WorldWideScience

Sample records for oxygen-limited continuous cultures

  1. Physiology of Aspergillus niger in Oxygen-Limited Continuous Cultures: Influence of Aeration, Carbon Source Concentration and Dilution Rate

    DEFF Research Database (Denmark)

    Diano, Audrey; Peeters, J.; Dynesen, Jens Østergaard

    2009-01-01

    In industrial production of enzymes using the filamentous fungus Aspergilhis niger supply of sufficient oxygen is often a limitation, resulting in the formation of by-products such as polyols. In order to identify the mechanisms behind formation of the different by-products we studied the effect...... of low oxygen availability, at different carbon source concentrations and at different specific growth rates, on the metabolism of A. niger, using continuous cultures. The results show that there is an increase in the production of tricarboxylic acid (TCA) cycle intermediates at low oxygen concentrations...

  2. Effects of oxygen limitation on sugar metabolism in yeasts: a continuous-culture study of the Kluyver effect.

    Science.gov (United States)

    Weusthuis, R A; Visser, W; Pronk, J T; Scheffers, W A; van Dijken, J P

    1994-04-01

    Growth and metabolite formation were studied in oxygen-limited chemostat cultures of Saccharomyces cerevisiae CBS 8066 and Candida utilis CBS 621 growing on glucose or maltose at a dilution rate of 0.1 h-1. With either glucose or maltose S. cerevisiae could be grown under dual limitation of oxygen and sugar. Respiration and alcoholic fermentation occurred simultaneously and the catabolite fluxes through these processes were dependent on the magnitude of the oxygen feed. C. utilis could also be grown under dual limitation of glucose and oxygen. However, at very low oxygen feed rates (i.e. below 4 mmol l-1 h-1) growth was limited by oxygen only, as indicated by the high residual glucose concentration in the culture. In contrast to S. cerevisiae, C. utilis could not be grown anaerobically at a dilution rate of 0.1 h-1. With C. utilis absence of oxygen resulted in wash-out, despite the presence of ergosterol and Tween-80 in the growth medium. The behaviour of C. utilis with respect to maltose utilization in oxygen-limited cultures was remarkable: alcoholic fermentation did not occur and the amount of maltose metabolized was dependent on the oxygen supply. Oxygen-limited cultures of C. utilis growing on maltose always contained high residual sugar concentrations. These observations throw new light on the so-called Kluyver effect. Apparently, maltose is a non-fermentable sugar for C. utilis CBS 621, despite the fact that it can serve as a substrate for growth of this facultatively fermentative yeast. This is not due to the absence of key enzymes of alcoholic fermentation. Pyruvate decarboxylase and alcohol dehydrogenase were present at high levels in maltose-utilizing cells of C. utilis grown under oxygen limitation. It is concluded that the Kluyver effect, in C. utilis growing on maltose, results from a regulatory mechanism that prevents the sugar from being fermented. Oxygen is not a key factor in this phenomenon since under oxygen limitation alcoholic fermentation of

  3. Batch culture of Azotobacter vinelandii under oxygen limitation conditionS

    Energy Technology Data Exchange (ETDEWEB)

    Camacho Rubio, F.; Martinez Nieto, L.; Fernandez Serrano, M.; Jimenez Moleon, M.C. [Departamento de Ingenieria Quimica, Universidad de Granada, Granada (Spain)

    1996-12-01

    The batch culture of Azotobacter vinealandii on glucose under nitrogen-fixing conditions, seeking oxygen limitation conditions, has been studied in order to use it as a Biological Test System for the experimental study of oxygen transfer enhancement methods in aerobic fermenters. overall kinetic parameters for exponential growth and for linear growth (under oxygen limitation) have been determined. It was noted an appreciable influence of the oxygen transfer rate on glucose and oxygen uptake, which seems to be due to alginate production, excreted as a nitrogenase protection mechanisms. (Author) 12 refs.

  4. Oxygen transfer rate during the production of alginate by Azotobacter vinelandii under oxygen-limited and non oxygen-limited conditions

    Directory of Open Access Journals (Sweden)

    Peña Carlos F

    2011-02-01

    Full Text Available Abstract Background The oxygen transfer rate (OTR and dissolved oxygen tension (DOT play an important role in determining alginate production and its composition; however, no systematic study has been reported about the independent influence of the OTR and DOT. In this paper, we report a study about alginate production and the evolution of the molecular mass of the polymer produced by a wild-type A. vinelandii strain ATCC 9046, in terms of the maximum oxygen transfer rate (OTRmax in cultures where the dissolved oxygen tension (DOT was kept constant. Results The results revealed that in the two dissolved oxygen conditions evaluated, strictly controlled by gas blending at 0.5 and 5% DOT, an increase in the agitation rate (from 300 to 700 rpm caused a significant increase in the OTRmax (from 17 to 100 mmol L-1 h-1 for DOT of 5% and from 6 to 70 mmol L-1 h-1 for DOT of 0.5%. This increase in the OTRmax improved alginate production, as well as the specific alginate production rate (SAPR, reaching a maximal alginate concentration of 3.1 g L-1 and a SAPR of 0.031 g alg g biom-1 h-1 in the cultures at OTRmax of 100 mmol L-1 h-1. In contrast, the mean molecular mass (MMM of the alginate isolated from cultures developed under non-oxygen limited conditions increased by decreasing the OTRmax, reaching a maximal of 550 kDa at an OTRmax of 17 mmol L-1 h-1 . However, in the cultures developed under oxygen limitation (0.5% DOT, the MMM of the polymer was practically the same (around 200 kDa at 300 and 700 rpm, and this remained constant throughout the cultivation. Conclusions Overall, our results showed that under oxygen-limited and non oxygen-limited conditions, alginate production and its molecular mass are linked to the OTRmax, independently of the DOT of the culture.

  5. Syntrophic growth of sulfate-reducing bacteria and colorless sulfur bacteria during oxygen limitation

    NARCIS (Netherlands)

    vandenEnde, FP; Meier, J; vanGemerden, H

    Stable co-cultures of the sulfate-reducing bacterium Desulfovibrio desulfuricans PA2805 and the colorless sulfur bacterium Thiobacillus thioparus T5 were obtained in continuous cultures supplied with limiting amounts of lactate and oxygen while sulfate was present in excess. Neither species could

  6. Implementing oxygen control in chip-based cell and tissue culture systems.

    Science.gov (United States)

    Oomen, Pieter E; Skolimowski, Maciej D; Verpoorte, Elisabeth

    2016-09-21

    Oxygen is essential in the energy metabolism of cells, as well as being an important regulatory parameter influencing cell differentiation and function. Interest in precise oxygen control for in vitro cultures of tissues and cells continues to grow, especially with the emergence of the organ-on-a-chip and the desire to emulate in vivo conditions. This was recently discussed in this journal in a Critical Review by Brennan et al. (Lab Chip (2014). DOI: ). Microfluidics can be used to introduce flow to facilitate nutrient supply to and waste removal from in vitro culture systems. Well-defined oxygen gradients can also be established. However, cells can quickly alter the oxygen balance in their vicinity. In this Tutorial Review, we expand on the Brennan paper to focus on the implementation of oxygen analysis in these systems to achieve continuous monitoring. Both electrochemical and optical approaches for the integration of oxygen monitoring in microfluidic tissue and cell culture systems will be discussed. Differences in oxygen requirements from one organ to the next are a challenging problem, as oxygen delivery is limited by its uptake into medium. Hence, we discuss the factors determining oxygen concentrations in solutions and consider the possible use of artificial oxygen carriers to increase dissolved oxygen concentrations. The selection of device material for applications requiring precise oxygen control is discussed in detail, focusing on oxygen permeability. Lastly, a variety of devices is presented, showing the diversity of approaches that can be employed to control and monitor oxygen concentrations in in vitro experiments.

  7. Intra-particle oxygen diffusion limitation in solid-state fermentation

    NARCIS (Netherlands)

    Oostra, J.; Comte, le E.P.; Heuvel, van den J.C.; Tramper, J.; Rinzema, A.

    2001-01-01

    Oxygen limitation in solid-state fermentation (SSF) has been the topic of modeling studies, but thus far, there has been no experimental elucidation on oxygen-transfer limitation at the particle level. Therefore, intra-particle oxygen transfer was experimentally studied in cultures of Rhizopus

  8. Oxygen Partial Pressure Is a Rate-Limiting Parameter for Cell Proliferation in 3D Spheroids Grown in Physioxic Culture Condition.

    Science.gov (United States)

    Gomes, Aurélie; Guillaume, Ludivine; Grimes, David Robert; Fehrenbach, Jérôme; Lobjois, Valérie; Ducommun, Bernard

    2016-01-01

    The in situ oxygen partial pressure in normal and tumor tissues is in the range of a few percent. Therefore, when studying cell growth in 3D culture systems, it is essential to consider how the physiological oxygen concentration, rather than the one in the ambient air, influences the proliferation parameters. Here, we investigated the effect of reducing oxygen partial pressure from 21% to 5% on cell proliferation rate and regionalization in a 3D tumor spheroid model. We found that 5% oxygen concentration strongly inhibited spheroid growth, changed the proliferation gradient and reduced the 50% In Depth Proliferation index (IDP50), compared with culture at 21% oxygen. We then modeled the oxygen partial pressure profiles using the experimental data generated by culturing spheroids in physioxic and normoxic conditions. Although hypoxia occurred at similar depth in spheroids grown in the two conditions, oxygen partial pressure was a major rate-limiting factor with a critical effect on cell proliferation rate and regionalization only in spheroids grown in physioxic condition and not in spheroids grown at atmospheric normoxia. Our findings strengthen the need to consider conducting experiment in physioxic conditions (i.e., tissue normoxia) for proper understanding of cancer cell biology and the evaluation of anticancer drugs in 3D culture systems.

  9. Evaluation of gene expression and alginate production in response to oxygen transfer in continuous culture of Azotobacter vinelandii.

    Directory of Open Access Journals (Sweden)

    Alvaro Díaz-Barrera

    Full Text Available Alginates are polysaccharides used as food additives and encapsulation agents in biotechnology, and their functional properties depend on its molecular weight. In this study, different steady-states in continuous cultures of A. vinelandii were established to determine the effect of the dilution rate (D and the agitation rate on alginate production and expression of genes involved in alginate polymerization and depolymerization. Both, the agitation and dilution rates, determined the partitioning of the carbon utilization from sucrose into alginate and CO2 under oxygen-limiting conditions. A low D (0.07 h(-1 and 500 rpm resulted in the highest carbon utilization into alginate (25%. Quantitative real-time polymerase chain reaction was used to determine the transcription level of six genes involved in alginate polymerization and depolymerization. In chemostat cultures at 0.07 h(-1, the gene expression was affected by changes in the agitation rate. By increasing the agitation rate from 400 to 600 rpm, the algE7 gene expression decreased tenfold, whereas alyA1, algL and alyA2 gene expression increased between 1.5 and 2.8 times under similar conditions evaluated. Chemostat at 0.07 h(-1 showed a highest alginate molecular weight (580 kDa at 500 rpm whereas similar molecular weights (480 kDa were obtained at 400 and 600 rpm. The highest molecular weight was not explained by changes in the expression of alg8 and alg44 (genes involved in alginate polymerization. Nonetheless, a different expression pattern observed for lyases could explain the highest alginate molecular weight obtained. Overall, the results suggest that the control of alginate molecular weight in A. vinelandii cells growing in continuous mode is determined by a balance between the gene expression of intracellular and extracellular lyases in response to oxygen availability. These findings better our understanding of the biosynthesis of bacterial alginate and help us progress toward obtain

  10. Pericellular oxygen monitoring with integrated sensor chips for reproducible cell culture experiments.

    Science.gov (United States)

    Kieninger, J; Aravindalochanan, K; Sandvik, J A; Pettersen, E O; Urban, G A

    2014-04-01

    Here we present an application, in two tumour cell lines, based on the Sensing Cell Culture Flask system as a cell culture monitoring tool for pericellular oxygen sensing. T-47D (human breast cancer) and T98G (human brain cancer) cells were cultured either in atmospheric air or in a glove-box set at 4% oxygen, in both cases with 5% CO2 in the gas phase. Pericellular oxygen tension was measured with the help of an integrated sensor chip comprising oxygen sensor arrays. Obtained results illustrate variation of pericellular oxygen tension in attached cells covered by stagnant medium. Independent of incubation conditions, low pericellular oxygen concentration levels, usually associated with hypoxia, were found in dense cell cultures. Respiration alone brought pericellular oxygen concentration down to levels which could activate hypoxia-sensing regulatory processes in cultures believed to be aerobic. Cells in culture believed to experience conditions of mild hypoxia may, in reality, experience severe hypoxia. This would lead to incorrect assumptions and suggests that pericellular oxygen concentration readings are of great importance to obtain reproducible results when dealing with hypoxic and normoxic (aerobic) incubation conditions. The Sensing Cell Culture Flask system allows continuous monitoring of pericellular oxygen concentration with outstanding long-term stability and no need for recalibration during cell culture experiments. The sensor is integrated into the flask bottom, thus in direct contact with attached cells. No additional equipment needs to be inserted into the flask during culturing. Transparency of the electrochemical sensor chip allows optical inspection of cells attached on top of the sensor. © 2014 John Wiley & Sons Ltd.

  11. Nitrite accumulation from simultaneous free-ammonia and free-nitrous-acid inhibition and oxygen limitation in a continuous-flow biofilm reactor.

    Science.gov (United States)

    Park, Seongjun; Chung, Jinwook; Rittmann, Bruce E; Bae, Wookeun

    2015-01-01

    To achieve nitrite accumulation for shortcut biological nitrogen removal (SBNR) in a biofilm process, we explored the simultaneous effects of oxygen limitation and free ammonia (FA) and free nitrous acid (FNA) inhibition in the nitrifying biofilm. We used the multi-species nitrifying biofilm model (MSNBM) to identify conditions that should or should not lead to nitrite accumulation, and evaluated the effectiveness of those conditions with experiments in continuous flow biofilm reactors (CFBRs). CFBR experiments were organized into four sets with these expected outcomes based on the MSNBM as follows: (i) Control, giving full nitrification; (ii) oxygen limitation, giving modest long-term nitrite build up; (iii) FA inhibition, giving no long-term nitrite accumulation; and (iv) FA inhibition plus oxygen limitation, giving major long-term nitrite accumulation. Consistent with MSNBM predictions, the experimental results showed that nitrite accumulated in sets 2-4 in the short term, but long-term nitrite accumulation was maintained only in sets 2 and 4, which involved oxygen limitation. Furthermore, nitrite accumulation was substantially greater in set 4, which also included FA inhibition. However, FA inhibition (and accompanying FNA inhibition) alone in set 3 did not maintained long-term nitrite accumulation. Nitrite-oxidizing bacteria (NOB) activity batch tests confirmed that little NOB or only a small fraction of NOB were present in the biofilms for sets 4 and 2, respectively. The experimental data supported the previous modeling results that nitrite accumulation could be achieved with a lower ammonium concentration than had been required for a suspended-growth process. Additional findings were that the biofilm exposed to low dissolved oxygen (DO) limitation and FA inhibition was substantially denser and probably had a lower detachment rate. © 2014 Wiley Periodicals, Inc.

  12. Microchemostat - microbial continuous culture in a polymer-based, instrumented microbioreactor

    DEFF Research Database (Denmark)

    Zhang, Z.; Bocazzi, P.; Choi, H. G.

    2006-01-01

    -based microbioreactor system integrated with optical density (OD), pH, and dissolved oxygen (DO) real-time measurements for continuous cultivation of microbial cells. Escherichia coli (E. coli) cells are continuously cultured in a 150 mL, membrane-aerated, well-mixed microbioreactor fed by a pressure-driven flow......In a chemostat, microbial cells reach a steady state condition at which cell biomass production, substrates and the product concentrations remain constant. These features make continuous culture a unique and powerful tool for biological and physiological research. We present a polymer...

  13. Oxygen Limited Bioreactors System For Nitrogen Removal Using Immobilized Mix Culture

    Science.gov (United States)

    Pathak, B. K.; Sumino, T.; Saiki, Y.; Kazama, F.

    2005-12-01

    Recently nutrients concentrations especially nitrogen in natural water is alarming in the world wide. Most of the effort is being done on the removal of high concentration of nitrogen especially from the wastewater treatment plants. The removal efficiency is targeted in all considering the effluent discharge standard set by the national environment agency. In many cases, it does not meet the required standard and receiving water is being polluted. Eutrophication in natural water bodies has been reported even if the nitrogen concentration is low and self purification of natural systems itself is not sufficient to remove the nitrogen due to complex phenomenon. In order to recover the pristine water environment, it is very essential to explore bioreactor systems for natural water systems using immobilized mix culture. Microorganism were entrapped in Polyethylene glycol (PEG) prepolymer gel and cut into 3mm cubic immobilized pellets. Four laboratory scale micro bio-reactors having 0.1 L volumes were packed with immobilized pellets with 50% compact ratio. RUN1, RUN2, RUN3 and RUN4 were packed with immobilized pellets from reservoirs sediments, activated sludge (AS), mixed of AS, AG and biodegradable plastic and anaerobic granules (AG) respectively. Water from Shiokawa Reservoirs was feed to all reactors with supplemental ammonia and nitrite nitrogen as specified in the results and discussions. The reactors were operated dark incubated room in continuous flow mode with hydraulic retention time of 12 hours under oxygen limiting condition. Ammonium, nitrate nitrite nitrogen and total organic carbon (TOC) concentrations were measured as described in APWA and AWWA (1998). Laboratory scale four bioreactors containing different combination of immobilized cell were monitored for 218 days. Influent NH4+-N and NO2--N concentration were 2.27±0.43 and 2.05±0.41 mg/l respectively. Average dissolved oxygen concentration and pH in the reactors were 0.40-2.5 mg/l and pH 6

  14. Oxygen response of the wine yeast Saccharomyces cerevisiae EC1118 grown under carbon-sufficient, nitrogen-limited enological conditions.

    Science.gov (United States)

    Aceituno, Felipe F; Orellana, Marcelo; Torres, Jorge; Mendoza, Sebastián; Slater, Alex W; Melo, Francisco; Agosin, Eduardo

    2012-12-01

    Discrete additions of oxygen play a critical role in alcoholic fermentation. However, few studies have quantitated the fate of dissolved oxygen and its impact on wine yeast cell physiology under enological conditions. We simulated the range of dissolved oxygen concentrations that occur after a pump-over during the winemaking process by sparging nitrogen-limited continuous cultures with oxygen-nitrogen gaseous mixtures. When the dissolved oxygen concentration increased from 1.2 to 2.7 μM, yeast cells changed from a fully fermentative to a mixed respirofermentative metabolism. This transition is characterized by a switch in the operation of the tricarboxylic acid cycle (TCA) and an activation of NADH shuttling from the cytosol to mitochondria. Nevertheless, fermentative ethanol production remained the major cytosolic NADH sink under all oxygen conditions, suggesting that the limitation of mitochondrial NADH reoxidation is the major cause of the Crabtree effect. This is reinforced by the induction of several key respiratory genes by oxygen, despite the high sugar concentration, indicating that oxygen overrides glucose repression. Genes associated with other processes, such as proline uptake, cell wall remodeling, and oxidative stress, were also significantly affected by oxygen. The results of this study indicate that respiration is responsible for a substantial part of the oxygen response in yeast cells during alcoholic fermentation. This information will facilitate the development of temporal oxygen addition strategies to optimize yeast performance in industrial fermentations.

  15. Optical biosensor optimized for continuous in-line glucose monitoring in animal cell culture.

    Science.gov (United States)

    Tric, Mircea; Lederle, Mario; Neuner, Lisa; Dolgowjasow, Igor; Wiedemann, Philipp; Wölfl, Stefan; Werner, Tobias

    2017-09-01

    Biosensors for continuous glucose monitoring in bioreactors could provide a valuable tool for optimizing culture conditions in biotechnological applications. We have developed an optical biosensor for long-term continuous glucose monitoring and demonstrated a tight glucose level control during cell culture in disposable bioreactors. The in-line sensor is based on a commercially available oxygen sensor that is coated with cross-linked glucose oxidase (GOD). The dynamic range of the sensor was tuned by a hydrophilic perforated diffusion membrane with an optimized permeability for glucose and oxygen. The biosensor was thoroughly characterized by experimental data and numerical simulations, which enabled insights into the internal concentration profile of the deactivating by-product hydrogen peroxide. The simulations were carried out with a one-dimensional biosensor model and revealed that, in addition to the internal hydrogen peroxide concentration, the turnover rate of the enzyme GOD plays a crucial role for biosensor stability. In the light of this finding, the glucose sensor was optimized to reach a long functional stability (>52 days) under continuous glucose monitoring conditions with a dynamic range of 0-20 mM and a response time of t 90  ≤ 10 min. In addition, we demonstrated that the sensor was sterilizable with beta and UV irradiation and only subjected to minor cross sensitivity to oxygen, when an oxygen reference sensor was applied. Graphical abstract Measuring setup of a glucose biosensor in a shake flask for continuous glucose monitoring in mammalian cell culture.

  16. A microfluidic cell culture array with various oxygen tensions.

    Science.gov (United States)

    Peng, Chien-Chung; Liao, Wei-Hao; Chen, Ying-Hua; Wu, Chueh-Yu; Tung, Yi-Chung

    2013-08-21

    Oxygen tension plays an important role in regulating various cellular functions in both normal physiology and disease states. Therefore, drug testing using conventional in vitro cell models under normoxia often possesses limited prediction capability. A traditional method of setting an oxygen tension in a liquid medium is by saturating it with a gas mixture at the desired level of oxygen, which requires bulky gas cylinders, sophisticated control, and tedious interconnections. Moreover, only a single oxygen tension can be tested at the same time. In this paper, we develop a microfluidic cell culture array platform capable of performing cell culture and drug testing under various oxygen tensions simultaneously. The device is fabricated using an elastomeric material, polydimethylsiloxane (PDMS) and the well-developed multi-layer soft lithography (MSL) technique. The prototype device has 4 × 4 wells, arranged in the same dimensions as a conventional 96-well plate, for cell culture. The oxygen tensions are controlled by spatially confined oxygen scavenging chemical reactions underneath the wells using microfluidics. The platform takes advantage of microfluidic phenomena while exhibiting the combinatorial diversities achieved by microarrays. Importantly, the platform is compatible with existing cell incubators and high-throughput instruments (liquid handling systems and plate readers) for cost-effective setup and straightforward operation. Utilizing the developed platform, we successfully perform drug testing using an anti-cancer drug, triapazamine (TPZ), on adenocarcinomic human alveolar basal epithelial cell line (A549) under three oxygen tensions ranging from 1.4% to normoxia. The developed platform is promising to provide a more meaningful in vitro cell model for various biomedical applications while maintaining desired high throughput capabilities.

  17. Dissolved oxygen concentration in the medium during cell culture: Defects and improvements.

    Science.gov (United States)

    Zhang, Kuan; Zhao, Tong; Huang, Xin; He, Yunlin; Zhou, Yanzhao; Wu, Liying; Wu, Kuiwu; Fan, Ming; Zhu, Lingling

    2016-03-01

    In vitro cell culture has provided a useful model to study the effects of oxygen on cellular behavior. However, it remains unknown whether the in vitro operations themselves affect the medium oxygen levels and the living states of cells. In addition, a prevailing controversy is whether reactive oxygen species (ROS) production is induced by continuous hypoxia or reoxygenation. In this study, we have measured the effects of different types of cell culture containers and the oxygen environment where medium replacement takes place on the actual oxygen tension in the medium. We found that the deviations of oxygen concentrations in the medium are much greater in 25-cm(2) flasks than in 24-well plates and 35-mm dishes. The dissolved oxygen concentrations in the medium were increased after medium replacement in normoxia, but remained unchanged in glove boxes in which the oxygen tension remained at a low level (11.4, 5.7, and 0.5% O2 ). We also found that medium replacement in normoxia increased the number of ROS-positive cells and reduced the cell viability; meanwhile, medium replacement in a glove box did not produce the above effects. Therefore, we conclude that the use of 25-cm(2) flasks should be avoided and demonstrate that continuous hypoxia does not produce ROS, whereas the reoxygenation that occurs during the harvesting of cells leads to ROS and induces cell death. © 2015 International Federation for Cell Biology.

  18. Competition of a parathion-hydrolyzing Flavobacterium with bacteria from ditch water in carbon-, nitrate- and phosphate-limited continuous cultures

    NARCIS (Netherlands)

    Sprenger, W.; Dijkstra, A.; Zwart, G.; Van Agterveld, M.P.; Van Noort, P.C.M.; Parsons, J.R.

    2003-01-01

    The effect of competition for macroelements with bacteria from ditch water on the parathion-hydrolyzing Flavobacterium sp. ATCC 27551 (FB) was investigated within mixed continuous cultures under carbon-, nitrate- or phosphate-limited conditions. The high initial rate of parathion hydrolysis

  19. Oxygen Response of the Wine Yeast Saccharomyces cerevisiae EC1118 Grown under Carbon-Sufficient, Nitrogen-Limited Enological Conditions

    Science.gov (United States)

    Aceituno, Felipe F.; Orellana, Marcelo; Torres, Jorge; Mendoza, Sebastián; Slater, Alex W.; Melo, Francisco

    2012-01-01

    Discrete additions of oxygen play a critical role in alcoholic fermentation. However, few studies have quantitated the fate of dissolved oxygen and its impact on wine yeast cell physiology under enological conditions. We simulated the range of dissolved oxygen concentrations that occur after a pump-over during the winemaking process by sparging nitrogen-limited continuous cultures with oxygen-nitrogen gaseous mixtures. When the dissolved oxygen concentration increased from 1.2 to 2.7 μM, yeast cells changed from a fully fermentative to a mixed respirofermentative metabolism. This transition is characterized by a switch in the operation of the tricarboxylic acid cycle (TCA) and an activation of NADH shuttling from the cytosol to mitochondria. Nevertheless, fermentative ethanol production remained the major cytosolic NADH sink under all oxygen conditions, suggesting that the limitation of mitochondrial NADH reoxidation is the major cause of the Crabtree effect. This is reinforced by the induction of several key respiratory genes by oxygen, despite the high sugar concentration, indicating that oxygen overrides glucose repression. Genes associated with other processes, such as proline uptake, cell wall remodeling, and oxidative stress, were also significantly affected by oxygen. The results of this study indicate that respiration is responsible for a substantial part of the oxygen response in yeast cells during alcoholic fermentation. This information will facilitate the development of temporal oxygen addition strategies to optimize yeast performance in industrial fermentations. PMID:23001663

  20. Spatially monitoring oxygen level in 3D microfabricated cell culture systems using optical oxygen sensing beads.

    Science.gov (United States)

    Wang, Lin; Acosta, Miguel A; Leach, Jennie B; Carrier, Rebecca L

    2013-04-21

    Capability of measuring and monitoring local oxygen concentration at the single cell level (tens of microns scale) is often desirable but difficult to achieve in cell culture. In this study, biocompatible oxygen sensing beads were prepared and tested for their potential for real-time monitoring and mapping of local oxygen concentration in 3D micro-patterned cell culture systems. Each oxygen sensing bead is composed of a silica core loaded with both an oxygen sensitive Ru(Ph2phen3)Cl2 dye and oxygen insensitive Nile blue reference dye, and a poly-dimethylsiloxane (PDMS) shell rendering biocompatibility. Human intestinal epithelial Caco-2 cells were cultivated on a series of PDMS and type I collagen based substrates patterned with micro-well arrays for 3 or 7 days, and then brought into contact with oxygen sensing beads. Using an image analysis algorithm to convert florescence intensity of beads to partial oxygen pressure in the culture system, tens of microns-size oxygen sensing beads enabled the spatial measurement of local oxygen concentration in the microfabricated system. Results generally indicated lower oxygen level inside wells than on top of wells, and local oxygen level dependence on structural features of cell culture surfaces. Interestingly, chemical composition of cell culture substrates also appeared to affect oxygen level, with type-I collagen based cell culture systems having lower oxygen concentration compared to PDMS based cell culture systems. In general, results suggest that oxygen sensing beads can be utilized to achieve real-time and local monitoring of micro-environment oxygen level in 3D microfabricated cell culture systems.

  1. Kinetics of phosphate uptake, growth, and accumulation of cyclic diphosphoglycerate in a phosphate-limited continuous culture of Methanobacterium thermoautotrophicum.

    OpenAIRE

    Krueger, R D; Harper, S H; Campbell, J W; Fahrney, D E

    1986-01-01

    The archaebacterium Methanobacterium thermoautotrophicum was grown in continuous culture at 65 degrees C in a phosphate-limited medium at specific growth rates from 0.06 to 0.28 h-1 (maximum growth rate [mu max] = 0.36 h-1). Cyclic-2,3-diphosphoglycerate (cyclic DPG) levels ranged from 2 to 20 mM in Pi-limited cells, compared with about 30 mM in batch-grown cells. The Monod constant for Pi-limited growth was 5 nM. Pi uptake rates were determined by following the disappearance of 32Pi from the...

  2. A microfluidic-based lid device for conventional cell culture dishes to automatically control oxygen level.

    Science.gov (United States)

    Lee, Seung Yeob; Yang, Sung

    2018-04-25

    Most conventional hypoxic cell culture systems undergo reoxygenation during experimental manipulations, resulting in undesirable effects including the reduction of cell viability. A lid device was developed herein for conventional cell culture dishes to resolve this limitation. The integration of multilayered microfluidic channels inside a thin membrane was designed to prevent the reoxygenation caused by reagent infusion and automatically control the oxygen level. The experimental data clearly show the reducibility of the dissolved oxygen in the infusing reagent and the controllability of the oxygen level inside the dish. The feasibility of the device for hypoxia studies was confirmed by HIF-1α experiments. Therefore, the device could be used as a compact and convenient hypoxic cell culture system to prevent reoxygenation-related issues.

  3. Metabolic and transcriptomic response of the wine yeast Saccharomyces cerevisiae strain EC1118 after an oxygen impulse under carbon-sufficient, nitrogen-limited fermentative conditions.

    Science.gov (United States)

    Orellana, Marcelo; Aceituno, Felipe F; Slater, Alex W; Almonacid, Leonardo I; Melo, Francisco; Agosin, Eduardo

    2014-05-01

    During alcoholic fermentation, Saccharomyces cerevisiae is exposed to continuously changing environmental conditions, such as decreasing sugar and increasing ethanol concentrations. Oxygen, a critical nutrient to avoid stuck and sluggish fermentations, is only discretely available throughout the process after pump-over operation. In this work, we studied the physiological response of the wine yeast S. cerevisiae strain EC1118 to a sudden increase in dissolved oxygen, simulating pump-over operation. With this aim, an impulse of dissolved oxygen was added to carbon-sufficient, nitrogen-limited anaerobic continuous cultures. Results showed that genes related to mitochondrial respiration, ergosterol biosynthesis, and oxidative stress, among other metabolic pathways, were induced after the oxygen impulse. On the other hand, mannoprotein coding genes were repressed. The changes in the expression of these genes are coordinated responses that share common elements at the level of transcriptional regulation. Beneficial and detrimental effects of these physiological processes on wine quality highlight the dual role of oxygen in 'making or breaking wines'. These findings will facilitate the development of oxygen addition strategies to optimize yeast performance in industrial fermentations. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  4. The continuous inhalation of oxygen-15 for assessing regional oxygen extraction in the brain of man

    International Nuclear Information System (INIS)

    Jones, T.; Chesler, D.A.; Ter-Pogossian, M.M.

    1976-01-01

    A non-invasive steady-state method for studying the regional accumulation of oxygen in the brain by continuously inhaling oxygen-15 has been investigated. Oxygen respiration by tissue results in the formation of water of metabolism which may be considered as the 'exhaust product' of respiration. In turn the steady-state distribution of this product may be related to that of oxygen utilization. It has been found in monkeys than an appreciable component of the signal, recorded over the head during the inhalation of 15 O 2 , was attributable to the local production of 15 O-labelled water of metabolism. In man the distribution of radioactivity recorded over the head during 15 O 2 inhalation clearly related to active cerebal tissue. Theoretically the respiration product is linearly dependent on the oxygen extraction ratio of the tissue, and at normal cerebal perfusion it is less sensitive to changes in blood flow. At low rates of perfusion a more linear dependence on flow is shown. The dual dependence on blood flow and oxygen extraction limited the interpretation of the cerebal distribution obtained with this technique. Means for obtaining more definitive measurements with this approach are discussed. (author)

  5. Oxygen and tissue culture affect placental gene expression.

    Science.gov (United States)

    Brew, O; Sullivan, M H F

    2017-07-01

    Placental explant culture is an important model for studying placental development and functions. We investigated the differences in placental gene expression in response to tissue culture, atmospheric and physiologic oxygen concentrations. Placental explants were collected from normal term (38-39 weeks of gestation) placentae with no previous uterine contractile activity. Placental transcriptomic expressions were evaluated with GeneChip ® Human Genome U133 Plus 2.0 arrays (Affymetrix). We uncovered sub-sets of genes that regulate response to stress, induction of apoptosis programmed cell death, mis-regulation of cell growth, proliferation, cell morphogenesis, tissue viability, and protection from apoptosis in cultured placental explants. We also identified a sub-set of genes with highly unstable pattern of expression after exposure to tissue culture. Tissue culture irrespective of oxygen concentration induced dichotomous increase in significant gene expression and increased enrichment of significant pathways and transcription factor targets (TFTs) including HIF1A. The effect was exacerbated by culture at atmospheric oxygen concentration, where further up-regulation of TFTs including PPARA, CEBPD, HOXA9 and down-regulated TFTs such as JUND/FOS suggest intrinsic heightened key biological and metabolic mechanisms such as glucose use, lipid biosynthesis, protein metabolism; apoptosis, inflammatory responses; and diminished trophoblast proliferation, differentiation, invasion, regeneration, and viability. These findings demonstrate that gene expression patterns differ between pre-culture and cultured explants, and the gene expression of explants cultured at atmospheric oxygen concentration favours stressed, pro-inflammatory and increased apoptotic transcriptomic response. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Spatially monitoring oxygen level in 3D microfabricated cell culture systems using optical oxygen sensing beads

    OpenAIRE

    Wang, Lin; Acosta, Miguel A.; Leach, Jennie B.; Carrier, Rebecca L.

    2013-01-01

    Capability of measuring and monitoring local oxygen concentration at the single cell level (tens of microns scale) is often desirable but difficult to achieve in cell culture. In this study, biocompatible oxygen sensing beads were prepared and tested for their potential for real-time monitoring and mapping of local oxygen concentration in 3D micro-patterned cell culture systems. Each oxygen sensing bead is composed of a silica core loaded with both an oxygen sensitive Ru(Ph2phen3)Cl2 dye and ...

  7. Is oxygen availability a limiting factor for in vitro folliculogenesis?

    Directory of Open Access Journals (Sweden)

    Riccardo Talevi

    Full Text Available Transplantation of ovarian tissue for the preservation of fertility in oncological patients is becoming an accepted clinical practice. However, the risk of re-introducing tumour cells at transplantation has stirred an increased interest for complete in vitro folliculogenesis. This has not yet been achieved in humans possibly for the lack of knowledge on the environmental milieu that orchestrates folliculogenesis in vivo. The main aim of this study was to investigate the effect of oxygen availability on follicle health and growth during in vitro culture of ovarian tissue strips. To this end, a model was developed to predict the dissolved oxygen concentration in tissue under varying culture conditions. Ovarian cortical strips of bovine, adopted as an animal model, and human tissue were cultured in conventional (CD and gas permeable (PD dishes under different media column heights and gaseous oxygen tensions for 3, 6 and 9 days. Follicle quality, activation of primordial follicles to the primary stage, and progression to the secondary stage were analysed through histology. Follicle viability was assessed through a live-dead assay at the confocal scanning laser microscope. Findings showed a higher follicle quality and viability after culture of bovine ovarian strips in PD in adequate medium height and oxygen tensions. The best culture conditions found in the bovine were adopted for human ovarian strip culture and promoted a higher follicle quality, viability and progression. Overall, data demonstrated that modulation of oxygen availability in tissue plays a key role in maintaining follicles' health and their ability to survive and progress to the secondary stage during ovarian tissue in vitro culture. Such culture conditions could increase the yield of healthy secondary follicles for subsequent dissection and individual culture to obtain competent oocytes.

  8. Continuous culture apparatus and methodology

    International Nuclear Information System (INIS)

    Conway, H.L.

    1975-01-01

    At present, we are investigating the sorption of potentially toxic trace elements by phytoplankton under controlled laboratory conditions. Continuous culture techniques were used to study the mechanism of the sorption of the trace elements by unialgal diatom populations and the factors influencing this sorption. Continuous culture methodology has been used extensively to study bacterial kinetics. It is an excellent technique for obtaining a known physiological state of phytoplankton populations. An automated method for the synthesis of continuous culture medium for use in these experiments is described

  9. Can Oxygen Set Thermal Limits in an Insect and Drive Gigantism?

    Science.gov (United States)

    Verberk, Wilco C. E. P.; Bilton, David T.

    2011-01-01

    Background Thermal limits may arise through a mismatch between oxygen supply and demand in a range of animal taxa. Whilst this oxygen limitation hypothesis is supported by data from a range of marine fish and invertebrates, its generality remains contentious. In particular, it is unclear whether oxygen limitation determines thermal extremes in tracheated arthropods, where oxygen limitation may be unlikely due to the efficiency and plasticity of tracheal systems in supplying oxygen directly to metabolically active tissues. Although terrestrial taxa with open tracheal systems may not be prone to oxygen limitation, species may be affected during other life-history stages, particularly if these rely on diffusion into closed tracheal systems. Furthermore, a central role for oxygen limitation in insects is envisaged within a parallel line of research focussing on insect gigantism in the late Palaeozoic. Methodology/Principal Findings Here we examine thermal maxima in the aquatic life stages of an insect at normoxia, hypoxia (14 kPa) and hyperoxia (36 kPa). We demonstrate that upper thermal limits do indeed respond to external oxygen supply in the aquatic life stages of the stonefly Dinocras cephalotes, suggesting that the critical thermal limits of such aquatic larvae are set by oxygen limitation. This could result from impeded oxygen delivery, or limited oxygen regulatory capacity, both of which have implications for our understanding of the limits to insect body size and how these are influenced by atmospheric oxygen levels. Conclusions/Significance These findings extend the generality of the hypothesis of oxygen limitation of thermal tolerance, suggest that oxygen constraints on body size may be stronger in aquatic environments, and that oxygen toxicity may have actively selected for gigantism in the aquatic stages of Carboniferous arthropods. PMID:21818347

  10. Can oxygen set thermal limits in an insect and drive gigantism?

    Directory of Open Access Journals (Sweden)

    Wilco C E P Verberk

    Full Text Available BACKGROUND: Thermal limits may arise through a mismatch between oxygen supply and demand in a range of animal taxa. Whilst this oxygen limitation hypothesis is supported by data from a range of marine fish and invertebrates, its generality remains contentious. In particular, it is unclear whether oxygen limitation determines thermal extremes in tracheated arthropods, where oxygen limitation may be unlikely due to the efficiency and plasticity of tracheal systems in supplying oxygen directly to metabolically active tissues. Although terrestrial taxa with open tracheal systems may not be prone to oxygen limitation, species may be affected during other life-history stages, particularly if these rely on diffusion into closed tracheal systems. Furthermore, a central role for oxygen limitation in insects is envisaged within a parallel line of research focussing on insect gigantism in the late Palaeozoic. METHODOLOGY/PRINCIPAL FINDINGS: Here we examine thermal maxima in the aquatic life stages of an insect at normoxia, hypoxia (14 kPa and hyperoxia (36 kPa. We demonstrate that upper thermal limits do indeed respond to external oxygen supply in the aquatic life stages of the stonefly Dinocras cephalotes, suggesting that the critical thermal limits of such aquatic larvae are set by oxygen limitation. This could result from impeded oxygen delivery, or limited oxygen regulatory capacity, both of which have implications for our understanding of the limits to insect body size and how these are influenced by atmospheric oxygen levels. CONCLUSIONS/SIGNIFICANCE: These findings extend the generality of the hypothesis of oxygen limitation of thermal tolerance, suggest that oxygen constraints on body size may be stronger in aquatic environments, and that oxygen toxicity may have actively selected for gigantism in the aquatic stages of Carboniferous arthropods.

  11. Influence of the adipate and dissolved oxygen concentrations on the beta-lactam production during continuous cultivations of a Penicillium chrysogenum strain expressing the expandase gene from Streptomyces clavuligerus

    DEFF Research Database (Denmark)

    Robin, Jarno Jacky Christian; Bonneau, S.; Schipper, D.

    2003-01-01

    The influence of adipate concentration and dissolved oxygen on production of adipoyl-7-aminodeacetoxycephalosporanic acid (ad-7-ADCA) by a recombinant strain of Penicillium chrysogenum expressing the expandase gene from Streptomyces clavuligerus was studied in glucose-limited continuous cultures....... from 15 to 7%AS, r(p) (total) increased to 25 mumol g DW-1 h(-1), mainly due to a two-fold increase in the adipoyl-6-aminopenicillanic acid (ad-6-APA) specific productivity....

  12. The production and growth characteristics of yeast and mycelial forms of Candida albicans in continuous culture.

    Science.gov (United States)

    Shepherd, M G; Sullivan, P A

    1976-04-01

    The growth characteristics of Candida albicans CM145,348 have been examined under aerobic conditions in continuous culture. At different steady states the environment was controlled with respect to the concentrations of dissolved oxygen, carbon and nitrogen, the pH, and the temperature. Dry matter, substrate concentration, yield, specific oxygen uptake, specific carbon dioxide release and respiration quotient were examined as a function of the dilution rate. The morphology depended on the carbon source. Maltose produced a mycelial morphology, whereas with lactate a yeast culture was obtained. With fructose or glucose as a carbon source a mixed morphology of yeast, pseudo-mycelial and mycelial forms was produced. A larger number of different growth conditions were examined in batch culture but a mixed morphology was always obtained.

  13. Influence of methanol/sorbitol co-feeding rate on pAOX1 induction in a Pichia pastoris Mut+ strain in bioreactor with limited oxygen transfer rate.

    Science.gov (United States)

    Carly, F; Niu, H; Delvigne, F; Fickers, P

    2016-04-01

    High Pichia pastoris biomass density could be obtained using high co-feeding rate of methanol and sorbitol in a fed-batch or continuous culture, while further higher feeding rate finally leads to oxygen limitation in bioreactor. In the literature, there is lack of report about AOX1 promoter regulation with regard to dissolved oxygen level (DO). Therefore, in this work, chemostat cultures were performed to investigate the cell growth, metabolism and regulation of the AOX1 promoter (pAOX1) regarding co-feeding rate of optimized methanol/sorbitol mixture (methanol fraction 0.60 C-mol/C-mol) using a P. pastoris Mut+/pAOX1-lacZ strain. The oxygen transfer rates (OTR) in bioreactor were kept in the range of typical values of large bioreactor, i.e., 4-8 g/(L h) if DO equals 30 % saturation or 5-10 g/(L h) if DO nears zero. For DO >0, an increase of the carbon fed led to an increase of pAOX1 induction. By contrast, when dissolved oxygen was completely depleted, methanol accumulated, causing a 30 % decrease of pAOX1 induction. However, this decrease is more likely to be lined to methanol accumulation than to low level of dissolved oxygen (sorbitol co-feeding allowed cells to adapt to oxygen transient limitations that often occur at industrial scale with reduced effect on pAOX1 induction. The optimal feeding rate tested here was 6.6 mmol C (DCW h)(-1) at an OTR of 8.28 g O2(L h)(-1) with over fivefold pAOX1 induction (probably directly associated with target protein productivity) compared with previous work.

  14. Hydrogen peroxide production is affected by oxygen levels in mammalian cell culture.

    Science.gov (United States)

    Maddalena, Lucas A; Selim, Shehab M; Fonseca, Joao; Messner, Holt; McGowan, Shannon; Stuart, Jeffrey A

    2017-11-04

    Although oxygen levels in the extracellular space of most mammalian tissues are just a few percent, under standard cell culture conditions they are not regulated and are often substantially higher. Some cellular sources of reactive oxygen species, like NADPH oxidase 4, are sensitive to oxygen levels in the range between 'normal' physiological (typically 1-5%) and standard cell culture (up to 18%). Hydrogen peroxide in particular participates in signal transduction pathways via protein redox modifications, so the potential increase in its production under standard cell culture conditions is important to understand. We measured the rates of cellular hydrogen peroxide production in some common cell lines, including C2C12, PC-3, HeLa, SH-SY5Y, MCF-7, and mouse embryonic fibroblasts (MEFs) maintained at 18% or 5% oxygen. In all instances the rate of hydrogen peroxide production by these cells was significantly greater at 18% oxygen than at 5%. The increase in hydrogen peroxide production at higher oxygen levels was either abolished or substantially reduced by treatment with GKT 137831, a selective inhibitor of NADPH oxidase subunits 1 and 4. These data indicate that oxygen levels experienced by cells in culture influence hydrogen peroxide production via NADPH oxidase 1/4, highlighting the importance of regulating oxygen levels in culture near physiological values. However, we measured pericellular oxygen levels adjacent to cell monolayers under a variety of conditions and with different cell lines and found that, particularly when growing at 5% incubator oxygen levels, pericellular oxygen was often lower and variable. Together, these observations indicate the importance, and difficulty, of regulating oxygen levels experienced by cells in culture. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Quantifying oxygen in paper-based cell cultures with luminescent thin film sensors.

    Science.gov (United States)

    Boyce, Matthew W; Kenney, Rachael M; Truong, Andrew S; Lockett, Matthew R

    2016-04-01

    Paper-based scaffolds are an attractive material for generating 3D tissue-like cultures because paper is readily available and does not require specialized equipment to pattern, cut, or use. By controlling the exchange of fresh culture medium with the paper-based scaffolds, we can engineer diffusion-dominated environments similar to those found in spheroids or solid tumors. Oxygen tension directly regulates cellular phenotype and invasiveness through hypoxia-inducible transcription factors and also has chemotactic properties. To date, gradients of oxygen generated in the paper-based cultures have relied on cellular response-based readouts. In this work, we prepared a luminescent thin film capable of quantifying oxygen tensions in apposed cell-containing paper-based scaffolds. The oxygen sensors, which are polystyrene films containing a Pd(II) tetrakis(pentafluorophenyl)porphyrin dye, are photostable, stable in culture conditions, and not cytotoxic. They have a linear response for oxygen tensions ranging from 0 to 160 mmHg O2, and a Stern-Volmer constant (K sv) of 0.239 ± 0.003 mmHg O2 (-1). We used these oxygen-sensing films to measure the spatial and temporal changes in oxygen tension for paper-based cultures containing a breast cancer line that was engineered to constitutively express a fluorescent protein. By acquiring images of the oxygen-sensing film and the fluorescently labeled cells, we were able to approximate the oxygen consumption rates of the cells in our cultures.

  16. Design and development of microbioreactors for long-term cell culture in controlled oxygen microenvironments.

    Science.gov (United States)

    Abaci, Hasan E; Devendra, Raghavendra; Smith, Quinton; Gerecht, Sharon; Drazer, German

    2012-02-01

    The ability to control the oxygen level to which cells are exposed in tissue culture experiments is crucial for many applications. Here, we design, develop and test a microbioreactor (MBR) for long-term cell culture studies with the capability to accurately control and continuously monitor the dissolved oxygen (DO) level in the cell microenvironment. In addition, the DO level can be controlled independently from other cues, such as the viscous shear-stress acting on the cells. We first analyze the transport of oxygen in the proposed device and determine the materials and dimensions that are compatible with uniform oxygen tension and low shear-stress at the cell level. The device is also designed to culture a statistically significant number of cells. We use fully transparent materials and the overall design of the device is compatible with live-cell imaging. The proposed system includes real-time read-out of actual DO levels, is simple to fabricate at low cost, and can be easily expanded to control the concentration of other microenvironmental solutes. We performed control experiments in the absence of cells to demonstrate that the MBR can be used to accurately modulate DO levels ranging from atmospheric level to 1%, both under no flow and perfusion conditions. We also demonstrate cancer cell attachment and viability within the MBR. The proposed MBR offers the unprecedented capability to perform on-line measurement and analysis of DO levels in the microenvironment of adherent cultures and to correlate them with various cellular responses.

  17. Continuous oxygen therapy for hypoxic pulmonary disease

    DEFF Research Database (Denmark)

    Ringbaek, Thomas J

    2005-01-01

    Continuous oxygen therapy (COT) has become widely accepted in the last 20 years in patients with continuous hypoxemia. This review focuses on guidelines for COT, adherence to these guidelines, and the effect of COT on survival, hospitalization, and quality of life. Guidelines for COT are mainly b...... based on three randomized studies where documentation of hypoxemia (P(a)O2...

  18. Oxidative stress under ambient and physiological oxygen tension in tissue culture

    Science.gov (United States)

    Jagannathan, Lakshmanan; Cuddapah, Suresh; Costa, Max

    2016-01-01

    Oxygen (O2) levels range from 2–9% in vivo. However, cell culture experiments are performed at atmospheric O2 levels (21%). Oxidative stress due to generation of reactive oxygen species (ROS) in cells cultured at higher than physiological levels is implicated in multitude of deleterious effects including DNA damage, genomic instability and senescence. In addition, oxidative stress activates redox sensitive transcription factors related to inflammatory signaling and apoptotic signaling. Furthermore, several chromatin-modifying enzymes are affected by ROS, potentially impacting epigenetic regulation of gene expression. While primary cells are cultured at lower O2 levels due to their inability to grow at higher O2, the immortalized cells, which display no such apparent growth difficulties, are typically cultured at 21% O2. This review will provide an overview of issues associated with increased oxygen levels in in vitro cell culture and point out the benefits of using lower levels of oxygen tension even for immortalized cells. PMID:27034917

  19. Limitations of potentiometric oxygen sensors operating at low oxygen levels

    DEFF Research Database (Denmark)

    Lund, Anders; Jacobsen, Torben; Hansen, Karin Vels

    2011-01-01

    The electrochemical processes that limit the range of oxygen partial pressures in which potentiometric oxygen sensors can be used, were analysed using a theoretical and an experimental approach. Electrochemical impedance spectroscopy was performed on porous Pt/yttria stabilised zirconia (YSZ......) electrodes between 10−6 and 0.2 bar and at temperatures between 500 and 950 °C. The flow of oxide ions and electron holes through a sensor cell, with a YSZ electrolyte, were calculated under similar conditions. The oxygen permeation of the sensor cell was insignificant at an oxygen partial pressure of 10......−6 bar for an inlet flow rate higher than 2 L h−1 between 600 and 800 °C. The polarisation resistance measured between 10−6 and 10−4 bar was found to be inversely proportional to the oxygen partial pressure, nearly temperature independent and inversely proportional to the inlet gas flow rate, which shows...

  20. Cisplatin toxicity reduced in human cultured renal tubular cells by oxygen pretreatment.

    Science.gov (United States)

    Kaeidi, Ayat; Rasoulian, Bahram; Hajializadeh, Zahra; Pourkhodadad, Soheila; Rezaei, Maryam

    2013-01-01

    Cisplatin is an effective and widely used chemotherapy agent and its side effects, particularly nephrotoxicity, limit its usage and related platinum-based drugs. Cisplatin nephrotoxicity is mainly due to extremely increase in reactive oxygen species (ROS) generation leading to kidney tubular cell death. Preconditioning with oxidative stress has been demonstrated to stimulate the cellular adaptation to subsequent severe oxidative stress. Short term oxygen pre-exposure as a mild oxidative stress may enhance some endogenous defense mechanisms, so its effect on Cisplatin induced cell death was investigated in present research. We studied the effects of hyperoxic environment pre-exposure on Cisplatin toxicity in an in-vitro model of cultured human embryonic tubular epithelial cells (AD293). Viability of AD293 cells, as evaluated by MTT-assay, was affected by Cisplatin in a time (1-4 h) dependent model. Biochemical markers of cell apoptosis were evaluated using immunoblotting. Pretreatment with nearly pure oxygen (≥90%) for 2 h significantly reduced the level of cell damage. Activated caspase 3 and Bax/Bcl-2 ratio were significantly increased in Cisplatin-treated cells. Oxygen pretreatment inhibited caspase 3 activation and decreased Bax/Bcl-2 ratio. Oxygen pre-treatment itself not showed any cytotoxicity in exposure times up to 3 h. Our data indicate that hyperoxic preconditioning reduces Cisplatin toxicity in cultured human tubular epithelial cells. The exact mechanism of protection is unclear, though enhancement of some endogenous defense mechanisms and subsequently scavenging of free oxygen radicals may play an important role.

  1. Influence of the dissolved oxygen concentration on the penicillin biosynthetic pathway in steady-state cultures of Penicillium chrysogenum

    DEFF Research Database (Denmark)

    Henriksen, Claus Maxel; Nielsen, Jens Bredal; Villadsen, John

    1997-01-01

    The influence the of dissolved oxygen concentration on penicillin biosynthesis was studied in steady-state continuous cultures of a high-yielding strain of Penicillium chrysogenum operated at a dilution rate of 0.05 h-l. The dissolved oxygen concentration was varied between 0.019 and 0.344 m...... penicillin productivity decreases, and a value of 17 (mu mol/g of DW)/h was obtained when the dissolved oxygen concentration was 0.042 mM. A further lowering of the dissolved oxygen concentration to 0.019 mM resulted in the loss of penicillin production. However, penicillin productivity was instantly...

  2. Oxygen limitation modulates pH regulation of catabolism and hydrogenases, multidrug transporters, and envelope composition in Escherichia coli K-12

    Directory of Open Access Journals (Sweden)

    Radmacher Michael D

    2006-10-01

    Full Text Available Abstract Background In Escherichia coli, pH regulates genes for amino-acid and sugar catabolism, electron transport, oxidative stress, periplasmic and envelope proteins. Many pH-dependent genes are co-regulated by anaerobiosis, but the overall intersection of pH stress and oxygen limitation has not been investigated. Results The pH dependence of gene expression was analyzed in oxygen-limited cultures of E. coli K-12 strain W3110. E. coli K-12 strain W3110 was cultured in closed tubes containing LBK broth buffered at pH 5.7, pH 7.0, and pH 8.5. Affymetrix array hybridization revealed pH-dependent expression of 1,384 genes and 610 intergenic regions. A core group of 251 genes showed pH responses similar to those in a previous study of cultures grown with aeration. The highly acid-induced gene yagU was shown to be required for extreme-acid resistance (survival at pH 2. Acid also up-regulated fimbriae (fimAC, periplasmic chaperones (hdeAB, cyclopropane fatty acid synthase (cfa, and the "constitutive" Na+/H+ antiporter (nhaB. Base up-regulated core genes for maltodextrin transport (lamB, mal, ATP synthase (atp, and DNA repair (recA, mutL. Other genes showed opposite pH responses with or without aeration, for example ETS components (cyo,nuo, sdh and hydrogenases (hya, hyb, hyc, hyf, hyp. A hypF strain lacking all hydrogenase activity showed loss of extreme-acid resistance. Under oxygen limitation only, acid down-regulated ribosome synthesis (rpl,rpm, rps. Acid up-regulated the catabolism of sugar derivatives whose fermentation minimized acid production (gnd, gnt, srl, and also a cluster of 13 genes in the gadA region. Acid up-regulated drug transporters (mdtEF, mdtL, but down-regulated penicillin-binding proteins (dacACD, mreBC. Intergenic regions containing regulatory sRNAs were up-regulated by acid (ryeA, csrB, gadY, rybC. Conclusion pH regulates a core set of genes independently of oxygen, including yagU, fimbriae, periplasmic chaperones, and nha

  3. Biodegradation of the herbicide Diuron in a packed bed channel and a double biobarrier with distribution of oxygenated liquid by airlift devices: influence of oxygen limitation.

    Science.gov (United States)

    Castañón-González, J Humberto; Galíndez-Mayer, Juvencio; Ruiz-Ordaz, Nora; Rocha-Martínez, Lizeth; Peña-Partida, José Carlos; Marrón-Montiel, Erick; Santoyo-Tepole, Fortunata

    2016-01-25

    From agricultural soils, where the herbicide Diuron has been frequently applied, a microbial community capable of degrading Diuron and 3,4-dichloroaniline was obtained. The volumetric rates and degradation efficiencies of Diuron and 3,4-DCA were evaluated in two distinct biofilm reactors, which differ in their operating conditions. One is a horizontal fixed bed reactor; plug-flow operated (PF-PBC) with severe limitation of oxygen. In this reactor, the air was supplied to an equalizer reservoir at the start of the PF-PBC reactor. The other is a compartmentalized aerobic biobarrier with internal recirculation of liquid aerated through airlift devices (ALB), continuously or intermittently operated. Both reactors were inoculated with a microbial community capable of degrading Diuron, isolated from a sugarcane field. In the oxygen-limited PF-PBC reactor, 3,4-DCA accumulation was detected, mainly in the middle zone of the packed channel. On the contrary, in the fully aerobic ALB reactor, minimal accumulation of catabolic byproducts was detected, and high Diuron removal efficiencies and removal rates were obtained when it was continuously operated in steady-state conditions. Additionally, the influence of oxygen limitation on the kinetic behavior of the PF-PBC reactor was determined, and a method to estimate the local removal rates of Diuron RV,CD along the plug-flow channel is described. It was observed that the local values of the instantaneous removal rate of Diuron dCD/dt are high in the aerobic region of the PF-PBC reactor; but, suddenly decay in the reactor zones limited by dissolved oxygen. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Impact of Dissolved Oxygen during UV-Irradiation on the Chemical Composition and Function of CHO Cell Culture Media.

    Science.gov (United States)

    Meunier, Sarah M; Todorovic, Biljana; Dare, Emma V; Begum, Afroza; Guillemette, Simon; Wenger, Andrew; Saxena, Priyanka; Campbell, J Larry; Sasges, Michael; Aucoin, Marc G

    2016-01-01

    Ultraviolet (UV) irradiation is advantageous as a sterilization technique in the biopharmaceutical industry since it is capable of targeting non-enveloped viruses that are typically challenging to destroy, as well as smaller viruses that can be difficult to remove via conventional separation techniques. In this work, we investigated the influence of oxygen in the media during UV irradiation and characterized the effect on chemical composition using NMR and LC-MS, as well as the ability of the irradiated media to support cell culture. Chemically defined Chinese hamster ovary cell growth media was irradiated at high fluences in a continuous-flow UV reactor. UV-irradiation caused the depletion of pyridoxamine, pyridoxine, pyruvate, riboflavin, tryptophan, and tyrosine; and accumulation of acetate, formate, kynurenine, lumichrome, and sarcosine. Pyridoxamine was the only compound to undergo complete degradation within the fluences considered; complete depletion of pyridoxamine was observed at 200 mJ/cm2. Although in both oxygen- and nitrogen-saturated media, the cell culture performance was affected at fluences above 200 mJ/cm2, there was less of an impact on cell culture performance in the nitrogen-saturated media. Based on these results, minimization of oxygen in cell culture media prior to UV treatment is recommended to minimize the negative impact on sensitive media.

  5. Oxygen- and capacity-limited thermal tolerance

    DEFF Research Database (Denmark)

    Jutfelt, Fredrik; Norin, Tommy; Ern, Rasmus

    2018-01-01

    The Commentary by Pörtner, Bock and Mark (Pörtner et al., 2017) elaborates on the oxygen- and capacity-limited thermal tolerance (OCLTT) hypothesis. Journal of Experimental Biology Commentaries allow for personal and controversial views, yet the journal also mandates that ‘opinion and fact must b...

  6. Oxygen consumption through metabolism and photodynamic reactions in cells cultured on microbeads

    International Nuclear Information System (INIS)

    Schunck, T.; Poulet, P.

    2000-01-01

    Oxygen consumption by cultured cells, through metabolism and photosensitization reactions, has been calculated theoretically. From this result, we have derived the partial oxygen pressure P O 2 in the perfusion medium flowing across sensitized cultured cells during photodynamic experiments. The P O 2 variations in the perfusate during light irradiation are related to the rate of oxygen consumption through photoreactions, and to the number of cells killed per mole of oxygen consumed through metabolic processes. After irradiation, the reduced metabolic oxygen consumption yields information on the cell death rate, and on the photodynamic cell killing efficiency. The aim of this paper is to present an experimental set-up and the corresponding theoretical model that allows us to control the photodynamic efficiency for a given cell-sensitizer pair, under well defined and controlled conditions of irradiation and oxygen supply. To demonstrate the usefulness of the methodology described, CHO cells cultured on microbeads were sensitized with pheophorbide a and irradiated with different light fluence rates. The results obtained, i.e. oxygen consumption of about 0.1 μMs -1 m -3 under a light fluence rate of 1 W m -2 , 10 5 cells killed per mole of oxygen consumed and a decay rate of about 1 h -1 of living cells after irradiation, are in good agreement with the theoretical predictions and with previously published data. (author)

  7. When national culture is disrupted : Cultural continuity and resistance to Muslim immigrants

    NARCIS (Netherlands)

    Smeekes, Anouk; Verkuijten, Maykel

    In three studies we examined the importance of cultural continuity for attitudes towards Muslim immigrants. Study 1 showed that perceiving national culture to be temporally enduring predicted opposition to Muslim expressive rights, and this effect was mediated by perceptions of continuity threat.

  8. Characterization of in vitro chlamydial cultures in low-oxygen atmospheres

    DEFF Research Database (Denmark)

    Juul, Nicolai Stefan; Jensen, Helene; Hvid, Malene

    2007-01-01

    To mimic in vivo conditions during chlamydial infections, Chlamydia trachomatis serovar D and Chlamydia pneumoniae CWL029 were cultured in low-oxygen atmospheres containing 4% O(2), with parallel controls cultured in atmospheric air. Both were enriched with 5% CO(2). The results showed a dramatic...

  9. Characterization of a continuous agitated cell reactor for oxygen dependent biocatalysis

    DEFF Research Database (Denmark)

    Pedersen, Asbjørn Toftgaard; Teresa de Melo Machado Simoes Carvalho, Ana; Sutherland, Euan

    2017-01-01

    Biocatalytic oxidation reactions employing molecular oxygen as the electron acceptor are difficult to conduct in a continuous flow reactor because of the requirement for high oxygen transfer rates. In this paper, the oxidation of glucose to glucono-1,5-lactone by glucose oxidase was used as a model...

  10. Does oxygen limit thermal tolerance in arthropods? A critical review of current evidence.

    Science.gov (United States)

    Verberk, Wilco C E P; Overgaard, Johannes; Ern, Rasmus; Bayley, Mark; Wang, Tobias; Boardman, Leigh; Terblanche, John S

    2016-02-01

    Over the last decade, numerous studies have investigated the role of oxygen in setting thermal tolerance in aquatic animals, and there has been particular focus on arthropods. Arthropods comprise one of the most species-rich taxonomic groups on Earth, and display great diversity in the modes of ventilation, circulation, blood oxygen transport, with representatives living both in water (mainly crustaceans) and on land (mainly insects). The oxygen and capacity limitation of thermal tolerance (OCLTT) hypothesis proposes that the temperature dependent performance curve of animals is shaped by the capacity for oxygen delivery in relation to oxygen demand. If correct, oxygen limitation could provide a mechanistic framework to understand and predict both current and future impacts of rapidly changing climate. In arthropods, most studies testing the OCLTT hypothesis have considered tolerance to thermal extremes. These studies likely operate from the philosophical viewpoint that if the model can predict these critical thermal limits, then it is more likely to also explain loss of performance at less extreme, non-lethal temperatures, for which much less data is available. Nevertheless, the extent to which lethal temperatures are influenced by limitations in oxygen supply remains unresolved. Here we critically evaluate the support and universal applicability for oxygen limitation being involved in lethal temperatures in crustaceans and insects. The relatively few studies investigating the OCLTT hypothesis at low temperature do not support a universal role for oxygen in setting the lower thermal limits in arthropods. With respect to upper thermal limits, the evidence supporting OCLTT is stronger for species relying on underwater gas exchange, while the support for OCLTT in air-breathers is weak. Overall, strongest support was found for increased anaerobic metabolism close to thermal maxima. In contrast, there was only mixed support for the prediction that aerobic scope

  11. Effect of dissolved oxygen on redox potential and milk acidification by lactic acid bacteria isolated from a DL-starter culture.

    Science.gov (United States)

    Larsen, Nadja; Werner, Birgit Brøsted; Vogensen, Finn Kvist; Jespersen, Lene

    2015-03-01

    Milk acidification by DL-starter cultures [cultures containing Lactococcus lactis diacetylactis (D) and Leuconostoc (L) species] depends on the oxidation-reduction (redox) potential in milk; however, the mechanisms behind this effect are not completely clear. The objective of this study was to investigate the effect of dissolved oxygen on acidification kinetics and redox potential during milk fermentation by lactic acid bacteria (LAB). Fermentations were conducted by single strains isolated from mixed DL-starter culture, including Lactococcus lactis ssp. lactis, Lactococcus lactis ssp. cremoris, and Leuconostoc mesenteroides ssp. cremoris, by the DL-starter culture, and by the type strains. High and low levels of oxygen were produced by flushing milk with oxygen or nitrogen, respectively. The kinetics of milk acidification was characterized by the maximum rate and time of acidification (Vamax and Tamax), the maximum rate and time of reduction (Vrmax and Trmax), the minimum redox potential (Eh7 final), and time of reaching Eh7 final (Trfinal). Variations in kinetic parameters were observed at both the species and strain levels. Two of the Lc. lactis ssp. lactis strains were not able to lower redox potential to negative values. Kinetic parameters of the DL-starter culture were comparable with the best acidifying and reducing strains, indicating their additive effects. Acidification curves were mostly diauxic at all oxygen levels, displaying 2 maxima of acidification rate: before (aerobic maximum) and after (anaerobic maximum) oxygen depletion. The redox potential decreased concurrently with oxygen consumption and continued to decrease at slower rate until reaching the final values, indicating involvement of both oxygen and microbiological activity in the redox state of milk. Oxygen flushing had a negative effect on reduction and acidification capacity of tested LAB. Reduction was significantly delayed at high initial oxygen, exhibiting longer Trmax, Trfinal, or both

  12. Oxygen availability strongly affects chronological lifespan and thermotolerance in batch cultures of Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Markus M.M. Bisschops

    2015-10-01

    Full Text Available Stationary-phase (SP batch cultures of Saccharomyces cerevisiae, in which growth has been arrested by carbon-source depletion, are widely applied to study chronological lifespan, quiescence and SP-associated robustness. Based on this type of experiments, typically performed under aerobic conditions, several roles of oxygen in aging have been proposed. However, SP in anaerobic yeast cultures has not been investigated in detail. Here, we use the unique capability of S. cerevisiae to grow in the complete absence of oxygen to directly compare SP in aerobic and anaerobic bioreactor cultures. This comparison revealed strong positive effects of oxygen availability on adenylate energy charge, longevity and thermotolerance during SP. A low thermotolerance of anaerobic batch cultures was already evident during the exponential growth phase and, in contrast to the situation in aerobic cultures, was not substantially increased during transition into SP. A combination of physiological and transcriptome analysis showed that the slow post-diauxic growth phase on ethanol, which precedes SP in aerobic, but not in anaerobic cultures, endowed cells with the time and resources needed for inducing longevity and thermotolerance. When combined with literature data on acquisition of longevity and thermotolerance in retentostat cultures, the present study indicates that the fast transition from glucose excess to SP in anaerobic cultures precludes acquisition of longevity and thermotolerance. Moreover, this study demonstrates the importance of a preceding, calorie-restricted conditioning phase in the acquisition of longevity and stress tolerance in SP yeast cultures, irrespective of oxygen availability.

  13. Optimisation of strain selection in evolutionary continuous culture

    Science.gov (United States)

    Bayen, T.; Mairet, F.

    2017-12-01

    In this work, we study a minimal time control problem for a perfectly mixed continuous culture with n ≥ 2 species and one limiting resource. The model that we consider includes a mutation factor for the microorganisms. Our aim is to provide optimal feedback control laws to optimise the selection of the species of interest. Thanks to Pontryagin's Principle, we derive optimality conditions on optimal controls and introduce a sub-optimal control law based on a most rapid approach to a singular arc that depends on the initial condition. Using adaptive dynamics theory, we also study a simplified version of this model which allows to introduce a near optimal strategy.

  14. Tradition and Agency. Tracing cultural continuity and invention

    DEFF Research Database (Denmark)

    Tradition helps ensure continuity and stability in human affairs, signifying both the handing down of cultural heritage from one generation to the next, and the particular customs, beliefs and rituals being handed down. In the social sciences, tradition has been a central concept from the very st...... address the larger questions of cultural continuity, agency and the use of cultural resources. In the postscript, Terence Ranger offers a complementary perspective by tracing the effects of nationalism, imperialism and globalised exchange on tradition.......Tradition helps ensure continuity and stability in human affairs, signifying both the handing down of cultural heritage from one generation to the next, and the particular customs, beliefs and rituals being handed down. In the social sciences, tradition has been a central concept from the very...... revolutionize the understanding of tradition in anthropology, history and sociology, stimulating an enormous amount of research on invented and imagined traditions. However, most of this research has focussed on the cultural dynamics of specific local innovations and reactions to global developments...

  15. Contribution of Respiratory Muscle Oxygen Consumption to Breathing Limitation and Cyspnea

    Directory of Open Access Journals (Sweden)

    Pere Casan

    1997-01-01

    Full Text Available During exercise, the sustainable activity of large muscle groups is limited by oxygen delivery. The purpose of this study was to see whether the oxygen consumption of the respiratory muscles reaches a similar critical value under maximal resistive loading and hyperventilation. A secondary objective was to see whether dyspnea (estimated discomfort experienced with breathing using the Borg 0-10 scale and the oxygen consumption of the respiratory muscles are closely related across conditions. This would be expected if intramuscular sensory nerve fibres stimulated as a consequence of metabolic events contributed to this sensation. In six normal subjects the respiratory muscles were progressively activated by the addition of incremental inspiratory resistive loads to a maximum of 300 cm H20×s/L (SD=66.4, and incremental dead space to a maximum of 2638 mL (SD=452, associated with an increase in ventilation to 75.1 L/min (SD=29.79. Each increment was maintained for 5 mins to allow the measurement of oxygen uptake in a steady state. During resistive loading total oxygen consumption increased from 239 mL/min (SD=38.2 to 299 mL/min (SD=52.3 and dyspnea increased to "very severe" (Borg scale 7.5, SD=1.55. During dead space loading total oxygen consumption increased from 270 mL/min (SD=20.2 to 426 mL/min (SD=81.9 and dyspnea increased to "very severe" (7.1, SD=0.66. Oxygen cost of inspiratory muscle power was 25 mL/watt (95% confidence limits 16.7 to 34.3 with dead space loading and 91 mL/watt (95% confidence limits 54 to 128 with resistive loading. Oxygen consumption did not reach a critical common value in the two types of loading, 60 mL/min (SD 22.3 during maximal resistive loading and 156 mL/min (SD 82.4 during maximal dead space loading (P<0.05. Physiological factors limiting the respiratory muscles are not uniquely related to oxygen consumption and appear to be expressed through the activation of sensory structures, perceptually manifested as

  16. The impact of oxygen on the final alcohol content of wine fermented by a mixed starter culture.

    Science.gov (United States)

    Morales, Pilar; Rojas, Virginia; Quirós, Manuel; Gonzalez, Ramon

    2015-05-01

    We have developed a wine fermentation procedure that takes advantage of the metabolic features of a previously characterized Metschnikowia pulcherrima strain in order to reduce ethanol production. It involves the use of M. pulcherrima/Saccharomyces cerevisiae mixed cultures, controlled oxygenation conditions during the first 48 h of fermentation, and anaerobic conditions thereafter. The influence of different oxygenation regimes and initial inoculum composition on yeast physiology and final ethanol content was studied. The impact of oxygenation on yeast physiology goes beyond the first aerated step and influences yields and survival rates during the anaerobic stage. The activity of M. pulcherrima in mixed oxygenated cultures resulted in a clear reduction in ethanol yield, as compared to S. cerevisiae. Despite relatively low initial cell numbers, S. cerevisiae always predominated in mixed cultures by the end of the fermentation process. Strain replacement was faster under low oxygenation levels. M. pulcherrima confers an additional advantage in terms of dissolved oxygen, which drops to zero after a few hours of culture, even under highly aerated conditions, and this holds true for mixed cultures. Alcohol reduction values about 3.7 % (v/v) were obtained for mixed cultures under high aeration, but they were associated to unacceptable volatile acidity levels. In contrast, under optimized conditions, only 0.35 g/L acetic acid was produced, for an alcohol reduction of 2.2 % (v/v), and almost null dissolved oxygen during the process.

  17. 76 FR 9984 - Airworthiness Directives; B/E Aerospace, Continuous Flow Passenger Oxygen Mask Assembly, Part...

    Science.gov (United States)

    2011-02-23

    ..., Continuous Flow Passenger Oxygen Mask Assembly, Part Numbers 174006-(), 174080-(), 174085-(), 174095... manufacturer and part number of the oxygen mask assemblies installed, an inspection to determine the manufacturing date and modification status if certain oxygen mask assemblies are installed, and corrective...

  18. Impact of Australian Dekkera bruxellensis strains grown under oxygen-limited conditions on model wine composition and aroma.

    Science.gov (United States)

    Curtin, Chris D; Langhans, Geoffrey; Henschke, Paul A; Grbin, Paul R

    2013-12-01

    Spoilage of red wine by the yeast species Dekkera bruxellensis is a common problem for the global wine industry. When conditions are conducive for growth of these yeasts in wine, they efficiently convert non-volatile hydroxycinnamic acids into aroma-active ethylphenols, thereby reducing the quality of the wine. It has been demonstrated previously that dissolved oxygen is a key factor which stimulates D. bruxellensis growth in wine. We demonstrate that whereas the presence of oxygen accelerates the growth of this species, oxygen-limited conditions favour 4-ethylphenol production. Consequently, we evaluated wine spoilage potential of three D. bruxellensis strains (AWRI1499, AWRI1608 and AWRI1613) under oxygen-limited conditions. Each strain was cultured in a chemically-defined wine medium and the fermentation products were analysed using HPLC and HS-SPME-GC/MS. The strains displayed different growth characteristics but were equally capable of producing ethylphenols. On the other hand, significant differences were observed for 18 of the remaining 33 metabolites analysed and duo-trio sensory analysis indicated significant aroma differences between wines inoculated with AWRI1499 and AWRI1613. When these wines were spiked with low concentrations of 4-ethylphenol and 4-ethylguaiacol, no sensorial differences could be perceived. Together these data suggest that the three predominant D. bruxellensis strains previously isolated during a large survey of Australian wineries do not differ substantively in their capacity to grow in, and spoil, a model wine medium. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Surface oxygen vacancy and oxygen permeation flux limits of perovskite ion transport membranes

    KAUST Repository

    Hunt, Anton

    2015-09-01

    © 2015 Elsevier B.V. The mechanisms and quantitative models for how oxygen is separated from air using ion transport membranes (ITMs) are not well understood, largely due to the experimental complexity for determining surface exchange reactions at extreme temperatures (>800°C). This is especially true when fuels are present at the permeate surface. For both inert and reactive (fuels) operations, solid-state oxygen surface vacancies (δ) are ultimately responsible for driving the oxygen flux, JO2. In the inert case, the value of δ at either surface is a function of the local PO2 and temperature, whilst the magnitude of δ dictates both the JO2 and the inherent stability of the material. In this study values of δ are presented based on experimental measurements under inert (CO2) sweep: using a permeation flux model and local PO2 measurements, collected by means of a local gas-sampling probe in our large-scale reactor, we can determine δ directly. The ITM assessed was La0.9Ca0.1FeO3-δ (LCF); the relative resistances to JO2 were quantified using the pre-defined permeation flux model and local PO2 values. Across a temperature range from 825°C to 1056°C, δ was found to vary from 0.007 to 0.029 (<1%), safely within material stability limits, whilst the permeate surface exchange resistance dominates. An inert JO2 limit was identified owing to a maximum sweep surface δ, δmaxinert. The physical presence of δmaxinert is attributed to a rate limiting step shift from desorption to associative electron transfer steps on the sweep surface as PO2 is reduced. Permeate surface exchange limitations under non-reactive conditions suggest that reactive (fuel) operation is necessary to accelerate surface chemistry for future work, to reduce flux resistance and push δpast δmaxinert in a stable manner.

  20. 76 FR 41669 - Airworthiness Directives; B/E Aerospace, Continuous Flow Passenger Oxygen Mask Assembly, Part...

    Science.gov (United States)

    2011-07-15

    ... Airworthiness Directives; B/E Aerospace, Continuous Flow Passenger Oxygen Mask Assembly, Part Numbers 174006... manufacturer and part number of the oxygen mask assemblies installed, an inspection to determine the manufacturing date and modification status if certain oxygen mask assemblies are installed, and corrective...

  1. A lattice hierarchy and its continuous limits

    International Nuclear Information System (INIS)

    Fan Engui

    2008-01-01

    By introducing a discrete spectral problem, we derive a lattice hierarchy which is integrable in Liouville's sense and possesses a multi-Hamiltonian structure. It is show that the discrete spectral problem converges to the well-known AKNS spectral problem under a certain continuous limit. In particular, we construct a sequence of equations in the lattice hierarchy which approximates the AKNS hierarchy as a continuous limit

  2. The renaissance of continuous culture in the post-genomics age.

    Science.gov (United States)

    Bull, Alan T

    2010-10-01

    The development of continuous culture techniques 60 years ago and the subsequent formulation of theory and the diversification of experimental systems revolutionised microbiology and heralded a unique period of innovative research. Then, progressively, molecular biology and thence genomics and related high-information-density omics technologies took centre stage and microbial growth physiology in general faded from educational programmes and research funding priorities alike. However, there has been a gathering appreciation over the past decade that if the claims of systems biology are going to be realised, they will have to be based on rigorously controlled and reproducible microbial and cell growth platforms. This revival of continuous culture will be long lasting because its recognition as the growth system of choice is firmly established. The purpose of this review, therefore, is to remind microbiologists, particularly those new to continuous culture approaches, of the legacy of what I call the first age of continuous culture, and to explore a selection of researches that are using these techniques in this post-genomics age. The review looks at the impact of continuous culture across a comprehensive range of microbiological research and development. The ability to establish (quasi-) steady state conditions is a frequently stated advantage of continuous cultures thereby allowing environmental parameters to be manipulated without causing concomitant changes in the specific growth rate. However, the use of continuous cultures also enables the critical study of specified transition states and chemical, physical or biological perturbations. Such dynamic analyses enhance our understanding of microbial ecology and microbial pathology for example, and offer a wider scope for innovative drug discovery; they also can inform the optimization of batch and fed-batch operations that are characterized by sequential transitions states.

  3. Development of the Continued Improvement System for Nuclear Safety Culture

    International Nuclear Information System (INIS)

    Park, H. C.; Park, H. G.; Park, Y. W.; Park, J. Y.

    2016-01-01

    It has been found that almost 80 % of the incidents and accidents occurred recently, such as the Fukushima Daiichi disaster and Domestic SBO accident etc. were analyzed to be caused from human errors. (IAEA NES NG-G-2.1) Which strongly claims the importance of the safety culture system. Accordingly, it should be away from a cursory approach like one-off field survey or Snap shop which were being conducted at present for the continued improvement of safety culture. This study introduces an analytical methodology which approaches the generic form of the safety both consciously and unconsciously expressed with behavior, thoughts, and attitude etc. This study was implemented only for open materials such as Inspection report, incidents and accidents reports, QA documents because of the limitation in accessibility to data. More effective use with securing operational data will be possible in future

  4. Development of the Continued Improvement System for Nuclear Safety Culture

    Energy Technology Data Exchange (ETDEWEB)

    Park, H. C.; Park, H. G.; Park, Y. W.; Park, J. Y. [KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    It has been found that almost 80 % of the incidents and accidents occurred recently, such as the Fukushima Daiichi disaster and Domestic SBO accident etc. were analyzed to be caused from human errors. (IAEA NES NG-G-2.1) Which strongly claims the importance of the safety culture system. Accordingly, it should be away from a cursory approach like one-off field survey or Snap shop which were being conducted at present for the continued improvement of safety culture. This study introduces an analytical methodology which approaches the generic form of the safety both consciously and unconsciously expressed with behavior, thoughts, and attitude etc. This study was implemented only for open materials such as Inspection report, incidents and accidents reports, QA documents because of the limitation in accessibility to data. More effective use with securing operational data will be possible in future.

  5. In vitro cell culture pO2 is significantly different from incubator pO2.

    Science.gov (United States)

    Bambrick, L L; Kostov, Y; Rao, G

    2011-07-01

    Continuous noninvasive monitoring of peri-cellular liquid phase pO2 in adherent cultures is described. For neurons and astrocytes, this approach demonstrates that there is a significant difference between predicted and observed liquid phase pO2. Particularly at low gas phase pO2s, cell metabolism shifts liquid phase pO2 significantly lower than would be predicted from the O2 gas/air equilibrium coefficient, indicating that the cellular oxygen uptake rate exceeds the oxygen diffusion rate. The results demonstrate the need for direct pO2 measurements at the peri-cellular level, and question the widely adopted current practice of relying on setting the incubator gas phase level as means of controlling pericellular oxygen tension, particularly in static culture systems that are oxygen mass transfer limited. Copyright © 2011 American Institute of Chemical Engineers (AIChE).

  6. Evaluation of a Multi-Parameter Sensor for Automated, Continuous Cell Culture Monitoring in Bioreactors

    Science.gov (United States)

    Pappas, D.; Jeevarajan, A.; Anderson, M. M.

    2004-01-01

    Compact and automated sensors are desired for assessing the health of cell cultures in biotechnology experiments in microgravity. Measurement of cell culture medium allows for the optirn.jzation of culture conditions on orbit to maximize cell growth and minimize unnecessary exchange of medium. While several discrete sensors exist to measure culture health, a multi-parameter sensor would simplify the experimental apparatus. One such sensor, the Paratrend 7, consists of three optical fibers for measuring pH, dissolved oxygen (p02), dissolved carbon dioxide (pC02) , and a thermocouple to measure temperature. The sensor bundle was designed for intra-arterial placement in clinical patients, and potentially can be used in NASA's Space Shuttle and International Space Station biotechnology program bioreactors. Methods: A Paratrend 7 sensor was placed at the outlet of a rotating-wall perfused vessel bioreactor system inoculated with BHK-21 (baby hamster kidney) cells. Cell culture medium (GTSF-2, composed of 40% minimum essential medium, 60% L-15 Leibovitz medium) was manually measured using a bench top blood gas analyzer (BGA, Ciba-Corning). Results: A Paratrend 7 sensor was used over a long-term (>120 day) cell culture experiment. The sensor was able to track changes in cell medium pH, p02, and pC02 due to the consumption of nutrients by the BHK-21. When compared to manually obtained BGA measurements, the sensor had good agreement for pH, p02, and pC02 with bias [and precision] of 0.02 [0.15], 1 mm Hg [18 mm Hg], and -4.0 mm Hg [8.0 mm Hg] respectively. The Paratrend oxygen sensor was recalibrated (offset) periodically due to drift. The bias for the raw (no offset or recalibration) oxygen measurements was 42 mm Hg [38 mm Hg]. The measured response (rise) time of the sensor was 20 +/- 4s for pH, 81 +/- 53s for pC02, 51 +/- 20s for p02. For long-term cell culture measurements, these response times are more than adequate. Based on these findings , the Paratrend sensor could

  7. Oxygen consumption rate and mitochondrial density in human melanoma monolayer cultures and multicellular spheroids.

    Science.gov (United States)

    Hystad, M E; Rofstad, E K

    1994-05-15

    Rate of oxygen consumption per cell has been shown in previous studies to decrease with increasing depth in the viable rim of multicellular spheroids initiated from rodent cells, human colon-carcinoma cells, and human glioma cells, due to progressive accumulation of quiescent cells during spheroid growth. The purpose of our work was to determine oxygen-consumption profiles in human melanoma spheroids. Monolayer cultures of 4 lines (BEX-c, COX-c, SAX-c, and WIX-c) and spheroid cultures of 2 lines (BEX-c and WIX-c) were subjected to investigation. Spheroids were initiated from monolayer cell cultures and grown in spinner flasks. Rate of oxygen consumption was measured with a Clarke-type electrode. Mitochondrial density was determined by stereological analysis of transmission electron micrographs. Thickness of viable rim and cell packing density were assessed by light microscopy of central spheroid sections. Cell-cycle distribution was determined by analysis of DNA histograms measured by flow cytometry. Cell volume was measured by an electronic particle counter. Rate of oxygen consumption per cell differed by a factor of approximately 1.8 between the 4 cell lines and was positively correlated to total volume of mitochondria per cell. Rate of oxygen consumption per cell and total volume of mitochondria per cell were equal for monolayer cell cultures, 600-microns spheroids and 1,200-microns spheroids of the same line. Mitochondrial density and location in the cell did not differ between cells at the spheroid surface, in the middle of the viable rim and adjacent to the central necrosis. Cell-cycle distribution, cell volume, and cell-packing density in the outer and inner halves of the viable rim were not significantly different. Consequently, the rate of oxygen consumption per cell in inner regions of the viable rim was probably equal to that at the spheroid surface, suggesting that oxygen diffusion distances may be shorter in some melanomas than in many other tumor

  8. Development of a Continuous Phytoplankton Culture System for Ocean Acidification Experiments

    Directory of Open Access Journals (Sweden)

    Cathryn Wynn-Edwards

    2014-06-01

    Full Text Available Around one third of all anthropogenic CO2 emissions have been absorbed by the oceans, causing changes in seawater pH and carbonate chemistry. These changes have the potential to affect phytoplankton, which are critically important for marine food webs and the global carbon cycle. However, our current knowledge of how phytoplankton will respond to these changes is limited to a few laboratory and mesocosm experiments. Long-term experiments are needed to determine the vulnerability of phytoplankton to enhanced pCO2. Maintaining phytoplankton cultures in exponential growth for extended periods of time is logistically difficult and labour intensive. Here we describe a continuous culture system that greatly reduces the time required to maintain phytoplankton cultures, and minimises variation in experimental pCO2 treatments over time. This system is simple, relatively cheap, flexible, and allows long-term experiments to be performed to further our understanding of chronic responses and adaptation by phytoplankton species to future ocean acidification.

  9. Kinetic Study of Acetone-Butanol-Ethanol Fermentation in Continuous Culture

    Science.gov (United States)

    Buehler, Edward A.; Mesbah, Ali

    2016-01-01

    Acetone-butanol-ethanol (ABE) fermentation by clostridia has shown promise for industrial-scale production of biobutanol. However, the continuous ABE fermentation suffers from low product yield, titer, and productivity. Systems analysis of the continuous ABE fermentation will offer insights into its metabolic pathway as well as into optimal fermentation design and operation. For the ABE fermentation in continuous Clostridium acetobutylicum culture, this paper presents a kinetic model that includes the effects of key metabolic intermediates and enzymes as well as culture pH, product inhibition, and glucose inhibition. The kinetic model is used for elucidating the behavior of the ABE fermentation under the conditions that are most relevant to continuous cultures. To this end, dynamic sensitivity analysis is performed to systematically investigate the effects of culture conditions, reaction kinetics, and enzymes on the dynamics of the ABE production pathway. The analysis provides guidance for future metabolic engineering and fermentation optimization studies. PMID:27486663

  10. Kinetics of phosphate uptake, growth, and accumulation of cyclic diphosphoglycerate in a phosphate-limited continuous culture of Methanobacterium thermoautotrophicum.

    Science.gov (United States)

    Krueger, R D; Harper, S H; Campbell, J W; Fahrney, D E

    1986-07-01

    The archaebacterium Methanobacterium thermoautotrophicum was grown in continuous culture at 65 degrees C in a phosphate-limited medium at specific growth rates from 0.06 to 0.28 h-1 (maximum growth rate [mu max] = 0.36 h-1). Cyclic-2,3-diphosphoglycerate (cyclic DPG) levels ranged from 2 to 20 mM in Pi-limited cells, compared with about 30 mM in batch-grown cells. The Monod constant for Pi-limited growth was 5 nM. Pi uptake rates were determined by following the disappearance of 32Pi from the medium. Interrupting the H2 supply stopped the uptake of Pi and the release of organic phosphates. Little or no efflux of Pi occurred in the presence or absence of H2. Pi uptake of cells adapted to nanomolar Pi concentrations could be accounted for by the operation of one uptake system with an apparent Km of about 25 nM and a Vmax of 58 nmol of Pi per min per g (dry weight). Uptake curves at 30 microM Pi or above were biphasic due to a sevenfold decrease in Vmax after an initial phase of rapid movement of Pi into the cell. Under these conditions the growth rate slowed to zero and the cyclic DPG pool expanded before growth resumed. Thus, three properties of M. thermoautotrophicum make it well adapted to live in a low-P environment: the presence of a low-Km, high-Vmax uptake system for Pi; the ability to accumulate cyclic DPG rapidly; and a growth strategy in which accumulation of Pi and cyclic DPG takes precedence over a shift-up in growth rate when excess Pi becomes available.

  11. Kinetics of phosphate uptake, growth, and accumulation of cyclic diphosphoglycerate in a phosphate-limited continuous culture of Methanobacterium thermoautotrophicum.

    Science.gov (United States)

    Krueger, R D; Harper, S H; Campbell, J W; Fahrney, D E

    1986-01-01

    The archaebacterium Methanobacterium thermoautotrophicum was grown in continuous culture at 65 degrees C in a phosphate-limited medium at specific growth rates from 0.06 to 0.28 h-1 (maximum growth rate [mu max] = 0.36 h-1). Cyclic-2,3-diphosphoglycerate (cyclic DPG) levels ranged from 2 to 20 mM in Pi-limited cells, compared with about 30 mM in batch-grown cells. The Monod constant for Pi-limited growth was 5 nM. Pi uptake rates were determined by following the disappearance of 32Pi from the medium. Interrupting the H2 supply stopped the uptake of Pi and the release of organic phosphates. Little or no efflux of Pi occurred in the presence or absence of H2. Pi uptake of cells adapted to nanomolar Pi concentrations could be accounted for by the operation of one uptake system with an apparent Km of about 25 nM and a Vmax of 58 nmol of Pi per min per g (dry weight). Uptake curves at 30 microM Pi or above were biphasic due to a sevenfold decrease in Vmax after an initial phase of rapid movement of Pi into the cell. Under these conditions the growth rate slowed to zero and the cyclic DPG pool expanded before growth resumed. Thus, three properties of M. thermoautotrophicum make it well adapted to live in a low-P environment: the presence of a low-Km, high-Vmax uptake system for Pi; the ability to accumulate cyclic DPG rapidly; and a growth strategy in which accumulation of Pi and cyclic DPG takes precedence over a shift-up in growth rate when excess Pi becomes available. PMID:3722128

  12. Membrane culture and reduced oxygen tension enhances cartilage matrix formation from equine cord blood mesenchymal stromal cells in vitro.

    Science.gov (United States)

    Co, C; Vickaryous, M K; Koch, T G

    2014-03-01

    Ongoing research is aimed at increasing cartilage tissue yield and quality from multipotent mesenchymal stromal cells (MSC) for the purpose of treating cartilage damage in horses. Low oxygen culture has been shown to enhance chondrogenesis, and novel membrane culture has been proposed to increase tissue yield and homogeneity. The objective of this study was to evaluate and compare the effect of reduced oxygen and membrane culture during in vitro chondrogenesis of equine cord blood (CB) MSC. CB-MSC (n = 5 foals) were expanded at 21% oxygen prior to 3-week differentiation in membrane or pellet culture at 5% and 21% oxygen. Assessment included histological examination (H&E, toluidine Blue, immunohistochemistry (IHC) for collagen type I and II), protein quantification by hydroxyproline assay and dimethylmethylene assay, and mRNA analysis for collagen IA1, collagen IIA1, collagen XA1, HIF1α and Sox9. Among treatment groups, 5% membrane culture produced neocartilage most closely resembling hyaline cartilage. Membrane culture resulted in increased wet mass, homogenous matrix morphology and an increase in total collagen content, while 5% oxygen culture resulted in higher GAG and type II collagen content. No significant differences were observed for mRNA analysis. Membrane culture at 5% oxygen produces a comparatively larger amount of higher quality neocartilage. Matrix homogeneity is attributed to a uniform diffusion gradient and reduced surface tension. Membrane culture holds promise for scale-up for therapeutic purposes, for cellular preconditioning prior to cytotherapeutic applications, and for modeling system for gas-dependent chondrogenic differentiation studies. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  13. Strategies to overcome oxygen transfer limitations during hairy root cultivation of Azadiracta indica for enhanced azadirachtin production.

    Science.gov (United States)

    Srivastava, Smita; Srivastava, Ashok Kumar

    2012-07-01

    The vast untapped potential of hairy root cultures as a stable source of biologically active chemicals has focused the attention of scientific community toward its commercial exploitation. However, the major bottleneck remains its successful scale-up. Due to branching, the roots form an interlocked matrix that exhibits resistance to oxygen transfer. Thus, present work was undertaken to develop cultivation strategies like optimization of inlet gas composition (in terms of % (v/v) O(2) in air), air-flow rate and addition of oxygen vectors in the medium, to curb the oxygen transfer limitations during hairy root cultivation of Azadirachta indica for in vitro azadirachtin (a biopesticide) production. It was found that increasing the oxygen fraction in the inlet air (in the range, 20-100% (v/v) O(2) in air) increased the azadirachtin productivity by approximately threefold, to a maximum of 4.42 mg/L per day (at 100% (v/v) O(2) in air) with respect to 1.68 mg/L per day in control (air with no oxygen supplementation). Similarly, increasing the air-flow rate (in the range, 0.3-2 vvm) also increased the azadirachtin productivity to a maximum of 1.84 mg/L per day at 0.8 vvm of air-flow rate. On the contrary, addition of oxygen vectors (in the range, 1-4% (v/v); hydrogen peroxide, toluene, Tween 80, kerosene, silicone oil, and n-hexadecane), decreased the azadirachtin productivity with respect to control (1.76 mg/L per day).

  14. Salinity-dependent limitation of photosynthesis and oxygen exchange in microbial mats

    DEFF Research Database (Denmark)

    Garcia-Pichel, F.; Kühl, Michael; Nübel, U.

    1999-01-01

    was specific for each community and in accordance with optimal performance at the respective salinity of origin. This pattern was lost after long-term exposure to varying salinities when responses to salinity were found to approach a general pattern of decreasing photosynthesis and oxygen exchange capacity...... with increasing salinity. Exhaustive measurements of oxygen export in the light, oxygen consumption in the dark and gross photosynthesis indicated that a salinity-dependent limitation of all three parameters occurred. Maximal values for all three parameters decreased exponentially with increasing salinity...

  15. Beyond the volcano limitations in electrocatalysis - oxygen evolution reaction

    DEFF Research Database (Denmark)

    Halck, Niels Bendtsen; Petrykin, Valery; Krtil, Petr

    2014-01-01

    Oxygen evolution catalysis is restricted by the interdependence of adsorption energies of the reaction intermediates and the surface reactivity. The interdependence reduces the number of degrees of freedom available for catalyst optimization. Here it is demonstrated that this limitation can be re...

  16. Immigrants' continuing bonds with their native culture: assimilation analysis of three interviews.

    Science.gov (United States)

    Henry, Hani M; Stiles, William B; Biran, Mia W; Mosher, James K; Brinegar, Meredith Glick; Banerjee, Prashant

    2009-06-01

    Three case studies of immigrants to the US from China, Iraq, and Mexico were used to build a theory of acculturation in immigrants by integrating the continuing bonds model, which describes mourning in bereavement with the assimilation model, which describes psychological change in psychotherapy. Participants were interviewed about the loss of their native culture and their life in the US. One participant had not fully assimilated the loss of her native culture, but used her continuing bonds with her culture as a source of solace. Another participant used his continuing bonds with his culture as a source of solace, but these bonds had become a source of conflict with the host culture. The third participant had largely assimilated the loss of his native culture such that the voices of this culture were linked via meaning bridges with the voices of the host culture, and the continuing bonds were resources that helped him in his land of immigration.

  17. Improvement of Oxygenation in Severe Acute Respiratory Distress Syndrome With High-Volume Continuous Veno-venous Hemofiltration.

    Science.gov (United States)

    Yang, Wenmin; Hong, Jie; Zeng, Qiyi; Tao, Jianping; Chen, Feiyan; Dang, Run; Liang, Yufeng; Wu, Zhiyuan; Yang, Yiyu

    2016-01-01

    The efficacy and therapeutic mechanisms of continuous renal replacement therapy (CRRT) for improvement of oxygenation in acute respiratory distress syndrome (ARDS) remain controversial. These questions were addressed by retrospective analysis of severe ARDS patients admitted to the pediatric intensive care unit of our hospital from 2009 to 2015 who received high-volume continuous veno-venous hemofiltration during mechanical ventilation. There was a significant improvement in partial oxygen pressure/fraction of inspired oxygen (PaO2/FiO2) 24 hours after CRRT onset compared with baseline (median change = 51.5; range = -19 to 450.5; P Improvement in oxygenation is likely related to both restoration of fluid balance and clearance of inflammatory mediators.

  18. 32 CFR 724.218 - Limitation-Continuance and Postponements.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Limitation-Continuance and Postponements. 724... Limitation—Continuance and Postponements. (a) A continuance of a discharge review hearing may be authorized... continuance is of reasonable duration and is essential to achieving a full and fair hearing. When a proposal...

  19. Analysis of flammability limits for the liquefaction process of oxygen-bearing coal-bed methane

    International Nuclear Information System (INIS)

    Li, Q.Y.; Wang, L.; Ju, Y.L.

    2011-01-01

    Highlights: → A novel liquefaction and distillation process is designed for oxygen bearing coal-bed methane. → Oxygen contained in coal-bed methane is removed in distillation process. → Flammability limits are analyzed for the whole operation process. → We find explosion hazard may exist in distillation tower. → Effective measures are proposed to ensure the operation safety in distillation tower. - Abstract: A novel liquefaction and distillation process has been proposed and designed for the typical oxygen-bearing coal-bed methane (CBM), in which the impurities of the oxygen and nitrogen components are removed in the distillation column. The flammability limit theory combining with HYSYS simulation results are employed to analyze and calculate the flammability limits and the results indicate that no flammability hazard exists in the stages of compression, liquefaction and throttling. However, flammability hazard exists at the top the distillation column because the methane mole fraction decreases to the value below the upper flammability limit (UFL). The safety measures of initially removing oxygen content from the feed gas combining with the control of the bottom flowrate (flowrate of the liquid product at column bottom) are proposed to ensure the operation safety of the liquefaction process. The results reveal that the operation safety of the whole process can be guaranteed, together with high methane recovery rate and high purity of the liquid product. The applicability of the liquefaction process has also been analyzed in this paper. The simulation results can offer references for the separation of oxygen from CBM, the analysis of flammability limits and the safety measures for the whole process.

  20. Characterization of a continuous agitated cell reactor for oxygen dependent biocatalysis.

    Science.gov (United States)

    Toftgaard Pedersen, Asbjørn; de Carvalho, Teresa Melo; Sutherland, Euan; Rehn, Gustav; Ashe, Robert; Woodley, John M

    2017-06-01

    Biocatalytic oxidation reactions employing molecular oxygen as the electron acceptor are difficult to conduct in a continuous flow reactor because of the requirement for high oxygen transfer rates. In this paper, the oxidation of glucose to glucono-1,5-lactone by glucose oxidase was used as a model reaction to study a novel continuous agitated cell reactor (ACR). The ACR consists of ten cells interconnected by small channels. An agitator is placed in each cell, which mixes the content of the cell when the reactor body is shaken by lateral movement. Based on tracer experiments, a hydrodynamic model for the ACR was developed. The model consisted of ten tanks-in-series with back-mixing occurring within and between each cell. The back-mixing was a necessary addition to the model in order to explain the observed phenomenon that the ACR behaved as two continuous stirred tank reactors (CSTRs) at low flow rates, while it at high flow rates behaved as the expected ten CSTRs in series. The performance of the ACR was evaluated by comparing the steady state conversion at varying residence times with the conversion observed in a stirred batch reactor of comparable size. It was found that the ACR could more than double the overall reaction rate, which was solely due to an increased oxygen transfer rate in the ACR caused by the intense mixing as a result of the spring agitators. The volumetric oxygen transfer coefficient, k L a, was estimated to be 344 h -1 in the 100 mL ACR, opposed to only 104 h -1 in a batch reactor of comparable working volume. Interestingly, the large deviation from plug flow behavior seen in the tracer experiments was found to have little influence on the conversion in the ACR, since both a plug flow reactor (PFR) model and the backflow cell model described the data sufficiently well. Biotechnol. Bioeng. 2017;114: 1222-1230. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. Continuous limit of discrete systems with long-range interaction

    International Nuclear Information System (INIS)

    Tarasov, Vasily E

    2006-01-01

    Discrete systems with long-range interactions are considered. Continuous medium models as continuous limit of discrete chain system are defined. Long-range interactions of chain elements that give the fractional equations for the medium model are discussed. The chain equations of motion with long-range interaction are mapped into the continuum equation with the Riesz fractional derivative. We formulate the consistent definition of continuous limit for the systems with long-range interactions. In this paper, we consider a wide class of long-range interactions that give fractional medium equations in the continuous limit. The power-law interaction is a special case of this class

  2. Influence of Dilution Rate on Enzymes of Intermediary Metabolism in Two Freshwater Bacteria Grown in Continuous Culture

    NARCIS (Netherlands)

    Matin, A.; Grootjans, A.; Hogenhuis, H.

    1976-01-01

    Two freshwater bacteria, a Pseudomonas sp. and a Spirillum sp., were grown in continuous culture under steady-state conditions in L-lactate-, succinate-, ammonium- or phosphate-limited media. In Pseudomonas sp., NAD-independent and NAD-dependent L-lactate dehydrogenases, aconitase, isocitrate

  3. Functional State Modelling of Cultivation Processes: Dissolved Oxygen Limitation State

    Directory of Open Access Journals (Sweden)

    Olympia Roeva

    2015-04-01

    Full Text Available A new functional state, namely dissolved oxygen limitation state for both bacteria Escherichia coli and yeast Saccharomyces cerevisiae fed-batch cultivation processes is presented in this study. Functional state modelling approach is applied to cultivation processes in order to overcome the main disadvantages of using global process model, namely complex model structure and a big number of model parameters. Alongwith the newly introduced dissolved oxygen limitation state, second acetate production state and first acetate production state are recognized during the fed-batch cultivation of E. coli, while mixed oxidative state and first ethanol production state are recognized during the fed-batch cultivation of S. cerevisiae. For all mentioned above functional states both structural and parameter identification is here performed based on experimental data of E. coli and S. cerevisiae fed-batch cultivations.

  4. Continuous Renal Replacement Therapy Applications on Extracorporeal Membrane Oxygenation Circuit.

    Science.gov (United States)

    Yetimakman, Ayse Filiz; Tanyildiz, Murat; Kesici, Selman; Kockuzu, Esra; Bayrakci, Benan

    2017-06-01

    Continuous venovenous hemofiltration or hemodiafiltration is used frequently in pediatric patients, but experience of continuous renal replacement therapy (CRRT) application on extracorporeal membrane oxygenation (ECMO) circuit is still limited. Among several methods used for applying CRRT on ECMO patients, we aim to share our experience on inclusion of a CRRT device in the ECMO circuit which we believe is easier and safer to apply. The data were collected on demographics, outcomes, and details of the treatment of ECMO patients who had CRRT. During the study period of 3 years, venous cannula of ECMO circuit before pump was used for CRRT access for both the filter inlet and outlet of CRRT machine to minimize the thromboembolic complications. The common indication for CRRT was fluid overload. CRRT was used in 3.68% of a total number of patients admitted and 43% of patients on ECMO. The patients have undergone renal replacement therapy for periods of time ranging between 24 h and 25 days (260 h mean). The survival rate of this group of patients with multiorgan failure was 33%. Renal recovery occurred in all of the survivors. Complications such as electrolyte imbalance, hypothermia, and bradykinin syndrome were easily managed. Adding a CRRT device on ECMO circuit is a safe and effective technique. The major advantages of this technique are easy to access, applying CRRT without extra anticoagulation process, preventing potential hemodynamic disturbances, and increased clearance of solutes and fluid overload using larger hemofilter.

  5. A Low-Pressure Oxygen Storage System for Oxygen Supply in Low-Resource Settings.

    Science.gov (United States)

    Rassool, Roger P; Sobott, Bryn A; Peake, David J; Mutetire, Bagayana S; Moschovis, Peter P; Black, Jim Fp

    2017-12-01

    Widespread access to medical oxygen would reduce global pneumonia mortality. Oxygen concentrators are one proposed solution, but they have limitations, in particular vulnerability to electricity fluctuations and failure during blackouts. The low-pressure oxygen storage system addresses these limitations in low-resource settings. This study reports testing of the system in Melbourne, Australia, and nonclinical field testing in Mbarara, Uganda. The system included a power-conditioning unit, a standard oxygen concentrator, and an oxygen store. In Melbourne, pressure and flows were monitored during cycles of filling/emptying, with forced voltage fluctuations. The bladders were tested by increasing pressure until they ruptured. In Mbarara, the system was tested by accelerated cycles of filling/emptying and then run on grid power for 30 d. The low-pressure oxygen storage system performed well, including sustaining a pressure approximately twice the standard working pressure before rupture of the outer bag. Flow of 1.2 L/min was continuously maintained to a simulated patient during 30 d on grid power, despite power failures totaling 2.9% of the total time, with durations of 1-176 min (mean 36.2, median 18.5). The low-pressure oxygen storage system was robust and durable, with accelerated testing equivalent to at least 2 y of operation revealing no visible signs of imminent failure. Despite power cuts, the system continuously provided oxygen, equivalent to the treatment of one child, for 30 d under typical power conditions for sub-Saharan Africa. The low-pressure oxygen storage system is ready for clinical field trials. Copyright © 2017 by Daedalus Enterprises.

  6. Pulmonary tolerance in man to continuous oxygen exposure at 3.0, 2.5, 2.0, and 1.5 ATA in Predictive Studies V

    Science.gov (United States)

    Clark, J. M.; Gelfand, R.; Flores, N. D.; Lambertsen, C. J.; Pisarello, J. B.

    1987-01-01

    Oxygen effects on pulmonary function were measured in normal, resting men who breathed oxygen continuously at 3.0, 2.5, 2.0, and 1.5 ATA to predefined limits of CNS, cardiac, or pulmonary tolerance. Rates of pulmonary symptom intensification and decrease in vital capacity (VC) increased progressively with elevation of inspired oxygen pressure. Although VC decrements occurred concurrently with symptoms, the lung volume changes became prominent when symptoms were still mild. The observed effects were consistent with the interpretation that small airway function is impaired more selectively by oxygen exposure at 3.0 and 2.5 ATA than by exposure at 2.0 and 1.5 ATA. Despite similar VC changes after oxygen exposure at 2.0 ATA for nearly 10 hr and exposure at 1.5 ATA for almost 18 hr, the 2.0 ATA exposure caused greater impairment of pulmonary function and required a longer recovery period.

  7. No oxygen delivery limitation in hepatic encephalopathy

    DEFF Research Database (Denmark)

    Gjedde, Albert; Keiding, Susanne; Vilstrup, Hendrik

    2010-01-01

    to choose between cause and effect in three groups of volunteers, including healthy control subjects (HC), patients with cirrhosis of the liver without hepatic encephalopathy (CL), and patients with cirrhosis with acute hepatic encephalopathy. Compared to HC subjects, blood flow and energy metabolism had......Hepatic encephalopathy is a condition of reduced brain functioning in which both blood flow and brain energy metabolism declined. It is not known whether blood flow or metabolism is the primary limiting factor of brain function in this condition. We used calculations of mitochondrial oxygen tension...

  8. Singlet oxygen produced by quasi-continuous photo-excitation of hypericin in dimethyl-sulfoxide

    Energy Technology Data Exchange (ETDEWEB)

    Varchola, J.; Želonková, K. [Department of Biophysics, Faculty of Science, P. J. Šafárik University, Jesenná 5, 041 54 Košice (Slovakia); Chorvat Jr, D. [International Laser Centre, Ilkovicova 3, 841 05 Bratislava (Slovakia); Jancura, D. [Department of Biophysics, Faculty of Science, P. J. Šafárik University, Jesenná 5, 041 54 Košice (Slovakia); Center for Interdisciplinary Biosciences, Faculty of Science, P. J. Šafárik University, Jesenná 5, 041 54 Košice (Slovakia); Miskovsky, P. [Department of Biophysics, Faculty of Science, P. J. Šafárik University, Jesenná 5, 041 54 Košice (Slovakia); International Laser Centre, Ilkovicova 3, 841 05 Bratislava (Slovakia); Center for Interdisciplinary Biosciences, Faculty of Science, P. J. Šafárik University, Jesenná 5, 041 54 Košice (Slovakia); and others

    2016-09-15

    Singlet oxygen (O{sub 2}({sup 1}Δ{sub g})) production by photo-excited hypericin (Hyp) dissolved in dimethyl-sulfoxide (DMSO) was studied by means of time-resolved phosphorescence measurements. In order to minimize photo-bleaching, the samples were excited in quasi-continuous mode using long-pulse (35 μs) laser excitation. The measured lifetime of singlet oxygen is τ{sub Δ}=5.5±0.3 μs. This result helps to resolve the discrepancy existing in the literature concerning singlet oxygen lifetime in DMSO. The obtained quantum yield of singlet oxygen photosensitized by Hyp in air-saturated DMSO is Φ{sub Δ}=0.4±0.03. The rate constant for Hyp triplet state depopulation in reaction with ground state molecular oxygen is measured to be k{sub q}=1.6±0.3×10{sup 9} M{sup −1} s{sup −1}.

  9. Nutrient regulation by continuous feeding removes limitations on cell yield in the large-scale expansion of Mammalian cell spheroids.

    Directory of Open Access Journals (Sweden)

    Bradley P Weegman

    Full Text Available Cellular therapies are emerging as a standard approach for the treatment of several diseases. However, realizing the promise of cellular therapies across the full range of treatable disorders will require large-scale, controlled, reproducible culture methods. Bioreactor systems offer the scale-up and monitoring needed, but standard stirred bioreactor cultures do not allow for the real-time regulation of key nutrients in the medium. In this study, β-TC6 insulinoma cells were aggregated and cultured for 3 weeks as a model of manufacturing a mammalian cell product. Cell expansion rates and medium nutrient levels were compared in static, stirred suspension bioreactors (SSB, and continuously fed (CF SSB. While SSB cultures facilitated increased culture volumes, no increase in cell yields were observed, partly due to limitations in key nutrients, which were consumed by the cultures between feedings, such as glucose. Even when glucose levels were increased to prevent depletion between feedings, dramatic fluctuations in glucose levels were observed. Continuous feeding eliminated fluctuations and improved cell expansion when compared with both static and SSB culture methods. Further improvements in growth rates were observed after adjusting the feed rate based on calculated nutrient depletion, which maintained physiological glucose levels for the duration of the expansion. Adjusting the feed rate in a continuous medium replacement system can maintain the consistent nutrient levels required for the large-scale application of many cell products. Continuously fed bioreactor systems combined with nutrient regulation can be used to improve the yield and reproducibility of mammalian cells for biological products and cellular therapies and will facilitate the translation of cell culture from the research lab to clinical applications.

  10. Nutrient Regulation by Continuous Feeding Removes Limitations on Cell Yield in the Large-Scale Expansion of Mammalian Cell Spheroids

    Science.gov (United States)

    Weegman, Bradley P.; Nash, Peter; Carlson, Alexandra L.; Voltzke, Kristin J.; Geng, Zhaohui; Jahani, Marjan; Becker, Benjamin B.; Papas, Klearchos K.; Firpo, Meri T.

    2013-01-01

    Cellular therapies are emerging as a standard approach for the treatment of several diseases. However, realizing the promise of cellular therapies across the full range of treatable disorders will require large-scale, controlled, reproducible culture methods. Bioreactor systems offer the scale-up and monitoring needed, but standard stirred bioreactor cultures do not allow for the real-time regulation of key nutrients in the medium. In this study, β-TC6 insulinoma cells were aggregated and cultured for 3 weeks as a model of manufacturing a mammalian cell product. Cell expansion rates and medium nutrient levels were compared in static, stirred suspension bioreactors (SSB), and continuously fed (CF) SSB. While SSB cultures facilitated increased culture volumes, no increase in cell yields were observed, partly due to limitations in key nutrients, which were consumed by the cultures between feedings, such as glucose. Even when glucose levels were increased to prevent depletion between feedings, dramatic fluctuations in glucose levels were observed. Continuous feeding eliminated fluctuations and improved cell expansion when compared with both static and SSB culture methods. Further improvements in growth rates were observed after adjusting the feed rate based on calculated nutrient depletion, which maintained physiological glucose levels for the duration of the expansion. Adjusting the feed rate in a continuous medium replacement system can maintain the consistent nutrient levels required for the large-scale application of many cell products. Continuously fed bioreactor systems combined with nutrient regulation can be used to improve the yield and reproducibility of mammalian cells for biological products and cellular therapies and will facilitate the translation of cell culture from the research lab to clinical applications. PMID:24204645

  11. Impulsive control of a continuous-culture and flocculation harvest chemostat model

    Science.gov (United States)

    Zhang, Tongqian; Ma, Wanbiao; Meng, Xinzhu

    2017-12-01

    In this paper, a new mathematical model describing the process of continuous culture and harvest of microalgaes is proposed. By inputting medium and flocculant at two different fixed moments periodically, continuous culture and harvest of microalgaes is implemented. The mathematical analysis is conducted and the whole dynamics of model is investigated by using theory of impulsive differential equations. We find that the model has a microalgaes-extinction periodic solution and it is globally asymptotically stable when some certain threshold value is less than the unit. And the model is permanent when some certain threshold value is larger than the unit. Then, according to the threshold, the control strategies of continuous culture and harvest of microalgaes are discussed. The results show that continuous culture and harvest of microalgaes can be archived by adjusting suitable input time, input amount of medium or flocculant. Finally, some numerical simulations are carried out to verify the control strategy.

  12. Modeling continuous cultures of microalgae colimited by nitrogen and phosphorus.

    Science.gov (United States)

    Bougaran, Gaël; Bernard, Olivier; Sciandra, Antoine

    2010-08-07

    It is well documented that the combination of low nitrogen and phosphorus resources can lead to situations where colimitation of phytoplankton growth arises, yet the underlying mechanisms are not fully understood. Here, we propose a Droop-based model built on the idea that colimitation by nitrogen and phosphorus arises from the uptake of nitrogen. Indeed, since N-porters are active systems, they require energy that could be related to the phosphorus status of the cell. Therefore, we assumed that N uptake is enhanced by the P quota. Our model also accounts for the biological observations that uptake of a nutrient can be down-regulated by its own internal quota, and succeeds in describing the strong contrast for the non-limiting quotas under N-limited and P-limited conditions that was observed on continuous cultures with Selenastrum minutum and with Isochrysis affinis galbana. Our analysis suggests that, regarding the colimitation concept, N and P would be better considered as biochemically dependent rather than biochemically independent nutrients. Copyright 2010 Elsevier Ltd. All rights reserved.

  13. Microbial nar-GFP cell sensors reveal oxygen limitations in highly agitated and aerated laboratory-scale fermentors

    Directory of Open Access Journals (Sweden)

    Rao Govind

    2009-01-01

    Full Text Available Abstract Background Small-scale microbial fermentations are often assumed to be homogeneous, and oxygen limitation due to inadequate micromixing is often overlooked as a potential problem. To assess the relative degree of micromixing, and hence propensity for oxygen limitation, a new cellular oxygen sensor has been developed. The oxygen responsive E. coli nitrate reductase (nar promoter was used to construct an oxygen reporter plasmid (pNar-GFPuv which allows cell-based reporting of oxygen limitation. Because there are greater than 109 cells in a fermentor, one can outfit a vessel with more than 109 sensors. Our concept was tested in high density, lab-scale (5 L, fed-batch, E. coli fermentations operated with varied mixing efficiency – one verses four impellers. Results In both cases, bioreactors were maintained identically at greater than 80% dissolved oxygen (DO during batch phase and at approximately 20% DO during fed-batch phase. Trends for glucose consumption, biomass and DO showed nearly identical behavior. However, fermentations with only one impeller showed significantly higher GFPuv expression than those with four, indicating a higher degree of fluid segregation sufficient for cellular oxygen deprivation. As the characteristic time for GFPuv expression (approx 90 min. is much larger than that for mixing (approx 10 s, increased specific fluorescence represents an averaged effect of oxygen limitation over time and by natural extension, over space. Conclusion Thus, the pNar-GFPuv plasmid enabled bioreactor-wide oxygen sensing in that bacterial cells served as individual recirculating sensors integrating their responses over space and time. We envision cell-based oxygen sensors may find utility in a wide variety of bioprocessing applications.

  14. Design and testing of a unique randomized gravity, continuous flow bioreactor

    Science.gov (United States)

    Lassiter, Carroll B.

    1993-01-01

    A rotating, null gravity simulator, or Couette bioreactor was successfully used for the culture of mammalian cells in a simulated microgravity environment. Two limited studies using Lipomyces starkeyi and Streptomyces clavuligerus were also conducted under conditions of simulated weightlessness. Although these studies with microorganisms showed promising preliminary results, oxygen limitations presented significant limitations in studying the biochemical and cultural characteristics of these cell types. Microbial cell systems such as bacteria and yeast promise significant potential as investigative models to study the effects of microgravity on membrane transport, as well as substrate induction of inactive enzyme systems. Additionally, the smaller size of the microorganisms should further reduce the gravity induced oscillatory particle motion and thereby improve the microgravity simulation on earth. Focus is on the unique conceptual design, and subsequent development of a rotating bioreactor that is compatible with the culture and investigation of microgravity effects on microbial systems. The new reactor design will allow testing of highly aerobic cell types under simulated microgravity conditions. The described reactor affords a mechanism for investigating the long term effects of reduced gravity on cellular respiration, membrane transfer, ion exchange, and substrate conversions. It offers the capability of dynamically altering nutrients, oxygenation, pH, carbon dioxide, and substrate concentration without disturbing the microgravity simulation, or Couette flow, of the reactor. All progeny of the original cell inoculum may be acclimated to the simulated microgravity in the absence of a substrate or nutrient. The reactor has the promise of allowing scientists to probe the long term effects of weightlessness on cell interactions in plants, bacteria, yeast, and fungi. The reactor is designed to have a flow field growth chamber with uniform shear stress, yet transfer

  15. An action research study; cultural differences impact how manufacturing organizations receive continuous improvement

    Science.gov (United States)

    Kattman, Braden R.

    National culture and organizational culture impact how continuous improvement methods are received, implemented and deployed by suppliers. Previous research emphasized the dominance of national culture over organizational culture. The countries studied included Poland, Mexico, China, Taiwan, South Korea, Estonia, India, Canada, the United States, the United Kingdom, and Japan. The research found that Canada was most receptive to continuous improvement, with China being the least receptive. The study found that organizational culture was more influential than national culture. Isomorphism and benchmarking is driving continuous-improvement language and methods to be more universally known within business. Business and management practices are taking precedence in driving change within organizations.

  16. Continuous Real-time Viability Assessment of Kidneys Based on Oxygen Consumption

    Science.gov (United States)

    Weegman, B.P.; Kirchner, V.A.; Scott, W.E.; Avgoustiniatos, E.S.; Suszynski, T.M.; Ferrer-Fabrega, J.; Rizzari, M.D.; Kidder, L.S.; Kandaswamy, R.; Sutherland, D.E.R.; Papas, K.K.

    2010-01-01

    Background Current ex vivo quality assessment of donor kidneys is limited to vascular resistance measurements and histological analysis. New techniques for the assessment of organ quality before transplantation may further improve clinical outcomes while expanding the depleted deceased-donor pool. We propose the measurement of whole organ oxygen consumption rate (WOOCR) as a method to assess the quality of kidneys in real time before transplantation. Methods Five porcine kidneys were procured using a donation after cardiac death (DCD) model. The renal artery and renal vein were cannulated and the kidney connected to a custom-made hypothermic machine perfusion (HMP) system equipped with an inline oxygenator and fiber-optic oxygen sensors. Kidneys were perfused at 8°C, and the perfusion parameters and partial oxygen pressures (pO2) were measured to calculate WOOCR. Results Without an inline oxygenator, the pO2 of the perfusion solution at the arterial inlet and venous outlet diminished to near 0 within minutes. However, once adequate oxygenation was provided, a significant pO2 difference was observed and used to calculate the WOOCR. The WOOCR was consistently measured from presumably healthy kidneys, and results suggest that it can be used to differentiate between healthy and purposely damaged organs. Conclusions Custom-made HMP systems equipped with an oxygenator and inline oxygen sensors can be applied for WOOCR measurements. We suggest that WOOCR is a promising approach for the real-time quality assessment of kidneys and other organs during preservation before transplantation. PMID:20692397

  17. Direct Measurements of Oxygen Gradients in Spheroid Culture System Using Electron Parametric Resonance Oximetry.

    Directory of Open Access Journals (Sweden)

    Laura M Langan

    Full Text Available Advanced in vitro culture from tissues of different origin includes three-dimensional (3D organoid micro structures that may mimic conditions in vivo. One example of simple 3D culture is spheroids; ball shaped structures typically used as liver and tumour models. Oxygen is critically important in physiological processes, but is difficult to quantify in 3D culture: and the question arises, how small does a spheroid have to be to have minimal micro-environment formation? This question is of particular importance in the growing field of 3D based models for toxicological assessment. Here, we describe a simple non-invasive approach modified for the quantitative measurement and subsequent evaluation of oxygen gradients in spheroids developed from a non-malignant fish cell line (i.e. RTG-2 cells using Electron Paramagnetic Resonance (EPR oximetry. Sonication of the paramagnetic probe Lithium phthalocyanine (LiPc allows for incorporation of probe particulates into spheroid during its formation. Spectra signal strength after incorporation of probe into spheroid indicated that a volume of 20 μl of probe (stock solution: 0.10 mg/mL is sufficient to provide a strong spectra across a range of spheroid sizes. The addition of non-toxic probes (that do not produce or consume oxygen report on oxygen diffusion throughout the spheroid as a function of size. We provide evidence supporting the use of this model over a range of initial cell seeding densities and spheroid sizes with the production of oxygen distribution as a function of these parameters. In our spheroid model, lower cell seeding densities (∼2,500 cells/spheroid and absolute size (118±32 μm allow control of factors such as pre-existing stresses (e.g. ∼ 2% normoxic/hypoxic interface for more accurate measurement of treatment response. The applied methodology provides an elegant, widely applicable approach to directly characterize spheroid (and other organoid cultures in biomedical and

  18. Real-time monitoring of specific oxygen uptake rates of embryonic stem cells in a microfluidic cell culture device.

    Science.gov (United States)

    Super, Alexandre; Jaccard, Nicolas; Cardoso Marques, Marco Paulo; Macown, Rhys Jarred; Griffin, Lewis Donald; Veraitch, Farlan Singh; Szita, Nicolas

    2016-09-01

    Oxygen plays a key role in stem cell biology as a signaling molecule and as an indicator of cell energy metabolism. Quantification of cellular oxygen kinetics, i.e. the determination of specific oxygen uptake rates (sOURs), is routinely used to understand metabolic shifts. However current methods to determine sOUR in adherent cell cultures rely on cell sampling, which impacts on cellular phenotype. We present real-time monitoring of cell growth from phase contrast microscopy images, and of respiration using optical sensors for dissolved oxygen. Time-course data for bulk and peri-cellular oxygen concentrations obtained for Chinese hamster ovary (CHO) and mouse embryonic stem cell (mESCs) cultures successfully demonstrated this non-invasive and label-free approach. Additionally, we confirmed non-invasive detection of cellular responses to rapidly changing culture conditions by exposing the cells to mitochondrial inhibiting and uncoupling agents. For the CHO and mESCs, sOUR values between 8 and 60 amol cell(-1) s(-1) , and 5 and 35 amol cell(-1) s(-1) were obtained, respectively. These values compare favorably with literature data. The capability to monitor oxygen tensions, cell growth, and sOUR, of adherent stem cell cultures, non-invasively and in real time, will be of significant benefit for future studies in stem cell biology and stem cell-based therapies. © 2016 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Oxygen effects on senescence in chondrocytes and mesenchymal stem cells: consequences for tissue engineering.

    Science.gov (United States)

    Moussavi-Harami, Farid; Duwayri, Yazan; Martin, James A; Moussavi-Harami, Farshid; Buckwalter, Joseph A

    2004-01-01

    Primary isolates of chondrocytes and mesenchymal stem cells are often insufficient for cell-based autologous grafting procedures, necessitating in vitro expansion of cell populations. However, the potential for expansion is limited by cellular senescence, a form of irreversible cell cycle arrest regulated by intrinsic and extrinsic factors. Intrinsic mechanisms common to most somatic cells enforce senescence at the so-called "Hayflick limit" of 60 population doublings. Termed "replicative senescence", this mechanism prevents cellular immortalization and suppresses oncogenesis. Although it is possible to overcome the Hayflick limit by genetically modifying cells, such manipulations are regarded as prohibitively dangerous in the context of tissue engineering. On the other hand, senescence associated with extrinsic factors, often called "stress-induced" senescence, can be avoided simply by modifying culture conditions. Because stress-induced senescence is "premature" in the sense that it can halt growth well before the Hayflick limit is reached, growth potential can be significantly enhanced by minimizing culture related stress. Standard culture techniques were originally developed to optimize the growth of fibroblasts but these conditions are inherently stressful to many other cell types. In particular, the 21% oxygen levels used in standard incubators, though well tolerated by fibroblasts, appear to induce oxidative stress in other cells. We reasoned that chondrocytes and MSCs, which are adapted to relatively low oxygen levels in vivo, might be sensitive to this form of stress. To test this hypothesis we compared the growth of MSC and chondrocyte strains in 21% and 5% oxygen. We found that incubation in 21% oxygen significantly attenuated growth and was associated with increased oxidant production. These findings indicated that sub-optimal standard culture conditions sharply limited the expansion of MSC and chondrocyte populations and suggest that cultures for

  20. Physiological oxygen prevents frequent silencing of the DLK1-DIO3 cluster during human embryonic stem cells culture.

    Science.gov (United States)

    Xie, Pingyuan; Sun, Yi; Ouyang, Qi; Hu, Liang; Tan, Yueqiu; Zhou, Xiaoying; Xiong, Bo; Zhang, Qianjun; Yuan, Ding; Pan, Yi; Liu, Tiancheng; Liang, Ping; Lu, Guangxiu; Lin, Ge

    2014-02-01

    Genetic and epigenetic alterations are observed in long-term culture (>30 passages) of human embryonic stem cells (hESCs); however, little information is available in early cultures. Through a large-scale gene expression analysis between initial-passage hESCs (ihESCs, cell derivatives, possibly through attenuation of the expression and phosphorylation of p53. Furthermore, we demonstrated that 5% oxygen, instead of the commonly used 20% oxygen, is required for preserving the expression of the DLK1-DIO3 cluster. Overall, the data suggest that active expression of the DLK1-DIO3 cluster represents a new biomarker for epigenetic stability of hESCs and indicates the importance of using a proper physiological oxygen level during the derivation and culture of hESCs. © AlphaMed Press.

  1. On-line determination of glucose and lactate concentrations in animal cell culture based on fibre optic detection of oxygen in flow-injection analysis.

    Science.gov (United States)

    Dremel, B A; Li, S Y; Schmid, R D

    1992-01-01

    A flow-injection analysis (FIA) system based on fibre optic detection of oxygen consumption using immobilized glucose oxidase (GOD) and lactate oxidase (LOD) is described for the on-line monitoring of glucose and lactate concentrations in animal cell cultures. The consumption of oxygen was determined via dynamic quenching by molecular oxygen of the fluorescence of an indicator. GOD and LOD were immobilized on controlled pore glass (CPG) in enzyme reactors which were directly linked to a specially designed fibre optic flow-through cell covering the oxygen optrode. The system is linear for 0-30 mM glucose, with an r.s.d. of 5% at 30 mM (five measurements) and for 0-30 mM lactate, with an r.s.d. of 5% at 30 mM (five measurements). The enzyme reactors used were stable for more than 4 weeks in continuous operation, and it was possible to analyse up to 20 samples per hour. The system has been successfully applied to the on-line monitoring of glucose and lactate concentrations of an animal cell culture designed for the production of recombinant human antithrombine III (AT-III). Results of the on-line measurement obtained by the FIA system were compared with the off-line results obtained by a glucose and lactate analyser from Yellow Springs Instrument Company (YSI).

  2. Growth Phase, Oxygen, Temperature and Starvation Affect the Development of Viable but Non-Culturable State of Vibrio cholerae

    Directory of Open Access Journals (Sweden)

    Bin eWu

    2016-03-01

    Full Text Available AbstractVibrio cholerae can enter into a viable but non-culturable (VBNC state in order to survive in unfavourable environments. In this study, we studied the roles of five physicochemical and microbiological factors or states, namely, different strains, growth phases, oxygen, temperature, and starvation, on the development of VBNC of V. cholerae in artificial sea water (ASW. Different strains of the organism, the growth phase, and oxygen levels affected the progress of VBNC development. It was found that the VBNC state was induced faster in V. cholerae serogroup O1 classical biotype strain O395 than in O1 El Tor biotype strains C6706 and N16961. When cells in different growth phases were used for VBNC induction, stationary-phase cells lost their culturability more quickly than exponential-phase cells, while induction of a totally non-culturable state took longer to achieve for stationary-phase cells in all three strains, suggesting that heterogeneity of cells should be considered. Aeration strongly accelerated the loss of culturability. During the development of the VBNC state, the culturable cell count under aeration conditions was almost 106-fold lower than under oxygen-limited conditions for all three strains. The other two factors, temperature and nutrients-rich environment, may prevent the induction of VBNC cells. At 22°C or 37°C in ASW, most of the cells rapidly died and the culturable cell count reduced from about 108 CFU/mL to 106–105 CFU/mL. The total cell counts showed that cells that lost viability were decomposed, and the viable cell counts were the same as culturable cell counts, indicating that the cells did not reach the VBNC state. VBNC state development was blocked when ASW was supplied with Luria-Bertani broth (LB, but it was not affected in ASW with M9, suggesting that specific nutrients in LB may prevent the development of VBNC state. These results revealed that the five factors evaluated in this study had different

  3. Anaerobic metabolism at thermal extremes: a metabolomic test of the oxygen limitation hypothesis in an aquatic insect.

    Science.gov (United States)

    Verberk, W C E P; Sommer, U; Davidson, R L; Viant, M R

    2013-10-01

    Thermal limits in ectotherms may arise through a mismatch between supply and demand of oxygen. At higher temperatures, the ability of their cardiac and ventilatory activities to supply oxygen becomes insufficient to meet their elevated oxygen demand. Consequently, higher levels of oxygen in the environment are predicted to enhance tolerance of heat, whereas reductions in oxygen are expected to reduce thermal limits. Here, we extend previous research on thermal limits and oxygen limitation in aquatic insect larvae and directly test the hypothesis of increased anaerobic metabolism and lower energy status at thermal extremes. We quantified metabolite profiles in stonefly nymphs under varying temperatures and oxygen levels. Under normoxia, the concept of oxygen limitation applies to the insects studied. Shifts in the metabolome of heat-stressed stonefly nymphs clearly indicate the onset of anaerobic metabolism (e.g., accumulation of lactate, acetate, and alanine), a perturbation of the tricarboxylic acid cycle (e.g., accumulation of succinate and malate), and a decrease in energy status (e.g., ATP), with corresponding decreases in their ability to survive heat stress. These shifts were more pronounced under hypoxic conditions, and negated by hyperoxia, which also improved heat tolerance. Perturbations of metabolic pathways in response to either heat stress or hypoxia were found to be somewhat similar but not identical. Under hypoxia, energy status was greatly compromised at thermal extremes, but energy shortage and anaerobic metabolism could not be conclusively identified as the sole cause underlying thermal limits under hyperoxia. Metabolomics proved useful for suggesting a range of possible mechanisms to explore in future investigations, such as the involvement of leaking membranes or free radicals. In doing so, metabolomics provided a more complete picture of changes in metabolism under hypoxia and heat stress.

  4. A Small-Volume, Low-Cost, and Versatile Continuous Culture Device.

    Directory of Open Access Journals (Sweden)

    Dominick Matteau

    Full Text Available Continuous culture devices can be used for various purposes such as establishing reproducible growth conditions or maintaining cell populations under a constant environment for long periods. However, commercially available instruments are expensive, were not designed to handle small volumes in the milliliter range, and can lack the flexibility required for the diverse experimental needs found in several laboratories.We developed a versatile continuous culture system and provide detailed instructions as well as a graphical user interface software for potential users to assemble and operate their own instrument. Three culture chambers can be controlled simultaneously with the proposed configuration, and all components are readily available from various sources. We demonstrate that our continuous culture device can be used under different modes, and can easily be programmed to behave either as a turbidostat or chemostat. Addition of fresh medium to the culture vessel can be controlled by a real-time feedback loop or simply calibrated to deliver a defined volume. Furthermore, the selected light-emitting diode and photodetector enable the use of phenol red as a pH indicator, which can be used to indirectly monitor the bulk metabolic activity of a cell population rather than the turbidity.This affordable and customizable system will constitute a useful tool in many areas of biology such as microbial ecology as well as systems and synthetic biology.

  5. The partial pressure of oxygen affects biomarkers of oxidative stress in cultured rainbow trout (Oncorhynchus mykiss) hepatocytes.

    Science.gov (United States)

    Finne, E F; Olsvik, P A; Berntssen, M H G; Hylland, K; Tollefsen, K E

    2008-09-01

    Oxidative stress, the imbalance between production of reactive oxygen species and the cellular detoxification of these reactive compounds, is believed to be involved in the pathology of various diseases. Several biomarkers for oxidative stress have been proposed to serve as tools in toxicological and ecotoxicological research. Not only may exposure to various pro-oxidants create conditions of cellular oxidative stress, but hyperoxic conditions may also increase the production of reactive oxygen species. The objective of the current study was to determine the extent to which differences in oxygen partial pressure would affect biomarkers of oxidative stress in a primary culture of hepatocytes from rainbow trout (Oncorhynchus mykiss). Membrane integrity, metabolic activity, levels of total and oxidized glutathione (tGSH/GSSG) was determined, as well as mRNA expression levels of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), glutathione reductase (GSSG-R), gamma-glutamyl-cystein synthetase (GCS) and thioredoxin (TRX). The results show that different biomarkers of oxidative stress are affected when the cell culture is exposed to atmospheric oxygen, and that changes such as increased GSSG content and induction of GSSG-R and GSH-Px can be reduced by culturing the cells under lower oxygen tension. Oxygen tension may thus influence results of in vitro based cell research and is particularly important when assessing parameters in the antioxidant defence system. Further research is needed to establish the magnitude of this effect in different cellular systems.

  6. Numerical modelling of continuous spin detonation in rich methane-oxygen mixture

    International Nuclear Information System (INIS)

    Trotsyuk, A V

    2016-01-01

    A numerical simulation of a two-dimensional structure of the detonation wave (DW) in a rich (equivalence ratio φ=1.5) methane-air mixture at normal initial condition has been conducted. The computations have been performed in a wide range of channel heights. From the analysis of the flow structure and the number of primary transverse waves in the channel, the dominant size of the detonation cell for studied mixture has been determined to be 45÷50 cm. Based on the fundamental studies of multi-front (cellular) structure of the classical propagating DW in methane mixtures, numerical simulation of continuous spin detonation (CSD) of rich (φ=1.2) methane-oxygen mixture has been carried out in the cylindrical detonation chamber (DC) of the rocket-type engine. We studied the global flow structure in DC, and the detailed structure of the front of the rotating DW. Integral characteristics of the detonation process - the distribution of average values of static and total pressure along the length of the DC, and the value of specific impulse have been obtained. The geometric limit of stable existence of CSD has been determined. (paper)

  7. An effective device for gas-liquid oxygen removal in enclosed microalgae culture.

    Science.gov (United States)

    Su, Zhenfeng; Kang, Ruijuan; Shi, Shaoyuan; Cong, Wei; Cai, Zhaoling

    2010-01-01

    A high-performance gas-liquid transmission device (HPTD) was described in this paper. To investigate the HPTD mass transfer characteristics, the overall volumetric mass transfer coefficients, K(A)(La,CO(2)) for the absorption of gaseous CO(2) and K(A)(La,O(2)) for the desorption of dissolved O(2) were determined, respectively, by titration and dissolved oxygen electrode. The mass transfer capability of carbon dioxide was compared with that of dissolved oxygen in the device, and the operating conditions were optimized to suit for the large-scale enclosed micro-algae cultivation. Based on the effectiveness evaluation of the HPTD applied in one enclosed flat plate Spirulina culture system, it was confirmed that the HPTD can satisfy the demand of the enclosed system for carbon supplement and excessive oxygen removal.

  8. A randomised controlled trial of flow driver and bubble continuous positive airway pressure in preterm infants in a resource-limited setting.

    Science.gov (United States)

    Mazmanyan, P; Mellor, K; Doré, C J; Modi, N

    2016-01-01

    The variable-flow flow driver (FD; EME) and continuous-flow bubble (Fisher-Paykel) continuous positive airway pressure (CPAP) systems are widely used. As these differ in cost and technical requirements, determining comparative efficacy is important particularly where resources are limited. We performed a randomised, controlled, equivalence trial of CPAP systems. We specified the margin of equivalence as 2 days. We analysed binary variables by logistical regression adjusted for gestation, and log transformed continuous variables by multiple linear regression adjusted for gestation, sex and antenatal steroids. A neonatal unit with no blood gas analyser or surfactant availability and limited X-ray and laboratory facilities Neonates CPAP at delivery followed by randomisation to FD or bubble (B). Primary outcome included total days receiving CPAP; secondary outcomes included days receiving CPAP, supplemental oxygen, ventilation, death, pneumothorax and nasal excoriation. We randomised 125 infants (B 66, FD 59). Differences in infant outcomes on B and FD were not statistically significant. The median (range) for CPAP days for survivors was B 0.8 (0.04 to 17.5), FD 0.5 (0.04 to 5.3). B:FD (95% CI) ratios were CPAP days 1.3 (0.9 to 2.1), CPAP plus supplementary oxygen days 1.2 (0.7 to 1.9). B:FD (95% CI) ORs were death 2.3 (0.2 to 28), ventilation 2.1 (0.5 to 9), nasal excoriation 1.2 (0.2 to 8) and pneumothorax 2.4 (0.2 to 26). In a resource-limited setting we found B CPAP equivalent to FD CPAP in the total number of days receiving CPAP within a margin of 2 days. ISRCTN22578364. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  9. Oxygen tension is a determinant of the matrix-forming phenotype of cultured human meniscal fibrochondrocytes.

    Directory of Open Access Journals (Sweden)

    Adetola B Adesida

    Full Text Available BACKGROUND: Meniscal cartilage displays a poor repair capacity, especially when injury is located in the avascular region of the tissue. Cell-based tissue engineering strategies to generate functional meniscus substitutes is a promising approach to treat meniscus injuries. Meniscus fibrochondrocytes (MFC can be used in this approach. However, MFC are unable to retain their phenotype when expanded in culture. In this study, we explored the effect of oxygen tension on MFC expansion and on their matrix-forming phenotype. METHODOLOGY/PRINCIPAL FINDINGS: MFC were isolated from human menisci followed by basic fibroblast growth factor (FGF-2 mediated cell expansion in monolayer culture under normoxia (21%O(2 or hypoxia (3%O(2. Normoxia and hypoxia expanded MFC were seeded on to a collagen scaffold. The MFC seeded scaffolds (constructs were cultured in a serum free chondrogenic medium for 3 weeks under normoxia and hypoxia. Constructs containing normoxia-expanded MFC were subsequently cultured under normoxia while those formed from hypoxia-expanded MFC were subsequently cultured under hypoxia. After 3 weeks of in vitro culture, the constructs were assessed biochemically, histologically and for gene expression via real-time reverse transcription-PCR assays. The results showed that constructs under normoxia produced a matrix with enhanced mRNA ratio (3.5-fold higher; p<0.001 of collagen type II to I. This was confirmed by enhanced deposition of collagen II using immuno-histochemistry. Furthermore, the constructs under hypoxia produced a matrix with higher mRNA ratio of aggrecan to versican (3.5-fold, p<0.05. However, both constructs had the same capacity to produce a glycosaminoglycan (GAG -specific extracellular matrix. CONCLUSIONS: Our data provide evidence that oxygen tension is a key player in determining the matrix phenotype of cultured MFC. These findings suggest that the use of normal and low oxygen tension during MFC expansion and subsequent neo

  10. Cultural continuity, traditional Indigenous language, and diabetes in Alberta First Nations: a mixed methods study.

    Science.gov (United States)

    Oster, Richard T; Grier, Angela; Lightning, Rick; Mayan, Maria J; Toth, Ellen L

    2014-10-19

    We used an exploratory sequential mixed methods approach to study the association between cultural continuity, self-determination, and diabetes prevalence in First Nations in Alberta, Canada. We conducted a qualitative description where we interviewed 10 Cree and Blackfoot leaders (members of Chief and Council) from across the province to understand cultural continuity, self-determination, and their relationship to health and diabetes, in the Alberta First Nations context. Based on the qualitative findings, we then conducted a cross-sectional analysis using provincial administrative data and publically available data for 31 First Nations communities to quantitatively examine any relationship between cultural continuity and diabetes prevalence. Cultural continuity, or "being who we are", is foundational to health in successful First Nations. Self-determination, or "being a self-sufficient Nation", stems from cultural continuity and is seriously compromised in today's Alberta Cree and Blackfoot Nations. Unfortunately, First Nations are in a continuous struggle with government policy. The intergenerational effects of colonization continue to impact the culture, which undermines the sense of self-determination, and contributes to diabetes and ill health. Crude diabetes prevalence varied dramatically among First Nations with values as low as 1.2% and as high as 18.3%. Those First Nations that appeared to have more cultural continuity (measured by traditional Indigenous language knowledge) had significantly lower diabetes prevalence after adjustment for socio-economic factors (p =0.007). First Nations that have been better able to preserve their culture may be relatively protected from diabetes.

  11. Effect of oxygen on morphogenesis and polypeptide expression by Mucor racemosus

    International Nuclear Information System (INIS)

    Phillips, G.J.; Borgia, P.T.

    1985-01-01

    The morphology of Mucor racemosus in cultures continuously sparged with nitrogen gas was investigated. When appropriate precautions were taken to prevent oxygen from entering the cultures, the morphology of the cells was uniformly yeastlike irrespective of the N 2 flow rate. When small amounts of oxygen entered the cultures the resulting microaerobic conditions evoked mycelial development. Polypeptides synthesized by aerobic mycelia, microaerobic mycelia, anaerobic yeasts, and yeasts grown in a CO 2 atmosphere were compared by two-dimensional gel electrophoresis. The results indicated that a large number of differences in polypeptide expression exist when microaerobic mycelia or anaerobic yeasts are compared with aerobic mycelia and that these alterations correlate with a change from an oxidative to a fermentative metabolic mode. The authors hypothesize that oxygen regulates the expression of polypeptides involved in both the metabolic mode and in morphogenesis

  12. Oxygen--a limiting factor for brain recovery.

    Science.gov (United States)

    Hadanny, Amir; Efrati, Shai

    2015-09-01

    Effective brain metabolism is highly dependent on a narrow therapeutic window of oxygen. In major insults to the brain (e.g., intracerebral hemorrhage), a slight decrease in oxygen supply, as occurs in a hypobaric environment at high altitude, has devastating effects on the injured brain tissue. Conversely, increasing brain oxygenation, by the use of hyperbaric oxygen therapy, can improve brain metabolism and its dependent regenerative processes.

  13. Oxygen - a limiting factor for brain recovery

    OpenAIRE

    Hadanny, Amir; Efrati, Shai

    2015-01-01

    Effective brain metabolism is highly dependent on a narrow therapeutic window of oxygen. In major insults to the brain (e.g., intracerebral hemorrhage), a slight decrease in oxygen supply, as occurs in a hypobaric environment at high altitude, has devastating effects on the injured brain tissue. Conversely, increasing brain oxygenation, by the use of hyperbaric oxygen therapy, can improve brain metabolism and its dependent regenerative processes.

  14. Accurate control of oxygen level in cells during culture on silicone rubber membranes with application to stem cell differentiation.

    Science.gov (United States)

    Powers, Daryl E; Millman, Jeffrey R; Bonner-Weir, Susan; Rappel, Michael J; Colton, Clark K

    2010-01-01

    Oxygen level in mammalian cell culture is often controlled by placing culture vessels in humidified incubators with a defined gas phase partial pressure of oxygen (pO(2gas)). Because the cells are consuming oxygen supplied by diffusion, a difference between pO(2gas) and that experienced by the cells (pO(2cell)) arises, which is maximal when cells are cultured in vessels with little or no oxygen permeability. Here, we demonstrate theoretically that highly oxygen-permeable silicone rubber membranes can be used to control pO(2cell) during culture of cells in monolayers and aggregates much more accurately and can achieve more rapid transient response following a disturbance than on polystyrene and fluorinated ethylene-propylene copolymer membranes. Cell attachment on silicone rubber was achieved by physical adsorption of fibronectin or Matrigel. We use these membranes for the differentiation of mouse embryonic stem cells to cardiomyocytes and compare the results with culture on polystyrene or on silicone rubber on top of polystyrene. The fraction of cells that are cardiomyocyte-like increases with decreasing pO(2) only when using oxygen-permeable silicone membrane-based dishs, which contract on silicone rubber but not polystyrene. The high permeability of silicone rubber results in pO(2cell) being equal to pO(2gas) at the tissue-membrane interface. This, together with geometric information from histological sections, facilitates development of a model from which the pO(2) distribution within the resulting aggregates is computed. Silicone rubber membranes have significant advantages over polystyrene in controlling pO(2cell), and these results suggest they are a valuable tool for investigating pO(2) effects in many applications, such as stem cell differentiation. Copyright 2009 American Institute of Chemical Engineers

  15. Gene expression of Escherichia coli in continuous culture during adaptation to artificial sunlight.

    Science.gov (United States)

    Berney, Michael; Weilenmann, Hans-Ulrich; Egli, Thomas

    2006-09-01

    Escherichia coli growing in continuous culture under continuous UVA irradiation exhibits growth inhibition with a subsequent adaptation to the stress. Transcriptome analysis was performed during transient growth inhibition and in the UVA light-adapted growth state. The results indicate that UVA light induces stringent response and an additional response that includes the upregulation of the synthesis of valine, isoleucine, leucine, phenylalanine, histidine and glutamate. The induction of several SOS response-genes strongly points to DNA damage as a result of UVA exposure. The involvement of oxidative stress was observed with the induction of ahpCF. Taken together it supports the hypothesis of the production of reactive oxygen species by UVA light. In the UVA-adapted cell population strong repression of the acid tolerance response was found. We identified the enzyme chorismate mutase as a possible chromophore for UVA light-inactivation and found strong repression of the pyrBI operon and the gene mgtA encoding for an ATP-dependent Mg2+ transporter. Furthermore, our results indicate that the role of RpoS may not be as important in the adaptation of E. coli to UVA light as it was implicated by previous results with starved cells, but that RpoS might be of crucial importance for the resistance under transient light exposure.

  16. Technical paper on the realisation of a continuous axenic culture of chlorella. Description of a biostat; Note technique sur la realisation d'une culture continue et axenique de chlorelles. Description d'un biostat

    Energy Technology Data Exchange (ETDEWEB)

    Dalmon, J; Gilet, R [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1966-07-01

    An apparatus for the continuous cultivation of chlorella is described with the means that allowed to keep axenic cultures for several months. (authors) [French] On decrit un appareil assurant une culture continue de chlorelles en insistant sur les modalites qui permettent de garder cette culture axenique durant plusieurs mois. (auteurs)

  17. Limited oxygen index levels of impregnated Scots pine wood

    International Nuclear Information System (INIS)

    Tomak, Eylem Dizman; Cavdar, Ayfer Donmez

    2013-01-01

    Highlights: • Scots pine samples were treated with 4 wood preservatives with various concentrations. • Limited oxygen index level was evaluated both for leached and un-leached samples. • All treatments improved fire retardance of samples despite some chemicals leached out. • Samples treated with fireproof agent showed the best results. • LOI of samples treated with boron powder and silicon oil was not changed by leaching. - Abstract: In this study, effect of various concentrations of boron powder, mixture of boric acid and borax, fireproof agent based on liquid blend of limestone, and silicon oil on limited oxygen index levels (LOI) of S. pine wood was investigated. Wood samples were first vacuum treated with the preservatives, and then were subjected to leaching procedure. Samples treated with fireproof agent showed the best results for improving the fire retardancy of wood, furthermore, samples treated with 25%, 50% and 100% of the solution did not burn. Leaching did not considerably change the LOI of wood samples treated with boron powder and silicon oil; however, LOI levels of samples treated with the mixture of boric acid and borax and fireproof agent were affected by leaching procedure probably arising those preservatives did not chemically bond to main wood components. All treatments improved fire retardancy of samples despite some amount of preservatives leached out from wood

  18. Limited oxygen index levels of impregnated Scots pine wood

    Energy Technology Data Exchange (ETDEWEB)

    Tomak, Eylem Dizman, E-mail: eylemdizman@yahoo.com [Forest Industry Engineering Department, Faculty of Forestry, Bursa Technical University, 16200 Bursa (Turkey); Cavdar, Ayfer Donmez [Interior Architecture Department, Faculty of Architecture, Karadeniz Technical University, 61080 Trabzon (Turkey)

    2013-12-10

    Highlights: • Scots pine samples were treated with 4 wood preservatives with various concentrations. • Limited oxygen index level was evaluated both for leached and un-leached samples. • All treatments improved fire retardance of samples despite some chemicals leached out. • Samples treated with fireproof agent showed the best results. • LOI of samples treated with boron powder and silicon oil was not changed by leaching. - Abstract: In this study, effect of various concentrations of boron powder, mixture of boric acid and borax, fireproof agent based on liquid blend of limestone, and silicon oil on limited oxygen index levels (LOI) of S. pine wood was investigated. Wood samples were first vacuum treated with the preservatives, and then were subjected to leaching procedure. Samples treated with fireproof agent showed the best results for improving the fire retardancy of wood, furthermore, samples treated with 25%, 50% and 100% of the solution did not burn. Leaching did not considerably change the LOI of wood samples treated with boron powder and silicon oil; however, LOI levels of samples treated with the mixture of boric acid and borax and fireproof agent were affected by leaching procedure probably arising those preservatives did not chemically bond to main wood components. All treatments improved fire retardancy of samples despite some amount of preservatives leached out from wood.

  19. Effect of long-term culture of mouse embryonic stem cells under low oxygen concentration as well as on glycosaminoglycan hyaluronan on cell proliferation and differentiation.

    Science.gov (United States)

    Ramírez, M Á; Pericuesta, E; Yáñez-Mó, M; Palasz, A; Gutiérrez-Adán, A

    2011-02-01

    Maintaining undifferentiated stem cells in defined conditions is of critical importance to improve their in vitro culture. We have evaluated the effects of culturing mouse stem (mES) cells under physiological oxygen concentration as well as by replacing fibroblast feeder layer (mEF) with gelatin or glycosaminoglycan hyaluronan (HA), on cell proliferation and differentiation. After 3 days culture or after long-term cell culture under different conditions, levels of apoptotic cell death were determined by cell cycle and TUNEL (TdT-mediated dUTP nick end labelling) assays and levels of cell proliferation by CFSE (5-(and-6)-carboxyfluorescein diacetate succinimidyl ester) labelling. We assessed spontaneous differentiation into cardiomyocytes and mRNA expression of pluripotency and differentiation biomarkers. After 3 days culture under hypoxic conditions, levels of proliferation and apoptosis of mES cells were higher, in correlation with increase in intracellular reactive oxygen species. However, when cells were continuously grown for 1 month under those conditions, the level of apoptosis was, in all cases, under 4%. Hypoxia reduced spontaneous differentiation of mES into cardiomyocytes. Long-term culture on HA was more effective in maintaining the pluripotent state of the mES cells when compared to that on gelatin. Level of terminal differentiation was highest on mEF, intermediate on HA and lowest on gelatin. Our data suggest that hypoxia is not necessary for maintaining pluripotency of mES cells and appeared to be detrimental during ES differentiation. Moreover, HA may offer a valuable alternative for long-term culture of mES cells in vitro. © 2010 Blackwell Publishing Ltd.

  20. Regulation of Autotrophic and Heterotrophic Metabolism in Pseudomonas oxalaticus OX1 : Growth on Mixtures of Acetate and Formate in Continuous Culture

    NARCIS (Netherlands)

    Dijkhuizen, L.; Harder, W.

    1979-01-01

    Growth of Pseudomonas oxalaticus in carbon- and energy-limited continuous cultures with mixtures of acetate and formate resulted in the simultaneous utilization of both substrates at all dilution rates tested. During growth on these mixtures, acetate repressed the synthesis of ribulosebisphosphate

  1. Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations

    Science.gov (United States)

    Kalyanaraman, Balaraman; Darley-Usmar, Victor; Davies, Kelvin J.A.; Dennery, Phyllis A.; Forman, Henry Jay; Grisham, Matthew B.; Mann, Giovanni E.; Moore, Kevin; Roberts, L. Jackson; Ischiropoulos, Harry

    2013-01-01

    The purpose of this position paper is to present a critical analysis of the challenges and limitations of the most widely used fluorescent probes for detecting and measuring reactive oxygen and nitrogen species. Where feasible, we have made recommendations for the use of alternate probes and appropriate analytical techniques that measure the specific products formed from the reactions between fluorescent probes and reactive oxygen and nitrogen species. We have proposed guidelines that will help present and future researchers with regard to the optimal use of selected fluorescent probes and interpretation of results. PMID:22027063

  2. Operational Limitations of Arctic Waste Stabilization Ponds: Insights from Modeling Oxygen Dynamics and Carbon Removal

    DEFF Research Database (Denmark)

    Ragush, Colin M.; Gentleman, Wendy C.; Hansen, Lisbeth Truelstrup

    2018-01-01

    Presented here is a mechanistic model of the biological dynamics of the photic zone of a single-cell arctic waste stabilization pond (WSP) for the prediction of oxygen concentration and the removal of oxygen-demanding substances. The model is an exploratory model to assess the limiting environmen...

  3. Implementation of Mobile Pedagogy During Continuous Education of Physical Culture Teachers

    Directory of Open Access Journals (Sweden)

    Roman S.

    2018-03-01

    Full Text Available Introduction: one of the urgent problems in the field of continuous training of future teachers of physical culture is the training of students using mobile devices and innovative educational Internet technologies. The scientific literature has thoroughly studied the introduction of mobile technologies in the professional training of teachers, but the development of foundations for the formation of physical competence based on innovative approaches, such as mobile training, has not been implemented to date. Hence, the necessity of setting the research goal that is to create a methodological model for the continuing education of teachers of physical culture on the basis of the ideas of mobile pedagogy in the cluster “college - university” and the use of experimental methods to substantiate the effectiveness of its implementation in the professional training of students. Materials and Methods: to create a model of continuous education, including the integration of various clusters, components and innovative technologies, the systemic approach is applied to the study with the additional use of competency, activity, qualification, personality-orientedness, culturological and innovation-technological approaches. Systematisation, comparison, comparison and generalisation are used in modeling the continuous education of teachers of physical culture. Results: in the process of research, the integrating resources and the scientific and educational potential of secondary and higher education were revealed. These recourses allowed the systematisation and modeling of the process of continuing education of teachers of physical culture based on the ideas of mobile pedagogy in the cluster “college - university”. At the experimental stage of the study, the effectiveness of the implementation of mobile pedagogy is proved and the author’s approach to the training of future teachers of physical culture is methodologically grounded. Discussion and

  4. PUSAKA SAUJANA BOROBUDUR: PERUBAHAN DAN KONTINUITASNYA (Borobudur Cultural Landscape: Change and Continuity

    Directory of Open Access Journals (Sweden)

    Dwita Hadi Rahmi

    2012-03-01

    Full Text Available ABSTRAK Penelitian ini dilakukan di kawasan Borobudur, Kabupaten Magelang, Jawa Tengah, untuk mengkaji potensi dan nilai keunggulan pusaka saujana Borobudur, serta mengetahui perubahan dan kontinuitasnya. Dengan interpretasi sejarah dan penjelasan secara naratif, wujud pusaka saujana Borobudur dapat diapresiasi dalam bentuk: a pola pengolahan lahan; b tata kehidupan; c arsitektur tradisional kawasan; dan d bentukan-bentukan alami. Potensi yang dimiliki pusaka saujana Borobudur meliputi potensi budaya, sejarah, bentukan-bentukan alami, dan panorama kawasan. Potensi-potensi yang dimiliki kawasan Borobudur, serta kontinuitas kondisi bentanglahan dan budayanya menjadikan kawasan Borobudur sebuah pusaka saujana yang unggul, dan nilai keunggulan ini meliputi: a kandungan sejarah lingkungan kawasan, b kawasan peninggalan benda-benda arkeologi, c saujana-saujana desa yang menunjukkan kehidupan agraris masyarakatnya, dan d panorama indah bentanglahan. Dalam lingkungan yang dinamis, pusaka saujana Borobudur terus mengalami perubahan yang dapat mengancam kontinuitasnya. Perubahan terjadi terutama pada tata guna lahan, kualitas visual, dan sebagian budaya masyarakat, sedangkan kontinuitas masih dapat ditemui pada kegiatan pertanian secara tradisional; sebagian tradisi atau adat istiadat yang berkaitan dengan pertanian, keagamaan, dan kepercayaan; arsitektur tradisional kawasan perdesaan; dan panorama indah bentanglahan. Sampai saat ini, perubahan-perubahan yang terjadi belum berdampak pada hilangnya atau menurunnya kontinuitas pusaka saujana Borobudur. Meskipun demikian, upaya-upaya pelestarian dan pengelolaannya diperlukan untuk menjaga kontinuitasnya.   ABSTRACT This research was conducted in Borobudur area, Magelang Regency, Central Java, to examine the potencies and  outstanding values of Borobudur cultural landscape heritage, and to understand its changes and continuity. By historic interpretation and narrative explanation, the forms of Borobudur

  5. Cell viability, reactive oxygen species, apoptosis, and necrosis in myoblast cultures exposed to low-level infrared laser.

    Science.gov (United States)

    Alexsandra da Silva Neto Trajano, Larissa; da Silva, Camila Luna; de Carvalho, Simone Nunes; Cortez, Erika; Mencalha, André Luiz; de Souza da Fonseca, Adenilson; Stumbo, Ana Carolina

    2016-07-01

    Low-level infrared laser is considered safe and effective for treatment of muscle injuries. However, the mechanism involved on beneficial effects of laser therapy are not understood. The aim was to evaluate cell viability, reactive oxygen species, apoptosis, and necrosis in myoblast cultures exposed to low-level infrared laser at therapeutic fluences. C2C12 myoblast cultures at different (2 and 10 %) fetal bovine serum (FBS) concentrations were exposed to low-level infrared laser (808 nm, 100 mW) at different fluences (10, 35, and 70 J/cm(2)) and evaluated after 24, 48, and 72 h. Cell viability was evaluated by WST-1 assay; reactive oxygen species (ROS), apoptosis, and necrosis were evaluated by flow cytometry. Cell viability was decreased atthe lowest FBS concentration. Laser exposure increased the cell viability in myoblast cultures at 2 % FBS after 48 and 72 h, but no significant increase in ROS was observed. Apoptosis was decreased at the higher fluence and necrosis was increased at lower fluence in myoblast cultures after 24 h of laser exposure at 2 % FBS. No laser-induced alterations were obtained at 10 % FBS. Results show that level of reactive oxygen species is not altered, at least to those evaluated in this study, but low-level infrared laser exposure affects cell viability, apoptosis, and necrosis in myoblast cultures depending on laser fluence and physiologic conditions of cells.

  6. Microsensor and transcriptomic signatures of oxygen depletion in biofilms associated with chronic wounds: Biofilms and oxygen

    Energy Technology Data Exchange (ETDEWEB)

    James, Garth A. [Center for Biofilm Engineering, Montana State University, Bozeman Montana; Ge Zhao, Alice [Division of Dermatology, Department of Medicine, University of Washington, Seattle Washington; Usui, Marcia [Division of Dermatology, Department of Medicine, University of Washington, Seattle Washington; Underwood, Robert A. [Division of Dermatology, Department of Medicine, University of Washington, Seattle Washington; Nguyen, Hung [The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman Washington; Beyenal, Haluk [The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman Washington; deLancey Pulcini, Elinor [Center for Biofilm Engineering, Montana State University, Bozeman Montana; Agostinho Hunt, Alessandra [Department of Microbiology and Molecular Genetics, 5180 Biomedical and Physical Sciences, Michigan State University, East Lansing Michigan; Bernstein, Hans C. [Pacific Northwest National Laboratory, Chemical and Biological Signature Science, Richland Washington; Fleckman, Philip [Division of Dermatology, Department of Medicine, University of Washington, Seattle Washington; Olerud, John [Division of Dermatology, Department of Medicine, University of Washington, Seattle Washington; Williamson, Kerry S. [Center for Biofilm Engineering, Montana State University, Bozeman Montana; Franklin, Michael J. [Center for Biofilm Engineering, Montana State University, Bozeman Montana; Stewart, Philip S. [Center for Biofilm Engineering, Montana State University, Bozeman Montana

    2016-02-16

    Polymicrobial biofilms have been implicated in delayed wound healing, although the mechanisms by which biofilms impair wound healing are poorly understood. Many species of bacteria produce exotoxins and exoenzymes that may inhibit healing. In addition, oxygen consumption by biofilms may impede wound healing. In this study, we used oxygen microsensors to measure oxygen transects through in vitro-cultured biofilms, biofilms formed in vivo in a diabetic (db/db) mouse model, and ex vivo human chronic wound specimens. The results show that oxygen levels within both euthanized and live mouse wounds had steep gradients that reached minima ranging from 19 to 61% oxygen partial pressure, compared to atmospheric oxygen levels. The oxygen gradients in the mouse wounds were similar to those observed for clinical isolates cultured in vitro and for human ex vivo scabs. No oxygen gradients were observed for heat-killed scabs, suggesting that active metabolism by the viable bacteria contributed to the reduced oxygen partial pressure of the wounds. To characterize the metabolic activities of the bacteria in the mouse wounds, we performed transcriptomics analyses of Pseudomonas aeruginosa biofilms associated with the db/db mice wounds using Affymetrix microarrays. The results demonstrated that the bacteria expressed genes for metabolic activities associated with cell growth. Interestingly, the transcriptome results indicated that the bacteria within the wounds also experienced oxygen-limitation stress. Among the bacterial genes that were expressed in vivo were genes associated with the Anr-mediated hypoxia-stress response. Other bacterial stress response genes highly expressed in vivo were genes associated with stationary-phase growth, osmotic stress, and RpoH-mediated heat shock stress. Overall, the results support the hypothesis that the metabolic activities of bacteria in biofilms act as oxygen sinks in chronic wounds and that the depletion of oxygen contributes to the

  7. Continuing Professional Development in Context: Teachers' Continuing Professional Development Culture in Germany and Sweden

    Science.gov (United States)

    Wermke, Wieland

    2011-01-01

    This article investigates the continuing professional development (CPD) culture of teachers, and asks how it is influenced by properties of the school system. It reports the results of a questionnaire study with 418 secondary teachers from Sweden and Germany. The results show highly significant differences between Swedish and German teachers'…

  8. Selection of Ethanol-Tolerant Yeast Hybrids in pH-Regulated Continuous Culture

    OpenAIRE

    Jiménez, Juan; Benítez, Tahía

    1988-01-01

    Hybrids between naturally occurring wine yeast strains and laboratory strains were formed as a method of increasing genetic variability to improve the ethanol tolerance of yeast strains. The hybrids were subjected to competition experiments under continuous culture controlled by pH with increasing ethanol concentrations over a wide range to select the fastest-growing strain at any concentration of ethanol. The continuous culture system was obtained by controlling the dilution rate of a chemos...

  9. Oxygen availability and strain combination modulate yeast growth dynamics in mixed culture fermentations of grape must with Starmerella bacillaris and Saccharomyces cerevisiae.

    Science.gov (United States)

    Englezos, Vasileios; Cravero, Francesco; Torchio, Fabrizio; Rantsiou, Kalliopi; Ortiz-Julien, Anne; Lambri, Milena; Gerbi, Vincenzo; Rolle, Luca; Cocolin, Luca

    2018-02-01

    Starmerella bacillaris (synonym Candida zemplinina) is a non-Saccharomyces yeast that has been proposed as a co-inoculant of selected Saccharomyces cerevisiae strains in mixed culture fermentations to enhance the analytical composition of the wines. In order to acquire further knowledge on the metabolic interactions between these two species, in this study we investigated the impact of oxygen addition and combination of Starm. bacillaris with S. cerevisiae strains on the microbial growth and metabolite production. Fermentations were carried out under two different conditions of oxygen availability. Oxygen availability and strain combination clearly influenced the population dynamics throughout the fermentation. Oxygen concentration increased the survival time of Starm. bacillaris and decreased the growth rate of S. cerevisiae strains in mixed culture fermentations, whereas it did not affect the growth of the latter in pure culture fermentations. This study reveals new knowledge about the influence of oxygen availability on the successional evolution of yeast species during wine fermentation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. A 3D-Printed Oxygen Control Insert for a 24-Well Plate.

    Directory of Open Access Journals (Sweden)

    Martin D Brennan

    Full Text Available 3D printing has emerged as a method for directly printing complete microfluidic devices, although printing materials have been limited to oxygen-impermeable materials. We demonstrate the addition of gas permeable PDMS (Polydimethylsiloxane membranes to 3D-printed microfluidic devices as a means to enable oxygen control cell culture studies. The incorporation of a 3D-printed device and gas-permeable membranes was demonstrated on a 24-well oxygen control device for standard multiwell plates. The direct printing allows integrated distribution channels and device geometries not possible with traditional planar lithography. With this device, four different oxygen conditions were able to be controlled, and six wells were maintained under each oxygen condition. We demonstrate enhanced transcription of the gene VEGFA (vascular endothelial growth factor A with decreasing oxygen levels in human lung adenocarcinoma cells. This is the first 3D-printed device incorporating gas permeable membranes to facilitate oxygen control in cell culture.

  11. High Precision Continuous and Real-Time Measurement of Atmospheric Oxygen Using Cavity Ring-Down Spectroscopy.

    Science.gov (United States)

    Kim-Hak, D.; Hoffnagle, J.; Rella, C.; Sun, M.

    2016-12-01

    Oxygen is a major and vital component of the Earth atmosphere representing about 21% of its composition. It is consumed or produced through biochemical processes such as combustion, respiration, and photosynthesis. Although atmospheric oxygen is not a greenhouse gas, it can be used as a top-down constraint on the carbon cycle. The variation observations of oxygen in the atmosphere are very small, in the order of the few ppm's. This presents the main technical challenge for measurement as a very high level of precision is required and only few methods including mass spectrometry, fuel cell, and paramagnetic are capable of overcoming it. Here we present new developments of a high-precision gas analyzer that utilizes the technique of Cavity Ring-Down Spectroscopy to measure oxygen concentration and oxygen isotope. Its compact and ruggedness design combined with high precision and long-term stability allows the user to deploy the instrument in the field for continuous monitoring of atmospheric oxygen level. Measurements have a 1-σ 5-minute averaging precision of 1-2 ppm for O2 over a dynamic range of 0-20%. We will present supplemental data acquired from our 10m tower measurements in Santa Clara, CA.

  12. Pretreatment of Parsley (Petroselinum crispum L.) Suspension Cultures with Methyl Jasmonate Enhances Elicitation of Activated Oxygen Species.

    Science.gov (United States)

    Kauss, H.; Jeblick, W.; Ziegler, J.; Krabler, W.

    1994-01-01

    Suspension-cultured cells of parsley (Petroselinum crispum L.) were used to demonstrate an influence of jasmonic acid methyl ester (JAME) on the elicitation of activated oxygen species. Preincubation of the cell cultures for 1 d with JAME greatly enhanced the subsequent induction by an elicitor preparation from cell walls of Phytophtora megasperma f. sp. glycinea (Pmg elicitor) and by the polycation chitosan. Shorter preincubation times with JAME were less efficient, and the effect was saturated at about 5 [mu]M JAME. Treatment of the crude Pmg elicitor with trypsin abolished induction of activated oxygen species, an effect similar to that seen with elicitation of coumarin secretion. These results suggest that JAME conditioned the parsley suspension cells in a time-dependent manner to become more responsive to elicitation, reminiscent of developmental effects caused by JAME in whole plants. It is interesting that pretreatment of the parsley cultures with 2,6-dichloroisonicotinic and 5-chlorosalicylic acid only slightly enhanced the elicitation of activated oxygen species, whereas these substances greatly enhanced the elicitation of coumarin secretion. Therefore, these presumed inducers of systemic acquired resistance exhibit a specificity different from JAME. PMID:12232189

  13. Technical paper on the realisation of a continuous axenic culture of chlorella. Description of a biostat; Note technique sur la realisation d'une culture continue et axenique de chlorelles. Description d'un biostat

    Energy Technology Data Exchange (ETDEWEB)

    Dalmon, J.; Gilet, R. [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1966-07-01

    An apparatus for the continuous cultivation of chlorella is described with the means that allowed to keep axenic cultures for several months. (authors) [French] On decrit un appareil assurant une culture continue de chlorelles en insistant sur les modalites qui permettent de garder cette culture axenique durant plusieurs mois. (auteurs)

  14. Startup and oxygen concentration effects in a continuous granular mixed flow autotrophic nitrogen removal reactor.

    Science.gov (United States)

    Varas, Rodrigo; Guzmán-Fierro, Víctor; Giustinianovich, Elisa; Behar, Jack; Fernández, Katherina; Roeckel, Marlene

    2015-08-01

    The startup and performance of the completely autotrophic nitrogen removal over nitrite (CANON) process was tested in a continuously fed granular bubble column reactor (BCR) with two different aeration strategies: controlling the oxygen volumetric flow and oxygen concentration. During the startup with the control of oxygen volumetric flow, the air volume was adjusted to 60mL/h and the CANON reactor had volumetric N loadings ranging from 7.35 to 100.90mgN/Ld with 36-71% total nitrogen removal and high instability. In the second stage, the reactor was operated at oxygen concentrations of 0.6, 0.4 and 0.2mg/L. The best condition was 0.2 mgO2/L with a total nitrogen removal of 75.36% with a CANON reactor activity of 0.1149gN/gVVSd and high stability. The feasibility and effectiveness of CANON processes with oxygen control was demonstrated, showing an alternative design tool for efficiently removing nitrogen species. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Enhancement of aerobic biodegradation in an oxygen-limiting environment using a saponin-based microbubble suspension

    International Nuclear Information System (INIS)

    Choi, Yong Ju; Kim, Young-Jin; Nam, Kyoungphile

    2009-01-01

    This study investigated the ability of a saponin-based microbubble suspension to enhance aerobic biodegradation of phenanthrene by subsurface delivery. As the microbubble suspension flowed through a sand column pressure buildup and release was repeatedly observed, which delivered oxygen to the less permeable regions. Burkholderia cepacia RPH1, a phenanthrene-degrading bacterium, was mainly transported in a suspended form in the microbubble suspension. When three pore volumes of the microbubble suspension containing B. cepacia RPH1 was introduced into a column contaminated with phenanthrene (100 mg/kg), the oxygen content declined to 5% from an initial value of 20% within 5 days and correspondingly, 34.4% of initial phenanthrene was removed in 8 days. The addition of two further three pore volumes enhanced the biodegradation efficiency by a factor of 2.2. Our data suggest that a saponin-based microbubble suspension could be a potential carrier for enhancing the aerobic biodegradation under an oxygen-limiting environment. - Microbubble suspension can enhance the phenanthrene biodegradation under an oxygen-limiting condition.

  16. Enhancement of aerobic biodegradation in an oxygen-limiting environment using a saponin-based microbubble suspension

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yong Ju; Kim, Young-Jin [Department of Civil and Environmental Engineering, Seoul National University, Shillim-dong, Gwanak-gu, Seoul (Korea, Republic of); Nam, Kyoungphile, E-mail: kpnam@snu.ac.k [Department of Civil and Environmental Engineering, Seoul National University, Shillim-dong, Gwanak-gu, Seoul (Korea, Republic of)

    2009-08-15

    This study investigated the ability of a saponin-based microbubble suspension to enhance aerobic biodegradation of phenanthrene by subsurface delivery. As the microbubble suspension flowed through a sand column pressure buildup and release was repeatedly observed, which delivered oxygen to the less permeable regions. Burkholderia cepacia RPH1, a phenanthrene-degrading bacterium, was mainly transported in a suspended form in the microbubble suspension. When three pore volumes of the microbubble suspension containing B. cepacia RPH1 was introduced into a column contaminated with phenanthrene (100 mg/kg), the oxygen content declined to 5% from an initial value of 20% within 5 days and correspondingly, 34.4% of initial phenanthrene was removed in 8 days. The addition of two further three pore volumes enhanced the biodegradation efficiency by a factor of 2.2. Our data suggest that a saponin-based microbubble suspension could be a potential carrier for enhancing the aerobic biodegradation under an oxygen-limiting environment. - Microbubble suspension can enhance the phenanthrene biodegradation under an oxygen-limiting condition.

  17. Oxygen permeation flux through La1-ySryFeO3 limited by the carbon monoxide oxidation rate

    NARCIS (Netherlands)

    van Hassel, B.A.; van Hassel, B.A.; ten Elshof, Johan E.; Bouwmeester, Henricus J.M.

    1995-01-01

    The oxygen permeation flux through La1-ySryFeO3-δ (y = 0.1, 0.2) in a large oxygen partial pressure gradient (air/CO, CO2 mixture) was found to be limited by the carbon monoxide oxidation rate at the low oxygen partial pressure side of the membrane. The oxygen permeation flux through the membrane

  18. Continuous-flow oxidative cyanation of primary and secondary amines using singlet oxygen.

    Science.gov (United States)

    Ushakov, Dmitry B; Gilmore, Kerry; Kopetzki, Daniel; McQuade, D Tyler; Seeberger, Peter H

    2014-01-07

    Primary and secondary amines can be rapidly and quantitatively oxidized to the corresponding imines by singlet oxygen. This reactive form of oxygen was produced using a variable-temperature continuous-flow LED-photoreactor with a catalytic amount of tetraphenylporphyrin as the sensitizer. α-Aminonitriles were obtained in good to excellent yields when trimethylsilyl cyanide served as an in situ imine trap. At 25°C, primary amines were found to undergo oxidative coupling prior to cyanide addition and yielded secondary α-aminonitriles. Primary α-aminonitriles were synthesized from the corresponding primary amines for the first time, by an oxidative Strecker reaction at -50 °C. This atom-economic and protecting-group-free pathway provides a route to racemic amino acids, which was exemplified by the synthesis of tert-leucine hydrochloride from neopentylamine. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Quantifying the correlation between spatially defined oxygen gradients and cell fate in an engineered three-dimensional culture model

    OpenAIRE

    Ardakani, Amir G.; Cheema, Umber; Brown, Robert A.; Shipley, Rebecca J.

    2014-01-01

    A challenge in three-dimensional tissue culture remains the lack of quantitative information linking nutrient delivery and cellular distribution. Both in vivo and in vitro, oxygen is delivered by diffusion from its source (blood vessel or the construct margins). The oxygen level at a defined distance from its source depends critically on the balance of diffusion and cellular metabolism. Cells may respond to this oxygen environment through proliferation, death and chemotaxis, resulting in spat...

  20. Continuity and discontinuity in the Inuit culture of Greenland

    NARCIS (Netherlands)

    Kylstra, Hans P.

    1977-01-01

    In november 1976 the Arctic Centre of the University of Gronlngen organized its third symposium. The third symposium was a Dutch-Danish one on the Greenlandic Inuit: 'Continuity and Discontinuity In Greenlandic Arctic Culture'. As on the two previous occasions, an exhibition was organized.

  1. Limited Influence of Oxygen on the Evolution of Chemical Diversity in Metabolic Networks

    Directory of Open Access Journals (Sweden)

    Kazuhiro Takemoto

    2013-10-01

    Full Text Available Oxygen is thought to promote species and biomolecule diversity. Previous studies have suggested that oxygen expands metabolic networks by acquiring metabolites with different chemical properties (higher hydrophobicity, for example. However, such conclusions are typically based on biased evaluation, and are therefore non-conclusive. Thus, we re-investigated the effect of oxygen on metabolic evolution using a phylogenetic comparative method and metadata analysis to reduce the bias as much as possible. Notably, we found no difference in metabolic network expansion between aerobes and anaerobes when evaluating phylogenetic relationships. Furthermore, we showed that previous studies have overestimated or underestimated the degrees of differences in the chemical properties (e.g., hydrophobicity between oxic and anoxic metabolites in metabolic networks of unicellular organisms; however, such overestimation was not observed when considering the metabolic networks of multicellular organisms. These findings indicate that the contribution of oxygen to increased chemical diversity in metabolic networks is lower than previously thought; rather, phylogenetic signals and cell-cell communication result in increased chemical diversity. However, this conclusion does not contradict the effect of oxygen on metabolic evolution; instead, it provides a deeper understanding of how oxygen contributes to metabolic evolution despite several limitations in data analysis methods.

  2. In vitro culture of individual mouse preimplantation embryos: the role of embryo density, microwells, oxygen, timing and conditioned media.

    Science.gov (United States)

    Kelley, Rebecca L; Gardner, David K

    2017-05-01

    Single embryo culture is suboptimal compared with group culture, but necessary for embryo monitoring, and culture systems should be improved for single embryos. Pronucleate mouse embryos were used to assess the effect of culture conditions on single embryo development. Single culture either before or after compaction reduced cell numbers (112.2 ± 3.1; 110.2 ± 3.5) compared with group culture throughout (127.0 ± 3.4; P media volume from 20 µl to 2 µl increased blastocyst cell numbers in single embryos cultured in 5% oxygen (84.4 ± 3.2 versus 97.8 ± 2.8; P Culture in microwell plates for the EmbryoScope and Primo Vision time-lapse systems changed cleavage timings and increased inner cell mass cell number (24.1 ± 1.0; 23.4 ± 1.2) compared with a 2 µl microdrop (18.4 ± 1.0; P media to single embryos increased hatching rate and blastocyst cell number (91.5 ± 4.7 versus 113.1 ± 4.4; P culture before or after compaction is therefore detrimental; oxygen, media volume and microwells influence single embryo development; and embryo-conditioned media may substitute for group culture. Copyright © 2017 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  3. Organizational structure and continuous improvement and learning: Moderating effects of cultural endorsement of participative leadership

    OpenAIRE

    Xiaowen Huang; Joseph C Rode; Roger G Schroeder

    2011-01-01

    Building upon the culturally endorsed implicit theory of leadership, we investigated the moderating effects of national culture on the relationship between organizational structure and continuous improvement and learning. We propose that the relationship between organic organizations (characterized by flat, decentralized structures with a wide use of multifunctional employees) and continuous improvement and learning will be stronger when national cultural endorsement for participative leaders...

  4. Characterizing steady states of genome-scale metabolic networks in continuous cell cultures.

    Directory of Open Access Journals (Sweden)

    Jorge Fernandez-de-Cossio-Diaz

    2017-11-01

    Full Text Available In the continuous mode of cell culture, a constant flow carrying fresh media replaces culture fluid, cells, nutrients and secreted metabolites. Here we present a model for continuous cell culture coupling intra-cellular metabolism to extracellular variables describing the state of the bioreactor, taking into account the growth capacity of the cell and the impact of toxic byproduct accumulation. We provide a method to determine the steady states of this system that is tractable for metabolic networks of arbitrary complexity. We demonstrate our approach in a toy model first, and then in a genome-scale metabolic network of the Chinese hamster ovary cell line, obtaining results that are in qualitative agreement with experimental observations. We derive a number of consequences from the model that are independent of parameter values. The ratio between cell density and dilution rate is an ideal control parameter to fix a steady state with desired metabolic properties. This conclusion is robust even in the presence of multi-stability, which is explained in our model by a negative feedback loop due to toxic byproduct accumulation. A complex landscape of steady states emerges from our simulations, including multiple metabolic switches, which also explain why cell-line and media benchmarks carried out in batch culture cannot be extrapolated to perfusion. On the other hand, we predict invariance laws between continuous cell cultures with different parameters. A practical consequence is that the chemostat is an ideal experimental model for large-scale high-density perfusion cultures, where the complex landscape of metabolic transitions is faithfully reproduced.

  5. Lack of oxygen effect in glutathione-deficient human cells in culture

    International Nuclear Information System (INIS)

    Edgren, M.; Larsson, A.; Nilsson, K.; Revesz, L.; Scott, O.C.A.

    1980-01-01

    The frequency of X-ray-induced DNA breaks was determined in human cell lines which are deficient in glutathione synthetase and have a greatly reduced glutathione content. Hydroxyapatite chromatography was used for the estimation of the DNA breaks in cell cultures, which were derived either from lymphoblasts transformed by infection with EB virus or from fibroblasts. The dose-effect relationship for the induction of breaks when radiation exposure was made in argon, was similar to that found when exposure was made in air. In control cultures with normal glutathione content, the induction of breaks was enhanced when irradiation was made under aerobic, instead of anaerobic, conditions. Treatment of the glutathione-deficient cells with the hypoxic radiosensitizer misonidazole did not enhance the induction of breaks by radiation delivered either in air or in argon. In control cultures, radiation induction of breaks was enhanced by misonidazole under anaerobic but not under aerobic conditions. When the glutathione-deficient cells were pretreated with cysteamine however, irradiation in the absence of oxygen resulted in a decreased frequency of DNA breaks. (author)

  6. Feasibility of direct oxygenation of primary-cultured rat hepatocytes using polyethylene glycol-decorated liposome-encapsulated hemoglobin (LEH).

    Science.gov (United States)

    Naruto, Hirosuke; Huang, Hongyun; Nishikawa, Masaki; Kojima, Nobuhiko; Mizuno, Atsushi; Ohta, Katsuji; Sakai, Yasuyuki

    2007-10-01

    We tested the short-term efficacy of liposome-encapsulated hemoglobin (LEH) in cultured rat hepatocytes. Supplementation with LEH (20% of the hemoglobin concentration of blood) did not lower albumin production in static culture, and completely reversed the cell death and deterioration in albumin production caused by an oxygen shortage in 2D flat-plate perfusion bioreactors.

  7. Wilson loop OPE, analytic continuation and multi-Regge limit

    International Nuclear Information System (INIS)

    Hatsuda, Yasuyuki

    2014-05-01

    We explore a direct connection between the collinear limit and the multi-Regge limit for scattering amplitudes in the N=4 super Yang-Mills theory. Starting with the collinear expansion for the six-gluon amplitude in the Euclidean kinematic region, we perform an analytic continuation term by term to the so-called Mandelstam region. We find that the result coincides with the collinear expansion of the analytically continued amplitude. We then take the multi-Regge limit, and conjecture that the final result precisely reproduces the one from the BFKL approach. Combining this procedure with the OPE for null polygonal Wilson loops, we explicitly compute the leading contribution in the ''collinear-Regge'' limit up to five loops. Our results agree with all the known results up to four loops. At five-loop, our results up to the next-to-next-to-leading logarithmic approximation (NNLLA) also reproduce the known results, and for the N 3 LLA and the N 4 LLA give non-trivial predictions. We further present an all-loop prediction for the imaginary part of the next-to-double-leading logarithmic approximation. Our procedure has a possibility of an interpolation from weak to strong coupling in the multi-Regge limit with the help of the OPE.

  8. Relating oxygen partial pressure, saturation and content: the haemoglobin-oxygen dissociation curve.

    Science.gov (United States)

    Collins, Julie-Ann; Rudenski, Aram; Gibson, John; Howard, Luke; O'Driscoll, Ronan

    2015-09-01

    The delivery of oxygen by arterial blood to the tissues of the body has a number of critical determinants including blood oxygen concentration (content), saturation (S O2 ) and partial pressure, haemoglobin concentration and cardiac output, including its distribution. The haemoglobin-oxygen dissociation curve, a graphical representation of the relationship between oxygen satur-ation and oxygen partial pressure helps us to understand some of the principles underpinning this process. Historically this curve was derived from very limited data based on blood samples from small numbers of healthy subjects which were manipulated in vitro and ultimately determined by equations such as those described by Severinghaus in 1979. In a study of 3524 clinical specimens, we found that this equation estimated the S O2 in blood from patients with normal pH and S O2 >70% with remarkable accuracy and, to our knowledge, this is the first large-scale validation of this equation using clinical samples. Oxygen saturation by pulse oximetry (S pO2 ) is nowadays the standard clinical method for assessing arterial oxygen saturation, providing a convenient, pain-free means of continuously assessing oxygenation, provided the interpreting clinician is aware of important limitations. The use of pulse oximetry reduces the need for arterial blood gas analysis (S aO2 ) as many patients who are not at risk of hypercapnic respiratory failure or metabolic acidosis and have acceptable S pO2 do not necessarily require blood gas analysis. While arterial sampling remains the gold-standard method of assessing ventilation and oxygenation, in those patients in whom blood gas analysis is indicated, arterialised capillary samples also have a valuable role in patient care. The clinical role of venous blood gases however remains less well defined.

  9. Relating oxygen partial pressure, saturation and content: the haemoglobin–oxygen dissociation curve

    Directory of Open Access Journals (Sweden)

    Julie-Ann Collins

    2015-09-01

    The delivery of oxygen by arterial blood to the tissues of the body has a number of critical determinants including blood oxygen concentration (content, saturation (SO2 and partial pressure, haemoglobin concentration and cardiac output, including its distribution. The haemoglobin–oxygen dissociation curve, a graphical representation of the relationship between oxygen satur­ation and oxygen partial pressure helps us to understand some of the principles underpinning this process. Historically this curve was derived from very limited data based on blood samples from small numbers of healthy subjects which were manipulated in vitro and ultimately determined by equations such as those described by Severinghaus in 1979. In a study of 3524 clinical specimens, we found that this equation estimated the SO2 in blood from patients with normal pH and SO2 >70% with remarkable accuracy and, to our knowledge, this is the first large-scale validation of this equation using clinical samples. Oxygen saturation by pulse oximetry (SpO2 is nowadays the standard clinical method for assessing arterial oxygen saturation, providing a convenient, pain-free means of continuously assessing oxygenation, provided the interpreting clinician is aware of important limitations. The use of pulse oximetry reduces the need for arterial blood gas analysis (SaO2 as many patients who are not at risk of hypercapnic respiratory failure or metabolic acidosis and have acceptable SpO2 do not necessarily require blood gas analysis. While arterial sampling remains the gold-standard method of assessing ventilation and oxygenation, in those patients in whom blood gas analysis is indicated, arterialised capillary samples also have a valuable role in patient care. The clinical role of venous blood gases however remains less well defined.

  10. Low blood flow at onset of moderate-intensity exercise does not limit muscle oxygen uptake

    DEFF Research Database (Denmark)

    Nyberg, Michael Permin; Mortensen, Stefan P; Saltin, Bengt

    2010-01-01

    The effect of low blood flow at onset of moderate-intensity exercise on the rate of rise in muscle oxygen uptake was examined. Seven male subjects performed a 3.5-min one-legged knee-extensor exercise bout (24 +/- 1 W, mean +/- SD) without (Con) and with (double blockade; DB) arterial infusion...... of inhibitors of nitric oxide synthase (N(G)-monomethyl-l-arginine) and cyclooxygenase (indomethacin) to inhibit the synthesis of nitric oxide and prostanoids, respectively. Leg blood flow and leg oxygen delivery throughout exercise was 25-50% lower (P ... +/- 12 vs. 262 +/- 39 ml/min). The present data demonstrate that muscle blood flow and oxygen delivery can be markedly reduced without affecting muscle oxygen uptake in the initial phase of moderate-intensity exercise, suggesting that blood flow does not limit muscle oxygen uptake at the onset...

  11. Generation of reactive oxygen species from porous silicon microparticles in cell culture medium.

    Science.gov (United States)

    Low, Suet Peng; Williams, Keryn A; Canham, Leigh T; Voelcker, Nicolas H

    2010-06-01

    Nanostructured (porous) silicon is a promising biodegradable biomaterial, which is being intensively researched as a tissue engineering scaffold and drug-delivery vehicle. Here, we tested the biocompatibility of non-treated and thermally-oxidized porous silicon particles using an indirect cell viability assay. Initial direct cell culture on porous silicon determined that human lens epithelial cells only poorly adhered to non-treated porous silicon. Using an indirect cell culture assay, we found that non-treated microparticles caused complete cell death, indicating that these particles generated a toxic product in cell culture medium. In contrast, thermally-oxidized microparticles did not reduce cell viability significantly. We found evidence for the generation of reactive oxygen species (ROS) by means of the fluorescent probe 2',7'-dichlorofluorescin. Our results suggest that non-treated porous silicon microparticles produced ROS, which interacted with the components of the cell culture medium, leading to the formation of cytotoxic species. Oxidation of porous silicon microparticles not only mitigated, but also abolished the toxic effects.

  12. Changes in phosphorus magnetic resonance spectra during the cell cycle of phosphorus limited phased culture of Candida utilis

    International Nuclear Information System (INIS)

    Dawson, P.S.S.; MacDonald, J.C.

    1987-01-01

    Cell extracts, serially obtained from Candida utilis grown in continuous (synchrony) culture under phosphate limitation during an 8-h cycle and examined by NMR spectroscopy, revealed changes in polyphosphate content during the cycle period: other phosphorus containing components showed relatively little change. Initially zero, the polyphosphate content increased rapidly to a maximum after 30 min that coincided with exhaustion of phosphate from the culture, and then decreased slowly back to zero at the end of the cycle. The results suggest that polyphosphate, usually considered to function as a reserve material, actively participates during the cell cycle. 12 refs.; 1 figure; 1 table

  13. HEMOXCell, a New Oxygen Carrier Usable as an Additive for Mesenchymal Stem Cell Culture in Platelet Lysate-Supplemented Media.

    Science.gov (United States)

    Le Pape, Fiona; Cosnuau-Kemmat, Lucie; Richard, Gaëlle; Dubrana, Frédéric; Férec, Claude; Zal, Franck; Leize, Elisabeth; Delépine, Pascal

    2017-04-01

    Human mesenchymal stem cells (MSCs) are promising candidates for therapeutic applications such as tissue engineering. However, one of the main challenges is to improve oxygen supply to hypoxic areas to reduce oxygen gradient formation while preserving MSC differentiation potential and viability. For this purpose, a marine hemoglobin, HEMOXCell, was evaluated as an oxygen carrier for culturing human bone marrow MSCs in vitro for future three-dimensional culture applications. Impact of HEMOXCell on cell growth and viability was assessed in human platelet lysate (hPL)-supplemented media. Maintenance of MSC features, such as multipotency and expression of MSC specific markers, was further investigated by biochemical assays and flow cytometry analysis. Our experimental results highlight its oxygenator potential and indicate that an optimal concentration of 0.025 g/L HEMOXCell induces a 25%-increase of the cell growth rate, preserves MSC phenotype, and maintains MSC differentiation properties; a two-fold higher concentration induces cell detachment without altering cell viability. Our data suggest the potential interest of HEMOXCell as a natural oxygen carrier for tissue engineering applications to oxygenate hypoxic areas and to maintain cell viability, functions and "stemness." These features will be further tested within three-dimensional scaffolds. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  14. Hybrid Modeling and Optimization of Yogurt Starter Culture Continuous Fermentation

    Directory of Open Access Journals (Sweden)

    Silviya Popova

    2009-10-01

    Full Text Available The present paper presents a hybrid model of yogurt starter mixed culture fermentation. The main nonlinearities within a classical structure of continuous process model are replaced by neural networks. The new hybrid model accounts for the dependence of the two microorganisms' kinetics from the on-line measured characteristics of the culture medium - pH. Then the model was used further for calculation of the optimal time profile of pH. The obtained results are with agreement with the experimental once.

  15. Development of bovine embryos cultured in CR1aa and IVD101 media using different oxygen tensions and culture systems.

    Science.gov (United States)

    Somfai, Tamás; Inaba, Yasushi; Aikawa, Yoshio; Ohtake, Masaki; Kobayashi, Shuji; Konishi, Kazuyuki; Nagai, Takashi; Imai, Kei

    2010-12-01

    The aim of the present study was to optimise the culture conditions for the in vitro production of bovine embryos. The development of in vitro fertilised bovine oocytes in CR1aa supplemented with 5% calf serum and IVD101 culture media were compared using traditional microdrops and Well of the Well (WOW) culture systems either under 5% or 20% oxygen tension. After 7 days of culture, a significantly higher blastocyst formation rate was obtained for embryos cultured in CR1aa medium compared to those cultured in IVD101, irrespective of O2 tensions and culture systems. The blastocyst formation in IVD101 was suppressed under 20% O2 compared to 5% O2 . Despite their similar total cell numbers, higher rates of inner cell mass (ICM) cells were observed in blastocysts developed in IVD101 medium than in those developed in CR1aa, irrespective of O2 tensions. There was no significant difference in blastocyst formation, total, ICM and trophectoderm (TE) cell numbers between embryos obtained by microdrop and WOW culture systems irrespective of the culture media and O2 tensions used. In conclusion, CR1aa resulted in higher blastocyst formation rates irrespective of O2 tension, whereas IVD101 supported blastocyst formation only under low O2 levels but enhanced the proliferation of ICM cells.

  16. The effects of interval- vs. continuous exercise on excess post-exercise oxygen consumption and substrate oxidation rates in subjects with type 2 diabetes

    DEFF Research Database (Denmark)

    Karstoft, Kristian; Wallis, Gareth A.; Pedersen, Bente K.

    2016-01-01

    Background For unknown reasons, interval training often reduces body weight more than energy-expenditure matched continuous training. We compared the acute effects of time-duration and oxygen-consumption matched interval- vs. continuous exercise on excess post-exercise oxygen consumption (EPOC...... (MMTT, 450 kcal) was consumed by the subjects 45 min after completion of the intervention with blood samples taken regularly. Results Exercise interventions were successfully matched for total oxygen consumption (CW = 1641 ± 133 mL/min; IW = 1634 ± 126 mL/min, P > 0.05). EPOC was higher after IW (8......, free fatty acids and glycerol concentrations, and glycerol kinetics were increased comparably during and after IW and CW compared to CON. Conclusions Interval exercise results in greater EPOC than oxygen-consumption matched continuous exercise during a post-exercise MMTT in subjects with T2D, whereas...

  17. High cell density cultures produced by internal retention: application in continuous ethanol fermentation

    Directory of Open Access Journals (Sweden)

    Berta Carola Pérez

    2004-07-01

    Full Text Available Ethanol has provoked great interest due to its potential as an alternative fuel. Nevertheless, fermentation processes must be developed by increasing the low volumetric productivity achieved in conventional cultures (batch or continuous to make this product become economically competitive. This can be achieved by using techniques leading to high cell concentration and reducing inhibition by the end-product. One of the frequently employed methods involves cell recycling. This work thus developed a membrane reactor incorporating a filtration module with 5 u,m stainless steel tubular units inside a 3L stirred jar fermenter for investigating its application in continuous ethanol production. The effects of cell concentration and transmembrane pressure difference on permeate flux were evaluated for testing the filtration module's performance. The internal cell retention system was operated in Saccharomyces cerevisiae continuous culture derived from sucrose, once fermentation conditions had been selected (30 °C, 1.25 -1.75 vvm, pH 4.5. Filter unit permeability was maintained by applying pulses of air. More than 97% of the grown cells were retained in the fermenter, reaching 51 g/L cell concentration and 8.51 g/L.h average ethanol productivity in culture with internal cell retention; this was twice that obtained in a conventional continuous culture. Key words: Membrane reactor, Saccharomyces cerevisiae, alcoholic fermentation, cell recycling.

  18. An integrable coupling system of lattice hierarchy and its continuous limits

    International Nuclear Information System (INIS)

    Yu Fajun; Li Li

    2009-01-01

    In [E.G. Fan, Phys. Lett. A 372 (2008) 6368], Fan present a lattice hierarchy and its continuous limits. In this Letter, we extend this method, by introducing a complex discrete spectral problem, a coupling lattice hierarchy is derived. It is shown that a new sequence of combinations of complex lattice spectral problem converges to the integrable coupling couplings of soliton equation hierarchy, which has the integrable coupling system of AKNS hierarchy as a continuous limit.

  19. Continuous limits for an integrable coupling system of Toda equation hierarchy

    International Nuclear Information System (INIS)

    Li Li; Yu Fajun

    2009-01-01

    In this Letter, we present an integrable coupling system of lattice hierarchy and its continuous limits by using of Lie algebra sl(4). By introducing a complex discrete spectral problem, the integrable coupling system of Toda lattice hierarchy is derived. It is shown that a new complex lattice spectral problem converges to the integrable couplings of discrete soliton equation hierarchy, which has the integrable coupling system of C-KdV hierarchy as a new kind of continuous limit.

  20. Continuous limits for an integrable coupling system of Toda equation hierarchy

    Energy Technology Data Exchange (ETDEWEB)

    Li Li [College of Maths and Systematic Science, Shenyang Normal University, Shenyang 110034 (China); Yu Fajun, E-mail: yfajun@163.co [College of Maths and Systematic Science, Shenyang Normal University, Shenyang 110034 (China)

    2009-09-21

    In this Letter, we present an integrable coupling system of lattice hierarchy and its continuous limits by using of Lie algebra sl(4). By introducing a complex discrete spectral problem, the integrable coupling system of Toda lattice hierarchy is derived. It is shown that a new complex lattice spectral problem converges to the integrable couplings of discrete soliton equation hierarchy, which has the integrable coupling system of C-KdV hierarchy as a new kind of continuous limit.

  1. Comparison of neuroprotective effects of erythropoietin (EPO) and carbamylerythropoietin (CEPO) against ischemia-like oxygen-glucose deprivation (OGD) and NMDA excitotoxicity in mouse hippocampal slice cultures

    DEFF Research Database (Denmark)

    Montero, Maria; Rom Poulsen, Frantz; Noraberg, Jens

    2007-01-01

    of hematopoietic bioactivity, is the chemically modified, EPO-derivative carbamylerythropoietin (CEPO). For comparison of the neuroprotective effects of CEPO and EPO, we subjected organotypic hippocampal slice cultures to oxygen-glucose deprivation (OGD) or N-methyl-d-aspartate (NMDA) excitotoxicity. Hippocampal...... slice cultures were pretreated for 24 h with 100 IU/ml EPO (=26 nM) or 26 nM CEPO before OGD or NMDA lesioning. Exposure to EPO and CEPO continued during OGD and for the next 24 h until histology, as well as during the 24 h exposure to NMDA. Neuronal cell death was quantified by cellular uptake...... of propidium iodide (PI), recorded before the start of OGD and NMDA exposure and 24 h after. In cultures exposed to OGD or NMDA, CEPO reduced PI uptake by 49+/-3 or 35+/-8%, respectively, compared to lesion-only controls. EPO reduced PI uptake by 33+/-5 and 15+/-8%, respectively, in the OGD and NMDA exposed...

  2. Mechanism for multiplicity of steady states with distinct cell concentration in continuous culture of mammalian cells.

    Science.gov (United States)

    Yongky, Andrew; Lee, Jongchan; Le, Tung; Mulukutla, Bhanu Chandra; Daoutidis, Prodromos; Hu, Wei-Shou

    2015-07-01

    Continuous culture for the production of biopharmaceutical proteins offers the possibility of steady state operations and thus more consistent product quality and increased productivity. Under some conditions, multiplicity of steady states has been observed in continuous cultures of mammalian cells, wherein with the same dilution rate and feed nutrient composition, steady states with very different cell and product concentrations may be reached. At those different steady states, cells may exhibit a high glycolysis flux with high lactate production and low cell concentration, or a low glycolysis flux with low lactate and high cell concentration. These different steady states, with different cell concentration, also have different productivity. Developing a mechanistic understanding of the occurrence of steady state multiplicity and devising a strategy to steer the culture toward the desired steady state is critical. We establish a multi-scale kinetic model that integrates a mechanistic intracellular metabolic model and cell growth model in a continuous bioreactor. We show that steady state multiplicity exists in a range of dilution rate in continuous culture as a result of the bistable behavior in glycolysis. The insights from the model were used to devise strategies to guide the culture to the desired steady state in the multiple steady state region. The model provides a guideline principle in the design of continuous culture processes of mammalian cells. © 2015 Wiley Periodicals, Inc.

  3. Biomarkers’ Responses to Reductive Dechlorination Rates and Oxygen Stress in Bioaugmentation Culture KB-1TM

    Directory of Open Access Journals (Sweden)

    Gretchen L. W. Heavner

    2018-02-01

    Full Text Available Using mRNA transcript levels for key functional enzymes as proxies for the organohalide respiration (OHR rate, is a promising approach for monitoring bioremediation populations in situ at chlorinated solvent-contaminated field sites. However, to date, no correlations have been empirically derived for chlorinated solvent respiring, Dehalococcoides mccartyi (DMC containing, bioaugmentation cultures. In the current study, genome-wide transcriptome and proteome data were first used to confirm the most highly expressed OHR-related enzymes in the bioaugmentation culture, KB-1TM, including several reductive dehalogenases (RDases and a Ni-Fe hydrogenase, Hup. Different KB-1™ DMC strains could be resolved at the RNA and protein level through differences in the sequence of a common RDase (DET1545-like homologs and differences in expression of their vinyl chloride-respiring RDases. The dominant strain expresses VcrA, whereas the minor strain utilizes BvcA. We then used quantitative reverse-transcriptase PCR (qRT-PCR as a targeted approach for quantifying transcript copies in the KB-1TM consortium operated under a range of TCE respiration rates in continuously-fed, pseudo-steady-state reactors. These candidate biomarkers from KB-1TM demonstrated a variety of trends in terms of transcript abundance as a function of respiration rate over the range: 7.7 × 10−12 to 5.9 × 10−10 microelectron equivalents per cell per hour (μeeq/cell∙h. Power law trends were observed between the respiration rate and transcript abundance for the main DMC RDase (VcrA and the hydrogenase HupL (R2 = 0.83 and 0.88, respectively, but not transcripts for 16S rRNA or three other RDases examined: TceA, BvcA or the RDase DET1545 homologs in KB1TM. Overall, HupL transcripts appear to be the most robust activity biomarker across multiple DMC strains and in mixed communities including DMC co-cultures such as KB1TM. The addition of oxygen induced cell stress that caused respiration

  4. Biomarkers' Responses to Reductive Dechlorination Rates and Oxygen Stress in Bioaugmentation Culture KB-1TM.

    Science.gov (United States)

    Heavner, Gretchen L W; Mansfeldt, Cresten B; Debs, Garrett E; Hellerstedt, Sage T; Rowe, Annette R; Richardson, Ruth E

    2018-02-08

    Using mRNA transcript levels for key functional enzymes as proxies for the organohalide respiration (OHR) rate, is a promising approach for monitoring bioremediation populations in situ at chlorinated solvent-contaminated field sites. However, to date, no correlations have been empirically derived for chlorinated solvent respiring, Dehalococcoides mccartyi (DMC) containing, bioaugmentation cultures. In the current study, genome-wide transcriptome and proteome data were first used to confirm the most highly expressed OHR-related enzymes in the bioaugmentation culture, KB-1 TM , including several reductive dehalogenases (RDases) and a Ni-Fe hydrogenase, Hup. Different KB-1™ DMC strains could be resolved at the RNA and protein level through differences in the sequence of a common RDase (DET1545-like homologs) and differences in expression of their vinyl chloride-respiring RDases. The dominant strain expresses VcrA, whereas the minor strain utilizes BvcA. We then used quantitative reverse-transcriptase PCR (qRT-PCR) as a targeted approach for quantifying transcript copies in the KB-1 TM consortium operated under a range of TCE respiration rates in continuously-fed, pseudo-steady-state reactors. These candidate biomarkers from KB-1 TM demonstrated a variety of trends in terms of transcript abundance as a function of respiration rate over the range: 7.7 × 10 -12 to 5.9 × 10 -10 microelectron equivalents per cell per hour (μeeq/cell∙h). Power law trends were observed between the respiration rate and transcript abundance for the main DMC RDase (VcrA) and the hydrogenase HupL (R² = 0.83 and 0.88, respectively), but not transcripts for 16S rRNA or three other RDases examined: TceA, BvcA or the RDase DET1545 homologs in KB1 TM . Overall, HupL transcripts appear to be the most robust activity biomarker across multiple DMC strains and in mixed communities including DMC co-cultures such as KB1 TM . The addition of oxygen induced cell stress that caused respiration rates

  5. Coaching Surgeons: Is Culture Limiting Our Ability to Improve?

    Science.gov (United States)

    Mutabdzic, Dorotea; Mylopoulos, Maria; Murnaghan, Michael Lucas; Patel, Priyanka; Zilbert, Nathan; Seemann, Natashia; Regehr, Glenn; Moulton, Carol-Anne

    2015-08-01

    To explore surgeons' perceptions of and potential concerns about coaching. There is growing recognition that the traditional model of continuing professional development is suboptimal. This has led to increasing interest in alternative strategies that take place within the actual practice environment such as coaching. However, if coaching is to be a successful strategy for continuing professional development, it will need to be accepted by surgeons. This was a qualitative interview-based study using a constructivist grounded theory approach. Participants included 14 surgeons from University of Toronto-affiliated hospitals. Participants expressed 3 main concerns about coaching: questioning the value of technical improvement ("As you get older if you don't have the stimulation from surgery to get better or to do things that are different and you are so good at so much, why bother [with coaching]?" P009), worry about appearing incompetent ("I think it would be perceived as either a sign of weakness or a sign of inability" P532), and concern about losing autonomy ("To me that would be real coaching where it's self-identified, I'm motivated, I find the person and then they coach me" P086). Coaching faces unique challenges in the context of a powerful surgical culture that values the portrayal of competency and instills the value of surgical autonomy. This study suggests that hanging on to these tightly held values of competency and autonomy is actually limiting the ways, and extent to which, surgeons can improve their practice.

  6. Relations between pH, oxygen partial pressure and growth in cultured cell spheroids.

    Science.gov (United States)

    Carlsson, J; Acker, H

    1988-11-15

    The pH gradients, oxygen partial-pressure gradients and growth curves were measured for 7 different types of spheroids. Growth curves were measured in liquid overlay culture and thereafter the spheroids were attached to cover glasses and transferred to a chamber for micro-electrode measurements. The spheroids were randomly divided for pH or pO2 measurements which then were made under conditions as identical as possible. The decreases in pO2 and pH, delta pO2 and delta pH were calculated as the difference between the values in the culture medium and the values 200 micron inside the spheroids. Each type of spheroid had a certain relation between delta pO2 and delta pH. The human colon carcinoma HT29, the mouse mammary carcinoma EMT6 and the hamster lung V79-379A spheroids had high values of the quotient delta pO2/delta pH. The human thyroid carcinoma HTh7 spheroids and the 3 types of human glioma spheroids had lower quotients. There was a tendency for fast-growing spheroids to have high quotients. Two extreme types of spheroids, HT29 (high quotient) and U-118 MG (low quotient) were analyzed for lactate production and oxygen consumption. The U-118 MG spheroids produced about 3 times more lactate and consumed about 3 times less oxygen than the HT29 spheroids. The differences in lactate production could not be explained by differences in the pyruvate Km values of lactate dehydrogenase. The results indicate that there are significant metabolic differences between the spheroid systems studied.

  7. Life on N2O: deciphering the ecophysiology of N2O respiring bacterial communities in a continuous culture.

    Science.gov (United States)

    Conthe, Monica; Wittorf, Lea; Kuenen, J Gijs; Kleerebezem, Robbert; van Loosdrecht, Mark C M; Hallin, Sara

    2018-04-01

    Reduction of the greenhouse gas N 2 O to N 2 is a trait among denitrifying and non-denitrifying microorganisms having an N 2 O reductase, encoded by nosZ. The nosZ phylogeny has two major clades, I and II, and physiological differences among organisms within the clades may affect N 2 O emissions from ecosystems. To increase our understanding of the ecophysiology of N 2 O reducers, we determined the thermodynamic growth efficiency of N 2 O reduction and the selection of N 2 O reducers under N 2 O- or acetate-limiting conditions in a continuous culture enriched from a natural community with N 2 O as electron acceptor and acetate as electron donor. The biomass yields were higher during N 2 O limitation, irrespective of dilution rate and community composition. The former was corroborated in a continuous culture of Pseudomonas stutzeri and was potentially due to cytotoxic effects of surplus N 2 O. Denitrifiers were favored over non-denitrifying N 2 O reducers under all conditions and Proteobacteria harboring clade I nosZ dominated. The abundance of nosZ clade II increased when allowing for lower growth rates, but bacteria with nosZ clade I had a higher affinity for N 2 O, as defined by μ max /K s . Thus, the specific growth rate is likely a key factor determining the composition of communities living on N 2 O respiration under growth-limited conditions.

  8. Historical and Cultural Perspectives on Centralization/Decentralization in Continuing Education.

    Science.gov (United States)

    Edelson, Paul J.

    1995-01-01

    Views centralization/decentralization from four perspectives: historical, as an outgrowth of professionalism, in the culture of higher education, and management theory. Suggests that some form of centralized control will always be necessary if continuing education is to function in a larger organization, but smaller units may be the wave of the…

  9. Effect of oxygen deprivation on metabolism of arachidonic acid by cultures of rat heart cells

    International Nuclear Information System (INIS)

    Freyss-Beguin, M.; Millanvoye-van Brussel, E.; Duval, D.

    1989-01-01

    To investigate the mechanisms responsible for the impairment of phospholipid metabolism observed in ischemic cells, we have studied the effect of conditions simulating ischemia on the metabolism of arachidonic acid (AA) by muscle (M-) and nonmuscle (F-) cells isolated from newborn rat hearts and cultured separately. In muscle cells, oxygen deprivation induces a significant stimulation of the release of [ 14 C]AA from prelabeled cells associated with a preferential redistribution of [ 14 C]AA into cell triglycerides but not formation of radioactive prostaglandins. Moreover, the fatty acid content of phospholipids, as measured by capillary gas chromatography, appears markedly reduced in ischemic myocardial cells. This fact may be related to phospholipase stimulation during ischemia as suggested by the antagonistic effect of mepacrine or p-bromophenacyl bromide. In contrast, oxygen deprivation failed to induce any significant alteration of AA metabolism in fibroblast-like heart cells. Our results indicate that these cultures of newborn rat heart cells, which exhibit many of the features observed in intact organ during ischemia, may represent a useful experimental model to investigate the pharmacological control of the membrane phospholipid turnover

  10. An exploratory study with an adaptive continuous intravenous furosemide regimen in neonates treated with extracorporeal membrane oxygenation

    NARCIS (Netherlands)

    M.M.J. van der Vorst (Maria); J. den Hartigh (Jan); E.D. Wildschut (Enno); D. Tibboel (Dick); J. Burggraaf (Jacobus)

    2007-01-01

    textabstractIntroduction: The objective of the present study was to explore a continuous intravenous furosemide regimen that adapts to urine output in neonates treated with extracorporeal membrane oxygenation (ECMO). Methods: Seven neonates admitted to a paediatric surgical intensive care unit for

  11. Observed and predicted measurements of photosynthesis in a phytoplankton culture exposed to natural irradiance

    International Nuclear Information System (INIS)

    Marra, J.; Heinemann, K.; Landriau, G. Jr.

    1985-01-01

    Photosynthesis-irradiance (P-I) curves were produced (using artificial illumination) from samples taken at one or more times per day from a continuous culture illuminated with sunlight. The continuous culture housed an oxygen electrode used to measure photosynthesis semi-continuously. Rates of photosynthesis predicted from P-I curves agreed with photosynthesis observed in the culture only for days of low irradiance. For sunny days or for days of variable irradiance, P-I curves predicted neither the morning photosynthesis maximum nor the afternoon depression. Daily integrals of predicted and observed photosynthesis, however, were probably within the possible errors of measurement. (orig.)

  12. Does cross-generational epigenetic inheritance contribute to cultural continuity?

    Science.gov (United States)

    Pembrey, Marcus E

    2018-04-01

    Human studies of cross-generational epigenetic inheritance have to consider confounding by social patterning down the generations, often referred to as 'cultural inheritance'. This raises the question to what extent is 'cultural inheritance' itself epigenetically mediated rather than just learnt. Human studies of non-genetic inheritance have demonstrated that, beyond foetal life, experiences occurring in mid-childhood before puberty are the most likely to be associated with cross-generational responses in the next generation(s). It is proposed that cultural continuity is played out along the axis, or 'payoff', between responsiveness and stability. During the formative years of childhood a stable family and/or home permits small children to explore and thereby learn. To counter disruptions to this family home ideal, cultural institutions such as local schools, religious centres and market places emerged to provide ongoing stability, holding the received wisdom of the past in an accessible state. This cultural support allows the growing child to freely indulge their responsiveness. Some of these prepubertal experiences induce epigenetic responses that also transfer molecular signals to the gametes through which they contribute to the conception of future offspring. In parallel co-evolution with growing cultural support for increasing responsiveness, 'runaway' responsiveness is countered by the positive selection of genetic variants that dampen responsiveness. Testing these ideas within longitudinal multigenerational cohorts will need information on ancestors/parents' own communities and experiences (Exposome scans) linked to ongoing Phenome scans on grandchildren; coupled with epigenome analysis, metastable epialleles and DNA methylation age. Interactions with genetic variants affecting responsiveness should help inform the broad hypothesis.

  13. Cellulase enzyme production during continuous culture growth of Sporotrichum (Chrysosporium) thermophile

    Energy Technology Data Exchange (ETDEWEB)

    Cossar, D; Canevascini, G

    1986-07-01

    The cellulolytic fungus Sporotrichum (Chrysosporium) thermophile produces an extracellular cellobiose dehydrogenase during batch culture on cellulose or cellobiose. In chemostat culture at pH 5.6 on cellobiose this enzyme was produced in parallel with endo-cellulase. At pH 5.0 in continuous or fed-batch culture such a pattern was not evident. At constant growth rate in a chemostat with varying pH, activity of these enzymes was found to be poorly correlated. Thus the induction of cellobiose dehydrogenase shows a dependence on pH and cellobiose concentration which is different to that for endo-cellulase. The natural inducer of these enzymes and the role of cellubiose dehydrogenase remain to be elucidated.

  14. Quantifying the correlation between spatially defined oxygen gradients and cell fate in an engineered three-dimensional culture model.

    Science.gov (United States)

    Ardakani, Amir G; Cheema, Umber; Brown, Robert A; Shipley, Rebecca J

    2014-09-06

    A challenge in three-dimensional tissue culture remains the lack of quantitative information linking nutrient delivery and cellular distribution. Both in vivo and in vitro, oxygen is delivered by diffusion from its source (blood vessel or the construct margins). The oxygen level at a defined distance from its source depends critically on the balance of diffusion and cellular metabolism. Cells may respond to this oxygen environment through proliferation, death and chemotaxis, resulting in spatially resolved gradients in cellular density. This study extracts novel spatially resolved and simultaneous data on tissue oxygenation, cellular proliferation, viability and chemotaxis in three-dimensional spiralled, cellular collagen constructs. Oxygen concentration gradients drove preferential cellular proliferation rates and viability in the higher oxygen zones and induced chemotaxis along the spiral of the collagen construct; an oxygen gradient of 1.03 mmHg mm(-1) in the spiral direction induced a mean migratory speed of 1015 μm day(-1). Although this movement was modest, it was effective in balancing the system to a stable cell density distribution, and provided insights into the natural cell mechanism for adapting cell number and activity to a prevailing oxygen regime.

  15. Simulation of Feedforward-Feedback Control of Dissolved Oxygen of Microbial Repeated Fed-batch Culture

    Directory of Open Access Journals (Sweden)

    Ling Gao

    2016-09-01

    Full Text Available Fed-batch culture is often used in industry, and dissolved oxygen (DO concentration control is important in fermentation process control. DO control is often applied by using feedback (FB control strategy. But, feedforward-feedback (FF-FB control has the advantage in dealing with the time-varying characteristics resulted from the cell growth during the fermentation process. Mathematical modeling and computer simulation is a useful tool in analysis of the control system.  In this research, the FF-FB DO control and FB substrate control of repeated fed-batch culture process is modeled and simulated. The results showed the feasibility of the control strategy. These results are useful for control system development and process analyses and optimization.

  16. Risk reduction and TQM: A corporate culture of continuous improvement

    International Nuclear Information System (INIS)

    Nau, D.C.

    1992-01-01

    A company supplying products and services to the nuclear industry that implements a cultural commitment to continuous improvement, in addition to providing higher quality products and services, also represents a significant reduction in operational risk to that industry. The implementation of a culture of total quality management (TQM), initiated by Sorrento Electronics (SE) in 1989, involves total commitment to the basic TQM principles: continuous improvement, people performing the work are the best sources of how to do it better, and employees must be empowered to make the improvements. What this means to the nuclear industry is a significant reduction in operational risk through: (1) products based on simpler, standardized, proven designs with established operational track records, enhancing confidence that they will perform as expected; (2) the highest confidence that products and supporting documentation are delivered with zero defects; (3) critical power plant schedules can be supported through the shortest possible equipment delivery times; (4) highly motivated employees with extremely positive attitudes, working together in cross-functional teams, virtually eliminate the possibility of deliberate product tampering or sabotage

  17. Behaviour of marine oil-degrading bacterial populations in a continuous culture system

    Digital Repository Service at National Institute of Oceanography (India)

    Mohandass, C.; David, J.J.; Nair, S.; LokaBharathi, P.A.; Chandramohan, D.

    In pursuit of developing an oil-degrading microbial consortium, we used the principle of "plasmid assisted molecular breeding" (PAMB) in a continuous culture system. Three marine bacteria, Pseudomonas putida, Brevibacterium epidermidis...

  18. Metabolic pathway analysis of Scheffersomyces (Pichia) stipitis: effect of oxygen availability on ethanol synthesis and flux distributions.

    Science.gov (United States)

    Unrean, Pornkamol; Nguyen, Nhung H A

    2012-06-01

    Elementary mode analysis (EMA) identifies all possible metabolic states of the cell metabolic network. Investigation of these states can provide a detailed insight into the underlying metabolism in the cell. In this study, the flux states of Scheffersomyces (Pichia) stipitis metabolism were examined. It was shown that increasing oxygen levels led to a decrease of ethanol synthesis. This trend was confirmed by experimental evaluation of S. stipitis in glucose-xylose fermentation. The oxygen transfer rate for an optimal ethanol production was 1.8 mmol/l/h, which gave the ethanol yield of 0.40 g/g and the ethanol productivity of 0.25 g/l/h. For a better understanding of the cell's regulatory mechanism in response to oxygenation levels, EMA was used to examine metabolic flux patterns under different oxygen levels. Up- and downregulation of enzymes in the network during the change of culturing condition from oxygen limitation to oxygen sufficiency were identified. The results indicated the flexibility of S. stipitis metabolism to cope with oxygen availability. In addition, relevant genetic targets towards improved ethanol-producing strains under all oxygenation levels were identified. These targeted genes limited the metabolic functionality of the cell to function according to the most efficient ethanol synthesis pathways. The presented approach is promising and can contribute to the development of culture optimization and strain engineers for improved lignocellulosic ethanol production by S. stipitis.

  19. Correlated continuous-time random walks—scaling limits and Langevin picture

    International Nuclear Information System (INIS)

    Magdziarz, Marcin; Metzler, Ralf; Szczotka, Wladyslaw; Zebrowski, Piotr

    2012-01-01

    In this paper we analyze correlated continuous-time random walks introduced recently by Tejedor and Metzler (2010 J. Phys. A: Math. Theor. 43 082002). We obtain the Langevin equations associated with this process and the corresponding scaling limits of their solutions. We prove that the limit processes are self-similar and display anomalous dynamics. Moreover, we extend the model to include external forces. Our results are confirmed by Monte Carlo simulations

  20. Cerebral oxygenation decreases during exercise in humans with beta-adrenergic blockade

    DEFF Research Database (Denmark)

    Seifert, T.; Rasmussen, P.; Secher, Niels H.

    2009-01-01

    AIM: Beta-blockers reduce exercise capacity by attenuated increase in cardiac output, but it remains unknown whether performance also relates to attenuated cerebral oxygenation. METHODS: Acting as their own controls, eight healthy subjects performed a continuous incremental cycle test to exhaustion...... attenuated the increase in cardiac output of consequence for cerebral perfusion and oxygenation. We suggest that a decrease in cerebral oxygenation limits exercise capacity Udgivelsesdato: 2009/7...... with or without administration of the non-selective beta-blocker propranolol. Changes in cerebral blood flow velocity were measured with transcranial Doppler ultrasound and those in cerebral oxygenation were evaluated using near-infrared spectroscopy and the calculated cerebral mitochondrial oxygen tension...

  1. Diffusion Limitation and Hyperoxic Enhancement of Oxygen Consumption in Zooxanthellate Sea Anemones, Zoanthids, and Corals.

    Science.gov (United States)

    Shick, J M

    1990-08-01

    Depending on their size and morphology, anthozoan polyps and colonies may be diffusion-limited in their oxygen consumption, even under well-stirred, air-saturated conditions. This is indicated by an enhancement of oxygen consumption under steady-state hyperoxic conditions that simulate the levels of O2 produced photosynthetically by zooxanthellae in the hosts' tissues. Such hyperoxia in the tissues of zooxanthellate species negates the effect of the diffusive boundary layer, and increases the rate of oxygen consumption; thus, in many cases, the rate of respiration measured under normoxia in the dark may not be representative of the rate during the day when the zooxanthellae are photosynthesizing and when the supply of oxygen for respiration is in the tissues themselves, not from the environment. These results have implications in respirometric methodology and in calculating the rate of gross photosynthesis in energetic studies. The activity of cytochrome c oxidase is higher in aposymbiotic than in zooxanthellate specimens of the sea anemone Aiptasia pulchella, and this may indicate a compensation for the relative hypoxia in the tissues of the former, enhancing the delivery of oxygen to the mitochondria from the environment.

  2. Multivariate Limits and Continuity: A Survey of Calculus Textbooks.

    Science.gov (United States)

    Thompson, Thomas M.; Wiggins, Kenneth L.

    There has been much recent discussion concerning the content of the standard calculus course for students majoring in mathematics and the sciences. Some of this discussion has focused on the available textbooks. One weakness noted in some of these books involves the definitions of limit and continuity for functions of several variables. A…

  3. Influences of religion and culture on continuing bonds in a sample of British Muslims of Pakistani origin.

    Science.gov (United States)

    Hussein, Hanan; Oyebode, Jan R

    2009-11-01

    This study considered the nature of continuing bonds with deceased relatives in a sample of Pakistani Muslims living in the United Kingdom. Ten participants were interviewed following a cultural psychology approach and transcripts were analyzed using grounded theory methodology. Dreaming, talking with others about the deceased, following the deceased's example, keeping memories and mementos, and doing actions thought to help the deceased were forms of continued relationship found. These were intertwined with the process of grieving and were influenced by the family, culture, and religion. Religion was a strong influence on the prominence given by participants to finishing well and on the notion of doing actions thought to help the deceased. Cultural mores, such as the community, and collectivist ethos and the expectation that emotion would be expressed around the time of death, were found to be supportive for some but sources of tension for other participants. Expressing a continuing bond through following the deceased's example so as to make them proud or happy seemed to be reinforced by cultural roots in respect for elders. Participants gave instances of tensions in areas such as expression of emotion and communality versus individualism that arose as a result of their position between two cultural frameworks, some illustrating how assimilation into the host culture set up conflict with the expected norms of their family/ancestral culture. The study highlights how understanding different cultural and religious influences may enrich the concept of continuing bonds.

  4. Comparison of 250 MHz electron spin echo and continuous wave oxygen EPR imaging methods for in vivo applications

    Science.gov (United States)

    Epel, Boris; Sundramoorthy, Subramanian V.; Barth, Eugene D.; Mailer, Colin; Halpern, Howard J.

    2011-01-01

    Purpose: The authors compare two electron paramagnetic resonance imaging modalities at 250 MHz to determine advantages and disadvantages of those modalities for in vivo oxygen imaging. Methods: Electron spin echo (ESE) and continuous wave (CW) methodologies were used to obtain three-dimensional images of a narrow linewidth, water soluble, nontoxic oxygen-sensitive trityl molecule OX063 in vitro and in vivo. The authors also examined sequential images obtained from the same animal injected intravenously with trityl spin probe to determine temporal stability of methodologies. Results: A study of phantoms with different oxygen concentrations revealed a threefold advantage of the ESE methodology in terms of reduced imaging time and more precise oxygen resolution for samples with less than 70 torr oxygen partial pressure. Above∼100 torr, CW performed better. The images produced by both methodologies showed pO2 distributions with similar mean values. However, ESE images demonstrated superior performance in low pO2 regions while missing voxels in high pO2 regions. Conclusions: ESE and CW have different areas of applicability. ESE is superior for hypoxia studies in tumors. PMID:21626937

  5. THE WEB IS THE LIMIT: LANGUAGE, CULTURE AND MOOCS

    Directory of Open Access Journals (Sweden)

    Silvia FLOREA

    2014-05-01

    Full Text Available MOOCs remain the buzzwords of the current landscape of higher education (HE provision. In the context of the ever growing use of technology through e - Learning and OpenCourseWare and of the new generation of tablet - toting, hyper - connected youth, the university will continue to extend its reach to students around the world, unbounded by geography and time zones, at a fast pace and at a fraction of the cost of a traditional college education. In this context, “To Mooc or not to Mooc” remains a question that several universities are beginning to con sider against more pressing critical reflections on issues pertaining to their language and culture. Our paper aims to examine the role of language and culture in online learning, particularly the hegemony of English and Western cultures against the rising “politics of marginality” that other languages are forced to adopt in a dominant, non - negotiable, disruptive online competition space.

  6. Neuroprotective effects of the AMPA antagonist PNQX in oxygen-glucose deprivation in mouse hippocampal slice cultures and global cerebral ischemia in gerbils

    DEFF Research Database (Denmark)

    Montero, Maria; Nielsen, Marianne; Rønn, Lars Christian B

    2007-01-01

    PNQX (9-methyl-amino-6-nitro-hexahydro-benzo(F)quinoxalinedione) is a selective AMPA antagonist with demonstrated neuroprotective effects in focal ischemia in rats. Here we report corresponding effects in mouse hippocampal slice cultures subjected to oxygen and glucose deprivation (OGD) and in tr......PNQX (9-methyl-amino-6-nitro-hexahydro-benzo(F)quinoxalinedione) is a selective AMPA antagonist with demonstrated neuroprotective effects in focal ischemia in rats. Here we report corresponding effects in mouse hippocampal slice cultures subjected to oxygen and glucose deprivation (OGD......) and in transient global cerebral ischemia in gerbils. For in vitro studies, hippocampal slice cultures derived from 7-day-old mice and grown for 14 days, were submersed in oxygen-glucose deprived medium for 30 min and exposed to PNQX for 24 h, starting together with OGD, immediately after OGD, or 2 h after OGD...... stained for the neurodegeneration marker Fluoro-Jade B and immunostained for the astroglial marker glial fibrillary acidic protein revealed a significant PNQX-induced decrease in neuronal cell death and astroglial activation. We conclude that, PNQX provided neuroprotection against both global cerebral...

  7. A modified Continuous Quality Improvement approach to improve culturally and socially inclusive care within rural health services.

    Science.gov (United States)

    Mitchell, Olivia; Malatzky, Christina; Bourke, Lisa; Farmer, Jane

    2018-03-23

    The sickest Australians are often those belonging to non-privileged groups, including Indigenous Australians, gay, lesbian, bisexual, transsexual, intersex and queer people, people from culturally and linguistically diverse backgrounds, socioeconomically disadvantaged groups, and people with disabilities and low English literacy. These consumers are not always engaged by, or included within, mainstream health services, particularly in rural Australia where health services are limited in number and tend to be generalist in nature. The aim of this study was to present a new approach for improving the sociocultural inclusivity of mainstream, generalist, rural, health care organisations. This approach combines a modified Continuous Quality Improvement framework with Participatory Action Research principles and Foucault's concepts of power, discourse and resistance to develop a change process that deconstructs the power relations that currently exclude marginalised rural health consumers from mainstream health services. It sets up processes for continuous learning and consumer responsiveness. The approach proposed could provide a Continuous Quality Improvement process for creating more inclusive mainstream health institutions and fostering better engagement with many marginalised groups in rural communities to improve their access to health care. The approach to improving cultural inclusion in mainstream rural health services presented in this article builds on existing initiatives. This approach focuses on engaging on-the-ground staff in the need for change and preparing the service for genuine community consultation and responsive change. It is currently being trialled and evaluated. © 2018 National Rural Health Alliance Ltd.

  8. Enhanced proliferation and dopaminergic differentiation of ventral mesencephalic precursor cells by synergistic effect of FGF2 and reduced oxygen tension

    DEFF Research Database (Denmark)

    Jensen, Pia; Gramsbergen, Jan-Bert; Zimmer, Jens

    2011-01-01

    Effective numerical expansion of dopaminergic precursors might overcome the limited availability of transplantable cells in replacement strategies for Parkinson's disease. Here we investigated the effect of fibroblast growth factor-2 (FGF2) and FGF8 on expansion and dopaminergic differentiation o...... enzyme activity, which may explain the elevated dopamine levels. Our findings demonstrate that modulation of oxygen tension is a recognizable factor for in vitro expansion and dopaminergic differentiation of rat embryonic midbrain precursor cells....... of rat embryonic ventral mesencephalic neuroblasts cultured at high (20%) and low (3%) oxygen tension. More cells incorporated bromodeoxyuridine in cultures expanded at low as compared to high oxygen tension, and after 6 days of differentiation there were significantly more neuronal cells in low than......, switching FGF2-expanded cultures from low to high oxygen tension during the last two days of differentiation significantly enhanced dopamine release and intracellular dopamine levels as compared to all other treatment groups. In addition, the short-term exposure to high oxygen enhanced in situ assessed TH...

  9. Flexible Sheet-Type Sensor for Noninvasive Measurement of Cellular Oxygen Metabolism on a Culture Dish.

    Directory of Open Access Journals (Sweden)

    Mari Kojima

    Full Text Available A novel flexible sensor was developed for the noninvasive oxygen metabolism measurement of cultivated cells and tissues. This device is composed of a transparent double-layered polymer sheet of ethylene-vinyl alcohol (EVOH and poly(dimethylsiloxane (PDMS having an array of microhole structures of 90 μm diameter and 50 μm depth on its surface. All the microhole structures were equipped with a 1-μm-thick optical chemical sensing layer of platinum porphyrin-fluoropolymer on their bottom. The three-dimensional microstructures of the sensor were fabricated by a newly developed simple and low-cost production method named self-aligned hot embossing. The device was designed to be attached slightly above the cells cultivated on a dish to form a temporarily closed microspace over the target cells during measurement. Since the change in oxygen concentration is relatively fast in the microcompartmentalized culture medium, a rapid evaluation of the oxygen consumption rate is possible by measuring the phosphorescence lifetime of the platinum porphyrin-fluoropolymer. The combined use of the device and an automated optical measurement system enabled the high-throughput sensing of cellular oxygen consumption (100 points/min. We monitored the oxygen metabolism of the human breast cancer cell line MCF7 on a Petri dish and evaluated the oxygen consumption rate to be 0.72 ± 0.12 fmol/min/cell. Furthermore, to demonstrate the utility of the developed sensing system, we demonstrated the mapping of the oxygen consumption rate of rat brain slices and succeeded in visualizing a clear difference among the layer structures of the hippocampus, i.e., the cornu ammonis (CA1 and CA3 and dentate gyrus (DG.

  10. Continuing Bonds in Bereaved Pakistani Muslims: Effects of Culture and Religion

    Science.gov (United States)

    Suhail, Kausar; Jamil, Naila; Oyebode, Jan; Ajmal, Mohammad Asir

    2011-01-01

    This study explores the bereavement process and continuing bond in Pakistani Muslims with the focus on how culture and religion influence these processes. Ten participants were interviewed and their transcribed interviews were analyzed using a grounded theory approach. Three main domains were identified from the narratives expressed by the…

  11. Studies on quantitative physiology of Trichoderma reesei with two-stage continuous culture for cellulase production

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, D; Andreotti, R; Mandels, M; Gallo, B; Reese, E T

    1979-11-01

    By employing a two-stage continuous-culture system, some of the more important physiological parameters involved in cellulase biosynthesis have been evaluated with an ultimate objective of designing an optimally controlled cellulase process. The two-stage continuous-culture system was run for a period of 1350 hr with Trichoderma reesei strain MCG-77. The temperature and pH were controlled at 32/sup 0/C and pH 4.5 for the first stage (growth) and 28/sup 0/C and pH 3.5 for the second stage (enzyme production). Lactose was the only carbon source for both stages. The ratio of specific uptake rate of carbon to that of nitrogen, Q(C)/Q(N), that supported good cell growth ranged from 11 to 15, and the ratio for maximum specific enzyme productivity ranged from 5 to 13. The maintenance coefficients determined for oxygen, M/sub 0/, and for carbon source, M/sub c/, are 0.85 mmol O/sub 2//g biomass/hr and 0.14 mmol hexose/g biomass/hr, respectively. The yield constants determined are: Y/sub X/O/ = 32.3 g biomass/mol O/sub 2/, Y/sub X/C/ = 1.1 g biomass/g C or Y/sub X/C/ = 0.44 g biomass/g hexose, Y/sub X/N/ = 12.5 g biomass/g nitrogen for the cell growth stage, and Y/sub X/N/ = 16.6 g biomass/g nitrogen for the enzyme production stage. Enzyme was produced only in the second stage. Volumetric and specific enzyme productivities obtained were 90 IU/liter/hrand 8 IU/g biomass/hr, respectively. The maximum specific enzyme productivity observed was 14.8 IU/g biomass/hr. The optimal dilution rate in the second stage that corresponded to the maximum enzyme productivity was 0.026 approx. 0.028 hr/sup -1/, and the specific growth rate in the second stage that supported maximum specific enzyme productivity was equal to or slightly less than zero.

  12. Effect of low oxygen tension on the biological characteristics of human bone marrow mesenchymal stem cells

    OpenAIRE

    Kim, Dae Seong; Ko, Young Jong; Lee, Myoung Woo; Park, Hyun Jin; Park, Yoo Jin; Kim, Dong-Ik; Sung, Ki Woong; Koo, Hong Hoe; Yoo, Keon Hee

    2016-01-01

    Culture of mesenchymal stem cells (MSCs) under ambient conditions does not replicate the low oxygen environment of normal physiological or pathological states and can result in cellular impairment during culture. To overcome these limitations, we explored the effect of hypoxia (1 % O2) on the biological characteristics of MSCs over the course of different culture periods. The following biological characteristics were examined in human bone marrow-derived MSCs cultured under hypoxia for 8 week...

  13. Exogenous and endogenous angiotensin‐II decrease renal cortical oxygen tension in conscious rats by limiting renal blood flow

    Science.gov (United States)

    Emans, Tonja W.; Janssen, Ben J.; Pinkham, Maximilian I.; Ow, Connie P. C.; Evans, Roger G.; Joles, Jaap A.; Malpas, Simon C.; Krediet, C. T. Paul

    2016-01-01

    Key points Our understanding of the mechanisms underlying the role of hypoxia in the initiation and progression of renal disease remains rudimentary.We have developed a method that allows wireless measurement of renal tissue oxygen tension in unrestrained rats.This method provides stable and continuous measurements of cortical tissue oxygen tension (PO2) for more than 2 weeks and can reproducibly detect acute changes in cortical oxygenation.Exogenous angiotensin‐II reduced renal cortical tissue PO2 more than equi‐pressor doses of phenylephrine, probably because it reduced renal oxygen delivery more than did phenylephrine.Activation of the endogenous renin–angiotensin system in transgenic Cyp1a1Ren2 rats reduced cortical tissue PO2; in this model renal hypoxia precedes the development of structural pathology and can be reversed acutely by an angiotensin‐II receptor type 1 antagonist.Angiotensin‐II promotes renal hypoxia, which may in turn contribute to its pathological effects during development of chronic kidney disease. Abstract We hypothesised that both exogenous and endogenous angiotensin‐II (AngII) can decrease the partial pressure of oxygen (PO2) in the renal cortex of unrestrained rats, which might in turn contribute to the progression of chronic kidney disease. Rats were instrumented with telemeters equipped with a carbon paste electrode for continuous measurement of renal cortical tissue PO2. The method reproducibly detected acute changes in cortical oxygenation induced by systemic hyperoxia and hypoxia. In conscious rats, renal cortical PO2 was dose‐dependently reduced by intravenous AngII. Reductions in PO2 were significantly greater than those induced by equi‐pressor doses of phenylephrine. In anaesthetised rats, renal oxygen consumption was not affected, and filtration fraction was increased only in the AngII infused animals. Oxygen delivery decreased by 50% after infusion of AngII and renal blood flow (RBF) fell by 3.3 ml min−1

  14. Growth of the obligate anaerobe Desulfovibrio vulgaris Hildenborough under continuous low oxygen concentration sparging: impact of the membrane-bound oxygen reductases.

    Science.gov (United States)

    Ramel, Fanny; Brasseur, Gael; Pieulle, Laetitia; Valette, Odile; Hirschler-Réa, Agnès; Fardeau, Marie Laure; Dolla, Alain

    2015-01-01

    Although obligate anaerobe, the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough (DvH) exhibits high aerotolerance that involves several enzymatic systems, including two membrane-bound oxygen reductases, a bd-quinol oxidase and a cc(b/o)o3 cytochrome oxidase. Effect of constant low oxygen concentration on growth and morphology of the wild-type, single (Δbd, Δcox) and double deletion (Δcoxbd) mutant strains of the genes encoding these oxygen reductases was studied. When both wild-type and deletion mutant strains were cultured in lactate/sulfate medium under constant 0.02% O2 sparging, they were able to grow but the final biomasses and the growth yield were lower than that obtained under anaerobic conditions. At the end of the growth, lactate was not completely consumed and when conditions were then switched to anaerobic, growth resumed. Time-lapse microscopy revealed that a large majority of the cells were then able to divide (over 97%) but the time to recover a complete division event was longer for single deletion mutant Δbd than for the three other strains. Determination of the molar growth yields on lactate suggested that a part of the energy gained from lactate oxidation was derived toward cells protection/repairing against oxidative conditions rather than biosynthesis, and that this part was higher in the single deletion mutant Δbd and, to a lesser extent, Δcox strains. Our data show that when DvH encounters oxidative conditions, it is able to stop growing and to rapidly resume growing when conditions are switched to anaerobic, suggesting that it enters active dormancy sate under oxidative conditions. We propose that the pyruvate-ferredoxin oxidoreductase (PFOR) plays a central role in this phenomenon by reversibly switching from an oxidative-sensitive fully active state to an oxidative-insensitive inactive state. The oxygen reductases, and especially the bd-quinol oxidase, would have a crucial function by maintaining reducing conditions

  15. Growth of the obligate anaerobe Desulfovibrio vulgaris Hildenborough under continuous low oxygen concentration sparging: impact of the membrane-bound oxygen reductases.

    Directory of Open Access Journals (Sweden)

    Fanny Ramel

    Full Text Available Although obligate anaerobe, the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough (DvH exhibits high aerotolerance that involves several enzymatic systems, including two membrane-bound oxygen reductases, a bd-quinol oxidase and a cc(b/oo3 cytochrome oxidase. Effect of constant low oxygen concentration on growth and morphology of the wild-type, single (Δbd, Δcox and double deletion (Δcoxbd mutant strains of the genes encoding these oxygen reductases was studied. When both wild-type and deletion mutant strains were cultured in lactate/sulfate medium under constant 0.02% O2 sparging, they were able to grow but the final biomasses and the growth yield were lower than that obtained under anaerobic conditions. At the end of the growth, lactate was not completely consumed and when conditions were then switched to anaerobic, growth resumed. Time-lapse microscopy revealed that a large majority of the cells were then able to divide (over 97% but the time to recover a complete division event was longer for single deletion mutant Δbd than for the three other strains. Determination of the molar growth yields on lactate suggested that a part of the energy gained from lactate oxidation was derived toward cells protection/repairing against oxidative conditions rather than biosynthesis, and that this part was higher in the single deletion mutant Δbd and, to a lesser extent, Δcox strains. Our data show that when DvH encounters oxidative conditions, it is able to stop growing and to rapidly resume growing when conditions are switched to anaerobic, suggesting that it enters active dormancy sate under oxidative conditions. We propose that the pyruvate-ferredoxin oxidoreductase (PFOR plays a central role in this phenomenon by reversibly switching from an oxidative-sensitive fully active state to an oxidative-insensitive inactive state. The oxygen reductases, and especially the bd-quinol oxidase, would have a crucial function by maintaining

  16. Computer graphics and cultural heritage, part 2: continuing inspiration for future tools.

    Science.gov (United States)

    Arnold, David

    2014-01-01

    The availability of large quantities of cultural-heritage data will enable new, previously inconceivable, types of analysis and new applications. Currently, most emerging analysis methods are experimental research. It's likely to take many years before the research matures and provides cultural-heritage professionals with novel research methods that they use routinely. Indeed, we can expect further disruptive technologies to emerge in the foreseeable future and a "steady state" of continuing rapid change. Part 1 can be found at 10.1109/MCG.2014.47.

  17. Preservation of high glycolytic phenotype by establishing new acute lymphoblastic leukemia cell lines at physiologic oxygen concentration.

    Science.gov (United States)

    Sheard, Michael A; Ghent, Matthew V; Cabral, Daniel J; Lee, Joanne C; Khankaldyyan, Vazgen; Ji, Lingyun; Wu, Samuel Q; Kang, Min H; Sposto, Richard; Asgharzadeh, Shahab; Reynolds, C Patrick

    2015-05-15

    Cancer cells typically exhibit increased glycolysis and decreased mitochondrial oxidative phosphorylation, and they continue to exhibit some elevation in glycolysis even under aerobic conditions. However, it is unclear whether cancer cell lines employ a high level of glycolysis comparable to that of the original cancers from which they were derived, even if their culture conditions are changed to physiologically relevant oxygen concentrations. From three childhood acute lymphoblastic leukemia (ALL) patients we established three new pairs of cell lines in both atmospheric (20%) and physiologic (bone marrow level, 5%) oxygen concentrations. Cell lines established in 20% oxygen exhibited lower proliferation, survival, expression of glycolysis genes, glucose consumption, and lactate production. Interestingly, the effects of oxygen concentration used during cell line initiation were only partially reversible when established cell cultures were switched from one oxygen concentration to another for eight weeks. These observations indicate that ALL cell lines established at atmospheric oxygen concentration can exhibit relatively low levels of glycolysis and these levels are semi-permanent, suggesting that physiologic oxygen concentrations may be needed from the time of cell line initiation to preserve the high level of glycolysis commonly exhibited by leukemias in vivo. Copyright © 2015. Published by Elsevier Inc.

  18. Neuroprotective effects of ginsenoside Rg1 against oxygen-glucose deprivation in cultured hippocampal neurons.

    Science.gov (United States)

    He, Qing; Sun, Jianguo; Wang, Qin; Wang, Wei; He, Bin

    2014-03-01

    Ginsenoside Rg1 (Rg1) is believed to be one of the main active principles in ginseng, a traditional Chinese medicine extensively used to enhance stamina and deal with fatigue as well as physical stress. It has been reported that Rg1 performs multiple biological activities, including neuroprotective activity. In this study, we investigated the efficacy of ginsenoside Rg1 on ischemia-reperfusion injury in cultured hippocampal cells and also probed its possible mechanisms. To establish a model of oxygen-glucose deprivation (OGD) and reperfusion, cultured hippocampal neurons were exposed to OGD for 2.5 hours, followed by a 24-hour reoxygenation. Cultured hippocampal neurons were randomly divided into control group, model group (vehicle), and ginsenoside Rg1 treatment groups (5μM, 20μM, 60μM). At 24 hours post-OGD, the intracellular free calcium concentration was detected using Furo-3/AM-loaded hippocampal neurons deprived of oxygen and glucose. Neuronal nitric oxide synthase (nNOS) activity was measured by chemical colorimetry. Cell apoptosis was evaluated by Hoechst staining, and the neuron viability was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Excitotoxic neuronal injury of OGD was demonstrated by the increase of intracellular free calcium concentrations and elevated nNOS activity in the model group compared with the control group. The intracellular free calcium concentrations and the nNOS activity in the groups receiving intermediate and high dose of ginsenoside Rg1 were significantly lower than those of the control group (p cell viability loss (p cell apoptosis induced by OGD. Ginsenoside Rg1 has neuroprotective effect on ischemia-reperfusion injury in cultured hippocampal cells mediated by blocking calcium over-influx into neuronal cells and decreasing the nNOS activity after OGD exposure. We infer that ginsenoside Rg1 may serve as a potential therapeutic agent for cerebral ischemia injury. Copyright © 2014

  19. Marketing to increase participation in a Web-based continuing medical education cultural competence curriculum.

    Science.gov (United States)

    Estrada, Carlos A; Krishnamoorthy, Periyakaruppan; Smith, Ann; Staton, Lisa; Korf, Michele J; Allison, Jeroan J; Houston, Thomas K

    2011-01-01

    CME providers may be interested in identifying effective marketing strategies to direct users to specific content. Online advertisements for recruiting participants into activities such as clinical trials, public health programs, and continuing medical education (CME) have been effective in some but not all studies. The purpose of this study was to compare the impact of 2 marketing strategies in the context of an online CME cultural competence curriculum (www.c-comp.org). In an interrupted time-series quasi-experimental design, 2 marketing strategies were tested: (1) wide dissemination to relevant organizations over a period of approximately 4 months, and (2) Internet paid search using Google Ads (5 consecutive 8-week periods--control 1, cultural/CME advertisement, control 2, hypertension/ content advertisement, control 3). Outcome measures were CME credit requests, Web traffic (visits per day, page views, pages viewed per visit), and cost. Overall, the site was visited 19,156 times and 78,160 pages were viewed. During the wide dissemination phase, the proportion of visits requesting CME credit decreased between the first (5.3%) and second (3.3%) halves of this phase (p = .04). During the Internet paid search phase, the proportion of visits requesting CME credit was highest during the cultural/CME advertisement period (control 1, 1.4%; cultural/CME ad, 4.3%; control 2, 1.5%; hypertension/content ad, 0.6%; control 3, 0.8%; p advertisement periods. The incremental cost for the cultural advertisement per CME credit requested was US $0.64. Internet advertisement focusing on cultural competence and CME was associated with about a threefold increase in requests for CME credit at an incremental cost of under US $1; however, Web traffic changes were independent of the advertisement strategy. Copyright © 2011 The Alliance for Continuing Medical Education, the Society for Academic Continuing Medical Education, and the Council on CME, Association for Hospital Medical

  20. Evaluation of the Oxygen Concentrator Prototypes: Pressure Swing Adsorption Prototype and Electrochemical Prototype

    Science.gov (United States)

    Gilkey, Kelly M.; Olson, Sandra L.

    2015-01-01

    An oxygen concentrator is needed to provide enriched oxygen in support of medical contingency operations for future exploration human spaceflight programs. It would provide continuous oxygen to an ill or injured crew member in a closed cabin environment. Oxygen concentration technology is being pursued to concentrate oxygen from the ambient environment so oxygen as a consumable resource can be reduced. Because oxygen is a critical resource in manned spaceflight, using an oxygen concentrator to pull oxygen out of the ambient environment instead of using compressed oxygen can provide better optimization of resources. The overall goal of this project is to develop an oxygen concentrator module that minimizes the hardware mass, volume, and power footprint while still performing at the required clinical capabilities. Should a medical event occur that requires patient oxygenation, the release of 100 percent oxygen into a small closed cabin environment can rapidly raise oxygen levels to the vehicles fire limit. The use of an oxygen concentrator to enrich oxygen from the ambient air and concentrate it to the point where it can be used for medical purposes means no oxygen is needed from the ultra-high purity (99.5+% O2) oxygen reserve tanks. By not adding oxygen from compressed tanks to the cabin environment, oxygen levels can be kept below the vehicle fire limit thereby extending the duration of care provided to an oxygenated patient without environmental control system intervention to keep the cabin oxygen levels below the fire limits. The oxygen concentrator will be a Food and Drug Administration (FDA) clearable device. A demonstration unit for the International Space Station (ISS) is planned to verify the technology and provide oxygen capability. For the ISS, the demonstration unit should not exceed 10 kg (approximately 22 lb), which is the soft stowage mass limit for launch on resupply vehicles for the ISS. The unit's size should allow for transport within the

  1. Continuing Education Effects on Cultural Competence Knowledge and Skills Building among Health Professionals

    Directory of Open Access Journals (Sweden)

    Marla B. Hall

    2013-08-01

    Full Text Available Racial and ethnic minority health data from a national perspective indicates there is much to learn in the public health workforce about the ongoing health disparities crisis. This suggests a level of urgency to assist our public health professionals in obtaining specific skills sets that will assist them in working better with vulnerable populations. The purpose of this research is to assess cultural competence knowledge and programmatic skill sets, utilizing an explorational case study, of individuals employed within an urban public health department. In order to effectively evaluate these constructs, a quantitative research approach was employed to examine participants’ knowledge and competencies of the subject matter. This data was further analyzed to determine if continuing education participation and training was correlated to the levels of culturally competent practice engagement and self-reported confidence. In addition, researchers obtained data on the availability of employer sponsored training opportunities. The data suggested when health professionals engage in cultural competence education, their level of awareness of unique characteristics between ethnic and racial minorities increased. Those who exhibited the healthiest behaviors, as it relates to effectively working with diverse populations, had a heightened sense of knowledge related to culture and healthcare services. Continuing education in cultural competence is an essential strategy for improving public health employees’ effectiveness in working with diverse clients and reducing racial and ethnic health disparities. As the finding illustrated, training programs must incorporate educational components which foster skill building to enable subsequent culturally appropriate clinical interactions.

  2. In-vivo continuous monitoring of mixed venous oxygen saturation by photoacoustic transesophageal echocardiography (Conference Presentation)

    Science.gov (United States)

    Li, Li; Subramaniam, Balachundhar; Aguirre, Aaron D.; Andrawes, Michael N.; Tearney, Guillermo J.

    2016-02-01

    Mixed venous oxygen saturation (SvO2), measured from pulmonary arteries, is a gold-standard measure of the dynamic balance between the oxygen supply and demand in the body. In critical care, continuous monitoring of SvO2 plays a vital role in early detection of circulatory shock and guiding goal-oriented resuscitation. In current clinical practice, SvO2 is measured by invasive pulmonary artery catheters (PAC), which are associated with a 10% risk of severe complications. To address the unmet clinical need for a non-invasive SvO2 monitor, we are developing a new technology termed photoacoustic transesophageal echocardiography (PA-TEE). PA-TEE integrates transesophageal echocardiography with photoacoustic oximetry, and enables continuous assessment of SvO2 through an esophageal probe that can be inserted into the body in a minimally invasive manner. We have constructed a clinically translatable PA-TEE prototype, which features a mobile OPO laser, a modified ultrasonography console and a dual-modality esophageal probe. Comprised of a rotatable acoustic array detector, a flexible optical fiber bundle and a light-integrating acoustic lens, the oximetric probe has an outer diameter smaller than 15 mm and will be tolerable for most patients. Through custom-made C++/Qt software, our device acquires and displays ultrasonic and photoacoustic images in real time to guide the deployment of the probe. SvO2 is calculated on-line and updated every second. PA-TEE has now been used to evaluate SvO2 in living swine. Our findings show that changing the fraction of oxygen in the inspired gas modulates SvO2 measured by PA-TEE. Statistic comparison between SvO2 measurements from PA-TEE in vivo the gold-standard laboratorial analysis on blood samples drawn from PACs will be presented.

  3. Model-aided optimization of delta-endotoxin-formation in continuous culture systems

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, V; Schorcht, R; Ignatenko, Yu N; Sakharova, Z V; Khovrychev, M P

    1985-01-01

    A mathematical model of growth, sporulation and delta-endotoxin-formation of bac. thuringiensis is given. The results of model-aided optimization of steady-state continuous culture systems indicate that the productivity in the one-stage system is 1.9% higher and in the two-stage system is 18.5% higher than in the batch process.

  4. Traditional ranching heritage and cultural continuity in the southwestern United States

    Science.gov (United States)

    Carol Raish; Alice M. McSweeney

    2008-01-01

    This study, conducted among ranchers on the Santa Fe and Carson National Forests in the Southwestern United States, examines the role of ranching in maintaining traditional heritage and cultural continuity. The mainly Hispanic ranching families of northern New Mexico first came into the region in 1598 with Spanish colonization. Many of the villages received community...

  5. Towards a quantitative understanding of oxygen tension and cell density evolution in fibrin hydrogels.

    Science.gov (United States)

    Demol, Jan; Lambrechts, Dennis; Geris, Liesbet; Schrooten, Jan; Van Oosterwyck, Hans

    2011-01-01

    The in vitro culture of hydrogel-based constructs above a critical size is accompanied by problems of unequal cell distribution when diffusion is the primary mode of oxygen transfer. In this study, an experimentally-informed mathematical model was developed to relate cell proliferation and death inside fibrin hydrogels to the local oxygen tension in a quantitative manner. The predictive capacity of the resulting model was tested by comparing its outcomes to the density, distribution and viability of human periosteum derived cells (hPDCs) that were cultured inside fibrin hydrogels in vitro. The model was able to reproduce important experimental findings, such as the formation of a multilayered cell sheet at the hydrogel periphery and the occurrence of a cell density gradient throughout the hydrogel. In addition, the model demonstrated that cell culture in fibrin hydrogels can lead to complete anoxia in the centre of the hydrogel for realistic values of oxygen diffusion and consumption. A sensitivity analysis also identified these two parameters, together with the proliferation parameters of the encapsulated cells, as the governing parameters for the occurrence of anoxia. In conclusion, this study indicates that mathematical models can help to better understand oxygen transport limitations and its influence on cell behaviour during the in vitro culture of cell-seeded hydrogels. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Numerical Modeling of Limiting Oxygen Index Apparatus for Film Type Fuels

    Directory of Open Access Journals (Sweden)

    Amit Kumar

    2012-12-01

    Full Text Available A detailed three-dimensional numerical model is used to compute the flow pattern and the flame behavior of thin solid fuels in a rectangular column that resembles a standard Limiting Oxygen Index (LOI device. The model includes full Navier-Stokes equations for mixed buoyant-forced flow and finite rate combustion and pyrolysis reactions so that the sample LOI can be computed to study the effect of feeding flow rate, sample width and gravity levels. In addition to the above parameters, the sample location in the column and the column cross-sectional area are also investigated on their effect on the ambient air entrainment from the top.

  7. Exogenous and endogenous angiotensin-II decrease renal cortical oxygen tension in conscious rats by limiting renal blood flow.

    Science.gov (United States)

    Emans, Tonja W; Janssen, Ben J; Pinkham, Maximilian I; Ow, Connie P C; Evans, Roger G; Joles, Jaap A; Malpas, Simon C; Krediet, C T Paul; Koeners, Maarten P

    2016-11-01

    Our understanding of the mechanisms underlying the role of hypoxia in the initiation and progression of renal disease remains rudimentary. We have developed a method that allows wireless measurement of renal tissue oxygen tension in unrestrained rats. This method provides stable and continuous measurements of cortical tissue oxygen tension (PO2) for more than 2 weeks and can reproducibly detect acute changes in cortical oxygenation. Exogenous angiotensin-II reduced renal cortical tissue PO2 more than equi-pressor doses of phenylephrine, probably because it reduced renal oxygen delivery more than did phenylephrine. Activation of the endogenous renin-angiotensin system in transgenic Cyp1a1Ren2 rats reduced cortical tissue PO2; in this model renal hypoxia precedes the development of structural pathology and can be reversed acutely by an angiotensin-II receptor type 1 antagonist. Angiotensin-II promotes renal hypoxia, which may in turn contribute to its pathological effects during development of chronic kidney disease. We hypothesised that both exogenous and endogenous angiotensin-II (AngII) can decrease the partial pressure of oxygen (PO2) in the renal cortex of unrestrained rats, which might in turn contribute to the progression of chronic kidney disease. Rats were instrumented with telemeters equipped with a carbon paste electrode for continuous measurement of renal cortical tissue PO2. The method reproducibly detected acute changes in cortical oxygenation induced by systemic hyperoxia and hypoxia. In conscious rats, renal cortical PO2 was dose-dependently reduced by intravenous AngII. Reductions in PO2 were significantly greater than those induced by equi-pressor doses of phenylephrine. In anaesthetised rats, renal oxygen consumption was not affected, and filtration fraction was increased only in the AngII infused animals. Oxygen delivery decreased by 50% after infusion of AngII and renal blood flow (RBF) fell by 3.3 ml min -1 . Equi-pressor infusion of

  8. Affective, Normative, and Continuance Commitment Levels across Cultures: A Meta-Analysis

    Science.gov (United States)

    Meyer, John P.; Stanley, David J.; Jackson, Timothy A.; McInnis, Kate J.; Maltin, Elyse R.; Sheppard, Leah

    2012-01-01

    With increasing globalization of business and diversity within the workplace, there has been growing interest in cultural differences in employee commitment. We used meta-analysis to compute mean levels of affective (AC; K=966, N=433,129), continuance (CC; K=428, N=199,831), and normative (NC; K=336, N=133,277) organizational commitment for as…

  9. Detection limits of Legionella pneumophila in environmental samples after co-culture with Acanthamoeba polyphaga

    Science.gov (United States)

    2013-01-01

    Background The efficiency of recovery and the detection limit of Legionella after co-culture with Acanthamoeba polyphaga are not known and so far no investigations have been carried out to determine the efficiency of the recovery of Legionella spp. by co-culture and compare it with that of conventional culturing methods. This study aimed to assess the detection limits of co-culture compared to culture for Legionella pneumophila in compost and air samples. Compost and air samples were spiked with known concentrations of L. pneumophila. Direct culturing and co-culture with amoebae were used in parallel to isolate L. pneumophila and recovery standard curves for both methods were produced for each sample. Results The co-culture proved to be more sensitive than the reference method, detecting 102-103 L. pneumophila cells in 1 g of spiked compost or 1 m3 of spiked air, as compared to 105-106 cells in 1 g of spiked compost and 1 m3 of spiked air. Conclusions Co-culture with amoebae is a useful, sensitive and reliable technique to enrich L. pneumophila in environmental samples that contain only low amounts of bacterial cells. PMID:23442526

  10. Factors limiting deceased organ donation: focus groups' perspective from culturally diverse community.

    Science.gov (United States)

    Wong, L P

    2010-06-01

    In-depth understanding of cultural and religious factors limiting organ donation of three ethnic populations (Malay, Chinese, and Indian) in Southeast Asia is lacking. Identification of factors limiting organ donation among these three ethnic groups will provide insights into culturally appropriate strategies to promote acceptance of organ donation in a multiethnic Asian community. A total of 17 focus group discussions (105 participants) were conducted between September and December 2008. Participants were members of the general public aged 18 to 60 years, recruited through convenient sampling around the Klang Valley area of Malaysia. Although the majority had favorable attitudes toward deceased organ donation and transplantation, a diversity of myths and misinformation were unearthed from the discussions across the ethnic groups. These include perceived religious prohibition, cultural myths and misperceptions, fear of disfigurement, fear of surgery, distrust of the medical system, and family disapproval. Culture and religious beliefs played important prohibitive roles among those opposed to organ donations. There were distinctive ethnic differences in cultural and religious concerns regarding organ donation. Less-educated and rural groups appeared to have more misconceptions than the well-educated and the urban groups. Our findings may assist organ donation and transplantation organizations to reach diverse sociodemographic and ethnic communities with culture-specific information about organ donation. The involvement of community and religious leaders is critical in organ donation requests.

  11. Reduced oxygen at high altitude limits maximum size.

    Science.gov (United States)

    Peck, L S; Chapelle, G

    2003-11-07

    The trend towards large size in marine animals with latitude, and the existence of giant marine species in polar regions have long been recognized, but remained enigmatic until a recent study showed it to be an effect of increased oxygen availability in sea water of a low temperature. The effect was apparent in data from 12 sites worldwide because of variations in water oxygen content controlled by differences in temperature and salinity. Another major physical factor affecting oxygen content in aquatic environments is reduced pressure at high altitude. Suitable data from high-altitude sites are very scarce. However, an exceptionally rich crustacean collection, which remains largely undescribed, was obtained by the British 1937 expedition from Lake Titicaca on the border between Peru and Bolivia in the Andes at an altitude of 3809 m. We show that in Lake Titicaca the maximum length of amphipods is 2-4 times smaller than other low-salinity sites (Caspian Sea and Lake Baikal).

  12. Excess oxygen limited diffusion and precipitation of iron in amorphous silicon dioxide

    Science.gov (United States)

    Leveneur, J.; Langlois, M.; Kennedy, J.; Metson, James B.

    2017-10-01

    In micro- and nano- electronic device fabrication, and particularly 3D designs, the diffusion of a metal into sublayers during annealing needs to be minimized as it is usually detrimental to device performance. Diffusion also causes the formation and growth of nanoprecipitates in solid matrices. In this paper, the diffusion behavior of low energy, low fluence, ion implanted iron into a thermally grown silicon oxide layer on silicon is investigated. Different ion beam analysis and imaging techniques were used. Magnetization measurements were also undertaken to provide evidence of nanocrystalline ordering. While standard vacuum furnace annealing and electron beam annealing lead to fast diffusion of the implanted species towards the Si/SiO2 interface, we show that furnace annealing in an oxygen rich atmosphere prevents the diffusion of iron that, in turn, limits the growth of the nanoparticles. The diffusion and particle growth is also greatly reduced when oxygen atoms are implanted in the SiO2 prior to Fe implantation, effectively acting as a diffusion barrier. The excess oxygen is hypothesized to trap Fe atoms and reduce their mean free path during the diffusion. Monte-Carlo simulations of the diffusion process which consider the random walk of Fe, Fick's diffusion of O atoms, Fe precipitation, and desorption of the SiO2 layer under the electron beam annealing were performed. Simulation results for the three preparation conditions are found in good agreement with the experimental data.

  13. Oxygen collection in the limiter shadow of TEXTOR depending on wall conditioning with boron

    International Nuclear Information System (INIS)

    Wienhold, P.; Seggern, J. v.; Kuenzli, H.

    1991-01-01

    One of the major consequences of the boronization of TEXTOR compared to the carbonized machine was the further and remaining decrease of the oxygen contamination of the plasma. This has lowered also the carbon chemical sputtering by a factor of two in spite of higher radiative power loads to the graphite limiters and made auxiliary heating up to 6 MW possible. The fact, that oxygen did not reoccur as it happened during operation with carbonized walls caused the suggestion of gettering by the formation of a stable bond to the boron. Therefore, a period (May/June 89) where different conditioning treatments with boron were applied to TEXTOR gave ideal circumstances for collection experiments in the SOL and the subsequent analysis of the deposits aiming at the understanding of this hypothesis. (author) 10 refs., 2 figs

  14. Exogenous and endogenous angiotensin-II decrease renal cortical oxygen tension in conscious rats by limiting renal blood flow

    NARCIS (Netherlands)

    Emans, Tonja W.; Janssen, Ben J.; Pinkham, Maximilian I.; Ow, Connie P. C.; Evans, Roger G.; Joles, Jaap A.; Malpas, Simon C.; Krediet, C. T. Paul; Koeners, Maarten P.

    2016-01-01

    Our understanding of the mechanisms underlying the role of hypoxia in the initiation and progression of renal disease remains rudimentary. We have developed a method that allows wireless measurement of renal tissue oxygen tension in unrestrained rats. This method provides stable and continuous

  15. The effect of PEGT/PBT scaffold architecture on oxygen gradients in tissue engineered cartilaginous constructs

    NARCIS (Netherlands)

    Malda, J.; Woodfield, T.B.F.; van der Vloodt, F.; Kooy, F.K.; Martens, D.E.; Tramper, J.C.; van Blitterswijk, Clemens; Riesle, J.U.

    2004-01-01

    Repair of articular cartilage defects using tissue engineered constructs composed of a scaffold and cultured autologous cells holds promise for future treatments. However, nutrient limitation (e.g. oxygen) has been suggested as a cause of the onset of chondrogenesis solely within the peripheral

  16. Effect of dissolved oxygen on redox potential and milk acidification by lactic acid bacteria isolated from a DL-starter culture

    DEFF Research Database (Denmark)

    Larsen, Nadja; Werner, Birgit Brøsted; Vogensen, Finn Kvist

    2015-01-01

    potential to negative values. Kinetic parameters of the DL-starter culture were comparable with the best acidifying and reducing strains, indicating their additive effects. Acidification curves were mostly diauxic at all oxygen levels, displaying 2 maxima of acidification rate: before (aerobic maximum...... subspecies in DL-starter cultures. This knowledge is important for dairies to ensure optimized, fast, and controlled milk fermentations, leading to greater standardization of dairy products.......Milk acidification by DL-starter cultures [cultures containing Lactococcus lactis diacetylactis (D) and Leuconostoc (L) species] depends on the oxidation-reduction (redox) potential in milk; however, the mechanisms behind this effect are not completely clear. The objective of this study...

  17. Calculation of Wind Power Limit adjusting the Continuation Power Flow

    International Nuclear Information System (INIS)

    Santos Fuentefria, Ariel; Castro Fernández, Miguel; Martínez García, Antonio

    2012-01-01

    The wind power insertion in the power system is an important issue and can create some instability problems in voltage and system frequency due to stochastic origin of wind. Know the Wind Power Limit is a very important matter. Existing in bibliography a few methods for calculation of wind power limit. The calculation is based in static constrains, dynamic constraints or both. In this paper is developed a method for the calculation of wind power limit using some adjust in the continuation power flow, and having into account the static constrains. The method is complemented with Minimal Power Production Criterion. The method is proved in the Isla de la Juventud Electric System. The software used in the simulations was the Power System Analysis Toolbox (PSAT). (author)

  18. Influence of oxygen levels on chondrogenesis of porcine mesenchymal stem cells cultured in polycaprolactone scaffolds.

    Science.gov (United States)

    Rodenas-Rochina, Joaquin; Kelly, Daniel J; Gómez Ribelles, Jose Luis; Lebourg, Myriam

    2017-06-01

    Chondrogenesis of mesenchymal stem cells (MSCs) is known to be regulated by a number of environmental factors, including local oxygen levels. The hypothesis of this study is that the response of MSCs to hypoxia is dependent on the physical and chemical characteristics of the substrate used. The objective of this study was to explore how different modifications to polycaprolactone (PCL) scaffolds influenced the response of MSCs to hypoxia. PCL, PCL-hyaluronic acid (HA), and PCL-Bioglass ® (BG) scaffolds were seeded with MSCs derived from bone marrow and cultured for 35 days under normoxic or low oxygen conditions, and the resulting biochemical properties of the MSC laden construct were assessed. Low oxygen tension has a positive effect over cell proliferation and macromolecules biosynthesis. Furthermore, hypoxia enhanced the distribution of collagen and glycosaminoglycans (GAGs) deposition through the scaffold. On the other hand, MSCs displayed certain material dependent responses to hypoxia. Low oxygen tension had a positive effect on cell proliferation in BG and HA scaffolds, but only a positive effect on GAGs synthesis in PCL and HA scaffolds. In conclusion, hypoxia increased cell viability and expression of chondrogenic markers but the cell response was modulated by the type of scaffold used. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1684-1691, 2017. © 2017 Wiley Periodicals, Inc.

  19. Definition and dynamic control of a continuous chromatography process independent of cell culture titer and impurities.

    Science.gov (United States)

    Chmielowski, Rebecca A; Mathiasson, Linda; Blom, Hans; Go, Daniel; Ehring, Hanno; Khan, Heera; Li, Hong; Cutler, Collette; Lacki, Karol; Tugcu, Nihal; Roush, David

    2017-12-01

    Advances in cell culture technology have enabled the production of antibody titers upwards of 30g/L. These highly productive cell culture systems can potentially lead to productivity bottlenecks in downstream purification due to lower column loadings, especially in the primary capture chromatography step. Alternative chromatography solutions to help remedy this bottleneck include the utilization of continuous processing systems such as periodic counter-current chromatography (PCC). Recent studies have provided methods to optimize and improve the design of PCC for cell culture titers up to about 3g/L. This paper defines a continuous loading strategy for PCC that is independent of cell culture background and encompasses cell culture titers up to about 31g/L. Initial experimentation showed a challenge with determining a difference in change in UV280nm signal (ie. ΔUV) between cell culture feed and monoclonal antibody (mAb) concentration. Further investigation revealed UV280nm absorbance of the cell culture feedstock without antibody was outside of the linear range of detection for a given cell pathlength. Additional experimentation showed the difference in ΔUV for various cell culture feeds can be either theoretically predicted by Beer's Law given a known absorbance of the media background and impurities or experimentally determined using various UV280nm cell pathlengths. Based on these results, a 0.35mm pathlength at UV280nm was chosen for dynamic control to overcome the background signal. The pore diffusion model showed good agreement with the experimental frontal analysis data, which resulted in definition of a ΔUV setpoint range between 20 and 70% for 3C-PCC experiments. Product quality of the elution pools was acceptable between various cell culture feeds and titers up to about 41g/L. Results indicated the following ΔUV setpoints to achieve robust dynamic control and maintain 3C-PCC yield: ∼20-45% for titers greater than 10g/L depending on UV absorbance of

  20. Single photon counting fluorescence lifetime detection of pericellular oxygen concentrations.

    Science.gov (United States)

    Hosny, Neveen A; Lee, David A; Knight, Martin M

    2012-01-01

    Fluorescence lifetime imaging microscopy offers a non-invasive method for quantifying local oxygen concentrations. However, existing methods are either invasive, require custom-made systems, or show limited spatial resolution. Therefore, these methods are unsuitable for investigation of pericellular oxygen concentrations. This study describes an adaptation of commercially available equipment which has been optimized for quantitative extracellular oxygen detection with high lifetime accuracy and spatial resolution while avoiding systematic photon pile-up. The oxygen sensitive fluorescent dye, tris(2,2'-bipyridyl)ruthenium(II) chloride hexahydrate [Ru(bipy)(3)](2+), was excited using a two-photon excitation laser. Lifetime was measured using a Becker & Hickl time-correlated single photon counting, which will be referred to as a TCSPC card. [Ru(bipy)(3)](2+) characterization studies quantified the influences of temperature, pH, cellular culture media and oxygen on the fluorescence lifetime measurements. This provided a precisely calibrated and accurate system for quantification of pericellular oxygen concentration based on measured lifetimes. Using this technique, quantification of oxygen concentrations around isolated viable chondrocytes, seeded in three-dimensional agarose gel, revealed a subpopulation of cells that exhibited significant spatial oxygen gradients such that oxygen concentration reduced with increasing proximity to the cell. This technique provides a powerful tool for quantifying spatial oxygen gradients within three-dimensional cellular models.

  1. Environmental Impact: Reinforce a Culture of Continuous Learning with These Key Elements

    Science.gov (United States)

    Edwards, Brian; Gammell, Jessica

    2017-01-01

    Fostering a robust professional learning culture in schools is vital for attracting and retaining high-caliber talent. Education leaders are looking for guidance on how to establish and sustain an environment that fosters continuous learning. Based on their experience in helping educators design and implement professional learning systems, the…

  2. Effect of the nutritional status of semi-continuous microalgal cultures on the productivity and biochemical composition of Brachionus plicatilis.

    Science.gov (United States)

    Ferreira, Martiña; Seixas, Pedro; Coutinho, Paula; Fábregas, Jaime; Otero, Ana

    2011-12-01

    The rotifer Brachionus plicatilis was cultured using the microalga Isochrysis aff. galbana clone T-ISO as feed. T-ISO was cultured semi-continuously with daily renewal rates of 10%, 20%, 30%, 40%, and 50% of the volume of cultures. The increase of renewal rate led to increasing nutrient and light availability in microalgal cultures, which caused differences in the biochemical composition of microalgal biomass. Growth rate, individual dry weight, organic content, and biomass productivity of rotifer cultures increased in response to higher growth rate in T-ISO cultures. Rotifer growth rate showed a strong negative correlation (R² = 0.90) with the C/N ratio of microalgal biomass. Rotifer dry weight was also affected by nutrient availability of T-ISO cultures, increasing up to 50% from nutrient-limited to nutrient-sufficient conditions. Consequently, biomass productivity of rotifer cultures increased more than twofold with the increase of renewal rate of T-ISO cultures. Rotifer organic content underwent the same trend of total dry weight. Maximum content of polyunsaturated fatty acids was reached in rotifers fed T-ISO from the renewal rate of 40%, with percentages of docosahexaenoic acid (22:6ω-3, DHA) and eicosapentaenoic acid (20:5ω-3, EPA) of 11% and 5% of total fatty acids, respectively. Selecting the most appropriate conditions for microalgal culture can therefore enhance the nutritive quality of microalgal biomass, resulting in a better performance of filter feeders and their nutrient content, and may constitute a useful tool to improve the rearing of fish larvae and other aquaculture organisms that require live feed in some or all the stages of their life cycle.

  3. Oxygen-limited metabolism in the methanotroph Methylomicrobium buryatense 5GB1C

    Directory of Open Access Journals (Sweden)

    Alexey Gilman

    2017-10-01

    Full Text Available The bacteria that grow on methane aerobically (methanotrophs support populations of non-methanotrophs in the natural environment by excreting methane-derived carbon. One group of excreted compounds are short-chain organic acids, generated in highest abundance when cultures are grown under O2-starvation. We examined this O2-starvation condition in the methanotroph Methylomicrobium buryatense 5GB1. The M. buryatense 5GB1 genome contains homologs for all enzymes necessary for a fermentative metabolism, and we hypothesize that a metabolic switch to fermentation can be induced by low-O2 conditions. Under prolonged O2-starvation in a closed vial, this methanotroph increases the amount of acetate excreted about 10-fold, but the formate, lactate, and succinate excreted do not respond to this culture condition. In bioreactor cultures, the amount of each excreted product is similar across a range of growth rates and limiting substrates, including O2-limitation. A set of mutants were generated in genes predicted to be involved in generating or regulating excretion of these compounds and tested for growth defects, and changes in excretion products. The phenotypes and associated metabolic flux modeling suggested that in M. buryatense 5GB1, formate and acetate are excreted in response to redox imbalance. Our results indicate that even under O2-starvation conditions, M. buryatense 5GB1 maintains a metabolic state representing a combination of fermentation and respiration metabolism.

  4. Basic regulatory principles of Escherichia coli's electron transport chain for varying oxygen conditions.

    Science.gov (United States)

    Henkel, Sebastian G; Ter Beek, Alexander; Steinsiek, Sonja; Stagge, Stefan; Bettenbrock, Katja; de Mattos, M Joost Teixeira; Sauter, Thomas; Sawodny, Oliver; Ederer, Michael

    2014-01-01

    For adaptation between anaerobic, micro-aerobic and aerobic conditions Escherichia coli's metabolism and in particular its electron transport chain (ETC) is highly regulated. Although it is known that the global transcriptional regulators FNR and ArcA are involved in oxygen response it is unclear how they interplay in the regulation of ETC enzymes under micro-aerobic chemostat conditions. Also, there are diverse results which and how quinones (oxidised/reduced, ubiquinone/other quinones) are controlling the ArcBA two-component system. In the following a mathematical model of the E. coli ETC linked to basic modules for substrate uptake, fermentation product excretion and biomass formation is introduced. The kinetic modelling focusses on regulatory principles of the ETC for varying oxygen conditions in glucose-limited continuous cultures. The model is based on the balance of electron donation (glucose) and acceptance (oxygen or other acceptors). Also, it is able to account for different chemostat conditions due to changed substrate concentrations and dilution rates. The parameter identification process is divided into an estimation and a validation step based on previously published and new experimental data. The model shows that experimentally observed, qualitatively different behaviour of the ubiquinone redox state and the ArcA activity profile in the micro-aerobic range for different experimental conditions can emerge from a single network structure. The network structure features a strong feed-forward effect from the FNR regulatory system to the ArcBA regulatory system via a common control of the dehydrogenases of the ETC. The model supports the hypothesis that ubiquinone but not ubiquinol plays a key role in determining the activity of ArcBA in a glucose-limited chemostat at micro-aerobic conditions.

  5. Uncoupling of silicon compared with carbon and nitrogen metabolisms and the role of the cell cycle in continuous cultures of Thalassiosira pseudonana (Bacillariophyceae) under light, nitrogen and phosphorus control

    NARCIS (Netherlands)

    Claquin, P.; Martin-Jézéquel, V.R.; Kromkamp, J.C.; Veldhuis, M.; Kraay, G.W.

    2002-01-01

    The elemental composition and the cell cycle stages of the marine diatom Thalassiosira pseudonana Hasle and Heimdal were studied in continuous cultures over a range of different light- (E), nitrogen- (N), and phosphorus- (P) limited growth rates. In all growth conditions investigated, the decrease

  6. Cultural Health Capital on the margins: Cultural resources for navigating healthcare in communities with limited access.

    Science.gov (United States)

    Madden, Erin Fanning

    2015-05-01

    Communities struggling with access to healthcare in the U.S. are often considered to be disadvantaged and lacking in resources. Yet, these communities develop and nurture valuable strategies for healthcare access that are underrecognized by health scholars. Combining medical sociology and critical race theory perspectives on cultural capital, this paper examines the health-relevant cultural resources, or Cultural Health Capital, in South Texas Mexican American border communities. Ethnographic data collected during 2011-2013 in Cameron and Hidalgo counties on the U.S.-Mexico border provide empirical evidence for expanding existing notions of health-relevant cultural capital. These Mexican American communities use a range of cultural resources to manage healthcare exclusion and negotiate care in alternative healthcare spaces like community clinics, flea markets and Mexican pharmacies. Navigational, social, familial, and linguistic skills and knowledge are used to access doctors and prescription drugs in these spaces despite social barriers to mainstream healthcare (e.g. cost, English language skills, etc.). Cultural capital used in marginalized communities to navigate limited healthcare options may not always fully counteract healthcare exclusion. Nevertheless, recognizing the cultural resources used in Mexican American communities to facilitate healthcare challenges deficit views and yields important findings for policymakers, healthcare providers, and advocates seeking to capitalize on community resources to improve healthcare access. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. A safe procedure for connecting a continuous renal replacement therapy device into an extracorporeal membrane oxygenation circuit.

    Science.gov (United States)

    Suga, Natsumi; Matsumura, Yosuke; Abe, Ryuzo; Hattori, Noriyuki; Nakada, Taka-Aki; Oda, Shigeto

    2017-06-01

    Patients receiving extracorporeal membrane oxygenation (ECMO) often require continuous renal replacement therapy (CRRT). The intra-circuit pressure of adult ECMO usually deviates from the physiological range. We investigated the use of CRRT connected to an ECMO circuit with physiological intra-circuit pressures (0-150 mmHg, defined as the "safety range") using an in vitro experiment involving a water-filled ECMO circuit. The intra-circuit pressure pre-pump, post-pump, and post-oxygenator were measured while varying the height of the pump or ECMO flow. The bypass conduit pressure and distance from the post-oxygenator port were measured to find the "safety point", where the bypass pressure remained within the safety range. Both drainage and return limbs of the CRRT machine were connected to the safety point and the inlet and outlet pressures of the hemofilter were recorded while varying the ECMO and CRRT flow. The pre-pump pressure only remained within the safety range for heights >75 cm (ECMO flow = 4 L/min) or ECMO flow machine safely under physiological pressures in adult patients receiving ECMO.

  8. Electrodeposition of Pd based binary catalysts on Carbon paper via surface limited redox-replacement reaction for oxygen reduction reaction

    CSIR Research Space (South Africa)

    Modibedi, RM

    2014-05-01

    Full Text Available Direct alcohol fuel cells (DAFCs) continue to extensive attention as potential power sources for portable and stationary applications. The oxygen reduction reaction (ORR) involving the four electron transfer remains a challenge for DAFCs due to its...

  9. Preservation of high glycolytic phenotype by establishing new acute lymphoblastic leukemia cell lines at physiologic oxygen concentration

    Energy Technology Data Exchange (ETDEWEB)

    Sheard, Michael A., E-mail: msheard@chla.usc.edu [Developmental Therapeutics Program, USC-CHLA Institute for Pediatric Clinical Research, Division of Hematology-Oncology, Children' s Hospital Los Angeles, 4650 Sunset Blvd., Los Angeles, CA 90027 (United States); Ghent, Matthew V., E-mail: mattghent@gmail.com [Department of Pathology, Keck School of Medicine, University of Southern California, Health Sciences Campus, Los Angeles, CA 90089 (United States); Cabral, Daniel J., E-mail: dcabral14@gmail.com [Cancer Center and Departments of Cell Biology & Biochemistry, Pharmacology & Neuroscience, Internal Medicine and Pediatrics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430 (United States); Lee, Joanne C., E-mail: joannebarnhart@gmail.com [Cancer Center and Departments of Cell Biology & Biochemistry, Pharmacology & Neuroscience, Internal Medicine and Pediatrics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430 (United States); Khankaldyyan, Vazgen, E-mail: khangaldian@yahoo.com [Developmental Therapeutics Program, USC-CHLA Institute for Pediatric Clinical Research, Division of Hematology-Oncology, Children' s Hospital Los Angeles, 4650 Sunset Blvd., Los Angeles, CA 90027 (United States); Ji, Lingyun, E-mail: lingyun.ji@med.usc.edu [Developmental Therapeutics Program, USC-CHLA Institute for Pediatric Clinical Research, Division of Hematology-Oncology, Children' s Hospital Los Angeles, 4650 Sunset Blvd., Los Angeles, CA 90027 (United States); Wu, Samuel Q., E-mail: swu@chla.usc.edu [Medical Genetics, Children' s Hospital Los Angeles, 4650 Sunset Blvd., Los Angeles, CA 90027 (United States); Kang, Min H., E-mail: min.kang@ttuhsc.edu [Cancer Center and Departments of Cell Biology & Biochemistry, Pharmacology & Neuroscience, Internal Medicine and Pediatrics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430 (United States); and others

    2015-05-15

    Cancer cells typically exhibit increased glycolysis and decreased mitochondrial oxidative phosphorylation, and they continue to exhibit some elevation in glycolysis even under aerobic conditions. However, it is unclear whether cancer cell lines employ a high level of glycolysis comparable to that of the original cancers from which they were derived, even if their culture conditions are changed to physiologically relevant oxygen concentrations. From three childhood acute lymphoblastic leukemia (ALL) patients we established three new pairs of cell lines in both atmospheric (20%) and physiologic (bone marrow level, 5%) oxygen concentrations. Cell lines established in 20% oxygen exhibited lower proliferation, survival, expression of glycolysis genes, glucose consumption, and lactate production. Interestingly, the effects of oxygen concentration used during cell line initiation were only partially reversible when established cell cultures were switched from one oxygen concentration to another for eight weeks. These observations indicate that ALL cell lines established at atmospheric oxygen concentration can exhibit relatively low levels of glycolysis and these levels are semi-permanent, suggesting that physiologic oxygen concentrations may be needed from the time of cell line initiation to preserve the high level of glycolysis commonly exhibited by leukemias in vivo. - Highlights: • Establishing new ALL cell lines in 5% oxygen resulted in higher glycolytic expression and function. • Establishing new ALL cell lines in 5% oxygen resulted in higher proliferation and lower cell death. • The divergent metabolic phenotypes selected in 5% and 20% oxygen are semi-permanent.

  10. Preservation of high glycolytic phenotype by establishing new acute lymphoblastic leukemia cell lines at physiologic oxygen concentration

    International Nuclear Information System (INIS)

    Sheard, Michael A.; Ghent, Matthew V.; Cabral, Daniel J.; Lee, Joanne C.; Khankaldyyan, Vazgen; Ji, Lingyun; Wu, Samuel Q.; Kang, Min H.

    2015-01-01

    Cancer cells typically exhibit increased glycolysis and decreased mitochondrial oxidative phosphorylation, and they continue to exhibit some elevation in glycolysis even under aerobic conditions. However, it is unclear whether cancer cell lines employ a high level of glycolysis comparable to that of the original cancers from which they were derived, even if their culture conditions are changed to physiologically relevant oxygen concentrations. From three childhood acute lymphoblastic leukemia (ALL) patients we established three new pairs of cell lines in both atmospheric (20%) and physiologic (bone marrow level, 5%) oxygen concentrations. Cell lines established in 20% oxygen exhibited lower proliferation, survival, expression of glycolysis genes, glucose consumption, and lactate production. Interestingly, the effects of oxygen concentration used during cell line initiation were only partially reversible when established cell cultures were switched from one oxygen concentration to another for eight weeks. These observations indicate that ALL cell lines established at atmospheric oxygen concentration can exhibit relatively low levels of glycolysis and these levels are semi-permanent, suggesting that physiologic oxygen concentrations may be needed from the time of cell line initiation to preserve the high level of glycolysis commonly exhibited by leukemias in vivo. - Highlights: • Establishing new ALL cell lines in 5% oxygen resulted in higher glycolytic expression and function. • Establishing new ALL cell lines in 5% oxygen resulted in higher proliferation and lower cell death. • The divergent metabolic phenotypes selected in 5% and 20% oxygen are semi-permanent

  11. Effects of the Oxygenation level on Formation of Different Reactive Oxygen Species During Photodynamic Therapy

    OpenAIRE

    Price, Michael; Heilbrun, Lance; Kessel, David

    2013-01-01

    We examined the effect of the oxygenation level on efficacy of two photosensitizing agents, both of which target lysosomes for photodamage but via different photochemical pathways. Upon irradiation, the chlorin termed NPe6 forms singlet oxygen in high yield while the bacteriopheophorbide WST11 forms only oxygen radicals (in an aqueous environment). Photokilling efficacy by WST11 in cell culture was impaired when the atmospheric oxygen concentration was reduced from 20% to 1%, while photokilli...

  12. AMC-Bio-Artificial Liver culturing enhances mitochondrial biogenesis in human liver cell lines: The role of oxygen, medium perfusion and 3D configuration

    NARCIS (Netherlands)

    Adam, Aziza A. A.; van Wenum, Martien; van der Mark, Vincent A.; Jongejan, Aldo; Moerland, Perry D.; Houtkooper, Riekelt H.; Wanders, Ronald J. A.; Oude Elferink, Ronald P.; Chamuleau, Robert A. F. M.; Hoekstra, Ruurdtje

    2017-01-01

    Human liver cell lines, like HepaRG and C3A, acquire higher functionality when cultured in the AMC-Bio-Artificial Liver (AMC-BAL). The three main differences between BAL and monolayer culture are the oxygenation (40% vs 20%O2), dynamic vs absent medium perfusion and 3D vs 2D configuration. Here, we

  13. Recent advances on enzymatic glucose/oxygen and hydrogen/oxygen biofuel cells: Achievements and limitations

    Science.gov (United States)

    Cosnier, Serge; J. Gross, Andrew; Le Goff, Alan; Holzinger, Michael

    2016-09-01

    The possibility of producing electrical power from chemical energy with biological catalysts has induced the development of biofuel cells as viable energy sources for powering portable and implanted electronic devices. These power sources employ biocatalysts, called enzymes, which are highly specific and catalytic towards the oxidation of a biofuel and the reduction of oxygen or hydrogen peroxide. Enzymes, on one hand, are promising candidates to replace expensive noble metal-based catalysts in fuel cell research. On the other hand, they offer the exciting prospect of a new generation of fuel cells which harvest energy from body fluids. Biofuel cells which use glucose as a fuel are particularly interesting for generating electricity to power electronic devices inside a living body. Hydrogen consuming biofuel cells represent an emerging alternative to platinum catalysts due to comparable efficiencies and the capability to operate at lower temperatures. Currently, these technologies are not competitive with existing commercialised fuel cell devices due to limitations including insufficient power outputs and lifetimes. The advantages and challenges facing glucose biofuel cells for implantation and hydrogen biofuel cells will be summarised along with recent promising advances and the future prospects of these exotic energy-harvesting devices.

  14. Response of Microbial Soil Carbon Mineralization Rates to Oxygen Limitations

    Science.gov (United States)

    Keiluweit, M.; Denney, A.; Nico, P. S.; Fendorf, S. E.

    2014-12-01

    The rate of soil organic matter (SOM) mineralization is known to be controlled by climatic factors as well as molecular structure, mineral-organic associations, and physical protection. What remains elusive is to what extent oxygen (O2) limitations impact overall rates of microbial SOM mineralization (oxidation) in soils. Even within upland soils that are aerobic in bulk, factors limiting O2 diffusion such as texture and soil moisture can result in an abundance of anaerobic microsites in the interior of soil aggregates. Variation in ensuing anaerobic respiration pathways can further impact SOM mineralization rates. Using a combination of (first) aggregate model systems and (second) manipulations of intact field samples, we show how limitations on diffusion and carbon bioavailability interact to impose anaerobic conditions and associated respiration constraints on SOM mineralization rates. In model aggregates, we examined how particle size (soil texture) and amount of dissolved organic carbon (bioavailable carbon) affect O2 availability and distribution. Monitoring electron acceptor profiles (O2, NO3-, Mn and Fe) and SOM transformations (dissolved, particulate, mineral-associated pools) across the resulting redox gradients, we then determined the distribution of operative microbial metabolisms and their cumulative impact on SOM mineralization rates. Our results show that anaerobic conditions decrease SOM mineralization rates overall, but those are partially offset by the concurrent increases in SOM bioavailability due to transformations of protective mineral phases. In intact soil aggregates collected from soils varying in texture and SOM content, we mapped the spatial distribution of anaerobic microsites. Optode imaging, microsensor profiling and 3D tomography revealed that soil texture regulates overall O2 availability in aggregate interiors, while particulate SOM in biopores appears to control the fine-scale distribution of anaerobic microsites. Collectively, our

  15. Substrates and oxygen dependent citric acid production by Yarrowia lipolytica: insights through transcriptome and fluxome analyses.

    Science.gov (United States)

    Sabra, Wael; Bommareddy, Rajesh Reddy; Maheshwari, Garima; Papanikolaou, Seraphim; Zeng, An-Ping

    2017-05-08

    Unlike the well-studied backer yeast where catabolite repression represents a burden for mixed substrate fermentation, Yarrowia lipolytica, an oleaginous yeast, is recognized for its potential to produce single cell oils and citric acid from different feedstocks. These versatilities of Y. lipolytica with regards to substrate utilization make it an attractive host for biorefinery application. However, to develop a commercial process for the production of citric acid by Y. lipolytica, it is necessary to better understand the primary metabolism and its regulation, especially for growth on mixed substrate. Controlling the dissolved oxygen concentration (pO 2 ) in Y. lipolytica cultures enhanced citric acid production significantly in cultures grown on glucose in mono- or dual substrate fermentations, whereas with glycerol as mono-substrate no significant effect of pO 2 was found on citrate production. Growth on mixed substrate with glucose and glycerol revealed a relative preference of glycerol utilization by Y. lipolytica. Under optimized conditions with pO 2 control, the citric acid titer on glucose in mono- or in dual substrate cultures was 55 and 50 g/L (with productivity of 0.6 g/L*h in both cultures), respectively, compared to a maximum of 18 g/L (0.2 g/L*h) with glycerol in monosubstrate culture. Additionally, in dual substrate fermentation, glycerol limitation was found to trigger citrate consumption despite the presence of enough glucose in pO 2 -limited culture. The metabolic behavior of this yeast on different substrates was investigated at transcriptomic and 13 C-based fluxomics levels. Upregulation of most of the genes of the pentose phosphate pathway was found in cultures with highest citrate production with glucose in mono- or in dual substrate fermentation with pO 2 control. The activation of the glyoxylate cycle in the oxygen limited cultures and the imbalance caused by glycerol limitation might be the reason for the re-consumption of citrate in

  16. Production of a recombinant phospholipase A2 in Escherichia coli using resonant acoustic mixing that improves oxygen transfer in shake flasks.

    Science.gov (United States)

    Valdez-Cruz, Norma A; Reynoso-Cereceda, Greta I; Pérez-Rodriguez, Saumel; Restrepo-Pineda, Sara; González-Santana, Jesus; Olvera, Alejandro; Zavala, Guadalupe; Alagón, Alejandro; Trujillo-Roldán, Mauricio A

    2017-07-25

    Shake flasks are widely used during the development of bioprocesses for recombinant proteins. Cultures of recombinant Escherichia coli with orbital mixing (OM) have an oxygen limitation negatively affecting biomass growth and recombinant-protein production. With the aim to improve mixing and aeration in shake flask cultures, we analyzed cultures subjected to OM and the novel resonant acoustic mixing (RAM) by applying acoustic energy to E. coli BL21-Gold (DE3): a producer of recombinant phospholipase A2 (rPLA2) from Micrurus laticollaris snake venom. Comparing OM with RAM (200 rpm vs. 7.5g) at the same initial volumetric oxygen transfer coefficient (k L a ≈ 80 h -1 ) ~69% less biomass was obtained with OM compared with RAM. We analyzed two more conditions increasing agitation until maximal speed (12.5 and 20g), and ~1.6- and ~1.4-fold greater biomass was obtained as compared with cultures at 7.5g. Moreover, the specific growth rate was statistically similar in all cultures carried out in RAM, but ~1.5-fold higher than that in cultures carried out under OM. Almost half of the glucose was consumed in OM, whereas between 80 and 100% of the glucose was consumed in RAM cultures, doubling biomass per glucose yields. Differential organic acid production was observed, but acetate production was prevented at the maximal RAM (20g). The amount of rPLA2 in both, OM and RAM cultures, represented 38 ± 5% of the insoluble protein. A smaller proportion of α-helices and β-sheet of purified inclusion bodies (IBs) were appreciated by ATR-FTIR from cultures carried out under OM, than those from RAM. At maximal agitation by RAM, internal E. coli localization patterns of protein aggregation changed, as well as, IBs proteolytic degradation, in conjunction with the formation of small external vesicles, although these changes did not significantly affect the cell survival response. In moderate-cell-density recombinant E. coli BL21-Gold (DE3) cultures, the agitation increases in

  17. Monocarboxylate transporter-dependent mechanism confers resistance to oxygen- and glucose-deprivation injury in astrocyte-neuron co-cultures.

    Science.gov (United States)

    Gao, Chen; Zhou, Liya; Zhu, Wenxia; Wang, Hongyun; Wang, Ruijuan; He, Yunfei; Li, Zhiyun

    2015-05-06

    Hypoxic and low-glucose stressors contribute to neuronal death in many brain diseases. Astrocytes are anatomically well-positioned to shield neurons from hypoxic injury. During hypoxia/ischemia, lactate released from astrocytes is taken up by neurons and stored for energy. This process is mediated by monocarboxylate transporters (MCTs) in the central nervous system. In the present study, we investigated the ability of astrocytes to protect neurons from oxygen- and glucose-deprivation (OGD) injury via an MCT-dependent mechanism in vitro. Primary cultures of neurons, astrocytes, and astrocytes-neurons derived from rat hippocampus were subjected to OGD, MCT inhibition with small interfering (si)RNA. Cell survival and expression of MCT4, MCT2, glial fibrillary acidic protein, and neuronal nuclear antigen were evaluated. OGD significantly increased cell death in neuronal cultures and up-regulated MCT4 expression in astrocyte cultures, but no increased cell death was observed in neuron-astrocyte co-cultures or astrocyte cultures. However, neuronal cell death in co-cultures was increased by exposure to MCT4- or MCT2-specific siRNA, and this effect was attenuated by the addition of lactate into the extracellular medium of neuronal cultures prior to OGD. These findings demonstrate that resistance to OGD injury in astrocyte-neuron co-cultures occurs via an MCT-dependent mechanism. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. IVF/ICSI outcomes after culture of human embryos at low oxygen tension: a meta-analysis

    Directory of Open Access Journals (Sweden)

    Gomes Sobrinho David B

    2011-11-01

    Full Text Available Abstract Background Improved pregnancy, implantation, and birth rates have been reported after the use of reduced O2 concentration during embryo culture, mainly due to a reduction of the cumulative detrimental effects of reactive oxygen species. However, some studies have failed to report any positive effects. The objective of this meta-analysis was to evaluate the effect of a low-O2 environment on IVF/intracytoplasmic sperm injection (ICSI outcomes. Methods All available published and ongoing randomised trials that compared the effects of low (~5%; OC~5 and atmospheric (~20%; OC~20 oxygen concentrations on IVF/ICSI outcomes were included. Search strategies included online surveys of databases from 1980 to 2011. The outcomes measured were fertilisation rate, implantation rate and ongoing pregnancy rates. The fixed effects model was used to calculate the odds ratio. Results Seven studies were included in this analysis. The pooled fertilisation rate did not differ significantly (P = 0.54 between the group of oocytes cultured at low O2 tension and the group at atmospheric O2 tension. Concerning all cycles, the implantation (P = 0.06 and ongoing pregnancy (P = 0.051 rates were not significantly different between the group receiving transferred sets containing only OC~5 embryos and the group receiving transferred sets with only OC~20 embryos. In a meta-analysis performed for only those trials in which embryos were transferred on day 2/3, implantation (P = 0.63 and ongoing pregnancy (P = 0.19 rates were not significantly different between the groups. In contrast, when a meta-analysis was performed using only trials in which embryos were transferred on days 5 and 6 (at the blastocyst stage, the group with transferred sets of only OC~5 embryos showed a statistically significantly higher implantation rate (P = 0.006 than the group receiving transferred sets with only OC~20 embryos, although the ongoing pregnancy (P = 0.19 rates were not significantly

  19. Nonlinear optical and optical limiting properties of fullerene, multi-walled carbon nanotubes, graphene and their derivatives with oxygen-containing functional groups

    International Nuclear Information System (INIS)

    Zhang, Xiao-Liang; Li, Xiao-Chun; Liu, Zhi-Bo; Yan, Xiao-Qing; Tian, Jian-Guo; Chen, Yong-Sheng

    2015-01-01

    Nonlinear optical properties (NLO) and optical limiting effect of fullerene (C 60 ), multi-walled carbon nanotubes (MWNTs), reduced graphene oxide (RGO) and their oxygenated derivatives were investigated by open-aperture Z-scan technique with nanosecond pulses at 532 nm. C 60 functionalized by oxygen-containing functional groups exhibits weaker NLO properties than that of pristine C 60 . Graphene oxide (GO) with many oxygen-containing functional groups also shows weaker NLO properties than that of RGO. That can be attributed to the disruption of conjugative structures of C 60 and graphene by oxygen-containing functional groups. However, MWNTs and their oxygenated derivatives exhibit comparable NLO properties due to the small weight ratio of these oxygen-containing groups. To investigate the correlation between structures and NLO response for these carbon nanomaterials with different dimensions, nonlinear scattered signal spectra versus input fluence were also measured. (paper)

  20. Oxygenated thawing and rewarming alleviate rewarming injury of cryopreserved pancreatic islets.

    Science.gov (United States)

    Komatsu, Hirotake; Barriga, Alyssa; Medrano, Leonard; Omori, Keiko; Kandeel, Fouad; Mullen, Yoko

    2017-05-06

    Pancreatic islet transplantation is an effective treatment for Type 1 diabetic patients to eliminate insulin injections; however, a shortage of donor organs hinders the widespread use. Although long-term islet storage, such as cryopreservation, is considered one of the key solutions, transplantation of cryopreserved islets is still not practical due to the extensive loss during the cryopreservation-rewarming process. We have previously reported that culturing islets in a hyperoxic environment is an effective treatment to prevent islet death from the hypoxic injury during culture. In this study, we explored the effectiveness of thawing and rewarming cryopreserved islets in a hyperoxic environment. Following cryopreservation of isolated human islets, the thawing solution and culture media were prepared with or without pre-equilibration to 50% oxygen. Thawing/rewarming and the pursuant two-day culture were performed with or without oxygenation. Short-term recovery rate, defined as the volume change during cryopreservation and thawing/rewarming, was assessed. Ischemia-associated and inflammation-associated gene expressions were examined using qPCR after the initial rewarming period. Long-term recovery rate, defined as the volume change during the two-day culture after the thawing/rewarming, was also examined. Islet metabolism and function were assessed by basal oxygen consumption rate and glucose stimulated insulin secretion after long-term recovery. Oxygenated thawing/rewarming did not alter the short-term recovery rate. Inflammation-associated gene expressions were elevated by the conventional thawing/rewarming method and suppressed by the oxygenated thawing/rewarming, whereas ischemia-associated gene expressions did not change between the thawing/rewarming methods. Long-term recovery rate experiments revealed that only the combination therapy of oxygenated thawing/rewarming and oxygenated culture alleviated islet volume loss. These islets showed higher metabolism

  1. Solution of the Cauchy problem for a continuous limit of the Toda lattice and its superextension

    International Nuclear Information System (INIS)

    Saveliev, M.V.; Sorba, P.

    1991-01-01

    A supersymmetric equation associated with a continuum limit of the classical superalgebra sl(n/n+1) is constructed. This equation can be considered as a superextension of a continuous limit of the Toda lattice with fixed end-points or, in other words, as a supersymmetric version of the heavenly equation. A solution of the Cauchy problem for the continuous limit of the Toda lattice and for its superextension is given using some formal reasonings. (orig.)

  2. Cell-cycle distributions and radiation responses of Chinese hamster cells cultured continuously under hypoxic conditions

    International Nuclear Information System (INIS)

    Tokita, N.; Carpenter, S.G.; Raju, M.R.

    1984-01-01

    Cell-cycle distributions were measured by flow cytometry for Chinese hamster (CHO) cells cultured continuously under hypoxic conditions. DNA histograms showed an accumulation of cells in the early S phase followed by a traverse delay through the S phase, and a G 2 block. During hypoxic culturing, cell viability decreased rapidly to less than 0.1% at 120 h. Radiation responses for cells cultured under these conditions showed an extreme radioresistance at 72 h. Results suggest that hypoxia induces a condition similar to cell synchrony which itself changes the radioresistance of hypoxic cells. (author)

  3. Limiting Current of Oxygen Reduction on Gas-Diffusion Electrodes for Phosphoric Acid Fuel Cells

    DEFF Research Database (Denmark)

    Li, Qingfeng; Gang, Xiao; Hjuler, Hans Aage

    1994-01-01

    on polytetrafluorine-ethyl bonded gas-diffusion electordes in phosphoric acid with and without fluorinated additives. This provides an alternative to estimate the film thickness by combining it with the acid-adsorption measurements and the porosity analysis of the catalyst layer. It was noticed that the limiting......Various models have been devoted to the operation mechanism of porous diffusion electrodes. They are, however, suffering from the lack of accuracy concerning the acid-film thickness on which they are based. In the present paper the limiting current density has been measured for oxygen reduction...... current density can be accomplished either by gas-phase diffusion or liquid-phase diffusion, and it is the latter that can be used in the film-thickness estimation. It is also important to mention that at such a limiting condition, both the thin-film model and the filmed agglomerate model reach the same...

  4. Magnetic Resonance Imaging-Derived Renal Oxygenation and Perfusion During Continuous, Steady-State Angiotensin-II Infusion in Healthy Humans.

    Science.gov (United States)

    van der Bel, René; Coolen, Bram F; Nederveen, Aart J; Potters, Wouter V; Verberne, Hein J; Vogt, Liffert; Stroes, Erik S G; Krediet, C T Paul

    2016-03-28

    The role of kidney hypoxia is considered pivotal in the progression of chronic kidney disease. A widely used method to assess kidney oxygenation is blood oxygen level dependent (BOLD)-magnetic resonance imaging (MRI), but its interpretation remains problematic. The BOLD-MRI signal is the result of kidney oxygen consumption (a proxy of glomerular filtration) and supply (ie, glomerular perfusion). Therefore, we hypothesized that with pharmacological modulation of kidney blood flow, renal oxygenation, as assessed by BOLD-MRI, correlates to filtration fraction (ie, glomerular filtration rate/effective renal plasma flow) in healthy humans. Eight healthy volunteers were subjected to continuous angiotensin-II infusion at 0.3, 0.9, and 3.0 ng/kg per minute. At each dose, renal oxygenation and blood flow were assessed using BOLD and phase-contrast MRI. Subsequently, "gold standard" glomerular filtration rate/effective renal plasma flow measurements were performed under the same conditions. Renal plasma flow decreased dose dependently from 660±146 to 467±103 mL/min per 1.73 m(2) (F[3, 21]=33.3, PMRI, we showed that cortical oxygenation measured by BOLD MRI relates poorly to glomerular filtration rate but is associated with filtration fraction. For future studies, there may be a need to include renal plasma flow measurements when employing renal BOLD-MRI. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  5. Faith in the 'cultural fix': limits to a planned cultural change program in a rural health service.

    Science.gov (United States)

    Mahony, K

    2000-01-01

    This paper, by way of a narrative on the author's participation, explains the limits to a planned cultural change program in a large rural health service. Cultural change was identified by the CEO as crucial to the success of a major restructuring of the service, and the attitudes and beliefs of the 'old guard' were considered to be constraining progress. Advocates of cultural integration contend that shared core values across an organisation can overcome such obstacles. This is a matter of faith. An application of Habermasian theory suggests that organisational leaders are drawing on traditional/religious beliefs and practices to bolster their visions and missions at a time of motivational crisis. Though a need for cultural change in some sectors of the health services is acknowledged, the particular challenges in attempting to manipulate the traditionally embedded culture and sub-cultures of the health services is highlighted. An analysis of some of the ideas and beliefs surrounding authority, deference and discipline is undertaken. It is argued that the ritualistic reinforcement of these beliefs and the reproduction of sub-cultures along material and ideal interests militate against the implementation of objectives delineated by the CEO. While cultural analysis has revealed the irrational face of organisations and can bring to conscious awareness the taken-for-granted beliefs which inform behaviour, the cultural integrationists have a further agenda. They aim to manipulate organisational culture to subtly control employees' beliefs and hence behaviour. Cultural control is a covert form of top down authority that can be just as directive and centralizing as bureaucratic control. The author also maintains that cultural change programs alone cannot fix a problem that arose in the macro-economic sphere: a chronic lack of resources ever since the state responded to the economic crisis by cutting funds to health and welfare services.

  6. Effect of culture medium, host strain and oxygen transfer on recombinant Fab antibody fragment yield and leakage to medium in shaken E. coli cultures

    Science.gov (United States)

    2013-01-01

    Background Fab antibody fragments in E. coli are usually directed to the oxidizing periplasmic space for correct folding. From periplasm Fab fragments may further leak into extracellular medium. Information on the cultivation parameters affecting this leakage is scarce, and the unpredictable nature of Fab leakage is problematic regarding consistent product recovery. To elucidate the effects of cultivation conditions, we investigated Fab expression and accumulation into either periplasm or medium in E. coli K-12 and E. coli BL21 when grown in different types of media and under different aeration conditions. Results Small-scale Fab expression demonstrated significant differences in yield and ratio of periplasmic to extracellular Fab between different culture media and host strains. Expression in a medium with fed-batch-like glucose feeding provided highest total and extracellular yields in both strains. Unexpectedly, cultivation in baffled shake flasks at 150 rpm shaking speed resulted in higher yield and accumulation of Fabs into culture medium as compared to cultivation at 250 rpm. In the fed-batch medium, extracellular fraction in E. coli K-12 increased from 2-17% of total Fab at 250 rpm up to 75% at 150 rpm. This was partly due to increased lysis, but also leakage from intact cells increased at the lower shaking speed. Total Fab yield in E. coli BL21 in glycerol-based autoinduction medium was 5 to 9-fold higher at the lower shaking speed, and the extracellular fraction increased from ≤ 10% to 20-90%. The effect of aeration on Fab localization was reproduced in multiwell plate by variation of culture volume. Conclusions Yield and leakage of Fab fragments are dependent on expression strain, culture medium, aeration rate, and the combination of these parameters. Maximum productivity in fed-batch-like conditions and in autoinduction medium is achieved under sufficiently oxygen-limited conditions, and lower aeration also promotes increased Fab accumulation into

  7. Sulfide-inhibition of mitochondrial respiration at very low oxygen concentrations.

    Science.gov (United States)

    Matallo, J; Vogt, J; McCook, O; Wachter, U; Tillmans, F; Groeger, M; Szabo, C; Georgieff, M; Radermacher, P; Calzia, E

    2014-09-15

    Our aim was to study the ability of an immortalized cell line (AMJ2-C11) to sustain aerobic cell respiration at decreasing oxygen concentrations under continuous sulfide exposure. We assumed that the rate of elimination of sulfide through the pathway linked to the mitochondrial respiratory chain and therefore operating under aerobic conditions, should decrease with limiting oxygen concentrations. Thus, sulfide's inhibition of cellular respiration would occur faster under continuous sulfide exposure when the oxygen concentration is in the very low range. The experiments were performed with an O2K-oxygraph (Oroboros Instruments) by suspending 0.5-1×10(6) cells in 2 ml of continuously stirred respiration medium at 37 °C and calculating the oxygen flux (JO2) as the negative derivative of the oxygen concentration in the medium. The cells were studied in two different metabolic states, namely under normal physiologic respiration (1) and after uncoupling of mitochondrial respiration (2). Oxygen concentration was controlled by means of a titration-injection pump, resulting in average concentration values of 0.73±0.05 μM, 3.1±0.2 μM, and 6.2±0.2 μM. Simultaneously we injected a 2 mM Na2S solution at a continuous rate of 10 μl/s in order to quantify the titration-time required to reduce the JO2 to 50% of the initial respiratory activity. Under the lowest oxygen concentration this effect was achieved after 3.5 [0.3;3.5] and 11.7 [6.2;21.2]min in the uncoupled and coupled state, respectively. This time was statistically significantly shorter when compared to the intermediate and the highest O2 concentrations tested, which yielded values of 24.6 [15.5;28.1]min (coupled) and 35.9 [27.4;59.2]min (uncoupled), as well as 42.4 [27.5;42.4]min (coupled) and 51.5 [46.4;51.7]min (uncoupled). All data are medians [25%, and 75% percentiles]. Our results confirm that the onset of inhibition of cell respiration by sulfide occurs earlier under a continuous exposure when approaching

  8. Ultrastructural and radiobiological characterization of stromal cells in continuous, long-term marrow culture

    International Nuclear Information System (INIS)

    Tavassoli, M.

    1982-01-01

    Hemopoietic stromal cells were studied in continuous, long-term marrow culture. A correlative study was carried out involving cytochemistry as well as scanning (SEM), and transmission electron microscopy (TEM) with sections cut either perpendicular or parallel to the substratum. Only two stromal cell types were identified: epithelioid cells and macrophages. The appearance of these cells, however, varied according to their topography in the culture and the method of observation; a finding that may explain the multiplicity of the cell types reported in these cultures. The two cell types displayed considerable interconnections and interactions which may be essential in their support function for the proliferation and maintenance of hemopoietic stem cells. They also demonstrated numerous coated pits and vesicles suggestive of extensive receptor-mediated endocytosis. Stromal cells, generally thought to be relatively radioresistant, demonstrated hitherto unrecognized radiosensitivity in culture. Doses of radiation as low as 500 rads interfered with their support function for the maintenance of the hemopoietic stem cell

  9. Behaviour and kinematics of continuous ram filtration in bowhead whales (Balaena mysticetus)

    DEFF Research Database (Denmark)

    Simon, Malene Juul; Johnson, Mark; Madsen, Peter Teglberg

    2009-01-01

    Balaenid whales perform long breath-hold foraging dives despite a high drag from their ram filtration of zooplankton. To maximize the volume of prey acquired in a dive with limited oxygen supplies, balaenids must either filter feed only occasionally when prey density is particularly high, or they......Balaenid whales perform long breath-hold foraging dives despite a high drag from their ram filtration of zooplankton. To maximize the volume of prey acquired in a dive with limited oxygen supplies, balaenids must either filter feed only occasionally when prey density is particularly high......, or they must swim at slow speeds while filtering to reduce drag and oxygen consumption. Using digital tags with three-axis accelerometers, we studied bowhead whales feeding off West Greenland and present here, to our knowledge, the first detailed data on the kinematics and swimming behaviour of a balaenid...... whale filter feeding at depth. Bowhead whales employ a continuous fluking gait throughout the bottom phase of foraging dives, moving at very slow speeds (less than 1 m s-1), allowing them to filter feed continuously at depth. Despite the slow speeds, the large mouth aperture provides a water filtration...

  10. Intraportal islet oxygenation.

    Science.gov (United States)

    Suszynski, Thomas M; Avgoustiniatos, Efstathios S; Papas, Klearchos K

    2014-05-01

    Islet transplantation (IT) is a promising therapy for the treatment of diabetes. The large number of islets required to achieve insulin independence limit its cost-effectiveness and the number of patients who can be treated. It is believed that >50% of islets are lost in the immediate post-IT period. Poor oxygenation in the early post-IT period is recognized as a possible reason for islet loss and dysfunction but has not been extensively studied. Several key variables affect oxygenation in this setting, including (1) local oxygen partial pressure (pO(2)), (2) islet oxygen consumption, (3) islet size (diameter, D), and (4) presence or absence of thrombosis on the islet surface. We discuss implications of oxygen-limiting conditions on intraportal islet viability and function. Of the 4 key variables, the islet size appears to be the most important determinant of the anoxic and nonfunctional islet volume fractions. Similarly, the effect of thrombus formation on the islet surface may be substantial. At the University of Minnesota, average size distribution data from clinical alloislet preparations (n = 10) indicate that >150-µm D islets account for only ~30% of the total islet number, but >85% of the total islet volume. This suggests that improved oxygen supply to the islets may have a profound impact on islet survivability and function since most of the β-cell volume is within large islets which are most susceptible to oxygen-limiting conditions. The assumption that the liver is a suitable islet transplant site from the standpoint of oxygenation should be reconsidered. © 2014 Diabetes Technology Society.

  11. Oxygen transfer rate identifies priming compounds in parsley cells.

    Science.gov (United States)

    Schilling, Jana Viola; Schillheim, Britta; Mahr, Stefan; Reufer, Yannik; Sanjoyo, Sandi; Conrath, Uwe; Büchs, Jochen

    2015-11-25

    In modern agriculture, the call for an alternative crop protection strategy increases because of the desired reduction of fungicide and pesticide use and the continuously evolving resistance of pathogens and pests to agrochemicals. The direct activation of the plant immune system does not provide a promising plant protection measure because of high fitness costs. However, upon treatment with certain natural or synthetic compounds, plant cells can promote to a fitness cost-saving, primed state of enhanced defense. In the primed state, plants respond to biotic and abiotic stress with faster and stronger activation of defense, and this is often associated with immunity and abiotic stress tolerance. Until now, the identification of chemical compounds with priming-inducing activity (so-called plant activators) relied on tedious and invasive approaches, or required the late detection of secreted furanocoumarin phytoalexins in parsley cell cultures. Thus, simple, fast, straightforward, and noninvasive techniques for identifying priming-inducing compounds for plant protection are very welcome. This report demonstrates that a respiration activity-monitoring system (RAMOS) can identify compounds with defense priming-inducing activity in parsley cell suspension in culture. RAMOS relies on the quasi-continuous, noninvasive online determination of the oxygen transfer rate (OTR). Treatment of parsley culture cells with the known plant activator salicylic acid (SA), a natural plant defense signal, resulted in an OTR increase. Addition of the defense elicitor Pep13, a cell wall peptide of Phythophthora sojae, induced two distinctive OTR peaks that were higher in SA-primed cells than in unprimed cells upon Pep13 challenge. Both, the OTR increase after priming with SA and the Pep13 challenge were dose-dependent. Furthermore, there was a close correlation of a compound's activity to enhance the oxygen consumption in parsley cells and its capacity to prime Pep13-induced furanocoumarin

  12. Surface oxygen vacancy and oxygen permeation flux limits of perovskite ion transport membranes

    KAUST Repository

    Hunt, Anton; Dimitrakopoulos, Georgios; Ghoniem, Ahmed F.

    2015-01-01

    © 2015 Elsevier B.V. The mechanisms and quantitative models for how oxygen is separated from air using ion transport membranes (ITMs) are not well understood, largely due to the experimental complexity for determining surface exchange reactions

  13. The effects of oxygen level and glucose concentration on the metabolism of porcine TMJ disc cells.

    Science.gov (United States)

    Cisewski, S E; Zhang, L; Kuo, J; Wright, G J; Wu, Y; Kern, M J; Yao, H

    2015-10-01

    To determine the combined effect of oxygen level and glucose concentration on cell viability, ATP production, and matrix synthesis of temporomandibular joint (TMJ) disc cells. TMJ disc cells were isolated from pigs aged 6-8 months and cultured in a monolayer. Cell cultures were preconditioned for 48 h with 0, 1.5, 5, or 25 mM glucose DMEM under 1%, 5%, 10%, or 21% O2 level, respectively. The cell viability was measured using the WST-1 assay. ATP production was determined using the Luciferin-Luciferase assay. Collagen and proteoglycan synthesis were determined by measuring the incorporation of [2, 3-(3)H] proline and [(35)S] sulfate into the cells, respectively. TMJ disc cell viability significantly decreased (P oxygen levels significantly increased viability (P oxygen levels significantly reduced ATP production (P oxygen was significant in regards to cell viability (P oxygen are important, glucose is the limiting nutrient for TMJ disc cell survival. At low oxygen levels, the production of ATP, collagen, and proteoglycan are severely inhibited. These results suggest that steeper nutrient gradients may exist in the TMJ disc and it may be vulnerable to pathological events that impede nutrient supply. Copyright © 2015 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  14. Hayflick, his limit, and cellular ageing.

    Science.gov (United States)

    Shay, J W; Wright, W E

    2000-10-01

    Almost 40 years ago, Leonard Hayflick discovered that cultured normal human cells have limited capacity to divide, after which they become senescent -- a phenomenon now known as the 'Hayflick limit'. Hayflick's findings were strongly challenged at the time, and continue to be questioned in a few circles, but his achievements have enabled others to make considerable progress towards understanding and manipulating the molecular mechanisms of ageing.

  15. Simple generic model for dynamic experiments with Saccharomyces cerevisiae in continuous culture. Decoupling between anabolism and catabolism

    DEFF Research Database (Denmark)

    Duboc, Philippe Jean; von Stockar, U.; Villadsen, John

    1998-01-01

    The dynamic behavior of a continuous culture of Saccharomyces cerevisiae subjected to a sudden increase in the dilution rate has been successfully modelled for anaerobic growth on glucose, and for aerobic growth on acetate, on ethanol, and on glucose. The catabolism responded by an immediate jump...... identified in steady state continuous cultures or during batch experiments. Only the time constant of biosynthesis regeneration, tau(x), and the time constant of catabolic capacity regeneration, tau(cat), had to be identified during transient experiments. In most experiments 7, was around 3 h, and tau(cat...

  16. Limits to Creation of Oxygen-Rich Atmospheres on Planets in the Outer Reaches of the Conventional Habitable Zone

    Science.gov (United States)

    Zahnle, Kevin

    2017-01-01

    Abundant free oxygen appears to be a requirement for macroflora and macrofauna. To the best of our knowledge, a general discussion of which habitable planets are conducive to oxygen has not taken place. Theories for the rise of oxygen fall into 4 categories: (i) It is governed by an intrinsic rate of biological innovation, independent of environmental factors. (ii) It is caused by mantle evolution, probably consequent to secular cooling. (iii) It is caused by hydrogen escape, which irreversibly oxidizes the Earth. (iv) It is Gaia's response to the brightening Sun, its rise prevented until reduced greenhouse gases were no longer needed to maintain a clement climate. All but the first of these make implicit astronomical predictions that can be quantified and made explicit. Here we address the third hypothesis. In this hypothesis hydrogen escape acts like an hourglass that continues until all relevant reduced mineral buffers have been oxidized (titrated, as it were) and the surface made safe for O2. The hypothesis predicts that abundant free O2 will be absent from habitable planets that have not experienced significant hydrogen escape. Where hydrogen escape is modest or insignificant, the atmosphere can be approximated as hydrostatic, which makes assessing radiative cooling by embedded molecules, atoms, and ions such as CO2 and H3+ straightforward. In particular, H2 is efficient at exciting non-LTE CO2 15 micron emission, which makes radiative cooling very effective when H2 is abundant. We can therefore map out the region of phase space in which habitable planets do not lose hydrogen, and therefore do not develop O2 atmospheres. A related matter is the power of radiative cooling by embedded molecules to enforce the diffusion limit to hydrogen escape. This matter in particular is relevant to addressing the empirical observation that rocky planets with thin or negligible atmospheres are rarely or never bigger than approx.1.6 Earth radii.

  17. Limits to Creation of Oxygen-Rich Atmospheres on Planets in the Outer Reaches of the Conventional Habitable Zone

    Science.gov (United States)

    Zahnle, Kevin

    2017-10-01

    Abundant free oxygen appears to be a requirement for macroflora and macrofauna. To the best of our knowledge, a general discussion of which habitable planets are conducive to oxygen has not taken place. Theories for the rise of oxygen fall into 4 categories: (i) It is governed by an intrinsic rate of biological innovation, independent of environmental factors. (ii) It is caused by mantle evolution, probably consequent to secular cooling. (iii) It is caused by hydrogen escape, which irreversibly oxidizes the Earth. (iv) It is Gaia’s response to the brightening Sun, its rise prevented until reduced greenhouse gases were no longer needed to maintain a clement climate. All but the first of these make implicit astronomical predictions that can be quantified and made explicit.Here we address the third hypothesis. In this hypothesis hydrogen escape acts like an hourglass that continues until all relevant reduced mineral buffers have been oxidized (titrated, as it were) and the surface made safe for O2. The hypothesis predicts that abundant free O2 will be absent from habitable planets that have not experienced significant hydrogen escape. Where hydrogen escape is modest or insignificant, the atmosphere can be approximated as hydrostatic, which makes assessing radiative cooling by embedded molecules, atoms, and ions such as CO2 and H3+ straightforward. In particular, H2 is efficient at exciting non-LTE CO2 15 micron emission, which makes radiative cooling very effective when H2 is abundant. We can therefore map out the region of phase space in which habitable planets do not lose hydrogen, and therefore do not develop O2 atmospheres.A related matter is the power of radiative cooling by embedded molecules to enforce the diffusion limit to hydrogen escape. This matter in particular is relevant to addressing the empirical observation that rocky planets with thin or negligible atmospheres are rarely or never bigger than ~1.6 Earth radii.

  18. Theory and development of fluorescence-based optochemical oxygen sensors: oxygen optodes.

    Science.gov (United States)

    Opitz, N; Lübbers, D W

    1987-01-01

    As the preceding considerations concerning the physical and technical features of oxygen optodes have demonstrated, fluorescence-based optochemical oxygen sensors possess certain advantages and peculiarities compared to conventionally applied electrochemical sensors such as polarographic oxygen electrodes. First, in contrast to oxygen electrodes, oxygen measurements with oxygen optodes do not suffer from distortions caused by the reference electrodes. In addition, because of the polarographic process, platinum electrodes continuously consume oxygen, which falsifies the results, especially when small sample volumes or long-term measurements, or both, are involved, whereas the sensor layer of oxygen optodes must only be equilibrated. Moreover, the surface of the platinum wire has to be catalytically clean in order to obtain a plateau of the polarogram and, consequently, to achieve a low rest current at zero PO2. Unfortunately, the demand for catalytically clean platinum surfaces turns out to be rather critical, since surface contamination occurs even with membranized electrodes, resulting in the well-known phenomenon of "electrode poisoning." The question of the specificity of oxygen electrodes also must be considered. In this context, CO2 and halothane may interfere with oxygen measurements, whereas fluorescence quenching is unaffected by CO2 and halothane affects the measurements only slightly, depending on the special indicator used. Furthermore, because of the flow dependence, oxygen measurements with the oxygen electrode show a distinct "stirring effect" caused by the turbulence in front of the electrode, which disturbs the diffusion field. Because of the completely different physical principle of fluorescence optical sensors, such influences are not observed with oxygen optodes. In addition, isolation and shielding of electrical circuits found in electrodes are not necessary for optodes. Furthermore, the sensitivity of oxygen optodes can be tuned to the desired

  19. Continuous production of lactic acid from molasses by perfusion culture of Lactococcus lactis using a stirred ceramic membrane reactor.

    Science.gov (United States)

    Ohashi, R; Yamamoto, T; Suzuki, T

    1999-01-01

    A perfusion culture system was used for continuous production of lactic acid by retaining cells at a high density of Lactococcus lactis in a stirred ceramic membrane reactor (SCMR). After the cell concentration increased to 248 g/l, half of the culture broth volume was replaced with the fermentation medium. Subsequently, a substrate solution containing glucose (run 1) or molasses (run 2) was continuously supplied to the cells retained in the SCMR. Simultaneously, the culture supernatant was extracted using a ceramic filter with a pore size of 0.2 mum. The dilution rate was initially set at 0.4 h(-1) and gradually decreased to 0.2 h(-1) due to reduction in the permeability of the filter. The concentration of glucose in the substrate solution was adjusted to 60 g/l for the transition and the first period until 240 h, 90 g/l for the second period from 240 h to 440 h, and 70 g/l for the third period from 440 h to 643 h. The average concentration of lactic acid in the filtrate reached 46 g/l in the first period, 43 g/l in the second period, and 33 g/l for the third period. The productivity obtained for the first period reached 15.8 g.l(-1).h(-1), twice as much as that achieved in repeated batch fermentations. Based on the results obtained in run 1, the substrate solution containing 120 g/l of molasses was continuously supplied for 240 h in run 2. The concentration and productivity of lactic acid reached 40 g/l and 10.6 g.l(-1).h(-1), respectively, by continuously replenishing the culture medium at a dilution rate of 0.26 h(-1). These results demonstrated that the filtration capacity of the SCMR was sufficient for a continuous and rapid replenishment of molasses solution from the dense cell culture and, therefore, the perfusion culture system is considered to provide a low-cost process for continuous production of lactic acid from cheap resources.

  20. Blastocyst utilization rates after continuous culture in two commercial single-step media: a prospective randomized study with sibling oocytes.

    Science.gov (United States)

    Sfontouris, Ioannis A; Kolibianakis, Efstratios M; Lainas, George T; Venetis, Christos A; Petsas, George K; Tarlatzis, Basil C; Lainas, Tryfon G

    2017-10-01

    The aim of this study is to determine whether blastocyst utilization rates are different after continuous culture in two different commercial single-step media. This is a paired randomized controlled trial with sibling oocytes conducted in infertility patients, aged ≤40 years with ≥10 oocytes retrieved assigned to blastocyst culture and transfer. Retrieved oocytes were randomly allocated to continuous culture in either Sage one-step medium (Origio) or Continuous Single Culture (CSC) medium (Irvine Scientific) without medium renewal up to day 5 post oocyte retrieval. Main outcome measure was the proportion of embryos suitable for clinical use (utilization rate). A total of 502 oocytes from 33 women were randomly allocated to continuous culture in either Sage one-step medium (n = 250) or CSC medium (n = 252). Fertilization was performed by either in vitro fertilization or intracytoplasmic sperm injection, and embryo transfers were performed on day 5. Two patients had all blastocysts frozen due to the occurrence of severe ovarian hyperstimulation syndrome. Fertilization and cleavage rates, as well as embryo quality on day 3, were similar in the two media. Blastocyst utilization rates (%, 95% CI) [55.4% (46.4-64.1) vs 54.7% (44.9-64.6), p = 0.717], blastocyst formation rates [53.6% (44.6-62.5) vs 51.9 (42.2-61.6), p = 0.755], and proportion of good quality blastocysts [36.8% (28.1-45.4) vs 36.1% (27.2-45.0), p = 0.850] were similar in Sage one-step and CSC media, respectively. Continuous culture of embryos in Sage one-step and CSC media is associated with similar blastocyst development and utilization rates. Both single-step media appear to provide adequate support during in vitro preimplantation embryo development. Whether these observations are also valid for other continuous single medium protocols remains to be determined. NCT02302638.

  1. A continuous culture system of direct somatic embryogenesis in microspore-derived embryos of Brassica juncea.

    Science.gov (United States)

    Prabhudesai, V; Bhaskaran, S

    1993-03-01

    An efficient culture system has been developed for repeated cycles of somatic embryogenesis in microspore-derived embryos of Brassica juncea without a callus phase. Haploid embryos produced through anther culture showed a high propensity for direct production of somatic embryos in response to 2 mgL(-1) BA and 0.1 mgL(-1) NAA. The embryogenic cultures which comprised the elongated embryonal axis of microspore-derived embryos when explanted and grown on the medium of same composition produced a large number of secondary embryos. These somatic embryos in turn underwent axis elongation and produced more somatic embryos when explanted and cultured. This cycle of repetitive somatic embryogenesis continued with undiminished vigour passage after passage and was monitored for more than a year. Somatic embryos from any passage when isolated at cotyledonary stage and grown on auxin-free medium for 5 days and then on a medium containing NAA (0.1 mgL(-1)), developed into complete plants with a profuse root system and were easily established in the soil. The cytology of the root tips of these plants confirmed their haploid nature. The total absence of callus phase makes the system ideal for continuous cloning of androgenic lines, Agrobacterium-mediated transformation and mutation induction studies.

  2. Increase in tracheal investment with beetle size supports hypothesis of oxygen limitation on insect gigantism.

    Science.gov (United States)

    Kaiser, Alexander; Klok, C Jaco; Socha, John J; Lee, Wah-Keat; Quinlan, Michael C; Harrison, Jon F

    2007-08-07

    Recent studies have suggested that Paleozoic hyperoxia enabled animal gigantism, and the subsequent hypoxia drove a reduction in animal size. This evolutionary hypothesis depends on the argument that gas exchange in many invertebrates and skin-breathing vertebrates becomes compromised at large sizes because of distance effects on diffusion. In contrast to vertebrates, which use respiratory and circulatory systems in series, gas exchange in insects is almost exclusively determined by the tracheal system, providing a particularly suitable model to investigate possible limitations of oxygen delivery on size. In this study, we used synchrotron x-ray phase-contrast imaging to visualize the tracheal system and quantify its dimensions in four species of darkling beetles varying in mass by 3 orders of magnitude. We document that, in striking contrast to the pattern observed in vertebrates, larger insects devote a greater fraction of their body to the respiratory system, as tracheal volume scaled with mass1.29. The trend is greatest in the legs; the cross-sectional area of the trachea penetrating the leg orifice scaled with mass1.02, whereas the cross-sectional area of the leg orifice scaled with mass0.77. These trends suggest the space available for tracheae within the leg may ultimately limit the maximum size of extant beetles. Because the size of the tracheal system can be reduced when oxygen supply is increased, hyperoxia, as occurred during late Carboniferous and early Permian, may have facilitated the evolution of giant insects by allowing limbs to reach larger sizes before the tracheal system became limited by spatial constraints.

  3. 'The engine just started coughing!' - Limits of physical performance, aging and career continuity in elite endurance sports.

    Science.gov (United States)

    Ronkainen, Noora J; Ryba, Tatiana V; Nesti, Mark S

    2013-12-01

    This research examines male endurance athletes' experience of aging and/or reaching the perceived limits of physical performance. More specifically, the current study aimed to explore how existential meanings attached to these experiences are connected with athletes' decision-making concerning career continuity and retirement. Life story interviews were conducted with 10 Finnish runners and/or orienteers aged between 25 and 62 and the data was analyzed with an existential-narrative framework. Four major storylines related to aging were identified: The end of an era, putting things in perspective, the attitude has to change and winning was never the only motive. Our results suggest that endurance athletes possess diverse ways of bringing meaning to the experience of aging, both confirming and resisting the dominant cultural narrative of decline. While three athletes' stories confirmed the normativity of retirement when unable to improve their results anymore, other athletes demonstrated career continuity and positive aspects in the late career years, such as lack of competitive anxiety, finding perspective and increased enjoyment in running. We suggest that through awareness of alternative narratives, sport psychology consultants may be able to help their clients to explore new meanings in the potentially challenging and beneficial experiences of aging and athletic retirement. © 2013.

  4. Time limit and time at VO2max' during a continuous and an intermittent run.

    Science.gov (United States)

    Demarie, S; Koralsztein, J P; Billat, V

    2000-06-01

    The purpose of this study was to verify, by track field tests, whether sub-elite runners (n=15) could (i) reach their VO2max while running at v50%delta, i.e. midway between the speed associated with lactate threshold (vLAT) and that associated with maximal aerobic power (vVO2max), and (ii) if an intermittent exercise provokes a maximal and/or supra maximal oxygen consumption longer than a continuous one. Within three days, subjects underwent a multistage incremental test during which their vVO2max and vLAT were determined; they then performed two additional testing sessions, where continuous and intermittent running exercises at v50%delta were performed up to exhaustion. Subject's gas exchange and heart rate were continuously recorded by means of a telemetric apparatus. Blood samples were taken from fingertip and analysed for blood lactate concentration. In the continuous and the intermittent tests peak VO2 exceeded VO2max values, as determined during the incremental test. However in the intermittent exercise, peak VO2, time to exhaustion and time at VO2max reached significantly higher values, while blood lactate accumulation showed significantly lower values than in the continuous one. The v50%delta is sufficient to stimulate VO2max in both intermittent and continuous running. The intermittent exercise results better than the continuous one in increasing maximal aerobic power, allowing longer time at VO2max and obtaining higher peak VO2 with lower lactate accumulation.

  5. The association between event learning and continuous quality improvement programs and culture of patient safety.

    Science.gov (United States)

    Mazur, Lukasz; Chera, Bhishamjit; Mosaly, Prithima; Taylor, Kinley; Tracton, Gregg; Johnson, Kendra; Comitz, Elizabeth; Adams, Robert; Pooya, Pegah; Ivy, Julie; Rockwell, John; Marks, Lawrence B

    2015-01-01

    To present our approach and results from our quality and safety program and to report their possible impact on our culture of patient safety. We created an event learning system (termed a "good catch" program) and encouraged staff to report any quality or safety concerns in real time. Events were analyzed to assess the utility of safety barriers. A formal continuous quality improvement program was created to address these reported events and make improvements. Data on perceptions of the culture of patient safety were collected using the Agency for Health Care Research and Quality survey administered before, during, and after the initiatives. Of 560 good catches reported, 367 could be ascribed to a specific step on our process map. The calculated utility of safety barriers was highest for those embedded into the pretreatment quality assurance checks performed by physicists and dosimetrists (utility score 0.53; 93 of 174) and routine checks done by therapists on the initial day of therapy. Therapists and physicists reported the highest number of good catches (24% each). Sixty-four percent of events were caused by performance issues (eg, not following standardized processes, including suboptimal communications). Of 31 initiated formal improvement events, 26 were successfully implemented and sustained, 4 were discontinued, and 1 was not implemented. Most of the continuous quality improvement program was conducted by nurses (14) and therapists (7). Percentages of positive responses in the patient safety culture survey appear to have increased on all dimensions (p continuous quality improvement programs can be successfully implemented and that there are contemporaneous improvements in the culture of safety. Copyright © 2015 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.

  6. Transient exposure to oxygen or nitrate reveals ecophysiology of fermentative and sulfate‐reducing benthic microbial populations

    Science.gov (United States)

    Saad, Sainab; Bhatnagar, Srijak; Tegetmeyer, Halina E.; Geelhoed, Jeanine S.; Strous, Marc

    2017-01-01

    Summary For the anaerobic remineralization of organic matter in marine sediments, sulfate reduction coupled to fermentation plays a key role. Here, we enriched sulfate‐reducing/fermentative communities from intertidal sediments under defined conditions in continuous culture. We transiently exposed the cultures to oxygen or nitrate twice daily and investigated the community response. Chemical measurements, provisional genomes and transcriptomic profiles revealed trophic networks of microbial populations. Sulfate reducers coexisted with facultative nitrate reducers or aerobes enabling the community to adjust to nitrate or oxygen pulses. Exposure to oxygen and nitrate impacted the community structure, but did not suppress fermentation or sulfate reduction as community functions, highlighting their stability under dynamic conditions. The most abundant sulfate reducer in all cultures, related to Desulfotignum balticum, appeared to have coupled both acetate‐ and hydrogen oxidation to sulfate reduction. We describe a novel representative of the widespread uncultured candidate phylum Fermentibacteria (formerly candidate division Hyd24‐12). For this strictly anaerobic, obligate fermentative bacterium, we propose the name ‘USabulitectum silens’ and identify it as a partner of sulfate reducers in marine sediments. Overall, we provide insights into the function of fermentative, as well as sulfate‐reducing microbial communities and their adaptation to a dynamic environment. PMID:28836729

  7. Metabolite profiling of microfluidic cell culture conditions for droplet based screening

    DEFF Research Database (Denmark)

    Björk, Sara M.; Sjoström, Staffan L.; Svahn, Helene Andersson

    2015-01-01

    We investigate the impact of droplet culture conditions on cell metabolic state by determining key metabolite concentrations in S. cerevisiae cultures in different microfluidic droplet culture formats. Control of culture conditions is critical for single cell/clone screening in droplets......, such as directed evolution of yeast, as cell metabolic state directly affects production yields from cell factories. Here, we analyze glucose, pyruvate, ethanol, and glycerol, central metabolites in yeast glucose dissimilation to establish culture formats for screening of respiring as well as fermenting yeast...... limited cultures, whereas the metabolite profiles of cells cultured in the alternative wide tube droplet incubation format resemble those from aerobic culture. Furthermore, we demonstrate retained droplet stability and size in the new better oxygenated droplet incubation format....

  8. Hypoxia, but not an electrolyte-imbalanced diet, reduces feed intake, growth and oxygen consumption in rainbow trout (Oncorhynchus mykiss)

    NARCIS (Netherlands)

    Magnoni, Leonardo J.; Eding, Ep; Leguen, Isabelle; Prunet, Patrick; Geurden, Inge; Ozório, Rodrigo O.A.; Schrama, Johan W.

    2018-01-01

    Oxygen limitation and dietary imbalances are key aspects influencing feed intake (FI) and growth performance in cultured fish. This study investigated the combined effects of hypoxia and dietary electrolyte balance on the growth performance, body composition and nutrient utilization in a rainbow

  9. Long-term operation of oxygen-limiting membrane bioreactor (MBR) for the development of simultaneous partial nitrification, anammox and denitrification (SNAD) process.

    Science.gov (United States)

    Zhao, Chuanqi; Wang, Gang; Xu, Xiaochen; Yang, Yuesuo; Yang, Fenglin

    2017-07-18

    In this study, an oxygen-limiting membrane bioreactor (MBR) with recirculation of biogas for relieving membrane fouling was successfully operated to realize the simultaneous partial nitrification, anammox and denitrification (SNAD) process. The MBR operation was considered effective in the long-term test with total nitrogen (TN) and chemical oxygen demand (COD) removal efficiencies of 94.86% and 98.91%, respectively. Membrane fouling was significantly alleviated due to the recirculation of biogas and the membrane had been cleaned four times with a normal filtration period of 52 days. The co-existence of ammonia-oxidizing bacteria (AOB), anammox and denitrifying bacteria in MBR was confirmed by scanning electron microscopy (SEM) and fluorescence in situ hybridizations (FISH) analysis. Furthermore, AOB were found close to the granule surface, while denitrifying bacteria and anammox were in the deeper layer of granules. Potential in excellent TN and COD removal, operational stability and sustainability, as well as in alleviating membrane fouling is expected by using this oxygen-limiting MBR.

  10. Enteric methane production and ruminal fermentation from forage brassica diets fed in continuous culture

    Science.gov (United States)

    Brassicas provide forage for livestock during the late fall when traditional perennial cool-season forages are not productive. However, little research exists on ruminal fermentation and methane(CH4) production of brassicas fed as forage. A continuous culture fermentor system was used to assess nutr...

  11. Building a Culture of Continuous Quality Improvement in an Academic Radiology Department.

    Science.gov (United States)

    Katzman, Gregory L; Paushter, David M

    2016-04-01

    As we enter a new era of health care in the United States, radiologists must be adequately prepared to prove, and continually improve, our value to our customers. This goal can be achieved in large part by providing high-quality services. Although quality efforts on the national and international levels provide a framework for improving radiologic quality, some of the greatest opportunities for quality improvement can be found at the departmental level, through the implementation of total quality management programs. Establishing such a program requires not only strong leadership and employee engagement, but also a firm understanding of the multiple total quality management tools and continuous quality improvement strategies available. In this article, we discuss key tools and strategies required to build a culture of continuous quality improvement in an academic department, based on our experience. Copyright © 2016 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  12. Limited Effects of Type I Interferons on Kyasanur Forest Disease Virus in Cell Culture.

    Directory of Open Access Journals (Sweden)

    Bradley W M Cook

    2016-08-01

    Full Text Available The tick-borne flavivirus, Kyasanur Forest disease virus (KFDV causes seasonal infections and periodic outbreaks in south-west India. The current vaccine offers poor protection with reported issues of coverage and immunogenicity. Since there are no approved prophylactic therapeutics for KFDV, type I IFN-α/β subtypes were assessed for antiviral potency against KFDV in cell culture.The continued passage of KFDV-infected cells with re-administered IFN-α2a treatment did not eliminate KFDV and had little effect on infectious particle production whereas the IFN-sensitive, green fluorescent protein-expressing vesicular stomatitis virus (VSV-GFP infection was controlled. Further evaluation of the other IFN-α/β subtypes versus KFDV infection indicated that single treatments of either IFN-αWA and IFN-αΚ appeared to be more effective than IFN-α2a at reducing KFDV titres. Concentration-dependent analysis of these IFN-α/β subtypes revealed that regardless of subtype, low concentrations of IFN were able to limit cytopathic effects (CPE, while significantly higher concentrations were needed for inhibition of virion release. Furthermore, expression of the KFDV NS5 in cell culture before IFN addition enabled VSV-GFP to overcome the effects of IFN-α/β signalling, producing a robust infection.Treatment of cell culture with IFN does not appear to be suitable for KFDV eradication and the assay used for such studies should be carefully considered. Further, it appears that the NS5 protein is sufficient to permit KFDV to bypass the antiviral properties of IFN. We suggest that other prophylactic therapeutics should be evaluated in place of IFN for treatment of individuals with KFDV disease.

  13. The Effect of Non-nutritive Sucking on Transcutaneous Oxygen Saturation in Neonates under the Nasal Continuous Positive Airway Pressure (CPAP

    Directory of Open Access Journals (Sweden)

    Mousa Ahmadpour-kacho

    2017-03-01

    Full Text Available BackgroundSeveral beneficial effects of non-nutritive sucking in infants, including the physiological stability, relaxation, better transition from tube feeding to oral feeding have been reported. But its effect on oxygen saturation in neonates under the Nasal Continuous Positive Airway Pressure (NCPAPو (is not so clear. This study aimed to investigate the effects of non-nutritive sucking on transcutaneous oxygen saturation levels of neonates treated with NCPAP.Materials and MethodsThis quasi-experimental study was done on 25 preterm neonates, hospitalized with a diagnosis of respiratory distress, required NCPAP, in the neonatal intensive care unit (NICU at the Ayatollah Rouhani Hospital and Babol Clinic, North of Iran. Non-nutritive sucking was elicited by a standard pacifier appropriate to their age one hour a day, and the mean oxygen saturation was measured before and after intervention by cardiopulmonary monitoring (Saadat Co., Iran. Data analyzed using SPSS-18.0 software.ResultsIn the 25 cases studied, the mean oxygen saturation values ​​before performing non-nutritive sucking was 96.31±2.88%, which was changed to 98.35±1.6% after intervention, and this increase was statistically significant (P = 0.004.Results showed that the gender, birth weight and gestational age of neonates had no effect on mean Blood oxygen saturation (SpO2level.ConclusionAccording to the results, using the non-nutritive sucking in premature neonates under the NCPAP, can improve oxygenation.

  14. Importance of Typological Analysis in Architecture for Cultural Continuity: An Example from Kocaeli (Turkey)

    Science.gov (United States)

    Ayyıldız, Sonay; Ertürk, Filiz; Durak, Şahin; Dülger, Alper

    2017-10-01

    Cities are formed from historical layers. When different periods are examined, it is possible to reach out the information about the relation with the built environment created with the society’s owned culture and the location where the built environment is through these historical layers. Cultural and natural values owned by the city, shape the city identity. To have a city identity, it is necessary to provide the continuity of these values and to protect moral and material values which transfer messages of city’s past to its future. City identities in the World and in Turkey have been gradually disappearing because of the immigrations which are the results of globalization and industrialization. This situation creates the feeling of “Alienation” in the people who live in the city. Also in Kocaeli, which lost its’ agricultural city feature owned until 1960s and whose industrial city feature has come into prominence for 50 years, same problems can be observed. Traditional houses are formed depending on the society’s different cultural values. Some places in the traditional houses have disappeared completely or have become useless time-dependently. That’s why it is very important to reveal the local similarities. Thanks to the datum gathered by analysing with the Typology method, the historical traces will be the guiding light of continuing structuring and future. On this purpose, Kapanca Street has been chosen as study area. This street is one of the historical layers of Kocaeli city and which is one of the rare places still protecting the authenticity. There are 10 traditional registered houses belonging to the late Ottoman Period in the end of 19th century and the beginning of 20th century on this street. The values of Kapanca Street, which constitutes an important place in the historical identity of Kocaeli and has a historical background more than a century are thought to be in need of being recorded to provide the cultural continuity and to be

  15. Continuous production of ethanol from hexoses and pentoses using immobilized mixed cultures of Escherichia coli strains

    Science.gov (United States)

    Unrean, Pornkamol; Srienc, Friedrich

    2010-01-01

    We have developed highly efficient ethanologenic E. coli strains that selectively consume pentoses and/or hexoses. Mixed cultures of these strains can be used to selectively adjust the sugar utilization kinetics in ethanol fermentations. Based on the kinetics of sugar utilization, we have designed and implemented an immobilized cell system for the optimized continuous conversion of sugars into ethanol. The results confirm that immobilized mixed cultures support a simultaneous conversion of hexoses and pentoses into ethanol at high yield and at a faster rate than immobilized homogenous cells. Continuous ethanol production has been maintained for several weeks at high productivity with near complete sugar utilization. The control of sugar utilization using immobilized mixed cultures can be adapted to any composition of hexoses and pentoses by adjusting the strain distribution of immobilized cells. The approach, therefore, holds promise for ethanol fermentation from lignocellulosic hydrolysates where the feedstock varies in sugar composition. PMID:20699108

  16. Effect of oxygen breathing on micro oxygen bubbles in nitrogen-depleted rat adipose tissue at sea level and 25 kPa altitude exposures

    DEFF Research Database (Denmark)

    Randsoe, Thomas; Hyldegaard, Ole

    2012-01-01

    The standard treatment of altitude decompression sickness (aDCS) caused by nitrogen bubble formation is oxygen breathing and recompression. However, micro air bubbles (containing 79% nitrogen), injected into adipose tissue, grow and stabilize at 25 kPa regardless of continued oxygen breathing...... at 101.3 kPa (sea level) or at 25 kPa altitude exposures during continued oxygen breathing. In keeping with previous observations and bubble kinetic models, we hypothesize that oxygen breathing may contribute to oxygen bubble growth at altitude. Anesthetized rats were exposed to 3 h of oxygen...... prebreathing at 101.3 kPa (sea level). Micro oxygen bubbles of 500-800 nl were then injected into the exposed abdominal adipose tissue. The oxygen bubbles were studied for up to 3.5 h during continued oxygen breathing at either 101.3 or 25 kPa ambient pressures. At 101.3 kPa, all bubbles shrank consistently...

  17. Morphine Preconditioning Downregulates MicroRNA-134 Expression Against Oxygen-Glucose Deprivation Injuries in Cultured Neurons of Mice.

    Science.gov (United States)

    Meng, Fanjun; Li, Yan; Chi, Wenying; Li, Junfa

    2016-07-01

    Brain protection by narcotics such as morphine is clinically relevant due to the extensive use of narcotics in the perioperative period. Morphine preconditioning induces neuroprotection in neurons, but it remains uncertain whether microRNA-134 (miR-134) is involved in morphine preconditioning against oxygen-glucose deprivation-induced injuries in primary cortical neurons of mice. The present study examined this issue. After cortical neurons of mice were cultured in vitro for 6 days, the neurons were transfected by respective virus vector, such as lentiviral vector (LV)-miR-control-GFP, LV-pre-miR-134-GFP, LV-pre-miR-134-inhibitor-GFP for 24 hours; after being normally cultured for 3 days again, morphine preconditioning was performed by incubating the transfected primary neurons with morphine (3 μM) for 1 hour, and then neuronal cells were exposed to oxygen-glucose deprivation (OGD) for 1 hour and oxygen-glucose recovery for 12 hours. The neuronal cells survival rate and the amount of apoptotic neurons were determined by MTT assay or TUNEL staining at designated time; and the expression levels of miR-134 were detected using real-time reverse transcription polymerase chain reaction at the same time. The neuronal cell survival rate was significantly higher, and the amount of apoptotic neurons was significantly decreased in neurons preconditioned with morphine before OGD than that of OGD alone. The neuroprotection induced by morphine preconditioning was partially blocked by upregulating miR-134 expression, and was enhanced by downregulating miR-134 expression. The expression of miR-134 was significantly decreased in morphine-preconditioned neurons alone without transfection. By downregulating miR-134 expression, morphine preconditioning protects primary cortical neurons of mice against injuries induced by OGD.

  18. Nitric Oxide is Required for Homeostasis of Oxygen and Reactive Oxygen Species in Barley Roots under Aerobic Conditions

    DEFF Research Database (Denmark)

    Gupta, Kapuganti J; Hebelstrup, Kim; Kruger, Nicholas J

    2014-01-01

    Oxygen, the terminal electron acceptor for mitochondrial electron transport, is vital for plants because of its role in the production of ATP by oxidative phosphorylation. While photosynthetic oxygen production contributes to the oxygen supply in leaves, reducing the risk of oxygen limitation of ...... electron transport chain (Gupta et al., 2011). Thus, NO could influence oxygen consumption under normal aerobic conditions in roots, and it is this specific function that is assessed here.......Oxygen, the terminal electron acceptor for mitochondrial electron transport, is vital for plants because of its role in the production of ATP by oxidative phosphorylation. While photosynthetic oxygen production contributes to the oxygen supply in leaves, reducing the risk of oxygen limitation...

  19. The oxygen effect and cellular adaptation

    International Nuclear Information System (INIS)

    Meshcherikova, V.V.; Vajnson, A.A.; Yarmonenko, S.P.

    1979-01-01

    The radiomodifying effect of oxygen was shown to depend on the level of cellular oxygenation prior to irradiation. Acute hypoxia created at the time of irradiation protects previously normally oxygenated cells with DMF approximately 1.4 times larger than that of cells cultured for 24 hours under conditions of mild hypoxia. It is suggested that a decrease in the radioprotective effect of acute hypoxia on chronically hypoxic cells is correlated with an appreciable decrease in the rate of oxygen consumption by these cells, due to which the oxygen concentration near the intracellular targets in chronically hypoxic cells may be higher than in normal cells under conditions of poor oxygenation

  20. A continuous-flow system for measuring in vitro oxygen and nitrogen metabolism in separated stream communities

    DEFF Research Database (Denmark)

    Prahl, C.; Jeppesen, E.; Sand-Jensen, Kaj

    1991-01-01

    on the stream bank, consists of several macrophyte and sediment chambers equipped with a double-flow system that ensures an internal water velocity close to that in the stream and which, by continuously renewing the water, mimics diel fluctuation in stream temperature and water chemistry. Water temperature...... production and dark respiration occurred at similar rates (6-7g O2 m-2 day-1), net balance being about zero. Inorganic nitrogen was consumed both by the sediment and to a greater extent by the macrophytes, the diel average consumption being 1g N m-2 day-1. 3. The sum of the activity in the macrophyte...... and sediment chambers corresponded to the overall activity of the stream section as determined by upstream/downstream mass balance. This indicates that the results obtained with the continuous-flow chambers realistically describe the oxygen and the nitrogen metabolism of the stream....

  1. Limitations on continuous variable quantum algorithms with Fourier transforms

    International Nuclear Information System (INIS)

    Adcock, Mark R A; Hoeyer, Peter; Sanders, Barry C

    2009-01-01

    We study quantum algorithms implemented within a single harmonic oscillator, or equivalently within a single mode of the electromagnetic field. Logical states correspond to functions of the canonical position, and the Fourier transform to canonical momentum serves as the analogue of the Hadamard transform for this implementation. This continuous variable version of quantum information processing has widespread appeal because of advanced quantum optics technology that can create, manipulate and read Gaussian states of light. We show that, contrary to a previous claim, this implementation of quantum information processing has limitations due to a position-momentum trade-off of the Fourier transform, analogous to the famous time-bandwidth theorem of signal processing.

  2. Pitavastatin treatment induces neuroprotection through the BDNF-TrkB signalling pathway in cultured cerebral neurons after oxygen-glucose deprivation.

    Science.gov (United States)

    Cui, Xiaoyan; Fu, Zhenqiang; Wang, Menghan; Nan, Xiaofei; Zhang, Boai

    2018-05-01

    Along with their lipid-lowering effect, statins have been reported to have neuroprotective function in both in vivo and in vitro models of neurodegenerative diseases. We conducted this study in order to uncover the he neuroprotective effect of the lipophilic statin pitavastatin (PTV) and investigate the underlying molecular mechanisms using primary cultured cerebral neurons exposed to oxygen-glucose deprivation (OGD). The primary cultured cerebral neurons were randomly assigned into four groups: the control group, the pitavastatin treatment group, the OGD group and the OGD + pitavastatin treatment group. The pitavastatin's concentration were set as follows: 1μM, 15μM, 30μM. After 3 hours OGD treatment, we use MTT method to assessment cell viability, immunofluorescence to observe neuron morphology and western blot method analysis the BDNF, TrkB. PTV at concentrations of 1 μM and 15 μM elevated the survival rate of cortical neurons exposed to OGD, whereas 30 μM PTV did not show such an effect. Moreover, PTV promoted neuronal dendrite growth at concentrations of 1 μM and 15 μM. Increased expression levels of brain-derived neurotrophic factor (BDNF) and tropomyosin-related kinase B (TrkB) were observed in both of the following two scenarios: when neurons were treated with PTV for 48 hours and when PTV was added after the OGD procedure. Pitavastatin treatment induces neuroprotection in cultured cerebral neurons after oxygen-glucose deprivation this neuroprotection induced by PTV involves the BDNF-TrkB signalling pathway.

  3. Improvement of lipase production at different stirring speeds and oxygen levels

    Directory of Open Access Journals (Sweden)

    F.O.M. Alonso

    2005-03-01

    Full Text Available Lipase production by a Brazilian wild strain of Yarrowia lipolytica at different stirring speeds and air flow rates was studied. The relationship among lipid consumption, cell growth and lipase production by this microorganism is presented. The most pronounced effect of oxygen on lipase production was determined by stirring speed. Maximum lipase activity was detected in the late stationary phase at 200 rpm and an air flow rate of 1-2 dm³/min (0.8-1.7 vvm when the lipid source had been fully consumed. Higher stirring speeds resulted in mechanical and/or oxidative stress, while lower stirring speeds seemed to limit oxygen levels. An increase in the availability of oxygen at higher air flow rates led to faster lipid uptake and anticipation of enzyme release into the culture medium. The highest lipase production was obtained at 200 rpm and 1 dm³/min (0.8 vvm.

  4. Definition of culture conditions for Arxula adeninivorans, a rational basis for studying heterologous gene expression in this dimorphic yeast.

    Science.gov (United States)

    Stöckmann, Christoph; Palmen, Thomas G; Schroer, Kirsten; Kunze, Gotthard; Gellissen, Gerd; Büchs, Jochen

    2014-06-01

    The yeast Arxula adeninivorans is considered to be a promising producer of recombinant proteins. However, growth characteristics are poorly investigated and no industrial process has been established yet. Though of vital interest for strain screening and production processes, rationally defined culture conditions remain to be developed. A cultivation system was evolved based on targeted sampling and mathematical analysis of rationally designed small-scale cultivations in shake flasks. The oxygen and carbon dioxide transfer rates were analyzed as conclusive online parameters. Oxygen limitation extended cultivation and led to ethanol formation in cultures supplied with glucose. Cultures were inhibited at pH-values below 2.8. The phosphorus demand was determined as 1.55 g phosphorus per 100 g cell dry weight. Synthetic SYN6 medium with 20 g glucose l(-1) was optimized for cultivation in shake flasks by buffering at pH 6.4 with 140 mmol MES l(-1). Optimized SYN6 medium and operating conditions provided non-limited cultivations without by-product formation. A maximal specific growth rate of 0.32 h(-1) and short fermentations of 15 h were achieved. A pH optimum curve was derived from the oxygen transfer rates of differently buffered cultures, showing maximal growth between pH 2.8 and 6.5. Furthermore, it was shown that the applied medium and cultivation conditions were also suitable for non-limiting growth and product formation of a genetically modified A. adeninivorans strain expressing a heterologous phytase.

  5. Effect of low oxygen tension on the biological characteristics of human bone marrow mesenchymal stem cells.

    Science.gov (United States)

    Kim, Dae Seong; Ko, Young Jong; Lee, Myoung Woo; Park, Hyun Jin; Park, Yoo Jin; Kim, Dong-Ik; Sung, Ki Woong; Koo, Hong Hoe; Yoo, Keon Hee

    2016-11-01

    Culture of mesenchymal stem cells (MSCs) under ambient conditions does not replicate the low oxygen environment of normal physiological or pathological states and can result in cellular impairment during culture. To overcome these limitations, we explored the effect of hypoxia (1 % O 2 ) on the biological characteristics of MSCs over the course of different culture periods. The following biological characteristics were examined in human bone marrow-derived MSCs cultured under hypoxia for 8 weeks: proliferation rate, morphology, cell size, senescence, immunophenotypic characteristics, and the expression levels of stemness-associated factors and cytokine and chemokine genes. MSCs cultured under hypoxia for approximately 2 weeks showed increased proliferation and viability. During long-term culture, hypoxia delayed phenotypic changes in MSCs, such as increased cell volume, altered morphology, and the expression of senescence-associated-β-gal, without altering their characteristic immunophenotypic characteristics. Furthermore, hypoxia increased the expression of stemness and chemokine-related genes, including OCT4 and CXCR7, and did not decrease the expression of KLF4, C-MYC, CCL2, CXCL9, CXCL10, and CXCR4 compared with levels in cells cultured under normoxia. In conclusion, low oxygen tension improved the biological characteristics of MSCs during ex vivo expansion. These data suggest that hypoxic culture could be a useful method for increasing the efficacy of MSC cell therapies.

  6. Continuous Perfusion of Saphenous Vein by Oxygenated Blood during Beating Coronary Surgery

    Directory of Open Access Journals (Sweden)

    Mohammad Hossein Mandegar

    2015-09-01

    Full Text Available Background: The saphenous vein remains the most commonly used conduit for coronary artery bypass surgery (CABG. However, the long-term success of surgical revascularization is largely limited by development of occlusion in vein grafts. Objectives: We sought to reduce graft ischemia by maintaining the blood flow into the harvested vein throughout surgery at lowest costs and without special devices. Patients and Methods: This study was conducted on three hundred patients aged 58.5 ± 8 years undergoing elective first-time off-pump CABG with saphenous veins. Results: In addition to preserving nutritional materials and oxygen, the veins harvested via this novel technique did not go into spasm and were not subjected to high-pressure distension, eventually resulting in minimal damage to the endothelium. Conclusions: This technique confers favorable myocardial function and protection in the presence of left ventricular dysfunction, especially in elderly patients.

  7. 40 CFR 63.6004 - How do I demonstrate continuous compliance with the emission limits for tire production affected...

    Science.gov (United States)

    2010-07-01

    ... compliance with the emission limits for tire production affected sources? 63.6004 Section 63.6004 Protection... Pollutants: Rubber Tire Manufacturing Continuous Compliance Requirements for Tire Production Affected Sources § 63.6004 How do I demonstrate continuous compliance with the emission limits for tire production...

  8. Effects of the oxygenation level on formation of different reactive oxygen species during photodynamic therapy.

    Science.gov (United States)

    Price, Michael; Heilbrun, Lance; Kessel, David

    2013-01-01

    We examined the effect of the oxygenation level on efficacy of two photosensitizing agents, both of which target lysosomes for photodamage, but via different photochemical pathways. Upon irradiation, the chlorin termed NPe6 forms singlet oxygen in high yield while the bacteriopheophorbide WST11 forms only oxygen radicals (in an aqueous environment). Photokilling efficacy by WST11 in cell culture was impaired when the atmospheric oxygen concentration was reduced from 20% to 1%, while photokilling by NPe6 was unaffected. Studies in a cell-free system revealed that the rates of photobleaching of these agents, as a function of the oxygenation level, were correlated with results described above. Moreover, the rate of formation of oxygen radicals by either agent was more sensitive to the level of oxygenation than was singlet oxygen formation by NPe6. These data indicate that the photochemical process that leads to oxygen radical formation is more dependent on the oxygenation level than is the pathway leading to formation of singlet oxygen. © 2013 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2013 The American Society of Photobiology.

  9. In situ quantification of ultra-low O2 concentrations in oxygen minimum zones

    DEFF Research Database (Denmark)

    Larsen, Morten; Lehner, Philipp; Borisov, Sergey M.

    2016-01-01

    based on the palladium(II)-benzoporphyrin luminophore, immobilized in a perfluorinated matrix with high O2 permeability. The trace sensor has a detection limit of ∼5 nmol L−1 with a dynamic range extending up to ∼2 μmol L−1. The sensor demonstrates a response time ..., and fully reversible response to hydrostatic pressure and temperature. The sensor showed excellent stability for continuously measurements during depth profiling in Oxygen Minimum Zones (OMZ). The novel sensor was deployed in situ using a Trace Oxygen Profiler instrument (TOP) equipped with two additional O...

  10. Ambient oxygen promotes tumorigenesis.

    Directory of Open Access Journals (Sweden)

    Ho Joong Sung

    2011-05-01

    Full Text Available Oxygen serves as an essential factor for oxidative stress, and it has been shown to be a mutagen in bacteria. While it is well established that ambient oxygen can also cause genomic instability in cultured mammalian cells, its effect on de novo tumorigenesis at the organismal level is unclear. Herein, by decreasing ambient oxygen exposure, we report a ∼50% increase in the median tumor-free survival time of p53-/- mice. In the thymus, reducing oxygen exposure decreased the levels of oxidative DNA damage and RAG recombinase, both of which are known to promote lymphomagenesis in p53-/- mice. Oxygen is further shown to be associated with genomic instability in two additional cancer models involving the APC tumor suppressor gene and chemical carcinogenesis. Together, these observations represent the first report directly testing the effect of ambient oxygen on de novo tumorigenesis and provide important physiologic evidence demonstrating its critical role in increasing genomic instability in vivo.

  11. [Domiciliary oxygen therapy].

    Science.gov (United States)

    Abdel Kafi, S

    2010-09-01

    In Belgium, oxygen therapy is becoming more and more accessible. When oxygen is needed for short periods or for special indications as palliative care, an agreement between mutual insurance companies and pharmacists allows the practitioner the home installation of gazeous oxygen cylinder or of oxygen concentrator. When long term oxygen therapy (LTOT) is indicated for patients with respiratory insufficiency, the pneumologist must first ask the INAMI the authorization to install one of the following modalities: oxygen concentrator with or without demand oxygen delivery cylinder and liquid oxygen. The goal of LTOT is to increase survival and quality of life. The principal and well accepted indication for LTOT is severe hypoxemia. The beneficial effects of oxygen therapy limited at night or on exertion are controversial. In order to increase patient's autonomy, oxygen can be prescribed for ambulation, respecting prescription's rules. At each step of oxygen therapy implementing (indication, choice of the device and follow-up) the patient under oxygen may benefit from a joint approach between the general practitioner and the chest specialist.

  12. Comparison of pulsed versus continuous oxygen delivery using realistic adult nasal airway replicas

    Directory of Open Access Journals (Sweden)

    Chen JZ

    2017-08-01

    Full Text Available John Z Chen,1 Ira M Katz,2 Marine Pichelin,2 Kaixian Zhu,3 Georges Caillibotte,2 Michelle L Noga,4 Warren H Finlay,1 Andrew R Martin1 1Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada; 2Medical R&D, Air Liquide Santé International, Centre de Recherche Paris-Saclay, Les Loges-en-Josas, 3Centre Explor!, Air Liquide Healthcare, Gentilly, France; 4Radiology and Diagnostic Imaging, University of Alberta, Edmonton, AB, Canada Background: Portable oxygen concentrators (POCs typically include pulse flow (PF modes to conserve oxygen. The primary aims of this study were to develop a predictive in vitro model for inhaled oxygen delivery using a set of realistic airway replicas, and to compare PF for a commercial POC with steady flow (SF from a compressed oxygen cylinder. Methods: Experiments were carried out using a stationary compressed oxygen cylinder, a POC, and 15 adult nasal airway replicas based on airway geometries derived from medical images. Oxygen delivery via nasal cannula was tested at PF settings of 2.0 and 6.0, and SF rates of 2.0 and 6.0 L/min. A test lung simulated three breathing patterns representative of a chronic obstructive pulmonary disease patient at rest, during exercise, and while asleep. Volume-averaged fraction of inhaled oxygen (FiO2 was calculated by analyzing oxygen concentrations sampled at the exit of each replica and inhalation flow rates over time. POC pulse volumes were also measured using a commercial O2 conserver test system to attempt to predict FiO2 for PF. Results: Relative volume-averaged FiO2 using PF ranged from 68% to 94% of SF values, increasing with breathing frequency and tidal volume. Three of 15 replicas failed to trigger the POC when used with the sleep breathing pattern at the 2.0 setting, and four of 15 replicas failed to trigger at the 6.0 setting. FiO2 values estimated from POC pulse characteristics followed similar trends but were lower than those derived from

  13. The mechanism of oxygen isotopic fractionation during fungal denitrification - A pure culture study

    Science.gov (United States)

    Wrage-Moennig, Nicole; Rohe, Lena; Anderson, Traute-Heidi; Braker, Gesche; Flessa, Heinz; Giesemann, Annette; Lewicka-Szczebak, Dominika; Well, Reinhard

    2014-05-01

    Nitrous oxide (N2O) from soil denitrification originates from bacteria and - to an unknown extent - also from fungi. During fungal denitrification, oxygen (O) exchange takes place between H2O and intermediates of the denitrification process as in bacterial exchange[1,2]. However, information about enzymes involved in fungal O exchanges and the associated fractionation effects is lacking. The objectives of this study were to estimate the O fractionation and O exchange during the fungal denitrifying steps using a conceptual model[2] adapted from concepts for bacterial denitrification[3], implementing controls of O exchange proposed by Aerssens, et al.[4] and using fractionation models by Snider et al.[5] Six different pure fungal cultures (five Hypocreales, one Sordariales) known to be capable of denitrification were incubated under anaerobic conditions, either with nitrite or nitrate. Gas samples were analyzed for N2O concentration and its isotopic signatures (SP, average δ15N, δ18O). To investigate O exchange, both treatments were also established with 18O-labelled water as a tracer in the medium. The Hypocreales strains showed O exchange mainly at NO2- reductase (Nir) with NO2- as electron acceptor and no additional O exchange at NO3- reductase (Nar) with NO3- as electron acceptor. The only Hypocreales species having higher O exchange with NO3- than with NO2- also showed O exchange at Nar. The Sordariales species tested seems capable of O exchange at NO reductase (Nor) additionally to O exchange at Nir with NO2-. The data will help to better interpret stable isotope values of N2O from soils. .[1] D. M. Kool, N. Wrage, O. Oenema, J. Dolfing, J. W. Van Groenigen. Oxygen exchange between (de)nitrification intermediates and H2O and its implications for source determination of NO?3- and N2O: a review. Rapid Commun. Mass Spec. 2007, 21, 3569. [2] L. Rohe, T.-H. Anderson, B. Braker, H. Flessa, A. Giesemann, N. Wrage-Mönnig, R. Well. Fungal Oxygen Exchange between

  14. Conceptions of ‘culture' in international communication - Limits to cultural explanations?

    DEFF Research Database (Denmark)

    Froholdt, Lisa Loloma; Knudsen, Fabienne

    2008-01-01

    The paper addresses a critical approach to static, objective and context-independent concept of culture. Conceiving of another culture as objective, persistent, and evenly shared features within a nation may bring some basic order while facing an unknown culture, but it may also have unintentional...

  15. Oxygen regulation of nitrate uptake in denitrifying Pseudomonas aeruginosa.

    OpenAIRE

    Hernandez, D; Rowe, J J

    1987-01-01

    Oxygen had an immediate and reversible inhibitory effect on nitrate respiration by denitrifying cultures of Pseudomonas aeruginosa. Inhibition of nitrate utilization by oxygen appeared to be at the level of nitrate uptake, since nitrate reduction to nitrite in cell extracts was not affected by oxygen. The degree of oxygen inhibition was dependent on the concentration of oxygen, and increasing nitrate concentrations could not overcome the inhibition. The inhibitory effect of oxygen was maximal...

  16. Transient exposure to oxygen or nitrate reveals ecophysiology of fermentative and sulfate-reducing benthic microbial populations.

    Science.gov (United States)

    Saad, Sainab; Bhatnagar, Srijak; Tegetmeyer, Halina E; Geelhoed, Jeanine S; Strous, Marc; Ruff, S Emil

    2017-12-01

    For the anaerobic remineralization of organic matter in marine sediments, sulfate reduction coupled to fermentation plays a key role. Here, we enriched sulfate-reducing/fermentative communities from intertidal sediments under defined conditions in continuous culture. We transiently exposed the cultures to oxygen or nitrate twice daily and investigated the community response. Chemical measurements, provisional genomes and transcriptomic profiles revealed trophic networks of microbial populations. Sulfate reducers coexisted with facultative nitrate reducers or aerobes enabling the community to adjust to nitrate or oxygen pulses. Exposure to oxygen and nitrate impacted the community structure, but did not suppress fermentation or sulfate reduction as community functions, highlighting their stability under dynamic conditions. The most abundant sulfate reducer in all cultures, related to Desulfotignum balticum, appeared to have coupled both acetate- and hydrogen oxidation to sulfate reduction. We describe a novel representative of the widespread uncultured candidate phylum Fermentibacteria (formerly candidate division Hyd24-12). For this strictly anaerobic, obligate fermentative bacterium, we propose the name ' U Sabulitectum silens' and identify it as a partner of sulfate reducers in marine sediments. Overall, we provide insights into the function of fermentative, as well as sulfate-reducing microbial communities and their adaptation to a dynamic environment. © 2017 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  17. OPTIMUM, CRITICAL AND THRESHOLD VALUES FOR WATER OXYGENATION FOR MULLETS (MUGILIDAE AND FLATFISHES (PLEURONECTIDAE IN ONTOGENESIS

    Directory of Open Access Journals (Sweden)

    P. Shekk

    2014-12-01

    Full Text Available Purpose. To determine the optimum, critical, and threshold values of water oxygenation for embryos, larvae and fingerlings of mullets and flatfishes under different temperature conditions. Methodology. Oxygen consumption was studied in chronic experiments with «interrupted flow» method with automatic fixation of dissolved oxygen in water with the aid of an oxygen sensor and automatic, continuous recording of the obtained results. «Critical» (Pcrit., and the «threshold» (Pthr. oxygen tension in the water have been determined. Findings. Under optimum conditions, the normal embryogenesis of mullets and flatfish to the gastrulation stage, provided 90–130% oxygen saturation. The critical content was 80–85%, the threshold – 65–70% of the saturation. At the stage of «movable embryo» depending on water temperature and fish species, the optimum range of water oxygenation was within 70‒127.1%. The most tolerant to oxygen deficiency was flounder Platichthys luscus (Pcrit – 25.4–27,5; Pthr. – 20.5–22.5%, the least resistant to hypoxia was striped mullet Mugil серhalus (Pcrit. – 50–60; Pthr. – 35–40%. The limits of the critical and threshold concentration of dissolved oxygen directly depended on the temperature and salinity, at which embryogenesis occurred. An increase in water temperature and salinity resulted in an increase in critical and threshold values for oxygen tension embryos. Mullet and flatfish fingerlings in all stages of development had a high tolerance to hypoxia, which increased as they grew. They were resistant to the oversaturation of water with oxygen. The most demanding for the oxygen regime are larvae and fingerlings of striped mullet and Liza aurata. Hypoxia tolerance of Psetta maeoticus (Psetta maeoticus and flounder at all stages of development is very high. The fingerlings of these species can endure reduction of the dissolved oxygen in water to 2.10 and 1.65 mgO2/dm3 respectively for a long time

  18. "limited communitarianism" : continuing the conversations on ...

    African Journals Online (AJOL)

    JONATHAN

    Price: Not stated. Reviewer: Mesembe Ita EDET, PhD ... Whereas Matolino disagrees with Kaphagawani's three theme thesis of force [associated with ..... come to discover that a person is fundamentally a moral spiritual being. Morality is .... biological, social, religious, metaphysical, psychological, cultural etc. Personhood.

  19. 40 CFR Table 34 to Subpart Uuu of... - Continuous Compliance With HAP Emission Limits for Sulfur Recovery Units

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Continuous Compliance With HAP Emission Limits for Sulfur Recovery Units 34 Table 34 to Subpart UUU of Part 63 Protection of Environment..., Subpt. UUU, Table 34 Table 34 to Subpart UUU of Part 63—Continuous Compliance With HAP Emission Limits...

  20. Biodegradation of poly(lactic acid, poly(hydroxybutyrate-co-hydroxyvalerate, poly(butylene succinate and poly(butylene adipate-co-terephthalate under anaerobic and oxygen limited thermophilic conditions

    Directory of Open Access Journals (Sweden)

    Jutakan Boonmee

    2016-01-01

    Full Text Available In order to study the biodegradation behavior of biodegradable plastics in landfill conditions, four types of biodegradable plastics including poly(lactic acid (PLA, poly(hydroxybutyrate-co-hydroxyvalerate (PHBV, poly(butylene succinate (PBS, and poly(butylene adipate-co-terephthalate (PBAT were tested by burying in sludge mixed soil medium under anaerobic and oxygen limited conditions. The experiments were operated at 52 ± 2ºC in dark conditions according to ISO15985. The degree of biodegradation after 75 days was investigated by weight loss determination, visual examination, and surface appearance by scanning electronic microscopy (SEM. Under both anaerobic and oxygen limited conditions, the complete degradation (100% weight loss was found only in PHBV after 75 days. The plastic degradations were ranked in the order of PHBV> PLA> PBS> PBAT. The percentage of weight losses were significantly different at p ≤ 0.05. However, for all studied plastics, the degradation under anaerobic and oxygen limited conditions did not significantly different at 95% confidence.

  1. Is “culture” a workable concept for (cross-)cultural psychology?

    NARCIS (Netherlands)

    Poortinga, Y.H.

    2015-01-01

    In this essay three points are addressed: First, despite repeated findings of limited cross-cultural variation for core areas of study, research in cross-cultural psychology continues to be directed mainly at finding differences in psychological functioning. This often happens at the cost of

  2. The Arabic culture of Jordan and its impacts on a wider Jordanian adoption of business continuity management.

    Science.gov (United States)

    Sawalha, Ihab H; Meaton, Julia

    2012-01-01

    Culture is important to individuals and societies, as well as organisations. Failing to address cultural aspects will hinder the wider adoption and development of business continuity management (BCM) and will subsequently increase the vulnerabilities of organisations to crises, disasters and business interruptions. Three main issues are discussed in this paper. The first is the background to culture and the characteristics of the Jordanian culture. Secondly, the influence of the Arab culture on the wider adoption and development of BCM in Jordan is considered. Thirdly, the paper looks at potential factors that underpin the role of culture in the BCM process in Jordan. These issues are significant, as they represent the characteristics and influence of the Arab culture. This paper contributes to the understanding of the significance of culture in the adoption and development of BCM for organisations operating in Jordan and in the Arab world more generally. It also highlights current cultural changes and trends taking place in the Arab world in a time of huge political instability in the Middle East and Arab countries.

  3. Oxygen-controlled automated neural differentiation of mouse embryonic stem cells.

    Science.gov (United States)

    Mondragon-Teran, Paul; Tostoes, Rui; Mason, Chris; Lye, Gary J; Veraitch, Farlan S

    2013-03-01

    Automation and oxygen tension control are two tools that provide significant improvements to the reproducibility and efficiency of stem cell production processes. the aim of this study was to establish a novel automation platform capable of controlling oxygen tension during both the cell-culture and liquid-handling steps of neural differentiation processes. We built a bespoke automation platform, which enclosed a liquid-handling platform in a sterile, oxygen-controlled environment. An airtight connection was used to transfer cell culture plates to and from an automated oxygen-controlled incubator. Our results demonstrate that our system yielded comparable cell numbers, viabilities, metabolism profiles and differentiation efficiencies when compared with traditional manual processes. Interestingly, eliminating exposure to ambient conditions during the liquid-handling stage resulted in significant improvements in the yield of MAP2-positive neural cells, indicating that this level of control can improve differentiation processes. This article describes, for the first time, an automation platform capable of maintaining oxygen tension control during both the cell-culture and liquid-handling stages of a 2D embryonic stem cell differentiation process.

  4. 21 CFR 868.5580 - Oxygen mask.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Oxygen mask. 868.5580 Section 868.5580 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5580 Oxygen mask. (a) Identification. An oxygen mask is a device...

  5. Changes in the metabolic footprint of placental explant-conditioned medium cultured in different oxygen tensions from placentas of small for gestational age and normal pregnancies.

    LENUS (Irish Health Repository)

    Horgan, R P

    2012-01-31

    Being born small for gestational age (SGA) confers significantly increased risks of perinatal morbidity and mortality. Accumulating evidence suggests that an SGA fetus results from a poorly perfused and abnormally developed placenta. Some of the placental features seen in SGA, such as abnormal cell turnover and impaired nutrient transport, can be reproduced by culture of placental explants in hypoxic conditions. Metabolic footprinting offers a hypothesis-generating strategy to investigate factors absorbed by and released from this tissue in vitro. Previously, metabolic footprinting of the conditioned culture media has identified differences in placental explants cultured under normoxic and hypoxic conditions and between normal pregnancies and those complicated by pre-eclampsia. In this study we aimed to examine the differences in the metabolic footprint of placental villous explants cultured at different oxygen (O(2)) tensions between women who deliver an SGA baby (n = 9) and those from normal controls (n = 8). Placental villous explants from cases and controls were cultured for 96 h in 1% (hypoxic), 6% (normoxic) and 20% (hyperoxic) O(2). Metabolic footprints were analysed by Ultra Performance Liquid Chromatography coupled to an electrospray hybrid LTQ-Orbitrap Mass Spectrometry (UPLC-MS). 574 metabolite features showed significant difference between SGA and normal at one or more of the oxygen tensions. SGA explant media cultured under hypoxic conditions was observed, on a univariate level, to exhibit the same metabolic signature as controls cultured under normoxic conditions in 49% of the metabolites of interest, suggesting that SGA tissue is acclimatised to hypoxic conditions in vivo. No such behaviour was observed under hyperoxic culture conditions. Glycerophospholipid and tryptophan metabolism were highlighted as areas of particular interest.

  6. Epileptogenesis in organotypic hippocampal cultures has limited dependence on culture medium composition.

    Directory of Open Access Journals (Sweden)

    Jing Liu

    Full Text Available Rodent organotypic hippocampal cultures spontaneously develop epileptiform activity after approximately 2 weeks in vitro and are increasingly used as a model of chronic post-traumatic epilepsy. However, organotypic cultures are maintained in an artificial environment (culture medium, which contains electrolytes, glucose, amino acids and other components that are not present at the same concentrations in cerebrospinal fluid (CSF. Therefore, it is possible that epileptogenesis in organotypic cultures is driven by these components. We examined the influence of medium composition on epileptogenesis. Epileptogenesis was evaluated by measurements of lactate and lactate dehydrogenase (LDH levels (biomarkers of ictal activity and cell death, respectively in spent culture media, immunohistochemistry and automated 3-D cell counts, and extracellular recordings from CA3 regions. Changes in culture medium components moderately influenced lactate and LDH levels as well as electrographic seizure burden and cell death. However, epileptogenesis occurred in any culture medium that was capable of supporting neural survival. We conclude that medium composition is unlikely to be the cause of epileptogenesis in the organotypic hippocampal culture model of chronic post-traumatic epilepsy.

  7. Epileptogenesis in organotypic hippocampal cultures has limited dependence on culture medium composition.

    Science.gov (United States)

    Liu, Jing; Saponjian, Yero; Mahoney, Mark M; Staley, Kevin J; Berdichevsky, Yevgeny

    2017-01-01

    Rodent organotypic hippocampal cultures spontaneously develop epileptiform activity after approximately 2 weeks in vitro and are increasingly used as a model of chronic post-traumatic epilepsy. However, organotypic cultures are maintained in an artificial environment (culture medium), which contains electrolytes, glucose, amino acids and other components that are not present at the same concentrations in cerebrospinal fluid (CSF). Therefore, it is possible that epileptogenesis in organotypic cultures is driven by these components. We examined the influence of medium composition on epileptogenesis. Epileptogenesis was evaluated by measurements of lactate and lactate dehydrogenase (LDH) levels (biomarkers of ictal activity and cell death, respectively) in spent culture media, immunohistochemistry and automated 3-D cell counts, and extracellular recordings from CA3 regions. Changes in culture medium components moderately influenced lactate and LDH levels as well as electrographic seizure burden and cell death. However, epileptogenesis occurred in any culture medium that was capable of supporting neural survival. We conclude that medium composition is unlikely to be the cause of epileptogenesis in the organotypic hippocampal culture model of chronic post-traumatic epilepsy.

  8. Limitations of quantitative photoacoustic measurements of blood oxygenation in small vessels

    International Nuclear Information System (INIS)

    Sivaramakrishnan, Mathangi; Maslov, Konstantin; Zhang, Hao F; Stoica, George; Wang, Lihong V

    2007-01-01

    We investigate the feasibility of obtaining accurate quantitative information, such as local blood oxygenation level (sO 2 ), with a spatial resolution of about 50 μm from spectral photoacoustic (PA) measurements. The optical wavelength dependence of the peak values of the PA signals is utilized to obtain the local blood oxygenation level. In our in vitro experimental models, the PA signal amplitude is found to be linearly proportional to the blood optical absorption coefficient when using ultrasonic transducers with central frequencies high enough such that the ultrasonic wavelengths are shorter than the light penetration depth into the blood vessels. For an optical wavelength in the 578-596 nm region, with a transducer central frequency that is above 25 MHz, the sensitivity and accuracy of sO 2 inversion is shown to be better than 4%. The effect of the transducer focal position on the accuracy of quantifying blood oxygenation is found to be negligible. In vivo oxygenation measurements of rat skin microvasculature yield results consistent with those from in vitro studies, although factors specific to in vivo measurements, such as the spectral dependence of tissue optical attenuation, dramatically affect the accuracy of sO 2 quantification in vivo

  9. Production of polyhydroxybutyrates and carbohydrates in a mixed cyanobacterial culture: Effect of nutrients limitation and photoperiods.

    Science.gov (United States)

    Arias, Dulce María; Uggetti, Enrica; García-Galán, María Jesús; García, Joan

    2018-05-25

    In the present study, different photoperiods and nutritional conditions were applied to a mixed wastewater-borne cyanobacterial culture in order to enhance the intracellular accumulation of polyhydroxybutyrates (PHBs) and carbohydrates. Two different experimental set-ups were used. In the first, the culture was permanently exposed to illumination, while in the second it was submitted to light/dark alternation (12 h cycles). In both cases, two different nutritional regimes were also evaluated, N-limitation and P-limitation. Results showed that the highest PHB concentration (104 mg L -1 ) was achieved under P limited conditions and permanent illumination, whereas the highest carbohydrate concentration (838 mg L -1 ) was obtained under N limited condition and light/dark alternation. With regard to bioplastics and biofuel generation, this study demonstrates that the accumulation of PHBs (bioplastics) and carbohydrates (potential biofuel substrate) is favored in wastewater-borne cyanobacteria under conditions where nutrients are limited. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Effects of reactive oxygen species levels in prepared culture media on embryo development: a comparison of two media.

    Science.gov (United States)

    Shih, Ying-Fu; Lee, Tsung-Hsien; Liu, Chung-Hsien; Tsao, Hui-Mei; Huang, Chun-Chia; Lee, Maw-Sheng

    2014-12-01

    This study determined the correlation between the levels of reactive oxygen species (ROS) in prepared culture media and the early development of human embryos. This was an autocontrolled comparison study. A total of 159 patients undergoing in vitro fertilization/intracytoplasmic sperm injection treatment were recruited in this study. The pH values, osmolarity pressures, and ROS levels of 15 batches of two culture media were measured. Sibling oocytes or embryos from individual patients were randomly assigned to two culture groups with Quinn's Advantage Cleavage and Blastocyst media (QAC/QAB) or GIII series cleavage and blastocyst media (G1.3/G2.3). The difference between the two culture groups was analyzed using one-sample t test. The QAC/QAB and G1.3/G2.3 media exhibited similar pH values and osmolarity pressures. However, the prepared QAC/QAB media were characterized to contain lower amounts of ROS than the G1.3/G2.3 media. Furthermore, the blastocysts that developed under the QAC/QAB media were morphologically superior to those that developed under the G1.3/G2.3 media. The elevated ROS levels in culture media were associated with poor development of blastocyst-stage embryos. Measurement of ROS levels may be a valuable process for medium selection or modification. Copyright © 2014. Published by Elsevier B.V.

  11. Family support for the elderly in Korea: continuity, change, future directions, and cross-cultural concerns.

    Science.gov (United States)

    Sung, K T

    2001-01-01

    This article discusses major issues and concerns regarding family support for parents and elderly people in industrialized and urbanized Korea. It summarizes new trends in family support for elderly members, continuing influences of the traditional value of family support (filial piety), growing needs for public services for elderly people and their families, urgent calls for the state to assume greater responsibilities for providing social security and services for the elderly, needs for cross-cultural studies of family support, and certain cultural similarities and differences to be considered. The article concludes with some suggestions for future research.

  12. Intervention of oxygen-control ability to radiation sensitivity, cell aging and cell transformation

    International Nuclear Information System (INIS)

    Yoshii, Hanako; Watanabe, Masami

    2009-01-01

    Oxygen is essential for life, and cells have therefore developed numerous adaptive responses to oxygen change. Here, we examined the difference in oxygen-control functions of human (HE), mouse (ME), and Syrian hamster embryo (SHE) cells cultured under different oxygen conditions (0.5%, 2% and 20%), and also examined whether oxygen tensions contributed to cellular lifespan and transformation. HE cells had their replicative lifespan slightly extended under hypoxic (0.5% and 2% oxygen) conditions, but were not immortalized under any of the oxygen concentrations. On the other hand, although ME cells cultured under 20% oxygen tension decreased their proliferation potency temporarily at early stage, all rodent cells were immortalized and acquired anchorage-independency, regardless of oxygen tension. These results suggest that cellular oxygen control function is related to sensitivities cellular immortalization and transformation. To understand intervention of oxygen control ability on cellular immortalization and transformation, we examined the intracellular oxidative level, mitochondria functions and radiation sensitivity. Intracellular oxidative levels of hypoxically cultured rodent cells were significantly enhanced. Mitochondrial membrane potential was altered depend on oxygen tensions, but the change was not parallel to mitochondria number in rodent cells. ME cells were particularly sensitive to oxygen change, and showed a clear oxygen effect on the X-ray survival. However, there was no difference in frequency of radiation-induced micronuclei between HE and ME cells. These results suggest that the response to oxygen change differs markedly in HE and rodent cells. (author)

  13. High-Energy-Density Metal-Oxygen Batteries: Lithium-Oxygen Batteries vs Sodium-Oxygen Batteries.

    Science.gov (United States)

    Song, Kyeongse; Agyeman, Daniel Adjei; Park, Mihui; Yang, Junghoon; Kang, Yong-Mook

    2017-12-01

    The development of next-generation energy-storage devices with high power, high energy density, and safety is critical for the success of large-scale energy-storage systems (ESSs), such as electric vehicles. Rechargeable sodium-oxygen (Na-O 2 ) batteries offer a new and promising opportunity for low-cost, high-energy-density, and relatively efficient electrochemical systems. Although the specific energy density of the Na-O 2 battery is lower than that of the lithium-oxygen (Li-O 2 ) battery, the abundance and low cost of sodium resources offer major advantages for its practical application in the near future. However, little has so far been reported regarding the cell chemistry, to explain the rate-limiting parameters and the corresponding low round-trip efficiency and cycle degradation. Consequently, an elucidation of the reaction mechanism is needed for both lithium-oxygen and sodium-oxygen cells. An in-depth understanding of the differences and similarities between Li-O 2 and Na-O 2 battery systems, in terms of thermodynamics and a structural viewpoint, will be meaningful to promote the development of advanced metal-oxygen batteries. State-of-the-art battery design principles for high-energy-density lithium-oxygen and sodium-oxygen batteries are thus reviewed in depth here. Major drawbacks, reaction mechanisms, and recent strategies to improve performance are also summarized. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Bioconversion of (+)-valencene in submerged cultures of the ascomycete Chaetomium globosum.

    Science.gov (United States)

    Kaspera, Rüdiger; Krings, Ulrich; Nanzad, Tsevegsuren; Berger, Ralf G

    2005-06-01

    Submerged cultures of the ascomycete Chaetomium globosum oxidised the exogenous sesquiterpene (+)-valencene to nootkatone via the stereoselective generation of alpha-nootkatol. Inhibition experiments suggested that the first introduction of oxygen, the rate-limiting step of the bioconversion, may have been catalysed by a cytochrome-P450-monooxygenase. However, nootkatone was not the final metabolite: further flavour-active and inactive, non-volatile oxidation products were identified. (+)-Valencene and the flavour-active mono-oxyfunctionalised transformation products, alpha-nootkatol, nootkatone, and valencene-11,12-epoxide accumulated preferably inside the fungal cells. Di- and poly-oxygenated products, such as nootkatone-11,12-epoxide, were found solely in the culture medium, indicating an active transport of these metabolites into the extracellular compartment during (+)-valencene detoxification. These metabolic properties may have contributed to the high tolerance of the fungus towards the exogenous hydrocarbon.

  15. Cultural Continuities: An Australian Perspective.

    Science.gov (United States)

    Ebbeck, Marjory

    2001-01-01

    Examined school attitudes of 101 mothers of preschoolers who were immigrants to Australia from Vietnam, Cambodia, Indonesia, mainland China, and the Philippines; also examined views of 100 early childhood teachers. Found differences in views regarding the importance of maintaining family culture and first language, and the importance of sharing…

  16. The Culture Repopulation Ability (CRA) Assay and Incubation in Low Oxygen to Test Antileukemic Drugs on Imatinib-Resistant CML Stem-Like Cells.

    Science.gov (United States)

    Cheloni, Giulia; Tanturli, Michele

    2016-01-01

    Chronic myeloid leukemia (CML) is a stem cell-driven disorder caused by the BCR/Abl oncoprotein, a constitutively active tyrosine kinase (TK). Chronic-phase CML patients are treated with impressive efficacy with TK inhibitors (TKi) such as imatinib mesylate (IM). However, rather than definitively curing CML, TKi induces a state of minimal residual disease, due to the persistence of leukemia stem cells (LSC) which are insensitive to this class of drugs. LSC persistence may be due to different reasons, including the suppression of BCR/Abl oncoprotein. It has been shown that this suppression follows incubation in low oxygen under appropriate culture conditions and incubation times.Here we describe the culture repopulation ability (CRA) assay, a non-clonogenic assay capable - together with incubation in low oxygen - to reveal in vitro stem cells endowed with marrow repopulation ability (MRA) in vivo. The CRA assay can be used, before moving to animal tests, as a simple and reliable method for the prescreening of drugs potentially active on CML and other leukemias with respect to their activity on the more immature leukemia cell subsets.

  17. Cultural Influences on the Professions in European Union Countries and Their Implications for Continuing Professional Development.

    Science.gov (United States)

    Hughes, Anna; Thomas, Edward

    1996-01-01

    Although the European Union encourages professional mobility, the practice of continuing professional development (CPD) in pharmacy and law in various countries shows that cultural differences may hinder cross-border mobility. It is also surprising that universities are relatively little involved in CPD. (SK)

  18. Low oxygen atmosphere facilitates proliferation and maintains undifferentiated state of umbilical cord mesenchymal stem cells in an hypoxia inducible factor-dependent manner.

    Science.gov (United States)

    Drela, Katarzyna; Sarnowska, Anna; Siedlecka, Patrycja; Szablowska-Gadomska, Ilona; Wielgos, Miroslaw; Jurga, Marcin; Lukomska, Barbara; Domanska-Janik, Krystyna

    2014-07-01

    As we approach the era of mesenchymal stem cell (MSC) application in the medical clinic, the standarization of their culture conditions are of the particular importance. We re-evaluated the influences of oxygens concentration on proliferation, stemness and differentiation of human umbilical cord Wharton Jelly-derived MSCs (WJ-MSCs). Primary cultures growing in 21% oxygen were either transferred into 5% O2 or continued to grow under standard 21% oxygen conditions. Cell expansion was estimated by WST1/enzyme-linked immunosorbent assay or cell counting. After 2 or 4 weeks of culture, cell phenotypes were evaluated using microscopic, immunocytochemical, fluorescence-activated cell-sorting and molecular methods. Genes and proteins typical of mesenchymal cells, committed neural cells or more primitive stem/progenitors (Oct4A, Nanog, Rex1, Sox2) and hypoxia inducible factor (HIF)-1α-3α were evaluated. Lowering O2 concentration from 21% to the physiologically relevant 5% level substantially affected cell characteristics, with induction of stemness-related-transcription-factor and stimulation of cell proliferative capacity, with increased colony-forming unit fibroblasts (CFU-F) centers exerting OCT4A, NANOG and HIF-1α and HIF-2α immunoreactivity. Moreover, the spontaneous and time-dependent ability of WJ-MSCs to differentiate into neural lineage under 21% O2 culture was blocked in the reduced oxygen condition. Importantly, treatment with trichostatin A (TSA, a histone deacetylase inhibitor) suppressed HIF-1α and HIF-2α expression, in addition to blockading the cellular effects of reduced oxygen concentration. A physiologically relevant microenvironment of 5% O2 rejuvenates WJ-MSC culture toward less-differentiated, more primitive and faster-growing phenotypes with involvement of HIF-1α and HIF-2α-mediated and TSA-sensitive chromatin modification mechanisms. These observations add to the understanding of MSC responses to defined culture conditions, which is the most

  19. The Role of Oxygen Therapies in Carbon Monoxide Poisoning

    Directory of Open Access Journals (Sweden)

    Suleyman Metin

    2011-08-01

    Full Text Available Due to climate and socio-economic issues in Turkey, the incidence of carbon monoxide (CO poisoning is high, especially in winter. Clinical manifestations may vary depending on the type of CO source, concentration and duration of exposure. The symptoms of CO poisoning predominantly manifest in lots of organs and systems with high oxygen utilization, especially the brain and the heart. The primary aim in oxygen therapy is to eliminate CO and to reduce its toxic effects. In this context, normobaric and hyperbaric oxygen therapy are used to achieve these goals. Normobaric oxygen (NBO treatment is an easily accessible and relatively not expensive modality, where hyperbaric oxygen (HBO therapy requires specific equipment, certified staff and is available only in some centers. Additionally, HBO treatment has several additional advantages over NBO treatment. Despite its benefits, it is compulsory to search for some criteria in selecting patients to be treated because of the limited availability and access of hyperbaric facilities. For an effective evaluation and an optimal treatment, advanced education of the healthcare professionals on the use of oxygen delivery modalities in the management of CO poisoning is imperative. In this review, it has been aimed to outline the significance of oxygen treatment modalities and to determine patient selection criteria for HBO treatment in the management of CO poisoning which continues to be an important threat to community health care. [TAF Prev Med Bull 2011; 10(4.000: 487-494

  20. Elimination of Gaseous Microemboli from Cardiopulmonary Bypass using Hypobaric Oxygenation

    Science.gov (United States)

    Gipson, Keith E.; Rosinski, David J.; Schonberger, Robert B.; Kubera, Cathryn; Mathew, Eapen S.; Nichols, Frank; Dyckman, William; Courtin, Francois; Sherburne, Bradford; Bordey, Angelique F; Gross, Jeffrey B.

    2014-01-01

    Background Numerous gaseous microemboli (GME) are delivered into the arterial circulation during cardiopulmonary bypass (CPB). These emboli damage end organs through multiple mechanisms that are thought to contribute to neurocognitive deficits following cardiac surgery. Here, we use hypobaric oxygenation to reduce dissolved gases in blood and greatly reduce GME delivery during CPB. Methods Variable subatmospheric pressures were applied to 100% oxygen sweep gas in standard hollow fiber microporous membrane oxygenators to oxygenate and denitrogenate blood. GME were quantified using ultrasound while air embolism from the surgical field was simulated experimentally. We assessed end organ tissues in swine postoperatively using light microscopy. Results Variable sweep gas pressures allowed reliable oxygenation independent of CO2 removal while denitrogenating arterial blood. Hypobaric oxygenation produced dose-dependent reductions of Doppler signals produced by bolus and continuous GME loads in vitro. Swine were maintained using hypobaric oxygenation for four hours on CPB with no apparent adverse events. Compared with current practice standards of O2/air sweep gas, hypobaric oxygenation reduced GME volumes exiting the oxygenator (by 80%), exiting the arterial filter (95%), and arriving at the aortic cannula (∼100%), indicating progressive reabsorption of emboli throughout the CPB circuit in vivo. Analysis of brain tissue suggested decreased microvascular injury under hypobaric conditions. Conclusions Hypobaric oxygenation is an effective, low-cost, common sense approach that capitalizes on the simple physical makeup of GME to achieve their near-total elimination during CPB. This technique holds great potential for limiting end-organ damage and improving outcomes in a variety of patients undergoing extracorporeal circulation. PMID:24206970

  1. The influence of systemic hemodynamics and oxygen transport on cerebral oxygen saturation in neonates after the Norwood procedure.

    Science.gov (United States)

    Li, Jia; Zhang, Gencheng; Holtby, Helen; Guerguerian, Anne-Marie; Cai, Sally; Humpl, Tilman; Caldarone, Christopher A; Redington, Andrew N; Van Arsdell, Glen S

    2008-01-01

    Ischemic brain injury is an important morbidity in neonates after the Norwood procedure. Its relationship to systemic hemodynamic oxygen transport is poorly understood. Sixteen neonates undergoing the Norwood procedure were studied. Continuous cerebral oxygen saturation was measured by near-infrared spectroscopy. Continuous oxygen consumption was measured by respiratory mass spectrometry. Pulmonary and systemic blood flow, systemic vascular resistance, oxygen delivery, and oxygen extraction ratio were derived with measurements of arterial, and superior vena cava and pulmonary venous gases and pressures at 2- to 4-hour intervals during the first 72 hours in the intensive care unit. Mean cerebral oxygen saturation was 66% +/- 12% before the operation, reduced to 51% +/- 13% on arrival in the intensive care unit, and remained low during the first 8 hours; it increased to 56% +/- 9% at 72 hours, still significantly lower than the preoperative level (P blood flow and oxygen delivery (P blood flow (P = .001) and hemoglobin (P = .02) and negatively correlated with systemic vascular resistance (P = .003). It was not correlated with oxygen consumption (P > .05). Cerebral oxygen saturation decreased significantly in neonates during the early postoperative period after the Norwood procedure and was significantly influenced by systemic hemodynamic and metabolic events. As such, hemodynamic interventions to modify systemic oxygen transport may provide further opportunities to reduce the risk of cerebral ischemia and improve neurodevelopmental outcomes.

  2. Simultaneous, noninvasive, in vivo, continuous monitoring of hematocrit, vascular volume, hemoglobin oxygen saturation, pulse rate and breathing rate in humans and other animal models using a single light source

    Science.gov (United States)

    Dent, Paul; Tun, Sai Han; Fillioe, Seth; Deng, Bin; Satalin, Josh; Nieman, Gary; Wilcox, Kailyn; Searles, Quinn; Narsipur, Sri; Peterson, Charles M.; Goodisman, Jerry; Mostrom, James; Steinmann, Richard; Chaiken, J.

    2018-02-01

    We previously reported a new algorithm "PV[O]H" for continuous, noninvasive, in vivo monitoring of hematocrit changes in blood and have since shown its utility for monitoring in humans during 1) hemodialysis, 2) orthostatic perturbations and 3) during blood loss and fluid replacement in a rat model. We now show that the algorithm is sensitive to changes in hemoglobin oxygen saturation. We document the phenomenology of the effect and explain the effect using new results obtained from humans and rat models. The oxygen sensitivity derives from the differential absorption of autofluorescence originating in the static tissues by oxy and deoxy hemoglobin. Using this approach we show how to perform simultaneous, noninvasive, in vivo, continuous monitoring of hematocrit, vascular volume, hemoglobin oxygen saturation, pulse rate and breathing rate in mammals using a single light source. We suspect that monitoring of changes in this suite of vital signs can be provided with improved time response, sensitivity and precision compared to existing methodologies. Initial results also offer a more detailed glimpse into the systemic oxygen transport in the circulatory system of humans.

  3. Chromium (VI) biosorption and removal of chemical oxygen demand by Spirulina platensis from wastewater-supplemented culture medium.

    Science.gov (United States)

    Magro, Clinei D; Deon, Maitê C; De Rossi, Andreia; Reinehr, Christian O; Hemkemeier, Marcelo; Colla, Luciane M

    2012-01-01

    The inappropriate discharge of wastewater containing high concentrations of toxic metals is a serious threat to the environment. Given that the microalga Spirulina platensis has demonstrated a capacity for chromium VI (Cr (VI) biosorption, we assessed the ideal concentration of chromium-containing wastewater required for maximum removal of Cr (VI) and chemical oxygen demand (COD) from the environment by using this microalga. The Paracas and Leb-52 strains of S. platensis, with initial wastewater concentrations of 0%, 12.5%, 25%, and 50%, were cultured in Zarrouk medium diluted to 50% under controlled air, temperature, and lighting conditions. The cultures were maintained for 28 days, and pH, biomass growth, COD, and Cr (VI) were assessed. The wastewater concentration influenced microalgal growth, especially at high concentrations. Removal of 82.19% COD and 60.92% Cr (VI) was obtained, but the COD removal was greater than the Cr (VI) removal in both strains of S. platensis.

  4. [Establishment of oxygen and glucose deprive model of in vitro cultured hippocampal neuron and effect of ligustrazine on intracellular Ca+ level in model neurons].

    Science.gov (United States)

    Wan, Hai-tong; Wang, Yu; Yang, Jie-hong

    2007-03-01

    To establish the oxygen and glucose deprive (OGD) model in cultured hippocampal neuron and study the effect of ligustrazine on intracellular Ca2+ level in the model neurons. The OGD model was established in cultured hippocampal neuron, and the intracellular Ca2+ level in it was detected by laser scanning confocal microscope (LSCM). The OGD model was successfully established in cultured hippocampal neurons; the intracellular Ca2+ level in the OGD model group was significantly higher than that in the blank control group (P neuron, which could be antagonized by ligustrazine, indicating that ligustrazine has a protective effect on hippocampal neuron from hypoxic-ischemic injury.

  5. Response coefficient analysis of a fed-batch bioreactor to dissolved oxygen perturbation in complementary cultures during PHB production

    Directory of Open Access Journals (Sweden)

    Patnaik Pratap R

    2008-03-01

    Full Text Available Abstract Background Although the production of poly-β-hydroxybutyrate (PHB has many biological, energetic and environmental advantages over chemically synthesized polymers, synthetic polymers continue to be produced industrially since the productivities of fermentation processes fr PHB are not yet economically competitive. Improvement of a PHB fermentation requires good understanding and optimization under the realistic conditions of large bioreactors. Laboratory-scale studies have shown that co-cultures of Ralstonia eutropha and Lactobacillus delbrueckii generate better fermentation efficiencies than R. eutropha alone. In large bioreactors, incomplete dispersioin and perturbations in the dissolved oxygen (DO concentration, both of which affect the fermentation, have to be considered. This study analyzes the effect of DO fluctuations on bioreactor performance for both ideal and optimally dispersed broths. Results Response coefficient analysis was employed to obtain quantitative information on the effect of DO perturbations on different variables. Three values of the Peclet number (Pe cheracterized three levels of dispersion: Pe = 0.01 for nearly complete dispersion, Pe = 20 for optimum dispersion and Pe = 60 for insufficient dispersion. The response coefficients (RCs of the pairs of bacterial concentrations and the main substrates, glucose and ammonium chloride, showed contrasting variations with time. Lactate, a critical intermediate, and PHB had similar RC profiles but those of lactate were one to two orders of magnitude larger than other RCs. Significantly, the optimum Pe also resulted in the largest RCs, suggesting a balance between productivity and reactor stability. Conclusion Since R. eutropha requires oxygen for its growth whereas L. delbrueckii does not, fluctuations in the DO concentartion have a strong influence on the fermentation. Apart from this, the mechanism of PHB biosynthesis indicates that control of lactate is a critical

  6. Incorporation of tritium into planctonic algae in a continuous culture under dynamic conditions

    International Nuclear Information System (INIS)

    Strack, S.; Kistner, G.; Emeis, C.C.

    1979-01-01

    For the purpose of modelling the ecologic behaviour of organically bound tritium (OBT) in aquatic food chains under dynamic conditions (i.e. by changing tritium concentrations), a continuous culture of algae was chosen to which tritium was added by a single injection as tritiated water (HTO). The culture was working according to the chemostatic principle where the concentration of cells is in a steady state. Therefore, according to the growth of algae, tritium is incorporated into the organic substance, while in a parallel process HTO and algae are eliminated from the system at the same rate. From these two processes of first-order kinetics, a special function resulted for the concentration process of OBT in the fermenter that is well known in the field of drug kinetics. Initially it increases until it reaches a maximum value where it intersects the elimination curve of HTO, then decreases and asymptotically approaches the time axis - in the same manner as the elimination curve - only at a superior level. A comparison of this theoretically calculated function with the concentration actually found shows that also under dynamic conditions tritium is undergoing discrimination because of isotopic effects up to a ratio of I=0.80. The calculation of the ratios R=(OBT)/(HTO) in the continuous culture by comparing the function for OBT with the elimination curve for HTO shows a linear increase of R-values during the experiment. At maximum tritium concentration in the algae, the ratio becomes greater than one, and at the end of the experiment it reaches a value of about 6. However, by extrapolating to a time of 40 half-lives, when the absolute concentration of HTO has already decreased by a factor of 10 -12 , a ratio of about 25 was found. The discrimination enters the estimation of R-values at a constant factor of 0.80. (author)

  7. Cooperation of HIF- and NCAM-mediated mechanisms in cell viability of hippocampal cultures after oxygen-glucose deprivation.

    Science.gov (United States)

    Lushnikova, Iryna; Nikandrova, Yelyzaveta; Skibo, Galyna

    2017-10-01

    Neurodegenerative diseases of different genesis are the result of cellular damages including those caused by oxygen and glucose deficit. Neuronal survival or death in brain pathologies depends on a variety of interrelated molecular mechanisms. A key role in modulation of neuron viability belongs to HIF (hypoxia-inducible factor) and NCAM (neural cell adhesion molecules) signaling pathways. In this work, we used organotypic and dissociated hippocampal cultures to analyze cell viability and HIF-1α immunopositive (HIF-1α + ) signal after 30 min oxygen-glucose deprivation (OGD) followed by 24 h of reoxygenation in the presence of FGL (synthetic NCAM-derived mimetic peptide). According to LDH- and MTS-assay of cell viability, FGL showed a neuroprotective effect, which was attributed to the association with FGFR. We showed that these effects correlated with changes of the HIF-1α + level suggesting the communications of HIF and NCAM signaling pathways. These data extend our knowledge of neurodegeneration mechanisms and open additional potential for the development of neuroprotection strategies. © 2017 International Federation for Cell Biology.

  8. Interaction of cultured mammalian cells with WR-2721 and its thiol, WR-1065: implications for mechanisms of radioprotection

    International Nuclear Information System (INIS)

    Purdie, J.W.; Inhaber, E.R.; Schneider, H.; Labelle, J.L.

    1983-01-01

    An isothermal microcalorimeter was used to measure changes in heat flow when radioprotective drugs were added to cultured mammalian cells. The heat produced when WR-2721 was added continued for at least 90 min. WR-2721 was dephosphorylated by the cells to thiol (WR-1065) which oxidizes to disulphide. In the microcalorimeter, thiols give an immediate burst of heat due to this oxidation. A biological oxygen monitor revealed that WR-1065 and cysteamine rapidly consumed all the oxygen in culture medium. (10mM WR-1065 deoxygenated medium in 2 min.). Rapid consumption of oxygen by radioprotective thiols indicates that they will not co-exist with oxygen for long in cells. This has two important implications with respect to mechanisms of radioprotection: (1) oxygen in tissues will be consumed rapidly and could results in local hypoxia; and, (2) at modest doses of protective agents the thiol will be consumed in oxic cells and hence very little will be available for reactions such as hydrogen donation. The results indicate that anoxia is probably the principle mechanism of protection by aminothiols in mammals and aerated cells. (author)

  9. Phosphorus limitation and heat stress decrease calcification in Emiliania huxleyi

    Science.gov (United States)

    Gerecht, Andrea C.; Šupraha, Luka; Langer, Gerald; Henderiks, Jorijntje

    2018-02-01

    Calcifying haptophytes (coccolithophores) sequester carbon in the form of organic and inorganic cellular components (coccoliths). We examined the effect of phosphorus (P) limitation and heat stress on particulate organic and inorganic carbon (calcite) production in the coccolithophore Emiliania huxleyi. Both environmental stressors are related to rising CO2 levels and affect carbon production in marine microalgae, which in turn impacts biogeochemical cycling. Using semi-continuous cultures, we show that P limitation and heat stress decrease the calcification rate in E. huxleyi. However, using batch cultures, we show that different culturing approaches (batch versus semi-continuous) induce different physiologies. This affects the ratio of particulate inorganic (PIC) to organic carbon (POC) and complicates general predictions on the effect of P limitation on the PIC  /  POC ratio. We found heat stress to increase P requirements in E. huxleyi, possibly leading to lower standing stocks in a warmer ocean, especially if this is linked to lower nutrient input. In summary, the predicted rise in global temperature and resulting decrease in nutrient availability may decrease CO2 sequestration by E. huxleyi through lower overall carbon production. Additionally, the export of carbon may be diminished by a decrease in calcification and a weaker coccolith ballasting effect.

  10. Phosphorus limitation and heat stress decrease calcification in Emiliania huxleyi

    Directory of Open Access Journals (Sweden)

    A. C. Gerecht

    2018-02-01

    Full Text Available Calcifying haptophytes (coccolithophores sequester carbon in the form of organic and inorganic cellular components (coccoliths. We examined the effect of phosphorus (P limitation and heat stress on particulate organic and inorganic carbon (calcite production in the coccolithophore Emiliania huxleyi. Both environmental stressors are related to rising CO2 levels and affect carbon production in marine microalgae, which in turn impacts biogeochemical cycling. Using semi-continuous cultures, we show that P limitation and heat stress decrease the calcification rate in E. huxleyi. However, using batch cultures, we show that different culturing approaches (batch versus semi-continuous induce different physiologies. This affects the ratio of particulate inorganic (PIC to organic carbon (POC and complicates general predictions on the effect of P limitation on the PIC  ∕  POC ratio. We found heat stress to increase P requirements in E. huxleyi, possibly leading to lower standing stocks in a warmer ocean, especially if this is linked to lower nutrient input. In summary, the predicted rise in global temperature and resulting decrease in nutrient availability may decrease CO2 sequestration by E. huxleyi through lower overall carbon production. Additionally, the export of carbon may be diminished by a decrease in calcification and a weaker coccolith ballasting effect.

  11. Cultural Continuity in EFL Teaching in International Higher Education: From a Discourse Perspective of Chinese Learners

    Science.gov (United States)

    Yang, Wenhui; Chen, Linhan

    2015-01-01

    This paper presents an ethnographic study of the application of cultural continuity in English as Foreign Language (EFL) teaching in International College, GDUFS China. Based on Holliday's (2001) findings and Brown's (2000) twelve "manifestos" together with interviews of the Chinese learners, the authors investigate the discoursal…

  12. 46 CFR 147.85 - Oxygen.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Oxygen. 147.85 Section 147.85 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DANGEROUS CARGOES HAZARDOUS SHIPS' STORES Stowage and Other...) of oxygen may be on board a vessel engaged in industrial operations, if it is stowed on deck or in a...

  13. Fisher Information and the Quantum Cramér-Rao Sensitivity Limit of Continuous Measurements

    DEFF Research Database (Denmark)

    Gammelmark, Søren; Mølmer, Klaus

    2014-01-01

    Precision measurements with quantum systems rely on our ability to trace the differences between experimental signals to variations in unknown physical parameters. In this Letter we derive the Fisher information and the ensuing Cramér-Rao sensitivity limit for parameter estimation by continuous...

  14. A model for oxygen conservation associated with titration during pediatric oxygen therapy.

    Directory of Open Access Journals (Sweden)

    Grace Wu

    Full Text Available Continuous oxygen treatment is essential for managing children with hypoxemia, but access to oxygen in low-resource countries remains problematic. Given the high burden of pneumonia in these countries and the fact that flow can be gradually reduced as therapy progresses, oxygen conservation through routine titration warrants exploration.To determine the amount of oxygen saved via titration during oxygen therapy for children with hypoxemic pneumonia.Based on published clinical data, we developed a model of oxygen flow rates needed to manage hypoxemia, assuming recommended flow rate at start of therapy, and comparing total oxygen used with routine titration every 3 minutes or once every 24 hours versus no titration.Titration every 3 minutes or every 24 hours provided oxygen savings estimated at 11.7% ± 5.1% and 8.1% ± 5.1% (average ± standard error of the mean, n = 3, respectively. For every 100 patients, 44 or 30 kiloliters would be saved-equivalent to 733 or 500 hours at 1 liter per minute.Ongoing titration can conserve oxygen, even performed once-daily. While clinical validation is necessary, these findings could provide incentive for the routine use of pulse oximeters for patient management, as well as further development of automated systems.

  15. Culture and Planning for Change and Continuity in Botswana

    OpenAIRE

    Hammami, Feras

    2012-01-01

    This paper examines how culture might be integrated in planning by critically rethinking the role of planners and knowledge inthe planning systems of postcolonial contexts. The empirical study of cultural conception and utilization in Botswana suggestsa shift from planning for culture to cultural institutionalization, where culture, rather than as an object, becomes integral todevelopment planning decisions. The traditional division between bottom–up and top–down approaches is challenged, so ...

  16. Purification of monoclonal antibodies from clarified cell culture fluid using Protein A capture continuous countercurrent tangential chromatography.

    Science.gov (United States)

    Dutta, Amit K; Tran, Travis; Napadensky, Boris; Teella, Achyuta; Brookhart, Gary; Ropp, Philip A; Zhang, Ada W; Tustian, Andrew D; Zydney, Andrew L; Shinkazh, Oleg

    2015-11-10

    Recent studies using simple model systems have demonstrated that continuous countercurrent tangential chromatography (CCTC) has the potential to overcome many of the limitations of conventional Protein A chromatography using packed columns. The objective of this work was to optimize and implement a CCTC system for monoclonal antibody purification from clarified Chinese Hamster Ovary (CHO) cell culture fluid using a commercial Protein A resin. Several improvements were introduced to the previous CCTC system including the use of retentate pumps to maintain stable resin concentrations in the flowing slurry, the elimination of a slurry holding tank to improve productivity, and the introduction of an "after binder" to the binding step to increase antibody recovery. A kinetic binding model was developed to estimate the required residence times in the multi-stage binding step to optimize yield and productivity. Data were obtained by purifying two commercial antibodies from two different manufactures, one with low titer (∼ 0.67 g/L) and one with high titer (∼ 6.9 g/L), demonstrating the versatility of the CCTC system. Host cell protein removal, antibody yields and purities were similar to those obtained with conventional column chromatography; however, the CCTC system showed much higher productivity. These results clearly demonstrate the capabilities of continuous countercurrent tangential chromatography for the commercial purification of monoclonal antibody products. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Purification of monoclonal antibodies from clarified cell culture fluid using Protein A capture continuous countercurrent tangential chromatography

    Science.gov (United States)

    Dutta, Amit K.; Tran, Travis; Napadensky, Boris; Teella, Achyuta; Brookhart, Gary; Ropp, Philip A.; Zhang, Ada W.; Tustian, Andrew D.; Zydney, Andrew L.; Shinkazh, Oleg

    2015-01-01

    Recent studies using simple model systems have demonstrated that Continuous Countercurrent Tangential Chromatography (CCTC) has the potential to overcome many of the limitations of conventional Protein A chromatography using packed columns. The objective of this work was to optimize and implement a CCTC system for monoclonal antibody purification from clarified Chinese Hamster Ovary (CHO) cell culture fluid using a commercial Protein A resin. Several improvements were introduced to the previous CCTC system including the use of retentate pumps to maintain stable resin concentrations in the flowing slurry, the elimination of a slurry holding tank to improve productivity, and the introduction of an “after binder” to the binding step to increase antibody recovery. A kinetic binding model was developed to estimate the required residence times in the multi-stage binding step to optimize yield and productivity. Data were obtained by purifying two commercial antibodies from two different manufactures, one with low titer (~0.67 g/L) and one with high titer (~6.9 g/L), demonstrating the versatility of the CCTC system. Host cell protein removal, antibody yields and purities were similar to that obtained with conventional column chromatography; however, the CCTC system showed much higher productivity. These results clearly demonstrate the capabilities of continuous countercurrent tangential chromatography for the commercial purification of monoclonal antibody products. PMID:25747172

  18. Circadian rhythm of energy expenditure and oxygen consumption.

    Science.gov (United States)

    Leuck, Marlene; Levandovski, Rosa; Harb, Ana; Quiles, Caroline; Hidalgo, Maria Paz

    2014-02-01

    This study aimed to evaluate the effect of continuous and intermittent methods of enteral nutrition (EN) administration on circadian rhythm. Thirty-four individuals, aged between 52 and 80 years, were fed through a nasoenteric tube. Fifteen individuals received a continuous infusion for 24 hours/d, and 19 received an intermittent infusion in comparable quantities, every 4 hours from 8:00 to 20:00. In each patient, 4 indirect calorimetric measurements were carried out over 24 hours (A: 7:30, B: 10:30, C: 14:30, and D: 21:30) for 3 days. Energy expenditure and oxygen consumption were significantly higher in the intermittent group than in the continuous group (1782 ± 862 vs 1478 ± 817 kcal/24 hours, P = .05; 257 125 vs 212 117 ml/min, P = .048, respectively). The intermittent group had higher levels of energy expenditure and oxygen consumption at all the measured time points compared with the continuous group. energy expenditure and oxygen consumption in both groups were significantly different throughout the day for 3 days. There is circadian rhythm variation of energy expenditure and oxygen consumption with continuous and intermittent infusion for EN. This suggests that only one indirect daily calorimetric measurement is not able to show the patient's true needs. Energy expenditure is higher at night with both food administration methods. Moreover, energy expenditure and oxygen consumption are higher with the intermittent administration method at all times.

  19. The limitations of tissue-oxygen measurement and positron emission tomography as additional methods for postoperative breast reconstruction free-flap monitoring.

    Science.gov (United States)

    Schrey, Aleksi; Niemi, Tarja; Kinnunen, Ilpo; Minn, Heikki; Vahlberg, Tero; Kalliokoski, Kari; Suominen, Erkki; Grénman, Reidar; Aitasalo, Kalle

    2010-02-01

    Twelve patients who underwent breast reconstruction with a microvascular flap were monitored postoperatively with continuous partial tissue oxygenation (p(ti)O(2)) measurement. The regional blood flow (BF) of the entire flap was evaluated with positron emission tomography (PET) using oxygen-15-labelled water on the first postoperative (POP) morning to achieve data of the perfusion of the entire flap. A re-exploration was carried out if the p(ti)O(2) value remained lower than 15 mmHg for over 30 min. The mean p(ti)O(2) value of the flaps was 52.9+/-5.5 mmHg, whereas the mean BF values were 3.3+/-1.0 ml per 100 g min(-1). One false-positive result was detected by p(ti)O(2) measurement, resulting in an unnecessary re-exploration. Another re-operation suggested by the low p(ti)O(2) results was avoided due to the normal BF results assessed with PET. Totally, three flaps were re-explored. This prospective study suggests that continuous tissue-oxygen measurement with a polarographic needle probe is reliable for monitoring free breast flaps from one part of the flap, but assessing perfusion of the entire flap requires more complex monitoring methods, for example, PET. Clinical examination by experienced personnel remains important in free-breast-flap monitoring. PET could be useful in assessing free-flap perfusion in selected high-risk patients as an alternative to a re-operation when clinical examination and evaluation by other means are unreliable or present controversial results. 2008 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  20. The Role of Cultural Context in Continuing Vocational Training: A Study on Auto Repairmen in Turkey

    Science.gov (United States)

    Akbas, Oktay

    2011-01-01

    This study analysed how auto repairmen working in micro-enterprises undertake continuing vocational training in relation to cultural context. The study was conducted in Kirikkale, a city in central Anatolia in Turkey. To this end, the descriptive research technique of structured interview was used. Interviews with 33 auto repairmen were recorded…

  1. [Proteomic analysis of curdlan-producing Agrobacterium sp. ATCC 31749 in response to dissolved oxygen].

    Science.gov (United States)

    Dai, Xiaomeng; Yang, Libo; Zheng, Zhiyong; Chen, Haiqin; Zhan, Xiaobei

    2015-08-04

    Curdlan is produced by Agrobacterium sp. ATCC 31749 under nitrogen limiting condition. The biosynthesis of crudlan is a typical aerobic bioprocess, and the production of curdlan would be severely restricted under micro-aerobic and anoxic conditions. Proteomic analysis of Agrobacterium sp. was conducted to investigate the effect of dissolved oxygen on the crucial enzymes involved in curdlan biosynthesis. Two-dimensional gel electrophoresis was performed to separate and visualize the differential expression of the intracellular proteins extracted from Agrobacterium sp. ATCC 31749 cultured under various dissolved oxygen levels (75%, 50%, 25% and 5%). In addition, a comparative proteomic analysis of the intracellular proteins expression level under various dissolved oxygen levels was done. Significant differently expressed proteins were identified by MALDI-TOF/TOF. Finally, we identified 15 differently expressed proteins involved in polysaccharide synthesis, fatty acid synthesis, amino acid synthesis pathway. Among these proteins, phosphoglucomutase and orotidine 5-phosphate decarboxylase were the key metabolic enzymes directing curdlan biosynthesis. Oxygen could affect the expression of the proteins taking charge of curdlan synthesis significantly.

  2. Epileptogenesis in organotypic hippocampal cultures has limited dependence on culture medium composition

    OpenAIRE

    Liu, Jing; Saponjian, Yero; Mahoney, Mark M.; Staley, Kevin J.; Berdichevsky, Yevgeny

    2017-01-01

    Rodent organotypic hippocampal cultures spontaneously develop epileptiform activity after approximately 2 weeks in vitro and are increasingly used as a model of chronic post-traumatic epilepsy. However, organotypic cultures are maintained in an artificial environment (culture medium), which contains electrolytes, glucose, amino acids and other components that are not present at the same concentrations in cerebrospinal fluid (CSF). Therefore, it is possible that epileptogenesis in organotypic ...

  3. 46 CFR 197.326 - Oxygen safety.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Oxygen safety. 197.326 Section 197.326 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE OCCUPATIONAL SAFETY AND HEALTH STANDARDS GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.326 Oxygen safety. (a) Equipment used with...

  4. Culture and Continuing Bonds: A Prospective Comparison of Bereavement in the United States and the People's Republic of China

    Science.gov (United States)

    Lalande, Kathleen M.; Bonanno, George A.

    2006-01-01

    There has been an increased interest and debate regarding the adaptiveness of continuing bonds with the deceased. The authors used data from a cross-cultural study of 61 participants from the United States (US) and 58 participants from the People's Republic of China (PRC) who completed measures of continuing bonds and adjustment at 4 and 18 months…

  5. Lean management systems: creating a culture of continuous quality improvement.

    Science.gov (United States)

    Clark, David M; Silvester, Kate; Knowles, Simon

    2013-08-01

    This is the first in a series of articles describing the application of Lean management systems to Laboratory Medicine. Lean is the term used to describe a principle-based continuous quality improvement (CQI) management system based on the Toyota production system (TPS) that has been evolving for over 70 years. Its origins go back much further and are heavily influenced by the work of W Edwards Deming and the scientific method that forms the basis of most quality management systems. Lean has two fundamental elements--a systematic approach to process improvement by removing waste in order to maximise value for the end-user of the service and a commitment to respect, challenge and develop the people who work within the service to create a culture of continuous improvement. Lean principles have been applied to a growing number of Healthcare systems throughout the world to improve the quality and cost-effectiveness of services for patients and a number of laboratories from all the pathology disciplines have used Lean to shorten turnaround times, improve quality (reduce errors) and improve productivity. Increasingly, models used to plan and implement large scale change in healthcare systems, including the National Health Service (NHS) change model, have evidence-based improvement methodologies (such as Lean CQI) as a core component. Consequently, a working knowledge of improvement methodology will be a core skill for Pathologists involved in leadership and management.

  6. Integrating the pulse of the riverscape and landscape: modelling stream metabolism using continuous dissolved oxygen measurements

    Science.gov (United States)

    Soulsby, C.; Birkel, C.; Malcolm, I.; Tetzlaff, D.

    2013-12-01

    Stream metabolism is a fundamental pulse of the watershed which reflects both the in-stream environment and its connectivity with the wider landscape. We used high quality, continuous (15 minute), long-term (>3 years) measurement of stream dissolved oxygen (DO) concentrations to estimate photosynthetic productivity (P) and system respiration (R) in forest and moorland reaches of an upland stream with peaty soils. We calibrated a simple five parameter numerical oxygen mass balance model driven by radiation, stream and air temperature, stream depth and re-aeration capacity. This used continuous 24-hour periods for the whole time series to identify behavioural simulations where DO simulations were re-produced sufficiently well to be considered reasonable representations of ecosystem functioning. Results were evaluated using a seasonal Regional Sensitivity Analysis and a co-linearity index for parameter sensitivity. This showed that >95 % of the behavioural models for the moorland and forest sites were identifiable and able to infer in-stream processes from the DO time series for almost half of all measured days at both sites. Days when the model failed to simulate DO levels successfully provided invaluable insight into time periods when other factors are likely to disrupt in-stream metabolic processes; these include (a) flood events when scour reduces the biomass of benthic primary producers, (b) periods of high water colour in higher summer/autumn flows and (c) low flow periods when hyporheic respiration is evident. Monthly P/R ratios <1 indicate a heterotrophic system with both sites exhibiting similar temporal patterns; with a maximum in February and a second peak during summer months. However, the estimated net ecosystem productivity (NPP) suggests that the moorland reach without riparian tree cover is likely to be a much larger source of carbon to the atmosphere (122 mmol C m-2 d-1) compared to the forested reach (64 mmol C m-2 d-1). The study indicates the value

  7. Adaptation of the genetically tractable malaria pathogen Plasmodium knowlesi to continuous culture in human erythrocytes

    KAUST Repository

    Moon, Robert

    2012-12-24

    Research into the aetiological agent of the most widespread form of severe malaria, Plasmodium falciparum, has benefitted enormously from the ability to culture and genetically manipulate blood-stage forms of the parasite in vitro. However, most malaria outside Africa is caused by a distinct Plasmodium species, Plasmodium vivax, and it has become increasingly apparent that zoonotic infection by the closely related simian parasite Plasmodium knowlesi is a frequent cause of life-threatening malaria in regions of southeast Asia. Neither of these important malarial species can be cultured in human cells in vitro, requiring access to primates with the associated ethical and practical constraints. We report the successful adaptation of P. knowlesi to continuous culture in human erythrocytes. Human-adapted P. knowlesi clones maintain their capacity to replicate in monkey erythrocytes and can be genetically modified with unprecedented efficiency, providing an important and unique model for studying conserved aspects of malarial biology as well as species-specific features of an emerging pathogen.

  8. Adaptation of the genetically tractable malaria pathogen Plasmodium knowlesi to continuous culture in human erythrocytes

    KAUST Repository

    Moon, Robert; Hall, Joanna M.; Rangkuti, Farania; Ho, YungShwen; Almond, Neil M.; Mitchell, Graham Howard; Pain, Arnab; Holder, Anthony A.; Blackman, Michael J.

    2012-01-01

    Research into the aetiological agent of the most widespread form of severe malaria, Plasmodium falciparum, has benefitted enormously from the ability to culture and genetically manipulate blood-stage forms of the parasite in vitro. However, most malaria outside Africa is caused by a distinct Plasmodium species, Plasmodium vivax, and it has become increasingly apparent that zoonotic infection by the closely related simian parasite Plasmodium knowlesi is a frequent cause of life-threatening malaria in regions of southeast Asia. Neither of these important malarial species can be cultured in human cells in vitro, requiring access to primates with the associated ethical and practical constraints. We report the successful adaptation of P. knowlesi to continuous culture in human erythrocytes. Human-adapted P. knowlesi clones maintain their capacity to replicate in monkey erythrocytes and can be genetically modified with unprecedented efficiency, providing an important and unique model for studying conserved aspects of malarial biology as well as species-specific features of an emerging pathogen.

  9. Growth history of cultured pearl oysters based on stable oxygen isotope analysis

    Science.gov (United States)

    Nakashima, R.; Furuta, N.; Suzuki, A.; Kawahata, H.; Shikazono, N.

    2007-12-01

    We investigated the oxygen isotopic ratio in shells of the pearl oyster Pinctada martensii cultivated in embayments in Mie Prefecture, central Japan, to evaluate the biomineralization of shell structures of the species and its pearls in response to environmental change. Microsamples for oxygen isotope analysis were collected from the surfaces of shells (outer, middle, and inner shell layers) and pearls. Water temperature variations were estimated from the oxygen isotope values of the carbonate. Oxygen isotope profiles of the prismatic calcite of the outer shell layer reflected seasonal variations of water temperature, whereas those of nacreous aragonites of the middle and inner shell layers and pearls recorded temperatures from April to November, June to September, and July to September, respectively. Lower temperatures in autumn and winter might slow the growth of nacreous aragonites. The oxygen isotope values are controlled by both variations of water temperature and shell structures; the prismatic calcite of this species is useful for reconstructing seasonal changes of calcification temperature.

  10. Continuing bonds after bereavement:A cross-cultural perspective

    OpenAIRE

    Valentine, Christine A

    2009-01-01

    The ways in which eastern and western cultures grieve for their dead are often contrasted. Eastern cultures are seen to place greater value on traditional ritual and ceremony that, it is argued, serve to create a lasting, and comforting, bond with the deceased. By contrast, western societies are seen to be much more materialist and individualistic. This article takes a cross-cultural look at responses to death and loss in the UK and Japan, both post-industrial societies but with very differen...

  11. The Limits of Cultural Globalisation?

    Directory of Open Access Journals (Sweden)

    Daniele Conversi

    2010-09-01

    Full Text Available The proliferation of studies on virtually every aspect of globalisation has not clarified the central terminological conundrum of the field. Globalisation studies do not share a univocal set of terms and concepts, so that the loose usage of the very term globalisation has led to polysemy and homonymy. Accordingly, ‘globalisation’ is now used to describe everything and its opposite, from the Roman Empire to WW1, from cosmopolitan behaviour to Genghis Khan’s conquests, and even the Neolithic age. The task of critical globalisation studies should thus be to re-contextualize the phenomenon and re-locate it where it belongs. In contrast, the term Americanisation has been used more sparely, therefore maintaining an autonomous conceptual strength. However, both manufactured opinion and scholarly studies tend to argue that globalisation and Americanisation are wholly distinct phenomena. Multi-National Corporations (MNCs have adamantly defended that they are not vehicles of Americanisation and that the result of their actions in neoliberal markets is rather a form of ‘indigenization’ or ‘domestication’ through adaptation to local cultures. Similarly, much of the globalisation literature has not come to term with the unidirectional nature of globalisation in the field of culture. This article argues that both globalisation and Americanisation should be historicized, and their respective trajectories identified as beginning in distinct epochs, operating through waves of diffusion and within specific ideological frameworks, and culminating in periods of military and economic expansion. Finally, I argue that, if cultural globalisation is studied in tandem with Americanisation, it can be conceptually circumscribed and its finite nature better identified.

  12. Growth of aspergillus terreus and the production of itaconic acid in batch and continuous cultures. The influence of pH

    Energy Technology Data Exchange (ETDEWEB)

    Rychtera, M.; Wase, J.D.A.

    1981-01-01

    Aspergillus terreus (NRRL 1960) was cultivated in batch and in continuous single-stage culture. The influence of pH on the growth of the organism, on the formation of itaconic acid and on the kinetics of fermentation was studied under phosphate limitation, both at controlled ph values and also when the pH was allowed to decrease in a natural way. In the pH range 1.7-3.5, the ratio of undissociated:half-dissociated acid varied from 190:1 to 1.5:1. The amount of completely dissociated acid may be regarded as negligible. In batch systems operated without pH control, an initial pH of 3.1 proved to be the most effective. Product formation under such conditions started at a point where the exponential growth phase commenced and was described by a zero-order equation. The maximum itaconic acid production rate was shifted behind maximum growth rate. The continuous single-stage system was first order with respect to product formation. At pH greater than 3.1, a number of aberrant and pellet forms of the mould occurred, resulting in decreased acid production. (Refs. 41).

  13. Neuroprotective effects of orientin on oxygen-glucose deprivation/reperfusion-induced cell injury in primary culture of rat cortical neurons.

    Science.gov (United States)

    Tian, Tian; Zeng, Junan; Zhao, Guangyu; Zhao, Wenjing; Gao, Songyi; Liu, Li

    2018-01-01

    Orientin (luteolin-8-C-glucoside) is a phenolic compound found abundantly in millet, juice, and peel of passion fruit and has been shown to have antioxidant properties. In the present study, we explored the effects of orientin on oxygen-glucose deprivation/reperfusion (OGD/RP)-induced cell injury in primary culture of rat cortical neurons using an in vitro model of neonatal ischemic brain injury. The reduced cell viability and elevated lactate dehydrogenase leakage were observed after OGD/RP exposure, which were then reversed by orientin (10, 20, and 30 µM) pretreatment in a dose-dependent manner. Additionally, OGD/RP treatment resulted in significant oxidative stress, accompanied by enhanced intracellular reactive oxygen species (ROS) generation, and obvious depletion in the activities of intracellular Mn-superoxide dismutase, catalase, and glutathione peroxidase antioxidases. However, these effects were dose dependently restored by orientin pretreatment. We also found that orientin pretreatment dose dependently suppressed [Ca 2+ ] i increase and mitochondrial membrane potential dissipation caused by OGD/RP in primary culture of rat cortical neurons. Western blot analysis showed that OGD/RP exposure induced a distinct decrease of Bcl-2 protein and a marked elevation of Bax, caspase-3, and cleaved caspase-3 proteins; whereas these effects were dose dependently reversed by orientin incubation. Both the caspase-3 activity and the apoptosis rate were increased under OGD/RP treatment, but was then dose dependently down-regulated by orientin (10, 20, and 30 µM) incubation. Moreover, orientin pretreatment dose dependently inhibited OGD/RP-induced phosphorylation of JNK and ERK1/2. Notably, JNK inhibitor SP600125 and ERK1/2 inhibitor PD98059 also dramatically attenuated OGD/RP-induced cell viability loss and ROS generation, and further, orientin failed to protect cortical neurons with the interference of JNK activator anisomycin or ERK1/2 activator FGF-2. Taken

  14. Transcriptional and metabolic response of recombinant Escherichia coli to spatial dissolved oxygen tension gradients simulated in a scale-down system.

    Science.gov (United States)

    Lara, Alvaro R; Leal, Lidia; Flores, Noemí; Gosset, Guillermo; Bolívar, Francisco; Ramírez, Octavio T

    2006-02-05

    Escherichia coli, expressing recombinant green fluorescent protein (GFP), was subjected to dissolved oxygen tension (DOT) oscillations in a two-compartment system for simulating gradients that can occur in large-scale bioreactors. Cells were continuously circulated between the anaerobic (0% DOT) and aerobic (10% DOT) vessels of the scale-down system to mimic an overall circulation time of 50 s, and a mean residence time in the anaerobic and aerobic compartments of 33 and 17 s, respectively. Transcription levels of mixed acid fermentation genes (ldhA, poxB, frdD, ackA, adhE, pflD, and fdhF), measured by quantitative RT-PCR, increased between 1.5- to over 6-fold under oscillatory DOT compared to aerobic cultures (constant 10% DOT). In addition, the transcription level of fumB increased whereas it decreased for sucA and sucB, suggesting that the tricarboxylic acid cycle was functioning as two open branches. Gene transcription levels revealed that cytrochrome bd, which has higher affinity to oxygen but lower energy efficiency, was preferred over cytochrome bO3 in oscillatory DOT cultures. Post-transcriptional processing limited heterologous protein production in the scale-down system, as inferred from similar gfp transcription but 19% lower GFP concentration compared to aerobic cultures. Simulated DOT gradients also affected the transcription of genes of the glyoxylate shunt (aceA), of global regulators of aerobic and anaerobic metabolism (fnr, arcA, and arcB), and other relevant genes (luxS, sodA, fumA, and sdhB). Transcriptional changes explained the observed alterations in overall stoichiometric and kinetic parameters, and production of ethanol and organic acids. Differences in transcription levels between aerobic and anaerobic compartments were also observed, indicating that E. coli can respond very fast to intermittent DOT conditions. The transcriptional responses of E. coli to DOT gradients reported here are useful for establishing rational scale-up criteria and

  15. [Effects of naloxone on the expression of stem cell factor and C-kit receptor in combined oxygen-glucose deprivation of primary cultured human embryonic neuron in vitro].

    Science.gov (United States)

    Zhu, Bo; Li, Lan-ying; Lü, Guo-yi; Xue, Yu-liang; Ye, Tie-hu

    2010-04-01

    To explore the effects of naloxone on the expression of c-kit receptor (c-kit R) and its ligand stem cell factor (SCF) in human embryo neuronal hypoxic injury. Serum-free cerebral cortical cultures prepared from embryonic human brains were deprived of both oxygen and glucose which would set up an environment more likely with that of in vivo ischemic injury. Neurons in 24-well culture plates were randomly divided into four groups: control group, hypoxia group, naloxone 0.5 microg/ml group and naloxone 10 microg/ml group. MTT assay and biological analysis were performed to study the cell death and the changes of extracellular concentrations of lactate dehydrogenase (LDH) after combined oxygen-glucose deprivation. Neurons in 25 ml culture flasks were also randomly allocated into four groups as previously described. Intracellular total RNA were extracted at different time points: pre-hypoxia, immediately after hypoxia, and 3, 6, 12, and 24 hours after reoxygenation. The changes of SCF/c-kit R mRNA expression in hypoxic neurons treated with different concentrations of naloxone pre and post oxygen-glucose deprivation were determined with RT-PCR. The cell vitality detected by MTT assay decreased significantly in hypoxia group and naloxone 0.5 microg/ml group when compared with control group (Pcontrol group. Extracellular concentration of LDH significantly increased in hypoxia group (Pcontrol group, between naloxone 0.5 microg/ml and hypoxia group, or between naloxone 10 microg/ml and control group (all P>0.05). Immediately after oxygen-glucose deprivation, the expression of SCF/c-kit R mRNA increased significantly (Pcontrol group (Pglucose deprivation. Naloxone 0.5 microg/ml can attenuate cell injuries and regulate the expression of SCF/c-kit R. Naloxone may protect neurons by modulating the expressions of some cytokines.

  16. Oxygenation measurements in head and neck cancers during hyperbaric oxygenation

    International Nuclear Information System (INIS)

    Becker, A.; Kuhnt, T.; Dunst, J.; Liedtke, H.; Krivokuca, A.; Bloching, M.

    2002-01-01

    Background: Tumor hypoxia has proven prognostic impact in head and neck cancers and is associated with poor response to radiotherapy. Hyperbaric oxygenation (HBO) offers an approach to overcome hypoxia. We have performed pO 2 measurements in selected patients with head and neck cancers under HBO to determine in how far changes in the oxygenation occur and whether a possible improvement of oxygenation parameters is maintained after HBO. Patients and Methods: Seven patients (five male, two female, age 51-63 years) with squamous cell cancers of the head and neck were investigated (six primaries, one local recurrence). The median pO 2 prior to HBO was determined with the Eppendorf histograph. Sites of measurement were enlarged cervical lymph nodes (n = 5), the primary tumor (n = 1) and local recurrence (n = 1). Patients then underwent HBO (100% O 2 at 240 kPa for 30 minutes) and the continuous changes in the oxygenation during HBO were determined with a Licox probe. Patients had HBO for 30 minutes (n = 6) to 40 minutes (n = 1). HBO was continued because the pO 2 had not reached a steady state after 30 minutes. After decompression, patients ventilated pure oxygen under normobaric conditions and the course of the pO 2 was further measured over about 15 minutes. Results: Prior to HBO, the median tumor pO 2 in the Eppendorf histography was 8.6 ± 5.4 mm Hg (range 3-19 mm Hg) and the pO 2 measured with the Licox probe was 17.3 ± 25.5 mm Hg (range 0-73 mm Hg). The pO 2 increased significantly during HBO to 550 ± 333 mm Hg (range 85-984 mm Hg, p = 0.018). All patients showed a marked increase irrespective of the oxygenation prior to HBO. The maximum pO 2 in the tumor was reached after 10-33 minutes (mean 17 minutes). After leaving the hyperbaric chamber, the pO 2 was 282 ± 196 mm Hg. All patients maintained an elevated pO 2 for further 5-25 minutes (138 ± 128 mm Hg, range 42-334 mm Hg, p = 0.028 vs the pO 2 prior to HBO). Conclusions: Hyperbaric oxygenation resulted in a

  17. Matrix forming characteristics of inner and outer human meniscus cells on 3D collagen scaffolds under normal and low oxygen tensions.

    Science.gov (United States)

    Croutze, Roger; Jomha, Nadr; Uludag, Hasan; Adesida, Adetola

    2013-12-13

    Limited intrinsic healing potential of the meniscus and a strong correlation between meniscal injury and osteoarthritis have prompted investigation of surgical repair options, including the implantation of functional bioengineered constructs. Cell-based constructs appear promising, however the generation of meniscal constructs is complicated by the presence of diverse cell populations within this heterogeneous tissue and gaps in the information concerning their response to manipulation of oxygen tension during cell culture. Four human lateral menisci were harvested from patients undergoing total knee replacement. Inner and outer meniscal fibrochondrocytes (MFCs) were expanded to passage 3 in growth medium supplemented with basic fibroblast growth factor (FGF-2), then embedded in porous collagen type I scaffolds and chondrogenically stimulated with transforming growth factor β3 (TGF-β3) under 21% (normal or normoxic) or 3% (hypoxic) oxygen tension for 21 days. Following scaffold culture, constructs were analyzed biochemically for glycosaminoglycan production, histologically for deposition of extracellular matrix (ECM), as well as at the molecular level for expression of characteristic mRNA transcripts. Constructs cultured under normal oxygen tension expressed higher levels of collagen type II (p = 0.05), aggrecan (p oxygen tension. There was no significant difference in expression of these genes between scaffolds seeded with MFCs isolated from inner or outer regions of the tissue following 21 days chondrogenic stimulation (p > 0.05). Cells isolated from inner and outer regions of the human meniscus demonstrated equivalent differentiation potential toward chondrogenic phenotype and ECM production. Oxygen tension played a key role in modulating the redifferentiation of meniscal fibrochondrocytes on a 3D collagen scaffold in vitro.

  18. 40 CFR 63.6006 - How do I demonstrate continuous compliance with the emission limits for tire cord production...

    Science.gov (United States)

    2010-07-01

    ... compliance with the emission limits for tire cord production affected sources? 63.6006 Section 63.6006... Hazardous Air Pollutants: Rubber Tire Manufacturing Continuous Compliance Requirements for Tire Cord... tire cord production affected sources? (a) You must demonstrate continuous compliance with each...

  19. 40 CFR Table 9 to Subpart Eeee of... - Continuous Compliance With Operating Limits-High Throughput Transfer Racks

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Continuous Compliance With Operating Limits-High Throughput Transfer Racks 9 Table 9 to Subpart EEEE of Part 63 Protection of Environment...—Continuous Compliance With Operating Limits—High Throughput Transfer Racks As stated in §§ 63.2378(a) and (b...

  20. Optimized chondrogenesis of ATCD5 cells through sequential regulation of oxygen conditions

    DEFF Research Database (Denmark)

    Chen, Li; Fink, Trine; Ebbesen, Peter

    2006-01-01

    , chondrocyte-specific extracellular matrix (ECM) production was monitored. Furthermore, the transcription of collagen II, an early-phase marker, and collagen X, a marker of hypertrophic conversion, was followed by real-time RT-PCR. Low oxygen concentrations between 1 and 9% inhibited chondrogenic conversion......, as evidenced by reduced glycosaminoglycan deposition in the ECM in a manner proportional to the degree of hypoxia. Cells cultured at oxygen concentrations of 12 and 15% underwent a faster and higher degree of early-phase chondrogenesis when compared to control cells cultured at ambient air (21% O2......). For the hypertrophic conversion of the ATDC5 cells, all degrees of hypoxia inhibited collagen X expression in a dose-dependent manner. Short-term culturing of the ATDC5 cells for 6 to 8 days at 12% oxygen with subsequent culturing at 21% for the remainder of the experiment resulted in maximal production of major ECM...

  1. Harvest of Plasmodium falciparum merozoites from continuous culture.

    Science.gov (United States)

    Mrema, J E; Campbell, G H; Jaramillo, A L; Miranda, R; Rieckmann, K H

    1979-01-01

    Spontaneously released merozoites were harvested from cultures in which 42-90% of the erythrocytes had been infected with mature forms of Plasmodium falciparum at the start of incubation. The mature forms had been extracted from asynchronous cultures by the use of Ficoll and Plasmagel gradients. As the mature forms consisted of both trophozoites and schizonts, merozoites were released into the culture medium over a long period of time. The synchrony of merozoite release did not appear to be improved by prior exposure of parasites to sorbitol. Over this prolonged period of incubation, the yield of merozoites was disappointingly low in cultures containing 2.5% of erythrocytes. At erythrocyte concentrations of 0.01-0.25%, 3-10 times more merozoites were released into the medium; 0.4-2.3 merozoites per initial mature form were harvested over a 15-19-hour period. In addition to merozoites, contents of the culture medium included intact erythrocytes, ghost cells, and other cellular fragments. Only intact erythrocytes were effectively removed from the medium by simple or Ficoll gradient centrifugation. Merozoite preparations that are free from host cellular material are important in the development of a human malaria vaccine.

  2. Biological treatment of phenolic wastewater in an anaerobic continuous stirred tank reactor

    Directory of Open Access Journals (Sweden)

    Firozjaee Taghizade Tahere

    2013-01-01

    Full Text Available In the present study, an anaerobic continuous stirred tank reactor (ACSTR with consortium of mixed culture was operated continuously for a period of 110 days. The experiments were performed with three different hydraulic retention times and by varying initial phenol concentrations between 100 to 1000 mg/L. A maximum phenol removal was observed at a hydraulic retention time (HRT of 4 days, with an organic loading rate (OLR of 170.86 mg/L.d. At this condition, phenol removal rate of 89% was achieved. In addition, the chemical oxygen demand (COD removal corresponds to phenol removal. Additional operating parameters such as pH, MLSS and biogas production rate of the effluents were also measured. The present study provides valuable information to design an anaerobic ACSTR reactor for the biodegradation of phenolic wastewater.

  3. Oxygen limitation and tissue metabolic potential of the African fish Barbus neumayeri: roles of native habitat and acclimatization

    Directory of Open Access Journals (Sweden)

    Rees Bernard B

    2011-01-01

    Full Text Available Abstract Background Oxygen availability in aquatic habitats is a major environmental factor influencing the ecology, behaviour, and physiology of fishes. This study evaluates the contribution of source population and hypoxic acclimatization of the African fish, Barbus neumayeri, in determining growth and tissue metabolic enzyme activities. Individuals were collected from two sites differing dramatically in concentration of dissolved oxygen (DO, Rwembaita Swamp (annual average DO 1.35 mgO2 L-1 and Inlet Stream West (annual average DO 5.58 mgO2 L-1 in Kibale National Park, Uganda, and reciprocally transplanted using a cage experiment in the field, allowing us to maintain individuals under natural conditions of oxygen, food availability, and flow. Fish were maintained under these conditions for four weeks and sampled for growth rate and the activities of phosphofructokinase (PFK, lactate dehydrogenase (LDH, citrate synthase (CS, and cytochrome c oxidase (CCO in four tissues, liver, heart, brain, and skeletal muscle. Results Acclimatization to the low DO site resulted in lower growth rates, lower activities of the aerobic enzyme CCO in heart, and higher activities of the glycolytic enzyme PFK in heart and skeletal muscle. The activity of LDH in liver tissue was correlated with site of origin, being higher in fish collected from a hypoxic habitat, regardless of acclimatization treatment. Conclusions Our results suggest that the influence of site of origin and hypoxic acclimatization in determining enzyme activity differs among enzymes and tissues, but both factors contribute to higher glycolytic capacity and lower aerobic capacity in B. neumayeri under naturally-occurring conditions of oxygen limitation.

  4. Hairy root culture in a liquid-dispersed bioreactor: characterization of spatial heterogeneity.

    Science.gov (United States)

    Williams, G R; Doran, P M

    2000-01-01

    A liquid-dispersed reactor equipped with a vertical mesh cylinder for inoculum support was developed for culture of Atropa belladonna hairy roots. The working volume of the culture vessel was 4.4 L with an aspect ratio of 1.7. Medium was dispersed as a spray onto the top of the root bed, and the roots grew radially outward from the central mesh cylinder to the vessel wall. Significant benefits in terms of liquid drainage and reduced interstitial liquid holdup were obtained using a vertical rather than horizontal support structure for the biomass and by operating the reactor with cocurrent air and liquid flow. With root growth, a pattern of spatial heterogeneity developed in the vessel. Higher local biomass densities, lower volumes of interstitial liquid, lower sugar concentrations, and higher root atropine contents were found in the upper sections of the root bed compared with the lower sections, suggesting a greater level of metabolic activity toward the top of the reactor. Although gas-liquid oxygen transfer to the spray droplets was very rapid, there was evidence of significant oxygen limitations in the reactor. Substantial volumes of non-free-draining interstitial liquid accumulated in the root bed. Roots near the bottom of the vessel trapped up to 3-4 times their own weight in liquid, thus eliminating the advantages of improved contact with the gas phase offered by liquid-dispersed culture systems. Local nutrient and product concentrations in the non-free-draining liquid were significantly different from those in the bulk medium, indicating poor liquid mixing within the root bed. Oxygen enrichment of the gas phase improved neither growth nor atropine production, highlighting the greater importance of liquid-solid compared with gas-liquid oxygen transfer resistance. The absence of mechanical or pneumatic agitation and the tendency of the root bed to accumulate liquid and impede drainage were identified as the major limitations to reactor performance. Improved

  5. Oxygen Deficit: The Bio-energetic Pathophysiology

    Directory of Open Access Journals (Sweden)

    ABHAY KUMAR PANDEY

    2014-09-01

    Full Text Available Scarcity of oxygen in humans arises via three modes. The environment may have low oxygen to breath. There can be disease in respiratory system causing hindrance to uptake of oxygen from environment and the circulatory system may be sluggish to supply to body parts that starve for oxygen. Thirdly the chemico-cellular components of blood which carry oxygen may be lowered or defective. In reference to body cells several limiting sites and mechanisms affect the amount of oxygen delivered to them, and these are under regulatory control of several functional and metabolic systems.

  6. Dependence of nitrite oxidation on nitrite and oxygen in low-oxygen seawater

    Science.gov (United States)

    Sun, Xin; Ji, Qixing; Jayakumar, Amal; Ward, Bess B.

    2017-08-01

    Nitrite oxidation is an essential step in transformations of fixed nitrogen. The physiology of nitrite oxidizing bacteria (NOB) implies that the rates of nitrite oxidation should be controlled by concentration of their substrate, nitrite, and the terminal electron acceptor, oxygen. The sensitivities of nitrite oxidation to oxygen and nitrite concentrations were investigated using 15N tracer incubations in the Eastern Tropical North Pacific. Nitrite stimulated nitrite oxidation under low in situ nitrite conditions, following Michaelis-Menten kinetics, indicating that nitrite was the limiting substrate. The nitrite half-saturation constant (Ks = 0.254 ± 0.161 μM) was 1-3 orders of magnitude lower than in cultivated NOB, indicating higher affinity of marine NOB for nitrite. The highest rates of nitrite oxidation were measured in the oxygen depleted zone (ODZ), and were partially inhibited by additions of oxygen. This oxygen sensitivity suggests that ODZ specialist NOB, adapted to low-oxygen conditions, are responsible for apparently anaerobic nitrite oxidation.

  7. Continuing the Conversation: Development of the U.S. NRC's Definition of Safety Culture and its Traits

    International Nuclear Information System (INIS)

    Barnes, Valerie; Koves, Ken

    2012-01-01

    Val Barnes gave a presentation on behalf of the US NRC and INPO. She summarised the work done by the US NRC to develop the US NRC Policy on Safety Culture. Stakeholder representatives were involved in panel sessions to develop a common definition of safety culture and define the traits of a positive safety culture. A survey-based validation study of the eight traits identified through the panel sessions was then conducted across the 63 US nuclear sites by INPO. The INPO study also examined the correlations between the safety culture traits and safety performance. Strong correlations were found for some factors (for example, the number of unplanned scrams correlated strongly with perceptions on management responsibility). The results of the survey supported the inclusion of an additional safety culture trait (questioning attitude) resulting in the following nine traits: - Leadership Safety Values and Actions. - Problem Identification and Resolution. - Personal Accountability. - Work Process. - Continuous Learning. - Environment for Raising Concerns. - Effective Safety Communication. - Respectful Work Environment. - Questioning Attitude. The US NRC has also issued a safety culture policy statement which provides the following definition: 'Nuclear safety culture is the core values and behaviors resulting from a collective commitment by leaders and individuals to emphasize safety over competing goals to ensure protection of people and the environment'. The US NRC and its regulated communities are now working on implementing the policy statement. It was concluded that the work carried out to develop the safety culture policy statement has helped to develop a common language and understanding amongst stakeholders

  8. Effect of epidural blockade and oxygen therapy on changes in subcutaneous oxygen tension after abdominal surgery

    DEFF Research Database (Denmark)

    Rosenberg, J; Pedersen, U; Erichsen, C J

    1994-01-01

    The effect of oxygen therapy (37% by face mask) and epidural local anesthetic blockade (9 ml 0.5% bupivacaine at Th9-11 level) on wound oxygenation was evaluated in eight otherwise healthy patients undergoing elective colorectal resection. The patients were monitored continuously for subcutaneous...... without epidural blockade and 15 (10-20) min with blockade (P surgery....

  9. Simultaneous measurement of cerebral blood flow and oxygen extraction fraction by positron emission tomography: theoretical study and experimental evidence of cerebral blood flow measurement with the C15O2 continuous inhalation technique

    International Nuclear Information System (INIS)

    Steinling, M.

    1983-01-01

    The method of the continuous inhalation technique of oxygen-15 labelled CO 2 coupled with positron emission tomography for the measurement of cerebral blood flow (C.B.F.) is described. An indirect experimental verification that this technique allowed the measurement of C.B.F. has been carried out in baboons by showing the expected change in the measured parameter with variations in the PaCO 2 . A critical investigation of the C 15 O 2 model was performed. The amount of tracer present in the cerebral vascular pool has a negligible effect on C.B.F. value. The use of a mean brain-blood partition coefficient of water instead of that specific to gray or to white matter is commented upon, and its influence on the final C.B.F. value is studied. Lastly, the problem of the limited diffusion of water across the blood-brain-barrier is discussed. The study of the combined effects of gray-white mixing and limited wates extraction of the C.B.F. value shows that the C 15 O 2 technique tends to understimate real C.B.F., and that this error is more severe with high flows and even gray white mixing. These limitations do not depart from the possibility to estimate in the same brain locus not only C.B.F. but oxygen utilization as well by the consecutive inhalation of C 15 O 2 and 15 O 2 . The advantages of this possibility has already been shown in a number of clinical studies [fr

  10. Effect of oxygen partial pressure on production of animal virus (VSV)

    OpenAIRE

    Lim, Hyun S.; Chang, Kern H.; Kim, Jung H.

    1999-01-01

    The effect of oxygen partial pressure on viral replication was investigated with Vero/VSV system. At 10% oxygen partial pressure in spinner culture, VSV titer was significantly increased 130 fold compared to that obtained at 21%. A similar result was obtained for viral production in 1liter bioreactor. This implies that oxygen partial pressure during viral production has to be low. In low oxygen partial pressure, malondialdehyde concentration was decreased about 5 fold. Thus, low oxygen partia...

  11. Photoacoustic Imaging in Oxygen Detection

    Directory of Open Access Journals (Sweden)

    Fei Cao

    2017-12-01

    Full Text Available Oxygen level, including blood oxygen saturation (sO2 and tissue oxygen partial pressure (pO2, are crucial physiological parameters in life science. This paper reviews the importance of these two parameters and the detection methods for them, focusing on the application of photoacoustic imaging in this scenario. sO2 is traditionally detected with optical spectra-based methods, and has recently been proven uniquely efficient by using photoacoustic methods. pO2, on the other hand, is typically detected by PET, MRI, or pure optical approaches, yet with limited spatial resolution, imaging frame rate, or penetration depth. Great potential has also been demonstrated by employing photoacoustic imaging to overcome the existing limitations of the aforementioned techniques.

  12. A quantum relativistic integrable model as the continuous limit of the six-vertex model

    International Nuclear Information System (INIS)

    Zhou, Y.K.

    1992-01-01

    The six-vertex model in two-dimensional statistical mechanics is used to construct the L-matrix of a one-dimensional quantum relativistic integrable model through a continuous limit. This is the first step to extend the method used earlier by the author to construct quantum completely integrable systems from other well-known two-dimensional vertex models. (orig.)

  13. Biodegradation of Various Aromatic Compounds by Enriched Bacterial Cultures: Part B--Nitrogen-, Sulfur-, and Oxygen-Containing Heterocyclic Aromatic Compounds.

    Science.gov (United States)

    Oberoi, Akashdeep Singh; Philip, Ligy; Bhallamudi, S Murty

    2015-07-01

    Present study focused on the biodegradation of various heterocyclic nitrogen, sulfur, and oxygen (NSO) compounds using naphthalene-enriched culture. Target compounds in the study were pyridine, quinoline, benzothiophene, and benzofuran. Screening studies were carried out using different microbial consortia enriched with specific polycyclic aromatic hydrocarbon (PAH) and NSO compounds. Among different microbial consortia, naphthalene-enriched culture was the most efficient consortium based on high substrate degradation rate. Substrate degradation rate with naphthalene-enriched culture followed the order pyridine > quinoline > benzofuran > benzothiophene. Benzothiophene and benzofuran were found to be highly recalcitrant pollutants. Benzothiophene could not be biodegraded when concentration was above 50 mg/l. It was observed that 2-(1H)-quinolinone, benzothiophene-2-one, and benzofuran-2,3-dione were formed as metabolic intermediates during biodegradation of quinoline, benzothiophene, and benzofuran, respectively. Quinoline-N and pyridine-N were transformed into free ammonium ions during the biodegradation process. Biodegradation pathways for various NSO compounds are proposed. Monod inhibition model was able to simulate single substrate biodegradation kinetics satisfactorily. Benzothiophene and benzofuran biodegradation kinetics, in presence of acetone, was simulated using a generalized multi-substrate model.

  14. Oxygen sensitization of mammalian cells under different irradiation conditions

    International Nuclear Information System (INIS)

    Ling, C.C.; Michaels, H.B.; Gerweck, L.E.; Epp, E.R.; Peterson, E.C.

    1981-01-01

    The oxygen dependence of the radiosensitivity of cultured CHO cells was examined in detail with particular attention paid to avoiding possible artifacts due to radiolytic oxygen depletion. Two methods of gas equilibration and irradiation were used. In the first approach, cells were irradiated with 50-kVp X rays in a thin-layer geometry which offered maximum interchange between the cells and the surrounding gas. The second technique employed 280-kVp X irradiation of cells under full-medium conditions with mechanical agitation to minimize the effect of radiochemical oxygen consumption by promoting rapid oxygen replenishment. With these techniques oxygen radiosensitization was clearly resolved at an oxygen concentration of 0.03% in the gas phase. The oxygen K curves measured by these two methods were similar in shape over a wide range of oxygen concentration

  15. Acoustic observation of living organisms reveals the upper limit of the oxygen minimum zone.

    Directory of Open Access Journals (Sweden)

    Arnaud Bertrand

    Full Text Available BACKGROUND: Oxygen minimum zones (OMZs are expanding in the World Ocean as a result of climate change and direct anthropogenic influence. OMZ expansion greatly affects biogeochemical processes and marine life, especially by constraining the vertical habitat of most marine organisms. Currently, monitoring the variability of the upper limit of the OMZs relies on time intensive sampling protocols, causing poor spatial resolution. METHODOLOGY/PRINCIPAL FINDINGS: Using routine underwater acoustic observations of the vertical distribution of marine organisms, we propose a new method that allows determination of the upper limit of the OMZ with a high precision. Applied in the eastern South-Pacific, this original sampling technique provides high-resolution information on the depth of the upper OMZ allowing documentation of mesoscale and submesoscale features (e.g., eddies and filaments that structure the upper ocean and the marine ecosystems. We also use this information to estimate the habitable volume for the world's most exploited fish, the Peruvian anchovy (Engraulis ringens. CONCLUSIONS/SIGNIFICANCE: This opportunistic method could be implemented on any vessel geared with multi-frequency echosounders to perform comprehensive high-resolution monitoring of the upper limit of the OMZ. Our approach is a novel way of studying the impact of physical processes on marine life and extracting valid information about the pelagic habitat and its spatial structure, a crucial aspect of Ecosystem-based Fisheries Management in the current context of climate change.

  16. Severe hypoxemia during veno-venous extracorporeal membrane oxygenation: exploring the limits of extracorporeal respiratory support

    Directory of Open Access Journals (Sweden)

    Liane Brescovici Nunes

    2014-03-01

    Full Text Available OBJECTIVE: Veno-venous extracorporeal oxygenation for respiratory support has emerged as a rescue alternative for patients with hypoxemia. However, in some patients with more severe lung injury, extracorporeal support fails to restore arterial oxygenation. Based on four clinical vignettes, the aims of this article were to describe the pathophysiology of this concerning problem and to discuss possibilities for hypoxemia resolution. METHODS: Considering the main reasons and rationale for hypoxemia during veno-venous extracorporeal membrane oxygenation, some possible bedside solutions must be considered: 1 optimization of extracorporeal membrane oxygenation blood flow; 2 identification of recirculation and cannula repositioning if necessary; 3 optimization of residual lung function and consideration of blood transfusion; 4 diagnosis of oxygenator dysfunction and consideration of its replacement; and finally 5 optimization of the ratio of extracorporeal membrane oxygenation blood flow to cardiac output, based on the reduction of cardiac output. CONCLUSION: Therefore, based on the pathophysiology of hypoxemia during veno-venous extracorporeal oxygenation support, we propose a stepwise approach to help guide specific interventions.

  17. Physiological closed-loop control in intelligent oxygen therapy: A review.

    Science.gov (United States)

    Sanchez-Morillo, Daniel; Olaby, Osama; Fernandez-Granero, Miguel Angel; Leon-Jimenez, Antonio

    2017-07-01

    Oxygen therapy has become a standard care for the treatment of patients with chronic obstructive pulmonary disease and other hypoxemic chronic lung diseases. In current systems, manually continuous adjustment of O 2 flow rate is a time-consuming task, often unsuccessful, that requires experienced staff. The primary aim of this systematic review is to collate and report on the principles, algorithms and accuracy of autonomous physiological close-loop controlled oxygen devices as well to present recommendations for future research and studies in this area. A literature search was performed on medical database MEDLINE, engineering database IEEE-Xplore and wide-raging scientific databases Scopus and Web of Science. A narrative synthesis of the results was carried out. A summary of the findings of this review suggests that when compared to the conventional manual practice, the closed-loop controllers maintain higher saturation levels, spend less time below the target saturation, and save oxygen resources. Nonetheless, despite of their potential, autonomous oxygen therapy devices are scarce in real clinical applications. Robustness of control algorithms, fail-safe mechanisms, limited reliability of sensors, usability issues and the need for standardized evaluating methods of assessing risks can be among the reasons for this lack of matureness and need to be addressed before the wide spreading of a new generation of automatic oxygen devices. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Examining Cultural Intelligence and Cross-Cultural Negotiation Effectiveness

    Science.gov (United States)

    Groves, Kevin S.; Feyerherm, Ann; Gu, Minhua

    2015-01-01

    International negotiation failures are often linked to deficiencies in negotiator cross-cultural capabilities, including limited understanding of the cultures engaged in the transaction, an inability to communicate with persons from different cultural backgrounds, and limited behavioral flexibility to adapt to culturally unfamiliar contexts.…

  19. Prevention of Hypoxemia During Apnea Testing: A Comparison of Oxygen Insufflation And Continuous Positive Airway Pressure.

    Science.gov (United States)

    Kramer, Andreas H; Couillard, Philippe; Bader, Ryan; Dhillon, Peter; Kutsogiannis, Demetrios J; Doig, Christopher J

    2017-08-01

    Apnea testing is an essential step in the clinical diagnosis of brain death. Current international guidelines recommend placement of an oxygen (O 2 ) insufflation catheter into the endotracheal tube to prevent hypoxemia, but use of a continuous positive airway pressure (CPAP) valve may be more effective at limiting arterial partial pressure of O 2 (PO 2 ) reduction. We performed a multicenter study assessing consecutive apnea tests in 14 intensive care units (ICUs) in two cities utilizing differing protocols. In one city, O 2 catheters are placed and arterial blood gases (ABGs) performed at intervals determined by the attending physician. In the other city, a resuscitation bag with CPAP valve is attached to the endotracheal tube, and ABGs performed every 3-5 min. We assessed arterial PO 2 , partial pressure of carbon dioxide (PCO 2 ), pH, and blood pressure at the beginning and termination of each apnea test. Thirty-six apnea tests were performed using an O 2 catheter and 50 with a CPAP valve. One test per group was aborted because of physiological instability. There were no significant differences in the degree of PO 2 reduction (-59 vs. -32 mmHg, p = 0.72), rate of PCO 2 rise (3.2 vs. 3.9 mmHg per min, p = 0.22), or pH decline (-0.02 vs. -0.03 per min, p = 0.06). Performance of ABGs at regular intervals was associated with shorter test duration (10 vs. 7 min, p pressure decline (p = 0.006). Both methods of O 2 supplementation are associated with similar changes in arterial PO 2 and PCO 2 . Performance of ABGs at regular intervals shortens apnea test duration and may avoid excessive pH reduction and consequent hemodynamic effects.

  20. Low physiologic oxygen tensions reduce proliferation and differentiation of human multipotent mesenchymal stromal cells

    Directory of Open Access Journals (Sweden)

    Handgretinger Rupert

    2010-01-01

    Full Text Available Abstract Background Human multipotent mesenchymal stromal cells (MSC can be isolated from various tissues including bone marrow. Here, MSC participate as bone lining cells in the formation of the hematopoietic stem cell niche. In this compartment, the oxygen tension is low and oxygen partial pressure is estimated to range from 1% to 7%. We analyzed the effect of low oxygen tensions on human MSC cultured with platelet-lysate supplemented media and assessed proliferation, morphology, chromosomal stability, immunophenotype and plasticity. Results After transferring MSC from atmospheric oxygen levels of 21% to 1%, HIF-1α expression was induced, indicating efficient oxygen reduction. Simultaneously, MSC exhibited a significantly different morphology with shorter extensions and broader cell bodies. MSC did not proliferate as rapidly as under 21% oxygen and accumulated in G1 phase. The immunophenotype, however, was unaffected. Hypoxic stress as well as free oxygen radicals may affect chromosomal stability. However, no chromosomal abnormalities in human MSC under either culture condition were detected using high-resolution matrix-based comparative genomic hybridization. Reduced oxygen tension severely impaired adipogenic and osteogenic differentiation of human MSC. Elevation of oxygen from 1% to 3% restored osteogenic differentiation. Conclusion Physiologic oxygen tension during in vitro culture of human MSC slows down cell cycle progression and differentiation. Under physiological conditions this may keep a proportion of MSC in a resting state. Further studies are needed to analyze these aspects of MSC in tissue regeneration.

  1. A brief clinical case of monitoring of oxygenator performance and patient-machine interdependency during prolonged veno-venous extracorporeal membrane oxygenation.

    Science.gov (United States)

    Belliato, Mirko; Degani, Antonella; Buffa, Antonino; Sciutti, Fabio; Pagani, Michele; Pellegrini, Carlo; Iotti, Giorgio Antonio

    2017-10-01

    Monitoring veno-venous extracorporeal membrane oxygenation (vvECMO) during 76 days of continuous support in a 42-years old patient with end-stage pulmonary disease, listed for double-lung transplantation. Applying a new monitor (Landing ® , Eurosets, Medolla, Italy) and describing how measured and calculated parameters can be used to understand the variable interdependency between artificial membrane lung (ML) and patient native lung (NL). During vvECMO, in order to understand how the respiratory function is shared between ML and NL, ideally we should obtain data about oxygen transfer and CO 2 removal, both by ML and NL. Measurements for NL can be made on the mechanical ventilator. Measurements for ML are typically made from gas analysis on blood samples drawn from the ECMO system before and after the oxygenator, and therefore are non-continuous. Differently, the Landing monitor provides a continuous measurement of the oxygen transfer from the ML, combined with hemoglobin level, saturation of drained blood and saturation of reinfused blood. Moreover, the Landing monitor provides hemodynamics data about circulation through the ECMO system, with blood flow, pre-oxygenator pressure and post-oxygenator pressure. Of note, measurements include the drain negative pressure, whose monitoring may be particularly useful to prevent hemolysis. Real-time monitoring of vvECMO provides data helpful to understand the complex picture of a patient with severely damaged lungs on one side and an artificial lung on the other side. Data from vvECMO monitoring may help to adapt the settings of both mechanical ventilator and vvECMO. Data about oxygen transfer by the oxygenator are important to evaluate the performance of the device and may help to avoid unnecessary replacements, thus reducing risks and costs.

  2. MODELING OF MIXED CHEMOSTAT CULTURES OF AN AEROBIC BACTERIUM, COMAMONAS-TESTOSTERONI, AND AN ANAEROBIC BACTERIUM, VEILLONELLA-ALCALESCENS - COMPARISON WITH EXPERIMENTAL-DATA

    NARCIS (Netherlands)

    GERRITSE, J; SCHUT, F; GOTTSCHAL, JC

    A mathematical model of mixed chemostat cultures of the obligately aerobic bacterium Comamonas testosteroni and the anaerobic bacterium Veillonella alcalescens grown under dual limitation Of L-lactate and oxygen was constructed. The model was based on Michaelis-Menten-type kinetics for the

  3. Dilute Oxygen Combustion Phase IV Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Riley, M.F.

    2003-04-30

    Novel furnace designs based on Dilute Oxygen Combustion (DOC) technology were developed under subcontract by Techint Technologies, Coraopolis, PA, to fully exploit the energy and environmental capabilities of DOC technology and to provide a competitive offering for new furnace construction opportunities. Capital cost, fuel, oxygen and utility costs, NOx emissions, oxide scaling performance, and maintenance requirements were compared for five DOC-based designs and three conventional air5-fired designs using a 10-year net present value calculation. A furnace direct completely with DOC burners offers low capital cost, low fuel rate, and minimal NOx emissions. However, these benefits do not offset the cost of oxygen and a full DOC-fired furnace is projected to cost $1.30 per ton more to operate than a conventional air-fired furnace. The incremental cost of the improved NOx performance is roughly $6/lb NOx, compared with an estimated $3/lb. NOx for equ8pping a conventional furnace with selective catalytic reduction (SCCR) technology. A furnace fired with DOC burners in the heating zone and ambient temperature (cold) air-fired burners in the soak zone offers low capital cost with less oxygen consumption. However, the improvement in fuel rate is not as great as the full DOC-fired design, and the DOC-cold soak design is also projected to cost $1.30 per ton more to operate than a conventional air-fired furnace. The NOx improvement with the DOC-cold soak design is also not as great as the full DOC fired design, and the incremental cost of the improved NOx performance is nearly $9/lb NOx. These results indicate that a DOC-based furnace design will not be generally competitive with conventional technology for new furnace construction under current market conditions. Fuel prices of $7/MMBtu or oxygen prices of $23/ton are needed to make the DOC furnace economics favorable. Niche applications may exist, particularly where access to capital is limited or floor space limitations

  4. Cross-Cultural Communication and the Continuity of Cultures: The Role of Intercultural Dialogue

    DEFF Research Database (Denmark)

    Bouchet, Dominique

    2012-01-01

    cultural contexts influence interpersonal communication. We need to know how intercultural communication affects the mobility and permanency of cultures. We need to know what sustains our core values and what might be harmful to them. We need a clear definition of what intercultural communication is about...

  5. Steady-state oxygen-solubility in niobium

    International Nuclear Information System (INIS)

    Schulze, K.; Jehn, H.

    1977-01-01

    During annealing of niobium in oxygen in certain temperature and pressure ranges steady states are established between the absorption of molecular oxygen and the evaporation of volatile oxides. The oxygen concentration in the niobium-oxygen α-solid solution is a function of oxygen pressure and temperature and has been redetermined in the ranges 10 -5 - 10 -2 Pa O 2 and 2,070 - 2,470 K. It follows differing from former results the equation csub(o) = 9.1 x 10 -6 x sub(po2) x exp (502000/RT) with csub(o) in at.-ppm, sub(po2) in Pa, T in K, R = 8.31 J x mol -1 x K -1 . The existence of steady states is limited to a temperature range from 1870 to 2470 K and to oxygen concentrations below the solubility limit given by solidus and solvus lines in the T-c diagram. In the experiments high-purity niobium wires with a specific electrical ratio rho (273 K)/rho(4.2 K) > 5,000 have been gassed under isothermal-isobaric conditions until the steady state has been reached. The oxygen concentration has been determined analytically by vacuum fusion extraction with platinum-flux technique as well as by electrical residual resistivity measurements at 4.2 K. (orig.) [de

  6. A new polyethyleneglycol-derivatized hemoglobin derivative with decreased oxygen affinity and limited toxicity.

    Science.gov (United States)

    Zolog, Oana; Mot, Augustin; Deac, Florina; Roman, Alina; Fischer-Fodor, Eva; Silaghi-Dumitrescu, Radu

    2011-01-01

    A new protocol is described for derivatization of hemoglobin with polyethyleneglycol (PEG) via reaction of the unmodified native hemoglobin with an activated amine-reacting polyethylene glycol derivative which, unlike protocols previously described, leads to formation of a peptide bond between hemoglobin and PEG. Dioxygen binding and peroxide reactivities of the derivatized hemoglobin are examined, and found to be within reasonable limits, with the particular observation that, unlike with a few other derivatization protocols, the dioxygen affinity is slightly lower than that of native Hb. In cell culture tests (human umbilical vein epithelial cells, HUVEC), the derivatization protocol induces no toxic effect. These results show promise towards applicability for production of hemoglobin-based blood substitutes.

  7. Successful operation of continuous reactors at short retention times results in high-density, fast-rate Dehalococcoides dechlorinating cultures.

    Science.gov (United States)

    Delgado, Anca G; Fajardo-Williams, Devyn; Popat, Sudeep C; Torres, César I; Krajmalnik-Brown, Rosa

    2014-03-01

    The discovery of Dehalococcoides mccartyi reducing perchloroethene and trichloroethene (TCE) to ethene was a key landmark for bioremediation applications at contaminated sites. D. mccartyi-containing cultures are typically grown in batch-fed reactors. On the other hand, continuous cultivation of these microorganisms has been described only at long hydraulic retention times (HRTs). We report the cultivation of a representative D. mccartyi-containing culture in continuous stirred-tank reactors (CSTRs) at a short, 3-d HRT, using TCE as the electron acceptor. We successfully operated 3-d HRT CSTRs for up to 120 days and observed sustained dechlorination of TCE at influent concentrations of 1 and 2 mM TCE to ≥ 97 % ethene, coupled to the production of 10(12) D. mccartyi cells Lculture (-1). These outcomes were possible in part by using a medium with low bicarbonate concentrations (5 mM) to minimize the excessive proliferation of microorganisms that use bicarbonate as an electron acceptor and compete with D. mccartyi for H2. The maximum conversion rates for the CSTR-produced culture were 0.13 ± 0.016, 0.06 ± 0.018, and 0.02 ± 0.007 mmol Cl(-) Lculture (-1) h(-1), respectively, for TCE, cis-dichloroethene, and vinyl chloride. The CSTR operation described here provides the fastest laboratory cultivation rate of high-cell density Dehalococcoides cultures reported in the literature to date. This cultivation method provides a fundamental scientific platform for potential future operations of such a system at larger scales.

  8. Evolution of factors affecting placental oxygen transfer

    DEFF Research Database (Denmark)

    Carter, A M

    2009-01-01

    A review is given of the factors determining placental oxygen transfer and the oxygen supply to the fetus. In the case of continuous variables, such as the rate of placental blood flow, it is not possible to trace evolutionary trends. Discontinuous variables, for which we can define character sta......, where fetal and adult haemoglobin are not different, developmental regulation of 2, 3-diphosphoglycerate ensures the high oxygen affinity of fetal blood. Oxygen diffusing capacity is dependent on diffusion distance, which may vary with the type of interhaemal barrier. It has been shown...

  9. A theoretical model for oxygen transport in skeletal muscle under conditions of high oxygen demand.

    Science.gov (United States)

    McGuire, B J; Secomb, T W

    2001-11-01

    Oxygen transport from capillaries to exercising skeletal muscle is studied by use of a Krogh-type cylinder model. The goal is to predict oxygen consumption under conditions of high demand, on the basis of a consideration of transport processes occurring at the microvascular level. Effects of the decline in oxygen content of blood flowing along capillaries, intravascular resistance to oxygen diffusion, and myoglobin-facilitated diffusion are included. Parameter values are based on human skeletal muscle. The dependence of oxygen consumption on oxygen demand, perfusion, and capillary density are examined. When demand is moderate, the tissue is well oxygenated and consumption is slightly less than demand. When demand is high, capillary oxygen content declines rapidly with axial distance and radial oxygen transport is limited by diffusion resistance within the capillary and the tissue. Under these conditions, much of the tissue is hypoxic, consumption is substantially less than demand, and consumption is strongly dependent on capillary density. Predicted consumption rates are comparable with experimentally observed maximal rates of oxygen consumption.

  10. Aquatic respiration rate measurements at low oxygen concentrations.

    Directory of Open Access Journals (Sweden)

    Moritz Holtappels

    Full Text Available Despite its huge ecological importance, microbial oxygen respiration in pelagic waters is little studied, primarily due to methodological difficulties. Respiration measurements are challenging because of the required high resolution of oxygen concentration measurements. Recent improvements in oxygen sensing techniques bear great potential to overcome these limitations. Here we compare 3 different methods to measure oxygen consumption rates at low oxygen concentrations, utilizing amperometric Clark type sensors (STOX, optical sensors (optodes, and mass spectrometry in combination with (18-18O2 labeling. Oxygen concentrations and consumption rates agreed well between the different methods when applied in the same experimental setting. Oxygen consumption rates between 30 and 400 nmol L(-1 h(-1 were measured with high precision and relative standard errors of less than 3%. Rate detection limits in the range of 1 nmol L(-1 h(-1 were suitable for rate determinations in open ocean water and were lowest at the lowest applied O2 concentration.

  11. Cultural and communicative competence in the caring relationship with patients from another culture.

    Science.gov (United States)

    Hemberg, Jessica Anne Viveka; Vilander, Susann

    2017-12-01

    The global and multicultural society of today creates challenges that require multicultural competence among individuals, especially within caring contexts. This study assumes an intercultural perspective, and the aim is to uncover a new understanding of the caring community between nurses and patients when these do not speak the same language. The research question is: What is the significance of communication in a caring community when nurses and patients do not speak the same language? This qualitative study uses a hermeneutical approach. The material was collected through questionnaires with eight nurses and two adults from another culture. The texts were analysed through latent content analysis. Study participation, data storage and handling for research purposes were approved by the participants when they provided their informed consent. Permission to conduct the study was granted by an ethical committee of a hospital organisation. Human love is the basis for a caring relationship since it reaches beyond the limits of cultural differences. Integrity is vital for cultural respect and especially for the consideration of spiritual needs in the caring relationship. An affirming presence is essential for communion. Creative courage is fundamental for communication, and continuous information is vital for establishing trust within the caring relationship. One limitation to this study might be the limited number of participants (ten). Caring for a patient from another culture requires that nurses are open-minded and have the courage to encounter new challenges. It is essential for nurses to respect the patient's integrity but also to acquire knowledge in order to improve their cultural competence. Further research within this area should focus on the role of next of kin in intercultural caring and on how leadership may contribute to improving cultural competence within health organisations. © 2017 Nordic College of Caring Science.

  12. Formation and action of lignin-modifying enzymes in cultures of Phlebia radiata supplemented with veratric acid

    International Nuclear Information System (INIS)

    Lundell, T.; Hatakka, A.; Leonowicz, A.; Rogalski, J.

    1990-01-01

    Transformation of veratric (3,4-dimethoxybenzoic) acid by the white rot fungus Phlebia radiata was studied to elucidate the role of ligninolytic, reductive, and demeth(ox)ylating enzymes. Under both air and a 100% O 2 atmosphere, with nitrogen limitation and glucose as a carbon source, reducing activity resulted in the accumulation of veratryl alcohol in the medium. When the fungus was cultivated under air, veratric acid caused a rapid increase in laccase (benzenediol:oxygen oxidoreductase; EC 1.10.3.2) production, which indicated that veratic acid was first demethylated, thus providing phenolic compounds for laccase. After a rapid decline in laccase activity, elevated lignin peroxidase (ligninase) activity and manganese-dependent peroxidase production were detected simultaneously with extracellular release of methanol. This indicated apparent demethoxylation. When the fungus was cultivated under a continuous 100% O 2 flow and in the presence of veratric acid, laccase production was markedly repressed, whereas production of lignin peroxidase and degradation of veratryl compounds were clearly enhanced. In all cultures, the increases in lignin peroxidase titers were directly related to veratryl alcohol accumulation. Evolution of 14 CO 2 from 3-O 14 CH 3 -and 4-O 14 CH 3 -labeled veratric acids showed that the position of the methoxyl substituent in the aromatic ring only slightly affected demeth(ox)ylation activity. In both cases, more than 60% of the total 14 C was converted to 14 CO 2 under air in 4 weeks, and oxygen flux increased the degradation rate of the 14 C-labeled veratric acids just as it did with unlabeled cultures

  13. 40 CFR 80.35 - Labeling of retail gasoline pumps; oxygenated gasoline.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Labeling of retail gasoline pumps; oxygenated gasoline. 80.35 Section 80.35 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Oxygenated Gasoline § 80.35 Labeling...

  14. Altitudinal distribution limits of aquatic macroinvertebrates

    DEFF Research Database (Denmark)

    Madsen, Philip B.; Morabowen, Andrés; Andino, Patricio

    2015-01-01

    1. Temperature and oxygen are recognised as the main drivers of altitudinal limits of species distributions. However, the two factors are linked, and both decrease with altitude, why their effects are difficult to disentangle. 2. This was experimentally addressed using aquatic macroinvertebrates...... relatively small differences in temperature and oxygen may produce effects explaining ecological patterns, and depending on the taxon, either water temperature or oxygen saturation, without clear interacting effects, are important drivers of altitudinal limits....

  15. Experimental Tracking of Limit-Point Bifurcations and Backbone Curves Using Control-Based Continuation

    Science.gov (United States)

    Renson, Ludovic; Barton, David A. W.; Neild, Simon A.

    Control-based continuation (CBC) is a means of applying numerical continuation directly to a physical experiment for bifurcation analysis without the use of a mathematical model. CBC enables the detection and tracking of bifurcations directly, without the need for a post-processing stage as is often the case for more traditional experimental approaches. In this paper, we use CBC to directly locate limit-point bifurcations of a periodically forced oscillator and track them as forcing parameters are varied. Backbone curves, which capture the overall frequency-amplitude dependence of the system’s forced response, are also traced out directly. The proposed method is demonstrated on a single-degree-of-freedom mechanical system with a nonlinear stiffness characteristic. Results are presented for two configurations of the nonlinearity — one where it exhibits a hardening stiffness characteristic and one where it exhibits softening-hardening.

  16. Possible complication regarding phosphorus removal with a continuous flow biofilm system: Diffusion limitation

    DEFF Research Database (Denmark)

    Falkentoft, C.M.; Arnz, P.; Henze, Mogens

    2001-01-01

    Diffusion limitation of phosphate possibly constitutes a serious problem regarding the use of a biofilm reactor for enhanced biological phosphorus removal. A lab-scale reactor for simultaneous removal of phosphorus and nitrate was operated in a continuous alternating mode of operation. For a steady.......4 ± 0.4% (equal to 24 ± 4 mg P/g TS). A simplified computer model indicated the reason to be phosphate diffusion limitation and the model revealed a delicate balance between the obtainable phosphorus contents of the biomass and operating parameters, such as backwash interval, biofilm thickness after...... backwash, and phase lengths. The aspect of diffusion is considered of crucial importance when evaluating the performance of a biofilter for phosphate removal. © 2001 John Wiley & Sons, Inc. Biotechnol Bioeng 76: 77–85, 2001....

  17. Treatment of swine wastewater in continuous activated sludge systems under different dissolved oxygen conditions: Reactor operation and evaluation using modelling.

    Science.gov (United States)

    Waki, Miyoko; Yasuda, Tomoko; Fukumoto, Yasuyuki; Béline, Fabrice; Magrí, Albert

    2018-02-01

    Swine wastewater was treated in two continuously aerated activated sludge (AS) systems at high (AS1: 1.7-2.6 mg/L) and low (AS2: 0.04-0.08 mg/L) dissolved oxygen (DO), and at three temperatures (10, 20, and 30 °C). Biochemical oxygen demand (BOD) removal was >94.8%. Meanwhile, total nitrogen (N) removal was significantly higher in AS2, at 64, 89, and 88%, than in AS1, at 12, 24, and 46%, for 10, 20, and 30 °C, respectively. The experimental data were considered in a simulation study using an AS model for BOD and N removal, which also included nitrite, free ammonia, free nitrous acid, and temperature. Simulations at high-DO showed that ammonium was partly oxidized into nitrate but not removed, whereas at low-DO ammonium was removed mainly through the nitrite shortcut in simultaneous nitrification-denitrification. This study demonstrates that treatment at low-DO is an effective method for removing N, and modelling a helpful tool for its optimization. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Building enterprise-wide resilience by integrating business continuity capability into day-to-day business culture and technology.

    Science.gov (United States)

    Alesi, Patrick

    2008-04-01

    This paper follows the development of the business continuity planning (BCP) programme at Lehman Brothers following the events of September 11th. Previous attempts to implement a `traditional' form of BCP had been ineffective, but following the events, the firm began to look at BCP in a new light. This paper deals with three main themes: creating a culture of resiliency, leveraging technology, and building flexible plans. Distributing accountability for BCP to business line managers, integrating BCP change management into the normal course of business, and providing every employee with personalised BCP information breeds a culture of resiliency where people are empowered to react to events without burdensome, hierarchical response and recovery procedures. Building a strong relationship with one's application development community can result in novel, customised BCP solutions; existing systems and data structures can be used to enhance an existing BCP. Even the best plans are often challenged by events; understanding that flexibility is essential to effective incident response is a critical element in the development of a proper business continuity plan.

  19. An efficient 3D cell culture method on biomimetic nanostructured grids.

    Directory of Open Access Journals (Sweden)

    Maria Wolun-Cholewa

    Full Text Available Current techniques of in vitro cell cultures are able to mimic the in vivo environment only to a limited extent, as they enable cells to grow only in two dimensions. Therefore cell culture approaches should rely on scaffolds that provide support comparable to the extracellular matrix. Here we demonstrate the advantages of novel nanostructured three-dimensional grids fabricated using electro-spinning technique, as scaffolds for cultures of neoplastic cells. The results of the study show that the fibers allow for a dynamic growth of HeLa cells, which form multi-layer structures of symmetrical and spherical character. This indicates that the applied scaffolds are nontoxic and allow proper flow of oxygen, nutrients, and growth factors. In addition, grids have been proven to be useful in in situ examination of cells ultrastructure.

  20. Feasibility of biodiesel production and CO2 emission reduction by Monoraphidium dybowskii LB50 under semi-continuous culture with open raceway ponds in the desert area.

    Science.gov (United States)

    Yang, Haijian; He, Qiaoning; Hu, Chunxiang

    2018-01-01

    Compared with other general energy crops, microalgae are more compatible with desert conditions. In addition, microalgae cultivated in desert regions can be used to develop biodiesel. Therefore, screening oil-rich microalgae, and researching the algae growth, CO 2 fixation and oil yield in desert areas not only effectively utilize the idle desertification lands and other resources, but also reduce CO 2 emission. Monoraphidium dybowskii LB50 can be efficiently cultured in the desert area using light resources, and lipid yield can be effectively improved using two-stage induction and semi-continuous culture modes in open raceway ponds (ORPs). Lipid content (LC) and lipid productivity (LP) were increased by 20% under two-stage industrial salt induction, whereas biomass productivity (BP) increased by 80% to enhance LP under semi-continuous mode in 5 m 2 ORPs. After 3 years of operation, M. dybowskii LB50 was successfully and stably cultivated under semi-continuous mode for a month during five cycles of repeated culture in a 200 m 2 ORP in the desert area. This culture mode reduced the supply of the original species. The BP and CO 2 fixation rate were maintained at 18 and 33 g m -2  day -1 , respectively. Moreover, LC decreased only during the fifth cycle of repeated culture. Evaporation occurred at 0.9-1.8 L m -2  day -1 , which corresponded to 6.5-13% of evaporation loss rate. Semi-continuous and two-stage salt induction culture modes can reduce energy consumption and increase energy balance through the energy consumption analysis of life cycle. This study demonstrates the feasibility of combining biodiesel production and CO 2 fixation using microalgae grown as feedstock under culture modes with ORPs by using the resources in the desert area. The understanding of evaporation loss and the sustainability of semi-continuous culture render this approach practically viable. The novel strategy may be a promising alternative to existing technology for CO 2 emission

  1. A cross-cultural comparison of children's imitative flexibility.

    Science.gov (United States)

    Clegg, Jennifer M; Legare, Cristine H

    2016-09-01

    Recent research with Western populations has demonstrated that children use imitation flexibly to engage in both instrumental and conventional learning. Evidence for children's imitative flexibility in non-Western populations is limited, however, and has only assessed imitation of instrumental tasks. This study (N = 142, 6- to 8-year-olds) demonstrates both cultural continuity and cultural variation in imitative flexibility. Children engage in higher imitative fidelity for conventional tasks than for instrumental tasks in both an industrialized, Western culture (United States), and a subsistence-based, non-Western culture (Vanuatu). Children in Vanuatu engage in higher imitative fidelity of instrumental tasks than in the United States, a potential consequence of cultural variation in child socialization for conformity. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  2. Hydrogen gas alleviates oxygen toxicity by reducing hydroxyl radical levels in PC12 cells.

    Directory of Open Access Journals (Sweden)

    Junchao Yu

    Full Text Available Hyperbaric oxygen (HBO therapy through breathing oxygen at the pressure of above 1 atmosphere absolute (ATA is useful for varieties of clinical conditions, especially hypoxic-ischemic diseases. Because of generation of reactive oxygen species (ROS, breathing oxygen gas at high pressures can cause oxygen toxicity in the central nervous system, leading to multiple neurological dysfunction, which limits the use of HBO therapy. Studies have shown that Hydrogen gas (H2 can diminish oxidative stress and effectively reduce active ROS associated with diseases. However, the effect of H2 on ROS generated from HBO therapy remains unclear. In this study, we investigated the effect of H2 on ROS during HBO therapy using PC12 cells. PC12 cells cultured in medium were exposed to oxygen gas or mixed oxygen gas and H2 at 1 ATA or 5 ATA. Cells viability and oxidation products and ROS were determined. The data showed that H2 promoted the cell viability and inhibited the damage in the cell and mitochondria membrane, reduced the levels of lipid peroxidation and DNA oxidation, and selectively decreased the levels of •OH but not disturbing the levels of O2•-, H2O2, or NO• in PC12 cells during HBO therapy. These results indicated that H2 effectively reduced •OH, protected cells against oxygen toxicity resulting from HBO therapy, and had no effect on other ROS. Our data supported that H2 could be potentially used as an antioxidant during HBO therapy.

  3. In situ measurements of oxygen dynamics in unsaturated archaeological deposits

    DEFF Research Database (Denmark)

    Matthiesen, Henning; Hollesen, Jørgen; Dunlop, Rory

    2015-01-01

    Oxygen is a key parameter in the degradation of archaeological material, but little is known of its dynamics in situ. In this study, 10 optical oxygen sensors placed in a 2 m deep test pit in the cultural deposits at Bryggen in Bergen have monitored oxygen concentrations every half hour for more ...... of the soil exceeds 10–15% vol, while oxygen dissolved in infiltrating rainwater is of less importance for the supply of oxygen in the unsaturated zone....... than a year. It is shown that there is a significant spatial and temporal variation in the oxygen concentration, which is correlated to measured soil characteristics, precipitation, soil water content and degradation of organic material. In these deposits oxygen typically occurs when the air content...

  4. Multi-stage Continuous Culture Fermentation of Glucose-Xylose Mixtures to Fuel Ethanol using Genetically Engineered Saccharomyces cerevisiae 424A

    Science.gov (United States)

    Multi-stage continuous (chemostat) culture fermentation (MCCF) with variable fermentor volumes was carried out to study utilizing glucose and xylose for ethanol production by means of mixed sugar fermentation (MSF). Variable fermentor volumes were used to enable enhanced sugar u...

  5. Data analytics for continuous renal replacement therapy: historical limitations and recent technology advances.

    Science.gov (United States)

    Clark, William R; Garzotto, Francesco; Neri, Mauro; Lorenzin, Anna; Zaccaria, Marta; Ronco, Claudio

    2016-10-10

    Dialysis is a highly quantitative therapy involving large volumes of both clinical and technical data. While automated data collection has been implemented for chronic dialysis, this has not been done for acute kidney injury patients treated with continuous renal replacement therapy (CRRT). After a brief review of the fundamental aspects of electronic medical records (EMRs), a new tool designed to provide clinicians with individualized CRRT treatment data is analyzed, with emphasis on its quality assurance capabilities. The first platform addressing the problem of data collection and management with current CRRT machines (Sharesource system; Baxter Healthcare) is described. The system provides connectivity for the Prismaflex CRRT machine and enables both EMR connectivity and therapy analytics with 2 basic components: the connect module and the report module. The enormous amount of data in CRRT should be collected and analyzed to enable adequate clinical decisions. Current CRRT technology presents significant limitations with consequent lack of rigorous analysis of technical data and relevant feedback. From a quality assurance perspective, these limitations preclude any systematic assessment of prescription and delivery trends that may be adversely affecting clinical outcomes. A detailed assessment of current practice limitations is provided together with several possible ways to address such limitations by a new technical tool.

  6. The effect of diet supplemented with vegetable oils and/or monensin on the vaccenic acid production in continuous culture fermenters

    Directory of Open Access Journals (Sweden)

    Mostafa Sayed A. Khattab

    2015-12-01

    Full Text Available Studies have shown that supplementing ruminant diets with vegetable oils modulated the rumen biohydrogenation and increased polyunsaturated fatty acid in their products. These positive values are often accompanied by a marginal loss of supplemented unsaturated fatty acids and rise in the concentrations of saturated fatty acids. This study were carried out mainly to investigate the effect of supplementing diets with sunflower oil, olive oil with or without monensin on the production and accumulation of vaccenic acid (VA in continuous culture fermenters as a long term in vitro rumen simulation technique. Eight dual-flow continuous culture fermenters were used in an 8 replication experiment lasted 10 days each (first 7 days for adaptation and last 3 days for samples collection. Supplementing diets with plant oils and monensin in the present experiment increased VA and conjugated linoleic acids (P > 0.05 in ruminal cultures. The results suggest that supplementing diets with both olive oil and sunflower oil and monensin increased VA accumulation compared to plant oils supplemented alone without affecting the rumen dry matter and organic matter digestibility.

  7. Continuous distending pressure effects on variables contributing to oxygenation in healthy and ARDS model pigs during HFOV

    Science.gov (United States)

    Laviola, Marianna; Hajny, Ondrej; Roubik, Karel

    2014-10-01

    High frequency oscillatory ventilation (HFOV) is an alternative mode of mechanical ventilation. HFOV has been shown to provide adequate ventilation and oxygenation in acute respiratory distress syndrome (ARDS) patients and may represent an effective lung-protective ventilation in patients where conventional ventilation is failing. The aim of this study is to evaluate effects of continuous distending pressure (CDP) on variables that contribute to the oxygenation in healthy and ARDS lung model pigs. Methods. In order to simulate a lung disease, lung injury was induced by lavage with normal saline with detergent in three pigs. HFOV ventilation was applied before and after the lung lavage. CDP was stepwise increased by 2 cmH2O, until the maximum CDP (before the lung lavage 32 cmH2O and after the lung lavage 42 cmH2O) and then it was stepwise decreased by 2 cmH2O to the initial value. In this paper we analyzed the following parameters acquired during our experiments: partial pressure of oxygen in arterial blood (PaO2), cardiac output (CO) and mixed venous blood oxygen saturation (SvO2). In order to find how both PaO2 and CO affected SvO2 during the increase of CDP before and after lavage, a nonlinear regression fitting of the response in SvO2 on the predictors (PaO2 and CO) was implemented. Results. Before the lavage, with increasing of CDP, PaO2 remained constant, CO strongly decreased and SvO2 slightly decreased. After the lavage, with increasing of CDP, PaO2 strongly increased, CO decreased and SvO2 increased. So, development of SvO2 followed the PaO2 and CO trends. Changes in PaO2 and CO occur at decisive CDP step and it was much higher after the lung lavage compared to the healthy lungs. The implemented nonlinear model gives a good goodness of fitting in all three pigs. The values of PaO2 and CO estimated coefficients changed at the same decisive step of CDP identified by the trends. Also the algorithm identified a CDP step much higher after the lung lavage

  8. Oxygen supply in aquatic ectotherms: partial pressure and solubility together explain biodiversity and size patterns.

    Science.gov (United States)

    Verberk, Wilco C E P; Bilton, David T; Calosi, Piero; Spicer, John I

    2011-08-01

    Aquatic ectotherms face the continuous challenge of capturing sufficient oxygen from their environment as the diffusion rate of oxygen in water is 3 x 10(5) times lower than in air. Despite the recognized importance of oxygen in shaping aquatic communities, consensus on what drives environmental oxygen availability is lacking. Physiologists emphasize oxygen partial pressure, while ecologists emphasize oxygen solubility, traditionally expressing oxygen in terms of concentrations. To resolve the question of whether partial pressure or solubility limits oxygen supply in nature, we return to first principles and derive an index of oxygen supply from Fick's classic first law of diffusion. This oxygen supply index (OSI) incorporates both partial pressure and solubility. Our OSI successfully explains published patterns in body size and species across environmental clines linked to differences in oxygen partial pressure (altitude, organic pollution) or oxygen solubility (temperature and salinity). Moreover, the OSI was more accurately and consistently related to these ecological patterns than other measures of oxygen (oxygen saturation, dissolved oxygen concentration, biochemical oxygen demand concentrations) and similarly outperformed temperature and altitude, which covaried with these environmental clines. Intriguingly, by incorporating gas diffusion rates, it becomes clear that actually more oxygen is available to an organism in warmer habitats where lower oxygen concentrations would suggest the reverse. Under our model, the observed reductions in aerobic performance in warmer habitats do not arise from lower oxygen concentrations, but instead through organismal oxygen demand exceeding supply. This reappraisal of how organismal thermal physiology and oxygen demands together shape aerobic performance in aquatic ectotherms and the new insight of how these components change with temperature have broad implications for predicting the responses of aquatic communities to

  9. Resveratrol protects primary cortical neuron cultures from transient oxygen-glucose deprivation by inhibiting MMP-9.

    Science.gov (United States)

    Gao, Dakuan; Huang, Tao; Jiang, Xiaofan; Hu, Shijie; Zhang, Lei; Fei, Zhou

    2014-06-01

    It was recently shown that resveratrol exerts neuroprotective effects against cerebral ischemia in mice. The aim of the present study was to further confirm these effects in in vitro primary cortical neuron cultures with transient oxygen-glucose deprivation (OGD), and to investigate whether these effects are due to the inhibition of matrix metalloproteinase-9 (MMP-9) and of cell apoptosis. Neuronal primary cultures of cerebral cortex were prepared from BALB/c mice embryos (13-15 days). Cells from 14- to 16-day cultures were subjected to OGD for 3 h, followed by 21 h of reoxygenation to simulate transient ischemia. Different doses of resveratrol were added into the culture medium during the simulation of transient ischemia. The effect of the extracellular signal-regulated kinase (ERK) inhibitor U0126 was studied by adding U0126 (5 µg/µl, 4 µl) into the culture medium during transient ischemia; as a control, we used treatment of cells with 50 µM of resveratrol. Cell viability was investigated using the 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) reduction assay. Cell apoptosis was assessed by flow cytometry. The effects of resveratrol on the expression of MMP-9 were analyzed by western blotting and reverse transcription-polymerase chain reaction (RT-PCR), while the levels of ERK, phosphorylated (p)-ERK, cleaved caspase-3, Bax and Bcl-2 were measured by western blotting. The results of the MTT assay showed that cell viability is significantly reduced by transient OGD. OGD induced cell apoptosis, the expression of Bax and the activation of caspase-3 and ERK, inhibited the expression of Bcl-2 and increased the expression of MMP-9, while these effects were reversed by treatment with resveratrol. The therapeutic efficacy of resveratrol was shown to be dose-dependent, with the most suitable dose range determined at 50-100 µM. Treatment with U0126 inhibited MMP-9 and Bax expression and caspase-3 activation, while it further promoted the

  10. Model-based derivation, analysis and control of unstable microaerobic steady-states--considering Rhodospirillum rubrum as an example.

    Science.gov (United States)

    Carius, Lisa; Rumschinski, Philipp; Faulwasser, Timm; Flockerzi, Dietrich; Grammel, Hartmut; Findeisen, Rolf

    2014-04-01

    Microaerobic (oxygen-limited) conditions are critical for inducing many important microbial processes in industrial or environmental applications. At very low oxygen concentrations, however, the process performance often suffers from technical limitations. Available dissolved oxygen measurement techniques are not sensitive enough and thus control techniques, that can reliable handle these conditions, are lacking. Recently, we proposed a microaerobic process control strategy, which overcomes these restrictions and allows to assess different degrees of oxygen limitation in bioreactor batch cultivations. Here, we focus on the design of a control strategy for the automation of oxygen-limited continuous cultures using the microaerobic formation of photosynthetic membranes (PM) in Rhodospirillum rubrum as model phenomenon. We draw upon R. rubrum since the considered phenomenon depends on the optimal availability of mixed-carbon sources, hence on boundary conditions which make the process performance challenging. Empirically assessing these specific microaerobic conditions is scarcely practicable as such a process reacts highly sensitive to changes in the substrate composition and the oxygen availability in the culture broth. Therefore, we propose a model-based process control strategy which allows to stabilize steady-states of cultures grown under these conditions. As designing the appropriate strategy requires a detailed knowledge of the system behavior, we begin by deriving and validating an unstructured process model. This model is used to optimize the experimental conditions, and identify properties of the system which are critical for process performance. The derived model facilitates the good process performance via the proposed optimal control strategy. In summary the presented model-based control strategy allows to access and maintain microaerobic steady-states of interest and to precisely and efficiently transfer the culture from one stable microaerobic steady

  11. POSSIBILITIES AND LIMITS OF THE CYCLE OF CONTINUOUS IMPROVEMENT -PDCA AS AN ELEMENT OF LEARNING

    Directory of Open Access Journals (Sweden)

    Celso Machado Junior

    2013-08-01

    Full Text Available The aim of this study is to investigate the possibilities and limits of the use of continuous improvement cycle, PDCA, as a tool that contributes to the development of individual learning in the organization. It is a qualitative, descriptive end uses the case study as a method. It was observed that the practice proposed by PDCA, can be used in the process of knowledge creation in line with the authors in the field, constituting a form of knowledge management within the organization, enabling the creation of tacit knowledge and its explicit transformation were not observed limits for their use.

  12. The mechanism of improved pullulan production by nitrogen limitation in batch culture of Aureobasidium pullulans.

    Science.gov (United States)

    Wang, Dahui; Chen, Feifei; Wei, Gongyuan; Jiang, Min; Dong, Mingsheng

    2015-08-20

    Batch culture of Aureobasidium pullulans CCTCC M 2012259 for pullulan production at different concentrations of ammonium sulfate and yeast extract was investigated. Increased pullulan production was obtained under nitrogen-limiting conditions, as compared to that without nitrogen limitation. The mechanism of nitrogen limitation favoring to pullulan overproduction was revealed by determining the activity as well as gene expression of key enzymes, and energy supply for pullulan biosynthesis. Results indicated that nitrogen limitation increased the activities of α-phosphoglucose mutase and glucosyltransferase, up-regulated the transcriptional levels of pgm1 and fks genes, and supplied more ATP intracellularly, which were propitious to further pullulan biosynthesis. The economic analysis of batch pullulan production indicated that nitrogen limitation could reduce more than one third of the cost of raw materials when glucose was supplemented to a total concentration of 70 g/L. This study also helps to understand the mechanism of other polysaccharide overproduction by nitrogen limitation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Towards a Biohybrid Lung: Endothelial Cells Promote Oxygen Transfer through Gas Permeable Membranes.

    Science.gov (United States)

    Menzel, Sarah; Finocchiaro, Nicole; Donay, Christine; Thiebes, Anja Lena; Hesselmann, Felix; Arens, Jutta; Djeljadini, Suzana; Wessling, Matthias; Schmitz-Rode, Thomas; Jockenhoevel, Stefan; Cornelissen, Christian Gabriel

    2017-01-01

    In patients with respiratory failure, extracorporeal lung support can ensure the vital gas exchange via gas permeable membranes but its application is restricted by limited long-term stability and hemocompatibility of the gas permeable membranes, which are in contact with the blood. Endothelial cells lining these membranes promise physiological hemocompatibility and should enable prolonged application. However, the endothelial cells increase the diffusion barrier of the blood-gas interface and thus affect gas transfer. In this study, we evaluated how the endothelial cells affect the gas exchange to optimize performance while maintaining an integral cell layer. Human umbilical vein endothelial cells were seeded on gas permeable cell culture membranes and cultivated in a custom-made bioreactor. Oxygen transfer rates of blank and endothelialized membranes in endothelial culture medium were determined. Cell morphology was assessed by microscopy and immunohistochemistry. Both setups provided oxygenation of the test fluid featuring small standard deviations of the measurements. Throughout the measuring range, the endothelial cells seem to promote gas transfer to a certain extent exceeding the blank membranes gas transfer performance by up to 120%. Although the underlying principles hereof still need to be clarified, the results represent a significant step towards the development of a biohybrid lung.

  14. Experimental and theoretical studies of nuclear generation of ozone from oxygen and oxygen--sulfur hexafluoride mixtures

    International Nuclear Information System (INIS)

    Elsayed-Ali, H.E.; Miley, G.H.

    1986-01-01

    A series of experimental measurements of the yield of O 3 in nuclear-induced O 2 and O 2 -SF 6 discharges are reported. The discharges were created by bombardment with energetic particles from the 10 B(n,α) 7 Li reaction. Continuous irradiation at dose rates of 10 15 --10 17 eV cm -3 s -1 and pulsed irradiation (--10 ms FWHM) at a peak dose rate of --10 20 eV cm -3 s -1 were conducted. At the lower dose rates, the addition of SF 6 generally increased the ozone yield due to the slowing of ozone destruction by negative oxygen and ozone ions. In contrast, at the high dose rates, the ozone concentration decreased due to SF 6 suppression of atomic oxygen formation by ion--ion recombination. A numerical model was developed and tested against experimental conditions. This model indicates that the steady-state ozone concentration was limited by the reaction O - 3 +O 3 →2O 2 +O - 2 with a rate coefficient of --1 x 10 -12 cm 3 s -1 . In addition to dose rate effects, pressure and temperature effects on ozone production are discussed and methods for increasing the ozone yield are suggested

  15. Experimental and theoretical studies of nuclear generation of ozone from oxygen and oxygen-sulfur hexafluoride mixtures

    Science.gov (United States)

    Elsayed-Ali, H. E.; Miley, G. H.

    1986-08-01

    A series of experimental measurements of the yield of O3 in nuclear-induced O2 and O2-SF6 discharges are reported. The discharges were created by bombardment with energetic particles from the 10B(n,α)7Li reaction. Continuous irradiation at dose rates of 1015-1017 eV cm-3 s-1 and pulsed irradiation (˜10 ms FWHM) at a peak dose rate of ˜1020 eV cm-3 s-1 were conducted. At the lower dose rates, the addition of SF6 generally increased the ozone yield due to the slowing of ozone destruction by negative oxygen and ozone ions. In contrast, at the high dose rates, the ozone concentration decreased due to SF6 suppression of atomic oxygen formation by ion-ion recombination. A numerical model was developed and tested against experimental conditions. This model indicates that the steady-state ozone concentration was limited by the reaction O-3+O3→2O2+O-2 with a rate coefficient of ˜1×10-12 cm3 s-1. In addition to dose rate effects, pressure and temperature effects on ozone production are discussed and methods for increasing the ozone yield are suggested.

  16. Oxygen Effects in Anaerobic Digestion

    Directory of Open Access Journals (Sweden)

    Deshai Botheju

    2009-10-01

    Full Text Available Interaction of free oxygen in bio-gasification is a sparsely studied area, apart from the common argument of oxygen being toxic and inhibitory for anaerobic micro-cultures. Some studies have, however, revealed increased solubilisation of organic matter in the presence of some free oxygen in anaerobic digestion. This article analyses these counterbalancing phenomena with a mathematical modelling approach using the widely accepted biochemical model ADM 1. Aerobic oxidation of soluble carbon and inhibition of obligatory anaerobic organisms are modelled using standard saturation type kinetics. Biomass dependent first order hydrolysis kinetics is used to relate the increased hydrolysis rate with oxygen induced increase in biomass growth. The amended model, ADM 1-Ox (oxygen, has 25 state variables and 22 biochemical processes, presented in matrix form. The computer aided simulation tool AQUASIM 2.1 is used to simulate the developed model. Simulation predictions are evaluated against experimental data obtained using a laboratory batch test array comprising miniature anaerobic bio-reactors of 100 ml total volume each, operated under different initial air headspaces giving rise to the different oxygen loading conditions. The reactors were initially fed with a glucose solution and incubated at 35 Celsius, for 563 hours. Under the oxygen load conditions of 22, 44 and 88 mg/L, the ADM1-Ox model simulations predicted the experimental methane potentials quite adequately. Both the experimental data and the simulations suggest a linear reduction of methane potential with respect to the increase in oxygen load within this range.

  17. Optimization of uranium carbide fabrication by carbothermic reduction with limited oxygen content

    International Nuclear Information System (INIS)

    Raveu, Gaelle

    2014-01-01

    Mixed carbides (U, Pu)C, are good fuel candidate for generation IV reactors because of their high fissile atoms density and excellent thermal properties for economical (more compact and efficient cores) and safety reasons (high melting margin). UC can be imagine as a surrogate material ror R and D studies on (U,Pu)C fuel behavior, because of their similar structures. The carbothermic reaction was used because it is the most studied and now consider for industrial process. However, it involves powders manipulation: in air, carbide can strongly react at room temperature and under controlled atmosphere it can absorb impurities. An inerted installation under Ar, BaGCARA, was therefore used. Process improvements were carried out, including the sintering atmosphere in order to evaluate the impact on the sample purity (about oxygen content). The original method by ion beam analysis was used to determine the surface composition (oxygen in-depth profiles in the first microns and stoichiometry). This oxygen analysis was set for the first time in carbonaceous materials. XRD analysis showed the formation of an intermediate compound during the carbothermic reaction and a better crystallization of the samples fabricated in BaGCARA. They also have a better microstructure, density, and visual appearance if compared to former samples. Vacuum sintering leads to a denser UC with fewer second phases if compared to Ar, Ar/H 2 or controlled PC atmospheres. However, it was not possible to analyze carbides without air contact which may impact their lattice parameter and lead to their deterioration. When the carbide is initially free of oxygen, it oxidizes faster, more intensely and heterogeneously. The mechanical stress induced between the grains lead to fracturing the material, to corrosion cracking and then a de-bonding of the material. A study of oxidation mechanisms would be interesting to validate and understand the evolution of the material in contact with oxygen. A study of the

  18. Oxygen sensor via the quenching of room-temperature phosphorescence of perdeuterated phenanthrene adsorbed on Whatman 1PS filter paper.

    Science.gov (United States)

    Ramasamy, S M; Hurtubise, R J

    1998-11-01

    Perdeuterated phenanthrene (d-phen) exhibits strong room-temperature phosphorescence (RTP) when adsorbed on Whatman 1PS filter paper. An oxygen sensor was developed that depends on oxygen quenching of RTP intensity of adsorbed d-phen. The system designed employed a continuous flow of nitrogen or nitrogen-air onto the adsorbed phosphor. The sensor is simple to prepare and needs no elaborate fabrication procedure, but did show a somewhat drifting baseline for successive determinations of oxygen. Nevertheless, very good reproducibility was achieved with the RTP quenching data by measuring the RTP intensities just before and at the end of each oxygen determination. The calibration plots gave a nonlinear relationship over the entire range of oxygen (0-21%). However, a linear range was obtained up to 1.10% oxygen. A detection limit of 0.09% oxygen in dry nitrogen was acquired. Also, carbon dioxide was found to have a minimal effect on the RTP quenching. Thus, oxygen could be measured accurately in relatively large amounts of carbon dioxide. The performance of the oxygen sensor was evaluated by comparing data obtained with a commercial electrochemical trace oxygen analyzer. Also, additional information on the quenching phenomena for this system was obtained from the RTP lifetime data acquired at various oxygen contents.

  19. Oxygen status during haemodialysis. The Cord-Group

    DEFF Research Database (Denmark)

    Nielsen, A L; Jensen, H Æ; Hegbrant, J

    1995-01-01

    Hypoxia during haemodialysis, mainly acetate, has been reported several times. In our study we have monitored oxygen status during 258 bicarbonate haemodialyses. A significant drop below 80 mmHg in mean oxygen tension occurred. Mean oxygen saturation reflected this drop but did not reach levels...... below 90%. The mean oxygen concentration was on the whole critical low, though slightly increasing during each haemodialysis session due to ultrafiltration. It is concluded that both hypoxia and hypoxaemia do occur during bicarbonate haemodialysis. To a group of patients generally having limited cardiac...... reserves, a poor oxygen status is a potentially serious complication to haemodialysis. Monitoring oxygen status is thus advisable....

  20. Neuroglobin overexpression inhibits oxygen-glucose deprivation-induced mitochondrial permeability transition pore opening in primary cultured mouse cortical neurons.

    Science.gov (United States)

    Yu, Zhanyang; Liu, Ning; Li, Yadan; Xu, Jianfeng; Wang, Xiaoying

    2013-08-01

    Neuroglobin (Ngb) is an endogenous neuroprotective molecule against hypoxic/ischemic brain injury, but the underlying mechanisms remain largely undefined. Our recent study revealed that Ngb can bind to voltage-dependent anion channel (VDAC), a regulator of mitochondria permeability transition (MPT). In this study we examined the role of Ngb in MPT pore (mPTP) opening following oxygen-glucose deprivation (OGD) in primary cultured mouse cortical neurons. Co-immunoprecipitation (Co-IP) and immunocytochemistry showed that the binding between Ngb and VDAC was increased after OGD compared to normoxia, indicating the OGD-enhanced Ngb-VDAC interaction. Ngb overexpression protected primary mouse cortical neurons from OGD-induced neuronal death, to an extent comparable to mPTP opening inhibitor, cyclosporine A (CsA) pretreatment. We further measured the role of Ngb in OGD-induced mPTP opening using Ngb overexpression and knockdown approaches in primary cultured neurons, and recombinant Ngb exposure to isolated mitochondria. Same as CsA pretreatment, Ngb overexpression significantly reduced OGD-induced mPTP opening markers including mitochondria swelling, mitochondrial NAD(+) release, and cytochrome c (Cyt c) release in primary cultured neurons. Recombinant Ngb incubation significantly reduced OGD-induced NAD(+) release and Cyt c release from isolated mitochondria. In contrast, Ngb knockdown significantly increased OGD-induced neuron death, and increased OGD-induced mitochondrial NAD(+) release and Cyt c release as well, and these outcomes could be rescued by CsA pretreatment. In summary, our results demonstrated that Ngb overexpression can inhibit OGD-induced mPTP opening in primary cultured mouse cortical neurons, which may be one of the molecular mechanisms of Ngb's neuroprotection. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Experimental and thermodynamic study of the erbium-oxygen-zirconium and gadolinium-oxygen-zirconium systems

    International Nuclear Information System (INIS)

    Jourdan, J.

    2009-11-01

    This work is a contribution to the development of innovative concepts for fuel cladding in pressurized water nuclear reactors. This concept implies the insertion of rare earth (erbium and gadolinium) in the zirconium fuel cladding. The determination of phase equilibria in the systems is essential prior to the implementation of such a promising solution. This study consisted in an experimental determination of the erbium-zirconium phase diagram. For this, we used many different techniques in order to obtain diagram data such as solubility limits, solidus, liquidus or invariant temperatures. These data allowed us to present a new diagram, very different from the previous one available in the literature. We also assessed the diagram using the CALPHAD approach. In the gadolinium-zirconium system, we determined experimentally the solubility limits. Those limits had never been determined before, and the values we obtained showed a very good agreement with the experimental and assessed versions of the diagram. Because these alloys are subjected to oxygen diffusion throughout their life, we focused our attention on the erbium-oxygen-zirconium and gadolinium-oxygen-zirconium systems. The first system has been investigated experimentally. The alloys fabrication has been performed using powder metallurgy. In order to obtain pure raw materials, we fabricated powder from erbium and zirconium bulk metals using hydrogen absorption/desorption. The characterisation of the ternary pellets allowed the determination of two ternary isothermal sections at 800 and 1100 C. For the gadolinium-oxygen-zirconium system, we calculated the phase equilibria at temperatures ranging from 800 to 1100 C, using a homemade database compiled from literature assessments of the oxygen-zirconium, gadolinium-zirconium and gadolinia-zirconia systems. Finally, we determined the mechanical properties, in connexion with the microstructure, of industrial quality alloys in order to identify the influence of

  2. High level over-expression of different NCX isoforms in HEK293 cell lines and primary neuronal cultures is protective following oxygen glucose deprivation.

    Science.gov (United States)

    Cross, Jane L; Boulos, Sherif; Shepherd, Kate L; Craig, Amanda J; Lee, Sharon; Bakker, Anthony J; Knuckey, Neville W; Meloni, Bruno P

    2012-07-01

    In this study we have assessed sodium-calcium exchanger (NCX) protein over-expression on cell viability in primary rat cortical neuronal and HEK293 cell cultures when subjected to oxygen-glucose deprivation (OGD). In cortical neuronal cultures, NCX2 and NCX3 over-expression was achieved using adenoviral vectors, and following OGD increased neuronal survival from ≈20% for control vector treated cultures to ≈80% for both NCX isoforms. In addition, we demonstrated that NCX2 and NCX3 over-expression in cortical neuronal cultures enables neurons to maintain intracellular calcium at significantly lower levels than control vector treated cultures when exposed to high (9mM) extracellular calcium challenge. Further assessment of NCX activity during OGD was performed using HEK293 cell lines generated to over-express NCX1, NCX2 or NCX3 isoforms. While it was shown that NCX isoform expression differed considerably in the different HEK293 cell lines, high levels of NCX over-expression was associated with increased resistance to OGD. Taken together, our findings show that high levels of NCX over-expression increases neuronal and HEK293 cell survival following OGD, improves calcium management in neuronal cultures and provides additional support for NCX as a therapeutic target to reduce ischemic brain injury. Copyright © 2012 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  3. Optoacoustic technique for noninvasive monitoring of blood oxygenation: a feasibility study

    Science.gov (United States)

    Esenaliev, Rinat O.; Larina, Irina V.; Larin, Kirill V.; Deyo, Donald J.; Motamedi, Massoud; Prough, Donald S.

    2002-08-01

    Replacement of invasive monitoring of cerebral venous oxygenation with noninvasive techniques offers great promise in the management of life-threatening neurologic illnesses including traumatic brain injury. We developed and built an optoacoustic system to noninvasively monitor cerebral venous oxygenation; the system includes a nanosecond Nd:YAG laser and a specially designed optoacoustic probe. We tested the system in vitro in sheep blood with experimentally varied oxygenation. Our results demonstrated that (1) the amplitude and temporal profile of the optoacoustic waves increase with blood oxygenation in the range from 24% to 92%, (2) optoacoustic signals can be detected despite optical and acoustic attenuation by thick bone, and (3) the system is capable of real-time and continuous measurements. These results suggest that the optoacoustic technique is technically feasible for continuous, noninvasive monitoring of cerebral venous oxygenation.

  4. IL-10 Promotes Neurite Outgrowth and Synapse Formation in Cultured Cortical Neurons after the Oxygen-Glucose Deprivation via JAK1/STAT3 Pathway.

    Science.gov (United States)

    Chen, Hongbin; Lin, Wei; Zhang, Yixian; Lin, Longzai; Chen, Jianhao; Zeng, Yongping; Zheng, Mouwei; Zhuang, Zezhong; Du, Houwei; Chen, Ronghua; Liu, Nan

    2016-07-26

    As a classic immunoregulatory and anti-inflammatory cytokine, interleukin-10 (IL-10) provides neuroprotection in cerebral ischemia in vivo or oxygen-glucose deprivation (OGD)-induced injury in vitro. However, it remains blurred whether IL-10 promotes neurite outgrowth and synapse formation in cultured primary cortical neurons after OGD injury. In order to evaluate its effect on neuronal apoptosis, neurite outgrowth and synapse formation, we administered IL-10 or IL-10 neutralizing antibody (IL-10NA) to cultured rat primary cortical neurons after OGD injury. We found that IL-10 treatment activated the Janus kinase 1 (JAK1)/signal transducers and activators of transcription 3 (STAT3) signaling pathway. Moreover, IL-10 attenuated OGD-induced neuronal apoptosis by down-regulating the Bax expression and up-regulating the Bcl-2 expression, facilitated neurite outgrowth by increasing the expression of Netrin-1, and promoted synapse formation in cultured primary cortical neurons after OGD injury. These effects were partly abolished by JAK1 inhibitor GLPG0634. Contrarily, IL-10NA produced opposite effects on the cultured cortical neurons after OGD injury. Taken together, our findings suggest that IL-10 not only attenuates neuronal apoptosis, but also promotes neurite outgrowth and synapse formation via the JAK1/STAT3 signaling pathway in cultured primary cortical neurons after OGD injury.

  5. Macrophages Under Low Oxygen Culture Conditions Respond to Ion Parametric Resonance Magnetic Fields

    Science.gov (United States)

    Macrophages, when entering inflamed tissue, encounter low oxygen tension due to the impairment of blood supply and/or the massive infiltration of cells that consume oxygen. Previously, we showed that such macrophages release more bacteriotoxic hydrogen peroxide (H202) when expose...

  6. PIXE and RBS applied to cultural heritage objects: Complementarity and limitations

    International Nuclear Information System (INIS)

    Morelle, M.; El Masri, Y.; Heitz, Ch.; Prieels, R.; Van Mol, J.; Dran, J.-C.; Salomon, J.; Calligaro, T.; Dubus, M.

    2005-01-01

    This paper reports on the use of PIXE and RBS (resonant and non-resonant RBS) implemented with proton beams to simultaneously analyse light and heavy elements in materials of cultural heritage significance, as exemplified by Russian icons or in lead seals. It is shown that in spite of its poor mass resolution RBS with protons can provide useful information when combined with PIXE. In the case of Russian icons, it is possible to discriminate between an Au-Ag bilayer and an alloy of these metals in the gilds. However, when applied to lead seals RBS with protons encounters a significant limitation due to some deficiency in the available computer programs used for spectrum processing

  7. Robust high temperature oxygen sensor electrodes

    DEFF Research Database (Denmark)

    Lund, Anders

    Platinum is the most widely used material in high temperature oxygen sensor electrodes. However, platinum is expensive and the platinum electrode may, under certain conditions, suffer from poisoning, which is detrimental for an oxygen sensor. The objective of this thesis is to evaluate electrode...... materials as candidates for robust oxygen sensor electrodes. The present work focuses on characterising the electrochemical properties of a few electrode materials to understand which oxygen electrode processes are limiting for the response time of the sensor electrode. Three types of porous platinum......-Dansensor. The electrochemical properties of the electrodes were characterised by electrochemical impedance spectroscopy (EIS), and the structures were characterised by x-ray diffraction and electron microscopy. At an oxygen partial pressures of 0.2 bar, the response time of the sensor electrode was determined by oxygen...

  8. Oxygen sensitive polymeric nanocapsules for optical dissolved oxygen sensors

    Science.gov (United States)

    Sun, Zhijuan; Cai, Chenxin; Guo, Fei; Ye, Changhuai; Luo, Yingwu; Ye, Shuming; Luo, Jianchao; Zhu, Fan; Jiang, Chunyue

    2018-04-01

    Immobilization of the oxygen-sensitive probes (OSPs) in the host matrix greatly impacts the performance and long-term usage of the optical dissolved oxygen (DO) sensors. In this work, fluorescent dyes, as the OSPs, were encapsulated with a crosslinked fluorinated polymer shell by interfacial confined reversible addition fragmentation chain transfer miniemulsion polymerization to fabricate oxygen sensitive polymeric nanocapsules (NCs). The location of fluorescent dyes and the fluorescent properties of the NCs were fully characterized by fourier transform infrared spectrometer, x-ray photoelectron spectrometer and fluorescent spectrum. Dye-encapsulated capacity can be precisely tuned from 0 to 1.3 wt% without self-quenching of the fluorescent dye. The crosslinked fluorinated polymer shell is not only extremely high gas permeability, but also prevents the fluorescent dyes from leakage in aqueous as well as in various organic solvents, such as ethanol, acetone and tetrahydrofuran (THF). An optical DO sensor based on the oxygen sensitive NCs was fabricated, showing high sensitivity, short response time, full reversibility, and long-term operational stability of online monitoring DO. The sensitivity of the optical DO sensor is 7.02 (the ratio of the response value in fully deoxygenated and saturated oxygenated water) in the range 0.96-14.16 mg l-1 and the response time is about 14.3 s. The sensor’s work curve was fit well using the modified Stern-Volmer equation by two-site model, and its response values are hardly affected by pH ranging from 2 to 12 and keep constant during continuous measurement for 3 months. It is believed that the oxygen sensitive polymeric NCs-based optical DO sensor could be particularly useful in long-term online DO monitoring in both aqueous and organic solvent systems.

  9. Low blood flow at onset of moderate intensity exercise does not limit muscle oxygen uptake

    DEFF Research Database (Denmark)

    Nyberg, Michael Permin; Mortensen, Stefan Peter; Saltin, Bengt

    2010-01-01

    The effect of low blood flow at onset of moderate intensity exercise on the rate of rise in muscle oxygen uptake was examined. Seven male subjects performed a 3.5 minute one-legged knee-extensor exercise bout (24+/-1 (+/-S.D.) W) without (CON) and with (double blockade; DB) arterial infusion of i....... Additionally, prostanoids and/or NO appear to play important roles in elevating skeletal muscle blood flow in the initial phase of exercise. Key words: Oxygen delivery, oxygen extraction, nitric oxide, prostanoids.......The effect of low blood flow at onset of moderate intensity exercise on the rate of rise in muscle oxygen uptake was examined. Seven male subjects performed a 3.5 minute one-legged knee-extensor exercise bout (24+/-1 (+/-S.D.) W) without (CON) and with (double blockade; DB) arterial infusion...... of inhibitors of nitric oxide synthase (NOS; L-NMMA) and cyclooxygenase (COX; indomethacin) in order to inhibit the synthesis of nitric oxide (NO) and prostanoids, respectively.. Leg blood flow and leg oxygen delivery throughout exercise was 25-50 % lower (P

  10. Attempts to lower the detection limits of heavy metals in standardized grass cultures by using alternative growth substrates

    International Nuclear Information System (INIS)

    Winter, A.; Mueller, P.; Wagner, G.

    1992-01-01

    In addition to the use of standardized grass cultures (cf. VDI 3792) within the framework of an effect cadastre, grass cultures were tested on two non-contaminated substrates with nutrient solution in the greenhouse and in the open land during different exposure cycles. The results: As compared to the standard cultures on standardized soil, the cultures have the same or a better growth performance and better dry resistance on the artificial substrates; the blind values and the refore the detection limits in particular for cadmium are by far lower; four-week exposure periods with a two-week overlap have an improved information yield for the same amount of work throughout the investigation period as compared to a two-week exposure. Recommendations are derived from the results for a simplified application of the grass culture method in practice. (orig.) [de

  11. Oxygen supply and oxidative phosphorylation limitation in rat myocardium in situ.

    Science.gov (United States)

    Kreutzer, U; Mekhamer, Y; Chung, Y; Jue, T

    2001-05-01

    The 1H-NMR signal of the proximal histidyl-N(delta)H of deoxymyoglobin is detectable in the in situ rat myocardium and can reflect the intracellular PO2. Under basal normoxic conditions, the cellular PO2 is sufficient to saturate myoglobin (Mb). No proximal histidyl signal of Mb is detectable. On ligation of the left anterior descending coronary artery, the Mb signal at 78 parts/million (ppm) appears, along with a peak shoulder assigned to the corresponding signal of Hb. During dopamine infusion up to 80 microg. kg(-1) x min(-1), both the heart rate-pressure product (RPP) and myocardial oxygen consumption (MVO2) increase by about a factor of 2. Coronary flow increases by 84%, and O2 extraction (arteriovenous O2 difference) rises by 31%. Despite the increased respiration and work, no deoxymyoglobin signal is detected, implying that the intracellular O2 level still saturates MbO2, well above the PO2 at 50% saturation of Mb. The phosphocreatine (PCr) level decreases, however, during dopamine stimulation, and the ratio of the change in P(i) over PCr (DeltaP(i)/PCr) increases by 0.19. Infusion of either pyruvate, as the primary substrate, or dichloroacetate, a pyruvate dehydrogenase activator, abolishes the change in DeltaP(i)/PCr. Intracellular O2 supply does not limit MVO2, and the role of ADP in regulating respiration in rat myocardium in vivo remains an open question.

  12. 40 CFR Table 6 to Subpart Uuu of... - Continuous Compliance With Metal HAP Emission Limits for Catalytic Cracking Units

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Continuous Compliance With Metal HAP Emission Limits for Catalytic Cracking Units 6 Table 6 to Subpart UUU of Part 63 Protection of Environment..., Subpt. UUU, Table 6 Table 6 to Subpart UUU of Part 63—Continuous Compliance With Metal HAP Emission...

  13. A new continuous-flow process for catalytic conversion of glycerol to oxygenated fuel additive: Catalyst screening

    International Nuclear Information System (INIS)

    Nanda, Malaya R.; Yuan, Zhongshun; Qin, Wensheng; Ghaziaskar, Hassan S.; Poirier, Marc-Andre; Xu, Chunbao

    2014-01-01

    Highlights: • A continuous-flow process for catalytic synthesis of solketal from glycerol. • Six different heterogeneous acid catalysts were studied in the process. • Glycerol conversion and solketal yield of 90% and 88% respectively were achieved. • The process has the potential to be scaled-up for industrial applications. - Abstract: A new continuous-flow reactor was designed for the conversion of glycerol to solketal, an oxygenated fuel additive, through ketalization with acetone. Six heterogeneous catalysts were investigated with respect to their catalytic activity and stability in a flow reactor. The acidity of the catalysts positively influences the catalyst’s activity. Among all the solid acid catalysts tested, the maximum solketal yield from experiments at 40 °C, 600 psi and WHSV of 4 h −1 attained 73% and 88% at the acetone/glycerol molar ratio of 2.0 and 6.0, respectively, with Amberlyst Wet. Based on the solketal yield and glycerol conversion results, the activity of all catalysts tested follows the following order of sequence: Amberlyst Wet ≈ Zeolite ≈ Amberlyst Dry > Zirconium Sulfate > Montmorillonite > Polymax. An increase in acetone/glycerol molar ratio or a decrease in WHSV enhanced the glycerol conversion as expected. This process offers an attractive route for converting glycerol, the main by-product of biodiesel, to solketal – a value-added green product with potential industrial applications as a valuable fuel additive or combustion promoter for gasoline engines

  14. 3D co-cultures of keratinocytes and melanocytes and cytoprotective effects on keratinocytes against reactive oxygen species by insect virus-derived protein microcrystals

    International Nuclear Information System (INIS)

    Shimabukuro, Junji; Yamaoka, Ayako; Murata, Ken-ichi; Kotani, Eiji; Hirano, Tomoko; Nakajima, Yumiko; Matsumoto, Goichi; Mori, Hajime

    2014-01-01

    Stable protein microcrystals called polyhedra are produced by certain insect viruses. Cytokines, such as fibroblast growth factors (FGFs), can be immobilized within polyhedra. Here, we investigated three-dimensional (3D) co-cultures of keratinocytes and melanocytes on collagen gel containing FGF-2 and FGF-7 polyhedra. Melanocytes were observed to reside at the base of the 3D cell culture and melanin was also typically observed in the lower layer. The 3D cell culture model with FGF-2 and FGF-7 polyhedra was a useful in vitro model of the epidermis due to effective melanogenesis, proliferation and differentiation of keratinocytes. FGF-7 polyhedra showed a potent cytoprotective effect when keratinocytes were treated with menadione, which is a generator of reactive oxygen species. The cytoprotective effect was activated by the inositol triphosphate kinase–Akt pathway leading to upregulation of the antioxidant enzymes superoxide dismutase and peroxiredoxin 6. - Highlights: • 3D cultures using FGF-2 and FGF-7 microcrystals as a human skin model • Cytoprotection of keratinocytes against ROS by FGF-7 microcrystals • Overexpression of SOD and Prdx6 in keratinocytes by FGF-7 microcrystals

  15. 3D co-cultures of keratinocytes and melanocytes and cytoprotective effects on keratinocytes against reactive oxygen species by insect virus-derived protein microcrystals

    Energy Technology Data Exchange (ETDEWEB)

    Shimabukuro, Junji; Yamaoka, Ayako; Murata, Ken-ichi [Department of Applied Biology, Kyoto Institute of Technology, Kyoto (Japan); Kotani, Eiji [Department of Applied Biology, Kyoto Institute of Technology, Kyoto (Japan); Insect Biomedical Research Center, Kyoto Institute of Technology, Kyoto (Japan); Hirano, Tomoko [Venture Laboratory, Kyoto Institute of Technology, Kyoto (Japan); Nakajima, Yumiko [Functional Genomics Group, COMB, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa (Japan); Matsumoto, Goichi [Division of Oral Surgery, Yokohama Clinical Education Center of Kanagawa Dental University, Yokohama (Japan); Mori, Hajime, E-mail: hmori@kit.ac.jp [Department of Applied Biology, Kyoto Institute of Technology, Kyoto (Japan); Insect Biomedical Research Center, Kyoto Institute of Technology, Kyoto (Japan)

    2014-09-01

    Stable protein microcrystals called polyhedra are produced by certain insect viruses. Cytokines, such as fibroblast growth factors (FGFs), can be immobilized within polyhedra. Here, we investigated three-dimensional (3D) co-cultures of keratinocytes and melanocytes on collagen gel containing FGF-2 and FGF-7 polyhedra. Melanocytes were observed to reside at the base of the 3D cell culture and melanin was also typically observed in the lower layer. The 3D cell culture model with FGF-2 and FGF-7 polyhedra was a useful in vitro model of the epidermis due to effective melanogenesis, proliferation and differentiation of keratinocytes. FGF-7 polyhedra showed a potent cytoprotective effect when keratinocytes were treated with menadione, which is a generator of reactive oxygen species. The cytoprotective effect was activated by the inositol triphosphate kinase–Akt pathway leading to upregulation of the antioxidant enzymes superoxide dismutase and peroxiredoxin 6. - Highlights: • 3D cultures using FGF-2 and FGF-7 microcrystals as a human skin model • Cytoprotection of keratinocytes against ROS by FGF-7 microcrystals • Overexpression of SOD and Prdx6 in keratinocytes by FGF-7 microcrystals.

  16. High oxygen levels promote peel spotting in banana fruit

    NARCIS (Netherlands)

    Maneenuam, T.; Ketsa, S.; Doorn, van W.G.

    2007-01-01

    We studied the effect of high oxygen on early peel spotting in `Sucrier¿ bananas held at 25 °C and 90% RH. Fruit first ripened to colour index 3¿4 (about as yellow as green) and were then held in containers with a continuous gas flow of 18 ± 2 kPa (control) or 90 ± 2 kPa oxygen. High oxygen promoted

  17. The Effects of Massage with Coconut and Sunflower Oils on Oxygen Saturation of Premature Infants with Respiratory Distress Syndrome Treated With Nasal Continuous Positive Airway Pressure

    Directory of Open Access Journals (Sweden)

    Sousan Valizadeh

    2012-11-01

    Full Text Available Introduction: Nowadays particular emphasis is placed on the developmental aspects of premature infants care. Massage therapy is one of the best-known methods of caring. Due to the minimal touch policy in neonatal intensive care units (NICUs, massaging is not usually performed on premature infants. However, there is not sufficient evidence to support the claim that newborn infants with complex medical conditions should not be massaged. This study aimed to determine the effects of massage with coconut and sunflower oils on oxygen saturation of infants with respiratory distress syndrome (RDS treated with nasal continuous positive airway pressure (NCPAP. Methods: This was a randomized controlled trial on 90 newborns who were admitted to Alzahra Hospital (Tabriz, Iran. The infants were divided into control and massage therapy groups (massage with coconut and sunflower oils. Data was collected using a hospital documentation form. A 15-minute daily massage was performed for 3 days. Respiratory rate (RR, fraction of inspired oxygen (FiO2 and oxygen saturation were measured 5 minutes before the massage, 3 times during the massage, and 5 minutes after the massage. The collected data was analyzed using a mixed model. Results: In comparison to coconut oil and control groups, mean oxygen saturation of sunflower oil group was improved. In addition, the coconut massage group showed lower oxygen saturation than the control group but was all values were within the normal range. Although massage decreased oxygen saturation, there was no need to increase FiO2. Conclusion: Massage therapy can provide developmental care for infants treated with NCPAP.

  18. Effects of x-irradiation on cell division, oxygen consumption, and growth medium pH of an insect cell line cultured in vitro

    International Nuclear Information System (INIS)

    Koval, T.M.; Myser, W.C.; Hink, W.F.

    1975-01-01

    Cultured Trichoplusia ni cells in exponential growth were administered x-ray doses of 10,000 R and then subcultured. The untreated cell population began exponential growth within a few hours after subculture, eventually reaching stationary growth phase 96 hr later at a cell density of 2.08 x 10 6 cells/ml, whereas the irradiated cell population did not change for 24 hr after irradiation and then began exponential growth at a rate similar to that of control cells, also reaching stationary phase at 96 hr, but at a cell density of 0.93 x 10 6 cells/ml, which is less than half the maximum density of controls. From 24 to 96 hr after treatment, the x-irradiated cells were characterized by an increased consumption of oxygen that was nearly twice the amount utilized by control cells. The pH of the cell growth medium increases over 96 hr from 6.3 to 6.6 for irradiated as well as for untreated cultures, but since the number of x-rayed cells is less than half the number of untreated cells, the pH increase, per cell, of medium from irradiated cultures is about twice that of medium from control cultures

  19. Paired single cell co-culture microenvironments isolated by two-phase flow with continuous nutrient renewal.

    Science.gov (United States)

    Chen, Yu-Chih; Cheng, Yu-Heng; Kim, Hong Sun; Ingram, Patrick N; Nor, Jacques E; Yoon, Euisik

    2014-08-21

    Cancer-stromal cell interactions are a critical process in tumorigenesis. Conventional dish-based assays, which simply mix two cell types, have limitations in three aspects: 1) limited control of the cell microenvironment; 2) inability to study cell behavior in a single-cell manner; and 3) have difficulties in characterizing single cell behavior within a highly heterogeneous cell population (e.g. tumor). An innovative use of microfluidic technology is for improving the spatial resolution for single cell assays. However, it is challenging to isolate the paired interacting cells while maintaining nutrient renewal. In this work, two-phase flow was used as a simple isolation method, separating the microenvironment of each individual chamber. As nutrients in an isolated chamber are consumed by cells, media exchange is required. To connect the cell culture chamber to the media exchange layer, we demonstrated a 3D microsystem integration technique using vertical connections fabricated by deep reactive-ion etching (DRIE). Compared to previous approaches, the presented process allows area reduction of vertical connections by an order of magnitude, enabling compact 3D integration. A semi-permeable membrane was sandwiched between the cell culture layer and the media exchange layer. The selectivity of the semi-permeable membrane results in the retention of the signaling proteins within the chamber while allowing free diffusion of nutrients (e.g., glucose and amino acids). Thus, paracrine signals are accumulated inside the chamber without cross-talk between cells in other chambers. Utilizing these innovations, we co-cultured UM-SCC-1 (head and neck squamous cell carcinoma) cells and endothelial cells to simulate tumor proliferation enhancement in the vascular endothelial niche.

  20. 40 CFR Table 13 to Subpart Uuu of... - Continuous Compliance With Organic HAP Emission Limits for Catalytic Cracking Units

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Continuous Compliance With Organic HAP Emission Limits for Catalytic Cracking Units 13 Table 13 to Subpart UUU of Part 63 Protection of... HAP Emission Limits for Catalytic Cracking Units As stated in § 63.1565(c)(1), you shall meet each...

  1. 40 CFR Table 20 to Subpart Uuu of... - Continuous Compliance With Organic HAP Emission Limits for Catalytic Reforming Units

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Continuous Compliance With Organic HAP Emission Limits for Catalytic Reforming Units 20 Table 20 to Subpart UUU of Part 63 Protection of... HAP Emission Limits for Catalytic Reforming Units As stated in § 63.1566(c)(1), you shall meet each...

  2. 40 CFR Table 13 to Subpart Xxxx of... - Minimum Data for Continuous Compliance With the Emission Limitations for Puncture Sealant...

    Science.gov (United States)

    2010-07-01

    ... XXXX of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... Standards for Hazardous Air Pollutants: Rubber Tire Manufacturing Pt. 63, Subpt. XXXX, Table 13 Table 13 to Subpart XXXX of Part 63—Minimum Data for Continuous Compliance With the Emission Limitations for Puncture...

  3. Oxygen therapy in acute exacerbations of chronic obstructive pulmonary disease

    DEFF Research Database (Denmark)

    Ringbaek, T.; Lange, P.; Mogensen, T.

    2008-01-01

    Acute exacerbation of COPD is a major cause of hospitalisation in Denmark. Most of the patients require supplemental oxygen in the acute phase and some patients continue oxygen therapy at home after discharge. In this paper we discuss the physiological mechanisms of respiratory failure seen...... in acute exacerbations of COPD. The principles for oxygen therapy in the acute phase are described and recommendations for oxygen therapy are suggested Udgivelsesdato: 2008/5/5...

  4. Epistemological obstacles on the concepts of limit and continuity in courses of differential calculus in engineering programs

    Directory of Open Access Journals (Sweden)

    Cesar Augusto Hernandez-Suarez

    2017-07-01

    Full Text Available Many investigations have been carried out with the objective of identifying the difficulties that students have in the learning process of the different mathematical concepts. Some studies have highlighted that the process of teaching mathematical knowledge by teachers in secondary and secondary education in Colombia, has been limited to a minimalist expression of algebraic processes that in no way contribute to the understanding and appropriation of these concepts of origin abstract. Students who enter the various engineering programs in the university must immediately face a Differential Calculus course, which will demand from the student a whole series of competences around the numerical, variational and spatial thoughts. It is in this scenario where we seek to identify the epistemological obstacles presented by the students of the Faculty of Engineering programs at the beginning of the academic training process at the UFPS. An instrument was designed that incorporates a series of activities that use diverse registers of semiotic representation tending to determine the level of appropriation that the students have around the concepts of limit and continuity. From the findings it is highlighted that students assume the concepts of limit and continuity as equals.

  5. A simple method for multiday imaging of slice cultures.

    Science.gov (United States)

    Seidl, Armin H; Rubel, Edwin W

    2010-01-01

    The organotypic slice culture (Stoppini et al. A simple method for organotypic cultures of nervous tissue. 1991;37:173-182) has become the method of choice to answer a variety of questions in neuroscience. For many experiments, however, it would be beneficial to image or manipulate a slice culture repeatedly, for example, over the course of many days. We prepared organotypic slice cultures of the auditory brainstem of P3 and P4 mice and kept them in vitro for up to 4 weeks. Single cells in the auditory brainstem were transfected with plasmids expressing fluorescent proteins by way of electroporation (Haas et al. Single-cell electroporation for gene transfer in vivo. 2001;29:583-591). The culture was then placed in a chamber perfused with oxygenated ACSF and the labeled cell imaged with an inverted wide-field microscope repeatedly for multiple days, recording several time-points per day, before returning the slice to the incubator. We describe a simple method to image a slice culture preparation during the course of multiple days and over many continuous hours, without noticeable damage to the tissue or photobleaching. Our method uses a simple, inexpensive custom-built insulator constructed around the microscope to maintain controlled temperature and uses a perfusion chamber as used for in vitro slice recordings. (c) 2009 Wiley-Liss, Inc.

  6. Composition of single-step media used for human embryo culture.

    Science.gov (United States)

    Morbeck, Dean E; Baumann, Nikola A; Oglesbee, Devin

    2017-04-01

    To determine compositions of commercial single-step culture media and test with a murine model whether differences in composition are biologically relevant. Experimental laboratory study. University-based laboratory. Inbred female mice were superovulated and mated with outbred male mice. Amino acid, organic acid, and ions content were determined for single-step culture media: CSC, Global, G-TL, and 1-Step. To determine whether differences in composition of these media are biologically relevant, mouse one-cell embryos were cultured for 96 hours in each culture media at 5% and 20% oxygen in a time-lapse incubator. Compositions of four culture media were analyzed for concentrations of 30 amino acids, organic acids, and ions. Blastocysts at 96 hours of culture and cell cycle timings were calculated, and experiments were repeated in triplicate. Of the more than 30 analytes, concentrations of glucose, lactate, pyruvate, amino acids, phosphate, calcium, and magnesium varied in concentrations. Mouse embryos were differentially affected by oxygen in G-TL and 1-Step. Four single-step culture media have compositions that vary notably in pyruvate, lactate, and amino acids. Blastocyst development was affected by culture media and its interaction with oxygen concentration. Copyright © 2017 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  7. Ammonia tolerant enriched methanogenic cultures as bioaugmentation inocula to alleviate ammonia inhibition in continuous anaerobic reactors

    DEFF Research Database (Denmark)

    Fotidis, Ioannis; Wang, Han; Angelidaki, Irini

    Ammonia is the most common inhibitor of anaerobic digestion (AD) process, resulting in suboptimal exploitation of the biogas potential of the feedstocks, causing significant economic losses to the biogas plants. Ammonia is mainly inhibiting the aceticlastic methanogens, while the hydrogenotrophic...... methanogens are more robust to ammonia toxicity effect. It has been shown that bioaugmentation of a pure strain of a hydrogenotrophic methanogen (i.e. Methanoculleus bourgensis) in an ammonia inhibited continuous anaerobic reactor can improve methane production more than 30%. Nevertheless, cultivation...... tolerant methanogenic culture as potential bioaugmentation inoculum in a continuous stirred tank reactor (CSTR) operating under “inhibited steady-state”, triggered by high ammonia levels (5 g NH4+-N L-1). The results of the current study established for the first time that bioaugmentation of an enriched...

  8. Evaluation of multi-exponential curve fitting analysis of oxygen-quenched phosphorescence decay traces for recovering microvascular oxygen tension histograms

    NARCIS (Netherlands)

    Bezemer, Rick; Faber, Dirk J.; Almac, Emre; Kalkman, Jeroen; Legrand, Matthieu; Heger, Michal; Ince, Can

    2010-01-01

    Although it is generally accepted that oxygen-quenched phosphorescence decay traces can be analyzed using the exponential series method (ESM), its application until now has been limited to a few (patho)physiological studies, probably because the reliability of the recovered oxygen tension (pO(2))

  9. Neuroprotective effects of oxysophocarpine on neonatal rat primary cultured hippocampal neurons injured by oxygen-glucose deprivation and reperfusion.

    Science.gov (United States)

    Zhu, Qing-Luan; Li, Yu-Xiang; Zhou, Ru; Ma, Ning-Tian; Chang, Ren-Yuan; Wang, Teng-Fei; Zhang, Yi; Chen, Xiao-Ping; Hao, Yin-Ju; Jin, Shao-Ju; Ma, Lin; Du, Juan; Sun, Tao; Yu, Jian-Qiang

    2014-08-01

    Oxysophocarpine (OSC), a quinolizidine alkaloid extracted from leguminous plants of the genus Robinia, is traditionally used for various diseases including neuronal disorders. This study investigated the protective effects of OSC on neonatal rat primary-cultured hippocampal neurons were injured by oxygen-glucose deprivation and reperfusion (OGD/RP). Cultured hippocampal neurons were exposed to OGD for 2 h followed by a 24 h RP. OSC (1, 2, and 5 μmol/L) and nimodipine (Nim) (12 μmol/L) were added to the culture after OGD but before RP. The cultures of the control group were not exposed to OGD/RP. MTT and LDH assay were used to evaluate the protective effects of OSC. The concentration of intracellular-free calcium [Ca(2+)]i and mitochondrial membrane potential (MMP) were determined to evaluate the degree of neuronal damage. Morphologic changes of neurons following OGD/RP were observed with a microscope. The expression of caspase-3 and caspase-12 mRNA was examined by real-time quantitative PCR. The IC50 of OSC was found to be 100 μmol/L. Treatment with OSC (1, 2, and 5 μmol/L) attenuated neuronal damage (p < 0.001), with evidence of increased cell viability (p < 0.001) and decreased cell morphologic impairment. Furthermore, OSC increased MMP (p < 0.001), but it inhibited [Ca(2+)]i (p < 0.001) elevation in a dose-dependent manner at OGD/RP. OSC (5 μmol/L) also decreased the expression of caspase-3 (p < 0.05) and caspase-12 (p < 0.05). The results suggested that OSC has significant neuroprotective effects that can be attributed to inhibiting endoplasmic reticulum (ER) stress-induced apoptosis.

  10. A specially tailored vancomycin continuous infusion regimen for renally impaired critically ill patients

    Directory of Open Access Journals (Sweden)

    Eman Mohamed Bahgat Eldemiry

    2013-10-01

    Full Text Available Background: Vancomycin remains the gold standard for treatment of methicillin-resistant Staphylococcus aureus. Specially designed continuous infusion of vancomycin leads to better therapy. Methodology: A total of 40 critically ill patients who suffered from pneumonia susceptible to vancomycin, had serum creatinine >1.4 mg%, and oliguria <0.5 mL/kg/h for 6 h were included in the study with respiratory culture sensitivity to vancomycin ≤2 mg/L. Patients’ clinical, microbiological, and biological data were obtained by retrospective analysis of the corresponding medical files before and after vancomycin treatment. Patients with serum creatinine level ≥4 mg% and patients who received renal replacement therapy during the treatment period were excluded. The patients were divided into two groups—group 1 (intermittent dosing and group 2 (continuous infusion based on the following formula: rate of vancomycin continuous infusion (g/day = [0.0205 creatinine clearance (mL/min + 3.47] × [target vancomycin concentration at steady state (µg/mL] × (24/1000. Trough vancomycin serum levels were also assessed using high-performance liquid chromatographic technique. Patients’ outcomes such as clinical improvement, adverse events, and 15-day mortality were reported. Results: Group 2 showed significant reduction in blood urea nitrogen, creatinine serum levels, white blood cells, partial carbon dioxide pressure, body temperature, and Sequential Organ Failure Assessment score, while significant increase in partial oxygen pressure and saturated oxygen was also observed. A significantly shorter duration of treatment with a comparable vancomycin serum levels was also reported with group 2. Conclusion: After treatment, comparison in patients’ criteria supports the superiority of using continuous infusion of vancomycin according to this equation in renally impaired patients.

  11. Ion release from magnesium materials in physiological solutions under different oxygen tensions.

    Science.gov (United States)

    Feyerabend, Frank; Drücker, Heiko; Laipple, Daniel; Vogt, Carla; Stekker, Michael; Hort, Norbert; Willumeit, Regine

    2012-01-01

    Although magnesium as degradable biomaterial already showed clinical proof of concepts, the design of new alloys requires predictive in vitro methods, which are still lacking. Incubation under cell culture conditions to obtain "physiological" corrosion may be a solution. The aim of this study was to analyse the influence of different solutions, addition of proteins and of oxygen availability on the corrosion of different magnesium materials (pure Mg, WE43, and E11) with different surface finishing. Oxygen content in solution, pH, osmolality and ion release were determined. Corrosion led to a reduction of oxygen in solution. The influence of oxygen on pH was enhanced by proteins, while osmolality was not influenced. Magnesium ion release was solution-dependent and enhanced in the initial phase by proteins with delayed release of alloying elements. The main corrosion product formed was magnesium carbonate. Therefore, cell culture conditions are proposed as first step toward physiological corrosion.

  12. Design and Characterization of a Sensorized Microfluidic Cell-Culture System with Electro-Thermal Micro-Pumps and Sensors for Cell Adhesion, Oxygen, and pH on a Glass Chip

    Directory of Open Access Journals (Sweden)

    Sebastian M. Bonk

    2015-07-01

    Full Text Available We combined a multi-sensor glass-chip with a microfluidic channel grid for the characterization of cellular behavior. The grid was imprinted in poly-dimethyl-siloxane. Mouse-embryonal/fetal calvaria fibroblasts (MC3T3-E1 were used as a model system. Thin-film platinum (Pt sensors for respiration (amperometric oxygen electrode, acidification (potentiometric pH electrodes and cell adhesion (interdigitated-electrodes structures, IDES allowed us to monitor cell-physiological parameters as well as the cell-spreading behavior. Two on-chip electro-thermal micro-pumps (ETμPs permitted the induction of medium flow in the system, e.g., for medium mixing and drug delivery. The glass-wafer technology ensured the microscopic observability of the on-chip cell culture. Connecting Pt structures were passivated by a 1.2 μm layer of silicon nitride (Si3N4. Thin Si3N4 layers (20 nm or 60 nm were used as the sensitive material of the pH electrodes. These electrodes showed a linear behavior in the pH range from 4 to 9, with a sensitivity of up to 39 mV per pH step. The oxygen sensors were circular Pt electrodes with a sensor area of 78.5 μm2. Their sensitivity was 100 pA per 1% oxygen increase in the range from 0% to 21% oxygen (air saturated. Two different IDES geometries with 30- and 50-μm finger spacings showed comparable sensitivities in detecting the proliferation rate of MC3T3 cells. These cells were cultured for 11 days in vitro to test the biocompatibility, microfluidics and electric sensors of our system under standard laboratory conditions.

  13. A Culture-Proven Case of Community-Acquired Legionella Pneumonia Apparently Classified as Nosocomial: Diagnostic and Public Health Implications

    Directory of Open Access Journals (Sweden)

    Annalisa Bargellini

    2013-01-01

    Full Text Available We report a case of Legionella pneumonia in a 78-year-old patient affected by cerebellar haemangioblastoma continuously hospitalised for 24 days prior to the onset of overt symptoms. According to the established case definition, this woman should have been definitely classified as a nosocomial case (patient spending all of the ten days in hospital before onset of symptoms. Water samples from the oncology ward were negative, notably the patient’s room and the oxygen bubbler, and the revision of the case history induced us to verify possible contamination in water samples collected at home. We found that the clinical strain had identical rep-PCR fingerprint of L. pneumophila serogroup 1 isolated at home. The description of this culture-proven case of Legionnaires’ disease has major clinical, legal, and public health consequences as the complexity of hospitalised patients poses limitations to the rule-of-thumb surveillance definition of nosocomial pneumonia based on 2–10-day incubation period.

  14. A roadmap for the integration of culture into developmental psychopathology.

    Science.gov (United States)

    Causadias, José M

    2013-11-01

    In this paper, I propose a roadmap for the integration of culture in developmental psychopathology. This integration is pressing because culture continues to be somewhat disconnected from theory, research, training, and interventions in developmental psychopathology, thus limiting our understanding of the epigenesis of mental health. I argue that in order to successfully integrate culture into developmental psychopathology, it is crucial to (a) study cultural development, (b) consider both individual-level and social-level cultural processes, (c) examine the interplay between culture and biology, and (d) promote improved and direct cultural assessment. I provide evidence in support of each of these guidelines, present alternative conceptual frameworks, and suggest new lines of research. Hopefully, that these directions will contribute to the emerging field of cultural development and psychopathology, which focuses on the elucidation of the cultural processes that initiate, maintain, or derail trajectories of normal and abnormal behavior.

  15. Isolation Of PS II Nanoparticles And Oxygen Evolution Studies In Synechococcus Spp. PCC 7942 Under Heavy Metal Stress

    Science.gov (United States)

    Ahmad, Iffat Zareen; Sundaram, Shanthy; Tripathi, Ashutosh; Soumya, K. K.

    2009-06-01

    The effect of heavy metals was seen on the oxygen evolution pattern of a unicellular, non-heterocystous cyanobacterial strain of Synechococcus spp. PCC 7942. It was grown in a BG-11 medium supplemented with heavy metals, namely, nickel, copper, cadmium and mercury. Final concentrations of the heavy metal solution used in the culture were 0.1, 0.4 and 1 μM. All the experiments were performed in the exponential phase of the culture. Oxygen-evolving photosystem II (PS II) particles were purified from Synechococcus spp. PCC 7942 by a single-step Ni2+-affinity column chromatography after solubilization of thylakoid membranes with sucrose monolaurate. Oxygen evolution was measured with Clark type oxygen electrode fitted with a circulating water jacket. The light on the surface of the vessel was 10 w/m2. The cultures were incubated in light for 15 minutes prior to the measurement of oxygen evolution. Oxygen evolution was measured in assay mixture containing phosphate buffer (pH-7.5, 0.1 M) in the presence of potassium ferricyanide as the electron acceptor. The preparation from the control showed a high oxygen-evolving activity of 2, 300-2, 500 pmol O2 (mg Chl)-1 h-1 while the activity was decreased in the cultures grown with heavy metals. The inhibition of oxygen evolution shown by the organism in the presence of different metals was in the order Hg>Ni>Cd>Cu. Such heavy metal resistant strains will find application in the construction of PS II- based biosensors for the monitoring of pollutants.

  16. Limiting oxygen concentration for extinction of upward spreading flames over inclined thin polyethylene-insulated NiCr electrical wires with opposed-flow under normal- and micro-gravity

    KAUST Repository

    Hu, Longhua; Lu, Yong; Yoshioka, Kosuke; Zhang, Yangshu; Fernandez-Pello, Carlos; Chung, Suk-Ho; Fujita, Osamu

    2016-01-01

    . The experiments reported here used polyethylene (PE)-insulated (thickness of 0.15 mm) Nichrome (NiCr)-core (diameter of 0.5 mm) electrical wires. Limiting oxygen concentrations (LOC) at extinction were measured for upward spreading flame at various forced opposed-flow

  17. Glucose uptake and growth of glucose-limited chemostat cultures of Aspergillus niger and a disruptant lacking MstA, a high-affinity glucose transporter

    DEFF Research Database (Denmark)

    Jørgensen, Thomas R; vanKuyk, Patricia A; Poulsen, Bjarne R

    2007-01-01

    This is a study of high-affinity glucose uptake in Aspergillus niger and the effect of disruption of a high-affinity monosaccharide-transporter gene, mstA. The substrate saturation constant (K(s)) of a reference strain was about 15 microM in glucose-limited chemostat culture. Disruption of mst......-affinity uptake system of A. niger. The mstA disruptant and a reference strain were cultivated in glucose-limited chemostat cultures at low, intermediate and high dilution rate (D=0.07 h(-1), 0.14 h(-1) and 0.20 h(-1)). Mycelium harvested from steady-state cultures was subjected to glucose uptake assays...

  18. Effect of remifentanil on mitochondrial oxygen consumption of cultured human hepatocytes.

    Directory of Open Access Journals (Sweden)

    Siamak Djafarzadeh

    Full Text Available During sepsis, liver dysfunction is common, and failure of mitochondria to effectively couple oxygen consumption with energy production has been described. In addition to sepsis, pharmacological agents used to treat septic patients may contribute to mitochondrial dysfunction. This study addressed the hypothesis that remifentanil interacts with hepatic mitochondrial oxygen consumption. The human hepatoma cell line HepG2 and their isolated mitochondria were exposed to remifentanil, with or without further exposure to tumor necrosis factor-α (TNF-α. Mitochondrial oxygen consumption was measured by high-resolution respirometry, Caspase-3 protein levels by Western blotting, and cytokine levels by ELISA. Inhibitory κBα (IκBα phosphorylation, measurement of the cellular ATP content and mitochondrial membrane potential in intact cells were analysed using commercial ELISA kits. Maximal cellular respiration increased after one hour of incubation with remifentanil, and phosphorylation of IκBα occurred, denoting stimulation of nuclear factor κB (NF-κB. The effect on cellular respiration was not present at 2, 4, 8 or 16 hours of incubation. Remifentanil increased the isolated mitochondrial respiratory control ratio of complex-I-dependent respiration without interfering with maximal respiration. Preincubation with the opioid receptor antagonist naloxone prevented a remifentanil-induced increase in cellular respiration. Remifentanil at 10× higher concentrations than therapeutic reduced mitochondrial membrane potential and ATP content without uncoupling oxygen consumption and basal respiration levels. TNF-α exposure reduced respiration of complex-I, -II and -IV, an effect which was prevented by prior remifentanil incubation. Furthermore, prior remifentanil incubation prevented TNF-α-induced IL-6 release of HepG2 cells, and attenuated fragmentation of pro-caspase-3 into cleaved active caspase 3 (an early marker of apoptosis. Our data suggest that

  19. Physiologic oxygen concentration enhances the stem-like properties of CD133+ human glioblastoma cells in vitro.

    Science.gov (United States)

    McCord, Amy M; Jamal, Muhammad; Shankavaram, Uma T; Shankavarum, Uma T; Lang, Frederick F; Camphausen, Kevin; Tofilon, Philip J

    2009-04-01

    In vitro investigations of tumor stem-like cells (TSC) isolated from human glioblastoma (GB) surgical specimens have been done primarily at an atmospheric oxygen level of 20%. To determine whether an oxygen level more consistent with in situ conditions affects their stem cell-like characteristics, we compared GB TSCs grown under conditions of 20% and 7% oxygen. Growing CD133(+) cells sorted from three GB neurosphere cultures at 7% O(2) reduced their doubling time and increased the self-renewal potential as reflected by clonogenicity. Furthermore, at 7% oxygen, the cultures exhibited an enhanced capacity to differentiate along both the glial and neuronal pathways. As compared with 20%, growth at 7% oxygen resulted in an increase in the expression levels of the neural stem cell markers CD133 and nestin as well as the stem cell markers Oct4 and Sox2. In addition, whereas hypoxia inducible factor 1alpha was not affected in CD133(+) TSCs grown at 7% O(2), hypoxia-inducible factor 2alpha was expressed at higher levels as compared with 20% oxygen. Gene expression profiles generated by microarray analysis revealed that reducing oxygen level to 7% resulted in the up-regulation and down-regulation of a significant number of genes, with more than 140 being commonly affected among the three CD133(+) cultures. Furthermore, Gene Ontology categories up-regulated at 7% oxygen included those associated with stem cells or GB TSCs. Thus, the data presented indicate that growth at the more physiologically relevant oxygen level of 7% enhances the stem cell-like phenotype of CD133(+) GB cells.

  20. Improving the Accuracy of Predicting Maximal Oxygen Consumption (VO2pk)

    Science.gov (United States)

    Downs, Meghan E.; Lee, Stuart M. C.; Ploutz-Snyder, Lori; Feiveson, Alan

    2016-01-01

    Maximal oxygen (VO2pk) is the maximum amount of oxygen that the body can use during intense exercise and is used for benchmarking endurance exercise capacity. The most accurate method to determineVO2pk requires continuous measurements of ventilation and gas exchange during an exercise test to maximal effort, which necessitates expensive equipment, a trained staff, and time to set-up the equipment. For astronauts, accurate VO2pk measures are important to assess mission critical task performance capabilities and to prescribe exercise intensities to optimize performance. Currently, astronauts perform submaximal exercise tests during flight to predict VO2pk; however, while submaximal VO2pk prediction equations provide reliable estimates of mean VO2pk for populations, they can be unacceptably inaccurate for a given individual. The error in current predictions and logistical limitations of measuring VO2pk, particularly during spaceflight, highlights the need for improved estimation methods.

  1. A parametric study ot protease production in batch and fed-batch cultures of Bacillus firmus.

    Science.gov (United States)

    Moon, S H; Parulekar, S J

    1991-03-05

    Proteolytic enzymes produced by Bacillus species find a wide variety of applications in brewing, detergent, food, and leather industries. Owing to significant differences normally observed in culture conditions promoting cell growth and those promoting production of metabolites such as enzymes, for increased efficacy of bioreactor operations it is essential to identify these sets of conditions (including medium formulation). This study is focused on formulation of a semidefined medium that substantially enhances synthesis and secretion of an alkaline protease in batch cultures of Bacillus firmus NRS 783, a known superior producer of this enzyme. The series of experiments conducted to identify culture conditions that lead to improved protease production also enables investigation of the regulatory effects of important culture parameters including pH, dissolved oxygen, and concentrations of nitrogen and phosphorous sources and yeast extract in the medium on cell growth, synthesis and secretion of protease, and production of two major nonbiomass products, viz., acetic acid and ethanol. Cell growth and formation of the three nonbiomass products are hampered significantly under nitrogen, phosphorous, or oxygen limitation, with the cells being unable to grow in an oxygen-free environment. Improvement in protease production is achieved with respect to each culture parameter, leading in the process to 80% enhancement in protease activity over that attained using media reported in the literature. Results of a few fed-batch experiments with constant feed rate, conducted to examine possible enhancement in protease production and to further investigate repression of protease synthesis by excess of the principal carbon and nitrogen sources, are also discussed. The detailed investigation of stimulatory and repressory effects of simple and complex nutrients on protease production and metabolism of Bacillus firmus conducted in this study will provide useful guidelines for design

  2. Detonation limits of clouds of coal dust in mixtures of oxygen and nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, D.H.; Fearnley, P.J.; Nettleton, M.A.

    1987-09-01

    Ignition and the subsequent acceleration of flame in clouds of coal dust dispersed in mixtures of oxygen and nitrogen have been studied. Two coal sizes, 24 and 54 ..mu..m, in concentrations ranging from 0.05 to 0.22 kg/m/sup 3/ were employed. Flame acceleration and the approach to transition to a stable detonation were monitored by a combination of microwave interferometry and pressure measurements. Flame and shock velocities up to 1.85 km/sec were observed. Ignition distances were found to be independent of the concentrations of dust and oxygen and particle size.

  3. Optimal oxygen saturation in premature infants

    Directory of Open Access Journals (Sweden)

    Meayoung Chang

    2011-09-01

    Full Text Available There is a delicate balance between too little and too much supplemental oxygen exposure in premature infants. Since underuse and overuse of supplemental oxygen can harm premature infants, oxygen saturation levels must be monitored and kept at less than 95% to prevent reactive oxygen species-related diseases, such as retinopathy of prematurity and bronchopulmonary dysplasia. At the same time, desaturation below 80 to 85% must be avoided to prevent adverse consequences, such as cerebral palsy. It is still unclear what range of oxygen saturation is appropriate for premature infants; however, until the results of further studies are available, a reasonable target for pulse oxygen saturation (SpO2 is 90 to 93% with an intermittent review of the correlation between SpO2 and the partial pressure of arterial oxygen tension (PaO2. Because optimal oxygenation depends on individuals at the bedside making ongoing adjustments, each unit must define an optimal target range and set alarm limits according to their own equipment or conditions. All staff must be aware of these values and adjust the concentration of supplemental oxygen frequently.

  4. Oxygen no longer plays a major role in Body Size Evolution

    Science.gov (United States)

    Datta, H.; Sachson, W.; Heim, N. A.; Payne, J.

    2015-12-01

    When observing the long-term relationship between atmospheric oxygen and the maximum size in organisms across the Geozoic (~3.8 Ga - present), it appears that as oxygen increases, organism size grows. However, during the Phanerozoic (541 Ma - Present) oxygen levels varied, so we set out to test the hypothesis that oxygen levels drive patterns marine animal body size evolution. Expected decreases in maximum size due to a lack of oxygen do not occur, and instead, body size continues to increase regardless. In the oxygen data, a relatively low atmospheric oxygen percentage can support increasing body size, so our research tries to determine whether lifestyle affects body size in marine organisms. The genera in the data set were organized based on their tiering, motility, and feeding, such as a pelagic, fully-motile, predator. When organisms fill a certain ecological niche to take advantage of resources, they will have certain life modes, rather than randomly selected traits. For example, even in terrestrial environments, large animals have to constantly feed themselves to support their expensive terrestrial lifestyle which involves fairly consistent movement, and the structural support necessary for that movement. Only organisms with access to high energy food sources or large amounts of food can support themselves, and that is before they expend energy elsewhere. Organisms that expend energy frugally when active or have slower metabolisms in comparison to body size have a more efficient lifestyle and are generally able to grow larger, while those who have higher energy demands like predators are limited to comparatively smaller sizes. Therefore, in respect to the fossil record and modern measurements of animals, the metabolism and lifestyle of an organism dictate its body size in general. With this further clarification on the patterns of evolution, it will be easier to observe and understand the reasons for the ecological traits of organisms today.

  5. Rates and products of degradation for MTBE and other oxygenate fuel additives in the subsurface environment

    International Nuclear Information System (INIS)

    Tratnyek, P.G.; Church, C.D.; Pankow, J.F.

    1995-01-01

    The recent realization that oxygenated fuel additives such as MTBE are becoming widely distributed groundwater contaminants has created a sudden and pressing demand for data on the processes that control their environmental fate. Explaining and predicting the subsequent environmental fate of these compounds is going to require extrapolations over long time frames that will be very sensitive to the quality of input data on each compound. To provide such data, they have initiated a systematic study of the pathways and kinetics of fuel oxygenate degradation under subsurface conditions. Batch experiments in simplified model systems are being performed to isolate specific processes that may contribute to MTBE degradation. A variety of degradation pathways can be envisioned that lead to t-butyl alcohol (TBA) as the primary or secondary product. However, experiments to date with a facultative iron reducing bacteria showed no evidence for TBA formation. Continuing experiments include mixed cultures from a range of aquifer materials representative of NAWQA study sites

  6. Targeting the expression of glutathione- and sulfate-dependent detoxification enzymes in HepG2 cells by oxygen in minimal and amino acid enriched medium.

    Science.gov (United States)

    Usarek, Ewa; Graboń, Wojciech; Kaźmierczak, Beata; Barańczyk-Kuźma, Anna

    2016-02-01

    Cancer cells exhibit specific metabolism allowing them to survive and proliferate in various oxygen conditions and nutrients' availability. Hepatocytes are highly active metabolically and thus very sensitive to hypoxia. The purpose of the study was to investigate the effect of oxygen on the expression of phase II detoxification enzymes in hepatocellular carcinoma cells (HepG2) cultured in minimal and rich media (with nonessential amino acids and GSH). The cells were cultured at 1% hypoxia, 10% tissue normoxia, and 21% atmospheric normoxia. The total cell count was determined by trypan blue exclusion dye and the expression on mRNA level by RT-PCR. The result indicated that the expression of glutathione-dependent enzymes (GSTA, M, P, and GPX2) was sensitive to oxygen and medium type. At 1% hypoxia the enzyme expression (with the exception of GSTA) was higher in minimal compared to rich medium, whereas at 10% normoxia it was higher in the rich medium. The expression was oxygen-dependent in both types of medium. Among phenol sulfotransferase SULT1A1 was not sensitive to studied factors, whereas the expression of SULT1A3 was depended on oxygen only in minimal medium. It can be concluded that in HepG2 cells, the detoxification by conjugation with glutathione and, to a lower extent with sulfate, may be affected by hypoxia and/or limited nutrients' availability. Besides, because the data obtained at 10% oxygen significantly differ from those at 21%, the comparative studies on hypoxia should be performed in relation to 10% but not 21% oxygen. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Norvaline is accumulated after a down-shift of oxygen in Escherichia coli W3110

    Directory of Open Access Journals (Sweden)

    Bernhardt Jörg

    2008-10-01

    Full Text Available Abstract Background Norvaline is an unusual non-proteinogenic branched-chain amino acid which has been of interest especially during the early enzymological studies on regulatory mutants of the branched-chain amino acid pathway in Serratia marcescens. Only recently norvaline and other modified amino acids of the branched-chain amino acid synthesis pathway got attention again when they were found to be incorporated in minor amounts in heterologous proteins with a high leucine or methionine content. Earlier experiments have convincingly shown that norvaline and norleucine are formed from pyruvate being an alternative substrate of α-isopropylmalate synthase, however so far norvaline accumulation was not shown to occur in non-recombinant strains of E. coli. Results Here we show that oxygen limitation causes norvaline accumulation in E. coli K-12 W3110 during grow in glucose-based mineral salt medium. Norvaline accumulates immediately after a shift to oxygen limitation at high glucose concentration. On the contrary free norvaline is not accumulated in E. coli W3110 in aerobic cultures. The analysis of medium components, supported by transcriptomic studies proposes a purely metabolic overflow mechanism from pyruvate into the branched chain amino acid synthesis pathway, which is further supported by the significant accumulation of pyruvate after the oxygen downshift. The results indicate overflow metabolism from pyruvate as necessary and sufficient, but deregulation of the branched chain amino acid pathway may be an additional modulating parameter. Conclusion Norvaline synthesis has been so far mainly related to an imbalance of the synthesis of the branched chain amino acids under conditions were pyruvate level is high. Here we show that simply a downshift of oxygen is sufficient to cause norvaline accumulation at a high glucose concentration as a consequence of the accumulation of pyruvate and its direct chain elongation over α-ketobutyrate and

  8. Hydrogen/oxygen injection stopping method for nuclear power plant and emergent hydrogen/oxygen injection device

    International Nuclear Information System (INIS)

    Ishida, Ryoichi; Ota, Masamoto; Takagi, Jun-ichi; Hirose, Yuki

    1998-01-01

    The present invention provides a device for suppressing increase of electroconductivity of reactor water during operation of a BWR type reactor, upon occurrence of reactor scram of the plant or upon stopping of hydrogen/oxygen injection due to emergent stoppage of an injection device so as not to deteriorate the integrity of a gas waste processing system upon occurrence of scram. Namely, when injection of hydrogen/oxygen is stopped during plant operation, the injection amount of hydrogen is reduced gradually. Subsequently, injection of hydrogen is stopped. With such procedures, the increase of electroconductivity of reactor water can be suppressed upon stoppage of hydrogen injection. When injection of hydrogen/oxygen is stopped upon shut down of the plant, the amount of hydrogen injection is changed depending on the change of the feedwater flow rate, and then the plant is shut down while keeping hydrogen concentration of feedwater to a predetermined value. With such procedures, increase of the reactor water electroconductivity can be suppressed upon stoppage of hydrogen injection. Upon emergent stoppage of the hydrogen/oxygen injection device, an emergent hydrogen/oxygen injection device is actuated to continue the injection of hydrogen/oxygen. With such procedures, elevation of reactor water electroconductivity can be suppressed. (I.S.)

  9. A Lab Assembled Microcontroller-Based Sensor Module for Continuous Oxygen Measurement in Portable Hypoxia Chambers

    Science.gov (United States)

    Mathupala, Saroj P.; Kiousis, Sam; Szerlip, Nicholas J.

    2016-01-01

    Background Hypoxia-based cell culture experiments are routine and essential components of in vitro cancer research. Most laboratories use low-cost portable modular chambers to achieve hypoxic conditions for cell cultures, where the sealed chambers are purged with a gas mixture of preset O2 concentration. Studies are conducted under the assumption that hypoxia remains unaltered throughout the 48 to 72 hour duration of such experiments. Since these chambers lack any sensor or detection system to monitor gas-phase O2, the cell-based data tend to be non-uniform due to the ad hoc nature of the experimental setup. Methodology With the availability of low-cost open-source microcontroller-based electronic project kits, it is now possible for researchers to program these with easy-to-use software, link them to sensors, and place them in basic scientific apparatus to monitor and record experimental parameters. We report here the design and construction of a small-footprint kit for continuous measurement and recording of O2 concentration in modular hypoxia chambers. The low-cost assembly (US$135) consists of an Arduino-based microcontroller, data-logging freeware, and a factory pre-calibrated miniature O2 sensor. A small, intuitive software program was written by the authors to control the data input and output. The basic nature of the kit will enable any student in biology with minimal experience in hobby-electronics to assemble the system and edit the program parameters to suit individual experimental conditions. Results/Conclusions We show the kit’s utility and stability of data output via a series of hypoxia experiments. The studies also demonstrated the critical need to monitor and adjust gas-phase O2 concentration during hypoxia-based experiments to prevent experimental errors or failure due to partial loss of hypoxia. Thus, incorporating the sensor-microcontroller module to a portable hypoxia chamber provides a researcher a capability that was previously available

  10. A Lab Assembled Microcontroller-Based Sensor Module for Continuous Oxygen Measurement in Portable Hypoxia Chambers.

    Directory of Open Access Journals (Sweden)

    Saroj P Mathupala

    Full Text Available Hypoxia-based cell culture experiments are routine and essential components of in vitro cancer research. Most laboratories use low-cost portable modular chambers to achieve hypoxic conditions for cell cultures, where the sealed chambers are purged with a gas mixture of preset O2 concentration. Studies are conducted under the assumption that hypoxia remains unaltered throughout the 48 to 72 hour duration of such experiments. Since these chambers lack any sensor or detection system to monitor gas-phase O2, the cell-based data tend to be non-uniform due to the ad hoc nature of the experimental setup.With the availability of low-cost open-source microcontroller-based electronic project kits, it is now possible for researchers to program these with easy-to-use software, link them to sensors, and place them in basic scientific apparatus to monitor and record experimental parameters. We report here the design and construction of a small-footprint kit for continuous measurement and recording of O2 concentration in modular hypoxia chambers. The low-cost assembly (US$135 consists of an Arduino-based microcontroller, data-logging freeware, and a factory pre-calibrated miniature O2 sensor. A small, intuitive software program was written by the authors to control the data input and output. The basic nature of the kit will enable any student in biology with minimal experience in hobby-electronics to assemble the system and edit the program parameters to suit individual experimental conditions.We show the kit's utility and stability of data output via a series of hypoxia experiments. The studies also demonstrated the critical need to monitor and adjust gas-phase O2 concentration during hypoxia-based experiments to prevent experimental errors or failure due to partial loss of hypoxia. Thus, incorporating the sensor-microcontroller module to a portable hypoxia chamber provides a researcher a capability that was previously available only to labs with access to

  11. A Lab Assembled Microcontroller-Based Sensor Module for Continuous Oxygen Measurement in Portable Hypoxia Chambers.

    Science.gov (United States)

    Mathupala, Saroj P; Kiousis, Sam; Szerlip, Nicholas J

    2016-01-01

    Hypoxia-based cell culture experiments are routine and essential components of in vitro cancer research. Most laboratories use low-cost portable modular chambers to achieve hypoxic conditions for cell cultures, where the sealed chambers are purged with a gas mixture of preset O2 concentration. Studies are conducted under the assumption that hypoxia remains unaltered throughout the 48 to 72 hour duration of such experiments. Since these chambers lack any sensor or detection system to monitor gas-phase O2, the cell-based data tend to be non-uniform due to the ad hoc nature of the experimental setup. With the availability of low-cost open-source microcontroller-based electronic project kits, it is now possible for researchers to program these with easy-to-use software, link them to sensors, and place them in basic scientific apparatus to monitor and record experimental parameters. We report here the design and construction of a small-footprint kit for continuous measurement and recording of O2 concentration in modular hypoxia chambers. The low-cost assembly (US$135) consists of an Arduino-based microcontroller, data-logging freeware, and a factory pre-calibrated miniature O2 sensor. A small, intuitive software program was written by the authors to control the data input and output. The basic nature of the kit will enable any student in biology with minimal experience in hobby-electronics to assemble the system and edit the program parameters to suit individual experimental conditions. We show the kit's utility and stability of data output via a series of hypoxia experiments. The studies also demonstrated the critical need to monitor and adjust gas-phase O2 concentration during hypoxia-based experiments to prevent experimental errors or failure due to partial loss of hypoxia. Thus, incorporating the sensor-microcontroller module to a portable hypoxia chamber provides a researcher a capability that was previously available only to labs with access to sophisticated (and

  12. Design and validation of a dynamic cell-culture system for bone biology research and exogenous tissue-engineering applications.

    Science.gov (United States)

    Allori, Alexander C; Davidson, Edward H; Reformat, Derek D; Sailon, Alexander M; Freeman, James; Vaughan, Adam; Wootton, David; Clark, Elizabeth; Ricci, John L; Warren, Stephen M

    2016-10-01

    Bone lacunocanalicular fluid flow ensures chemotransportation and provides a mechanical stimulus to cells. Traditional static cell-culture methods are ill-suited to study the intricacies of bone biology because they ignore the three-dimensionality of meaningful cellular networks and the lacunocanalicular system; furthermore, reliance on diffusion alone for nutrient supply and waste product removal effectively limits scaffolds to 2-3 mm thickness. In this project, a flow-perfusion system was custom-designed to overcome these limitations: eight adaptable chambers housed cylindrical cell-seeded scaffolds measuring 12 or 24 mm in diameter and 1-10 mm in thickness. The porous scaffolds were manufactured using a three-dimensional (3D) periodic microprinting process and were composed of hydroxyapatite/tricalcium phosphate with variable thicknesses, strut sizes, pore sizes and structural configurations. A multi-channel peristaltic pump drew medium from parallel reservoirs and perfused it through each scaffold at a programmable rate. Hermetically sealed valves permitted sampling or replacement of medium. A gas-permeable membrane allowed for gas exchange. Tubing was selected to withstand continuous perfusion for > 2 months without leakage. Computational modelling was performed to assess the adequacy of oxygen supply and the range of fluid shear stress in the bioreactor-scaffold system, using 12 × 6 mm scaffolds, and these models suggested scaffold design modifications that improved oxygen delivery while enhancing physiological shear stress. This system may prove useful in studying complex 3D bone biology and in developing strategies for engineering thick 3D bone constructs. Copyright © 2013 John Wiley & Sons, Ltd. Copyright © 2013 John Wiley & Sons, Ltd.

  13. The rise of eating disorders in Japan: issues of culture and limitations of the model of "westernization".

    Science.gov (United States)

    Pike, Kathleen M; Borovoy, Amy

    2004-12-01

    As the first non-Western nation in contemporary history to become a major industrialized economic power, Japan is central to the debate on cultural relativism in psychiatric nosologies, and the study of eating disorders in Japan contributes to the complex discussion of the impact of culture and history on the experience, diagnosis and treatment of such disorders (R. Gordon 2001; Palmer 2001). Without question, the rise in eating disorders in Japan correlated with increasing industrialization, urbanization, and the fraying of traditional family forms following World War II. While the case of Japan confirms that the existence of eating disorders appears to be linked with these broader social transformations, it also points to the importance of specific cultural and historical factors in shaping the experience of eating disorders. In this article, we explore two particular dimensions of culture in contemporary Japan: (1) gender development and gender role expectations for females coming of age; and (2) beauty ideals and the role of weight and shape concerns in the etiology of eating disorders. Our analysis of these dimensions of culture, and the data accruing from empirical and qualitative research, reveal limitations to the model of "Westernization" and call for a more culturally sensitive search for meaning in both describing and explaining eating disorders in Japan today.

  14. Oxygen vacancy doping of hematite analyzed by electrical conductivity and thermoelectric power measurements

    Science.gov (United States)

    Mock, Jan; Klingebiel, Benjamin; Köhler, Florian; Nuys, Maurice; Flohre, Jan; Muthmann, Stefan; Kirchartz, Thomas; Carius, Reinhard

    2017-11-01

    Hematite (α -F e2O3 ) is known for poor electronic transport properties, which are the main drawback of this material for optoelectronic applications. In this study, we investigate the concept of enhancing electrical conductivity by the introduction of oxygen vacancies during temperature treatment under low oxygen partial pressure. We demonstrate the possibility of tuning the conductivity continuously by more than five orders of magnitude during stepwise annealing in a moderate temperature range between 300 and 620 K. With thermoelectric power measurements, we are able to attribute the improvement of the electrical conductivity to an enhanced charge-carrier density by more than three orders of magnitude. We compare the oxygen vacancy doping of hematite thin films with hematite nanoparticle layers. Thereby we show that the dominant potential barrier that limits charge transport is either due to grain boundaries in hematite thin films or due to potential barriers that occur at the contact area between the nanoparticles, rather than the potential barrier within the small polaron hopping model, which is usually applied for hematite. Furthermore, we discuss the transition from oxygen-deficient hematite α -F e2O3 -x towards the magnetite F e3O4 phase of iron oxide at high density of vacancies.

  15. The effects of oxygen on process rates and gene expression of anammox and denitrification in the Eastern South Pacific oxygen minimum zone

    DEFF Research Database (Denmark)

    Dalsgaard, Tage; Stewart, Frank; De Brabandere, Loreto

    Oxygen concentrations were consistently below our detection limit of 90 nM for a distance of > 2000 km in the oxygen minimum zone (OMZ) along the coasts of Chile and Peru. In most cases, anammox and denitrification were only detected when in situ oxygen concentrations were below detection...... differently to oxygen. When normalized to a housekeeping gene (rpoB), the expression of 4 out of 9 N-cycle-genes changed with increasing oxygen concentration: The expression of ammonium monooxygenase (amoC) was stimulated, whereas expression of nitrite reductase (nirS), nitric oxide reductase (nor...

  16. Building a global business continuity programme.

    Science.gov (United States)

    Lazcano, Michael

    2014-01-01

    Business continuity programmes provide an important function within organisations, especially when aligned with and supportive of the organisation's goals, objectives and organisational culture. Continuity programmes for large, complex international organisations, unlike those for compact national companies, are more difficult to design, build, implement and maintain. Programmes for international organisations require attention to structural design, support across organisational leadership and hierarchy, seamless integration with the organisation's culture, measured success and demonstrated value. This paper details practical, but sometimes overlooked considerations for building successful global business continuity programmes.

  17. Continuous measurement of ethanol production by aerobic yeast suspensions with an enzyme electrode

    Energy Technology Data Exchange (ETDEWEB)

    Verduyn, C.; Zomerdijk, T.P.L.; Dijken, J.P. van; Scheffers, W.A.

    1984-03-01

    An alcohol electrode was constructed which consisted of an oxygen probe onto which alcohol oxidase was immobilized. This enzyme electrode was used, in combination with a reference oxygen electrode, to study the short-term kinetics of alcoholic fermentation by aerobic yeast suspensions after pulsing with glucose. The results demonstrate that this device is an excellent tool in obtaining quantitative data on the short-term expression of the Crabtree effect in yeasts. Samples from aerobic glucose-limited chemostat cultures of Saccharomyces cerevisiae not producing ethanol, immediately (within 2 min) exhibited aerobic alcohol fermentation after being pulsed with excess glucose. With chemostat-grown Candida utilis, however, ethanol production was not detactable even at high sugar concentrations. The Crabtree effect in S. cerevisiae was studied in more detail with commercial baker's yeast. Ethanol formation occurred only at initial glucose concentrations exceeding 150 mgx1/sup -1/, and the rate of alcoholic fermentation increased with increasing glucose concentrations up to 1,000 mgx1/sup -1/ glucose. Similar experiments with batch cultures of certain ''non-fermentative'' yeasts revealed that these organisms are capable of alcoholic fermentation. Thus, even under fully aerobic conditions, Hansenula nonfermentans and Candida buffonii produced ethanol after being pulsed with glucose. In C. buffonii ethanol formation was already apparent at very low glucose concentrations (10 mgx1/sup -1/) and alcoholic fermentation even proceeded at a higher rate than in S. cerevisiae. With Rhodotorula rubra, however, the rate of ethanol formation was below the detection limit, i.e., less than 0.1 mmolxg cells/sup -1/xh/sup -1/.

  18. Microbial dynamics in anaerobic enrichment cultures degrading di-n-butyl phthalic acid ester

    DEFF Research Database (Denmark)

    Trably, Eric; Batstone, Damien J.; Christensen, Nina

    2008-01-01

    losses were observed in the sterile controls (20-22%), substantial DBP biodegradation was found in the enrichment cultures (90-99%). In addition, significant population changes were observed. The dominant bacterial species in the DBP-degrading cultures was affiliated to Soehngenia saccharolytica...... in enrichment cultures degrading phthalic acid esters under methanogenic conditions. A selection pressure was applied by adding DBP at 10 and 200 mg L(-1) in semi-continuous anaerobic reactors. The microbial dynamics were monitored using single strand conformation polymorphism (SSCP). While only limited abiotic...

  19. Parent and Staff Expectations for Continuity of Home Practices in the Child Care Setting for Families with Diverse Cultural Backgrounds

    Science.gov (United States)

    De Gioia, Katey

    2009-01-01

    The use of childcare services for very young children (birth to three years) has increased dramatically in the past two decades (Department of Families, Community Services and Indigenous Affairs, 2004). This article investigates the expectations for cultural continuity of caregiving practices (with particular emphasis on sleep and feeding) between…

  20. The use of oxygen in hazardous waste incineration

    International Nuclear Information System (INIS)

    Ho, M.D.; Ding, M.G.

    1989-01-01

    The use of advanced oxygen combustion technologies in hazardous waste (such as PCBs and hydrocarbons) incineration has emerged in the last two years as one of the most significant breakthroughs among all the competing treatment technologies. For many years, industrial furnaces have used oxygen enrichment of the combustion air and oxygen-fuel burners, but with conventional technologies a high oxygen level generally poses problems. The flame temperature is high, leading to high NOx formation and local overeating. Different technical approaches to overcome these problems and their respective effectiveness will be reviewed. Previously, commercial oxygen enrichment in incinerators was limited to a rather modest level applications of much higher oxygen enrichment levels in hazardous waste incinerators

  1. Metabolic and energetic aspects of the growth of Clostridium butyricum on glucose in chemostat culture.

    Science.gov (United States)

    Crabbendam, P M; Neijssel, O M; Tempest, D W

    1985-09-01

    The influence of a number of environmental parameters on the fermentation of glucose, and on the energetics of growth of Clostridium butyricum in chemostat culture, have been studied. With cultures that were continuously sparged with nitrogen gas, glucose was fermented primarily to acetate and butyrate with a fixed stoichiometry. Thus, irrespective of the growth rate, input glucose concentration, specific nutrient limitation and, within limits, the culture pH value, the acetate/butyrate molar ratio in the culture extracellular fluids was uniformly 0.74 +/- 0.07. Thus, the efficiency with which ATP was generated from glucose catabolism also was constant at 3.27 +/- 0.02 mol ATP/mol glucose fermented. However, the rate of glucose fermentation at a fixed growth rate, and hence the rate of ATP generation, varied markedly under some conditions, leading to changes in the Y glucose and YATP values. In general, glucose-sufficient cultures expressed lower yield values than a corresponding glucose-limited culture, and this was particularly marked with a potassium-limited culture. However, with a glucose-limited culture increasing the input glucose concentration above 40 g glucose X 1(-1) also led to a significant decrease in the yield values that could be partially reversed by increasing the sparging rate of the nitrogen gas. Finally glucose-limited cultures immediately expressed an increased rate of glucose fermentation when relieved of their growth limitation. Since the rate of cell synthesis did not increase instantaneously, again the yield values with respect to glucose consumed and ATP generated transiently decreased. Two conditions were found to effect a change in the fermentation pattern with a lowering of the acetate/butyrate molar ratio. First, a significant decrease in this ratio was observed when a glucose-limited culture was not sparged with nitrogen gas; and second, a substantial (and progressive) decrease was observed to follow addition of increasing amounts of

  2. Fundamental data: Solubility of nickel and oxygen and diffusivity of iron and oxygen in molten LBE

    International Nuclear Information System (INIS)

    Abella, J.; Verdaguer, A.; Colominas, S.; Ginestar, K.; Martinelli, L.

    2011-01-01

    Experiments for determining nickel solubility limit and iron diffusion coefficient are presented and their results are discussed. Nickel solubility limit is determined by two methods: ex situ by solid sampling followed by ICP-AES analysis and in situ by Laser Induced Breakdown Spectroscopy and their results are compared. The iron diffusion coefficient is obtained using the technique of rotating specimen dissolution. Also a method to determine the oxygen solubility and diffusivity in LBE is developed and results at 460, 500 and 540 deg. C are presented. It is based on the following electrochemical cell: O 2 (reference mixture), Pt //YSZ//O 2 (LBE) which can work as an oxygen sensor or as a coulometric pump.

  3. Cognitive Function in a Traumatic Brain Injury Hyperbaric Oxygen Randomized Trial

    Science.gov (United States)

    2015-08-07

    oxygen at 2.4 atm abs. Eggum and Hunter [39] experimented with canine mesenchymal stem cells under various levels of pres- sure, oxygen, glucose...and conditioned medium. The culture system showed no cytotoxicity and was able to demonstrate that the proliferation and metabolism of mesenchymal...neurodegenerative diseases and peripheral neuropathies. He concludes that while the direct mechanisms by which transection, mechanical strain, ischemia

  4. Concerted changes in gene expression and cell physiology of the cyanobacterium Synechocystis sp. strain PCC 6803 during transitions between nitrogen and light-limited growth

    NARCIS (Netherlands)

    Aquirre von Wobeser, E.; Ibelings, B.W.; Bok, J.M.; Krasikov, V.; Huisman, J.; Matthijs, H.C.P.

    2011-01-01

    Physiological adaptation and genome-wide expression profiles of the cyanobacterium Synechocystis sp. strain PCC 6803 in response to gradual transitions between nitrogen-limited and light-limited growth conditions were measured in continuous cultures. Transitions induced changes in pigment

  5. Anoxygenic Photosynthesis Controls Oxygenic Photosynthesis in a Cyanobacterium from a Sulfidic Spring

    KAUST Repository

    Klatt, Judith M.; Alnajjar, Mohammad Ahmad; Yilmaz, Pelin; Lavik, Gaute; de Beer, Dirk; Polerecky, Lubos

    2015-01-01

    Before the Earth's complete oxygenation (0.58 to 0.55 billion years [Ga] ago), the photic zone of the Proterozoic oceans was probably redox stratified, with a slightly aerobic, nutrient-limited upper layer above a light-limited layer that tended toward euxinia. In such oceans, cyanobacteria capable of both oxygenic and sulfide-driven anoxygenic photosynthesis played a fundamental role in the global carbon, oxygen, and sulfur cycle. We have isolated a cyanobacterium, Pseudanabaena strain FS39, in which this versatility is still conserved, and we show that the transition between the two photosynthetic modes follows a surprisingly simple kinetic regulation controlled by this organism's affinity for H2S. Specifically, oxygenic photosynthesis is performed in addition to anoxygenic photosynthesis only when H2S becomes limiting and its concentration decreases below a threshold that increases predictably with the available ambient light. The carbon-based growth rates during oxygenic and anoxygenic photosynthesis were similar. However, Pseudanabaena FS39 additionally assimilated NO3 - during anoxygenic photosynthesis. Thus, the transition between anoxygenic and oxygenic photosynthesis was accompanied by a shift of the C/N ratio of the total bulk biomass. These mechanisms offer new insights into the way in which, despite nutrient limitation in the oxic photic zone in the mid-Proterozoic oceans, versatile cyanobacteria might have promoted oxygenic photosynthesis and total primary productivity, a key step that enabled the complete oxygenation of our planet and the subsequent diversification of life.

  6. Anoxygenic Photosynthesis Controls Oxygenic Photosynthesis in a Cyanobacterium from a Sulfidic Spring

    KAUST Repository

    Klatt, Judith M.

    2015-03-15

    Before the Earth\\'s complete oxygenation (0.58 to 0.55 billion years [Ga] ago), the photic zone of the Proterozoic oceans was probably redox stratified, with a slightly aerobic, nutrient-limited upper layer above a light-limited layer that tended toward euxinia. In such oceans, cyanobacteria capable of both oxygenic and sulfide-driven anoxygenic photosynthesis played a fundamental role in the global carbon, oxygen, and sulfur cycle. We have isolated a cyanobacterium, Pseudanabaena strain FS39, in which this versatility is still conserved, and we show that the transition between the two photosynthetic modes follows a surprisingly simple kinetic regulation controlled by this organism\\'s affinity for H2S. Specifically, oxygenic photosynthesis is performed in addition to anoxygenic photosynthesis only when H2S becomes limiting and its concentration decreases below a threshold that increases predictably with the available ambient light. The carbon-based growth rates during oxygenic and anoxygenic photosynthesis were similar. However, Pseudanabaena FS39 additionally assimilated NO3 - during anoxygenic photosynthesis. Thus, the transition between anoxygenic and oxygenic photosynthesis was accompanied by a shift of the C/N ratio of the total bulk biomass. These mechanisms offer new insights into the way in which, despite nutrient limitation in the oxic photic zone in the mid-Proterozoic oceans, versatile cyanobacteria might have promoted oxygenic photosynthesis and total primary productivity, a key step that enabled the complete oxygenation of our planet and the subsequent diversification of life.

  7. Growth and enzyme production during continuous cultures of a high amylase-producing variant of Aspergillus oryzae

    DEFF Research Database (Denmark)

    Zangirolami, Teresa; Carlsen, M.; Nielsen, J.

    2002-01-01

    Growth and product formation by a selected variant of Aspergillus oryzae showing high alpha-amylase production was studied in continuous cultivations carried out at six different specific growth rates, using glucose as the growth-limiting nutrient. The analysis of the steady-state data revealed...

  8. Oxygen restriction increases the infective potential of Listeria monocytogenes in vitro in Caco-2 cells and in vivo in guinea pigs

    DEFF Research Database (Denmark)

    Andersen, Jens Bo; Roldgaard, Bent; Christensen, Bjarke Bak

    2007-01-01

    : Infection of Caco-2 cells revealed that Listeria cultivated under oxygen-restricted conditions were approximately 100 fold more invasive than similar cultures grown without oxygen restriction. This was observed for exponentially growing bacteria, as well as for stationary-phase cultures. Oral dosage...

  9. Oxygen titration strategies in chronic neonatal lung disease.

    Science.gov (United States)

    Primhak, Robert

    2010-09-01

    The history of oxygen therapy in neonatology has been littered with error. Controversies remain in a number of areas of oxygen therapy, including targets and strategies in supplemental oxygen therapy in Chronic Neonatal Lung Disease (CNLD). This article reviews some of these controversies, and makes some recommendations based on the available evidence. In graduates of neonatal units who are left with CNLD, oxygen saturation should be kept above 93-95%, with levels below 90% being avoided as far as possible. Titration of oxygen should be done using oximetry recordings which include periods of different activities. Weaning of oxygen supplementation should only be done based on satisfactory recordings during a trial of a lower flow. There is insufficient evidence to say whether weaning for increasing hours a day or stepwise weaning to a continuous lower flow is a better method. Copyright 2010 Elsevier Ltd. All rights reserved.

  10. COMETABOLIC DEGRADATION OF CHLOROALLYL ALCOHOLS IN BATCH AND CONTINUOUS CULTURES

    NARCIS (Netherlands)

    VANDERWAARDE, JJ; KOK, R; JANSSEN, DB; Waarde, J.J. van der

    1994-01-01

    The biodegradation of chloroallyl alcohols by pure and mixed bacterial cultures was investigated. Only 2-chloroallyl alcohol and cis- and trans-3-chloroallyl alcohol served as growth substrate for pure cultures. The other chloroallyl alcohols could be cometabolically degraded during growth on

  11. Surface modification of electrospun fibre meshes by oxygen plasma for bone regeneration

    International Nuclear Information System (INIS)

    Nandakumar, A; Tahmasebi Birgani, Z; Santos, D; Mentink, A; Auffermann, N; Moroni, L; Van Blitterswijk, C; Habibovic, P; Van der Werf, K; Bennink, M

    2013-01-01

    Plasma treatment is a method to modify the physicochemical properties of biomaterials, which consequently may affect interactions with cells. Based on the rationale that physical cues on the surface of culture substrates and implants, such as surface roughness, have proven to alter cell behaviour, we used electrospinning to fabricate fibrous three-dimensional scaffolds made of a poly (ethylene oxide terephthalate)/poly (butylene terephthalate) copolymer to mimic the physical microenvironment of extracellular matrix and applied radio-frequency oxygen plasma treatment to create nanoscale roughness. Scanning electron microscopy (SEM) analysis revealed a fibre diameter of 5.49 ± 0.96 µm for as-spun meshes. Atomic force microscopy (AFM) measurements determined an exponential increase of surface roughness with plasma treatment time. An increase in hydrophilicity after plasma treatment was observed, which was associated with higher oxygen content in plasma treated scaffolds compared to untreated ones. A more pronounced adsorption of bovine serum albumin occurred on scaffolds treated with plasma for 15 and 30 min compared to untreated fibres. Clinically relevant human mesenchymal stromal cells (hMSCs) were cultured on untreated, 15 and 30 min treated scaffolds. SEM analysis confirmed cell attachment and a pronounced spindle-like morphology on all scaffolds. No significant differences were observed between different scaffolds regarding the amount of DNA, metabolic activity and alkaline phosphatase (ALP) activity after 7 days of culture. The amount of ALP positive cells increased between 7 and 21 days of culture on both untreated and 30 min treated meshes. In addition, ALP staining of cells on plasma treated meshes appeared more pronounced than on untreated meshes after 21 days of culture. Quantitative polymerase chain reaction showed significant upregulation of bone sialoprotein and osteonectin expression on oxygen plasma treated fibres compared to untreated fibres in

  12. Cell culture for three-dimensional modeling in rotating-wall vessels: an application of simulated microgravity

    Science.gov (United States)

    Schwarz, R. P.; Goodwin, T. J.; Wolf, D. A.

    1992-01-01

    High-density, three-dimensional cell cultures are difficult to grow in vitro. The rotating-wall vessel (RWV) described here has cultured BHK-21 cells to a density of 1.1 X 10(7) cells/ml. Cells on microcarriers were observed to grow with enhanced bridging in this batch culture system. The RWV is a horizontally rotated tissue culture vessel with silicon membrane oxygenation. This design results in a low-turbulence, low-shear cell culture environment with abundant oxygenation. The RWV has the potential to culture a wide variety of normal and neoplastic cells.

  13. Cultural Consensus Theory: Aggregating Continuous Responses in a Finite Interval

    Science.gov (United States)

    Batchelder, William H.; Strashny, Alex; Romney, A. Kimball

    Cultural consensus theory (CCT) consists of cognitive models for aggregating responses of "informants" to test items about some domain of their shared cultural knowledge. This paper develops a CCT model for items requiring bounded numerical responses, e.g. probability estimates, confidence judgments, or similarity judgments. The model assumes that each item generates a latent random representation in each informant, with mean equal to the consensus answer and variance depending jointly on the informant and the location of the consensus answer. The manifest responses may reflect biases of the informants. Markov Chain Monte Carlo (MCMC) methods were used to estimate the model, and simulation studies validated the approach. The model was applied to an existing cross-cultural dataset involving native Japanese and English speakers judging the similarity of emotion terms. The results sharpened earlier studies that showed that both cultures appear to have very similar cognitive representations of emotion terms.

  14. Partial analysis of wind power limit in an electric micro system using continuation power flow

    International Nuclear Information System (INIS)

    Fiallo Guerrero, Jandry; Santos Fuentefria, Ariel; Castro Fernández, Miguel

    2013-01-01

    The wind power insertion in the power system is an important issue and can create some instability problems in voltage and system frequency due to stochastic origin of wind. Know the Wind Power Limit that can insert in an electric grid without losing stability is a very important matter. Existing in bibliography a few methods for calculation of wind power limit, some of them are based in static constrains, an example is a method based in a continuation power flow analysis. In the present work the method is applied in an electric micro system formed when the system is disconnected of the man grid, the main goal was prove the method in a weak and island network. The software used in the simulations was the Power System Analysis Toolbox (PSAT). (author)

  15. Comparative analysis of Micrococcus luteus isolates from blood cultures of patients with pulmonary hypertension receiving epoprostenol continuous infusion.

    Science.gov (United States)

    Hirata, Yoshinori; Sata, Makoto; Makiuchi, Yuko; Morikane, Keita; Wada, Akihito; Okabe, Nobuhiko; Tomoike, Hitonobu

    2009-12-01

    During the period 2002-2008, at the National Cardiovascular Center, Osaka, 28 Micrococcus luteus isolates and one Kocuria spp. isolate were obtained from blood cultures of pulmonary hypertension (PH) patients who were receiving continuous infusion therapy with epoprostenol. Pulsed-field gel electrophoresis patterns of the isolates were unrelated, suggesting that the infections had multiple origins. The preparation of epoprostenol solution by patients themselves was thought to be a risk factor.

  16. Turnover of cyclic 2,3-diphosphoglycerate in Methanobacterium thermoautotrophicum. Phosphate flux in P1- and H2-limited chemostat cultures.

    Science.gov (United States)

    Krueger, R D; Campbell, J W; Fahrney, D E

    1986-09-15

    The archaebacterium Methanobacterium thermoautotrophicum was grown at 65 degrees C in H2- and Pi-limited chemostat cultures at dilution rates corresponding to 3- and 4-h doubling times, respectively. Under these conditions the steady state concentration of cyclic 2,3-diphosphoglycerate was 44 mM in the H2-limited cells and 13 mM in the cells grown under Pi limitation. Flux of Pi into the cyclic pyrophosphate pool was estimated by two 32P-labeling procedures: approach to isotopic equilibrium and replacement of prelabeled cyclic diphosphoglycerate with unlabeled compound. The results unequivocally demonstrate turnover of the phosphoryl groups; either both phosphoryl groups of the cyclic pyrophosphate leave together or the second leaves at a faster rate. The half-life of the rate-determining step for loss of the phosphoryl groups was approximately equal to the culture doubling time. The Pi flowing into the cyclic diphosphoglycerate pool accounted for 19% of the total Pi flux into Pi-limited cells and 43% of the total for H2-limited cells. The high phosphate flux through the large cyclic diphosphoglycerate pool suggests that this molecule plays an important role in the phosphorus metabolism of this methanogen.

  17. USING ONLINE MARKETING TO INCREASE PARTICIPATION IN A WEB-BASED CONTINUING MEDICAL EDUCATION CULTURAL COMPETENCE CURRICULUM

    Science.gov (United States)

    Estrada, Carlos A.; Krishnamoorthy, Periyakaruppan; Smith, Ann; Staton, Lisa; Korf, Michele J.; Allison, Jeroan J.; Houston, Thomas K.

    2012-01-01

    Introduction CME providers may be interested in identifying effective marketing strategies to direct users to specific content. The use of online advertisements to recruit participants for clinical trials, public health programs, and Continuing Medical Education (CME) has been shown to be effective in some but not all studies. The purpose of this study was to compare the impact of two marketing strategies in the context of an online CME cultural competence curriculum (www.c-comp.org). Methods In an interrupted time-series quasi-experimental design, two marketing strategies were tested: a) wide dissemination to relevant organizations over a period of approximately four months, and b) Internet paid search using Google Ads (five consecutive eight-week periods--control 1, cultural/ CME advertisement, control 2, hypertension/ content advertisement, control 3). Outcome measures were CME credit requests, Web traffic (visits per day, page views, pages viewed per visit), and cost. Results Overall, the site was visited 19,156 times and 78,160 pages were viewed. During the wide dissemination phase, the proportion of visits requesting CME credit decreased between the first (5.3%) and second halves (3.3%) of this phase (p= .04). During the Internet paid search phase, the proportion of visits requesting CME credit was highest during the cultural/ CME advertisement period (control 1, 1.4%; cultural/CME ad, 4.3%; control 2, 1.5%; hypertension/content ad, 0.6%; control 3, 0.8%; p<.001). All measures of Web traffic changed during the Internet paid search phase (p<.01); however, changes were independent of the advertisement periods. The incremental cost for the cultural advertisement per CME credit requested was $0.64US. Discussion Internet advertisement focusing on cultural competence and CME was associated with about a three-fold increase in requests for CME credit at an incremental cost of under $1; however, Web traffic changes were independent of the advertisement strategy. PMID

  18. Trap spectrum of the ``new oxygen donor'' in silicon

    Science.gov (United States)

    Hölzlein, K.; Pensl, G.; Schulz, M.

    1984-07-01

    Electronic properties of the new oxygen donor generated in phosphorus-doped Czochralski-silicon at 650‡C are investigated by deep level transient spectroscopy. A continuous distribution of trap states (1014 1016 cm-3 eV-1) is detected in the upper half of the band gap with increasing values towards the conduction band. The magnitude of the state density observed increases with the oxygen content, the heat duration, and a preanneal at temperatures lower than 650‡C. The continuous trap spectrum of the new donor is explained by interface states occuring at the surface of SiO x precipitates.

  19. Improvised bubble continuous positive airway pressure (BCPAP ...

    African Journals Online (AJOL)

    Improvised bubble continuous positive airway pressure (BCPAP) device at the National Hospital Abuja gives immediate improvement in respiratory rate and oxygenation in neonates with respiratory distress.

  20. Beyond the 'new cross-cultural psychiatry': cultural biology, discursive psychology and the ironies of globalization.

    Science.gov (United States)

    Kirmayer, Laurence J

    2006-03-01

    The 'new cross-cultural psychiatry' heralded by Kleinman in 1977 promised a revitalized tradition that gave due respect to cultural difference and did not export psychiatric theories that were themselves culture bound. In the ensuing years, the view of culture within anthropology has continued to change, along with our understanding of the relationship of biological processes to cultural diversity, and the global political economic contexts in which mental health care is delivered. This article considers the implications of these new notions of culture, biology and the context of practice for theory in cultural psychiatry. The future of cultural psychiatry lies in advancing a broad perspective that: (a) is inherently multidisciplinary (involving psychiatric epidemiology, medical anthropology and sociology, cognitive science and social psychology), breaking down the nature/culture dichotomy with an integrative view of culture as a core feature of human biology, while remaining alert to cultural constructions of biological theory; (b) attends to psychological processes but understands these as not exclusively located within the individual but as including discursive processes that are fundamentally social; and (c) critically examines the interaction of both local and global systems of knowledge and power. Globalization has brought with it many ironies for cultural psychiatry: Transnational migrations have resulted in cultural hybridization at the same time as ethnicity has become more salient; the call for evidence-based medicine has been used to limit the impact of cultural research; and cultural psychiatry itself has been co-opted by pharmaceutical companies to inform marketing campaigns to promote conventional treatments for new populations. Cultural psychiatry must address these ironies to develop the self-critical awareness and flexibility needed to deliver humane care in shifting contexts.