full financial analysis will materially help the gas supplier in subsequent commercial gas contract negotiations. (author). 1 photo

  17. Development and Validation of a Gas-Fired Residential Heat Pump Water Heater - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Michael Garrabrant; Roger Stout; Paul Glanville; Janice Fitzgerald; Chris Keinath

    2013-01-21

    For gas-fired residential water heating, the U.S. and Canada is predominantly supplied by minimum efficiency storage water heaters with Energy Factors (EF) in the range of 0.59 to 0.62. Higher efficiency and higher cost ($700 - $2,000) options serve about 15% of the market, but still have EFs below 1.0, ranging from 0.65 to 0.95. To develop a new class of water heating products that exceeds the traditional limit of thermal efficiency, the project team designed and demonstrated a packaged water heater driven by a gas-fired ammonia-water absorption heat pump. This gas-fired heat pump water heater can achieve EFs of 1.3 or higher, at a consumer cost of $2,000 or less. Led by Stone Mountain Technologies Inc. (SMTI), with support from A.O. Smith, the Gas Technology Institute (GTI), and Georgia Tech, the cross-functional team completed research and development tasks including cycle modeling, breadboard evaluation of two cycles and two heat exchanger classes, heat pump/storage tank integration, compact solution pump development, combustion system specification, and evaluation of packaged prototype GHPWHs. The heat pump system extracts low grade heat from the ambient air and produces high grade heat suitable for heating water in a storage tank for domestic use. Product features that include conventional installation practices, standard footprint and reasonable economic payback, position the technology to gain significant market penetration, resulting in a large reduction of energy use and greenhouse gas emissions from domestic hot water production.

  18. Development and optimization of operational parameters of a gas-fired baking oven

    OpenAIRE

    Afolabi Tunde MORAKINYO; Babatunde OMIDIJI; Hakeem OWOLABI

    2017-01-01

    This study presented the development and optimization of operational parameters of an indigenous gas-fired bread-baking oven for small-scale entrepreneur. It is an insulated rectangular box-like chamber, made of galvanized-steel sheets and having a total dimension of 920mm×650mm×600mm. This oven consists of two baking compartments and three combustion chambers. The oven characteristics were evaluated in terms of the baking capacity, baking efficiency and weight loss of the baked bread. The ph...

  19. Seasonal performance and energy costs of oil or gas-fired boilers and furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Berlad, A.L.; Lin, H.C.; Batey, J.; Salzano, F.J.; Yu, W.S.; Hoppe, R.J.; Allen, T.

    1977-03-01

    The seasonal operating cost of a small oil or gas-fired boiler or furnace depends upon the intrinsic merits of the device itself, the appropriateness of its capacity and cycle characteristics to the imposed load conditions, the weather characteristics and heat loss characteristics of the building being heated, and the control philosophy employed. The current study provides the bases for comparing quantitatively the seasonal operating costs of various specific space heating and/or domestic hot water systems, as influenced by the device specifics and device interaction with the space conditioned system that it serves. The resulting formalism is applied to various space-heating systems. Quantitative cost comparisons are presented.

  20. Residential gas-fired sorption heat pumps. Test and technology evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Naeslund, M.

    2008-12-15

    Heat pumps may be the next step in gas-fired residential space heating. Together with solar energy it is an option to combine natural gas and renewable energy. Heat pumps for residential space heating are likely to be based on the absorption or adsorption process, i.e. sorption heat pumps. Manufacturers claim that the efficiency could reach 140-160%. The annual efficiency will be lower but it is clear that gas-fired heat pumps can involve an efficiency and technology step equal to the transition from non-condensing gas boilers with atmospheric burners to condensing boilers. This report contains a review of the current sorption gas-fired heat pumps for residential space heating and also the visible development trends. A prototype heat pump has been laboratory tested. Field test results from Germany and the Netherlands are also used for a technology evaluation. The tested heat pump unit combines a small heat pump and a supplementary condensing gas boiler. Field tests show an average annual efficiency of 120% for this prototype design. The manufacturer abandoned the tested design during the project period and the current development concentrates on a heat pump design only comprising the heat pump, although larger. The heat pump development at three manufacturers in Germany indicates a commercial stage around 2010-2011. A fairly high electricity consumption compared to traditional condensing boilers was observed in the tested heat pump. Based on current prices for natural gas and electricity the cost savings were estimated to 12% and 27% for heat pumps with 120% and 150% annual efficiency respectively. There is currently no widespread performance testing procedure useful for annual efficiency calculations of gas-fired heat pumps. The situation seems to be clearer for electric compression heat pumps regarding proposed testing and calculation procedures. A German environmental label exists and gasfired sorption heat pumps are also slightly treated in the Eco-design work

  1. Capacity payment impact on gas-fired generation investments under rising renewable feed-in — A real options analysis

    International Nuclear Information System (INIS)

    Hach, Daniel; Spinler, Stefan

    2016-01-01

    We assess the effect of capacity payments on investments in gas-fired power plants in the presence of different degrees of renewable energy technology (RET) penetration. Low variable cost renewables increasingly make investments in gas-fired generation unprofitable. At the same time, growing feed-in from intermittent RETs amplifies fluctuations in power generation, thus entailing the need for flexible buffer capacity—currently mostly gas-fired power plants. A real options approach is applied to evaluate investment decisions and timing of a single investor in gas-fired power generation. We investigate the necessity and effectiveness of capacity payments. Our model incorporates multiple uncertainties and assesses the effect of capacity payments under different degrees of RET penetration. In a numerical study, we implement stochastic processes for peak-load electricity prices and natural gas prices. We find that capacity payments are an effective measure to promote new gas-fired generation projects. Especially in times of high renewable feed-in, capacity payments are required to incentivize peak-load investments. - Highlights: • We assess capacity payments under the specific focus of the influence of different degrees of renewable feed-in. • We use a real options approach to analyze investment decision and timing. • Our model reflects stochastic gas prices and stochastic electricity prices. • The case study shows the value of capacity payments to investors especially under high renewable feed-in.

  2. Economic potential of natural gas-fired cogeneration--analysis of Brazil's chemical industry

    International Nuclear Information System (INIS)

    Szklo, A.S.; Soares, J.B.; Tolmasquim, M.T.

    2004-01-01

    This paper attempts to estimate the technical and economic potential for natural gas-fired cogeneration (NGCHP) in Brazil's chemical industry as well as also analyses the impacts of specific incentive policies on the economic feasibility of this potential. Currently, the NGCHP installed capacity at Brazil's chemical industry is still quite a low figure, although the chemical plants are under heavy pressures to: (1) cut costs; and (2) show a rising awareness of the importance of power service quality, underscored even more heavily by Brazil's recent power crisis. According this study, a natural gas-fired remaining technical potential of 1.4 GW is noted in the Brazilian chemical industry. Financing policies showed to be the stand-alone policy that would be most successful for ensuring the economic feasibility of this technical potential. Nevertheless, this policy proved to be affected by the economic scenario under consideration, which includes world oil prices, electricity tariff and foreign exchange ratio possible paths. Consequently, the key issue is related to the ability to assess which economic scenario is rated as more probable by possible future investors in NGCHP, and then selecting the most appropriate incentive policy

  3. Development and optimization of operational parameters of a gas-fired baking oven

    Directory of Open Access Journals (Sweden)

    Afolabi Tunde MORAKINYO

    2017-12-01

    Full Text Available This study presented the development and optimization of operational parameters of an indigenous gas-fired bread-baking oven for small-scale entrepreneur. It is an insulated rectangular box-like chamber, made of galvanized-steel sheets and having a total dimension of 920mm×650mm×600mm. This oven consists of two baking compartments and three combustion chambers. The oven characteristics were evaluated in terms of the baking capacity, baking efficiency and weight loss of the baked bread. The physical properties of the baked breads were measured and analyzed using Duncan multiple range test of one way ANOVA at significant level of p<0.05. These properties were optimized to determine the optimum baking temperature using 3D surface response plot of Statistical Release 7. The baking capacity, baking efficiency, weight loss and optimum baking temperature were: 12.5 kg/hr, 87.8%, 12.5 g, 200-220oC, respectively. The physical properties of baked bread dough were found to correspond with the imported product (control sample. These results showed that, the developed gas-fired baking oven can be adopted for baking of bread at domestic and commercial levels.

  4. An application of the gas-fired chilling and heating units to domestic houses

    Energy Technology Data Exchange (ETDEWEB)

    Choi, J.H.; Yang, Y.M.; Chae, J.M.; Bang, H.S.; Kwon, O.B.; Yoo, S.I.; Kim, T.H. [R and D Center, Korea Gas Co. (Korea); Lee, T.W.; Kim, T.H.; Kim, B.H.; Hwang, I.J.; Kim, J.Y.; Kim, C.D.; Park, S.J. [Korea Institute of Construction Technology (Korea)

    1999-10-01

    Following researches and considerations were performed in this study for an efficient application of gas-fired chilling and heating units to the residential buildings. (1) Status of domestic cooling and heating for residential building. (2) Various introduction schemes of outdoor unit. (3) Design exclusive area for the gas appliance and installation of it. (4) Ventilation of exhaust gas and heat. (5) Prepare the installation specifications or standards for gas-fired chilling and heating units. (6) Design technique of plumbing for cooling and heating. (7) Evaluation of unit's capacity considering the thermal load of domestic buildings. (8) Cooling and heating system with the unit. (9) Fundamental test for evaluation of applicability. (10) Actual design and construction of experimental house for an application and a demonstration of the developed gas units. (11) Field test for cooling and heating. (12) Evaluation of economic efficiency. (13) Establish a business potential. (14) Establishment of legal and systematic support, energy rate. (15) Troubleshooting in the course of development and application of the new gas appliance. 41 refs., 214 figs., 52 tabs.

  5. Comparison of inhalation risks : oil- versus gas-fired urban power plants

    International Nuclear Information System (INIS)

    Levin, L.

    2000-01-01

    The risks due to inhalation of emitted trace substances from natural gas-fired power plants tend to be significantly lower than those from oil- or coal-fired plants. A 1994 study suggested that the median inhalation life-time cancer risk from gas-fired plants was about 4 in one billion. This is an acceptable risk range according to the United States Environmental Protection Agency (US EPA) classification of risks. In the same study, median oil plant risks were 8 in one billion. coal plant median risks ranged from 2 to 3 in one billion depending on the grade of coal being burned. The US EPA classifies risks from 1 to one million to one to 10,000 as being in an acceptable risk range. In some cases, gas plants were shown to exhibit higher inhalation risks than oil plants due to terrain, air circulation patterns, enhanced stack or building downwash or mechanical turbulence. Higher concentrations of very potent trace substances could also result in high inhalation risks. An examination of several power plants in an urban area showed that initial judgements about risk can often be incorrect

  6. Using Probability of Exceedance to Compare the Resource Risk of Renewable and Gas-Fired Generation

    Energy Technology Data Exchange (ETDEWEB)

    Bolinger, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-08-01

    Of the myriad risks surrounding long-term investments in power plants, resource risk is one of the most difficult to mitigate, and is also perhaps the risk that most-clearly distinguishes renewable generation from natural gas-fired generation. For renewable generators like wind and solar projects, resource risk manifests as a quantity risk—i.e., the risk that the quantity of wind and insolation will be less than expected.i For gas-fired generators (i.e., a combined-cycle gas turbine or “CCGT”), resource risk manifests primarily as a price risk—i.e., the risk that natural gas will cost more than expected. Most often, resource risk—and natural gas price risk in particular—falls disproportionately on utility ratepayers, who are typically not well-equipped to manage this risk. As such, it is incumbent upon utilities, regulators, and policymakers to ensure that resource risk is taken into consideration when making or approving resource decisions, or enacting policies that influence the development of the electricity sector more broadly.

  7. Thermodynamic performance analysis of gas-fired air-cooled adiabatic absorption refrigeration systems

    International Nuclear Information System (INIS)

    Wang, L.; Chen, G.M.; Wang, Q.; Zhong, M.

    2007-01-01

    In China, the application of small size gas-fired air-cooled absorption refrigeration systems as an alternative for electric compression air conditioning systems has shown broad prospects due to occurrence of electricity peak demand in Chinese big cities and lack of water resources. However, for conventional air-cooled absorption refrigeration systems, it is difficult to enhance the heat and mass transfer process in the falling film absorber, and may cause problems, for example, remarkable increase of pressure, temperature and concentration in the generators, risk of crystallization, acceleration of corrosion, degradation of performance, and so on. This paper presents a gas-fired air-cooled adiabatic absorption refrigeration system using lithium bromide-water solutions as its working fluid, which is designed with a cooling capacity of 16 kW under standard conditions. The system has two new features of waste heat recovery of condensed water from generator and an adiabatic absorber with an air cooler. Performance simulation and characteristic analysis are crucial for the optimal control and reliability of operation in extremely hot climates. A methodology is presented to simulate thermodynamic performance of the system. The influences of outdoor air temperature on operation performances of the system are investigated

  8. Emission characteristics and axial flame temperature distribution of producer gas fired premixed burner

    Energy Technology Data Exchange (ETDEWEB)

    Bhoi, P.R. [Department of Mechanical Engineering, L and T-Sargent and Lundy Limited, L and T Energy Centre, Near Chhani Jakat Naka, Baroda 390 002 (India); Channiwala, S.A. [Department of Mechanical Engineering, Sardar Vallabhbhai National Institute of Technology, Deemed University, Ichchhanath, Surat 395 007, Gujarat (India)

    2009-03-15

    This paper presents the emission characteristics and axial flame temperature distribution of producer gas fired premixed burner. The producer gas fired premixed burner of 150 kW capacity was tested on open core throat less down draft gasifier system in the present study. A stable and uniform flame was observed with this burner. An instrumented test set up was developed to evaluate the performance of the burner. The conventional bluff body having blockage ratio of 0.65 was used for flame stabilization. With respect to maximum flame temperature, minimum pressure drop and minimum emissions, a swirl angle of 60 seems to be optimal. The experimental results also showed that the NO{sub x} emissions are inversely proportional to swirl angle and CO emissions are independent of swirl angle. The minimum emission levels of CO and NO{sub x} are observed to be 0.167% and 384 ppm respectively at the swirl angle of 45-60 . The experimental results showed that the maximum axial flame temperature distribution was achieved at A/F ratio of 1.0. The adiabatic flame temperature of 1653 C was calculated theoretically at A/F ratio of 1.0. Experimental results are in tune with theoretical results. It was also concluded that the CO and UHC emissions decreases with increasing A/F ratio while NO{sub x} emissions decreases on either side of A/F ratio of 1.0. (author)

  9. Historical and future emission of hazardous air pollutants (HAPs) from gas-fired combustion in Beijing, China.

    Science.gov (United States)

    Xue, Yifeng; Nie, Lei; Zhou, Zhen; Tian, Hezhong; Yan, Jing; Wu, Xiaoqing; Cheng, Linglong

    2017-07-01

    The consumption of natural gas in Beijing has increased in the past decade due to energy structure adjustments and air pollution abatement. In this study, an integrated emission inventory of hazardous air pollutants (HAPs) emitted from gas-fired combustion in Beijing was developed for the period from 2000 to 2014 using a technology-based approach. Future emission trends were projected through 2030 based on current energy-related and emission control policies. We found that emissions of primary HAPs exhibited an increasing trend with the rapid increase in natural gas consumption. Our estimates indicated that the total emissions of NO X , particulate matter (PM) 10 , PM 2.5 , CO, VOCs, SO 2 , black carbon, Pb, Cd, Hg, As, Cr, Cu, Ni, Zn, polychlorinated dibenzo-p-dioxins and dibenzofurans, and benzo[a]pyrene from gas-fired combustion in Beijing were approximately 22,422 t, 1042 t, 781 t, 19,097 t, 653 t, 82 t, 19 t, 0.6 kg, 0.1 kg, 43 kg, 52 kg, 0.3 kg, 0.03 kg, 4.3 kg, 0.6 kg, 216 μg, and 242 g, respectively, in 2014. To mitigate the associated air pollution and health risks caused by gas-fired combustion, stricter emission standards must be established. Additionally, combustion optimization and flue gas purification system could be used for lowering NO X emissions from gas-fired combustion, and gas-fired facilities should be continuously monitored based on emission limits. Graphical abstract Spatial distribution and typical live photos of gas-fired boiler in Beijing.

  10. Laboratory and gas-fired furnace performance tests of epoxy primers for intumescent coatings

    DEFF Research Database (Denmark)

    Nørgaard, Kristian Petersen; Dam-Johansen, Kim; Catala, Pere

    2014-01-01

    , either to ensure adhesion of the intumescent coating to the steel or to provide corrosion resistance. It is essential to document the performance of the intumescent coating together with the primer to ensure the overall quality of coating system. In the present work, two epoxy primers were used...... to a gas-fired furnace following the ISO834 fire curve (a so-called cellulosic fire), one of the primers selected performed well and the other poorly. From tests in the electrically heated oven, it was found that both primers were sensitive to the film thickness employed and the presence of oxygen....... At oxygen-rich conditions, higher primer thicknesses gave weaker performance. In addition, a color change from red to black was observed in nitrogen, while the color remained red in the oxygen-nitrogen mixture. In summary, the results suggest that an adequate choice of primer, primer thickness...

  11. Control systems for condensing flue-gas coolers related to natural-gas-fired heating plants

    International Nuclear Information System (INIS)

    Krighaar, M.; Paulsen, O.

    1992-01-01

    A theoretical study is made of the enthalpy-efficiency for a water-cooled heat exchanger added to a natural gas-fired boiler. Under varying conditions of both water flow and temperature and flue-gas flow and temperature, both in condensing and non-condensing mode, the efficiency seems to be constant. The result is very useful for comparison between two different working conditions. The efficiency is used to calculate the savings achieved for a district heating plant by using a heat exchanger. The energy economic calculations are also helpful for estimating the most appropriate size of heat exchanger. The annual savings are calculated by means of data regarding heat production, flue gas temperature and water return temperature. The savings achieved by using different connection principles such as bypass, reheating and controlled water temperature are also calculated. (author)

  12. DEVELOPMENT OF FINE PARTICULATE EMISSION FACTORS AND SPECIATION PROFILES FOR OIL AND GAS FIRED COMBUSTION SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Glenn England; Oliver Chang; Stephanie Wien

    2002-02-14

    This report provides results from the second year of this three-year project to develop dilution measurement technology for characterizing PM2.5 (particles with aerodynamic diameter smaller than 2.5 micrometers) and precursor emissions from stationary combustion sources used in oil, gas and power generation operation. Detailed emission rate and chemical speciation tests results for a gas turbine, a process heater, and a commercial oil/gas fired boiler are presented. Tests were performed using a research dilution sampling apparatus and traditional EPA methods. A series of pilot tests were conducted to identify the constraints to reduce the size of current research dilution sampler for future stack emission tests. Based on the test results, a bench prototype compact dilution sampler developed and characterized in GE EER in August 2002.

  13. Air quality impacts of projections of natural gas-fired distributed generation

    Science.gov (United States)

    Horne, Jeremy R.; Carreras-Sospedra, Marc; Dabdub, Donald; Lemar, Paul; Nopmongcol, Uarporn; Shah, Tejas; Yarwood, Greg; Young, David; Shaw, Stephanie L.; Knipping, Eladio M.

    2017-11-01

    This study assesses the potential impacts on emissions and air quality from the increased adoption of natural gas-fired distributed generation of electricity (DG), including displacement of power from central power generation, in the contiguous United States. The study includes four major tasks: (1) modeling of distributed generation market penetration; (2) modeling of central power generation systems; (3) modeling of spatially and temporally resolved emissions; and (4) photochemical grid modeling to evaluate the potential air quality impacts of increased DG penetration, which includes both power-only DG and combined heat and power (CHP) units, for 2030. Low and high DG penetration scenarios estimate the largest penetration of future DG units in three regions - New England, New York, and California. Projections of DG penetration in the contiguous United States estimate 6.3 GW and 24 GW of market adoption in 2030 for the low DG penetration and high DG penetration scenarios, respectively. High DG penetration (all of which is natural gas-fired) serves to offset 8 GW of new natural gas combined cycle (NGCC) units, and 19 GW of solar photovoltaic (PV) installations by 2030. In all scenarios, air quality in the central United States and the northwest remains unaffected as there is little to no DG penetration in those states. California and several states in the northeast are the most impacted by emissions from DG units. Peak increases in maximum daily 8-h average ozone concentrations exceed 5 ppb, which may impede attainment of ambient air quality standards. Overall, air quality impacts from DG vary greatly based on meteorological conditions, proximity to emissions sources, the number and type of DG installations, and the emissions factors used for DG units.

  14. Final Report: Laboratory Development of a High Capacity Gas-Fired Paper Dryer

    Energy Technology Data Exchange (ETDEWEB)

    Yaroslav Chudnovsky; Aleksandr Kozlov; Lester Sherrow

    2005-09-30

    Paper drying is the most energy-intensive and temperature-critical aspect of papermaking. It is estimated that about 67% of the total energy required in papermaking is used to dry paper. The conventional drying method uses a series of steam-heated metal cylinders that are required to meet ASME codes for pressure vessels, which limits the steam pressure to about 160 psig. Consequently, the shell temperature and the drying capacity are also limited. Gas Technology Institute together with Boise Paper Solutions, Groupe Laperrier and Verreault (GL&V) USA Inc., Flynn Burner Corporation and with funding support from the U.S. Department of Energy, U.S. natural gas industry, and Gas Research Institute is developing a high efficiency gas-fired paper dryer based on a combination of a ribbon burner and advanced heat transfer enhancement technique. The Gas-Fired Paper Dryer (GFPD) is a high-efficiency alternative to conventional steam-heated drying drums that typically operate at surface temperatures in the 300 deg F range. The new approach was evaluated in laboratory and pilot-scale testing at the Western Michigan University Paper Pilot Plant. Drum surface temperatures of more than 400 deg F were reached with linerboard (basis weight 126 lb/3000 ft2) production and resulted in a 4-5 times increase in drying rate over a conventional steam-heated drying drum. Successful GFPD development and commercialization will provide large energy savings to the paper industry and increase paper production rates from dryer-limited (space- or steam-limited) paper machines by an estimated 10 to 20%, resulting in significant capital costs savings for both retrofits and new capacity.

  15. Laboratory Development of A High Capacity Gas-Fired paper Dryer

    Energy Technology Data Exchange (ETDEWEB)

    Chudnovsky, Yaroslav [Gas Technology Institute, Des Plaines, IL (United States); Kozlov, Aleksandr [Gas Technology Institute, Des Plaines, IL (United States); Sherrow, Lester [Gas Technology Institute, Des Plaines, IL (United States)

    2005-09-30

    Paper drying is the most energy-intensive and temperature-critical aspect of papermaking. It is estimated that about 67% of the total energy required in papermaking is used to dry paper. The conventional drying method uses a series of steam-heated metal cylinders that are required to meet ASME codes for pressure vessels, which limits the steam pressure to about 160 psig. Consequently, the shell temperature and the drying capacity are also limited. Gas Technology Institute together with Boise Paper Solutions, Groupe Laparrier and Verreault (GL&V) USA Inc., Flynn Burner Corporation and with funding support from the U.S. Department of Energy, U.S. natural gas industry, and Gas Research Institute is developing a high efficiency gas-fired paper dryer based on a combination of a ribbon burner and advanced heat transfer enhancement technique. The Gas-Fired Paper Dryer (GFPD) is a high-efficiency alternative to conventional steam-heated drying drums that typically operate at surface temperatures in the 300ºF range. The new approach was evaluated in laboratory and pilot-scale testing at the Western Michigan University Paper Pilot Plant. Drum surface temperatures of more than 400ºF were reached with linerboard (basis weight 126 lb/3000 ft2) production and resulted in a 4-5 times increase in drying rate over a conventional steam-heated drying drum. Successful GFPD development and commercialization will provide large energy savings to the paper industry and increase paper production rates from dryer-limited (space- or steam-limited) paper machines by an estimated 10 to 20%, resulting in significant capital costs savings for both retrofits and new capacity.

  16. Natural gas-fired kitchen of a caterer in Veghel, Netherlands; Cateraar in Veghel gebruikt fonkelnieuwe grootkeuken op aardgas

    Energy Technology Data Exchange (ETDEWEB)

    Havinga, J. [ed.

    1995-06-01

    A new kitchen for a catering firm in Veghel, Netherlands, has been build. The gas utility Obragas, Gasunie and the engineering office Van Heugten advised the catering company on the choice for new kitchen equipment. The cooperation resulted in a head kitchen, laundry and a washing-up kitchen, mainly gas-fired. 6 ills.

  17. Hazardous air pollutant emissions from gas-fired combustion sources: emissions and the effects of design and fuel type

    Energy Technology Data Exchange (ETDEWEB)

    England, G.C.; McGrath, T.P. [GE-Energy and Environmental Research Corp., Irvine, CA (United States); Gilmer, L. [Equilon Enterprises, Bellaire, TX (United States); Seebold, J.G. [Chevron Research and Technology Co., Richmond, CA (United States); Lev-On, M. [ARCO, Los Angeles, CA (United States); Hunt, T. [American Petroleum Institute, Washington, DC (United States)

    2001-07-01

    Air emissions from gas-fired combustion devices such as boilers, process heaters, gas turbines and stationary reciprocating engines contain hazardous air pollutants (HAPs) subjected to consideration under the federal clean air act (CAA). This work presents a recently completed major research project to develop an understanding of HAP emissions from gas-fired boilers and process heaters and new HAP emission factors based on field emission tests of gas-fired external combustion devices used in the petroleum industry. The effect of combustion system design and operating parameters on HAP emissions determined by both field and research tests are discussed. Data from field tests of gas-fired petroleum industry boilers and heaters generally show very low emission levels of organic HAPs. A comparison of the emission data for boilers and process heaters, including units with and without various forms of NO{sub x} emission controls, showed no significant difference in organic HAP emission characteristics due to process or burner design. This conclusion is also supported by the results of research tests with different burner designs. Based on field tests of units fired with natural gas and various petroleum industry process gases and research tests in which gas composition was intentionally varied, organic HAP emissions were not determined to be significantly affected by the gas composition. Research data indicate that elevated organic HAP emission levels are found only under extreme operating conditions (starved air or high excess air combustion) associated with poor combustion. (author)

  18. Accounting for fuel price risk when comparing renewable to gas-fired generation: the role of forward natural gas prices

    International Nuclear Information System (INIS)

    Bolinger, Mark; Wiser, Ryan; Golove, William

    2006-01-01

    Unlike natural gas-fired generation, renewable generation (e.g., from wind, solar, and geothermal power) is largely immune to fuel price risk. If ratepayers are rational and value long-term price stability, then-contrary to common practice-any comparison of the levelized cost of renewable to gas-fired generation should be based on a hedged gas price input, rather than an uncertain gas price forecast. This paper compares natural gas prices that can be locked in through futures, swaps, and physical supply contracts to contemporaneous long-term forecasts of spot gas prices. We find that from 2000 to 2003, forward gas prices for terms of 2-10 years have been considerably higher than most contemporaneous long-term gas price forecasts. This difference is striking, and implies that comparisons between renewable and gas-fired generation based on these forecasts over this period have arguably yielded results that are biased in favor of gas-fired generation

  19. Hazardous air pollutant emissions from gas-fired combustion sources: emissions and the effects of design and fuel type

    International Nuclear Information System (INIS)

    England, G.C.; McGrath, T.P.; Gilmer, L.; Seebold, J.G.; Lev-On, M.; Hunt, T.

    2001-01-01

    Air emissions from gas-fired combustion devices such as boilers, process heaters, gas turbines and stationary reciprocating engines contain hazardous air pollutants (HAPs) subjected to consideration under the federal clean air act (CAA). This work presents a recently completed major research project to develop an understanding of HAP emissions from gas-fired boilers and process heaters and new HAP emission factors based on field emission tests of gas-fired external combustion devices used in the petroleum industry. The effect of combustion system design and operating parameters on HAP emissions determined by both field and research tests are discussed. Data from field tests of gas-fired petroleum industry boilers and heaters generally show very low emission levels of organic HAPs. A comparison of the emission data for boilers and process heaters, including units with and without various forms of NO x emission controls, showed no significant difference in organic HAP emission characteristics due to process or burner design. This conclusion is also supported by the results of research tests with different burner designs. Based on field tests of units fired with natural gas and various petroleum industry process gases and research tests in which gas composition was intentionally varied, organic HAP emissions were not determined to be significantly affected by the gas composition. Research data indicate that elevated organic HAP emission levels are found only under extreme operating conditions (starved air or high excess air combustion) associated with poor combustion. (author)

  20. Environmental optimisation of natural gas fired engines - calculation of health externalities

    Energy Technology Data Exchange (ETDEWEB)

    Frohn, L.M.; Becker, T.; Christensen, Jesper; Hertel, O.; Silver, J.D.; Villadsen, H. (Aarhus Univ., National Environmental Research Institute, Dept. of Atmospheric Environment, Roskilde (Denmark)); Soees Hansen, M. (Aarhus Univ., National Environmental Research Institute, Dept. of Policy Analysis, Roskilde (Denmark)); Skou Andersen, M. (European Environment Agency, Copenhagen (Denmark))

    2010-07-01

    The measured emissions of WP1 of the project has been applied as input for model calculations with the EVA model system. The DEHM model which calculates the regional scale delta-concentrations has been further developed to handle the low signal to noise ratio of the delta-concentrations related to the small sources that the gas fired engines constitute. All combinations of engine settings and locations have been run as scenarios with the EVA system, however the results have been grouped into themes to investigate changes related to location as well as changes related to engine settings. New exposure-response relations have been implemented in the system related to the chemical components nitrogen dioxide, formaldehyde, ethene and propene. The choice of high-exposure location in the calculations has unfortunately turned out to be less optimal. The location at Store Valby has previously been applied in studies with the EVA system as a high-exposure site, however in previous applications, the emission sources have been large power plants with stack heights of around 150 meters. The height of the stack of the gas fired engines is only around 30 meters, and the consequence is that the emitted components reach the surface closer to the stack, thereby giving high exposure in an area located further to the southwest, where the population density is not as high as in central Copenhagen. In general the marginal health costs (in Euro pr kg) of carbon monoxide and formaldehyde emissions are very small. The emissions of formaldehyde are also small and the resulting costs for this component is therefore very small. The emission of carbon monoxide is much larger, however the small marginal cost makes the contribution to the total costs small, also for this component. The marginal health costs of nitrogen oxides and ethene emissions show little variation with engine scenario. However the general picture is that as the NO{sub x} emissions increase (either by increasing ignition

  1. Apples with apples: accounting for fuel price risk in comparisons of gas-fired and renewable generation

    Energy Technology Data Exchange (ETDEWEB)

    Bolinger, Mark; Wiser, Ryan

    2003-12-18

    For better or worse, natural gas has become the fuel of choice for new power plants being built across the United States. According to the US Energy Information Administration (EIA), natural gas combined-cycle and combustion turbine power plants accounted for 96% of the total generating capacity added in the US between 1999 and 2002--138 GW out of a total of 144 GW. Looking ahead, the EIA expects that gas-fired technology will account for 61% of the 355 GW new generating capacity projected to come on-line in the US up to 2025, increasing the nationwide market share of gas-fired generation from 18% in 2002 to 22% in 2025. While the data are specific to the US, natural gas-fired generation is making similar advances in other countries as well. Regardless of the explanation for (or interpretation of) the empirical findings, however, the basic implications remain the same: one should not blindly rely on gas price forecasts when comparing fixed-price renewable with variable-price gas-fired generation contracts. If there is a cost to hedging, gas price forecasts do not capture and account for it. Alternatively, if the forecasts are at risk of being biased or out of tune with the market, then one certainly would not want to use them as the basis for resource comparisons or investment decisions if a more certain source of data (forwards) existed. Accordingly, assuming that long-term price stability is valued, the most appropriate way to compare the levelized cost of these resources in both cases would be to use forward natural gas price data--i.e. prices that can be locked in to create price certainty--as opposed to uncertain natural gas price forecasts. This article suggests that had utilities and analysts in the US done so over the sample period from November 2000 to November 2003, they would have found gas-fired generation to be at least 0.3-0.6 cents/kWh more expensive (on a levelized cost basis) than otherwise thought. With some renewable resources, in particular wind

  2. PM1 particles at coal- and gas-fired power plant work areas.

    Science.gov (United States)

    Hicks, Jeffrey B; McCarthy, Sheila A; Mezei, Gabor; Sayes, Christie M

    2012-03-01

    With the increased interest in the possible adverse health effects attributed to inhalation of fine particle matter, this study was conducted to gather preliminary information about workplace exposures at coal- and gas-fired power plants to fine particles (PM(1); i.e. <1 μm) and ultrafine particles (i.e. <0.1 μm). Combustion of fossil fuel is known to produce fine particles, and due to their proximity and durations of exposure, power plant workers could be a group of individuals who experience high chronic exposures to these types of particles. The results of a series of real-time instrument measurements showed that concentrations of PM(1) were elevated in some locations in power plants. The highest concentrations were in locations near combustion sources, indicating that combustion materials were leaking from conventional fossil fuel-fired boilers or it was associated with emission plume downwash. Concentrations were the lowest inside air-conditioned control rooms where PM(1) were present at levels similar to or lower than upwind concentrations. Microscopic examinations indicate that PM(1) at the coal-fired plants are dominated by vitrified spheres, although there were also unusual elongated particles. Most of the PM(1) were attached to larger coal fly ash particles that may affect where and how they could be deposited in the lung.

  3. NORM emissions from heavy oil and natural gas fired power plants in Syria

    International Nuclear Information System (INIS)

    Al-Masri, M.S.; Haddad, Kh.

    2012-01-01

    Naturally occurring radioactive materials (NORM) have been determined in fly and bottom ash collected from four major Syrian power plants fired by heavy oil and natural gas. 210 Pb and 210 Po were the main NORM radionuclides detected in the fly and bottom ash. 210 Pb activity concentrations have reached 3393 ± 10 Bq kg −1 and 4023 ± 7 Bq kg −1 in fly ash and bottom ash, respectively; lower values of 210 Po were observed due to its high volatility. In addition, 210 Po and 210 Pb annual emissions in bottom ash from mixed (heavy oil and natural gas) fired power plants varied between 2.7 × 10 9 –7.95 × 10 9 Bq and 3.5 × 10 9 –10 10 Bq, respectively; higher emissions of 210 Po and 210 Pb from gas power plants being observed. However, the present study showed that 210 Po and 210 Pb emissions from thermal power plants fired by natural gas are much higher than the coal power plants operated in the World. - Highlights: ► NORM have been determined in fly and bottom ash collected from Syrian power plants fired by heavy oil and natural gas. ► 210 Pb and 210 Po were the main NORM radionuclides detected in the fly and bottom ash. ► 210 Po and 210 Pb annual emissions from these power plants were estimated.

  4. Analysis of directional radiative behavior and heating efficiency for a gas-fired radiant burner

    International Nuclear Information System (INIS)

    Li, B.X.; Lu, Y.P.; Liu, L.H.; Kudo, K.; Tan, H.P.

    2005-01-01

    For the purpose of energy conservation and uniform heating of object surface, a gas-fired porous radiant burner with a bundle of reflecting tubes is developed. A physical model is developed to simulate the directional radiative behavior of this heating device, in which the Monte Carlo method based on the concept of radiation distribution factor is used to compute the directional radiative behavior. The effects of relating parameters on the directional behavior of radiative heating and the heating efficiency are analyzed. With the increase of the length-to-radius ratio of tube, the radiation heating efficiency decreases, but the radiation energy incident on the object surface is more collimated. The radiation heating efficiency increases with the specular reflectivity. With the increase in length of tube segment with specular reflective surface, the radiation heating efficiency increases, but the extent of concentration and collimation of radiative energy decreases. For real design of the heating device, some trade-offs are needed to balance the radiation heating efficiency and the uniformity of radiative heating of object surface

  5. Simultaneous reduction of NO2 and CO in a domestic unvented gas-fired convective heater

    International Nuclear Information System (INIS)

    Arai, N.; Kasugai, N. A.; Hasatani, M.; Ishibashi, N.

    1989-01-01

    A programme of industrial and university research has been carried out to develop a domestic, unvented gas-fired space-heater capable of the simultaneous reduction of NO 2 and CO. To this end, lean-burning convective heaters of two types have been devised, and their performance has been characterised on methane-air mixtures. One burner contains a vertical cylinder of stainless-steel wire mesh (Type A), and the other incorporates a heat-recirculating matrix and a horizontal plate of stainless-steel wire mesh (Type B). The results obtained under a wide range of equivalence ratios show that: - the emission characteristics for NO x and NO 2 in Type A were excellent over the entire equivalence ratio of 0.5 - 1.0, but the concentration of CO was always higher than the current informal guideline in Japan, in which CO/CO 2 -3 . - Type B displayed an optimum range of equivalence ratios to satisfy simultaneously every guideline for NO x ( 2 ( 2 . However, since the optimum range of equivalence ratio was limited to between 0.45 and 0.55, further effort should be devoted to the extension of this optimum range. (Author)

  6. Gas-fired cogeneration and cooling: new study identifies major benefits

    International Nuclear Information System (INIS)

    Watt, G.

    2001-01-01

    A research paper- 'Gas Fired Cogeneration and Cooling: Markets, Technologies and Greenhouse Gas Savings'- launched at last month's Australian Gas Association 2001 Convention, reveals that gas cooling could replace 25 PJ of electricity summer demand, and reduce greenhouse gas emissions by 58 percent compared with electrical technologies. Commissioned by the AGA's Gas Cooling Task Force and supported by the Sustainable Energy Authority of Victoria and the Sustainable Energy Development Authority of NSW, the study examined market opportunities and environmental outcomes for the combined gas cogeneration and cooling technologies. It shows that the penetration of gas into the distributed cooling and power generation market is being driven by the following developments: the uncertainty and volatility of electricity costs, particularly during summer, electricity market structural changes which encourage distributed generation, high and uncertain world oil prices, the relative stability of Australian gas prices, the encouragement of demand and energy management strategies by regulators, greenhouse gas emission reduction policies, indoor air quality issues, product and productivity improvements in industry and CFC phase-out opportunities

  7. The development of an ultra-low-emission gas-fired cyclonic combustor

    International Nuclear Information System (INIS)

    Xiong, Tian-yu; Khinkis, M.J.; Coppin, W.P.

    1991-01-01

    A gas-fired cyclonic combustor has been developed for relatively low-temperature direct-air heating applications that require ultra-low pollutant emissions. High-lean premixed combustion with a flame stabilizer is adopted to achieve ultra-low emissions and high turndown operation. On the basis of analytical studies and cold modeling, a 350-kW test combustor was designed and successfully tested. Experimental results obtained using natural gas and ambient air demonstrated that the test combustor can operate steadily at high excess air up to 80% to 100% over a large turndown range up to 40:1. At design operating conditions, NO x emissions as low as 0.6 vppm and CO and total hydrocarbon (THC) emissions below 3 vppm were achieved. Over the full operating range, NO x emissions from 0.3 to 1.0 vppm and CO and THC emissions below 4 vppm were demonstrated. In all tests, concentrations of NO 2 were less than 40% of the total NO x emissions -- lower than the level of NO 2 emissions from combustion processes required for good indoor air quality (0.5 vppm). This paper presents the concept of high-lean premixed ultra-low-emission cyclonic combustion, design specifications for the combustion system, and the major experimental results, including flame stability, emissions, and turndown performance. 13 refs., 12 figs., 1 tab

  8. Evaluation of retrofitting gas-fired cooling and heating systems into BCHP using design optimization

    International Nuclear Information System (INIS)

    Cao Jiacong

    2009-01-01

    The influence of energy prices on the feasibility of a retrofit is investigated. The retrofit describes the conversion of a system from HVAC to BCHP for energy-saving. This includes two optimal retrofit design models, of which the exergetic efficiency and annual costs (AC) are the separate objective functions. The retrofit scheme is planned to insert gas engines as prime movers into the original system, which have adopted gas-fired absorption chillers. The solutions of the optimizations show that such a retrofit can result in a remarkable rise in exergetic efficiency but is not viable with current energy prices. The contradictory solutions reveal a gap between the current energy prices system of the country and the present energy situation. Further investigation gives the critical lines of which each divides the coordinate plane of natural gas-electric prices into two parts of benefit and deficit. If the electric price rises to a certain extent, the retrofit will be advantageous both in benefit and energy-saving. So it is really an urgent task to reform the energy prices system in China. Conclusions may be helpful for other similar retrofit projects, and for legislators and the government which are responsible for improving the energy market in China.

  9. Environmental optimisation of natural gas fired engines. Measurement on four different engines. Project report

    Energy Technology Data Exchange (ETDEWEB)

    Kvist, T.

    2010-10-15

    The emissions of NO{sub x}, CO and UHC as well as the composition of the hydrocarbon emissions were measured for four different stationary lean burn natural gas fired engines installed at different combined heat and power (CHP) units in Denmark. The units have been chosen to be representative for the natural gas engine based on power production in Denmark. The NO{sub x} emissions were varied from around 200 to 500 mg/m3(n) by varying the ignition timing and the excess of air. For each of the examined engines measurements were conducted at different combinations of ignition timing and excess of air. The measurements showed the NO{sub x} emissions were relatively more sensitive to engine setting than UHC, CO and formaldehyde emissions. By reducing the NO{sub x} emissions to 40 % of the initial value (from 500 to 200 mg/m3(n)) the UHC emission were increased by 10 % to 50 % of the initial value. The electrical efficiency was reduced by 0,5 to 1,0 % point. (Author)

  10. Gas-fired power plants: Investment timing, operating flexibility and CO2 capture

    International Nuclear Information System (INIS)

    Fleten, Stein-Erik; Naesaekkaelae, Erkka

    2010-01-01

    We analyze investments in gas-fired power plants based on stochastic electricity and natural gas prices. A simple but realistic two-factor model is used for price processes, enabling analysis of the value of operating flexibility, the opportunity to abandon the capital equipment, as well as finding thresholds for energy prices for which it is optimal to enter into the investment. We develop a method to compute upper and lower bounds on plant values and investment threshold levels. Our case study uses representative power plant investment and operations data, and historical forward prices from well-functioning energy markets. We find that when the decision to build is considered, the abandonment option does not have significant value, whereas the operating flexibility and time-to-build option have significant effect on the building threshold. Furthermore, the joint value of the operating flexibility and the abandonment option is much smaller than the sum of their separate values, because both are options to shut down. The effects of emission costs on the value of installing CO 2 capture technology are also analyzed.

  11. Failure Analysis and Magnetic Evaluation of Tertiary Superheater Tube Used in Gas-Fired Boiler

    Science.gov (United States)

    Mohapatra, J. N.; Patil, Sujay; Sah, Rameshwar; Krishna, P. C.; Eswarappa, B.

    2018-02-01

    Failure analysis was carried out on a prematurely failed tertiary superheater tube used in gas-fired boiler. The analysis includes a comparative study of visual examination, chemical composition, hardness and microstructure at failed region, adjacent and far to failure as well as on fresh tube. The chemistry was found matching to the standard specification, whereas the hardness was low in failed tube compared to the fish mouth opening region and the fresh tube. Microscopic examination of failed sample revealed the presence of spheroidal carbides of Cr and Mo predominantly along the grain boundaries. The primary cause of failure is found to be localized heating. Magnetic hysteresis loop (MHL) measurements were carried out to correlate the magnetic parameters with microstructure and mechanical properties to establish a possible non-destructive evaluation (NDE) for health monitoring of the tubes. The coercivity of the MHL showed a very good correlation with microstructure and mechanical properties deterioration enabling a possible NDE technique for the health monitoring of the tubes.

  12. Gas fired combined cycle plant in Singapore: energy use, GWP and cost-a life cycle approach

    International Nuclear Information System (INIS)

    Kannan, R.; Leong, K.C.; Osman, Ramli; Ho, H.K.; Tso, C.P.

    2005-01-01

    A life cycle assessment was performed to quantify the non-renewable (fossil) energy use and global warming potential (GWP) in electricity generation from a typical gas fired combined cycle power plant in Singapore. The cost of electricity generation was estimated using a life cycle cost analysis (LCCA) tool. The life cycle assessment (LCA) of a 367.5 MW gas fired combined cycle power plant operating in Singapore revealed that hidden processes consume about 8% additional energy in addition to the fuel embedded energy, and the hidden GWP is about 18%. The natural gas consumed during the operational phase accounted for 82% of the life cycle cost of electricity generation. An empirical relation between plant efficiency and life cycle energy use and GWP in addition to a scenario for electricity cost with varying gas prices and plant efficiency have been established

  13. Element composition of solid airborne particles deposited in snow in the vicinity of gas-fired heating plant

    OpenAIRE

    Talovskaya, Anna Valerievna; Yazikov, Yegor (Egor) Grigoryevich; Filimonenko, Ekaterina Anatolievna; Samokhina, Nataljya Pavlovna; Shakhova, Tatiana Sergeevna; Parygina, Irina Alekseevna

    2016-01-01

    Local heating plants are the main pollution source of rural areas. Currently, there are few studies on the composition of local heating plants emissions. The article deals with the research results of air pollution level with solid airborne particles in the vicinity of local gas-fired heating plants of some districts of Tomsk region. The snow sampling was conducted for the purpose of solid airborne particles extraction from snow cover. The content of 28 chemical elements (heavy metals, rare e...

  14. Emission Characteristics of Gas-Fired Boilers based on Category-Specific Emission Factor from Field Measurements in Beijing, China

    Science.gov (United States)

    Itahashi, S.; Yan, X.; Song, G.; Yan, J.; Xue, Y.

    2017-12-01

    Gas-fired boilers will become the main stationary sources of NOx in Beijing. However, the knowledge of gas-fired boilers in Beijing is limited. In the present study, the emission characteristics of NOx, SO2, and CO from gas-fired boilers in Beijing were established using category-specific emission factors (EFs) from field measurements. In order to obtain category-specific EFs, boilers were classified through influence analysis. Factors such as combustion mode, boiler type, and installed capacity were considered critical for establishing EFs because they play significant roles in pollutant formation. The EFs for NOx, CO, and SO2 ranged from 1.42-6.86 g m-3, 0.05-0.67 g m-3 and 0.03-0.48 g m-3. The emissions of NOx, SO2, and CO for gas-fired boilers in Beijing were 11121 t, 468 t, and 222 t in 2014, respectively. The emissions were spatially allocated into grid cells with a resolution of 1 km × 1 km, and the results indicated that top emitters were in central Beijing. The uncertainties were quantified using a Monte Carlo simulation. The results indicated high uncertainties in CO (-157% to 154%) and SO2 (-127% to 182%) emissions, and relatively low uncertainties (-34% to 34%) in NOx emission. Furthermore, approximately 61.2% and 96.8% of the monitored chamber combustion boilers (CCBs) met the standard limits for NOx and SO2, respectively. Concerning NOx, low-NOx burners and NOx emission control measures are urgently needed for implementing of stricter standards. Adopting terminal control measures is unnecessary for SO2, although its concentration occasionally exceeds standard limits, because reduction of its concentration can be achieved thorough control of the sulfur content of natural gas at a stable low level. Furthermore, the atmospheric combustion boilers (ACBs) should be substituted with CCBs, because ACBs have a higher emission despite lower gross installed capacity. The results of this study will enable in understanding and controlling emissions from gas-fired

  15. A policy study examining the use of imported LNG for gas-fired power generation on the southeast coast of China

    International Nuclear Information System (INIS)

    Li Yajun; Bai Fangfang

    2010-01-01

    Since China's energy demand is growing quickly, speeding up the development of natural gas is an important substitute and supplement for coal and oil. The development of the natural gas market in many developing countries has demonstrated that the success of the whole project hinges upon the success of gas-fired power generation. However, under the current energy pricing system in China, the advantages of gas-fired power plants, such as low investment costs and high efficiency, have not been able to offset the low price of coal. The gas-fired power plants, both at downstream of the Liquefied Natural Gas (LNG) industry and upstream of the power sector, are faced with a dilemma. In order to solve the problems facing gas-fired power projects while providing policy guidance for the future development of gas-fired power projects, the policy of gas-fired power generation using imported LNG on the southeastern coast of China was examined. This study aims to identify the position of the national energy strategy that China should import some LNG from the other countries, to guide the development of energy policy in this region, and to formulate some clear policy measures.

  16. Comparison of different testing methods for gas fired domestic boiler efficiency determination

    International Nuclear Information System (INIS)

    De Paepe, M.; T'Joen, C.; Huisseune, H.; Van Belleghem, M.; Kessen, V.

    2013-01-01

    As the Energy Performance of Buildings Directive is being implemented throughout the European Union, a clear need for certification of boiler and domestic heating devices has arisen. Several ‘Notified Bodies’ exist, spread around the different member states. They are acting as the notified body of that member state and focus on local certification. A boiler manufacturer has its equipment tested according to the ‘Boiler Efficiency directive 92/42/EC’. Recently, tests done by several notified bodies in sequence on an identical unit of a manufacturer showed that results could differ depending on which notified body performed the test. In cooperation with ‘Technigas’ (Notified Body in Belgium) a detailed study was done of the measurement setup and devices for determining boiler efficiencies. Several aspects were studied: measurement devices (absolute or differential types), their location within the test setup (focussing on accuracy and their overall impact on the result) and the measurement strategy (measuring on the primary or the secondary water side). The study was performed for both full load and part load scenarios of a gas fired domestic boiler (smaller than 70 kW [4]). The results clearly indicate that temperature measurements arecritical for assessing boiler efficiency. Secondly the test setup using secondary circuit measurements should be preferred. Tests were performed at ‘Technigas’ on different setups in order to validate the findings. - Highlights: ► Labelling of boiler is now obliged by European standards. ► Error propagation is analysed for different methods of boiler performance testing. ► Secondary water side measurement with separate calibration of has highest quality. ► A sensitivity analysis showed that the water temperatures are important factors.

  17. Research and development of a high efficiency gas-fired water heater. Volume 2. Task reports

    Energy Technology Data Exchange (ETDEWEB)

    Vasilakis, A.D.; Pearson, J.F.; Gerstmann, J.

    1980-01-01

    Design and development of a cost-effective high efficiency gas-fired water heater to attain a service efficiency of 70% (including the effect of exfiltration) and a service efficiency of 78% (excluding exfiltration) for a 75 GPD draw at a 90/sup 0/F temperature rise, with a stored water to conditioned air temperature difference of 80/sup 0/F, are described in detail. Based on concept evaluation, a non-powered natural draft water heater was chosen as the most cost-effective design to develop. The projected installed cost is $374 compared to $200 for a conventional unit. When the project water heater is compared to a conventional unit, it has a payback of 3.7 years and life cycle savings of $350 to the consumer. A prototype water heater was designed, constructed, and tested. When operated with sealed combustion, the unit has a service efficiency of 66.4% (including the effect of exfiltration) below a burner input of 32,000 Btu/h. In the open combustion configuration, the unit operated at a measured efficiency of 66.4% Btu/h (excluding exfiltration). This compares with a service efficiency of 51.3% for a conventional water heater and 61% for a conventional high efficiency unit capable of meeting ASHRAE 90-75. Operational tests showed the unit performed well with no evidence of stacking or hot spots. It met or exceeded all capacity or usage tests specified in the program test plan and met all emission goals. Future work will concentrate on designing, building, and testing pre-production units. It is anticipated that both sealed combustion and open draft models will be pursued.

  18. Performance of casting aluminum-silicon alloy condensing heating exchanger for gas-fired boiler

    Science.gov (United States)

    Cao, Weixue; Liu, Fengguo; You, Xue-yi

    2018-01-01

    Condensing gas boilers are widely used due to their high heat efficiency, which comes from their ability to use the recoverable sensible heat and latent heat in flue gas. The condensed water of the boiler exhaust has strong corrosion effect on the heat exchanger, which restricts the further application of the condensing gas boiler. In recent years, a casting aluminum-silicon alloy (CASA), which boasts good anti-corrosion properties, has been introduced to condensing hot water boilers. In this paper, the heat transfer performance, CO and NOx emission concentrations and CASA corrosion resistance of a heat exchanger are studied by an efficiency bench test of the gas-fired boiler. The experimental results are compared with heat exchangers produced by Honeywell and Beka. The results show that the excess air coefficient has a significant effect on the heat efficiency and CO and NOx emission of the CASA water heater. When the excess air coefficient of the CASA gas boiler is 1.3, the CO and NOx emission concentration of the flue gas satisfies the design requirements, and the heat efficiency of water heater is 90.8%. In addition, with the increase of heat load rate, the heat transfer coefficient of the heat exchanger and the heat efficiency of the water heater are increased. However, when the heat load rate is at 90%, the NOx emission in the exhaust gas is the highest. Furthermore, when the temperature of flue gas is below 57 °C, the condensation of water vapor occurs, and the pH of condensed water is in the 2.5 5.5 range. The study shows that CASA water heater has good corrosion resistance and a high heat efficiency of 88%. Compared with the heat exchangers produced by Honeywell and Beka, there is still much work to do in optimizing and improving the water heater.

  19. Combustion measurements in an industrial gas-fired flat-glass furnace

    Energy Technology Data Exchange (ETDEWEB)

    Newbold, J; Webb, B W; McQuay, M Q [Brigham Young Univ., Provo, UT (United States). Mechanical Engineering Dept.; Huber, A M [Ford Motor Co., Glass Div., Dearborn, MI (United States)

    1997-06-01

    Profiles of velocity, species concentration (O{sub 2}, CO and CO{sub 2}), wall incident radiative heat flux and temperature are reported in the combustion space of a regenerative, side-port, 550t/day, gas-fired flat-glass furnace. A region exists of fast-moving gases near the glass, with axial velocity components exceeding 20 m s{sup -1}, and a large recirculation zone near the crown. Temperatures as high as 1985 K in the flame and as low as 1750 K in the recirculation zone are reported. A region of intense reaction is observed near the glass, with large concentration gradients and incomplete combustion even in the tail of the flame. Local incident radiant fluxes on the crown were nearly uniform spatially at a level of 680 kW m{sup -2}. In the portnecks, flat inlet velocity profiles were measured with a magnitude of approximately 11 m s{sup -1}. Significant variations were observed in the exhaust profiles of most measured variables. Large errors in exhaust mass balance suggest a complex, three-dimensional flow with recirculation zones along the side walls of the portnecks. A nominal preheat air temperature of 1420 k and a variation of exhaust temperatures between 1630 K and 1835 K were noted. O{sub 2} concentrations as high as 8.4% were measured at the exit, suggesting a bypass of oxygen-rich flow around the flame. CO{sub 2} concentrations were the highest near the batch, where the glass reactions are the most intense. (Author)

  20. An experimental and theoretical study of decentralized gas fired liquid heating

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, Rolf

    1996-12-01

    The effects on the energy situation in industry when gas fired liquid heaters replace steam have been determined by energy surveys performed in a brewery and a slaughterhouse, measurements of the performance and emissions from liquid heaters installed in these industries, and theoretical analyses of the potential energy. The theoretical study in the first part of the project provides information that allows assessment of the effects on the energy situation, of a part or complete conversion to decentralized heating, under the conditions prevailing in the industries concerned. The second part of the project focused on increasing the liquid heater efficiency and reducing emissions of carbon monoxide and hydrocarbons. Heat transfer and pressure drop for a corrugated tube was investigated experimentally. Empirical correlations for heat transfer and pressure drop for a corrugated tube were developed. These correlations were used in the design model that was developed within this project. The design model was validated against experimental data and data from an industrial application, where a section of the smooth heat exchanger tube was replaced with a corrugated tube. The results show that the design model predicts the outlet flue gas temperature and the heater efficiency quite accurately. The wall temperature at the first corrugation is also predicted with reasonable accuracy. These results make it possible to calculate the location where a corrugated tube can be inserted without causing subcooled boiling or severe fouling. It is shown that emissions of carbon monoxide and hydrocarbons can be held at low levels, even when conventional industrial burners are used. The use of nozzles that produce long soft flames increase the risk for large emissions of hydrocarbons and carbon monoxide. 125 refs, 89 figs, 16 tabs

  1. Assessing the Greenhouse Gas Emissions from Natural Gas Fired Power Plants

    Science.gov (United States)

    Hajny, K. D.; Shepson, P. B.; Rudek, J.; Stirm, B. H.; Kaeser, R.; Stuff, A. A.

    2017-12-01

    Natural gas is often discussed as a "bridge fuel" to transition to renewable energy as it only produces 51% the amount of CO2 per unit energy as coal. This, coupled with rapid increases in production fueled by technological advances, has led to a near tripling of natural gas used for electricity generation since 2005. One concern with this idea of a "bridge fuel" is that methane, the primary component of natural gas, is itself a potent greenhouse gas with 28 and 84 times the global warming potential of CO2 based on mass over a 100 and 20 year period, respectively. Studies have estimated that leaks from the point of extraction to end use of 3.2% would offset the climate benefits of natural gas. Previous work from our group saw that 3 combined cycle power plants emitted unburned CH4 from the stacks and leaked additional CH4 from equipment on site, but total loss rates were still less than 2.2%. Using Purdue's Airborne Laboratory for Atmospheric Research (ALAR) we completed additional aircraft based mass balance experiments combined with passes directly over power plant stacks to expand on the previous study. In this work, we have measured at 12 additional natural gas fired power plants including a mix of operation types (baseload, peaking, intermediate) and firing methods (combined cycle, simple thermal, combustion turbine). We have also returned to the 3 plants previously sampled to reinvestigate emissions for each of those, to assess reproducibility of the results. Here we report the comparison of reported continuous emissions monitoring systems (CEMS) data for CO2 to our emission rates calculated from mass balance experiments, as well as a comparison of calculated CH4 emission rates to estimated emission rates based on the EPA emission factor of 1 g CH4/mmbtu natural gas and CEMS reported heat input. We will also discuss emissions from a coal-fired plant which has been sampled by the group in the past and has since converted to natural gas. Lastly, we discuss the

  2. Optical properties of wet paper and simulation of the effect of autoprofiling on gas-fired IR drying

    Energy Technology Data Exchange (ETDEWEB)

    Ojala, K T; Lampinen, M J [Helsinki University of Technology (FI)

    1991-12-01

    Mathematical models are developed to determine the radiative heat transfer of gas-fired infrared dryers. These models are based on the calculation of radiation energy balance between the main surfaces and layers in the dryer section. The energy efficiency can be calculated, when the temperatures of the radiator and the optical properties of all parts of the dryer are known. A computer program is used for studying the autoprofiling effect in gas-fired infrared drying. Optical properties of paper samples of different moisture contents as a function of wavelength are systematically measured by using FT-IR spectrometer and integrating sphere techniques. These measurements covered the moisture content range of 6-150%. The total measured wavelength range is 1.0-20.0 {mu}m. The moisture content of paper increases the absorptivity mainly in two wavelength ranges, i.e. 1.4-2.6 {mu}m and 3.75-6.0 {mu}m. In these ranges, the difference between the absorptivity of two sheets (dry weight 41.1 g/m{sup 2}, moisture contents 6.0% and 20.8%) is 5-10%. Outside these ranges, the difference is less than 5%. The radiation properties of component surfaces of the IR dryer were measured or taken from literature. The dryer efficiency as a function of the moisture content of paper is calculated. The extent of the autoprofilling effect in gas-fired IR drying is hereby achieved for light weight coated paper web. In one simulation, before the dryer, the moisture difference between two sheets was 5.0% (=20% - 15%). After the dryer, the moisture difference was reduced to 4.5%. If the variation in moisture contents is high, the autoprofilling effect takes place and reduces the moisture variaton. (AB).

  3. Optical properties of wet paper and simulation of the effect of autoprofiling on gas-fired IR drying

    Energy Technology Data Exchange (ETDEWEB)

    Ojala, K T; Lampinen, M J

    1991-01-01

    We have developed new models to determine the radiative heat transfer of gas-fired infrared dryers. A computer program based on the mathematical models is developed further. This program is used for studying the autoprofiling effect in gas-fired infrared drying. Optical properties of paper samples of different moisture contents as a function of wavelength are systematically measured by using FT-lR specrometer and integraing sphere techniques. These measurements covered the moisture content range of 6- 150 %. A new wavelength range (1.2- 1.9 mm), not properly covered by our earlier measurements, is measured by using a liquid nitrogen cooled detector. The total measured wavelength range is 1.0-20.0 mm. The moisture dependence of the optical properties of coating are calculated by using a theoretical model developed in State Research Centre of Finland, Laboratory of Optoelectronics. The radiation properties of component surfaces of the IR dryer were either measured or taken from literature. The mathematical models are based on the calculation of radiation energy balance between the main surfaces and layers in the dryer section. The energy efficiency can be calculated, when the temperatures of the radiator and the optical properties of all parts of the dryer are known. A computer program based on the models is developed further. The dryer efficiency as a function of the moisture content of paper is calculated. The extent of the autoprofiling effect in gas-fired IR drying is hereby achieved for light weight coated paper web. If the variation in moisture contents is high, the autoprofiling effect takes place and reduces the moisture variation. However, if the moisture variation is low, it is not a very significant phenomenon. The simulation results are compared to a pilot coater trial made in Cenre Technique du Papier, Grenoble.

  4. Preliminary experimental investigation of a natural gas-fired ORC-based micro-CHP system for residential buildings

    International Nuclear Information System (INIS)

    Farrokhi, M.; Noie, S.H.; Akbarzadeh, A.A.

    2014-01-01

    The continual increases in energy demand and greenhouse gas emissions, call for efficient use of energy resources. Decentralized combined heat and power (CHP) technology provides an alternative for the world to meet and solve energy-related problems including energy shortages, energy supply security, emission control and conservation of energy. This paper presents the preliminary results of an experimental investigation of a natural gas-fired micro-CHP system for residential buildings based on an organic Rankine cycle (ORC). Isopentane was used as the ORC working fluid in consideration of several criteria including its environmentally-friendly characteristics. Experiments were conducted to evaluate the performance of the developed system at different heat source temperatures of nominally 85, 80, 75, 70, and 65 °C. The maximum electrical power output of 77.4 W was generated at heating water entry temperature of 84.1 °C, corresponding to net cycle electrical efficiency of 1.66%. Further work will be done with a view to increasing the cycle electrical efficiency by using more efficient components, in particular the expander and generator. - Highlights: •A natural gas-fired ORC-based micro-scale CHP system has been developed and tested. •The good agreement between the mechanical and gross power validates the assumptions. •A vane expander suits a micro-CHP system based on an organic Rankine cycle. •A vane expander does not suit power generation by a Trilateral Flash Cycle (TFC). •Domestic gas-fired ORC systems may reduce reliance on central power stations

  5. Life-cycle comparison of greenhouse gas emissions and water consumption for coal and shale gas fired power generation in China

    International Nuclear Information System (INIS)

    Chang, Yuan; Huang, Runze; Ries, Robert J.; Masanet, Eric

    2015-01-01

    China has the world's largest shale gas reserves, which might enable it to pursue a new pathway for electricity generation. This study employed hybrid LCI (life cycle inventory) models to quantify the ETW (extraction-to-wire) GHG (greenhouse gas) emissions and water consumption per kWh of coal- and shale gas-fired electricity in China. Results suggest that a coal-to-shale gas shift and upgrading coal-fired power generation technologies could provide pathways to less GHG and water intensive power in China. Compared to different coal-fired generation technologies, the ETW GHG emissions intensity of gas-fired CC (combined cycle) technology is 530 g CO 2 e/kWh, which is 38–45% less than China's present coal-fired electricity. Gas-fired CT (combustion turbine) technology has the lowest ETW water consumption intensity at 960 g/kWh, which is 34–60% lower than China's present coal-fired electricity. The GHG-water tradeoff of the two gas-fired power generation technologies suggests that gas-fired power generation technologies should be selected based on regional-specific water resource availabilities and electricity demand fluctuations in China. However, the low price of coal-fired electricity, high cost of shale gas production, insufficient pipeline infrastructures, and multiple consumers of shale gas resources may serve as barriers to a coal-to-shale gas shift in China's power sector in the near term. - Highlights: • The GHG and water footprints of coal- and shale gas-fired electricity are estimated. • A coal-to-shale gas shift can enable less GHG and water intensive power in China. • The GHG emissions of shale gas-fired combined cycle technology is 530 g CO 2 e/kWh. • The water consumption of shale gas-fired combustion turbine technology is 960 g/kWh. • Shale gas-fired power generation technologies selection should be regional-specific

  6. An overview of the political, technical and economical aspects of gas-fired distributed energy system in China

    International Nuclear Information System (INIS)

    Chen, Qiaohui; Wang, Weilong; Lu, Jianfeng; Ding, Jing

    2013-01-01

    The interest in distributed energy system has been increasing in China in recent years due to the environmental and energy policy concerns. The distributed energy system generates power, heating and cooling to residential, commercial and industrial facilities. Due to cascade utilization of energy, it can make good use of energy to improve energy efficiency and to increase energy savings. Furthermore, it consumes less energy and reduces carbon emissions. This paper reviews existing and newly-built gas-fired distributed energy projects in China. The techno-economic assessment of the selected projects has also been discussed and reported. The results show that in Xiamen Jimei DE project, the primary energy ratio of the DES can be as high as 92.9%, and energy-saving rate is 35.5%. Moreover, exergy efficiency reaches 54.3%, and the system can reduce 0.52 million tons of CO 2 annually. -- Highlights: ► The political, technical and economical aspects of gas-fired DES are analyzed. ► The techno-economic assessment of two selected projects is conducted. ► Primary energy ratio can be as high as 92.9% and energy-saving rate is 35.5%. ► Exergy efficiency is 54.3% and the system can reduce a large amount of CO 2 emissions

  7. Ensuring Reliable Natural Gas-Fired Generation with Fuel Contracts and Storage - DOE/NETL-2017/1816

    Energy Technology Data Exchange (ETDEWEB)

    Myles, Paul T. [National Energy Technology Lab. (NETL), Albany, OR (United States); Labarbara, Kirk A. [National Energy Technology Lab. (NETL), Albany, OR (United States); Logan, Cecilia Elise [National Energy Technology Lab. (NETL), Albany, OR (United States)

    2017-11-17

    This report finds that natural gas-fired power plants purchase fuel both on the spot market and through firm supply contracts; there do not appear to be clear drivers propelling power plants toward one or the other type. Most natural gas-fired power generators are located near major natural gas transmission pipelines, and most natural gas contracts are currently procured on the spot market. Although there is some regional variation in the type of contract used, a strong regional pattern does not emerge. Whether gas prices are higher with spot or firm contracts varies by both region and year. Natural gas prices that push the generators higher in the supply curve would make them less likely to dispatch. Most of the natural gas generators discussed in this report would be unlikely to enter firm contracts if the agreed price would decrease their dispatch frequency. The price points at which these generators would be unlikely to enter a firm contract depends upon the region that the generator is in, and how dependent that region is on natural gas. The Electric Reliability Council of Texas (ERCOT) is more dependent on natural gas than either Eastern Interconnection or Western Interconnection. This report shows that above-ground storage is prohibitively expensive with respect to providing storage for an extended operational fuel reserve comparable to the amount of on-site fuel storage used for coal-fired plants. Further, both pressurized and atmospheric tanks require a significant amount of land for storage, even to support one day’s operation at full output. Underground storage offers the only viable option for 30-day operational storage of natural gas, and that is limited by the location of suitable geologic formations and depleted fields.

  8. Development and demonstration of a gas-fired recuperative confined radiant burner (deliverable 42/43). Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-06-01

    The objective of the project was to develop and demonstrate an innovative, efficient, low-pollutant, recuperative gas-fired IR-system (infrared radiation) for industrial processes (hereafter referred to as the CONRAD-system). The CONRAD-system is confined, so flue gases from the combustion can be kept separated from the product. The gas/air mixture to the burner is preheated by means of the flue gas, which increases the radiant efficiency of the CONRAD-system significantly over traditional gas-fired IR burners. During the first phase of the project, the CONRAD-system was designed and developed. The conducted work included a survey on suitable burner materials, modelling of the burner system, basic design of burner construction, control etc., experimental characterisation of several preprototypes and detailed design of the internal heat exchanger in the burner. The result is a cost effective burner system with a documented radiant efficiency up to 66% and low emissions (NO{sub x} and CO) all in accordance with the criteria of success set up at the start of the project. In the second phase of the project, the burner system was established and tested in laboratory and in four selected industrial applications: 1) Drying of coatings on sand cores in the automotive industry. 2) Baking of bread/cake. 3) General purpose painting/powder curing process 4. Curing of powder paint on wood components. The results from the preliminary tests Overe used to optimise the CONRAD-system, before it was applied in the industrial processes and demonstrated. However, the optimised burners manufactured for demonstration suffered from different 'infant failures', which made the installation in an industrial environment very cumbersome, and even impossible in the food industry and the automotive industry. In the latter cases realistic laboratory tests Overe carried out and the established know how reported for use when the burner problems are overcome.(au)

  9. Operational experiences of (in)direct co-combustion in coal and gas fired power plants in Europe

    International Nuclear Information System (INIS)

    Van Ree, R.; Korbee, R.; Meijer, R.; Konings, T.; Van Aart, F.

    2001-02-01

    The operational experiences of direct and indirect co-combustion of biomass/waste in European coal and natural gas fired power plants are addressed. The operational experiences of mainly Dutch direct co-combustion activities in coal fired power plants are discussed; whereas an overview of European indirect co-combustion activities is presented. The technical, environmental, and economic feasibility of different indirect co-combustion concepts (i.e. upstream gasification, pyrolysis, combustion with steam-side integration) is investigated, and the results are compared with the economic preferable concept of direct co-combustion. Main technical constraints that limit the co-combustion capacity of biomass/waste in conventional coal fired power plants are: the grindability of the biomass/coal blend, the capacity of available unit components, and the danger of severe slagging, fouling, corrosion and erosion. The main environmental constraints that have to be taken into account are the quality of produced solid waste streams (fly ash, bottom ash, gypsum) and the applicable air emission regulations. 6 refs

  10. Advanced turbine systems program conceptual design and product development task 5 -- market study of the gas fired ATS. Topical report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    Solar Turbines Incorporated (Solar), in partnership with the Department of Energy, will develop a family of advanced gas turbine-based power systems (ATS) for widespread commercialization within the domestic and international industrial marketplace, and to the rapidly changing electric power generation industry. The objective of the jointly-funded Program is to introduce an ATS with high efficiency, and markedly reduced emissions levels, in high numbers as rapidly as possible following introduction. This Topical Report is submitted in response to the requirements outlined in Task 5 of the Department of Energy METC Contract on Advanced Combustion Systems, Contract No, DE AC21-93MC30246 (Contract), for a Market Study of the Gas Fired Advanced Turbine System. It presents a market study for the ATS proposed by Solar, and will examine both the economic and siting constraints of the ATS compared with competing systems in the various candidate markets. Also contained within this report is an examination and analysis of Solar`s ATS and its ability to compete in future utility and industrial markets, as well as factors affecting the marketability of the ATS.

  11. Modern technical solutions of gas-fired heating devices of household and communal use and analysis of their testing

    Energy Technology Data Exchange (ETDEWEB)

    Bodzon, L.; Radwan, W. [Oil Mining and Gas Engineering Institute, Cracow (Poland)

    1995-12-31

    A review of technical solutions for gas-fired heating devices for household and communal use in Poland is presented. Based upon the analysis it is stated that the power output of Polish and foreign boilers ranges between 9 and 35 kW. The carbon monoxide content in flue gases reaches (on average) 0.005 vol.%, i.e., it is much lower than the maximum permissible level. Temperature of flue gases (excluding condensation boilers and those with air-tight combustion chamber) ranges between 150 and 200{degrees}C and their heating efficiency reaches 87-93%. The best parameters are given for condensation boilers, however they are still not widespread in Poland for the high cost of the equipment and assembling works. Among the heaters, the most safe are convection devices with closed combustion chamber; their efficiency is also the highest. Thus, it is concluded that a wide spectrum of high efficiency heating devices with good combustion parameters are available. The range of output is sufficient to meet household and communal requirement. They are however - predominantly - units manufactured abroad. It is difficult to formulate the program aimed at the improvement of the technique of heating devices made in Poland, and its implementation is uncertain because the production process is broken up into small handicraft workshops.

  12. Valuing a gas-fired power plant: A comparison of ordinary linear models, regime-switching approaches, and models with stochastic volatility

    International Nuclear Information System (INIS)

    Heydari, Somayeh; Siddiqui, Afzal

    2010-01-01

    Energy prices are often highly volatile with unexpected spikes. Capturing these sudden spikes may lead to more informed decision-making in energy investments, such as valuing gas-fired power plants, than ignoring them. In this paper, non-linear regime-switching models and models with mean-reverting stochastic volatility are compared with ordinary linear models. The study is performed using UK electricity and natural gas daily spot prices and suggests that with the aim of valuing a gas-fired power plant with and without operational flexibility, non-linear models with stochastic volatility, specifically for logarithms of electricity prices, provide better out-of-sample forecasts than both linear models and regime-switching models.

  13. Analysis of an effective solution to excessive heat supply in a city primary heating network using gas-fired boilers for peak-load compensation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hai-Chao; Jiao, Wen-Ling; Zou, Ping-Hua; Liu, Jing-Cheng [School of Municipal and Environmental Engineering, Harbin Institute of Technology, mail box 2645, 202 Haihe Road, Nangang District, Harbin 150090 (China)

    2010-11-15

    Through investigation of the Dengfeng heating network in the city of Daqing, China, for the 2007-2008 heating season, we found serious problems of excessive heat supply in the primary heating network. Therefore, we propose the application of gas-fired boilers in underperforming heating substations as peak-load heat sources to effectively adapt to the regulation demands of seasonal heat-load fluctuations and reduce the excessive heat supply. First, we calculated the excessive heat supply rates (EHSRs) of five substations using detailed investigative data. We then discussed the feasibility of the proposed scheme providing energy savings from both energetic and exergetic points of view. The results showed that the average EHSR of the five substations between January and March was 20.57% of the gross heat production but consequently reduced to 6.24% with the installation of the gas-fired boilers. Therefore, the combined heating scheme with coal as the basic heat-source and gas-fired boilers as peak-load heat sources is energy-efficient to some extent, although requires the use of natural gas. Meanwhile, the exergy decreased by 10.97%, which indicates that the combined heating scheme effectively reduces the primary energy consumption and pollutant emission of the heating systems. (author)

  14. Mathematical models and qualities of shredded Thai-style instant rice under a combined gas-fired infrared and air convection drying

    Science.gov (United States)

    Nachaisin, Mali; Teeta, Suminya; Deejing, Konlayut; Pharanat, Wanida

    2017-09-01

    Instant food is a product produced for convenience for consumer. Qualities are an important attribute of food materials reflecting consumer acceptance. The most problem of instant rice is casehardening during drying process resulted in the longer rehydration time. The objective of this research was to study the qualities of shredded Thai-style instant rice under a combined gas-fired infrared and air convection drying. Additionally, the mathematical models for gas-fired infrared assisted thin-layer drying of shredded Thai-style rice for traditional was investigated. The thin-layer drying of shredded Thai-style rice was carried out under gas-fired infrared intensities of 1000W/m2, air temperatures of 70°C and air velocities of 1 m/s. The drying occurred in the falling rate of drying period. The Page model was found to satisfactorily describe the drying behavior of shredded Thai-style rice, providing the highest R2 (0.997) and the lowest MBE and RMSE (0.01 and 0.18) respectively. A 9 point hedonic test showed in softness and color, but odor and overall acceptance were very similar.

  15. Fossil fuel-fired power generation. Case studies of recently constructed coal- and gas-fired plants

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, C. [IEA Clean Coal Centre, London (United Kingdom)

    2007-10-23

    To meet future energy demand growth and replace older or inefficient units, a large number of fossil fuel-fired plants will be required to be built worldwide in the next decade. Yet CO{sub 2} emissions from fossil-fired power generation are a major contributor to climate change. As a result, new plants must be designed and operated at highest efficiency both to reduce CO{sub 2} emissions and to facilitate deployment of CO{sub 2} capture and storage in the future. The series of case studies in this report, which respond to a request to the IEA from the G8 Summit in July 2005, were conducted to illustrate what efficiency is achieved now in modern plants in different parts of the world using different grades of fossil fuels. The plants were selected from different geographical areas, because local factors influence attainable efficiency. The case studies include pulverized coal combustion (PCC) with both subcritical and supercritical (very high pressure and temperature) steam turbine cycles, a review of current and future applications of coal-fuelled integrated gasification combined cycle plants (IGCC), and a case study of a natural gas fired combined cycle plant to facilitate comparisons. The results of these analyses show that the technologies for high efficiency (low CO{sub 2} emission) and very low conventional pollutant emissions (particulates, SO{sub 2}, NOx) from fossil fuel-fired power generation are available now through PCC, IGCC or NGCC at commercially acceptable cost. This report contains comprehensive technical and indicative cost information for modern fossil fuel-fired plants that was previously unavailable. It serves as a valuable sourcebook for policy makers and technical decision makers contemplating decisions to build new fossil fuel-fired power generation plants.

  16. Development and evaluation of a new depressurization spillage test for residential gas-fired combustion appliances : final report

    International Nuclear Information System (INIS)

    Edwards, P.

    2005-07-01

    This paper presented a newly developed combustion depressurization spillage test for residential combustion appliances. The test uses carbon dioxide (CO 2 ) that is produced in the fuel combustion process as a tracer gas. The test accurately measures the amount of combustion spillage from residential combustion appliances and their venting systems when they operate at certain levels of depressurization. Seven commonly used gas-fired appliances were used to evaluate the new test as well as the appliances. These included 2 power-vented storage-tank water heaters, 1 mid-efficiency furnace, 2 high-efficiency condensing furnaces, and 2 direct-vent gas fireplaces. Tests were performed for each unit with the test room initially depressurized by 50 Pa compared with the pressure outside the room. If the combustion spillage exceeded 2 per cent, the test was repeated with the room depressurized by 20 Pa, and then by 5 Pa. Each appliance was operated for 5 minutes of burner operation during which time the burner fuel consumption, the concentration of CO 2 and the exhaust fan flow rate were monitored. Measurements were taken for 2 minutes following burner shut off. The amount of CO 2 that was released into the test room from the appliance and its venting system was determined from the measurements and then compared with the amount of CO 2 that would be produced by combustion of the fuel that was consumed during the test. The ratio of the 2 provided a direct measure of the combustion spillage of the appliance and its venting system. The study revealed that 3 products had undetectable levels of combustion spillage, 3 products had low, but measurable combustion spillage, and 1 product had significant combustion spillage. refs., tabs., figs

  17. Accounting for fuel price risk: Using forward natural gas prices instead of gas price forecasts to compare renewable to natural gas-fired generation

    Energy Technology Data Exchange (ETDEWEB)

    Bolinger, Mark; Wiser, Ryan; Golove, William

    2003-08-13

    Against the backdrop of increasingly volatile natural gas prices, renewable energy resources, which by their nature are immune to natural gas fuel price risk, provide a real economic benefit. Unlike many contracts for natural gas-fired generation, renewable generation is typically sold under fixed-price contracts. Assuming that electricity consumers value long-term price stability, a utility or other retail electricity supplier that is looking to expand its resource portfolio (or a policymaker interested in evaluating different resource options) should therefore compare the cost of fixed-price renewable generation to the hedged or guaranteed cost of new natural gas-fired generation, rather than to projected costs based on uncertain gas price forecasts. To do otherwise would be to compare apples to oranges: by their nature, renewable resources carry no natural gas fuel price risk, and if the market values that attribute, then the most appropriate comparison is to the hedged cost of natural gas-fired generation. Nonetheless, utilities and others often compare the costs of renewable to gas-fired generation using as their fuel price input long-term gas price forecasts that are inherently uncertain, rather than long-term natural gas forward prices that can actually be locked in. This practice raises the critical question of how these two price streams compare. If they are similar, then one might conclude that forecast-based modeling and planning exercises are in fact approximating an apples-to-apples comparison, and no further consideration is necessary. If, however, natural gas forward prices systematically differ from price forecasts, then the use of such forecasts in planning and modeling exercises will yield results that are biased in favor of either renewable (if forwards < forecasts) or natural gas-fired generation (if forwards > forecasts). In this report we compare the cost of hedging natural gas price risk through traditional gas-based hedging instruments (e

  18. Not locked-in? The overlooked impact of new gas-fired generation investment on long-term decarbonisation in the UK

    International Nuclear Information System (INIS)

    Chignell, Simon; Gross, Robert J.K.

    2013-01-01

    This paper contrasts the potential increase in gas-fired power generation in the UK in the period to 2020 with the ambitious decarbonisation goals set forth for this sector. An increase in Combined Cycle Gas Turbine (CCGT) capacity, in particular, only represents a threat to long-term decarbonisation if some ‘lock-in’ exists. It is against this background, and in the interest of challenging the perception of no significant lock-in to gas-fired generation, that this paper identifies investment lock-in as phenomenon of relevance to policy-makers. The paper determines both direct and indirect ways in which investment in significant new CCGT capacity could negatively impact on the likelihood of meeting decarbonisation goals through ‘locking-in’ the existing technological system. It also identifies that the technical lifetime, and not just the capital repayment period, of CCGT assets is relevant in understanding the strength of the lock-in. Finally, a regulatory structure that aligns with the long-term targets in place is identified as providing a clear signal for investors and asset owners that may reduce the risk of ‘investment lock-in’. - Highlights: ► The potential conflict between new CCGT and decarbonisation targets is examined. ► A form of ‘hysteretic lock-in’ associated with CCGT investment is identified. ► Potential effects of ‘lock-in’ from new CCGT investment in the UK are highlighted. ► The paper argues for a clear long-term regulatory structure for new CCGT generation.

  19. Technical, economic and environmental potential of co-firing of biomass in coal and natural gas fired power plants in the Netherlands

    International Nuclear Information System (INIS)

    Van Ree, R.; Korbee, R.; Eenkhoorn, S.; De Lange, T.; Groenendaal, B.

    2000-01-01

    In this paper the technical, economic, and environmental potential of co-firing of biomass in existing Dutch coal and natural gas fired power plants, and industrial combined-cycles (CC), is addressed. Main criteria that are considered are: the availability and contractibility of biomass for energy purposes; the (technical) operation of the conventional fossil fuel based processes may not be disturbed; the gaseous and liquid plant emissions have to comply to those applicable for power plants/CCs, the commercial applicability of the solid residues may not be negatively influenced; applicable additional biomass conversion technologies must be commercially available; the necessary additional investment costs must be acceptable from an economic point of view, and the co-firing option must result in a substantial CO 2 -emission reduction. The main result of the study described in the paper is the presentation of a clear and founded indication of the total co-firing potential of biomass in existing power plants and industrial CCs in the Netherlands. This potential is determined by considering both technical, economic, and environmental criteria. In spite of the fact that the co-firing potential for the specific Dutch situation is presented, the results of the criteria considered are more generally applicable, and therefore are also very interesting for potential co-firing initiatives outside of the Netherlands

  20. A Techno-Economic Assessment of Hybrid Cooling Systems for Coal- and Natural-Gas-Fired Power Plants with and without Carbon Capture and Storage.

    Science.gov (United States)

    Zhai, Haibo; Rubin, Edward S

    2016-04-05

    Advanced cooling systems can be deployed to enhance the resilience of thermoelectric power generation systems. This study developed and applied a new power plant modeling option for a hybrid cooling system at coal- or natural-gas-fired power plants with and without amine-based carbon capture and storage (CCS) systems. The results of the plant-level analyses show that the performance and cost of hybrid cooling systems are affected by a range of environmental, technical, and economic parameters. In general, when hot periods last the entire summer, the wet unit of a hybrid cooling system needs to share about 30% of the total plant cooling load in order to minimize the overall system cost. CCS deployment can lead to a significant increase in the water use of hybrid cooling systems, depending on the level of CO2 capture. Compared to wet cooling systems, widespread applications of hybrid cooling systems can substantially reduce water use in the electric power sector with only a moderate increase in the plant-level cost of electricity generation.

  1. Models for the location decision for a combined cycle power plant : basic principles for solving the decision problem of the choice of location for a feasibility study of gas-fired power plants

    OpenAIRE

    Krüger, Jan

    2015-01-01

    The present thesis deals with the foundations for solving the decision problem of site selection for a feasibility study of gas-fired power plants, based on realistic and practical statements, under a business approach. The analysis of different theories and the investigation of site-relevant decision criteria has illustrated the broad range of site-specific factors and criteria that are to be taken into account. On the basis of existing projects, in which site theories were analysed for vari...

  2. Techno-economic analysis of a coal-fired CHP based combined heating system with gas-fired boilers for peak load compensation

    International Nuclear Information System (INIS)

    Wang Haichao; Jiao Wenling; Lahdelma, Risto; Zou Pinghua

    2011-01-01

    Combined heat and power (CHP) plants dominate the heating market in China. With the ongoing energy structure reformation and increasing environmental concerns, we propose gas-fired boilers to be deployed in underperforming heating substations of heating networks for peak load compensation, in order to improve both energy efficiency and environmental sustainability. However, due to the relatively high price of gas, techno-economic analysis is required for evaluating different combined heating scenarios, characterized by basic heat load ratio (β). Therefore, we employ the dynamic economics and annual cost method to develop a techno-economic model for computing the net heating cost of the system, considering the current state of the art of cogeneration systems in China. The net heating cost is defined as the investment costs and operations costs of the system subtracted by revenues from power generation. We demonstrate the model in a real-life combined heating system of Daqing, China. The results show that the minimum net heating cost can be realized at β=0.75 with a cost reduction of 16.8% compared to coal heating alone. Since fuel cost is the dominating factor, sensitivity analyses on coal and gas prices are discussed subsequently. - Highlights: ► Combined heating systems comply with the energy structure reformation in China. ► We consider the current state of the art of cogeneration systems in China. ► Combined heating systems can be economically more feasible and sustainable. ► The net heating cost of a combined heating system is more sensitive to coal price. ► The optimal basic heat load ratio is more easily influenced by gas price.

  3. Stress relaxation in tempered glass caused by heat soak testing

    DEFF Research Database (Denmark)

    Schneider, Jens; Hilcken, Jonas; Aronen, Antti

    2016-01-01

    Heat soak testing of tempered glass is a thermal process required after the tempering process itself to bring glasses of commercial soda-lime-silica-glass to failure that are contaminated with nickel sulphide inclusions, diameter 50 mm to 500 mm typically. Thus, the tests avoid a so-called "spont...... of commercial soda-lime-silica glass, it causes stress relaxation in tempered glass and the fracture pattern of the glass changes accordingly, especially thin glasses are affected. Based on the Tool-Narayanaswamy-Model, this paper comprises the theoretical background of the stress...

  4. Comparison of LCA results of low temperature heat plant using electric heat pump, absorption heat pump and gas-fired boiler

    International Nuclear Information System (INIS)

    Nitkiewicz, Anna; Sekret, Robert

    2014-01-01

    Highlights: • Usage of geothermal heat pump can bring environmental benefits. • The lowest environmental impact for whole life cycle is obtained for absorption heat pump. • The value of heat pump COP has a significant influence on environmental impact. • In case of coal based power generation the damage to human health is significant. - Abstract: This study compares the life cycle impacts of three heating plant systems which differ in their source of energy and the type of system. The following heating systems are considered: electric water-water heat pump, absorption water-water heat pump and natural gas fired boiler. The heat source for heat pump systems is low temperature geothermal source with temperature below 20 °C and spontaneous outflow 24 m 3 /h. It is assumed that the heat pumps and boiler are working in monovalent system. The analysis was carried out for heat networks temperature characteristic at 50/40 °C which is changing with outdoor temperature during heating season. The environmental life cycle impact is evaluated within life cycle assessment methodological framework. The method used for life cycle assessment is eco-indicator ‘99. The functional unit is defined as heating plant system with given amount of heat to be delivered to meet local heat demand in assumed average season. The data describing heating plant system is derived from literature and energy analysis of these systems. The data describing the preceding life cycle phases: extraction of raw materials and fuels, production of heating devices and their transportation is taken from Ecoinvent 2.0 life cycle inventory database. The results were analyzed on three levels of indicators: single score indicator, damage category indicators and impact category indicator. The indicators were calculated for characterization, normalization and weighting phases as well. SimaPro 7.3.2 is the software used to model the systems’ life cycle. The study shows that heating plants using a low

  5. Research on the Improvement of a Natural Gas Fired Burner for the CHP Application in a Central Heating Boiler using Radiant Burner Technology

    Energy Technology Data Exchange (ETDEWEB)

    Bieleveld, T.

    2010-08-15

    These days, the reduction of CO2 emissions from combustion devices is one of the main priorities for each design improvement. For the domestic use of the central heating boiler, Microgen Engine Corporation produces free piston Stirling engines for the Combined Heat and Power (CHP) application in these central heating boilers (Dutch: 'HRe ketel'). With CHP, the generation of electricity and heat are combined to increase overall efficiency, as heat is generally a waste product from the combustion to electric generation process. In this application, the Stirling engine, which can be defined as an external combustion engine, is heated by a natural gas fired engine-burner and cooled by a coolant flow. The heat transfer into the engine is converted into mechanical work and a heat flux from the engine. The mechanical work is used to produce electricity via a linear alternator. Heat in the flue gasses from the engine-burner is reused in a secondary burner and condensing heat exchanger. The coolant flow from the engine, after passing the secondary burner, is used for heating purposes. The heat transfer from engine-burner to the Stirling engine is analyzed and via several motivations it is found that it is favorable to improve fuel to electric conversion efficiency, for which the heat transfer efficiency of the engine-burner to the Stirling engine should be improved, as the engine design is not to be altered. From an initially developed linear free piston Stirling engine model and measurements performed at Microgen Engine Corporation, St. Petersborough, (UK), the engine power demand and engine-burner performance are found. The results are used to visualize the current energy flows of the Stirling engine and engine burner subsystem. The heat transfer to the engine is analyzed to find possible heat transfer improvements. It is concluded that heat transfer from the engine-burner to the engine can be approved if the flue losses due to convective heat transfer are

  6. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    The biaxial flexural strength, Young's modulus, Vicker's microhardness and fracture toughness data for very thin, commercial, soda-lime-silica cover slip glass (diameter, D-18 mm, thickness, T-0 3 mm; T/D ≈ 0.02) are reported here. The ball on ring biaxial flexure tests were conducted at room temperature as a function of ...

  7. Multi-Function Gas Fired Heat Pump

    Energy Technology Data Exchange (ETDEWEB)

    Mehdizadeh Momen, Ayyoub [ORNL; Abu-Heiba, Ahmad [ORNL; Vineyard, Edward Allan [ORNL

    2015-11-01

    The aim of this project was to design a residential fuel fired heat pump and further improve efficiency in collaboration with an industry partner – Southwest Gas, the developer of the Nextaire commercial rooftop fuel-fired heat pump. Work started in late 2010. After extensive search for suitable engines, one manufactured by Marathon was selected. Several prototypes were designed and built over the following four years. Design changes were focused on lowering the cost of components and the cost of manufacturing. The design evolved to a final one that yielded the lowest cost. The final design also incorporates noise and vibration reduction measures that were verified to be effective through a customer survey. ETL certification is currently (as of November 2015) underway. Southwest Gas is currently in talks with GTI to reach an agreement through which GTI will assess the commercial viability and potential of the heat pump. Southwest Gas is searching for investors to manufacture the heat pump and introduce it to the market.

  8. Mechanical Properties of a High Lead Glass Used in the Mars Organic Molecule Analyzer

    Science.gov (United States)

    Salem, Jonathan A.; Smith, Nathan A.; Ersahin, Akif

    2015-01-01

    The elastic constants, strength, fracture toughness, slow crack growth parameters, and mirror constant of a high lead glass supplied as tubes and funnels were measured using ASTM International (formerly ASTM, American Society for Testing and Materials) methods and modifications thereof. The material exhibits lower Young's modulus and slow crack growth exponent as compared to soda-lime silica glass. Highly modified glasses exhibit lower fracture toughness and slow crack growth exponent than high purity glasses such as fused silica.

  9. Modernization of two gas-fired shaft annealing furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Barthof, G.; Porst, G.; Raczek, S.

    1986-04-01

    The objective was to modernize two existing shaft-type annealing furnaces used for the heat treatment of grey iron castings with the aim of reducing the consumption of gaseous fuel, minimize the formation of scale, decrease maintenance expense and apply more automatic control to the annealing process. This was to be achieved by an optimum combination of new types of construction materials and advanced firing and control equipment. The author describes the furnace in its condition prior to and after reconstruction. The operating results obtained after reconstruction were found to justify the costs incurred. The payback period is roughly one year.

  10. Gas-fired wind power and electric hydrogen

    NARCIS (Netherlands)

    Hemmes, K.

    2006-01-01

    In the seemingly endless discussions about the pros and cons of wind power even its advocates have to agree that though wind can fly, with offshore wind farms soon to become reality, this only exacerbates the problem of the winds changeability. Even now the major producers of electricity and power

  11. Optimization of burners in oxygen-gas fired glass furnace

    NARCIS (Netherlands)

    Kersbergen, M.J. van; Beerkens, R.G.C.; Sarmiento-Darkin, W.; Kobayashi, H.

    2012-01-01

    The energy efficiency performance, production stability and emissions of oxygen-fired glass furnaces are influenced by the type of burner, burner nozzle sizes, burner positions, burner settings, oxygen-gas ratios and the fuel distribution among all the burners. These parameters have been optimized

  12. Gas fired engines for power plants - innovations and efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Nylund, I. [Technology Division, Waertsilae (Finland)

    2001-07-01

    Waertsilae has recently introduced a range of completely new gas engines with their performance on record levels. High efficiency and low emission together with fuel and operation flexibility have been achieved. The progress is based on innovative engine design and advanced programmable control systems for fuel injection, combustion and the engine as a whole. The gas engine concept is particularly interesting for decentralised power production with fuel and/or power cycling. The Waertsilae 18V50DF dual fuel engine with a unit size of 17 MW will be a challenger also for bigger plants. (orig.)

  13. Gas-fired wind power and electric hydrogen

    OpenAIRE

    Hemmes, K.

    2006-01-01

    In the seemingly endless discussions about the pros and cons of wind power even its advocates have to agree that though wind can fly, with offshore wind farms soon to become reality, this only exacerbates the problem of the winds changeability. Even now the major producers of electricity and power grid companies foresee grave difficulties from the peaks and dips in supply of this green power source. Dr Kas Hemmes of the faculty of Systems Engineering, Policy Analysis, and Management at TU Del...

  14. 46 CFR 118.410 - Fixed gas fire extinguishing systems.

    Science.gov (United States)

    2010-10-01

    ... approved by the Commandant and protected from damage or accidental activation. A pull cable used to... outside against corrosion unless otherwise approved by the Commandant. Aluminum or other low melting... rotating electrical propulsion equipment a fixed carbon dioxide system must meet the following requirements...

  15. Activated Carbon Prepared in a Novel Gas Fired Static Bed ...

    African Journals Online (AJOL)

    Michael O. Mensah

    2015-12-02

    Dec 2, 2015 ... obtain a particle size range of 3.5 – 10 mm, which was washed with water and ... proximate analysis, determined as moisture content. 4.65 wt%, ash content .... which is the reciprocal of the intercept at zero time of plotting time ...

  16. PERFORMANCE ANALYSIS OF A GAS FIRED MICROTURBINE BASED COGENERATION SYSTEM

    OpenAIRE

    EDUARDO FERREIRA RAMOS

    2007-01-01

    Nesta dissertação foi feita uma simulação do desempenho de um sistema de cogeração, a partir de dados experimentais obtidos com uma microturbina a gás natural com 30 kW de potência nominal, operada no horário de ponta, e acoplada com uma unidade recuperadora de calor e um reservatório térmico para fornecimento de água quente de consumo nos chuveiros do Ginásio da PUC-Rio. Inicialmente, o desempenho do sistema de cogeração foi medido para várias condiç...

  17. 46 CFR 181.410 - Fixed gas fire extinguishing systems.

    Science.gov (United States)

    2010-10-01

    ... less than 170 cubic meters (6000 cubic feet), release of an extinguishing agent into a space must... unoccupied space of less than 170 cubic meters (6,000 cubic feet) may have the storage cylinders located... between 16,550 and 19,300 kPa (2,400 and 2,800 psi) must be installed in the distribution manifold to...

  18. Magnetic properties of Fe-Nd silica glass ceramics

    Science.gov (United States)

    Nayak, Manjunath T.; Desa, J. A. Erwin; Babu, P. D.

    2018-04-01

    Soda lime silica glass ceramics containing iron and neodymium have been synthesized. The XRD pattern revealed that the glass samples devitrified into multiple phases. Fe2O3 as an initial component converted into Fe3O4 in the sample during the synthesis, and was the main contributor to the magnetic property of the sample. The inclusion of Nd was found to enhance the magnetization of the sample at 5K. The coercivity of the sample increased with decrease in temperature from room to 5K.

  19. Glass Furnace Project, October 1982-March 1983

    International Nuclear Information System (INIS)

    Armstrong, K.M.; Klingler, L.M.

    1983-01-01

    In the Glass Furnace Project currently under way at Mound, a treatment technology for low-level radioactive waste is being evaluated that will combine volume reduction and immobilization in one step. Initial work focused on demonstrating the ability of the furnace to efficiently incinerate nonradioactive, simulated power-plant waste and on determining the adequacy of immobilization in a soda-lime silica matrix. Further evaluation of the system will involve a demonstration of the combustion and containment of radioactive waste. In preparation for this next phase of the program, preliminary investigation and design work were conducted during the past six months. 5 figures, 1 table

  20. The viscosity window of the silicate glass foam production

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng

    2017-01-01

    which can offer a practical starting point for the optimisation procedure. The melt viscosity might be the most important parameter for controlling the foaming process and the glass foam density. In this work, we attempt to define a viscosity range in which foaming of different glasses results...... in a maximum of foam expansion. The expansion maximum is obtained for different glasses (labware, E-glass, CRT panel, soda-lime-silica) by foaming with CaCO3 at isokom temperature and from literature data. In general, the viscosity window was found to be within 104–106 Pa s when foaming with MnO2 or metal...... carbonates (CaCO3, Na2CO3, MgCO3, SrCO3, dolomite) whereas SiC requires higher temperatures and correspondingly lower viscosities (103.3–104.0 Pa s). These findings can help assessing the implementation of new resources in the glass foam production....

  1. Mechanical properties of silicate glasses exposed to a low-Earth orbit

    Science.gov (United States)

    Wiedlocher, David E.; Tucker, Dennis S.; Nichols, Ron; Kinser, Donald L.

    1992-01-01

    The effects of a 5.8 year exposure to low earth orbit environment upon the mechanical properties of commercial optical fused silica, low iron soda-lime-silica, Pyrex 7740, Vycor 7913, BK-7, and the glass ceramic Zerodur were examined. Mechanical testing employed the ASTM-F-394 piston on 3-ball method in a liquid nitrogen environment. Samples were exposed on the Long Duration Exposure Facility (LDEF) in two locations. Impacts were observed on all specimens except Vycor. Weibull analysis as well as a standard statistical evaluation were conducted. The Weibull analysis revealed no differences between control samples and the two exposed samples. We thus concluded that radiation components of the Earth orbital environment did not degrade the mechanical strength of the samples examined within the limits of experimental error. The upper bound of strength degradation for meteorite impacted samples based upon statistical analysis and observation was 50 percent.

  2. Vitrification of F006 plating waste sludge by Reactive Additive Stabilization Process (RASP)

    International Nuclear Information System (INIS)

    Martin, H.L.; Jantzen, C.M.; Pickett, J.B.

    1994-01-01

    Solidification into glass of nickel-on-uranium plating wastewater treatment plant sludge (F006 Mixed Waste) has been demonstrated at the Savannah River She (SRS). Vitrification using high surface area additives, the Reactive Additive Stabilization Process (RASP), greatly enhanced the solubility and retention of heavy metals In glass. The bench-scale tests using RASP achieved 76 wt% waste loading In both soda-lime-silica and borosilicate glasses. The RASP has been Independently verified by a commercial waste management company, and a contract awarded to vitrify the approximately 500,000 gallons of stored waste sludge. The waste volume reduction of 89% will greatly reduce the disposal costs, and delisting of the glass waste is anticipated. This will be the world's first commercial-scale vitrification system used for environmental cleanup of Mixed Waste. Its stabilization and volume reduction abilities are expected to set standards for the future of the waste management Industry

  3. Investigation of the mechanical properties of silica glasses by indentation tests

    Energy Technology Data Exchange (ETDEWEB)

    Juhasz, A. (Inst. for General Physics, Lorand Eoetvoes Univ., Budapest (Hungary)); Voeroes, G. (Inst. for General Physics, Lorand Eoetvoes Univ., Budapest (Hungary)); Tasnadi, P. (Inst. for General Physics, Lorand Eoetvoes Univ., Budapest (Hungary)); Kovacs, I. (Inst. for General Physics, Lorand Eoetvoes Univ., Budapest (Hungary)); Somogyi, I. (Inst. for General Physics, Lorand Eoetvoes Univ., Budapest (Hungary) Brody Research Center, G.E. Tungsram, Budapest (Hungary)); Szoellosi, J. (Inst. for General Physics, Lorand Eoetvoes Univ., Budapest (Hungary) Brody Research Center, G.E. Tungsram, Budapest (Hungary))

    1993-11-01

    Soda lime silica glasses were investigated by continuous indentation tests. The load indentation depth curves were taken during the loading as well as the unloading period by a computer controlled MTS machine. It was found that the loading force is a quadratic function of the indentation depth during both the loading and unloading stage of the deformation. The validity of the quadratic relationship in the case of the unloading stage seems to be characteristic only for glasses. Taking into account the elastic relaxation of the indentation depth an estimation is given for the size of the hydrostatic core which is necessary to symmetrize the stress field around the indenter. Using the measured length of the radial cracks started from the corners of the Vickers indentation pattern the K[sub IC] values were calculated. (orig.).

  4. Bioactivity studies on TiO{sub 2}-bearing Na{sub 2}O–CaO–SiO{sub 2}–B{sub 2}O{sub 3} glasses

    Energy Technology Data Exchange (ETDEWEB)

    Jagan Mohini, G. [Department of Physics, Andhra Loyola College, Vijayawada 520 008, Andhra Pradesh (India); Department of Physics, Acharya Nagarjuna University, Nagarjuna Nagar 522 510, A.P. (India); Sahaya Baskaran, G. [Department of Physics, Andhra Loyola College, Vijayawada 520 008, Andhra Pradesh (India); Ravi Kumar, V. [Department of Physics, Acharya Nagarjuna University, Nagarjuna Nagar 522 510, A.P. (India); Piasecki, M. [Institute of Physics, J. Dlugosz University, Al. Armii Krajowej 13/15, Czestochowa (Poland); Veeraiah, N., E-mail: nvr8@rediffmail.com [Department of Physics, Acharya Nagarjuna University, Nagarjuna Nagar 522 510, A.P. (India)

    2015-12-01

    Soda lime silica borate glasses mixed with different concentrations of TiO{sub 2} are synthesized by the melt-quenching technique. As a part of study on bioactivity of these glasses, the samples were immersed in simulated body fluid (SBF) solution for prolonged times (~ 21 days) during which weight loss along with pH measurements is carried out at specific intervals of time. The XRD and SEM analyses of post-immersed samples confirm the formation of crystalline hydroxyapatite layer (HA) on the surface of the samples. To assess the role of TiO{sub 2} on the formation of HA layer and degradability of the samples the spectroscopic studies viz. optical absorption and IR spectral studies on post- and pre-immersed samples have been carried out. The analysis of the results of degradability together with spectroscopic studies as a function of TiO{sub 2} concentration indicated that about 6.0 mol% of TiO{sub 2} is the optimal concentration for achieving better bioactivity of these glasses. The presence of the maximal concentration octahedral titanium ions in this glass that facilitates the formation of HA layer is found to be the reason for such a higher bioactivity. - Highlights: • Soda lime silica borate glasses mixed with TiO{sub 2} are synthesized. • Bioactivity of the glasses is studied by immersing them in SBF solution. • XRD and SEM studies indicated the formation of hydroxyapatite layer on the surface. • Quantum of degradability is the highest in the glasses mixed with 6.0 mol% of TiO{sub 2.} • The results are analyzed using IR and optical absorption studies.

  5. Bioactivity studies on TiO2-bearing Na2O–CaO–SiO2–B2O3 glasses

    International Nuclear Information System (INIS)

    Jagan Mohini, G.; Sahaya Baskaran, G.; Ravi Kumar, V.; Piasecki, M.; Veeraiah, N.

    2015-01-01

    Soda lime silica borate glasses mixed with different concentrations of TiO 2 are synthesized by the melt-quenching technique. As a part of study on bioactivity of these glasses, the samples were immersed in simulated body fluid (SBF) solution for prolonged times (~ 21 days) during which weight loss along with pH measurements is carried out at specific intervals of time. The XRD and SEM analyses of post-immersed samples confirm the formation of crystalline hydroxyapatite layer (HA) on the surface of the samples. To assess the role of TiO 2 on the formation of HA layer and degradability of the samples the spectroscopic studies viz. optical absorption and IR spectral studies on post- and pre-immersed samples have been carried out. The analysis of the results of degradability together with spectroscopic studies as a function of TiO 2 concentration indicated that about 6.0 mol% of TiO 2 is the optimal concentration for achieving better bioactivity of these glasses. The presence of the maximal concentration octahedral titanium ions in this glass that facilitates the formation of HA layer is found to be the reason for such a higher bioactivity. - Highlights: • Soda lime silica borate glasses mixed with TiO 2 are synthesized. • Bioactivity of the glasses is studied by immersing them in SBF solution. • XRD and SEM studies indicated the formation of hydroxyapatite layer on the surface. • Quantum of degradability is the highest in the glasses mixed with 6.0 mol% of TiO 2. • The results are analyzed using IR and optical absorption studies

  6. Modelling of nitrogen oxides distribution in the hearth of gas-fired industrial furnace

    Science.gov (United States)

    Zhubrin, S.; Glazov, V.; Guzhov, S.

    2017-11-01

    A model is proposed for calculating the formation and transportation of nitrogen oxides in the combustion chamber of an industrial furnace heated by gaseous fuels burning. The calculations use a three-dimensional stationary description of turbulent flow and mixing of fuel and oxidizer flows in the presence of heat transfer, mass transfer, and momentum between them transfer. Simulation of the spatial pattern of nitrogen oxides formation in the working space of the furnace is performed in the programming and computing suite SCAN. It is shown that the temperature non-uniformity over the hearth surface is not too pronounced due to the organization of the inclined flow inlet in the direction of the hearth, which is a desirable feature of the furnace operation. The highest concentration of combustion products is observed in the zone of maximum temperatures. In addition, the existence of two zones of the highest generation of oxides has been determined. The first zone is located approximately in the center of the hearth, and the second is located on the far external surface of the furnace. The possibility of using the developed model in the SCAN complex for carrying out parametric studies and engineering calculations, as well as for modification in the direction of adjusting and adapting the model to the regime-constructive features of specific energy technological devices, is noted.

  7. Identifying and implementing gas-fired private power projects in Asia

    International Nuclear Information System (INIS)

    Mark, R.P.

    1993-01-01

    The approach to emerging energy markets in Asia of Enron, one of the major independent producers and developers of natural gas, is described. The interest of the company has been stimulated both by the availability of gas resources in Asia and the interest shown in many countries in using natural gas as a fuel for power generation. Possibilities for development are being created by plans for major new pipelines from Russia and the central Asian states and the availability of liquefied natural gas. (UK)

  8. Engineering model for intumescent coating behavior in a pilot-scale gas-fired furnace

    DEFF Research Database (Denmark)

    Nørgaard, Kristian Petersen; Dam-Johansen, Kim; Català, Pere

    2016-01-01

    placed behind the substrate. A mathematical model, describing the intumescent coating behavior and temperatures in the furnace using a single overall reaction was developed and validated against experimental data. By including a decomposition front movement through the char, a good qualitative agreement...... was obtained. After further validation against experiments with other coating formulations, it has potential to become a practical engineering tool. This article is protected by copyright. All rights reserved....

  9. Cogeneration with natural gas fired internal combustion engines: Italian utility's 10 years operating experience

    International Nuclear Information System (INIS)

    Montermini, G.P.

    1992-01-01

    This paper describes the experience that AGAC, an Italian gas and water utility, has acquired in the operation of a 116 Km long district heating network serving about 40,000 inhabitants. The network is powered by a mix of methane fuelled Otto and diesel cycle engines, coal fired fluidized bed boilers, and methane fired boilers producing annually about 153,000 kW of thermal energy, 2,300 kW of cooling energy, and 28.8 million kWh of electric power. This paper reports on the performance of this system in terms of production and sales trends, equipment efficiency and compatibility with new European Communities air pollution standards

  10. Grid integration policies of gas-fired cogeneration in Peninsular Malaysia: Fallacies and counterexamples

    Energy Technology Data Exchange (ETDEWEB)

    Shaaban, M., E-mail: m.shaaban@fke.utm.my [Centre of Electrical Energy Systems, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru (Malaysia); Azit, A.H. [Tenaga Nasional Berhad, Wisma TNB, Jalan Timur, 46200 Petaling Jaya, Selangor (Malaysia); Nor, K.M. [Centre of Electrical Energy Systems, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru (Malaysia)

    2011-09-15

    Despite the abundance of natural gas reserves in Malaysia coupled with serious government thrusts to promote cogeneration, its (cogeneration) development pace lags far off expectations. There are widespread fallacies among potential cogeneration developers and concerned professionals that cogeneration is uncompetitive in Malaysia due to existing policies of subsidized gas prices and grid-connection charges. This paper exposes these fallacies through counterexamples of practical cogeneration system design and evaluation of some segments of the industrial and service sectors in Peninsular Malaysia. The electrical and thermal characteristics of the cogeneration were modeled based on heat rate characteristics at partial loading patterns. A hierarchical mathematical programming approach that uses mixed-integer nonlinear optimization and dynamic programming principle, if necessary, is employed to determine the optimal size of cogeneration and its related auxiliary equipment as well as the optimal operation schedule. Financial assessment is integrated at a later stage to assess the economic viability of the system. Analyses of the cogeneration potential for several facilities of miscellaneous activities were carried out using various gas and electricity prices. Results obtained consistently rebuff the perpetuated fallacies and confirm that there is no real barrier to cogeneration development in Malaysia under current policies of gas prices and electricity tariffs. - Highlights: > Mixed-integer nonlinear programming and dynamic programming are used in the design. > Various loading levels are modeled and hourly operation schedule is determined. > Standby electricity charge has a minimal impact on cogeneration feasibility. > Gas and electricity prices are interrelated and affect cogeneration investment. > Under existing policies, there is no barrier to cogeneration adoption in Malaysia.

  11. The development of an ultra-low-emission gas-fired combustor for space heaters

    International Nuclear Information System (INIS)

    Xiong, Tian-yu; Khinkis, M.J.; Coppin, W.P.

    1991-01-01

    An ultra-low-emission as-fired combustor has been developed for relatively low-temperature direct-air heating applications. High-lean premixed cyclonic combustion with a flame stabilizer is employed to achieve ultra-low emissions and high turndown operation. On the basis of analytical studies and cold modeling a 350-kW test combustor was designed and successfully tested. Experimental results obtained using natural gas and ambient air demonstrated that the test combustor can operate steadily at high excess air up to 80% to 100% over a large turndown range up to 40:1. At design operating conditions, NO x emissions as low as 0.6 vppm and CO and total hydrocarbon (THC) emissions below 3 vppm were achieved. Over the full operating range, NO x emissions from 0.3 to 1.0 vppm and CO and THC emissions below 4 vppm were demonstrated. In all tests, concentrations of NO 2 were less than 40% of the total NO 2 emissions from combustion processes required for good indoor air quality (0.5 vppm). This paper presents the concept of high-lean premixed ultra-low-emission cyclonic combustion, design specifications for the combustion system, and the major experimental results, including flame stability, emissions, and turndown performance. 15 refs., 10 figs., 1 tab

  12. Study on the supercritical CO2 power cycles for landfill gas firing gas turbine bottoming cycle

    International Nuclear Information System (INIS)

    Kim, Min Seok; Ahn, Yoonhan; Kim, Beomjoo; Lee, Jeong Ik

    2016-01-01

    In this paper, a comparison of nine supercritical carbon dioxide (S-CO 2 ) bottoming power cycles in conjunction with a topping cycle of landfill gas (LFG) fired 5MWe gas turbine is presented. For the comparison purpose, a sensitivity study of the cycle design parameters for nine different cycles was conducted and each cycle thermodynamic performance is evaluated. In addition, the cycle performance evaluation dependency on the compressor inlet temperature variation is performed to investigate how S-CO 2 cycles sensitive to the heat sink temperature variation. Furthermore, the development of new S-CO 2 cycle layouts is reported and the suggested cycles' performances are compared to the existing cycle layouts. It was found that a recompression cycle is not suitable for the bottoming cycle application, but a partial heating cycle has relatively higher net produced work with a simple layout and small number of components. Although a dual heated and flow split cycle has the highest net produced work, it has disadvantages of having numerous components and complex process which requires more sophisticated operational strategies. This study identified that the recuperation process is much more important than the intercooling process to the S-CO 2 cycle design for increasing the thermal efficiency and the net produced work point of view. - Highlights: • Study of nine S-CO 2 power cycle layouts for a small scale landfill gas power generation application. • Development of new S-CO 2 cycle layouts. • Sensitivity analysis of S-CO 2 cycles to evaluate and compare nine cycles' performances.

  13. Grid integration policies of gas-fired cogeneration in Peninsular Malaysia: Fallacies and counterexamples

    International Nuclear Information System (INIS)

    Shaaban, M.; Azit, A.H.; Nor, K.M.

    2011-01-01

    Despite the abundance of natural gas reserves in Malaysia coupled with serious government thrusts to promote cogeneration, its (cogeneration) development pace lags far off expectations. There are widespread fallacies among potential cogeneration developers and concerned professionals that cogeneration is uncompetitive in Malaysia due to existing policies of subsidized gas prices and grid-connection charges. This paper exposes these fallacies through counterexamples of practical cogeneration system design and evaluation of some segments of the industrial and service sectors in Peninsular Malaysia. The electrical and thermal characteristics of the cogeneration were modeled based on heat rate characteristics at partial loading patterns. A hierarchical mathematical programming approach that uses mixed-integer nonlinear optimization and dynamic programming principle, if necessary, is employed to determine the optimal size of cogeneration and its related auxiliary equipment as well as the optimal operation schedule. Financial assessment is integrated at a later stage to assess the economic viability of the system. Analyses of the cogeneration potential for several facilities of miscellaneous activities were carried out using various gas and electricity prices. Results obtained consistently rebuff the perpetuated fallacies and confirm that there is no real barrier to cogeneration development in Malaysia under current policies of gas prices and electricity tariffs. - Highlights: → Mixed-integer nonlinear programming and dynamic programming are used in the design. → Various loading levels are modeled and hourly operation schedule is determined. → Standby electricity charge has a minimal impact on cogeneration feasibility. → Gas and electricity prices are interrelated and affect cogeneration investment. → Under existing policies, there is no barrier to cogeneration adoption in Malaysia.

  14. Flue gas emissions from gas-fired cogeneration units <25 MWe

    International Nuclear Information System (INIS)

    Nielsen, M.; Wit, J. de

    1997-01-01

    A total of 900 MW e gas driven combined heat and power (CHP) has now been established in Denmark based on gas engines and gas turbine units less than 25 MW e each. Of the 900 MW e approx. 750 MW e are based on gas engines. Biogas is used as fuel for some 32 MW e of these. Emission limits for NO x and CO are 650 mg/nm 3 (ref. 5% O 2 and electrical efficiency 30% LCV). There is at present no limit for unburned hydrocarbons (UHC) for gas engines or gas turbines. The average emission of unburned hydrocarbons for the Danish gas engine driven CHP units is equal to approx. 3,5% of the fuel used. It is the target of this report to provide the basis for evaluating the planned UHC limit and possible adjustments of the present limit for NO x emission. The average NO x emission from gas turbines slightly exceeds the NO x emission from gas engines. This is due to a number of older gas turbines. Modern gas turbines can achieve significantly lower NO x emission compared to engines. The NO x emission from biogas driven engines is significantly higher than that of natural gas driven units. This is mainly due to NO x -unfavourable engine settings and the use of older units, as there are no legislation concerning NO x emission for the majority of these biogas driven units. The emission of CO and UHC is lower from gas turbines than from gas engines. The NO x emission can be reduced by SCR Catalyst systems. In Denmark 3 gas engine installations use this commercially available technology. Oxidation catalyst for UHC reduction at modern gas engine installations has proven relatively unsuccesful in Denmark until now. Only limited reductions are achieved and many catalysts are toxificated in less than 100 hours of operation. However, long-term field testing of promising UHC reducing catalysts is now being made. UHC reduction by incineration is at the prototype stage. No such plant has yet been set up in Denmark. (Abstract Truncated)

  15. Gas fired boilers: Perspective for near future fuel composition and impact on burner design process

    Science.gov (United States)

    Schiro, Fabio; Stoppato, Anna; Benato, Alberto

    2017-11-01

    The advancements on gas boiler technology run in parallel with the growth of renewable energy production. The renewable production will impact on the fuel gas quality, since the gas grid will face an increasing injection of alternative fuels (biogas, biomethane, hydrogen). Biogas allows producing energy with a lower CO2 impact; hydrogen production by electrolysis can mitigate the issues related to the mismatch between energy production by renewable and energy request. These technologies will contribute to achieve the renewable production targets, but the impact on whole fuel gas production-to-consumption chain must be evaluated. In the first part of this study, the Authors present the future scenario of the grid gas composition and the implications on gas fed appliances. Given that the widely used premixed burners are currently designed mainly by trial and error, a broader fuel gas quality range means an additional hitch on this design process. A better understanding and structuring of this process is helpful for future appliance-oriented developments. The Authors present an experimental activity on a premixed condensing boiler setup. A test protocol highlighting the burners' flexibility in terms of mixture composition is adopted and the system fuel flexibility is characterized around multiple reference conditions.

  16. Advanced exergoenvironmental assessment of a natural gas-fired electricity generating facility

    International Nuclear Information System (INIS)

    Açıkkalp, Emin; Aras, Haydar; Hepbasli, Arif

    2014-01-01

    Highlights: • Advanced exergoenvironmental analysis was conducted for an electricity generating facility. • Exergy destructions and environmental effects were divided into parts. • Environmental relations between the components were determined. • Environmental improvement strategies of the system were determined. - Abstract: This paper presents conventional and advanced exergoenvironmental analyses of an electricity generation facility located in the Eskisehir Industry Estate Zone, Turkey. This facility consists of gas turbine and steam cycles, which generate electrical power of approximately 37 MW and 18 MW, respectively. Exergy efficiency of the system is 0.402 and exergy destruction rate of the system is 78.242 MW. Unit exergy cost of electrical power generated by the system is 25.66 $/GJ and total exergoeconomic factor of the system is 0.279. Conventional exergy analysis method was applied to the system first. Next, exergy environmental impacts of exergy destruction rate within the facility’s components were divided into four parts generally, as endogenous, exogenous, avoidable and unavoidable environmental impact of exergy destruction rate. Through this analysis, improvement potential of the environmental impacts of the components and the overall system and the environmental relations between the components were then determined. Finally, exergoenvironmental factor was determined as 0.277 and environmental impact of the electricity was 8.472 (Pts/h). The system has 33% development potential for environmental impacts while its components have weak relations because of big endogenous parts of environmental impacts (80%). It may be concluded that advanced exergoenvironmental analysis indicated that priority should be given to the GT and CC, while defining the improvement strategies

  17. Forced and self-excited oscillations in a natural gas fired lean premixed combustor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Daesik; Park, Sung Wook

    2010-11-15

    An experimental study of the flame response in a premixed gas turbine combustor has been conducted at room temperature and under atmospheric pressure inlet conditions using natural gas. The fuel is premixed with the air upstream of a choked inlet to avoid equivalence ratio fluctuations. Therefore the observed flame response is only the result of the imposed velocity fluctuations, which are produced using a variable-speed siren. Also, a variable length combustor is designed for investigating characteristics of self-excited instabilities. Measurements are made of the velocity fluctuation in the mixing section using hot wire anemometry and of the heat release fluctuation in the combustor using chemiluminescence emission. The results are analyzed to determine the phase and gain of the flame transfer function. The results show that the gain of flame transfer function is closely associated both with inlet flow forcing conditions such as frequency and amplitude of modulation as well as the operating conditions such as equivalence ratio. In order to predict the operating conditions where the combustor goes stable or unstable at given combustor and nozzle designs, time-lag analysis was tried using convection time delay measured from the phase information of the transfer function. The model prediction was in very good agreement with the self-excited instability measurement. However, spatial heat release distribution became more significant in long flames than in short flames and also had an important influence on the system damping procedure. (author)

  18. Understanding the life cycle surface land requirements of natural gas-fired electricity

    Science.gov (United States)

    Jordaan, Sarah M.; Heath, Garvin A.; Macknick, Jordan; Bush, Brian W.; Mohammadi, Ehsan; Ben-Horin, Dan; Urrea, Victoria; Marceau, Danielle

    2017-10-01

    The surface land use of fossil fuel acquisition and utilization has not been well characterized, inhibiting consistent comparisons of different electricity generation technologies. Here we present a method for robust estimation of the life cycle land use of electricity generated from natural gas through a case study that includes inventories of infrastructure, satellite imagery and well-level production. Approximately 500 sites in the Barnett Shale of Texas were sampled across five life cycle stages (production, gathering, processing, transmission and power generation). Total land use (0.62 m2 MWh-1, 95% confidence intervals ±0.01 m2 MWh-1) was dominated by midstream infrastructure, particularly pipelines (74%). Our results were sensitive to power plant heat rate (85-190% of the base case), facility lifetime (89-169%), number of wells per site (16-100%), well lifetime (92-154%) and pipeline right of way (58-142%). When replicated for other gas-producing regions and different fuels, our approach offers a route to enable empirically grounded comparisons of the land footprint of energy choices.

  19. Regional impacts of expanding gas-fired electric generation in the northeast US and eastern Canada

    International Nuclear Information System (INIS)

    Mitchell, G.

    2002-01-01

    New York, New England, Ontario, Quebec and Canada's Maritime provinces come under the jurisdiction of the Northeast Power Coordinating Committee (NPCC) of the North American Electric Reliability Council (NERC). The objective of this Council is to assist with the coordination of electric supply, as well as transmission planning and reliability for the utilities. The annual ten year forecast of electric supply, demand and fuel sources produced by the NERC formed the basis for the data presented. The deregulation of the electricity market in a few jurisdictions in the region resulted in the break-up of several electric utilities into their core components, namely, generation, distribution and transmission. The generation sector is where the fastest break-up activity is taking place, and merchant energy companies are emerging. Each of these merchant energy companies is competing against the other to effect sales into the wholesale power market through the building of at risk generation plants. The deregulation process is subjected to different processes and time tables depending on each state or province regulations. The construction of new power plants in the region is being driven by the merchant energy companies. They are building low capital cost and highly efficient natural gas combined-cycle base load plants as well as lower cost and moderately efficient natural gas/oil-fired simple-cycle peaking plants. This activity is mainly restricted to the United States, since hydroelectric power, coal and nuclear power are the main presence in Canada. New England experiences summer peaks while Canada has winter peak electric demand. To optimize intra-regional peak generation capacity sharing, there is an opportunity for the electric industry to move gas by wire, and a number of projects are being developed. It is expected that pipeline expansion will be lower in Quebec and Ontario and result in more capacity expansions from the Maritimes combined with intra-regional expansion in the United states Northeast. 13 figs

  20. Howden-Microcoal system for the conversion of industrial oil or gas fired boilers

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, J

    1985-01-01

    The technical and economic aspects of the conversion of an industrial boiler designed for oil firing at Courtaulds plc Greenfield site in North Wales to Howden-Microcoal firing are discussed. The production of Howden-Micro coal (an ultrafine or 'micronised' coal) is described and the Howden-Microcoal processor is compared with other fluid energy and mechanical mills. A typical boiler installation and modifications required for conversion to Howden-Microcoal firing are presented along with the main results of the Courtauld's tests. Cost, conversion time and the effect on average steam generation costs are considered.

  1. Assessment of solar-assisted gas-fired heat pump systems

    Science.gov (United States)

    Lansing, F. L.

    1981-01-01

    As a possible application for the Goldstone Energy Project, the performance of a 10 ton heat pump unit using a hybrid solar gas energy source was evaluated in an effort to optimize the solar collector size. The heat pump system is designed to provide all the cooling and/or heating requirements of a selected office building. The system performance is to be augmented in the heating mode by utilizing the waste heat from the power cycle. A simplified system analysis is described to assess and compute interrrelationships of the engine, heat pump, and solar and building performance parameters, and to optimize the solar concentrator/building area ratio for a minimum total system cost. In addition, four alternative heating cooling systems, commonly used for building comfort, are described; their costs are compared, and are found to be less competitive with the gas solar heat pump system at the projected solar equipment costs.

  2. Development of a gas fired Vuilleumier heat pump for residential heating

    DEFF Research Database (Denmark)

    Carlsen, Henrik

    1989-01-01

    A natural gas-driven heat pump based on the Vuilleumier principle has been developed for use in single-family houses. The pump has a heat output of 7.5 kW at a coefficient of performance of 1.62 based on the lower heat content of the gas fuel. The heat pump uses helium as working fluid at 20 MPa...... mean pressure, and it is designed as a semihermetic unit. A crank mechanism distinguished by very small loads on the piston rings was developed. The advantages and disadvantages of the Vuilleumier principle for heat-driven heat pumps are discussed. Results of the extensive experimental work...... are presented. A new 20 kW Vuilleumier heat pump is briefly described...

  3. Gas fired boilers: Perspective for near future fuel composition and impact on burner design process

    Directory of Open Access Journals (Sweden)

    Schiro Fabio

    2017-01-01

    Full Text Available The advancements on gas boiler technology run in parallel with the growth of renewable energy production. The renewable production will impact on the fuel gas quality, since the gas grid will face an increasing injection of alternative fuels (biogas, biomethane, hydrogen. Biogas allows producing energy with a lower CO2 impact; hydrogen production by electrolysis can mitigate the issues related to the mismatch between energy production by renewable and energy request. These technologies will contribute to achieve the renewable production targets, but the impact on whole fuel gas production-to-consumption chain must be evaluated. In the first part of this study, the Authors present the future scenario of the grid gas composition and the implications on gas fed appliances. Given that the widely used premixed burners are currently designed mainly by trial and error, a broader fuel gas quality range means an additional hitch on this design process. A better understanding and structuring of this process is helpful for future appliance-oriented developments. The Authors present an experimental activity on a premixed condensing boiler setup. A test protocol highlighting the burners' flexibility in terms of mixture composition is adopted and the system fuel flexibility is characterized around multiple reference conditions.

  4. Gas fired boilers: Perspective for near future fuel composition and impact on burner design process

    OpenAIRE

    Schiro Fabio; Stoppato Anna; Benato Alberto

    2017-01-01

    The advancements on gas boiler technology run in parallel with the growth of renewable energy production. The renewable production will impact on the fuel gas quality, since the gas grid will face an increasing injection of alternative fuels (biogas, biomethane, hydrogen). Biogas allows producing energy with a lower CO2 impact; hydrogen production by electrolysis can mitigate the issues related to the mismatch between energy production by renewable and energy request. These technologies will ...

  5. Using a gas-fired heat pump for heating and cooling in an office building

    Energy Technology Data Exchange (ETDEWEB)

    Bergmann, E [Westfaelische Ferngas-A.G., Dortmund (Germany, F.R.)

    1979-01-01

    Within the frame of the efforts made for a rational energy application by using new technologies, especially the long-known concept of heat pumps was prepared for heat production in swimming pools, sport centers, and buildings. Motivated by these activities, this technology was used, with additional heat recovery, for air-conditioning an administration building. After investigating various supply systems, an energy concept was processed with the aim to optimize the relation of the building costs to the operational costs of the air-condition, ventilation,- and heating systems.

  6. Socio economic analysis of environmental optimisation of natural gas fired engines

    Energy Technology Data Exchange (ETDEWEB)

    Joergensen, Sisse Liv; Moeller, F.

    2011-02-15

    This report analyses budget and welfare costs associated with changing settings in a gas engine. The purpose is to analyse what it will cost the plant owner and society if one would change the engine settings in order to obtain lower NO{sub x} emissions. The plant owner will loose while society will gain wealth when aiming for lower NO{sub x} emissions. The loss for the plant owner is primary caused by taxes while the gain for society is caused by less health expenses. The report also analyses if placement have any effect for society; however, since the population density does not differ very much across Denmark this does not have any mayor effect. (Author)

  7. Landfill gas-fired power plant pays cost of operating landfill

    International Nuclear Information System (INIS)

    Wallace, I.P.

    1991-01-01

    This paper reports on recovery of energy from refuse that has become increasingly attractive in the past decade. The continuing urbanization of our society has created major challenges in the disposal of our waste products. Because of public concern over the potential presence of toxins, and for other environmental reasons, management and regulation of active and inactive landfills have become much more stringent and costly. Palos Verdes landfill, owned jointly by the Los Angeles County Sanitation Districts and Los Angeles County, is located about three miles from the Pacific Ocean in the city of Rolling Hills Estates, Calif. The landfill was closed in 1980. The garbage was covered with six to eight feet of soil, and the area was landscaped. Part of this area has already been developed as the South Coast Botanical Gardens and Ernie Howlett Park. The remainder is scheduled to become a golf course. As refuse decays within a landfill, the natural anaerobic biological reaction generates a low-Btu methane gas along with carbon dioxide, known as landfill gas (LFG). The gas also contains other less desirable trace components generated by the decomposing garbage. Uncontrolled, these gases migrate to the surface and escape into the atmosphere where they generate environmental problems, including objectionable odors. The Sanitation Districts have installed a matrix of gas wells and a gas collection system to enable incineration of the gas in flares. This approach reduced aesthetic, environmental and safety concerns. However, emissions from the flares were still a problem. The Sanitation Districts then looked at alternatives to flaring the gas, one of which was electrical generation. Since the Sanitation Districts have no on-site use for thermal energy, power generation for use in the utility grid was deemed the most feasible alternative

  8. Selection of an industrial natural-gas-fired advanced turbine system - Task 3A

    Energy Technology Data Exchange (ETDEWEB)

    Holloway, G.M.

    1997-05-01

    TASK OBJECTIVES: Identify a gas-fueled turbine and steam system which will meet the program goals for efficiency - and emissions. TECHNICAL GOALS AND REQUIREMENTS: Goals for the Advanced Turbine System Program (ATS) where outlined in the statement of work for five basic categories: Cycle Efficiency - System heat rate to have a 15% improvement over 1991 vintage systems being offered to the market. Environmental No post-combustion devices while meeting the following parameter targets: (1) Nitrous Oxide (NO{sub x}) emissions to equal 8 parts per million dry (ppmd) with 15% oxygen. (2) Carbon monoxide (CO) and unburned hydrocarbon (UHC) emissions to equal 20 parts per million(ppmd) each. Cost of electricity to be 10 percent less when compared to similar 1991 systems. Fuel Flexibility Have to ability to burn coal or coal derived fuels without extensive redesign. Reliability, Availability, Maintainability Reliability, availability and maintainability must be comparable to modern advanced power generation systems. For all cycle and system studies, analyses were done for the following engine system ambient conditions: Temperature - 59F; Altitude - Sea Level; Humidity - 60%. For the 1991 reference system, GE Aircraft Engines used its LM6OOO engine product offering for comparison of the Industrial System parameters developed under this program.

  9. Model-based energy efficiency monitoring of gas-fired furnaces; Modellgestuetztes Energieeffizienz-Monitoring an Industriefeuerungen

    Energy Technology Data Exchange (ETDEWEB)

    Gose, Sven; Schult, Stefan; Sternberg, Jost [SAACKE GmbH, Bremen (Germany)

    2011-09-15

    This paper first describes the losses and the saving potential of heat generation plants and contrasts the usual characteristic numbers for assessing the energy efficiency. As these numbers describe a discontinuous process often only insufficiently, the characteristic number ''fuel efficiency'' is introduced. This number can only be calculated through a continuous monitoring system. The benefits of such a monitoring system are demonstrated by an example. (orig.)

  10. Viability of fuel switching of a gas-fired power plant operating in chemical looping combustion mode

    International Nuclear Information System (INIS)

    Basavaraja, R.J.; Jayanti, S.

    2015-01-01

    CLC (chemical looping combustion) promises to be a more efficient way of CO 2 capture than conventional oxy-fuel combustion or post-combustion absorption. While much work has been done on CLC in the past two decades, the issue of multi-fuel compatibility has not been addressed sufficiently, especially with regard to plant layout and reactor design. In the present work, it is shown that this is non-trivial in the case of a CLC-based power plant. The underlying factors have been examined in depth and design criteria for fuel compatibility have been formulated. Based on these, a layout has been developed for a power plant which can run with either natural gas or syngas without requiring equipment changes either on the steam side or on the furnace side. The layout accounts for the higher CO 2 compression costs associated with the use of syngas in place of natural gas. The ideal thermodynamic cycle efficiency, after accounting for the energy penalty of CO 2 compression, is 43.11% and 41.08%, when a supercritical steam cycle is used with natural gas and syngas, respectively. It is shown that fuel switching can be enabled by incorporating the compatibility conditions at the design stage itself. - Highlights: • Concept of fuel sensitivity of plant layout with carbon capture and sequestration. • Power plant layout for natural gas and syngas as fuels. • Criteria for compatibility of air and fuel reactors for dual fuel mode operation. • Layout of a plant for carbon-neutral or carbon negative power generation

  11. Size distribution and concentration of soot generated in oil and gas-fired residential boilers under different combustion conditions

    Science.gov (United States)

    Jiménez, Santiago; Barroso, Jorge; Pina, Antonio; Ballester, Javier

    2016-05-01

    In spite of the relevance of residential heating burners in the global emission of soot particles to the atmosphere, relatively little information on their properties (concentration, size distribution) is available in the literature, and even less regarding the dependence of those properties on the operating conditions. Instead, the usual procedure to characterize those emissions is to measure the smoke opacity by several methods, among which the blackening of a paper after filtering a fixed amount of gas (Bacharach test) is predominant. In this work, the size distributions of the particles generated in the combustion of a variety of gaseous and liquid fuels in a laboratory facility equipped with commercial burners have been measured with a size classifier coupled to a particle counter in a broad range of operating conditions (air excesses), with simultaneous determination of the Bacharach index. The shape and evolution of the distribution with progressively smaller oxygen concentrations depends essentially on the state of the fuel: whereas the combustion of the gases results in monomodal distributions that 'shift' towards larger diameters, in the case of the gas-oils an ultrafine mode is always observed, and a secondary mode of coarse particle grows in relevance. In both cases, there is a strong, exponential correlation between the total mass concentration and the Bacharach opacity index, quite similar for both groups of fuels. The empirical expressions proposed may allow other researchers to at least estimate the emissions of numerous combustion facilities routinely characterized by their smoke opacities.

  12. Effects of Environmental Temperature Change on the Efficiency of Coal- and Natural Gas-Fired Power Plants.

    Science.gov (United States)

    Henry, Candise L; Pratson, Lincoln F

    2016-09-06

    Modeling studies predict that droughts and hotter water and air temperatures caused by climate warming will reduce the efficiency (η) of thermoelectric plants by 0.12-0.45% for each 1 °C of warming. We evaluate these predictions using historical performance data for 39 open- and closed-loop coal and natural gas plants from across the U.S., which operated under daily and seasonal temperature fluctuations multiples greater than future average warming projections. Seven to 14 years of hourly water (Tw), dry-bulb air (Ta), and wet-bulb air (Twb) temperature recordings collected near each plant are regressed against efficiency to attain estimates of Δη per 1 °C increase. We find reductions in η with increased Tw (for open-loop plants) up to 1 order of magnitude less than previous estimates. We also find that changes in η associated with changes in Ta (open-loop plants) or Twb (closed-loop plants) are not only smaller than previous estimates but also variable; i.e., η rises with Ta or Twb for some plants and falls for others. Our findings suggest that thermoelectric plants, particularly closed-loop plants, should be more resilient to climate warming than previously expected.

  13. The development of the gas-fired high-efficiency fryer; Hr-friteuse klaar voor de opmars

    Energy Technology Data Exchange (ETDEWEB)

    Heimeriks, J. [Unit Zakelijke Toepassingen, Gastec, Apeldoorn (Netherlands)

    1997-07-01

    The advantages of a new, advanced appliance for commercial kitchens (the title fryer) are briefly outlined: a lower energy bill, a higher capacity and user friendliness, and a tastier end-product. The results of a field test show that the high-efficiency fryer has a lot of opportunities. Snack bar managers and caterers, in whose businesses field tests were carried out, were very enthusiastic about the fryer`s performance. 1 tab.

  14. Evaluation of an industrial gas-fired IR dryer; Utvaerdering av en industriell gaseldad IR-straalare

    Energy Technology Data Exchange (ETDEWEB)

    Stenstroem, S; Hermodsson, S

    1994-11-01

    The IR dryer is used in a paper making machine to dry the paper web after it has been coated with a surface layer. In part 1 of the project a mathematical model have been developed, capable of calculating the radiation intensity and other energy flows in the dryer. In part 2 of the project, measurements have been made on the IR radiator mounted in the paper making machine. The calculation model shows the efficiency of the radiator to 39% at full power and 35% at half power. The direct measurements were made at half power and gave an efficiency of 31% for new radiators and 28% for old ones. The conclusion is that the calculation model values corresponds very well compared with direct measurements.

  15. Laboratory Evaluation of Gas-Fired Tankless and Storage Water Heater Approaches to Combination Water and Space Heating

    Energy Technology Data Exchange (ETDEWEB)

    Kingston, T.; Scott, S.

    2013-03-01

    Homebuilders are exploring more cost effective combined space and water heating systems (combo systems) with major water heater manufacturers that are offering pre-engineered forced air space heating combo systems. In this project, unlike standardized tests, laboratory tests were conducted that subjected condensing tankless and storage water heater based combo systems to realistic, coincidental space and domestic hot water loads with the following key findings: 1) The tankless combo system maintained more stable DHW and space heating temperatures than the storage combo system. 2) The tankless combo system consistently achieved better daily efficiencies (i.e. 84%-93%) than the storage combo system (i.e. 81%- 91%) when the air handler was sized adequately and adjusted properly to achieve significant condensing operation. When condensing operation was not achieved, both systems performed with lower (i.e. 75%-88%), but similar efficiencies. 3) Air handlers currently packaged with combo systems are not designed to optimize condensing operation. More research is needed to develop air handlers specifically designed for condensing water heaters. 4) System efficiencies greater than 90% were achieved only on days where continual and steady space heating loads were required with significant condensing operation. For days where heating was more intermittent, the system efficiencies fell below 90%.

  16. Laboratory Evaluation of Gas-Fired Tankless and Storage Water Heater Approaches to Combination Water and Space Heating

    Energy Technology Data Exchange (ETDEWEB)

    Kingston, T. [Gas Technology Inst., Des Plaines, IL (United States); Scott, S. [Gas Technology Inst., Des Plaines, IL (United States)

    2013-03-01

    Homebuilders are exploring more cost-effective combined space and water heating systems (combo systems) with major water heater manufacturers that are offering pre-engineered forced air space heating combo systems. In this project, unlike standardized tests, laboratory tests were conducted that subjected condensing tankless and storage water heater based combo systems to realistic, coincidental space and domestic hot water loads and found that the tankless combo system maintained more stable DHW and space heating temperatures than the storage combo system, among other key findings.

  17. Exergy-based method for analyzing the composition of the electricity cost generated in gas-fired combined cycle plants

    Energy Technology Data Exchange (ETDEWEB)

    Sarraf Borelli, Samuel Jose [Promon Engenharia Ltda., Av. Presidente Juscelino Kubitschek, 1830, Itaim, CEP:04543-900 Sao Paulo/SP (Brazil)], E-mail: sborelli@terra.com.br; Oliveira Junior, Silvio de [Environmental and Thermal Engineering Laboratory, Polytechnic School, University of Sao Paulo, Av. Prof. Luciano Gualberto, 1289, Cidade Universitaria, CEP:05508-900 Sao Paulo/SP (Brazil)], E-mail: silvio.oliveira@poli.usp.br

    2008-02-15

    The proposed method to analyze the composition of the cost of electricity is based on the energy conversion processes and the destruction of the exergy through the several thermodynamic processes that comprise a combined cycle power plant. The method uses thermoeconomics to evaluate and allocate the cost of exergy throughout the processes, considering costs related to inputs and investment in equipment. Although the concept may be applied to any combined cycle or cogeneration plant, this work develops only the mathematical modeling for three-pressure heat recovery steam generator (HRSG) configurations and total condensation of the produced steam. It is possible to study any nx1 plant configuration (n sets of gas turbine and HRSGs associated to one steam turbine generator and condenser) with the developed model, assuming that every train operates identically and in steady state. The presented model was conceived from a complex configuration of a real power plant, over which variations may be applied in order to adapt it to a defined configuration under study [Borelli SJS. Method for the analysis of the composition of electricity costs in combined cycle thermoelectric power plants. Master in Energy Dissertation, Interdisciplinary Program of Energy, Institute of Eletro-technical and Energy, University of Sao Paulo, Sao Paulo, Brazil, 2005 (in Portuguese)]. The variations and adaptations include, for instance, use of reheat, supplementary firing and partial load operation. It is also possible to undertake sensitivity analysis on geometrical equipment parameters.

  18. Exergy-based method for analyzing the composition of the electricity cost generated in gas-fired combined cycle plants

    Energy Technology Data Exchange (ETDEWEB)

    Borelli, Samuel Jose Sarraf [Promon Engenharia Ltda., Av. Presidente Juscelino Kubitschek, 1830, Itaim, CEP:04543-900 Sao Paulo/SP (Brazil); De Oliveira Junior, Silvio [Environmental and Thermal Engineering Laboratory, Polytechnic School, University of Sao Paulo, Av. Prof. Luciano Gualberto, 1289, Cidade Universitaria, CEP:05508-900 Sao Paulo/SP (Brazil)

    2008-02-15

    The proposed method to analyze the composition of the cost of electricity is based on the energy conversion processes and the destruction of the exergy through the several thermodynamic processes that comprise a combined cycle power plant. The method uses thermoeconomics to evaluate and allocate the cost of exergy throughout the processes, considering costs related to inputs and investment in equipment. Although the concept may be applied to any combined cycle or cogeneration plant, this work develops only the mathematical modeling for three-pressure heat recovery steam generator (HRSG) configurations and total condensation of the produced steam. It is possible to study any n x 1 plant configuration (n sets of gas turbine and HRSGs associated to one steam turbine generator and condenser) with the developed model, assuming that every train operates identically and in steady state. The presented model was conceived from a complex configuration of a real power plant, over which variations may be applied in order to adapt it to a defined configuration under study [Borelli SJS. Method for the analysis of the composition of electricity costs in combined cycle thermoelectric power plants. Master in Energy Dissertation, Interdisciplinary Program of Energy, Institute of Eletro-technical and Energy, University of Sao Paulo, Sao Paulo, Brazil, 2005 (in Portuguese)]. The variations and adaptations include, for instance, use of reheat, supplementary firing and partial load operation. It is also possible to undertake sensitivity analysis on geometrical equipment parameters. (author)

  19. Exergy-based method for analyzing the composition of the electricity cost generated in gas-fired combined cycle plants

    International Nuclear Information System (INIS)

    Sarraf Borelli, Samuel Jose; Oliveira Junior, Silvio de

    2008-01-01

    The proposed method to analyze the composition of the cost of electricity is based on the energy conversion processes and the destruction of the exergy through the several thermodynamic processes that comprise a combined cycle power plant. The method uses thermoeconomics to evaluate and allocate the cost of exergy throughout the processes, considering costs related to inputs and investment in equipment. Although the concept may be applied to any combined cycle or cogeneration plant, this work develops only the mathematical modeling for three-pressure heat recovery steam generator (HRSG) configurations and total condensation of the produced steam. It is possible to study any nx1 plant configuration (n sets of gas turbine and HRSGs associated to one steam turbine generator and condenser) with the developed model, assuming that every train operates identically and in steady state. The presented model was conceived from a complex configuration of a real power plant, over which variations may be applied in order to adapt it to a defined configuration under study [Borelli SJS. Method for the analysis of the composition of electricity costs in combined cycle thermoelectric power plants. Master in Energy Dissertation, Interdisciplinary Program of Energy, Institute of Eletro-technical and Energy, University of Sao Paulo, Sao Paulo, Brazil, 2005 (in Portuguese)]. The variations and adaptations include, for instance, use of reheat, supplementary firing and partial load operation. It is also possible to undertake sensitivity analysis on geometrical equipment parameters

  20. On the hydrogen saturation of titanium alloys during heating billets for plastic working in gas-fired flame furnaces

    International Nuclear Information System (INIS)

    Kushakevich, S.A.; Romanova, L.A.; Bullo, P.M.

    1978-01-01

    Presented are the results of comparative investigations into titanium alloy hydridation during billet heating in gasflame and electric furnaces for forging and hot stamping. It is shown, that titanium alloys are slightly saturated with hydrogen at the temperature lower than that of polymorphic transformation. Hydrogen absorption is decelerated by a dense scale up to the moment of its loosening and peeling off. The application of protective vitreous enamels reduces the danger of impermissible hydridation. It is established, that the usage of gas-flame furnaces for billet heating is possible in the case of corresponding temperature and holding restrictions proper machining allowances and the use of protective coatings

  1. IR and UV gas absorption measurements during NOx reduction on an industrial natural gas fired power plant

    DEFF Research Database (Denmark)

    Stamate, Eugen; Chen, Weifeng; Jørgensen, L.

    2010-01-01

    NOx reduction of flue gas by plasma-generated ozone was investigated in pilot test experiments on an industrial power plant running on natural gas. Reduction rates higher than 95% have been achieved for a molar ratio O3:NOx slightly below two. Fourier transform infrared and ultraviolet absorption...... spectroscopy were used for spatial measurements of stable molecules and radicals along the reduction reactor. Reactions of O3 injected in the flue gas in the reduction reactor were also modeled. Experiments are in good agreement with numerical simulations. The operation costs for NOx reduction were estimated...

  2. Regional impacts of expanding gas-fired electric generation in the Northeast U.S. and Eastern Canada

    International Nuclear Information System (INIS)

    Mitchell, G.K.

    2001-01-01

    For the purpose of this presentation, the author placed emphasis on the northeast United States, including New York, New England, plus Ontario, Quebec and the Maritime provinces in Canada. The entire region comes under the Northeast Power Coordinating Committee (NPCC) of the North American Electric Reliability Council (NERC). The objective of this Council is to assist with the coordination of electric supply as well as transmission planning and reliability of the utilities. The annual ten year forecast of electric supply, demand and fuel sources produced by the NERC formed the basis for the data presented. The deregulation of the electricity market in a few jurisdictions in the region resulted in the break-up of several electric utilities into their core components: generation, distribution and transmission. The generation sector is where the fastest break-up activity is taking place and merchant energy companies are emerging. Each of these merchant energy companies is competing against the other to effect sales into the wholesale power market through the building of at risk generation plants. The deregulation process is subjected to different processes and time tables depending on each state or provincial regulations. The construction of new power plants in the region is being driven by the merchant energy companies. They are building low capital cost and highly efficient natural gas combined-cycle base load plants as well as lower cost and moderately efficient natural gas/oil-fired simple-cycle peaking plants. This activity is mainly restricted to the United States, since hydroelectric power, coal and nuclear power are the main presence in Canada. New England experiences summer peaks while Canada has winter peak electric demand. To optimize intra-regional peak generation capacity sharing, there is an opportunity for the electric industry to move gas by wire, and a number of projects are being developed. It is expected that pipeline expansion will be lower in Quebec and Ontario and result in more capacity expansions from the Maritimes combined with intra-regional expansion in the United states Northeast. figs

  3. Study of the processes resulting from the use of alkaline seed in natural gas-fired MHD facilities

    International Nuclear Information System (INIS)

    Styrikovich, M.A.; Mostinskii, I.L.

    1977-01-01

    Various ways of ionizing seed injection and recovery, applicable to open-cycle magnetohydrodynamic (MHD) power generation facilities, operating on sulfur-free gaseous fossil fuel, are discussed and experimentally verified. The physical and chemical changes of the seed and the heat and mass transfer processes resulting from seed application are investigated using the U-02 experimental MHD facility and laboratory test facilities. Engineering methods for calculating the processes of seed droplet vaporization, condensation and the precipitation of submicron particles of K 2 CO 3 on the heat exchange surface are also included

  4. Physical and mathematical modelling of gas-fired glass melting furnaces with regard to NO-formation

    International Nuclear Information System (INIS)

    May, F.; Stuchlik, O.; Kremer, H.

    1999-01-01

    The increasing demand in quality, efficiency, energy conservation and the environmental issues drive the operators of high temperature processes to optimize their furnaces. Especially the glass manufacturing industry with their high working temperatures from about 1850 K to more than 1950 K and high air preheating temperatures of above 1480 K will produce high NOx-concentrations in the flue gas if no primary measures are taken. Considering the three different paths for NO-formation it is obvious that increased thermal NO is responsible for higher emissions. The German environmental regulations on air ''TA Luft'' requires a maximum value of 500 mg/mN3 in the flue gas for most of the combustion processes but for glass melting furnaces a temporary regulation of 1200 mg/mN3 and further on to 800 mg/mN3 is valid. Due to economical reasons the level of secondary measures is to be minimized thus the main objective of research is to reduce the NOx-emissions via primary measures. The design of the furnace is very important due to its strong influence on the distribution of velocity and species. That consequently affects the temperature field and the heat transfer to the load and further on the emissions. For the understanding of the processes within these furnaces numerical simulations, which are successfully validated with experiments, can give valuable indications to optimize furnace design for the reduction of NOx-emissions. The glass melting furnace modelled here is a regenerative horseshoe furnace fired with natural gas. Combustion air is preheated within the regenerator onto a level of temperature of 1650 K. (author)

  5. Evaluation of the efficiency face to the NO{sub x} emissions from European gas-fired heat process equipment

    Energy Technology Data Exchange (ETDEWEB)

    Fourniguet, M.J.; Quinqueneau, A. [Gaz de France, Saint-Denis la Plaine (France); Karll, B. [Dansk Gasteknisk Center, Hoersholm (Denmark); Breithaupt, P. Gasunie [Gasunie, Groningue (Netherlands); Jonsson, O. [Svensk Gastekniskt Center AB, Malmoe (Sweden); Navarri, P. [CETIAT, Villeurbanne (France)

    1999-10-01

    In the frame of the project, tests have been performed by Gaz de France, CETIAT, DGC, GASUNIE and SGC on 35 European industrial sites in order to depict what the European industry using natural gas as an energy source actually looks like in 1997, the levels of efficiency and nitrogen oxides (NOx) emissions currently being achieved. These 35 industrial sites were chosen among the three following sectors: steam or water boilers, engines or turbines and industrial processes (food processing industry, metallurgy, ceramic, paper and textile industries). The partners focused on relatively new installations or newly retrofitted which were equipped with low NOx technologies. To create an open database between the Partners, a common EXCEL sheet has been defined and used to report the results for the three sectors concerned including principally the following items: General background on the site: it includes the description of the installation, technical characteristics of the furnace, the boiler or the engine, operating scenarios, gas total rating, and depending of the type of installation power density, rated electric power or production rate; Description of the equipment: it includes, if available, the control system of the heating equipment and the low NOx techniques identified; Description of the measurement techniques: In order to compensate for the lack of international standard, this part has been particularly detailed. It includes the description of flue gas analysers (CO, CO{sub 2}, O{sub 2}, NOx, CH{sub 4}, UHC, N{sub 2}O, VOC), metering and pressure and temperature probes in terms of measurement principle, supplier, measurement rang and accuracy and gas calibration. It precise the position of the sampling points and the type of the sampling line; Results: The operating conditions (atmospheric data, type of natural gas burnt during the test and measurement period) are given before the results themselves (complete flue gas analysis and determination of combustion and process efficiencies). The results show that the situation in terms of NOx emissions and efficiency is quite different from one country to another and for one installation to another. (EHS)

  6. Internal friction of hydrated soda-lime-silicate glasses.

    Science.gov (United States)

    Reinsch, S; Müller, R; Deubener, J; Behrens, H

    2013-11-07

    The internal friction of hydrated soda-lime-silica glasses with total water content (C(W)) up to 1.9 wt. % was studied by dynamic mechanical analysis (DMA) using temperature-frequency sweeps from 723 K to 273 K and from 1 s(-1) to 50 s(-1). Total water content and concentrations of H2O molecules (C(H2O)) and OH groups (C(OH)) in the DMA specimens were determined by infrared spectroscopy. For low water contents (C(W) ≈ C(OH) friction peaks below the glass transition (α relaxation) were assigned to the low-temperature motion of alkali ions (γ relaxation) and cooperative movements of dissimilar mobile species under participation of OH at higher temperature (β(OH) relaxation). For large water contents (C(W) > 1 wt. %), where significant amounts of molecular water are evident (C(H2O) > 0.15 wt. %), however, internal friction spectra change unexpectedly: the β(OH) peak heights saturate and a low temperature shoulder appears on the β-relaxation peak. This emerging relaxation mode (β(H2O) relaxation) was assigned to the motions of H2O molecules. β(H2O) relaxation was found to be faster than β(OH) but slower than γ relaxation. Activation energy of the different relaxation modes increased in the order γ < β(H2O) < β(OH) < α.

  7. High-dose ion implantation of ceramics: benefits and limitations for tribology

    International Nuclear Information System (INIS)

    Bull, S.J.; Page, T.F.

    1988-01-01

    This paper is concerned with the effects of ion implantation on sapphire and soda-lime-silica glass. It establishes the complex interplay between radiation damage, hardness, surface stress and, for the first time, friction. For sapphire, both the shallow indentation hardness response and the integrated near-surface stress increase with damage and exhibit maxima as the surface eventually amorphizes. For the glass, initial damage is shown to result in structural softening before rehardening at higher doses; the radiation-induced stress is a complex function of dose and seems partly linked to electronic rather than displacement processes. Some structural change also eventually occurs akin to amorphization in crystals and is accompanied by changes in hardness and surface stress. Superimposed on these patterns of behaviour are changes in the friction behaviour, part of which is ascribed to increased adhesion presumed due to implantation changing the surface affinity for water adsorption. These effects are demonstrated and discussed in the context of ion-implanted ceramics finding application as controlled friction and/or wear components in engineering applications. Other effects such as gas bubble formation, crazing and sputtering are shown to lead to surface microstructures which can also play a deleterious role in tribological behaviour. (author)

  8. 1998 Annual Study Report. Standardization of methods for evaluating properties of new glass at high temperature; 1998 nendo seika hokokusho. New glass koon bussei no hyoka hoho no hyojunka

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    High-temperature properties of glass melts, e.g., density, volume expansion coefficient, surface tension, viscosity, specific heat, thermal and electrical conductivity, redox equilibrium and gas solubility, are basic factors that must be considered in high quality glass melting technology and computer simulation of the glass tank furnace. The structure of the glass melts is also important for understanding these properties. This R and D program is aimed at proposing the international standards for the methods of measuring these high-temperature properties of the melts. The 1988 efforts are directed to the measuring technologies for density, volume expansion coefficient, surface tension, viscosity, specific heat, thermal and electrical conductivity, redox equilibrium, gas solubility and melt structures of soda-lime-silica glass melts. The R and D for measuring methods for high-temperature melts through international cooperation and establishment of the international standards for these methods are proposed in the joint CGR/HVG/TNO/GPF conference, which provides the arena for information exchange by glass manufacturers. (NEDO)

  9. Scaling properties of fracture surfaces on glass strengthened by ionic exchange

    International Nuclear Information System (INIS)

    Garza-Mendez, F.J.; Hinojosa-Rivera, M.; Gomez, I.; Sanchez, E.M.

    2007-01-01

    In this work the results of the statistical topometric analysis of fracture surfaces of soda-lime-silica glass with and without ionic exchange treatment are reported. In this case, the mechanism of substitution is K + -Na + . atomic force microscopy (AFM) was employed to record the topometric data from the fracture surface. The roughness exponent (ζ) and the correlation length (ξ) were calculated by the variable bandwidth method. The analysis for both glasses (subjected and non-subjected to ionic exchange) for ζ shows a value ∼0.8, this value agrees well with that reported in the literature for rapid crack propagation in a variety of materials. The correlation length shows different values for each condition. These results, along with those of microhardness indentations suggest that the self-affine correlation length is influenced by the complex interactions of the stress field of microcracks with that resulting from the collective behavior of the point defects introduced by the strengthening mechanism of ionic exchange

  10. Gold nano-particles fixed on glass

    International Nuclear Information System (INIS)

    Worsch, Christian; Wisniewski, Wolfgang; Kracker, Michael; Rüssel, Christian

    2012-01-01

    Highlights: ► We produced wear resistant gold–ruby coatings on amorphous substrates. ► Thin sputtered gold layers were covered by or embedded in silica coatings. ► Annealing above T g of the substrate glass led to the formation of gold nano particles. ► A 1 1 1-texture of the gold particles is observed via XRD and EBSD. ► EBSD-patterns can be acquired from crystals covered by a thin layer of glass. - Abstract: A simple process for producing wear resistant gold nano-particle coatings on transparent substrates is proposed. Soda-lime-silica glasses were sputtered with gold and subsequently coated with SiO 2 using a combustion chemical vapor deposition technique. Some samples were first coated with silica, sputtered with gold and then coated with a second layer of silica. The samples were annealed for 20 min at either 550 or 600 °C. This resulted in the formation of round, well separated gold nano-particles with sizes from 15 to 200 nm. The color of the coated glass was equivalent to that of gold–ruby glasses. Silica/gold/silica coatings annealed at 600 °C for 20 min were strongly adherent and scratch resistant. X-ray diffraction and electron backscatter diffraction (EBSD) were used to describe the crystal orientations of the embedded particles. The gold particles are preferably oriented with their (1 1 1) planes perpendicular to the surface.

  11. Processing of Oak Ridge B ampersand C pond sludge surrogate in the transportable vitrification system

    International Nuclear Information System (INIS)

    Zamecnik, J.R.; Young, S.R.; Peeler, D.K.; Smith, M.E.

    1997-01-01

    The Transportable Vitrification System (TVS) developed at the Savannah River Site is designed to process low-level and mixed radioactive wastes into a stable glass product. The TVS consists of a feed preparation and delivery system, a joule-heated melter, and an offgas treatment system. Surrogate Oak Ridge Reservation (ORR) B ampersand amp;C pond sludge was treated in a demonstration of the TVS system at Clemson University and at ORR. After initial tests with soda-lime-silica (SLS) feed, three melter volumes of glass were produced from the surrogate feed. A forthcoming report will describe glass characterization; and melter feeding, operation, and glass pouring. Melter operations described will include slurry characterization and feeding, factors affecting feed melt rates, glass pouring and pour rate constraints, and melter operating temperatures. Residence time modeling of the melter will also be discussed. Characterization of glass; including composition, predicted liquidity and viscosity, Toxic Characteristic Leaching Procedure (TCLP), and devitrification will be covered. Devitrification was a concern in glass container tests and was found to be mostly dependent on the cooling rate. Crucible tests indicated that melter shutdown with glass containing Fe and Li was also a devitrification concern, so the melter was flushed with SLS glass before cooldown

  12. Reactive Additive Stabilization Process (RASP) for hazardous and mixed waste vitrification

    International Nuclear Information System (INIS)

    Jantzen, C.M.; Pickett, J.B.; Ramsey, W.G.

    1993-01-01

    Solidification of hazardous/mixed wastes into glass is being examined at the Savannah River Site (SRS) for (1) nickel plating line (F006) sludges and (2) incinerator wastes. Vitrification of these wastes using high surface area additives, the Reactive Additive Stabilization Process (RASP), has been determined to greatly enhance the dissolution and retention of hazardous, mixed, and heavy metal species in glass. RASP lowers melt temperatures (typically 1050-- 1150 degrees C), thereby minimizing volatility concerns during vitrification. RASP maximizes waste loading (typically 50--75 wt% on a dry oxide basis) by taking advantage of the glass forming potential of the waste. RASP vitrification thereby minimizes waste disposal volume (typically 86--97 vol. %), and maximizes cost savings. Solidification of the F006 plating line sludges containing depleted uranium has been achieved in both soda-lime-silica (SLS) and borosilicate glasses at 1150 degrees C up to waste loadings of 75 wt%. Solidification of incinerator blowdown and mixtures of incinerator blowdown and bottom kiln ash have been achieved in SLS glass at 1150 degrees C up to waste loadings of 50% using RASP. These waste loadings correspond to volume reductions of 86 and 94 volume %, respectively, with large associated savings in storage costs

  13. Characterization of yellow and colorless decorative glasses from the Temple of the Emerald Buddha, Bangkok, Thailand

    Science.gov (United States)

    Klysubun, Wantana; Ravel, Bruce; Klysubun, Prapong; Sombunchoo, Panidtha; Deenan, Weeraya

    2013-06-01

    Yellow and colorless ancient glasses, which were once used to decorate the Temple of the Emerald Buddha, Bangkok, Thailand, around 150 years ago, are studied to unravel the long-lost glass-making recipes and manufacturing techniques. Analyses of chemical compositions, using synchrotron x-ray fluorescence (SRXRF), indicate that the Thai ancient glasses are soda lime silica glasses (60 % SiO2; 10 % Na2O; 10 % CaO) bearing lead oxide between 2-16 %. Iron (1.5-9.4 % Fe2O3) and manganese (1.7 % MnO) are present in larger abundance than the other 3 d transition metals detected (0.04-0.2 %). K-edge x-ray absorption near edge spectroscopy (XANES) and extended x-ray absorption fine structure spectroscopy (EXAFS) provide conclusive evidence on the oxidation states of Fe being 3+ and Mn being 2+ and on short-length tetrahedral structures around the cations. This suggests that iron is used as a yellow colorant with manganese as a decolorant. L 3-edge XANES results reveal the oxidation states of lead as 2+. The results from this work provide information crucial for replicating these decorative glasses for the future restoration of the Temple of the Emerald Buddha.

  14. Laboratory stabilization/solidification of surrogate and actual mixed-waste sludge in glass and grout

    International Nuclear Information System (INIS)

    Spence, R.D.; Gilliam, T.M.; Mattus, C.H.; Mattus, A.J.

    1998-01-01

    Grouting and vitrification are currently the most likely stabilization/solidification technologies for mixed wastes. Grouting has been used to stabilize and solidify hazardous and low-level waste for decades. Vitrification has long been developed as a high-level-waste alternative and has been under development recently as an alternative treatment technology for low-level mixed waste. Laboratory testing has been performed to develop grout and vitrification formulas for mixed-waste sludges currently stored in underground tanks at Oak Ridge National Laboratory (ORNL) and to compare these waste forms. Envelopes, or operating windows, for both grout and soda-lime-silica glass formulations for a surrogate sludge were developed. One formulation within each envelope was selected for testing the sensitivity of performance to variations (±10 wt%) in the waste form composition and variations in the surrogate sludge composition over the range previously characterized in the sludges. In addition, one sludge sample of an actual mixed-waste tank was obtained, a surrogate was developed for this sludge sample, and grout and glass samples were prepared and tested in the laboratory using both surrogate and the actual sludge. The sensitivity testing of a surrogate tank sludge in selected glass and grout formulations is discussed in this paper, along with the hot-cell testing of an actual tank sludge sample

  15. Mechanical properties of ion implanted ceramic surfaces

    International Nuclear Information System (INIS)

    Burnett, P.J.

    1985-01-01

    This thesis investigates the mechanisms by which ion implantation can affect those surface mechanical properties of ceramics relevant to their tribological behaviour, specifically hardness and indentation fracture. A range of model materials (including single crystal Si, SiC, A1 2 0 3 , Mg0 and soda-lime-silica glass) have been implanted with a variety of ion species and at a range of ion energies. Significant changes have been found in both low-load microhardness and indentation fracture behaviour. The changes in hardness have been correlated with the evolution of an increasingly damaged and eventually amorphous thin surface layer together with the operation of radiation-, solid-solution- and precipitation-hardening mechanisms. Compressive surface stresses have been shown to be responsible for the observed changes in identation fracture behaviour. In addition, the levels of surface stress present have been correlated with the structure of the surface layer and a simple quantitative model proposed to explain the observed stress-relief upon amorphisation. Finally, the effects of ion implantation upon a range of polycrystalline ceramic materials has been investigated and the observed properties modifications compared and contrasted to those found for the model single crystal materials. (author)

  16. Glass viscosity calculation based on a global statistical modelling approach

    Energy Technology Data Exchange (ETDEWEB)

    Fluegel, Alex

    2007-02-01

    A global statistical glass viscosity model was developed for predicting the complete viscosity curve, based on more than 2200 composition-property data of silicate glasses from the scientific literature, including soda-lime-silica container and float glasses, TV panel glasses, borosilicate fiber wool and E type glasses, low expansion borosilicate glasses, glasses for nuclear waste vitrification, lead crystal glasses, binary alkali silicates, and various further compositions from over half a century. It is shown that within a measurement series from a specific laboratory the reported viscosity values are often over-estimated at higher temperatures due to alkali and boron oxide evaporation during the measurement and glass preparation, including data by Lakatos et al. (1972) and the recently published High temperature glass melt property database for process modeling by Seward et al. (2005). Similarly, in the glass transition range many experimental data of borosilicate glasses are reported too high due to phase separation effects. The developed global model corrects those errors. The model standard error was 9-17°C, with R^2 = 0.985-0.989. The prediction 95% confidence interval for glass in mass production largely depends on the glass composition of interest, the composition uncertainty, and the viscosity level. New insights in the mixed-alkali effect are provided.

  17. Thermodynamic parameters of bonds in glassy materials from viscosity-temperature relationships

    International Nuclear Information System (INIS)

    Ojovan, Michael I; Travis, Karl P; Hand, Russell J

    2007-01-01

    Doremus's model of viscosity assumes that viscous flow in amorphous materials is mediated by broken bonds (configurons). The resulting equation contains four coefficients, which are directly related to the entropies and enthalpies of formation and motion of the configurons. Thus by fitting this viscosity equation to experimental viscosity data these enthalpy and entropy terms can be obtained. The non-linear nature of the equation obtained means that the fitting process is non-trivial. A genetic algorithm based approach has been developed to fit the equation to experimental viscosity data for a number of glassy materials, including SiO 2 , GeO 2 , B 2 O 3 , anorthite, diopside, xNa 2 O-(1-x)SiO 2 , xPbO-(1-x)SiO 2 , soda-lime-silica glasses, salol, and α-phenyl-o-cresol. Excellent fits of the equation to the viscosity data were obtained over the entire temperature range. The fitting parameters were used to quantitatively determine the enthalpies and entropies of formation and motion of configurons in the analysed systems and the activation energies for flow at high and low temperatures as well as fragility ratios using the Doremus criterion for fragility. A direct anti-correlation between fragility ratio and configuron percolation threshold, which determines the glass transition temperature in the analysed materials, was found

  18. Development of Natural Gas Fired Combined Cycle Plant for Tri-Generation of Power, Cooling and Clean Water Using Waste Heat Recovery: Techno-Economic Analysis

    Directory of Open Access Journals (Sweden)

    Gowtham Mohan

    2014-10-01

    Full Text Available Tri-generation is one of the most efficient ways for maximizing the utilization of available energy. Utilization of waste heat (flue gases liberated by the Al-Hamra gas turbine power plant is analyzed in this research work for simultaneous production of: (a electricity by combining steam rankine cycle using heat recovery steam generator (HRSG; (b clean water by air gap membrane distillation (AGMD plant; and (c cooling by single stage vapor absorption chiller (VAC. The flue gases liberated from the gas turbine power cycle is the prime source of energy for the tri-generation system. The heat recovered from condenser of steam cycle and excess heat available at the flue gases are utilized to drive cooling and desalination cycles which are optimized based on the cooling energy demands of the villas. Economic and environmental benefits of the tri-generation system in terms of cost savings and reduction in carbon emissions were analyzed. Energy efficiency of about 82%–85% is achieved by the tri-generation system compared to 50%–52% for combined cycles. Normalized carbon dioxide emission per MW·h is reduced by 51.5% by implementation of waste heat recovery tri-generation system. The tri-generation system has a payback period of 1.38 years with cumulative net present value of $66 million over the project life time.

  19. Development of Natural Gas Fired Combined Cycle Plant for Tri-Generation of Power, Cooling and Clean Water Using Waste Heat Recovery: Techno-Economic Analysis

    OpenAIRE

    Mohan, Gowtham; Dahal, Sujata; Kumar, Uday; Martin, Andrew; Kayal, Hamid

    2014-01-01

    Tri-generation is one of the most efficient ways for maximizing the utilization of available energy. Utilization of waste heat (flue gases) liberated by the Al-Hamra gas turbine power plant is analyzed in this research work for simultaneous production of: (a) electricity by combining steam rankine cycle using heat recovery steam generator (HRSG); (b) clean water by air gap membrane distillation (AGMD) plant; and (c) cooling by single stage vapor absorption chiller (VAC). The flue gases liber...

  20. On the development of an innovative gas-fired heating appliance based on a zeolite-water adsorption heat pump; system description and seasonal gas utilization efficiency

    International Nuclear Information System (INIS)

    Dawoud, Belal

    2014-01-01

    The main objective of this work is to introduce an innovative hybrid heating appliance incorporating a gas condensing boiler and a zeolite-water adsorption heat pump. The condensing boiler is applied to drive the zeolite-water heat pump for the heating base-load and to assist the heat pump in the so called “mixed operation” mode, in which both the heat pump and the condensing boiler are working in series to cover medium heating demands. Peak heating demands are covered by the condensing boiler in the so called “direct heating” mode. The three operation modes of the hybrid heating appliance have been technically described. In addition, the laboratory test conditions for estimating the seasonal heating performance according to the German Guideline VDI 4650-2 have been introduced. For both heating systems 35/28 °C and 55/45 °C, which represent the typical operating conditions of floor and high temperature radiating heating systems in Europe, seasonal heating gas utilization efficiencies of 1.34 and 1.26 have been measured, respectively with a ground heat source. In two field test installations in one-family houses in Germany, the introduced heating appliance showed 27% more seasonal gas utilization efficiency for heating and domestic hot water production, which is equivalent to a CO 2 -emission reduction of 20% compared to the gas condensing boiler technology

  1. Can switching fuels save water? A life cycle quantification of freshwater consumption for Texas coal- and natural gas-fired electricity

    International Nuclear Information System (INIS)

    Grubert, Emily A; Beach, Fred C; Webber, Michael E

    2012-01-01

    Thermal electricity generation is a major consumer of freshwater for cooling, fuel extraction and air emissions controls, but the life cycle water impacts of different fossil fuel cycles are not well understood. Much of the existing literature relies on decades-old estimates for water intensity, particularly regarding water consumed for fuel extraction. This work uses contemporary data from specific resource basins and power plants in Texas to evaluate water intensity at three major stages of coal and natural gas fuel cycles: fuel extraction, power plant cooling and power plant emissions controls. In particular, the water intensity of fuel extraction is quantified for Texas lignite, conventional natural gas and 11 unconventional natural gas basins in Texas, including major second-order impacts associated with multi-stage hydraulic fracturing. Despite the rise of this water-intensive natural gas extraction method, natural gas extraction appears to consume less freshwater than coal per unit of energy extracted in Texas because of the high water intensity of Texas lignite extraction. This work uses new resource basin and power plant level water intensity data to estimate the potential effects of coal to natural gas fuel switching in Texas’ power sector, a shift under consideration due to potential environmental benefits and very low natural gas prices. Replacing Texas’ coal-fired power plants with natural gas combined cycle plants (NGCCs) would reduce annual freshwater consumption in the state by an estimated 53 billion gallons per year, or 60% of Texas coal power’s water footprint, largely due to the higher efficiency of NGCCs. (letter)

  2. 40 CFR Appendix D to Part 75 - Optional SO2 Emissions Data Protocol for Gas-Fired and Oil-Fired Units

    Science.gov (United States)

    2010-07-01

    ..., where required, the density so long as the fuel sulfur content and GCV do not change and no fuel is... fuel's total sulfur content, GCV, and (if applicable) density are taken during the combustion of the... accuracy or design, as appropriate to the type of flowmeter: ASME MFC-3M-2004, Measurement of Fluid Flow in...

  3. Bench-scale studies with mercury contaminated SRS soil

    International Nuclear Information System (INIS)

    Cicero, C.A.

    1995-01-01

    Bench-scale studies with mercury contaminated soil were performed at the SRTC to determine the optimum waste loading obtainable in the glass product without sacrificing durability, leach resistance, and processability. Vitrifying this waste stream also required offgas treatment for the capture of the vaporized mercury. Four soil glasses with slight variations in composition were produced, which were capable of passing the Product Consistency Test (PCT) and the Toxicity Characteristic Leaching Procedure (TCLP). The optimum glass feed composition contained 60 weight percent soil and produced a soda-lime-silica glass when melted at 1,350 C. The glass additives used to produce this glass were 24 weight percent Na 2 CO 3 and 16 weight percent CaCO 3 . Volatilized mercury released during the vitrification process was released to the proposed mercury collection system. The proposed mercury collection system consisted of quartz and silica tubing with a Na 2 S wash bottle followed by a NaOH wash bottle. Once in the system, the volatile mercury would pass through the wash bottle containing Na 2 S, where it would be converted to Hg 2 S, which is a stable form of mercury. However, attempts to capture the volatilized mercury in a Na 2 S solution wash bottle were not as successful as anticipated. Maximum mercury captured was only about 3.24% of the mercury contained in the feed. Mercury capture efforts then shifted to condensing and capturing the volatilized mercury. These attempts were much more successful at capturing the volatile mercury, with a capture efficiency of 34.24% when dry ice was used to pack the condenser. This captured mercury was treated on a mercury specific resin after digestion of the volatilized mercury

  4. Gamma ray shielding characteristic of BiZnBo-SLS and PbZnBo-SLS glass

    Science.gov (United States)

    Syuhada Ahmad, Nor; Shahrim Mustafa, Iskandar; Mansor, Ishak; Malik, Muhammad Fadhirul Izwan bin Abdul; Ain Nabilah Razali, Nur; Nordin, Sufiniza

    2018-05-01

    The radiation shielding and optical properties of x [RmOn] (0.5‑x) [ZnO] 0.2 [B2O3] 0.3 [SLS], where RmOn are Bi2O3 and PbO with x = 0.05, 0.10, 0.20, 0.30, 0.40, and 0.45 have been prepared by using the melt-quenching method at 1200 °C and was investigated on their physical, structural and gamma ray shielding properties. Field-emission scanning electron microscope (FESEM) data revealed that the particle morphologies is aggregated and irregular in shapes and size. Energy dispersive x-ray spectroscopy (EDS) elemental mapping data confirmed that all mentioned element all present on the prepared glass. Soda Lime Silica (SLS) that is mainly composed of SiO2 has been utilized in this study as the source of SiO2 for fabrication of glass system. From the result, the density and molar volume of both glass samples increased as Bi2O3 and PbO content increased. The gamma ray shielding properties, such as linear attenuation and mass attenuation coefficient, were increased while half value layer (HVL) and mean free path (MFP) were decreased as the increased in Bi2O3 and PbO concentrations. It is recognized that the mass attenuation coefficient value of Bi2O3 and PbO glass are slightly different. From this study, it can be concluded that from the non-toxicity and shielding point of view, the bismuth glass is a good shield to gamma radiation as compared to lead glass.

  5. A quantitative assessment of the BSE risk associated with fly ash and slag from the incineration of meat-and-bone meal in a gas-fired power plant in Denmark

    DEFF Research Database (Denmark)

    Paisley, Larry; Hostrup-Pedersen, J.

    2005-01-01

    and slag are incorporated into the cement or concrete. Our goal was to assess with a Monte Carlo simulation model the bovine spongiform, encephalopathy (BSE) risk to cattle and humans posed by the ash and slag. The results will be used by decision makers to evaluate the need for disposal of the fly ash......It has been recommended that meat-and-bone meal (MBM) be incinerated at 850 degrees C for at least 2 s and the ashes and slag disposed of in controlled landfills, to dispose of animal-derived proteins. Most commonly, the MBM is incinerated in cement works or coal-fired power plants and the ashes...

  6. FY 2000 report on the basic survey to promote Joint Implementation, etc. Survey of gas-fired cogeneration in Samarkand City; 2000 nendo kyodo jisshii nado suishin kiso chosa hokokusho. Samarkand shi gas daki cogeneration chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    In the existing heat supply plant in Samarkand City in Uzbekistan, feasibility study was conducted of the project aimed at energy conservation and reduction in greenhouse effect gas emission by introducing the repair/cogeneration system of the regional pipes superannuated. In the project, the following were planned: introduction of two units of 6MW class gas turbine cogeneration, introduction of boiler which can realize 90% of the thermal efficiency, replacement of the existing regional pipes with pre-insulated pipes with less water leak/heat loss, etc. As a result of the study, the energy conservation amount was 21,006 toe, and the amount of greenhouse effect gas reduction was 64,998 t-CO2/y. As to the effects vs. expenses, the energy conservation was 2.80 toe/million yen, and the greenhouse effect gas reduction was 8.66 t-CO2-y/million yen. The initial investment amount was 7.51 billion yen, the business profit was 468 million yen/y, and the internal earning rate was 1.133%. It was judged that great profitability was not expected for the project, but the profit was returnable on investment. (NEDO)

  7. Fuel saving, carbon dioxide emission avoidance, and syngas production by tri-reforming of flue gases from coal- and gas-fired power stations, and by the carbothermic reduction of iron oxide

    International Nuclear Information System (INIS)

    Halmann, M.; Steinfeld, A.

    2006-01-01

    Flue gases from coal, gas, or oil-fired power stations, as well as from several heavy industries, such as the production of iron, lime and cement, are major anthropogenic sources of global CO 2 emissions. The newly proposed process for syngas production based on the tri-reforming of such flue gases with natural gas could be an important route for CO 2 emission avoidance. In addition, by combining the carbothermic reduction of iron oxide with the partial oxidation of the carbon source, an overall thermoneutral process can be designed for the co-production of iron and syngas rich in CO. Water-gas shift (WGS) of CO to H 2 enables the production of useful syngas. The reaction process heat, or the conditions for thermoneutrality, are derived by thermochemical equilibrium calculations. The thermodynamic constraints are determined for the production of syngas suitable for methanol, hydrogen, or ammonia synthesis. The environmental and economic consequences are assessed for large-scale commercial production of these chemical commodities. Preliminary evaluations with natural gas, coke, or coal as carbon source indicate that such combined processes should be economically competitive, as well as promising significant fuel saving and CO 2 emission avoidance. The production of ammonia in the above processes seems particularly attractive, as it consumes the nitrogen in the flue gases

  8. Basic survey project for joint implementation and CDM. Comprehensive investigation into introduction of blast furnace gas-firing combined cycle power plant and energy balance review at Krivorozhsky State Integrated Steel and Ironworks 'Krivorozhstal' Steel Works

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Investigations and discussions were given on electric power generation facilities at the Krivorozhstal Steel Works in Ukraine with an aim of reducing the emission of global warming gases by means of the energy saving and petroleum substituting energy technologies. The discussions were made on the combined cycle power plant (CCPP) project that utilizes as fuel the blast-furnace gas being discharged into atmosphere. The project calls for starting the construction in fiscal 2003, and entering commercial operation in fiscal 2005. The total investment amount would be 160.65 million US dollars. In a case of producing steel and iron of 7,000 tons annually, profit would be obtained at 11.24%, which will make the project realization possible if low-interest finance can be obtained from Japan. The amount of carbon dioxide discharged from operating the facilities for eight years from 2005 to 2012 is estimated to be reduced by about 6.8 million tons. In addition, the project would contribute to enhancement in productivity of the factory by reducing the labor force. Furthermore, effect of reducing emission of sulfur dioxide can be expected. (NEDO)

  9. Structure-solubility relationships in fluoride-containing phosphate based bioactive glasses

    Science.gov (United States)

    Shaharyar, Yaqoot

    The dissolution of fluoride-containing bioactive glasses critically affects their biomedical applications. Most commercial fluoride-releasing bioactive glasses have been designed in the soda-lime-silica system. However, their relatively slow chemical dissolution and the adverse effect of fluoride on their bioactivity are stimulating the study of novel biodegradable materials with higher bioactivity, such as biodegradable phosphate-based bioactive glasses, which can be a viable alternative for applications where a fast release of active ions is sought. In order to design new biomaterials with controlled degradability and high bioactivity, it is essential to understand the connection between chemical composition, molecular structure, and solubility in physiological fluids.Accordingly, in this work we have combined the strengths of various experimental techniques with Molecular Dynamics (MD) simulations, to elucidate the impact of fluoride ions on the structure and chemical dissolution of bioactive phosphate glasses in the system: 10Na2O - (45-x) CaO - 45P2O5 - xCaF2, where x varies between 0 -- 10 mol.%. NMR and MD data reveal that the medium-range atomic-scale structure of thse glasses is dominated by Q2 phosphate units followed by Q1 units, and the MD simulations further show that fluoride tends to associate with network modifier cations to form alkali/alkaline-earth rich ionic aggregates. On a macroscopic scale, we find that incorporating fluoride in phosphate glasses does not affect the rate of apatite formation on the glass surface in simulated body fluid (SBF). However, fluoride has a marked favorable impact on the glass dissolution in deionized water. Similarly, fluoride incorporation in the glasses results in significant weight gain due to adsorption of water (in the form of OH ions). These macroscopic trends are discussed on the basis of the F effect on the atomistic structure of the glasses, such as the F-induced phosphate network re-polymerization, in a

  10. Degradation of glass artifacts: application of modern surface analytical techniques.

    Science.gov (United States)

    Melcher, Michael; Wiesinger, Rita; Schreiner, Manfred

    2010-06-15

    A detailed understanding of the stability of glasses toward liquid or atmospheric attack is of considerable importance for preserving numerous objects of our cultural heritage. Glasses produced in the ancient periods (Egyptian, Greek, or Roman glasses), as well as modern glass, can be classified as soda-lime-silica glasses. In contrast, potash was used as a flux in medieval Northern Europe for the production of window panes for churches and cathedrals. The particular chemical composition of these potash-lime-silica glasses (low in silica and rich in alkali and alkaline earth components), in combination with increased levels of acidifying gases (such as SO(2), CO(2), NO(x), or O(3)) and airborne particulate matter in today's urban or industrial atmospheres, has resulted in severe degradation of important cultural relics, particularly over the last century. Rapid developments in the fields of microelectronics and computer sciences, however, have contributed to the development of a variety of nondestructive, surface analytical techniques for the scientific investigation and material characterization of these unique and valuable objects. These methods include scanning electron microscopy in combination with energy- or wavelength-dispersive spectrometry (SEM/EDX or SEM/WDX), secondary ion mass spectrometry (SIMS), and atomic force microscopy (AFM). In this Account, we address glass analysis and weathering mechanisms, exploring the possibilities (and limitations) of modern analytical techniques. Corrosion by liquid substances is well investigated in the glass literature. In a tremendous number of case studies, the basic reaction between aqueous solutions and the glass surfaces was identified as an ion-exchange reaction between hydrogen-bearing species of the attacking liquid and the alkali and alkaline earth ions in the glass, causing a depletion of the latter in the outermost surface layers. Although mechanistic analogies to liquid corrosion are obvious, atmospheric

  11. Vitrification of Simulated Fernald K-65 Silo Waste at Low Temperature

    International Nuclear Information System (INIS)

    Jantzen, C.M.; Pickett, J.B.

    1998-01-01

    degrees C. The VPP began operation on June 19, 1996. The VPP was used to test surrogate FEMP wastes at melt temperatures between 1130 degrees C and 1350 degrees C. The VPP failed on December 26, 1996 while processing surrogate waste. After the failure of the FEMP VPP, vitrification technology and glass chemistry were reevaluated. This report documents the glass formulation development for K-65 waste completed at SRTC in April, 1993 in conjunction with Associated Technical Consultants (ATC) of Toledo, Ohio. The glass developed for the FEMP was formulated in a lithia substituted soda-lime-silica (SLS) glass per the Savannah River Technology Center (SRTC) patented Lithia Additive Melting Process (LAMP)* to avoid problematic phase separation known to occur in the borosilicate glass system (MO-B 2 O 3 - SiO 2 ), where (MO = CaO, MgO, BaO, and PbO). Lime, MgO, BaO and PbO are all constituents of the FEMP wastes and thus subject to phase separation when vitrified in borosilicate glass. Phase separation is known to compromise waste glass stability. The SRTC soda-lithia-lime- silica (SLLS) glass melted at 1050 degrees C. Similar SLLS glass formulations have recently been demonstrated at the Oak Ridge Reservation (ORR) in a full scale melter with mixed (radioactive and hazardous) wastes.The low melting temperatures achieved with the SLLS glass minimize volatilization of hazardous species such as arsenic, lead, and selenium during vitrification. An 81 percent K-65 waste loading was demonstra

  12. Gas Fride Heat Pumps : The Present and Future

    Science.gov (United States)

    Kurosawa, Shigekichi; Ogura, Masao

    In japan techniques for saving energy is an important goal since energy resources such as oil and nuclear power are limited. Recently gas fired absorption heat pumps and gas engine driven heat pumps have been installed in facilifies such as hotels, swimming pools and offices. In this article recent techniques, applications and future aspects for gas fired heat pumps are explained.

  13. Megaproject Eemscentrale. Part 3. Maximal environmental care at the new power plant `Eemscentrale`, Netherlands; Megaproject Eemscentrale. Deel 3. Bij nieuwe Eemscentrale maximale zorg voor het milieu

    Energy Technology Data Exchange (ETDEWEB)

    Crone, K. [Crone Communicatie, Diemen (Netherlands)

    1996-01-01

    In a series of 8 articles attention is paid to several aspects of the Netherlands largest Energy Construction project, the gas-fired power plant `Eemscentrale`. In this article the environmental protection measures taken are briefly discussed. 3 ills.

  14. 46 CFR 115.702 - Installation tests and inspections.

    Science.gov (United States)

    2010-10-01

    ... CERTIFICATION Repairs and Alterations § 115.702 Installation tests and inspections. Whenever a launching appliance, survival craft, rescue boat, fixed gas fire extinguishing system, machinery, fuel tank, or...

  15. 40 CFR 63.6155 - What records must I keep?

    Science.gov (United States)

    2010-07-01

    ... required in § 63.10(b)(2)(ii). (5) Records of all maintenance on the air pollution control equipment as... annual basis, or if you are operating a lean premix gas-fired stationary combustion turbine or a...

  16. 16 CFR 1212.2 - Definitions.

    Science.gov (United States)

    2010-01-01

    ... part 1212: (a)(1) Multi-purpose lighter, (also known as grill lighter, fireplace lighter, utility..., fuel for fireplaces, charcoal or gas-fired grills, camp fires, camp stoves, lanterns, fuel-fired...

  17. Commercial gas utilization in the Netherlands. Six years of the Marketing Plan Public Gas Supply (MOG)

    International Nuclear Information System (INIS)

    Hoelen, Q.E.J.J.M.; Bartholomeus, P.H.J.; Mallon, W.Ch.

    1998-01-01

    In 1992, Gasunie (Dutch natural gas trading company) started its marketing plan for the public natural gas supply (MOG, abbreviated in Dutch). The aim is to promote the use of natural gas in cooperation with gas utilities. For the commercial sector many different gas appliances are available: high-efficiency deep-frying pans for the catering sector, gas-fired air humidifiers for office and public buildings, gas-fired tumble dryers for small and medium-sized businesses, etc

  18. Entering the Canadian mainstream

    International Nuclear Information System (INIS)

    Salaff, S.

    1992-01-01

    This article examines the developing market for independent power projects in Canada. The topics of the article include bidding in Ontario, the Quebec market, powering British Columbia, and market forces at work in Canada. Discussed are current projects in all stages of completion from bidding to production and includes gas-fired cogeneration, gas-fired combined-cycle electricity generation and cogeneration, wood-waste fired plants, repowering of existing utility plants, and hydroelectric power plants

  19. Technology assessment HTR. Part 3. Economics of new concept of the modular High Temperature Reactor

    International Nuclear Information System (INIS)

    Lako, P.

    1996-06-01

    In this study the economic feasibility of new concepts of the High Temperature Reactor were investigated. These new concepts are characterized as inherently safe. The different concepts were used as industrial heat/power reactors and compared with a gas fired Steam and Gas turbine installation. The best economic advantages are offered by a HTR with a Thorium/Uranium cycle as compared with a gas fired steam- and gas turbine. 6 figs, 9 tabs, 21 refs

  20. A cost analysis: processing maple syrup products

    Science.gov (United States)

    Neil K. Huyler; Lawrence D. Garrett

    1979-01-01

    A cost analysis of processing maple sap to syrup for three fuel types, oil-, wood-, and LP gas-fired evaporators, indicates that: (1) fuel, capital, and labor are the major cost components of processing sap to syrup; (2) wood-fired evaporators show a slight cost advantage over oil- and LP gas-fired evaporators; however, as the cost of wood approaches $50 per cord, wood...

  1. Afnor NF D 35-330. Gas-fired central heating boilers. Type B{sub 11} and B{sub 11BIS} boilers fitted with atmospheric burners of nominal heat input not exceeding 70 kW. (European standard EN 297); Afnor NF D 35-330. Chaudieres de chauffage central utilisant les combustibles gazeux. Chaudieres des types B{sub 11} et B{sub 11BIS} equipees de bruleurs atmospheriques dont le debit calorifique nominal est inferieur ou egal a 70 kW. (Norme europeenne EN 297)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-10-01

    This standard document defines the specifications and testing techniques relative to the manufacturing, safety, energy rational use, functioning capacity, classification and labeling of gas-fueled heating plants. It replaces the previous NF D 35-331 norm from November 1989 which comprised the NF D 35-331 norm from January 1980, its additives 1 (January 1980) and 2 (June 1984), its modifications 1 (July 1980), 2 (September 1986), 3 (December 1988) and 4 (November 1989) and the D 30-005 experimental norm of November 1991. (J.S.)

  2. Inventory of power plants in the United States, 1991

    International Nuclear Information System (INIS)

    1992-01-01

    Operable capacity at US electric power plants totaled 693,016 megawatts, as of year-end 1991. Coal-fired capacity accounted for 43 percent (299,849 megawatts) of the total US generating capacity, the share it has essentially maintained for the past decade. Gas-fired capacity accounted for 18 percent (125,683 megawatts); nuclear, 14 percent (99,589 megawatts); water, 13 percent (92,031 megawatts); petroleum, 10 percent (72,357 megawatts); other, one percent (3,507 megawatts). The 693,016 megawatts of operable capacity includes 3,627 megawatts of new capacity that came on line during 1991 (Table 2). This new capacity is 42 percent less than capacity in new units reported for 1990. Gas-fired capacity accounted for the greatest share of this new capacity. It represents 38 percent of the new capacity that started operation in 1991. The surge in new gas-fired capacity is the beginning of a trend that is expected to exist over the next 10 years. That is, gas-fired capacity will dominate new capacity additions. Gas-fired capacity additions during the next 10 years will primarily be in simple cycle gas turbines and gas turbines operating as combined cycle units. These planned gas turbine and combined cycle units, whose capacity totals over 21,000 megawatts, are expected to serve peak and intermediate loads of electric utilities

  3. Liberalised electricity markets, new bioenergy technologies, and GHG emission reductions: interactions and CO2 mitigation costs

    International Nuclear Information System (INIS)

    Gustavsson, L.; Madlener, R.

    1999-01-01

    We contrast recent developments in power and heat production with bioenergy, and natural-gas-fired condensing plants with and without decarbonisation, in the light of electricity market liberalisation. Our main focus is on CO 2 mitigation costs and carbon tax sensitivity of production costs. We find that CO 2 mitigation costs are lower for biomass systems using IGCC technology than for natural gas system using decarbonisation. However, based on current fuel prices natural-gas fired co-generation plants have the lowest production costs. Hence energy policy measures will be needed to promote biomass technologies and decarbonisation options on a liberalised market. (author)

  4. Evaluation of dense-phase ultrafine coal (DUC) as a fuel alternative for oil- and gas-designed boilers and heaters. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1986-12-01

    Utility and industrial firms currently using oil- and gas-fired boilers have an interest in substitution of coal for oil and gas as the primary boiler fuel. This interest stems from coal`s two main advantages over oil and gas-lower cost and security of supply. Recent efforts in the area of coal conversion have been directed to converting oil- and gas- fired boilers which were originally designed for coal-firing or were designed with some coal-firing capability. Boilers designed exclusively for oil- or gas-firing have not been considered viable candidates for coal conversion because they generally require a significant capacity derating and extensive and costly modifications. As a result, conversion of boilers in this class to coal-firing has generally been considered unattractive. Renewed interest in the prospects for converting boilers designed exclusively for oil- and gas-firing to coal firing has centered around the concept of using ``ultra fine`` coal as opposed to ``conventional grind`` pulverized coal. The main distinction being the finer particle size to which the former is ground. This fuel type may have characteristics which ameliorate many of the boiler problems normally associated with pulverized coal-firing. The overall concept for ultrafine coal utilization is based on a regional large preparation plant with distribution of a ready to fire fuel directly to many small users. This differs from normal practice in which final coal sizing is performed in pulverizers at the user`s site.

  5. 77 FR 22391 - Standards of Performance for Greenhouse Gas Emissions for New Stationary Sources: Electric...

    Science.gov (United States)

    2012-04-13

    ... sequestration'. In this preamble, `storage' and `sequestration' mean the same thing and the words are used... part of the comment that is placed in the public docket and made available on the Internet. If you... either natural gas-fired or are powered by renewable sources of energy, such as wind and solar, and...

  6. Glass: Rotary Electric Glass Furnace

    Energy Technology Data Exchange (ETDEWEB)

    Recca, L.

    1999-01-29

    Compared to conventional gas-fired furnaces, the new rotary electric furnace will increase energy efficiency while significantly reducing air emissions, product turnaround time, and labor costs. As this informative new fact sheet explains, the thousand different types of glass optical blanks produced for the photonics industry are used for lasers, telescopes, cameras, lights, and many other products.

  7. Does nuclear energy have a role in the development of Canada's oil sands?

    International Nuclear Information System (INIS)

    Dunbar, R.B.; Sloan, T.W.

    2004-01-01

    The Canadian Energy Research Institute (CERI) completed a study for Atomic Energy of Canada Limited (AECL) that compares the economics of a modified ACR-700 Advanced CANDU Reactor with the economics of a natural gas-fired facility to supply steam to a hypothetical Steam Assisted Gravity Drainage (SAGD) project located in northeastern Alberta. The results were initially presented at the Petroleum Society's Canadian International Petroleum Conference 2003, Calgary, Alberta, Canada, June 10-12, 2003. The comparison was made by using discounted cash-flow methodology to estimate the levelized unit cost of steam that could be supplied to the SAGD project from either a nuclear or a gas-fired facility. The unit cost of steam was determined by treating the steam supply facility as a standalone business; it would ensure that all costs are recovered including capital costs, operating costs, fuel costs, and a return on investment. The study indicated that steam supply form an ACR-700 nuclear facility is economically competitive with stea supply from a gas-fired facility. An examination of key variables indicated that the cost of steam form the nuclear facility is very sensitive to the capital cost of the facility, while the cost of steam from the gas-fired facility is very sensitive to the price of natural gas and possible Kyoto Protocol compliance costs. (author)

  8. Does nuclear energy have a role in the development of Canada's oil sands?

    International Nuclear Information System (INIS)

    Dunbar, R.B.; Sloan, T.W.

    2003-01-01

    The Canadian Energy Research Institute (CERI) recently completed a study for Atomic Energy of Canada Limited (AECL) that compares the economics of a modified ACR-700 Advanced CANDU Reactor with the economics of a natural gas-fired facility to supply steam to a hypothetical Steam Assisted Gravity Drainage (SAGD) project located in north-eastern Alberta. This paper presents the results of CERI's evaluation. The comparison was made by using discounted cash-flow methodology to estimate the levelized unit cost of steam that could be supplied to the SAGD project from either a nuclear or a gas-fired facility. The unit cost of steam was determined by treating the steam supply facility as a standalone business; it would ensure that all costs are recovered including capital costs, operating costs, fuel costs, and a return on investment. The study indicated that steam supply from an ACR-700 nuclear facility is economically competitive with steam supply from a gas-fired facility. An examination of key variables indicated that the cost of steam from the nuclear facility is very sensitive to capital cost of the facility, while the cost of steam from the gas-fired facility is very sensitive to natural gas price and possible Kyoto compliance costs. (author)

  9. ENVIRONMENTAL TECHNOLOGY REPORT, MIRATECH CORPORATION, GECO(TM) 3001 AIR/FUEL RATIO CONTROLLER (MANUFACTURED BY WOODWARD GOVERNOR COMPANY) PHASE II REPORT

    Science.gov (United States)

    In the natural gas industry, transmission pipeline operators use internal combustion (IC) gas-fired engines to provide the mechanical energy needed to drive pipeline gas compressors. As such, owners and operators of compressor stations are interested in the performance of these e...

  10. MILP formulation for the optimal operation of the integrated gas and power system

    DEFF Research Database (Denmark)

    Fang, Jiakun; Chen, Zhe; Ai, Xiaomeng

    2017-01-01

    -to-gas technology is also modeled together with gas-fired generators to enable bi directional energy conversion between the gas and power systems. The major advance of the proposed model is that the linepack storage in every pipe can be assessed and optimally utilized. Simulation results show the unit commitment...

  11. Magnetohydrodynamic (MHD) power generation

    International Nuclear Information System (INIS)

    Chandra, Avinash

    1980-01-01

    The concept of MHD power generation, principles of operation of the MHD generator, its design, types, MHD generator cycles, technological problems to be overcome, the current state of the art in USA and USSR are described. Progress of India's experimental 5 Mw water-gas fired open cycle MHD power generator project is reported in brief. (M.G.B.)

  12. Heat pumps and solar water heaters in the City of the Sun. Financing and cost effectiveness; Warmtepompen en zonneboilers in de Stad van de Zon. Financiering en rentabiliteit

    Energy Technology Data Exchange (ETDEWEB)

    Scheepers, M.J.J.; De Raad, A. [ECN-Beleidsstudies, Petten (Netherlands)

    2000-07-01

    The results of a study on the financing and cost effectiveness of the use of heat pumps and solar boilers in low-energy dwellings are presented. The investigation was carried out under the condition that costs for the occupants are not higher than the cost for the use of a gas-fired condensing boiler.

  13. DEVELOPMENT OF A VORTEX CONTAINMENT COMBUSTOR FOR COAL COMBUSTION SYTEMS

    Science.gov (United States)

    The report describes the development of a vortex containment combustor (VCC) for coal combustion systems, designed to solve major problems facing the conversion of oil- and gas-fired boilers to coal (e.g., derating, inorganic impurities in coal, and excessive formation of NOx and...

  14. Thailand: utilisation programme set for massive expansion

    International Nuclear Information System (INIS)

    Hayes, D.

    1991-01-01

    The US$360 million project to increase gas supplies to Eastern and Southern Thailand is discussed, and the use of international competitive bidding to purchase the line pipe and other facilities is reported. The government approved proposal for a gas fired combined-cycle power station and gas separation plant are discussed. (UK)

  15. Thailand: gas import review takes on urgency

    International Nuclear Information System (INIS)

    Hayes, D.

    1992-01-01

    The potential market for natural gas imports in Thailand as a result of the downgrading of gas reserves in the Nan Phong field is examined. Proposed pipelines, plans for gas-fired power plants, and the effects that the downgrading has had on Thailand's long-term plans for the development of gas utilisation are discussed. (UK)

  16. The role of small and medium reactors in the energy security of a country, IRIS example

    International Nuclear Information System (INIS)

    Cavlina, N.

    2010-01-01

    Nuclear options for electricity generations are assessed in this paper. Probabilistic (stochastic) method is used for economic comparison of nuclear power plants, wind plants and natural gas fired plants. Optimal nuclear power plant size is also discussed. IRIS is presented as a representative of small and medium reactors

  17. Soundness of Krsko Nuclear Power Plant Performance in Terms of Energy and Finance

    International Nuclear Information System (INIS)

    Curkovic, A.; Vrankic, K.; Magdic, M.

    1998-01-01

    Compared to existing conventional thermal power plants in Croatian electric power system, as well as to alternative (potential) imported coal and gas fired thermal power plants, Krsko NPP (nuclear power plant) generates electricity with lower production costs. This cost margin in favour of the Krsko NPP represents the soundness of this nuclear power plant in terms of energy and finance. (author)

  18. 78 FR 26354 - Transcontinental Gas Pipeline Company, LLC; Notice of Intent to Prepare an Environmental Impact...

    Science.gov (United States)

    2013-05-06

    ... proposes to: Add an incremental 6,540 horsepower (hp) of compression at its existing Compressor Station 195 in York County, Pennsylvania by: installing a new 35 kilovolt substation, variable frequency drive building, and associated coolers; replacing three existing natural gas- fired reciprocating engines and...

  19. Natural Gas, Wind and Nuclear Options for Generating Electricity in a Carbon Constrained World

    NARCIS (Netherlands)

    Kooten, van G.C.

    2012-01-01

    A linear programming model is used to examine the impact of carbon taxes on the optimal generation mix in the Alberta electrical system. The model permits decommissioning of generating assets with high carbon dioxide emissions and investment in new gas-fired, wind and, in some scenarios, nuclear

  20. Accounting for fuel price risk when comparing renewable togas-fired generation: the role of forward natural gas prices

    Energy Technology Data Exchange (ETDEWEB)

    Bolinger, Mark; Wiser, Ryan; Golove, William

    2004-07-17

    Unlike natural gas-fired generation, renewable generation (e.g., from wind, solar, and geothermal power) is largely immune to fuel price risk. If ratepayers are rational and value long-term price stability, then--contrary to common practice--any comparison of the levelized cost of renewable to gas-fired generation should be based on a hedged gas price input, rather than an uncertain gas price forecast. This paper compares natural gas prices that can be locked in through futures, swaps, and physical supply contracts to contemporaneous long-term forecasts of spot gas prices. We find that from 2000-2003, forward gas prices for terms of 2-10 years have been considerably higher than most contemporaneous long-term gas price forecasts. This difference is striking, and implies that comparisons between renewable and gas-fired generation based on these forecasts over this period have arguably yielded results that are biased in favor of gas-fired generation.

  1. 75 FR 2481 - Sunshine Act; Notice of Meeting

    Science.gov (United States)

    2010-01-15

    ... injuries that sent a total of 71 people to the hospital. The explosion caused serious structural damage to... installation and commissioning of a new gas-fired industrial water heater, manufactured by Energy Systems... no role in the installation were in the building at the time of the explosion. At the meeting, the...

  2. South Korea: strong infrastructure to support nation's needs

    International Nuclear Information System (INIS)

    Hayes, David.

    1995-01-01

    A brief report is given on the development of the natural gas market in South Korea. The country is increasingly turning to imported LNG due to the phasing out of dirtier fuels by stricter planning regulations. Topics covered include gas terminals, gas-fired power stations and gas distribution systems. (UK)

  3. Fundamental limits of NO formation in fuel-rich premixed methane-air flames

    NARCIS (Netherlands)

    van Essen, Vincent Martijn

    2007-01-01

    Increasingly stringent regulations on pollutant emission are the driving force for designers of natural-gas-fired combustion systems to find ways of controlling NOx formation. To achieve significant emissions reduction, more insight is needed into the mechanisms of NO formation. Martijn van Essen’s

  4. Nuclear energy can compete, industry watchers say

    International Nuclear Information System (INIS)

    Cash, C.J.

    1995-01-01

    Nuclear power plants with outstanding operating records and cost-conscious management can continue to compete with other forms of generation as the electricity business becomes more competitive. Natural gas-fired units will set the pricing standard with which nuclear power plants must compete

  5. The Potential of Economic MPC for Power Management

    DEFF Research Database (Denmark)

    Hovgaard, Tobias Gybel; Edlund, Kristian; Jørgensen, John Bagterp

    2010-01-01

    such that the cost of producing the required power is minimized. The power generators are controllable power generators such as combined heat and power generators (CHP), coal and gas fired power generators, as well as a significant share of uncontrollable power generators such as parks of wind turbines. In addition...

  6. Borssele: giving it a new lease of life, to 2007 and beyond

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    A major $250 million modification project is underway at the twin-loop Borssele PWR in the Netherlands. After the backfitting programme, which will raise safety levels to the current state of the art, this 20 year old plant will still be competitive with modern combined cycle gas-fired stations, according to the economic analysis that the Dutch have done. (author)

  7. 78 FR 62472 - Energy Conservation Program: Alternative Efficiency Determination Methods, Basic Model Definition...

    Science.gov (United States)

    2013-10-22

    ... transformers, electric motors, and small electric motors to use AEDMs to rate their non-tested combinations... electric storage water heaters [cir] Commercial gas-fired and oil-fired storage water heaters [cir.... Electric Water Heaters 2 Basic Models. Heat Pump Water Heaters 2 Basic Models. Unfired Hot Water Storage...

  8. Super Boiler: First Generation, Ultra-High Efficiency Firetube Boiler

    Energy Technology Data Exchange (ETDEWEB)

    None

    2006-06-01

    This factsheet describes a research project whose goal is to develop and demonstrate a first-generation ultra-high-efficiency, ultra-low emissions, compact gas-fired package boiler (Super Boiler), and formulate a long-range RD&D plan for advanced boiler technology out to the year 2020.

  9. Reducing nitrogen oxides from power stations

    International Nuclear Information System (INIS)

    Scheller, W.

    1986-12-01

    The report contains 17 individual lectures of the seminar included in databanks. The lectures concern combustion and waste gas measures for reducing the sulfur dioxide and nitrogen oxide emission from coal-fired and gas-fired power stations. (PW) [de

  10. (facts) to improve the power flow control in the nigeria transmission n

    African Journals Online (AJOL)

    BARTH EKWUEME

    from FACTS devices over conventional control devices employed in the present network in Nigeria. The study ... Deregulation in the power industry has led to an ... losses added to the cost of FACTS shows that the new .... mainly gas fired1[6].

  11. 46 CFR 181.400 - Where required.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Where required. 181.400 Section 181.400 Shipping COAST... PROTECTION EQUIPMENT Fixed Fire Extinguishing and Detecting Systems § 181.400 Where required. (a) The... cubic meters (6,000 cubic feet); (2) A pre-engineered fixed gas fire extinguishing system must be in...

  12. 76 FR 52652 - National Fuel Gas Supply Corporation; Tennessee Gas Pipeline Company; Notice of Availability of...

    Science.gov (United States)

    2011-08-23

    ... gas-fired turbines for compressor units A2 and A3 and restaging of centrifugal compressors for units... project includes the following facilities: A new East Aurora Compressor Station, totaling 4,470... Concord Compressor Station in Erie County, to permit bi-directional flow; Modifications to underground...

  13. 76 FR 41235 - Tres Palacios Gas Storage LLC; Notice of Application

    Science.gov (United States)

    2011-07-13

    ... electric- driven centrifugal compressor for five not-yet-installed certificated 4,800hp gas-fired compressors and to construct associated appurtenances and facilities necessary for the safe operation of the new compressor (Compressor Substitution Project). The proposed project will be constructed within the...

  14. Mega project Eemscentrale. Part 6. Communication and public relations; Megaproject Eemscentrale. Deel 6. Veel aandacht voor communicatie bij bouw Eemscentrale

    Energy Technology Data Exchange (ETDEWEB)

    Crone, K. [Crone Communicatie, Diemen (Netherlands)

    1996-04-01

    In a series of 8 articles attention is paid to several aspects of the Netherlands largest Energy Construction project, the gas-fired power plant `Eemscentrale`. In this article communications and the societal impact of the project are dealt with. 3 ills.

  15. 24 CFR 3280.714 - Appliances, cooling.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Appliances, cooling. 3280.714... Systems § 3280.714 Appliances, cooling. (a) Every air conditioning unit or a combination air conditioning... accordance with ANSI Z21.40.1-1996, Gas Fired, Heat Activated, Air Conditioning and Heat Pump Appliances, and...

  16. Characterization of ultrafine and fine particles from CHP Plants

    Energy Technology Data Exchange (ETDEWEB)

    2009-08-15

    Samples of particles collected at CHP plants in the project 'Survey of emissions from CHP Plants' have been analysed in this project to give information on the morphology and chemical composition of individual particle size classes. The objective of this project was to characterize ultrafine and fine particles emitted to the atmosphere from Danish CHP plants. Nine CHP plants were selected in the Emission Survey Project as being representative for the different types of CHP plants operating in Denmark: 1) Three Waste-to Energy (WTE) plants. 2) Three biomass fired (BM) plants (two straw fired, one wood/saw dust fired). 3) Two gas fired (GF) plants (one natural gas, one landfill gas fired). 4) One gasoil (GO) fired plant. At the WTE and BM plants, various types of emission control systems implemented. The results from these plants represent the composition and size distribution of combustion particles that are emitted from the plants emission control systems. The measured emissions of particles from the waste-to-energy plants WTE1-3 are generally very low. The number and mass concentrations of ultrafine particles (PM{sub 0.1}) were particularly low in the flue gas from WTE2 and WTE3, where bag filters are used for the reduction of particle emissions. The EDX analysis of particles from the WTE plants indicates that the PM{sub 0.1} that penetrates the ECS at WTE can contain high fractions of metals such as Fe, Mn and Cu. The SEM analysis of particles from WTE1-3 showed that the particles were generally porous and irregular in shape. The concentrations of particles in the flue gas from the biomass plants were generally higher than found for the WTE plants. The time series results showed that periodical, high concentration peaks of PM emissions occur from BM1 and BM2. The chemical composition of the particles emitted from the three biomass plants is generally dominated by C, O and S, and to some extend also Fe and Si. A high amount of Cu was found in selected

  17. Conservation practice and opportunities in the dairy industry

    Energy Technology Data Exchange (ETDEWEB)

    Vickers, V. T.

    1977-10-15

    During the past two decades the dairy industry has increased the efficiency of fuel utilization in the manufacture of all dairy products. The increased thermal efficiency is due to the greater use of hot water heating in milk treatment stations, the operation of larger capacity butter and cheese factories with increased factory mechanization, greatly improved processing plant design in milk powder and casein factories, and the increased use of oil and gas firing, together with more efficient automatic boiler plants. In the industry, a greater decrease in energy consumption would be possible through the greater availability of natural gas. Natural gas-fired turbines and/or reciprocating engines could be used for on-site power generation using the waste heat for processing purposes.

  18. The idea from the coldness - Field test confirms high utilisation grades. New gas heat pump system; Die Idee, die aus der Kaelte kam - Feldtest bestaetigt hohe Nutzungsgrade. Neues Gaswaermepumpen-System

    Energy Technology Data Exchange (ETDEWEB)

    Heckmann, W. [Ruhrgas AG, Essen (Germany)

    2002-07-01

    The new gas-fired diffusion absorption heat pump (DAHP) developed by Buderus Heiztechnik GmbH was field-tested in the Netherlands and in Germany. Testing in Germany involved a total of 15 regional gas suppliers and was coordinated by Ruhrgas. 24 DAHP systems were installed in (existing and newly built) single-family homes. The tests showed that the efficiency of heat pumps designed for permanent operation is 25 percentage points above that of gas-fired condensing boilers. Despite some differences in the price/performance ratio, all types of heat source proved suitable. The experience gained in these tests for DAHP system installation, heating, hot water production and system temperature control will be a major contribution to help optimise DAHP systems. (orig.)

  19. Advanced Reciprocating Engine Systems (ARES) Research at Argonne National Laboratory. A Report

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Sreenath [Argonne National Lab. (ANL), Argonne, IL (United States); Biruduganti, Muni [Argonne National Lab. (ANL), Argonne, IL (United States); Bihari, Bipin [Argonne National Lab. (ANL), Argonne, IL (United States); Sekar, Raj [Argonne National Lab. (ANL), Argonne, IL (United States)

    2014-08-01

    The goals of these experiments were to determine the potential of employing spectral measurements to deduce combustion metrics such as HRR, combustion temperatures, and equivalence ratios in a natural gas-fired reciprocating engine. A laser-ignited, natural gas-fired single-cylinder research engine was operated at various equivalence ratios between 0.6 and 1.0, while varying the EGR levels between 0% and maximum to thereby ensure steady combustion. Crank angle-resolved spectral signatures were collected over 266-795 nm, encompassing chemiluminescence emissions from OH*, CH*, and predominantly by CO2* species. Further, laser-induced gas breakdown spectra were recorded under various engine operating conditions.

  20. Coal seam has boom - powering North Queensland industrial growth

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-06-01

    Reduced operating costs, lower greenhouse gas emissions and security of supply are being cited by North Queensland industry leaders as the reasons for investing more than A$550 million to expand operations and convert to coal seam gas as their preferred fuel source. The article, by Enertrade, reports that just a few months after commissioning its North Queensland Gas Pipeline to transport coal seam gas from Moranbah to Townsville, Enertrade has signed contracts that will see combined cycle gas-fired baseload electricity generated in Townsville and the Queensland Nickel Refinery, and Xstrata Copper Refinery switch from liquid fuels to gas. The development has been driven by state government policy that 13% of Queensland's electricity be sourced from gas-fired power generation from 1 January 2005. Further information is available from Enertrade on Tel +617 3331 9929. 2 photos.

  1. Etude Climat no. 42 'Power sector in Phase 2 of the EU ETS: fewer CO2 emissions, but just as much coal'

    International Nuclear Information System (INIS)

    Berghmans, Nicolas; Alberola, Emilie

    2013-01-01

    Among the publications of CDC Climat Research, 'Climate Reports' offer in-depth analyses on a given subject. This issue addresses the following points: Since 2005, 1,453 power and combined heat and power (CHP) generation plants have participated in the European Union Emission Trading Scheme, or EU ETS, which requires them to comply with an annual CO 2 emission cap set by the European Commission. Thermal power plants that use coal (bituminous coal, lignite, and other kinds of coal) and natural gas as their primary fuel jointly account for 86% of the generation capacity included in the EU ETS. There are twice as many gas-fired power plants as coal-fired ones, with 671 gas-fired power plants compared with 352 coal-fired ones

  2. Nitrogen oxide formation as a function of the shape of the flame in an experimental gas burner. Stikstofoxidenvorming als functie van de vlamvorm bij experimentele gasbrander

    Energy Technology Data Exchange (ETDEWEB)

    Hulshof, H J.M.; Thus, A W

    1992-01-01

    One of the options to reduce the emission of NO[sub x] from gas-fired or coal-fired power plants is to develop new burners or to improve the control of existing burners. The purpose of this investigation is to develop a measuring method to control the combustion process in each burner of a gas-fired or coal-fired power plant concerning NO[sub x]-emission, a constant energy production and stability of the combustion. A passive spectroscopic measuring method was developed, in which use is made of the light, emitted by the flame. Based on the measured values the NO[sub x]-emissions and the shape of the flame were correlated. From the correlations it appears that flame shape and NO[sub x]-emissions correspond quite well

  3. Fuel and control modifications to fire oil and gas individually or simultaneously

    International Nuclear Information System (INIS)

    Des Chenes, C.D.; Connolly, J.M.

    1992-01-01

    Jacksonville Electric Authority's (JEA's) Northside station Unit 1 (NS-1) is now modified to fire natural gas as well as the original No. 6 fuel oil. Hardware and control modifications accommodate oil, gas. or simultaneous oil and gas firing in the boiler. Working with Stone and Webster Engineering Corporation, this flexibility derives from control modifications not previously used in North American power plants. This paper reports that the modifications not only reduce fuel costs, but also increase flexibility in meeting air emissions requirements. Emission levels for particulate and nitrous oxides (NO x ) on oil were demonstrated prior to the modification. No emission increases are allowed as a result of the modification in any firing mode. Particulate emission limits in pounds per million British thermal units (lb/mmBtu) are 0.1/mm Btu and NO x limits are 0.45 lb/mmBtu. No x emissions from gas firing are also stipulated to be below oil emission limits

  4. Decentralised energy supply as our future energy supply system? - An interview with Prof. Alexander Wokaun

    International Nuclear Information System (INIS)

    Nagel, Ch.

    2002-01-01

    In this interview with Professor Alexander Wokaun, head of General Energy Research at the Paul Scherrer Institute (PSI) in Villigen, Switzerland, the decentralised use of small, gas-fired combined heat and power (CHP) units is discussed as a means of meeting Switzerland's Kyoto CO 2 commitments. The question on which of several new CHP technologies such as gas-fired engines and turbines, Stirling engines, fuel cells and thermo-photovoltaics will win the race is discussed. The efficiency and application areas of CHP technologies are examined and the problems involved when controlling complex electricity grids with many small decentrally placed generating facilities is discussed. Finally, Professor Wokaun is asked for his opinion on what the Swiss power mix will look like in 20 years

  5. Operation, Investment and Hedging in Electricity Markets

    DEFF Research Database (Denmark)

    Ernstsen, Rune Ramsdal

    inflexible generation more than flexible generation due to the exposure to potential low prices. In Chapter 4 we study the valuation of three representative generation types, an inflexible wind turbine, a flexible gas fired power plant and a hydroelectric plant that allows for storage. We account...... for the special characteristics of each technology and include uncertainty in both price and volume through diffusion or jump diffusion models. We find explicit expressions for the expected instantaneous value of wind generation as a function of electricity price and wind speed. We include startup and shutdown...... costs for the gas fired power plant determine the startup and shutdown triggers as well as the value of the plant by maximizing the value of shutting down. This is done analytically in the diffusion models and numerically in the jump diffusion model. For the hydroelectric power plant we relax storage...

  6. Assessment of CO2 free energy options

    International Nuclear Information System (INIS)

    Cavlina, N.; Raseta, D.; Matutinovic, I.

    2014-01-01

    One of the European Union climate and energy targets is to significantly reduce CO 2 emissions, at least 20% by 2020, compared to 1990. In the power industry, most popular solution is use of solar and wind power. Since their production varies significantly during the day, for the purpose of base-load production they can be paired with gas-fired power plant. Other possible CO 2 -free solution is nuclear power plant. This article compared predicted cost of energy production for newly built nuclear power plant and newly built combination of wind or solar and gas-fired power plant. Comparison was done using Levelized Unit of Energy Cost (LUEC). Calculations were performed using the Monte Carlo method. For input parameters that have biggest uncertainty (gas cost, CO 2 emission fee) those uncertainties were addressed not only through probability distribution around predicted value, but also through different scenarios. Power plants were compared based on their economic lifetime. (authors)

  7. Holy grail at Baglan Bay

    International Nuclear Information System (INIS)

    Watson, Jim

    1999-01-01

    The UK government's consent for the construction of a gas-fired power plant at Baglan Bay in South Wales is reported, and the growing popularity of economic combined-cycle gas turbine (CCGT) power plants and the resulting environmental improvements are noted . The combining of gas and steam turbines, design developments, and the UK moratorium on planning consents for gas fired power plants are discussed. General Electric's H System technology which will lower the amount of energy lost in the conversion of natural gas to electricity is described, and details of the ten most problematic CCGTs in the UK are given. The domination of the CCGT global market by four manufacturers, and the pressure on manufacturers to develop their designs are considered. (UK)

  8. Exergy performance of different space heating systems: A theoretical study

    DEFF Research Database (Denmark)

    Kazanci, Ongun Berk; Shukuya, Masanori; Olesen, Bjarne W.

    2016-01-01

    , the effects of floor covering resistance on the whole system performance were studied using two heat sources; a natural gas fired condensing boiler and an air-source heat pump. The heating systems were also compared in terms of auxiliary exergy use for pumps and fans. The low temperature floor heating system......Three space heating systems (floor heating with different floor covering resistances, radiator heating with different working temperatures, warm-air heating with and without heat recovery) were compared using a natural gas fired condensing boiler as the heat source. For the floor heating systems...... performed better than other systems in terms of exergy demand. The use of boiler as a heat source for a low-exergy floor heating system creates a mismatch in the exergy supply and demand. Although an air-source heat pump could be a better heat source, this depends on the origin of the electricity supplied...

  9. Carbon Pricing, Power Markets and the Competitiveness of Nuclear Power

    International Nuclear Information System (INIS)

    2011-01-01

    This study assesses the competitiveness of nuclear power against coal- and gas-fired power generation in liberalized electricity markets with either CO 2 trading or carbon taxes. It uses daily price data for electricity, gas, coal and carbon from 2005 to 2010, which encompasses the first years of the European Emissions Trading System (EU ETS), the world's foremost carbon trading framework. The study shows that even with modest carbon pricing, competition for new investment in electricity markets will take place between nuclear energy and gas-fired power generation, with coal-fired power struggling to be profitable. The data and analyses contained in this study provide a robust framework for assessing cost and investment issues in liberalized electricity markets with carbon pricing. (authors)

  10. Carbon pricing and the competitiveness of nuclear power

    International Nuclear Information System (INIS)

    Keppler, J.H.; Marcantonini, C.

    2011-01-01

    A recent NEA study entitled Carbon Pricing, Power Markets and the Competitiveness of Nuclear Energy assesses the competitiveness of nuclear power against coal- and gas-fired power generation in liberalised electricity markets with either CO 2 trading or carbon taxes. It uses daily price data for electricity, gas, coal and carbon from 2005 to 2010, which encompasses the first years of the European Emissions Trading System (EU ETS), the world's foremost carbon trading framework. The study shows that even with modest carbon pricing, competition for new investment in electricity markets will take place between nuclear energy and gas-fired power generation, with coal-fired power struggling to be profitable. The data and analyses contained in the study provide a robust framework for assessing cost and investment issues in liberalised electricity markets with carbon pricing, even in the post-Fukushima context. A summary of the publication main elements is provided in this paper

  11. No more coal-fired units

    International Nuclear Information System (INIS)

    Anon.

    1997-01-01

    According to Minister of the Environment Pekka Haavisto natural gas, bioenergy and renewables are the ways of responding to future base load power need. Greenhouse gas emissions using natural gas are around 60 % of those with coal. Increasing the share of generation accounted for by natural gas in the Nordic region is just as feasible in principle as elsewhere in Europe. A good proportion of new power stations elsewhere in the community are natural gas-fired. Vattenfall is planning a combined cycle station in the 700 - 900 MW range for Imatra, and Imatran Voima a 600 MW gas-fired unit for Inkoo. Replacing coal with natural gas is an essential part of efforts to stabile CO 2 emissions

  12. Personal exposures of preschool children to carbon monoxide and nitrogen dioxide. The role of gas stoves

    Energy Technology Data Exchange (ETDEWEB)

    Alm, S.; Jantunen, M.J.; Mukala, K.; Tuomisto, J. [National Public Health Institute, Kuopio (Finland). Div. of Environmental Health; Pasanen, P. [Kuopio Univ. (Finland)

    1993-12-31

    Personal 1-h mean CO exposures of preschool children in two day care centers of Helsinki were measured with continuously recording personal exposure monitors, and their personal 1-wk NO{sub 2} exposures with Palmes tubes. The results were compared to fixed site ambient air monitoring results and related to the presence of high CO, low heat value town gas fired stoves in the homes of the children. Results show that fixed site ambient air monitors are of little value in predicting personal exposures of children or even their relative differences between areas, and also that town gas fired stoves have a profound effect on the CO exposures, and little or no effect on the NO{sub 2} exposures of the children. (author)

  13. Electricity of Vietnam and problem of flue gases

    International Nuclear Information System (INIS)

    Tran Khac An

    2005-01-01

    After reporting the present status and development of electricity in Vietnam, the author points out the most pollutant source is coal-fired power plants followed by listing pollutant substances by coal, oil and gas fired plants and Vietnamese standards of industrial emission and ambient air quality. To conclude, it is time to prepare staff and technology for the utilization of electron accelerators to flue gas treatment. (S. Ohno)

  14. Stepping on the gas for district heating in Germany. Gas and steam turbines for cogeneration; Gas geben fuer Fernwaerme in Deutschland. Gas- und Dampfturbinen fuer die KWK

    Energy Technology Data Exchange (ETDEWEB)

    Bohtz, Christian [Alstom Power, Baden (Switzerland). Marketing and Product Management Gas Business

    2011-07-15

    Measured by its intensive efforts to lower CO{sub 2} emissions Germany is one of the leading countries in the EU. One contribution to this end is to be had from cogeneration. As a provider of cogeneration plants Alstom is working to improve the fuel efficiency as well as the overall efficiency and flexibility of its products. The author explains the technology of gas-fired cogeneration plants and gives three examples of their use.

  15. Boiler burden reduced at Bedford site.

    Science.gov (United States)

    Horsley, Chris

    2011-10-01

    With the NHS aiming to reduce its 2007 carbon footprint by 10% by 2015, Chris Horsley, managing director of Babcock Wanson UK, a provider of industrial boilers and burners, thermal oxidisers, air treatment, water treatment, and associated services, looks at how one NHS Trust has approached the challenge, and considerably reduced its carbon emissions, by refurbishing its boiler house and moving from oil to gas-fired steam generation.

  16. Feed-in-Tariffs Financed by Energy Taxes: When do They Lower Consumer Prices?

    OpenAIRE

    Georg von Wangenheim; Tom Müller

    2011-01-01

    The share of renewable energies in the electricity sector ('green' electricity production) relative to overall electricity supply has been growing steadily over the last years in most industrialized countries. This expansion was due to economic support either by subsidies or quota requirements for green energy. Without such support, green electricity would not be competitive to electricity supply from conventional production capacities ('black' electricity production) - e.g. coal and gas fire...

  17. Effects of SO2 emission regulations and fuel prices on levellized energy costs for industrial steam generation options

    International Nuclear Information System (INIS)

    Ozdogan, Sibel; Arikol, Mahir

    1992-01-01

    We discuss the impacts of SO 2 emission regulations and fuel prices on levellized energy costs of industrial steam generation options. A computer model called INDUSTEAM has been utilized. The steam-supply options comprise conventional grate-firing, bubbling and circulating fluidized beds, fuel-oil, and natural-gas-fired systems. Fuels of different SO 2 pollution potential have been evaluated assuming six environmental scenarios and varying fuel prices. A capacity range of 10-90 MW th is covered. (author)

  18. Economics of residential gas furnaces and water heaters in United States new construction market

    OpenAIRE

    Lekov, Alex B.

    2009-01-01

    New single-family home construction represents a significant and important market for the introduction of energy-efficient gas-fired space heating and water-heating equipment. In the new construction market, the choice of furnace and water-heater type is primarily driven by first cost considerations and the availability of power vent and condensing water heaters. Few analysis have been performed to assess the economic impacts of the different combinations of space and water-heating equipment....

  19. The future of integrated coal gasification combined cycle power plants

    International Nuclear Information System (INIS)

    Mueller, R.; Termuehlen, H.

    1991-01-01

    This paper examines the future of integrated coal gasification combined cycle (IGCC) power plants as affected by various technical, economical and environmental trends in power generation. The topics of the paper include a description of natural gas-fired combined cycle power plants, IGCC plants, coal gasifier concepts, integration of gasifiers into combined cycle power plants, efficiency, environmental impacts, co-products of IGCC power plants, economics of IGCC power plants, and a review of IGCC power plant projects

  20. Solar energy system performance evaluation: Page Jackson Elementary School, Charles Town, West Virginia, October 1979-April 1980

    Energy Technology Data Exchange (ETDEWEB)

    Howard, R.G.

    1980-01-01

    This school in Charles Town, West Virginia is equipped with 11,215 ft/sup 2/ of PPG flat-plate collectors of which 69% operate. Two insulated tanks of 10,000 gal capacity provide heat storage. A natural gas fired boiler and a chiller augment the solar heating and cooling system. Collector failure was primarily responsible for the system supplying 23% rather than the projected 85% of the heating requirement. (MHR)

  1. Electricity generation, rational energy use and CO2 emissions. The Electrabel approach

    International Nuclear Information System (INIS)

    Bulteel, P.

    1995-01-01

    Electrabel (Belgium) commitments in integrating the goals of rational and sustainable energy use and CO 2 emissions control are presented: demand side measures with promotion and decision-making help to the customers in order to reduce technical, commercial and financial barriers, and supply side measures such as integrated resource planning, high efficiency fossil-fuel generating stations (gas fired combined cycle units), cogeneration schemes. The expected impact on CO 2 emissions are discussed

  2. Assessment of the environmental impact of available options in electric power development under Polish conditions

    International Nuclear Information System (INIS)

    Cofala, Janusz; ); Jankowski, Boleslaw

    1999-01-01

    The current European initiatives limiting environmental impacts of energy production and use are presented and the proposal emission levels together with benefits are given. The role of nuclear power in achieving environmental targets in the EU countries is stressed. Then a comparison of the following 3 major electricity production options: modern coal fired power plants, gas fired combined cycle power plants and nuclear power plants is done. In the comparison Polish conditions are taken into account

  3. Energy Conservation and Management Study of Aircraft Hangars at Selected Air Force Bases.

    Science.gov (United States)

    1980-01-01

    0 C 00 > >0 s- M2 ol F)0 - LD -0C ) 4 C C -c0 c,- -- 41 a) *-’.T 𔃺 (n L Z >-l L. o- C) ( ~ ~L) C:oaa > Z 4 . - 0 0 oL co~ (jI 0 C’. cnCD CC 00-’ 0 n...current gas policy discourages the use of gas-fired devices. Special variance must be obtained to use the recommended heaters. Another observation is

  4. Thai Natuna MOU - where does that leave the Japanese?

    International Nuclear Information System (INIS)

    Anon.

    1997-01-01

    Exploitation of the Natuna gas field by Indonesia has started to develop the interest of potential investors. Thailand has already signed an ''in-principle'' purchase agreement and a consortium of Japanese companies are now seeking to acquire a stake holding in Natuna. The relationship between these two interested parties is explored with reference to gas production, LNG exports, energy demand and gas-fired independent power plant projects in Indonesia. (UK)

  5. Studies on infrared drying of paper, use of integrating spheres in ftir-measurements, and heat and mass transfer inside paper. Thesis

    Energy Technology Data Exchange (ETDEWEB)

    Ojala, K

    1993-11-05

    The effect of various factors on the efficiency of infrared (IR) dryers has been studied by modeling and simulation of radiative heat transfer in these dryers. Generally, 20-35% of the radiation from electrical IR dryers becomes absorbed by the web, whereas in the case of a gas-fired dryer 30-50% of the energy becomes absorbed. The efficiency is strongly dependent on the dryer design, power, geometry, cleanness, and the material to be dried.

  6. Natural gas in the energy industry of the 21st century

    International Nuclear Information System (INIS)

    Cuttica, J.

    1995-01-01

    This paper provides a gas industry perspective on the impacts of restructuring the natural gas and electric industries. The four main implications discussed are: (1) market trends, (2) strategic positioning, (3) significant market implications, and (4) issues for the future. Market trends discussed include transitioning rate of return to market competition and regulatory impacts. Significant market implications for gas-fired generation identified include limited new generation investment, extension of existing plants, and an opportunity for distributed power generation. 12 tabs

  7. Smart Microgrid Energy Management Controls for Improved Energy Efficiency and Renewables Integration at DoD Installations

    Science.gov (United States)

    2013-05-01

    reduced greenhouse gas (GHG) emissions; 2. Increased energy efficiency; and 3. Increased energy surety. This demonstration will also directly impact ...megawatt (MW), as well as a gas-fired cogeneration plant in excess of 7 MW. In the future, additional solar PV, fuel cells and advanced energy storage... Energy Management Controls for Improved Energy Efficiency and Renewables Integration at DoD Installations May 2013 Report Documentation Page Form

  8. Gas-based electricity production: which possibilities? - Thermal plants with steam generator; Perspectives for mini-cogeneration in collective housing; Electricity production by gas plants: which orientations on a middle term?

    International Nuclear Information System (INIS)

    Charrier, M.; Hubert, Charles-Emile; Lu, Long; Maire, Jacques; Bornard, Pierre; Garnier, Philippe-Jean; Jamme, Dominique; Cheylus, Jean-Christophe

    2012-01-01

    A set of articles proposes a comparison between coal fired and natural gas fired power stations, discusses the perspectives of low power cogeneration installations for collective housing (some examples are evoked). It also reports interventions of a meeting on middle-term orientation for gas-based electricity production during which interveners addressed several issues such as the opportunity of investment in new infrastructures, the evolution of the gas sector, modulation means

  9. The impact of expanding Canadian gas imports in the U.S. Midwest

    International Nuclear Information System (INIS)

    Parker, S.

    2000-01-01

    The new competitive natural gas market in the U. S. Midwest is surveyed from an interstate pipeline point of view, taking into account Canadian gas imports, increase in Rocky Mountain imports competing with Canadian imports, the flow dynamics in the Midwest market, supply basin production trends, the infrastructure improvements in local distribution companies, improvements in storage facilities, and the growing demand for natural gas-fired generation

  10. Structure of diffusion flames from a vertical burner

    Science.gov (United States)

    Mark A. Finney; Dan Jimenez; Jack D. Cohen; Isaac C. Grenfell; Cyle Wold

    2010-01-01

    Non-steady and turbulent flames are commonly observed to produce flame contacts with adjacent fuels during fire spread in a wide range of fuel bed depths. A stationary gas-fired burner (flame wall) was developed to begin study of flame edge variability along an analagous vertical fuel source. This flame wall is surrogate for a combustion interface at the edge of a deep...

  11. Natural gas as an automotive fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gritsenko, A I; Vasiliev, Y N; Jankiewicz, A [VPO ' Soyuzgastekhnologiya' All-Union Scientific Research Inst. of Natural gases (VNIIGAS) (SU)

    1990-02-01

    The review presented covers mass production of gas-petrol and gas-diesel automobiles in the USSR, second generation auto gas filling compressor stations, principal exhaust toxicants, and tests indicating natural gas fired autos emit >5 times less NO{sub x} and 10 times less hydrocarbons excluding methane. The switch over to gas as auto fuel and ensuing release of petrol and diesel for other uses are discussed. (UK).

  12. Instrumentation at the Decade 80 solar house in Tucson, Arizona

    Science.gov (United States)

    1978-01-01

    Modifications, problems and solutions for the instrumentation system that occurred during the period from May through September, 1978, are described. The solar house was built to show the use of copper in home building and to demonstrate the use of solar energy to provide space heating and cooling and domestic hot water. The auxiliary energy sources are electrical resistance heating for the domestic hot water and a gas-fired boiler for space heating and operation of the adsorption air conditioning units.

  13. Solar-energy landmark Building-Columbia, Missouri

    Science.gov (United States)

    1981-01-01

    Report includes design, cost, installation, maintenance, and performance details for attractive solar installation which supplies space heating for four-story Visitors Center. 176 hydronic flat-plate collectors, water-to-water heat exchanger, and 5,000-gallon storage tank comprise system which provides 71 percent of building's heat. Natural-gas-fired boiler supplies auxiliary hot water to heating system when necessary.

  14. Facility Composer (Trademark) and PACES (Trademark) Integration: Development of an XML Interface Based on Industry Foundation Classes

    Science.gov (United States)

    2007-11-01

    GA TIFTON 13921 GA MACON 13974 GA ATHENS 13981 GA FORT VALLEY 13998 GA ALBANY AREA 13999 GA SAVANNAH INTL APT ModelGroup List ERDC...PropertySingleValue> <name>Heat Generating System</name> <nominalValue> <Text>Hot Water Boilers - Gas Fired</Text> </nominalValue...ALABAMA AR ARKANSAS AZ ARIZONA CA CALIFORNIA CO COLORADO CT CONNECTICUT DC DISTRICT OF COLUMBIA DE DELAWARE FL FLORIDA GA GEORGIA HI HAWAII

  15. Impact of electric industry deregulation on gas markets: a power marketer's perspective

    International Nuclear Information System (INIS)

    Jahns, F.H.

    1996-01-01

    The impact of electric industry deregulation on gas markets was examined. The presentation included industry comparisons of 1994 gas total revenues versus electricity total revenues for residential, commercial, and industrial use. A chart forecasting the outlook for gas-fired generation of electric power indicated that the use of natural gas as feedstock for power generation will increase from 12% to 37% during the period 1994 to 2003. 16 figs

  16. The challenge for gas: get price-competitive with coal-fired electricity

    International Nuclear Information System (INIS)

    Gill, Len

    1999-01-01

    The challenge for the gas industry is to become price competitive with coal-fired electricity if it wants a larger share of the energy market. Returning to the issue of greater use of gas for electricity generation, the author points out that although electricity prices were rising they were still below the point where gas-fired electricity generation was viable. Copyright (1999) The Australian Gas Journal

  17. Thermodynamic analysis of CO2 capture processes for power plants

    OpenAIRE

    Biyouki, Zeinab Amrollahi

    2014-01-01

    This thesis work presents an evaluation of various processes for reducing CO2 emissions from natural-gas-fired combined cycle (NGCC) power plants. The scope of the thesis is to focus mainly on post-combustion chemical absorption for NGCC. For the post-combustion capture plant, an important interface is the steam extraction from the steam turbine in order to supply the heat for solvent regeneration. The steam extraction imposes a power production penalty. The thesis includes analysis and compa...

  18. POWER-GEN '90 conference papers: Volume 3 (Environmental trends and issues) and Volume 4 (Case histories - Non-utility power generation)

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    This is book 2 of a collection of papers presented at the Third International Power Generation Industries Conference on December 4-6, 1990. The book contains Volume 3, Environmental Trends and Issues, and Volume 4, Case Histories - Non-utility Power Generation. The topics of the papers include environmental legislative and regulatory trends, acid rain compliance strategies and technologies, other global environmental concerns, gas fired systems, solid and waste fuels, despatching and wheeling, and strategies for purchasing non-utility power

  19. Techno-economic process design of a commercial-scale amine-based CO_2 capture system for natural gas combined cycle power plant with exhaust gas recirculation

    International Nuclear Information System (INIS)

    Ali, Usman; Agbonghae, Elvis O.; Hughes, Kevin J.; Ingham, Derek B.; Ma, Lin; Pourkashanian, Mohamed

    2016-01-01

    Highlights: • EGR is a way to enhance the CO_2 content with reduction in design variables and cost. • Both process and economic analyses are essential to reach the optimum design variables. • Commercial-scale NGCC with and without EGR is presented. • Process design of the amine-based CO_2 capture plant is evaluated for with and without EGR. - Abstract: Post-combustion CO_2 capture systems are gaining more importance as a means of reducing escalating greenhouse gas emissions. Moreover, for natural gas-fired power generation systems, exhaust gas recirculation is a method of enhancing the CO_2 concentration in the lean flue gas. The present study reports the design and scale-up of four different cases of an amine-based CO_2 capture system at 90% capture rate with 30 wt.% aqueous solution of MEA. The design results are reported for a natural gas-fired combined cycle system with a gross power output of 650 MW_e without EGR and with EGR at 20%, 35% and 50% EGR percentage. A combined process and economic analysis is implemented to identify the optimum designs for the different amine-based CO_2 capture plants. For an amine-based CO_2 capture plant with a natural gas-fired combined cycle without EGR, an optimum liquid to gas ratio of 0.96 is estimated. Incorporating EGR at 20%, 35% and 50%, results in optimum liquid to gas ratios of 1.22, 1.46 and 1.90, respectively. These results suggest that a natural gas-fired power plant with exhaust gas recirculation will result in lower penalties in terms of the energy consumption and costs incurred on the amine-based CO_2 capture plant.

  20. Waste heat recovery at the glass industry with the intervention of batch and cullet preheating

    OpenAIRE

    Dolianitis Ioannis; Giannakopoulos Dionysios; Hatzilau Christina-Stavrula; Karellas Sotirios; Kakaras Emmanuil; Nikolova Evelina; Skarpetis Georgios; Christodoulou Nikolaos; Giannoulas Nikolaos; Zitounis Theodoros

    2016-01-01

    A promising option to reduce the specific energy consumption and CO2 emissions at a conventional natural gas fired container glass furnace deals with the advanced utilization of the exhaust gases downstream the air regenerators by means of batch and cullet preheating. A 3-dimensional computational model that simulates this process using mass and heat transfer equations inside a preheater has been developed. A case study for an efficient small-sized containe...

  1. Obstacles to the use of natural gas in electric markets

    International Nuclear Information System (INIS)

    Lynch, M.M.

    1992-01-01

    A brief overview of the New England Electric System (NEES) and its current and planned natural gas fired generation is presented. Some statistics are given that indicate that electric generation is the biggest growth market for natural gas, underscoring the importance of overcoming the obstacles to the use of gas in electric generation markets. What is seen as the major obstacles to gas use in the electric power industry and some ways to overcome these obstacles are reviewed

  2. Technology review of commercial food service equipment - final report

    Energy Technology Data Exchange (ETDEWEB)

    Rahbar, S; Krsikapa, S [Canadian Gas Research Inst., Don Mills, ON (Canada); Fisher, D; Nickel, J; Ardley, S; Zabrowski, D [Fisher Consultants (Canada); Barker, R F [ed.

    1996-05-15

    Market and technical information on gas fired equipment used in the commercial food service sector in Canada and in each province or territory was presented. Results of a market study and technology review were integrated to establish energy consumption and energy saving potential in this sector. Eight categories of commercial cooking appliances were studied. They were: fryers, griddles, broilers, ranges, ovens, tilting skillets, steam kettles and steamers. Focus was on gas fired appliances, although electric appliances were also included. The total energy consumption of the appliances was estimated at 76,140.37 GBtu in 1994. Gas appliances accounted for 63 per cent of the total inventory and consumed 83 per cent of the total energy used. Cooking energy efficiencies for the gas fired commercial cooking equipment ranged from 10 per cent to 60 per cent. The electric appliances had cooking energy efficiencies ranging from 35 per cent to 95 per cent. A list of recommendations were made for the many opportunities to introduce higher efficiency commercial cooking appliances, essential to slow down or to stabilize the energy consumption of cooking appliances over the next decade. 66 refs., 14 tabs., 18 figs.

  3. Carbon charges and natural gas use in China

    International Nuclear Information System (INIS)

    Skeer, Jeffrey; Wang Yanjia

    2006-01-01

    Substitution of natural gas for coal in China's power sector could significantly reduce emissions of carbon dioxide, but gas-fired power is generally more costly than coal-fired power in China today. This paper explores how carbon charges and carbon sequestration technology might tip the balance in favour of gas. The costs of electricity from new coal-fired and gas-fired power plants in China are compared under various assumptions about fuel costs, exchange rates, carbon dioxide charges, and application of carbon sequestration technology. Under average cost conditions today, gas-fired power is roughly two-thirds more costly than coal-fired power. But with a charge of $20/tonne of carbon dioxide, the costs of gas- and coal-fired power would typically be about equal. Over the longer term, carbon sequestration technology could be economical with a carbon dioxide charge of $22/tonne or more under typical cost conditions, but gas with sequestration would not have a clear cost advantage over coal with sequestration unless the charge exceeded $35/tonne

  4. N2O formation in combustion systems

    International Nuclear Information System (INIS)

    1989-11-01

    The objective of this project is to characterize N 2 O emissions from combustion sources emphasizing N 2 O emissions from post-combustion selective gas phase NO x reduction processes and reburning. The processes to be evaluated include ammonia, urea and cyanuric acid injection and reburning. The project includes pilot-scale testing at two facilities supported by chemical kinetic modeling. Testing will be performed on both a gas-fired plug flow combustor and a pulverized-coal fired combustor. Work performed to date has included the performance of the initial detailed chemical kinetics calculations. These calculations showed that both urea and cyanuric acid produce significant quantities of N 2 O, while NH 3 injection produced negligible amounts. These kinetics data support limited test results reported for cyanuric acid and ammonia injection. Laboratory work to evaluate the selective gas phase NO x reduction processes listed above will begin in the gas-fired facility early in CY 1990. Testing to evaluate reburning at the coal-fired facility is currently planned to be performed in parallel with the testing at the gas-fired facility. Following completion of that work, additional kinetics calculations will be performed

  5. Assessing “gas transition” pathways to low carbon electricity – An Australian case study

    International Nuclear Information System (INIS)

    Riesz, Jenny; Vithayasrichareon, Peerapat; MacGill, Iain

    2015-01-01

    Highlights: • High gas electricity portfolios are higher cost and risk compared with renewables. • High gas portfolios do not achieve required greenhouse gas emissions reductions. • Optimal portfolios are 60% renewables by 2030 and 80–100% by 2050. • Firm capacity is provided by coal-fired plant in a peaking role rather than gas. - Abstract: Future generation portfolios including varying quantities of gas-fired and renewable generation were compared on the basis of expected costs, cost risk and greenhouse gas emissions, with a view to understanding the merits and disadvantages of gas and renewable technologies. A Monte-Carlo based generation portfolio modelling tool was applied to take into account the effects of highly uncertain future gas prices, carbon pricing policy and electricity demand. Results suggest that portfolios sourcing significant quantities of energy from gas-fired generation in 2030 and 2050 are likely to be significantly higher cost and significantly higher risk than the other alternatives considered. High gas portfolios also do not achieve the greenhouse gas (GHG) emissions reductions levels that appear required to avoid dangerous global warming. For example, portfolios that source 95% of energy from gas-fired generation in 2050 experience expected generation costs that are $65/MW h (40%) higher than portfolios that source only 20% of energy from gas-fired generation. These high gas portfolios also exhibit a cost risk (standard deviation in cost) that is three times higher. The lowest cost portfolios in 2050 source less than 20% of energy from gas with the remaining energy sourced from renewables. Even in the absence of a carbon price, the lowest cost portfolio in 2050 sources only 30% of energy from gas-fired generation, with the remaining 70% of energy being sourced from renewable technologies. Results suggest the optimal strategy for minimising costs, minimising cost risk and reducing GHG emission levels in future electricity

  6. CO{sub 2} mitigation costs of large-scale bioenergy technologies in competitive electricity markets

    Energy Technology Data Exchange (ETDEWEB)

    Gustavsson, L [Mid-Sweden University, Ostersund (Sweden). Dept. of Natural and Environmental Sciences, Ecotechnology; Madlener, R [Swiss Federal Institute of Technology, Zurich (Switzerland). CEPE

    2003-11-01

    In this study, we compare and contrast the impact of recent technological developments in large biomass-fired and natural-gas-fired cogeneration and condensing plants in terms of CO{sub 2} mitigation costs and under the conditions of a competitive electricity market. The CO{sub 2} mitigation cost indicates the minimum economic incentive required (e.g. in the form of a carbon tax) to equal the cost of a less carbon extensive system with the cost of a reference system. The results show that CO{sub 2} mitigation costs are lower for biomass systems than for natural gas systems with decarbonization. However, in liberalized energy markets and given the sociopolitical will to implement carbon extensive energy systems, market-based policy measures are still required to make biomass and decarbonization options competitive and thus help them to penetrate the market. This cost of cogeneration plants, however, depends on the evaluation method used. If we account for the limitation of heat sinks by expanding the reference entity to include both heat and power, as is typically recommended in life-cycle analysis, then the biomass-based gasification combined cycle (BIG/CC) technology turns out to be less expensive and to exhibit lower CO{sub 2} mitigation costs than biomass-fired steam turbine plants. However, a heat credit granted to cogeneration systems that is based on avoided cost of separate heat production, puts the steam turbine technology despite its lower system efficiency at an advantage. In contrast, when a crediting method based on avoided electricity production in natural gas fired condensing plants is employed, the BIG/CC technology turns out to be more cost competitive than the steam turbine technology for carbon tax levels beyond about $150/t C. Furthermore, steam turbine plants are able to compete with natural gas fired cogeneration plants at carbon tax levels higher than about $90/tC. (author)

  7. A lot left over: Reducing CO2 emissions in the United States’ electric power sector through the use of natural gas

    International Nuclear Information System (INIS)

    Lafrancois, Becky A.

    2012-01-01

    As the leading contributor of greenhouse gas emissions, the electricity sector stands to be impacted by policies seeking to curtail emissions. Instead of increasing electricity from renewable resources or nuclear power facilities, an alternative approach to reducing emissions in the electric power sector is changing the dispatch order of fossil fuels. Important differences between fossil fuels, and in the technologies used to burn them, make it possible to substantially reduce emissions from the sector. On average, each gigawatt-year of electricity generation switched from coal to natural gas reduces CO 2 emissions by 59 percent. As a result of significant investments in natural gas fired power plants in the United States between 1998 and 2005, there is an opportunity for electricity producers to take advantage of underutilized capacity. This is the first study to closely examine the new capital additions and analyze the technical potential for reductions in emissions. The analysis finds that 188 GW of capacity may be available to replace coal-fired baseload electricity generation. Utilizing this excess gas-fired capacity will reduce the sector's CO 2 emissions by 23 to 42 percent and reduce overall U.S. CO 2 emissions between 9 percent and 17 percent. - Highlights: ► Utilizing recently built natural gas fired power plants can significantly reduce CO 2 emissions in the United States. ► CO 2 emissions from electricity production can be reduced by 23–42 percent. ► U.S. overall CO 2 emissions reduced by 9–17 percent.

  8. Gas supply for independent power projects: Drilling programs and reserve acquisitions

    International Nuclear Information System (INIS)

    Lambert, J.D.; Walker, R.K.

    1990-01-01

    Developers of gas-fired independent power projects, although drawn to gas as the fuel of choice for economic and environmental reasons, are finding the problem of cost-effective gas supply to be intractable. By one estimate, there are $6 billion worth of gas-fired projects languishing in the planning stage for want of long-term gas supply that is acceptable to project lenders. Worse still, as the authors are aware, some currently operating gas-fired projects lack such a supply, thus forcing the developer to rely on the spot market for gas as an interim (and unsatisfactory) solution. Although spot market prices in the deregulated natural gas industry have remained relatively low over several years, long-term gas supply has become problematic, particularly for power projects whose economics typically require an assured supply at a determined price over a multiyear period. In short, while there is an increasing demand for gas as a preferred source of fuel supply for power projects, there are discontinuities in the approaches taken to contracting for that supply by producers and developers. These concern primarily allocation of the risk of commodity-driven price increases during the term of the fuel supply contract. Without a means of accommodating price-related risk, the parties will inevitably find themselves at an impasse in contract negotiations. If there is a barrier to the independent power generation industry's vertical integration into gas production, it is the fundamental insularity of the two industries. As they have discovered, it may be indispensable for gas producers and power developers to employ intermediaries familiar with both industries in order to consummate appropriate joint-venture drilling programs and reserve acquisitions. Given the economic consequences of doing so successfully, however, they believe such programs and acquisitions may become an integral part of independent power developers' business strategy in the 1990s and beyond

  9. Greenhouse gas emission reduction by means of fuel switching in electricity generation: Addressing the potentials

    International Nuclear Information System (INIS)

    Delarue, Erik; D'haeseleer, William

    2008-01-01

    Many countries committed themselves in the Kyoto protocol to reduce greenhouse gas (GHG) emissions. Some of these targeted emission reductions could result from a switch from coal-fired to gas-fired electricity generation. The focus in this work lies on Western Europe, with the presence of the European Union Emission Trading Scheme (EU ETS). For the switching to occur, several conditions have to be fulfilled. First, an economical incentive must be present, i.e. a sufficiently high European Union Allowance (EUA) price together with a sufficiently low natural gas price. Second, the physical potential for switching must exist, i.e. at a given load, there must remain enough power plants not running to make switching possible. This paper investigates what possibilities exist for switching coal-fired plants for gas-fired plants, dependent on the load level (the latter condition above). A fixed allowance cost and a variable natural gas price are assumed. The method to address GHG emission reduction potentials is first illustrated in a methodological case. Next, the GHG emission reduction potentials are addressed for several Western European countries together with a relative positioning of their electricity generation. GHG emission reduction potentials are also compared with simulation results. GHG emission reduction potentials tend to be significant. The Netherlands have a very widespread switching zone, so GHG emission reduction is practically independent of electricity generation. Other counties, like Germany, Spain and Italy could reduce GHG emissions significantly by switching. With an allowance cost following the switch level of a 50% efficient gas-fired plant and a 40% efficient coal-fired plant in the summer season (like in 2005), the global GHG emission reduction (in the electricity generating sector) for the eight modeled zones could amount to 19%

  10. Cascading of fluctuations in interdependent energy infrastructures: Gas-grid coupling

    International Nuclear Information System (INIS)

    Chertkov, Michael; Backhaus, Scott; Lebedev, Vladimir

    2015-01-01

    Highlights: • Fracturing and low cost of gas stimulated significant recent expansion of the natural gas networks. • Power system operators transition to gas as the main supply, also facing new reliability challenges. • Natural gas-fired generators vary burn-rates to balance fluctuating output of wind generation. • Impact of the gas-generator variations is seen in diffusive jitter of pressure within the gas network. • Fluctuating pressure impacts both reliability of natural gas deliveries and safety of pipeline operations. - Abstract: The revolution of hydraulic fracturing has dramatically increased the supply and lowered the cost of natural gas in the United States driving an expansion of natural gas-fired generation capacity in many electrical grids. Unrelated to the natural gas expansion, lower capital costs and renewable portfolio standards are driving an expansion of intermittent renewable generation capacity such as wind and photovoltaic generation. These two changes may potentially combine to create new threats to the reliability of these interdependent energy infrastructures. Natural gas-fired generators are often used to balance the fluctuating output of wind generation. However, the time-varying output of these generators results in time-varying natural gas burn rates that impact the pressure in interstate transmission pipelines. Fluctuating pressure impacts the reliability of natural gas deliveries to those same generators and the safety of pipeline operations. We adopt a partial differential equation model of natural gas pipelines and use this model to explore the effect of intermittent wind generation on the fluctuations of pressure in natural gas pipelines. The mean square pressure fluctuations are found to grow linearly in time with points of maximum deviation occurring at the locations of flow reversals.

  11. Advanced design nuclear power plants: Competitive, economical electricity. An analysis of the cost of electricity from coal, gas and nuclear power plants

    International Nuclear Information System (INIS)

    1992-06-01

    This report presents an updated analysis of the projected cost of electricity from new baseload power plants beginning operation around the year 2000. Included in the study are: (1) advanced-design, standardized nuclear power plants; (2) low emissions coal-fired power plants; (3) gasified coal-fired power plants; and (4) natural gas-fired power plants. This analysis shows that electricity from advanced-design, standardized nuclear power plants will be economically competitive with all other baseload electric generating system alternatives. This does not mean that any one source of electric power is always preferable to another. Rather, what this analysis indicates is that, as utilities and others begin planning for future baseload power plants, advanced-design nuclear plants should be considered an economically viable option to be included in their detailed studies of alternatives. Even with aggressive and successful conservation, efficiency and demand-side management programs, some new baseload electric supply will be needed during the 1990s and into the future. The baseload generating plants required in the 1990s are currently being designed and constructed. For those required shortly after 2000, the planning and alternatives assessment process must start now. It takes up to ten years to plan, design, license and construct a new coal-fired or nuclear fueled baseload electric generating plant and about six years for a natural gas-fired plant. This study indicates that for 600-megawatt blocks of capacity, advanced-design nuclear plants could supply electricity at an average of 4.5 cents per kilowatt-hour versus 4.8 cents per kilowatt-hour for an advanced pulverized-coal plant, 5.0 cents per kilowatt-hour for a gasified-coal combined cycle plant, and 4.3 cents per kilowatt-hour for a gas-fired combined cycle combustion turbine plant

  12. Assessment of greenhouse gas emissions from natural gas

    International Nuclear Information System (INIS)

    Anon

    2000-01-01

    The study, 'Assesment of greenhouse gas emission from natural gas' by independent consultants Energetics Pty Ltd, shows that natural gas has significantly fewer greenhouses gas emissions than either black or brown cola for the defined life cycle stages. The life cycle emissions from natural gas use by an Australian Major User are approximately 50% less than the emissions from Victorian brown coal and approximately 38% less than the emissions from Australian average black coal. Australian Best Practice gas fired electricity generation is estimated to emit between 514 and 658 kg CO 2 e/MWh. By comparison, Australian Best Practice coal-fired electricity generation is estimated to emit between 907 and 1,246 kg CO 2 e/MWh for black and brown coal respectively. Greenhouse gas emissions from Australian Best Practice gas-fired electricity generation using combined cycle gas turbines (including full fuel cycle emissions) vary from 41% to 46% of the emissions from brown coal-fired electricity generation and 57% to 64% of emissions from black coal-fired electricity generation. Greenhouse gas emissions from direct gas supply water heating range from 1,470 to 2,042 kilograms per annum. This compares with emissions of 1,922 to 2,499 kg for electric heating from gas-fired electricity generation and 3,975 to 5,393 kg for coal-fired electricity generation. The implications for greenhouse policy nationally are also discussed, emphasising the need to review national energy policy, currently tied to 'fuel neutrality' doctrine

  13. Results from the OECD report on international projections of electricity generating costs

    International Nuclear Information System (INIS)

    Paffenbarger, J.A.; Bertel, E.

    1998-01-01

    The International Energy Agency and Nuclear Energy Agency of the OECD have periodically undertaken a joint study on electricity generating costs in OECD Member countries and selected non-Member countries. This paper presents key results from the 1998 update of this study. Experts from 19 countries drawn from electric utility companies and government provided data on capital costs, operating and maintenance costs, and fuel costs from which levelized electricity generating costs (US cents/kWh) for baseload power plants were estimated in each country using a common set of economic assumptions. Light water nuclear power plants, pulverized coal plants, and natural gas-fired combined cycle gas turbines were the principal options evaluated. five and 10% discount rates, 40-year operating lifetime, and 75% annual load factor were the base assumptions, with sensitivity analyses on operating lifetime and load factor. Fuel costs and fuel escalation were provided individually by country, with a sensitivity case to evaluate costs assuming no real fuel price escalation over plant lifetimes. Of the three principal fuel/technology options, none is predominantly the cheapest option for all economic assumptions. However, fossil-fueled options are generally estimated to be the least expensive option. The study confirms that gas-fired combined cycles have improved their economic performance in most countries in recent years and are strong competitors to nuclear and coal-fired plants. Eleven out of the 18 countries with two or more options show gas-fired plants to be the cheapest option at 10% discount rate. Coal remains a strong competitor to gas when lower discount rates are used. Nuclear is the least expensive at both 5 and 10% discount rate in only two countries. Generally, with gas prices above 5 US$/GJ, nuclear plants constructed at overnight capital costs below 1 650 $/kWe have the potential to be competitive only at lower discount rates

  14. Radiometric measurements of wall temperatures in the 800 K to 1150 K range for a quartz radiant heating tube

    International Nuclear Information System (INIS)

    Blevins, L.G.; Sivathanu, Y.R.; Gore, J.P.; Shahien, M.A.

    1995-01-01

    Many industrial applications require heat transfer to a load in an inert environment, which can be achieved by using gas-fired radiant tubes. A radiant tube consists of a flame confined in a cylindrical metal or ceramic chamber. The flame heats the tube wall, which in turn radiates to the load. One important characteristic of radiant heating tubes is wall temperature uniformity. Numerical models of radiant tubes have been used to predict wall temperatures, but there is a lack of experimental data for validation. Recently, Namazian et al., Singh and Gorski, and Peters et al. have measured wall temperature profiles of radiant tubes using thermocouples. 13 refs., 3 figs

  15. 47{sup th} Annual meeting on nuclear technology (AMNT 2016). About cores, coal and cash

    Energy Technology Data Exchange (ETDEWEB)

    Podivinsky, Tomas Jan

    2016-07-15

    Rationality and - especially with regard to reducing emissions - technological neutrality are two commitments for nuclear fission. The Czech Republic, where conditions are not suitable for economical large-scale operation of facilities based on renewables, there is no alternative in environmental or business policy to the reasonable use of nuclear energy. The aim of the updated Czech energy strategy is to increase the proportion of nuclear energy from 35 % to approx. 50 % of power generation and to cover the rest - together with ultra-high efficiency coal fired power plants - with energy from renewable sources and gas fired power plants.

  16. PETROBRAS Transportes (TRANSPETRO) contingency plan system; Metodologia SIE (Sistema Informatizado de Emergencia) aplicada no gerenciamento das contingencias

    Energy Technology Data Exchange (ETDEWEB)

    Berardinelli, Ricardo; Mendonca, Daniela [TRANSPETRO - PETROBRAS Transportes, Rio de Janeiro, RJ (Brazil). Coordenacao de Seguranca, Saude e Meio Ambiente de Dutos e Terminais; Morais, Lucia B.; Carvalho, Marcelo Tilio M. de [Pontificia Univ. Catolica do Rio de Janeiro, RJ (Brazil). Dept. de Informatica. Grupo de Tecnologia em Computacao Grafica (TECGRAF)

    2005-07-01

    This paper describes the PETROBRAS Transportes Emergency Response System, which was designed to improve the response to emergency situations. The plans are defined based on an evaluation of the organization of the emergency teams, the communication procedures, characterization of the installations, definition of accidental scenarios, environmental sensitivity maps; simulation of oil spill trajectories and dispersion behavior; geographical data of the area surrounding the installations; other conventional data related to the installations, including equipment available and the InfoPAE system. Plans include several scenarios as oil spills, gas, fire, explosion, hazardous materials which can be applied to terminals and pipelines. (author)

  17. CO2 emission costs and Gas/Coal competition for power production

    International Nuclear Information System (INIS)

    Santi, Federico

    2005-01-01

    This paper demonstrates how a CO 2 emission reduction programme can change the competition between the two power production technologies which will probably dominate the future of the Italian power industry: the coal fired USC steam power plant and the natural gas fired CCGT power plant. An economic value of the CO 2 emission is calculated, in order to make the short-run-marginal-cost (or the long-run-marginal-cost). equal for both technologies, under a CO 2 emission trading scheme and following a single-plant specific CO 2 emission homogenizing approach [it

  18. The role of nuclear power in the reassessment of Czechoslovakia's energy policy

    International Nuclear Information System (INIS)

    Cibula, M.

    1991-01-01

    The role of nuclear industry in an effective solution of Czechoslovakia's economic, energy and ecological problems is discussed. It is concluded that the impacts of slowing-down of the construction of nuclear power plants can only be overcome by extending the operation of the ecologically unfavorable coal-fired power plants; orientation either to the construction of natural gas-fired power plants with combined steam-gas cycles associated with the use of heat, or to electricity imports does not offer a fundamental solution to the above problem. (Z.M.). 5 refs

  19. Natural gas assessment in France in 2015: final results - February 2017

    International Nuclear Information System (INIS)

    Mombel, David

    2017-02-01

    Illustrated by tables and graphs, this publication presents and comments data related to primary consumption of natural gas in France (increase in 2015), national production (still marginal), the evolution of imports and re-exports (a decrease of imports more than balanced by the strong decrease of re-exports), the origin of supplies (a rather diversified supply still dominated by Norway and still attractive short-term contracts), stocks, the evolution of consumption in relationship with climate and use of gas-fired plants (evolution of consumption since 1970, supplies to the different sectors), and the evolution of supplies to the different regions

  20. Economics and market potential of the modular high temperature reactor in the Netherlands

    International Nuclear Information System (INIS)

    Lako, P.; Stoffer, A.; Beeldman, M.

    1995-04-01

    This report considers the economics and market potential of the modular HTR under circumstances representative for the Netherlands. First power generation costs for different types of nuclear power plants, such as the HTR, are estimated. Then a comparison is made with power generation costs of fossil fuel fired alternatives. The market potential of the modular HTR for industrial cogeneration is analysed, as well as the fossil fuel prices needed for economic competition with a gas fired plant for cogeneration. At last the economics of the HTR are analysed under different CO 2 reduction constraints. (orig.)

  1. Health effects and related standards for fossil-fuel and geothermal power plants. Volume 6 of health and safety impacts of nuclear, geothermal, and fossil-fuel electric generation in California. [In California

    Energy Technology Data Exchange (ETDEWEB)

    Case, G.D.; Bertolli, T.A.; Bodington, J.C.; Choy, T.A.; Nero, A.V.

    1977-01-01

    This report reviews health effects and related standards for fossil-fuel and geothermal power plants, emphasizing impacts which may occur through emissions into the atmosphere, and treating other impacts briefly. Federal regulations as well as California state and local regulations are reviewed. Emissions are characterized by power plant type, including: coal-fired, oil-fired, gas-fired, combined cycle and advanced fossil-fuel plants; and liquid and vapor geothermal systems. Dispersion and transformation of emissions are treated. The state of knowledge of health effects, based on epidemiological, physiological, and biomedical studies, is reviewed.

  2. Natural gas industry R and D

    International Nuclear Information System (INIS)

    Pavan, S.

    1992-01-01

    The last three decades have witnessed significant developments in engineering relative to the distribution and use of natural gas. This paper reviews these developments which, in natural gas distribution, include - polyethylene conduits, the use of radar to trace buried conduits, telemetering, innovative pressure reducing techniques and equipment, optimized retrofitting of buried pipelines, leak detection techniques, and energy recovery systems applied to pressure reducing operations. Relative to the efficient combustion and new uses of natural gas, the paper reviews the state-of-the-art in the design of compact wall mounted gas fired boilers for building space heating, gas fuelled space heating ventilation and air conditioning systems, and natural gas fed fuel cells

  3. Pilot plant experiments for baking of anode blocks in electrically heated ovens

    Energy Technology Data Exchange (ETDEWEB)

    Grjotheim, K. (Oslo Univ. (Norway). Dept. of Chemistry); Kvande, H. (Hydro Aluminium AS, Stabekk (Norway)); Naixiang, F.; Shiheng, Z.; An, L.; Guangxia, H. (Northeast Univ. of Technology, Shenyang, LN (China). Dept. of Non-Ferrous Metallurgy)

    1990-04-01

    Pilot plant experiments were made to bake anode blocks in electrically heated baking ovens. About 70% of the baked anodes had a specific electrical resistance between 35 and 60 {Omega}xmm{sup 2}xm{sup -1}. About 25% had higher resistances, and these were returned to the baking ovens and used as heating elements in the next baking cycle. The average electrical energy consumption was 1430 kWh per tonne of anodes produced, which is about only 60% of the energy consumption in classical oil or gas-fired baking ovens. (orig.).

  4. Who's afraid of natural gas?

    International Nuclear Information System (INIS)

    Patterson, W.

    1999-01-01

    Changes in our electricity systems provoked by natural gas power generation technology are paving the way for large-scale renewables use in the future. Natural gas and gas turbines are now such a cheap and easy option for electricity generation that they appear to cast a pall over renewables. The market share of gas-fired generation continues expanding inexorably. Its cost continues to fall, setting renewables an ever more demanding competitive target. Nevertheless, paradoxical though this may sound, natural gas is actually the natural ally of renewables. Despite the fierce competitive challenge it represents, natural gas may even be the most important single factor shaping a bright future for renewables. (author)

  5. Vancouver Island gas supply

    International Nuclear Information System (INIS)

    Des Brisay, C.

    2005-01-01

    Terasen Gas is pursuing alternatives for the supply of additional natural gas capacity to Vancouver Island. Its subsidiary, Terasen Gas (Vancouver Island) Inc. (TGVI), is responding to the need for delivery of increased gas supply and, is supporting plans for new gas-fired power generation on Vancouver Island. TGVI's proposal for new natural gas capacity involves a combination of compression and pipeline loops as well as the addition of a storage facility for liquefied natural gas (LNG) at Mt. Hayes to help manage price volatility. This presentation outlined the objectives and components of the resource planning process, including demand forecast scenarios and the preferred infrastructure options. tabs., figs

  6. Increasing the efficiency of heating systems by reducing the flue gas temperature below the dew point

    Energy Technology Data Exchange (ETDEWEB)

    Kremer, H.

    1981-06-01

    This paper deals with the fundamentals and technical possibilities of increasing the combustion efficiency of gas-fired heating units for domestic heating by cooling the flue gases below their water vapor saturation temperature. The improvement of the efficiency can be more than 15% in comparison even to modern warm water heating boilers. Important however is the availability of cooling fluids of sufficiently low temperatures which could be recirculated heating water, freshwater and air. Different possible applications of this method are discussed in detail.

  7. LOW NOX BURNER DEVELOPMENT

    Energy Technology Data Exchange (ETDEWEB)

    KRISHNA,C.R.; BUTCHER,T.

    2004-09-30

    The objective of the task is to develop concepts for ultra low NOx burners. One approach that has been tested previously uses internal recirculation of hot gases and the objective was to how to implement variable recirculation rates during burner operation. The second approach was to use fuel oil aerosolization (vaporization) and combustion in a porous medium in a manner similar to gas-fired radiant burners. This task is trying the second approach with the use of a somewhat novel, prototype system for aerosolization of the liquid fuel.

  8. Optimized solar heat production in a liberalised electricity market. Demonstration of full-scale plant in Braedstrup; Optimeret solvarmeproduktion i et liberaliseret elmarked. Demonstration af fuldskalaanlaeg i Braedstrup

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, P.A. (PlanEnergi, Skoerping (Denmark)); Kristensen, Per (Braedstrup Fjernvarme, Braedstrup (Denmark)); Furbo, S. (Danmarks Tekniske Univ. DTU BYG, Kgs. Lyngby (Denmark)); Ulbjerg, F. (Ramboell, Odense (Denmark)); Holm, L. (Marstal Fjernvarme, Marstal (Denmark)); Schmidt, T. (Steinbeis-Research Institute for Solar and Sustainable Thermal Systems, Stuttgart (Denmark))

    2009-03-15

    The project demonstrates for the first time a combination between CHP and solar power systems. 8,019 m2 solar collectors producing 8% of the annual consumption in Braedstrup, Denmark, and nearly the total consumption on a good summer day were combined with a natural gas-fired CHP plant. An optimised ARCON HT2006 collector was developed for this purpose, and the control system was designed to ensure that supply-pipe temperature from solar collectors is always as low as possible and that the temperature in the existing water storage tank does not drop below 90 deg. C. (ln)

  9. Key sectors of the home automation industry, topical report, January 1993

    International Nuclear Information System (INIS)

    White, K.L.

    1993-01-01

    This is one of a series of topical reports dealing with the strategic, technical, and market development of home automation. Particular emphasis is placed upon identifying those aspects of home automation that will impact the gas industry and gas products. Communication standards, market drivers, key organizations, technical implementation, product opportunities, and market growth projections will all be addressed in this or subsequent reports. These reports will also discuss how the gas industry and gas-fired equipment can use home automation technology to benefit the consumer

  10. Current price guided use of combined cycle power plants with heat extraction using the example of the combined cycle Tiefstack

    International Nuclear Information System (INIS)

    Sieck, Jan; Hagen, Ralf

    2015-01-01

    The sale of electricity at the European Power Exchange in the DayAhead auction contains a certain economic risk, if the electricity is produced with gas fired CHP plants. This risk is due to a low price level connected with a relatively high price volatility. An auction strategy, using block orders, including the use of smart blocks is a possible way to minimize economic risk. Such a strategy is presented in this paper, using the example of the auction strategy for the CCGT Tiefstack. As the CCGT Tiefstack is part of the district heating system of the city Hamburg, this system is described as well as the technical constraints of the CCGT.

  11. Economic MPC for Power Management in the Smart Grid

    DEFF Research Database (Denmark)

    Hovgaard, Tobias Gybel; Edlund, Kristian; Jørgensen, John Bagterp

    2011-01-01

    To increase the amount of green energy (e.g. solar and wind) significantly a new intelligent electrical infrastructure is needed. We must not only control the production of electricity but also the consumption in an efficient and proactive manner. This future intelligent grid is in Europe known...... as the SmartGrid. In this paper we demonstrate the use of Economic Model Predictive Control to operate a portfolio of power generators and consumers such that the cost of producing the required power is minimized. With conventional coal and gas fired power generators representing the controllable power...

  12. Compilation of air pollutant emission factors. Volume 1. Stationary point and area sources. Supplement E

    International Nuclear Information System (INIS)

    1992-10-01

    In the Supplement to the Fourth Edition of AP-42 Volume I, new or revised emissions data are presented for Anthracite Coal Combustion; Natural Gas Combustion; Liquified Petroleum Gas Combustion; Wood Waste Combustion In Boilers; Bagasse Combustion In Sugar Mills; Residential Fireplaces; Residential Wood Stoves; Waste Oil Combustion; Automobile Body Incineration; Conical Burners; Open Burning; Stationary Gas Turbines for Electricity Generation; Heavy Duty Natural Gas Fired Pipeline Compressor Engines; Gasoline and Diesel Industrial Engines; Large Stationary Diesel and All Stationary Dual Fuel Engines; Soap and Detergents; and Storage of Organic Liquids

  13. Dust pollution of snow cover in the industrial areas of Tomsk city (Western Siberia, Russia)

    OpenAIRE

    Talovskaya, Anna Valerievna; Filimonenko, Ekaterina Anatolievna; Osipova, Nina Aleksandrovna; Yazikov, Yegor (Egor) Grigoryevich; Nadeina, Louise Vasilievna

    2016-01-01

    This article describes the results of long-term monitoring (2007-2014) of snow cover pollution in the territory of Tomsk city. Snow samples were collected in the territory of Tomsk. Determination of dust load level was carried out by comparing with the background and reference values. It has been determined that the north-east and central parts of Tomsk are the most contaminated areas, where brickworks, coal and gas-fired thermal power plant are located. The analysis of long-term dynamics sho...

  14. A Journey from Regional Gas Markets to a Global Gas Market

    International Nuclear Information System (INIS)

    Waterlander, O.; Schlaak, T.; Donohue, T.; Sarraf, G.

    2008-06-01

    According to the authors understanding the landscape of gas markets in the short and medium terms has never been as challenging as it is today. In this article, they describe three potential market scenarios to illustrate the drivers of market globalization: (1) A supply-driven imbalance in which the Middle East's export ability is constrained; (2) A demand-driven imbalance in which binding CO2 legislation in the U.S. gives a sharp boost to gas-fired power generation; and (3) A scenario in which both situations occur in concert.

  15. The pebble bed modular reactor (PBMR) as a source of high quality process heat for sustainable oil sands expansion

    International Nuclear Information System (INIS)

    Morris, A.; Kuhr, R.

    2008-01-01

    Bitumen extraction, processing and upgrading consumes large quantities of natural gas for production of steam, hot water and hydrogen. Massive expansion of bitumen production is planned in response to energy demands, oil prices, and the desire for energy security. The PBMR in its Process Heat configuration supports applications that compete in a cost effective and environmentally sustainable way with natural gas fired boilers and steam methane reforming. The PBMR has the benefit of size, passive nuclear safety characteristics (encompassing Generation IV safety principles), high reliability, high temperature process heat (750-950 o C) in a modular design suited to the oil sands industry. (author)

  16. Demand for electric power in major markets worldwide

    Energy Technology Data Exchange (ETDEWEB)

    Roeder, A [ABB Asea Brown Boveri Ltd., Zurich (Switzerland)

    1990-01-01

    One third of primary energy consumption is today being used to generate electrical power. The author discusses with the aid of statistics and diagrams, the various uses of energy, and the per capita energy consumption throughout the world. He considers that future demand for power depends to a large extent on GNP but also on fuel prices and reserves, energy policies and environmental concerns. On balance, these will lead to the introduction of clean coal technologies and a renaissance of nuclear power stations in the near future but until then gas-fired power plant will continue to play a dominant role in meeting power demands. 9 figs., 8 tabs.

  17. Nuclear electric power safety, operation, and control aspects

    CERN Document Server

    Knowles, J Brian

    2013-01-01

    Assesses the engineering of renewable sources for commercial power generation and discusses the safety, operation, and control aspects of nuclear electric power From an expert who advised the European Commission and UK government in the aftermath of Three Mile Island and Chernobyl comes a book that contains experienced engineering assessments of the options for replacing the existing, aged, fossil-fired power stations with renewable, gas-fired, or nuclear plants. From geothermal, solar, and wind to tidal and hydro generation, Nuclear Electric Power: Safety, Operation, and Control Aspects ass

  18. Radial compressor for a two-stage heat pump. Phase 2; Compresseur radial pour pompe a chaleur bi-etagee. Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    Schiffmann, J.; Favrat, D. [Federal Institute of Technology (EPFL), Industrial Energy Systems Laboratory (LENI), Lausanne (Switzerland); Molyneaux, A. [Ofttech SA, Lausanne (Switzerland)

    2005-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) reviews the results of the second phase of a project carried out at the Federal Institute of Technology in Lausanne, Switzerland, that involved the development of a two-stage heat pump that could replace conventional sources of domestic heating such as oil or gas-fired boilers. This report deals with the construction of a single-stage system to test the basic functions, aerodynamic bearings, drive and compressor and thus prove the correctness of the concept of the system. The results of the tests made are presented and discussed.

  19. Economic comparison of clean coal generating technologies with natural gas-combined cycle systems

    International Nuclear Information System (INIS)

    Sebesta, J.J.; Hoskins, W.W.

    1990-01-01

    This paper reports that there are four combustion technologies upon which U.S. electric utilities are expected to rely for the majority of their future power generating needs. These technologies are pulverized coal- fired combustion (PC); coal-fired fluidized bed combustion (AFBC); coal gasification, combined cycle systems (CGCC); and natural gas-fired combined cycle systems (NGCC). The engineering and economic parameters which affect the choice of a technology include capital costs, operating and maintenance costs, fuel costs, construction schedule, process risk, environmental and site impacts, fuel efficiency and flexibility, plant availability, capacity factors, timing of startup, and the importance of utility economic and financial factors

  20. Current price guided use of combined cycle power plants with heat extraction using the example of the combined cycle Tiefstack; Strompreisgefuehrter Einsatz von GuD-Kraftwerken mit Waermeauskopplung am Beispiel der GuD Tiefstack

    Energy Technology Data Exchange (ETDEWEB)

    Sieck, Jan; Hagen, Ralf [Vattenfall Waerme Hamburg GmbH, Hamburg (Germany)

    2015-07-01

    The sale of electricity at the European Power Exchange in the DayAhead auction contains a certain economic risk, if the electricity is produced with gas fired CHP plants. This risk is due to a low price level connected with a relatively high price volatility. An auction strategy, using block orders, including the use of smart blocks is a possible way to minimize economic risk. Such a strategy is presented in this paper, using the example of the auction strategy for the CCGT Tiefstack. As the CCGT Tiefstack is part of the district heating system of the city Hamburg, this system is described as well as the technical constraints of the CCGT.

  1. Ignition and flame spread properties of wood, elaborated during a new test method based on convective heat flux

    DEFF Research Database (Denmark)

    Sørensen, Lars Schiøtt

    Ignition and flame spread properties on selected types of wood and wall papers are elaborated. Tests are established in a new test setup in which the test specimen can be fixed in different angles due to a horizontal level. The heat exposing the test objects is arranged as a convective flux......, established from a Bunsen burners pilot flame. This principal is somewhat in contrast to the more typical radiation established fluxes. For instance, the ISO 9239 (DS 2000) test method is based on a gas fired radiant panel. And in the ISO 5657 standard, the ignition properties are investigated on test...

  2. Superior DeNOx activity of V2O5–WO3/TiO2 catalysts prepared by deposition–precipitation method

    DEFF Research Database (Denmark)

    Putluru, Siva Sankar Reddy; Schill, Leonhard; Gardini, Diego

    2014-01-01

    electron microscopy, H2-temperature programmed reduction and NH3-temperature programmed desorption. The catalysts exhibited only crystalline TiO2 phases with the active metal and promoter in highly dispersed or amorphous state. The 3 wt% V2O5–10 wt% WO3/TiO2 catalyst prepared by DP using ammonium carbamate...... concentration. Furthermore, potassium-poisoned catalysts showed above stoichiometric loss of surface acidity. Thus, these modified formulations are suggested to be used in coal/natural gas-fired power plants where there is a demand for high selective catalytic reduction activity and selectivity to N2....

  3. Opening up to gas

    International Nuclear Information System (INIS)

    Ryan, Orla

    1999-01-01

    This article focuses on the growing number of gas-fired generation projects in Eastern Europe, and the need for the different countries who wish to join the European Union to approximate their laws with EU legislation which requires the opening up of each member's gas market. Projects in Poland, Croatia, Turkey, Romania, Hungary, the Czech Republic, and Slovakia are considered, and project financing, the financial backing provided by the European Bank for Restructuring and Development (EBRD), and the anticipated growth in gas are discussed. (uk)

  4. 78 FR 21581 - Revisions to the California State Implementation Plan, Santa Barbara County Air Pollution Control...

    Science.gov (United States)

    2013-04-11

    ...EPA is proposing to approve revisions to the Santa Barbara County Air Pollution Control District (SBCAPCD) and South Coast Air Quality Management District (SCAQMD) portions of the California State Implementation Plan (SIP). These revisions concern volatile organic compound (VOC) and oxides of nitrogen (NOX) emissions from gas-fired fan-type central furnaces, small water heaters, and the transfer and dispensing of gasoline. We are proposing to approve local rules to regulate these emission sources under the Clean Air Act (CAA or the Act).

  5. 78 FR 21542 - Revisions to the California State Implementation Plan, Santa Barbara County Air Pollution Control...

    Science.gov (United States)

    2013-04-11

    ...EPA is taking direct final action to approve revisions to the Santa Barbara County Air Pollution Control District (SBCAPCD) and South Coast Air Quality Management District (SCAQMD) portions of the California State Implementation Plan (SIP). These revisions concern volatile organic compound (VOC) and oxides of nitrogen (NOX) emissions from gas-fired fan-type central furnaces, small water heaters, and the transfer and dispensing of gasoline. We are approving local rules that regulate these emission sources under the Clean Air Act (CAA or the Act).

  6. Current production costs in various power plant systems

    Energy Technology Data Exchange (ETDEWEB)

    Weible, H.

    1977-01-01

    The costs of producing electric power were evaluated for flowing water power plants, storage and pumped storage power plants, bituminous coal power plants, heating oil power plants (fired with heavy heating oil), natural gas-fired power plants, gas turbines, pressurized water reactors, and boiling water reactors. The calculational methods used for evaluating costs and the input data for methods used for the KOSKON and KOSKERN computer programs are described. It is emphasized that the calculations are examples to indicate the possible effects of the cost program and are only as valid as the input data. (JSR)

  7. The possibilities are very limited - The supply of electricity in Switzerland cannot be guaranteed in the long-term

    International Nuclear Information System (INIS)

    Veit, J.

    2004-01-01

    This article discusses the various factors influencing the security of supply of electricity in Switzerland. The author briefly reviews the present-day situation with power being produced by hydroelectric and nuclear power stations. Five possible options for action for ensuring electricity supply in the future are proposed: The increased import of power from neighbouring countries is looked at, the replacement or refurbishment of existing nuclear plant is considered, as is the augmentation and replacement of hydropower installations. A fourth option - the building of gas-fired, combined-cycle plant is discussed, as is the possibility of using renewable forms of energy such as solar, wind and geothermal energy

  8. Projected Costs of Generating Electricity

    International Nuclear Information System (INIS)

    Plante, J.

    1998-01-01

    Every 3 to 4 years, the NEA undertakes a study on projected costs of generating electricity in OECD countries. This started in 1983 and the last study (1997) has just be completed. All together 5 studies were performed, the first three dealing with nuclear and coal options, while the 1992 and 1997 included also the gas option. The goal of the study is to compare, country by country, generating costs of nuclear, coal-fired and gas-fired power plants that could be commissioned in the respondent countries by 2005-2010

  9. High Efficiency Water Heating Technology Development Final Report, Part II: CO2 and Absorption-Based Residential Heat Pump Water Heater Development

    Energy Technology Data Exchange (ETDEWEB)

    Gluesenkamp, Kyle R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Abdelaziz, Omar [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Patel, Viral K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mandel, Bracha T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); de Almeida, Valmor F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-05-01

    The two objectives of this project were to 1.demonstrate an affordable path to an ENERGY STAR qualified electric heat pump water heater (HPWH) based on low-global warming potential (GWP) CO2 refrigerant, and 2.demonstrate an affordable path to a gas-fired absorption-based heat pump water heater with a gas energy factor (EF) greater than 1.0. The first objective has been met, and the project has identified a promising low-cost option capable of meeting the second objective. This report documents the process followed and results obtained in addressing these objectives.

  10. Resource Contingency Program : Draft Environmental Impact Statement.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1995-02-01

    In 1990, the Bonneville Power Administration (BPA) embarked upon the Resource Contingency Program (RCP) to fulfill its statutory responsibilities to supply electrical power to its utility, industrial and other customers in the Pacific Northwest. Instead of buying or building generating plants now, BPA has purchased options to acquire power later if needed. Three option development agreements were signed in September 1993 with three proposed natural gas-fired, combined cycle combustion turbine CT projects near Chehalis and Satsop Washington and near Hermiston, Oregon. This environmental impact statement addresses the environmental consequences of purchasing power from these options. This environmental impact statement addresses the environmental consequences of purchasing power from these options.

  11. A Dynamic Model of the Combined Electricity and Natural Gas Markets

    DEFF Research Database (Denmark)

    Jenkins, Sandra; Annaswamy, Anuradha M.; Hansen, Jacob

    2015-01-01

    With the shale gas revolution, coal retirements, environmental regulations, and increasing renewable energy resources, the interdependency of natural gas and electricity has grown significantly. Interdependency challenges, such as mismatched market schedules and disparate market operations, require...... quantitative modeling in order to garner insights into the effectiveness of various solutions. In this paper, a quantitative model with a dynamic market mechanism is proposed to evaluate the effects of the fuel uncertainty of natural gas-fired power plants on Social Welfare. The results of the model show...

  12. Exploiting Flexibility in Coupled Electricity and Natural Gas Markets: A Price-Based Approach

    DEFF Research Database (Denmark)

    Ordoudis, Christos; Delikaraoglou, Stefanos; Pinson, Pierre

    2017-01-01

    Natural gas-fired power plants (NGFPPs) are considered a highly flexible component of the energy system and can facilitate the large-scale integration of intermittent renewable generation. Therefore, it is necessary to improve the coordination between electric power and natural gas systems....... Considering a market-based coupling of these systems, we introduce a decision support tool that increases market efficiency in the current setup where day-ahead and balancing markets are cleared sequentially. The proposed approach relies on the optimal adjustment of natural gas price to modify the scheduling...

  13. The Value of Renewable Energy as a Hedge Against Fuel Price Risk: Analytic Contributions from Economic and Finance Theory

    Energy Technology Data Exchange (ETDEWEB)

    Bolinger, Mark A; Wiser, Ryan

    2008-09-15

    For better or worse, natural gas has become the fuel of choice for new power plants being built across the United States. According to the Energy Information Administration (EIA), natural gas-fired units account for nearly 90% of the total generating capacity added in the U.S. between 1999 and 2005 (EIA 2006b), bringing the nationwide market share of gas-fired generation to 19%. Looking ahead over the next decade, the EIA expects this trend to continue, increasing the market share of gas-fired generation to 22% by 2015 (EIA 2007a). Though these numbers are specific to the US, natural gas-fired generation is making similar advances in many other countries as well. A large percentage of the total cost of gas-fired generation is attributable to fuel costs--i.e., natural gas prices. For example, at current spot prices of around $7/MMBtu, fuel costs account for more than 75% of the levelized cost of energy from a new combined cycle gas turbine, and more than 90% of its operating costs (EIA 2007a). Furthermore, given that gas-fired plants are often the marginal supply units that set the market-clearing price for all generators in a competitive wholesale market, there is a direct link between natural gas prices and wholesale electricity prices. In this light, the dramatic increase in natural gas prices since the 1990s should be a cause for ratepayer concern. Figure 1 shows the daily price history of the 'first-nearby' (i.e., closest to expiration) NYMEX natural gas futures contract (black line) at Henry Hub, along with the futures strip (i.e., the full series of futures contracts) from August 22, 2007 (red line). First, nearby prices, which closely track spot prices, have recently been trading within a $7-9/MMBtu range in the United States and, as shown by the futures strip, are expected to remain there through 2012. These price levels are $6/MMBtu higher than the $1-3/MMBtu range seen throughout most of the 1990s, demonstrating significant price escalation for

  14. Heating technology: Listen to where the music is playing; Heiztechnik: Hier spielt die Musik

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1996-12-31

    The choice between an oil-fired and a gas-fired heating system is often not a matter of task but simply of which energy carrier happens to be available. The present article therefore provides information in equal depth on both types of heating system and explains their respective strong and weak points. In this context it also discusses possible future developments. (orig.) [Deutsch] Ueber die Anschaffung einer oel- oder gasbefeuerten Heizung entscheidet haeufig nicht die persoenliche Sympathie, sondern schlicht und ergreifend die Verfuegbarkeit des Energietraegers. Wir wollen Sie deshalb gleichermassen ausfuehrlich ueber beide Heizsysteme informieren und dabei die jeweiligen Staerken und Schwaechen herausarbeiten und einen Blick in die Zukunft werfen. (orig.)

  15. Design and performance of a skid-mounted portable compartment fire gas furnace and monitoring system

    Directory of Open Access Journals (Sweden)

    Mueller K.

    2013-09-01

    Full Text Available A custom, portable natural gas fire furnace was designed and constructed for use at the University of Notre Dame to experimentally investigate the out-of-plane behavior of full-scale reinforced concrete (RC bearing walls under fire. The unique aspects of this furnace allowed the application of large mechanical loads and non-contact optical response monitoring to be done while subjecting the wall to elevated temperatures. The performance of the experimental furnace, mechanical loading, and response monitoring system is reported using the results from the first two RC wall test specimens.

  16. New regulations, combustion, environment: responses for natural gas; Nouvelles reglementations, combustion, environnement: les reponses pour le gaz naturel

    Energy Technology Data Exchange (ETDEWEB)

    Le Peltier-Marc, A. [Gaz de France (GDF), 75 - Paris (France). Direction Commerciale

    1997-12-31

    The impacts of the new French regulations concerning low- to medium-power combustion equipment with regards to their energy sources, energy efficiency and pollution control, on natural gas fired boilers, are discussed: lower pollutant emission limits are set for SO{sub 2}, NO{sub x} and ashes. The decree gives new regulations concerning plant location, combustion control systems, plant monitoring and maintenance, and air pollution control measures such as chimney stack height and emission limits. The French national gas utility promotes environmental high performance boilers

  17. Sandia and NJ TRANSIT Authority Developing Resilient Power Grid

    Energy Technology Data Exchange (ETDEWEB)

    Hanley, Charles J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ellis, Abraham [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-11-01

    Through the memorandum of understanding between the Depratment of Energy (DOE), the New Jersey Transit Authority (NJ Transit), and the New Jersey Board of Public Utilities, Sandia National Labs is assisting NJ Transit in developing NJ TransitGrid: an electric microgrid that will include a large-scale gas-fired generation facility and distributed energy resources (photovoltaics [PV], energy storage, electric vehicles, combined heat and power [CHP]) to supply reliable power during storms or other times of significant power failure. The NJ TransitGrid was awarded $410M from the Department of Transportation to develop a first-of-its-kind electric microgrid capable of supplying highly-reliable power.

  18. Developing electricity production with natural gas in the southern mediterranean countries: an example of north-south cooperation in the electricity and natural gas sector

    International Nuclear Information System (INIS)

    Grenon, M.; Nogaret, E.

    1995-01-01

    Southern Mediterranean countries are facing an important increase of electricity demand; in order to increase the production capacity at a minimum cost while preserving the environment, most of these countries are planning gas fired power stations due to important natural gas resources. The development of both the power plants and the infrastructures to produce and transport the natural gas is more and more performed through cooperation between companies of the northern and southern sides of the Mediterranean sea: technical assistance programs, joint financing and management of the infrastructures. 3 figs

  19. Thermodynamic Analysis of Supplementary-Fired Gas Turbine Cycles

    DEFF Research Database (Denmark)

    Elmegaard, Brian; Henriksen, Ulrik Birk; Qvale, Einar Bjørn

    2002-01-01

    This paper presents an analysis of the possibilities for improving the efficiency of an indirectly biomass-fired gas turbine (IBFGT) by supplementary direct gas-firing. The supplementary firing may be based on natural gas, biogas, or pyrolysis gas. {The interest in this cycle arise from a recent...... demonstration of a two-stage gasification process through construction of several plants.} A preliminary analysis of the ideal recuperated Brayton cycle shows that for this cycle any supplementary firing will have a marginal efficiency of unity per extra unit of fuel. The same result is obtained...

  20. The benefit of the Dutch Energy Investment Allowance (EIA) for high-efficiency installations in industrial buildings; EIA maakt hr-apparatuur voor bedrijfsgebouwen voordelig

    Energy Technology Data Exchange (ETDEWEB)

    De Boer, A. [ed.

    1998-02-01

    Gas-fired condensing appliances for space heating of industrial buildings are more expensive than appliances that do not show a high efficiency. In many cases, however, it is still cheaper to invest in condensing appliances. Not only because of lower exploitation costs, but also because of the ISO-high-efficiency subsidy regulation (`ISO-hr`), the energy investment allowance (EIA) and the energy conservation fund. The technologies that are eligible for the EIA are listed in the `Energielijst` (energy list) for 1998

  1. The market for, and economics of, cogeneration and independent power projects in a competitive environment

    International Nuclear Information System (INIS)

    McLeese, R.

    1999-01-01

    A corporate review of Access Capital Corporation was presented. The company is a financial advisor for the development and ownership of electric power projects. The company has expertise in various technologies including gas-fired cogeneration, hydro energy, biomass, renewables and district heating. This presentation included a series of overhead viewgraphs which focused on: (1) the restructuring of Ontario's electricity market, (2) future private power requirements, (3) economics of IPP technologies, (4) pros and cons of on-site power generation, (5) rates paid for private power supply, and (6) financial restructuring of current NUG power purchase contracts. 2 tabs., 6 figs

  2. Coordinated power station expansion in the 1980's - K.K. II

    International Nuclear Information System (INIS)

    1975-08-01

    A description is given of plans for expanding Danish electricity production in the 1980's. Only combined coal/oil-fired base-load plants and atomic plants are envisaged, in contrast to purely oil-fired or purely gas-fired units. Medium-load and peak-load plants are not reckoned to be built in the period considered, nor new plants for combined electricity and heat production, before the existing capacity is fully utilized. A series of plans are presented both with and without atomic power plants. It is assumed that at most one atomic power unit can be built in Denmark every second year. (B.P.)

  3. Variation in excess oxidant factor in combustion products of MHD generator. [Natural gas fuel

    Energy Technology Data Exchange (ETDEWEB)

    Pinkhasik, M S; Mironov, V D; Zakharko, Yu A; Plavinskii, A I

    1977-12-01

    Methods and difficulties associated with determining the excess oxidant factor for natural gas-fired MHD generators are discussed. The measurement of this factor is noted to be essential for the optimization of the combustion chamber and operation of MHD generators. A gas analyzer of electrochemical type is considered as a quick - response sensor capable of analyzing the composition of the combustion products and thus determining accurately the excess oxidant factor. The principle of operation of this sensor is discussed and the dependence of the electrochemical sensor emf on excess oxidant factor is shown. Three types of sensors are illustrated and tables of test results are provided.

  4. Rates and rites of passage: The use of natural gas in power plants

    International Nuclear Information System (INIS)

    Bloom, D.I.

    1995-01-01

    There are many advantages to the use of natural gas in new or repowered electric generating facilities. These include lower capital costs, positive environmental impacts, the use of proven technology, and an adequate resource base with a highly reliable and flexible transportation system. However, it is also clear that FERC's regulation of pipeline rates and operating practices has a direct impact on the bottom line of electric generators. a sober understanding of these rules, a careful integration of the rules into project documents, and a more commercial approach to transportation contracts will enhance the revenues and control the risks of the financially successful gas-fired electric generators

  5. Running on steelworks gas at Hamborn

    Energy Technology Data Exchange (ETDEWEB)

    Joksch, M.; Kehr, M. [ThyssenKrupp Stahl, Duisburg (Germany)

    2005-03-01

    Conventional subcritical technology proved to be the best solution for the new Hamborn cogen facility, which has to operate on three different types of gas (blast furnace, coke oven, and natural gas) with wide fluctuations in quantity and quality. But the plant has a number of novel features, with particular attention given to flexible firing and heat recovery. New materials are extensively used in the boiler. It is also the first steelworks-gas fired unit to employ SCR. Despite teething problems in early operation, not helped by insolvency of the main contractors the plant is now achieving good availability, vindicating the basic design approach. 9 figs., 1 tab.

  6. Regulating the Regulator

    Energy Technology Data Exchange (ETDEWEB)

    1992-08-26

    The article reports on a challenge to the UK electricity regulator to defend his record by the Coalition for Fair Electricity Regulation (COFFER). The challenge centres on whether the obligation for the regional electric companies (REC) to purchase power from the cheapest source is being enforced. This is related to the wider issue of whether the REC's support of combined-cycle gas turbine (CCGT) is economic. COFFER considers that uneconomic gas-fired power plants are being allowed to displace economic coal-fired stations. Aspects discussed include the background to the dispute and the costs of CCGT and coal fired power generation. 1 fig., 1 tab.

  7. Income risk of EU coal-fired power plants after Kyoto

    International Nuclear Information System (INIS)

    Abadie, Luis M.; Chamorro, Jose M.

    2009-01-01

    Coal-fired power plants enjoy a significant advantage relative to gas plants in terms of cheaper fuel cost. This advantage may erode (or turn into disadvantage) depending on CO 2 emission allowance price. Financial risks are further reinforced when the price of electricity is determined by natural gas-fired plants' marginal costs. We aim to empirically assess the risks in EU coal plants' margins up to the year 2020. Parameter values are derived from actual market data. Monte Carlo simulation allows compute the expected value and risk profile of coal plants' earnings. Future allowance prices may spell significant risks on utilities' balance sheets. (author)

  8. Rational gas consumption resulting from technological innovations and improved gas appliances

    Energy Technology Data Exchange (ETDEWEB)

    Doering, H

    1980-07-01

    Ruhrgas AG has developed several new or improved appliances with a view toward conserving energy. Its household heat center (see also Gas Abstr. 36, 80-1144f) uses a single core unit to supply heat for all the major heat requirements in the house, from cooking and dishwashing to water heating, space heating, and laundry washing/drying. A new burner that can function at both full and partial load with an air ratio of about 1.35 offers economical, yet quiet operation. Ruhrgas is also continuing its laboratory and field research into the application of gas-fired compression-type heat pumps.

  9. Energy year 2005 - how is the energy balance in Rogaland and what are the implications?

    International Nuclear Information System (INIS)

    2006-01-01

    The topic of the lunch meeting is the current and future energy balance in the county of Rogaland, Norway. The question of how to meet the future's increased energy demand is treated. An assessment of the energy situation in the years 2005-2015 is made. Regional projects are presented in the forms of coal fired power station, gasworks and wind power projects. The presented projects are Haugaland Kraft's coal-fired power station, Naturkraft's gas fired power plant and Norsk Vind Energi's wind turbine plants (ml)

  10. New and future heat pump technologies

    Science.gov (United States)

    Creswick, F. A.

    It is not possible to say for sure what future heat pumps will look like, but there are some interesting possibilities. In the next five years, we are likely to see US heat pumps with two kinds of innovations: capacity modulation and charge control. Capacity modulation will be accomplished by variable-speed compressor motors. The objective of charge control is to keep the refrigerant charge in the system where it belongs for best performance; there are probably many ways to accomplish this. Charge control will improve efficiency and durability; capacity modulation will further improve efficiency and comfort. The Stirling cycle heat pump has several interesting advantages, but it is farther out in time. At present, we don't know how to make it as efficient as the conventional vapor-compression heat pump. Electric utility people should be aware that major advances are being made in gas-fired heat pumps which could provide strong competition in the future. However, even a gas-fired heat pump has a substantial auxiliary electric power requirement. The resources needed to develop advanced heat pumps are substantial and foreign competition will be intense. It will be important for utilities, manufacturers, and the federal government to work in close cooperation.

  11. Spirometric abnormalities associated with chronic bronchitis, asthma, and airway hyperresponsiveness among boilermaker construction workers

    Energy Technology Data Exchange (ETDEWEB)

    Hauser, R.; Eisen, E,A,; Pothier, L,; Lewis, D,; Bledsoe, T,; Christiani, D.C. [Harvard University, Boston, MA (United States). School of Public Health

    2002-06-01

    In a 2-year longitudinal study of boilermaker construction workers, authors found a significant association between working at oil-fired, coal-fired, and gas-fired industries during the past year and reduced lung function. In the present study, authors investigated whether chronic bronchitis, asthma, or baseline methacholine airway responsiveness can explain the heterogeneity in lung function response to boilermaker work. Exposure was assessed with a work history questionnaire. Spirometry was performed annually to assess lung function. A generalized estimating equation approach was used to account for the repeated-measures design. One hundred eighteen boilermakers participated in the study. Self-reported history of chronic bronchitis and asthma were associated with a larger FEV1 reduction in response to workplace exposure at coal-fired and gas-fired industries. Although a high prevalence (39%) of airway hyperresponsiveness (provocative concentration of methacholine causing a 20% fall in FEVI of {lt} 8 mg/mL) among boilermakers was found, there was no consistent pattern of effect modification by airway responsiveness. Conclusions: Although chronic bronchitis and asthma were associated with a greater loss in lung function in response to hours worked as a boilermaker, and therefore they acted as effect modifiers of the exposure-lung function relationship, airway hyperresponsiveness did not. However, the high prevalence of airway hyperresponsiveness found in the cohort may be a primary consequence of long-term workplace exposure among boilermakers.

  12. A prospective study of lung function among boilermaker construction workers exposed to combustion particulates

    Energy Technology Data Exchange (ETDEWEB)

    Hauser, R.; Eisen, E.A.; Pothier, L.; Christiani, D.C. [Harvard University, Boston, MA (USA). School of Public Health, Occupational Health Program, Dept. of Environmental Health

    2001-05-01

    As part of an ongoing investigation, a 2-year longitudinal study of lung function among 118 boilermakers was conducted. Exposure was assessed with a work history questionnaire. Spirometry measurements were performed annually. Results show an association between annual FEV1 and hours worked at a gas-fired plant during the previous year, beta = -9.8 mls/100 hours worked (85% CI:-16.0,-3.5) after adjustment for age, baseline FEV1 and cigarette smoking status. The adjusted association between FEV1 and 'ever' worked at a gas-fired plant was -99.7 mls (95% CI: -154.8, -44.5). There was also evidence of a negative association between FEV1 and 'ever' worked and hours worked at oil and coal-fired plants. These data suggest an association between annual lung function loss and working at gas, coal and oil-fired plants. Further follow-up of this cohort of boilermakers is in progress.

  13. High-performance nanostructured thermoelectric generators for micro combined heat and power systems

    International Nuclear Information System (INIS)

    Zhang, Yanliang; Wang, Xiaowei; Cleary, Martin; Schoensee, Luke; Kempf, Nicholas; Richardson, Joseph

    2016-01-01

    Highlights: • A TEG is fabricated using high-efficiency nanostructured thermoelectric materials. • The TEG produces high power density of 2.1 W/cm"2 with 5.3% electrical efficiency. • A micro-CHP system is demonstrated by integrating the TEG into a gas-fired boiler. - Graphical Abstract: - Abstract: Micro combined heat and power (micro-CHP) systems are promising pathways to increase power generation efficiencies. Here a new class of micro-CHP system without moving parts is experimentally demonstrated by integrating high-temperature thermoelectric generators (TEGs) and residential gas-fired boilers, thus enabling wide applications. The TEGs fabricated using high-efficiency nanostructured bulk half-Heusler alloys generate ultrahigh power density of 2.1 W/cm"2 with 5.3% electrical efficiency under 500 °C temperature differences between the hot and cold sides. The TEG system harnesses the untapped exergy between the combustion gas and water, and converts thermal energy into electric power with 4% heat-to-electricity efficiency based on the total heat input into the TEGs. The high-performance TEGs open lots of opportunities to transform power generation technologies and improve energy efficiency.

  14. Smart campus: Data on energy generation costs from distributed generation systems of electrical energy in a Nigerian University.

    Science.gov (United States)

    Okeniyi, Joshua O; Atayero, Aderemi A; Popoola, Segun I; Okeniyi, Elizabeth T; Alalade, Gbenga M

    2018-04-01

    This data article presents comparisons of energy generation costs from gas-fired turbine and diesel-powered systems of distributed generation type of electrical energy in Covenant University, Ota, Nigeria, a smart university campus driven by Information and Communication Technologies (ICT). Cumulative monthly data of the energy generation costs, for consumption in the institution, from the two modes electric power, which was produced at locations closed to the community consuming the energy, were recorded for the period spanning January to December 2017. By these, energy generation costs from the turbine system proceed from the gas-firing whereas the generation cost data from the diesel-powered generator also include data on maintenance cost for this mode of electrical power generation. These energy generation cost data that were presented in tables and graphs employ descriptive probability distribution and goodness-of-fit tests of statistical significance as the methods for the data detailing and comparisons. Information details from this data of energy generation costs are useful for furthering research developments and aiding energy stakeholders and decision-makers in the formulation of policies on energy generation modes, economic valuation in terms of costing and management for attaining energy-efficient/smart educational environment.

  15. Optimising the flow characteristic of a coke-oven flue-gas valve by means of Computational Fluid Dynamics (CFD); Stroemungsoptimierung eines Abgasventils von Koksoefen durch Computational Fluid Dynamics (CFD)

    Energy Technology Data Exchange (ETDEWEB)

    Hiller, R.; Cremer, I.; Bertling, J. [Fraunhofer-Institut fuer Umwelt-, Sicherheits- und Energietechnik UMSICHT, Oberhausen (Germany); Dittie, J.; Kim, R.; Reinke, M. [Krupp Uhde GmbH, Dortmund (Germany)

    1999-06-01

    In coke-oven operations flue-gas valves are used to switch the regenerator function from rich gas firing to lean gas firing. Compared with the simple geometry of the other parts of the flow path, which comprise flues and regenerators, the narrow and winding passages of the flue-gas valves give rise to relatively high losses in pressure. Without the construction of high (and therefore expensive) chimneys, this means that operating problems may well arise due the inadequate suction capacity. The project focused on the theoretical and experimental analysis of a coke-oven flue-gas valve. The primary aim was to reduce the pressure drop through the valve without modifying its external geomerty. The internal flow characteristics created by different valve geometries under a variety of operating conditions were simulated using the commercial CFD code Fluent/UNS, which provided velocity and pressure distributions. A half-scale model valve was constructed in order to characterise the internal flow behaviour by pressure measurement. (orig.) [Deutsch] In einem bei Fraunhofer UMSICHT durchgefuehrten Projekt wurde die Stroemung in einem Abgasventil eines Koksofens, das der Umschaltung der Regeneratorfunktion von Starkgasbeheizung auf Schwachgasbeheizung dient, theoretisch und experimentell untersucht, um die relativ hohen Druckverluste zu vermindern. Vorgeschlagen wurde eine Modifikation der Abgasventilkonstruktion, die den Druckverlust um mehr als das Zehnfache vermindert und zu einer baulichen Vereinfachung des Ventils fuehrt. (orig.)

  16. Simulating greenhouse gas (GHG) allowance cost and GHG emission reduction in Western Europe

    International Nuclear Information System (INIS)

    Delarue, Erik; Lamberts, Hans; D'haeseleer, William

    2007-01-01

    Due to the growing concern for global warming, the EU25 have implemented the European Union Greenhouse Gas Emission Trading Scheme (EU ETS). In the first trading period (2005-2007), part of the targeted GHG emission reductions presumably will have to result from a switch from coal fired electricity generation to gas fired electricity generation. It is possible to calculate the allowance cost necessary to switch a certain coal fired plant with a certain gas fired plant in the merit order. The allowance cost obtained is a so called switching point. When comparing historic European Union Allowance (EUA) prices (2005) with the corresponding historic switching points, the EUA prices were found high enough to cause a certain switch in the summer season. This finding leads to the use of switching points in establishing allowance cost profiles for several scenarios. A variable gas price profile is used in the simulation tool E-Simulate to simulate electricity generation and related GHG emissions in an eight zonal model representing Western Europe. Several GHG allowance cost profile scenarios are examined. For each scenario, electricity generation in the considered countries is clarified. The focus however lies on the GHG emission reduction potentials. These potentials are addressed for each scenario

  17. Natural gas for utility generation

    International Nuclear Information System (INIS)

    Moore, T.

    1992-01-01

    Forecasters predict that natural gas will be the dominant fuel choice for utility capacity additions in the coming decade and that power generation will be by far the largest growth market for gas sales. While gas's low emissions, high efficiency potential, and present low cost argue persuasively for a surge in gas-fired generation, many utilities have been slow to commit to a gas future, citing reasoned concern about long-term price trends and the ability of gas suppliers to deliver the fuel where and when it will be needed. Meanwhile, the relatively low cost of gas-fired units is providing an opportunity for independent power producers to compete strongly with utilities for generation contracts. EPRI studies suggest that a sound, competitive strategy will be based not on how much gas a utility burns, but rather on how this capacity fits into its overall generating mix at various fuel price levels. Gas suppliers will need to pay special attention to the operating needs of power generators if they are to solidify this important market

  18. Natural gas for power generation : issues and implications : an energy market assessment

    International Nuclear Information System (INIS)

    2006-06-01

    This report presented a historical examination of trends in natural gas-fired generation as well as a perspective on the issues and potential implications of increasing reliance on natural gas. Potential changes to Canadian energy consumers were reviewed in addition to natural gas infrastructure and services. Electricity prices relating to natural gas generation were examined. A broad regional and continental perspective was employed to account for energy market integration and the fact that gas trends reflect developments outside of Canada. The report was divided into 2 sections: (1) an examination of the trend toward natural-gas fired generation of electricity in North America; and (2) an examination of issues in closer detail from a regional perspective followed by a discussion of the changes in generation and natural gas markets in western, eastern, and central North America. Questions arising from the analysis of specific regional supply, demand and infrastructure situations were also examined. Recommendations were presented for issues concerning the current gas market and the appropriate role of the government in ensuring adequate generation. Uncertainties in future natural gas supply were also considered. It was concluded that rapid industrial growth will continue to increase demand for natural gas and electricity supply. 5 figs

  19. Primary energy savings in desiccant and evaporative cooling-assisted 100% outdoor air system combined with a fuel cell

    International Nuclear Information System (INIS)

    Kim, Min-Hwi; Dong, Hae-Won; Park, Joon-Young; Jeong, Jae-Weon

    2016-01-01

    Highlights: • A LD-IDECOAS integrated with a PEMFC was proposed. • A pilot system was installed and tested during cooling operation. • The proposed system powered by the PEMFC saved 21% of the primary energy consumption during cooling. - Abstract: The main purpose of this study involved investigating the primary energy saving potential of a liquid desiccant and evaporative cooling-assisted 100% outdoor air system (LD-IDECOAS) integrated with a proton exchange membrane fuel cell (PEMFC). During the cooling season, the heat produced by the PEMFC was used to regenerate a weak desiccant solution, and the electricity generated was used to operate the LD-IDECOAS. A pilot LD-IDECOAS powered by a PEMFC was installed and operated in an office space to experimentally verify the annual operating energy savings of the proposed system. The findings indicated that the heat reclaimed from the PEMFC saved 42% of the desiccant solution regenerating energy when compared to that in the case of a conventional gas-fired water heater. The results also suggested that the LD-IDECOAS combined with a PEMFC consumed 21% less primary energy when compared with that of a system powered by grid electricity and a conventional gas-fired water heater.

  20. Dust pollution of snow cover in the industrial areas of Tomsk city (Western Siberia, Russia)

    Science.gov (United States)

    Talovskaya, A. V.; Filimonenko, E. A.; Osipova, N. A.; Yazikov, E. G.; Nadeina, L. V.

    2016-03-01

    This article describes the results of long-term monitoring (2007-2014) of snow cover pollution in the territory of Tomsk city. Snow samples were collected in the territory of Tomsk. Determination of dust load level was carried out by comparing with the background and reference values. It has been determined that the north-east and central parts of Tomsk are the most contaminated areas, where brickworks, coal and gas-fired thermal power plant are located. The analysis of long-term dynamics showed a dust load decrease in the vicinity of coal and gas-fired thermal power plant due to upgrading of the existing dust collecting systems. During the monitoring period the high dust load in the vicinity of brickworks did not change. The lowest value of the dust load on snow cover was detected in the vicinity of the petrochemical plant and concrete product plants. The near and far zones of dust load on snow cover were determined with the reference to the location of the studied plants.

  1. Fuzzy comprehensive evaluation of district heating systems

    International Nuclear Information System (INIS)

    Wei Bing; Wang Songling; Li Li

    2010-01-01

    Selecting the optimal type of district heating (DH) system is of great importance because different heating systems have different levels of efficiency, which will impact the system economics, environment and energy use. In this study, seven DH systems were analysed and evaluated by the fuzzy comprehensive evaluation method. The dimensionless number-goodness was introduced into the calculation, the economics, environment and energy technology factors were considered synthetically, and the final goodness values were obtained. The results show that if only one of the economics, environment or energy technology factors are considered, different heating systems have different goodness values. When all three factors were taken into account, the final ranking of goodness values was: combined heating and power>gas-fired boiler>water-source heat pump>coal-fired boiler>ground-source heat pump>solar-energy heat pump>oil-fired boiler. The combined heating and power system is the best choice from all seven systems; the gas-fired boiler system is the best of the three boiler systems for heating purpose; and the water-source heat pump is the best of the three heat pump systems for heating and cooling.

  2. Investigation of fuel lean reburning process in a 1.5 MW boiler

    International Nuclear Information System (INIS)

    Kim, Hak Young; Baek, Seung Wook; Kim, Se Won

    2012-01-01

    Highlights: → We examine a detailed study of fuel lean reburning process in a 1.5 MW gas-fired boiler. → Experimental and numerical researches are conducted. → We investigate change in the level of NO X and CO emission. → The recirculation flow is important in the fuel lean reburning process. -- Abstract: This paper examines a detailed study of fuel lean reburning process applied to a 1.5 MW gas-fired boiler. Experimental and numerical studies were carried out to investigate the effect of the fuel lean reburning process on the NO X reduction and CO emission. Natural gas (CH 4 ) was used as the reburn as well as the main fuel. The amount of the reburn fuel, injection location and thermal load of boiler were considered as experimental parameters. The flue gas data revealed that the fuel lean reburning process led to NO X reduction up to 43%, while CO emission was limited to less than 30 ppm for the 100% thermal load condition. The commercial computational fluid dynamics code FLUENT 6.3, which included turbulence, chemical reaction, radiation and NO modeling, was used to predict the fluid flow and heat transfer characteristics under various operational conditions in the boiler. Subsequently, predicted results were validated with available measured data such as gas temperature distributions and local mean NO X concentrations. The detailed numerical results showed that the recirculation flow developed inside the boiler was found to play an important role in improving the effectiveness of fuel lean reburning process.

  3. Leveling the playing field of transportation fuels: Accounting for indirect emissions of natural gas

    International Nuclear Information System (INIS)

    Sexton, Steven; Eyer, Jonathan

    2016-01-01

    Natural gas transportation fuels are credited in prior studies with greenhouse gas emissions savings relative to petroleum-based fuels and relative to the total emissions of biofuels. These analyses, however, overlook a source of potentially large indirect emissions from natural gas transportation fuels, namely the emissions from incremental coal-fired generation caused by price-induced substitutions away from natural-gas-fired electricity generation. Because coal-fired generation emits substantially more greenhouse gases and criteria air pollutants than natural-gas-fired generation, this indirect coal-use change effect diminishes potential emissions savings from natural gas transportation fuels. Estimates from a parameterized multi-market model suggest the indirect coal-use change effect rivals in magnitude the indirect land-use change effect of biofuels and renders natural gas fuels as carbon intensive as petroleum fuels. - Highlights: •Natural gas used in transport causes indirect emissions in the electricity sector. •These emissions result from increased coal use in electricity generation. •They rival in magnitude indirect land use change (ILUC) emissions of biofuels. •Natural gas fuels are estimated to be as carbon intensive as the petroleum fuels. •Policy ignores indirect emissions from natural gas.

  4. From state to market and back again: Egypt's experiment with independent power projects

    International Nuclear Information System (INIS)

    Eberhard, Anton; Gratwick, Katharine

    2007-01-01

    This paper focuses on Egypt's three independent power projects (IPPs), evaluating the context in which they were developed as well as how the context has changed. Initially the Egyptian government planned a series of 15 gas-fired, steam cycle, independent power projects. The first three, developed by InterGen, Edison and Electricite de France (EdF), yielded among the lowest generation tariffs across the developing world at US$0.025 per kilowatt hour (kWh). After the currency devaluation of 2002-2003, however, plans were shelved. Current plans, through to 2007, are now to be executed by the state-owned Egyptian Electricity Holding Company (EEHC), with concessionary funding provided by multilateral and bilateral agencies. Although capacity charges (in pound equivalency) have doubled, the power purchase agreements (PPAs) signed with each of the IPPs have held. Furthermore, a new regulatory body has had no impact on the existing contracts. While the original developers have sold their equity stake, new firms, with an increased appetite for risk, are stepping in to take their place. Meanwhile Egypt's liquefied natural gas (LNG) industry has developed over night; in just 2 years the country has become the world's sixth largest exporter, which raises questions about the long-term sustainability of gas-fired plants. (author)

  5. Trends in GCC technology

    International Nuclear Information System (INIS)

    Schmoe, L.E.; Ip, S.

    1992-01-01

    Over the last next decade, a combination of technical, environmental, and economic trends will encourage the commercial deployment of gasification combined cycle (GCC) technology. In the near-term, gas-fired combined cycles will likely be the economic and environmental technology of choice due to currently attractive natural gas prices. As gas prices increase over the next decade, GCC plants will become competitive and, in many cases, more economic than gas-fired options. This paper reports that the degree of penetration of GCC technology into the market will depend to some extent on the successful demonstration of a variety of technology enhancements. Many of these advancements will be proven in projects currently in progress, while others are still on the drawing boards. The first wave of GCC projects will likely take advantage of niche situations or benefit from government funding. but as GCC economics become more widely favorable, the plants will benefit from their flexibility to match grassroots, repowering, refueling, cogeneration, and chemical coproduction opportunities

  6. Availability/reliability of gas supplies are concerns for utilities

    International Nuclear Information System (INIS)

    Smith, D.J.

    1992-01-01

    This paper reports that long-term economical and reliable fuel contracts are imperative for increased use of natural gas. Demand for natural gas grew by 3.3% in 1991 to 19.3 trillion cubic feet (tcf) according to the U.S. Department of Energy's Energy Information Administration (EIA). during 1992, EIA expects natural gas demand to grow about 1.8%. However, EIA predicts that natural gas demand will be down slightly in the electric power sector. This is despite the potential for continuing lower gas prices and availability. wellhead prices for natural gas fell by more than 9% in 1991. Although EIA forecasts a decline in natural gas use by electric utilities, a study undertaken by ICF Resources for Enron Power Services, Inc. expects natural gas consumption in the power industry to increase in the 1990s. ICF says that the growth will occur because many new plants will be gas-fired, many existing electric utility power plants designed for oil and/or natural gas operation will use natural gas, and about half of new non-utility power plants will be gas-fired

  7. Ontario's energy crisis brings out conflicting visions

    International Nuclear Information System (INIS)

    Kishewitsch, S.

    2004-01-01

    Ontario's medium-term energy supply situation is discussed in light of the Ontario provincial government's insistence on phasing out coal-fired generation by 2007, and the somewhat longer term uncertainty about the aging nuclear fleet and the price tag associated with their overhauling or replacement. Centre to the discussion is the replacement of coal-fired plants by natural gas-fired generating plants, complicated by the fact is that there is already a surfeit of gas-fired plants sitting idle for lack of fuel available at an economically acceptable price. Recent statistics show that conventional gas supplies have already levelled off and unconventional sources, such as coalbed methane, and imports like LNG, are more abundant, but also significantly more expensive. The nuclear option is considered by knowledgeable insiders as a viable option for increased generation, although it is generally acknowledged as a serious public relations problem. The contributions of green power and cogeneration are also explored; the most optimistic estimates put the supply from this source at 50,000 GWh a year; less than the amount needed even in the absence of growth in demand. The overall conclusion is that Ontario's energy future can only be assured by aggressive pursuit of productivity improvements, financial and policy innovations, extensive use of cogeneration, strong development of renewables, energy conservation, efficiency, and demand management

  8. Projected costs of electricity generation

    International Nuclear Information System (INIS)

    Cameron, R.

    2010-01-01

    This paper describes the outcomes of a study on the projected costs of generating electricity. It presents the latest data available on electricity generating costs for a wide variety of fuels and technologies, including coal, gas, nuclear, hydro, onshore and offshore wind, biomass, solar, wave and tidal. The study reaches 2 key conclusions. First, at a 5% real interest rate, nuclear energy is the most competitive solution for base-load electricity generation followed by coal-fired plants without carbon capture and natural gas-fired combined plants. It should be noted that coal with carbon capture has not reached a commercial phase. Second, at a 10% interest rate, nuclear remains the most competitive in Asia and North America but in Europe, coal without carbon capture equipment, followed by coal with carbon capture equipment, and gas-fired combined cycle turbines are overall more competitive than nuclear energy. The results highlight the paramount importance of interest rates (this dependence is a direct consequence of the nuclear energy's high capital costs) and of the carbon price. For instance if we assume a 10% interest rate and a cost of 50 dollar per tonne of CO 2 , nuclear energy would become competitive against both coal and gas. (A.C.)

  9. Input of biomass in power plants or the power generation. Calculation of the financial gap

    International Nuclear Information System (INIS)

    De Vries, H.J.; Van Tilburg, X.; Pfeiffer, A.E.; Cleijne, H.

    2005-09-01

    The project on the title subject concerns two questions: (1) Are projects in which wood-pellets are co-fired in a coalfired power plant representative for bio-oil fueled co-firing projects in a gas-fired plant?; and (2) are new projects representative for existing projects? To answer those questions the financial gaps have been calculated for five different situations: Co-firing bio-oil in a gas-fired power plant; Co-firing bio-oil in a coal-fired power plant; Co-firing wood pellets in a coal-fired power plant; Co-firing agro-residues in a coal-fired power plant; and Co-firing waste-wood (A- and B-grade) in a coal-fired power plant. The ranges and reference cases in this report show that co-firing bio-oil on average has a smaller financial gap than the solid biomass reference case. On average it can also be concluded that by using waste wood or agro-residues, the financial gaps can decrease [nl

  10. Market for new coal powerplant technologies in the US: 1997 annual energy outlook results

    Energy Technology Data Exchange (ETDEWEB)

    Hutzler, M.J. [Dept. of Energy, Washington, DC (United States). Energy Information Administration

    1997-12-31

    Over the next 20 years, the combination of slow growth in the demand for electricity, even slower growth in the need for new capacity, especially baseload capacity, and the competitiveness of new gas-fired technologies limits the market for new coal technologies in the US. In the later years of the 1997 Annual Energy Outlook projections, post-2005, when a significant amount of new capacity is needed to replace retiring plants and meet growing demand, some new coal-fired plants are expected to be built, but new gas-fired plants are expected to remain the most economical choice for most needs. The largest market for clean coal technologies in the United States may be in retrofitting or repowering existing plants to meet stricter environmental standards, especially over the next 10 years. Key uncertainties include the rate of growth in the demand for electricity and the level of competing fuel prices, particularly natural gas. Higher than expected growth in the demand for electricity and/or relatively higher natural gas prices would increase the market for new coal technologies.

  11. An analysis of cost effective incentives for initial commercial deployment of advanced clean coal technologies

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, D.F. [SIMTECHE, Half Moon Bay, CA (United States)

    1997-12-31

    This analysis evaluates the incentives necessary to introduce commercial scale Advanced Clean Coal Technologies, specifically Integrated Coal Gasification Combined Cycle (ICGCC) and Pressurized Fluidized Bed Combustion (PFBC) powerplants. The incentives required to support the initial introduction of these systems are based on competitive busbar electricity costs with natural gas fired combined cycle powerplants, in baseload service. A federal government price guarantee program for up to 10 Advanced Clean Coal Technology powerplants, 5 each ICGCC and PFBC systems is recommended in order to establish the commercial viability of these systems by 2010. By utilizing a decreasing incentives approach as the technologies mature (plants 1--5 of each type), and considering the additional federal government benefits of these plants versus natural gas fired combined cycle powerplants, federal government net financial exposure is minimized. Annual net incentive outlays of approximately 150 million annually over a 20 year period could be necessary. Based on increased demand for Advanced Clean Coal Technologies beyond 2010, the federal government would be revenue neutral within 10 years of the incentives program completion.

  12. Repowering with natural gas

    International Nuclear Information System (INIS)

    Wilkinson, P.L.

    1992-01-01

    This chapter examines the concept of combined-cycle repowering with natural gas as one possible solution to the impending dilemma facing electric utilities - tight capacity margins in the 1990s and the inordinate expense of traditional powerplants. Combined-cycle repowering refers to the production of electricity through the integration of new and used equipment at an existing site, with the final equipment configuration resembling a new gas-fired combined-cycle unit (i.e., gas turbine, waste heat recovery unit and steam turbine/generator). Through the utilization of improved waste heat recovery and gas-fired equipment, repowering provides both additional capacity and increased generating efficiency. Three modes of repowering are considered: (1) peak turbine repowering refers to the addition of a steam turbine and heat recovery unit to an existing gas turbine, with the efficiency improvement allowing the unit to convert from peaking to baseload operation; (2) heat recovery repowering is the replacement of an old coal boiler with a gas turbine and heat recovery unit, leaving the existing steam turbine in place; and (3) boiler repowering, in which the exhaust from a new gas turbine is fed into an existing coal boiler, replacing existing forced-draft fans and air heaters. These three options are compared with the option of adding new coal-fired boilers on the basis of economics, energy efficiency and environmental impacts

  13. EFFECTS OF IMPLEMENTATION OF CO-GENERATION IN THE DISTRICT HEATING SYSTEM OF THE FACULTY OF MECHANICAL ENGINEERING IN NIŠ

    Directory of Open Access Journals (Sweden)

    Mladen M Stojiljković

    2010-01-01

    Full Text Available Implementation of co-generation of thermal and electrical energy in district heating systems often results with higher overall energy efficiency of the systems, primary energy savings and environmental benefits. Financial results depend on number of parameters, some of which are very difficult to predict. After introduction of feed-in tariffs for generation of electrical energy in Serbia, better conditions for implementation of co-generation are created, although in district heating systems barriers are still present. In this paper, possibilities and effects of implementation of natural gas fired co-generation engines are examined and presented for the boiler house that is a part of the district heating system owned and operated by the Faculty of Mechanical Engineering in Niš. At the moment, in this boiler house only thermal energy is produced. The boilers are natural gas fired and often operate in low part load regimes. The plant is working only during the heating season. For estimation of effects of implementation of co-generation, referent values are taken from literature or are based on the results of measurements performed on site. Results are presented in the form of primary energy savings and greenhouse gasses emission reduction potentials. Financial aspects are also considered and triangle of costs is shown.

  14. Return to Chernobyl

    Energy Technology Data Exchange (ETDEWEB)

    Nosovsky, Anatolij

    1995-09-01

    Despite the catastrophic accident at the Chernobylsk 4 reactor in 1986, the Ukraine is currently expanding its nuclear industry. The government is committed to increasing the share of nuclear output to 40% of the country`s electric power and the Chernobyl plant is included in this plan. All the Chernobyl reactors were closed down at the time of the accident, but units 1, 2 and 3 had all been restarted after safety modifications by December 1987. A fire in the turbine hall of unit 2 in 1991 resulted in the closure of that reactor and precipitated a political decision to close the entire plant by 1993. The economic consequences of such action and the safe operation of the remaining two reactors led, however, to the reversal of that decision. Work is now far advanced on unit 2 for a restart in 1996 and the management wants to upgrade all three reactors according to IAEA guidelines. Nevertheless, the question of closure of the Chernobyl plant remains in the air. A conditional acceptance of closure by 2000 has been made by the Ukraine provided the shortfall in power is taken up by a new gas-fired station. International finance is being sought for decommissioning, for urgent action on the decaying sarcophagus of unit 4, and for the gas-fired plant. Closure of the plant, given the social upheaval of the accident and recent political events, could contribute to the health of the Ukrainian national psyche. (UK).

  15. Research report for fiscal 1998. Basic research for promoting joint implementation, etc. (conversion of old coal-fired thermoelectric power plants in Poland into combined cycle plants); 1998 nendo chosa hokokusho. Poland sekitan karyoku hatsudensho (kyushiki) combined cycle eno tenkan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    A project is discussed for modernization for energy efficiency enhancement and greenhouse gas reduction. The most effective way to reduce greenhouse gas in Poland is to totally replace the existing coal-fired power plants with natural gas combined cycle plants. Under this project, however, natural gas-fired power generation and integrated coal/brown coal gasification combined cycle power generation are both subjected to study. This is because the power plant modernization project is closely related to the fate of coal/brown coal industries which constitute the important industrial department of Poland. As for the earning rate of the project in case of natural gas-fired combined cycle power generation, the rate will be 13.2% even at the Kaweczyn station which is the highest in earning rate, and this fails to satisfy the project conditions. If integrated coal/brown gasification combined cycle power generation is chosen, the rate will be still lower. When the cost for greenhouse gas reduction is taken up, the Konin station exhibits the lowest of 9 dollars/tCO2, and the others 15-17 dollars/tCO2. When coal gas combined cycle is employed, the cost will be 3-4 times higher. (NEDO)

  16. Production of durable expanded perlite microspheres in a Vertical Electrical Furnace

    Science.gov (United States)

    Panagiotis, M.; Angelopoulos, P.; Taxiarchou, M.; Paspaliaris, I.

    2016-04-01

    Expanded perlite constitutes one of the most competitive insulating materials that is widely used in construction and manufacturing industry due to its unique properties combination; it is white, natural, lightweight, chemically inert, and exhibits superior insulating properties (thermal and acoustic) and fire resistance. Conventionally, perlite expansion is performed in vertical gas-fired furnaces; the conventional perlite expansion process has certain disadvantages which affect expanded products quality, thus limiting their performance and range of applications. In order to overcome the drawbacks of the conventional expansion technique, a new perlite expansion process has been designed based on a vertical electrical furnace (VEF). In the current study, fine perlite samples (-150 μm) from Milos Island, Greece, were expansed in the novel VEF and a conventional gas-fired furnace with the aim to evaluate and compare the main physical properties of the expanded products. The novel expanded perlite particles were characterised by superior properties, namely increased compression strength, competitive water and oil absorption capability, size homogeneity, spherical shape and decreased surface porosity in comparison to conventionally expanded samples.

  17. Establishment of a biogas grid and interaction between a biogas grid and a natural gas grid

    Energy Technology Data Exchange (ETDEWEB)

    Kvist, T.

    2011-01-15

    The project has aimed to clarify the advantages and disadvantages of a large biogas net in Ringkoebing Skjern municipality in Denmark, which wants to become self-sufficient in renewable energy by 2020. It is estimated that the biogas potential in the municipality is about. 60 mill. m3 methane gas a year. Half of the methane will be generated by digesting 80 % of the area's slurry, while the other half will be produced from energy crops. It will require an area equivalent to 5 % of the municipality's farmland. The idea is to establish decentralized 60-80 and 1-3 large centralized biogas plants, and that the produced biogas is distributed to natural gas-fired decentralized power plants. Based on this framework, a number of issues for the establishment of a biogas net have been investigated. These are: - the relation between biogas production and demand; - biogas compared to the overall energy system, - purification and measurement of biogas; - conversion of natural gas-fired power plants to biogas; - the value of biogas for cogeneration plants; - design of a biogas distribution net; - ownership and accountability; - potential business models. (LN)

  18. Power generation potential using landfill gas from Ontario municipal solid waste landfills. Appendix B2

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Twenty-six landfill sites have been identified in Ontario with potential gas production rates suitable for recovery and use in power plant applications. If 70% of the gas naturally generated from these sites was collected and utilized, ca 88 MW could be produced in 1991 (declining to 74 MW by 2001) from the gas generated. Assuming the current average generation rate of one tonne per capita, an estimated nine million tonnes of municipal refuse is produced annually in Ontario, and landfilling is expected to continue to play a major role. It is suggested that the level of gas generation identified for the year 1991 will be sustainable given that as old landfills are spent, new ones are built. The accuracy of the prediction depends largely on future government policies regarding incineration, the effects of present waste reduction programs, and approval of new landfill sites. Due to the combined costs of the gas collection system, auxiliary equipment, and gas processing system, installed cost of a landfill-gas fired power plant is high relative to that of conventional natural gas-fired plants. For landfills presently without a gas collection system, the high initial capital investment for gas field test programs and for the installation of a collection system is a barrier that deters municipalities from tapping this energy potential. 2 figs., 3 tabs

  19. New nuclear power generation in the UK: Cost benefit analysis

    International Nuclear Information System (INIS)

    Kennedy, David

    2007-01-01

    This paper provides an economic analysis of possible nuclear new build in the UK. It compares costs and benefits of nuclear new build against conventional gas-fired generation and low carbon technologies (CCS, wind, etc.). A range of scenarios are considered to allow for uncertainty as regards nuclear and other technology costs, gas prices and carbon prices. In the base case, the analysis suggests that there is a small cost penalty for new nuclear generation relative to conventional gas-fired generation, but that this is offset by environmental and security of supply benefits. More generally nuclear new build has a positive net benefit for a range of plausible nuclear costs, gas prices and carbon prices. This supports the UK policy of developing an enabling framework for nuclear new build in a market-based context. To the extent that assumptions in the analysis are not borne out in reality (e.g. as regards nuclear cost), this is a no regrets policy, given that the market would not invest in nuclear if it is prohibitively costly. (author)

  20. Smart campus: Data on energy generation costs from distributed generation systems of electrical energy in a Nigerian University

    Directory of Open Access Journals (Sweden)

    Joshua O. Okeniyi

    2018-04-01

    Full Text Available This data article presents comparisons of energy generation costs from gas-fired turbine and diesel-powered systems of distributed generation type of electrical energy in Covenant University, Ota, Nigeria, a smart university campus driven by Information and Communication Technologies (ICT. Cumulative monthly data of the energy generation costs, for consumption in the institution, from the two modes electric power, which was produced at locations closed to the community consuming the energy, were recorded for the period spanning January to December 2017. By these, energy generation costs from the turbine system proceed from the gas-firing whereas the generation cost data from the diesel-powered generator also include data on maintenance cost for this mode of electrical power generation. These energy generation cost data that were presented in tables and graphs employ descriptive probability distribution and goodness-of-fit tests of statistical significance as the methods for the data detailing and comparisons. Information details from this data of energy generation costs are useful for furthering research developments and aiding energy stakeholders and decision-makers in the formulation of policies on energy generation modes, economic valuation in terms of costing and management for attaining energy-efficient/smart educational environment. Keywords: Smart campus, Energy consumption, Energy efficiency, Load forecasting, Energy management, Learning analytics, Nigerian university, Education data mining

  1. Return to Chernobyl

    International Nuclear Information System (INIS)

    Nosovsky, Anatolij.

    1995-01-01

    Despite the catastrophic accident at the Chernobylsk 4 reactor in 1986, the Ukraine is currently expanding its nuclear industry. The government is committed to increasing the share of nuclear output to 40% of the country's electric power and the Chernobyl plant is included in this plan. All the Chernobyl reactors were closed down at the time of the accident, but units 1, 2 and 3 had all been restarted after safety modifications by December 1987. A fire in the turbine hall of unit 2 in 1991 resulted in the closure of that reactor and precipitated a political decision to close the entire plant by 1993. The economic consequences of such action and the safe operation of the remaining two reactors led, however, to the reversal of that decision. Work is now far advanced on unit 2 for a restart in 1996 and the management wants to upgrade all three reactors according to IAEA guidelines. Nevertheless, the question of closure of the Chernobyl plant remains in the air. A conditional acceptance of closure by 2000 has been made by the Ukraine provided the shortfall in power is taken up by a new gas-fired station. International finance is being sought for decommissioning, for urgent action on the decaying sarcophagus of unit 4, and for the gas-fired plant. Closure of the plant, given the social upheaval of the accident and recent political events, could contribute to the health of the Ukrainian national psyche. (UK)

  2. Ontario's energy action plan

    International Nuclear Information System (INIS)

    2003-07-01

    In the fall of 2002, the government of Ontario announced an action plan designed to ensure stable electricity prices while additional electricity generating capacity is built. The action plan included a strategy for encouraging major private sector investments in wind, solar and other renewable energy sources. The strategies for new renewable energy projects include: property tax incentives, business income tax incentives, and sales tax rebates. Initiatives to increase supply include: Toronto's Portland 550 megawatt, natural gas-fired generating station, Niagara Falls' Beck Tunnel Project, and Windsor's 580 megawatt natural gas-fired generating station. The government is promoting energy conservation by reducing its electricity consumption by 10 per cent, and setting a target where 20 per cent of electricity consumed in the province must be from renewable energy sources. The use of interval meters by Ontario residents is being encouraged. A provincial sales tax rebate is being offered to customers buying select energy efficient appliances. In its commitment to environmental protection, the Ontario government is phasing out coal, offering rebates for solar energy systems, implementing measures to reduce acid rain, and investing $3.25 billion over ten years to renew and expand public transit. In Chatham, Ontario, a plant producing ethanol from corn was built, and others are planned for other parts of the province. Tax incentives are also offered for alternative fuel users. 1 ref., 1 tab

  3. Cascading of Fluctuations in Interdependent Energy Infrastructures. Gas-Grid Coupling

    Energy Technology Data Exchange (ETDEWEB)

    Chertkov, Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lebedev, Vladimir [Russian Academy of Sciences (RAS), Moscow (Russian Federation). L.D. Landau Inst. for Theoretical Physics; Backhaus, Scott N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-09-05

    The revolution of hydraulic fracturing has dramatically increased the supply and lowered the cost of natural gas in the United States driving an expansion of natural gas-fired generation capacity in many electrical grids. Unrelated to the natural gas expansion, lower capital costs and renewable portfolio standards are driving an expansion of intermittent renewable generation capacity such as wind and photovoltaic generation. These two changes may potentially combine to create new threats to the reliability of these interdependent energy infrastructures. Natural gas-fired generators are often used to balance the fluctuating output of wind generation. However, the time-varying output of these generators results in time-varying natural gas burn rates that impact the pressure in interstate transmission pipelines. Fluctuating pressure impacts the reliability of natural gas deliveries to those same generators and the safety of pipeline operations. We adopt a partial differential equation model of natural gas pipelines and use this model to explore the effect of intermittent wind generation on the fluctuations of pressure in natural gas pipelines. The mean square pressure fluctuations are found to grow linearly in time with points of maximum deviation occurring at the locations of flow reversals.

  4. Personal exposures of preschool children to carbon monoxide: roles of ambient air quality and gas stoves

    Energy Technology Data Exchange (ETDEWEB)

    Alm, S.; Reponen, A.; Mukala, K.; Pasanen, P.; Tuomisto, J.; Jantunen, M.J. (National Public Health Institute, Kuopio (Finland). Division of Environmental Health)

    1994-12-01

    Personal 1 h mean CO exposures of preschool children in two day care centers (Toolo and Vallila) in Helsinki were measured with continuously recording personal exposure monitors. In Vallila, the median CO exposure of children from homes with gas stoves was 2.0 mgm[sup -3], and with electric stoves, 0.9 mgm[sup -3]. In Tooloo, the corresponding values were 1.9 and 1.0 mgm[sup -3], respectively. The national ambient air quality guidelines for CO in Finland were exceeded in a few percent of the exposure measurements. The results were compared to fixed-site ambient air monitoring data and related to the presence of town-gas fired stoves in the children's homes. The results show that fixed-site ambient air monitors are of little value in predicting personal exposures of children or even their relative differences between areas. They also show that town-gas fired stoves may have a profound effect on the CO exposures of the children. 8 refs., 4 figs., 3 tabs.

  5. Operation and planning of coordinated natural gas and electricity infrastructures

    Science.gov (United States)

    Zhang, Xiaping

    Natural gas is becoming rapidly the optimal choice for fueling new generating units in electric power system driven by abundant natural gas supplies and environmental regulations that are expected to cause coal-fired generation retirements. The growing reliance on natural gas as a dominant fuel for electricity generation throughout North America has brought the interaction between the natural gas and power grids into sharp focus. The primary concern and motivation of this research is to address the emerging interdependency issues faced by the electric power and natural gas industry. This thesis provides a comprehensive analysis of the interactions between the two systems regarding the short-term operation and long-term infrastructure planning. Natural gas and renewable energy appear complementary in many respects regarding fuel price and availability, environmental impact, resource distribution and dispatchability. In addition, demand response has also held the promise of making a significant contribution to enhance system operations by providing incentives to customers for a more flat load profile. We investigated the coordination between natural gas-fired generation and prevailing nontraditional resources including renewable energy, demand response so as to provide economical options for optimizing the short-term scheduling with the intense natural gas delivery constraints. As the amount and dispatch of gas-fired generation increases, the long-term interdependency issue is whether there is adequate pipeline capacity to provide sufficient gas to natural gas-fired generation during the entire planning horizon while it is widely used outside the power sector. This thesis developed a co-optimization planning model by incorporating the natural gas transportation system into the multi-year resource and transmission system planning problem. This consideration would provide a more comprehensive decision for the investment and accurate assessment for system adequacy and

  6. Nuclear energy in Armenia history problems possibilities and outlook

    International Nuclear Information System (INIS)

    Sevikyan, G.; Vardanyan, M.; Apikyan, S.

    2010-01-01

    The structure of the Armenian electric energy system is presently well balanced. The production capacity mix consists of about H42% nuclear, of about H40% gas, and HI8% hydropower capacities. Before 2012, almost exclusively, new gas fired power plants are expected to be constructed, and some old gas fired ones are predicted to be closed down. A significant change in the structure of energy-production would occur after 2016, if the ANPP unit was shut down with the expiry of its operational license limited recently by the design lifetime. For Armenia which is taking place in a rather complex geopolitical situation, and at absence of own natural power resources, ANPP today is sole guarantor of power and general independence and safety of our country. It has been realized it fully when our plant was shut down after the 1988 destructive earthquake and when the entrance of fuel for thermal power plants became impossible. This hardest energy crisis 1991-1995 has forced to accept the decision on renewal of ANPP operation. Naturally, in order to prevent recurrence of a similar situation, we are aimed on continuation of operation of our unit down to creation of compensative capacities. Based on the present tendencies and market conditions, the industry is either predicted to cover the lack of electricity and the growth of demand with gas fired power plants that produce energy more expensively compared to the nuclear power plants, or would import the electric energy itself increasing the import-dependency. This way between 2012 and 2019 the import gas consumption of electric energy production, as well as its carbon-dioxide emission would grow dramatically compared to its present values (even in case of an intensive utilization of renewable energy sources). The electric energy import would, in the long run, be an expensive and obviously import-dependence-increasing solution. For the compensation of the production of ANPP it is rather difficult to find a green alternative. In

  7. East-Asia nuclear/fossil power plant competitiveness

    International Nuclear Information System (INIS)

    Braun, Ch.

    1996-01-01

    The competitiveness of a new nuclear plant vs. a new oil or gas fired combined cycle plant or a coal fired plant in East-Asia, is reviewed in the paper. Both the nuclear and the fossil fired plants are evaluated as either utility financed or independent power producer (IPP) financed. Two types of advanced light water reactors (ALWRs) are considered in this paper, namely evolutionary ALWRs (1200 MWe size) and passive ALWRs (600 MWe class). A range of capital and total generation costs for each plant type is reported here. The comparison centers on three elements of overall competitiveness: generation costs, hard currency requirements, and employment requirements. Each of these aspects is considered perspective. Year-by-Year generation cost history over the plant lifetime is shown in some cases. It is found here that a utility financed evolutionary and passive ALWRs are broadly competitive with an IPP financed gas fired combined cycle plant and are more economic than oil fired combined cycle or a coal fired plant. A single unit evolutionary ALWR may have a 12 - 15 % capital cost advantage over a single passive ALWR then adjusted on a per KWe basis. Front-end hard currency requirements of a passive ALWR are 2.5 times higher than for a combined plant and evolutionary ALWRs requires 3.6 times higher up-front cost. However, on a lifetime basis, passive ALWR net hard currency requirements are two times lower than for a combined cycle plant. Evolutionary ALWR net hard currency requirements are three times over than those of a combined cycle plant. The effects of domestic vs. world price of fossil fuels on relative nuclear competitiveness are reviewed in this nuclear competitiveness paper. Employment requirements in an ALWR during both the construction period and lifetime operation, exceed the requirements for oil or gas fired plants by a factor of five. While contributing to overall plant cost, employment requirements can also be viewed as opportunity to increase national

  8. Environmental regulation of a power market investment in an international market

    Energy Technology Data Exchange (ETDEWEB)

    Halseth, Arve; Vennemo, Haakon

    1998-12-01

    This document examines the optimal environmental regulation of three Norwegian power projects, energy conservation, a natural gas fired combined cycle gas turbine and a new hydro project. All projects reduce emissions elsewhere in the Nordic region, and in general the environmental costs of these emissions are not optimally reflected in market prices. A theory of second best optimal regulation is developed for this case. The optimal regulation is found to deviate considerably from a purely domestic regulation. For instance, it is found optimal to grant a substantial credit to energy conservation. The credit is sensitive to the value of reduced CO{sub 2} emissions and whether the current Norwegian end user tax should be interpreted as an environmental or a fiscal tax. 27 refs., 4 tabs.

  9. Energy Security prospects in Cyprus and Israel: A focus on Natural Gas

    Directory of Open Access Journals (Sweden)

    Constantinos Taliotis

    2014-06-01

    Full Text Available The global production of natural gas has increased from 1226 bcm in 1973 to 3282 bcm in 2010 and is projected to continue rising by an annual growth rate of 1.6% between 2010 to 2035. Cyprus and Israel have recently made major offshore discoveries of natural gas, which can supply to a great extent the two countries’ current domestic energy needs for the next few decades and still export a substantial volume. MESSAGE, a global optimization model was used to explore the possible interactions between the two countries’ energy systems. Scenarios are presented that assess the export potential for electricity (generated by gas-fired power plants, liquefied natural gas (LNG or gas-to-liquid products (GTL. The results are compared to a scenario without any available reserves to illustrate the financial benefits that will arise from the exploitation of the gas resources in the two countries.

  10. Energy survey in the New Zealand dairy industry

    Energy Technology Data Exchange (ETDEWEB)

    Vickers, V T; Shannon, D V

    1977-12-25

    An in-depth report on energy consumption in the New Zealand dairy industry for 1974--75 shows that a reduction in fuel consumption per unit of production has occurred when compared with two previous surveys (1954--55 and 1964--65). The increase in thermal efficiency of dairy processing was due mainly to the use of hot water heating systems in milk-treatment stations, the increased capacity of butter and cheese factories, increased thermal efficiency in skim milk drying and casein manufacture, increased efficiency in boiler plants, and higher drying air temperature achieved with the use of indirect oil- and gas-fired air heaters and liquid-phase air heating systems. Total energy consumed by the industry by type is tabulated. Recommendations to the industry following the survey are listed. (MCW)

  11. Short-Term Output Variations in Wind Farms--Implications for Ancillary Services in the United States: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Cadogan, J. [U.S. Department of Energy (US); Milligan, M. [National Renewable Energy Laboratory (US); Wan, Y. [National Renewable Energy Laboratory (US); Kirby, B. [Oak Ridge National Laboratory (US)

    2001-09-21

    With the advent of competition in the electric power marketplace, this paper reviews changes that affect wind and other renewable energy technologies, and discusses the role of federal and state policies in the recent wind installations in the United States. In particular, it reviews the implications of ancillary service requirements on a wind farm and presents initial operating results of monitoring one Midwest wind farm. Under federal energy policy, each generator must purchase, or otherwise provide for, ancillary services, such as dispatch, regulation, operation reserve, voltage regulation, and scheduling required to move power to load. As a renewable technology that depends on the forces of nature, short-term output variations are inherently greater for a wind farm than for a gas-fired combined cycle or a supercritical coal-fired unit.

  12. Proceedings of the APPrO 2008 20. annual conference and trade show : 20/20 vision : building tomorrow's power system today

    International Nuclear Information System (INIS)

    Brooks, J.

    2009-01-01

    This conference provided a forum for members of the Association of Power Producers of Ontario (APPrO) to discuss new technologies and developments in the management of electric power facilities. Demands for electricity continue to increase despite growing concerns about the level of greenhouse gas (GHG) emissions created by the electric power industry. The focus of this conference was on the development of a sustainable electric power industry designed to meet future integration plans for renewable energy sources while conforming with emerging carbon markets. Procurement policies and regulations were reviewed. Challenges and solutions for gas-fired power generation were discussed, and issues related to Ontario's nuclear energy industry were examined. Transmission system planning strategies were presented. Future directions for the growth of the power industry were reviewed. Global industry perspectives were also presented. Human resources strategies were discussed. A total of 43 presentations were given at the conference. refs., tabs., figs

  13. The historical power lines. The climate political positions and strategies towards emission intensive industry in five Norwegian industrial counties; Historiens kraftlinjer. Klimapolitiske posisjoner og strategier overfor utslippsintensiv industri i fem norske industrikommuner

    Energy Technology Data Exchange (ETDEWEB)

    Kasa, Sjur

    2003-07-01

    What is the position of the industrial communities in Norway in the political process behind the regulation of greenhouse gases from industrial sources and what strategies do they use to achieve their objectives. Interviews conducted with local governmental leaders in five industrial communities in Norway revealed that concerns about industrial closure, both within their own and neighbouring municipalities and well established industrial traditions had a clear influence on their climate policy perspectives regardless of their party affiliation. Strategies employed by industrial communities to promote their interests and communicate their positions to central authorities include not only traditional lobbying at the state level but also co-operation through horizontal networks of both private and public actors at the inter-municipal and inter-regional level. These horizontal networks are particularly important in connection with the proposed construction of gas fired power plants and increasing the industrial application of natural gas. (Author)

  14. Nuclear energy faced with the deregulation of the electricity markets

    International Nuclear Information System (INIS)

    Zaleski, C.P.; Meritet, S.

    2003-01-01

    In this article, we present a study of the likely development of nuclear power in the world between now and 2030. We consider in particular the impact on nuclear's development of the introduction of competition between electricity producers, while noting that in any case, the role of public authorities will remain important. In this analysis, we present economic elements related to nuclear power as well as to its main competitors, coal-fired and natural gas-fired power. We discuss the risks that an investor must take into account when he commits to construction of a power plant operating in base-load mode. Finally, we consider the cases of a few countries that are key to nuclear power development, since situations vary widely between countries. (authors)

  15. GASIFICATION BASED BIOMASS CO-FIRING - PHASE I; SEMIANNUAL

    International Nuclear Information System (INIS)

    Babul Patel; Kevin McQuigg; Robert F. Toerne

    2001-01-01

    Biomass gasification offers a practical way to use this locally available fuel source for co-firing traditional large utility boilers. The gasification process converts biomass into a low Btu producer gas that can be fed directly into the boiler. This strategy of co-firing is compatible with variety of conventional boilers including natural gas fired boilers as well as pulverized coal fired and cyclone boilers. Gasification has the potential to address all problems associated with the other types of co-firing with minimum modifications to the existing boiler systems. Gasification can also utilize biomass sources that have been previously unsuitable due to size or processing requirements, facilitating a reduction in the primary fossil fuel consumption in the boiler and thereby reducing the greenhouse gas emissions to the atmosphere

  16. Competition between coal and gas for large scale power generation

    International Nuclear Information System (INIS)

    Howieson, B.

    1997-01-01

    The relative competitiveness of coal- and gas-fired generation will be affected by distinctive country and market factors as well as site specific considerations, regarding such factors as environment, market structure and economics (such as fuel and plant costs). National and international politics have an impact on all three factors and any decision on the development of generation plant must take into account both current and future political climates. An analysis suggests that, at the present time, upgrading existing coal stations is attractive compared with new combined cycle gas turbines (CCGTs). However, this conclusion is highly dependent on the site specific nature of existing plant and the anticipated future environmental regime. Increased environmental pressure, particularly in the area of CO 2 emissions, would result in CCGTs being the first choice plant option. (R.P.)

  17. Interotex-innovative gas equipment for heating and cooling

    Energy Technology Data Exchange (ETDEWEB)

    Winnington, T.L. [Interotex Ltd. (United Kingdom); Moore, N. [British Gas plc (United Kingdom); Valle, F.; Sanz, J. I. [Gas Natural SDG S.A. (Spain); Chavarri, J.M. [Fagor Electrodomesticos S. Coop. (Spain); Uselton, R. [Lennox Industries Inc. (United States)

    1997-10-01

    Conventionally, cooling technology for the residential market is provided by electrically driven vapour re-compression systems. But lately, due to the Montreal Protocol - restricting the utilisation of ozone depleting substances - and to the high peak demand in electricity, created by electrical air conditioning systems, there is a commercial opportunity for gas fired air conditioning appliances. This paper describes the development programme for a radical new absorption technology, from the theoretical studies, through the experimental programme, to the building, commissioning and installation of demonstration machines. It also includes an analysis of the world-wide residential cooling market and the opportunities available to manufacturers and gas utilities to introduce new gas heating and cooling technology, capable of competing effectively with electrical systems. (au)

  18. The lasting Soviet nuclear menace

    International Nuclear Information System (INIS)

    Schorr, J.

    1993-01-01

    This article describes the unsafe conditions of the nuclear power industry in the countries of the former Soviet Union. Because of lack of efficient power generation, the old first generation Chernobyl-type reactors are being upgraded or new ones are being constructed. The operators themselves are also unsafe, with lack of training and poor working conditions. Improving energy efficiency would be more cost effective than constructing new nuclear plants. This could be achieved by such measures as installing boiler controls, thermostats, and meters; by retrofitting factories; by raising the price of electricity to encourage conservation; by repairing leaking natural gas pipelines; and by building gas-fired power plants. These changes are not likely to come about soon however

  19. Taylor Hydro plant goes live

    International Nuclear Information System (INIS)

    Anon.

    2000-01-01

    The 12.75 MW Taylor Hydroelectric Plant in Magrath, Alberta, synchronized its generator with the Alberta Power Grid and began production in April 2000. The plant is located on Government of Alberta irrigation works and is owned by Canadian Hydro Developers. During the irrigation season the plant will generate approximately 40 million kilowatt hours of zero-emission 'green' power for consumption, enough to power 5,000 homes for a year. The Taylor plant is a joint venture with EPCOR Power Development Corporation, a wholly-owned subsidiary of EPCOR Inc., the City of Edmonton utility. Canadian Hydro Developers also owns a 19 MW wind plant and a 6 MW gas plant in Alberta and five other 'run of river' hydro plants in Ontario and British Columbia. The company is committed to the concept of low-impact power generation; its ownership of wind run-of-river hydro and gas-fired facilities is proof of that commitment

  20. Biowaste fuels South-East Asian COGEN schemes

    International Nuclear Information System (INIS)

    Pennington, M.

    1998-01-01

    This article reports on the COGEN Programme of the European Commission in association with the Association of South East Asian Nations (ASEAN), and considers the benefits of using biowaste for the production of energy using cogeneration with the corresponding reduction in the emission of greenhouse gases. The substitution of rice husks for the fuel in a cogeneration plant at a Thai rice mill, and the combustion of wood in the cogeneration plant at the Homet Raya plant in Malaysia are described, and details are given of the backgrounds to the projects, locations, the technologies used, and the process economics. The next phase of the COGEN programme due to start in 1998 which will see the programme expanded to include coal-fired and gas-fired cogeneration projects is discussed

  1. Issues related to gas use by European power utilities

    International Nuclear Information System (INIS)

    Jonchere, J.P.

    1992-01-01

    Gas-fired combined cycle frequently appears as a least-cost option for newly built power plants. Moreover, this option also brings obvious environmental benefits. But, power utilities, facing unavoidable long term uncertainties about electricity demand are not at ease with long term commitments such a a take-or-pay formula or a price indexation not reflecting the market place in the power generation industry. Due to the flexibilities in the management of existing power plants (deferred closures, etc...) or even on the demand side (load shifting, peak clipping, etc...), early decision making is not compulsory. Therefore, a gas breakthrough in the power sector interfuel competition will require a mutual understanding of constraints and flexibilities faced by partners: gas sellers and power utilities. A fair rent sharing between them would certainly be a prerequisite to a large but possibly temporary access of natural gas to the European power sector. 4 refs., 1 fig., 2 tabs

  2. Modification of Al-Si (13%) alloy using different modifiers

    International Nuclear Information System (INIS)

    Ikram, N.; Raza, M.R.; Ahmad, R.

    2007-01-01

    During present research work LM 13 aluminium silicon alloy was prepared using high purity aluminium ingot and various master alloys of AI-Si, AI-Cu, AI-Ni, AIFe, AI-Mn and AI-Mg. A gas fired crucible pit type furnace was used to prepare various heats of LM 13 alloy. Degassing procedure was carried out by using perforated bell type plunger using the degassing tablet. Modification was performed by plunging the modifier at the bottom of the crucible containing the molten metal. Three types of modifiers sodium salt, metallic sodium and strontium in the form of AI-Sr master alloy were used in order to evaluate the microstructure and tensile properties of the alloy. Degassed, unmodified and modified test samples for metallurgical testing purposes were prepared according to the standard procedures. (author)

  3. Costing the EPR Project Using the Real Options Method

    International Nuclear Information System (INIS)

    Epaulard, Anne; Gallon, Stephane

    2001-01-01

    Real options theory makes it possible to cost investments which offer flexibility but whose returns are uncertain, such as the construction in 2000 of an EPR prototype; this prototype will enable the European pressurised-water reactor (EPR) to be used to renew EDF's nuclear power stations in 2020 (flexibility) but its economic worth will then depend on the cost of the competing gas-fired power plants (uncertain return). Options theory shows that investing in EPR technology in 2000 provides sufficient flexibility in 2020 to be considered cost-effective, even though use of EPRs is unlikely by that date. The investment made in 2000 to develop EPR technology therefore actually plays the part of an option or, in other words, insurance (against the risk of high gas prices)

  4. Application of a Linear Input/Output Model to Tankless Water Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Butcher T.; Schoenbauer, B.

    2011-12-31

    In this study, the applicability of a linear input/output model to gas-fired, tankless water heaters has been evaluated. This simple model assumes that the relationship between input and output, averaged over both active draw and idle periods, is linear. This approach is being applied to boilers in other studies and offers the potential to make a small number of simple measurements to obtain the model parameters. These parameters can then be used to predict performance under complex load patterns. Both condensing and non-condensing water heaters have been tested under a very wide range of load conditions. It is shown that this approach can be used to reproduce performance metrics, such as the energy factor, and can be used to evaluate the impacts of alternative draw patterns and conditions.

  5. Integration between electric heat pump and PV system to increase self-consumption of an office application

    Directory of Open Access Journals (Sweden)

    Roselli Carlo

    2017-01-01

    Full Text Available The paper examines a solar electric driven heat pump serving an office building located in southern Italy. To satisfy space heating and cooling demand a heat pump activated by electric energy available from solar photovoltaic plant is here considered. In order to improve the self-consumption of electricity available from photovoltaic system different configurations were considered introducing an electric storage and an electric vehicle. Dynamic simulations to evaluate energy performance of the system varying photovoltaic peak power (4.5–7.5 kW have been carried out. The proposed system achieves a fossil fuel primary energy saving up to about 96% in comparison to the reference conventional system based on a natural gas fired boiler, an electric chiller and the national electric grid. The results show that fossil fuel primary energy saving is higher when there are no storage battery and electric vehicle.

  6. Pilot plant studies on the extraction of antimony metal from lower grade krinj stibnite ore

    International Nuclear Information System (INIS)

    Rehman, W.; Riaz, M.; Ishaq, M.

    2013-01-01

    Antimony is a silvery white, brittle and crystalline solid which is extensively consumed in lead acid batteries, antimonial lead alloys, flame retardants and a variety of metallic products. The antimony content of commercial ores range from 5-60% and determines the method of extraction, either pyrometallurgical or hydrometallurgical. The present study focuses on pilot plant scale extraction of antimony metal from lower grade stibnite ore of Krinj (Chitral) without the use of iron scrap, thus eliminating the second step of iron removal in conventional direct reduction method. A tilting gas fired furnace with digital temperature control system and a heat recuperator was designed to optimize the operating parameters for extraction of antimony metal. Weight ratios of flux and reductant, operating time and operating temperature were optimized. Highest percentage recovery and purity were achieved using soda ash as a flux, at a temperature of 900 degree C for 2 hours. (author)

  7. Challenges for gas and power markets

    International Nuclear Information System (INIS)

    Stice, M.

    2000-01-01

    Characteristic features of today's gas market, complicated by globalization and the emergence of e-commerce are discussed. Rising demand, due in part to the new gas-fired power generation, the sluggishness of supply response from new exploration and the influence of rising gas prices are also assessed. The challenges come principally from attempts to close the gap between demand and supply, and from price volatility and price management. Tips on ways to manage price by consumers as well as producers are proffered, and a look into the future is provided. While generally excited about possibilities, the author believes that there is cause for concern about short term supply and the limited infrastructure. In the long-term, there is reason to be concerned about problems in meeting skilled people requirements, as well as the threat represented by regulatory/political risks

  8. A simulation of heat transfer during billet transport

    Energy Technology Data Exchange (ETDEWEB)

    Jaklic, A.; Glogovac, B. [Institute of Metals and Technology, Ljubljana (Slovenia); Kolenko, T. [University of Ljubljana (Slovenia). Faculty of Natural Science and Technology; Zupancic, B. [University of Ljubljana (Slovenia). Faculty of Electrical Engineering; Zak, B. T. [Terming d.o.o., Ljubljana (Slovenia)

    2002-07-01

    This paper presents a simulation model for billet cooling during the billet's transport from the reheating furnace to the rolling mill. During the transport, the billet is exposed to radiation, convection and conduction. Due to the rectangular shape of the billet, the three-dimensional finite-difference model could be applied to calculate the heat conduction inside the billet. The billets are reheated in a gas-fired walking-beam furnace and are exposed to scaling. The model takes into account the effect of the thin oxide scale. We proved that the scale significantly affects the temperature distribution in the billet and should not be neglected. The model was verified by using a thermal camera. (author)

  9. Interdependency Assessment of Coupled Natural Gas and Power Systems in Energy Market

    Science.gov (United States)

    Yang, Hongzhao; Qiu, Jing; Zhang, Sanhua; Lai, Mingyong; Dong, Zhao Yang

    2015-12-01

    Owing to the technological development of natural gas exploration and the increasing penetration of gas-fired power generation, gas and power systems inevitably interact with each other from both physical and economic points of view. In order to effectively assess the two systems' interdependency, this paper proposes a systematic modeling framework and constructs simulation platforms for coupled gas and power systems in an energy market environment. By applying the proposed approach to the Australian national electricity market (NEM) and gas market, the impacts of six types of market and system factors are quantitatively analyzed, including power transmission limits, gas pipeline contingencies, gas pipeline flow constraints, carbon emission constraints, power load variations, and non-electric gas load variations. The important interdependency and infrastructure weakness for the two systems are well studied and identified. Our work provides a quantitative basis for grid operators and policy makers to support and guide operation and investment decisions for electric power and natural gas industries.

  10. Natural gas turbine topping for the iris reactor

    International Nuclear Information System (INIS)

    Oriani, L.; Lombardi, C.; Paramonov, D.

    2001-01-01

    Nuclear power plant designs are typically characterized by high capital and low fuel costs, while the opposite is true for fossil power generation including the natural gas-fired gas turbine combined cycle currently favored by many utilities worldwide. This paper examines potential advantages of combining nuclear and fossil (natural gas) generation options in a single plant. Technical and economic feasibility and attractiveness of a gas turbine - nuclear reactor combined cycle where gas turbine exhaust is used to superheat saturated steam produced by a low power light water reactor are examined. It is shown that in a certain range of fuel and capital costs of nuclear and fossil options, the proposed cycle offers an immediate economic advantage over stand-alone plants resulting from higher efficiency of the nuclear plant. Additionally, the gas turbine topping will result in higher fuel flexibility without the economic penalty typically associated with nuclear power. (author)

  11. Natural gas turbine topping for the iris reactor

    Energy Technology Data Exchange (ETDEWEB)

    Oriani, L.; Lombardi, C. [Politecnico di Milano, Milan (Italy); Paramonov, D. [Westinghouse Electric Corp., LLC, Pittsburgh, PA (United States)

    2001-07-01

    Nuclear power plant designs are typically characterized by high capital and low fuel costs, while the opposite is true for fossil power generation including the natural gas-fired gas turbine combined cycle currently favored by many utilities worldwide. This paper examines potential advantages of combining nuclear and fossil (natural gas) generation options in a single plant. Technical and economic feasibility and attractiveness of a gas turbine - nuclear reactor combined cycle where gas turbine exhaust is used to superheat saturated steam produced by a low power light water reactor are examined. It is shown that in a certain range of fuel and capital costs of nuclear and fossil options, the proposed cycle offers an immediate economic advantage over stand-alone plants resulting from higher efficiency of the nuclear plant. Additionally, the gas turbine topping will result in higher fuel flexibility without the economic penalty typically associated with nuclear power. (author)

  12. Oak Ridge National Laboratory REVIEW, Vol. 33, No. 1, 2000

    International Nuclear Information System (INIS)

    Krause, C

    2001-01-01

    The titles in the table of contents for this journal are: Editorial: Science at the Interface; Science at the Interface: A Round-table Discussion; Center for Structural and Molecular Biology Open to Users; The Virtual Human Project: An Idea Whose Time Has Come?; The Spallation Neutron Source: A Challenging Year; Neutrino Detector Laboratory To Be Proposed for ORNL; Turbine Renewal: Shaping an Emerging Gas-Fired Power Source; Heat Pumps: More Energy Bang for the Buck?; Combined Solar Light and Power for Illuminating Buildings; What's in a Chromosome? Tune in to the Genome Channel; Microbial Functional Genomics and Waste Site Bioremediation; Human Improvement; ORNL's Infrared Processing Center: Industrial Interest Heats Up; How Much Stuff Is Made in Stellar Explosions? ORNL's Answer; and Electronic License Could Reduce Drunken Driving

  13. SMUD HIBRED Closeout Report

    Energy Technology Data Exchange (ETDEWEB)

    Sison-Lebrilla, Elaine [Sacramento Municipal Utility District, Sacremento, CA (United States); Beebe, Harold [Sacramento Municipal Utility District, Sacremento, CA (United States)

    2015-05-26

    In January 2013 SMUD, the electric utility of Sacramento Calif., began the conceptualization and pre-engineering for a small steam energy augmentation project that would use high temperature (1000 F) Concentrating Solar Power collection technology and thermal storage to increase output of its existing 527 MWe gas fired combined cycle power plant. SMUD generation technology planners worked together with NREL and the DOE SunShot Program to try to complete such a project. Though technical challenges ultimately prevented the project from going forward, several important lessons were learned along the way. This report is a summary of lessons learned and other information which may be of help for others contemplating an Integrated Solar Combined Cycle (ISCC) retrofit.

  14. Total energy analysis of nuclear and fossil fueled power plants

    International Nuclear Information System (INIS)

    Franklin, W.D.; Mutsakis, M.; Ort, R.G.

    1971-01-01

    The overall thermal efficiencies of electrical power generation were determined for Liquid Metal Fast Breeder, High Temperature Gas Cooled, Boiling Water, and Pressurized Water Reactors and for coal-, oil-, and gas-fired systems. All important energy consuming steps from mining through processing, transporting, and reprocessing the fuels were included in the energy balance along with electrical transmission and thermal losses and energy expenditures for pollution abatement. The results of these studies show that the overall fuel cycle efficiency of the light water nuclear fueled reactors is less than the efficiency of modern fossil fuel cycles. However, the nuclear fuel cycle based on the fast breeder reactors should produce power more efficiently than the most modern supercritical fossil fuel cycles. The high temperature gas cooled reactor has a cycle efficiency comparable to the supercritical coal fuel cycle

  15. Economic assessment of combined cycle gas turbines in Australia Some effects of microeconomic reform and technological change

    International Nuclear Information System (INIS)

    Naughten, Barry

    2003-01-01

    Australian electricity markets and natural gas markets are undergoing rapid reform. Choosing among electricity generation modes is a key issue. Such choices are affected by expectations about the future structure of these markets and future technologies, and how they affect costs and emissions. In the research reported in this paper, the MARKAL model of the Australian energy system is used to evaluate the competitive position of natural gas fired combined cycle gas turbines (CCGTs) in the energy sector as a whole. Competing in the sector are large-scale electricity generation technologies such as refurbished existing coal fired stations and advanced forms of coal fired generation. The modelling incorporates new data on electricity supply technologies and options

  16. Development of fast-burn combustion with elevated coolant temperatures for natural gas engines. Final report, May 1985-May 1990

    Energy Technology Data Exchange (ETDEWEB)

    Bruch, K.L.; Dennis, J.W.

    1990-09-01

    The overall objective of the work was to improve the state of the art in the gas fired spark ignited engine for use in a cogeneration system. Four characteristics were enhanced for cogeneration, namely, Low Pressure Gas Induction, Improved Shaft Thermal Efficiency, Low NOx Emissions, and Increased Jacket Coolant Temperature. Using Taguchi methods and statistical design of experiment methodologies, an engine design evolved that exhibited: The ability to run satisfactorily on supply gas pressure as low as 1.5 psig (goal: 1 psig); A brake specific fuel consumption as low as 6950 Btu/hp-hr (36.6% thermal efficiency) at 2 gm/hp-hr NOx (goal: 7000 acceptable, 6800 excellent with NOx no more than 2 gm/hp-hr); A jacket water coolant system (with oil cooler on the same circuit) temperature of 225 F (goal); and The ability to burn gas with Methane Number as low as 67 (goal).

  17. Study of waste-heat recovery and utilization at the Farmington Municipal Power Plant. Final report, December 1, 1980-June 30, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Leigh, G.G.; Edgel, W.R.; Feldman, K.T. Jr.; Moss, E.J.

    1982-03-01

    An examination was made of the technical and economc feasibility of utilizing waste heat from the Farmington Municipal Power Plant. First, the production cycles of the natural-gas-fired plant were assessed to determine the quantity and quality of recoverable waste heat created by the plant during its operation. Possibilities for utilizing waste heat from the exhaust gases and the cooling water were then reviewed. Hot water systems that can be used to retrieve heat from hot flue gases were investigated; the heated water can then be used for space heating of nearby buildings. The potential use of waste heat to operate a refrigeration plant was also analyzed. The use of discharged cooling water for hydroelectric generation was studied, as well as its application for commercial agricultural and aquaculture enterprises.

  18. The nuclear review

    International Nuclear Information System (INIS)

    O'Neill, M.

    1995-01-01

    The position of the Labour Party on the future of nuclear power in the United Kingdom is presented. Although nuclear power is seen to have a role for many years to come, a future Labour government would not build any more nuclear power stations nor extend the life of existing ones. The relative abundance of cheaper, gas fired generating plants and the attractiveness of environmentally friendly, smaller stations, nearer to their markets and cheap to run, argues against further investment in nuclear power. Nevertheless, the Labour party would sustain a dialogue with the nuclear industry and would be interested in technical developments. For too long attitudes to nuclear power have been based on fear rather than facts. The case for the privatisation of nuclear power stations is considered to be unfounded and the retention of back-end operations in the public sector is essential. (UK)

  19. Short-Term Planning of Hybrid Power System

    Science.gov (United States)

    Knežević, Goran; Baus, Zoran; Nikolovski, Srete

    2016-07-01

    In this paper short-term planning algorithm for hybrid power system consist of different types of cascade hydropower plants (run-of-the river, pumped storage, conventional), thermal power plants (coal-fired power plants, combined cycle gas-fired power plants) and wind farms is presented. The optimization process provides a joint bid of the hybrid system, and thus making the operation schedule of hydro and thermal power plants, the operation condition of pumped-storage hydropower plants with the aim of maximizing profits on day ahead market, according to expected hourly electricity prices, the expected local water inflow in certain hydropower plants, and the expected production of electrical energy from the wind farm, taking into account previously contracted bilateral agreement for electricity generation. Optimization process is formulated as hourly-discretized mixed integer linear optimization problem. Optimization model is applied on the case study in order to show general features of the developed model.

  20. Environmental Assessment for the Warren Station externally fired combined cycle demonstration project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    The proposed Penelec project is one of 5 projects for potential funding under the fifth solicitation under the Clean Coal Technology program. In Penelec, two existing boilers would be replaced at Warren Station, PA; the new unit would produce 73 MW(e) in a combined cycle mode (using both gas-fired and steam turbines). The project would fill the need for a full utility-size demonstration of externally fire combined cycle (EFCC) technology as the next step toward commercialization. This environmental assessment was prepared for compliance with NEPA; its purpose is to provide sufficient basis for determining whether to prepare an environmental impact statement or to issue a finding of no significant impact. It is divided into the sections: purpose and need for proposed action; alternatives; brief description of affected environment; environmental consequences, including discussion of commercial operation beyond the demonstration period.

  1. Energy technologies for distributed utility applications: Cost and performance trends, and implications for photovoltaics

    International Nuclear Information System (INIS)

    Eyer, J.M.

    1994-01-01

    Utilities are evaluating several electric generation and storage (G ampersand S) technologies for distributed utility (DU) applications. Attributes of leading DU technologies and implications for photovoltaics (PV) are described. Included is a survey of present and projected cost and performance for: (1) small, advanced combustion turbines (CTs); (2) advanced, natural gas-fired, diesel engines (diesel engines); and (3) advanced lead-acid battery systems (batteries). Technology drivers and relative qualitative benefits are described. A levelized energy cost-based cost target for PV for DU applications is provided. The analysis addresses only relative cost, for PV and for three selected alternative DU technologies. Comparable size, utility, and benefits are assumed, although relative value is application-specific and often technology- and site-specific

  2. The quiet revolution: decentralisation and fuel cells

    International Nuclear Information System (INIS)

    Aschenbrenner, N.

    2003-01-01

    This article discusses how major changes in the electricity supply industry can take place in the next few years due to market liberalisation and efforts to reduce the emission of greenhouse gasses. Decentralisation is discussed as being a 'mega-trend' and fuel cells in particular are emphasised as being a suitable means of generating heat and power locally, i.e. where they are needed. Also, the ecological advantages of using natural gas to 'fire' the fuel cell units that are to complement or replace coal-fired or gas-fired combined gas and steam-turbine power stations is discussed. Various types of fuel cell are briefly described. Market developments in the USA, where the power grid is extensive and little reserve capacity is available, are noted. New designs of fuel cell are briefly examined and it is noted that electricity utilities, originally against decentralisation, are now beginning to promote this 'quiet revolution'

  3. Electricity supply alternatives : the next five years

    International Nuclear Information System (INIS)

    Oliver, W.J.

    1998-01-01

    Characteristics of the energy market for New England and the state of New York were summarized. It was predicted that in the next five years, virtually all proposals for electricity generation for New England and New York will be gas-fired combined cycle projects which are designed to meet new generation requirements and displace older steam units. The status of nuclear plants will influence project economics. It has been estimated that New England will need about 6,000-7,000 MW by 2004. This need is driven by the current deficiencies and increased shortfalls due to load growth and economic retirements of 2,000-4,000 MW. Market assumptions for new entrants, merchant plant economics, gas requirements in New England, pipeline capacity and power generation, and the challenges facing the natural gas industry were reviewed. A list of proposed combined cycle natural gas merchant power plants and their generating capacity was also provided. 1 tab., 5 figs

  4. Natural gas poised to penetrate deeper into electric generation

    International Nuclear Information System (INIS)

    Swanekamp, R.

    1995-01-01

    This article describes how advancements in gas supply, distribution and storage, coupled with new options in combustion equipment, continue to expand the use of natural gas for electric generation. The challenge is to meet the increasing demand while keeping prices competitive with other fuels--and keep a small band of skeptics at bay. To prepare for the projected growth in gas consumption, the natural-gas industry has invented in new infrastructure and technologies. Pipelines have been built; storage facilities have been expanded; and highly precise flow measurement stations have been installed. To mitigate supply and price risk, suppliers are offering short-, mid-, or long-term contracts which include service options and guarantees. In spite of these preparations, not all power producers are comfortable with the potential tidal wave of gas-fired capacity. Reason: It limits the electric-generation resource base to one fuel for future capacity

  5. Experimental and numerical investigation of gas phase freeboard combustion

    DEFF Research Database (Denmark)

    Andersen, J.; Jensen, Peter Arendt; Meyer, K.E.

    2009-01-01

    Experimental data for velocity field, temperatures, and gas composition have been obtained from a 50 kW axisymmetric non-swirling natural gas fired combustion setup under two different settings. The reactor was constructed to simulate the conditions in the freeboard of a grate-fired boiler...... but under well-defined conditions. The experimental results are compared to computational fluid dynamics (CFD) modeling predictions, using the eddy dissipation model (EDM) its well as the eddy dissipation concept (EDC). The use of EDC allows for implementation of more advanced combustion schemes; we have...... tested the four-step global mechanism by Jones and Lindstedt (Combust. Flame 1988, 73, 233-249), and the 16 species and 41 reaction skeletal mechanism by Yang and Pope (Combust. Flame 1998, 112 16-32). The CFD model captured the main features of the combustion process and flow patterns. The application...

  6. Experimental and CFD investigation of gas phase freeboard combustion

    DEFF Research Database (Denmark)

    Andersen, Jimmy

    Reliable and accurate modeling capabilities for combustion systems are valuable tools for optimization of the combustion process. This work concerns primary precautions for reducing NO emissions, thereby abating the detrimental effects known as “acid rain”, and minimizing cost for flue gas...... treatment. The aim of this project is to provide validation data for Computational Fluid Dynamic (CFD) models relevant for grate firing combustion conditions. CFD modeling is a mathematical tool capable of predicting fluid flow, mixing and chemical reaction with thermal conversion and transport. Prediction......, but under well-defined conditions. Comprehensive experimental data for velocity field, temperatures, and gas composition are obtained from a 50 kW axisymmetric non-swirling natural gas fired combustion setup under two different settings. Ammonia is added to the combustion setup in order to simulate fuel...

  7. Experimental and numerical investigation of gas phase freeboard combustion

    DEFF Research Database (Denmark)

    Andersen, Jimmy; Jensen, Peter Arendt; Hvid, S.L.

    2009-01-01

    In part 1 of the present work (10.1021/ef900752a), experimental data and computational fluid dynamics (CFD) modeling predictions for velocity field, temperatures, and major species were compared fora 50 kW axisymmetric, non-swirling natural gas Fired combustion setup, constructed to simulate...... the conditions in the freeboard of it grate-fired boiler. Here, in part 2, the ability of CFD to predict volatile N oxidation to NO and N(2) is evaluated. Trace amounts of ammonia were added to the natural gas, and local measurements of NH(3) and NO in the reactor were compared to modeling predictions. Different...... modeling approaches, including global schemes and analytically reduced mechanisms, were tested in the CFD calculations. In addition, the simplified schemes were compared to reference calculations with a detailed mechanism under isothermal plug flow reactor conditions. While none of the global ammonia...

  8. Combined heat and power and solar energy; BHKW und solare Energie

    Energy Technology Data Exchange (ETDEWEB)

    Marchesi, M.; Schmidt, A.

    2006-07-01

    This illustrated article takes a look at a new apartment complex in Buelach, Switzerland, that meets the 'Minergie' low energy-consumption standard and also features solar-thermal heat generation. This solar installation provides heat for the provision of domestic hot water and, also, heat for the space-heating system of the building complex. The solar collectors cover an area of 153 m{sup 2}; their power is rated at 96 kW. Further elements of the building's technical services include a combined heat and power plant, a heat-pump and a gas-fired boiler. The article discusses ecological and social aspects of the design and construction of the building complex and briefly describes the installations, which also include a 'Minergie' fan-assisted balanced ventilation system.

  9. Gas consumption for water heating in the Netherlands

    International Nuclear Information System (INIS)

    Bos, R.; Weegink, R.

    1995-01-01

    In 1994 the total gas consumption of Dutch households increased slightly. This is mainly due to an increase in the number of occupied homes by about 75,000, an advancing penetration of gas-fired tap water heaters and a marginal increase in gas consumption for space heating. Another striking feature is the stabilisation of gas consumption of an average household for hot water purposes, since it decreased in 1992 and 1993 by 3% and 4,5% respectively. The so-called Dutch BAK (basic survey of the small-scale gas consumption) study also shows that the penetration of gas appliances with higher outputs and changing water tapping behaviour, the major reasons for consumption increases in the previous years, have changed only moderately. Gas consumption for cooking purposes remained almost stable, though. 7 tabs., 1 ill

  10. The world behind electricity from coal. The dubious origin of coal for Dutch coal-fired power plants

    International Nuclear Information System (INIS)

    2008-01-01

    Five energy companies in the Netherlands want to build additional coal-fired power plants: Essent and Nuon, the German company RWE and E.ON and the Belgian company Electrabel. Coal-fired power plants emit 70 percent more CO2 than gas-fired power plants. Especially because of the threat to the climate Greenpeace believes that no more coal-fired power plants should be built. In this publication Greenpeace explores the pollution, the working conditions and human rights with regard to the exploitation of coal. That has been elaborated for the three countries from which Dutch energy companies import coal: South Africa, Colombia and Indonesia. In addition to information about the origin of coal also insight is given into the coal market (stocks and use), the enormous coal transport and the world trade [nl

  11. Wind power developments in New Zealand

    International Nuclear Information System (INIS)

    Botha, P.; White, G.

    1997-01-01

    New Zealand currently generates approximately 86% of its electricity requirement from renewable energy sources, predominantly large hydro. Forecasts show that due to the expected increase in demand, a new mid-sized power station will be required by 1997/98. Due to the commercialisation and restructuring of the electricity market, and despite the country's commitment to CO 2 reductions, proposed new large generation projects are gas fired stations. The country's first commercial wind farm was commissioned in June 1996, in a market where there are no subsidies or tax benefits for non traditional energy generation. For wind power projects to compete with other forms of electricity generation, they need to take full advantage of all the benefits of being embedded into the local network. This paper considers these issues in the existing electricity market. (author)

  12. Overview of Gas Research Institute's industrial utilization research and development program

    Energy Technology Data Exchange (ETDEWEB)

    Tabb, E S

    1982-05-01

    A combination of technical, economic, political, and environmental constraints hamper industry's ability to use natural gas efficiently. Although the industrial sector has the best potential to absorb the current surplus of natural gas, many industrial users are disenchanged with the high cost, low efficiency, and environmental problems associated with the existing inventory of gas-fired process systems. Consequently, it is essential for an organization like Gas Research Institute (GRI), which has a national scope and a mandate to generate energy end-use benefits for the industrial gas consumer, to assume a leadership role in the development program aimed, not only at upgrading the energy efficiency of industrial process equipment, but at increasing its production capability while meeting environmental standards.

  13. Derivatives in energy project finance

    International Nuclear Information System (INIS)

    Spencer, Lloyd

    1999-01-01

    This chapter focuses on risk management of merchant power generation projects and describes project finance as balancing risk and reward over time. The historical background to risk management is traced, and the case for derivatives in energy project finance is put forward with the hedging of forward output, and forwards and power purchase agreements discussed. Current and prospective usage, and the implementation issues of market liquidity, margin calls, letters of credit, derivative counterparty credit risk, and accounting policy are considered. A detailed example of a gas-fired plant in the US is presented with details given of the distribution of project earnings before tax. Oil field operating cashflows are examined, with reserved flow models, leverage effects, and price hedging addressed

  14. Quantitative characterization of urban sources of organic aerosol by high-resolution gas chromatography

    International Nuclear Information System (INIS)

    Hildemann, L.M.; Mazurek, M.A.; Cass, G.R.; Simoneit, B.R.T.

    1991-01-01

    Fine aerosol emissions have been collected from a variety of urban combustion sources, including an industrial boiler, a fireplace, automobiles, diesel trucks, gas-fired home appliances, and meat cooking operations, by use of a dilution sampling system. Other sampling techniques have been utilized to collect fine aerosol samples of paved road dust, brake wear, tire wear, cigarette smoke, tar pot emissions, and vegetative detritus. The organic matter contained in each of these samples has been analyzed via high-resolution gas chromatography. By use of a simple computational approach, a quantitative, 50-parameter characterization of the elutable fine organic aerosol emitted from each source type has been determined. The organic mass distribution fingerprints obtained by this approach are shown to differ significantly from each other for most of the source types tested, using hierarchical cluster analysis

  15. Hedging tools and cross market applications

    International Nuclear Information System (INIS)

    Schlenker, C.

    1997-01-01

    The nature of the basic tools of the market - put, call, and swap - their various combinations and how they are used in various market transactions were explained. The role and effect of the use of these tools on prices, price fluctuations and risks were outlined. Predictions for the future for producers (reduced use of price optimization and its replacement by price diversification strategies, realignment of risk management tools to be in accord with the changed marketing techniques), and for end users (focus on managing short term fluctuations in input costs, short-term price fixing, more frequent utilization of traditional option strategies and spread options), were summarized. For the electricity market in particular, the prominence of gas-fired generation units as options on the spread between gas and electricity, providing opportunities for outperformance options was predicted

  16. Temperature-field measurements of a premixed butane/air circular impinging-flame using reference-beam interferometry

    International Nuclear Information System (INIS)

    Qi, J.A.; Leung, C.W.; Wong, W.O.; Probert, S.D.

    2006-01-01

    Reference-beam interferometry (RBI) was applied to study the axisymmetric temperature fields of a small-scale, low Reynolds-number, low-pressure and fuel-rich premixed butane/air circular-flame jet, when it was impinging vertically upwards onto a horizontal copper plate. By maintaining a Reynolds number, Re, of 500 and an equivalence ratio, φ, of 1.8, interferograms of the impinging-flame jet were obtained for various nozzle-to-plate-distances. Temperature fields of the flame were then determined using the inverse Abel transformation from the obtained interferograms. Temperatures at several locations were measured experimentally with a T-type thermocouple: they were used as a reference to help in the determination as well as the validation. In the present study, a non-contact method has been successfully developed to measure the temperature fields of a circular impinging gas-fired flame jet

  17. World`s first fuel cell in a single-family home - The VNG natural gas house: Low-emission energy meets all household needs

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1999-03-01

    VNG - Verbundnetz Gas Aktiengesellschaft of Leipzig, Germany, has pioneered the development of a decentral home energy system combining very high efficiencies with extremely low emissions. The company has installed the world`s first fuel cell total energy system using natural gas as an energy source to generate both heat and power in a single-family home. It replaces the gas-fired mini power station operated as part of the VNG natural gas house project which was instrumental in the rapid advancement of small-scale co-generation technology. The objective of VNG and its project partners is to collect reliable data for advancing fuel cell technology development, allowing appliance manufacturers to design a competitive system for introduction on the market within a few years. Discerning consumers will then be able to opt for an innovative, highly efficient system to meet all their household energy needs. (orig.)

  18. Role of technology in future gas supply and demand

    International Nuclear Information System (INIS)

    Ban, S.D.

    1992-01-01

    This paper presents an outlook for natural gas production and consumption in the United States for the next 15 to 20 years. It discusses the impact of the new environmental laws and regulations on gas exploration and development, showing a marked decline in new resource development. The paper goes on to discuss new developments in technology which will be required to increase the efficiency of natural gas-fired systems to meet the decline in production, increased costs, and environmental restraints. The paper breaks these technology issues down into the transportation sector, the residential sector, the commercial sector, and the industry sector. The types of technology and systems needed to meet these new regulatory requirements while maintaining a cost-effective system is discussed under each sectorial analysis

  19. Heat and power from MicroGen

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1999-10-01

    This paper reports on the design of a domestic gas-fired cogeneration system developed to replace the central heating boiler. Technical details of the MicroGen demonstration unit are given, and the use of a Linear Free Piston Stirling Engine as the prime mover, and the results of modelling studies of energy demand indicating cost savings compared to conventional boilers are discussed. The enhancement of the benefits of micro-cogeneration through use of thermal and power storage and energy demand management, and the impact of micro-cogeneration on energy use in the home are considered. The UK and European Commission's targets for increased cogeneration capacity are noted.

  20. Energy and operation management of a microgrid using particle swarm optimization

    Science.gov (United States)

    Radosavljević, Jordan; Jevtić, Miroljub; Klimenta, Dardan

    2016-05-01

    This article presents an efficient algorithm based on particle swarm optimization (PSO) for energy and operation management (EOM) of a microgrid including different distributed generation units and energy storage devices. The proposed approach employs PSO to minimize the total energy and operating cost of the microgrid via optimal adjustment of the control variables of the EOM, while satisfying various operating constraints. Owing to the stochastic nature of energy produced from renewable sources, i.e. wind turbines and photovoltaic systems, as well as load uncertainties and market prices, a probabilistic approach in the EOM is introduced. The proposed method is examined and tested on a typical grid-connected microgrid including fuel cell, gas-fired microturbine, wind turbine, photovoltaic and energy storage devices. The obtained results prove the efficiency of the proposed approach to solve the EOM of the microgrids.

  1. The heating boiler is never to blame; Der Kessel ist immer unschuldig

    Energy Technology Data Exchange (ETDEWEB)

    Stadelmann, M.

    2008-07-01

    In this article, certain prejudices are examined that are often encountered when the performance of so-called 'condensing' gas-fired heating boilers is discussed. The boundary conditions necessary for the condensation of the water vapour in the heating boiler's flue gasses are examined. The hydraulics and the flow and return temperatures of heating systems are discussed - this with reference to obtaining sufficiently low return temperatures for the condensation to occur. The adjustment of heating-water flow in the heating system in general is discussed. Such adjustments in the hydraulics of heating systems can help save a lot of heating energy and also assure that the heating system's circulation pump does not consume too much power. Professionals are quoted as saying that the majority of heating systems have never been properly adjusted hydraulically.

  2. Strandby Harbour on solar cooling. Demonstration of 8.000 m{sup 2} solar collectors combined with flue gas cooling with a absorption cooling system; Combined heat and power plant (CHP); Strandby havn paa solkoeling. Demonstration af 8.000 m{sup 2} solfangere kombineret med roeggaskoeling med absorptionskoeleanlaeg

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, Flemming (Strandby Varmevaerk, Strandby (Denmark)); Soerensen, Per Alex (PlanEnergi, Skoerping (Denmark)); Ulbjerg, F. (Ramboell, Odense (Denmark)); Sloth, H. (Houe and Olsen, Thisted (Denmark))

    2010-04-15

    The aim of the project was to demonstrate 1) high solar heating ratio (18% annually) at a decentralized natural gas combined heat and power plant; 2) increased efficiency (5% of the heat consumption) in a natural gas CHP by using an extra flue gas cooler and an absorption heat pump; 3) a double tank system where a new tank during winter is used for cooling/ heat storage for the absorption heat pump and during summer for solar heat storage in serial operation with the old tank. The concept of combining solar power, absorption cooling and natural gas-fired small-scale CHP in Strandby met expectations and could be replicated in other CHP plants. However, it is important to note that if major construction modifications in the flue gas condensation system in the boiler or engine are required, the operating hours must not be reduced significantly in the amortisation period for the conversion. (ln)

  3. Solar heating, cooling, and domestic hot water system installed at Kaw Valley State Bank and Trust Company, Topeka, Kansas. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-11-01

    The building has approximately 5600 square feet of conditioned space. Solar energy is used for space heating, space cooling, and preheating domestic hot water (DHW). The solar energy system has an array of evacuated tube-type collectors with an area of 1068 square feet. A 50/50 solution of ethylene glycol and water is the transfer medium that delivers solar energy to a tube-in-shell heat exchanger that in turn delivers solar-heated water to a 1100 gallon pressurized hot water storage tank. When solar energy is insufficient to satisfy the space heating and/or cooling demand, a natural gas-fired boiler provides auxiliary energy to the fan coil loops and/or the absorption chillers. Extracts from the site files, specification references, drawings, and installation, operation and maintenance instructions are included.

  4. Electricity sector reform in Greece

    International Nuclear Information System (INIS)

    Iliadou, Ekaterini N.

    2009-01-01

    This paper provides an outlook of the electricity market reform in Greece which started in 2001 and is still developing slowly. This is related to the persisting dominance of the incumbent company and the specificities of the electricity sector of Greece which is heavily dependent on indigenous lignite firing generation, while being located in the periphery of the EU internal electricity and gas markets. Competition through enhancing electricity trade in the region is limited to date, as the establishment of an internal market in South East Europe also progresses slowly. Development of competition through gas-firing generation by new entrants has been the priority adopted by State and Regulator's policies. However, the gas supply market in Greece and in the region still lags behind. (author)

  5. Tax barriers to four renewable electric generation technologies

    International Nuclear Information System (INIS)

    Jenkins, A.F.; Chapman, R.A.; Reilly, H.E.

    1996-01-01

    The tax loads associated with constructing and owning current and advanced solar central receiver, biomass-electric, and flash and binary cycle geothermal projects are compared to the tax loads incurred by natural gas-fired generation matched in size, hours of operation, and technology status. All but one of the eight renewable projects carry higher tax burdens under current tax codes. These higher tax loads proportionately reduce the competitiveness of renewables. Three tax neutralizing policies are applied to the renewable projects, each restoring competitiveness for some of the projects. The results show that RD and D must be accompanied with such public initiatives as tax neutrality in order for the majority of renewable projects to compete with advanced gas turbines in the emerging electric services market

  6. Northeast market view : Millennium Pipeline

    International Nuclear Information System (INIS)

    Pentzien, D.C.

    1998-01-01

    The potential for growth in the U.S. northeast natural gas markets was discussed. In presenting a forecast for natural gas consumption, the growth in demand was attributed primarily to the planned conversion of coal and oil-fired electric generation plants to gas-fired ones, combined with nuclear plant shutdowns, and more stringent environmental policies. An overview of the development of the Millennium Pipeline bringing natural gas from the Alberta border all the way to New York City was also provided, with an update on the current status of the project. Assuming no unreasonable delays in the present schedule, the line should be in service sometime in the year 2000. figs

  7. Biomass-gasifier steam-injected gas turbine cogeneration for the cane sugar industry

    International Nuclear Information System (INIS)

    Larson, E.D.; Williams, R.H.; Ogden, J.M.; Hylton, M.G.

    1991-01-01

    Steam injection for power and efficiency augmentation in aeroderivative gas turbines has been commercially established for natural gas-fired cogeneration since 1980. Steam-injected gas turbines fired with coal and biomass are being developed. A performance and economic assessment of biomass integrated-gasifier steam-injected gas turbine (BIG/STIG) cogeneration systems is carried out here. A detailed economic case study is presented for the second largest sugar factory in Jamaica, with cane residues as the fuel. BIG/STIG cogeneration units would be attractive investments for sugar producers, who could sell large quantities of excess electricity to the utility, or for the utility, as a low-cost generating option. Worldwide, the cane sugar industry could support some 50,000 MW of BIG/STIG electric generation capacity. The relatively modest development effort required to commercialize the BIG/STIG technology is discussed in a companion paper prepared for this conference

  8. Midwest gas and power markets, hubs, pipelines, and interconnects

    International Nuclear Information System (INIS)

    Wirick, J.

    2001-01-01

    The existing interstate pipelines and proposed pipeline projects for the Chicago hub area were illustrated. The presentation explained why energy suppliers in the current competitive market need to balance and manage energy and transportation services for gas-fired power generators in terms of hourly winter and summer peaking services. The new infrastructure of the energy market will include new pipelines, storage and balancing to meet the ever increasing power demand. One of the options to meet power demand is to increase natural gas supply, transportation, storage, and hourly balancing capabilities. Other options are to build nuclear or coal-fired power generating facilities, or to go with renewables such as solar and wind power. Energy conservation and the reduction of natural gas usage per capita is another option to eliminate blackouts. This presentation also addressed the role that local distribution companies (LDC) and unbundling will play in the choice of these options. tabs., figs

  9. Alternative solvents for post combustion carbon capture

    Energy Technology Data Exchange (ETDEWEB)

    Arachchige, Udara S.P.R. [Telemark University College, Porsgrunn (Norway); Melaaen, Morten C. [Telemark University College, Porsgrunn (Norway); Tel-Tek, Porsgrunn (Norway)

    2013-07-01

    The process model of post combustion chemical absorption is developed in Aspen Plus for both coal and gas fired power plant flue gas treating. The re-boiler energy requirement is considered as the most important factor to be optimized. Two types of solvents, mono-ethylamine (MEA) and di-ethylamine (DEA), are used to implement the model for three different efficiencies. The re-boiler energy requirement for regeneration process is calculated. Temperature and concentration profiles in absorption column are analyzed to understand the model behavior. Re-boiler energy requirement is considerably lower for DEA than MEA as well as impact of corrosion also less in DEA. Therefore, DEA can be recommended as a better solvent for post combustion process for carbon capture plants in fossil fuel fired power industries.

  10. Cyclone reburn using coal-water fuel: Pilot-scale development and testing. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Eckhart, C.F.; DeVault, R.F.

    1991-10-01

    There is an ongoing effort to develop retrofit technologies capable of converting oil- and/or gas-fired boilers to coal combustion. The objective of this project is to demonstrate the technical feasibility of an improved portion of a previously developed retrofit system designed for the purpose of converting oil/gas boilers. This improvement would almost entirely eliminate the use of premium fuels, thereby significantly increasing the economical attractiveness of the system. Specifically, the goals in this program were to replace natural gas as a reburning fuel with coal-water fuel (CWF). The advantages of such a system include: (1) increased return on investment (ROI) for conversions; (2) nearly complete elimination of premium oil or gas fuel; (3) a more integrated approach to the conversion of oil- or gas-designed boilers to CWF.

  11. Cyclone reburn using coal-water fuel: Pilot-scale development and testing

    Energy Technology Data Exchange (ETDEWEB)

    Eckhart, C.F.; DeVault, R.F.

    1991-10-01

    There is an ongoing effort to develop retrofit technologies capable of converting oil- and/or gas-fired boilers to coal combustion. The objective of this project is to demonstrate the technical feasibility of an improved portion of a previously developed retrofit system designed for the purpose of converting oil/gas boilers. This improvement would almost entirely eliminate the use of premium fuels, thereby significantly increasing the economical attractiveness of the system. Specifically, the goals in this program were to replace natural gas as a reburning fuel with coal-water fuel (CWF). The advantages of such a system include: (1) increased return on investment (ROI) for conversions; (2) nearly complete elimination of premium oil or gas fuel; (3) a more integrated approach to the conversion of oil- or gas-designed boilers to CWF.

  12. Prospects for and problems of using light-water supercritical-pressure coolant in nuclear reactors in order to increase the efficiency of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Alekseev, P. N.; Semchenkov, Yu. M.; Sedov, A. A.; Subbotin, S. A.; Chibinyaev, A. V.

    2011-01-01

    Trends in the development of the power sector of the Russian and world power industries both at present time and in the near future are analyzed. Trends in the rise of prices for reserves of fossil and nuclear fuels used for electricity production are compared. An analysis of the competitiveness of electricity production at nuclear power plants as compared to the competitiveness of electricity produced at coal-fired and natural-gas-fired thermal power plants is performed. The efficiency of the open nuclear fuel cycle and various versions of the closed nuclear fuel cycle is discussed. The requirements on light-water reactors under the scenario of dynamic development of the nuclear power industry in Russia are determined. Results of analyzing the efficiency of fuel utilization for various versions of vessel-type light-water reactors with supercritical coolant are given. Advantages and problems of reactors with supercritical-pressure water are listed.

  13. Environmental regulation of a power investment in an international market

    International Nuclear Information System (INIS)

    Vennemo, H.; Halseth, A.

    2001-01-01

    We examine the optimal environmental regulation of three Norwegian power projects: energy conservation, a natural gas fired CCGT and a new hydro project. All projects reduce emissions elsewhere in the Nordic region, and the environmental costs of these emissions are not, in general, fully reflected in market prices. We develop a theory of second best optimal regulation for this case. The optimal regulation is found to deviate substantially from a purely domestic regulation. For instance, we find it optimal to grant a substantial credit to energy conservation. The credit is sensitive to the value of reduced CO 2 emissions and whether the current Norwegian end user tax should be interpreted as an environmental or a fiscal tax

  14. The State Electricity Commission of Victoria and the greenhouse effect

    International Nuclear Information System (INIS)

    Hoy, R.D.

    1990-01-01

    The State Electricity Commission of Victoria is examining how the greenhouse issue may affect its electricity supply system in the future. Possible generation scenarios for 2005 are presented in order to show how the Toronto goal of a 20% reduction on 1988 levels of CO 2 emissions could be achieved. The main approaches to achieving these emission reductions include energy conservation and cogeneration, new gas-fired plant, use of renewable energy, reduction of energy system losses, retirement of older brown coal plant and an extensive tree planting program. It is estimated that achieving the Toronto goal would require electricity prices to rise by 1% to 1.5%, on average, each year by more than they otherwise would have, for the next 15 years. 12 refs., 3 tabs

  15. Economics and environmental impacts of nuclear energy in comparison with other energy systems

    International Nuclear Information System (INIS)

    Bennett, L.L.

    1994-01-01

    The 1992 study from which results are presented, focused on plants that could be commercially available for commissioning in the year 2000 or shortly thereafter. Data and information received from the participating countries relate mainly to light-water cooled pressurized water and boiling water reactors, pressurized heavy water reactors, pulverized coal burning plants, some fluidized bed coal burning plants and gas fired combined cycle plants. Although an attempt was made to obtain data also for other advanced fossil fuelled and renewable generation technologies, relatively few data have been provided. The study was overseen by a working group of experts drawn from sixteen OECD countries and four international agencies. Six non-OECD countries also participated in the study, either directly or indirectly, as part of the IAEA contribution. 16 refs, 9 figs

  16. The role of clean coal technologies in a deregulated rural utility market

    Energy Technology Data Exchange (ETDEWEB)

    Neal, J.W. [National Rural Electric Cooperative Association, Arlington, VA (United States)

    1997-12-31

    The nation`s rural electric cooperatives own a high proportion of coal-fired generation, in excess of 80 percent of their generating capacity. As the electric utility industry moves toward a competitive electricity market, the generation mix for electric cooperatives is expected to change. Distributed generation will likely serve more customer loads than is now the case, and that will lead to an increase in gas-fired generation capacity. But, clean low-cost central station coal-fired capacity is expected to continue to be the primary source of power for growing rural electric cooperatives. Gasification combined cycle could be the lowest cost coal based generation option in this new competitive market if both capital cost and electricity production costs can be further reduced. This paper presents anticipated utility business scenarios for the deregulated future and identifies combined cycle power plant configurations that might prove most competitive.

  17. CONSOL`s perspective on CCT deployment

    Energy Technology Data Exchange (ETDEWEB)

    Burke, F.P.; Statnick, R.M. [CONSOL Inc., Library, PA (United States)

    1997-12-31

    The principal focus of government investment in Clean Coal Technology must be to serve the interests of the US energy consumer. Because of its security of supply and low cost, coal will continue to be the fuel of choice in the existing domestic electricity generating market. The ability of coal to compete for new generating capacity will depend largely on natural gas prices and the efficiency of coal and gas-fired generating options. Furthermore, potential environmental regulations, coupled with utility deregulation, create a climate of economic uncertainty that may limit future investment decisions favorable to coal. Therefore, the federal government, through programs such as CCT, should promote the development of greenfield and retrofit coal use technology that improves generating efficiency and meets environmental requirements for the domestic electric market.

  18. Feasibility study of a hybrid renewable energy system with geothermal and solar heat sources for residential buildings in South Korea

    International Nuclear Information System (INIS)

    Kim, Young Ju; Woo, Nam Sub; Jang, Sung Cheol; Choi, Jeong Ju

    2013-01-01

    This study investigates the economic feasibility of a hybrid renewable energy system (HRES) that uses geothermal and solar heat sources for water heating, space heating, and space cooling in a residential building in Korea. A small-scale HRES consists of a geothermal heat pump for heating and cooling, solar collectors for hot water, a gas-fired backup boiler, and incidental facilities. To determine whether the Hares will produce any economic benefits for homeowners, an economic analysis is conducted to compare the Hares with conventional methods of space heating and cooling in Korea. The payback period of a small-scale Hares is predicted as a maximum of 9 yrs by life cycle costing based on a performance index compared with conventional systems. However, the payback period of large-scale HRES above 400 RT is 6 yrs to 7 yrs.

  19. Heat techniques in the light of the innovation curve. New technology for gas appliances and solar water heaters; Warmtetechnieken in het licht van de innovatiecurve. Nieuwe technologie gezocht voor gastoestel en zonneboilers

    Energy Technology Data Exchange (ETDEWEB)

    Vollebregt, R.

    2012-09-15

    The development, market introduction and deployment of new techniques often follows an S-shaped curve. The gas-fired boiler transformed from a conventional apparatus into the current high efficiency boiler. Will the high efficiency electricity boiler be the next breakthrough technique? The electrical and gas heat pumps are fully developed techniques, but this does not apply to their use in Dutch single-family dwellings [Dutch] De ontwikkeling, marktintroductie en toepassing van nieuwe technieken verloopt vaak volgens een S-vormige curve. De gasketel transformeerde van conventioneel toestel naar de huidige hr-ketel. Is de hre-ketel de volgende doorbraaktechniek? De elektrische en de gaswarmtepomp zijn uitontwikkelde technieken, maar nog niet voor de toepassing in een Nederlandse eengezinswoning.

  20. Membrane reforming in converting natural gas to hydrogen: Production costs, Part II

    Energy Technology Data Exchange (ETDEWEB)

    Iaquaniello, G; Cosenza, S [Technip-KTI S.p.A., via Castello della Magliana 75, Rome (Italy); Giacobbe, F; Morico, B; Farace, A [Processi Innovativi s.r.l., L' Aquila (Italy)

    2008-11-15

    This paper evaluates the production costs of a hybrid system based on a new membrane reforming MRR concept to convert natural gas to hydrogen and electricity. Membrane reforming with hydrogen-selective, palladium-silver membranes pushes the chemical equilibrium and allows higher methane conversions at lower temperature such as 650 C. The new MRR concept formed of a series of modules is put forward herein. Each module is made up of a reforming step and an external membrane separation unit. The estimates, based on utilities costs of a typical Italian refinery (end of 2006), show that the production costs for the hybrid system are 30% less than conventional tubular steam reforming technology, and 13% less than a gas-fired cogeneration plant coupled with a conventional H{sub 2} plant. (author)

  1. Emissions impacts of wind and energy storage in a market environment.

    Science.gov (United States)

    Sioshansi, Ramteen

    2011-12-15

    This study examines the emissions impacts of adding wind and energy storage to a market-based electric power system. Using Texas as a case study, we demonstrate that market power can greatly effect the emissions benefits of wind, due to most of the coal-fired generation being owned by the two dominant firms. Wind tends to have less emissions benefits when generators exercise market power, since coal-fired generation is withheld from the market and wind displaces natural gas-fired generators. We also show that storage can have greater negative emissions impacts in the presence of wind than if only storage is added to the system. This is due to wind increasing on- and off-peak electricity price differences, which increases the amount that storage and coal-fired generation are used. We demonstrate that this effect is exacerbated by market power.

  2. HTR plus modern turbine technology for higher efficiencies

    International Nuclear Information System (INIS)

    Barnert, H.; Kugeler, K.

    1996-01-01

    The recent efficiency race for natural gas fired power plants with gas-plus steam-turbine-cycle, is shortly reviewed. The question 'can the HTR compete with high efficiencies?' is answered: Yes, it can - in principle. The gas-plus steam-turbine cycle, also called combi-cycle, is proposed to be taken into consideration here. A comparative study on the efficiency potential is made; it yields 54.5% at 1,050 deg. C gas turbine-inlet temperature. The mechanisms of release versus temperature in the HTR are summarized from the safety report of the HTR MODUL. A short reference is made to the experiences from the HTR-Helium Turbine Project HHT, which was performed in the Federal Republic of Germany in 1968 to 1981. (author). 8 figs,. 1 tab

  3. Fire protection for clean rooms

    International Nuclear Information System (INIS)

    Kirson, D.

    1990-01-01

    The fire protection engineer often must decide what size fire can be tolerated before automatic fire suppression systems actuate. Is it a wastepaper basket fire, a bushel basket fire...? In the case of state-of-the-art clean rooms, the answer clearly is not even an incipient fire. Minor fires in clean rooms can cause major losses. This paper discusses what a clean room is and gives a brief overview of the unique fire protection challenges encountered. The two major causes of fire related to clean rooms in the semiconductor industry are flammable/pyrophoric gas fires in plastic ducts and polypropylene wet bench fires. This paper concentrates on plastic ductwork in clean rooms, sprinkler protection in ductwork, and protection for wet benches

  4. Competition and monopolies, exclusive rights for electricity companies

    International Nuclear Information System (INIS)

    Taccoen, L.

    1993-01-01

    The European Community has decided to liberalize the electric power industry within the community abolishing state monopolies, and allowing third party access. This policy was based on until then untested free-market theories. The advantage of state monopoly was that it could guarantee security of supply - vital with a non-storable commodity such as electricity. The advantages of TPA were said to be that it would lower prices, and that the market would ensure security of supply. The United Kingdom experimented in deregulation and end-user choice. In this experiment long-term planning has suffered, all new power stations are gas-fired because of low capital cost, and the effects on the British coal industry have been catastrophic. Thus, the effect of TPA seems to be a switch to natural gas, and an increase in prices to domestic consumers. Further research is needed, rather than a switch to TPA based on ideology alone

  5. Nuclear energy. Choice for GHG emission reduction and sustainable energy development in China

    International Nuclear Information System (INIS)

    Zhang Rui; Zou Lin; Wang Yongping

    2007-01-01

    In this paper, the sustainability of China's energy development and the major challenges in four energy priorities are discussed by establishing and applying of Indicators of Sustainable Energy Development (ISED) with consideration of nuclear power as one viable option. On this basis, China's Energy Strategy to 2020 is discussed in detail. On the other hand, the crucial role that nuclear energy will play in the fields of emission reduction and climate change is discussed by analyzing illustrative models under different energy development scenarios. An assessment on what could look like in a fast developing country like China when an equivalent fund was invested in five different energy options of hydro-power, coal-fired power, nuclear power, wind power and gas-fired power would be presented with a discussion about possible future international climate protection regimes and the methodologies to evaluate the potential roles of those energy options, especially, the nuclear energy. (author)

  6. Efficiency improvements in pipeline transportation systems

    Energy Technology Data Exchange (ETDEWEB)

    Banks, W. F.; Horton, J. F.

    1977-09-09

    This report identifies potential energy-conservative pipeline innovations that are most energy- and cost-effective and formulates recommendations for the R, D, and D programs needed to exploit those opportunities. From a candidate field of over twenty classes of efficiency improvements, eight systems are recommended for pursuit. Most of these possess two highly important attributes: large potential energy savings and broad applicability outside the pipeline industry. The R, D, and D program for each improvement and the recommended immediate next step are described. The eight technologies recommended for R, D, and D are gas-fired combined cycle compressor station; internally cooled internal combustion engine; methanol-coal slurry pipeline; methanol-coal slurry-fired and coal-fired engines; indirect-fired coal-burning combined-cycle pump station; fuel-cell pump station; drag-reducing additives in liquid pipelines; and internal coatings in pipelines.

  7. Recent experiences with independent power projects

    International Nuclear Information System (INIS)

    Kline, R.H.; Fitzowitch, J.R.; Dalla-Longa, L.

    1999-01-01

    New opportunities are making it possible to develop independent power projects involving partnerships with the electric power industry, and the petroleum and natural gas industry . This paper described those opportunities, the impediments and the risks involved. Mercury Electric Corp. has been involved in power projects at remote gas field and oil field sites where they use of a turbogenerator which runs on flare gas to generate electricity. TransCanada Power's involvement in independent power projects includes the supply and transport of gas and their ability to provide gas fired combined cycle technology. They are involved in a project at Hermiston, Oregon and also in a cogeneration project in Medicine Hat, Alberta. The CanCarb City of Medicine Hat project makes use of waste heat at an industrial facility. 11 figs

  8. Absorption technology for solar and waste heat utilization

    International Nuclear Information System (INIS)

    Grossman, G.

    1993-01-01

    Absorption heat pumps, first developed in the 19th century, have received renewed and growing attention in the past two decades. With the increasing cost of oil and electricity, the particular features of this heat-powered cycle have made it attractive for both residential and industrial applications. Solar-powered air conditioning, gas-fired domestic cooling and waste-heat-powered temperature boosters are some of the applications on which intensive research and development has been conducted. This paper describes the operation of absorption systems and discusses several practical applications. It surveys recent advances in absorption technology, including the selection of working fluids, cycle improvements and multi-staging, and fundamentals of the combined heat and mass transfer in absorption processes. (author)

  9. Future trends in electrical energy generation economics in the United States

    Science.gov (United States)

    Schmitt, R. W.; Fox, G. R.; Shah, R. P.; Stewart, P. J.; Vermilyea, D. A.

    1977-01-01

    Developments related to the economics of coal-fired systems in the U.S. are mainly considered. The historical background of the U.S. electric generation industry is examined and the U.S. electrical generation characteristics in the year 1975 are considered. It is pointed out that coal-fired power plants are presently the largest source of electrical energy generation in the U.S. Questions concerning the availability and quality of coal are investigated. Currently there are plans for converting some 50 large oil and gas-fired generating plants to coal, and it is expected that coal will be the fuel used in almost all fossil-fired base load additions to generating capacity. Aspects of advanced energy conversion from coal are discussed, taking into account the performance and economic potential of the energy conversion systems.

  10. Modeling the transient security constraints of natural gas network in day-ahead power system scheduling

    DEFF Research Database (Denmark)

    Yang, Jingwei; Zhang, Ning; Kang, Chongqing

    2017-01-01

    The rapid deployment of gas-fired generating units makes the power system more vulnerable to failures in the natural gas system. To reduce the risk of gas system failure and to guarantee the security of power system operation, it is necessary to take the security constraints of natural gas...... accurately, they are hard to be embedded into the power system scheduling model, which consists of algebraic equations and inequations. This paper addresses this dilemma by proposing an algebraic transient model of natural gas network which is similar to the branch-node model of power network. Based...... pipelines into account in the day-ahead power generation scheduling model. However, the minute- and hour-level dynamic characteristics of gas systems prevents an accurate decision-making simply with the steady-state gas flow model. Although the partial differential equations depict the dynamics of gas flow...

  11. Generation unit selection via capital asset pricing model for generation planning

    Energy Technology Data Exchange (ETDEWEB)

    Cahyadi, Romy; Jo Min, K. [College of Engineering, Ames, IA (United States); Chunghsiao Wang [LG and E Energy Corp., Louisville, KY (United States); Abi-Samra, Nick [Electric Power Research Inst., Palo Alto, CA (United States)

    2003-07-01

    The electric power industry in many parts of U.S.A. is undergoing substantial regulatory and organizational changes. Such changes introduce substantial financial risk in generation planning. In order to incorporate the financial risk into the capital investment decision process of generation planning, in this paper, we develop and analyse a generation unit selection process via the capital asset pricing model (CAPM). In particular, utilizing realistic data on gas-fired, coal-fired, and wind power generation units, we show which and how concrete steps can be taken for generation planning purposes. It is hoped that the generation unit selection process developed in this paper will help utilities in the area of effective and efficient generation planning when financial risks are considered. (Author)

  12. Generation unit selection via capital asset pricing model for generation planning

    Energy Technology Data Exchange (ETDEWEB)

    Romy Cahyadi; K. Jo Min; Chung-Hsiao Wang; Nick Abi-Samra [College of Engineering, Ames, IA (USA)

    2003-11-01

    The USA's electric power industry is undergoing substantial regulatory and organizational changes. Such changes introduce substantial financial risk in generation planning. In order to incorporate the financial risk into the capital investment decision process of generation planning, this paper develops and analyses a generation unit selection process via the capital asset pricing model (CAPM). In particular, utilizing realistic data on gas-fired, coal-fired, and wind power generation units, the authors show which and how concrete steps can be taken for generation planning purposes. It is hoped that the generation unit selection process will help utilities in the area of effective and efficient generation planning when financial risks are considered. 20 refs., 14 tabs.

  13. Solar heating, cooling, and domestic hot water system installed at Kaw Valley State Bank and Trust Company, Topeka, Kansas

    Science.gov (United States)

    1980-01-01

    The building has approximately 5600 square feet of conditioned space. Solar energy was used for space heating, space cooling, and preheating domestic hot water (DHW). The solar energy system had an array of evacuated tube-type collectors with an area of 1068 square feet. A 50/50 solution of ethylene glycol and water was the transfer medium that delivered solar energy to a tube-in-shell heat exchanger that in turn delivered solar heated water to a 1100 gallon pressurized hot water storage tank. When solar energy was insufficient to satisfy the space heating and/or cooling demand, a natural gas-fired boiler provided auxiliary energy to the fan coil loops and/or the absorption chillers. Extracts from the site files, specification references, drawings, and installation, operation and maintenance instructions are presented.

  14. Solar space heating for the Visitors Center, Stephens College, Columbia, Missouri

    Science.gov (United States)

    1980-01-01

    The solar energy system located at the Visitors' Center on the Stephens College Campus, Columbia, Missouri is discussed. The system is installed in a four-story, 15,000 square foot building. The solar energy system is an integral design of the building and utilizes 176 hydronic flat plate collectors which use a 50 percent water ethylene blycol solution and water-to-water heat exchanger. Solar heated water is stored in a 5,000 gallon water storage tank located in the basement equipment room. A natural gas fired hot water boiler supplies hot water when the solar energy heat supply fails to meet the demand. The designed solar contribution is 71 percent of the heating load.

  15. Italy: a market in transition

    International Nuclear Information System (INIS)

    White, N.

    2002-01-01

    The prospects for the Italian gas market, the third biggest in Europe, are reviewed briefly. With increasing demand for gas-fired generation of electric power, Italy will need a new infrastructure. At present, Italian electric power is among the most expensive in Europe. Enei, the dominant generator in the country, is converting its oil-fired plants to gas to increase efficiency and reduce emissions. Combined cycle gas turbine plants are seen as the best way to enter the Italian market. Eni has much gas under 'take or pay' contracts but eventually their grip on the market will be loosened and international players such as Edison, BG Italia BP Shell, and Italian distributors such as AEM Milano, AEM Torino, and ACEA Roma may find new opportunities on offer

  16. Profitability of producing electricity in nuclear power plants

    International Nuclear Information System (INIS)

    Marecki, J.

    2001-01-01

    In the first part of this paper, the method used in energy economics to calculate the annual costs of electricity generation is described. The procedure of discounting these costs for complex time distributions of costs and effects is also presented. Hence the principles of choosing the optimum variant from different solutions having the same or not the same effects are determined. Subsequently, the conditions of competitiveness are formulated for nuclear power plants in comparison with other energy options. As example, the the results of calculating total annual costs of electricity generation in various (coal-fired, gas-fired and nuclear) power plants are given for two different values of the discount rate: 5% and 10%. (author)

  17. A seasonal copula mixture for hedging the clean spark spread with wind power futures

    DEFF Research Database (Denmark)

    Christensen, Troels Sønderby; Pircalabu, Anca; Høg, Esben

    2018-01-01

    The recently introduced German wind power futures have brought the opportunity to address the problem of volume risk in wind power generation directly. In this paper we study the hedging benefits of these instruments in the context of gas-fired power plants by employing a strategy that allows...... and the dependence structure, while being straightforward and easy to implement. Based on Monte Carlo simulations from the proposed model, the results indicate that significant benefits can be achieved by using wind power futures to hedge the spot clean spark spread. Moreover, a comparison study shows...... trading in the spot clean spark spread and wind power futures. To facilitate hedging decisions, we propose a time-varying copula mixture for the joint behavior of the spot clean spark spread and the daily wind index. The model describes the data surprisingly well, both in terms of the marginals...

  18. Disposal of aqueous condensate from high efficiency gas boilers

    Energy Technology Data Exchange (ETDEWEB)

    Hardwick, G J; Pattison, J R

    1984-01-01

    If highly efficient gas-fired condensing heating appliances are installed in Britain, the aqueous condensate produced can be conveniently run into existing sewage drains. The part of the drainage system that is most vulnerable to corrosion from the mildly acid condensate is that portion adjacent to the domestic premises. The tests described indicate that this is not at risk and the only precaution that might be considered necessary is to avoid running the condensate over galvanized drain covers in order to prevent unsightly staining. Water authorities in Britain and detailed studies in the US and Holland confirm that the condensate - after dilution by domestic waste, sewage, and rainwater - would be harmless to municipal sewage systems and would not, either in volume or chemical composition, affect the working of existing sewage treatment plants.

  19. Challenges for gas and power markets

    Energy Technology Data Exchange (ETDEWEB)

    Stice, M. [Conoco Gas and Power Marketing (United States)

    2000-07-01

    Characteristic features of today's gas market, complicated by globalization and the emergence of e-commerce are discussed. Rising demand, due in part to the new gas-fired power generation, the sluggishness of supply response from new exploration and the influence of rising gas prices are also assessed. The challenges come principally from attempts to close the gap between demand and supply, and from price volatility and price management. Tips on ways to manage price by consumers as well as producers are proffered, and a look into the future is provided. While generally excited about possibilities, the author believes that there is cause for concern about short term supply and the limited infrastructure. In the long-term, there is reason to be concerned about problems in meeting skilled people requirements, as well as the threat represented by regulatory/political risks.

  20. Emission of flue gases from industrial boilers and generators and their control

    International Nuclear Information System (INIS)

    Shaikh, G.H.; Shareef, A.; Hashmi, D.R.

    2005-01-01

    Analysis of flue gases in the Stacks was carried out for 17 gas-fired boilers and 19 gas/diesel-fired generators and the concentrations of CO, NO/sub 2/, NO/sub x/ NO/sub 2/ SO/sub 2/ and C/sub x/ H/sub y/ were studied in the stack- emissions. The results have then been discussed with reference to the permissible limits, as per National Environmental Quality Standard. Higher concentration of co was observed in some boilers, and of CO and NO/sub x/ in some generators. Some effects of major air-pollutants have also been discussed as regards the human health, vegetables and materials. Some remedial measures have also been discussed to limit the concentration of air pollutants emitted from boilers and generators. (author)

  1. Gas system 2016: Press conference 17 January 2017 + Gas consumption by administrative regions

    International Nuclear Information System (INIS)

    2017-01-01

    GRTgaz is a European leader in natural gas transmission, a world expert in gas transmission networks and systems, and an operator firmly committed to the energy transition. It owns and operates the gas transmission network throughout most of France and it manages the transmission network in Germany, thereby helping to ensure correct operation of the French and European gas market. It contributes to the energy security of regional supply systems and performs a public service mission to ensure the continuity of consumer supply. This document presents some key figures about GRTgaz activity in 2016: A first part presents the national data about gas consumption, production of gas-fired power plants, new gas uses (diesel-gas substitution, biomethane..) and their environmental impacts, and the development of the Internet open-data platform. A second part presents the regional gas consumptions with a focus on industrial clients

  2. Feasibility study of a hybrid renewable energy system with geothermal and solar heat sources for residential buildings in South Korea

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Ju; Woo, Nam Sub [Korea Institute of Geoscience and Mineral Resources, Daejeon (Korea, Republic of); Jang, Sung Cheol [Mechatronics Department of the Korea Aviation Polytechnic College, Sacheon (Korea, Republic of); Choi, Jeong Ju [Dong-A University, Busan (Korea, Republic of)

    2013-08-15

    This study investigates the economic feasibility of a hybrid renewable energy system (HRES) that uses geothermal and solar heat sources for water heating, space heating, and space cooling in a residential building in Korea. A small-scale HRES consists of a geothermal heat pump for heating and cooling, solar collectors for hot water, a gas-fired backup boiler, and incidental facilities. To determine whether the Hares will produce any economic benefits for homeowners, an economic analysis is conducted to compare the Hares with conventional methods of space heating and cooling in Korea. The payback period of a small-scale Hares is predicted as a maximum of 9 yrs by life cycle costing based on a performance index compared with conventional systems. However, the payback period of large-scale HRES above 400 RT is 6 yrs to 7 yrs.

  3. The price of electricity from private power producers

    Energy Technology Data Exchange (ETDEWEB)

    Kahn, E.; Milne, A.; Kito, S.

    1993-10-01

    The long-term wholesale electricity market is becoming increasingly competitive. Bidding for power contracts has become a dominant form of competition in this sector. The prices which emerge from this process have not been documented and compared in a systematic framework. This paper introduces a method to make such comparisons and illustrates it on a small sample of projects. This results show a wide range of prices for what is essentially the same technology, gas-fired combined cycle generation. The price range seems greater than what could be explained by transmission cost differences between high and low cost regions. For the smaller sample of coal-fired projects, price variation is substantially less. Further data collection and analysis should be able to help isolate more clearly what market or cost factors are responsible for the observed variation.

  4. FY 1998 basic survey to promote the joint execution, etc. Overall repair plan of thermal power plants in Maritime Province of Russia; 1998 nendo kyodo jisshi nado suishin kiso chosa. Roshia Enkaishu ni okeru karyoku hatsudensho sogo kaishu keikaku

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    For thermal power plants in Maritime Province of Russia, a repair plan for effective reduction of emission of greenhouse effect gas was worked out as a draft plan for the joint execution. The project is to be implemented for the additional installation/replacement of boilers at Vladivostok No. 2 power plant, construction of a power plant as a substitute for Partizansk power plant, and new construction of Ussuriisk power plant. The draft plan includes the new installation of two gas-fired boilers/replacement of existing boilers at Vladivostok No. 2 power plant, construction of 200MW cogeneration facility at Partizansk power plant, construction of 180MW cogeneration facility at Ussuriisk power plant, abolition of small-sized boiler station, etc. The reduction amount of the greenhouse effect gas emission based on this repair plan totaled 338 million tons in project. The effect against cost is US$ 4.75 per 1 CO2 ton at Vladivostok. (NEDO)

  5. Pricing Electric Power in the Czech Republic and in Selected Countries

    Directory of Open Access Journals (Sweden)

    Eva Mazegue Pavelková

    2016-01-01

    Full Text Available This paper focuses on state intervention in the pricing of electricity from renewable power sources in the Czech Republic when compared with the pricing in the Slovak Republic, Germany, France and Italy. In these countries the state intervention is implemented in different forms, but the critical part of the price is regulated everywhere by the state. The price of electricity is determined by its production costs, which depend on the source from which electricity is produced. The highest cost of electricity is required to generate renewable energy, particularly solar power, while the lowest costs of power are associated with its production by coal-fired and natural gas-fired thermal power plants. However, hydroelectric power plants attain clearly the lowest cost for generating electricity. State intervention includes supporting power generation from renewable power sources by guaranteeing purchase prices.

  6. Analysis of carbon mitigation technology to 2050 in Japan through integrated energy economic model

    International Nuclear Information System (INIS)

    Komiyama, Ryoichi; Suzuki, Kengo; Nagatomi, Yu; Matsuo, Yuji; Suehiro, Shigeru

    2011-01-01

    This paper describes the outline of integrated energy economic model and calculated result concerning the outlook of energy and carbon dioxide emissions in Japan to 2050. The energy model developed in this paper is integrated one which consistently combines econometric model endogenously generating socio-economic outlook and bottom-up type technology model, MARKAL, identifying cost-minimizing optimal mix of various energy technologies. In reference scenario which imposes no carbon emissions constraint, CO 2 emission in 2050 will decrease by approximately 40% from the level of emissions in 2005. In carbon-constraints scenario, imposing emissions cap of 60% reduction by 2050 from the emissions in 2005, natural gas-fired power plant equipped with CCS and renewable energy are expected to expand its portion in power generation mix. In transportation sector on this scenario, clean energy vehicles such as electric vehicle (EV) and hydrogen fuel cell vehicle (FCV) will be deployed and contribute to mitigate CO 2 emissions. (author)

  7. Strategies for sustainable development of the Polish electric power system

    International Nuclear Information System (INIS)

    Janiczek, R.

    1996-01-01

    The key features of sustainable development of the Polish electric power industry are discussed. Priorities and limitations for changes and power demand forecasts are described. Results of least-cost planning for existing power plants' modernization and generation expansion with environmental impacts are presented. The least-cost strategy is given by the optimal upgrades of older plants until year 2002 and by expansion of gas-fired units. The limited availability of gas after 2010 will lead to the construction of new coal-fired plants. For the next planning process, an integrated resource planning methodology is proposed, which includes dynamic optimization of supply and demand side options. Innovative mechanisms are shown to overcome barriers of development like long-terms contracts and decentralization of the power system planning process. (author)

  8. Leader-Follower Approach to Gas-Electricity Expansion Planning Problem

    DEFF Research Database (Denmark)

    Khaligh, Vahid; Oloomi Buygi, Majid; Anvari-Moghaddam, Amjad

    2018-01-01

    investment in capacity addition to the generation and transmission levels while considers the limitations on fuel consumption. On the other hand gas operator decides about investment in gas pipelines expansions considering the demanded gas by the electricity network. In this planning model for a joint gas......The main purpose of this paper is to develop a method for sequential gas and electricity networks expansion planning problem. A leader-follower approach performs the expansion planning of the joint gas and electricity networks. Electric system operator under adequacy incentive decides about......-electricity network, supply and demand are matched together while adequacy of fuel for gas consuming units is also guaranteed. To illustrate the effectiveness of the proposed method Khorasan province of Iran is considered as a case study which has a high penetration level of gas-fired power plants (GFPP). Also...

  9. Simulation Study of the Energy Performance of Different Space Heating Methods in Plus-energy Housing

    DEFF Research Database (Denmark)

    Schøtt, Jacob; Andersen, Mads E.; Kazanci, Ongun Berk

    2016-01-01

    Due to a shortage of energy resources, the focus on indoor environment and energy use in buildings is increasing which sets higher standards for the performance of HVAC systems in buildings. The variety of available heating systems for both residential buildings and office buildings is therefore...... cases the heat source was a natural gas fired condensing boiler, and for the floor heating cases also an air-to-water heat pump was used to compare two heat sources. The systems were also compared in terms of auxiliary energy use for pumps and fans. The results show that the investigated floor heating...... from the low temperature heating potential since an increased floor covering requires higher average water temperatures in the floor loops and decreases the COP of the heat pump. The water-based heating systems required significantly less auxiliary energy input compared to the air-based heating system...

  10. Storage outlook: winter 2000/2001 and beyond

    International Nuclear Information System (INIS)

    Daniel, R.

    2000-01-01

    An overview of the Alberta Energy Company's gas storage business is presented as part of a larger discussion of the changing dynamics of the gas storage business. A review of storage inventories in both Canada and the United States are said to be lower than normal, therefore the possibility of increased buying pressure by local distribution companies and critically low inventories in case of a 'high winter draw' scenario are very real. With regard to the changing dynamics of the gas storage business a number of different possible scenarios are postulated such as the increased role of gas-fired power generation, greater price volatility, higher gas prices, and the effects of deregulation of the gas storage business. Implications of each of these scenarios are assessed

  11. Al Zara: helping to make the super grid a reality

    Energy Technology Data Exchange (ETDEWEB)

    Turner, David [Mott MacDonald, Brighton (United Kingdom)

    2000-05-01

    The new gas-fired power plant at Al Zara in Syria will be close to the heart of the proposed super grid network linking Syria, Turkey, Jordan, Iraq and Egypt. The article describes the Al Zara plant (3 x 220 MWe units) and focuses particularly on the dry cooling towers. An indirect cooling system is unitised and comprises steel natural draught towers covered with aluminium sheeting each 135 m high and 114 m diameter at the base. An auxiliary cooling water system is also described. The 245 million pounds sterling project is being carried out by Mitsubishi and financed by an Overseas Economic Co-operation loan from Japan: it should be operational in 2000.

  12. Environment

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    IGT's efforts in environmental protection are primarily concerned with reducing the level of undesirable emissions from combustion, treating solid and liquid waste materials, and producing cleaner fuels. Projects being funded include: an ultra-low-emission gas-fired cyclonic burner for firetube boiler retrofit; a combination of IGT's de-NOX technology for municipal solid waste combustors with the injection of sorbents to reduce pollutants; second-generation NOx reduction techniques for regenerative glass melting furnaces; investigation of the applicability of electric DC field flame stabilization; development of a slagging cyclonic combustor for a class of industrial solid wastes; remediation research of various biological, chemical, and thermal technologies for cleaning and/or immobilizing contaminants in soils and sludges; and fuel cell research on molten carbonate and solid oxide fuel cells

  13. HTR plus modern turbine technology for higher efficiencies

    Energy Technology Data Exchange (ETDEWEB)

    Barnert, H; Kugeler, K [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Sicherheitsforschung und Reaktortechnik

    1996-08-01

    The recent efficiency race for natural gas fired power plants with gas-plus steam-turbine-cycle, is shortly reviewed. The question `can the HTR compete with high efficiencies?` is answered: Yes, it can - in principle. The gas-plus steam-turbine cycle, also called combi-cycle, is proposed to be taken into consideration here. A comparative study on the efficiency potential is made; it yields 54.5% at 1,050 deg. C gas turbine-inlet temperature. The mechanisms of release versus temperature in the HTR are summarized from the safety report of the HTR MODUL. A short reference is made to the experiences from the HTR-Helium Turbine Project HHT, which was performed in the Federal Republic of Germany in 1968 to 1981. (author). 8 figs,. 1 tab.

  14. Efficiency improvements in pipeline transportation systems. Technical report, Task 3

    Energy Technology Data Exchange (ETDEWEB)

    Banks, W. F.; Horton, J. H.

    1977-01-01

    This report identifies those potential energy-conservative pipeline innovations that are most energy- and cost-effective, and formulates recommendations for the R, D, and D programs needed to exploit those opportunities. From a candidate field of over twenty classes of efficiency improvements, eight systems are recommended for pursuit. Most of these possess two highly important attributes: large potential energy savings and broad applicability outside the pipeline industry. The R, D, and D program for each improvement and the recommended immediate next step are described. The eight programs recommended for pursuit are: gas-fired combined-cycle compressor station; internally cooled internal combustion engine; methanol-coal slurry pipeline; methanol-coal slurry-fired and coal-fired engines; indirect-fired coal-burning combined-cycle pump station; fuel-cycle pump station; internal coatings in pipelines; and drag-reducing additives in liquid pipelines.

  15. Innovation and the price of wind energy in the US

    International Nuclear Information System (INIS)

    Berry, David

    2009-01-01

    In the last ten years, the wind energy industry has experienced many innovations resulting in wider deployment of wind energy, larger wind energy projects, larger wind turbines, and greater capacity factors. Using regression analysis, this paper examines the effects of technological improvements and other factors on the price of wind energy charged under long-term contracts in the United States. For wind energy projects completed during the period 1999-2006, higher capacity factors and larger wind farms contributed to reductions in wind energy contract prices paid by regulated investor owned utilities in 2007. However, this effect was offset by rising construction costs. Turbine size (in MW) shows no clear relationship to contract prices, possibly because there may be opposing factors tending to decrease costs as turbine size increases and tending to increase costs as turbine size increases. Wind energy is generally a low-cost resource that is competitive with natural gas-fired power generation.

  16. Power import or domestic power generation using gas?

    International Nuclear Information System (INIS)

    Saettler, M.; Bohnenschaefer, W.; Schlesinger, M.

    2001-01-01

    This report for the Swiss Federal Office of Energy (SFOE) presents expert opinion on the question of how Switzerland could meet its demands for power in the future. The results of the analysis of two options - the import of electrical power or its generation using natural-gas-fired power stations - made in the light of gas market liberalisation are presented. These include the assessment of the use of 'GuD' (combined gas and steam-turbine) power stations in the 100 MW e l to 400 MW e l class regarding their cost, their emissions and primary energy consumption. The authors discuss the assessments from the political and economic points of view. An appendix supplies characteristic data for 'GuD' power stations and an example of a model calculation for a 400 MW e l 'GuD' power station

  17. Advanced turbine systems program. Final report, August 3, 1993--August 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    Six tasks were approved under the Advanced Turbine Systems (ATS) extension program. The six tasks include the following: Task 5.0 -- Market Study. The objective of the market study task is to focus on distributed generation prospects for an industrial ATS, using the Allison ATS family as the primary gas turbine systems. Task 6.0 -- Gas Fired Advanced Turbine System (GFATS) Definition and Analysis. Task 8.01 -- Castcool{reg_sign} Blades Fabrication Process Development. Task 8.04 -- ATS Low Emission Combustion System. Task 8.07 -- Ceramic Vane Design and Evaluation. Task 9.0 -- Program Management. Each of these tasks is described, progress is discussed, and results are given.

  18. Development of a small air-cooled ``midnight sun'' thermophotovoltaic electric generator

    Science.gov (United States)

    Fraas, Lewis M.; Xiang, Huang Han; Hui, She; Ferguson, Luke; Samaras, John; Ballantyne, Russ; Seal, Michael; West, Ed

    1996-02-01

    A natural gas fired thermophotovoltaic generator using infrared-sensitive GaSb cells and a silicon carbide emitter is described. The emitter is designed to operate at 1400 °C. Twelve GaSb receivers surround the emitter. Each receiver contains a string of series connected cells. Special infrared filters are bonded to each cell. These filters transmit short wavelength useful IR to the cells while reflecting longer wavelength IR back to the emitter. Combustion air is supplied to the burner through a counterflow heat exchanger where the air is preheated by the exhaust from the burner. The unit is air cooled and designed to produce approximately 100 Watts of electric power.

  19. Waste heat recovery at the glass industry with the intervention of batch and cullet preheating

    Directory of Open Access Journals (Sweden)

    Dolianitis Ioannis

    2016-01-01

    Full Text Available A promising option to reduce the specific energy consumption and CO2 emissions at a conventional natural gas fired container glass furnace deals with the advanced utilization of the exhaust gases downstream the air regenerators by means of batch and cullet preheating. A 3-dimensional computational model that simulates this process using mass and heat transfer equations inside a preheater has been developed. A case study for an efficient small-sized container glass furnace is presented dealing with the investigation of the impact of different operating and design configurations on specific energy consumption, CO2 emissions, flue gas energy recovery, batch temperature and preheater efficiency. In specific, the effect of various parameters is studied, including the preheater’s dimensions, flue gas temperature, batch moisture content, glass pull, combustion air excess and cullet fraction. Expected energy savings margin is estimated to 12-15%.

  20. New heating plant for the Wartburg: Exciting task. Neue Heizanlage fuer die Wartburg: Aufregende Aufgabe

    Energy Technology Data Exchange (ETDEWEB)

    Stens, H

    1991-04-01

    The obsolete boiler plant of the Wartburg with its open fireplaces and self-constructed gas lances has been replaced by a modern gas-firing plant at instigation and sponsorship of the Ruhrgas AG. Due to the location of the castle the replacement of the plant presented a big problem which could only be solved by opening the foundation wall of the castle restaurant, by a working platform hanging in mid-air over a steep slope as well as by using a 7,5 t crane. The new plant consists of two boilers with a capacity of 430 and 850 kW, a modern electronic control system with automatic temperature control, two indirectly heated domestic water heaters, a new distribution system as well as thermostatic valves at the about 350 radiators. (BWI).