WorldWideScience

Sample records for oxygen-isotope-sensitive raman band

  1. Stable isotope ratio measurements in hydrogen, nitrogen, and oxygen using Raman scattering

    International Nuclear Information System (INIS)

    Harney, R.C.; Bloom, S.D.; Milanovich, F.P.

    1975-01-01

    A method for measuring stable isotope ratios using laser Raman scattering was developed which may prove of significant utility and benefit in stable isotope tracer studies. Crude isotope ratio measurements obtained with a low-power laser indicate that with current technology it should be possible to construct an isotope ratio measurement system using laser Raman scattering that is capable of performing 0.1 percent accuracy isotope ratio measurements of 16 O/ 18 O in natural abundance oxygen gas or 14 N/ 15 N in natural abundance nitrogen gas in times less than two minutes per sample. Theory pertinent to the technique, designs of specific isotope ratio spectrometer systems, and data relating to isotope ratio measurements in hydrogen, nitrogen, and oxygen are presented. In addition, the current status of several studies utilizing this technique is discussed. (auth)

  2. Raman spectral, elemental, crystallinity, and oxygen-isotope variations in conodont apatite during diagenesis

    Science.gov (United States)

    Zhang, Lei; Cao, Ling; Zhao, Laishi; Algeo, Thomas J.; Chen, Zhong-Qiang; Li, Zhihong; Lv, Zhengyi; Wang, Xiangdong

    2017-08-01

    Conodont apatite has long been used in paleoenvironmental studies, often with minimal evaluation of the influence of diagenesis on measured elemental and isotopic signals. In this study, we evaluate diagenetic influences on conodonts using an integrated set of analytical techniques. A total of 92 points in 19 coniform conodonts from Ordovician marine units of South China were analyzed by micro-laser Raman spectroscopy (M-LRS), laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), high-resolution X-ray microdiffraction (HXRD), and secondary ion mass spectrometry (SIMS). Each conodont element was analyzed along its full length, including the albid crown, hyaline crown, and basal body, in either a whole specimen (i.e., reflecting the composition of its outer layer) or a split specimen (i.e., reflecting the composition of its interior). In the conodonts of this study, the outer surfaces consist of hydroxyfluorapatite and the interiors of strontian hydroxyfluorapatite. Ionic substitutions resulted in characteristic Raman spectral shifts in the position (SS1) and width (SS2) of the ν1-PO43- stretching band. Although multiple elements were enriched (Sr2+, Mg2+) and depleted (Fe3+, Mn2+, Ca2+) during diagenesis, geochemical modeling constraints and known Raman spectral patterns suggest that Sr uptake was the dominant influence on diagenetic redshifts of SS1. All study specimens show lower SS2 values than modern bioapatite and synthetic apatite, suggesting that band width decreases with time in ancient bioapatite, possibly through an annealing process that produces larger, more uniform crystal domains. Most specimens consist mainly of amorphous or poorly crystalline apatite, which is inferred to represent the original microstructure of conodonts. In a subset of specimens, some tissues (especially albid crown) exhibit an increased degree of crystallinity developed through aggrading neomorphism. However, no systematic relationship was observed between

  3. Raman spectroscopic studies of isotopic diatomic molecules and a technique for measuring stable isotope ratios using Raman scattering

    International Nuclear Information System (INIS)

    Harney, R.C.

    1976-01-01

    A method for measuring stable isotope ratios using Raman scattering has been developed. This method consists of simultaneously counting photons scattered out of a high-intensity laser beam by different isotopically-substituted molecules. A number of studies of isotopic diatomic molecules have been made. The Q-branches of the Raman spectra of the isotopic molecules 14 N 15 N and 16 O 18 O were observed at natural abundance in nitrogen and oxygen samples. Comparison of the ratios of the intensities of the Q-branches of the major nitrogen and oxygen isotopic molecules with mass spectrometric determinations of the isotopic compositions yielded scattering cross sections of 14 N 15 N relative to 14 N 14 N and 16 O 18 O relative to 16 O 16 O. These cross section ratios differ from unity, a difference which can be explained by considering nuclear mass effects on the Franck-Condon factors of the molecular transitions. The measured intensities of the 14 N 15 N and 16 O 18 O Q-branches provided the baseline data needed to make the previously-mentioned extrapolation. High-resolution (approximately 0.15 cm -1 ) spectra of the Q-branches of 14 N 14 N and 16 O 16 O yielded a direct determination of α/sub e/ (the difference between the rotational constant in the ground and first excited vibrational states) for these molecules. The measured values are in excellent agreement with those obtained by other means. Complete Raman spectra (pure rotation, rotation-vibration, and high-resolution Q-branch) were obtained on a sample of pure 18 O 18 O. Analysis of this data yielded the molecular parameters: the equilibrium internuclear separation r/sub e/, the moment of inertia I/sub e/, and the energy parameters α/sub e/, B/sub e/, and ΔG/sub 1 / 2 /. These are in good agreement with data obtained by microwave spectroscopy

  4. High-sensitivity Raman spectrometer to study pristine and irradiated interstellar ice analogs.

    Science.gov (United States)

    Bennett, Chris J; Brotton, Stephen J; Jones, Brant M; Misra, Anupam K; Sharma, Shiv K; Kaiser, Ralf I

    2013-06-18

    We discuss the novel design of a sensitive, normal-Raman spectrometer interfaced to an ultra-high vacuum chamber (5 × 10(-11) Torr) utilized to investigate the interaction of ionizing radiation with low temperature ices relevant to the solar system and interstellar medium. The design is based on a pulsed Nd:YAG laser which takes advantage of gating techniques to isolate the scattered Raman signal from the competing fluorescence signal. The setup incorporates innovations to achieve maximum sensitivity without detectable heating of the sample. Thin films of carbon dioxide (CO2) ices of 10 to 396 nm thickness were prepared and characterized using both Fourier transform infrared (FT-IR) spectroscopy and HeNe interference techniques. The ν+ and ν- Fermi resonance bands of CO2 ices were observed by Raman spectroscopy at 1385 and 1278 cm(-1), respectively, and the band areas showed a linear dependence on ice thickness. Preliminary irradiation experiments are conducted on a 450 nm thick sample of CO2 ice using energetic electrons. Both carbon monoxide (CO) and the infrared inactive molecular oxygen (O2) products are readily detected from their characteristic Raman bands at 2145 and 1545 cm(-1), respectively. Detection limits of 4 ± 3 and 6 ± 4 monolayers of CO and O2 were derived, demonstrating the unique power to detect newly formed molecules in irradiated ices in situ. The setup is universally applicable to the detection of low-abundance species, since no Raman signal enhancement is required, demonstrating Raman spectroscopy as a reliable alternative, or complement, to FT-IR spectroscopy in space science applications.

  5. Isotope effect on superconductivity and Raman phonons of Pyrochlore Cd2Re2O7

    Science.gov (United States)

    Razavi, F. S.; Hajialamdari, M.; Reedyk, M.; Kremer, R. K.

    2018-06-01

    Cd2Re2O7 is the only α-Pyrochlore exhibiting superconductivity with a transition temperature (Tc) of ∼ 1 K. In this study, we present the effect of oxygen isotope (18O) as well as combined 18O and cadmium isotope (116Cd) substitution on the superconductivity and Raman scattering spectrum of Cd2Re2O7. The change of Tc and the energy gap Δ(T) are reported using various techniques including point contact spectroscopy. The shift in Raman phonon frequencies upon isotope substitution will be compared with measurement of the isotope effect on the superconducting transition temperature.

  6. Optimization of band-pass filtering parameters of a Raman lidar detecting atmospheric water vapor

    International Nuclear Information System (INIS)

    Cao, Kai-Fa; Hu, Shun-Xing; Wang, Ying-jian

    2012-01-01

    It is very important for daytime Raman lidar measurement of water vapor to determine the parameters of a band-pass filter, which are pertinent to the lidar signal to noise ratio (SNR). The simulated annealing (SA) algorithm method has an advantage in finding the extremum of a certain cost function. In this paper, the Raman spectrum of water vapor is simulated and then a first realization of a simulated annealing algorithm in the optimization of a band-pass filter of a Raman lidar system designed to detect daytime water vapor is presented. The simulated results indicate that the narrow band-pass filter has higher SNR than the wide filter does but there would be an increase in the temperature sensitivity of a narrowband Raman water vapor lidar in the upper troposphere. The numerical simulation indicates that the magnitude of the temperature dependent effect can reach 3.5% or more for narrow band-pass Raman water vapor measurements so it is necessary to consider a new water vapor Raman lidar equation that permits the temperature sensitivity of these equations to be confined to a single term. (paper)

  7. Raman scattering method and apparatus for measuring isotope ratios and isotopic abundances

    International Nuclear Information System (INIS)

    Harney, R.C.; Bloom, S.D.

    1978-01-01

    Raman scattering is used to measure isotope ratios and/or isotopic abundances. A beam of quasi-monochromatic photons is directed onto the sample to be analyzed, and the resulting Raman-scattered photons are detected and counted for each isotopic species of interest. These photon counts are treated mathematically to yield the desired isotope ratios or isotopic abundances

  8. Raman microspectroscopy, surface-enhanced Raman scattering microspectroscopy, and stable-isotope Raman microspectroscopy for biofilm characterization.

    Science.gov (United States)

    Ivleva, Natalia P; Kubryk, Patrick; Niessner, Reinhard

    2017-07-01

    Biofilms represent the predominant form of microbial life on our planet. These aggregates of microorganisms, which are embedded in a matrix formed by extracellular polymeric substances, may colonize nearly all interfaces. Detailed knowledge of microorganisms enclosed in biofilms as well as of the chemical composition, structure, and functions of the complex biofilm matrix and their changes at different stages of the biofilm formation and under various physical and chemical conditions is relevant in different fields. Important research topics include the development and improvement of antibiotics and medical devices and the optimization of biocides, antifouling strategies, and biological wastewater treatment. Raman microspectroscopy is a capable and nondestructive tool that can provide detailed two-dimensional and three-dimensional chemical information about biofilm constituents with the spatial resolution of an optical microscope and without interference from water. However, the sensitivity of Raman microspectroscopy is rather limited, which hampers the applicability of Raman microspectroscopy especially at low biomass concentrations. Fortunately, the resonance Raman effect as well as surface-enhanced Raman scattering can help to overcome this drawback. Furthermore, the combination of Raman microspectroscopy with other microscopic techniques, mass spectrometry techniques, or particularly with stable-isotope techniques can provide comprehensive information on monospecies and multispecies biofilms. Here, an overview of different Raman microspectroscopic techniques, including resonance Raman microspectroscopy and surface-enhanced Raman scattering microspectroscopy, for in situ detection, visualization, identification, and chemical characterization of biofilms is given, and the main feasibilities and limitations of these techniques in biofilm research are presented. Future possibilities of and challenges for Raman microspectroscopy alone and in combination with other

  9. Ionizing radiation target groups of band 3 inserted into egg lecithin liposomes as determined by Raman spectroscopy

    International Nuclear Information System (INIS)

    Verma, S.P.; Sonwalkar, N.

    1993-01-01

    The purified integral membrane protein, band 3, from human erythrocytes was inserted into egg lecithin liposomes. The insertion of band 3 was determined from thermal transition data from the analysis of the C-H stretching region bands recorded at temperatures from 25 to -22 o C. Raman spectra show that band 3 considerably broadens and lowers the thermal transition of egg lecithin liposomes, suggesting the insertion of band 3. The band 3-inserted liposomes were irradiated with gamma-rays (40 Gy) and the radiation target groups were determined by the analysis of the structural sensitive Raman bands in the 1600-1700 cm -1 (amide I), 1200-1300 cm -1 (amide III) and 550-1030 cm -1 (side chain amino groups) regions. The radiation-sensitive groups as identified from Raman spectra in the region 550-1030 cm -1 are tyrosines and cysteines. The radiation-induced changes in the secondary structure were determined from amide I and III bands. Quantitative estimation using the curve fitting method shows that ban 3 contains 44% total helix, 48% beta strand and 8% undefined plus turns (error + or - 4%). The secondary structure changes to 35% total helix, 42% total beta-strand and 23% turned and undefined upon irradiating band 3 containing liposomes. (Author)

  10. Hydrogen and oxygen isotope exchange reactions over illuminated and nonilluminated TiO2

    International Nuclear Information System (INIS)

    Sato, S.

    1987-01-01

    Hydrogen isotope exchange between H 2 , gaseous H 2 O, and the surface hydroxyls of TiO 2 , and oxygen isotope exchange between O 2 , CO 2 , CO, H 2 O vapor, and the hydroxyls over TiO 3 were studied at room temperature in the dark and under illumination. Hydrogen isotope exchange between H 2 O and the hydroxyls occurred rapidly in the dark, but the exchange involving H 2 did not occur at all even under illumination. Oxygen isotope exchange among H 2 O vapor, CO 2 , and the hydroxyls easily took place in the dark, but the exchange involving O 2 required band-gap illumination. Dioxygen isotope equilibration was much faster than the other photoexchange reactions. Although the oxygen exchange between O 2 and illuminated TiO 2 has been considered to involve lattice-oxygen exchange, the present experiments revealed that the hydroxyls of TiO 2 mainly participate in the exchange reaction. The oxygen exchange between O 2 and H 2 O vapor was strongly inhibited by H 2 O vapor itself probably because oxygen adsorption was retarded by adsorbed water. Oxygen in CO was not exchanged with the other substrates under any conditions tested

  11. Raman band intensities of tellurite glasses.

    Science.gov (United States)

    Plotnichenko, V G; Sokolov, V O; Koltashev, V V; Dianov, E M; Grishin, I A; Churbanov, M F

    2005-05-15

    Raman spectra of TeO2-based glasses doped with WO3, ZnO, GeO2, TiO2, MoO3, and Sb2O3 are measured. The intensity of bands in the Raman spectra of MoO3-TeO2 and MoO3-WO3-TeO2 glasses is shown to be 80-95 times higher than that for silica glass. It is shown that these glasses can be considered as one of the most promising materials for Raman fiber amplifiers.

  12. Isotope anomalies in oxygen isotope exchange equilibrium systems

    International Nuclear Information System (INIS)

    Kotaka, M.

    1997-01-01

    The purpose of the present work is to elucidate the isotope anomalies in oxygen isotope exchange equilibrium systems, according to the calculations of the equilibrium constants for oxygen isotopic exchange reactions, and the calculations of the oxygen isotope separation factors between two phases. The equilibrium constants (K65, K67, K68 and K69) of 16 O- 15 O, 16 O 17 O, 16 O- 18 O, and 16 O- 19 O exchange reactions between diatomic oxides were calculated in a wide temperature range on the basis of quantum statistical mechanics. Many equilibrium constants showed the anomalous mass effects, and then had the crossover temperatures and the mass independent fractionation (MIF) temperatures which held K67 = K65, K67 = K68, or K67 = K69, etc. For example, the equilibrium constants for the reactions between OH and the other diatomic oxides (MO) showed the anomalous mass effects, when M was Li, Na, Mg, K, Fe, Al, Ge, Zr, Pt, etc. The 16 O 15 O, 16 O 17 O, 16 O- 18 O, and 16 O- 19 O oxygen isotope separation factors (S65, S67, S68 and S69) between two phases were calculated, when OH and CO were in the first phase, and SiO was in the second phase. Although the oxygen isotopic exchange equilibria in the two phases had no MIF and crossover temperatures, the separation factors showed the anomalous mass effects and had the temperatures. According to what is called the normal mass effects for the equilibrium constant of isotopic exchange reaction, the value of InK68/InK67 is 1.885. Therefore, the value of InS68/InS67 should be 1.885 too. The value calculated, however, widely changed. It can be concluded from the results obtained in the present work that some oxygen isotopic exchange equilibria cause the anomalous mass effects, the anomalous oxygen isotope separation factors, and then isotope anomalies

  13. Spins of superdeformed rotational bands in Tl isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Dadwal, Anshul; Mittal, H.M. [Dr. B.R. Ambedkar National Institute of Technology, Jalandhar (India)

    2017-01-15

    The two-parameter model defined for even-even nuclei viz. soft-rotor formula is used to assign the band-head spin of the 17 rotational bands in Tl isotopes. The least-squares fitting method is employed to obtain the spins of these bands in the A ∝ 190 mass region. The calculated transition energies are found to depend sensitively on the proposed spin. Whenever a correct spin assignment is made, the calculated and experimental transition energies coincide very well. The dynamic moment of inertia is also calculated and its variation with rotational frequency is explored. (orig.)

  14. Comparative study of the two-phonon Raman bands of silicene and graphene

    International Nuclear Information System (INIS)

    Popov, Valentin N; Lambin, Philippe

    2016-01-01

    We present a computational study of the two-phonon Raman spectra of silicene and graphene within a density-functional non-orthogonal tight-binding model. Due to the presence of linear bands close to the Fermi energy in the electronic structure of both structures, the Raman scattering by phonons is resonant. We find that the Raman spectra exhibit a crossover behavior for laser excitation close to the π-plasmon energy. This phenomenon is explained by the disappearance of certain paths for resonant Raman scattering and the appearance of other paths beyond this energy. Besides that, the electronic joint density of states (DOS) is divergent at this energy, which is reflected on the behavior of the Raman bands of the two structures in a qualitatively different way. Additionally, a number of Raman bands, originating from divergent phonon DOS at the M point and at points, inside the Brillouin zone, is also predicted. The calculated spectra for graphene are in excellent agreement with available experimental data. The obtained Raman bands can be used for structural characterization of silicene and graphene samples by Raman spectroscopy. (paper)

  15. Raman bands in Ag nanoparticles obtained in extract of Opuntia ficus-indica plant

    Science.gov (United States)

    Bocarando-Chacon, J.-G.; Cortez-Valadez, M.; Vargas-Vazquez, D.; Rodríguez Melgarejo, F.; Flores-Acosta, M.; Mani-Gonzalez, P. G.; Leon-Sarabia, E.; Navarro-Badilla, A.; Ramírez-Bon, R.

    2014-05-01

    Silver nanoparticles have been obtained in an extract of Opuntia ficus-indica plant. The size and distribution of nanoparticles were quantified by atomic force microscopy (AFM). The diameter was estimated to be about 15 nm. In addition, energy dispersive X-ray spectroscopy (EDX) peaks of silver were observed in these samples. Three Raman bands have been experimentally detected at 83, 110 and 160 cm-1. The bands at 83 and 110 cm-1 are assigned to the silver-silver Raman modes (skeletal modes) and the Raman mode located at 160 cm-1 has been assigned to breathing modes. Vibrational assignments of Raman modes have been carried out based on the Density Functional Theory (DFT) quantum mechanical calculation. Structural and vibrational properties for small Agn clusters with 2≤n≤9 were determined. Calculated Raman modes for small metal clusters have an approximation trend of Raman bands. These Raman bands were obtained experimentally for silver nanoparticles (AgNP).

  16. Raman polarizabilities of the ν2, ν5 bands of CD3Cl

    International Nuclear Information System (INIS)

    Escribano, R.; Hernandez, M.G.; Mejias, M.; Brodersen, S.

    1985-01-01

    The Raman spectrum of the Coriolis interacting ν 2 , ν 5 bands of CD 3 Cl was recorded with a resolution of ca 0.6 cm -1 . Using the vibrational-rotational parameters of Yamada and Hirota, a computer simulation of the Raman contour was performed, yielding relative values of Raman polarizability derivatives for these bands. By comparison with the absolute intensity measurement of Orza et al., absolute values of the Raman polarizabilities were obtained. The sign of the Raman intensity perturbation was found to be negative. (author)

  17. Fractionation of oxygen isotopes between mammalian bone-phosphate and environmental drinking water

    International Nuclear Information System (INIS)

    Luz, B.; Kolodny, V.; Horowitz, M.

    1984-01-01

    The delta 18 O of mammalian bone-phosphate varies linearly with delta 18 O of environmental water, but is not in isotopic equilibrium with that water. This situation is explained by a model of delta 18 O in body water in which the important fluxes of exchangeable oxygen through the body are taken into account. Fractionation of oxygen isotopes between body and environmental drinking water is dependent on the rates of drinking and respiration. Isotopic fractionation can be estimated from physiological data and the estimates correlate very well with observed fractionation. Species whose water consumption is large relative to its energy expenditure is sensitive to isotopic ratio changes in environmental water. (author)

  18. Vibrational bands of luminescent zinc(II)-octaethyl-porphyrin using a polarization-sensitive 'microcopic' multiplex CARS technique

    NARCIS (Netherlands)

    Otto, Cornelis; Voroshilov, A.; Voroshilov, Artemy; Kruglik, S.; Kruglik, S.G.; Greve, Jan

    2001-01-01

    Polarization-sensitive, multiplex coherent anti-Stokes Raman scattering (ps-MCARS) has been used to detect the vibrational bands of the highly luminescent zinc(II)-octaethylporphyrin (Zn-OEP). We show here that ps-MCARS can be used to measure the vibrational bands under resonant conditions.

  19. Detection of Dew-Point by substantial Raman Band Frequency Jumps (A new Method)

    DEFF Research Database (Denmark)

    Hansen, Susanne Brunsgaard; Berg, Rolf W.; Stenby, Erling Halfdan

    Detection of Dew-Point by substantial Raman Band Frequency Jumps (A new Method). See poster at http://www.kemi.dtu.dk/~ajo/rolf/jumps.pdf......Detection of Dew-Point by substantial Raman Band Frequency Jumps (A new Method). See poster at http://www.kemi.dtu.dk/~ajo/rolf/jumps.pdf...

  20. Red-excitation resonance Raman analysis of the nu(Fe=O) mode of ferryl-oxo hemoproteins.

    Science.gov (United States)

    Ikemura, Kenichiro; Mukai, Masahiro; Shimada, Hideo; Tsukihara, Tomitake; Yamaguchi, Satoru; Shinzawa-Itoh, Kyoko; Yoshikawa, Shinya; Ogura, Takashi

    2008-11-05

    The Raman excitation profile of the nuFe O mode of horseradish peroxidase compound II exhibits a maximum at 580 nm. This maximum is located within an absorption band with a shoulder assignable to an oxygen-to-iron charge transfer band on the longer wavelength side of the alpha-band. Resonance Raman bands of the nuFe O mode of various ferryl-oxo type hemoproteins measured at 590 nm excitation indicate that many hemoproteins in the ferryl-oxo state have an oxygen-to-iron charge transfer band in the visible region. Since this red-excited resonance Raman technique causes much less photochemical damage in the proteins relative to blue-excited resonance Raman spectroscopy, it produces a higher signal-to-noise ratio and thus represents a powerful tool for investigations of ferryl-oxo intermediates of hemoproteins.

  1. Raman scattering of monolayer graphene: the temperature and oxygen doping effects

    International Nuclear Information System (INIS)

    Zhou Haiqing; Qiu Caiyu; Yu Fang; Yang Huaichao; Chen Minjiang; Hu Lijun; Guo Yanjun; Sun Lianfeng

    2011-01-01

    Raman spectra of monolayer graphene at various temperatures (303-473 K) are measured. In Raman scattering with wave numbers ranging from 1200 to 3400 cm -1 , the four main Raman peaks (G, 2D, T + D and 2D') show temperature-dependent behaviour, but have different frequency shifts with increase in temperature. We propose that the peak frequency shift is related mainly to the elongation of C-C bond due to thermal expansion or anharmonic coupling of phonon modes, and oxygen-induced strong hole doping on the graphene surface. The doping effect can be confirmed from the frequency shifts, full-width at half-maximum as well as the area and intensity ratios of G and 2D peaks in temperature-dependent Raman scattering of graphene, room-temperature Raman spectra of pristine graphene and graphene cooled down after Raman measurement at 473 K in air. Therefore, the oxygen doping effect and temperature effect coexist in temperature-dependent Raman scattering of monolayer graphene.

  2. Oxygen isotopic fractionation during bacterial sulfate reduction

    Science.gov (United States)

    Balci, N.; Turchyn, A. V.; Lyons, T.; Bruchert, V.; Schrag, D. P.; Wall, J.

    2006-12-01

    Sulfur isotope fractionation during bacterial sulfate reduction (BSR) is understood to depend on a variety of environmental parameters, such as sulfate concentration, temperature, cell specific sulfate reduction rates, and the carbon substrate. What controls oxygen isotope fractionation during BSR is less well understood. Some studies have suggested that carbon substrate is important, whereas others concluded that there is a stoichiometric relationship between the fractionations of sulfur and oxygen during BSR. Studies of oxygen fractionation are complicated by isotopic equilibration between sulfur intermediates, particularly sulfite, and water. This process can modify the isotopic composition of the extracellular sulfate pool (δ18OSO4 ). Given this, the challenge is to distinguish between this isotopic equilibration and fractionations linked to the kinetic effects of the intercellular enzymes and the incorporation of sulfate into the bacterial cell. The δ18OSO4 , in concert with the sulfur isotope composition of sulfate (δ34SSO4), could be a powerful tool for understanding the pathways and environmental controls of BSR in natural systems. We will present δ18OSO4 data measured from batch culture growth of 14 different species of sulfate reducing bacteria for which sulfur isotope data were previously published. A general observation is that δ18OSO4 shows little isotopic change (kinetic effect during BSR and/or equilibration between sulfur intermediates and the isotopically light water (~-5‰) of the growth medium. Our present batch culture data do not allow us to convincingly isolate the magnitude and the controlling parameters of the kinetic isotope effect for oxygen. However, ongoing growth of mutant bacteria missing enzymes critical in the different steps of BSR may assist in this mission.

  3. Probing Xylan-Specific Raman Bands for Label-Free Imaging Xylan in Plant Cell Wall

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Yining; Yarbrough, John M.; Mittal, Ashutosh; Tucker, Melvin P.; Vinzant, Todd; Himmel, Michael E.

    2015-06-15

    Xylan constitutes a significant portion of biomass (e.g. 22% in corn stover used in this study). Xylan is also an important source of carbohydrates, besides cellulose, for renewable and sustainable energy applications. Currently used method for the localization of xylan in biomass is to use fluorescence confocal microscope to image the fluorescent dye labeled monoclonal antibody that specifically binds to xylan. With the rapid adoption of the Raman-based label-free chemical imaging techniques in biology, identifying Raman bands that are unique to xylan would be critical for the implementation of the above label-free techniques for in situ xylan imaging. Unlike lignin and cellulose that have long be assigned fingerprint Raman bands, specific Raman bands for xylan remain unclear. The major challenge is the cellulose in plant cell wall, which has chemical units highly similar to that of xylan. Here we report using xylanase to specifically remove xylan from feedstock. Under various degree of xylan removal, with minimum impact to other major cell wall components, i.e. lignin and cellulose, we have identified Raman bands that could be further tested for chemical imaging of xylan in biomass in situ.

  4. Polarization Sensitive Coherent Raman Measurements of DCVJ

    Science.gov (United States)

    Anderson, Josiah; Cooper, Nathan; Lawhead, Carlos; Shiver, Tegan; Ujj, Laszlo

    2014-03-01

    Coherent Raman spectroscopy which recently developed into coherent Raman microscopy has been used to produce label free imaging of thin layers of material and find the spatial distributions of certain chemicals within samples, e.g. cancer cells.(1) Not all aspects of coherent scattering have been used for imaging. Among those for example are special polarization sensitive measurements. Therefore we have investigated the properties of polarization sensitive CARS spectra of a highly fluorescent molecule, DCVJ.(2) Spectra has been recorded by using parallel polarized and perpendicular polarized excitations. A special polarization arrangement was developed to suppress the non-resonant background scattering from the sample. These results can be used to improve the imaging properties of a coherent Raman microscope in the future. This is the first time coherent Raman polarization sensitive measurements have been used to characterize the vibrational modes of DCVJ. 1: K. I. Gutkowski, et al., ``Fluorescence of dicyanovinyl julolidine in a room temperature ionic liquid '' Chemical Physics Letters 426 (2006) 329 - 333 2: Fouad El-Diasty, ``Coherent anti-Stokes Raman scattering: Spectroscopy and microscopy'' Vibrational Spectroscopy 55 (2011) 1-37

  5. Theory of oxygen isotope exchange

    NARCIS (Netherlands)

    den Otter, M.W.; Boukamp, Bernard A.; Bouwmeester, Henricus J.M.

    2001-01-01

    Transients for oxygen molecular mass numbers 32, 34 and 36 are derived which can be used for the interpretation of oxygen isotope exchange data based on measurement of concentrations of 16O2, 16O18O and 18O2 in the gas phase. Key parameters in the theory are the rate at which oxygen molecules are

  6. Oxygen Isotopes in Chondritic Interplanetary Dust: Parent-Bodies and Nebular Oxygen Reservoirs

    International Nuclear Information System (INIS)

    Aleon, J; McKeegan, K D; Leshin, L

    2006-01-01

    Planetary objects have preserved various amounts of oxygen issued from isotopically different oxygen reservoirs reflecting their origin and physico-chemical history. An 16 O-rich component is preserved in refractory inclusions (CAIs) whereas meteorites matrices are enriched in an 16 O-poor component. The origin of these components is still unclear. The most recent models are based on isotope selective photodissociation of CO in a 16 O-rich nebula/presolr cloud resulting in a 16 O-poor gas in the outer part of the nebula. However because most meteorite components are thought to be formed in the inner 3AU of the solar nebula, the precise isotopic composition of outer solar system components is yet unknown. In that respect, the oxygen isotopic composition of cometary dust is a key to understand the origin of the solar system. The Stardust mission will bring back to the Earth dust samples from comet Wild2, a short period comet from the Jupiter family. A precise determination of the oxygen isotope composition of Wild2 dust grains is essential to decipher the oxygen reservoirs of the outer solar system. However, Stardust samples may be extremely fragmented upon impact in the collector. In addition, interplanetary dust particles (IDPs) collected in the stratosphere are likely to contain comet samples. Therefore, they started to investigate the oxygen isotopic composition of a suite of chondritic interplanetary dust particles that includes IDPs of potential cometary origin using a refined procedure to increase the lateral resolution for the analysis of Stardust grains or IDP subcomponents down to ∼ 3 (micro)m. High precision data for 4 IDPs were previously reported, here they have measured 6 additional IDPs

  7. A latitudinal study of oxygen isotopes within horsehair

    Science.gov (United States)

    Thompson, E.; Bronk Ramsey, C.; McConnell, J. R.

    2016-12-01

    This study aims to explore the hypothesis that 'if oxygen isotope ratios deplete with decreasing temperature then a study of oxygen isotope ratios within horsehair from Oxfordshire to Iceland will show a latitudinal depletion gradient'. By looking at oxygen isotope values at different geographical positions, we can track the relationship with latitude and with different regional climate features. This will provide a firmer understanding of how to compare climate records from different locations. Additionally, a comparison of the horse breeds from this study to those analysed within previous studies will create an even better understanding of the intra-species variation within the δ18O values of horsehair. A total of 24 horses were sampled on the 7th March from Thordale Stud in Shetland, the Icelandic Food And Veterinary Authority in Iceland, the Exmoor Pony Centre in Exmoor and the Pigeon House Equestrian Centre in Oxfordshire. By starting the sampling process from the most recent growth at the follicle, the sampling date becomes a chronological marker, temporally fixing the first sample within a sequential set of data points extending for one year or longer, depending on the length of each individual hair. The samples were analysed for oxygen isotope values using an IRMS coupled within a Sercon HTEA. Preliminary results show a latitudinal gradient is evident on comparison between the locations, consistent with the findings of Darling and Talbot's study of fresh water isotopes in the British Isles (2003). These results support the hypothesis, showing that a study of oxygen isotope ratios within horse hair from Oxfordshire to Iceland showing a latitudinal depletion gradient, consistent with a depletion of oxygen isotope ratios due to decreasing temperatures. Darling, W. and Talbot, J. (2003). The O and H stable isotope composition of freshwaters in the British Isles. 1. Rainfall. Hydrol. Earth System Science, 7(2), pp.163-181.

  8. The transport of oxygen isotopes in hydrothermal systems

    International Nuclear Information System (INIS)

    McKibbin, R.; Absar, A.; Blattner, P.

    1986-01-01

    As groundwater passes through porous rocks, exchange of oxygen between the fluid and the solid matrix causes a change in the oxygen isotope concentrations in both water and rock. If the rate at which the exchange takes place can be estimated (as a function of the isotope concentrations and temperature) then the time taken for a rock/water system to come to equilibrium with respect to isotope concentration might be calculated. In this paper, the equation for isotope transport is derived using conservation laws, and a simple equation to describe the rate of isotope exchange is proposed. These are combined with the equations for fluid flow in a porous medium, to produce a general set of equations describing isotope transport in a hydrothermal system. These equations are solved numerically, using typical parameters, for the one-dimensional case. Oxygen isotope data from the basement rocks underlying Kawerau geothermal field are modelled. The results indicate that the time taken for exchange of 18 O to present-day values is less than the postulated age of hydrothermal alteration in that field. This suggests that, although controlled by similar parameters, oxygen isotope exchange, in felsic rocks at least, is much faster than hydrothermal alteration. This conclusion is consistent with the petrographic observations from the Kawerau system as well as other geothermal fields

  9. Monitoring of blood oxygenation in brain by resonance Raman spectroscopy

    DEFF Research Database (Denmark)

    Brazhe, Nadezda A; Thomsen, Kirsten; Lønstrup, Micael

    2018-01-01

    Blood oxygenation in cerebral vessels is an essential parameter to evaluate brain function and to investigate the coupling between local blood flow and neuronal activity. We apply resonance Raman spectroscopy in vivo to study hemoglobin oxygenation in cortex vessels of anesthetized ventilated mice....... We demonstrate that the pairs of Raman peaks at 1355 and1375 cm-1(symmetric vibrations of pyrrol half-rings in the heme molecule), 1552 and 1585 cm-1and 1602 and 1638 cm-1(vibrations of methine bridges in heme molecule) are reliable markers for quantitative estimation of the relative amount...

  10. Oxygen isotope variations at the margin of a CAI records circulation within the solar nebula.

    Science.gov (United States)

    Simon, Justin I; Hutcheon, Ian D; Simon, Steven B; Matzel, Jennifer E P; Ramon, Erick C; Weber, Peter K; Grossman, Lawrence; DePaolo, Donald J

    2011-03-04

    Micrometer-scale analyses of a calcium-, aluminum-rich inclusion (CAI) and the characteristic mineral bands mantling the CAI reveal that the outer parts of this primitive object have a large range of oxygen isotope compositions. The variations are systematic; the relative abundance of (16)O first decreases toward the CAI margin, approaching a planetary-like isotopic composition, then shifts to extremely (16)O-rich compositions through the surrounding rim. The variability implies that CAIs probably formed from several oxygen reservoirs. The observations support early and short-lived fluctuations of the environment in which CAIs formed, either because of transport of the CAIs themselves to distinct regions of the solar nebula or because of varying gas composition near the proto-Sun.

  11. Oxygen isotope exchange between refractory inclusion in allende and solar nebula Gas

    Science.gov (United States)

    Yurimoto; Ito; Nagasawa

    1998-12-04

    A calcium-aluminum-rich inclusion (CAI) from the Allende meteorite was analyzed and found to contain melilite crystals with extreme oxygen-isotope compositions ( approximately 5 percent oxygen-16 enrichment relative to terrestrial oxygen-16). Some of the melilite is also anomalously enriched in oxygen-16 compared with oxygen isotopes measured in other CAIs. The oxygen isotopic variation measured among the minerals (melilite, spinel, and fassaite) indicates that crystallization of the CAI started from oxygen-16-rich materials that were probably liquid droplets in the solar nebula, and oxygen isotope exchange with the surrounding oxygen-16-poor nebular gas progressed through the crystallization of the CAI. Additional oxygen isotope exchange also occurred during subsequent reheating events in the solar nebula.

  12. Growth patterns of an intertidal gastropod as revealed by oxygen isotope analysis

    Science.gov (United States)

    Bean, J. R.; Hill, T. M.; Guerra, C.

    2007-12-01

    The size and morphology of mollusk shells are affected by environmental conditions. As a result, it is difficult to assess growth rate, population age structure, shell morphologies associated with ontogenetic stages, and to compare life history patterns across various environments. Oxygen isotope analysis is a useful tool for estimating minimum ages and growth rates of calcium carbonate secreting organisms. Calcite shell material from members of two northern California populations of the intertidal muricid gastropod Acanthinucella spirata was sampled for isotopic analysis. Individual shells were sampled from apex to margin, thus providing a sequential record of juvenile and adult growth. A. spirata were collected from a sheltered habitat in Tomales Bay and from an exposed reef in Bolinas. Abiotic factors, such as temperature, wave exposure, and substrate consistency, and biotic composition differ significantly between these sites, possibly resulting in local adaptations and variation in life history and growth patterns. Shell morphology of A. spirata changes with age as internal shell margin thickenings of denticle rows associated with external growth bands are irregularly accreted. It is not known when, either seasonally and/or ontogentically, these thickenings and bands form or whether inter or intra-populational variation exists. Preliminary results demonstrate the seasonal oxygen isotopic variability present at the two coastal sites, indicating 5-6 degC changes from winter to summertime temperatures; these data are consistent with local intertidal temperature records. Analysis of the seasonal patterns indicate that: 1) differences in growth rate and seasonal growth patterns at different ontogenetic stages within populations, and 2) differences in growth patterns and possibly age structure between the two A. spirata populations. These findings indicate that isotopic analyses, in addition to field observations and morphological measurements, are necessary to

  13. Oxygen isotope variations in phosphate of biogenic apatites. Pt.1

    International Nuclear Information System (INIS)

    Kolodny, Y.; Luz, B.; Navon, O.

    1983-01-01

    The major advantage of the oxygen in phosphate isotope paleothermometry is that it is a system which records temperatures with great sensitivity while bone (and teeth) building organisms are alive, and the record is nearly perfectly preserved after death. Fish from seven water bodies of different temperatures (3-23 0 C) and different delta 18 O (values - 16 to + 3) of the water were analysed. The delta 18 O values of the analysed PO 4 vary from 6 to 25. The system passed the following tests: (a) the temperature deduced from isotopic analyses of the sequence of fish from Lake Baikal are in good agreement with the temperatures measured in the thermally stratified lake; (b) the isotopic composition of fish bone phosphate is not influenced by the isotopic composition of the phosphate which is fed to the fish, but only by temperature and water composition. Isotopic analysis of fossil fish in combination with analysis of mammal bones should be a useful tool in deciphering continental paleoclimates. (orig.)

  14. Quantitative measurement of carbon isotopic composition in CO2 gas reservoir by Micro-Laser Raman spectroscopy

    Science.gov (United States)

    Li, Jiajia; Li, Rongxi; Zhao, Bangsheng; Guo, Hui; Zhang, Shuan; Cheng, Jinghua; Wu, Xiaoli

    2018-04-01

    The use of Micro-Laser Raman spectroscopy technology for quantitatively determining gas carbon isotope composition is presented. In this study, 12CO2 and 13CO2 were mixed with N2 at various molar fraction ratios to obtain Raman quantification factors (F12CO2 and F13CO2), which provide a theoretical basis for calculating the δ13C value. And the corresponding values were 0.523 (0 Laser Raman analysis were carried out on natural CO2 gas from Shengli Oil-field at room temperature under different pressures. The δ13C values obtained by Micro-Laser Raman spectroscopy technology and Isotope Ratio Mass Spectrometry (IRMS) technology are in good agreement with each other, and the relative errors range of δ13C values is 1.232%-6.964%. This research provides a fundamental analysis tool for determining gas carbon isotope composition (δ13C values) quantitatively by using Micro-Laser Raman spectroscopy. Experiment of results demonstrates that this method has the potential for obtaining δ13C values in natural CO2 gas reservoirs.

  15. Raman spectra of ordinary and deuterated liquid ammonias; Spectres Raman des ammoniacs ordinaire et deuteries liquides

    Energy Technology Data Exchange (ETDEWEB)

    Ceccaldi, M; Leicknam, J P [Commissariat a l' Energie Atomique, 91 - Saclay (France). Centre d' Etudes Nucleaires, direction des materiaux et des combustibles nucleaires, departement de physico-chimie, service des isotopes stables, service de spectrometrie de masse

    1968-12-01

    The three deuterated ammonia molecules, as well as ordinary ammonia, have been examined in the liquid state by Raman spectroscopy using a high-pressure cell described elsewhere. This work thus completes the infrared spectrometry studies. We have examined the NH and ND valency absorption regions. The polarization measurements and isotope effect considerations make it possible to confirm most of the attributions recently proposed for interpreting the infrared spectra of the four isotopic molecules: the apparent disagreement between the NH{sub 3} and ND{sub 3} spectra obtained in this region by infrared and Raman spectroscopy is discussed: by the first technique the number of bands in the spectra corresponds well to the theoretically expected number, and the relative intensities conform more or less to expectations; the Raman spectra however have a strong supplementary band in the same region, produced by a Fermi resonance; it is possible to explain, from theoretical considerations, why this resonance appears so easily in the Raman spectrum, whereas it is detected in the infrared only by a very detailed analysis of the effects of solvents on the ammonia. (authors) [French] Les trois ammoniacs deuteries, ainsi que l'ammoniac ordinaire, sont examines a l'etat liquide par spectrometrie Raman, a l'aide d'une cuve haute pression decrite par ailleurs. Ce travail complete donc les etudes effectuees par spectrometrie infra-rouge. Nous avons examine les regions d'absorption de valence NH et ND. Les mesures de polarisation et des considerations sur les effets isotopiques permettent de confirmer la plupart des attributions proposees recemment pour interpreter les spectres infra-rouges des quatre molecules isotopiques: on discute egalement l'apparent desaccord entre les spectres de NH{sub 3} et de ND{sub 3} obtenus dans cette region par infra-rouge et Raman: par la premiere technique le nombre de bandes relevees sur les spectres correspond bien au nombre theoriquement attendu et

  16. Oxygen isotope fractionation in the CaCO3-DIC-H2O system

    Science.gov (United States)

    Devriendt, Laurent S.; Watkins, James M.; McGregor, Helen V.

    2017-10-01

    The oxygen isotope ratio (δ18O) of inorganic and biogenic carbonates is widely used to reconstruct past environments. However, the oxygen isotope exchange between CaCO3 and H2O rarely reaches equilibrium and kinetic isotope effects (KIE) commonly complicate paleoclimate reconstructions. We present a comprehensive model of kinetic and equilibrium oxygen isotope fractionation between CaCO3 and water (αc/w) that accounts for fractionation between both (a) CaCO3 and the CO32- pool (α c / CO32-) , and (b) CO32- and water (α CO32- / w) , as a function of temperature, pH, salinity, calcite saturation state (Ω), the residence time of the dissolved inorganic carbon (DIC) in solution, and the activity of the enzyme carbonic anhydrase. The model results suggest that: (1) The equilibrium αc/w is only approached in solutions with low Ω (i.e. close to 1) and low ionic strength such as in the cave system of Devils Hole, Nevada. (2) The sensitivity of αc/w to the solution pH and/or the mineral growth rate depends on the level of isotopic equilibration between the CO32- pool and water. When the CO32- pool approaches isotopic equilibrium with water, small negative pH and/or growth rate effects on αc/w of about 1-2‰ occur where these parameters covary with Ω. In contrast, isotopic disequilibrium between CO32- and water leads to strong (>2‰) positive or negative pH and growth rate effects on α CO32-/ w (and αc/w) due to the isotopic imprint of oxygen atoms derived from HCO3-, CO2, H2O and/or OH-. (3) The temperature sensitivity of αc/w originates from the negative effect of temperature on α CO32-/ w and is expected to deviate from the commonly accepted value (-0.22 ± 0.02‰/°C between 0 and 30 °C; Kim and O'Neil, 1997) when the CO32- pool is not in isotopic equilibrium with water. (4) The model suggests that the δ18O of planktic and benthic foraminifers reflects a quantitative precipitation of DIC in isotopic equilibrium with a high-pH calcifying fluid, leading

  17. Critical test of vibrational dephasing theories in solids using spontaneous Raman scattering in isotopically mixed crystals

    International Nuclear Information System (INIS)

    Marks, S.; Cornelius, P.A.; Harris, C.B.

    1980-01-01

    A series of experiments have been conducted in order to evaluate the relative importance of several recent theories of vibrational dephasing in solids. The theories are discussed briefly, and are used to interpret the temperature dependence of the C--H and C--D stretch bands in the spontaneous Raman spectra of h 14 - and d 14 -1,2,4,5-tetramethyl benzene (durene). The infrared spectra of these same molecules are also reported in the region of the combination bands involving C--H (or C--D) stretches and low-frequency modes. The results support the applicability of the model of Harris et al., [C. B. Harris, R. M. Shelby and P. A. Cornelius, Phys. Rev. Lett. 38, 1415 (1977); Chem Phys. Lett. 57, 8 (1978); R. M. Shelby, C. B. Harris, and P. A. Cornelius, J. Chem. Phys. 70, 34 (1979)], based on energy exchange in anharmonically coupled low-frequency modes. This theory is then used, in connection with Raman spectra obtained in isotopically mixed samples of durene, to elucidate the vibrational dynamics underlying the dephasing. It is found that the results are consistent with the hypothesis that some low-frequency modes in this molecule are significantly delocalized or ''excitonic'' in character, and that this delocalization may be studied by means of Raman spectroscopy on the low-frequency modes themselves, as well as by exchange analysis of the coupled high-frequency modes. These conclusions represent a generalization and extension of the previously published exchange model [R. M. Shelby, C. B. Harris, and P. A. Cornelius, J. Chem Phys. 70, 34 (1979)

  18. Oxygen Isotope Composition of Nitrate Produced by Freshwater Nitrification

    Science.gov (United States)

    Boshers, D.; Granger, J.; Bohlke, J. K.

    2016-12-01

    Measurements of the naturally occurring nitrogen and oxygen stable isotope ratios of nitrate (NO3-), δ15N and δ18O, can be used to determine the source, dispersal, and fate of natural and contaminant NO3- in aquatic environments. To this end, it is necessary to know the extent to which NO3- isotopologues are modified by biological reactions, as heavy and light isotopes have different reaction rates. The purpose of this study was to determine the influence of the δ18O of ambient water on the isotope composition of NO3- produced during nitrification, the biological oxidation of ammonium (NH4+) to nitrite (NO2-) and then NO3-, which is poorly constrained in freshwater systems. To determine the δ18O of NO3- produced by nitrification in freshwater, we collected water from a stream in New England, which we amended with NH4+ and with increments of 18O-enriched water, to monitor the isotope composition of NO3- produced by a natural consortium of nitrifiers. Added NH4+ was completely oxidized to NO3- over 26 days. The final δ18O of nitrified NO3- revealed sensitivity to the δ18O of water mediated by (a) isotopic equilibration between water and NO2- and (b) kinetic isotope fractionation during O-atom incorporation from water into NO2- and NO3-. Our results concur with nitrifying culture experiments that have demonstrated analogous sensitivity of the δ18O of nitrified NO3- to equilibrium and kinetic O isotope effects (Buchwald et al. 2012), as well as show that these dynamics need to be considered to interpret NO3- isotope distribution in freshwater environments.

  19. Oxygen isotopic anomalies in Allende inclusion HAL

    International Nuclear Information System (INIS)

    Lee, T.; Mayeda, T.K.; Clayton, R.N.

    1980-01-01

    The oxygen isotopic composition has been measured on the constituent phases of Allende inclusion HAL, which has unusual mineralogical, chemical, and calcium isotopic compositions. The oxygen in HAL is heterogeneous, with the rim showing more ''normal'' composition and the hibonite core showing large deviation from both the terrestrial material and the usual inclusions. The observed pattern indicates that HAL is a bona fide and more devious member of the rare ''FUN'' family, whose isotopic composition is characterized by correlated nuclear effects and extreme mass fractionation. The data imply that HAL has suffered a large oxygen mass fractionation of 25% 0 per mass unit, followed by exchange with oxygen in a second reservoir. The present experiment supports the identification of two distinct reservoirs from which all refractory inclusions in carbonaceous meteorites derived their oxygen. The required fractionation process seems to operate according to the volatility of various elements and could have been caused by evaporation during a heating event. Nuclear anomalies can be produced in the same heating event if the progenitors of the refractory inclusions were macroscopic aggregates of tiny pre-solar interstellar dust grains and if these grains were destroyed differentially during the evaporation

  20. Highly sensitive high resolution Raman spectroscopy using resonant ionization methods

    International Nuclear Information System (INIS)

    Owyoung, A.; Esherick, P.

    1984-05-01

    In recent years, the introduction of stimulated Raman methods has offered orders of magnitude improvement in spectral resolving power for gas phase Raman studies. Nevertheless, the inherent weakness of the Raman process suggests the need for significantly more sensitive techniques in Raman spectroscopy. In this we describe a new approach to this problem. Our new technique, which we call ionization-detected stimulated Raman spectroscopy (IDSRS), combines high-resolution SRS with highly-sensitive resonant laser ionization to achieve an increase in sensitivity of over three orders of magnitude. The excitation/detection process involves three sequential steps: (1) population of a vibrationally excited state via stimulated Raman pumping; (2) selective ionization of the vibrationally excited molecule with a tunable uv source; and (3) collection of the ionized species at biased electrodes where they are detected as current in an external circuit

  1. Seasonal variation in kangaroo tooth enamel oxygen and carbon isotopes in southern Australia

    Science.gov (United States)

    Brookman, Tom H.; Ambrose, Stanley H.

    2012-09-01

    Serial sampling of tooth enamel growth increments for carbon and oxygen isotopic analyses of Macropus (kangaroo) teeth was performed to assess the potential for reconstructing paleoseasonality. The carbon isotope composition of tooth enamel apatite carbonate reflects the proportional intake of C3 and C4 vegetation. The oxygen isotopic composition of enamel reflects that of ingested and metabolic water. Tooth enamel forms sequentially from the tip of the crown to the base, so dietary and environmental changes during the tooth's formation can be detected. δ13C and δ18O values were determined for a series of enamel samples drilled from the 3rd and 4th molars of kangaroos that were collected along a 900 km north-south transect in southern Australia. The serial sampling method did not yield pronounced seasonal isotopic variation patterns in Macropus enamel. The full extent of dietary isotopic variation may be obscured by attenuation of the isotopic signal during enamel mineralisation. Brachydont (low-crowned) Macropus teeth may be less sensitive to seasonal variation in isotopic composition due to time-averaging during mineralisation. However, geographic variations observed suggest that there may be potential for tracking latitudinal shifts in vegetation zones and seasonal environmental patterns in response to climate change.

  2. Carbon and Oxygen isotopic composition in paleoenvironmental determination

    International Nuclear Information System (INIS)

    Silva, J.R.M. da.

    1978-01-01

    This work reports that the carbon and oxygen isotopic composition separate the mollusks from marine environment of the mollusks from continental environment in two groups isotopically different, making the biological control outdone by environment control, in the isotopic fragmentation mechanisms. The patterns from the continental environment are more rich in O 16 than the patterns from marine environments. The C 12 is also more frequent in the mollusks from continental environments. The carbon isotopic composition in paterns from continental environments is situated betwen - 10.31 and - 4,05% and the oxygen isotopic composition is situated between - 6,95 and - 2,41%. To the marine environment patterns the carbon isotopic composition is between - 2,08 and + 2,65% and the oxigen isotopic composition is between - 2,08 and + 0,45%. Was also analysed fossil marine mollusks shells and their isotopic composition permit the formulation of hypothesis about the environment which they lived. (C.D.G.) [pt

  3. Major events in Neogene oxygen isotopic records

    International Nuclear Information System (INIS)

    Kennett, J.P.; Hodell, D.A.

    1986-01-01

    Changes in oxygen isotopic ratios of foraminiferal calcite during the cainozoic have been one of the primary tools for investigating the history of Arctic and Antarctic glaciation, although interpretations of the oxygen isotopic record differ markedly. The ambiguity in interpretation results mainly from the partitioning of temperature from ice volume effects in delta 18 O changes. Oxygen isotopic records for the Cainozoic show an increase in delta 18 O values towards the present, reflecting gradual cooling and increased glaciation of the Earth's climate since the late Cretaceous. A variety of core material from the South Atlantic and South-west Pacific oceans are investigated. This composite data represents one of the most complete available with which to evaluate the evolution of glaciation during the Neogene. Expansion of ice shelves in Antarctica undoubtedly accompanied the increased glaciation of the northern hemisphere, since eustatic sea-level lowering would positively reinforce ice growth on Antarctica

  4. Effect of Red Light-Emitting Diodes Irradiation on Hemoglobin for Potential Hypertension Treatment Based on Confocal Micro-Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Xuejun Qiu

    2017-01-01

    Full Text Available Red light-emitting diodes (LED were used to irradiate the isolated hypertension hemoglobin (Hb and Raman spectra difference was recorded using confocal micro-Raman spectroscopy. Differences were observed between the controlled and irradiated Hb by comparing the spectra records. The Raman spectrum at the 1399 cm−1 band decreased following prolonged LED irradiation. The intensity of the 1639 cm−1 band decreased dramatically in the first five minutes and then gradually increased in a time-dependent manner. This observation indicated that LED irradiation increased the ability of oxygen binding in Hb. The appearance of the heme aggregation band at 1399 cm−1, in addition to the oxygen marker band at 1639 cm−1, indicated that, in our study, 30 min of irradiation with 15.0 mW was suitable for inhibiting heme aggregation and enhancing the oxygen-carrying capacity of Hb. Principal component analysis showed a one-to-one relationship between irradiated Hb at different time points and the corresponding Raman spectra. Our approach could be used to analyze the hemoglobin from patients with confocal micro-Raman spectroscopy and is helpful for developing new nondrug hypertension therapy.

  5. The molecular physics of photolytic fractionation of sulfur and oxygen isotopes in planetary atmospheres (Invited)

    Science.gov (United States)

    Johnson, M. S.; Schmidt, J. A.; Hattori, S.; Danielache, S.; Meusinger, C.; Schinke, R.; Ueno, Y.; Nanbu, S.; Kjaergaard, H. G.; Yoshida, N.

    2013-12-01

    Atmospheric photochemistry is able to produce large mass independent anomalies in atmospheric trace gases that can be found in geological and cryospheric records. This talk will present theoretical and experimental investigations of the molecular mechanisms producing photolytic fractionation of isotopes with special attention to sulfur and oxygen. The zero point vibrational energy (ZPE) shift and reflection principle theories are starting points for estimating isotopic fractionation, but these models ignore effects arising from isotope-dependent changes in couplings between surfaces, excited state dynamics, line densities and hot band populations. The isotope-dependent absorption spectra of the isotopologues of HCl, N2O, OCS, CO2 and SO2 have been examined in a series of papers and these results are compared with experiment and ZPE/reflection principle models. Isotopic fractionation in planetary atmospheres has many interesting applications. The UV absorption of CO2 is the basis of photochemistry in the CO2-rich atmospheres of the ancient Earth, and of Mars and Venus. For the first time we present accurate temperature and isotope dependent CO2 absorption cross sections with important implications for photolysis rates of SO2 and H2O, and the production of a mass independent anomaly in the Ox reservoir. Experimental and theoretical results for OCS have implications for the modern stratospheric sulfur budget. The absorption bands of SO2 are complex with rich structure producing isotopic fractionation in photolysis and photoexcitation.

  6. Isotope shift of the 590-cm-1 Raman feature in underdoped Bi2Sr2CaCu2O8+δ

    Science.gov (United States)

    Hewitt, K. C.; Wang, N. L.; Irwin, J. C.; Pooke, D. M.; Pantoja, A. E.; Trodahl, H. J.

    1999-10-01

    Raman-scattering studies have been performed on underdoped Bi2Sr2CaCu2O8+δ. In single crystals underdoped by oxygen removal, a 590-cm-1 peak is observed in the B1g spectrum. The feature is observed to soften in frequency by 3.8% with isotopic exchange of 16O by 18O. In contrast, the 590-cm-1 peak is not observed in crystals underdoped by Y substitution which suggests that it is a vibrational mode activated by oxygen deficency. We have also found that underdoping leads to a depletion of low-energy spectral weight from regions of the Fermi surface located near the Brillouin-zone axes.

  7. Band gap effects of hexagonal boron nitride using oxygen plasma

    International Nuclear Information System (INIS)

    Sevak Singh, Ram; Leong Chow, Wai; Yingjie Tay, Roland; Hon Tsang, Siu; Mallick, Govind; Tong Teo, Edwin Hang

    2014-01-01

    Tuning of band gap of hexagonal boron nitride (h-BN) has been a challenging problem due to its inherent chemical stability and inertness. In this work, we report the changes in band gaps in a few layers of chemical vapor deposition processed as-grown h-BN using a simple oxygen plasma treatment. Optical absorption spectra show a trend of band gap narrowing monotonically from 6 eV of pristine h-BN to 4.31 eV when exposed to oxygen plasma for 12 s. The narrowing of band gap causes the reduction in electrical resistance by ∼100 fold. The x-ray photoelectron spectroscopy results of plasma treated hexagonal boron nitride surface show the predominant doping of oxygen for the nitrogen vacancy. Energy sub-band formations inside the band gap of h-BN, due to the incorporation of oxygen dopants, cause a red shift in absorption edge corresponding to the band gap narrowing

  8. Band gap effects of hexagonal boron nitride using oxygen plasma

    Energy Technology Data Exchange (ETDEWEB)

    Sevak Singh, Ram; Leong Chow, Wai [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Yingjie Tay, Roland [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Temasek Laboratories-NTU, 50 Nanyang Avenue, Singapore 639798 (Singapore); Hon Tsang, Siu [Temasek Laboratories-NTU, 50 Nanyang Avenue, Singapore 639798 (Singapore); Mallick, Govind [Temasek Laboratories-NTU, 50 Nanyang Avenue, Singapore 639798 (Singapore); Weapons and Materials Research Directorate, U.S. Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005 (United States); Tong Teo, Edwin Hang, E-mail: htteo@ntu.edu.sg [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)

    2014-04-21

    Tuning of band gap of hexagonal boron nitride (h-BN) has been a challenging problem due to its inherent chemical stability and inertness. In this work, we report the changes in band gaps in a few layers of chemical vapor deposition processed as-grown h-BN using a simple oxygen plasma treatment. Optical absorption spectra show a trend of band gap narrowing monotonically from 6 eV of pristine h-BN to 4.31 eV when exposed to oxygen plasma for 12 s. The narrowing of band gap causes the reduction in electrical resistance by ∼100 fold. The x-ray photoelectron spectroscopy results of plasma treated hexagonal boron nitride surface show the predominant doping of oxygen for the nitrogen vacancy. Energy sub-band formations inside the band gap of h-BN, due to the incorporation of oxygen dopants, cause a red shift in absorption edge corresponding to the band gap narrowing.

  9. Strong overtones and combination bands in ultraviolet resonance Raman spectroscopy

    NARCIS (Netherlands)

    Efremov, E.V.; Ariese, F.; Mank, A.J.G.; Gooijer, C.

    2006-01-01

    Ultraviolet resonance Raman spectroscopy is carried out using a continuous wave frequency-doubled argon ion laser operated at 229, 244, and 257 nm in order to characterize the overtones and combination bands for several classes of organic compounds in liquid solutions. Contrary to what is generally

  10. Quantitative measurement of carbon isotopic composition in CO2 gas reservoir by Micro-Laser Raman spectroscopy.

    Science.gov (United States)

    Li, Jiajia; Li, Rongxi; Zhao, Bangsheng; Guo, Hui; Zhang, Shuan; Cheng, Jinghua; Wu, Xiaoli

    2018-04-15

    The use of Micro-Laser Raman spectroscopy technology for quantitatively determining gas carbon isotope composition is presented. In this study, 12 CO 2 and 13 CO 2 were mixed with N 2 at various molar fraction ratios to obtain Raman quantification factors (F 12CO2 and F 13CO2 ), which provide a theoretical basis for calculating the δ 13 C value. And the corresponding values were 0.523 (0Raman peak area can be used for the determination of δ 13 C values within the relative errors range of 0.076% to 1.154% in 13 CO 2 / 12 CO 2 binary mixtures when F 12CO2 /F 13CO2 is 0.466972625. In addition, measurement of δ 13 C values by Micro-Laser Raman analysis were carried out on natural CO 2 gas from Shengli Oil-field at room temperature under different pressures. The δ 13 C values obtained by Micro-Laser Raman spectroscopy technology and Isotope Ratio Mass Spectrometry (IRMS) technology are in good agreement with each other, and the relative errors range of δ 13 C values is 1.232%-6.964%. This research provides a fundamental analysis tool for determining gas carbon isotope composition (δ 13 C values) quantitatively by using Micro-Laser Raman spectroscopy. Experiment of results demonstrates that this method has the potential for obtaining δ 13 C values in natural CO 2 gas reservoirs. Copyright © 2018. Published by Elsevier B.V.

  11. Effect of a Nitrogen Impurity on the Fundamental Raman Band of Diamond Single Crystals

    Science.gov (United States)

    Gusakov, G. A.; Samtsov, M. P.; Voropay, E. S.

    2018-05-01

    The effect of nitrogen defects in natural and synthetic diamond single crystals on the position and half-width of the fundamental Raman band was investigated. Samples containing the main types of nitrogen lattice defects at impurity contents of 1-1500 ppm were studied. The parameters of the Stokes and anti-Stokes components in Raman spectra of crystals situated in a cell with distilled water to minimize the influence of heating by the exciting laser radiation were analyzed to determine the effect of a nitrogen impurity in the diamond crystal lattice. It was shown that an increase of impurity atoms in the crystals in the studied concentration range resulted in broadening of the Raman band from 1.61 to 2.85 cm-1 and shifting of the maximum to lower frequency from 1332.65 to 1332.3 cm-1. The observed effect was directly proportional to the impurity concentration and depended on the form of the impurity incorporated into the diamond lattice. It was found that the changes in the position and half-width of the fundamental Raman band for diamond were consistent with the magnitude of crystal lattice distortions due to the presence of impurity defects and obeyed the Gruneisen law.

  12. Rate of oxygen isotope exchange between selenate and water.

    Science.gov (United States)

    Kaneko, Masanori; Poulson, Simon R

    2012-04-17

    The rate of oxygen isotope exchange between selenate and water was investigated at conditions of 10 to 80 °C and pH -0.6 to 4.4. Oxygen isotope exchange proceeds as a first-order reaction, and the exchange rate is strongly affected by reaction temperature and pH, with increased rates of isotope exchange at higher temperature and lower pH. Selenate speciation (HSeO(4)(-) vs SeO(4)(2-)) also has a significant effect on the rate of isotope exchange. The half-life for isotope exchange at example natural conditions (25 °C and pH 7) is estimated to be significantly in excess of 10(6) years. The very slow rate of oxygen isotope exchange between selenate and water under most environmental conditions demonstrates that selenate-δ(18)O signatures produced by biogeochemical processes will be preserved and hence that it will be possible to use the value of selenate-δ(18)O to investigate the biogeochemical behavior of selenate, in an analogous fashion to the use of sulfate-δ(18)O to study the biogeochemical behavior of sulfate.

  13. CARS and Raman spectroscopy of function-related conformational changes of chymotrypsin

    NARCIS (Netherlands)

    Brandt, N.N.; Chikishev, A.Yu.; Chikishev, A.Y.; Greve, Jan; Koroteev, N.I.; Otto, Cornelis; Sakodinskaya, I.K.; Sakodynskaya, I.K.

    2000-01-01

    We report on the comparative analysis of the conformation-sensitive bands of free enzyme (chymotrypsin), liganded enzyme (chymotrypsin anthranilate) and enzyme complex with 18-crown-6. The studies were carried out by Raman scattering spectroscopy and polarization-sensitive coherent anti-Stokes Raman

  14. Oxygen and hydrogen isotope fractionation during cellulose metabolism in Lemna gibba L

    International Nuclear Information System (INIS)

    Yakir, D.; DeNiro, M.J.

    1990-01-01

    Lemna gibba L. B3 was grown under heterotrophic, photoheterotrophic, and autotrophic conditions in water having a variety of hydrogen and oxygen isotopic compositions. The slopes of the linear regression lines between the isotopic composition of water and leaf cellulose indicated that under the three growth conditions about 40, 70, and 100% of oxygens and carbon-bound hydrogens of cellulose exchanged with those of water prior to cellulose formation. Using the equations of the linear relationships, we estimated the overall fractionation factors between water and the exchanged oxygen and carbon bound-hydrogen of cellulose. At least two very different isotope effects must determine the hydrogen isotopic composition of Lemna cellulose. One reflects the photosynthetic reduction of NADP, while the second reflects exchange reactions that occur subsequent to NADP reduction. Oxygen isotopic composition of cellulose apparently is determined by a single type of exchange reaction with water. Under different growth conditions, variations in metabolic fluxes affect the hydrogen isotopic composition of cellulose by influencing the extent to which the two isotope effects mentioned above are recorded. The oxygen isotopic composition of cellulose is not affected by such changes in growth conditions

  15. Normalization of oxygen and hydrogen isotope data

    Science.gov (United States)

    Coplen, T.B.

    1988-01-01

    To resolve confusion due to expression of isotopic data from different laboratories on non-corresponding scales, oxygen isotope analyses of all substances can be expressed relative to VSMOW or VPDB (Vienna Peedee belemnite) on scales normalized such that the ??18O of SLAP is -55.5% relative to VSMOW. H3+ contribution in hydrogen isotope ratio analysis can be easily determined using two gaseous reference samples that differ greatly in deuterium content. ?? 1988.

  16. Band head spin assignment of superdeformed bands in Hg isotopes through power index formula

    Science.gov (United States)

    Sharma, Honey; Mittal, H. M.

    2018-05-01

    The power index formula has been used to obtain the band head spin (I 0) of all the superdeformed (SD) bands in Hg isotopes. A least squares fitting approach is used. The root mean square deviations between the determined and the observed transition energies are calculated by extracting the model parameters using the power index formula. Whenever definite spins are available, the determined and the observed transition energies are in accordance with each other. The computed values of dynamic moment of inertia J (2) obtained by using the power index formula and its deviation with the rotational frequency is also studied. Excellent agreement is shown between the calculated and the experimental results for J (2) versus the rotational frequency. Hence, the power index formula works very well for all the SD bands in Hg isotopes expect for 195Hg(2, 3, 4).

  17. Stable Oxygen-18 and Deuterium Isotopes

    DEFF Research Database (Denmark)

    Müller, Sascha

    The application of stable Oxygen-18 (18O) and Deuterium (2H) isotopes, as a tracer for fluxes between different compartments of the water cycle was subject of the present PhD-thesis. During a three year period, temporal data from a wide range of water cycle constituents was collected from...... the Skjern River catchment, Denmark. The presented applications focused on studying the isotopic 'input signal' to the hydrosphere in the form of precipitation, the isotopic 'output signal' with its related dynamic processes at a coastal saltwater-freshwater interface (groundwater isotopes) and the temporal...... development within a given lowland headwater catchment (stream water isotopes). Based on our investigations on the precipitation isotopic composition a local meteoric water line (LMWL) was constructed and expressed as: δ2H=7.4 δ18O + 5.36‰. Moreover, we showed that under maritime temperature climate influence...

  18. No oxygen isotope exchange between water and APS-sulfate at surface temperature: Evidence from quantum chemical modeling and triple-oxygen isotope experiments

    Science.gov (United States)

    Kohl, Issaku E.; Asatryan, Rubik; Bao, Huiming

    2012-10-01

    In both laboratory experiments and natural environments where microbial dissimilatory sulfate reduction (MDSR) occurs in a closed system, the δ34S ((34S/32S)sample/(34S/32S)standard - 1) for dissolved SO42- has been found to follow a typical Rayleigh-Distillation path. In contrast, the corresponding δ18O ((18O/16O)sample/(18O/16O)standard) - 1) is seen to plateau with an apparent enrichment of between 23‰ and 29‰ relative to that of ambient water under surface conditions. This apparent steady-state in the observed difference between δ18O and δ18OO can be attributed to any of these three steps: (1) the formation of adenosine-5'-phosphosulfate (APS) from ATP and SO42-, (2) oxygen exchange between sulfite (or other downstream sulfoxy-anions) and water later in the MDSR reaction chain and its back reaction to APS and sulfate, and (3) the re-oxidation of produced H2S or precursor sulfoxy-anions to sulfate in environments containing Fe(III) or O2. This study examines the first step as a potential pathway for water oxygen incorporation into sulfate. We examined the structures and process of APS formation using B3LYP/6-31G(d,p) hybrid density functional theory, implemented in the Gaussian-03 program suite, to predict the potential for oxygen exchange. We conducted a set of in vitro, enzyme-catalyzed, APS formation experiments (with no further reduction to sulfite) to determine the degree of oxygen isotope exchange between the APS-sulfate and water. Triple-oxygen-isotope labeled water was used in the reactor solutions to monitor oxygen isotope exchange between water and APS sulfate. The formation and hydrolysis of APS were identified as potential steps for oxygen exchange with water to occur. Quantum chemical modeling indicates that the combination of sulfate with ATP has effects on bond strength and symmetry of the sulfate. However, these small effects impart little influence on the integrity of the SO42- tetrahedron due to the high activation energy required for

  19. Growth history of cultured pearl oysters based on stable oxygen isotope analysis

    Science.gov (United States)

    Nakashima, R.; Furuta, N.; Suzuki, A.; Kawahata, H.; Shikazono, N.

    2007-12-01

    We investigated the oxygen isotopic ratio in shells of the pearl oyster Pinctada martensii cultivated in embayments in Mie Prefecture, central Japan, to evaluate the biomineralization of shell structures of the species and its pearls in response to environmental change. Microsamples for oxygen isotope analysis were collected from the surfaces of shells (outer, middle, and inner shell layers) and pearls. Water temperature variations were estimated from the oxygen isotope values of the carbonate. Oxygen isotope profiles of the prismatic calcite of the outer shell layer reflected seasonal variations of water temperature, whereas those of nacreous aragonites of the middle and inner shell layers and pearls recorded temperatures from April to November, June to September, and July to September, respectively. Lower temperatures in autumn and winter might slow the growth of nacreous aragonites. The oxygen isotope values are controlled by both variations of water temperature and shell structures; the prismatic calcite of this species is useful for reconstructing seasonal changes of calcification temperature.

  20. Raman spectroscopic studies of optically trapped red blood cells

    International Nuclear Information System (INIS)

    Dasgupta, R.; Gupta, P.K.

    2010-01-01

    Raman spectroscopic studies were performed on optically trapped red blood cells (RBCs) collected from healthy volunteers and patients suffering from malaria (Plasmodium vivax infection) using near infrared (785 nm) laser source. The results show significant alteration in the spectra averaged over ∼ 50 non-parasitized RBCs per sample. As compared to RBCs from healthy donors, in cells collected from malaria patients, a significant decrease in the intensity of the low spin (oxygenated-haemoglobin) marker Raman band at 1223 cm -1 (υ 13 or υ 42 ) along with a concomitant increase in the high spin (deoxygenated-haemoglobin) marker bands at 1210 cm -1 (υ 5 + υ 18 ) and 1546 cm -1 (υ 11 ) was observed. The changes primarily suggest a reduced haemoglobin-oxygen affinity for the non-parasitized red cells in malaria patients. The possible causes include up regulation of intra-erythrocytic 2,3-diphosphoglycerate and/or ineffective erythropoiesis resulted from the disease. During the above study we also observed that significant photo-damage may results to the intracellular haemoglobin (Hb) if higher laser power is used. For a laser power above ∼ 5 mW the observed increase in intensity of the Raman bands at 975 cm -1 (υ 46 ), 1244 cm -1 (υ 42 ) and 1366 cm -1 (υ 4 ) with increasing exposure time suggests photo-denaturation of Hb and the concomitant decrease in intensity of the Raman band at 1544 cm -1 (υ 11 ) suggests photo induced methaemoglobin formation. The photo damage of intracellular haemoglobin by the above processes was also observed to result in intracellular heme aggregation. (author)

  1. Raman spectroscopy of isotopically pure ({sup 12}C, {sup 13}C) and isotopically mixed ({sup 12.5}C) diamond single crystals at ultrahigh pressures

    Energy Technology Data Exchange (ETDEWEB)

    Enkovich, P. V., E-mail: enkovich@hppi.troitsk.ru; Brazhkin, V. V.; Lyapin, S. G.; Novikov, A. P. [Russian Academy of Sciences, Troitsk, Institute for High-Pressure Physics (Russian Federation); Kanda, H. [National Institute for Materials Science (Japan); Stishov, S. M. [Russian Academy of Sciences, Troitsk, Institute for High-Pressure Physics (Russian Federation)

    2016-09-15

    The Raman scattering by isotopically pure {sup 12}C and {sup 13}C diamond single crystals and by isotopically mixed {sup 12.5}C diamond single crystals is studied at a high accuracy. The studies are performed over a wide pressure range up to 73 GPa using helium as a hydrostatic pressure-transferring medium. It is found that the quantum effects, which determine the difference between the ratio of the Raman scattering frequencies in the {sup 12}C and {sup 13}C diamonds and the classical ratio (1.0408), increase to 30 GPa and then decrease. Thus, inversion in the sign of the quantum contribution to the physical properties of diamond during compression is detected. Our data suggest that the maximum possible difference between the bulk moduli of the {sup 12}C and {sup 13}C diamonds is 0.15%. The investigation of the isotopically mixed {sup 12.5}C diamond shows that the effective mass, which determines the Raman frequency, decreases during compression from 12.38 au at normal pressure to 12.33 au at 73 GPa.

  2. OXYGEN ISOTOPIC COMPOSITIONS OF SOLAR CORUNDUM GRAINS

    International Nuclear Information System (INIS)

    Makide, Kentaro; Nagashima, Kazuhide; Huss, Gary R.; Krot, Alexander N.

    2009-01-01

    Oxygen is one of the major rock-forming elements in the solar system and the third most abundant element of the Sun. Oxygen isotopic composition of the Sun, however, is not known due to a poor resolution of astronomical spectroscopic measurements. Several Δ 17 O values have been proposed for the composition of the Sun based on (1) the oxygen isotopic measurements of the solar wind implanted into metallic particles in lunar soil ( 2 O 3 ) is thermodynamically the first condensate from a cooling gas of solar composition. Corundum-bearing CAIs, however, are exceptionally rare, suggesting either continuous reaction of the corundum condensates with a cooling nebular gas and their replacement by hibonite (CaAl 12 O 19 ) or their destruction by melting together with less refractory condensates during formation of igneous CAIs. In contrast to the corundum-bearing CAIs, isolated micrometer-sized corundum grains are common in the acid-resistant residues from unmetamorphosed chondrites. These grains could have avoided multistage reprocessing during CAI formation and, therefore, can potentially provide constraints on the initial oxygen isotopic composition of the solar nebula, and, hence, of the Sun. Here we report oxygen isotopic compositions of ∼60 micrometer-sized corundum grains in the acid-resistant residues from unequilibrated ordinary chondrites (Semarkona (LL3.0), Bishunpur (LL3.1), Roosevelt County 075 (H3.2)) and unmetamorphosed carbonaceous chondrites (Orgueil (CI1), Murray (CM2), and Alan Hills A77307 (CO3.0)) measured with a Cameca ims-1280 ion microprobe. All corundum grains, except two, are 16 O-rich (Δ 17 O = -22.7 per mille ± 8.5 per mille, 2σ), and compositionally similar to the mineralogically pristine CAIs from the CR carbonaceous chondrites (-23.3 per mille ± 1.9 per mille, 2σ), and solar wind returned by the Genesis spacecraft (-27 per mille ± 6 per mille, 2σ). One corundum grain is highly 17 O-enriched (δ 17 O ∼ +60 per mille, δ 18 O

  3. Preliminary results of oxygen isotope ratio measurement with a particle-gamma coincidence method

    Energy Technology Data Exchange (ETDEWEB)

    Borysiuk, Maciek, E-mail: maciek.borysiuk@pixe.lth.se; Kristiansson, Per; Ros, Linus; Abdel, Nassem S.; Elfman, Mikael; Nilsson, Charlotta; Pallon, Jan

    2015-04-01

    The possibility to study variations in the oxygen isotopic ratio with photon tagged nuclear reaction analysis (pNRA) is evaluated in the current work. The experiment described in the article was performed at Lund Ion Beam Analysis Facility (LIBAF) with a 2 MeV deuteron beam. Isotopic fractionation of light elements such as carbon, oxygen and nitrogen is the basis of many analytical tools in hydrology, geology, paleobiology and paleogeology. IBA methods provide one possible tool for measurement of isotopic content. During this experimental run we focused on measurement of the oxygen isotopic ratio. The measurement of stable isotopes of oxygen has a number of applications; the particular one driving the current investigation belongs to the field of astrogeology and specifically evaluation of fossil extraterrestrial material. There are three stable isotopes of oxygen: {sup 16}O, {sup 17}O and {sup 18}O. We procured samples highly enriched with all three isotopes. Isotopes {sup 16}O and {sup 18}O were easily detected in the enriched samples, but no significant signal from {sup 17}O was detected in the same samples. The measured yield was too low to detect {sup 18}O in a sample with natural abundances of oxygen isotopes, at least in the current experimental setup, but the spectral line from the reaction with {sup 16}O was clearly visible.

  4. Sensitivity of Raman spectroscopy to normal patient variability

    Science.gov (United States)

    Vargis, Elizabeth; Byrd, Teresa; Logan, Quinisha; Khabele, Dineo; Mahadevan-Jansen, Anita

    2011-11-01

    Many groups have used Raman spectroscopy for diagnosing cervical dysplasia; however, there have been few studies looking at the effect of normal physiological variations on Raman spectra. We assess four patient variables that may affect normal Raman spectra: Race/ethnicity, body mass index (BMI), parity, and socioeconomic status. Raman spectra were acquired from a diverse population of 75 patients undergoing routine screening for cervical dysplasia. Classification of Raman spectra from patients with a normal cervix is performed using sparse multinomial logistic regression (SMLR) to determine if any of these variables has a significant effect. Results suggest that BMI and parity have the greatest impact, whereas race/ethnicity and socioeconomic status have a limited effect. Incorporating BMI and obstetric history into classification algorithms may increase sensitivity and specificity rates of disease classification using Raman spectroscopy. Studies are underway to assess the effect of these variables on disease.

  5. How the oxygen isotope ratio of rain water influences the isotope ratio of chicken eggshell carbonate

    Science.gov (United States)

    Price, Gregory; Grimes, Stephen

    2015-04-01

    The stable oxygen isotope ratio of chicken eggshell carbonate was analysed from chicken eggs laid under free range, and organic farming regimes from across the UK. The eggshell carbonate oxygen isotope data shows a clear depletion in delta18O distribution from the southwest to the northeast. Although consistently offset by around 1 permil, the same isotopic distribution as that seen in eggshell carbonate is observed in the delta18O ratio of rainfall and groundwater from across the UK. This distribution is related to the Rayleigh distillation of rainfall driven by westerly winds across the UK landmass. The clear relationship observed between eggshell delta18O values and that of rainwater presumably reflects the nature of free range chickens which must be drinking locally derived rainwater and supplementing their diet and water intake with locally derived food. These results suggest that the oxygen isotope value of chicken eggshells can be used as a forensic tool to identify the locality that free range and organic eggs were laid within the UK. Furthermore, if suitable material is preserved in the archaeological and geological record then such a relationship can potentially be used to establish the oxygen isotope value of rainwater from which ancient and / or ancestral birds lived.

  6. In Situ Characterization of Ni and Ni/Fe Thin Film Electrodes for Oxygen Evolution in Alkaline Media by a Raman-Coupled Scanning Electrochemical Microscope Setup.

    Science.gov (United States)

    Steimecke, Matthias; Seiffarth, Gerda; Bron, Michael

    2017-10-17

    We present a spectroelectrochemical setup, in which Raman microscopy is combined with scanning electrochemical microscopy (SECM) in order to provide both spectroscopic and electrochemical information on the very same location of an electrode at the same time. The setup is applied to a subject of high academic and practical interest, namely, the oxygen evolution reaction at Ni and Ni/Fe electrodes. It comprises a transparent substrate electrode, onto which Ni and Ni/Fe thin films are deposited. An ultramicroelectrode (UME) is placed closely above the substrate to obtain electrochemical information, while a Raman microscope probes the same sample spot from below. To obtain information on oxygen evolution activity and structural changes, increasingly positive potentials from 0.1 up to 0.7 V vs Hg|HgO|1 M KOH were applied to the Ni/Fe-electrodes in 0.1 M KOH solution. Evolved oxygen is detected by reduction at a Pt UME, allowing for the determination of onset potentials, while the substrate current, which is recorded in parallel, is due to both overlapping oxygen evolution and the oxidation of Ni(OH) 2 to NiOOH. An optimum of 15% Fe in Ni/Fe films with respect to oxygen evolution activity was determined. At the same time, the potential-dependent formation of γ-NiOOH characterized by the Raman double band at 475 and 557 cm -1 allows for the conclusion that a certain amount of disorder introduced by Fe atoms is necessary to obtain high oxygen evolution reaction (OER) activity.

  7. Subpicosecond oxygen trapping in the heme pocket of the oxygen sensor FixL observed by time-resolved resonance Raman spectroscopy.

    Science.gov (United States)

    Kruglik, Sergei G; Jasaitis, Audrius; Hola, Klara; Yamashita, Taku; Liebl, Ursula; Martin, Jean-Louis; Vos, Marten H

    2007-05-01

    Dissociation of oxygen from the heme domain of the bacterial oxygen sensor protein FixL constitutes the first step in hypoxia-induced signaling. In the present study, the photodissociation of the heme-O2 bond was used to synchronize this event, and time-resolved resonance Raman (TR(3)) spectroscopy with subpicosecond time resolution was implemented to characterize the heme configuration of the primary photoproduct. TR(3) measurements on heme-oxycomplexes are highly challenging and have not yet been reported. Whereas in all other known six-coordinated heme protein complexes with diatomic ligands, including the oxymyoglobin reported here, heme iron out-of-plane motion (doming) occurs faster than 1 ps after iron-ligand bond breaking; surprisingly, no sizeable doming is observed in the oxycomplex of the Bradyrhizobium japonicum FixL sensor domain (FixLH). This assessment is deduced from the absence of the iron-histidine band around 217 cm(-1) as early as 0.5 ps. We suggest that efficient ultrafast oxygen rebinding to the heme occurs on the femtosecond time scale, thus hindering heme doming. Comparing WT oxy-FixLH, mutant proteins FixLH-R220H and FixLH-R220Q, the respective carbonmonoxy-complexes, and oxymyoglobin, we show that a hydrogen bond of the terminal oxygen atom with the residue in position 220 is responsible for the observed behavior; in WT FixL this residue is arginine, crucially implicated in signal transmission. We propose that the rigid O2 configuration imposed by this residue, in combination with the hydrophobic and constrained properties of the distal cavity, keep dissociated oxygen in place. These results uncover the origin of the "oxygen cage" properties of this oxygen sensor protein.

  8. Raman spectroscopic studies of hydrogen clathrate hydrates.

    Science.gov (United States)

    Strobel, Timothy A; Sloan, E Dendy; Koh, Carolyn A

    2009-01-07

    Raman spectroscopic measurements of simple hydrogen and tetrahydrofuran+hydrogen sII clathrate hydrates have been performed. Both the roton and vibron bands illuminate interesting quantum dynamics of enclathrated H(2) molecules. The complex vibron region of the Raman spectrum has been interpreted by observing the change in population of these bands with temperature, measuring the absolute H(2) content as a function of pressure, and with D(2) isotopic substitution. Quadruple occupancy of the large sII clathrate cavity shows the highest H(2) vibrational frequency, followed by triple and double occupancies. Singly occupied small cavities display the lowest vibrational frequency. The vibrational frequencies of H(2) within all cavity environments are redshifted from the free gas phase value. At 76 K, the progression from ortho- to para-H(2) occurs over a relatively slow time period (days). The rotational degeneracy of H(2) molecules within the clathrate cavities is lifted, observed directly in splitting of the para-H(2) roton band. Raman spectra from H(2) and D(2) hydrates suggest that the occupancy patterns between the two hydrates are analogous, increasing confidence that D(2) is a suitable substitute for H(2). The measurements suggest that Raman is an effective and convenient method to determine the relative occupancy of hydrogen molecules in different clathrate cavities.

  9. Atomic substitution in selected high-temperature superconductors: Elucidating the nature of Raman spectra excitations

    Science.gov (United States)

    Hewitt, Kevin Cecil

    2000-10-01

    In this thesis, the effects of atomic substitution on the vibrational and electronic excitations found in the Raman spectra of selected high-temperature superconductors (HTS) are studied. In particular, atomic and isotopic substitution methods have been used to determine the character of features observed in the Raman spectra of Bi2Sr2Ca n-1CunO2 n+4+delta (n = 1 - Bi2201, n = 2 - Bi2212) and YBa2Cu3O7-delta (Y123). In Bi2201, Pb substitution for Bi (and Sr) has led to the reduction and eventual removal of the structural modulation, characteristic of all members of the Bi-family of HTS. The high quality single crystals and our sensitive triple spectrometer enabled identification of a pair of low frequency modes. The modes are determined to arise from shear and compressional rigid-layer vibrations. The normal state of underdoped cuprates is characterized by a pseudogap of unknown origin. In crystals of underdoped Bi2212 a spectral peak found at 590 cm-1, previously attributed to the pairing of quasiparticles (above Tc) and hence to the formation of a normal state pseudogap, has been found to soften by 3.8% with oxygen isotope exchange. In addition, the feature is absent in fully oxygenated and yttrium underdoped crystals. In this study, the first of its kind on underdoped and isotope substituted Bi2212, the feature has been assigned to stretching vibrations of oxygen in the a-b plane. Bi2212 crystals with varying hole concentrations (0.07 Raman scattering experiments that sample the diagonal (B 2g) and principal axes (B1 g) of the BZ have led us to conclude that the superconducting gap possesses dx2-y2 symmetry, in the underdoped and overdoped regimes. It is found that the magnitude of the superconducting gap (Delta(k)) is sensitive to changes in p. Studies of the pair-breaking peak found in the B1g spectra allow us to conclude that the magnitude of the maximum gap (Deltamax) decreases monotonically with increasing hole doping, for p > 0.13. The pair

  10. Do oxygen isotope values in collagen reflect the ecology and physiology of neotropical mammals?

    Directory of Open Access Journals (Sweden)

    Brooke eCrowley

    2015-11-01

    Full Text Available Stable isotope data provide insight into the foraging ecology of animals. Traditionally, carbon and nitrogen isotope values have been used to infer dietary and habitat preferences. Oxygen isotopes are used less frequently but may complement the ecological information provided by carbon and nitrogen, particularly in densely forested or arid environments. Additionally, because oxygen is preserved in both bioapatite and collagen, it is useful for paleoecological studies. To investigate the suitability of oxygen isotopes for complementing and building on ecological applications of carbon and nitrogen isotopes, we analyze all three isotopes in bone collagen for nearly identical assemblages of Costa Rican mammals in two ecologically distinct habitats - a evergreen rainforest and a seasonal dry forest. We assess the degree to which differences in habitat, activity pattern, diet, arboreality, and thermoregulation are revealed by each of the isotope systems. Our results highlight the potential of oxygen isotopes in modern and paleoecological contexts. In addition to reflecting habitat type, oxygen isotope values in collagen distinguish species on the basis of vertical habitat stratification and drinking behavior. Within a locality, individuals with low oxygen isotope values likely track meteoric water, whereas those with elevated values most likely consume evaporatively-enriched plant tissues, such as canopy leaves. These patterns will be useful in reconstructing paleoenvironments and interpreting ecological differences among taxa both extant and extinct.

  11. The effect of phosphomonoesterases on the oxygen isotope composition of phosphate

    Science.gov (United States)

    von Sperber, Christian; Kries, Hajo; Tamburini, Federica; Bernasconi, Stefano M.; Frossard, Emmanuel

    2014-01-01

    Plants and microorganisms under phosphorus (P) stress release extracellular phosphatases as a strategy to acquire inorganic phosphate (Pi). These enzymes catalyze the hydrolysis of phosphoesters leading to a release of Pi. During the enzymatic hydrolysis an isotopic fractionation (ε) occurs leaving an imprint on the oxygen isotope composition of the released Pi which might be used to trace phosphorus in the environment. Therefore, enzymatic assays with acid phosphatases from wheat germ and potato tuber and alkaline phosphatase from Escherichia coli were prepared in order to determine the oxygen isotope fractionation caused by these enzymes. Adenosine 5‧ monophosphate and glycerol phosphate were used as substrates. The oxygen isotope fractionation caused by acid phosphatases is 20-30‰ smaller than for alkaline phosphatases, resulting in a difference of 5-7.5‰ in δ18O of Pi depending on the enzyme. We attribute the enzyme dependence of the isotopic fractionation to distinct reaction mechanisms of the two types of phosphatases. The observed difference is large enough to distinguish between the two enzymatic processes in environmental samples. These findings show that the oxygen isotope composition of Pi can be used to trace different enzymatic processes, offering an analytical tool that might contribute to a better understanding of the P-cycle in the environment.

  12. Addressing Raman features of individual layers in isotopically labeled Bernal stacked bilayer graphene

    Czech Academy of Sciences Publication Activity Database

    da Costa, Sara; Ek Weis, Johan; Frank, Otakar; Fridrichová, Michaela; Kalbáč, Martin

    2016-01-01

    Roč. 3, č. 2 (2016), 025022 ISSN 2053-1583 R&D Projects: GA MŠk LL1301 Institutional support: RVO:61388955 Keywords : graphene bilayer * Raman spectroscopy * isotope labeling Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 6.937, year: 2016

  13. Raman spectroscopy of adsorbed water in clays: first attempt at band assignment

    Energy Technology Data Exchange (ETDEWEB)

    Ligny, Dominique de; Guillaud, Emmanuel [Institut Lumiere Matiere, CNRS, Universite Lyon 1, 12 rue Ada Byron, 69622 Villeurbanne (France); Gailhanou, Helene; Blanc, Philippe [BRGM, Service D3E, 3 avenue Claude Guillemin, 45000 Orleans (France)

    2013-07-01

    Raman spectroscopy can be a useful tool to determine water content within clays, or even in highly saturated solutions. The following assignment is proposed for the OH region of SAz-2: the two large bands at 3260 and 3475 cm{sup -1} are assigned to water in pores, the first one to water molecules coordinated to the interlayer cations, and the second one to structural Al-OH groups The band at 3600 cm{sup -1} is therefore more likely related to adsorbed water on the clay surface. Simple intensity ratios of these different bands give good estimates of water content. (authors)

  14. Stable sulfur and oxygen isotopes as geochemical tracers of sulfate in karst waters

    Science.gov (United States)

    Sun, Jing; Kobayashi, Tatsuaki; Strosnider, William H. J.; Wu, Pan

    2017-08-01

    Karst water resources, which are extremely sensitive to mining activities, are critical for the support of human societies and ecological systems in many regions worldwide. In order to determine the sources and fate of dissolved sulfate in low-pH karst waters, hydrochemical variations of karst waters with and without acid mine drainage (AMD) impacts were investigated along with stable isotope dynamics. As expected, hydrochemical characteristics and isotopic compositions of the AMD and AMD-downstream water (ADW) were dramatically different from that of the non-AMD-impacted water (NAW). The sources of sulfur isotopes in sulfate were predominantly pyrite oxidation for the AMD and ADW, and atmospheric deposition for the NAW. Based on the general isotope-balance model, the relative proportions of sulfate oxygen derived from water and air were calculated. The mean proportion of sulfate oxygen derived from water in ADW was roughly double that of AMD. This suggests that the sulfate associated with AMD is predominantly influenced by aerobic pyrite oxidation, while that of ADW is likely affected by the dissolution of pyrite under anaerobic conditions in reservoir sediment. This observation was coincident with the noted variations of hydrochemical characteristics and was supported by principal component analysis. These results provide a better understanding of how stable isotopes of sulfate and water can be used to track mining contamination in karst aquifers, which could benefit remediation planning for these distinctive systems.

  15. Calculation of isotopic profile during band displacement on ion exchange resins

    International Nuclear Information System (INIS)

    Sonwalkar, A.S.; Puranik, V.D.; D'Souza, A.B.

    1981-01-01

    A method has been developed to calculate the isotopic profile during band displacement on ion exchange resins using computer simulation. Persoz had utilized this technique earlier for calculating the isotopic profile during band displacement as well as frontal analysis. The present report deals with a simplification of the method used by Persoz by reducing the number of variables and making certain approximations where the separation factor is not far from unity. Calculations were made for the typical case of boron isotope separation. The results obtained by the modified method were found to be in very good agreement with those obtained by using an exact equation, at the same time requiring conside--rably less computer time. (author)

  16. Subpicosecond Dynamics in Nucleotides Measured by Spontaneous Raman Spectroscopy

    NARCIS (Netherlands)

    Terpstra, P.A.; Terpstra, P.A.; Otto, Cornelis; Greve, Jan

    1997-01-01

    The band widths in Raman spectra are sensitive to dynamics active on a time scale from 0.1 to 10 ps. The band widths of nucleotide vibrations and their dependence on temperature, concentration, and structure are reported. From the experimental band widths and second moments, it is derived that the

  17. The oxygen isotope composition of earth's oldest rocks and evidence of a terrestrial magma ocean

    DEFF Research Database (Denmark)

    Rumble, D.; Bowring, S.; Iizuka, T.

    2013-01-01

    Analysis of Hadean and Archean rocks for O-16-O-17-O-18 isotopes demonstrates that the Terrestrial Mass Fractionation Line of oxygen isotopes has had the same slope and intercept for at least the past 4.0 and probably for as long as 4.2Ga. The homogenization of oxygen isotopes required to produce....... But other sources of heat for global melting cannot be excluded such as bolide impacts during early accretion of proto-Earth, the decay of short-lived radioactive isotopes, or the energy released during segregation of core from mantle.......Analysis of Hadean and Archean rocks for O-16-O-17-O-18 isotopes demonstrates that the Terrestrial Mass Fractionation Line of oxygen isotopes has had the same slope and intercept for at least the past 4.0 and probably for as long as 4.2Ga. The homogenization of oxygen isotopes required to produce...... such long-lived consistency was most easily established by mixing in a terrestrial magma ocean. The measured identical oxygen isotope mass fractionation lines for Earth and Moon suggest that oxygen isotope reservoirs of both bodies were homogenized at the same time during a giant moon-forming impact...

  18. Oxygen isotope fractionation in uranium oxides

    International Nuclear Information System (INIS)

    Zheng Yongfei

    1995-01-01

    Thermodynamic oxygen isotope factors for uranium oxides have been calculated by means of the modified increment method. The sequence of 18 O-enrichment in the uranium oxides with respect to the common rock-forming minerals is predicted as follows: spinel 3 < illite. Two sets of self-consistent fractionation factors between the uranium oxides and water and between the uranium oxides and the other minerals have been obtained for 0∼1200 degree C. The theoretical results are applicable to the isotopic geothermometry of uranium ores when pairing with other gangue minerals in hydrothermal uranium deposits

  19. Bulk Oxygen Isotopic Composition of Ultracarbonaceous Antarctic Micrometeorites with the NanoSIMS

    Science.gov (United States)

    Kakazu, Y.; Engrand, C.; Duprat, J.; Briani, G.; Bardin, N.; Mostefaoui, S.; Duhamel, R.; Remusat, L.

    2014-09-01

    We analyzed the carbon and oxygen isotope ratios of two UCAMMs with the NanoSIMS in order to understand the origin and formation of UCAMMs. One UCAMM has 16O-rich composition and a highly heterogeneous oxygen isotopic distribution.

  20. Raman spectra of Hg-based superconductors: Effect of oxygen defects

    Science.gov (United States)

    Zhou, Xingjiang; Cardona, M.; Chu, C. W.; Lin, Q. M.; Loureiro, S. M.; Marezio, M.

    1996-09-01

    Polarized micro-Raman scattering measurements have been performed on the five members of the HgBa2Can-1CunO2n+2+δ (n=1, 2, 3, 4, and 5) high-Tc superconductor family. A systematic evolution of the spectrum, which mainly involves oxygen-related phonons around 590, 570, 540, and 470 cm-1, with an increasing number of CuO2 layers, has been observed. Local laser annealing measurements clearly demonstrate that all these phonons are closely related to interstitial oxygen in the HgOδ planes. The origin of the spectrum evolution with the number of CuO2 layers lies in the variation of interstitial oxygen content.

  1. Sources and Contributions of Oxygen During Microbial Pyrite Oxidation: the Triple Oxygen Isotopes of Sulfate

    Science.gov (United States)

    Ziegler, K.; Coleman, M. L.; Mielke, R. E.; Young, E. D.

    2008-12-01

    The triple isotopes of oxygen (Δ17O' = δ17O'-0.528 × δ18O' using logarithmic deltas) can trace the oxygen sources of sulfate produced during sulfide oxidation, an important biogeochemical process on Earth's surface and possibly also on Mars [1]. δ18OSO4 compositions are determined by the isotopic selectivity of the mechanism(s) responsible for their changes, and the δ18O value of the reactants (O2 vs. H2O). The relative proportional importance and contribution of each of those sources and mechanisms, as well as their associated isotopic fractionations, are not well understood. We are investigating the use of Δ 17O as a quantitative and qualitative tracer for the different processes and oxygen sources involved in sulfate production. Δ17O signatures are distinct fingerprints of these reservoirs, independent of fractionation factors that can be ambiguous. We conducted controlled abiotic and biotic (Acidithiobacillus ferrooxidans, A.f.) laboratory experiments in which water was spiked with 18O, allowing us to quantify the sources of sulfate oxygen and therefore the processes attending sulfate formation. Results of this Δ17O tracer study show that A.f. microbes initiate pyrite S-oxidation within hours of exposure, and that sulfate is produced from ~90% atmospheric oxygen. This initial lag-phase (behavior in the initial lag-phase will aid in the understanding of the ecological conditions required for microbial populations to establish and survive. An exponential phase of growth, facilitated by microbial Fe2+-oxidation, follows. The source of sulfate rapidly switches to abiotic sulfide oxidation during exponential growth and the source of oxygen switches from atmospheric O2 to nearly ~100% water. Pending acquisition of complimentary chemistry data (in progress), we interpret our isotope data to indicate that the biotic fractionation factor ɛ18OSO4-O2 of at least ~ -25 to - 35‰ is augmented by microbially induced kinetic fractionation; it is larger than

  2. Raman scattering and band-gap variations of Al-doped ZnO nanoparticles synthesized by a chemical colloid process

    International Nuclear Information System (INIS)

    Lo, Shih-Shou; Huang, Dison; Tu, Chun Hsiang; Hou, Chia-Hung; Chen, Chii-Chang

    2009-01-01

    This study synthesizes Al-doped ZnO (AZO) nanoparticles using a chemical colloid process. Raman scattering analysis shows that Al doping increases the lattice defects and induces Raman vibration modes of 651 cm -1 . The Raman shift of the active mode E 2 (high) of AZO nanoparticles shows the presence and increase in the stress in nanoparticles when the Al dopant concentration increases. Room-temperature photoluminescence (RT-PL) spectra of synthesized AZO nanoparticles exhibit strong UV emissions near the band edges. The RT-PL peak shifts to a higher photon energy region as the Al concentration increases, indicating a broadening of the band gap.

  3. Raman Excitation Profile of the G-band Enhancement in Twisted Bilayer Graphene

    Science.gov (United States)

    Eliel, G. S. N.; Ribeiro, H. B.; Sato, K.; Saito, R.; Lu, Chun-Chieh; Chiu, Po-Wen; Fantini, C.; Righi, A.; Pimenta, M. A.

    2017-12-01

    A resonant Raman study of twisted bilayer graphene (TBG) samples with different twisting angles using many different laser lines in the visible range is presented. The samples were fabricated by CVD technique and transferred to Si/SiO2 substrates. The Raman excitation profiles of the huge enhancement of the G-band intensity for a group of different TBG flakes were obtained experimentally, and the analysis of the profiles using a theoretical expression for the Raman intensities allowed us to obtain the energies of the van Hove singularities generated by the Moiré patterns and the lifetimes of the excited state of the Raman process. Our results exhibit a good agreement between experimental and calculated energies for van Hove singularities and show that the lifetime of photoexcited carrier does not depend significantly on the twisting angle in the range intermediate angles ( 𝜃 between 10∘ and 15∘). We observed that the width of the resonance window (Γ ≈ 250 meV) is much larger than the REP of the Raman modes of carbon nanotubes, which are also enhanced by resonances with van Hove singularities.

  4. Oxygen isotope exchange on palladium catalysts

    International Nuclear Information System (INIS)

    Kravchuk, L.S.; Beschetvertnaya, T.I.; Novorodskij, V.G.; Novikova, M.G.; Zaretskij, M.V.; Valieva, S.V.

    1983-01-01

    Oxygen heteromolecular isotope exchange on unreduced palladium catalysts, distingushing by metal content is studied. Content of 18 O in gaseous phase is eoual to 46%. Calculations of heteroexchange rates are conducted with decrease of the 18 O in the gaseous phase over solid sample. Method of oxygen thermodesorption has been used to establish that palladium, deposited on γ-Al 2 O 3 during exchange process is in oxidized state; in this case strength of Pd-O bond is determined by content dispersity) of the metal. It is shown that significant increase of exchange rate on the samples with Pd >> 0.5 mass.% content can be induced as by side decomposition reaction of its oxide and corresponding dilution of gaseous mixture by ''light'' oxygen so by possibility of exchange with oxygen of PdO phase

  5. Hydrogen and oxygen isotope ratios of geothermal waters in the southern hachimantai area

    International Nuclear Information System (INIS)

    Matsubaya, Osamu; Etchu, Hiroshi; Takenaka, Teruo; Yoshida, Yutaka.

    1985-01-01

    Geothermal waters from the Matsukawa and Kakkonda Geothermal Plants, wells at Amihari-Motoyu, and Nyuto and Tazawako areas were isotopically studied. The geothermal waters from Mutsukawa, Kakkonda and Amihari-Motoyu have hydrogen isotope ratios similar to the local meteoric waters, while have higher oxygen isotope ratios than the local meteoric waters. This relationship of hydrogen and oxygen isotope ratios, that is called ''oxygen shift'', means that these geothermal waters are meteoric waters undergone the oxygen isotope exchange with rocks at high temperature of underground. The exygen shifts are 2 -- 3 per mil in Matsukawa and Kakkonda, and 7 per mil in Amihari-Motoyu. This difference may be important to understand the processe of water-rock interaction in this area. The geothermal waters at Nyuto and Tazawako areas also show 2 -- 3 per mil oxygen shift. The steam from the Tazawako-cho well and the hot spring water form the Tsurunoyu are estimated to be vapor and liquid phases separated form a single geothermal water of NaCl type, though the hot water from the Tsurunoyu is diluted with shallow meteoric water. (author)

  6. Self-diffusion of polycrystalline ice Ih under confining pressure: Hydrogen isotope analysis using 2-D Raman imaging

    Science.gov (United States)

    Noguchi, Naoki; Kubo, Tomoaki; Durham, William B.; Kagi, Hiroyuki; Shimizu, Ichiko

    2016-08-01

    We have developed a high-resolution technique based on micro Raman spectroscopy to measure hydrogen isotope diffusion profiles in ice Ih. The calibration curve for quantitative analysis of deuterium in ice Ih was constructed using micro Raman spectroscopy. Diffusion experiments using diffusion couples composed of dense polycrystalline H2O and D2O ice were carried out under a gas confining pressure of 100 MPa (to suppress micro-fracturing and pore formation) at temperatures from 235 K to 245 K and diffusion times from 0.2 to 94 hours. Two-dimensional deuterium profiles across the diffusion couples were determined by Raman imaging. The location of small spots of frost from room air could be detected from the shapes of the Raman bands of OH and OD stretching modes, which change because of the effect of the molar ratio of deuterium on the molecular coupling interaction. We emphasize the validity for screening the impurities utilizing the coupling interaction. Some recrystallization and grain boundary migration occurred in recovered diffusion couples, but analysis of two-dimensional diffusion profiles of regions not affected by grain boundary migration allowed us to measure a volume diffusivity for ice at 100 MPa of (2.8 ± 0.4) ×10-3exp[ -57.0 ± 15.4kJ /mol RT ] m2 /s (R is the gas constant, T is temperature). Based on ambient pressure diffusivity measurements by others, this value indicates a high (negative) activation volume for volume diffusivity of -29.5 cm3/mol or more. We can also constrain the value of grain boundary diffusivity in ice at 100 MPa to be volume diffusivity.

  7. Triple oxygen isotopes in biogenic and sedimentary carbonates

    Science.gov (United States)

    Passey, Benjamin H.; Hu, Huanting; Ji, Haoyuan; Montanari, Shaena; Li, Shuning; Henkes, Gregory A.; Levin, Naomi E.

    2014-09-01

    The 17O anomaly (Δ17O) of natural waters has been shown to be sensitive to evaporation in a way analogous to deuterium excess, with evaporated bodies of water (e.g., leaf waters, lake waters, animal body waters) tending to have lower Δ17O than primary meteoric waters. In animal body water, Δ17O relates to the intake of evaporated waters, evaporative effluxes of water, and the Δ17O value of atmospheric O2, which itself carries signatures of global carbon cycling and photochemical reactions in the stratosphere. Carbonates have the potential to record the triple oxygen isotope compositions of parent waters, allowing reconstruction of past water compositions, but such investigations have awaited development of methods for high-precision measurement of Δ17O of carbonate. We describe optimized methods based on a sequential acid digestion/reduction/fluorination approach that yield Δ17O data with the high precision (∼0.010‰, 1σ) needed to resolve subtle environmental signals. We report the first high-precision Δ17O dataset for terrestrial carbonates, focusing on vertebrate biogenic carbonates and soil carbonates, but also including marine invertebrates and high-temperature carbonates. We determine apparent three-isotope fractionation factors between the O2 analyte derived from carbonate and the parent waters of the carbonate. These in combination with appropriate temperature estimates (from clumped isotope thermometry, or known or estimated body temperatures) are used to calculate the δ18O and Δ17O of parent waters. The clearest pattern to emerge is the strong 17O-depletion in avian, dinosaurian, and mammalian body water (from analyses of eggshell and tooth enamel) relative to meteoric waters, following expected influences of evaporated water (e.g., leaf water) and atmospheric O2 on vertebrate body water. Parent waters of the soil carbonates studied here have Δ17O values that are similar to or slightly lower than global precipitation. Our results suggest

  8. Analytical techniques for determination of framework oxygen isotope ratio of wairakite

    International Nuclear Information System (INIS)

    Noto, Masami; Kusakabe, Minoru; Uchida, Tetsuo.

    1990-01-01

    Dehydration techniques were developed for the analysis of isotopic ratios of framework oxygen of wairakite, one of calcium zeolites often encountered in geothermal systems. Channel water in wairakite were separated from aluminosilicate framework by dehydration in vacuum at 300 deg, 400 deg, 450 deg, 500 deg, 550 deg, 650 deg, 750 deg, 850 deg, and 950 degC, and by stepwise heating at temperatures from 300 deg to 700 degC. The oxygen isotopic analyses of the separated channel water and the residual aluminosilicate framework of wairakite indicated that dehydration at temperatures higher than 400 degC is accompanied by isotopic exchang between the framework oxygen and dehydrating water vapor. The isotopic exchange during the high temperature dehydration makes the δ 18 O of framework oxygen lower and that of channel water higher than those obtained by dehydration at 300 degC. These results are consistent with dehydration behavior of wairakite under vacuum that the maximum rate of dehydration of channel water is attained at about 400 degC. Consequently it is recommended to dehydrate wairakite at a temperature as low as possible in order to avoid the effect of the isotopic exchange. Time required to attain complete dehydration becomes longer with lowering the temperature of dehydration. To compromise these conflicting effects, the optimum conditions of dehydration have been found that most of the channel water is dehydrated at 300 degC for 24 hours, followed by stepwise heating for additional 17 hours up to 700 degC. We obtained a better than ± 0.1 reproducibility for the framework oxygen isotopic determinations with this technique. (author)

  9. Role of apical oxygen in 2-1-4 electron-doped superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Richard, P.; Riou, G.; Jandl, S.; Poirier, M.; Fournier, P.; Nekvasil, V.; Divis, M

    2004-08-01

    We report a crystal-field infrared transmission and Raman study of oxygenated and reduced Nd{sub 2-x}Ce{sub x}CuO{sub 4} single crystals. Some Nd{sup 3+} crystal-field absorption bands corresponding to rare-earth ions in non-regular sites are attributed to Nd{sup 3+} ions in the vicinity of apical oxygens. This is correlated with a study of the A{sup *} ({approx}580 cm{sup -1}) Raman local mode and with the transport properties of undoped materials. We show that the apical oxygen is not removed by the reduction.

  10. Bicarbonate adsorption band of the chromatography for carbon isotope separation using anion exchangers

    International Nuclear Information System (INIS)

    Takeda, Kunihiko; Obanawa, Heiichiro; Hata, Masahisa; Sato, Katsuya

    1985-01-01

    The equilibria of bicarbonate ion between two phases were studied for the carbon isotope separation using anion exchangers. The condition of the formation of a bicarbonate adsorption band was quantitatively discussed. The formation of the adsorption band depends on the difference of S-potential which is the sum of the standard redection chemical potentials and L-potential which is the sum of the reduction chemical potential. The isotopic separation factor observed was about 1.012, independent of the concentrations of acid and alkali in the solutions. The isotopic separation factor was considered to be determined by the reaction of bicarbonate ion on anion exchangers and carbon dioxide dissolved in solutions. The enriched carbon isotope whose isotopic abundance ratio ( 13 C/ 12 C) was 1.258 was obtained with the column packed with anion exchangers. (author)

  11. Oxygen isotope exchange rate between dissolved sulfate and water at hydrothermal temperatures

    International Nuclear Information System (INIS)

    Chiba, H.; Sakai, H.

    1985-01-01

    Oxygen isotope exchange rate between dissolved sulfate and water was experimentally determined at 100, 200 and 300 deg C. The isotope exchange rate is strongly dependent on temperature and pH of the solution. Combining the temperature and pH dependence of the reaction rate, the exchange reaction was estimated to be first-order with respect to sulfate. The logarithm of apparent rate constant of exchange reaction at a given temperature is a function of the pH calculated at the experimental temperatures. From the pH dependence of the apparent rate constant, it was deduced that the isotope exchange reaction between dissolved sulfate and water proceeds through collision between H 2 SO 4 0 and H 2 O at low pH, and between HSO 4 - and H 2 O at intermediate pH. The isotope exchange rate obtained indicates that oxygen isotope geothermometry utilizing the studied isotope exchange is suitable for temperature estimation of geothermal reservoirs. The extrapolated half-life of this reaction to oceanic temperature is about 10 9 years, implying that exchange between oceanic sulfate and water cannot control the oxygen isotope ratio of oceanic sulfates. (author)

  12. The Effect of Phytase on the Oxygen Isotope Composition of Phosphate

    Science.gov (United States)

    von Sperber, C.; Tamburini, F.; Bernasconi, S. M.; Frossard, E.

    2013-12-01

    Plants and microorganisms under phosphorus (P) stress release extracellular phosphatases as a strategy to acquire inorganic phosphate (Pi) (1-2). These enzymes catalyze the hydrolysis of phosphoesters leading to a release of Pi. The enzymatic hydrolysis leads, via a nucleophilic attack, to the incorporation of one oxygen atom from the water into the newly formed Pi molecule. During the incorporation, an isotopic fractionation occurs, which might be used to identify the origin of Pi in the environment (3-6). While the effect of phosphomonoesterases and phosphodiesterases on the oxygen isotope composition of phosphate has been examined, there are, so far, no studies dealing with the effect of phytases (4-6). Phytases catalyze the hydrolysis of myo-inositol-hexakis-phosphate (IP6), which is an important component of organic P in many ecosystems (7). Enzymatic assays with phytase from wheat germ and Aspergillus niger were prepared under sterile and temperature controlled conditions in order to determine the effect of phytases on the oxygen isotope composition of phosphate, which has been liberated from IP6 via enzymatic hydrolysis. Assays with phytase from wheat germ lead to a turnover of the substrate close to 100%, while assays with phytase from Aspergillus niger lead to a turnover of the substrate close to 80%. In the case of the assays with phytase from wheat germ, our results indicate that one sixth of the total 24 oxygen which are associated to the phosphates in IP6 are exchanged with oxygen from water. From this we conclude that the incorporation of one oxygen atom from water occurs only at four phosphate molecules of IP6, while two phosphate molecules do not experience an incorporation of oxygen. This suggests that during the enzymatic hydrolysis, four P-O bonds and two C-O bonds are broken. Provided that, the isotopic fractionation can be calculated with an isotopic mass balance resulting in -8.4‰ (×3.6 SD). This is a value very similar to those reported

  13. Oxygen isotope ratios of the Icelandic crust

    International Nuclear Information System (INIS)

    Hattori, K.; Muehlenbachs, K.

    1982-01-01

    Oxygen isotope ratios of hydrothermally altered basalts from depth of up to approx.3 km are reported from three localities in Iceland: International Research Drilling Project (IRDP) core at Reydarfjordur, eastern Iceland (Tertiary age); drill cuttings from Reykjavik (Plio-Pleistocene age); and Halocene drill cuttings from the active Krafla central volcano. Whole rock samples from these three localities have delta 18 O values averaging +3.9 +- 1.3, +2.4 +- 1.1, and -7.7 +- 2.4%, respectively. The observed values in the deeper samples from Krafla are as low as the values for any rocks previously reported. There seems to be a slight negative gradient in delta 18 O with depth at the former two localities and a more pronounced one at Krafla. Oxygen isotope fractionations between epidote and quartz and those between calcite and fluid suggests that the basalts were altered at temperatures of 300 0 --400 0 C. Low deltaD and delta 18 O of epidote and low delta 34 S of anhydrite indicate that the altering fluids in all three areas originated as meteoric waters and have undergone varied 'oxygen shifts'. Differences in the 18 O shift of the fluids are attributed to differences in hydrothermal systems; low water/rock ratios ( 5) at Krafla. The convective hydrothermal activity, which is probably driven by silicic magma beneath the central volcanoes, has caused strong subsolidus depletion of 18 O in the rocks. The primary-magnetic delta 18 O value of the rocks in the Tertiary IRDP core was about +3.9%, which is lower than that obtained for fresh basalt from other places. Such exceptionally low delta 18 O magmas are common in Iceland and may occur as the result of oxygen isotope exchange with or assimilation of altered rocks that form a thick sequence beneath the island due to isostatic subsidence

  14. Analysis of Atmospheric Nitrate Deposition in Lake Tahoe Using Multiple Oxygen Isotopes

    Science.gov (United States)

    McCabe, J. R.; Michalski, G. M.; Hernandez, L. P.; Thiemens, M. H.; Taylor, K.; Kendall, C.; Wankel, S. D.

    2002-12-01

    Lake Tahoe in the Sierra Nevada Mountain Range is world renown for its depth and water clarity bringing 2.2 million visitors per year resulting in annual revenue of \\1.6 billion from tourism. In past decades the lake has suffered from decreased water clarity (from 32 m plate depth to less than 20), which is believed to be largely the result of algae growth initiated by increased nutrient loading. Lake nutrients have also seen a shift from a nitrogen limited to a phosphorous limited system indicating a large increase in the flux of fixed nitrogen. Several sources of fixed nitrogen of have been suggested including surface runoff, septic tank seepage from ground water and deposition from the atmosphere. Bio-available nitrogen in the form of nitrate (NO_{3}$-) is a main component of this system. Recent studies have estimated that approximately 50% of the nitrogen input into the lake is of atmospheric origin (Allison et al. 2000). However, the impact and magnitude of atmospheric deposition is still one of the least understood aspects of the relationship between air and water quality in the Basin (TRPA Threshold Assessment 2002). The utility of stable isotopes as tracers of nitrate reservoirs has been shown in several studies (Bohlke et al. 1997, Kendall and McDonnell 1998, Durka et al. 1994). Stable nitrogen (δ15N) and oxygen (δ18O) isotopes have been implemented in a dual isotope approach to characterize the various nitrate sources to an ecosystem. While δ18O distinguishes between atmospheric and soil sources of nitrate, processes such as denitrification can enrich the residual nitrate in δ18O leaving a misleading atmospheric signature. The benefit of δ15N as a tracer for NO3- sources is the ability to differentiate natural soil, fertilizer, and animal or septic waste, which contain equivalent δ18O values. The recent implementation of multiple oxygen isotopes to measure Δ17O in nitrate has proven to be a more sensitive tracer of atmospheric deposition. The

  15. Decay out of superdeformed bands in Tb isotopes

    International Nuclear Information System (INIS)

    Petrache, C.M.; Beck, F.A.; Flibotte, S.; France, G. de; Theisen, C.; Vivien, J.P.

    1995-01-01

    Excited states in the 150,151,152 Tb isotopes have been investigated using the 130 Te( 27 Al, xn) reaction and the EUROGAM array. The theoretical interpretation of the level schemes has been performed in the framework of the deformed independent particle model. The feeding patterns of the normal-deformed states by the superdeformed bands in 150,151 Tb istopes have also been established. The results indicate that the decay-out mechanism of the bands is not of purely statistical nature, but depends on the configurations of both normal- and superdeformed states. (orig.)

  16. A Plant-Based Proxy for the Oxygen Isotope Ratio of Atmospheric Water Vapor

    Science.gov (United States)

    Helliker, B.

    2007-12-01

    Atmospheric water vapor is a major component of the global hydrological cycle, but the isotopic balance of vapor is largely unknown. It is shown here that the oxygen isotope ratio of leaf water in the epiphytic Crassulacean acid metabolism (CAM) plant Tillandsia usneoides (Spanish Moss) is controlled by the oxygen isotope ratio of atmospheric water vapor in both field and lab studies. Assuming that the leaf-water isotopic signature (and hence the atmospheric water vapor signature) is recorded in plant organic material, the atmospheric water vapor oxygen isotope ratios for Miami, Florida (USA) were reconstructed for several years from 1878 to 2005 using contemporary and herbarium specimens. T. usneoides ranges from Virginia, USA southwards through the tropics to Argentina, and the CAM epiphytic lifeform is widespread in other species. Therefore, epiphytes may be used to reconstruct the isotope ratio of atmospheric water for spatial scales that span over 60° of latitude and temporal scales that cover the last century of global temperature increase.

  17. Raman spectroscopy of supported chromium oxide catalysts : determination of chromium-oxygen bond distances and bond orders

    NARCIS (Netherlands)

    Weckhuysen, B.M.; Wachs, I.E.

    1996-01-01

    An empirical correlation is described for relating Raman stretching frequencies of chromium—oxygen (Cr—O) bonds to their bond lengths in chromium oxide reference compounds. An exponential fit of crystallographically determined Cr—O bond lengths to Cr—O Raman symmetric stretching frequencies

  18. Cranking model interpretation of weakly coupled bands in Hg isotopes

    International Nuclear Information System (INIS)

    Guttormsen, M.; Huebel, H.

    1982-01-01

    The positive-parity yrast states of the transitional sup(189-198)Hg isotopes are interpreted within the Bengtsson and Frauendorf version of the cranking model. The very sharp backbendings can be explained by small interaction matrix elements between the ground and s-bands. The experimentally observed large aligned angular momenta and the low band-crossing frequencies are well reproduced in the calculations. (orig.)

  19. An Empirical Study on Raman Peak Fitting and Its Application to Raman Quantitative Research.

    Science.gov (United States)

    Yuan, Xueyin; Mayanovic, Robert A

    2017-10-01

    Fitting experimentally measured Raman bands with theoretical model profiles is the basic operation for numerical determination of Raman peak parameters. In order to investigate the effects of peak modeling using various algorithms on peak fitting results, the representative Raman bands of mineral crystals, glass, fluids as well as the emission lines from a fluorescent lamp, some of which were measured under ambient light whereas others under elevated pressure and temperature conditions, were fitted using Gaussian, Lorentzian, Gaussian-Lorentzian, Voigtian, Pearson type IV, and beta profiles. From the fitting results of the Raman bands investigated in this study, the fitted peak position, intensity, area and full width at half-maximum (FWHM) values of the measured Raman bands can vary significantly depending upon which peak profile function is used in the fitting, and the most appropriate fitting profile should be selected depending upon the nature of the Raman bands. Specifically, the symmetric Raman bands of mineral crystals and non-aqueous fluids are best fit using Gaussian-Lorentzian or Voigtian profiles, whereas the asymmetric Raman bands are best fit using Pearson type IV profiles. The asymmetric O-H stretching vibrations of H 2 O and the Raman bands of soda-lime glass are best fit using several Gaussian profiles, whereas the emission lines from a florescent light are best fit using beta profiles. Multiple peaks that are not clearly separated can be fit simultaneously, provided the residuals in the fitting of one peak will not affect the fitting of the remaining peaks to a significant degree. Once the resolution of the Raman spectrometer has been properly accounted for, our findings show that the precision in peak position and intensity can be improved significantly by fitting the measured Raman peaks with appropriate profiles. Nevertheless, significant errors in peak position and intensity were still observed in the results from fitting of weak and wide Raman

  20. Raman spectra of Hg-based superconductors: Effect of oxygen defects

    International Nuclear Information System (INIS)

    Zhou, X.; Cardona, M.; Chu, C.W.; Lin, Q.M.; Loureiro, S.M.; Marezio, M.

    1996-01-01

    Polarized micro-Raman scattering measurements have been performed on the five members of the HgBa 2 Ca n-1 Cu n O 2n+2+δ (n=1, 2, 3, 4, and 5) high-T c superconductor family. A systematic evolution of the spectrum, which mainly involves oxygen-related phonons around 590, 570, 540, and 470 cm -1 , with an increasing number of CuO 2 layers, has been observed. Local laser annealing measurements clearly demonstrate that all these phonons are closely related to interstitial oxygen in the HgO δ planes. The origin of the spectrum evolution with the number of CuO 2 layers lies in the variation of interstitial oxygen content. copyright 1996 The American Physical Society

  1. Carbon-13 and oxygen-18 isotope effects in the decarboxylation of nicotinic acid of natural isotopic composition

    International Nuclear Information System (INIS)

    Zielinski, M.; Zielinska, A.; Papiernik-Zielinska, H.; McKenzie, J.A.; Bernasconi, S.; Paul, H.

    1998-01-01

    Carbon-13 and oxygen-18 isotope effects in the decarboxylation of nicotinic acid of natural isotopic composition above and below its melting temperature have been studied and compared with the primary (PKIE) and secondary kinetic isotope effects (SKIE) of 13 C and 18 O, respectively, in the decarboxylation of other heterocyclic acids. The temperature dependence of the secondary oxygen-18 isotope effects is negative in the total 221-255 deg C temperature interval investigated initially. The 13 C KIE measured above melting point of N.A. (temperature interval 235-270 deg C) are located in the range 1.007-1.009. Below melting point of nicotinic acid the 13 C KIE are larger and reveal the negative temperature dependence ( 13 C KIE decreases with decreasing the reaction temperature from 1.013/at 230 deg C to 1.0114/at 221 deg C). A discussion of the above isotopic results is presented. (author)

  2. Distributed feedback multimode Brillouin–Raman random fiber laser in the S-band

    International Nuclear Information System (INIS)

    Ahmad, H; Zulkifli, M Z; Jemangin, M H; Harun, S W

    2013-01-01

    A novel S-band multimode Brillouin–Raman random fiber laser based on distributed feedback of Rayleigh scattered light is demonstrated. It relies on a short length, 7.7 km long angle-cleaved dispersion compensating fiber in a mirror-less open cavity. Two 1425 nm laser diodes at a modest operating power amplify a Brillouin pump (BP) signal, which in turn generates a multi-wavelength laser output through the stimulated Brillouin scattering. Eleven Brillouin Stokes lines, spanning from 1515.15 to 1516.00 nm, were obtained at a Raman pump power of 361.66 mW. Out of these, five odd Brillouin Stokes lines were generated with a flat peak power of about 0 dBm. (letter)

  3. The Role of the Apex Oxygen for the Electronic Properties of YBa2Cu3O7 and its Relation to Raman Scattering

    International Nuclear Information System (INIS)

    Ambrosch-Draxl, C.; Abt, R.; Knoll, P.

    1995-01-01

    We investigate the changes of the total energy, the electronic bands, and the dielectric function with the displacement of the apical oxygen position in YBa 2 Cu 3 O 7 by LAPW-calculations. From these data we calculate the corresponding vibronic Raman-spectrum. Anharmonic terms of the vibrational potential and higher order derivatives of the dielectric function are taken into account. We find excellent agreement with experimental data for the phonon frequency as well as for the intensities of fundamental and overtone spectra within a wide temperature range

  4. Oxygen isotopic signature of CO2 from combustion processes

    Directory of Open Access Journals (Sweden)

    W. A. Brand

    2011-02-01

    Full Text Available For a comprehensive understanding of the global carbon cycle precise knowledge of all processes is necessary. Stable isotope (13C and 18O abundances provide information for the qualification and the quantification of the diverse source and sink processes. This study focuses on the δ18O signature of CO2 from combustion processes, which are widely present both naturally (wild fires, and human induced (fossil fuel combustion, biomass burning in the carbon cycle. All these combustion processes use atmospheric oxygen, of which the isotopic signature is assumed to be constant with time throughout the whole atmosphere. The combustion is generally presumed to take place at high temperatures, thus minimizing isotopic fractionation. Therefore it is generally supposed that the 18O signature of the produced CO2 is equal to that of the atmospheric oxygen. This study, however, reveals that the situation is much more complicated and that important fractionation effects do occur. From laboratory studies fractionation effects on the order of up to 26%permil; became obvious in the derived CO2 from combustion of different kinds of material, a clear differentiation of about 7‰ was also found in car exhausts which were sampled directly under ambient atmospheric conditions. We investigated a wide range of materials (both different raw materials and similar materials with different inherent 18O signature, sample geometries (e.g. texture and surface-volume ratios and combustion circumstances. We found that the main factor influencing the specific isotopic signatures of the combustion-derived CO2 and of the concomitantly released oxygen-containing side products, is the case-specific rate of combustion. This points firmly into the direction of (diffusive transport of oxygen to the reaction zone as the cause of the isotope fractionation. The original total 18O signature of the material appeared to have little influence, however, a contribution of specific bio

  5. Evidence of oxygen content heterogeneity in TSMTG YBa{sub 2}Cu{sub 3}O{sub 7-{delta}}/Y{sub 2}BaCuO{sub 5} composites by micro-Raman spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Delorme, F. [Laboratoire CRISMAT, UMR CNRS 6508, ISMRA, Boulevard du Marechal Juin, 14050 Caen Cedex (France)], E-mail: f.delorme@brgm.fr; Bardeau, J.-F. [Laboratoire de Physique de l' Etat Condense, Faculte des Sciences, Universite du Maine, Avenue Olivier Messiaen, 72085 Le Mans Cedex 09 (France); Harnois, C. [Laboratoire CRISMAT, UMR CNRS 6508, ISMRA, Boulevard du Marechal Juin, 14050 Caen Cedex (France); Monot-Laffez, I. [Laboratoire LEMA, CNRS FRE-2077- CEA-LRC M01 - IUT de Blois, 3 Place Jean Jaures, CS2903, 41029 Blois (France)

    2008-03-01

    The homogeneity of the oxygen content of TSMTG-YBa{sub 2}Cu{sub 3}O{sub 7-{delta}}/Y{sub 2}BaCuO{sub 5} composites has been investigated by micro-Raman spectrometry. The Y123 compound has been found to be very sensitive to the laser power, but a laser power of 0.04 mW has been shown to not to be harmful for the samples, even after 2 h of irradiation. Raman spectra have shown that the oxygen content of YBa{sub 2}Cu{sub 3}O{sub 7-{delta}}/Y{sub 2}BaCuO{sub 5} ceramics is not homogeneous at the micrometer scale. In addition, no monotonic decrease of the oxygen content is observed from the periphery to the core of the sample, confirming that the oxygen uptake is not strictly controlled by a diffusion process.

  6. Oxygen isotope exchange with quartz during pyrolysis of silver sulfate and silver nitrate.

    Science.gov (United States)

    Schauer, Andrew J; Kunasek, Shelley A; Sofen, Eric D; Erbland, Joseph; Savarino, Joel; Johnson, Ben W; Amos, Helen M; Shaheen, Robina; Abaunza, Mariana; Jackson, Terri L; Thiemens, Mark H; Alexander, Becky

    2012-09-30

    Triple oxygen isotopes of sulfate and nitrate are useful metrics for the chemistry of their formation. Existing measurement methods, however, do not account for oxygen atom exchange with quartz during the thermal decomposition of sulfate. We present evidence for oxygen atom exchange, a simple modification to prevent exchange, and a correction for previous measurements. Silver sulfates and silver nitrates with excess (17)O were thermally decomposed in quartz and gold (for sulfate) and quartz and silver (for nitrate) sample containers to O(2) and byproducts in a modified Temperature Conversion/Elemental Analyzer (TC/EA). Helium carries O(2) through purification for isotope-ratio analysis of the three isotopes of oxygen in a Finnigan MAT253 isotope ratio mass spectrometer. The Δ(17)O results show clear oxygen atom exchange from non-zero (17)O-excess reference materials to zero (17)O-excess quartz cup sample containers. Quartz sample containers lower the Δ(17)O values of designer sulfate reference materials and USGS35 nitrate by 15% relative to gold or silver sample containers for quantities of 2-10 µmol O(2). Previous Δ(17)O measurements of sulfate that rely on pyrolysis in a quartz cup have been affected by oxygen exchange. These previous results can be corrected using a simple linear equation (Δ(17)O(gold) = Δ(17)O(quartz) * 1.14 + 0.06). Future pyrolysis of silver sulfate should be conducted in gold capsules or corrected to data obtained from gold capsules to avoid obtaining oxygen isotope exchange-affected data. Copyright © 2012 John Wiley & Sons, Ltd.

  7. Biological fractionation of oxygen and carbon isotopes by recent benthic foraminifera

    International Nuclear Information System (INIS)

    Woodruff, F.; Douglas, R.G.

    1980-01-01

    Recent deep-sea benthic foraminifera from five East Pacific Rise box core tops have been analyzed for oxygen and carbon isotopic composition. The five equatorial stations, with water depths of between 3200 and 4600 m, yielded fourteen specific and generic taxonomic groups. Of the taxa analyzed, Uvigerina spp. most closely approaches oxygen isotopic equilibrium with ambient sea water. Pyrgo spp. was next closest to isotopic equilibrium, being on the average 0.59 per thousand depleted in 18 O relative to Uvigerina spp. Oridorsalis umbonatus also has relatively high delta 18 O values. Most other taxa were depleted in 18 O by large amounts. In no taxa was the carbon in the CaCO 3 secreted in carbon isotopic equilibrium with the dissolved HCO 3 - of ambient sea water. (Auth.)

  8. Oxygen stable isotopes variation in water precipitation in Poland – anthropological applications

    Directory of Open Access Journals (Sweden)

    Lisowska-Gaczorek Aleksandra

    2017-03-01

    Full Text Available The main objective of oxygen isotope analysis is to determine the probable place of origin of an individual or the reconstruction of migration paths. The research are methodologically based on referencing oxygen isotope ratios of apatite phosphates (δ18Op to the range of environmental background δ18O, most frequently determined on the basis of precipitation.

  9. Oxygen sensitive polymeric nanocapsules for optical dissolved oxygen sensors

    Science.gov (United States)

    Sun, Zhijuan; Cai, Chenxin; Guo, Fei; Ye, Changhuai; Luo, Yingwu; Ye, Shuming; Luo, Jianchao; Zhu, Fan; Jiang, Chunyue

    2018-04-01

    Immobilization of the oxygen-sensitive probes (OSPs) in the host matrix greatly impacts the performance and long-term usage of the optical dissolved oxygen (DO) sensors. In this work, fluorescent dyes, as the OSPs, were encapsulated with a crosslinked fluorinated polymer shell by interfacial confined reversible addition fragmentation chain transfer miniemulsion polymerization to fabricate oxygen sensitive polymeric nanocapsules (NCs). The location of fluorescent dyes and the fluorescent properties of the NCs were fully characterized by fourier transform infrared spectrometer, x-ray photoelectron spectrometer and fluorescent spectrum. Dye-encapsulated capacity can be precisely tuned from 0 to 1.3 wt% without self-quenching of the fluorescent dye. The crosslinked fluorinated polymer shell is not only extremely high gas permeability, but also prevents the fluorescent dyes from leakage in aqueous as well as in various organic solvents, such as ethanol, acetone and tetrahydrofuran (THF). An optical DO sensor based on the oxygen sensitive NCs was fabricated, showing high sensitivity, short response time, full reversibility, and long-term operational stability of online monitoring DO. The sensitivity of the optical DO sensor is 7.02 (the ratio of the response value in fully deoxygenated and saturated oxygenated water) in the range 0.96-14.16 mg l-1 and the response time is about 14.3 s. The sensor’s work curve was fit well using the modified Stern-Volmer equation by two-site model, and its response values are hardly affected by pH ranging from 2 to 12 and keep constant during continuous measurement for 3 months. It is believed that the oxygen sensitive polymeric NCs-based optical DO sensor could be particularly useful in long-term online DO monitoring in both aqueous and organic solvent systems.

  10. A PROFILE ANALYSIS OF RAMAN-SCATTERED O VI BANDS AT 6825 Å AND 7082 Å IN SANDULEAK’S STAR

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Jeong-Eun; Lee, Hee-Won [Department of Physics and Astronomy, Sejong University, Seoul (Korea, Republic of); Angeloni, Rodolfo [Gemini Observatory, Casilla 603, La Serena (Chile); Mille, Francesco Di [Las Campanas Observatory, Carnegie Observatories, Casilla 601, La Serena (Chile); Palma, Tali, E-mail: jeung6145@gmail.com [Departamento de Ciencias Físicas, Universidad Andrés Bello, Fernández Concha 700, Las Condes, Santiago (Chile)

    2016-12-20

    We present a detailed modeling of the two broad bands observed at 6825 and 7082 Å in Sanduleak’s star, a controversial object in the Large Magellanic Cloud. These bands are known to originate from Raman scattering of O vi  λ λ 1032 and 1038 photons with atomic hydrogen and are only observed in bona fide symbiotic stars. Our high-resolution spectrum obtained with the Magellan Inamori Kyocera Echelle spectrograph at the Magellan-Clay Telescope reveals, quite surprisingly, that the profiles of the two bands look very different: while the Raman 6825 Å band shows a single broad profile with a redward extended bump, the Raman 7082 Å band exhibits a distinct triple-peak profile. Our model suggests that the O vi emission nebula can be decomposed into a red, blue, and central emission region from an accretion disk, a bipolar outflow, and a further compact, optically thick region. We also perform Monte Carlo simulations with the aim of fitting the observed flux ratio F (6825)/ F (7082) ∼ 4.5, which indicates that the neutral region in Sanduleak’s star is characterized by the column density N{sub Hi} ∼ 1 × 10{sup 23} cm{sup −2}.

  11. Airborne Lidar Measurements of Atmospheric Pressure Made Using the Oxygen A-Band

    Science.gov (United States)

    Riris, Haris; Rodriquez, Michael D.; Allan, Graham R.; Hasselbrack, William E.; Mao, Jianping; Stephen, Mark A.; Abshire, James B.

    2012-01-01

    Accurate measurements of greenhouse gas mixing ratios on a global scale are currently needed to gain a better understanding of climate change and its possible impact on our planet. In order to remotely measure greenhouse gas concentrations in the atmosphere with regard to dry air, the air number density in the atmosphere is also needed in deriving the greenhouse gas concentrations. Since oxygen is stable and uniformly mixed in the atmosphere at 20.95%, the measurement of an oxygen absorption in the atmosphere can be used to infer the dry air density and used to calculate the dry air mixing ratio of a greenhouse gas, such as carbon dioxide or methane. OUT technique of measuring Oxygen uses integrated path differential absorption (IPDA) with an Erbium Doped Fiber Amplifier (EDF A) laser system and single photon counting module (SPCM). It measures the absorbance of several on- and off-line wavelengths tuned to an O2 absorption line in the A-band at 764.7 nm. The choice of wavelengths allows us to maximize the pressure sensitivity using the trough between two absorptions in the Oxygen A-band. Our retrieval algorithm uses ancillary meteorological and aircraft altitude information to fit the experimentally obtained lidar O2 line shapes to a model atmosphere and derives the pressure from the profiles of the two lines. We have demonstrated O2 measurements from the ground and from an airborne platform. In this paper we will report on our airborne measurements during our 2011 campaign for the ASCENDS program.

  12. Expanding the isotopic toolbox: Applications of hydrogen and oxygen stable isotope ratios to food web studies

    OpenAIRE

    Hannah B Vander Zanden; David X Soto; Gabriel J Bowen; Keith A Hobson; Keith A Hobson

    2016-01-01

    The measurement of stable carbon (δ13C) and nitrogen (δ15N) isotopes in tissues of organisms has formed the foundation of isotopic food web reconstructions, as these values directly reflect assimilated diet. In contrast, stable hydrogen (δ2H) and oxygen (δ18O) isotope measurements have typically been reserved for studies of migratory origin and paleoclimate reconstruction based on systematic relationships between organismal tissue and local environmental water. Recently, innovative applicat...

  13. Expanding the Isotopic Toolbox: Applications of Hydrogen and Oxygen Stable Isotope Ratios to Food Web Studies

    OpenAIRE

    Vander Zanden, Hannah B.; Soto, David X.; Bowen, Gabriel J.; Hobson, Keith A.

    2016-01-01

    The measurement of stable carbon (δ13C) and nitrogen (δ15N) isotopes in tissues of organisms has formed the foundation of isotopic food web reconstructions, as these values directly reflect assimilated diet. In contrast, stable hydrogen (δ2H) and oxygen (δ18O) isotope measurements have typically been reserved for studies of migratory origin and paleoclimate reconstruction based on systematic relationships between organismal tissue and local environmental water. Recently, innovative applicatio...

  14. Effect of density of state on isotope effect exponent of two-band superconductors

    International Nuclear Information System (INIS)

    Udomsamuthirun, P.; Kumvongsa, C.; Burakorn, A.; Changkanarth, P.; Yoksan, S.

    2005-01-01

    The exact formula of T c 's equation and the isotope effect exponent of two-band s-wave superconductors in weak-coupling limit are derived by considering the influence of two kinds of density of state: constant and van Hove singularity. The paring interaction in each band consisted of two parts: the electron-phonon interaction and non-electron-phonon interaction are included in our model. We find that the interband interaction of electron-phonon show more effect on isotope exponent than the intraband interaction and the isotope effect exponent with constant density of state can fit to experimental data, MgB 2 and high-T c superconductor, better than van Hove singularity density of state

  15. A Unifying Perspective on Oxygen Vacancies in Wide Band Gap Oxides.

    Science.gov (United States)

    Linderälv, Christopher; Lindman, Anders; Erhart, Paul

    2018-01-04

    Wide band gap oxides are versatile materials with numerous applications in research and technology. Many properties of these materials are intimately related to defects, with the most important defect being the oxygen vacancy. Here, using electronic structure calculations, we show that the charge transition level (CTL) and eigenstates associated with oxygen vacancies, which to a large extent determine their electronic properties, are confined to a rather narrow energy range, even while band gap and the electronic structure of the conduction band vary substantially. Vacancies are classified according to their character (deep versus shallow), which shows that the alignment of electronic eigenenergies and CTL can be understood in terms of the transition between cavity-like localized levels in the large band gap limit and strong coupling between conduction band and vacancy states for small to medium band gaps. We consider both conventional and hybrid functionals and demonstrate that the former yields results in very good agreement with the latter provided that band edge alignment is taken into account.

  16. Raman spectrum of methane in nitrogen, carbon dioxide, hydrogen, ethane, and propane environments

    Science.gov (United States)

    Petrov, D. V.

    2018-02-01

    Using binary CH4 - mixtures with varied concentrations of H2, N2, CO2, C2H6 and C3H8 and a fixed ambient pressure of 25 bar, the influence of the environment on spectral characteristics (Raman shift, half-width, peak intensity) of Q-branches of the ν1, ν2, ν3, and 2ν4 methane Raman bands are investigated. It is found that depending on the environment these bands demonstrate different changes in their Raman shifts and half-widths. It is shown that the ratios of peak intensities I(ν2)/I(ν1), I(ν3)/I(ν1) and I(2ν4)/I(ν1) are very sensitive to the environment. The Raman shifts and half-widths of CH4 bands are assumed to depend on the absolute concentration of molecules in the analyzed medium. The data obtained would be useful in Raman diagnostics of natural gas.

  17. Oxygen Isotope Records in Modern Oyster Shells from Chi Ku, Tainan and Their Implication of Seasonality

    Science.gov (United States)

    Chen, Y. C.; Mii, H. S.; Li, K. T.

    2015-12-01

    To exam whether oxygen isotope records of Crassostrea gigasoysters can be used as proxies of environment, 133 cultivated oysters and 21 water samples were collected from Chi Ku area, Tainan City, southern Taiwan in December of 2012, and from March, 2013 to July, 2014. Instrumental air and water temperatures and precipitation records were obtained from a nearest Central Weather Bureau (CWB) station roughly 16 km north of Chi Ku. The oxygen and carbon isotope values of the ligamental area of the modern oyster shells are from -6.92‰ to -0.08‰ (-3.05 ± 1.17‰, N = 2280; 1σ; VPDB) and from -5.57‰ to 0.63‰ (-1.88 ± 0.81‰), respectively. Oxygen isotope values of the water samples are mainly between -0.28‰ and 0.74‰ (0.18 ± 0.29‰, N = 20; 1σ; VSMOW). However, water oxygen isotope value of -2.75‰ was observed for the water sample collected immediately after a typhoon heavy rainfall. Seasonal temperature fluctuation pattern of estimated oxygen isotope temperatures from modern shells is similar to that of CWB instrumental records. However, the oxygen isotope temperatures are respectively about 3 °C and 10°C higher than those of instrumental records for winter and summer. Higher estimated oxygen isotope temperatures are most likely caused by underestimated fraction of freshwater. We analyzed 5 archaeological oyster shells of Siraya culture (500~250B.P.) collected from Wu Chien Tuso North (WCTN) archaeological site of Tainan branch of Southern Taiwan Science Park to infer the harvest season of mollusks. Oxygen isotope values of the ligamental area of the archaeological oyster shells are between -5.98‰ and -1.26‰ (-3.34 ± 1.37‰, N = 60; 1σ), and carbon isotope values are between -3.21‰ and 0.60‰ (-2.04‰ ± 0.55‰). The oxygen isotope records of archaeological oyster shells also showed clear seasonality. Most of the oysters were collected in autumn and winter. Oxygen isotope values of archaeological oyster shells was 1‰ greater than that

  18. Implementation of Deep Ultraviolet Raman Spectroscopy

    DEFF Research Database (Denmark)

    Liu, Chuan

    of the aromatics, Toluene and Naphthalene, in the gasoline. Chapter 6 shows examples of other applications of DUV Raman spectroscopy, for instance for the illegal red food additive: Sudan I. For this dye Raman spectra - useful to indicate an unwanted presence - could not be obtained with green or blue laser line...... Raman spectrometry was further applied to detect another illegal food additive, Melamine, in milk sample. It was shown that the DUV constitutes a more sensitive measurement method than traditional Raman spectrometry and realizes a direct detection in liquid milk. In another research field regarding...... spectra of the gasoline samples. It is virtually unimportant what the rest of the sample consisted of. The most intense characteristic band is located at 1381 cm-1. The Raman spectra of home-made artificial gasoline mixtures - with gradually increasing Naphthalene contents - can be used to determine...

  19. Electronic resonances in broadband stimulated Raman spectroscopy

    Science.gov (United States)

    Batignani, G.; Pontecorvo, E.; Giovannetti, G.; Ferrante, C.; Fumero, G.; Scopigno, T.

    2016-01-01

    Spontaneous Raman spectroscopy is a formidable tool to probe molecular vibrations. Under electronic resonance conditions, the cross section can be selectively enhanced enabling structural sensitivity to specific chromophores and reaction centers. The addition of an ultrashort, broadband femtosecond pulse to the excitation field allows for coherent stimulation of diverse molecular vibrations. Within such a scheme, vibrational spectra are engraved onto a highly directional field, and can be heterodyne detected overwhelming fluorescence and other incoherent signals. At variance with spontaneous resonance Raman, however, interpreting the spectral information is not straightforward, due to the manifold of field interactions concurring to the third order nonlinear response. Taking as an example vibrational spectra of heme proteins excited in the Soret band, we introduce a general approach to extract the stimulated Raman excitation profiles from complex spectral lineshapes. Specifically, by a quantum treatment of the matter through density matrix description of the third order nonlinear polarization, we identify the contributions which generate the Raman bands, by taking into account for the cross section of each process.

  20. [Research advances in identifying nitrate pollution sources of water environment by using nitrogen and oxygen stable isotopes].

    Science.gov (United States)

    Mao, Wei; Liang, Zhi-wei; Li, Wei; Zhu, Yao; Yanng, Mu-yi; Jia, Chao-jie

    2013-04-01

    Water body' s nitrate pollution has become a common and severe environmental problem. In order to ensure human health and water environment benign evolution, it is of great importance to effectively identify the nitrate pollution sources of water body. Because of the discrepant composition of nitrogen and oxygen stable isotopes in different sources of nitrate in water body, nitrogen and oxygen stable isotopes can be used to identify the nitrate pollution sources of water environment. This paper introduced the fractionation factors of nitrogen and oxygen stable isotopes in the main processes of nitrogen cycling and the composition of these stable isotopes in main nitrate sources, compared the advantages and disadvantages of five pre-treatment methods for analyzing the nitrogen and oxygen isotopes in nitrate, and summarized the research advances in this aspect into three stages, i. e. , using nitrogen stable isotope alone, using nitrogen and oxygen stable isotopes simultaneously, and combining with mathematical models. The future research directions regarding the nitrate pollution sources identification of water environment were also discussed.

  1. Unravelling spatiotemporal tree-ring signals in Mediterranean oaks: a variance-covariance modelling approach of carbon and oxygen isotope ratios.

    Science.gov (United States)

    Shestakova, Tatiana A; Aguilera, Mònica; Ferrio, Juan Pedro; Gutiérrez, Emilia; Voltas, Jordi

    2014-08-01

    Identifying how physiological responses are structured across environmental gradients is critical to understanding in what manner ecological factors determine tree performance. Here, we investigated the spatiotemporal patterns of signal strength of carbon isotope discrimination (Δ(13)C) and oxygen isotope composition (δ(18)O) for three deciduous oaks (Quercus faginea (Lam.), Q. humilis Mill. and Q. petraea (Matt.) Liebl.) and one evergreen oak (Q. ilex L.) co-occurring in Mediterranean forests along an aridity gradient. We hypothesized that contrasting strategies in response to drought would lead to differential climate sensitivities between functional groups. Such differential sensitivities could result in a contrasting imprint on stable isotopes, depending on whether the spatial or temporal organization of tree-ring signals was analysed. To test these hypotheses, we proposed a mixed modelling framework to group isotopic records into potentially homogeneous subsets according to taxonomic or geographical criteria. To this end, carbon and oxygen isotopes were modelled through different variance-covariance structures for the variability among years (at the temporal level) or sites (at the spatial level). Signal-strength parameters were estimated from the outcome of selected models. We found striking differences between deciduous and evergreen oaks in the organization of their temporal and spatial signals. Therefore, the relationships with climate were examined independently for each functional group. While Q. ilex exhibited a large spatial dependence of isotopic signals on the temperature regime, deciduous oaks showed a greater dependence on precipitation, confirming their higher susceptibility to drought. Such contrasting responses to drought among oak types were also observed at the temporal level (interannual variability), with stronger associations with growing-season water availability in deciduous oaks. Thus, our results indicate that Mediterranean deciduous

  2. Silver Nanoparticle-Enhanced Resonance Raman Sensor of Chromium(III) in Seawater Samples.

    Science.gov (United States)

    Ly, Nguyễn Hoàng; Joo, Sang-Woo

    2015-04-29

    Tris(hydroxymethyl)aminomethane ethylenediaminetetraacetic acid (Tris-EDTA), upon binding Cr(III) in aqueous solutions at pH 8.0 on silver nanoparticles (AgNPs), was found to provide a sensitive and selective Raman marker band at ~563 cm-1, which can be ascribed to the metal-N band. UV-Vis absorption spectra also supported the aggregation and structural change of EDTA upon binding Cr(III). Only for Cr(III) concentrations above 500 nM, the band at ~563 cm-1 become strongly intensified in the surface-enhanced Raman scattering spectra. This band, due to the metal-EDTA complex, was not observed in the case of 50 mM of K+, Cd2+, Mg2+, Ca2+, Mn2+, Co2+, Na+, Cu2+, NH4+, Hg2+, Ni2+, Fe3+, Pb2+, Fe2+, and Zn2+ ions. Seawater samples containing K, Mg, Ca, and Na ion concentrations higher than 8 mM also showed the characteristic Raman band at ~563 cm-1 above 500 nM, validating our method. Our approach may be useful in detecting real water samples by means of AgNPs and Raman spectroscopy.

  3. Infrared and Raman spectrum of CaU04: a new data and interpretations

    International Nuclear Information System (INIS)

    Liegeois-Duyckaerts, M.

    1977-01-01

    New Raman and i.r. data on CaU0 4 , including isotopic and solid solutions frequencies, are presented and interpreted with the support of a group theoretical analysis and a normal coordinate treatment. The oxygen atoms only are allowed to move during the four Raman-active modes, all of which have been observed. The vibrational behaviour of the Casub(1-x)Srsub(x)U0 4 solid solutions suggest that two of these modes are conveniently described by internal motions of the uranyl group, viz. symmetric stretch (696 cm -1 ) and librational (340 cm -1 ) motions. Similarly, solid solution frequencies and 40 Ca- 44 Ca isotopic shifts lead to a satisfactory assignment of the five observed (against six predicted) i.r. frequencies: internal motions of the uranyl ion (696 and 366 cm -1 for the antisymmetric stretching, and bending respectively), translations of the Ca ++ ion (305 and 165 -1 ), and translation of the oxygen (435 cm -1 ). Most of these assignments do not agree with those previously proposed. The non-reproducibility of some i.r. frequencies is also discussed. (author)

  4. Isotopically Enriched C-13 Diamond Anvil as a Stress Sensor in High Pressure Experiments

    Science.gov (United States)

    Vohra, Yogesh; Qiu, Wei; Kondratyev, Andreiy; Velisavljevic, Nenad; Baker, Paul

    2004-03-01

    The conventional high pressure diamond anvils were modified by growing an isotopically pure C-13 diamond layer by microwave plasma chemical vapor deposition using methane/hydrogen/oxygen chemistry. The isotopically pure C-13 nature of the culet of the diamond anvil was confirmed by the Raman spectroscopy measurements. This isotopically engineered diamond anvil was used against a natural abundance diamond anvil for high pressure experiments in a diamond anvil cell. Spatial resolved Raman spectroscopy was used to measure the stress induced shift in the C-13 layer as well as the undelying C-12 layer to ultra high pressures. The observed shift and splitiing of the diamond first order Raman spectrum was correlated with the stress distribution in the diamond anvil cell. The experimental results will be compared with the finite element modeling results using NIKE-2D software in order to create a mathematical relationship between sets of the following parameters: vertical (z axis) distance; horizontal (r axis) distance; max shear stress, and pressure. The isotopically enriched diamond anvils offer unique opportunities to measure stress distribution in the diamond anvil cell devices.

  5. Wavenumber selection based analysis in Raman spectroscopy improves skin cancer diagnostic specificity at high sensitivity levels (Conference Presentation)

    Science.gov (United States)

    Zhao, Jianhua; Zeng, Haishan; Kalia, Sunil; Lui, Harvey

    2017-02-01

    Background: Raman spectroscopy is a non-invasive optical technique which can measure molecular vibrational modes within tissue. A large-scale clinical study (n = 518) has demonstrated that real-time Raman spectroscopy could distinguish malignant from benign skin lesions with good diagnostic accuracy; this was validated by a follow-up independent study (n = 127). Objective: Most of the previous diagnostic algorithms have typically been based on analyzing the full band of the Raman spectra, either in the fingerprint or high wavenumber regions. Our objective in this presentation is to explore wavenumber selection based analysis in Raman spectroscopy for skin cancer diagnosis. Methods: A wavenumber selection algorithm was implemented using variably-sized wavenumber windows, which were determined by the correlation coefficient between wavenumbers. Wavenumber windows were chosen based on accumulated frequency from leave-one-out cross-validated stepwise regression or least and shrinkage selection operator (LASSO). The diagnostic algorithms were then generated from the selected wavenumber windows using multivariate statistical analyses, including principal component and general discriminant analysis (PC-GDA) and partial least squares (PLS). A total cohort of 645 confirmed lesions from 573 patients encompassing skin cancers, precancers and benign skin lesions were included. Lesion measurements were divided into training cohort (n = 518) and testing cohort (n = 127) according to the measurement time. Result: The area under the receiver operating characteristic curve (ROC) improved from 0.861-0.891 to 0.891-0.911 and the diagnostic specificity for sensitivity levels of 0.99-0.90 increased respectively from 0.17-0.65 to 0.20-0.75 by selecting specific wavenumber windows for analysis. Conclusion: Wavenumber selection based analysis in Raman spectroscopy improves skin cancer diagnostic specificity at high sensitivity levels.

  6. Noninvasive imaging of protein metabolic labeling in single human cells using stable isotopes and Raman microscopy

    NARCIS (Netherlands)

    van Manen, H.J.; Lenferink, Aufrid T.M.; Otto, Cornelis

    2008-01-01

    We have combined nonresonant Raman microspectroscopy and spectral imaging with stable isotope labeling by amino acids in cell culture (SILAC) to selectively detect the incorporation of deuterium-labeled phenylalanine, tyrosine, and methionine into proteins in intact, single HeLa cells. The C−D

  7. Nitrogen and Oxygen Isotopic Studies of the Marine Nitrogen Cycle.

    Science.gov (United States)

    Casciotti, Karen L

    2016-01-01

    The marine nitrogen cycle is a complex web of microbially mediated reactions that control the inventory, distribution, and speciation of nitrogen in the marine environment. Because nitrogen is a major nutrient that is required by all life, its availability can control biological productivity and ecosystem structure in both surface and deep-ocean communities. Stable isotopes of nitrogen and oxygen in nitrate and nitrite have provided new insights into the rates and distributions of marine nitrogen cycle processes, especially when analyzed in combination with numerical simulations of ocean circulation and biogeochemistry. This review highlights the insights gained from dual-isotope studies applied at regional to global scales and their incorporation into oceanic biogeochemical models. These studies represent significant new advances in the use of isotopic measurements to understand the modern nitrogen cycle, with implications for the study of past ocean productivity, oxygenation, and nutrient status.

  8. Using Deep UV Raman Spectroscopy to Identify In Situ Microbial Activity

    Science.gov (United States)

    Sapers, H. M.; Wanger, G.; Amend, J.; Orphan, V. J.; Bhartia, R.

    2017-12-01

    Microbial communities living in close association with lithic substrates play a critical role in biogeochemical cycles. Understanding the interactions between microorganisms and their abiotic substrates requires knowledge of microbial activity. Identifying active cells adhered to complex environmental substrates, especially in low biomass systems, remains a challenge. Stable isotope probing (SIP) provides a means to trace microbial activity in environmental systems. Active members of the community take up labeled substrates and incorporate the labels into biomolecules that can be detected through downstream analyses. Here we show for the first time that Deep UV (248 nm) Raman spectroscopy can differentiate microbial cells labeled with stable isotopes. Previous studies have used Raman spectroscopy with a 532 nm source to identify active bacterial cells by measuring a Raman shift between peaks corresponding to amino acids incorporating 13C compared to controls. However, excitation at 532 nm precludes detection on complex substrates due to high autofluorescence of native minerals. Excitation in the DUV range offers non-destructive imaging on mineral surfaces - retaining critical contextual information. We prepared cultures of E. coli grown in 50 atom% 13C glucose spotted onto Al wafers to test the ability of DUV Raman spectroscopy to differentiate labeled and unlabeled cells. For the first time, we are able to demonstrate a distinct and repeatable shift between cells grown in labeled media and unlabeled media when imaged on Al wafers with DUV Raman spectroscopy. The Raman spectra are dominated by the characteristic Raman bands of guanine. The dominant marker peak for guanine attributed to N7-C8 and C8-N9 ring stretching and C8-H in-plane bending, is visible at 1480 cm-1 in the unlabeled cells and is blue-shifted by 20 wavenumbers to 1461 cm-1 in the labeled cells. The ability of DUV Raman to effectively identify regions containing cells that have incorporated isotopic

  9. Application of carbon and oxygen stable isotopes to the study of Brazilian precambrian

    International Nuclear Information System (INIS)

    Torquato, J.R.F.

    1980-01-01

    Samples of carbonated rocks of precambrian age are studied. The stable carbon and oxygen isotopes are applied to the study of terrestrial materials considering the variations of some element isotopic composition in function of the environment of sedimentation. The isotopic analysis was done using mass spectrometers. The analytical results and the description of region geology of the site of each sample are presented. The isotopic data are interpreted aiming to the environment of sedimentation. New techniques for better improvement of carbon and oxygen ratios, are proposed, such as: to use the analysis of surface trend and the isotopic logging in mapping of surface and subsurface. A new method for approximated determination of the ages of precambrian carbonated rocks, considering the limitations of their new technique, is also presented. (M.C.K.) [pt

  10. Surface-Enhanced Raman Spectroscopy of Carbon Nanomembranes from Aromatic Self-Assembled Monolayers.

    Science.gov (United States)

    Zhang, Xianghui; Mainka, Marcel; Paneff, Florian; Hachmeister, Henning; Beyer, André; Gölzhäuser, Armin; Huser, Thomas

    2018-02-27

    Surface-enhanced Raman scattering spectroscopy (SERS) was employed to investigate the formation of self-assembled monolayers (SAMs) of biphenylthiol, 4'-nitro-1,1'-biphenyl-4-thiol, and p-terphenylthiol on Au surfaces and their structural transformations into carbon nanomembranes (CNMs) induced by electron irradiation. The high sensitivity of SERS allows us to identify two types of Raman scattering in electron-irradiated SAMs: (1) Raman-active sites exhibit similar bands as those of pristine SAMs in the fingerprint spectral region, but with indications of an amorphization process and (2) Raman-inactive sites show almost no Raman-scattering signals, except a very weak and broad D band, indicating a lack of structural order but for the presence of graphitic domains. Statistical analysis showed that the ratio of the number of Raman-active sites to the total number of measurement sites decreases exponentially with increasing the electron irradiation dose. The maximum degree of cross-linking ranged from 97 to 99% for the three SAMs. Proof-of-concept experiments were conducted to demonstrate potential applications of Raman-inactive CNMs as a supporting membrane for Raman analysis.

  11. Error sources in the retrieval of aerosol information over bright surfaces from satellite measurements in the oxygen A band

    Science.gov (United States)

    Nanda, Swadhin; de Graaf, Martin; Sneep, Maarten; de Haan, Johan F.; Stammes, Piet; Sanders, Abram F. J.; Tuinder, Olaf; Pepijn Veefkind, J.; Levelt, Pieternel F.

    2018-01-01

    Retrieving aerosol optical thickness and aerosol layer height over a bright surface from measured top-of-atmosphere reflectance spectrum in the oxygen A band is known to be challenging, often resulting in large errors. In certain atmospheric conditions and viewing geometries, a loss of sensitivity to aerosol optical thickness has been reported in the literature. This loss of sensitivity has been attributed to a phenomenon known as critical surface albedo regime, which is a range of surface albedos for which the top-of-atmosphere reflectance has minimal sensitivity to aerosol optical thickness. This paper extends the concept of critical surface albedo for aerosol layer height retrievals in the oxygen A band, and discusses its implications. The underlying physics are introduced by analysing the top-of-atmosphere reflectance spectrum as a sum of atmospheric path contribution and surface contribution, obtained using a radiative transfer model. Furthermore, error analysis of an aerosol layer height retrieval algorithm is conducted over dark and bright surfaces to show the dependence on surface reflectance. The analysis shows that the derivative with respect to aerosol layer height of the atmospheric path contribution to the top-of-atmosphere reflectance is opposite in sign to that of the surface contribution - an increase in surface brightness results in a decrease in information content. In the case of aerosol optical thickness, these derivatives are anti-correlated, leading to large retrieval errors in high surface albedo regimes. The consequence of this anti-correlation is demonstrated with measured spectra in the oxygen A band from the GOME-2 instrument on board the Metop-A satellite over the 2010 Russian wildfires incident.

  12. Remote Sensing of Dissolved Oxygen and Nitrogen in Water Using Raman Spectroscopy

    Science.gov (United States)

    Ganoe, Rene; DeYoung, Russell J.

    2013-01-01

    The health of an estuarine ecosystem is largely driven by the abundance of dissolved oxygen and nitrogen available for maintenance of plant and animal life. An investigation was conducted to quantify the concentration of dissolved molecular oxygen and nitrogen in water by means of Raman spectroscopy. This technique is proposed for the remote sensing of dissolved oxygen in the Chesapeake Bay, which will be utilized by aircraft in order to survey large areas in real-time. A proof of principle system has been developed and the specifications are being honed to maximize efficiency for the final application. The theoretical criteria of the research, components of the experimental system, and key findings are presented in this report

  13. Two-step Raman spectroscopy method for tumor diagnosis

    Science.gov (United States)

    Zakharov, V. P.; Bratchenko, I. A.; Kozlov, S. V.; Moryatov, A. A.; Myakinin, O. O.; Artemyev, D. N.

    2014-05-01

    Two-step Raman spectroscopy phase method was proposed for differential diagnosis of malignant tumor in skin and lung tissue. It includes detection of malignant tumor in healthy tissue on first step with identification of concrete cancer type on the second step. Proposed phase method analyze spectral intensity alteration in 1300-1340 and 1640-1680 cm-1 Raman bands in relation to the intensity of the 1450 cm-1 band on first step, and relative differences between RS intensities for tumor area and healthy skin closely adjacent to the lesion on the second step. It was tested more than 40 ex vivo samples of lung tissue and more than 50 in vivo skin tumors. Linear Discriminant Analysis, Quadratic Discriminant Analysis and Support Vector Machine were used for tumors type classification on phase planes. It is shown that two-step phase method allows to reach 88.9% sensitivity and 87.8% specificity for malignant melanoma diagnosis (skin cancer); 100% sensitivity and 81.5% specificity for adenocarcinoma diagnosis (lung cancer); 90.9% sensitivity and 77.8% specificity for squamous cell carcinoma diagnosis (lung cancer).

  14. Simultaneous determination of stable carbon, oxygen, and hydrogen isotopes in cellulose.

    Science.gov (United States)

    Loader, N J; Street-Perrott, F A; Daley, T J; Hughes, P D M; Kimak, A; Levanič, T; Mallon, G; Mauquoy, D; Robertson, I; Roland, T P; van Bellen, S; Ziehmer, M M; Leuenberger, M

    2015-01-06

    A technological development is described through which the stable carbon-, oxygen-, and nonexchangeable hydrogen-isotopic ratios (δ(13)C, δ(18)O, δ(2)H) are determined on a single carbohydrate (cellulose) sample with precision equivalent to conventional techniques (δ(13)C 0.15‰, δ(18)O 0.30‰, δ(2)H 3.0‰). This triple-isotope approach offers significant new research opportunities, most notably in physiology and medicine, isotope biogeochemistry, forensic science, and palaeoclimatology, when isotopic analysis of a common sample is desirable or when sample material is limited.

  15. Growth of the European abalone ( Haliotis tuberculata L.) in situ: Seasonality and ageing using stable oxygen isotopes

    Science.gov (United States)

    Roussel, Sabine; Huchette, Sylvain; Clavier, Jacques; Chauvaud, Laurent

    2011-02-01

    The ormer, Haliotis tuberculata is the only European abalone species commercially exploited. The determination of growth and age in the wild is an important tool for fisheries and aquaculture management. However, the ageing technique used in the past in the field is unreliable. The stable oxygen isotope composition ( 18O/ 16O) of the shell depends on the temperature and oxygen isotope composition of the ambient sea water. The stable oxygen isotope technique, developed to study paleoclimatological changes in shellfish, was applied to three H. tuberculata specimens collected in north-west Brittany. For the specimens collected, the oxygen isotope ratios of the shell reflected the seasonal cycle in the temperature. From winter-to-winter cycles, estimates of the age and the annual growth increment, ranging from 13 to 55 mm per year were obtained. This study shows that stable oxygen isotopes can be a reliable tool for ageing and growth studies of this abalone species in the wild, and for validating other estimates.

  16. Forward Modeling of Carbonate Proxy Data from Planktonic Foraminifera using Oxygen Isotope Tracers in a Global Ocean Model

    Science.gov (United States)

    Schmidt, Gavin A.

    1999-01-01

    The distribution and variation of oxygen isotopes in seawater are calculated using the Goddard Institute for Space Studies global ocean model. Simple ecological models are used to estimate the planktonic foraminiferal abundance as a function of depth, column temperature, season, light intensity, and density stratification. These models are combined to forward model isotopic signals recorded in calcareous ocean sediment. The sensitivity of the results to the changes in foraminiferal ecology, secondary calcification, and dissolution are also examined. Simulated present-day isotopic values for ecology relevant for multiple species compare well with core-top data. Hindcasts of sea surface temperature and salinity are made from time series of the modeled carbonate isotope values as the model climate changes. Paleoclimatic inferences from these carbonate isotope records are strongly affected by erroneous assumptions concerning the covariations of temperature, salinity, and delta (sup 18)O(sub w). Habitat-imposed biases are less important, although errors due to temperature-dependent abundances can be significant.

  17. Infrared and Raman spectra of uric acid and its 15N and D labelled compounds

    International Nuclear Information System (INIS)

    Majoube, Michel

    Infrared and Raman spectra of polycrystalline uric acid (2, 6, 8-trioxypurine) 1.3, 7 and 9- 15 N and deuterated analogues have been determined. Band shifts with 15 N substitution and with deuteration are discussed. An assignment of fundamental vibrations of uric acid is proposed from the comparison of the eight isotopically substituted analogues [fr

  18. Extraordinary photoluminescence and strong temperature/angle-dependent Raman responses in few-layer phosphorene.

    Science.gov (United States)

    Zhang, Shuang; Yang, Jiong; Xu, Renjing; Wang, Fan; Li, Weifeng; Ghufran, Muhammad; Zhang, Yong-Wei; Yu, Zongfu; Zhang, Gang; Qin, Qinghua; Lu, Yuerui

    2014-09-23

    Phosphorene is a new family member of two-dimensional materials. We observed strong and highly layer-dependent photoluminescence in few-layer phosphorene (two to five layers). The results confirmed the theoretical prediction that few-layer phosphorene has a direct and layer-sensitive band gap. We also demonstrated that few-layer phosphorene is more sensitive to temperature modulation than graphene and MoS2 in Raman scattering. The anisotropic Raman response in few-layer phosphorene has enabled us to use an optical method to quickly determine the crystalline orientation without tunneling electron microscopy or scanning tunneling microscopy. Our results provide much needed experimental information about the band structures and exciton nature in few-layer phosphorene.

  19. Oxygen isotope exchange in La2NiO(4±δ).

    Science.gov (United States)

    Ananyev, M V; Tropin, E S; Eremin, V A; Farlenkov, A S; Smirnov, A S; Kolchugin, A A; Porotnikova, N M; Khodimchuk, A V; Berenov, A V; Kurumchin, E Kh

    2016-04-07

    Oxygen surface exchange kinetics and diffusion have been studied by the isotope exchange method with gas phase equilibration using a static circulation experimental rig in the temperature range of 600-800 °C and oxygen pressure range of 0.13-2.5 kPa. A novel model which takes into account distributions of the dissociative adsorption and incorporation rates has been developed. The rates of the elementary stages have been calculated. The rate-determining stages for a La2NiO(4±δ) polycrystalline specimen have been discussed. The diffusion activation energies calculated using the gas phase equilibration method (1.4 eV) differ significantly from those calculated using isotope exchange depth profiling (0.5-0.8 eV), which was attributed to the influence of different oxygen diffusion pathways.

  20. Investigation of hydrogen isotope exchange reaction rate in mixed gas (H2 and D2) at pressure up to 200 MPa using Raman spectroscopy

    International Nuclear Information System (INIS)

    Tikhonov, V.V.; Yukhimchuk, A.A.; Musyayev, R.K.; Gurkin, A.I.

    2015-01-01

    Raman spectroscopy is a relevant method for obtaining objective data on isotopic exchange rate in a gaseous mix of hydrogen isotopes, since it allows one to determine a gaseous mix composition in real time without sampling. We have developed a high-pressure fiber-optic probe to be used for obtaining protium Raman spectra under pressures up to 400 MPa and we have recorded spectral line broadening induced by molecule collisions starting from ∼ 40 MPa. Using this fiber-optic probe we have performed experiments to study isotopic exchange kinetics in a gaseous mix of hydrogen isotopes (protium-deuterium) at pressures up to 200 MPa. Preliminary results show that the dependence of the average isotopic exchange rate related to pressure take unexpected values at the very beginning of the time evolution. More work is required to understand this inconsistency

  1. Oxygen deficiency in MoO{sub 3} polycrystalline nanowires and nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Varlec, Ana, E-mail: ana.varlec@ijs.si [Condensed Matter Physics, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); Arčon, Denis [Condensed Matter Physics, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); Faculty of Mathematics and Physics, University of Ljubljana, Jadranska cesta 19, SI-1000 Ljubljana (Slovenia); Škapin, Srečo D. [Advanced Materials Department, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); Remškar, Maja [Condensed Matter Physics, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia)

    2016-02-15

    We report on the synthesis of polycrystalline molybdenum oxide (MoO{sub 3}) nanowires via oxidation of molybdenum-sulfur-iodine (Mo{sub 6}S{sub 2}I{sub 8}) nanowires. This unique synthesis route results in an interesting morphology comprising porous nanowires and nanotubes. We found the nanowires to have the orthorhombic MoO{sub 3} structure. The structure is slightly oxygen deficient which results in the appearance of a new resonant Raman band (1004 cm{sup −1}) and paramagnetic defects (Mo{sup 5+}) of both the point and crystallographic shear plane nature. - Highlights: • Polycrystalline MoO{sub 3} nanowires were obtained via oxidation of Mo{sub 6}S{sub 2}I{sub 8} nanowires. • Nanowires are porous and tubular with either filled or empty interior. • Nanowires are slightly oxygen deficient which leads to a new Raman band.

  2. Study of yrast bands and electromagnetic properties in neutron-rich 114-128Cd isotopes

    Science.gov (United States)

    Chaudhary, Ritu; Pandit, Rakesh K.; Devi, Rani; Khosa, S. K.

    2018-02-01

    The projected shell model framework has been employed to carry out a systematic study on the deformation systematics of E (21+) and E (41+) / E (21+) values, BCS subshell occupation numbers, yrast spectra, backbending phenomena and electromagnetic quantities in 114-128Cd isotopes. Present calculations reproduce the observed systematics of the E (21+), R42 and B (E 2 ;2+ →0+) values for 114-128Cd isotopic mass chain and give the evidence that deformation increases as one moves from 114Cd to 118Cd, thereafter it decreases up to 126Cd. This in turn confirms 118Cd to be the most deformed nucleus in this set of isotopic mass chain. The emergence of backbending, decrease in B (E 2) values and change in g-factors in all these isotopes are intimately related to the crossing of g-band by 2-qp bands.

  3. Raman spectroscopy differentiates between sensitive and resistant multiple myeloma cell lines

    Science.gov (United States)

    Franco, Domenico; Trusso, Sebastiano; Fazio, Enza; Allegra, Alessandro; Musolino, Caterina; Speciale, Antonio; Cimino, Francesco; Saija, Antonella; Neri, Fortunato; Nicolò, Marco S.; Guglielmino, Salvatore P. P.

    2017-12-01

    Current methods for identifying neoplastic cells and discerning them from their normal counterparts are often nonspecific and biologically perturbing. Here, we show that single-cell micro-Raman spectroscopy can be used to discriminate between resistant and sensitive multiple myeloma cell lines based on their highly reproducible biomolecular spectral signatures. In order to demonstrate robustness of the proposed approach, we used two different cell lines of multiple myeloma, namely MM.1S and U266B1, and their counterparts MM.1R and U266/BTZ-R subtypes, resistant to dexamethasone and bortezomib, respectively. Then, micro-Raman spectroscopy provides an easily accurate and noninvasive method for cancer detection for both research and clinical environments. Characteristic peaks, mostly due to different DNA/RNA ratio, nucleic acids, lipids and protein concentrations, allow for discerning the sensitive and resistant subtypes. We also explored principal component analysis (PCA) for resistant cell identification and classification. Sensitive and resistant cells form distinct clusters that can be defined using just two principal components. The identification of drug-resistant cells by confocal micro-Raman spectroscopy is thus proposed as a clinical tool to assess the development of resistance to glucocorticoids and proteasome inhibitors in myeloma cells.

  4. 99 Tc NMR determination of the oxygen isotope content in 18 O-enriched water.

    Science.gov (United States)

    Tarasov, Valerii P; Kirakosyan, Gayana А; German, Konstantin E

    2018-03-01

    99 Tc NMR has been suggested as an original method of evaluating the content of oxygen isotopes in oxygen-18-enriched water, a precursor for the production of radioisotope fluorine-18 used in positron emission tomography. To this end, solutions of NH 4 TcO 4 or NaTcO 4 (up to 0.28 mol/L) with natural abundance of oxygen isotopes in virgin or recycled 18 O-enriched water have been studied by 99 Tc NMR. The method is based on 16 O/ 17 O/ 18 O intrinsic isotope effects in the 99 Tc NMR chemical shifts, and the statistical distribution of oxygen isotopes in the coordination sphere of TcO 4 - and makes it possible to quantify the composition of enriched water by measuring the relative intensities of the 99 Tc NMR signals of the Tc 16 O 4-n 18 O n - isotopologues. Because the oxygen exchange between TcO 4 - and enriched water in neutral and alkaline solutions is characterized by slow kinetics, gaseous HCl was bubbled through a solution for a few seconds to achieve the equilibrium distribution of oxygen isotopes in the Tc coordination sphere without distortion of the oxygen composition of the water. Pertechnetate ion was selected as a probe due to its high stability in solutions and the significant 99 Tc NMR shift induced by a single 16 O→ 18 O substitution (-0.43 ± 0.01 ppm) in TcO 4 - and spin coupling constant 1 J( 99 Tc- 17 O) (131.46 Hz) favourable for the observation of individual signals of Tc 16 O 4-n 18 O n - isotopologues. Copyright © 2017 John Wiley & Sons, Ltd.

  5. Extraordinary Photoluminescence and Strong Temperature/Angle-Dependent Raman Responses in Few-Layer Phosphorene

    OpenAIRE

    Zhang, Shuang; Yang, Jiong; Xu, Renjing; Wang, Fan; Li, Weifeng; Ghufran, Muhammad; Zhang, Yong-wei; Yu, Zongfu; Zhang, Gang; Qin, Qinghua; Lu, Yuerui

    2014-01-01

    Phosphorene is a new family member of two-dimensional materials. We observed strong and highly layer-dependent photoluminescence in few-layer phosphorene (2 to 5 layers). The results confirmed the theoretical prediction that few-layer phosphorene has a direct and layer-sensitive band gap. We also demonstrated that few-layer phosphorene is more sensitive to temperature modulation than graphene and MoS2 in Raman scattering. The anisotropic Raman response in few-layer phosphorene has enabled us ...

  6. Do oxygen stable isotopes track precipitation moisture source in vascular plant dominated peatlands?

    Science.gov (United States)

    Charman, D.; Amesbury, M. J.; Newnham, R.; Loader, N.; Goodrich, J. P.; Gallego-Sala, A. V.; Royles, J.; Keller, E. D.; Baisden, W. T.

    2014-12-01

    Variations in the isotopic composition of precipitation are determined by fractionation processes which occur during temperature and humidity dependent phase changes associated with evaporation and condensation. Oxygen stable isotope ratios have therefore been frequently used as a source of palaeoclimate data from a variety of proxy archives. Exploitation of this record from ombrotrophic peatlands, where the source water used in cellulose synthesis is derived solely from precipitation, has been mostly limited to Northern Hemisphere Sphagnum-dominated bogs, with limited application in the Southern Hemisphere (SH) or in peatlands dominated by vascular plants. Throughout New Zealand (NZ), the preserved root matrix of the restionaceous wire rush (Empodisma spp.) forms deep peat deposits. NZ provides an ideal location to undertake empirical research into oxygen isotope fractionation in vascular peatlands because sites are ideally suited to single taxon analysis, preserve potentially high resolution full Holocene palaeoclimate records and are situated in the climatically sensitive SH mid-latitudes. Crucially, large gradients exist in the mean isotopic composition of precipitation across NZ, caused primarily by the relative influence of different climate modes. We test the capacity for δ18O analysis of Empodisma alpha cellulose from ombrotrophic restiad peatlands in NZ to provide a methodology for developing palaeoclimate records. We took surface plant, water and precipitation samples over spatial (six sites spanning >10° latitude) and temporal (monthly measurements over one year) gradients. We found a strong link between the isotopic compositions of surface root water, the most likely source water for plant growth, and precipitation in both datasets. Back-trajectory modelling of precipitation moisture source for rain days prior to sampling showed clear seasonality in the temporal data that was reflected in surface root water. The link between source water and plant

  7. In vivo EPR oximetry using an isotopically-substituted nitroxide: Potential for quantitative measurement of tissue oxygen

    Science.gov (United States)

    Weaver, John; Burks, Scott R.; Liu, Ke Jian; Kao, Joseph P.Y.; Rosen, Gerald M.

    2017-01-01

    Variations in brain oxygen (O2) concentration can have profound effects on brain physiology. Thus, the ability to quantitate local O2 concentrations noninvasively in vivo could significantly enhance understanding of several brain pathologies. However, quantitative O2 mapping in the brain has proven difficult. The electron paramagnetic resonance (EPR) spectra of nitroxides are sensitive to molecular O2 and can be used to estimate O2 concentrations in aqueous media. We recently synthesized labile-ester-containing nitroxides, such as 3-acetoxymethoxycarbonyl-2,2,5,5-tetramethyl-1-pyrrolidinyloxyl (nitroxide 4), which accumulate in cerebral tissue after in situ hydrolysis, and thus enable spatial mapping of O2 concentrations in the mouse brain by EPR imaging. In an effort to improve O2 quantitation, we prepared 3-acetoxymethox ycarbonyl-2,2,5,5-tetra(2H3)methyl-1-(3,4,4-2H3,1-15N)pyrrolidinyloxyl (nitroxide 2), which proved to be a more sensitive probe than its normo-isotopic version for quantifying O2 in aqueous solutions of various O2 concentrations. We now demonstrate that this isotopically substituted nitroxide is ~2-fold more sensitive in vivo than the normo-isotopic nitroxide 4. Moreover, in vitro and in vivo EPR spectral-spatial imaging results with nitroxide 2 demonstrate significant improvement in resolution, reconstruction and spectral response to local O2 concentrations in cerebral tissue. Thus, isotopic-substituted nitroxides, such as 2, are excellent sensors for in vivo O2 quantitation in tissues, such as the brain. PMID:27567323

  8. Raman Optical Activity of Biological Molecules

    Science.gov (United States)

    Blanch, Ewan W.; Barron, Laurence D.

    Now an incisive probe of biomolecular structure, Raman optical activity (ROA) measures a small difference in Raman scattering from chiral molecules in right- and left-circularly polarized light. As ROA spectra measure vibrational optical activity, they contain highly informative band structures sensitive to the secondary and tertiary structures of proteins, nucleic acids, viruses and carbohydrates as well as the absolute configurations of small molecules. In this review we present a survey of recent studies on biomolecular structure and dynamics using ROA and also a discussion of future applications of this powerful new technique in biomedical research.

  9. A Quantitative, Time-Dependent Model of Oxygen Isotopes in the Solar Nebula: Step one

    Science.gov (United States)

    Nuth, J. A.; Paquette, J. A.; Farquhar, A.; Johnson, N. M.

    2011-01-01

    The remarkable discovery that oxygen isotopes in primitive meteorites were fractionated along a line of slope I rather than along the typical slope 0,52 terrestrial fractionation line occurred almost 40 years ago, However, a satisfactory, quantitative explanation for this observation has yet to be found, though many different explanations have been proposed, The first of these explanations proposed that the observed line represented the final product produced by mixing molecular cloud dust with a nucleosynthetic component, rich in O-16, possibly resulting from a nearby supernova explosion, Donald Clayton suggested that Galactic Chemical Evolution would gradually change the oxygen isotopic composition of the interstellar grain population by steadily producing O-16 in supernovae, then producing the heavier isotopes as secondary products in lower mass stars, Thiemens and collaborators proposed a chemical mechanism that relied on the availability of additional active rotational and vibrational states in otherwise-symmetric molecules, such as CO2, O3 or SiO2, containing two different oxygen isotopes and a second, photochemical process that suggested that differential photochemical dissociation processes could fractionate oxygen , This second line of research has been pursued by several groups, though none of the current models is quantitative,

  10. THz spectroscopy of the 29 cm{sup -1} oxygen vibrational line in natural silicon and isotopically enriched {sup 28}Si

    Energy Technology Data Exchange (ETDEWEB)

    Lassmann, Kurt; Dressel, Martin [1. Physikalisches Inst., Univ. Stuttgart (Germany); Gorshunov, Boris; Zhukova, E.S. [1. Physikalisches Inst., Univ. Stuttgart (Germany); A.M. Prokhorov Gen. Phys. Inst., RAS, Moscow (Russian Federation); Moscow Inst. Physics and Technology (Russian Federation); Korolev, P.S. [A.M. Prokhorov Gen. Phys. Inst., RAS, Moscow (Russian Federation); Lomonosov Moscow State Univ. (Russian Federation); Kalinsuhkin, V.P. [A.M. Prokhorov Gen. Phys. Inst., RAS, Moscow (Russian Federation); Abrosimov, N.V. [Leibniz Inst. Kristallzuechtung, Berlin (Germany); Sennikov, P.G. [Inst. Chem. High-Purity Substances, Nizhny Novgorod (Russian Federation); Pohl, H.J. [PTB, Braunschweig (Germany); Zakel, S. [VITCON-Projektconsult, Jena (Germany)

    2012-07-01

    Looking for a possible host-isotope effect on the low-energy two-dimensional motion of interstitial oxygen in silicon we have measured the resonance parameters of the lowest transition of the 30 cm{sup -1} band of the Si-O-Si complex in natural Si and in isotopically enriched {sup 28}Si at temperatures between 5 K and 22 K by means of coherent-source terahertz spectroscopy. At 5.5 K we obtain for the resonance maxima 29.24 {+-} 0.003 cm{sup -1} and 29.22 {+-} 0.003 cm{sup -1} and for the line widths 0.09 {+-} 0.01 cm{sup -1} and 0.11 {+-} 0.01 cm{sup -1} for {sup 28}Si and {sup nat}Si, respectively. Both lines can be fitted by single Lorentzians, so, no obvious isotopic structure or asymmetry of the line in {sup nat}Si due to the Si neighbors in the Si-O-Si complex is detected. We therefore conclude that down-shift and broadening of the {sup nat}Si-resonance is not due to the Si isotopes in the isolated Si-O-Si complex but to an average effect of the isotopically inhomogeneous lattice.

  11. Study of the structure of yrast bands of neutron-rich 114-124Pd isotopes

    Science.gov (United States)

    Chaudhary, Ritu; Devi, Rani; Khosa, S. K.

    2018-02-01

    The projected shell model calculations have been carried out in the neutron-rich 114-124Pd isotopic mass chain. The results have been obtained for the deformation systematics of E(2+1) and E(4+1)/E({2}+1) values, BCS subshell occupation numbers, yrast spectra, backbending phenomena, B( E2) transition probabilities and g-factors in these nuclei. The observed systematics of E(2+1) values and R_{42} ratios in the 114-124Pd isotopic mass chain indicate that there is a decrease of collectivity as the neutron number increases from 68 to 78. The occurrence of backbending in these nuclei as well as the changes in the calculated B( E2) transition probabilities and g -factors predict that there are changes in the structure of yrast bands in these nuclei. These changes occur at the spin where there is crossing of g-band by 2-qp bands. The predicted backbendings and predicted values of B( E2)s and g-factors in some of the isotopes need to be confirmed experimentally.

  12. Carbon, nitrogen and oxygen isotope fractionation during food cooking: Implications for the interpretation of the fossil human record.

    Science.gov (United States)

    Royer, Aurélien; Daux, Valérie; Fourel, François; Lécuyer, Christophe

    2017-08-01

    Stable isotope data provide insight into the reconstruction of ancient human diet. However, cooking may alter the original stable isotope compositions of food due to losses and modifications of biochemical and water components. To address this issue, carbon, nitrogen and oxygen isotope ratios were measured on meat aliquots sampled from various animals such as pork, beef, duck and chicken, and also from the flesh of fishes such as salmon, European seabass, European pilchard, sole, gilt-head bream, and tuna. For each specimen, three pieces were cooked according to the three most commonly-known cooking practices: boiling, frying and roasting on a barbecue. Our data show that cooking produced isotopic shifts up to 1.8‰, 3.5‰, and 5.2‰ for δ 13 C, δ 15 N, and δ 18 O values, respectively. Such variations between raw and cooked food are much greater than previously estimated in the literature; they are more sensitive to the type of food rather than to the cooking process itself, except in the case of boiling. Reconstructions of paleodietary may thus suffer slight bias in cases of populations with undiversified diets that are restrained toward a specific raw or cooked product, or using a specific cooking mode. In cases of oxygen isotope compositions from skeletal remains (bones, teeth), they not only constitute a valuable proxy for reconstructing past climatic conditions, but they could also be used to improve our knowledge of past human diet. © 2017 Wiley Periodicals, Inc.

  13. Oxygen isotopic composition of mammal bones as a new tool for studying ratios of paleoenvironmental water and paleoclimates

    International Nuclear Information System (INIS)

    Longinelli, A.

    1984-04-01

    The purpose of this study is to try to establish quantitative relationships between the average oxygen isotopic composition of local meteoric water, the oxygen isotopic composition of mammal body water and the oxygen isotopic composition of phosphate in mammal bones. These relationships, after calibration of the method on living specimens, would allow quantitative paleoclimatological research based on the measurement of delta 18 O(PO 4 3- ) of fossil mammal bones

  14. Exploring Neutron-Rich Oxygen Isotopes with MoNA

    International Nuclear Information System (INIS)

    Frank, N.; Gade, A.; Peters, W. A.; Thoennessen, M.; Baumann, T.; Bazin, D.; Lecouey, J.-L.; Scheit, H.; Schiller, A.; Brown, J.; DeYoung, P. A.; Finck, J. E.; Hinnefeld, J.; Howes, R.; Luther, B.

    2007-01-01

    The Modular Neutron Array (MoNA) was used in conjunction with a large-gap dipole magnet (Sweeper) to measure neutron-unbound states in oxygen isotopes close to the neutron dripline. While no excited states were observed in 24 O, a resonance at 45(2) keV above the neutron separation energy was observed in 23 O

  15. Effect of deuteration on the vibrational spectra of organic molecules

    International Nuclear Information System (INIS)

    Billes, Ferenc; Endredi, Henrietta; Varady, Balazs

    2001-01-01

    The stable isotope substitution of organic compounds deforms their vibrational spectra. The modifications of the spectra appear as band shifts and changes in intensities and shapes of the bands. The magnitude of the effect depends on the ratio of the masses of the new and old isotopes and on the atom active position. According to these mentioned reasons large effects can be observed only if hydrogen atoms are substituted. With the effect of the substitution we dealt already in a former lecture. In this lecture we concentrate on the effect of the change of hydrogen to deuterium. We investigate the changes both experimentally and theoretically. There are two possibilities: - the hydrogen atom is in an active position, its interaction with the environment is strong, either it can dissociate or move on the skeleton of the molecule (tautomerism, resonance) and it can build hydrogen bond, (e.g. it is connected to nitrogen and oxygen atoms); - the hydrogen atom is in an indifferent position in the molecule, its interaction with the environment is weak (e.g. it joins carbon atom). When building the hydrogen bond besides the hydrogen donors also acceptors exist, namely, oxygen and nitrogen atoms having non-bonded electron pairs. When comparing the experimental and theoretical (calculated) effects of this type of isotope changes one must take into account that the calculations refer to the isolated molecule while the experimental spectra characterize the compound. The hydrogen bond is a very strong intermolecular interaction and produces tremendous changes in the infrared spectrum of the molecule in comparison to the imagined theoretical spectrum of the molecule. Some bands disappear, appear, or shift and deform drastically. The H/D change diminishes these effects. Of course, these changes entail the shift of several bands. The Raman spectrum is less sensitive to the large dipole moment changes therefore the deuteration effect is there less dramatic. Deuteration of hydrogen

  16. Theory of Graphene Raman Scattering.

    Science.gov (United States)

    Heller, Eric J; Yang, Yuan; Kocia, Lucas; Chen, Wei; Fang, Shiang; Borunda, Mario; Kaxiras, Efthimios

    2016-02-23

    Raman scattering plays a key role in unraveling the quantum dynamics of graphene, perhaps the most promising material of recent times. It is crucial to correctly interpret the meaning of the spectra. It is therefore very surprising that the widely accepted understanding of Raman scattering, i.e., Kramers-Heisenberg-Dirac theory, has never been applied to graphene. Doing so here, a remarkable mechanism we term"transition sliding" is uncovered, explaining the uncommon brightness of overtones in graphene. Graphene's dispersive and fixed Raman bands, missing bands, defect density and laser frequency dependence of band intensities, widths of overtone bands, Stokes, anti-Stokes anomalies, and other known properties emerge simply and directly.

  17. Sulfur cycling in contaminated aquifers: What can we learn from oxygen isotopes in sulfate? (Invited)

    Science.gov (United States)

    Knoeller, K.; Vogt, C.; Hoth, N.

    2009-12-01

    Bacterial reduction of dissolved sulfate (BSR) is a key process determining the natural attenuation in many contaminated aquifers. For example, in groundwater bodies affected by acid mine drainage (AMD) BSR reduces the contaminant load by producing alkalinity and facilitating a sustainable fixation of sulfur in the sediment. In aquifers contaminated with petroleum hydrocarbons sulfate may act as a terminal electron acceptor for the anaerobic oxidation of the organic contaminants to carbon dioxide and water. Due to the isotope selectivity of sulfate reducing bacteria, BSR shows the most pronounced isotope fractionation within the sulfur cycle. While sulfur displays a straightforward kinetic enrichment in the residual sulfate described by the enrichment factor epsilon (ɛ), the mechanism of oxygen isotope fractionation is still being discussed controversially. Nevertheless, it is agreed on that oxygen isotope exchange between ambient water and residual sulfate occurs during BSR in natural environments. With respect to this potential isotope exchange, the fractionation parameter theta (θ) is introduced instead of the kinetic enrichment factor epsilon (ɛ). The dual isotope system considering both sulfate-sulfur and sulfate-oxygen isotope fractionation and the respective fractionation parameters ɛ and θ provides an excellent tool for the recognition and quantification of BSR. Beyond that, the dual isotope approach may help identify and estimate interfering sulfur transformations such as re-oxidation and disproportionation processes which is especially vital for the understanding of the overall natural attenuation potential of the investigated aquifers. We present two examples from different field studies showing the benefits of applying the combination of sulfur and oxygen isotopes in dissolved sulfate to reveal the details of the sulfur cycle. The first case study is concerned with the evaluation of the potential for BSR in an AMD-affected aquifer close to an

  18. Studies for improved understanding of lipid distributions in human skin by combining stimulated and spontaneous Raman microscopy.

    Science.gov (United States)

    Klossek, A; Thierbach, S; Rancan, F; Vogt, A; Blume-Peytavi, U; Rühl, E

    2017-07-01

    Advanced Raman techniques, such as stimulated Raman spectroscopy (SRS), have become a valuable tool for investigations of distributions of substances in biological samples. However, these techniques lack spectral information and are therefore highly affected by cross-sensitivities, which are due to blended Raman bands. One typical example is the symmetric CH 2 stretching vibration of lipids, which is blended with the more intense Raman band of proteins. We report in this work an approach to reduce such cross-sensitivities by a factor of 8 in human skin samples. This is accomplished by careful spectral deconvolutions revealing the neat spectra of skin lipids. Extensive Raman studies combining the complementary advantages of fast mapping and scanning, i.e. SRS, as well as spectral information provided by spontaneous Raman spectroscopy, were performed on the same skin regions. In addition, an approach for correcting artifacts is reported, which are due to transmission and reflection geometries in Raman microscopy as well as scattering of radiation from rough and highly structured skin samples. As a result, these developments offer improved results obtained from label-free spectromicroscopy provided by Raman techniques. These yield substance specific information from spectral regimes in which blended bands dominate. This improvement is illustrated by studies on the asymmetric CH 2 stretching vibration of lipids, which was previously difficult to identify due to the strong background signal from proteins. The advantage of the correction procedures is demonstrated by higher spatial resolution permitting to perform more detailed investigations on lipids and their composition in skin. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Pressure-Raman study of resonant TO(Γ)-two-phonon decay processes in ZnS: Comparison of three isotope compositions

    International Nuclear Information System (INIS)

    Tallman, R.E.; Weinstein, B.A.; Serrano, J.; Lauck, R.; Cardona, M.; Cantarero, A.; Garro, N.; Ritter, T.M.

    2004-01-01

    Pressure-Raman studies (to 15 GPa, at 300 K and 16 K) are reported on 64 Zn 34 S, 68 Zn 32 S, and natural ZnS to compare the effects of resonant 3-phonon mixing on the TO(Γ) phonons for the different isotope compositions. Under pressure the TO(Γ) Raman profiles exhibit several distinct features, and a sharp Lorentzian TO(Γ) peak eventually emerges at a threshold pressure P Th that differs for each isotope composition. These effects are due to resonant mixing of the TO(Γ) phonon with TA+LA combination modes. Calculations based on a bond-charge model and perturbation theory reproduce the observed pressure variations in the shape and the width of the TO(Γ) peaks. It is shown that these changes relate to singularities in the TA+LA density of states. Mass scaling of the TO(Γ) and TA+LA modes explains the isotope effect on P Th , and leads to the estimate γ LA(W) ∝1.2. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Carbon and oxygen isotope compositions of the carbonate facies

    Indian Academy of Sciences (India)

    The Vindhyan sedimentary succession in central India spans a wide time bracket from the Paleopro- terozoic to the Neoproterozoic period.Chronostratigraphic significance of stable carbon and oxygen isotope ratios of the carbonate phase in Vindhyan sediments has been discussed in some recent studies.However,the ...

  1. Raman Tweezers as a Diagnostic Tool of Hemoglobin-Related Blood Disorders

    Directory of Open Access Journals (Sweden)

    Giulia Rusciano

    2008-12-01

    Full Text Available This review presents the development of a Raman Tweezers system for detecting hemoglobin-related blood disorders at a single cell level. The study demonstrates that the molecular fingerprint insight provided by Raman analysis holds great promise for distinguishing between healthy and diseased cells in the field of biomedicine. Herein a Raman Tweezers system has been applied to investigate the effects of thalassemia, a blood disease quite diffuse in the Mediterranean Sea region. By resonant excitation of hemoglobin Raman bands, we examined the oxygenation capability of normal, alpha- and beta-thalassemic erythrocytes. A reduction of this fundamental red blood cell function, particularly severe for beta-thalassemia, has been found. Raman spectroscopy was also used to draw hemoglobin distribution inside single erythrocytes; the results confirmed the characteristic anomaly (target shape, occurring in thalassemia and some other blood disorders. The success of resonance Raman spectroscopy for thalassemia detection reported in this review provide an interesting starting point to explore the application of a Raman Tweezers system in the analysis of several blood disorders.

  2. Controls of oxygen isotope ratios of nitrate formed during nitrification in soils

    International Nuclear Information System (INIS)

    Mayer, B.; Bollwerk, S.M.; Vorhoff, B.; Mansfeldt, T.; Veizer, J.

    1999-01-01

    The isotopic composition of nitrate is increasingly used to determine sources and transformations of nitrogen in terrestrial and aquatic ecosystems. Oxygen isotope ratios of nitrate appear to be particularly useful, since they allow the differentiation between nitrate from atmospheric deposition (δ 18 O nitrate between +25 and +70 per mille), nitrate from fertilizers (δ 18 O nitrate +23 per mille), and nitrate derived from nitrification processes in soils (δ 18 O nitrate 3 molecule derive from H 2 O (with negative δ 18 O values dependent upon location) and one oxygen derives from atmospheric O 2 (δ 18 O = +23.5 per mille).. The objective of this study was to experimentally determine the extent to which water oxygen controls the δ 18 O value of nitrate, which is formed during nitrification in soils

  3. Anomalous optical emission in hot dense oxygen

    Science.gov (United States)

    Santoro, Mario; Gregoryanz, Eugene; Mao, Ho-kwang; Hemley, Russell J.

    2007-11-01

    We report the observation of unusually strong, broad-band optical emission peaked between 590 and 650 nm when solid and fluid oxygen are heated by a near infrared laser at pressures from 3 to 46 GPa. In situ Raman spectra of oxygen were collected and corresponding temperatures were measured from the Stokes/anti-Stokes intensity ratios of vibrational transitions. The intense optical emission overwhelmed the Raman spectrum at temperatures exceeding 750 K. The spectrum was found to be much narrower than Planck-type thermal emission, and the intensity increase with input power was much steeper than expected for the thermal emission. The result places an important general caveat on calculating temperatures based on optical emission spectra in high-pressure laser-heating experiments. The intense emission in oxygen is photo-induced rather than being purely thermal, through multiphoton or multi-step single photon absorption processes related to the interaction with infrared radiation. The results suggest that short lived ionic species are induced by this laser-matter interaction.

  4. Investigation of hydrogen isotope exchange reaction rate in mixed gas (H{sub 2} and D{sub 2}) at pressure up to 200 MPa using Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tikhonov, V.V.; Yukhimchuk, A.A.; Musyayev, R.K.; Gurkin, A.I. [Russian Federal Nuclear Center, All-Russian Research Institute of Experimental Physics, Sarov (Russian Federation)

    2015-03-15

    Raman spectroscopy is a relevant method for obtaining objective data on isotopic exchange rate in a gaseous mix of hydrogen isotopes, since it allows one to determine a gaseous mix composition in real time without sampling. We have developed a high-pressure fiber-optic probe to be used for obtaining protium Raman spectra under pressures up to 400 MPa and we have recorded spectral line broadening induced by molecule collisions starting from ∼ 40 MPa. Using this fiber-optic probe we have performed experiments to study isotopic exchange kinetics in a gaseous mix of hydrogen isotopes (protium-deuterium) at pressures up to 200 MPa. Preliminary results show that the dependence of the average isotopic exchange rate related to pressure take unexpected values at the very beginning of the time evolution. More work is required to understand this inconsistency.

  5. Oxygen isotope fractionation and algal symbiosis in benthic foraminifera from the Gulf of Elat, Israel

    International Nuclear Information System (INIS)

    Buchardt, B.; Hansen, H.J.

    1977-01-01

    In order to investigate possible isotopic fractionations due to algal symbiosis the oxygen and carbon isotope compositions of shell carbonate from symbiont-free and symbiont-bearing benthic foraminifera have been compared to that of molluscs living at the same locality. The material was collected over a depth profile in the Gulf of Elat (Aqaba), Israel, covering the interval from 4 to 125 metres. After corrections variations for temperature with depth, characteristic 18 O-depletions were observed in the foraminiferal shell carbonate when compared to the molluscs. These depletions are interpreted as 1) a constant vital effect seen in all the foraminifera studied and 2) an additional, light-dependent vital effect observed in the symbiont-bearing forms only, caused by incorporation of photosynthetic oxygen formed by the symbiotic algae. This additional vital effect emphasizes the difficulties in applying foraminifera to oxygen isotope palaeotemperature analyses. No well-defined differences in carbon isotope compositions are observed between symbiont-bearing and symbiont-free foraminifera. (author)

  6. Oxygen isotope fractionation and algal symbiosis in benthic foraminifera from the Gulf of Elat, Israel

    Energy Technology Data Exchange (ETDEWEB)

    Buchardt, B; Hansen, H J [Copenhagen Univ. (Denmark)

    1977-01-01

    In order to investigate possible isotopic fractionations due to algal symbiosis the oxygen and carbon isotope compositions of shell carbonate from symbiont-free and symbiont-bearing benthic foraminifera have been compared to that of molluscs living at the same locality. The material was collected over a depth profile in the Gulf of Elat (Aqaba), Israel, covering the interval from 4 to 125 metres. After correcting for variations of temperature with depth, characteristic /sup 18/O-depletions were observed in the foraminiferal shell carbonate when compared to the molluscs. These depletions are interpreted as 1) a constant vital effect seen in all the foraminifera studied and 2) an additional, light-dependent vital effect observed in the symbiont-bearing forms only, caused by incorporation of photosynthetic oxygen formed by the symbiotic algae. This additional vital effect emphasizes the difficulties in applying foraminifera to oxygen isotope palaeotemperature analyses. No well-defined differences in carbon isotope compositions are observed between symbiont-bearing and symbiont-free foraminifera.

  7. Nitrogen and oxygen isotopic constraints on the origin of atmospheric nitrate in coastal Antarctica

    Directory of Open Access Journals (Sweden)

    J. Savarino

    2007-01-01

    Full Text Available Throughout the year 2001, aerosol samples were collected continuously for 10 to 15 days at the French Antarctic Station Dumont d'Urville (DDU (66°40' S, l40°0' E, 40 m above mean sea level. The nitrogen and oxygen isotopic ratios of particulate nitrate at DDU exhibit seasonal variations that are among the most extreme observed for nitrate on Earth. In association with concentration measurements, the isotope ratios delineate four distinct periods, broadly consistent with previous studies on Antarctic coastal areas. During austral autumn and early winter (March to mid-July, nitrate concentrations attain a minimum between 10 and 30 ng m−3 (referred to as Period 2. Two local maxima in August (55 ng m−3 and November/December (165 ng m−3 are used to assign Period 3 (mid-July to September and Period 4 (October to December. Period 1 (January to March is a transition period between the maximum concentration of Period 4 and the background concentration of Period 2. These seasonal changes are reflected in changes of the nitrogen and oxygen isotope ratios. During Period 2, which is characterized by background concentrations, the isotope ratios are in the range of previous measurements at mid-latitudes: δ18Ovsmow=(77.2±8.6‰; Δ17O=(29.8±4.4‰; δ15Nair=(−4.4±5.4‰ (mean ± one standard deviation. Period 3 is accompanied by a significant increase of the oxygen isotope ratios and a small increase of the nitrogen isotope ratio to δ18Ovsmow=(98.8±13.9‰; Δ17O=(38.8±4.7‰ and δ15Nair=(4.3±8.20‰. Period 4 is characterized by a minimum 15N/14N ratio, only matched by one prior study of Antarctic aerosols, and oxygen isotope ratios similar to Period 2: δ18Ovsmow=(77.2±7.7‰; Δ17O=(31.1±3.2‰; δ15Nair=(−32.7±8.4‰. Finally, during Period 1, isotope ratios reach minimum values for oxygen and intermediate values for nitrogen: δ18Ovsmow=63.2±2.5‰; Δ17O=24.0±1.1‰; δ15Nair=−17.9±4.0‰. Based on the measured

  8. Laser Spectroscopic Analysis of Liquid Water Samples for Stable Hydrogen and Oxygen Isotopes

    International Nuclear Information System (INIS)

    2009-01-01

    Stable isotope ratios of hydrogen and oxygen are tracers of choice for water cycle processes in hydrological, atmospheric and ecological studies. The use of isotopes has been limited to some extent because of the relatively high cost of isotope ratio mass spectrometers and the need for specialized operational skills. Here, the results of performance testing of a recently developed laser spectroscopic instrument for measuring stable hydrogen and oxygen isotope ratios of water samples are described, along with a procedure for instrument installation and operation. Over the last four years, the IAEA Water Resources Programme conducted prototype and production model testing of these instruments and this publication is the outcome of those efforts. One of the main missions of the IAEA is to promote the use of peaceful applications of isotope and nuclear methods in Member States and this publication is intended to facilitate the use of laser absorption based instruments for hydrogen and oxygen stable isotope analyses of liquid water samples for hydrological and other studies. The instrument uses off-axis integrated cavity output spectroscopy to measure absolute abundances of 2 HHO, HH 18 O, and HHO via laser absorption. Test results using a number of natural and synthetic water standards and samples with a large range of isotope values demonstrate adequate precision and accuracy (e.g. precisions of 1 per mille for δ 2 H and 0.2 per mille for δ 18 O). The laser instrument has much lower initial and maintenance costs than mass spectrometers and is substantially easier to operate. Thus, these instruments have the potential to bring about a paradigm shift in isotope applications by enabling researchers in all fields to measure isotope ratios by themselves. The appendix contains a detailed procedure for the installation and operation of the instrument. Using the procedure, new users should be able to install the instrument in less than two hours. It also provides step

  9. Oxygen Isotopes in Early Solar System Materials: A Perspective Based on Microbeam Analyses of Chondrules from CV Carbonaceous Chondrites

    Science.gov (United States)

    Jones, R. H.; Leshin, L. A.; Guan, Y.

    2004-01-01

    Some of the biggest challenges to understanding the early history of the solar system include determining the distribution of oxygen isotopes amongst materials that existed in the solar nebula, and interpreting the processes that might have resulted in the observed isotopic distributions. Oxygen isotope ratios in any individual mineral grain from a chondritic meteorite may be the cumulative product of a variety of processes, including stellar nucleosynthetic events, gas/solid interactions in the molecular cloud, mixing of independent isotopic reservoirs in the nebula, mass-independent processing in the nebula, and mass-dependent fractionation effects in various environments. It is not possible to unravel this complex isotopic record unless the distribution of oxygen isotope ratios in chondritic materials is fully understood.

  10. Scavenging of oxygen vacancies at modulation-doped oxide interfaces: Evidence from oxygen isotope tracing

    DEFF Research Database (Denmark)

    Chen, Yunzhong; Döbeli, M.; Pomjakushina, E.

    2017-01-01

    , the mechanisms underlying the extreme mobility enhancement remain elusive. Herein, we used 18O isotope exchanged SrTi18O3 as substrates to create 2DEG at room temperature with and without the LSMO buffer layer. By mapping the oxygen profile across the interface between STO18 and disordered LaAlO3 or yttria...

  11. A Raman spectroscopic study of organic matter in interplanetary dust particles and meteorites using multiple wavelength laser excitation

    Science.gov (United States)

    Starkey, N. A.; Franchi, I. A.; Alexander, C. M. O'd.

    2013-10-01

    Raman spectroscopy was used to investigate insoluble organic matter (IOM) from a range of chondritic meteorites, and a suite of interplanetary dust particles (IDPs). Three monochromatic excitation wavelengths (473 nm, 514 nm, 632 nm) were applied sequentially to assess variations in meteorite and IDP Raman peak parameters (carbon D and G bands) as a function of excitation wavelength (i.e., dispersion). Greatest dispersion occurs in CVs > OCs > CMs > CRs with type 3 chondrites compared at different excitation wavelengths displaying conformable relationships, in contrast to type 2 chondrites. These findings indicate homogeneity in the structural nature of type 3 chondrite IOM, while organic matter (OM) in type 2 chondrites appears to be inherently more heterogeneous. If type 2 and type 3 chondrite IOM shares a common source, then thermal metamorphism may have a homogenizing effect on the originally more heterogeneous OM. IDP Raman G bands fall on an extension of the trend displayed by chondrite IOM, with all IDPs having Raman parameters indicative of very disordered carbon, with almost no overlap with IOM. The dispersion effect displayed by IDPs is most similar to CMs for the G band, but intermediate between CMs and CRs for the D band. The existence of some overlapping Raman features in the IDPs and IOM indicates that their OM may share a common origin, but the IDPs preserve more pristine OM that may have been further disordered by ion irradiation. H, C, and N isotopic data for the IDPs reveal that the disordered carbon in IDPs corresponds with higher δ15N and lower δ13C.

  12. UV-visible, infrared and Raman spectroscopic and thermal studies of tungsten doped lead borate glasses and the effect of ionizing gamma irradiation

    International Nuclear Information System (INIS)

    El-Kheshen, Amany A.; El-Batal, Fatma H.; Marzouk, Samir Y.

    2008-01-01

    Ultraviolet-visible, infrared and Raman spectroscopy together with thermal properties were measured for undoped and WO 3 - doped (up to 10%) lead borate glasses. Also, the effect of gamma irradiation was followed by UV-visible measurements. The UV visible spectrum of the undoped glass reveals before irradiation intense ultraviolet bands due to the combined effects of trace iron impurities (Fe 3+ ) and Pb 2+ ions which remain unchanged with the addition of WO 3 . Infrared and Raman measurements show characteristic bands due to borate group and the possible sharing of lead-oxygen and tungsten-oxygen groups. The studied glasses show obvious resistance to gamma irradiation. The thermal and density data are correlated with the introduction of highly polarizable and heavy (W 6+ ) ions and to the change in structural arrangement with varying glass composition. (author)

  13. Sulfur and Oxygen Isotope Fractionation During Bacterial Sulfur Disproportionation Under Anaerobic Haloalkaline Conditions

    NARCIS (Netherlands)

    Poser, Alexander; Vogt, Carsten; Knöller, Kay; Sorokin, Dimitry Y.; Finster, Kai W.; Richnow, Hans H.

    2016-01-01

    Sulfur and oxygen isotope fractionation of elemental sulfur disproportionation at anaerobic haloalkaline conditions was evaluated for the first time. Isotope enrichment factors of the strains Desulfurivibrio alkaliphilus and Dethiobacter alkaliphilus growing at pH 9 or 10 were −0.9‰ to −1‰ for

  14. Preparation and use of nitrogen (2) oxide of special purity for production of oxygen and nitrogen isotopes

    International Nuclear Information System (INIS)

    Polevoj, A.S.

    1989-01-01

    Problems related with production of oxygen and nitrogen isotopes by means of low-temperature rectification of nitrogen (2) oxide are analyzed. Special attention, in particular, is payed to the techniques of synthesis and high purification of initial NO, utilization of waste flows formed during isotope separation. Ways to affect the initial isotope composition of nitrogen oxide and the rate of its homogeneous-isotope exchange, which provide for possibility of simultaneous production of oxygen and nitrogen isotopes by means of NO rectification, are considered. Description of a new technique for high purification of nitrogen oxide, prepared at decomposition of nitric acid by sulfurous anhydride, suggested by the author is presented

  15. Dual temperature effects on oxygen isotopic ratio of shallow-water coral skeleton: Consequences on seasonal and interannual records

    Science.gov (United States)

    Juillet-Leclerc, A.; Reynaud, S.

    2009-04-01

    Oxygen isotopic ratio from coral skeleton is regarded for a long time as promising climate archives at seasonal scale. Although in isotopic disequilibrium relative to seawater, it is supposed to obey to the isotope thermometer. Indeed, coral oxygen isotopic records are strongly temperature dependent, but d18O-temperature calibrations derived from different corals are highly variable. The isotope thermometer assumption does not take into account vital effects due to biogenic origin of the mineral. Corals are animals living in symbiosis with algae (zooxanthellae). Interactions between symbiont photosynthesis and coral skeleton carbonation have been abundantly observed but they remain poorly understood and the effects of photosynthesis on coral growth and skeleton oxygen ratio are ignored. Coral cultured under two light conditions enabled to relate metabolic parameters and oxygen isotopic variability with photosynthetic activity. By examining responses provided by each colony they revealed that photosynthesis significantly affected d18O, by an opposite sense compared with the sole temperature influence. Since temperature and light changes are associated during seasonal variations, this complicates the interpretation of seasonal record. Additionally, this complexity is amplified because photosynthetic activity is also directly impacted by temperature variability. Thus, the annual isotopic amplitude due to the "physical" temperature influence is partly compensated through photosynthesis. Similar opposite effect is also shown by extension rate of the cultured colonies. First, we will examine and quantify consequences of photosynthesis on growth rate and oxygen isotopic signature, from cultured corals. Second, we will consider the consequences of this vital effect on data series, at seasonal and interannual time scales.

  16. Isotopic-spectral determination of hydrogen, nitrogen, oxygen and carbon in semiconductor materials

    International Nuclear Information System (INIS)

    Dudich, G.K.; Eremeev, V.A.; Li, V.N.; Nemets, V.M.

    1981-01-01

    Techniques of low-temperature isotopic-spectral determination of impurities of hydrogen, nitrogen, oxygen and carbon in semiconductor materials Bi, Ge, Pb tellurides are developed. The techniques include selection into special vessel with the known volume (exchanger) of sample analyzed, dosed introduction into exchanger of rare isotope of the element determined ( 2 H, 15 N, 18 O, 13 C) in the form of isotope-containing gas, balancing of the determined element isotopes in the system sample-isotope, containing gas, spectroscopic, determination of its isotope composition in gaseous phase of the system and calculation of the amount of the element determined in the sample. The lower boundaries of the amounts determined constitute 10 -7 , 10 -7 , 10 -6 and 10 -5 mass % respectively when sample of 20 g are used [ru

  17. Shortwave-infrared Raman spectroscopic classification of water fractions in articular cartilage ex vivo

    Science.gov (United States)

    Unal, Mustafa; Akkus, Ozan

    2018-01-01

    Water loss is an early onset indicator of osteoarthritis. Although Raman spectroscopy (RS) holds the potential for measurement of cartilage hydration, the knowledge of Raman OH-stretch bands of biological tissue is very limited. We assesed here the sensitivity of RS to identify and classify water types in the cartilage. Raman spectrum measurements over the high wavenumber range were employed to identify different water fractions in articular cartilage. Raman spectra were collected from wet and sequentially dehydrated cartilage along with pure collagen type II and chondroitin sulfate standards. OH-stretch band of cartilage is dominated by mobile water, up to 95% of total intensities. We identified six peaks in cartilage spectrum using second-derivative analysis: peaks at 3200 and 3650 cm-1 are associated with organic matrix (both collagen and proteglycan) and matrix-bound water molecules. Peaks at 3250, 3453, and 3630 cm-1 are associated with collagen and collagen-related water molecules, whereas the peak at 3520 cm-1 is associated with proteoglycan (PG) and PG-related water molecules. The current work is the first thorough analysis of the Raman OH-stretch band of the cartilage and with the knowledge generated by this study, it may now be possible to study on cartilage hydration by RS.

  18. Pressure-Raman study of resonant TO({gamma})-two-phonon decay processes in ZnS: Comparison of three isotope compositions

    Energy Technology Data Exchange (ETDEWEB)

    Tallman, R.E.; Weinstein, B.A. [Department of Physics, SUNY at Buffalo, NY 14260-1500 (United States); Serrano, J.; Lauck, R.; Cardona, M. [Max Plank Institut fuer Festkoerperforschung, 70569 Stutgart (Germany); Cantarero, A.; Garro, N. [Institut de Ciencia dels Materials, Universtitat de Valencia, E-46071 Valencia (Spain); Ritter, T.M. [Department of Chemistry and Physics,UNC Pembroke, North Carolina 28372 (United States)

    2004-11-01

    Pressure-Raman studies (to 15 GPa, at 300 K and 16 K) are reported on {sup 64}Zn{sup 34}S, {sup 68}Zn{sup 32}S, and natural ZnS to compare the effects of resonant 3-phonon mixing on the TO({gamma}) phonons for the different isotope compositions. Under pressure the TO({gamma}) Raman profiles exhibit several distinct features, and a sharp Lorentzian TO({gamma}) peak eventually emerges at a threshold pressure P{sub Th} that differs for each isotope composition. These effects are due to resonant mixing of the TO({gamma}) phonon with TA+LA combination modes. Calculations based on a bond-charge model and perturbation theory reproduce the observed pressure variations in the shape and the width of the TO({gamma}) peaks. It is shown that these changes relate to singularities in the TA+LA density of states. Mass scaling of the TO({gamma}) and TA+LA modes explains the isotope effect on P{sub Th}, and leads to the estimate {gamma}{sub LA(W)} {proportional_to}1.2. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Investigation of L(+)-Ascorbic Acid with Raman Spectroscopy in Visible and UV Light

    DEFF Research Database (Denmark)

    Berg, Rolf W.

    2015-01-01

    Abstract: Raman spectroscopy investigations of l(+)-ascorbic acid and its mono- and di-deprotonated anions (AH(-) and A(2-)) are reviewed and new measurements reported with several wavelengths, 229, 244, 266, 488, and 532nm. Results are interpreted, assisted by new DFT/B3LYP quantum chemical calc......). Relatively weak preresonance enhancement was seen for A(2-) when excitation was done with 229nm UV light, allowing water bands to become observable as for normal visible light Raman spectra....... calculations with 6-311++G(d,p) basis sets for several conformations of ascorbic acid and the anions. Raman spectra were measured during titration with NaOH base in an oxygen-poor environment to avoid fluorescence when solutions were alkaline. The ultraviolet (UV) absorption band for ascorbic acid in aqueous......cm(-1). Finally, for the ascorbate di-anion, absorption was found at similar to 298.4nm with molar absorptivity of similar to 7,000 L mol(-1) cm(-1) and below similar to 220nm. With UV light (244 and 266nm), strongly basic solutions gave pronounced Raman resonance enhancement at similar to 1556cm(-1...

  20. Using Oxygen and Carbon Isotopic Signatures in Order to Infer Climatic and Dietary Information in Roman Edessa, Greece

    Science.gov (United States)

    Michael, Dimitra-Ermioni; Dotsika, Elissavet

    2017-12-01

    Even though many isotopic studies have been conducted on ancient populations from Greece for the purpose of dietary reconstruction; mostly through carbon and nitrogen isotopic signals of bone collagen, less attention has been given to the utility of apatite signatures (oxygen and carbon) as dietary and palaeoenvironmental tools. Moreover, until recently the isotopic signal of tooth enamel for both the purposes of environmental and dietary reconstructions has been rarely assessed in ancient Greek societies. Therefore, the present study aims to provide with novel isotopic information regarding Edessa; a town in Northern Greece, during the Roman period. The current study primarily aims to explore the possible differentiation between the present climatic conditions in Edessa in relation to those occurring at the Roman period. Secondly, this study aims to reveal the significant utility of enamel isotopic signatures (carbon and oxygen) in palaeoenvironmental and palaeodietary studies regarding ancient human remains. The isotopic analyses have been conducted at the Stable Isotope and Radiocarbon Unit of INN, NCSR “Demokritos”. The population of Roman Edessa (2nd-4th c. AD) consists of 22 individuals, providing with 19 bone samples and 16 enamel ones. The mean enamel oxygen value is at -7.7 ±1.1 %0, the bone apatite mean oxygen value at -9.2 ±1.9 %0, and finally the mean carbon enamel value is at -11.7 ±1.2 %0. Oxygen values probably indicate that Edessa had a cooler climate during the Roman times in relation to present conditions, even though more research should be carried out in order to be more certain. In addition, the possible existence of non-local individuals has been revealed through the oxygen teeth enamel-bone apatite spacing. Finally, the carbon enamel signature has pointed out possible differentiations between the adult and the juvenile diet. Based on Edessa’s findings, the stated study strongly encourages the enamel oxygen and carbon isotopic signals

  1. Theoretical study of band structure of odd-mass {sup 115,117}I isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Dhanvir, E-mail: singh1472phy@gmail.com; Kumar, Amit, E-mail: akbcw2@gmail.com; Sharma, Chetan, E-mail: chetan24101985@gmail.com [Research Scholar, Department of Physics and Electronics, University of Jammu, Jammu-180006 (India); Singh, Suram, E-mail: suramsingh@gmail.com [Assistant Professor, Department of Physics, Govt. Degree College, Kathua-184101 (India); Bharti, Arun, E-mail: arunbharti-2003@yahoo.co.in [Professor, Department of Physics and Electronics, University of Jammu, Jammu-180006 (India)

    2016-05-06

    By using the microscopic approach of Projected Shell Model (PSM), negative-parity band structures of odd mass neutron-rich {sup 115,117}I nuclei have been studied with the deformed single-particle states generated by the standard Nilsson potential. For these isotopes, the band structures have been analyzed in terms of quasi-particles configurations. The phenomenon of back bending in moment of inertia is also studied in the present work.

  2. Physical properties and band structure of reactive molecular beam epitaxy grown oxygen engineered HfO{sub 2{+-}x}

    Energy Technology Data Exchange (ETDEWEB)

    Hildebrandt, Erwin; Kurian, Jose; Alff, Lambert [Institute of Materials Science, Technische Universitaet Darmstadt, 64287 Darmstadt (Germany)

    2012-12-01

    We have conducted a detailed thin film growth structure of oxygen engineered monoclinic HfO{sub 2{+-}x} grown by reactive molecular beam epitaxy. The oxidation conditions induce a switching between (111) and (002) texture of hafnium oxide. The band gap of oxygen deficient hafnia decreases with increasing amount of oxygen vacancies by more than 1 eV. For high oxygen vacancy concentrations, defect bands form inside the band gap that induce optical transitions and p-type conductivity. The resistivity changes by several orders of magnitude as a function of oxidation conditions. Oxygen vacancies do not give rise to ferromagnetic behavior.

  3. Multiple taxon multiple locality approach to providing oxygen isotope evidence for warm-blooded theropod dinosaurs

    Science.gov (United States)

    Fricke, Henry C.; Rogers, Raymond R.

    2000-09-01

    Oxygen isotope ratios of fossil remains of coexisting taxa from several different localities can be used to help investigate dinosaur thermoregulation. Focusing on the Late Cretaceous, oxygen isotope ratios of crocodile tooth enamel from four separate localities exhibit less of a decrease with latitude than do ratios of tooth enamel from coexisting theropod dinosaurs. A shallower latitudinal gradient for crocodiles is consistent with how oxygen isotope ratios should vary for heterothermic animals having body temperatures coupled with their environments (“cold blooded”), while a steeper gradient for theropods is consistent with how these ratios should vary for homeothermic animals having constant body temperatures independent of their environments (“warm blooded”). This inferred homoethermy in theropods is likely due to higher rates of metabolic heat production relative to crocodiles and is not an artifact of body size.

  4. Intracrystalline oxygen isotope effects in CuSO4.5H2O and their dependence on crystallization temperature

    International Nuclear Information System (INIS)

    Heinzinger, K.

    1976-01-01

    In copper sulphate pentahydrate the water molecules occupy three different sites, connected with different oxygen isotope ratios. Results of measurements of the change of these isotope ratios with crystallization temperature are reported. The temperature dependence found here provides the basis for the determination of crystallization temperatures of hydrated crystals from such intracrystalline oxygen isotope fractionation. Suppositions necessary for the application of this method are discussed. (author)

  5. Oxygen isotope separation by isotopically selective infrared multiphoton dissociation of 2,3-dihydropyran

    International Nuclear Information System (INIS)

    Yokoyama, Atsushi; Ohba, Hironori; Akagi, Hiroshi; Yokoyama, Keiichi; Saeki, Morihisa; Katsumata, Keiichi

    2008-01-01

    Oxygen isotopic selectivity on infrared multiphoton dissociation of 2,3-dihydropyran has been studied by the examination of the effects of excitation frequency, laser fluence, and gas pressure on the dissociation probability of 2,3-dihydropyran and isotopic composition of products. Oxygen-18 was enriched in a dissociation product: 2-propenal. The enrichment factor of 18 O and the dissociation probability were measured at laser frequency between 1033.5 and 1057.3 cm -1 ; the laser fluence of 2.2 - 2.3 J/cm 2 ; and the 2,3-dihydropyran pressure of 0.27 kPa. The dissociation probability decreases as the laser frequency being detuned from the absorption peak of 2,3-dihydropyran around 1081 cm -1 . On the other hand, the enrichment factor increases with detuning the frequency. The enrichment factor of 18 O increases with increasing the 2,3-dihydropyran pressure at the laser fluence below 3 J/cm 2 and the laser frequency of 1033.5 cm -1 , whereas the yield of 2-propenal decreases with increasing the pressure. Very high enrichment factor of 751 was obtained by the irradiation of 0.53 kPa of 2,3-dihydropyran at 2.1 J/cm 2 . (author)

  6. Oxygen isotope analysis of plant water without extraction procedure

    International Nuclear Information System (INIS)

    Gan, K.S.; Wong, S.C.; Farquhar, G.D.; Yong, J.W.H.

    2001-01-01

    Isotopic analyses of plant water (mainly xylem, phloem and leaf water) are gaming importance as the isotopic signals reflect plant-environment interactions, affect the oxygen isotopic composition of atmospheric O 2 and CO 2 and are eventually incorporated into plant organic matter. Conventionally, such isotopic measurements require a time-consuming process of isolating the plant water by azeotropic distillation or vacuum extraction, which would not complement the speed of isotope analysis provided by continuous-flow IRMS (Isotope-Ratio Mass Spectrometry), especially when large data sets are needed for statistical calculations in biological studies. Further, a substantial amount of plant material is needed for water extraction and leaf samples would invariably include unenriched water from the fine veins. To measure sub-microlitre amount of leaf mesophyll water, a new approach is undertaken where a small disc of fresh leaf is cut using a specially designed leaf punch, and pyrolysed directly in an IRMS. By comparing with results from pyrolysis of the dry matter of the same leaf, the 18 O content of leaf water can be determined without extraction from fresh leaves. This method is validated using a range of cellulose-water mixtures to simulate the constituents of fresh leaf. Cotton leaf water δ 18 O obtained from both methods of fresh leaf pyrolysis and azeotropic distillation will be compared. The pyrolysis technique provides a robust approach to measure the isotopic content of water or any volatile present in a homogeneous solution or solid hydrous substance

  7. Geometric phase and entanglement of Raman photon pairs in the presence of photonic band gap

    International Nuclear Information System (INIS)

    Berrada, K.; Ooi, C. H. Raymond; Abdel-Khalek, S.

    2015-01-01

    Robustness of the geometric phase (GP) with respect to different noise effects is a basic condition for an effective quantum computation. Here, we propose a useful quantum system with real physical parameters by studying the GP of a pair of Stokes and anti-Stokes photons, involving Raman emission processes with and without photonic band gap (PBG) effect. We show that the properties of GP are very sensitive to the change of the Rabi frequency and time, exhibiting collapse phenomenon as the time becomes significantly large. The system allows us to obtain a state which remains with zero GP for longer times. This result plays a significant role to enhance the stabilization and control of the system dynamics. Finally, we investigate the nonlocal correlation (entanglement) between the pair photons by taking into account the effect of different parameters. An interesting correlation between the GP and entanglement is observed showing that the PBG stabilizes the fluctuations in the system and makes the entanglement more robust against the change of time and frequency

  8. Oxygen isotopic abundances in calcium- aluminum-rich inclusions from ordinary chondrites: implications for nebular heterogeneity.

    Science.gov (United States)

    McKeegan, K D; Leshin, L A; Russell, S S; MacPherson, G J

    1998-04-17

    The oxygen isotopic compositions of two calcium-aluminum-rich inclusions (CAIs) from the unequilibrated ordinary chondrite meteorites Quinyambie and Semarkona are enriched in 16O by an amount similar to that in CAIs from carbonaceous chondrites. This may indicate that most CAIs formed in a restricted region of the solar nebula and were then unevenly distributed throughout the various chondrite accretion regions. The Semarkona CAI is isotopically homogeneous and contains highly 16O-enriched melilite, supporting the hypothesis that all CAI minerals were originally 16O-rich, but that in most carbonaceous chondrite inclusions some minerals exchanged oxygen isotopes with an external reservoir following crystallization.

  9. Evaluation of the performance of high temperature conversion reactors for compound-specific oxygen stable isotope analysis.

    Science.gov (United States)

    Hitzfeld, Kristina L; Gehre, Matthias; Richnow, Hans-Hermann

    2017-05-01

    In this study conversion conditions for oxygen gas chromatography high temperature conversion (HTC) isotope ratio mass spectrometry (IRMS) are characterised using qualitative mass spectrometry (IonTrap). It is shown that physical and chemical properties of a given reactor design impact HTC and thus the ability to accurately measure oxygen isotope ratios. Commercially available and custom-built tube-in-tube reactors were used to elucidate (i) by-product formation (carbon dioxide, water, small organic molecules), (ii) 2nd sources of oxygen (leakage, metal oxides, ceramic material), and (iii) required reactor conditions (conditioning, reduction, stability). The suitability of the available HTC approach for compound-specific isotope analysis of oxygen in volatile organic molecules like methyl tert-butyl ether is assessed. Main problems impeding accurate analysis are non-quantitative HTC and significant carbon dioxide by-product formation. An evaluation strategy combining mass spectrometric analysis of HTC products and IRMS 18 O/ 16 O monitoring for future method development is proposed.

  10. Stratigraphy on Oxygen and Carbon Isotope of Paciran Formation East Java

    International Nuclear Information System (INIS)

    Premonowati; R P Koesoemadinata; Harsono-Pringgoprawiro; Wahyoe-S-Hantoro

    2004-01-01

    Paleotemperature fluctuation in tropical zone (centennial and decad al scale) has been known. It's based on stable isotopic analysis from each of unconformity zones. Those boundaries have derived on reef units of shallows marine reef complex of Paciran Formation, Tuban area in Northeast Java Basin. From 25 samples have been choosen on undeformed calcite and analyzed by oxygen and carbon stable isotope. It used to validizing a sea level changes during the formation to Reef 1 to Reef 17 from Paciran formation with sea surface temperature (SST) since 4 Ma until now. On early forming of Reef 1 to Reef 3 (since 4 Ma - 2,88 Ma), sea level occurred marine flooding surface. Since the formation of reef 4 (2,59 Ma) to Reef 8 (1,4 Ma) occurred stagnant temperature and almost to warmer condition. Then, δ 18 O have arise up drastically to 5 0/00 and shows warmer condition to Reef 8 formation, in contrary, the sea level have been arised to Reef 10 formation (0,7 Ma). The temperature have been fluctuated between 0,5 o and 1 o C until the formation of Reef 17 (Early Holocene) and continued to Reef 17 formation at 2 o C based on the rapidity sampling of Po rites sp. Wholly, in centennial scale, since the formation of Reef 4 (2,59 Ma) to Reef 17 (1 Ma), the curve of oxygen stable isotope shows decrease or cooler condition. Those condition have conducted to sea level drop since the formation to Reef 7 and Reef 8. There are 4 periods of interglacial since the formation of Reef 4. The warmer condition indicated since the formation of Reef 9, Reef 11 and Reef 17. Recently, a curve of oxygen isotopes reveals warmer drastically or sea level have been arisen. (author)

  11. Oxygen isotopic fractionation of O₂ during adsorption and desorption processes using molecular sieve at low temperatures.

    Science.gov (United States)

    Ahn, Insu; Kusakabe, Minoru; Lee, Jong Ik

    2014-06-15

    Cryogenic trapping using molecular sieves is commonly used to collect O2 extracted from silicates for (17)O/(16)O and (18)O/(16)O analyses. However, gases which interfere with (17)O/(16)O analysis, notably NF3, are also trapped and their removal is essential for accurate direct measurement of the (17)O/(16)O ratio. It is also necessary to identify and quantify any isotopic fractionation associated with the use of cryogenic trapping using molecular sieves. The oxygen isotopic compositions of O2 before and after desorption from, and adsorption onto, 13X and 5A molecular sieves (MS13X and MS5A) at 0°C, -78°C, -114°C, and -130°C were measured in order to determine the oxygen isotopic fractionation at these temperatures. We also investigated whether isotopic fractionation occurred when O2 gas was transferred sequentially into a second cold finger, also containing molecular sieve. It was confirmed that significant oxygen isotopic fractionation occurs between the gaseous O2 and that adsorbed onto molecular sieve, if desorption and adsorption are incomplete. As the fraction of released or untrapped O2 becomes smaller with decreasing trapping temperature (from 0 to -130°C), the isotopic fractionation becomes larger. Approximately half of the total adsorbed O2 is released from the molecular sieve during desorption at -114°C, which is the temperature recommended for separation from NF3 (retained on the molecular sieve), and this will interfere with (17)O/(16)O measurements. The use of a single cold finger should be avoided, because partial desorption is accompanied by oxygen isotopic fractionation, thereby resulting in inaccurate isotopic data. The use of a dual cold finger arrangement is recommended because, as we have confirmed, the transfer of O2 from the first trap to the second is almost 100%. However, even under these conditions, a small isotopic fractionation (0.18 ± 0.05‰ in δ(17)O values and 0.26 ± 0.06‰ in δ(18)O values) occurred, with O2 in

  12. Micro-Raman spectroscopy of collotelinite, fusinite and macrinite

    Energy Technology Data Exchange (ETDEWEB)

    Guedes, A.; Valentim, B.; Rodrigues, S.; Noronha, F. [Centro de Geologia e Departamento de Geociencias, Ambiente e Ordenamento do Territorio da Faculdade de Ciencias, Universidade do Porto, 4169-007-Porto (Portugal); Prieto, A.C. [Departamento de Fisica de la Materia Condensada, Cristalografia y Mineralogia Facultad de Ciencias, Universidad de Valladolid, 47011-Valladolid (Spain)

    2010-09-01

    The Raman spectra and the Raman parameters have been correlated with changes in the structure of carbon materials, and most of the studies have revealed different development of the Raman spectrum. In the present study micro-Raman spectroscopy was conducted on coal bulk samples and on individual coal macerals (collotelinite, fusinite, and macrinite) from a set of Penn State Coal Bank coals of increasing rank to study the variation of their spectral parameters with rank, and considering coal heterogeneity. The spectral parameters that better correlate with the increasing coal rank, for the coals studied are the full width at half maximum of graphitic band (G: at {proportional_to} 1580 cm{sup -} {sup 1}), the position of disordered band (D: at {proportional_to} 1350 cm{sup -} {sup 1}), and the integrated intensity ratio of the D band to G band (ID/IG). With increasing coal rank a narrower G band, a shift of D band to lower wavenumber, and an increase of integrated intensity ratio ID/IG are observed. For each coal, the Raman parameters obtained on fusinites and macrinites are similar and differ from those obtained on coal bulk samples and collotelinites. The variation of the Raman parameters with rank is very well reflected on the analyses of collotelinites. (author)

  13. Study on Surface Structure of U1-yGdyO2-x Using Raman Spectroscopy

    International Nuclear Information System (INIS)

    Lee, Jeong Mook; Kim, Jan Dee; Youn, Young Sang; Kim, Jong Goo; Ha, Yeong Keong; Kim, Jong Yun

    2016-01-01

    To understand the structural character of the spent nuclear fuel, rare earth element (REE) doped UO 2±x have been studied as simulated spent fuel. The REE doping effect has influence on the phase stability in U-FP-O system, thermal conductivity and the relevant fuel performance. Raman spectroscopy has been used to investigate surface structure of the nuclear fuel materials, because of its sensitivity, convenience and non-destructive sample preparation. The Raman studies on trivalent-doped UO 2 directly show the defect due to oxygen vacancy that could be created by loss of oxygen for charge compensation. This defect has significant effect on the kinetics of fuel oxidation. In this study, we have been investigated the effect on Gd-doping on the UO 2 structure with Raman spectroscopy to characterize the defect structure of nuclear fuel material. The oxygen deficiencies of pellets were estimated by the relation between the doping concentration and a lattice parameter evaluated from XRD spectra. The Raman spectra of U 1-y GdyO 2-x solid solution pellets show the distorted fluorite structure with defect structure due to oxygen vacancies with increasing Gd contents.

  14. Study on Surface Structure of U1-yGdyO2-x Using Raman Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Mook; Kim, Jan Dee; Youn, Young Sang; Kim, Jong Goo; Ha, Yeong Keong; Kim, Jong Yun [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    To understand the structural character of the spent nuclear fuel, rare earth element (REE) doped UO{sub 2±x} have been studied as simulated spent fuel. The REE doping effect has influence on the phase stability in U-FP-O system, thermal conductivity and the relevant fuel performance. Raman spectroscopy has been used to investigate surface structure of the nuclear fuel materials, because of its sensitivity, convenience and non-destructive sample preparation. The Raman studies on trivalent-doped UO{sub 2} directly show the defect due to oxygen vacancy that could be created by loss of oxygen for charge compensation. This defect has significant effect on the kinetics of fuel oxidation. In this study, we have been investigated the effect on Gd-doping on the UO{sub 2} structure with Raman spectroscopy to characterize the defect structure of nuclear fuel material. The oxygen deficiencies of pellets were estimated by the relation between the doping concentration and a lattice parameter evaluated from XRD spectra. The Raman spectra of U{sub 1-y}GdyO{sub 2-x} solid solution pellets show the distorted fluorite structure with defect structure due to oxygen vacancies with increasing Gd contents.

  15. The development of efficient two-photon singlet oxygen sensitizers

    DEFF Research Database (Denmark)

    Nielsen, Christian Benedikt

    The development of efficient two-photon singlet oxygen sensitizers is addressed focusing on organic synthesis. Photophysical measurements were carried out on new lipophilic molecules, where two-photon absorption cross sections and singlet oxygen quantumyields were measured. Design principles...... for making efficient two-photon singlet oxygen sensitizers were then constructed from these results. Charge-transfer in the excited state of the prepared molecules was shown to play a pivotal role in the generationof singlet oxygen. This was established through studies of substituent effects on both...... the singlet oxygen yield and the two-photon absorption cross section, where it was revealed that a careful balancing of the amount of charge transfer present in theexcited state of the sensitizer is necessary to obtain both a high singlet oxygen quantum yield and a high two-photon cross section. An increasing...

  16. Technical note: Consistent calculation of aquatic gross production from oxygen triple isotope measurements

    Directory of Open Access Journals (Sweden)

    J. Kaiser

    2011-07-01

    Full Text Available Oxygen triple isotope measurements can be used to calculate aquatic gross oxygen production rates. Past studies have emphasised the appropriate definition of the 17O excess and often used an approximation to derive production rates from the 17O excess. Here, I show that the calculation can be phrased more consistently and without any approximations using the relative 17O/16O and 18O/16O isotope ratio differences (delta values directly. I call this the "dual delta method". The 17O excess is merely a mathematical construct and the derived production rate is independent of its definition, provided all calculations are performed with a consistent definition. I focus on the mixed layer, but also show how time series of triple isotope measurements below the mixed layer can be used to derive gross production.

    In the calculation of mixed layer productivity, I explicitly include isotopic fractionation during gas invasion and evasion, which requires the oxygen supersaturation s to be measured as well. I also suggest how bubble injection could be considered in the same mathematical framework. I distinguish between concentration steady state and isotopic steady state and show that only the latter needs to be assumed in the calculation. It is even possible to derive an estimate of the net production rate in the mixed layer that is independent of the assumption of concentration steady state.

    I review measurements of the parameters required for the calculation of gross production rates and show how their systematic uncertainties as well as the use of different published calculation methods can cause large variations in the production rates for the same underlying isotope ratios. In particular, the 17O excess of dissolved O2 in equilibrium with atmospheric O2 and the 17O excess of photosynthetic O2 need to

  17. Characterization of insoluble organic matter in primitive meteorites by microRaman spectroscopy

    Science.gov (United States)

    Busemann, Henner; Alexander, M. O'd.; Nittler, Larry R.

    2007-08-01

    We have analyzed the chemically and isotopically well-characterized insoluble organic matter (IOM) extracted from 51 unequilibrated chondrites (8 CR, 9 CM, 1 CI, 3 ungrouped C, 9 CO, 9 CV, 10 ordinary, 1 CB and 1 E chondrites) using confocal imaging Raman spectroscopy. The average Raman properties of the IOM, as parameterized by the peak characteristics of the so-called D and G bands, which originate from aromatic C rings, show systematic trends that are correlated with meteorite (sub-) classification and IOM chemical compositions. Processes that affect the Raman and chemical properties of the IOM, such as thermal metamorphism experienced on the parent bodies, terrestrial weathering and amorphization due to irradiation in space, have been identified. We established separate sequences of metamorphism for ordinary, CO, oxidized, and reduced CV chondrites. Several spectra from the most primitive chondrites reveal the presence of organic matter that has been amorphized. This amorphization, usually the result of sputtering processes or UV or particle irradiation, could have occurred during the formation of the organic material in interstellar or protoplanetary ices or, less likely, on the surface of the parent bodies or during the transport of the meteorites to Earth. D band widths and peak metamorphic temperatures are strongly correlated, allowing for a straightforward estimation of these temperatures.

  18. Quasi-free one nucleon knockout reactions on neutron-rich oxygen isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Atar, Leyla; Aumann, Thomas [TU Darmstadt, Darmstadt (Germany); GSI, Darmstadt (Germany); Bertulani, Carlos [Texas A and M University-Commerce, Commerse (United States); Paschalis, Stefanos [TU Darmstadt, Darmstadt (Germany); Nociforo, Chiara [GSI, Darmstadt (Germany); Collaboration: R3B-Collaboration

    2015-07-01

    Recent experiments have shown a reduction of spectroscopic strengths to about 60-70% for stable nuclei. When going to drip lines this tendency is changing, loosely bound nucleons have spectroscopic strengths close unity while deeply bound nucleons have a large reduction of the strength. We aim to make a systematic study of spectroscopic factors (SF) of the Oxygen isotopes using quasi-free (p,2p) and (p,pn) knockout reactions in inverse kinematics. Quasi-free knockout reactions are a direct tool to study the occupancy and the location of valance and deeply bound single particle states. The Oxygen isotopes offer a large variation of separation energies which will allow us to obtain a qualitative and quantitative understanding of SF in a large variation of isospin asymmetry. For this we performed an experiment at the R3B-LAND setup at the GSI with secondary beams containing {sup 14-24}O. The {sup 16-18}O and {sup 21-23}O isotopes have been analyzed and the preliminary results will be presented. The results include the partial cross sections, gamma ray spectra of the residual fragments in coincidence, and the SF obtained via comparison with theory.

  19. Quadruple labelled dual oxygen and pH-sensitive ratiometric nanosensors

    Directory of Open Access Journals (Sweden)

    Veeren M. Chauhan

    2016-05-01

    Full Text Available Nanosensors capable of simultaneously measuring dissolved oxygen concentrations from 0 to 100% saturation and pH over the full physiological range, from pH 3.5 to 7.5, that advance the methods towards understanding of key biological gradients, were synthesised. A library of water soluble oxygen-sensitive porphyrins, with three substituted charged functional groups and a chemically flexible carboxylate functional group were spectroscopically analysed to assess their sensitivity to changes in dissolved oxygen concentrations as free species in solution and in suspension as nanoparticle conjugates. A platinum cationic porphyrin was taken forward to fabricate ratiometric oxygen-sensitive nanosensors, using 5-(and-6-carboxytetramethylrhodamine (TAMRA as internal standard. In addition, quadruple labelled dual oxygen and pH-sensitive nanosensors were synthesised using the cationic Pt porphyrin, pH-sensitive fluorescein dyes, carboxyfluorescein (FAM and Oregon Green (OG, in a 1:1 ratio, and TAMRA. We envisage the dual oxygen and pH nanosensors will find broad utility in the characterisation of diverse microenvironments, where there are complex interactions between molecular oxygen and pH. Keywords: Fluorescent, Phosphorescent, Nanosensor, Oxygen, pH, Ratiometric, Platinum metalloporphyrin

  20. Raman spectroscopy of synthetic and natural iowaite.

    Science.gov (United States)

    Frost, Ray L; Adebajo, Moses O; Erickson, Kristy L

    2005-02-01

    The chemistry of a magnesium based hydrotalcite known as iowaite Mg6Fe2Cl2(OH)16.4H2O has been studied using Raman spectroscopy. Iowaite has chloride as the counter anion in the interlayer. The formula of synthetic iowaite was found to be Mg5.78Fe2.09(Cl,(CO3)0.5)(OH)16.4H2O. Oxidation of natural iowaite results in the formation of Mg4FeO(Cl,CO3) (OH)8.4H2O. X-ray diffraction (XRD) shows that the iowaite is a layered structure with a d(001) spacing of 8.0 angtsroms. For synthetic iowaite three Raman bands at 1376, 1194 and 1084 cm(-1) are attributed to CO3 stretching vibrations. These bands are not observed for the natural iowaite but are observed when the natural iowaite is exposed to air. The Raman spectrum of natural iowaite shows three bands at 708, 690 and 620 cm(-1) and upon exposure to air, two broad bands are found at 710 and 648 cm(-1). The Raman spectrum of synthetic iowaite has a very broad band at 712 cm(-1). The Raman spectrum of natural iowaite shows an intense band at 527 cm(-1). The air oxidized iowaite shows two bands at 547 and 484 cm(-1) attributed to the (CO3)(2-)nu2 bending mode. Raman spectroscopy has proven most useful for the study of the chemistry of iowaite and chemical changes induced in natural iowaite upon exposure to air.

  1. Sensitivity of clostridium acetobutylicum to oxygen and ionizing radiation

    International Nuclear Information System (INIS)

    Sozer, A.C.; Adler, H.I.; Machanoff, R.; Haney, S.

    1984-01-01

    The authors are studying the sensitivity of four strains of the obligate anaerobe, Clostridium acetobutylicum, to oxygen and ionizing radiation. Anaerobic bacteria are useful for such studies because of the absence of elaborate oxygen detoxification mechanisms that are found in aerobes. Their experiments make use of sterile membrane fragments from Escherichia coli that rapidly remove molecular oxygen from media and permit growth of anaerobes without the use of reducing agents or anaerobic chambers. Of the four strains examined for sensitivity to ionizing radiation under anaerobic conditions, one has an LD/sub 50/ of -- 25 krads and the others have an LD/sub 50/ of -- 7 krads. The radiation resistant strain is also relatively resistant to oxygen exposure. Sensitivity to oxygen was determined by diluting cells in buffer at 28 0 and bubbling with air. An exposure to air for 40 min induced only slight inactivation in the radiation resistant strain. All strains are capable of removing oxygen from complex media but there is no apparent correlation between this oxygen consuming reaction and inactivation by either oxygen or radiation

  2. Production of high temperature superconductors and characteristics by infrared and Raman spectroscopy

    International Nuclear Information System (INIS)

    Thomsen, C.

    1991-01-01

    This final report, which is partly kept short, is concerned with electron/phonon interaction and the determination of the band gap in high temperature superconductors (YBa 2 Cu 3 O 7 ). The final report is divided into four parts, which reflect the individual working groups: 1. Raman spectroscopy, 2. IR spectroscopy (reflection measurements, isotope effect, superconducting energy gap, behaviour of infrared active phonons), 3. Magnetic field measurements, and 4. Theory (initial calculation of the metal/isolator transfer in BaBiO 3 ). (MM) [de

  3. Raman and infrared investigations of glass and glass-ceramics with composition 2Na2O·1CaO·3SiO2

    OpenAIRE

    Ziemath, Ervino C.; Aegerter, Michel A.

    1994-01-01

    Precursor glass and glass-ceramics with molar composition 2Na2O·1CaO·3SiO2 are studied by infrared, conventional, and microprobe Raman techniques. The Gaussian deconvoluted Raman spectrum of the glass presents bands at 625 and 660 cm-1, attributed to bending vibrations of Si-O-Si bonds, and at 860, 920, 975 and 1030 cm-1, attributed to symmetric stretching vibrations of SiO4 tetrahedra with 4, 3, 2, and 1 nonbridging oxygens, respectively. The Raman microprobe spectrum of a highly crystalliz...

  4. Oxygen isotope partitioning between rhyolitic glass/melt and CO2: An experimental study at 550-950 degrees C and 1 bar

    International Nuclear Information System (INIS)

    Palin, J.M.; Epstein, S.; Stolper, E.M.

    1996-01-01

    Oxygen isotope partitioning between gaseous CO 2 and a natural rhyolitic glass and melt (77.7 wt% SiO 2 , 0.16 wt% H 2 O total ) has been measured at 550-950 degrees C and approximately 1 bar. Equilibrium oxygen isotope fractionation factors (α CO2-rhyolite = ( 18 O/ 16 O) rhyolite ) determined in exchange experiments of 100-255 day duration. These values agree well with predictions based on experimentally determined oxygen isotope fractionation factors for CO 2 -silica glass and CO 2 -albitic glass/melt, if the rhyolitic glass is taken to be a simple mixture of normative silica and alkali feldspar components. The results indicate that oxygen isotope partitioning in felsic glasses and melts can be modeled by linear combinations of endmember silicate constituents. Rates of oxygen isotope exchange observed in the partitioning experiments are consistent with control by diffusion of molecular H 2 O dissolved in the glass/melt and are three orders of magnitude faster than predicted for rate control solely by diffusion of dissolved molecular CO 2 under the experimental conditions. Additional experiments using untreated and dehydrated (0.09 wt% H 2 O total ) rhyolitic glass quantatively support these interpretations. We conclude that diffusive oxygen isotope exchange in rhyolitic glass/melt, and probably other polymerized silicate materials, it controlled by the concentrations and diffusivities of dissolved oxygen-bearing volatile species rather than diffusion of network oxygen under all but the most volatile-poor conditions. 25 refs., 6 figs., 1 tab

  5. Non-mass-dependent fractionation of sulfur and oxygen isotopes during UV photolysis of sulfur dioxide

    Science.gov (United States)

    Pen, Aranh

    Since the discovery of anomalous sulfur isotope abundance in the geological record in sulfate and sulfide minerals (Farquhar et al., 2000), much effort has been put into understanding their origin to provide new insights into the environmental conditions on the early Earth (Farquhar et al., 2001; Pavlov and Kasting, 2002; Ono et al., 2003; Zahnle et al., 2006; Farquhar et al., 2007; Lyons, 2007; Lyons, 2008). This discovery gained immense interest because of its implications for both the lack of oxygen in the atmosphere during the Archean era 2.5-3.8 Gya (billion years ago), and for rise of oxygen, or the "Great Oxidation Event", that occurred 2.2-2.4 Gya (Holland, 2002). These signatures are believed to be produced in an anticorrelation to oxygen abundance in the early atmosphere, which will aid in quantifying the rate of oxygenation during the "Great Oxidation Event". According to Farquhar et al. (2000), the non-mass-dependent (NMD), or anomalous, fractionation signatures were produced by photochemical reactions of volcanic sulfur species in Earth's early atmosphere (> 2.3 Gya) due to the lack of an oxygen and ozone shield, resulting in an atmosphere transparent to solar ultraviolet (UV) radiation (Farquhar et al., 2001). Interpretation of the anomalous rock records, though, depends on the identification of (1) chemical reactions that can produce the NMD signature (Farquhar and Wing, 2003); and (2) conditions necessary for conversion of the gas-phase products into solid minerals (Pavlov and Kasting, 2002). The focus of my research addresses the first step, which is to determine whether the chemical reactions that occurred in Earth's early atmosphere, resulting in NMD fractionation of sulfur isotopes, were due to broadband UV photochemistry, and to test isotopic self-shielding as the possible underlying mechanism. In this project, our goals were to test isotopic self-shielding during UV photolysis as a possible underlying mechanism for anomalous sulfur isotopic

  6. Raman scattering tensors of tyrosine.

    Science.gov (United States)

    Tsuboi, M; Ezaki, Y; Aida, M; Suzuki, M; Yimit, A; Ushizawa, K; Ueda, T

    1998-01-01

    Polarized Raman scattering measurements have been made of a single crystal of L-tyrosine by the use of a Raman microscope with the 488.0-nm exciting beam from an argon ion laser. The L-tyrosine crystal belongs to the space group P2(1)2(1)2(1) (orthorhombic), and Raman scattering intensities corresponding to the aa, bb, cc, ab and ac components of the crystal Raman tensor have been determined for each prominent Raman band. A similar set of measurements has been made of L-tyrosine-d4, in which four hydrogen atoms on the benzene ring are replaced by deuterium atoms. The effects of NH3-->ND3 and OH-->OD on the Raman spectrum have also been examined. In addition, depolarization ratios of some bands of L-tyrosine in aqueous solutions of pH 13 and pH 1 were examined. For comparison with these experimental results, on the other hand, ab initio molecular orbital calculations have been made of the normal modes of vibration and their associated polarizability oscillations of the L-tyrosine molecule. On the basis of these experimental data and by referring to the results of the calculations, discussions have been presented on the Raman tensors associated to some Raman bands, including those at 829 cm-1 (benzene ring breathing), 642 cm-1 (benzene ring deformation), and 432 cm-1 (C alpha-C beta-C gamma bending).

  7. Assessing the Temperature Dependence of Narrow-Band Raman Water Vapor Lidar Measurements: A Practical Approach

    Science.gov (United States)

    Whiteman, David N.; Venable, Demetrius D.; Walker, Monique; Cardirola, Martin; Sakai, Tetsu; Veselovskii, Igor

    2013-01-01

    Narrow-band detection of the Raman water vapor spectrum using the lidar technique introduces a concern over the temperature dependence of the Raman spectrum. Various groups have addressed this issue either by trying to minimize the temperature dependence to the point where it can be ignored or by correcting for whatever degree of temperature dependence exists. The traditional technique for performing either of these entails accurately measuring both the laser output wavelength and the water vapor spectral passband with combined uncertainty of approximately 0.01 nm. However, uncertainty in interference filter center wavelengths and laser output wavelengths can be this large or larger. These combined uncertainties translate into uncertainties in the magnitude of the temperature dependence of the Raman lidar water vapor measurement of 3% or more. We present here an alternate approach for accurately determining the temperature dependence of the Raman lidar water vapor measurement. This alternate approach entails acquiring sequential atmospheric profiles using the lidar while scanning the channel passband across portions of the Raman water vapor Q-branch. This scanning is accomplished either by tilt-tuning an interference filter or by scanning the output of a spectrometer. Through this process a peak in the transmitted intensity can be discerned in a manner that defines the spectral location of the channel passband with respect to the laser output wavelength to much higher accuracy than that achieved with standard laboratory techniques. Given the peak of the water vapor signal intensity curve, determined using the techniques described here, and an approximate knowledge of atmospheric temperature, the temperature dependence of a given Raman lidar profile can be determined with accuracy of 0.5% or better. A Mathematica notebook that demonstrates the calculations used here is available from the lead author.

  8. Raman D-band in the irradiated graphene: Origin of the non-monotonous dependence of its intensity with defect concentration

    International Nuclear Information System (INIS)

    Codorniu Pujals, Daniel

    2013-01-01

    Raman spectroscopy is one of the most used experimental techniques in studying irradiated carbon nanostructures, in particular graphene, due to its high sensibility to the presence of defects in the crystalline lattice. Special attention has been given to the variation of the intensity of the Raman D-band of graphene with the concentration of defects produced by irradiation. Nowadays, there are enough experimental evidences about the non-monotonous character of that dependence, but the explanation of this behavior is still controversial. In the present work we developed a simplified mathematical model to obtain a functional relationship between these two magnitudes and showed that the non-monotonous dependence is intrinsic to the nature of the D-band and that it is not necessarily linked to amorphization processes. The obtained functional dependence was used to fit experimental data taken from other authors. The determination coefficient of the fitting was 0.96.

  9. Krypton isotope analysis using near-resonant stimulated Raman spectroscopy

    International Nuclear Information System (INIS)

    Whitehead, C.A.; Cannon, B.D.; Wacker, J.F.

    1994-12-01

    A method for measuring low relative abundances of 85 Kr in one liter or less samples of air has been under development here at Pacific Northwest Laboratory. The goal of the Krypton Isotope Laser Analysis (KILA) method is to measure ratios of 10 -10 or less of 85 Kr to more abundant stable krypton. Mass spectrometry and beta counting are the main competing technologies used in rare-gas trace analysis and are limited in application by such factors as sample size, counting times, and selectivity. The use of high-resolution lasers to probe hyperfine levels to determine isotopic abundance has received much attention recently. In this study, we report our progress on identifying and implementing techniques for trace 85 Kr analysis on small gas samples in a static cell as well as limitations on sensitivity and selectivity for the technique. High-resolution pulsed and cw lasers are employed in a laser-induced fluorescence technique that preserves the original sample. This technique, is based on resonant isotopic depletion spectroscopy (RIDS) in which one isotope is optically depleted while preserving the population of a less abundant isotope. The KILA method consists of three steps. In the first step, the 1s 5 metastable level of krypton is populated via radiative cascade following two-photon excitation of the 2p 6 energy level. Next, using RBDS, the stable krypton isotopes are optically depleted to the ground state through the 1s 4 level with the bulk of the 85 Kr population being preserved. Finally, the remaining metastable population is probed to determine 85 Kr concentration. The experimental requirements for each of these steps are outlined below

  10. Characterization of conducting polyaniline blends by Resonance Raman Spectroscopy

    International Nuclear Information System (INIS)

    Silva, Jose E. Pereira da; Temperini, Marcia L.A.; Torresi, Susana I. Cordoba de

    2005-01-01

    Raman and optical microscopy were used to investigate possible interactions between polyaniline (PANI) and different insulating polymers in conducting blends. Resonance Raman and optical micrographs were used to study the physical interaction in materials. Analysis Raman spectra was done investigating the relative intensity of bands at 574 and 607 cm -1 . A relationship between Raman bands and conductivity was also proposed. (author)

  11. Optical properties of oxygen-implanted CdS:O layers in terms of band anticrossing theory

    Energy Technology Data Exchange (ETDEWEB)

    Morozova, N. K., E-mail: MorozovaNK@mail.ru; Kanakhin, A. A.; Miroshnikova, I. N. [Moscow Power Engineering Institute, National Research University (Russian Federation); Galstyan, V. G. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

    2013-08-15

    The microcathodoluminescence (MCL) and photoreflection spectra of CdS:O layers implanted with oxygen ions to 4 Multiplication-Sign 10{sup 20} cm{sup -3} are investigated. Used method of MCL spectroscopy yields information only about the implanted-layer volume. Exciton MCL spectra, which allow one to determine the concentration of dissolved oxygen in the CdS:O layers and the influence of deviation of the substrates from stoichiometry, are recorded. The homogeneity of the ion-implanted layers is studied by cathodoluminescence (CL) scanning electron microscopy. The relationship between light-emitting areas and the luminescence band at {approx}630 nm is established. The reason for enhancement of this band upon radiation annealing is revealed and its nature as the luminescence of F{sup +} centers in CdS is confirmed. New photoreflection spectroscopy data are obtained, which describe the specific behavioral features of oxygen on the layer surface as an isoelectronic impurity in highly mismatched alloys (HMAs). It is shown that sulfur completely bonds and removes oxygen from CdS:O. Oxygen-free CdS remains on the surface in the form of nanoparticles, the size of which depends on the oxygen concentration in the CdS:O layer bulk. The results obtained are in agreement with the predictions of band anticrossing theory.

  12. Oxygen isotopic analyses of individual planktic foraminifera species: Implications for seasonality in the western Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Naidu, P.D.; Niitsuma, N.; Naik, S.S.

    The variation of stable isotopes between individual shells of planktic foraminifera of a given species and size may provide short-term seasonal insight on Paleoceanography. In this context, oxygen isotope analyses of individual Globigerinoides...

  13. Measurement of infiltration rates in urban sewer systems by use of oxygen isotopes.

    Science.gov (United States)

    De Bénédittis, J; Bertrand-Krajewski, J L

    2005-01-01

    The paper presents the principle of a method to measure infiltration rates in sewer systems based on the use of oxygen isotopes and its application in Lyon (France). In the urban area of Lyon, significant differences in delta 18O that can reach 3 per thousand are observed between the oxygen isotopic compositions of groundwater originating from Rhone, Saone and from their associated alluvial aquifers. Drinking water supplying Lyon results mainly from pumping in the Rhone alluvial aquifer. Therefore, in some areas, the difference of isotopic composition between wastewater resulting from the consumption of drinking water and local groundwater can be used to measure infiltration in sewer systems. The application in the catchment of Ecully shows that the infiltration flow rate presents strong fluctuations at an hourly scale: it varies between 15 and 40 m3/h. This variability could be explained by non-constant discharges of pumping and by variations of the water level in the sewer.

  14. Concentration of small ring structures in vitreous silica from a first-principles analysis of the Raman spectrum.

    Science.gov (United States)

    Umari, P; Gonze, Xavier; Pasquarello, Alfredo

    2003-01-17

    Using a first-principles approach, we calculate Raman spectra for a model structure of vitreous silica. We develop a perturbational method for calculating the dielectric tensor in an ultrasoft pseudopotential scheme and obtain Raman coupling tensors by finite differences with respect to atomic displacements. For frequencies below 1000 cm(-1), the parallel-polarized Raman spectrum of vitreous silica is dominated by oxygen bending motions, showing a strong sensitivity to the intermediate range structure. By modeling the Raman coupling, we derive estimates for the concentrations of three- and four-membered rings from the experimental intensities of the Raman defect lines.

  15. Triple oxygen isotope systematics of structurally bonded water in gypsum

    Science.gov (United States)

    Herwartz, Daniel; Surma, Jakub; Voigt, Claudia; Assonov, Sergey; Staubwasser, Michael

    2017-07-01

    The triple oxygen isotopic composition of gypsum mother water (gmw) is recorded in structurally bonded water in gypsum (gsbw). Respective fractionation factors have been determined experimentally for 18O/16O and 17O/16O. By taking previous experiments into account we suggest using 18αgsbw-gmw = 1.0037; 17αgsbw-gmw = 1.00195 and θgsbw-gmw = 0.5285 as fractionation factors in triple oxygen isotope space. Recent gypsum was sampled from a series of 10 ponds located in the Salar de Llamara in the Atacama Desert, Chile. Total dissolved solids (TDS) in these ponds show a gradual increase from 23 g/l to 182 g/l that is accompanied by an increase in pond water 18O/16O. Gsbw falls on a parallel curve to the ambient water from the saline ponds. The offset is mainly due to the equilibrium fractionation between gsbw and gmw. However, gsbw represents a time integrated signal biased towards times of strong evaporation, hence the estimated gmw comprises elevated 18O/16O compositions when compared to pond water samples taken on site. Gypsum precipitation is associated with algae mats in the ponds with lower salinity. No evidence for respective vital effects on the triple oxygen isotopic composition of gypsum hydration water is observed, nor are such effects expected. In principle, the array of δ18Ogsbw vs. 17Oexcess can be used to: (1) provide information on the degree of evaporation during gypsum formation; (2) estimate pristine meteoric water compositions; and (3) estimate local relative humidity which is the controlling parameter of the slope of the array for simple hydrological situations. In our case study, local mining activities may have decreased deep groundwater recharge, causing a recent change of the local hydrology.

  16. Raman microscopic studies of PVD deposited hard ceramic coatings

    International Nuclear Information System (INIS)

    Constable, C.P.

    2000-01-01

    successful. This was then expanded to real wear situations in which tools were monitored after 3,6,12,64,120 and 130 minutes-in-cut. A PCA chemometrics model able to distinguish between component layers and oxides was developed. Raman microscopy was found to provide structural and compositional information on oxide scales formed on the surfaces of heat-treated coatings. Wear debris, generated as a consequence of sliding wear tests on various coatings, was also found to be primarily oxide products. The comparison of the oxide types within the debris to those formed on the surface of the same coating statically oxidised, facilitated a contact temperature during sliding to be estimated. Raman microscopy, owing to the piezo-spectroscopic effect, is sensitive to stress levels. The application of Raman microscopy for the determination of residual compressive stresses within PVD coatings was evaluated. TiAIN/VN superlattice coatings with engineered stresses ranging -3 to -11.3 GPa were deposited onto SS and HSS substrates. Subsequent Raman measurements found a correlation coefficient of 0.996 between Raman band position and stress (determined via XRD methods). In addition, there was also a similar correlation coefficient observed between hardness and Raman shift (cm -1 ). The application of mechanical stresses on a TiAICrN coating via a stress rig was investigated and tensile and compressive shifts were observed. (author)

  17. The Oxygen Isotopic Composition of MIL 090001: A CR2 Chondrite with Abundant Refractory Inclusions

    Science.gov (United States)

    Keller, Lindsay P.; McKeegan, K. D.; Sharp, Z. D.

    2012-01-01

    MIL 090001 is a large (>6 kg) carbonaceous chondrite that was classified as a member of the CV reduced subgroup (CVred) that was recovered during the 2009-2010 ANSMET field season [1]. Based on the abundance of refractory inclusions and the extent of aqueous alteration, Keller [2] suggested a CV2 classification. Here we report additional mineralogical and petrographic data for MIL 090001, its whole-rock oxygen isotopic composition and ion microprobe analyses of individual phases. The whole rock oxygen isotopic analyses show that MIL 090001 should be classified as a CR chondrite.

  18. Optical band gap and Raman spectra in AxB0.2-x(TeO2)0.8 glasses

    Czech Academy of Sciences Publication Activity Database

    Ožďanová, J.; Tichá, H.; Tichý, Ladislav

    2010-01-01

    Roč. 12, č. 5 (2010), s. 1024-1029 ISSN 1454-4164 Institutional research plan: CEZ:AV0Z40500505 Keywords : telluride glasses * optical band gap * Raman scattering Subject RIV: CA - Inorganic Chemistry Impact factor: 0.412, year: 2010 http://joam.inoe.ro/index.php?option=magazine&op=view&idu=2453&catid=50

  19. [Raman spectra of monkey cerebral cortex tissue].

    Science.gov (United States)

    Zhu, Ji-chun; Guo, Jian-yu; Cai, Wei-ying; Wang, Zu-geng; Sun, Zhen-rong

    2010-01-01

    Monkey cerebral cortex, an important part in the brain to control action and thought activities, is mainly composed of grey matter and nerve cell. In the present paper, the in situ Raman spectra of the cerebral cortex of the birth, teenage and aged monkeys were achieved for the first time. The results show that the Raman spectra for the different age monkey cerebral cortex exhibit most obvious changes in the regions of 1000-1400 and 2800-3000 cm(-1). With monkey growing up, the relative intensities of the Raman bands at 1313 and 2885 cm(-1) mainly assigned to CH2 chain vibrational mode of lipid become stronger and stronger whereas the relative intensities of the Raman bands at 1338 and 2932 cm(-1) mainly assigned to CH3 chain vibrational mode of protein become weaker and weaker. In addition, the two new Raman bands at 1296 and 2850 cm(-1) are only observed in the aged monkey cerebral cortex, therefore, the two bands can be considered as a character or "marker" to differentiate the caducity degree with monkey growth In order to further explore the changes, the relative intensity ratios of the Raman band at 1313 cm(-1) to that at 1338 cm(-1) and the Raman band at 2885 cm(-1) to that at 2 932 cm(-1), I1313/I1338 and I2885/I2932, which are the lipid-to-protein ratios, are introduced to denote the degree of the lipid content. The results show that the relative intensity ratios increase significantly with monkey growth, namely, the lipid content in the cerebral cortex increases greatly with monkey growth. So, the authors can deduce that the overmuch lipid is an important cause to induce the caducity. Therefore, the results will be a powerful assistance and valuable parameter to study the order of life growth and diagnose diseases.

  20. Estimating of gas transfer velocity using triple isotopes of dissolved oxygen.

    Digital Repository Service at National Institute of Oceanography (India)

    Sarma, V.V.S.S.; Abe, O.; Honda, M.; Saino, T.

    variations in oxygen isotopes are found to be higher than the direct estimations at low wind speed (<5 m s sup(-1)) and lower at high wind speeds (>13 m s sup(-1)) and showed significant spatial variability. The method presented here can be used to derive...

  1. The Oxygen Isotopic Composition of Phosphate: A Tracer for Phosphate Sources and Cycling

    Energy Technology Data Exchange (ETDEWEB)

    Mclaughlin, K. [Southern California Coastal Water Research Project, Costa Mesa, University of California, CA (United States); Young, M. B.; Paytan, A.; Kendall, C. [U.S. Geological Survey, University of California, CA (United States)

    2013-05-15

    Phosphorus (P) is a limiting macro-nutrient for primary productivity and anthropogenic P-loading to aquatic ecosystems is one of the leading causes of eutrophication in many ecosystems throughout the world. Because P has only one stable isotope, traditional isotope techniques are not possible for tracing sources and cycling of P in aquatic systems. However, much of the P in nature is bonded to four oxygen (O) atoms as orthophosphate (PO{sub 4}{sup 3-}). The P-O bonds in orthophosphate are strongly resistant to inorganic hydrolysis and do not exchange oxygen with water without biological mediation (enzyme-mediated recycling). Thus, the oxygen isotopic composition of dissolved inorganic phosphate ({delta}{sup 18}O{sub p}) may be used as a tracer for phosphate sources and cycling in aquatic ecosystems. Recently, several studies have been conducted utilizing {delta}{sup 18}O{sub p} as a tracer for phosphate sources and cycling in various aquatic environments. Specifically, work to date indicates that {delta}{sup 18}O{sub p} is useful for determining sources of phosphate to aquatic systems if these sources have unique isotopic signatures and phosphate cycling within the system is limited compared to input fluxes. In addition, because various processes imprint specific fractionation effects, the {delta}{sup 18}O{sub p} tracer can be utilized to determine the degree of phosphorous cycling and processing through the biomass. This chapter reviews several of these studies and discusses the potential to utilize the {delta}{sup 18}O{sub p} of phosphate in rivers and streams. (author)

  2. Comparison of interglacial warm events since the marine oxygen isotope stage 11

    Digital Repository Service at National Institute of Oceanography (India)

    Oba, T.; Banakar, V.K.

    Large numbers of oxygen isotopic curves of benthic foraminifcral tests from deep-sea sediment cores have been published. The curves are well-established reliable proxies for past climate and relative sea level fluctuations. In order to understand...

  3. EQUILIBRIUM AND KINETIC NITROGEN AND OXYGEN-ISOTOPE FRACTIONATIONS BETWEEN DISSOLVED AND GASEOUS N2O

    NARCIS (Netherlands)

    INOUE, HY; MOOK, WG

    1994-01-01

    Experiments were performed to determine the equilibrium as well as kinetic stable nitrogen and oxygen isotope fractionations between aqueous dissolved and gaseous N2O. The equilibrium fractionations, defined as the ratio of the isotopic abundance ratios (15R and 18R, respectively) of gaseous and

  4. Evidence of oxygen vacancy and possible intermediate gap state in layered α-MoO{sub 3} single-crystal nanobelts

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.Z., E-mail: tcccz@shu.edu.cn; Li, Y.; Tang, X.D.

    2016-01-15

    Multilayered meso-structured MoO{sub 3} nanobelts have been synthesized by thermally oxidizing a molybdenum chip in a reduced oxygen atmosphere, with a view to disclosing the existence of oxygen vacancy and understanding the mechanism behind the influence of oxygen vacancy on the electronic structure of molybdenum oxides. Based on the measurements from X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscope (SEM) and transmission electron microscope (TEM), it is found that the as-grown sample is single-crystal α-MoO{sub 3} with a (001) preferred orientation, which shows an irregular belt-like morphology being composed of some ~20 nm single-crystal thin layers. The present sample includes a lot of oxygen vacancies in the lattice, as evidenced by the considerably reduced coordination number of the central Mo atoms from X-ray absorption spectra (XAS) as well as the red shift of the main Raman peaks. The existence of the oxygen vacancies are further tested by the photoluminescence (PL) results as the main emission peak shows an obvious red shift with the corresponding optical band gap reduced to 2.3 eV. Very importantly, an extra emission positioned at 738 nm (1.68 eV) is believed to originate from the recombination of the electrons from the intermediate band (IB) to the valence band (VB), and the formation of the IB in the gap is also caused by oxygen-ion vacancies.

  5. Oxygen sensitivity of krypton and Lyman-alpha hygrometers

    NARCIS (Netherlands)

    Dijk, van A.; Kohsiek, W.; Bruin, de H.A.R.

    2003-01-01

    The oxygen sensitivity of krypton and Lyman-¿ hygrometers is studied. Using a dewpoint generator and a controlled nitrogen/oxygen flow the extinction coefficients of five hygrometers associated with the third-order Taylor expansion of the Lambert¿Beer law around reference conditions for oxygen and

  6. Forensic applications of nitrogen and oxygen isotopes in tracing nitrate sources in urban environments

    Science.gov (United States)

    Silva, S.R.; Ging, P.B.; Lee, R.W.; Ebbert, J.C.; Tesoriero, A.J.; Inkpen, E.L.

    2002-01-01

    Ground and surface waters in urban areas are susceptible to nitrate contamination from septic systems, leaking sewer lines, and fertilizer applications. Source identification is a primary step toward a successful remediation plan in affected areas. In this respect, nitrogen and oxygen isotope ratios of nitrate, in conjunction with hydrologic data and water chemistry, have proven valuable in urban studies from Austin, Texas, and Tacoma, Washington. In Austin, stream water was sampled during stremflow and baseflow conditions to assess surface and subsurface sources of nitrate, respectively. In Tacoma, well waters were sampled in adjacent sewered and un-sewered areas to determine if locally high nitrate concentrations were caused by septic systems in the un-sewered areas. In both studies, sewage was identified as a nitrate source and mixing between sewage and other sources of nitrate was apparent. In addition to source identification, combined nitrogen and oxygen isotopes were important in determining the significance of denitrification, which can complicate source assessment by reducing nitrate concentrations and increasing ??15N values. The two studies illustrate the value of nitrogen and oxygen isotopes of nitrate for forensic applications in urban areas. ?? Published by Elsevier Science Ltd. on behalf of AEHS.

  7. Cryogenic separation of an oxygen-argon mixture in natural air samples for the determination of isotope and molecular ratios.

    Science.gov (United States)

    Keedakkadan, Habeeb Rahman; Abe, Osamu

    2015-04-30

    The separation and purification of oxygen-argon mixtures are critical in the high-precision analysis of Δ(17) O and δ(O2 /Ar) for geochemical applications. At present, chromatographic methods are used for the separation and purification of oxygen-argon mixtures or pure oxygen, but these methods require the use of high-purity helium as a carrier gas. Considerable interest has been expressed in the development of a helium-free cryogenic separation of oxygen-argon mixtures in natural air samples. The precise and simplified cryogenic separation of oxygen-argon mixtures from natural air samples presented here was made possible using a single 5A (30/60 mesh) molecular sieve column. The method involves the trapping of eluted gases using molecular sieves at liquid nitrogen temperature, which is associated with isotopic fractionation. We tested the proposed method for the determination of isotopic fractionations during the gas exchange between water and atmospheric air at equilibrium. The dependency of fractionation was studied at different water temperatures and for different methods of equilibration (bubbling and stirring). Isotopic and molecular fractionations during gas desorption from molecular sieves were studied for different amounts and types of molecular sieves. Repeated measurements of atmospheric air yielded a reproducibility (±SD) of 0.021 ‰, 0.044 ‰, 15 per meg and 1.9 ‰ for δ(17) O, δ(18) O, Δ(17) O and δ(O2 /Ar) values, respectively. We applied the method to determine equilibrium isotope fractionation during gas exchange between air and water. Consistent δ(18) O and Δ(17) O results were obtained with the latest two studies, whereas there was a significant difference in δ(18) O values between seawater and deionized water. We have revised a helium-free, cryogenic separation of oxygen-argon mixtures in natural air samples for isotopic and molecular ratio analysis. The use of a single 13X (1/8" pellet) molecular sieve yielded the smallest isotopic

  8. Stable isotope analysis of Dacryoconarid carbonate microfossils: a new tool for Devonian oxygen and carbon isotope stratigraphy.

    Science.gov (United States)

    Frappier, Amy Benoit; Lindemann, Richard H; Frappier, Brian R

    2015-04-30

    Dacryoconarids are extinct marine zooplankton known from abundant, globally distributed calcite microfossils in the Devonian, but their shell stable isotope composition has not been previously explored. Devonian stable isotope stratigraphy is currently limited to less common invertebrates or bulk rock analyses of uncertain provenance. As with Cenozoic planktonic foraminifera, isotopic analysis of dacryoconarid shells could facilitate higher-resolution, geographically widespread stable isotope records of paleoenvironmental change, including marine hypoxia events, climate changes, and biocrises. We explored the use of Dacryoconarid isotope stratigraphy as a viable method in interpreting paleoenvironments. We applied an established method for determining stable isotope ratios (δ(13) C, δ(18) O values) of small carbonate microfossils to very well-preserved dacryoconarid shells. We analyzed individual calcite shells representing five common genera using a Kiel carbonate device coupled to a MAT 253 isotope ratio mass spectrometer. Calcite shell δ(13) C and δ(18) O values were compared by taxonomic group, rock unit, and locality. Single dacryoconarid calcite shells are suitable for stable isotope analysis using a Kiel-IRMS setup. The dacryoconarid shell δ(13) C values (-4.7 to 2.3‰) and δ(18) O values (-10.3 to -4.8‰) were consistent across taxa, independent of shell size or part, but varied systematically through time. Lower fossil δ(18) O values were associated with warmer water temperature and more variable δ(13) C values were associated with major bioevents. Dacryoconarid δ(13) C and δ(18) O values differed from bulk rock carbonate values. Dacryoconarid individual microfossil δ(13) C and δ(18) O values are highly sensitive to paleoenvironmental changes, thus providing a promising avenue for stable isotope chemostratigraphy to better resolve regional to global paleoceanographic changes throughout the upper Silurian to the upper Devonian. Our results

  9. Biological Apatite Formed from Polyphosphate and Alkaline Phosphatase May Exchange Oxygen Isotopes from Water through Carbonate

    Science.gov (United States)

    Omelon, S. J.; Stanley, S. Y.; Gorelikov, I.; Matsuura, N.

    2011-12-01

    polyphosphate species were detected by Raman and IR spectroscopy. The oxygen isotope data of the reactants and products will also be presented. The possibility that carbonate acts as an intermediate reagent, transferring the oxygen from water to phosphate in biological apatite mineral formation may explain why biological apatite exhibits a significant carbonate content, and how this mineral is formed with an insignificant hydroxyl content. 1 Kohn, M.J., and Cerling, T.E. Rev Mineral Geochem 2002 (48) 455 2 Kolodny, Y., Luz, B., Navon, O. Earth Planet Sci Lett 1983 (64) 398 3 Blake, R.E., O'Neil, J.R., Garcia, G.A. Geochim et Cosmochim Acta 1997 (61) 4411 4 Blake, R.E., Alt, J.C., and Martini, A.M. PNAS 2001 (98) 2148-2153 5 Liang, Y., and Blake, R.E. Geochim Cosmochim Acta 2009 (73) 3782) 6 Pasteris, J.D. et al. Biomaterials 2004 (35) 229 7 Omelon et al., PLoS ONE 2009 4(5), e5634

  10. Variations in stable hydrogen and oxygen isotopes in atmospheric water vapor in the marine boundary layer across a wide latitude range.

    Science.gov (United States)

    Liu, Jingfeng; Xiao, Cunde; Ding, Minghu; Ren, Jiawen

    2014-11-01

    The newly-developed cavity ring-down laser absorption spectroscopy analyzer with special calibration protocols has enabled the direct measurement of atmospheric vapor isotopes at high spatial and temporal resolution. This paper presents real-time hydrogen and oxygen stable isotope data for atmospheric water vapor above the sea surface, over a wide range of latitudes spanning from 38°N to 69°S. Our results showed relatively higher values of δ(18)O and δ(2)H in the subtropical regions than those in the tropical and high latitude regions, and also a notable decreasing trend in the Antarctic coastal region. By combining the hydrogen and oxygen isotope data with meteoric water line and backward trajectory model analysis, we explored the kinetic fractionation caused by subsiding air masses and related saturated vapor pressure in the subtropics, and the evaporation-driven kinetic fractionation in the Antarctic region. Simultaneous observations of meteorological and marine variables were used to interpret the isotopic composition characteristics and influential factors, indicating that d-excess is negatively correlated with humidity across a wide range of latitudes and weather conditions worldwide. Coincident with previous studies, d-excess is also positively correlated with sea surface temperature and air temperature (Tair), with greater sensitivity to Tair. Thus, atmospheric vapor isotopes measured with high accuracy and good spatial-temporal resolution could act as informative tracers for exploring the water cycle at different regional scales. Such monitoring efforts should be undertaken over a longer time period and in different regions of the world. Copyright © 2014. Published by Elsevier B.V.

  11. Polarization-Sensitive CARS of the Amide I Band of Pure and Liganded Chymotrypsin

    NARCIS (Netherlands)

    Chikishev, A.Y.; Chikishev, A.Yu.; Koroteev, N.I.; Otto, Cornelis; Greve, Jan

    1996-01-01

    Polarization-sensitive coherent anti-Stokes Raman scattering (PSCARS) is used to investigate the secondary structure of the protein chymotrypsin, both free and bound to antranilic acid. Advantage is taken of the extreme sensitivity of the PSCARS spectra to the orientation of the analyser. Clear

  12. Palmyra Island Monthly Oxygen Isotope Data (delta 18O) for 1886-1998

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Palmyra Island Monthly Coral Oxygen Isotope Data. 112-yr, monthly-resolved coral record from Palmyra Island (5 deg 52 min N, 162 deg 8 min W). The coral was drilled...

  13. A 1Σ+ → X 1Σ+ bands of the isotopic lithium hydrides

    International Nuclear Information System (INIS)

    Li, K.C.; Stwalley, W.C.

    1977-01-01

    In order to obtain a better understanding of the X 1 Σ + ground state and the A 1 Σ + state potential energy curves of lithium hydride and to examine in detail the concept of ''mass-reduced quantum numbers'' for both an ordinary (X 1 Σ + ) and an anomalous (A 1 Σ + ) electronic state, the emission spectra of the A 1 Σ + → X 1 Σ + bands of the isotopic lithium hydrides and deuterides ere photographed in the 3000 to 5000A region with a 3.4 meter Ebert Spectrograph. The bands found involved v'' = 0 to 7 to various v' = 0 to 17 for 6 LiH, and v'' = 0 to 7 to various v' = 1 to 16 for 6 LiD. Additional bands involving v'' = 4 and 5 were also found for 7 LiH. The vibrational-rotational spectroscopic analysis of 7 LiH, 6 LiH and 6 LiD are reported here, as are the reanalyses of the 7 LiH and 7 LiD data reported by Crawford and Jorgensen. New Rydberg-Klein-Rees (RKR) A 1 Σ + and X 1 Σ + potential curves have been constructed for each individual molecule and are reported, but detailed isotopic comparisons will be reported in subsequent publications

  14. LBA-ECO CD-02 Carbon, Nitrogen, Oxygen Stable Isotopes in Organic Material, Brazil

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set reports the measurement of stable carbon, nitrogen, and oxygen isotope ratios in organic material (plant, litter and soil samples) in forest canopy...

  15. LBA-ECO CD-02 Carbon, Nitrogen, Oxygen Stable Isotopes in Organic Material, Brazil

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set reports the measurement of stable carbon, nitrogen, and oxygen isotope ratios in organic material (plant, litter and soil samples) in forest...

  16. Monolithic PM Raman fiber laser at 1679 nm for Raman amplification at 1810 nm

    DEFF Research Database (Denmark)

    Svane, Ask Sebastian; Rottwitt, Karsten

    2013-01-01

    Stimulated Raman scattering (SRS) has been subject to much attention within the field of fiber lasers and amplifiers as it provides an extended wavelength coverage in comparison to rare-earth based devices. Motivated by the projected capacity crunch [1], different approaches are being explored...... demonstrate a monolithic RM Raman fiber laser (RFL), which acts as a pump for a Raman amplifier (RA) at 1810 nm. The lasing wavelength of a RFL, thus also for a RA, can in principle be designed arbitrarily within the entire wavelength range from the Erbium band up to the Thulium/Holmium band...... of OFS PM Raman fiber, with an estimated propagation loss of 0.42/0.46/1.3 dB/km at 1564/1679/1810 nm. The Raman gain coefficient was measured to be gR=2.66/2.35 W-1km-1 at 1679/1810 nm. The laser curve of the RFL is depicted in Fig. 1b, with a slope efficiency of 67 %. The high slope efficiency...

  17. An oxygen isotope record from Lake Xiarinur in Inner Mongolia since the last deglaciation and its implication for tropical monsoon change

    Science.gov (United States)

    Sun, Qing; Chu, Guoqiang; Xie, Manman; Zhu, Qingzeng; Su, Youliang; Wang, Xisheng

    2018-04-01

    We present a high-resolution oxygen isotope record from authigenic carbonate (δ18Ocarb) from Lake Xiarinur (Inner Mongolia) since the last deglaciation. The lake is located at the modern northern limit of the monsoon, and is therefore sensitive to the extension of the East Asian summer monsoon. Based on calibration against the instrumental record, the δ18Ocar variation has been interpreted as changes in atmospheric circulation pattern on decadal time scales. On longer time scales, the δ18Ocarb in lake sediments could be mainly regulated by the relative contribution of nearby (remote) water-vapor sources associated with subtropical (tropical) monsoon through changes in the distance from sources to the site of precipitation. Increased remote water vapors from tropical monsoon would lead to lighter isotope value in our study site. Through time the δ18Ocarb record in Lake Xiarinur indicate a notable weak tropical monsoon during the Younger Dryas, a gradual increasing monsoon from the early Holocene and weakening monsoon after the middle Holocene. Oxygen isotope records from lakes and stalagmite in the Asian monsoon region across different localities show a general similar temporal pattern since the last deglaciation, and highlight a fundamental role of the tropical monsoon.

  18. Fractionation of oxygen and hydrogen isotopes at the hydrate gas forming in the sea sediments

    International Nuclear Information System (INIS)

    Pashkina, V.I.; Esikov, A.D.

    1990-01-01

    The paper gives data on isotope composition of interstitial and near-bottom waters sampled in a region of gas-hydrate formation in the Sea of Okhotsk. The studies show that heavy isotopes of oxygen and hydrogen is used in gas-hydrate formation, with the result that isotope composition of its constitution water constitutes δ 18 O=+1.99per mille, δD=+23per mille relatively to SMOW. Formation of autogenic carbonates leads to isotope exchange with interstitial water wich, in turn, changes its primary isotope composition in the direction of increasing of O-18 content. The near-bottom waters are isotope-light relatively to the SMOW standard and to the mean isotope composition of interstitial water in the studied region of gas-hydrate spreading. (orig.) [de

  19. Dolomite clumped isotope constraints on the oxygen isotope composition of the Phanerozoic Sea

    Science.gov (United States)

    Ryb, U.; Eiler, J. M.

    2017-12-01

    The δ18O value of the Phanerozoic Sea has been debated several decades, largely motivated by an 8‰ increase in δ18O of sedimentary carbonates between the Cambrian and the present. Some previous studies have interpreted this increase to be a primary depositional signal, resulting from an increase in the 18O content of ocean water over time, or from a decrease in ocean temperature increasing the oxygen isotope fractionation between seawater and carbonates. In contrast, other studies have interpreted lower δ18O compositions as the products of diagenetic alteration at elevated burial temperatures. Here, we show that the Phanerozoic dolomite δ18O record overlaps with that of well-preserved calcite fossils, and use carbonate clumped isotope measurements of Cambrian to Pleistocene dolomites to calculate their formation temperatures and the isotopic compositions of their parent-waters. The observed variation in dolomite δ18O is largely explained by dolomite formation at burial temperatures of up to 158°C. The δ18O values of dolomite parent-waters range -2 to +12‰ and are correlated with formation temperatures. Such correlation is consistent with the modification of seawater (0±2‰, VSMOW) toward isotopically heavier compositions through water-rock reactions at elevated burial temperatures. The similarity between the dolomite and calcite δ18O records, and published clumped isotope-based calculations of water compositions, suggests that like dolomite, temporal variations of the calcite δ18O record may also be largely driven by diagenetic alteration. Finally, the relationship we observe between temperature of dolomitization and d18O of dolomite suggests platform carbonates generally undergo dolomitization through reaction with modified marine waters, and that there is no evidence those waters were ever significantly lower in d18O than the modern ocean.

  20. INVESTIGATION OF DISSOLVED SULPHATE IN VARIOUS GEOTHERMAL FIELDS OF SUMATRA USING OXYGEN AND SULPHUR ISOTOPES

    Directory of Open Access Journals (Sweden)

    E. Ristin Pujiindiyati

    2010-06-01

    Full Text Available There are at least 30 high temperature systems; eleven active volcanoes, five degassing volcanoes and one caldera volcano controlled by Sumatra Fault Zone over a length of 1700 km. To understand this geothermal field system, some information about geochemistry including isotope composition in its fluid is needed. Sulphur-34 and oxygen-18 isotopes in dissolved sulphate pair have been used to determine the origin of acidic fluid of sulphate and to evaluate the process involved. The fluids from eight hot springs, two fumaroles, four deep wells and crater have been collected in along Sumatra geothermal fields. Sulphur-34 (d 34S (SO4, 0/00 CDT and oxygen-18 (d 18O (SO4, 0/00 SMOW in sulphate is analyzed according to Robinson-Kusakabe and Rafter method, respectively. The d 34S (SO4 values from Sibayak wells are more enriched of 16.8 0/00 to 18.2 0/0 that may indicate the dissolution of anhydrite minerals or isotope partitioning in hydration of SO2. The d 34S (SO4 values from two fumaroles (Pusuk Bukit - North Sumatra and Rantau Dadap - South Sumatra are at depleted value of -0.150/00 and 1.80/00, those are close to d 34S from magmatic sulphur.  In general, the d 34S (SO4 of springs spread in a wide range of 5.250/00 to14.20/00 and show a mixing process between atmospheric sulphate and sulphate from deep wells. The d 18O (SO4 from wells exhibits depleted value around -3.60/00 suggesting that 87.5% of sulphate oxygen is derived from groundwater oxygen and 12.5% is derived from atmospheric molecular oxygen in sulphide oxidation reaction. In the other hand, hot springs (except Semurup, crater and fumaroles have enriched value of d 18O (SO4. These enriched values suggest that a higher percentage of atmospherically derived oxygen compared to those from the depth.   Keywords: isotope, geothermal, Sumatra

  1. Modelling and Mapping Oxygen-18 Isotope Composition of Precipitation in Spain for Hydrologic and Climatic Applications

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Arevalo, J.; Diaz-Teijeiro, M. F. [Centro de Estudios y Experimentacion de Obras Publicas (CEDEX), Madrid (Spain); Castano, S. [Geological Survey of Spain (IGME), Madrid (Spain)

    2013-07-15

    A simple multiple regression model based on two geographic factors (latitude and elevation) has been developed that reproduces reasonably well the spatial distribution of the current mean oxygen-18 isotope composition in precipitation over spain. In a preliminary analysis, additional geographic and climatic factors do not improve the performance of the model. A continuous digital map of oxygen-18 isotope composition in precipitation has been produced by combining the polynomial model with a digital elevation model using GIS tools. Application of the resulting map to several groundwater case studies in spain has shown it to be useful as a reference of the input function to recharge. Further validation of the model, and further testing of its usefulness in surface hydrology and climatic studies, is ongoing through comparison of model results with isotope data from the GNIP database and from isotope studies in hydrogeology and climate change taking place in spain. (author)

  2. Biological pH sensing based on the environmentally friendly Raman technique through a polyaniline probe.

    Science.gov (United States)

    Li, Songyang; Liu, Zhiming; Su, Chengkang; Chen, Haolin; Fei, Xixi; Guo, Zhouyi

    2017-02-01

    The biological pH plays an important role in various cellular processes. In this work, a novel strategy is reported for biological pH sensing by using Raman spectroscopy and polyaniline nanoparticles (PANI NPs) as the pH-sensitive Raman probe. It is found that the Raman spectrum of PANI NPs is strongly dependent on the pH value. The intensities of Raman spectral bands at 1225 and 1454 cm -1 increase obviously with pH value varying from 5.5 to 8.0, which covers the range of regular biological pH variation. The pH-dependent Raman performance of PANI NPs, as well as their robust Raman signals and sensitivities to pH, was well retained after the nanoparticles incorporated into living 4T1 breast adenocarcinoma cells. The data indicate that such PANI NPs can be used as an effective biological pH sensor. Most interestingly, the PANI spherical nanostructures can be acquired by a low-cost, metal-free, and one-pot oxidative polymerization, which gives them excellent biocompatibility for further biological applications.

  3. Oxygen isotope geochemistry of The Geysers reservoir rocks, California

    Energy Technology Data Exchange (ETDEWEB)

    Gunderson, Richard P.; Moore, Joseph N.

    1994-01-20

    Whole-rock oxygen isotopic compositions of Late Mesozoic graywacke, the dominant host rock at The Geysers, record evidence of a large liquid-dominated hydrothermal system that extended beyond the limits of the present steam reservoir. The graywackes show vertical and lateral isotopic variations that resulted from gradients in temperature, permeability, and fluid composition during this early liquid-dominated system. All of these effects are interpreted to have resulted from the emplacement of the granitic "felsite" intrusion 1-2 million years ago. The {delta}{sup 18}O values of the graywacke are strongly zoned around a northwest-southeast trending low located near the center of and similar in shape to the present steam system. Vertical isotopic gradients show a close relationship to the felsite intrusion. The {delta}{sup 18}O values of the graywacke decrease from approximately 15 per mil near the surface to 4-7 per mil 300 to 600 m above the intrusive contact. The {delta}{sup 18}O values then increase downward to 8-10 per mil at the felsite contact, thereafter remaining nearly constant within the intrusion itself. The large downward decrease in {delta}{sup 18}O values are interpreted to be controlled by variations in temperature during the intrusive event, ranging from 150{degree}C near the surface to about 425{degree}C near the intrusive contact. The upswing in {delta}{sup 18}O values near the intrusive contact appears to have been caused by lower rock permeability and/or heavier fluid isotopic composition there. Lateral variations in the isotopic distributions suggests that the effects of temperature were further modified by variations in rock permeability and/or fluid-isotopic composition. Time-integrated water:rock ratios are thought to have been highest within the central isotopic low where the greatest isotopic depletions are observed. We suggest that this region of the field was an area of high permeability within the main upflow zone of the liquid

  4. Temperature evolution and the oxygen isotope composition of Phanerozoic oceans from carbonate clumped isotope thermometry

    Science.gov (United States)

    Henkes, Gregory A.; Passey, Benjamin H.; Grossman, Ethan L.; Shenton, Brock J.; Yancey, Thomas E.; Pérez-Huerta, Alberto

    2018-05-01

    Surface temperature is among the most important parameters describing planetary climate and habitability, and yet there remains considerable debate about the temperature evolution of the Earth's oceans during the Phanerozoic Eon (541 million years ago to present), the time during which complex metazoan life radiated on Earth. Here we critically assess the emerging record of Phanerozoic ocean temperatures based on carbonate clumped isotope thermometry of fossil brachiopod and mollusk shells, and we present new data that fill important gaps in the Late Paleozoic record. We evaluate and reject the hypothesis that solid-state reordering of 13C-18O bonds has destroyed the primary clumped isotope temperature signal of most fossils during sedimentary burial at elevated temperatures. The resulting Phanerozoic record, which shows a general coupling between tropical seawater temperatures and atmospheric carbon dioxide (CO2) levels since the Paleozoic, indicates that tropical temperatures during the icehouse climate of the Carboniferous period were broadly similar to present (∼25-30 °C), and suggests that benthic metazoans were able to thrive at temperatures of 35-40 °C during intervals of the early and possibly the latest Paleozoic when CO2 levels were likely 5-10× higher than present-day values. Equally important, there is no resolvable trend in seawater oxygen isotope ratios (δ18 O) over the past ∼500 million years, indicating that the average temperature of oxygen exchange between seawater and the oceanic crust has been high (∼270 °C) since at least the early Paleozoic, which points to mid-ocean ridges as the dominant locus of water-rock interaction over the past half-billion years.

  5. Oxygen isotopes in garnet and accessory minerals to constrain fluids in subducted crust

    Science.gov (United States)

    Rubatto, Daniela; Gauthiez-Putallaz, Laure; Regis, Daniele; Rosa Scicchitano, Maria; Vho, Alice; Williams, Morgan

    2017-04-01

    Fluids are considered a fundamental agent for chemical exchanges between different rock types in the subduction system. Constraints on the sources and pathways of subduction fluids thus provide crucial information to reconstruct subduction processes. Garnet and U-Pb accessory minerals constitute some of the most robust and ubiquitous minerals in subducted crust and can preserve multiple growth zones that track the metamorphic evolution of the sample they are hosted in. Microbeam investigation of the chemical (major and trace elements) and isotopic composition (oxygen and U-Pb) of garnet and accessory minerals is used to track significant fluid-rock interaction at different stages of the subduction system. This approach requires consideration of the diffusivity of oxygen isotopes particularly in garnet, which has been investigated experimentally. The nature of the protolith and ocean floor alteration is preserved in relict accessory phases within eclogites that have been fully modified at HP conditions (e.g. Monviso and Dora Maira units in the Western Alps). Minerals in the lawsonite-blueschists of the Tavsanli zone in Turkey record pervasive fluid exchange between mafic and sedimentary blocks at the early stage of subduction. High pressure shear zones and lithological boundaries show evidence of intense fluid metasomatism at depth along discontinuities in Monviso and Corsica. In the UHP oceanic crust of the Zermatt-Saas Zone, garnet oxygen isotopes and tourmaline boron isotopes indicate multistage fluid infiltration during prograde metamorphism. Localized exchanges of aqueous fluids are also observed in the subducted continental crust of the Sesia-Lanzo Zone. In most cases analyses of distinct mineral zones enable identification of multiple pulses of fluids during the rock evolution.

  6. Oxygen isotope signature of UV degradation of glyphosate and phosphonoacetate: Tracing sources and cycling of phosphonates

    Energy Technology Data Exchange (ETDEWEB)

    Sandy, Edward H. [State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074 (China); Department of Geology and Geophysics, Yale University, P.O. Box 208109, New Haven, CT 06520-8109 (United States); Department of Chemistry, University of Sierra Leone, Freetown (Sierra Leone); Blake, Ruth E., E-mail: ruth.blake@yale.edu [Department of Geology and Geophysics, Yale University, P.O. Box 208109, New Haven, CT 06520-8109 (United States); School of Civil and Environmental Engineering, and National “International Cooperation Base on Environment and Energy”, University of Science and Technology Beijing, Beijing 100084 (China); Chang, Sae Jung [Department of Geology and Geophysics, Yale University, P.O. Box 208109, New Haven, CT 06520-8109 (United States); Jun, Yao, E-mail: yaojun@ustb.edu.cn [State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074 (China); Department of Geology and Geophysics, Yale University, P.O. Box 208109, New Haven, CT 06520-8109 (United States); School of Civil and Environmental Engineering, and National “International Cooperation Base on Environment and Energy”, University of Science and Technology Beijing, Beijing 100084 (China); Yu, Chan [Department of Geology and Geophysics, Yale University, P.O. Box 208109, New Haven, CT 06520-8109 (United States); School of Civil and Environmental Engineering, and National “International Cooperation Base on Environment and Energy”, University of Science and Technology Beijing, Beijing 100084 (China)

    2013-09-15

    Highlights: • Phosphonate (phon) hydrolysis by UVR (1.2 kW) attained ≥90% completion in 84 h. • Isotope study reveals both ambient H{sub 2}O and O{sub 2} involvements in phon C-P bond cleavage. • Mechanistic models proposed for phon C-P bond cleavage based on O-isotope analysis. • Model equations used to calculate δ{sup 18}O{sub P-org} of original phon P-moiety-useful as a tracer. • Study shows relevance in tracing phon sources and cycling in the environment. -- Abstract: The degradation of phosphonates in the natural environment constitutes a major route by which orthophosphate (Pi) is regenerated from organic phosphorus and recently implicated in marine methane production, with ramifications to environmental pollution issues and global climate change concerns. This work explores the application of stable oxygen isotope analysis in elucidating the C-P bond cleavage mechanism(s) of phosphonates by UV photo-oxidation and for tracing their sources in the environment. The two model phosphonates used, glyphosate and phosphonoacetic acid were effectively degraded after exposure to UV irradiation. The isotope results indicate the involvement of both ambient water and atmospheric oxygen in the C-P bond cleavage and generally consistent with previously posited mechanisms of UV-photon excitation reactions. A model developed to calculate the oxygen isotopic composition of the original phosphonate P-moiety, shows both synthetic phosphonates having distinctly lower values compared to naturally derived organophosphorus compounds. Such mechanistic models, based on O-isotope probing, are useful for tracing the sources and reactions of phosphonates in the environment.

  7. Raman spectroscopy

    Science.gov (United States)

    Raman spectroscopy has gained increased use and importance in recent years for accurate and precise detection of physical and chemical properties of food materials, due to the greater specificity and sensitivity of Raman techniques over other analytical techniques. This book chapter presents Raman s...

  8. Raman Spectral Band Oscillations in Large Graphene Bubbles

    Science.gov (United States)

    Huang, Yuan; Wang, Xiao; Zhang, Xu; Chen, Xianjue; Li, Baowen; Wang, Bin; Huang, Ming; Zhu, Chongyang; Zhang, Xuewei; Bacsa, Wolfgang S.; Ding, Feng; Ruoff, Rodney S.

    2018-05-01

    Raman spectra of large graphene bubbles showed size-dependent oscillations in spectral intensity and frequency, which originate from optical standing waves formed in the vicinity of the graphene surface. At a high laser power, local heating can lead to oscillations in the Raman frequency and also create a temperature gradient in the bubble. Based on Raman data, the temperature distribution within the graphene bubble was calculated, and it is shown that the heating effect of the laser is reduced when moving from the center of a bubble to its edge. By studying graphene bubbles, both the thermal conductivity and chemical reactivity of graphene were assessed. When exposed to hydrogen plasma, areas with bubbles are found to be more reactive than flat graphene.

  9. Oxygen isotope systematics of chondrules in the Murchison CM2 chondrite and implications for the CO-CM relationship

    Science.gov (United States)

    Chaumard, Noël; Defouilloy, Céline; Kita, Noriko T.

    2018-05-01

    High-precision oxygen three-isotope measurements of olivine and pyroxene were performed on 29 chondrules in the Murchison CM2 chondrite by secondary ion mass spectrometry (SIMS). The oxygen isotope ratios of analyzed chondrules all plot very close to the primitive chondrule minerals (PCM) line. In each of 24 chondrules, the olivine and/or pyroxene grains analyzed show indistinguishable oxygen isotope ratios. Exceptions are minor occurrences of isotopically distinguished relict olivine grains, which were found in nine chondrules. The isotope homogeneity of these phenocrysts is consistent with a co-magmatic crystallization of olivine and pyroxene from the final chondrule melts and a significant oxygen isotope exchange between the ambient gas and the melts. Homogeneous type I chondrules with Mg#'s of 98.9-99.5 have host chondrule Δ17O values ranging from -6.0‰ to -4.1‰, with one exception (Δ17O: -1.2‰; Mg#: 99.6). Homogeneous chondrules with Mg#'s poor H2O ice (∼0.3-0.4× the CI dust; Δ17O > 0‰) and at dust enrichments of ∼300-2000×. Regarding the Mg# and oxygen isotope ratios, the chondrule populations sampled by CM and CO chondrites are similar and indistinguishable. The similarity of these 16O-rich components in CO and CM chondrites is also supported by the common Fe/Mn ratio of olivine in type II chondrules. Although they accreted similar high-temperature silicates, CO chondrites are anhydrous compared to CM chondrites, suggesting they derived from different parent bodies formed inside and outside the snow line, respectively. If chondrules in CO and CM chondrites formed at the same disk locations but the CM parent body accreted later than the CO parent body, the snow line might have crossed the common chondrule-forming region towards the Sun between the time of the CO and CM parent bodies accretion.

  10. The mechanism of oxygen isotopic fractionation during fungal denitrification - A pure culture study

    Science.gov (United States)

    Wrage-Moennig, Nicole; Rohe, Lena; Anderson, Traute-Heidi; Braker, Gesche; Flessa, Heinz; Giesemann, Annette; Lewicka-Szczebak, Dominika; Well, Reinhard

    2014-05-01

    Nitrous oxide (N2O) from soil denitrification originates from bacteria and - to an unknown extent - also from fungi. During fungal denitrification, oxygen (O) exchange takes place between H2O and intermediates of the denitrification process as in bacterial exchange[1,2]. However, information about enzymes involved in fungal O exchanges and the associated fractionation effects is lacking. The objectives of this study were to estimate the O fractionation and O exchange during the fungal denitrifying steps using a conceptual model[2] adapted from concepts for bacterial denitrification[3], implementing controls of O exchange proposed by Aerssens, et al.[4] and using fractionation models by Snider et al.[5] Six different pure fungal cultures (five Hypocreales, one Sordariales) known to be capable of denitrification were incubated under anaerobic conditions, either with nitrite or nitrate. Gas samples were analyzed for N2O concentration and its isotopic signatures (SP, average δ15N, δ18O). To investigate O exchange, both treatments were also established with 18O-labelled water as a tracer in the medium. The Hypocreales strains showed O exchange mainly at NO2- reductase (Nir) with NO2- as electron acceptor and no additional O exchange at NO3- reductase (Nar) with NO3- as electron acceptor. The only Hypocreales species having higher O exchange with NO3- than with NO2- also showed O exchange at Nar. The Sordariales species tested seems capable of O exchange at NO reductase (Nor) additionally to O exchange at Nir with NO2-. The data will help to better interpret stable isotope values of N2O from soils. .[1] D. M. Kool, N. Wrage, O. Oenema, J. Dolfing, J. W. Van Groenigen. Oxygen exchange between (de)nitrification intermediates and H2O and its implications for source determination of NO?3- and N2O: a review. Rapid Commun. Mass Spec. 2007, 21, 3569. [2] L. Rohe, T.-H. Anderson, B. Braker, H. Flessa, A. Giesemann, N. Wrage-Mönnig, R. Well. Fungal Oxygen Exchange between

  11. Fractionation of Nitrogen and Oxygen Isotopes and Roles of Bacteria during Denitrification

    Science.gov (United States)

    Kang, J.; Buyanjargal, A.; Jeen, S. W.

    2017-12-01

    Nitrate in groundwater can cause health and environmental problems when not properly treated. The purpose of this study was to develop a treatment method for nitrate in groundwater using organic carbon-based reactive mixtures (i.e., wood chips and gravel) through column experiments and to evaluate reaction mechanisms responsible for the treatment. The column experiments were operated for a total of 19 months. The results from the geochemical analyses for the experiments suggest that cultures of denitrifying bacteria used organic carbon while utilizing nitrate as their electron acceptor via denitrification process. Proteobacteria was the most abundant phylum in all samples, accounting for 45.7% of the bacterial reads, followed by Firmicutes (22.6%) and Chlorobi (10.6%). Bacilli, Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, and Actinobacteria_c consisted of 32, 30, 23, 11, and 2% of denitrifying bacteria class. The denitrification process caused fractionation of nitrogen and oxygen isotopes of nitrate while nitrate concentration decreased. When fitted to the Rayleigh's fractionation model, enrichment factors (ɛ) were 11.5‰ and 5.6‰ for 15N and 18O isotopes, respectively. Previous studies suggested that nitrogen isotope enrichment factors of denitrification are within the range of 4.7 to 40‰ and oxygen isotopic enrichment factors are between 8 and 18.3‰. This study shows that nitrate in groundwater can be effectively treated using passive treatment systems, such as permeable reactive barriers (PRBs), and denitrificaton is the dominant process reponsible for the removal of nitrate.

  12. Cloud Height Retrieval with Oxygen A and B Bands for the Deep Space Climate Observatory (DSCOVR) Mission

    Science.gov (United States)

    Yang, Yuekui; Marshak, Alexander; Mao, Jianping; Lyapustin, Alexei; Herman, Jay

    2012-01-01

    Planned to fly in 2014, the Deep Space Climate Observatory (DSCOVR) would see the whole sunlit half of the Earth from the L 1 Lagrangian point and would provide simultaneous data on cloud and aerosol properties with its Earth Polychromatic Imaging Camera (EPIC). EPIC images the Earth on a 2Kx2K CCD array, which gives a horizontal resolution of about 10 km at nadir. A filter-wheel provides consecutive images in 10 spectral channels ranging from the UV to the near-IR, including the oxygen A and B bands. This paper presents a study of retrieving cloud height with EPIC's oxygen A and B bands. As the first step, we analyzed the effect of cloud optical and geometrical properties, sun-view geometry, and surface type on the cloud height determination. Second, we developed two cloud height retrieval algorithms that are based on the Mixed Lambertian-Equivalent Reflectivity (MLER) concept: one utilizes the absolute radiances at the Oxygen A and B bands and the other uses the radiance ratios between the absorption and reference channels of the two bands. Third, we applied the algorithms to the simulated EPIC data and to the data from SCanning Imaging Absorption SpectroMeter for Atmospheric CartograpHY (SCIAMACHY) observations. Results show that oxygen A and B bands complement each other: A band is better suited for retrievals over ocean, while B band is better over vegetated land due to a much darker surface. Improvements to the MLER model, including corrections to surface contribution and photon path inside clouds, will also be discussed.

  13. Polarization-Sensitive Resonance CSRS of Deoxy- and Oxyhaemoglobin

    NARCIS (Netherlands)

    Voroshilov, A.; Voroshilov, Artemy; Lucassen, Gerald; Lucassen, Gerald W.; Otto, Cornelis; Greve, Jan

    1995-01-01

    Polarization-sensitive coherent Stokes Raman scattering (CSRS) measurements of oxy- and deoxyhaemoglobin in aqueous solutions are reported. The excitation wavelengths used were chosen in the region of the Q absorption bands to achieve twofold electronic resonance. The dispersion profiles of all

  14. Heterogenous Oxygen Isotopic Composition of a Complex Wark-Lovering Rim and the Margin of a Refractory Inclusion from Leoville

    Science.gov (United States)

    Simon, J. I.; Matzel, J. E. P.; Simon, S. B.; Weber, P. K.; Grossman, L.; Ross, D. K.; Hutcheon, I. D.

    2014-01-01

    Wark-Lovering (WL) rims [1] surrounding many refractory inclusions represent marker events in the early evolution of the Solar System in which many inclusions were exposed to changes in pressure [2], temperature [3], and isotopic reservoirs [4-7]. The effects of these events can be complex, not only producing mineralogical variability of WL rims [2], but also leading to mineralogical [8-10] and isotopic [7, 11, 12] changes within inclusion interiors. Extreme oxygen isotopic heterogeneity measured in CAIs has been explained by mixing between distinct oxygen gas reservoirs in the nebula [13]. Some WL rims contain relatively simple mineral layering and/or are isotopically homogeneous [14, 15]. As part of a larger effort to document and understand the modifications observed in some CAIs, an inclusion (L6) with a complex WL rim from Leoville, a member of the reduced CV3 subgroup was studied. Initial study of the textures and mineral chemistry was presented by [16]. Here we present NanoSIMS oxygen isotopic measurements to complement these petrologic observations.

  15. Polarization Sensitive Coherent Anti-Stokes Raman Spectroscopy of DCVJ in Doped Polymer

    Science.gov (United States)

    Ujj, Laszlo

    2014-05-01

    Coherent Raman Microscopy is an emerging technic and method to image biological samples such as living cells by recording vibrational fingerprints of molecules with high spatial resolution. The race is on to record the entire image during the shortest time possible in order to increase the time resolution of the recorded cellular events. The electronically enhanced polarization sensitive version of Coherent anti-Stokes Raman scattering is one of the method which can shorten the recording time and increase the sharpness of an image by enhancing the signal level of special molecular vibrational modes. In order to show the effectiveness of the method a model system, a highly fluorescence sample, DCVJ in a polymer matrix is investigated. Polarization sensitive resonance CARS spectra are recorded and analyzed. Vibrational signatures are extracted with model independent methods. Details of the measurements and data analysis will be presented. The author gratefully acknowledge the UWF for financial support.

  16. Instant detection and identification of concealed explosive-related compounds: Induced Stokes Raman versus infrared.

    Science.gov (United States)

    Elbasuney, Sherif; El-Sherif, Ashraf F

    2017-01-01

    The instant detection of explosives and explosive-related compounds has become an urgent priority in recent years for homeland security and counter-terrorism applications. Modern techniques should offer enhancement in selectivity, sensitivity, and standoff distances. Miniaturisation, portability, and field-ruggedisation are crucial requirements. This study reports on instant and standoff identification of concealed explosive-related compounds using customized Raman technique. Stokes Raman spectra of common explosive-related compounds were generated and spectrally resolved to create characteristic finger print spectra. The scattered Raman emissions over the band 400:2000cm -1 were compared to infrared absorption using FTIR. It has been demonstrated that the two vibrational spectroscopic techniques were opposite and completing each other. Molecular vibrations with strong absorption in infrared (those involve strong change in dipole moments) induced weak signals in Raman and vice versa. The tailored Raman offered instant detection, high sensitivity, and standoff detection capabilities. Raman demonstrated characteristic fingerprint spectra with stable baseline and sharp intense peaks. Complete correlations of absorption/scattered signals to certain molecular vibrations were conducted to generate an entire spectroscopic profile of explosive-related compounds. This manuscript shades the light on Raman as one of the prevailing technologies for instantaneous detection of explosive-related compounds. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Nature of infrared-active phonon sidebands to internal vibrations: Spectroscopic studies of solid oxygen and nitrogen

    Science.gov (United States)

    Brodyanski, A. P.; Medvedev, S. A.; Vetter, M.; Kreutz, J.; Jodl, H. J.

    2002-09-01

    The ir-active phonon sidebands to internal vibrations of oxygen and nitrogen were precisely investigated by Fourier transform infrared spectroscopy in the fundamental and first overtone spectral regions from 10 K to the boiling points at ambient pressure. We showed that an analysis of ir-active phonon sidebands yields important information on the internal vibrations of molecules in a condensed medium (solid or liquid), being complementary to Raman data on vibron frequencies. Analyzing the complete profile of these bands, we determined the band origin frequencies and explored their temperature behavior in all phases of both substances. We present unambiguous direct experimental proofs that this quality corresponds to the frequency of internal vibrations of single molecules. Considering solid oxygen and nitrogen as two limiting cases for simple molecular solids, we interpret this result as a strong evidence for a general fact that an ir-active phonon sideband possesses the same physical origin in pure molecular solids and in impurity centers. The key characteristics of the fundamental vibron energy zone (environmental and resonance frequency shifts) were deduced from the combined analysis of ir and Raman experimental data and their temperature behavior was explored in solid and liquid phases of oxygen and nitrogen at ambient pressure. The character of the short-range orientational order was established in the β-nitrogen based on our theoretical analysis consistent with the present experimental results. We also present the explanation of the origin of pressure-caused changes in the frequency of the Raman vibron mode of solid oxygen at low temperatures.

  18. Nitrogen and Oxygen Isotope Effects of Ammonia Oxidation by Thermophilic Thaumarchaeota from a Geothermal Water Stream.

    Science.gov (United States)

    Nishizawa, Manabu; Sakai, Sanae; Konno, Uta; Nakahara, Nozomi; Takaki, Yoshihiro; Saito, Yumi; Imachi, Hiroyuki; Tasumi, Eiji; Makabe, Akiko; Koba, Keisuke; Takai, Ken

    2016-08-01

    Ammonia oxidation regulates the balance of reduced and oxidized nitrogen pools in nature. Although ammonia-oxidizing archaea have been recently recognized to often outnumber ammonia-oxidizing bacteria in various environments, the contribution of ammonia-oxidizing archaea is still uncertain due to difficulties in the in situ quantification of ammonia oxidation activity. Nitrogen and oxygen isotope ratios of nitrite (δ(15)NNO2- and δ(18)ONO2-, respectively) are geochemical tracers for evaluating the sources and the in situ rate of nitrite turnover determined from the activities of nitrification and denitrification; however, the isotope ratios of nitrite from archaeal ammonia oxidation have been characterized only for a few marine species. We first report the isotope effects of ammonia oxidation at 70°C by thermophilic Thaumarchaeota populations composed almost entirely of "Candidatus Nitrosocaldus." The nitrogen isotope effect of ammonia oxidation varied with ambient pH (25‰ to 32‰) and strongly suggests the oxidation of ammonia, not ammonium. The δ(18)O value of nitrite produced from ammonia oxidation varied with the δ(18)O value of water in the medium but was lower than the isotopic equilibrium value in water. Because experiments have shown that the half-life of abiotic oxygen isotope exchange between nitrite and water is longer than 33 h at 70°C and pH ≥6.6, the rate of ammonia oxidation by thermophilic Thaumarchaeota could be estimated using δ(18)ONO2- in geothermal environments, where the biological nitrite turnover is likely faster than 33 h. This study extended the range of application of nitrite isotopes as a geochemical clock of the ammonia oxidation activity to high-temperature environments. Because ammonia oxidation is generally the rate-limiting step in nitrification that regulates the balance of reduced and oxidized nitrogen pools in nature, it is important to understand the biological and environmental factors underlying the regulation of

  19. Isotopic exchange between CO2 and H2O and labelling kinetics of photosynthetic oxygen

    International Nuclear Information System (INIS)

    Gerster, Richard

    1971-01-01

    The reaction of carbon dioxide with water has been studied by measuring the rate of oxygen exchange between C 18 O 2 and H 2 16 O. The mathematical treatment of the kinetics allows to determine with accuracy the diffusion flow between the gas and the liquid phase, in the same way as the CO 2 hydration rate. The velocity constant of this last process, whose value gives the in situ enzymatic activity of carbonic anhydrase, has been established in the case of chloroplast and Euglena suspensions and of aerial leaves. The study of the isotopic exchange between C 18 O 2 and a vegetable submitted to alternations of dark and light has allowed to calculate the isotopic abundance of the metabolized CO 2 whose value has been compared to that of the intracellular water and that of photosynthetic oxygen. In addition, a new method using 13 C 18 O 2 gives the means to measure with accuracy eventual isotopic effects. The labelling kinetics of the oxygen evolved by Euglena suspensions whose water has been enriched with 18 O have been established at different temperatures. (author) [fr

  20. Resonance Raman study of benzyl radical

    DEFF Research Database (Denmark)

    Langkilde, F.W.; Bajdor, K.; Wilbrandt, R.

    1992-01-01

    Time-resolved resonance Raman spectra are obtained of benzyl radicals created by laser flash photolysis of benzylchloride and diphenylacetone in solution. The spectra are obtained in resonance with the intense 2 2A2-1 B-2(2) transition of benzyl. The strong Raman bands are assigned to totally...... symmetric a1 modes. The remaining observed bands are tentatively assigned to fundamental modes of b1, a2, and b2 symmetry, and to overtones and combinations. The resonance Raman spectra are found to be quite different from previous fluorescence spectra of benzyl, and the origins of these differences...

  1. Preliminary study on the characteristics of carbon and oxygen isotopes in the Shiziping geothermal field groundwater in Emei Mountain

    International Nuclear Information System (INIS)

    Yu Xiujing; Jia Shuyuan

    2000-01-01

    Emei Mountain is a well-known scenic tourism spot in China. In order to promote the development of tourist trade, the authors have explored the hydrothermal water in Emei Mountain. At the beginning of 1998, the hydrothermal water was successfully drilled from the Shiziping geothermal field. In the process of prospecting the hydrothermal water, the authors adopted the geochemical method such as carbon and oxygen isotopes. The result indicates that the groundwater of different genetic types has different constitution characteristics of carbon and oxygen isotopes. This provides the important basis for finding out the forming conditions of underground hydrothermal water. So, it is prospective to study the growth characteristics of hydrothermal water with the carbon and oxygen isotopes of HCO 3 in groundwater

  2. An Underwater Acoustic Vector Sensor with High Sensitivity and Broad Band

    Directory of Open Access Journals (Sweden)

    Hu Zhang

    2014-05-01

    Full Text Available Recently, acoustic vector sensor that use accelerators as sensing elements are widely used in underwater acoustic engineering, but the sensitivity of which at low frequency band is usually lower than -220 dB. In this paper, using a piezoelectric trilaminar optimized low frequency sensing element, we designed a high sensitivity internal placed ICP piezoelectric accelerometer as sensing element. Through structure optimization, we made a high sensitivity, broadband, small scale vector sensor. The working band is 10-2000 Hz, sound pressure sensitivity is -185 dB (at 100 Hz, outer diameter is 42 mm, length is 80 mm.

  3. Covariance of oxygen and hydrogen isotopic composition in plant water: Species effects

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, L.W.; DeNiro, M.J. (Univ. of California, Los Angeles (United States))

    1989-12-01

    Leaf water becomes enriched in the heavy isotopes of oxygen and hydrogen during evapotranspiration. The magnitude of the enrichment has been shown to be influenced by temperature and humidity, but the effects of species-specific factors on leaf water enrichment of D and {sup 18}O have not been studied for different plants growing together. To learn whether leaf water enrichment patterns and processes for D and {sup 18}O are different for individual species growing under the same environmental conditions the authors tested the proposal that leaf waters in plants with crassulacean acid metabolism (CAM) show high sloped (m in the leaf water equation {delta}D = m {delta}{sup 18}O + b) than in C{sub 3} plants. They determined the relationships between the stable hydrogen ({delta}D) and oxygen ({delta}{sup 18}O) isotope ratios of leaf waters collected during the diurnal cycle of evapotranspiration for Yucca schidigera, Ephedra aspera, Agave deserti, Prunus ilicifolia, Yucca whipplei, Heteromeles arbutifolia, Dyckia fosteriana, Simmondsia chinensis, and Encelia farinosa growing at two sites in southern California. The findings indicate that m in the aforementioned equation is related to the overall residence time for water in the leaf and proportions of water subjected to repeated evapotranspiration enrichments of heavy isotopes.

  4. Oxygen isotopes in mammal bone phosphate: A new tool for paleohydrological and paleoclimatological research?

    Science.gov (United States)

    Longinelli, Antonio

    1984-02-01

    Oxygen isotope analyses of water in blood of humans and domestic pigs indicate that the oxygen isotope fractionation effects between ingested water and body water are the same in all specimens of the same species. The δ18O of body water has been shown to vary linearly with the mean δ18O of local meteoric water. This conclusion also holds for the bone phosphate. Thus, δ18O( PO3-4) values of unaltered fossil bones from humans and domestic pigs can be used to reconstruct the δ18O values of local meteoric waters during the life-times of the mammals. Such data can be used for paleohydrological and paleoclimatological studies both on land and at sea.

  5. Enhanced photoluminescence and Raman properties of Al-Doped ZnO nanostructures prepared using thermal chemical vapor deposition of methanol assisted with heated brass.

    Directory of Open Access Journals (Sweden)

    Tamil Many K Thandavan

    Full Text Available Vapor phase transport (VPT assisted by mixture of methanol and acetone via thermal evaporation of brass (CuZn was used to prepare un-doped and Al-doped zinc oxide (ZnO nanostructures (NSs. The structure and morphology were characterized by field emission scanning electron microscopy (FESEM and x-ray diffraction (XRD. Photoluminescence (PL properties of un-doped and Al-doped ZnO showed significant changes in the optical properties providing evidence for several types of defects such as zinc interstitials (Zni, oxygen interstitials (Oi, zinc vacancy (Vzn, singly charged zinc vacancy (VZn-, oxygen vacancy (Vo, singly charged oxygen vacancy (Vo+ and oxygen anti-site defects (OZn in the grown NSs. The Al-doped ZnO NSs have exhibited shifted PL peaks at near band edge (NBE and red luminescence compared to the un-doped ZnO. The Raman scattering results provided evidence of Al doping into the ZnO NSs due to peak shift from 145 cm-1 to an anomalous peak at 138 cm-1. Presence of enhanced Raman signal at around 274 and 743 cm-1 further confirmed Al in ZnO NSs. The enhanced D and G band in all Al-doped ZnO NSs shows possible functionalization and doping process in ZnO NSs.

  6. Enhanced photoluminescence and Raman properties of Al-Doped ZnO nanostructures prepared using thermal chemical vapor deposition of methanol assisted with heated brass.

    Science.gov (United States)

    Thandavan, Tamil Many K; Gani, Siti Meriam Abdul; San Wong, Chiow; Md Nor, Roslan

    2015-01-01

    Vapor phase transport (VPT) assisted by mixture of methanol and acetone via thermal evaporation of brass (CuZn) was used to prepare un-doped and Al-doped zinc oxide (ZnO) nanostructures (NSs). The structure and morphology were characterized by field emission scanning electron microscopy (FESEM) and x-ray diffraction (XRD). Photoluminescence (PL) properties of un-doped and Al-doped ZnO showed significant changes in the optical properties providing evidence for several types of defects such as zinc interstitials (Zni), oxygen interstitials (Oi), zinc vacancy (Vzn), singly charged zinc vacancy (VZn-), oxygen vacancy (Vo), singly charged oxygen vacancy (Vo+) and oxygen anti-site defects (OZn) in the grown NSs. The Al-doped ZnO NSs have exhibited shifted PL peaks at near band edge (NBE) and red luminescence compared to the un-doped ZnO. The Raman scattering results provided evidence of Al doping into the ZnO NSs due to peak shift from 145 cm-1 to an anomalous peak at 138 cm-1. Presence of enhanced Raman signal at around 274 and 743 cm-1 further confirmed Al in ZnO NSs. The enhanced D and G band in all Al-doped ZnO NSs shows possible functionalization and doping process in ZnO NSs.

  7. Oxygen Storage Capacity and Oxygen Mobility of Co-Mn-Mg-Al Mixed Oxides and Their Relation in the VOC Oxidation Reaction

    Directory of Open Access Journals (Sweden)

    María Haidy Castaño

    2015-05-01

    Full Text Available Co-Mn-Mg-Al oxides were synthesized using auto-combustion and co-precipitation techniques. Constant ratios were maintained with (Co + Mn + Mg/Al equal to 3.0, (Co + Mn/Mg equal to 1.0 and Co/Mn equal to 0.5. The chemical and structural composition, redox properties, oxygen storage capacity and oxygen mobility were analyzed using X-ray fluorescence (XRF, X-ray diffraction (XRD, Raman spectroscopy, scanning electron microscopy (SEM, temperature-programmed reduction of hydrogen (H2-TPR, oxygen storage capacity (OSC, oxygen storage complete capacity (OSCC and isotopic exchange, respectively. The catalytic behavior of the oxides was evaluated in the total oxidation of a mixture of 250 ppm toluene and 250 ppm 2-propanol. The synthesis methodology affected the crystallite size, redox properties, OSC and oxide oxygen mobility, which determined the catalytic behavior. The co-precipitation method got the most active oxide in the oxidation of the volatile organic compound (VOC mixture because of the improved mobility of oxygen and ability to favor redox processes in the material structure.

  8. Ras Umm Sidd Oxygen Isotope (delta 18O) Data for 1750 to 1995

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Ras Umm Sidd bimonthly coral oxygen isotope data (coral core RUS-95). Notes on the data: File (Ras Umm Sidd d18O.txt.) includes columns for Year AD (bimonthly...

  9. Characterization and noninvasive diagnosis of bladder cancer with serum surface enhanced Raman spectroscopy and genetic algorithms

    Science.gov (United States)

    Li, Shaoxin; Li, Linfang; Zeng, Qiuyao; Zhang, Yanjiao; Guo, Zhouyi; Liu, Zhiming; Jin, Mei; Su, Chengkang; Lin, Lin; Xu, Junfa; Liu, Songhao

    2015-05-01

    This study aims to characterize and classify serum surface-enhanced Raman spectroscopy (SERS) spectra between bladder cancer patients and normal volunteers by genetic algorithms (GAs) combined with linear discriminate analysis (LDA). Two group serum SERS spectra excited with nanoparticles are collected from healthy volunteers (n = 36) and bladder cancer patients (n = 55). Six diagnostic Raman bands in the regions of 481-486, 682-687, 1018-1034, 1313-1323, 1450-1459 and 1582-1587 cm-1 related to proteins, nucleic acids and lipids are picked out with the GAs and LDA. By the diagnostic models built with the identified six Raman bands, the improved diagnostic sensitivity of 90.9% and specificity of 100% were acquired for classifying bladder cancer patients from normal serum SERS spectra. The results are superior to the sensitivity of 74.6% and specificity of 97.2% obtained with principal component analysis by the same serum SERS spectra dataset. Receiver operating characteristic (ROC) curves further confirmed the efficiency of diagnostic algorithm based on GA-LDA technique. This exploratory work demonstrates that the serum SERS associated with GA-LDA technique has enormous potential to characterize and non-invasively detect bladder cancer through peripheral blood.

  10. Saturation of Deformation and Identical Bands in Very-Neutron Rich Sr Isotopes

    CERN Multimedia

    2002-01-01

    The present proposal aims at establishing nuclear properties in an isotopic chain showing unique features. These features include the saturation of ground state deformation at its onset and the existence of ground state identical bands in neighbouring nuclei with the same deformation. The measurements should help to elucidate the role played by the proton-neutron residual interaction between orbitals with large spatial overlap, i.e. $\\pi g _{9/2} \

  11. Stable hydrogen, oxygen and sulfur isotopes composition in different tissues of cattle

    International Nuclear Information System (INIS)

    Sun Fengmei; Shi Guangyu; Wang Huiwen; Yang Shuming

    2012-01-01

    In order to research on stable hydrogen, oxygen, sulfur isotopes composition in different tissues of cattle, as well as the breed, δ 2 H and δ 34 S values of different defatted muscle, cattle tail hair, blood, liver, also δ 2h and δ 18 O values of water from muscle were determined by isotope ratio mass spectrometry. The stable sulfur isotope composition was not affected by cattle variety, meanwhile the hydrogen was uncertain; the δ 2 H and δ 34 S values between different defatted muscle, blood, liver, cattle hair were significantly different, at the same time the δ 34 S and δ 2 H values between each tissue were not significantly correlated; the δ 2 H values were strongly correlated with the δ 18 O values of muscle water. The above results indicated that stable sulfur and hydrogen isotopes fractionation in the various tissues were discrepant, thus the proper tissue should be selected according to the purpose and object in the beef traceability. (authors)

  12. Carbon, hydrogen oxygen isotope studies on imbedded old tree ring and paleoclimate reconstruction

    International Nuclear Information System (INIS)

    Sun Yanrong; Mu Zhiguo; Cui Haiting

    2002-01-01

    Tree ring is a kind of natural archives, on which the isotopic analysis is important to study global climate and environmental change. The authors mainly provide a comprehensive introduction to the fractionation models of carbon, hydrogen and oxygen isotope in plants, their research technique and the extract methods from cellulose. That results show isotopic tracer can record the message of climatic variation and has become a powerful tool for paleoclimate reconstruction and for the modern environment changing research. Especially studying on PAGES. the cellulose isotopic analyses of imbedded old tree ring have become the mainly quantitative means of environmental evolvement. In addition, China is a typical monsoon country, research in tree ring stable isotope seasonal variation can give a lot of important information on that. Up to now, the research techniques and works on tree ring in China are still in its earlier stage, and remain many limitations. It needs further accumulate basic research materials, intensity regional contrast and intercross studies on relative subjects

  13. Modelling and Mapping Oxygen-18 Isotope Composition of Precipitation in Spain for Hydrologic and Climatic Applications

    International Nuclear Information System (INIS)

    Rodriguez-Arevalo, J.; Diaz-Teijeiro, M.F.; Castano, S.

    2011-01-01

    A simple multiple regression model based on two geographic factors (latitude and elevation) has been developed that reproduces reasonably well the spatial distribution of the current mean oxygen-18 isotope composition in precipitation over Spain. In a preliminary analysis, additional geographic and climatic factors do not improve the performance of the model. A continuous digital map of oxygen-18 isotope composition in precipitation has been produced by combining the polynomial model with a Digital Elevation Model using GIS tools. Application of the resulting map to several case studies in Spain has shown it to be useful as a reference of the isotope input function to groundwater recharge and surface runoff. The results obtained so far show a good fit between modelled stable isotope values and those measured in surface and ground waters from different aquifers and recharge areas. The GIS tools applied to a continuous digital layer of spatial isotope are able to provide accurate information at detailed scales that are not affordable by other means. Further validation of the model, and further testing of its usefulness in surface hydrology and climatic studies, is going on.

  14. Intracrystalline fractionation of oxygen isotopes between hydroxyl and non-hydroxyl sites in kaolinite measured by thermal dehydroxylation and partial fluorination

    Science.gov (United States)

    Girard, Jean-Pierre; Savin, Samuel M.

    1996-02-01

    Thermal dehydroxylation and partial fluorination techniques were used to measure intracrystalline fractionation of oxygen isotopes between hydroxyl and non-hydroxyl sites in kaolinite. Several aliquots of a well characterized, fine-grained (rates, and target temperatures. Measured δ18O values of both the liberated water and the dehydroxylated residue are consistent over a wide range of temperatures (550 850°C) when dehydroxylation is performed in a single-step fashion at a rapid heating rate (>50°C/min.). Similar dehydroxylation experiments indicate that brucite dehydroxylation occurs without any significant isotopic fractionation of the oxygen isotopes. By extrapolation we postulate that no significant fractionation occurs during single-step thermal dehydroxylation of fine-grained kaolinite, provided that dehydroxylation is performed under well controlled conditions. In contrast, gibbsite dehydroxylation is accompanied by substantial isotopic fractionation. This is probably the result of the complex, multi-pathway dehydroxylation reaction of this mineral. Similarly, thermal dehydroxylation of coarsegrained (>1 μm) kaolinites and dickites of weathering and hydrothermal origin yield results that are dependent on the temperature of dehydroxylation. We suggest that this effect may be caused by isotopic exchange during diffusion of water molecules through coarse particles. Partial fluorination of fine-grained kaolinite in the presence of excess F2 at low temperatures (rate of reaction of hydroxyl oxygen than of non-hydroxyl oxygen, but examination of the isotopic data as well as XRD and IR analyses of the residues after partial fluorination indicates that the separation between the two types of oxygen is not complete. The results, therefore, do not yield a reliable δ18O value of the hydroxyl oxygen. The results of this study suggest that the thermal dehydroxylation technique may be appropriate for analysis of OH groups in fine-grained kaolinite. The partial

  15. Laser Raman and resonance Raman spectroscopies of natural semiconductor mineral cinnabar, α-HgS, from various mines

    International Nuclear Information System (INIS)

    Gotoshia, Sergo V; Gotoshia, Lamara V

    2008-01-01

    Natural minerals α-HgS from various mines have been studied by laser Raman spectroscopy and resonance Raman spectroscopy. The crystals differ from each other in the content of selenium impurity, included in samples from some mines. Based on the Raman spectra and the factor-group analysis the classification of the first order phonons and then the comparison of the results with the results from other works were carried out. The Raman spectra analysis of minerals from various mines show the selenium impurity gap vibration at 203 cm -1 and 226 cm -1 frequencies, respectively. On the basis of statistical measurements of the Raman spectra one can conclude that impurity frequencies of α-HgS may be generally used for the identification of the mine. Resonance Raman scattering for pure minerals has been studied by a dye laser. Phonon resonance in the indirect semiconductor α-HgS is found to be far more intense than the indirect resonance detected until now in various semiconductors in the proximity of the first indirect band E g , for instance, in GaP. In our opinion, this may be conditioned by cinnabar band structure peculiarities. Low resonance has also been fixed in 'dirty' minerals at the spectral band frequency of 203 cm -1 characterizing gap vibration of isomorphic impurity Se in cinnabar

  16. Identification and quantification of oxygen vacancies in CeO{sub 2} nanocrystals and their role in formation of F-centers

    Energy Technology Data Exchange (ETDEWEB)

    Jaffari, G.Hassnain, E-mail: hassnain@qau.edu.pk [Department of Physics, Quaid-i-Azam University Islamabad (Pakistan); Imran, Ali [Department of Physics, Quaid-i-Azam University Islamabad (Pakistan); Bah, M. [Department of Materials Science and Engineering, University of Delaware, 19716, Newark, DE (United States); Ali, Awais; Bhatti, Arshad S. [Centre for Micro and Nano Devices, Department of Physics, COMSATS Institute of Information Technology, Park Road, Islamabad, 44000 (Pakistan); Qurashi, Umar Saeed [Department of Physics, Quaid-i-Azam University Islamabad (Pakistan); Ismat Shah, S. [Department of Materials Science and Engineering, University of Delaware, 19716, Newark, DE (United States); Department of Physics, University of Delaware, 19716, Newark, DE (United States)

    2017-02-28

    Highlights: • Detail crystal and electronic structural analysis was employed to quantify oxygen vacancies. • The Raman F{sub 2g} mode shifted towards lower wave number, exhibiting mode softening with broader and asymmetric peak. • Observation of absorption edge revealed presence of 4f band within the band gap. • PL emission studies revealed presence of F-centers with corresponding energy level located below 4f band. • Transitions associated by the F-center are mainly associated with 4f{sup 0} to 4f{sup 1}, F{sup ++} to 4f{sup 1} and 4f{sup 0} to F{sup +}. - Abstract: In this work we present synthesis and extensive characterization of Cerium oxide (CeO{sub 2}) nanocrystals. Comparison between the properties of as-prepared and air annealed nanoparticles has been carried out, with a goal to clearly identify the effect of oxygen vacancies on crystal, electronic and band structure. Detail crystal and electronic structural analysis was employed to quantify oxygen vacancies. Structural analysis confirmed that the formation of single phase cubic Fluorite structure for both as-prepared and annealed samples. Crystal and electronic structural studies confirmed that Ce ions exists in two oxidation states, Ce{sup +3} and Ce{sup +4}. Concentration of oxygen vacancies was larger in as-synthesis nanocrystal. A drastic decrease in oxygen vacancy concentration was observed for the sample annealed in air at 550 °C. For the as-prepared sample, the Raman allowed F{sub 2g} mode shifted towards lower wavenumber, exhibiting mode softening with broader and asymmetric peak. Observation of absorption edge revealed presence of 4f band within the band gap. Absorption with different band edge, confirmed different energy position of 4f level for the sample possessing oxygen vacancies. Blue shift of the band edge for as-prepared sample has been discussed in terms of increase in lattice parameter, formation of Ce{sup +3} ions, quantum confinement effect etc. Photoluminescence emission

  17. Capillary absorption spectrometer and process for isotopic analysis of small samples

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, M. Lizabeth; Kelly, James F.; Sams, Robert L.; Moran, James J.; Newburn, Matthew K.; Blake, Thomas A.

    2018-04-24

    A capillary absorption spectrometer and process are described that provide highly sensitive and accurate stable absorption measurements of analytes in a sample gas that may include isotopologues of carbon and oxygen obtained from gas and biological samples. It further provides isotopic images of microbial communities that allow tracking of nutrients at the single cell level. It further targets naturally occurring variations in carbon and oxygen isotopes that avoids need for expensive isotopically labeled mixtures which allows study of samples taken from the field without modification. The process also permits sampling in vivo permitting real-time ambient studies of microbial communities.

  18. Capillary absorption spectrometer and process for isotopic analysis of small samples

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, M. Lizabeth; Kelly, James F.; Sams, Robert L.; Moran, James J.; Newburn, Matthew K.; Blake, Thomas A.

    2016-03-29

    A capillary absorption spectrometer and process are described that provide highly sensitive and accurate stable absorption measurements of analytes in a sample gas that may include isotopologues of carbon and oxygen obtained from gas and biological samples. It further provides isotopic images of microbial communities that allow tracking of nutrients at the single cell level. It further targets naturally occurring variations in carbon and oxygen isotopes that avoids need for expensive isotopically labeled mixtures which allows study of samples taken from the field without modification. The method also permits sampling in vivo permitting real-time ambient studies of microbial communities.

  19. Validation of chlorine and oxygen isotope ratio analysis to differentiate perchlorate sources and to document perchlorate biodegradation

    Science.gov (United States)

    Paul B. Hatzinger,; Böhlke, John Karl; Sturchio, Neil C.; Gu, Baohua

    2013-01-01

    Increased health concerns about perchlorate (ClO4-) during the past decade and subsequent regulatory considerations have generated appreciable interest in source identification. The key objective of the isotopic techniques described in this guidance manual is to provide evidence concerning the origin of ClO4- in soils and groundwater and, more specifically, whether that ClO4- is synthetic or natural. Chlorine and oxygen isotopic analyses of ClO4- provide the primary direct approach whereby different sources of ClO4- can be distinguished from each other. These techniques measure the relative abundances of the stable isotopes of chlorine (37Cl and 35Cl) and oxygen (18O, 17O, and 16O) in ClO4- using isotope-ratio mass spectrometry (IRMS). In addition, the relative abundance of the radioactive chlorine isotope 36Cl is measured using accelerator mass spectrometry (AMS). Taken together, these measurements provide four independent quantities that can be used to distinguish natural and synthetic ClO4- sources, to discriminate different types of natural ClO4-, and to detect ClO4- biodegradation in the environment. Other isotopic, chemical, and geochemical techniques that can be applied in conjunction with isotopic analyses of ClO4- to provide supporting data in forensic studies are also described.

  20. Low-temperature, non-stoichiometric oxygen isotope exchange coupled to Fe(II)-goethite interactions

    Energy Technology Data Exchange (ETDEWEB)

    Frierdich, Andrew J. [Univ. of Wisconsin, Madison, WI (United States); Univ. of Iowa, Iowa City, IA (United States); Beard, Brian L. [Univ. of Wisconsin, Madison, WI (United States); Rosso, Kevin M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Scherer, Michelle M. [Univ. of Iowa, Iowa City, IA (United States); Spicuzza, Michael J. [Univ. of Wisconsin, Madison, WI (United States); Valley, John W. [Univ. of Wisconsin, Madison, WI (United States); Johnson, Clark M. [Univ. of Wisconsin, Madison, WI (United States)

    2015-07-01

    The oxygen isotope composition of natural iron oxide minerals has been widely used as a paleoclimate proxy. Interpretation of their stable isotope compositions, however, requires accurate knowledge of isotopic fractionation factors and an understanding of their isotopic exchange kinetics, the latter of which informs us how diagenetic processes may alter their isotopic compositions. Prior work has demonstrated that crystalline iron oxides do not significantly exchange oxygen isotopes with pure water at low temperature, which has restricted studies of isotopic fractionation factors to precipitation experiments or theoretical calculations. Using a double three-isotope method (¹⁸O-¹⁷O-¹⁶O and ⁵⁷Fe-⁵⁶Fe-⁵⁴Fe) we compare O and Fe isotope exchange kinetics, and demonstrate, for the first time, that O isotope exchange between structural O in crystalline goethite and water occurs in the presence of aqueous Fe(II) (Fe(II)aq) at ambient temperature (i.e., 22–50 °C). The three-isotope method was used to extrapolate partial exchange results to infer the equilibrium, mass-dependent isotope fractionations between goethite and water. In addition, this was combined with a reversal approach to equilibrium by reacting goethite in two unique waters that vary in composition by about 16‰ in ¹⁸O/¹⁶O ratios. Our results show that interactions between Fe(II)aq and goethite catalyzes O isotope exchange between the mineral and bulk fluid; no exchange (within error) is observed when goethite is suspended in ¹⁷O-enriched water in the absence of Fe(II)aq. In contrast, Fe(II)-catalyzed O isotope exchange is accompanied by significant changes in ¹⁸O/¹⁶O ratios. Despite significant O exchange, however, we observed disproportionate amounts of Fe versus O exchange, where Fe isotope exchange in goethite was roughly three times that of O. This disparity provides novel insight into the reactivity of oxide minerals in aqueous

  1. Pushing the pseudo-SU(3) model towards its limits: Excited bands in even-even Dy isotopes

    International Nuclear Information System (INIS)

    Vargas, Carlos E.; Hirsch, Jorge G.

    2004-01-01

    The energetics of states belonging to normal parity bands in even-even dysprosium isotopes, and their B(E2) transition strengths, are studied using an extended pseudo-SU(3) shell model. States with pseudospin 1 are added to the standard pseudospin 0 space, allowing for a proper description of known excited normal parity bands. A realistic Hamiltonian is employed. Both the success of model and its limitations are discussed

  2. Application of oxygen and hydrogen isotopes of waters in Tengchong hydrothermal systems of China

    International Nuclear Information System (INIS)

    Shen Minzi; Hou Fagao; Lin Ruifen; Ni Baoling

    1988-01-01

    This paper summarizes the results obtained for hydrothermal systems in Tengchong by using deuterium, oxygen-18 and tritium as natural tracers. On the basis of deuterium and oxygen-18 analyses of 69 thermal springs and some other meteoric, surface and underground water samples it has been confirmed that all geothermal waters are originally meteoric, but the δD of hot spring waters is often lighter than that of local surface and underground waters. It seems that the recharging water is from higher elevations and far from the thermal areas. The differences in oxygen-18 and deuterium contents between thermal springs and deep thermal waters have been calculated for single-stage steam separation from 276 deg. C to 96 deg. C. The oxygen isotope shift of deep thermal water produced by water-rock reactions is of 1.57 per mille and part of the observed oxygen isotope shift of thermal springs seems to have occurred due to subsurface boiling. The tritium content ( 18 O three subsurface processes would have been distinguished, they are subsurface boiling, mixing-subsurface boiling and subsurface boiling-mixing. The springs formed by subsurface boiling have tritium content of less than 5 TU. The tritium content of 5-10 TU is for springs formed by mixing-subsurface boiling and 10-20 TU is for subsurface boiling-mixing. The tritium content of geothermal water in Hot Sea, geothermal field seems higher than that of the Geysers U.S.A. and Wairakei N.Z. It would show that the circulation time of the thermal water in Hot Sea geothermal system is not so long, the reservoir is quite good with percolation and the recharging water is sufficiently enough. The most important applications of oxygen and hydrogen isotopes of water in geothermal study are in two ways, as tracers of water origins and as tracers of reservoir processes. This paper discussed these two aspects of Tengchong hydrothermal systems. 6 refs, 6 figs, 5 tabs

  3. Oxygen isotopic tracing study of the dry thermal oxidation of 6H SiC

    International Nuclear Information System (INIS)

    Vickridge, I.C.; Ganem, J.-J.; Battistig, G.; Szilagyi, E.

    2000-01-01

    The (0 0 0 1) and (0 0 0 1-bar) faces of 6H SiC have been oxidised sequentially at 1100 deg. C and 100 mbar in ultra-dry oxygen of natural isotopic concentration and in ultra-dry oxygen highly enriched in 18 O. Measurement of the 18 O isotopic concentration profiles by nuclear resonance profiling with the narrow resonance at 151 keV in 18 O(p,α) 15 N shows that on the carbon-terminated face (0 0 0 1-bar) the oxidation mechanism is rather similar to that observed on Si(1 0 0), but that on the silicon-terminated face (0 0 0 1) the surface isotopic exchange and oxide formation are superposed. The surface exchange observed during a third dry oxidation, in 16 O 2 , is very similar in magnitude and spatial extent on Si(1 0 0), and the two 6H SiC faces, suggesting that at least near the surface the nature and composition of the three oxides are very similar

  4. Oxygen isotopic tracing study of the dry thermal oxidation of 6H SiC

    Energy Technology Data Exchange (ETDEWEB)

    Vickridge, I.C. E-mail: vickridge@gps.jussieu.fr; Ganem, J.-J.; Battistig, G.; Szilagyi, E

    2000-03-01

    The (0 0 0 1) and (0 0 0 1-bar) faces of 6H SiC have been oxidised sequentially at 1100 deg. C and 100 mbar in ultra-dry oxygen of natural isotopic concentration and in ultra-dry oxygen highly enriched in {sup 18}O. Measurement of the {sup 18}O isotopic concentration profiles by nuclear resonance profiling with the narrow resonance at 151 keV in {sup 18}O(p,{alpha}){sup 15}N shows that on the carbon-terminated face (0 0 0 1-bar) the oxidation mechanism is rather similar to that observed on Si(1 0 0), but that on the silicon-terminated face (0 0 0 1) the surface isotopic exchange and oxide formation are superposed. The surface exchange observed during a third dry oxidation, in {sup 16}O{sub 2}, is very similar in magnitude and spatial extent on Si(1 0 0), and the two 6H SiC faces, suggesting that at least near the surface the nature and composition of the three oxides are very similar.

  5. 18O isotopic tracer studies of silicon oxidation in dry oxygen

    International Nuclear Information System (INIS)

    Han, C.J.

    1986-01-01

    Oxidation of silicon in dry oxygen has been an important process in the integrated circuit industry for making gate insulators on metal-oxide-semiconductory (MOS) devices. This work examines this process using isotopic tracers of oxygen to determine the transport mechanisms of oxygen through silicon dioxide. Oxides were grown sequentially using mass-16 and mass-18 oxygen gas sources to label the oxygen molecules from each step. The resulting oxides are analyzed using secondary ion mass spectrometry (SIMS). The results of these analyses suggest two oxidant species are present during the oxidation, each diffuses and oxidizes separately during the process. A model from this finding using a sum of two linear-parabolic growth rates, each representing the growth rate from one of the oxidants, describes the reported oxidation kinetics in the literature closely. A fit of this relationship reveals excellent fits to the data for oxide thicknesses ranging from 30 A to 1 μm and for temperatures ranging from 800 to 1200 0 C. The mass-18 oxygen tracers also enable a direct observation of the oxygen solubility in the silicon dioxide during a dry oxidation process. The SIMS profiles establish a maximum solubility for interstitial oxygen at 1000 0 C at 2 x 10 20 cm -3 . Furthermore, the mass-18 oxygen profiles show negligible network diffusion during an 1000 0 C oxidation

  6. Oxygen isotopic exchange occurring during dry thermal oxidation of 6H SiC

    Energy Technology Data Exchange (ETDEWEB)

    Vickridge, I.C. E-mail: vickridge@gps.jussieu.fr; Tromson, D.; Trimaille, I.; Ganem, J.-J.; Szilagyi, E.; Battistig, G

    2002-05-01

    SiC is a large band gap semiconductor, promising for high power and high frequency devices. The thermal oxide is SiO{sub 2} however the growth rates of thermal oxide on SiC are substantially slower than on Si, and different along the polar directions (<0 0 0 1-bar> and <0 0 0 1> in the hexagonal polytypes). Thorough understanding of the oxide growth mechanisms may give us new insights into the nature of the SiO{sub 2}/SiC interface, crucial for device applications. We have determined growth kinetics for ultra-dry thermal oxidation of 6H SiC at 1100 deg. C for pressures from 3 to 200 mbar. At 3 mbar, the lowest pressure studied, the oxide growth rates along the two polar directions are virtually the same. At higher pressures growth is faster on the carbon-terminated (0 0 0 1-bar) face. After consecutive oxidations at 1100 deg. C and 100 mbar in {sup 18}O{sub 2} and {sup 16}O{sub 2} gases, {sup 18}O depth profiles show significant isotopic exchange and oxygen movement within the oxide during oxidation.

  7. Raman spectral properties of squamous cell carcinoma of oral tissues and cells

    Science.gov (United States)

    Su, L.; Sun, Y. F.; Chen, Y.; Chen, P.; Shen, A. G.; Wang, X. H.; Jia, J.; Zhao, Y. F.; Zhou, X. D.; Hu, J. M.

    2012-01-01

    Early diagnosis is the key of the improved survival rates of oral cancer. Raman spectroscopy is sensitive to the early changes of molecular composition and structure that occur in benign lesion during carcinogenesis. In this study, in situ Raman analysis provided distinct spectra that can be used to discriminate between normal and malignant tissues, as well as normal and cancer cells. The biochemical variations between different groups were analyzed by the characteristic bands by comparing the normalized mean spectra. Spectral profiles of normal, malignant conditions show pronounced differences between one another, and multiple Raman markers associated with DNA and protein vibrational modes have been identified that exhibit excellent discrimination power for cancer sample identification. Statistical analyses of the Raman data and classification using principal component analysis (PCA) are shown to be effective for the Raman spectral diagnosis of oral mucosal diseases. The results indicate that the biomolecular differences between normal and malignant conditions are more obviously at the cellular level. This technique could provide a research foundation for the Raman spectral diagnosis of oral mucosal diseases.

  8. Raman vibrational spectra of thymol blue dyed polyvinyl alcohol (PVA) film dosimeters

    International Nuclear Information System (INIS)

    Lepit, A.; Saion, E.B.; Susilawati; Doyan, A.; Wan Yusoff, W.M.D.

    2002-01-01

    Radiation-sensitive dyed polyvinyl alcohol (PVA) film indicators containing chloral hydrate and acid-sensitive thymol blue dye have been studied for routine food irradiation dosimeters. The free standing dyed film dosimeters of different chloral hydrate concentrations (0.1, 0.5, 1.0, 2.0 and 2.5 g) were irradiated with the absorbed dose ranges from 1 kGy to 12 kGy using gamma rays from Co-60 teletherapy. Upon exposure the dosimeters undergo chemical change and become more acidic, resulting in colour change from yellow to red at the critical doses depending on the chloral hydrate concentrations. The radiation-induced change in colour was analysed using UV-Vis spectrometer that the absorption spectra produced two maximal of the visible bands peaking at 445 nm for low doses and 554 nm for high doses. Spectra of inelastic Raman scattering photons corresponding to Raman shift frequency of unirradiated and irradiated films were measured using a dispersive Raman spectrometer. The spectral intensity of C=C, C-0 and S-H molecular vibration peaks for their respective Raman shifts were studied which provide the dose response to the change of dye molecular structure of the dosimeters. (Author)

  9. Near-infrared Raman spectroscopy using a diode laser and CCD detector for tissue diagnostics

    International Nuclear Information System (INIS)

    Gustafsson, U.

    1993-09-01

    This paper surveys the possibility to observe high-quality NIR Raman spectra of both fluorescent and non-fluorescent samples with the use of a diode laser, a fibre optic sample, a single spectrometer and a charge-coupled device (CCD) detector. A shifted excitation difference technique was implemented for removing the broad-band fluorescence emission from Raman spectra of the highly fluorescent samples. Raman spectra of 1.4-dioxane, toluene, rhodamine 6G, and HITCI in the 640 to 1840 cm -1 spectral region and 1.4-dioxane and toluene in the 400 to 3400 cm -1 spectral region have been recorded. The results open the field of sensitive tissue characterisation and the possibility of optical biopsy in vivo by using NIR Raman spectroscopy with fibre optic sampling, a single spectrometer, and a CCD detector

  10. Oxygen-dependent sensitization of irradiated cells

    International Nuclear Information System (INIS)

    Ewing, D.; Powers, E.L.

    1979-01-01

    Attention is focused primarily on O 2 effects in three biological systems, all tested in suspension: bacterial spores, vegetative bacterial cells, and mammalian cells. Information from these systems shows that O 2 has more than one process through which it can act. Studies with bacterial spore suspensions provide clear evidence that multiple components to oxygen-dependent radiation sensitization exist. Studies with mammalian cell suspensions also show that at least two oxygen-dependent sensitization processes can be distinguished. Similar studies with vegetative bacteria in suspension have not resolved oxic sensitization into components. The roles of water-derived radicals in radiation sensitivity and, specifically, in sensitization by O 2 were examined. OH radicals are clearly implicated in damage in all three biological test systems. However, the specific roles proposed for OH radicals are different in these organisms. In bacterial spores, OH radical removal in itself does not protect in anoxia or in high concentrations of O 2 . OH radical removal over a limited intermediate range of O 2 concentrations will, however, protect. OH radical scavenging probably results in the formation of the actual protector. In bacteria, the supposition is that OH radical removal will protect both in anoxia and in the presence of O 2 . OH radicals probably react with a cellular target molecule and leave a radicalsite; this is the site which can then react with O 2 to cause damage; DNA is the likely cellular target. In mammalian cells, a reaction scheme, similar to that proposed for bacteria, has been suggested for O 2 -dependent sensitization

  11. Functional Single-Cell Approach to Probing Nitrogen-Fixing Bacteria in Soil Communities by Resonance Raman Spectroscopy with 15N2 Labeling.

    Science.gov (United States)

    Cui, Li; Yang, Kai; Li, Hong-Zhe; Zhang, Han; Su, Jian-Qiang; Paraskevaidi, Maria; Martin, Francis L; Ren, Bin; Zhu, Yong-Guan

    2018-04-17

    Nitrogen (N) fixation is the conversion of inert nitrogen gas (N 2 ) to bioavailable N essential for all forms of life. N 2 -fixing microorganisms (diazotrophs), which play a key role in global N cycling, remain largely obscure because a large majority are uncultured. Direct probing of active diazotrophs in the environment is still a major challenge. Herein, a novel culture-independent single-cell approach combining resonance Raman (RR) spectroscopy with 15 N 2 stable isotope probing (SIP) was developed to discern N 2 -fixing bacteria in a complex soil community. Strong RR signals of cytochrome c (Cyt c, frequently present in diverse N 2 -fixing bacteria), along with a marked 15 N 2 -induced Cyt c band shift, generated a highly distinguishable biomarker for N 2 fixation. 15 N 2 -induced shift was consistent well with 15 N abundance in cell determined by isotope ratio mass spectroscopy. By applying this biomarker and Raman imaging, N 2 -fixing bacteria in both artificial and complex soil communities were discerned and imaged at the single-cell level. The linear band shift of Cyt c versus 15 N 2 percentage allowed quantification of N 2 fixation extent of diverse soil bacteria. This single-cell approach will advance the exploration of hitherto uncultured diazotrophs in diverse ecosystems.

  12. Ultraviolet Resonant Raman Enhancements in the Detection of Explosives

    Energy Technology Data Exchange (ETDEWEB)

    Short Jr., Billy Joe [Naval Postgraduate School, Monterey, CA (United States)

    2009-06-01

    Raman-based spectroscopy is potentially militarily useful for standoff detection of high explosives. Normal (non-resonance) and resonance Raman spectroscopies are both light scattering techniques that use a laser to measure the vibrational spectrum of a sample. In resonance Raman, the laser is tuned to match the wavelength of a strong electronic absorbance in the molecule of interest, whereas, in normal Raman the laser is not tuned to any strong electronic absorbance bands. The selection of appropriate excitation wavelengths in resonance Raman can result in a dramatic increase in the Raman scattering efficiency of select band(s) associated with the electronic transition. Other than the excitation wavelength, however, resonance Raman is performed experimentally the same as normal Raman. In these studies, normal and resonance Raman spectral signatures of select solid high explosive (HE) samples and explosive precursors were collected at 785 nm, 244 nm and 229 nm. Solutions of PETN, TNT, and explosive precursors (DNT & PNT) in acetonitrile solvent as an internal Raman standard were quantitatively evaluated using ultraviolet resonance Raman (UVRR) microscopy and normal Raman spectroscopy as a function of power and select excitation wavelengths. Use of an internal standard allowed resonance enhancements to be estimated at 229 nm and 244 nm. Investigations demonstrated that UVRR provided ~2000-fold enhancement at 244 nm and ~800-fold improvement at 229 nm while PETN showed a maximum of ~25-fold at 244 nm and ~190-fold enhancement at 229 nm solely from resonance effects when compared to normal Raman measurements. In addition to the observed resonance enhancements, additional Raman signal enhancements are obtained with ultraviolet excitation (i.e., Raman scattering scales as !4 for measurements based on scattered photons). A model, based partly on the resonance Raman enhancement results for HE solutions, is presented for estimating Raman enhancements for solid HE samples.

  13. On the cross-sensitivity between water vapor mixing ratio and stable isotope measurements of in-situ analyzers

    KAUST Repository

    Parkes, Stephen

    2015-04-01

    In recent years there has been an increasing amount of water vapor stable isotope data collected using in-situ instrumentation. A number of papers have characterized the performance of these in-situ analyzers and suggested methods for calibrating raw measurements. The cross-sensitivity of the isotopic measurements on the mixing ratio has been shown to be a major uncertainty and a variety of techniques have been suggested to characterize this inaccuracy. However, most of these are based on relating isotopic ratios to water vapor mixing ratios from in-situ analyzers when the mixing ratio is varied and the isotopic composition kept constant. An additional correction for the span of the isotopic ratio scale is then applied by measuring different isotopic standards. Here we argue that the water vapor cross-sensitivity arises from different instrument responses (span and offset) of the parent H2O isotope and the heavier isotopes, rather than spectral overlap that could cause a true variation in the isotopic ratio with mixing ratio. This is especially relevant for commercial laser optical instruments where absorption lines are well resolved. Thus, the cross-sensitivity determined using more conventional techniques is dependent on the isotopic ratio of the standard used for the characterization, although errors are expected to be small. Consequently, the cross-sensitivity should be determined by characterizing the span and zero offset of each isotope mixing ratio. In fact, this technique makes the span correction for the isotopic ratio redundant. In this work we model the impact of changes in the span and offset of the heavy and light isotopes and illustrate the impact on the cross-sensitivity of the isotopic ratios on water vapor. This clearly shows the importance of determining the zero offset for the two isotopes. The cross-sensitivity of the isotopic ratios on water vapor is then characterized by determining the instrument response for the individual isotopes for a

  14. On the cross-sensitivity between water vapor mixing ratio and stable isotope measurements of in-situ analyzers

    KAUST Repository

    Parkes, Stephen; Wang,  Lixin; McCabe, Matthew

    2015-01-01

    In recent years there has been an increasing amount of water vapor stable isotope data collected using in-situ instrumentation. A number of papers have characterized the performance of these in-situ analyzers and suggested methods for calibrating raw measurements. The cross-sensitivity of the isotopic measurements on the mixing ratio has been shown to be a major uncertainty and a variety of techniques have been suggested to characterize this inaccuracy. However, most of these are based on relating isotopic ratios to water vapor mixing ratios from in-situ analyzers when the mixing ratio is varied and the isotopic composition kept constant. An additional correction for the span of the isotopic ratio scale is then applied by measuring different isotopic standards. Here we argue that the water vapor cross-sensitivity arises from different instrument responses (span and offset) of the parent H2O isotope and the heavier isotopes, rather than spectral overlap that could cause a true variation in the isotopic ratio with mixing ratio. This is especially relevant for commercial laser optical instruments where absorption lines are well resolved. Thus, the cross-sensitivity determined using more conventional techniques is dependent on the isotopic ratio of the standard used for the characterization, although errors are expected to be small. Consequently, the cross-sensitivity should be determined by characterizing the span and zero offset of each isotope mixing ratio. In fact, this technique makes the span correction for the isotopic ratio redundant. In this work we model the impact of changes in the span and offset of the heavy and light isotopes and illustrate the impact on the cross-sensitivity of the isotopic ratios on water vapor. This clearly shows the importance of determining the zero offset for the two isotopes. The cross-sensitivity of the isotopic ratios on water vapor is then characterized by determining the instrument response for the individual isotopes for a

  15. Ultraviolet resonance Raman studies of N-methylacetamide

    International Nuclear Information System (INIS)

    Mayne, L.C.; Ziegler, L.D.; Hudson, B.

    1985-01-01

    Resonance Raman spectra of the simple peptide model compound N-methylacetamide have been obtained with 218- and 200-nm laser radiation. A large enhancement of the amide II vibration is observed relative to that of Raman spectra obtained with visible radiation. Replacement of the amide hydrogen by deuterium results in a spectrum with most of its intensity in the amide II' mode. Excitation of this deuterated species with 200-nm radiation results in intensity in the overtones of this modes, a feature characteristic of resonance enhanced spectra. Isotopic substitution of the amide carbon and nitrogen by 13 C and 15 N results in a spectral shift to lower frequency by nearly the amount expected for a normal mode consisting primarily of the motion of the amide C and N atoms. These results, taken together, demonstrate that the geometry change of N-methylacetamide upon electronic excitation to the π-π/sup */ state is dominated by a change in the C-N bond length. Studies of mixtures of the deuterio and protio forms show that a significant normal mode rotation occurs on isotopic substitution such that the amide II' of the deuterio form becomes approximately equally distributed between the amide II and III vibrations of the protio form. The amide I and I' vibrations are very diffuse in aqueous solutions at the dilutions used. These bands become sharp in acetonitrile. This behavior is interpreted in terms of a range of frequencies for this vibration due to a distribution of hydrogen-bonded species. 23 references, 5 figures

  16. CAN GALACTIC CHEMICAL EVOLUTION EXPLAIN THE OXYGEN ISOTOPIC VARIATIONS IN THE SOLAR SYSTEM?

    International Nuclear Information System (INIS)

    Lugaro, Maria; Liffman, Kurt; Ireland, Trevor R.; Maddison, Sarah T.

    2012-01-01

    A number of objects in primitive meteorites have oxygen isotopic compositions that place them on a distinct, mass-independent fractionation line with a slope of one on a three-isotope plot. The most popular model for describing how this fractionation arose assumes that CO self-shielding produced 16 O-rich CO and 16 O-poor H 2 O, where the H 2 O subsequently combined with interstellar dust to form relatively 16 O-poor solids within the solar nebula. Another model for creating the different reservoirs of 16 O-rich gas and 16 O-poor solids suggests that these reservoirs were produced by Galactic chemical evolution (GCE) if the solar system dust component was somewhat younger than the gas component and both components were lying on the line of slope one in the O three-isotope plot. We argue that GCE is not the cause of mass-independent fractionation of the oxygen isotopes in the solar system. The GCE scenario is in contradiction with observations of the 18 O/ 17 O ratios in nearby molecular clouds and young stellar objects. It is very unlikely for GCE to produce a line of slope one when considering the effect of incomplete mixing of stellar ejecta in the interstellar medium. Furthermore, the assumption that the solar system dust was younger than the gas requires unusual timescales or the existence of an important stardust component that is not theoretically expected to occur nor has been identified to date.

  17. Development of Femtosecond Stimulated Raman Spectroscopy: Stimulated Raman Gain via Elimination of Cross Phase Modulation

    International Nuclear Information System (INIS)

    Jin, Seung Min; Lee, Young Jong; Yu, Jong Wan; Kim, Seong Keun

    2004-01-01

    We have developed a new femtosecond probe technique by using stimulated Raman spectroscopy. The cross phase modulation in femtosecond time scale associated with off-resonant interaction was shown to be eliminated by integrating the transient gain/loss signal over the time delay between the Raman pump pulse and the continuum pulse. The stimulated Raman gain of neat cyclohexane was obtained to demonstrate the feasibility of the technique. Spectral and temporal widths of stimulated Raman spectra were controlled by using a narrow band pass filter. Femtosecond stimulated Raman spectroscopy was proposed as a highly useful probe in time-resolved vibrational spectroscopy

  18. Devonian climate and reef evolution: Insights from oxygen isotopes in apatite

    Science.gov (United States)

    Joachimski, M. M.; Breisig, S.; Buggisch, W.; Talent, J. A.; Mawson, R.; Gereke, M.; Morrow, J. R.; Day, J.; Weddige, K.

    2009-07-01

    Conodonts, microfossils composed of carbonate-fluor apatite, are abundant in Palaeozoic-Triassic sediments and have a high potential to preserve primary oxygen isotope signals. In order to reconstruct the palaeotemperature history of the Devonian, the oxygen isotope composition of apatite phosphate was measured on 639 conodont samples from sequences in Europe, North America and Australia. The Early Devonian (Lochkovian; 416-411 Myr) was characterized by warm tropical temperatures of around 30 °C. A cooling trend started in the Pragian (410 Myr) with intermediate temperatures around 23 to 25 °C reconstructed for the Middle Devonian (397-385 Myr). During the Frasnian (383-375 Myr), temperatures increased again with temperatures to 30 °C calculated for the Frasnian-Famennian transition (375 Myr). During the Famennian (375-359 Myr), surface water temperatures slightly decreased. Reconstructed Devonian palaeotemperatures do not support earlier views suggesting the Middle Devonian was a supergreenhouse interval, an interpretation based partly on the development of extensive tropical coral-stromatoporoid communities during the Middle Devonian. Instead, the Devonian palaeotemperature record suggests that Middle Devonian coral-stromatoporoid reefs flourished during cooler time intervals whereas microbial reefs dominated during the warm to very warm Early and Late Devonian.

  19. Using Oxygen Isotopic Values in Order to Infer Palaeoclimatic Differences between Northern and Central-Southern Greece

    Science.gov (United States)

    Michael, Dimitra-Ermioni; Dotsika, Elissavet

    2017-12-01

    Even though isotopic analyses have been extensively implemented on human skeletal remains for the purpose of dietary reconstruction, less attention has been given to the ingested water and thus to the investigation of palaeoclimatic conditions. In particular, oxygen isotopic fingerprinting has never been applied on human skeletal remains from Greece for the abovementioned purpose before. The basic aim of the present study is to compare climatic conditions from two ancient populations, deriving from two different ecological locations; Edessa (Greek Macedonia; 2nd-4th c. AD) and Thebes (Sterea Hellas, 13th-14th c. AD). Oxygen values in Edessa are at -7.69 ±1.13 ‰ and -9.18 ±1.88 ‰ for tooth enamel and bone apatite respectively. On the other hand, oxygen signals in Thebes are at -5.8 ±2.16 ‰ and -9.23 ±1.3 % for the enamel and bone apatite respectively. The utility of oxygen isotopic signatures for the purpose of palaeoclimatic investigation lies on the fact that the ratio of 18 to 16O of meteoric precipitation, expressed as δ18O per mill (‰), relative to the international standard (vSMOW) varies geographically by temperature, humidity, evaporation, distance to the sea, altitude and latitude. Therefore, results as expected, point out that Edessa do presents more negative enamel isotopic values in relation to Thebes, however the noted difference is not observed for the bone apatite samples. The lack of bone apatite differentiation between sites could be attributed to cultural diversity (particularly in Thebes), shift in dietary habits due to migration or social status, climatic fluctuations within each site or to possible diagenetic alteration of bone apatite samples.

  20. In vivo diagnosis of cervical precancer using Raman spectroscopy and genetic algorithm techniques.

    Science.gov (United States)

    Duraipandian, Shiyamala; Zheng, Wei; Ng, Joseph; Low, Jeffrey J H; Ilancheran, A; Huang, Zhiwei

    2011-10-21

    This study aimed to evaluate the clinical utility of applying near-infrared (NIR) Raman spectroscopy and genetic algorithm-partial least squares-discriminant analysis (GA-PLS-DA) to identify biomolecular changes of cervical tissues associated with dysplastic transformation during colposcopic examination. A total of 105 in vivo Raman spectra were measured from 57 cervical sites (35 normal and 22 precancer sites) of 29 patients recruited, in which 65 spectra were from normal sites, while 40 spectra were from cervical precancerous lesions (i.e., 7 low-grade CIN and 33 high-grade CIN). The GA feature selection technique incorporated with PLS was utilized to study the significant biochemical Raman bands for differentiation between normal and precancer cervical tissues. The GA-PLS-DA algorithm with double cross-validation (dCV) identified seven diagnostically significant Raman bands in the ranges of 925-935, 979-999, 1080-1090, 1240-1260, 1320-1340, 1400-1420, and 1625-1645 cm(-1) related to proteins, nucleic acids and lipids in tissue, and yielded a diagnostic accuracy of 82.9% (sensitivity of 72.5% (29/40) and specificity of 89.2% (58/65)) for precancer detection. The results of this exploratory study suggest that Raman spectroscopy in conjunction with GA-PLS-DA and dCV methods has the potential to provide clinically significant discrimination between normal and precancer cervical tissues at the molecular level.

  1. Deuterium in astrophysical ice analogues: Isotope exchange and IR detection sensitivity for HDO

    Science.gov (United States)

    Escribano, R. M.; Galvez, O.; Mate, B.; Herrero, V. J.

    2011-12-01

    Among D-bearing molecules, water is especially interesting from an astrophysical point of view. Although the deuterium content of water in astronomical environments is relatively small as compared with other molecules, it holds most valuable information, still largely undeciphered, on the dynamics of formation and evaporation of ice grain mantels in protostellar regions [1], and is crucial for the understanding of the formation of the Solar System and the Earth [2]. In this work, we have used the OD stretching bands of HDO and D2O molecules in various ice mixtures formed by vapor deposition on a cold substrate (see ref [3] for a description of the experimental set-up) to study the sensitivity of the IR technique for the detection of HDO in ice samples, and to monitor processes of H/D isotope exchange in these solids. It is found that the detection sensitivity is strongly dependent on the ice structure. The OD band is extremely broad and tends to disappear into the absorption continuum of H2O for low temperature amorphous samples. Detectable HDO/H2O ratios with this technique may range from a few per cent for amorphous samples to a few per thousand in crystalline ice. These relatively high upper limits and the appreciable dependence of the band shape on temperature, complicating the interpretation of data from many lines of sight, may question the usefulness of this technique. Isotopic H/D exchange in mixed ices of H2O/D2O is found to start at ~ 120 K and is greatly accelerated at 150 K, as crystallization proceeds in the ice. The process is mainly driven by proton transfer assisted by orientational defect mobility. Annealed amorphous samples are more favourable for isotope exchange than samples directly formed in the crystalline phase. The annealing process seems to lead to polycrystalline ice morphology with a higher defect activity. The present data emphasize the relevance of a depletion mechanism for D atoms in hydroxylic bonds in the solid state, recently

  2. Could a secular increase in organic burial explain the rise of oxygen? Insights from a geological carbon cycle model constrained by the carbon isotope record

    Science.gov (United States)

    Krissansen-Totton, J.; Kipp, M.; Catling, D. C.

    2017-12-01

    The stable isotopes of carbon in marine sedimentary rock provide a window into the evolution of the Earth system. Conventionally, a relatively constant carbon isotope ratio in marine sedimentary rocks has been interpreted as implying constant organic carbon burial relative to total carbon burial. Because organic carbon burial corresponds to net oxygen production from photosynthesis, it follows that secular changes in the oxygen source flux cannot explain the dramatic rise of oxygen over Earth history. Instead, secular declines in oxygen sink fluxes are often invoked as causes for the rise of oxygen. However, constant fractional organic burial is difficult to reconcile with tentative evidence for low phosphate concentrations in the Archean ocean, which would imply lower marine productivity and—all else being equal—less organic carbon burial than today. The conventional interpretation of the carbon isotope record rests on the untested assumption that the isotopic ratio of carbon inputs into the ocean reflect mantle isotopic values throughout Earth history. In practice, differing rates of carbonate and organic weathering will allow for changes in isotopic inputs, as suggested by [1] and [2]. However, these inputs can not vary freely because large changes in isotopic inputs would induce secular trends in carbon reservoirs, which are not observed in the isotope record. We apply a geological carbon cycle model to all Earth history, tracking carbon isotopes in crustal, mantle, and ocean reservoirs. Our model is constrained by the carbon isotope record such that we can determine the extent to which large changes in organic burial are permitted. We find both constant organic burial and 3-5 fold increases in organic burial since 4.0 Ga can be reconciled with the carbon isotope record. Changes in the oxygen source flux thus need to be reconsidered as a possible contributor to Earth's oxygenation. [1] L. A. Derry, Organic carbon cycling and the lithosphere, in Treatise on

  3. Seasonality of bottom water temperature in the northern North Sea reconstructed from the oxygen isotope composition of the bivalve Arctica islandica

    Science.gov (United States)

    Trofimova, Tamara; Andersson, Carin; Bonitz, Fabian

    2017-04-01

    The seasonality of temperature changes is an important characteristic of climate. However, observational data for the ocean are only available for the last 150 year from a limited number of locations. Prior to 18th century information is only available from proxy reconstructions. The vast majority of such reconstructions depend on land-based archives, primarily from dendrochronology. Established marine proxy records for the ocean, especially at high latitudes, are both sparsely distributed and poorly resolved in time. Therefore, the identification and development of proxies for studying key ocean processes at sub-annual resolution that can extend the marine instrumental record is a clear priority in marine climate science. In this study, we have developed a record of early Holocene seasonal variability of bottom water temperature from the Viking Bank in the northern most North Sea. This area is of a particular interest since the hydrography is controlled by the inflow of Atlantic water. The reconstruction is based on the oxygen isotope composition of the growth increments in two sub-fossil shells of Arctica islandica (Bivalvia), dated to 9600-9335 cal. yr BP. By combining radiocarbon dating and sclerochronological techniques a floating chronology spanning over 200 years was constructed. Using the chronology as an age model, oxygen isotope measurements from 2 shells were combined into a 22-years long record. The results from this oxygen isotope record are compared with stable oxygen isotope profiles from modern shells to estimate changes in the mean state and seasonality between present and early Holocene. Shell-derived oxygen isotope values together with ice-volume corrected oxygen isotope values for the seawater were used to calculate bottom-water temperatures on a sub-annual time-scale. Preliminary results of the reconstructed early Holocene bottom water temperature indicate higher seasonality and lower minimum temperature compared to the present.

  4. Raman spectroscopy of graphene on different substrates and ...

    Indian Academy of Sciences (India)

    We show the evolution of Raman spectra with a number of graphene layers on different substrates, SiO2/Si and conducting indium tin oxide (ITO) plate. The mode peak position and the intensity ratio of and 2 bands depend on the preparation of sample for the same number of graphene layers. The 2 Raman band ...

  5. Measurement of the isotopic composition of galactic cosmic ray carbon, nitrogen and oxygen

    International Nuclear Information System (INIS)

    Wiedenbeck, M.E.; Greiner, D.E.; Bieser, F.S.; Crawford, H.J.; Heckman, H.H.; Lindstrom, P.J.

    1979-06-01

    The results of an investigation of the isotopic composition of galactic cosmic ray carbon, nitrogen and oxygen (E approx. 80 to 230 MeV/amu) made using the U.C. Berkeley HKH instrument aboard the ISEE-3 spacecraft are reported. The combination of high mass resolution and a large statistical sample makes possible a precise determination of the relative isotopic abundances for these elements. In local interplanetary space we find: 13 C/C = 0.067 +- 0.008, 15 N/N = 0.54 +- 0.03, 17 O/O 18 O/O = 0.019 +- 0.003

  6. Surface origin and control of resonance Raman scattering and surface band gap in indium nitride

    International Nuclear Information System (INIS)

    Alarcón-Lladó, Esther; Brazzini, Tommaso; Ager, Joel W

    2016-01-01

    Resonance Raman scattering measurements were performed on indium nitride thin films under conditions where the surface electron concentration was controlled by an electrolyte gate. As the surface condition is tuned from electron depletion to accumulation, the spectral feature at the expected position of the ( E 1 , A 1 ) longitudinal optical (LO) near 590 cm −1 shifts to lower frequency. The shift is reversibly controlled with the applied gate potential, which clearly demonstrates the surface origin of this feature. The result is interpreted within the framework of a Martin double resonance, where the surface functions as a planar defect, allowing the scattering of long wavevector phonons. The allowed wavevector range, and hence the frequency, is modulated by the electron accumulation due to band gap narrowing. A surface band gap reduction of over 500 meV is estimated for the conditions of maximum electron accumulation. Under conditions of electron depletion, the full InN bandgap ( E g   =  0.65 eV) is expected at the surface. The drastic change in the surface band gap is expected to influence the transport properties of devices which utilize the surface electron accumulation layer. (paper)

  7. Surface origin and control of resonance Raman scattering and surface band gap in indium nitride

    Science.gov (United States)

    Alarcón-Lladó, Esther; Brazzini, Tommaso; Ager, Joel W.

    2016-06-01

    Resonance Raman scattering measurements were performed on indium nitride thin films under conditions where the surface electron concentration was controlled by an electrolyte gate. As the surface condition is tuned from electron depletion to accumulation, the spectral feature at the expected position of the (E 1, A 1) longitudinal optical (LO) near 590 cm-1 shifts to lower frequency. The shift is reversibly controlled with the applied gate potential, which clearly demonstrates the surface origin of this feature. The result is interpreted within the framework of a Martin double resonance, where the surface functions as a planar defect, allowing the scattering of long wavevector phonons. The allowed wavevector range, and hence the frequency, is modulated by the electron accumulation due to band gap narrowing. A surface band gap reduction of over 500 meV is estimated for the conditions of maximum electron accumulation. Under conditions of electron depletion, the full InN bandgap (E g  =  0.65 eV) is expected at the surface. The drastic change in the surface band gap is expected to influence the transport properties of devices which utilize the surface electron accumulation layer.

  8. Charge state distribution studies of pure and oxygen mixed krypton ECR plasma - signature of isotope anomaly and gas mixing effect.

    Science.gov (United States)

    Kumar, Pravin; Mal, Kedar; Rodrigues, G

    2016-11-01

    We report the charge state distributions of the pure, 25% and 50% oxygen mixed krypton plasma to shed more light on the understanding of the gas mixing and the isotope anomaly [A. G. Drentje, Rev. Sci. Instrum. 63 (1992) 2875 and Y Kawai, D Meyer, A Nadzeyka, U Wolters and K Wiesemann, Plasma Sources Sci. Technol. 10 (2001) 451] in the electron cyclotron resonance (ECR) plasmas. The krypton plasma was produced using a 10 GHz all-permanent-magnet ECR ion source. The intensities of the highly abundant four isotopes, viz. 82 Kr (~11.58%), 83 Kr (~11.49%), 84 Kr (~57%) and 86 Kr (17.3%) up to ~ +14 charge state have been measured by extracting the ions from the plasma and analysing them in the mass and the energy using a large acceptance analyzer-cum-switching dipole magnet. The influence of the oxygen gas mixing on the isotopic krypton ion intensities is clearly evidenced beyond +9 charge state. With and without oxygen mixing, the charge state distribution of the krypton ECR plasma shows the isotope anomaly with unusual trends. The anomaly in the intensities of the isotopes having quite closer natural abundance, viz. 82 Kr, 86 Kr and 83 Kr, 86 Kr is prominent, whereas the intensity ratio of 86 Kr to 84 Kr shows a weak signature of it. The isotope anomaly tends to disappear with increasing oxygen mixing in the plasma. The observed trends in the intensities of the krypton isotopes do not follow the prediction of linear Landau wave damping in the plasma. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  9. Resonance raman spectroscopy of an ultraviolet-sensitive insect rhodopsin

    International Nuclear Information System (INIS)

    Pande, C.; Deng, H.; Rath, P.; Callender, R.H.; Schwemer, J.

    1987-01-01

    The authors present the first visual pigment resonance Raman spectra from the UV-sensitive eyes of an insect, Ascalaphus macaronius (owlfly). This pigment contains 11-cis-retinal as the chromophore. Raman data have been obtained for the acid metarhodopsin at 10 0 C in both H 2 O and D 2 O. The C=N stretching mode at 1660 cm -1 in H 2 O shifts to 1631 cm -1 upon deuteriation of the sample, clearly showing a protonated Schiff base linkage between the chromophore and the protein. The structure-sensitive fingerprint region shows similarities to the all-trans-protonated Schiff base of model retinal chromophores, as well as to the octopus acid metarhodopsin and bovine metarhodopsin I. Although spectra measured at -100 0 C with 406.7-nm excitation, to enhance scattering from rhodopsin (λ/sub max/ 345 nm), contain a significant contribution from a small amount of contaminants [cytochrome(s) and/or accessory pigment] in the sample, the C=N stretch at 1664 cm -1 suggests a protonated Schiff base linkage between the chromophore and the protein in rhodopsin as well. For comparison, this mode also appears at ∼ 1660 cm -1 in both the vertebrate (bovine) and the invertebrate (octopus) rhodopsins. These data are particularly interesting since the absorption maximum of 345 nm for rhodopsin might be expected to originate from an unprotonated Schiff base linkage. That the Schiff base linkage in the owlfly rhodopsin, like in bovine and in octopus, is protonated suggests that a charged chromophore is essential to visual transduction

  10. Oxygen isotope regional pattern in granitoids from the Cachoeirinha Belt, northeast Brazil

    International Nuclear Information System (INIS)

    Sial, A.N.

    1984-01-01

    Four groups of granitoids are present within the Cachoeirinha belt and in the adjacent migmatitic basement, between 37 0 and 40 0 W long. and 7 0 and 8 0 15' S lat., States of Pernambuco and Paraiba: a) K 2 O - enriched, very porphyritic; b) a calc-alkalic slightly porphyritic group; c) group with trondjemitic affinities; and d) peralkalic group. Petrology and oxygen isotope geochemistry for over 100 samples from these groups were studied. Almost all plutons for which 5 or more samples were analyzed, exhibit a total range of gamma 18 O less than 2% o. A broad range of mean oxygen isotope composition is observed, varying from 6.93 to 12.79% o. There is a systematic regional trend in which the calc-alkalic granitoids (conceicao-type) found within the Cachoeirinha space are the most 18 O - enriched rocks (10.6 to 12.9% o) while the lowest mean gamma 18 O values (4.5 to 9.7% o) are found in the K 2 O - enriched granitoids (Itaporanga-type). Intermediate gamma 18 O values were recorded in the bodies with trondhjemitic affinities (8.9 to 9.8% o) which intruded metasediments of the Salgueiro Group and in the peralkalic granitoids of Catingueira (8.1 to 9.8% o) which intruded Cachoeirinha metamorphics. Among the potassic granitoids, mean gamma 18 O increases from Bodoco to Itaporanga (from west to east). As a whole, the W.R. gamma 18 O of these plutons correlate with the type of grade of metamorphism of the host rocks and, therefore, with the tectonic framework, increasing from those which intruded the gneiss-migmatites to those which intruded the low-grade metamorphics of the Cachoeirinha Group. The possible origin of each rock group is discussed in light of the oxygen isotope geochemistry. (Author) [pt

  11. Fourier transform Raman spectroscopy of synthetic and biological calcium phosphates.

    Science.gov (United States)

    Sauer, G R; Zunic, W B; Durig, J R; Wuthier, R E

    1994-05-01

    Fourier-transform (FT) Raman spectroscopy was used to characterize the organic and mineral components of biological and synthetic calcium phosphate minerals. Raman spectroscopy provides information on biological minerals that is complimentary to more widely used infrared methodologies as some infrared-inactive vibrational modes are Raman-active. The application of FT-Raman technology has, for the first time, enabled the problems of high sample fluorescence and low signal-to-noise that are inherent in calcified tissues to be overcome. Raman spectra of calcium phosphates are dominated by a very strong band near 960 cm-1 that arises from the symmetric stretching mode (v1) of the phosphate group. Other Raman-active phosphate vibrational bands are seen at approximately 1075 (v3), 590 (v4), and 435 cm-1 (v2). Minerals containing acidic phosphate groups show additional vibrational modes. The different calcium phosphate mineral phases can be distinguished from one another by the relative positions and shapes of these bands in the Raman spectra. FT-Raman spectra of nascent, nonmineralized matrix vesicles (MV) show a distinct absence of the phosphate v1 band even though these structures are rich in calcium and phosphate. Similar results were seen with milk casein and synthetic Ca-phosphatidyl-serine-PO4 complexes. Hence, the phosphate and/or acidic phosphate ions in these noncrystalline biological calcium phosphates is in a molecular environment that differs from that in synthetic amorphous calcium phosphate. In MV, the first distinct mineral phase to form contained acidic phosphate bands similar to those seen in octacalcium phosphate. The mineral phase present in fully mineralized MV was much more apatitic, resembling that found in bones and teeth.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Oxygen Isotopes Archived in Subfossil Chironomids: Advancing a Promising Proxy for Lake Water Isotopes

    Science.gov (United States)

    Lasher, G. E.; Axford, Y.; Blair, N. E.

    2017-12-01

    Oxygen isotopes measured in subfossil chironomid head capsules (aquatic insect remains) in lake sediments are beginning to offer paleoclimate insights from previously under-studied areas of the world. Since the first published pilot study demonstrated the potential of chironomid δ18O to record lake water δ18O (Wooller et al., 2004), subsequent work has refined our understanding of this proxy: confirming via lab cultures that growth water controls head capsule δ18O (Wang et al., 2009), refining laboratory pretreatment protocols, and further validating the method by demonstrating strong agreement between carbonate and chironomid-derived paleo-isotope records (Verbruggen et al., 2009, 2010, 2011). However, outstanding questions remain, including the seasonality of chironomid growth, possible species-dependent vital effects, and diagenetic effects on the protein-chitin complex that comprise chironomid cuticles. To address some of these questions, we summarize available data from paired modern chironomid-lake water δ18O values from around the world and discuss climatic and environmental factors affecting chironomid isotopic signatures. We also present new data on the resistance of these subfossils to diagenesis and degradation throughout the late Quaternary using Fourier Transform Infrared Spectroscopy (FT-IR) and Pyrolysis Gas Chromatography Mass Spectrometry (Py-GC/MS) of chironomid remains up to >100,000 years old. As chironomids are nearly ubiquitous in lakes globally and, we argue, molecularly stable through glacial and interglacial cycles, this proxy has the potential to greatly expand the spatial and temporal resolution of Quaternary paleo-isotopes and thus climate records. In addition to reviewing and presenting new methodological advances, we also present applications of chironomid δ18O from millennial- to centennial-scale Holocene Greenland lake records.

  13. Raman spectrum of asphaltene

    KAUST Repository

    Abdallah, Wael A.

    2012-11-05

    Asphaltenes extracted from seven different crude oils representing different geological formations from around the globe were analyzed using the Raman spectroscopic technique. Each spectrum is fitted with four main peaks using the Gaussian function. On the basis of D1 and G bands of the Raman spectrum, asphaltene indicated an ordered structure with the presence of boundary defected edges. The average aromatic sheet size of the asphaltene molecules is estimated within the range of 1.52-1.88 nm, which represents approximately seven to eight aromatic fused rings. This estimation is based on the integrated intensity of D1 and G bands, as proposed by Tunistra and Koenig. The results here are in perfect agreement with so many other used techniques and indicate the potential applicability of Raman measurements to determine the average aromatic ring size and its boundary. © 2012 American Chemical Society.

  14. Raman spectrum of asphaltene

    KAUST Repository

    Abdallah, Wael A.; Yang, Yang

    2012-01-01

    Asphaltenes extracted from seven different crude oils representing different geological formations from around the globe were analyzed using the Raman spectroscopic technique. Each spectrum is fitted with four main peaks using the Gaussian function. On the basis of D1 and G bands of the Raman spectrum, asphaltene indicated an ordered structure with the presence of boundary defected edges. The average aromatic sheet size of the asphaltene molecules is estimated within the range of 1.52-1.88 nm, which represents approximately seven to eight aromatic fused rings. This estimation is based on the integrated intensity of D1 and G bands, as proposed by Tunistra and Koenig. The results here are in perfect agreement with so many other used techniques and indicate the potential applicability of Raman measurements to determine the average aromatic ring size and its boundary. © 2012 American Chemical Society.

  15. Hydrogen and oxygen stable isotope ratios of milk in the United States.

    Science.gov (United States)

    Chesson, Lesley A; Valenzuela, Luciano O; O'Grady, Shannon P; Cerling, Thure E; Ehleringer, James R

    2010-02-24

    Models of hydrogen and oxygen incorporation in human tissues recognize the impact of geographic location on the isotopic composition of fluid intake, but inputs can include nonlocal beverages, such as milk. Milk and cow drinking water were collected from dairies, and commercially available milk was purchased from supermarkets and fast food restaurants. It was hypothesized that milk water delta(2)H and delta(18)O values record geographic location information. Correlations between milk water isotope ratios and purchase location tap water were significant. However, the amount of variation in milk delta(2)H and delta(18)O values explained by tap water was low, suggesting a single estimation of fluid input isotope ratios may not always be adequate in studies. The delta(2)H and delta(18)O values of paired milk and cow drinking water were related, suggesting potential for geographical origin assignment using stable isotope analysis. As an application example, milk water delta(18)O values were used to predict possible regions of origin for restaurant samples.

  16. Oxygen isotope fractionation between bird bone phosphate and drinking water

    Science.gov (United States)

    Amiot, Romain; Angst, Delphine; Legendre, Serge; Buffetaut, Eric; Fourel, François; Adolfssen, Jan; André, Aurore; Bojar, Ana Voica; Canoville, Aurore; Barral, Abel; Goedert, Jean; Halas, Stanislaw; Kusuhashi, Nao; Pestchevitskaya, Ekaterina; Rey, Kevin; Royer, Aurélien; Saraiva, Antônio Álamo Feitosa; Savary-Sismondini, Bérengère; Siméon, Jean-Luc; Touzeau, Alexandra; Zhou, Zhonghe; Lécuyer, Christophe

    2017-06-01

    Oxygen isotope compositions of bone phosphate (δ18Op) were measured in broiler chickens reared in 21 farms worldwide characterized by contrasted latitudes and local climates. These sedentary birds were raised during an approximately 3 to 4-month period, and local precipitation was the ultimate source of their drinking water. This sampling strategy allowed the relationship to be determined between the bone phosphate δ18Op values (from 9.8 to 22.5‰ V-SMOW) and the local rainfall δ18Ow values estimated from nearby IAEA/WMO stations (from -16.0 to -1.0‰ V-SMOW). Linear least square fitting of data provided the following isotopic fractionation equation: δ18Ow = 1.119 (±0.040) δ18Op - 24.222 (±0.644); R 2 = 0.98. The δ18Op-δ18Ow couples of five extant mallard ducks, a common buzzard, a European herring gull, a common ostrich, and a greater rhea fall within the predicted range of the equation, indicating that the relationship established for extant chickens can also be applied to birds of various ecologies and body masses. Applied to published oxygen isotope compositions of Miocene and Pliocene penguins from Peru, this new equation computes estimates of local seawater similar to those previously calculated. Applied to the basal bird Confuciusornis from the Early Cretaceous of Northeastern China, our equation gives a slightly higher δ18Ow value compared to the previously estimated one, possibly as a result of lower body temperature. These data indicate that caution should be exercised when the relationship estimated for modern birds is applied to their basal counterparts that likely had a metabolism intermediate between that of their theropod dinosaur ancestors and that of advanced ornithurines.

  17. Polymorph characterization of active pharmaceutical ingredients (APIs) using low-frequency Raman spectroscopy.

    Science.gov (United States)

    Larkin, Peter J; Dabros, Marta; Sarsfield, Beth; Chan, Eric; Carriere, James T; Smith, Brian C

    2014-01-01

    Polymorph detection, identification, and quantitation in crystalline materials are of great importance to the pharmaceutical industry. Vibrational spectroscopic techniques used for this purpose include Fourier transform mid-infrared (FT-MIR) spectroscopy, Fourier transform near-infrared (FT-NIR) spectroscopy, Raman spectroscopy, and terahertz (THz) and far-infrared (FIR) spectroscopy. Typically, the fundamental molecular vibrations accessed using high-frequency Raman and MIR spectroscopy or the overtone and combination of bands in the NIR spectra are used to monitor the solid-state forms of active pharmaceutical ingredients (APIs). The local environmental sensitivity of the fundamental molecular vibrations provides an indirect probe of the long-range order in molecular crystals. However, low-frequency vibrational spectroscopy provides access to the lattice vibrations of molecular crystals and, hence, has the potential to more directly probe intermolecular interactions in the solid state. Recent advances in filter technology enable high-quality, low-frequency Raman spectra to be acquired using a single-stage spectrograph. This innovation enables the cost-effective collection of high-quality Raman spectra in the 200-10 cm(-1) region. In this study, we demonstrate the potential of low-frequency Raman spectroscopy for the polymorphic characterization of APIs. This approach provides several benefits over existing techniques, including ease of sampling and more intense, information-rich band structures that can potentially discriminate among crystalline forms. An improved understanding of the relationship between the crystalline structure and the low-frequency vibrational spectrum is needed for the more widespread use of the technique.

  18. The oxygen isotope composition of phosphate released from phytic acid by the activity of wheat and Aspergillus niger phytase

    Science.gov (United States)

    von Sperber, C.; Tamburini, F.; Brunner, B.; Bernasconi, S. M.; Frossard, E.

    2015-07-01

    Phosphorus (P) is an essential nutrient for living organisms. Under P-limiting conditions plants and microorganisms can exude extracellular phosphatases that release inorganic phosphate (Pi) from organic phosphorus compounds (Porg). Phytic acid (myo-inositol hexakisphosphate, IP6) is an important form of Porg in many soils. The enzymatic hydrolysis of IP6 by phytase yields available Pi and less phosphorylated inositol derivates as products. The hydrolysis of organic P compounds by phosphatases leaves an isotopic imprint on the oxygen isotope composition (δ18O) of released Pi, which might be used to trace P in the environment. This study aims at determining the effect of phytase on the oxygen isotope composition of released Pi. For this purpose, enzymatic assays with histidine acid phytases from wheat and Aspergillus niger were prepared using IP6, adenosine 5'-monophosphate (AMP) and glycerophosphate (GPO4) as substrates. For a comparison to the δ18O of Pi released by other extracellular enzymes, enzymatic assays with acid phosphatases from potato and wheat germ with IP6 as a substrate were prepared. During the hydrolysis of IP6 by phytase, four of the six Pi were released, and one oxygen atom from water was incorporated into each Pi. This incorporation of oxygen from water into Pi was subject to an apparent inverse isotopic fractionation (ϵ ~ 6 to 10 ‰), which was similar to that imparted by acid phosphatase from potato during the hydrolysis of IP6 (ϵ ~ 7 ‰), where less than three Pi were released. The incorporation of oxygen from water into Pi during the hydrolysis of AMP and GPO4 by phytase yielded a normal isotopic fractionation (ϵ ~ -12 ‰), similar to values reported for acid phosphatases from potato and wheat germ. We attribute this similarity in ϵ to the same amino acid sequence motif (RHGXRXP) at the active site of these enzymes, which leads to similar reaction mechanisms. We suggest that the striking

  19. Equilibrium mass-dependent fractionation relationships for triple oxygen isotopes

    Science.gov (United States)

    Cao, Xiaobin; Liu, Yun

    2011-12-01

    With a growing interest in small 17O-anomaly, there is a pressing need for the precise ratio, ln 17α/ln 18α, for a particular mass-dependent fractionation process (MDFP) (e.g., for an equilibrium isotope exchange reaction). This ratio (also denoted as " θ") can be determined experimentally, however, such efforts suffer from the demand of well-defined process or a set of processes in addition to high precision analytical capabilities. Here, we present a theoretical approach from which high-precision ratios for MDFPs can be obtained. This approach will complement and serve as a benchmark for experimental studies. We use oxygen isotope exchanges in equilibrium processes as an example. We propose that the ratio at equilibrium, θE ≡ ln 17α/ln 18α, can be calculated through the equation below: θa-bE=κa+(κa-κb){ln18βb}/{ln18α} where 18βb is the fractionation factor between a compound "b" and the mono-atomic ideal reference material "O", 18αa-b is the fractionation factor between a and b and it equals to 18βa/ 18βb and κ is a new concept defined in this study as κ ≡ ln 17β/ln 18β. The relationship between θ and κ is similar to that between α and β. The advantages of using κ include the convenience in documenting a large number of θ values for MDFPs and in estimating any θ values using a small data set due to the fact that κ values are similar among O-bearing compounds with similar chemical groups. Frequency scaling factor, anharmonic corrections and clumped isotope effects are found insignificant to the κ value calculation. However, the employment of the rule of geometric mean (RGM) can significantly affect the κ value. There are only small differences in κ values among carbonates and the structural effect is smaller than that of chemical compositions. We provide κ values for most O-bearing compounds, and we argue that κ values for Mg-bearing and S-bearing compounds should be close to their high temperature limitation (i.e., 0.5210 for

  20. Digesting the data - Effects of predator ingestion on the oxygen isotopic signature of micro-mammal teeth

    Science.gov (United States)

    Barham, Milo; Blyth, Alison J.; Wallwork, Melinda D.; Joachimski, Michael M.; Martin, Laure; Evans, Noreen J.; Laming, Belinda; McDonald, Bradley J.

    2017-11-01

    Biogenic minerals such as dental apatite have become commonly analysed archives preserving geochemical indicators of past environmental conditions and palaeoecologies. However, post-mortem, biogenic minerals are modified due to the alteration/replacement of labile components, and recent moves to utilise micro-mammal tooth δ18O signatures for refined Cenozoic terrestrial palaeoclimate reconstructions has lacked consideration of the chemical effects of predator digestion. Here, the physical and chemical condition of laboratory-raised mouse (Mus musculus) teeth have been investigated in conjunction with their bulk phosphate and tissue-specific δ18O values prior, and subsequent, to ingestion and excretion by various predator species (owls, mammals and a reptile). Substantial variability (up to 2‰) in the δ18O values of both undigested teeth and those ingested by specific predators suggests significant natural heterogeneity of individual prey δ18O. Statistically distinct, lower δ18O values (∼0.7‰) are apparent in teeth ingested by barn owls compared to undigested controls as a result of the chemically and enzymatically active digestive and waste-pellet environments. Overall, dentine tissues preserve lower δ18O values than enamel, while the greatest modification of oxygen isotope signals is exhibited in the basal enamel of ingested teeth as a result of its incompletely mineralised state. However, recognition of 18O-depletion in chemically purified phosphate analyses demonstrates that modification of original δ18O values is not restricted to labile oxygen-bearing carbonate and organic phases. The style and magnitude of digestive-alteration varies with predator species and no correlation was identified between specific physical or minor/trace-element (patterns or concentrations) modification of ingested teeth and disruption of their primary oxygen isotope values. Therefore, there is a current lack of any screening tool for oxygen isotope disruption as a result

  1. In situ oxygen isotope compositions in olivines of different types of cosmic spherules: An assessment of relationships to chondritic particles

    Digital Repository Service at National Institute of Oceanography (India)

    Rudraswami, N.G.; ShyamPrasad, M.; Jones, R.H.; Nagashima, K.

    bearing cosmic spherules (Rudraswami et al., 2015b). In addition, some Mg-rich relict olivine grains are very 16O-rich, with 17O ranging from −21.9 to -18.7‰, similar to oxygen isotopic compositions observed in calcium aluminium rich inclusions (CAIs... isotope analyses of the olivine grains are provided in Appendix B and Table 1, respectively. 5    Four scoriaceous spherules namely, AAS62-61-P64, AAS62-9-P43, AAS62-9-P51 and AAS62-9- P54 were identified for oxygen isotope studies (Fig. 1a...

  2. Evidence for dipolar bands in mercury isotopes using EUROGAM multi-detector

    International Nuclear Information System (INIS)

    Le Coz, Y.

    1995-01-01

    This thesis is devoted to the study of nuclear structure around mass A 190 and in particular, to the search of oblate rotational dipole bands in mercury isotopes. The reactions used to populate high spin states in 192 Hg and 193 Hg were 160 Gd ( 36 S,n) 192 Hg and 150 Nd( 48 Ca, 5n) 193 Hg at beam energies of 159 and 213 MeV. Gamma-rays have been detected using the EUROGAM phase I array. Level schemes of those two nuclei have been extended up to an excitation energy of about 10 MeV and approximately spin 35h. In 192 Hg, two new dipole bands have been observed. Those two structures, as well as two similar structures in 193 Hg, have been connected to the low-lying states; so, excitation energy and bandhead spin of those bands have been deduced. Angular distribution and correlation analysis (specific to EUROGRAM phase I) have confirmed that the transitions are dipoles. After a general presentation of dipole bands in this A = 190 mass region, experimental results are compared with mean-field Hartree-Fock + BCS calculations, using the rotor plus quasi-particles model. The results are consistent with weakly oblate structures based on configurations which involve high-K proton orbitals driving the nucleus to an oblate shape. (author). 81 refs., 47 figs., 8 tabs., 4 ann

  3. Chemical and Oxygen Isotopic Composition of Roman and Late Antique Glass from Northern Greece

    Directory of Open Access Journals (Sweden)

    Alberta Silvestri

    2017-01-01

    Full Text Available The present paper emphasizes the importance of measuring the oxygen isotopic and chemical compositions of ancient glass, in order to constrain some features such as age, raw materials, and production technologies and to identify the “fingerprint” of local productions. In this context, thirty-nine Roman and late Antique glass samples and eight chert samples from northern Greece were selected and analysed for their oxygen isotopic and chemical compositions. Results show that the majority of glass samples are produced using natron as flux and have δ18O values of about 15.5‰, plus or minus a few tenths of one per mil, suggesting that raw materials probably come from Levantine area. Four samples are heavily enriched in 18O, and their chemical composition clearly shows that they were made with soda plant ash as flux. Isotopic and chemical data of Greek chert samples support the hypothesis of local production of the above samples. About half of the glass samples have chemical compositions, which allow their age to be constrained to the late Antique period. For the remaining glass, similarities with literature compositional groups are reported and discussed.

  4. XPS and μ-Raman study of nanosecond-laser processing of poly(dimethylsiloxane) (PDMS)

    Energy Technology Data Exchange (ETDEWEB)

    Armyanov, S., E-mail: armyanov@ipc.bas.bg [Rostislaw Kaischew Institute of Physical Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 11, Sofia 1113 (Bulgaria); Stankova, N.E.; Atanasov, P.A. [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsarigradsko Shose, Sofia 1784 (Bulgaria); Valova, E.; Kolev, K.; Georgieva, J. [Rostislaw Kaischew Institute of Physical Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 11, Sofia 1113 (Bulgaria); Steenhaut, O.; Baert, K.; Hubin, A. [Vrije Universiteit Brussels, Faculty of Engineering, Research Group, SURF “Electrochemical and Surface Engineering” (Belgium)

    2015-10-01

    Data about the chemical status of poly(dimethylsiloxane) (PDMS) after nanosecond Q-switched Nd:YAG laser treatment with near infrared, visible and ultraviolet radiation are presented. The μ-Raman spectroscopy analyses reveal as irradiation result a new sharp peak of crystalline silicon. In addition, broad bands appear assigned to D band of amorphous carbon and G band of microcrystalline and polycrystalline graphite. The μ-Raman spectra are variable taken in different inspected points in the trenches formed by laser treatment. The XPS surface survey spectra indicate the constituent elements of PDMS: carbon, oxygen and silicon. The spectra of detail XPS scans illustrate the influence of the laser treatment. The position of Si 2p peaks of the treated samples is close to the value of non-treated except that irradiated by 1064 nm 66 pulses, which is shifted by 0.9 eV. Accordingly, a shift by 0.4 eV is noticed of the O 1s peak, which reflects again a stronger oxidation of silicon. The curve fitting of Si 2p and O 1s peaks after this particular laser treatment shows the degree of conversion of organic to inorganic silicon that takes place during the irradiation.

  5. Removal method of fluorescent dyes as pretreatment for measurement of major ion concentrations and hydrogen and oxygen isotopic ratios

    International Nuclear Information System (INIS)

    Nakata, Kotaro; Hasegawa, Takuma; Kashiwaya, Koki; Kodama, Hiroki; Miyajima, Tohru

    2011-01-01

    The major ion concentration and isotope ratio of hydrogen and oxygen can provide important information for migration of groundwater. Sometimes, quantitative estimation of these chemical and isotopic characteristics of solution is necessary for groundwater containing fluorescent dyes, which are used in drilling borehole and tracer experiments. However, sometimes correct estimation is disturbed by dyes and they become a cause of troubles for measurement equipments. Thus development of method to remove dyes is required so that the characteristics of groundwater can be estimated without the negative effect of dyes on measurement or equipments. In this study, removal of four representative dyes (Uranin, Eosin, Naphthalenesulfonic acid sodium(NAP) and Amino G acid potassium salt (AG)) was investigated. Uranin and Eosin were found to be removed by non-ionic synthetic resin: HP2MG. 99.99% of the dyes were removed from initial solutions containing dyes with 10 mg/L after contact with resin, while the contact had little effect on ion concentrations and oxygen and hydrogen isotope ratios. Thus the chemical and isotopic characteristics of groundwater samples containing Uranin and Eosin can be obtained by using the HP2MG resin. On the other hand, the NAP and AG were found to be difficult to remove by the HP2MG resin but they were able to be removed by anion exchange resin (Dowex 1x8). Though contact of solution with Dowex 1x8 did not affect cation concentrations and hydrogen and oxygen isotope ratios, anion concentrations were changed by the contact. Therefore the Dowex 1x8 is only applicable to estimation of the cation concentrations and isotope ratio of hydrogen and oxygen. When both anion and cation concentrations from the samples were necessary, Uranin or Eosin were recommended as a tracer in drilling or tracer experiments. (author)

  6. CO self-shielding as the origin of oxygen isotope anomalies in the early solar nebula.

    Science.gov (United States)

    Lyons, J R; Young, E D

    2005-05-19

    The abundances of oxygen isotopes in the most refractory mineral phases (calcium-aluminium-rich inclusions, CAIs) in meteorites have hitherto defied explanation. Most processes fractionate isotopes by nuclear mass; that is, 18O is twice as fractionated as 17O, relative to 16O. In CAIs 17O and 18O are nearly equally fractionated, implying a fundamentally different mechanism. The CAI data were originally interpreted as evidence for supernova input of pure 16O into the solar nebula, but the lack of a similar isotope trend in other elements argues against this explanation. A symmetry-dependent fractionation mechanism may have occurred in the inner solar nebula, but experimental evidence is lacking. Isotope-selective photodissociation of CO in the innermost solar nebula might explain the CAI data, but the high temperatures in this region would have rapidly erased the signature. Here we report time-dependent calculations of CO photodissociation in the cooler surface region of a turbulent nebula. If the surface were irradiated by a far-ultraviolet flux approximately 10(3) times that of the local interstellar medium (for example, owing to an O or B star within approximately 1 pc of the protosun), then substantial fractionation of the oxygen isotopes was possible on a timescale of approximately 10(5) years. We predict that similarly irradiated protoplanetary disks will have H2O enriched in 17O and 18O by several tens of per cent relative to CO.

  7. Raman scattering in the atmospheres of the major planets

    International Nuclear Information System (INIS)

    Cochran, W.D.; Trafton, L.M.

    1978-01-01

    A method is developed for calculating the rate at which photons are Raman scattered as a function of frequency and depth in an inhomogeneous anisotropically scattering atmosphere. This method is used to determine the effects of Raman scattering by H 2 in the atmospheres of the major planets. Raman scattering causes an insufficient decrease in the blue and ultraviolet to explain the albedos of all of the planets; an additional source of extinction is necessary in this spectral region. Approximately 0.5-2.0% of the blue continuum photons have undergone Raman scattering in the shallow atmospheres of Jupiter and Saturn, while in the deep atmospheres of Uranus and Neptune Raman scattering accounts for abount 10-15% of the blue continuum intensity. The filling in of the cores of solar lines and the production of Raman-shifted ghosts of the Fraunhofer spectrum will be detectable effects in all of the major planets. Raman scattering has a significant influence on the formation and profiles of the strong red and near-infrared CH 4 bands on Uranus and Neptune. The residual intensity in the cores of these bands may be fully explained as a result of Raman scattering by H 2 . This scattering of photons into the cores of saturated absorption bands will cause an underestimate of the abundance of the absorber unless the effects of Raman scattering by H 2 in an inhomogeneous atmosphere are properly included in the analysis

  8. High-Resolution Infrared and Raman Spectra of the Polycrystalline Sinomenine Hydrochloride

    Directory of Open Access Journals (Sweden)

    Liu Xiao-Dong

    2016-01-01

    Full Text Available High-resolution infrared and Raman spectra of the polycrystalline sinomenine (SM hydrochloride have been measured to work out its whole really existing vibrational spectral bands. Except for the hydroxyl stretching modes and IR active bands less than 400 cm−1, most normal modes (about 34 are both IR and Raman active. In addition, 8 Raman bands less than 400 cm−1 are tentatively assigned, for the first time to our knowledge, to stretching/bending modes of the aromatic-ring−methoxyls and (SMH+–Cl− ions, respectively.

  9. In Situ Raman Study of Liquid Water at High Pressure.

    Science.gov (United States)

    Romanenko, Alexandr V; Rashchenko, Sergey V; Goryainov, Sergey V; Likhacheva, Anna Yu; Korsakov, Andrey V

    2018-06-01

    A pressure shift of Raman band of liquid water (H 2 O) may be an important tool for measuring residual pressures in mineral inclusions, in situ barometry in high-pressure cells, and as an indicator of pressure-induced structural transitions in H 2 O. However, there was no consensus as to how the broad and asymmetric water Raman band should be quantitatively described, which has led to fundamental inconsistencies between reported data. In order to overcome this issue, we measured Raman spectra of H 2 O in situ up to 1.2 GPa using a diamond anvil cell, and use them to test different approaches proposed for the description of the water Raman band. We found that the most physically meaningful description of water Raman band is the decomposition into a linear background and three Gaussian components, associated with differently H-bonded H 2 O molecules. Two of these components demonstrate a pronounced anomaly in pressure shift near 0.4 GPa, supporting ideas of structural transition in H 2 O at this pressure. The most convenient approach for pressure calibration is the use of "a linear background + one Gaussian" decomposition (the pressure can be measured using the formula P (GPa) = -0.0317(3)·Δν G (cm -1 ), where Δν G represents the difference between the position of water Raman band, fitted as a single Gaussian, in measured spectrum and spectrum at ambient pressure).

  10. Unveiling the Aggregation of Lycopene in Vitro and in Vivo: UV-Vis, Resonance Raman, and Raman Imaging Studies.

    Science.gov (United States)

    Ishigaki, Mika; Meksiarun, Phiranuphon; Kitahama, Yasutaka; Zhang, Leilei; Hashimoto, Hideki; Genkawa, Takuma; Ozaki, Yukihiro

    2017-08-31

    The present study investigates the structure of lycopene aggregates both in vitro and in vivo using ultraviolet-visible (UV-vis) and Raman spectroscopies. The electronic absorption bands of the J- and H-aggregates in vitro shift to lower and higher energies, respectively, compared to that of the lycopene monomer. Along with these results, the frequencies of the ν 1 Raman bands were shifted to lower and higher frequencies, respectively. By plotting the frequencies of the ν 1 Raman band against the S 0 → S 2 transition energy, a linear relationship between the data set with different aggregation conformations can be obtained. Therefore, the band positions depending on the different conformations can be explained based on the idea that the effective conjugated C═C chain lengths within lycopene molecules are different due to the environmental effect (site-shift effect) caused by the aggregation conformation. Applying this knowledge to the in vivo measurement of a tomato fruit sample, the relationship between the aggregation conformation of lycopene and the spectral patterns observed in the UV-vis as well as Raman spectra in different parts of tomato fruits was discussed in detail. The results showed that the concentration of lycopene (particularly that of the J-aggregate) specifically increased, whereas that of chlorophyll decreased, with ripening. Furthermore, Raman imaging indicated that lycopene with different aggregate conformations was distributed inhomogeneously, even within one sample. The layer formation in tomato tissues with high concentrations of J- and H-aggregates was successfully visualized. In this manner, the presence of lycopene distributions with different aggregate conformations was unveiled in vivo.

  11. Kalahari groundwaters: Their hydrogen, carbon and oxygen isotopes

    International Nuclear Information System (INIS)

    Mazor, E.; Verhagen, B.T.; Sellschop, J.P.F.; Robins, N.S.; Hutton, L.G.

    1974-01-01

    Tritium and 14 C measurements have revealed several cases of post-nuclear bomb-test rain recharge of local groundwaters, along with values indicating recharge over larger, yet hydrologically active, time scales. In general, recharge seems to follow rain distribution in being more intense in the northern rather than in the southern Kalahari. Initial δ 13 C values vary over a wide range and reveal some correlation to pH and chemical composition of the water. They cannot be used to correct for fossil carbon dilution in 14 C-age calculations. Radiocarbon-deduced ages range from recent to 30,000 years. Stable hydrogen and oxygen isotopes indicate recharge from direct rain infiltration. (author)

  12. Raman study of damage processes in Si+-implanted GaAs

    International Nuclear Information System (INIS)

    Ivanda, M.; Desnica, U.V.; Haynes, T.E.; Hartmann, I.; Kiefer, W.

    1994-09-01

    Ion-induced damage in GaAs as a function of ion dose following 100 keV Si + implants has been investigated by Raman spectroscopy. A new approach for decomposition of Raman scattering intensity on to the crystalline and amorphous phase components has been used in analysis of Raman spectra. With increasing ion dose the following was observed: (a) the widths of vibrational bands of a-phase significantly increase, while the width of the LO(Γ) phonon band of c-phase remains unchanged; (b) the longitudinal optical phonon band of c-phase completely dissappears, while the transverse optical phonon mode evolves in to a new band of a-phase; (c) the wavenumbers of all vibrational bands of a- and c-phase shift to lower values by ∼ 10--15 cm -1 . A number of mechanisms possibly accountable for these shifts were analysed and evaluated

  13. Kinetic theory of oxygen isotopic exchange between minerals and water

    Science.gov (United States)

    Criss, R.E.; Gregory, R.T.; Taylor, H.P.

    1987-01-01

    Kinetic and mass conservation equations are used to describe oxygen isotopic exchange between minerals and water in "closed" and open hydrothermal systems. In cases where n coexisting mineral phases having different reaction rates are present, the exchange process is described by a system of n + 1 simultaneous differential equations consisting of n pseudo first-order rate equations and a conservation of mass equation. The simultaneous solutions to these equations generate curved exchange trajectories on ??-?? plots. Families of such trajectories generated under conditions allowing for different fluid mole fractions, different fluid isotopic compositions, or different fluid flow rates are connected by positive-sloped isochronous lines. These isochrons reproduce the effects observed in hydrothermally exchanged mineral pairs including 1) steep positive slopes, 2) common reversals in the measured fractionation factors (??), and 3) measured fractionations that are highly variable over short distances where no thermal gradient can be geologically demonstrated. ?? 1987.

  14. Covariance of oxygen and hydrogen isotopic compositions in plant water: species effects

    International Nuclear Information System (INIS)

    Cooper, L.W.; DeNiro, M.J.

    1989-01-01

    Leaf water becomes enriched in the heavy isotopes of oxygen and hydrogen during evapotranspiration. The magnitude of the enrichment has been shown to be influenced by temperature and humidity, but the effects of species—specific factors on leaf water enrichment of D and 18 O have not been studied for different plants growing together. Accordingly, to learn whether leaf water enrichment patterns and processes for D and 18 O are different for individual species growing under the same environmental conditions we tested the proposal that leaf waters in plants with crassulacean acid metabolism (CAM) show higher slopes (m in the leaf water equation °D = m ° 18 O + b) than in C 3 plants. We determined the relationships between the stable hydrogen (°D) and oxygen (° 18 O) isotope ratios of leaf waters collected during the diurnal cycle of evapotranspiration for Yucca schidigera, Ephedra aspera, Agave deserti, Prunus ilicifolia, Yucca whipplei, Heteromeles arbutifolia, Dyckia fosteriana, Simmondsia chinensis, and Encelia farinosa growing at two sites in southern California. Slopes (m in the above leaf water equation) ranged from 1.50 to 3.21, compared to °8 for meteoric water, but differences in slope could not be attributed to carboxylation pathway (CAM vs. C 3 ) nor climate (coastal California vs. Sonoran Desert). Higher slopes were correlated with greater overall ranges of leaf water enrichment of D and 18 O. Water in plants with higher slopes also differed most from unaltered meteoric water. Leaf water isotope ratios in plants with lower slopes were better correlated with temperature and humidity. The findings indicate that m in the aforementioned equation is related to the overall residence time for water in the leaf and proportions of water subjected to repeated evapotranspiration enrichments of heavy isotopes

  15. Resonant stimulation of Raman scattering from single-crystal thiophene/phenylene co-oligomers

    International Nuclear Information System (INIS)

    Yanagi, Hisao; Marutani, Yusuke; Matsuoka, Naoki; Hiramatsu, Toru; Ishizumi, Atsushi; Sasaki, Fumio; Hotta, Shu

    2013-01-01

    Amplified Raman scattering was observed from single crystals of thiophene/phenylene co-oligomers (TPCOs). Under ns-pulsed excitation, the TPCO crystals exhibited amplified spontaneous emission (ASE) at resonant absorption wavelengths. With increasing excitation wavelength to the 0-0 absorption edge, the stimulated resonant Raman peaks appeared both in the 0-1 and 0-2 ASE band regions. When the excitation wavelength coincided with the 0-1 ASE band energy, the Raman peaks selectively appeared in the 0-2 ASE band. Such unusual enhancement of the 0-2 Raman scattering was ascribed to resonant stimulation via vibronic coupling with electronic transitions in the uniaxially oriented TPCO molecules

  16. Temperature measurements of Transdanubian Mesozoic rocks by the oxygen isotope method

    International Nuclear Information System (INIS)

    Cornides, I.; Csaszar, G.; Haas, J.; Jochane Edelenyi, E.

    1979-01-01

    Subjected to paleotemperature measurements with the use of oxygen and carbon isotopes were Upper Triassic, Jurassic and Cretaceous sedimentary rocks and their fossils from the Transdanubian Central Mountains, the Mecsek and the Villany Mts. In determining formation temperature, an important parameter of the environment of formation, the authors relied on the fact that the oxygen isotope composition of calcium carbonate precipitating from its aqueous solution deviates, in dependence on the temperature of the solution concerned, from that of the water. Consequently, the temperature of the water of the one-time seas must have been recorded by the 18 O/ 16 O ratio in the calcite of fossils or sediments. The results reported indicate smaller changes in temperature as compared to international results. In the Jurassic the values of temperature remain consistently below those quoted for Swiss and French territories, being around the values reported from/sroe/thern Germany. These u curves have their maxima in the Toarcian, Aalenian, sediments for which unfortunately no Hungarian results are available. The few results of Cretaceous belemnites are values higher than their international counterparts. The high temperature value obtained for the Albian correlates very well with the formation of rocks known from this stratigraphic stage (red clays, bauxites). (A.L.)

  17. Contributions of oxygen vacancies and titanium interstitials to band-gap states of reduced titania

    Science.gov (United States)

    Li, Jingfeng; Lazzari, Rémi; Chenot, Stéphane; Jupille, Jacques

    2018-01-01

    The spectroscopic fingerprints of the point defects of titanium dioxide remain highly controversial. Seemingly indisputable experiments lead to conflicting conclusions in which oxygen vacancies and titanium interstitials are alternately referred to as the primary origin of the Ti 3 d band-gap states. We report on experiments performed by electron energy loss spectroscopy whose key is the direct annealing of only the very surface of rutile TiO2(110 ) crystals and the simultaneous measurement of its temperature via the Bose-Einstein loss/gain ratio. By surface preparations involving reactions with oxygen and water vapor, in particular, under electron irradiation, vacancy- and interstitial-related band-gap states are singled out. Off-specular measurements reveal that both types of defects contribute to a unique charge distribution that peaks in subsurface layers with a common dispersive behavior.

  18. Phosphorus cycling in forest ecosystems: insights from oxygen isotopes in phosphate

    Science.gov (United States)

    Pistocchi, Chiara; Tamburini, Federica; Bünemann, Else; Frossard, Emmanuel

    2015-04-01

    The current view on the phosphorus (P) cycle in forest ecosystems relies mostly on measurements and correlations of pools, and to a lower extent on measurement of fluxes. We have no direct insight into the processes phosphate goes through at the ecosystem level, and into the relative importance of organic and mineral pools in sustaining P nutrition of trees. The analysis of oxygen isotopes associated to P (18Op) is expected to bring this type of information. The German Priority Program SPP 1685 aims to test the overall hypothesis that the P-depletion of soils drives forest ecosystems from P acquiring systems (efficient mobilization of P from the mineral phase) to P recycling systems (highly efficient cycling of P). Our contribution to this project will consist in studying the relative importance of biological and geochemical processes in controlling the P cycle in temperate beech forest ecosystems in Germany along a gradient of decreasing soil P availability. We will follow the fate of phosphate from litter fall to the uptake of P by plants via P release by decomposition of organic matter or after release from P-containing minerals, by using a multi-isotope approach (O in water and phosphate plus 33P). To address our research question we will rely on measurements in experimental forest sites and on laboratory incubations of the organic layer or the mineral soil. We present here the first results issued from the 2014 sampling on three study sites, where we characterized the P pools in surface soil horizons by a sequential extraction (modified after Tiessen and Moir, 2007) and we analysed the 18Op of the resin extractable- and microbial-P fractions. Contrary to what was previously found (e.g. Tamburini et al. 2012) the isotopic composition of these fractions in most of the samples does not reflect the equilibrium value (as the result of the dominance of the pyrophosphatase activity on the other enzymatic processes, Blake et al. 2005). Depending on the P availability

  19. Raman spectrum of natural and synthetic stishovite

    Science.gov (United States)

    Hemley, R.J.; Mao, Ho-kwang; Chao, E.C.T.

    1986-01-01

    Raman spectra of natural and synthetic samples of stishovite have been measured with a micro-optical spectrometer system. These spectra have a pattern that is characteristic of rutile-structured oxides. The spectrum of synthetic stishovite is characterized by well-resolved bands at 231, 589, 753, and 967 cm-1, which are assigned as the B1g, Eg, A1g, and B2g fundamentals, respectively, of the first-order Raman spectrum of the ideal, ordered structure. Natural stishovite obtained from Meteor Crater, Arizona has a first-order Raman spectrum that is fully consistent with that of the synthetic material. The observed spectrum of the natural sample, however, is weaker and has bands in addition to those identified as fundamentals in the spectrum of the synthetic material. A broad band at ???475 cm-1 may be indicative of glass or contaminants derived from the extraction procedure. Alternatively, this band may arise from multiphonon scattering that is enhanced by poor crystallinity or structural disorder in the natural shocked sample. ?? 1986 Springer-Verlag.

  20. Coherent anti-Stokes Raman scattering microscopy (CARS): Instrumentation and applications

    International Nuclear Information System (INIS)

    Djaker, Nadia; Lenne, Pierre-Francois; Marguet, Didier; Colonna, Anne; Hadjur, Christophe; Rigneault, Herve

    2007-01-01

    Recent advances in laser physics have permitted the development of a new kind of microscopy based on stimulated Raman scattering. This new technique known as Coherent anti-Stokes Raman scattering (CARS) microscopy allows vibrational imaging with high sensitivity, high spectral resolution and three-dimensional sectioning capabilities. We review recent advances in CARS microscopy, with applications to chemical and biological systems. We also present an application of CARS microscopy with high optical resolution and spectral selectivity, in resolving structures in surface ex vivo stratum corneum by looking at the CH 2 stretching vibrational band. A strong CARS signal is backscattered from an intense forward generated CARS signal in thick samples. This makes noninvasive imaging of deep structures possible, without labeling or chemical treatments

  1. Iron isotope biogeochemistry of Neoproterozoic marine shales

    Science.gov (United States)

    Kunzmann, Marcus; Gibson, Timothy M.; Halverson, Galen P.; Hodgskiss, Malcolm S. W.; Bui, Thi Hao; Carozza, David A.; Sperling, Erik A.; Poirier, André; Cox, Grant M.; Wing, Boswell A.

    2017-07-01

    , allowing a higher degree of partial oxidation, irrespective of increasing environmental oxygen levels. Alternatively, increasing oxygen levels would have led to a higher proportion of Fe(II) being oxidized, without decreasing the initial size of the ferrous seawater iron pool. We consider the latter explanation as the most likely. According to this hypothesis, the δ 56Fe record reflects the redox evolution of Earth's surface environments. δ 56Fe values in pre-Sturtian samples significantly heavier than bulk crust and hydrothermal iron imply partial oxidation of a ferrous seawater iron reservoir. In contrast, mean δ 56Fe values closer to that of hydrothermal iron in post-Sturtian shales reflects oxidation of a larger proportion of the ferrous seawater iron reservoir, and by inference, higher environmental oxygen levels. Nevertheless, significant iron isotopic variation in post-Sturtian shales suggest redox heterogeneity and possibly a dominantly anoxic deep ocean, consistent with results from recent studies using iron speciation and redox sensitive trace metals. However, the interpretation of generally increasing environmental oxygen levels after the Sturtian glaciation highlights the need to better understand the sensitivity of different redox proxies to incremental changes in oxygen levels to enable us to reconcile results from different paleoredox proxies.

  2. Oxygen Isotopes in Intra-Back Arc Basalts from the Andean Southern Volcanic Zone

    Science.gov (United States)

    Parks, B. H.; Wang, Z.; Saal, A. E.; Frey, F. A.; Blusztajn, J.

    2013-12-01

    The chemical compositions of volcanic rocks from the Andean Southern Volcanic Zone (SVZ) reflect complex and dynamic interactions among the subducting oceanic lithosphere, the mantle wedge, and the overlying continental crust. Oxygen isotope ratios of olivine phenocrysts can be a useful means to identifying their relative contributions to the arc magmatism. In this study, we report high-precision oxygen-isotope ratios of olivine phenocrysts in a set of intra-back arc basalts from the SVZ. The samples were collected from monogenetic cinder cones east of the volcanic front (35-39 degrees S), and have been geochemically well-characterized with major and trace element contents, and Sr-Nd-Pb isotope compositions. Compared to lavas from the volcanic front, these intra-back arc lavas have similar radiogenic isotope, and a more alkalic and primitive (higher MgO content) chemical composition. We determined the oxygen-isotope ratios using the CO2-laser-fluorination method set up at the Department of Geology and Geophysics, Yale University following the techniques reported in Wang et al (2011). The samples were analyzed with standards of Gore Mountain Garnet (5.77×0.12‰ 1σ; Valley et al., 1995) and Kilbourne Hole Olivine (5.23×0.07‰ 1σ; Sharp, 1990) in order to account for minor changes in the vacuum line during analyses. The obtained δ18OSMOW values of olivine phenocrysts from the intra-back arc basalts vary from 4.98×0.01 to 5.34×0.01‰. This range, surprisingly, is similar to the δ18O values of olivines from mantle peridotites (5.2×0.2‰). Preliminary results indicate significant correlations of 87Sr/86Sr, 143Nd/144Nd and trace element ratios of the basaltic matrix with the δ18O values of olivine phenocrysts, indicating at least three components involved in the formation of the arc volcanism. By comparing the δ18O with the variations of major and trace element contents (e.g., MgO, TiO2 and Ni), and trace element ratios (e.g. Ba/Nb), we evaluate the effects

  3. Monolayer group-III monochalcogenides by oxygen functionalization: a promising class of two-dimensional topological insulators

    Science.gov (United States)

    Zhou, Si; Liu, Cheng-Cheng; Zhao, Jijun; Yao, Yugui

    2018-03-01

    Monolayer group-III monochalcogenides (MX, M = Ga, In; X = S, Se, Te), an emerging category of two-dimensional (2D) semiconductors, hold great promise for electronics, optoelectronics and catalysts. By first-principles calculations, we show that the phonon dispersion and Raman spectra, as well as the electronic and topological properties of monolayer MX can be tuned by oxygen functionalization. Chemisorption of oxygen atoms on one side or both sides of the MX sheet narrows or even closes the band gap, enlarges work function, and significantly reduces the carrier effective mass. More excitingly, InS, InSe, and InTe monolayers with double-side oxygen functionalization are 2D topological insulators with sizeable bulk gap up to 0.21 eV. Their low-energy bands near the Fermi level are dominated by the px and py orbitals of atoms, allowing band engineering via in-plane strains. Our studies provide viable strategy for realizing quantum spin Hall effect in monolayer group-III monochalcogenides at room temperature, and utilizing these novel 2D materials for high-speed and dissipationless transport devices.

  4. Oxygen-sensitive 3He-MRI in bronchiolitis obliterans after lung transplantation

    International Nuclear Information System (INIS)

    Gast, Klaus K.; Biedermann, Alexander; Herweling, Annette; Schreiber, Wolfgang G.; Schmiedeskamp, Joerg; Mayer, Eckhard; Heussel, Claus P.; Markstaller, Klaus; Eberle, Balthasar; Kauczor, Hans-Ulrich

    2008-01-01

    Oxygen-sensitive 3 He-MRI was studied for the detection of differences in intrapulmonary oxygen partial pressure (pO 2 ) between patients with normal lung transplants and those with bronchiolitis obliterans syndrome (BOS). Using software developed in-house, oxygen-sensitive 3 He-MRI datasets from patients with normal lung grafts (n = 8) and with BOS (n = 6) were evaluated quantitatively. Datasets were acquired on a 1.5-T system using a spoiled gradient echo pulse sequence. Underlying diseases were pulmonary emphysema (n 10 datasets) and fibrosis (n = 4). BOS status was verified by pulmonary function tests. Additionally, 3 He-MRI was assessed blindedly for ventilation defects. Median intrapulmonary pO 2 in patients with normal lung grafts was 146 mbar compared with 108 mbar in patients with BOS. Homogeneity of pO2 distribution was greater in normal grafts (standard deviation pO2 34 versus 43 mbar). Median oxygen decrease rate during breath hold was higher in unaffected patients (-1.75 mbar/s versus -0.38 mbar/s). Normal grafts showed fewer ventilation defects (5% versus 28%, medians). Oxygen-sensitive 3 He-MRI appears capable of demonstrating differences of intrapulmonary pO2 between normal lung grafts and grafts affected by BOS. Oxygen-sensitive 3 He-MRI may add helpful regional information to other diagnostic techniques for the assessment and follow-up of lung transplant recipients. (orig.)

  5. Ground-State Band and Deformation of the Z = 102 Isotope N 254

    International Nuclear Information System (INIS)

    Reiter, P.; Khoo, T.L.; Lister, C.J.; Seweryniak, D.; Ahmad, I.; Alcorta, M.; Carpenter, M.P.; Cizewski, J.A.; Davids, C.N.; Gervais, G.; Greene, J.P.; Henning, W.F.; Janssens, R.V.; Lauritsen, T.; Siem, S.; Sonzogni, A.A.; Sullivan, D.; Uusitalo, J.; Wiedenhoever, I.; Amzal, N.; Butler, P.A.; Chewter, A.J.; Greenlees, P.T.; Herzberg, R.; Jones, G.D.; Cizewski, J.A.; Ding, K.Y.; Fotiades, N.; Fox, J.D.; Korten, W.; Leino, M.; Vetter, K.; Siem, S.

    1999-01-01

    The ground-state band of the Z=102 isotope 254 No has been identified up to spin 14, indicating that the nucleus is deformed. The deduced quadrupole deformation, β=0.27 , is in agreement with theoretical predictions. These observations confirm that the shell-correction energy responsible for the stability of transfermium nuclei is partly derived from deformation. The survival of 254 No up to spin 14 means that its fission barrier persists at least up to that spin. copyright 1999 The American Physical Society

  6. Constraints on the nature of the projectile using siderophile elements and triple-oxygen isotopes: Zhamanshin impact structure, Kazakhstan

    Czech Academy of Sciences Publication Activity Database

    Jonášová, Šárka; Ackerman, Lukáš; Žák, Karel; Skála, Roman; Magna, T.; Pack, A.; Deutsch, A.

    2016-01-01

    Roč. 51, SI, Supplement 1 (2016), A358-A358 ISSN 1086-9379. [Annual Meeting of the Meteoritical Society /79./. 07.08.2016-12.08.2016, Berlin] Institutional support: RVO:67985831 Keywords : impact glass * irghizites * geochemistry * meteoritic component * siderophile elements * osmium isotopes * triple-oxygen Isotopes * Zhamanshin Subject RIV: DD - Geochemistry

  7. Oxygen isotope studies of the Salton Sea geothermal field

    International Nuclear Information System (INIS)

    Olson, E.R.

    1978-01-01

    Interbedded shales and sandstones were drilled to a depth of 1588 metres in Sinclair Number Four Well, Salton Sea Geothermal Field. Bottom hole temperatures are approximately 290 0 C. The oxygen dels of hydrothermal and detrital calcite have a systematic relationship at any depth in the geothermal reservoir. Typical values are: vein calcite, +6 0 / 00 ; calcite in white sandstone, +10 0 / 00 ; calcite in dark gray shale, +11 0 / 00 ; calcite in light gray shale, +17 0 / 00 ; calcite in red-brown shale, +20 0 / 00 . This succession represents decreasing water-rock interaction that is also indicated by the clay mineralogy of the shales. Permeability has a marked effect on the equilibration of water and rocks at any given temperature. Original differences in permeability have resulted in partial preservation of original detrital sedimentary compositions. The fluids in the Salton Sea Geothermal Field are probabaly partially evaporated Colorado River water, and their oxygen del values vary as much as 4 0 / 00 throughout the field. Truesdell's (1974) data suggest that dissolved salts may make the water oxygen activity del as much as 6 0 / 00 greater than the concentration del in the geothermal reservoir. Such an uncertainty is a serious impediment to precise isotope geothermometry in this system.(auth.)

  8. Cavity-enhanced Raman spectroscopy with optical feedback cw diode lasers for gas phase analysis and spectroscopy.

    Science.gov (United States)

    Salter, Robert; Chu, Johnny; Hippler, Michael

    2012-10-21

    A variant of cavity-enhanced Raman spectroscopy (CERS) is introduced, in which diode laser radiation at 635 nm is coupled into an external linear optical cavity composed of two highly reflective mirrors. Using optical feedback stabilisation, build-up of circulating laser power by 3 orders of magnitude occurs. Strong Raman signals are collected in forward scattering geometry. Gas phase CERS spectra of H(2), air, CH(4) and benzene are recorded to demonstrate the potential for analytical applications and fundamental molecular studies. Noise equivalent limits of detection in the ppm by volume range (1 bar sample) can be achieved with excellent linearity with a 10 mW excitation laser, with sensitivity increasing with laser power and integration time. The apparatus can be operated with battery powered components and can thus be very compact and portable. Possible applications include safety monitoring of hydrogen gas levels, isotope tracer studies (e.g., (14)N/(15)N ratios), observing isotopomers of hydrogen (e.g., radioactive tritium), and simultaneous multi-component gas analysis. CERS has the potential to become a standard method for sensitive gas phase Raman spectroscopy.

  9. Oxygen isotopic ratio of the diatom siliceous valves: development of a new method in quantitative paleoclimatology

    International Nuclear Information System (INIS)

    Labeyrie, Laurent.

    1979-07-01

    This paper describes a new method allowing the measurement of the 18 O/ 16 O ratio of the biogenic silica oxygen, which takes into account the effects due to the organic matter and hydration water associated with this type of silica. By isotopic exchange with enriched water, we have been able to fix a treatment which eliminate all contamination and memory effects. This has permitted us to study the temperature dependance of the hydrated silica-water oxygen isotopic fractionation. As application, we present a study of the variations of the delta 18 O of fossil diatoms valves along an Equatorial Pacific sediment core covering the last 20.000 years. The results demonstrate the usefulness of the delta 18 O of the diatom silica for paleoclimatic investigations [fr

  10. Isotopes of carbon and oxygen in the carbonate impurities of coal have potential as palaeoenvironmental indicators

    International Nuclear Information System (INIS)

    Verhagen, B.T.; Falcon, R.M.

    1990-01-01

    The nature and systematics of impurities such as carbonates need to be established in order to understand their provenance in coal seams with reference to mining, beneficiation and ultimately their elimination or reduction. To this end, mineralogical and carbon-13 and oxygen-18 isotopic studies were undertaken on carbonate occurrences in coal from the eastern Transvaal highveld. Isotopic variations of considerable amplitude and individual values of extreme ''lightness'' are to be found in the carbonates in coal of the Witbank and adjacent basins. The observed isotopic ratios have a clear bearing on the nature and origins of the carbonates. 1 tab., 1 fig

  11. An Unusual Strong Visible-Light Absorption Band in Red Anatase TiO2 Photocatalyst Induced by Atomic Hydrogen-Occupied Oxygen Vacancies.

    Science.gov (United States)

    Yang, Yongqiang; Yin, Li-Chang; Gong, Yue; Niu, Ping; Wang, Jian-Qiang; Gu, Lin; Chen, Xingqiu; Liu, Gang; Wang, Lianzhou; Cheng, Hui-Ming

    2018-02-01

    Increasing visible light absorption of classic wide-bandgap photocatalysts like TiO 2 has long been pursued in order to promote solar energy conversion. Modulating the composition and/or stoichiometry of these photocatalysts is essential to narrow their bandgap for a strong visible-light absorption band. However, the bands obtained so far normally suffer from a low absorbance and/or narrow range. Herein, in contrast to the common tail-like absorption band in hydrogen-free oxygen-deficient TiO 2 , an unusual strong absorption band spanning the full spectrum of visible light is achieved in anatase TiO 2 by intentionally introducing atomic hydrogen-mediated oxygen vacancies. Combining experimental characterizations with theoretical calculations reveals the excitation of a new subvalence band associated with atomic hydrogen filled oxygen vacancies as the origin of such band, which subsequently leads to active photo-electrochemical water oxidation under visible light. These findings could provide a powerful way of tailoring wide-bandgap semiconductors to fully capture solar light. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Subtle Raman signals from nano-diamond and β-SiC thin films

    International Nuclear Information System (INIS)

    Kuntumalla, Mohan Kumar; Ojha, Harish; Srikanth, Vadali Venkata Satya Siva

    2013-01-01

    Micro Raman scattering experiments are carried out in pursuit of subtle but discernable signals from nano-diamond and β-SiC thin films. The thin films are synthesized using microwave plasma assisted chemical vapor deposition technique. Raman scattering experiments in conjunction with scanning electron microscopy and x-ray diffraction were carried out to extract microstructure and phase information of the above mentioned thin films. Certain subtle Raman signals have been identified in this work. In the case of nanodiamond thin films, Raman bands at ∼ 485 and ∼ 1220 cm −1 are identified. These bands have been assigned to the nanodiamond present in nanodiamond thin films. In the case of nano β-SiC thin films, optical phonons are identified using surface enhanced Raman scattering. - Highlights: ► Subtle Raman signals from nano-diamond and β-silicon carbide related thin films. ► Raman bands at ∼ 485 and ∼ 1220 cm −1 from nanodiamond thin films are identified. ► Longitudinal optical phonon from nano β-silicon carbide thin films is identified

  13. Assessing Pyrite-Derived Sulfate in the Mississippi River with Four Years of Sulfur and Triple-Oxygen Isotope Data.

    Science.gov (United States)

    Killingsworth, Bryan A; Bao, Huiming; Kohl, Issaku E

    2018-05-17

    Riverine dissolved sulfate (SO 4 2- ) sulfur and oxygen isotope variations reflect their controls such as SO 4 2- reduction and reoxidation, and source mixing. However, unconstrained temporal variability of riverine SO 4 2- isotope compositions due to short sampling durations may lead to mischaracterization of SO 4 2- sources, particularly for the pyrite-derived sulfate load. We measured the sulfur and triple-oxygen isotopes (δ 34 S, δ 18 O, and Δ' 17 O) of Mississippi River SO 4 2- with biweekly sampling between 2009 and 2013 to test isotopic variability and constrain sources. Sulfate δ 34 S and δ 18 O ranged from -6.3‰ to -0.2‰ and -3.6‰ to +8.8‰, respectively. Our sampling period captured the most severe flooding and drought in the Mississippi River basin since 1927 and 1956, respectively, and a first year of sampling that was unrepresentative of long-term average SO 4 2- . The δ 34 S SO4 data indicate pyrite-derived SO 4 2- sources are 74 ± 10% of the Mississippi River sulfate budget. Furthermore, pyrite oxidation is implicated as the dominant process supplying SO 4 2- to the Mississippi River, whereas the Δ' 17 O SO4 data shows 18 ± 9% of oxygen in this sulfate is sourced from air O 2 .

  14. Extracting sensitive spectrum bands of rapeseed using multiscale multifractal detrended fluctuation analysis

    Science.gov (United States)

    Jiang, Shan; Wang, Fang; Shen, Luming; Liao, Guiping; Wang, Lin

    2017-03-01

    Spectrum technology has been widely used in crop non-destructive testing diagnosis for crop information acquisition. Since spectrum covers a wide range of bands, it is of critical importance to extract the sensitive bands. In this paper, we propose a methodology to extract the sensitive spectrum bands of rapeseed using multiscale multifractal detrended fluctuation analysis. Our obtained sensitive bands are relatively robust in the range of 534 nm-574 nm. Further, by using the multifractal parameter (Hurst exponent) of the extracted sensitive bands, we propose a prediction model to forecast the Soil and plant analyzer development values ((SPAD), often used as a parameter to indicate the chlorophyll content) and an identification model to distinguish the different planting patterns. Three vegetation indices (VIs) based on previous work are used for comparison. Three evaluation indicators, namely, the root mean square error, the correlation coefficient, and the relative error employed in the SPAD values prediction model all demonstrate that our Hurst exponent has the best performance. Four rapeseed compound planting factors, namely, seeding method, planting density, fertilizer type, and weed control method are considered in the identification model. The Youden indices calculated by the random decision forest method and the K-nearest neighbor method show that our Hurst exponent is superior to other three Vis, and their combination for the factor of seeding method. In addition, there is no significant difference among the five features for other three planting factors. This interesting finding suggests that the transplanting and the direct seeding would make a big difference in the growth of rapeseed.

  15. Permafrost oxygen isotope ratios and chronology of three cores from Antarctica

    International Nuclear Information System (INIS)

    Stuiver, M.; Yang, I.C.; Denton, G.H.

    1976-01-01

    It is stated that permafrost core sediments, associated with the last intrusion of the Ross Ice Shelf in the New Harbour region, were deposited in marine (0 - 85 m deep) as well as freshwater environments (100 - 125 m). Oxygen isotope ratio measurements on these cores provide palaeoclimatic information and show that the extension of the Ross Ice Shelf predates 150,000 yr BP, whereas the radiocarbon date of its retreat is about 5,800 yr b.p. (author)

  16. Evaporation Induced Oxygen Isotope Fractionation in Impact Ejecta

    Science.gov (United States)

    Macris, C. A.; Young, E. D.; Kohl, I. E.; zur Loye, T. E.

    2017-12-01

    Tektites are natural glasses formed as quenched impact melt ejecta. Because they experienced extreme heating while entrained in a hot impact vapor plume, tektites allow insight into the nature of these ephemeral events, which play a critical role in planetary accretion and evolution. During tektite formation, the chemical and isotopic composition of parent materials may be modified by (1) vapor/liquid fractionation at high T in the plume, (2) incorporation of meteoric water at the target site, (3) isotope exchange with atmospheric oxygen (if present), or some combination of the three. Trends from O isotope studies reveal a dichotomy: some tektite δ18O values are 4.0-4.5‰ lower than their protoliths (Luft et al. 1987; Taylor & Epstein 1962), opposite in direction to a vaporization induced fractionation; increases in δ18O with decreasing SiO2 in tektites (Taylor & Epstein 1969) is consistent with vapor fractionation. Using an aerodynamic levitation laser furnace (e.g. Macris et al. 2016), we can experimentally determine the contributions of processes (1), (2) and (3) above to tektite compositions. We conducted a series of evaporation experiments to test process (1) using powdered tektite fused into 2 mm spheres and heated to 2423-2473 K for 50-90 s while levitated in Ar in the furnace. Mass losses were from 23 to 26%, reflecting evaporation of Si and O from the melt. The starting tektite had a δ18O value of 10.06‰ (±0.01 2se) and the residues ranged from 13.136‰ (±0.006) for the least evaporated residue to 14.30‰ (±0.02) for the most evaporated (measured by laser fluorination). The increase in δ18O with increasing mass loss is consistent with Rayleigh fractionation during evaporation, supporting the idea that O isotopes are fractionated due to vaporization at high T in an impact plume. Because atmospheric O2 and water each have distinctive Δ17O values, we should be able to use departures from our measured three-isotope fractionation law to evaluate

  17. Fractionation of hydrogen and oxygen isotopes between hydrated and free water molecules in aqueous urea solution

    International Nuclear Information System (INIS)

    Kakiuchi, M.; Matsuo, S.

    1985-01-01

    Ratios of D/H and 18 O/ 16 O in the vapor phase in equilibrium with aqueous urea solution with different urea molalities were measured at 15 and 25 0 C. Under the assumption that urea solutions consist of two species, i.e., the urea-water cluster and free water, the results are interpreted to give the average hydration number, i.e., the number of water molecules per urea molecule in the urea-water cluster. Good agreement was obtained for the hydration number estimated independently from hydrogen and oxygen isotopic fractions. On the basis of hydrogen isotopic data at 25 0 C, the average hydration number of urea in the cluster is 6.3 +/- 0.8 at 2.1 m and 2.75 +/- 0.08 at saturation (20.15 m). The corresponding average hydration numbers based on oxygen isotopic data were calculated to be 6.7 +/- 2.4 at 2.1 m and 2.75 +/- 0.25 at urea saturation. HD 16 O is enriched in the urea-water cluster and H 2 18 O is enriched in free water. Isotopic partitioning between the cluster and free water is markedly different from those between hydration spheres and free water in aqueous electrolyte solutions. 29 references, 6 figures, 5 tables

  18. Effect of oxygen pressure on sensitivity of CR-39 used for astronauts radiation dosimetry

    International Nuclear Information System (INIS)

    Murai, T.; Yabe, S.; Nagamatsu, A.; Tawara, H.; Kumagai, H.; Miyazawa, Y.; Kitajo, K.; Kodaira, S.; Yasuda, N.

    2006-01-01

    The personal radiation dosimeters for astronauts are exposed to low-pressure oxygen gas (0.29 atmospheres) during extra-vehicle activities. CR-39 plastic track detectors are one of the typical passive dosimeters for space radiation monitoring. We investigated change in track formation sensitivity of the antioxidant-doped CR-39 plastic with which oxygen gas comes in contact at different pressures up to 2 atmospheres for 1h to 10 days. The oxygen effect on sensitivity was measured for the C, Si and Fe ions (10-200 keV/μm) from the HIMAC heavy ion accelerator. The sensitivity is obviously sensitive to oxygen pressure at heavy-ion exposures, but not sensitive to the experience of oxygen atmosphere before and after the ion exposures. The maximum sensitivity is obtained at 0.29 atmospheres. The present experimental data suggested that the effect depends on LET of incident particles. (author)

  19. The oxygen isotope effect on the in-plane penetration depth in cuprate superconductors

    International Nuclear Information System (INIS)

    Khasanov, R; Shengelaya, A; Morenzoni, E; Conder, K; Savic, I M; Keller, H

    2004-01-01

    Muon spin rotation (μSR) studies of the oxygen isotope ( 16 O/ 18 O) effect (OIE) on the in-plane magnetic field penetration depth λ ab in cuprate high-temperature superconductors (HTS) are presented. First, the doping dependence of the OIE on the transition temperature T c in various HTS is briefly discussed. It is observed that different cuprate families show similar doping dependences of the OIE on T c . Then, bulk μSR, low-energy μSR, and magnetization studies of the total and site-selective OIE on λ ab are described in some detail. A substantial OIE on λ ab was observed in various cuprate families at all doping levels, suggesting that cuprate HTS are non-adiabatic superconductors. The experiments clearly demonstrate that the total OIE on T c and λ ab arise from the oxygen sites within the superconducting CuO 2 planes, demonstrating that the phonon modes involving the movement of planar oxygen are dominantly coupled to the supercarriers. Finally, it is shown that the OIE on T c and λ ab exhibit a relation that appears to be generic for different families of cuprate HTS. The observation of these unusual isotope effects implies that lattice effects play an essential role in cuprate HTS and have to be considered in any realistic model of high-temperature superconductivity

  20. On-line Raman spectroscopy of calcite and malachite during irradiation with swift heavy ions

    International Nuclear Information System (INIS)

    Dedera, Sebastian; Burchard, Michael; Glasmacher, Ulrich A.; Schöppner, Nicole; Trautmann, Christina; Severin, Daniel; Romanenko, Anton; Hubert, Christian

    2015-01-01

    A new on-line Raman System, which was installed at the M3-beamline at the UNILAC, GSI Helmholtzzentrum für Schwerionenforschung Darmstadt was used for first “in situ” spectroscopic measurements. Calcite and malachite samples were irradiated in steps between 1 × 10"9 and 1 × 10"1"2 ions/cm"2 with Au ions (calcite) and Xe ions (malachite) at an energy of 4.8 MeV/u. After irradiation, calcite revealed a new Raman band at 437 cm"−"1 and change of the full width at half maximum for the 1087 cm"−"1 Raman band. The Raman bands of malachite change significantly with increasing fluence. Up to a fluence of 7 × 10"1"0 ions/cm"2, all existing bands decrease in intensity. Between 8 × 10"1"0 and 1 × 10"1"1 ions/cm"2 a broad Cu_2O band between 110 and 220 cm"−"1 occurs, which superimposes the pre-existing Raman bands. Additionally, a new broad band between 1000 and 1750 cm"−"1 is formed, which is interpreted as a carbon coating. In contrast to the Cu_2O band, the carbon band vanished when further irradiating the sample. The installations as well as first in situ measurements at room temperature are presented.

  1. Raman spectroscopic characterization of multiwall carbon nanotubes and of composites

    Directory of Open Access Journals (Sweden)

    L. Bokobza

    2012-07-01

    Full Text Available In this work Raman spectroscopy was used for extensive characterization of multiwall carbon nanotube (MWNTs and of MWCNTs/rubber composites. We have measured the Raman spectra of bundled and dispersed multiwall carbon nanotubes. All the Raman bands of the carbon nanotubes are seen to shift to higher wavenumbers upon debundling on account of less intertube interactions. Effects of laser irradiation were also investigated. Strong effects are observed by changing the wavelength of the laser excitation. On the other hand, at a given excitation wavelength, changes on the Raman bands are observed by changing the laser power density due to sample heating during the measurement procedure.

  2. Isotope exchange in oxide-containing catalyst

    Science.gov (United States)

    Brown, Kenneth G. (Inventor); Upchurch, Billy T. (Inventor); Hess, Robert V. (Inventor); Miller, Irvin M. (Inventor); Schryer, David R. (Inventor); Sidney, Barry D. (Inventor); Wood, George M. (Inventor); Hoyt, Ronald F. (Inventor)

    1989-01-01

    A method of exchanging rare-isotope oxygen for common-isotope oxygen in the top several layers of an oxide-containing catalyst is disclosed. A sample of an oxide-containing catalyst is exposed to a flowing stream of reducing gas in an inert carrier gas at a temperature suitable for the removal of the reactive common-isotope oxygen atoms from the surface layer or layers of the catalyst without damaging the catalyst structure. The reduction temperature must be higher than any at which the catalyst will subsequently operate. Sufficient reducing gas is used to allow removal of all the reactive common-isotope oxygen atoms in the top several layers of the catalyst. The catalyst is then reoxidized with the desired rare-isotope oxygen in sufficient quantity to replace all of the common-isotope oxygen that was removed.

  3. The isotopic composition of valves and organic tissue of diatoms grown in steady state cultures under varying conditions of temperature, light and nutrients. Implications for the interpretation of oxygen isotopes from sedimentary biogenic opal as proxies of environmental variations

    Energy Technology Data Exchange (ETDEWEB)

    Kowalczyk, K

    2006-05-15

    The oxygen isotopes of diatomaceous silica from marine and freshwater sediments are frequently used as indicators of the palaeotemperature development, particularly in cases where calcareous microfossils are rare or absent. With regard to terrestrial waters it is unknown whether or not palaeotemperature scale can be used in a limnic ecosystem. Due to the fact that the seasonal variations in lakes are larger than in oceans, specific problems arise when working with freshwater sediments. Thus, an understanding of the contribution of the various factors (e.g. temperature, light nutrients, competition) influencing the formation of isotope signals in biogenic opal is a prerequisite for the accurate interpretation of environmental processes. Since it is impossible to examine the influence of a single parameter under natural ecosystem conditions due to permanent changes of the environment, laboratory experiments with single diatom species are needed. Therefore, the aim of this study was to investigate the correlation between the oxygen isotope variations in biogenic opal and different environmental parameters using steady state cultures with diatoms. It should be examined whether or not the different diatom species grown under identical conditions show equal oxygen isotope ratios (species relationship), if variations of the water temperature induce variations of the oxygen isotope ratio (relationship with temperature), variable parameters such as light intensity and nitrate concentration influence the isotope ratio, and if vital effects (e.g. growth rate) lead to variations of the oxygen isotope ratio. (orig.)

  4. The isotopic composition of valves and organic tissue of diatoms grown in steady state cultures under varying conditions of temperature, light and nutrients. Implications for the interpretation of oxygen isotopes from sedimentary biogenic opal as proxies of environmental variations

    International Nuclear Information System (INIS)

    Kowalczyk, K.

    2006-05-01

    The oxygen isotopes of diatomaceous silica from marine and freshwater sediments are frequently used as indicators of the palaeotemperature development, particularly in cases where calcareous microfossils are rare or absent. With regard to terrestrial waters it is unknown whether or not palaeotemperature scale can be used in a limnic ecosystem. Due to the fact that the seasonal variations in lakes are larger than in oceans, specific problems arise when working with freshwater sediments. Thus, an understanding of the contribution of the various factors (e.g. temperature, light nutrients, competition) influencing the formation of isotope signals in biogenic opal is a prerequisite for the accurate interpretation of environmental processes. Since it is impossible to examine the influence of a single parameter under natural ecosystem conditions due to permanent changes of the environment, laboratory experiments with single diatom species are needed. Therefore, the aim of this study was to investigate the correlation between the oxygen isotope variations in biogenic opal and different environmental parameters using steady state cultures with diatoms. It should be examined whether or not the different diatom species grown under identical conditions show equal oxygen isotope ratios (species relationship), if variations of the water temperature induce variations of the oxygen isotope ratio (relationship with temperature), variable parameters such as light intensity and nitrate concentration influence the isotope ratio, and if vital effects (e.g. growth rate) lead to variations of the oxygen isotope ratio. (orig.)

  5. Oxygen vibrations in the series Bi2Sr2Ca{_{n-1}}Cu{n}O{_{4+2 n+y}}

    Science.gov (United States)

    Faulques, E.; Dupouy, P.; Lefrant, S.

    1991-06-01

    We present a discussion of the oxygen vibrations in the Bi{2}Sr{2}Ca{n-1}Cu{n}O{4+2 n+y} high T_c superconductors with the aim of interpreting Raman spectra in the case of the non-symmorphic Amaa structure. Group theory shows that the oxygen atoms belonging to the central CuO{2} plane generate a Raman activity for the n=1,3 phases. Consequently, we propose a novel assignment for the lines of weak intensity at 297, 316 and 333 cm^{-1}. It is shown that the two components of the 460 cm^{-1} band may be consistent with the Amma structure. Spectra recorded in crossed polarization exhibit weak lines which could be assigned to B {1g} modes expected for the three phases. Nous présentons une discussion sur les vibrations des atomes d'oxygène dans la série des supraconducteurs Bi{2}Sr{2}Ca{n-1}Cu{n}O{4+2 n+y} dans le but d'interpréter les spectres Raman. L'analyse des modes normaux de vibration de la structure Amaa pour les phases n=1 ou 3 montre que les atomes d'oxygène du plan CuO{2} contenant les centres d'inversion donnent lieu à une activité Raman. En conséquence, nous proposons une nouvelle attribution pour les raies de faible intensité à 297, 316 et 333 cm^{-1}. Nous montrons que le dédoublement de la bande à 460 cm^{-1} pourrait être dû à la structure Amaa. Les spectres enregistrés en polarization croisée montrent de faibles bandes qui peuvent être attribuées aux modes B {1g} attendus pour les trois phases.

  6. Oxygen isotope analysis of phosphate: improved precision using TC/EA CF-IRMS.

    Science.gov (United States)

    LaPorte, D F; Holmden, C; Patterson, W P; Prokopiuk, T; Eglington, B M

    2009-06-01

    Oxygen isotope values of biogenic apatite have long demonstrated considerable promise for paleothermometry potential because of the abundance of material in the fossil record and greater resistance of apatite to diagenesis compared to carbonate. Unfortunately, this promise has not been fully realized because of relatively poor precision of isotopic measurements, and exceedingly small size of some substrates for analysis. Building on previous work, we demonstrate that it is possible to improve precision of delta18O(PO4) measurements using a 'reverse-plumbed' thermal conversion elemental analyzer (TC/EA) coupled to a continuous flow isotope ratio mass spectrometer (CF-IRMS) via a helium stream [Correction made here after initial online publication]. This modification to the flow of helium through the TC/EA, and careful location of the packing of glassy carbon fragments relative to the hot spot in the reactor, leads to narrower, more symmetrically distributed CO elution peaks with diminished tailing. In addition, we describe our apatite purification chemistry that uses nitric acid and cation exchange resin. Purification chemistry is optimized for processing small samples, minimizing isotopic fractionation of PO4(-3) and permitting Ca, Sr and Nd to be eluted and purified further for the measurement of delta44Ca and 87Sr/86Sr in modern biogenic apatite and 143Nd/144Nd in fossil apatite. Our methodology yields an external precision of +/- 0.15 per thousand (1sigma) for delta18O(PO4). The uncertainty is related to the preparation of the Ag3PO4 salt, conversion to CO gas in a reversed-plumbed TC/EA, analysis of oxygen isotopes using a CF-IRMS, and uncertainty in constructing calibration lines that convert raw delta18O data to the VSMOW scale. Matrix matching of samples and standards for the purpose of calibration to the VSMOW scale was determined to be unnecessary. Our method requires only slightly modified equipment that is widely available. This fact, and the

  7. A Novel Method for Bacterial UTI Diagnosis Using Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Evdokia Kastanos

    2012-01-01

    Full Text Available The current state of the art on bacterial classification using Raman and Surface Enhanced Raman Spectroscopy (SERS for the purpose of developing a rapid and more accurate method for urinary tract infection (UTI diagnosis is presented. SERS, an enhanced version of Raman offering much increased sensitivity, provides complex biochemical information which, in conjunction with advanced analysis and classification techniques, can become a valuable diagnostic tool. The variety of metal substrates used for SERS, including silver and gold colloids, as well as nanostructured metal surfaces, is reviewed. The challenges in preprocessing noisy and complicated spectra and the various methods used for feature creation as well as a novel method using spectral band ratios are described. The various unsupervised and supervised classification methods commonly used for SERS spectra of bacteria are evaluated. Current research on transforming SERS into a valuable clinical tool for the diagnosis of UTIs is presented. Specifically, the classification of bacterial spectra (a as positive or negative for an infection, (b as belonging to a particular species of bacteria, and (c as sensitive or resistant to an antibiotic are described. This work can lead to the development of novel technology with extremely important benefits for public health.

  8. Water relations link carbon and oxygen isotope discrimination to phloem sap sugar concentration in eucalyptus globulus

    International Nuclear Information System (INIS)

    Cernusak, L.A.; Farquhar, G.D.; Arthur, D.J; Pate, J.S.

    2002-01-01

    Full text: The carbon isotope ratio of phloem sap sugars has been previously observed to correlate strongly with the phloem sap sugar concentration in Eucalyptus globulus. We hypothesized that the correspondence between these two parameters results from co-linearity in their responses to variation in plant water potential. Carbon isotope discrimination is expected to decrease with decreasing plant water potential due to the influence of stomatal conductance on the ratio of intercellular to ambient CO 2 , concentrations (c 1 /c a ). Conversely, we expected the phloem sap sugar concentration to increase with decreasing plant water potential, thereby maintaining positive turgor pressure within the sieve tubes. The study comprised 40 individual Eucalyptus globulus trees growing in three plantations situated on opposing ends of a rainfall gradient in southwestern Australia. A strong correlation was observed between the carbon isotope ratio in phloem sap sugars and phloem sap sugar concentration. Carbon isotope discrimination correlated positively with shoot water potential, whereas phloem sap sugar concentration correlated negatively with shoot water potential. The relationship between carbon isotope discrimination measured in phloem sap sugars collected from the stem and c 1 /c a measured instantaneously on subtending leaves was close to that theoretically predicted. Accordingly, a strong, negative relationship was observed between instantaneous c 1 /c a and the phloem sap sugar concentration. Oxygen isotope discrimination in phloem sap sugars also correlated strongly with phloem sap sugar concentration. A theoretical model suggested that the observed variation in stomatal conductance was sufficient to account for the variation observed in oxygen isotope discrimination across the study. Results strongly support the contention that water relations form a mechanistic link between phloem sap sugar concentration and both instantaneous and integrated measures of the

  9. The impact of moisture sources on the oxygen isotope composition of precipitation at a continental site in central Europe

    Science.gov (United States)

    Krklec, Kristina; Domínguez-Villar, David; Lojen, Sonja

    2018-06-01

    The stable isotope composition of precipitation records processes taking place within the hydrological cycle. Potentially, moisture sources are important controls on the stable isotope composition of precipitation, but studies focused on this topic are still scarce. We studied the moisture sources contributing to precipitation at Postojna (Slovenia) from 2009 to 2013. Back trajectory analyses were computed for the days with precipitation at Postojna. The moisture uptake locations were identified along these trajectories using standard hydrometeorological formulation. The moisture uptake locations were integrated in eight source regions to facilitate its comparison to the monthly oxygen isotope composition (δ18O values) of precipitation. Nearly half of the precipitation originated from continental sources (recycled moisture), and >40% was from central and western Mediterranean. Results show that moisture sources do not have a significant impact on the oxygen isotope composition at this site. We suggest that the large proportion of recycled moisture originated from transpiration rather than evaporation, which produced water vapour with less negative δ18O values. Thus the difference between the oceanic and local vapour source was reduced, which prevented the distinction of the moisture sources based on their oxygen isotope signature. Nevertheless, δ18O values of precipitation are partially controlled by climate parameters, which is of major importance for paleoclimate studies. We found that the main climate control on Postojna δ18O values of precipitation is the surface temperature. Amount effect was not recorded at this site, and the winter North Atlantic Oscillation (NAO) does not impact the δ18O values of precipitation. The Western Mediterranean Oscillation (WeMO) was correlated to oxygen stable isotope composition, although this atmospheric pattern was not a control. Instead we found that the link to δ18O values results from synoptic scenarios affecting We

  10. Raman scattering studies of mobile ions in superionic conductor hollandites

    International Nuclear Information System (INIS)

    Shibata, Y.; Suemoto, T.; Ishigame, M.

    1986-01-01

    The Raman spectra of the superionic conductors K/sub 1.6/Mg/sub 0.8/Ti/sub 7.2/O 16 , Cs/sub 1.2/Mg/sub 0.6/Ti/sub 7.4/O 16 , and (KTl)/sub 1.6/Mg/sub 0.8/Ti/sub 7.2/O 16 are measured in the frequency range from 5 to 1000 cm -1 . In the range from 100 to 1000 cm -1 Raman spectra hardly show alkali ion dependence. On the contrary, in the frequency range from 5 to 100 cm -1 , an additional Raman band is observed. This Raman band shows alkali ion dependence. By using the Frenkel-Kontorova model for the hollandite crystal with the given configuration of the mobile ions, it is found that the dependence of vibrational frequency of mobile ions with kinds of alkali ion is well explained and that the concept of 'super unit cell' that is introduced by Beyeler is very useful to explain the Raman bands which are observed below 100 cm -1 in hollandite crystals. (author)

  11. Spectroscopy and Raman imaging of inhomogeneous materials

    International Nuclear Information System (INIS)

    Maslova, Olga

    2014-01-01

    This thesis is aimed at developing methodologies in Raman spectroscopy and imaging. After reviewing the statistical instruments which allow treating giant amount of data (multivariate analysis and classification), the study is applied to two families of well-known materials which are used as models for testing the limits of the implemented developments. The first family is a series of carbon materials pyrolyzed at various temperatures and exhibiting inhomogeneities at a nm scale which is suitable for Raman-X-ray diffraction combination. Another results concern the polishing effect on carbon structure. Since it is found to induce Raman artifacts leading to the overestimation of the local structural disorder, a method based on the use of the G band width is therefore proposed in order to evaluate the crystallite size in both unpolished and polished nano-graphites. The second class of materials presents inhomogeneities at higher (micrometric) scales by the example of uranium dioxide ceramics. Being well adapted in terms of spatial scale, Raman imaging is thus used for probing their surfaces. Data processing is implemented via an approach combining the multivariate (principal component) analysis and the classical fitting procedure with Lorentzian profiles. The interpretation of results is supported via electron backscattering diffraction (EBSD) analysis which enables us to distinguish the orientation effects of ceramic grains from other underlying contributions. The last ones are mainly localized at the grain boundaries, that is testified by the appearance of a specific Raman mode. Their origin seems to be caused by stoichiometric oxygen variations or impurities, as well as strain inhomogeneities. The perspectives of this work include both the implementation of other mathematical methods and in-depth analysis of UO 2 structure damaged by irradiation (anisotropic effects, role of grain boundaries). (author) [fr

  12. Investigation of the Sensitivity of Transmission Raman Spectroscopy for Polymorph Detection in Pharmaceutical Tablets.

    Science.gov (United States)

    Feng, Hanzhou; Bondi, Robert W; Anderson, Carl A; Drennen, James K; Igne, Benoît

    2017-08-01

    Polymorph detection is critical for ensuring pharmaceutical product quality in drug substances exhibiting polymorphism. Conventional analytical techniques such as X-ray powder diffraction and solid-state nuclear magnetic resonance are utilized primarily for characterizing the presence and identity of specific polymorphs in a sample. These techniques have encountered challenges in analyzing the constitution of polymorphs in the presence of other components commonly found in pharmaceutical dosage forms. Laborious sample preparation procedures are usually required to achieve satisfactory data interpretability. There is a need for alternative techniques capable of probing pharmaceutical dosage forms rapidly and nondestructively, which is dictated by the practical requirements of applications such as quality monitoring on production lines or when quantifying product shelf lifetime. The sensitivity of transmission Raman spectroscopy for detecting polymorphs in final tablet cores was investigated in this work. Carbamazepine was chosen as a model drug, polymorph form III is the commercial form, whereas form I is an undesired polymorph that requires effective detection. The concentration of form I in a direct compression tablet formulation containing 20% w/w of carbamazepine, 74.00% w/w of fillers (mannitol and microcrystalline cellulose), and 6% w/w of croscarmellose sodium, silicon dioxide, and magnesium stearate was estimated using transmission Raman spectroscopy. Quantitative models were generated and optimized using multivariate regression and data preprocessing. Prediction uncertainty was estimated for each validation sample by accounting for all the main variables contributing to the prediction. Multivariate detection limits were calculated based on statistical hypothesis testing. The transmission Raman spectroscopic model had an absolute prediction error of 0.241% w/w for the independent validation set. The method detection limit was estimated at 1.31% w/w. The

  13. Oxygen isotope mapping and evaluation of paleo-hydrothermal systems associated with synvolcanic intrusion and VMS deposits

    International Nuclear Information System (INIS)

    Taylor, B.E

    2001-01-01

    Whole-rock oxygen isotope mapping provides a useful method for the delineation and quantitative evaluation of paleo-hydrothermal systems associated with syn-volcanic intrusions and volcanic-associated massive sulfide (VMS) deposits. During the course of a four-year study of regional alteration systems associated with VMS Deposits, four syn-volcanic intrusive complexes in Canada were mapped using stable isotope techniques. The complexes included Noranda, Quebec; Clifford-Ben Nevis, Ontario; Snow Lake, Manitoba, and Sturgeon Lake, Ontario. This study was regional in extent, involving large areas and large numbers of whole-rock samples: Noranda (625 km 2 ;≥600 samples, plus others (total = 1198); Sturgeon Lake (525 km 2 ; 452 samples); Clifford-Ben Nevis (160 km 2 ; 251 samples); and Snow Lake (84 km 2 ; 575 samples). Isotopic data on whole-rock carbonates and hydrous minerals were also collected. The regional isotopic studies were carried out in concert with other studies on mineral assemblages and mineral composition, and on associated intrusive and extrusive rocks. The Clifford-Ben Nevis area was selected as a control area, in as much as it contains no known VMS deposits; all other areas are well-known, productive VMS districts. Oxygen isotope maps are, in a sense, thermal maps, illustrating the paleo-distribution of heat and fluids, and offering a potential aid to exploration. The isotopic data may be contoured to reveal zones of 18 O depletion and enrichment, relative to unaltered rocks. Zones of δ 18 O≤60% comprise rocks that have reacted with seawater at high (e.g., 300+ o C) temperatures. The volume of foot-wall rocks isotopically-depleted by water/rock interaction during the life of one or more episodes of submarine hydrothermal activity is proportional to the amount of heat available from the syn-volcanic intrusive center. These altered rocks comprise the reaction zone often inferred to have supplied metals and other constituents for the VMS deposits

  14. Inferences about pressures and vertical extension of cloud layers from POLDER3/PARASOL measurements in the oxygen A-band

    Science.gov (United States)

    Desmons, Marine; Ferlay, Nicolas; Parol, Frédéric; Vanbauce, Claudine; Mcharek, Linda

    2013-05-01

    We present new inferences about cloud vertical structures from multidirectionnal measurements in the oxygen A-band. The analysis of collocated data provided by instruments onboard satellite platforms within the A-Train, as well as simulations have shown that for monolayered clouds, the cloud oxygen pressure PO2 derived from the POLDER3 instrument was sensitive to the cloud vertical structure in two ways: First, PO2 is actually close to the pressure of the geometrical middle of cloud and we propose a method to correct it to get the cloud top pressure (CTP), and then to obtain the cloud geometrical extent. Second, for the liquid water clouds, the angular standard deviation σPO2 of PO2 is correlated with the geometrical extent of cloud layers, which makes possible a second estimation of the cloud geometrical thickness. The determination of the vertical location of cloud layers from passive measurements, eventually completed from other observations, would be useful in many applications for which cloud macrophysical properties are needed.

  15. Raman spectroscopy of the organic and mineral structure of bone grafts

    Energy Technology Data Exchange (ETDEWEB)

    Timchenko, E V; Timchenko, P E; Taskina, L A [S.P. Korolev Samara State Aerospace University, Samara (Russian Federation); Volova, L T; Ponomareva, Yu V [Samara State Medical University, Samara (Russian Federation)

    2014-07-31

    We report the results of experimental Raman spectroscopy of donor bone samples (rat, rabbit and human) with varying degrees of mineralisation. Raman spectra are obtained for the Raman bands of 950 – 962 cm{sup -1} (PO{sub 4}){sup 3-}, 1065 – 1070 cm{sup -1} (CO{sub 3}){sup 2-} and 1665 cm{sup -1} (amide I). In demineralised bone, a sharp (98%) decrease in the intensities of 950 – 962 and 1065 – 1070 cm{sup -1} bands is observed, which is accompanied by the emergence of the 1079 – 1090 cm{sup -1} band corresponding to the hydrated amorphous state CO{sub 3}{sup -3}. (laser biophotonics)

  16. Oxygen isotope fractionation between human phosphate and water revisited

    DEFF Research Database (Denmark)

    Daux, Valérie; Lécuyer, Christophe; Héran, Marie-Anne

    2008-01-01

    to investigate the impact of solid food consumption on the oxygen isotope composition of the total ingested water (drinking water+solid food water). The results, along with those from three, smaller published data sets, can be considered as random estimates of a unique delta18OW/delta18OP linear relationship...... collected at 12 sites located at latitudes ranging from 4 degrees N to 70 degrees N together with the corresponding oxygen composition of tap waters (delta18OW) from these areas. In addition, the delta18O of some raw and boiled foods were determined and simple mass balance calculations were performed......: delta18OW=1.54(+/-0.09)xdelta18OP-33.72(+/-1.51)(R2=0.87: p [H0:R2=0]=2x10(-19)). The delta18O of cooked food is higher than that of the drinking water. As a consequence, in a modern diet the delta18O of ingested water is +1.05 to 1.2 per thousand higher than that of drinking water in the area. In meat...

  17. Ion Microprobe Measurements of Comet Dust and Implications for Models of Oxygen Isotope Heterogeneity in the Solar System

    Science.gov (United States)

    Snead, C. J.; McKeegan, K. D.; Keller, L. P.; Messenger, S.

    2017-01-01

    The oxygen isotopic compositions of anhydrous minerals in carbonaceous chondrites reflect mixing between a O-16-rich and O-17, O18-rich reservoir. The UV photodissociation of CO (i.e. selfshielding) has been proposed as a mass-independent mechanism for producing these isotopically distinct reservoirs. Self-shielding models predict the composition for the CO gas reservoir to be O-16-rich, and that the accreting primordial dust was in isotopic equilibrium with the gaseous reservoir [1, 2]. Self-shielding also predicts that cometary water, presumed to represent the O-17, O-18-rich reservoir, should be enriched in O-17 and O-18, with compositions of 200 -1000per mille, and that the interaction with this O-17, O-18-rich H2O reservoir altered the compositions of the primordial dust toward planetary values. The bulk composition of the solar nebula, which may be an approximation to the 16O-rich gaseous reservoir, has been constrained by the Genesis results [3]. However, material representing the O-17, O-18-rich end-member is rare [4], and dust representing the original accreting primordial dust has been challenging to conclusively identify in current collections. Anhydrous dust from comets, which accreted in the distal cold regions of the nebula at temperatures below approximately 30K, may provide the best opportunity to measure the oxygen isotope composition of primordial dust. Chondritic porous interplanetary dust particles (CP-IDPs) have been suggested as having cometary origins [5]; however, until direct comparisons with dust from a known comet parent body were made, link between CP-IDPs and comets remained circumstantial. Oxygen isotope analyses of particles from comet 81P/Wild 2 collected by NASA's Stardust mission have revealed surprising similarities to minerals in carbonaceous chondrites which have been interpreted as evidence for large scale radial migration of dust components from the inner solar nebula to the accretion regions of Jupiter- family comets [6

  18. Oxygen isotopic abundances in the atmospheres of seven red giant stars

    International Nuclear Information System (INIS)

    Harris, M.J.; Lambert, D.L.

    1984-01-01

    Abundances ratios of the oxygen isotopes have been measured in α Tau, β And, μ Gem, α Her, β Peg, γ Dra, and α Boo. In all the stars the 16 O/ 18 O ratios are similar; the mean value is 475, which is consistent with the solar system value 16 O/ 18 O = 490. The 16 O/ 17 O ratios range from approx.1000 for β Peg and α Boo to 16 O/ 17 O = 160 for β And

  19. A study of oxygen isotopic fractionation during bio-induced calcite precipitation in eutrophic Baldeggersee, Switzerland

    NARCIS (Netherlands)

    Teranes, J.L.; McKenzie, J.A.; Bernasconi, S.M.; Lotter, A.F.; Sturm, M.

    1999-01-01

    Abstract—In order to better understand environmental factors controlling oxygen isotope shifts in autochthonous lacustrine carbonate sequences, we undertook an extensive one-year study (March, 1995 to February, 1996) of water-column chemistry and daily sediment trap material from a small lake in

  20. Early-Middle Pleistocene benthic turnover and oxygen isotope stratigraphy from the Central Mediterranean (Valle di Manche, Crotone Basin, Italy): Data and trends

    OpenAIRE

    Michele Azzarone; Patrizia Ferretti; Veronica Rossi; Daniele Scarponi; Luca Capraro; Patrizia Macrì; John W. Huntley; Costanza Faranda

    2018-01-01

    Ostracod faunal turnover and oxygen isotope data (foraminifera) along the Valle di Manche (VdM) section are herein compiled. Specifically, the material reported in this work includes quantitative palaeoecological data and patterns of ostracod fauna framed within a high-resolution oxygen isotope stratigraphy (δ18O) from Uvigerina peregrina. In addition, the multivariate ostracod faunal stratigraphic trend (nMDS axis-1 sample score) is calibrated using bathymetric distributions of extant mollus...

  1. Two band superconductivity for MgB2: Tc and isotope exponent α as a function of the carrier number n and the role of the center of the band

    International Nuclear Information System (INIS)

    Rodriguez-Nunez, J.J.; Schmidt, A.A.; Bianconi, A.; Perali, A.

    2005-08-01

    We study a two band superconducting, assuming that we have two tight binding bands, ε 2 (k-vector) = ε 2 (0) - t 2 [cos(k x ) + cos(k y ) + s 2 cos(k z )] - μ and ε 3 (k-vector) ε 3 (0) - t 3 [cos(k x ) + cos(k y )+s 3 cos(k z )] - μ. We solve the two gap equations at T = T c and calculate T c x n and μ x n for various values of pairing interaction, V, and Debye frequency, ω D . Also, from an expression developed in a previous paper by two of the present authors, we calculate α x n, where n is the number of carriers per site per band and α is the isotope exponent. We take only interband scattering, V, as a first approach. We find that in order to have superconductivity (T c ≠ 0), large values of V are necessary. Also, for V/ω D > 1, we obtain α > 1.00 and for V/ω D >1.00, the isotope exponent becomes less than 1. (author)

  2. Native alunogen: A Raman spectroscopic study of a well-described specimen

    Science.gov (United States)

    Košek, Filip; Culka, Adam; Žáček, Vladimír; Laufek, František; Škoda, Radek; Jehlička, Jan

    2018-04-01

    Alunogen (Al2(SO4)3 · 17H2O) is a common secondary mineral in the terrestrial environment (acid mine drainage, volcanic or coal-fire fumaroles), and is also formed through the acidic weathering of aluminosilicates. Moreover, alunogen has been suggested as a part of the Al-bearing deposits on Mars. The identification of alunogen in secondary sulfate mixtures by Raman spectroscopy strictly depends on good knowledge of alunogen spectral features and band positions. However, comprehensive Raman data of alunogen of natural origin are lacking. This study reports on Raman spectra obtained from two natural specimens originating from a burning coal dump at the Schoeller mine, Kladno, Czech Republic, along with the additional characterizations by infrared spectroscopy, X-ray diffraction, and electron microprobe. For comparison purposes, a Raman spectrum of a synthetic analogue was also obtained. The studied specimens have (Al1.99Fe3+0.01)2 (SO4)3·17H2O as their calculated empirical formula, and the structural parameters correspond to the previously reported data for alunogen. Both natural specimens and the synthetic analogue showed uniform Raman spectra with no extensive band splitting in the sulfate vibrational regions. The most intensive Raman band associated with the symmetric stretching vibration of the SO4 tetrahedra (ν1) is located at 992 cm-1. A multicomponent band was observable in the characteristic region for OH-related vibrations. A small variation in the spectral intensity of the hydroxyl bands suggests that the studied specimens could possibly be slightly dehydrated.

  3. Intervention of oxygen-control ability to radiation sensitivity, cell aging and cell transformation

    International Nuclear Information System (INIS)

    Yoshii, Hanako; Watanabe, Masami

    2009-01-01

    Oxygen is essential for life, and cells have therefore developed numerous adaptive responses to oxygen change. Here, we examined the difference in oxygen-control functions of human (HE), mouse (ME), and Syrian hamster embryo (SHE) cells cultured under different oxygen conditions (0.5%, 2% and 20%), and also examined whether oxygen tensions contributed to cellular lifespan and transformation. HE cells had their replicative lifespan slightly extended under hypoxic (0.5% and 2% oxygen) conditions, but were not immortalized under any of the oxygen concentrations. On the other hand, although ME cells cultured under 20% oxygen tension decreased their proliferation potency temporarily at early stage, all rodent cells were immortalized and acquired anchorage-independency, regardless of oxygen tension. These results suggest that cellular oxygen control function is related to sensitivities cellular immortalization and transformation. To understand intervention of oxygen control ability on cellular immortalization and transformation, we examined the intracellular oxidative level, mitochondria functions and radiation sensitivity. Intracellular oxidative levels of hypoxically cultured rodent cells were significantly enhanced. Mitochondrial membrane potential was altered depend on oxygen tensions, but the change was not parallel to mitochondria number in rodent cells. ME cells were particularly sensitive to oxygen change, and showed a clear oxygen effect on the X-ray survival. However, there was no difference in frequency of radiation-induced micronuclei between HE and ME cells. These results suggest that the response to oxygen change differs markedly in HE and rodent cells. (author)

  4. Accurate and precise measurement of oxygen isotopic fractions and diffusion profiles by selective attenuation of secondary ions (SASI).

    Science.gov (United States)

    Téllez, Helena; Druce, John; Hong, Jong-Eun; Ishihara, Tatsumi; Kilner, John A

    2015-03-03

    The accuracy and precision of isotopic analysis in Time-of-Flight secondary ion mass spectrometry (ToF-SIMS) relies on the appropriate reduction of the dead-time and detector saturation effects, especially when analyzing species with high ion yields or present in high concentrations. Conventional approaches to avoid these problems are based on Poisson dead-time correction and/or an overall decrease of the total secondary ion intensity by reducing the target current. This ultimately leads to poor detection limits for the minor isotopes and high uncertainties of the measured isotopic ratios. An alternative strategy consists of the attenuation of those specific secondary ions that saturate the detector, providing an effective extension of the linear dynamic range. In this work, the selective attenuation of secondary ion signals (SASI) approach is applied to the study of oxygen transport properties in electroceramic materials by isotopic labeling with stable (18)O tracer and ToF-SIMS depth profiling. The better analytical performance in terms of accuracy and precision allowed a more reliable determination of the oxygen surface exchange and diffusion coefficients while maintaining good mass resolution and limits of detection for other minor secondary ion species. This improvement is especially relevant to understand the ionic transport mechanisms and properties of solid materials, such as the parallel diffusion pathways (e.g., oxygen diffusion through bulk, grain boundary, or dislocations) in electroceramic materials with relevant applications in energy storage and conversion devices.

  5. Oxygen and hydrogen isotope ratios in tree rings: how well do models predict observed values?

    CSIR Research Space (South Africa)

    Waterhouse, JS

    2002-07-30

    Full Text Available . Cosmo- chim. Acta 46 (1982) 955^965. [35] W.M. Buhay, T.W.D. Edwards, Climate in southwestern Ontario, Canada, between AD 1610 and 1885 inferred from oxygen and hydrogen isotopic measurements of wood cellulose from trees in di?erent hydrological set...

  6. Carbon Nanotubes’ Effect on Mitochondrial Oxygen Flux Dynamics: Polarography Experimental Study and Machine Learning Models using Star Graph Trace Invariants of Raman Spectra

    Directory of Open Access Journals (Sweden)

    Michael González-Durruthy

    2017-11-01

    Full Text Available This study presents the impact of carbon nanotubes (CNTs on mitochondrial oxygen mass flux (Jm under three experimental conditions. New experimental results and a new methodology are reported for the first time and they are based on CNT Raman spectra star graph transform (spectral moments and perturbation theory. The experimental measures of Jm showed that no tested CNT family can inhibit the oxygen consumption profiles of mitochondria. The best model for the prediction of Jm for other CNTs was provided by random forest using eight features, obtaining test R-squared (R2 of 0.863 and test root-mean-square error (RMSE of 0.0461. The results demonstrate the capability of encoding CNT information into spectral moments of the Raman star graphs (SG transform with a potential applicability as predictive tools in nanotechnology and material risk assessments.

  7. Impact of Antibody Bioconjugation on Emission and Energy Band Profile of CdSeTe/ZnS Quantum Dots

    Science.gov (United States)

    Torchynska, T. V.; Gomez, J. A. Jaramillo; Polupan, G.; Macotela, L. G. Vega

    2018-03-01

    The variation of the photoluminescence (PL) and Raman scattering spectra of CdSeTe/ZnS quantum dots (QDs) on conjugation to an antibody has been investigated. Two types of CdSeTe/ZnS QD with different emission wavelength (705 nm and 800 nm) were studied comparatively before and after conjugation to anti-pseudorabies virus antibody (AB). Nonconjugated QDs were characterized by Gaussian-type PL bands. PL shifts to higher energy and asymmetric shape of PL bands was detected in PL spectra of bioconjugated QDs. The surface-enhanced Raman scattering effect was exhibited by the bioconjugated CdSeTe/ZnS QDs, indicating that the excitation light used in the Raman study generated electric dipoles in the AB molecules. The optical bandgap of the CdSeTe core was calculated numerically as a function of its radius based on an effective mass approximation model. The energy band diagrams for non- and bioconjugated CdSeTe/ZnS QDs were obtained, revealing a type II quantum well in the CdSeTe core. The calculations show that AB dipoles, excited in the bioconjugated QDs, stimulate a change in the energy band diagram of the QDs that alters the PL spectrum. These results could be useful for improving the sensitivity of QD biosensors.

  8. Atmospheric Airborne Pressure Measurements Using the Oxygen A Band for the ASCENDS Mission

    Science.gov (United States)

    Riris, Haris; Rodriguez, Mike; Stephen, Mark; Hasselbrack, William; Allan, Graham; Mao, Jiamping,; Kawa, Stephan R.; Weaver, Clark J.

    2011-01-01

    We report on airborne atmospheric pressure measurements using new fiber-based laser technology and the oxygen A-band at 765 nm. Remote measurements of atmospheric temperature and pressure are required for a number of NASA Earth science missions and specifically for the Active Sensing of CO2 Emissions Over Nights, Days, and Seasons (ASCENDS) mission. Accurate measurements of tropospheric CO2 on a global scale are very important in order to better understand its sources and sinks and to improve predictions on any future climate change. The ultimate goal of a CO2 remote sensing mission, such as ASCENDS, is to derive the CO2 concentration in the atmosphere in terms of mole fraction in unit of parts-per-million (ppmv) with regard to dry air. Therefore, both CO2 and the dry air number of molecules in the atmosphere are needed in deriving this quantity. O2 is a stable molecule and uniformly mixed in the atmosphere. Measuring the O2 absorption in the atmosphere can thus be used to infer the dry air number of molecules and then used to calculate CO2 concentration. With the knowledge of atmospheric water vapor, we can then estimate the total surface pressure needed for CO2 retrievals. Our work, funded by the ESTO IIP program, uses fiber optic technology and non-linear optics to generate 765 nm laser radiation coincident with the Oxygen A-band. Our pulsed, time gated technique uses several on- and off-line wavelengths tuned to the O2 absorption line. The choice of wavelengths allows us to measure the pressure by using two adjacent O2 absorptions in the Oxygen A-band. Our retrieval algorithm fits the O2 lineshapes and derives the pressure. Our measurements compare favorably with a local weather monitor mounted outside our laboratory and a local weather station.

  9. Oxygen and carbon isotopic compositions of gases respired by humans

    International Nuclear Information System (INIS)

    Epstein, S.; Zeiri, L.

    1988-01-01

    Oxygen-isotope fractionation associated with respiration in human individuals at rest is linearly related to the fraction of the O 2 utilized in the respiration process. The slope of this relationship is affected by a history of smoking, by vigorous exercise, and by the N 2 /O 2 ratio of the inhaled gas. For patients who suffer anemia-related diseases, the slope of this relationship is directly proportional to their level of hemoglobin. These results introduce a new approach for studying the mechanisms of O 2 consumption in human respiration and how they are affected by related diseases

  10. Raman Investigation of The Uranium Compounds U3O8, UF4, UH3 and UO3 under Pressure at Room Temperature

    International Nuclear Information System (INIS)

    Lipp, M.J.; Jenei, Z.; Park-Klepeis, J.; Evans, W.J.

    2011-01-01

    Our current state-of-the-art X-ray diffraction experiments are primarily sensitive to the position of the uranium atom. While the uranium - low-Z element bond (such as U-H or U-F) changes under pressure and temperature the X-ray diffraction investigations do not reveal information about the bonding or the stoichiometry. Questions that can be answered by Raman spectroscopy are (i) whether the bonding strength changes under pressure, as observed by either blue- or red-shifted peaks of the Raman active bands in the spectrum and (ii) whether the low-Z element will eventually be liberated and leave the host lattice, i.e. do the fluorine, oxygen, or hydrogen atoms form dimers after breaking the bond to the uranium atom. Therefore Raman spectra were also collected in the range where those decomposition products would appear. Raman is particularly well suited to these types of investigations due to its sensitivity to trace amounts of materials. One challenge for Raman investigations of the uranium compounds is that they are opaque to visible light. They absorb the incoming radiation and quickly heat up to the point of decomposition. This has been dealt with in the past by keeping the incoming laser power to very low levels on the tens of milliWatt range consequently affecting signal to noise. Recent modern investigations also used very small laser spot sizes (micrometer range) but ran again into the problem of heating and chemical sensitivity to the environment. In the studies presented here (in contrast to all other studies that were performed at ambient conditions only) we employ micro-Raman spectroscopy of samples situated in a diamond anvil cell. This increases the trustworthiness of the obtained data in several key-aspects: (a) We surrounded the samples in the DAC with neon as a pressure transmitting medium, a noble gas that is absolutely chemically inert. (b) Through the medium the sample is thermally heat sunk to the diamond anvils, diamond of course possessing the

  11. Synopsis of oxygen isotopes in geothermal solids and fluids of New Zealand

    International Nuclear Information System (INIS)

    Blattner, P.

    1982-01-01

    Geothermal minerals serve as downhole probes of oxygen isotope compositions and thus of parameters of geothermal hydrology. ''Deep'' wells (2500 m) in New Zealand show no sign of Δ 18 O values ''bottoming out''. Ngawha differs from other systems both in the level and profile details of Δ 18 O values. The reservoir fluid at Ngawha hydrogeology may or may not be suited for development of a high-throughput surface recharge system

  12. Raman study of ? crystals

    Science.gov (United States)

    Pimenta, M. A.; Oliveira, M. A. S.; Bourson, P.; Crettez, J. M.

    1997-09-01

    In this work we present a polarized Raman study of 0953-8984/9/37/020/img7 single crystals for several values of the concentration 0953-8984/9/37/020/img8 made using different scattering geometries. The Raman spectra, composed of broad bands, have been fitted in accordance with a symmetry analysis which allowed us to assign the vibrational modes, and determine their frequencies and damping constants. The results are compatible with an average hexagonal symmetry for the solid solutions with x in the range 0953-8984/9/37/020/img9. In each of the spectra we found two bands at about 590 and 0953-8984/9/37/020/img10, probably associated with the existence of 0953-8984/9/37/020/img11 structures in the solid solutions.

  13. The oxygen isotope effect on the in-plane penetration depth in cuprate superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Khasanov, R [Physik-Institut der Universitaet Zuerich, CH-8057 Zurich (Switzerland); Shengelaya, A [Physik-Institut der Universitaet Zuerich, CH-8057 Zurich (Switzerland); Morenzoni, E [Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Conder, K [Laboratory for Neutron Scattering, ETH Zuerich and PSI Villigen, CH-5232 Villigen PSI (Switzerland); Savic, I M [Faculty of Physics, University of Belgrade, 11001 Belgrade (Serbia and Montenegro); Keller, H [Physik-Institut der Universitaet Zuerich, CH-8057 Zurich (Switzerland)

    2004-10-13

    Muon spin rotation ({mu}SR) studies of the oxygen isotope ({sup 16}O/{sup 18}O) effect (OIE) on the in-plane magnetic field penetration depth {lambda}{sub ab} in cuprate high-temperature superconductors (HTS) are presented. First, the doping dependence of the OIE on the transition temperature T{sub c} in various HTS is briefly discussed. It is observed that different cuprate families show similar doping dependences of the OIE on T{sub c}. Then, bulk {mu}SR, low-energy {mu}SR, and magnetization studies of the total and site-selective OIE on {lambda}{sub ab} are described in some detail. A substantial OIE on {lambda}{sub ab} was observed in various cuprate families at all doping levels, suggesting that cuprate HTS are non-adiabatic superconductors. The experiments clearly demonstrate that the total OIE on T{sub c} and {lambda}{sub ab} arise from the oxygen sites within the superconducting CuO{sub 2} planes, demonstrating that the phonon modes involving the movement of planar oxygen are dominantly coupled to the supercarriers. Finally, it is shown that the OIE on T{sub c} and {lambda}{sub ab} exhibit a relation that appears to be generic for different families of cuprate HTS. The observation of these unusual isotope effects implies that lattice effects play an essential role in cuprate HTS and have to be considered in any realistic model of high-temperature superconductivity.

  14. Isotope effect in the organic superconductor β_H-(BEDT-TTF)2I3 where BEDT-TTF is bis (ethylenedithiotetrathiafulvalene)

    Science.gov (United States)

    Auban-Senzier, P.; Bourbonnais, C.; Jérome, D.; Lenoir, C.; Batail, P.; Canadell, E.; Buisson, J. P.; Lefrant, S.

    1993-03-01

    We have performed the simultaneous investigation of the isotope effect on the superconducting transition and on the Raman spectra in the organic superconductor β_H-(BEDT-TTF)2I3 (T_c = 8 K). For this purpose, we substitute ^{13}C for ^{12}C on the carbon sites of the central double bond of BEDT-TTF molecule. The isotope shifts measured by Raman experiments can be fairly well explained by standard molecular dynamics. However, the critical temperature is lowered by 0.2 K in the ^{13}C enriched material. We analyse the possible sources of this remarkable downward shift which leads to an isotope coefficient higher than the BCS value. The extended-Hückel calculations of the density of states for the two HOMO bands of β_H-(BEDT-TTF)2I3 do show that, within the framework of a weak coupling theory, its sizeable variation on the scale of ω_D cannot account for the observed isotope effect. On the other hand, we discuss how inelastic electronic scattering observed in resistivity measurements just above T_c can lead through a pair breaking mechanism to a sizeable increase of the isotope coefficient. Nous présentons une étude simultanée d'effet isotopique sur la transition supraconductrice et les spectres Raman dans le supraconducteur organique β_H-(BEDT-TTF)2I3 (T_c = 8 K). Pour cela, nous avons synthétisé le composé dans lequel les atomes de carbone de la double liaison centrale de la molécule BEDT-TTF sont substitués par l'isotope ^{13}C. Les déplacements isotopiques mesurés par spectroscopie Raman sont bien expliqués par la dynamique moléculaire standard. Cependant, la température critique est abaissée de 0.2 K dans le matériau enrichi en ^{13}C. Nous étudions les origines possibles de cet effet qui permet d'obtenir un coefficient isotopique supérieur à la valeur BCS. Des calculs de la densité d'états effectués par la méthode de Hückel étendue pour les deux bandes HOMO du composé montrent que, dans le cadre d'une théorie de couplage faible

  15. Isotopic diversity indices: how sensitive to food web structure?

    Science.gov (United States)

    Brind'Amour, Anik; Dubois, Stanislas F

    2013-01-01

    Recently revisited, the concept of niche ecology has lead to the formalisation of functional and trophic niches using stable isotope ratios. Isotopic diversity indices (IDI) derived from a set of measures assessing the dispersion/distribution of points in the δ-space were recently suggested and increasingly used in the literature. However, three main critics emerge from the use of these IDI: 1) they fail to account for the isotopic sources overlap, 2) some indices are highly sensitive to the number of species and/or the presence of rare species, and 3) the lack of standardization prevents any spatial and temporal comparisons. Using simulations we investigated the ability of six commonly used IDI to discriminate among different trophic food web structures, with a focus on the first two critics. We tested the sensitivity of the IDI to five food web structures along a gradient of sources overlap, varying from two distinct food chains with differentiated sources to two superimposed food chains sharing two sources. For each of the food web structure we varied the number of species (from 10 to 100 species) and the type of species feeding behaviour (i.e. random or selective feeding). Values of IDI were generally larger in food webs with distinct basal sources and tended to decrease as the superimposition of the food chains increased. This was more pronounced when species displayed food preferences in comparison to food webs where species fed randomly on any prey. The number of species composing the food web also had strong effects on the metrics, including those that were supposedly less sensitive to small sample size. In all cases, computing IDI on food webs with low numbers of species always increases the uncertainty of the metrics. A threshold of ~20 species was detected above which several metrics can be safely used.

  16. Detection of innersphere interactions between magnesium hydrate and the phosphate backbone of the HDV ribozyme using Raman crystallography.

    Science.gov (United States)

    Gong, Bo; Chen, Yuanyuan; Christian, Eric L; Chen, Jui-Hui; Chase, Elaine; Chadalavada, Durga M; Yajima, Rieko; Golden, Barbara L; Bevilacqua, Philip C; Carey, Paul R

    2008-07-30

    A Raman microscope and Raman difference spectroscopy are used to detect the vibrational signature of RNA-bound magnesium hydrate in crystals of hepatitis delta virus (HDV) ribozyme and to follow the effects of magnesium hydrate binding to the nonbridging phosphate oxygens in the phosphodiester backbone. There is a correlation between the Raman intensity of the innersphere magnesium hydrate signature peak, near 322 cm-1, and the intensity of the PO2- symmetric stretch, near 1100 cm-1, perturbed by magnesium binding, demonstrating direct observation of -PO2-...Mg2+(H2O)x innersphere complexes. The complexes may be pentahydrates (x = 5) and tetrahydrates (x = 4). The assignment of the Raman feature near 322 cm-1 to a magnesium hydrate species is confirmed by isotope shifts observed in D2O and H218O that are semiquantitatively reproduced by calculations. The standardized intensity changes in the 1100 cm-1 PO2- feature seen upon magnesium hydrate binding indicates that there are approximately 5 innersphere Mg2+...-O2P contacts per HDV molecule when the crystal is exposed to a solution containing 20 mM magnesium.

  17. Oxygen isotope fractionation between bird eggshell calcite and body water: application to fossil eggs from Lanzarote (Canary Islands)

    Science.gov (United States)

    Lazzerini, Nicolas; Lécuyer, Christophe; Amiot, Romain; Angst, Delphine; Buffetaut, Eric; Fourel, François; Daux, Valérie; Betancort, Juan Francisco; Flandrois, Jean-Pierre; Marco, Antonio Sánchez; Lomoschitz, Alejandro

    2016-10-01

    Oxygen and carbon isotope compositions of fossil bird eggshell calcite (δ18Ocalc and δ13Ccalc) are regularly used to reconstruct paleoenvironmental conditions. However, the interpretation of δ18Ocalc values of fossil eggshells has been limited to qualitative variations in local climatic conditions as oxygen isotope fractionations between calcite, body fluids, and drinking water have not been determined yet. For this purpose, eggshell, albumen water, and drinking water of extant birds have been analyzed for their oxygen and carbon isotope compositions. Relative enrichments in 18O relative to 16O between body fluids and drinking water of +1.6 ± 0.9 ‰ for semi-aquatic birds and of +4.4 ± 1.9 ‰ for terrestrial birds are observed. Surprisingly, no significant dependence to body temperature on the oxygen isotope fractionation between eggshell calcite and body fluids is observed, suggesting that bird eggshells precipitate out of equilibrium. Two empirical equations relating the δ18Ocalc value of eggshell calcite to the δ18Ow value of ingested water have been established for terrestrial and semi-aquatic birds. These equations have been applied to fossil eggshells from Lanzarote in order to infer the ecologies of the Pleistocene marine bird Puffinus sp. and of the enigmatic giant birds from the Pliocene. Both δ13Ccalc and δ18Ocalc values of Puffinus eggshells point to a semi-aquatic marine bird ingesting mostly seawater, whereas low δ13Ccalc and high δ18Ocalc values of eggshells from the Pliocene giant bird suggest a terrestrial lifestyle. This set of equations can help to quantitatively estimate the origin of waters ingested by extinct birds as well as to infer either local environmental or climatic conditions.

  18. Oxygen sensitivity of the nifLA promoter of Klebsiella pneumoniae.

    OpenAIRE

    Kong, Q T; Wu, Q L; Ma, Z F; Shen, S C

    1986-01-01

    Oxygen sensitivity of the nifLA promoter of Klebsiella pneumoniae has been demonstrated. Studies on the oxygen regulation of nifB-lacZ and nifH-lacZ fusions in the presence of the nifLA operon, which contains either an intact or a deleted nifL gene, indicate that possibly both the nifL promoter and the nifL product are responsible for nif repression by oxygen.

  19. Surface-Enhanced Raman Spectroscopy

    Indian Academy of Sciences (India)

    IAS Admin

    weak Raman signal, which facilitates identification in chemi- cal and biological systems. Recently, single-molecule Raman scattering has enhanced the detection sensitivity limit of ... was working on the molecular diffraction of light, which ulti-.

  20. On the Use of Biomineral Oxygen Isotope Data to Identify Human Migrants in the Archaeological Record: Intra-Sample Variation, Statistical Methods and Geographical Considerations.

    Directory of Open Access Journals (Sweden)

    Emma Lightfoot

    Full Text Available Oxygen isotope analysis of archaeological skeletal remains is an increasingly popular tool to study past human migrations. It is based on the assumption that human body chemistry preserves the δ18O of precipitation in such a way as to be a useful technique for identifying migrants and, potentially, their homelands. In this study, the first such global survey, we draw on published human tooth enamel and bone bioapatite data to explore the validity of using oxygen isotope analyses to identify migrants in the archaeological record. We use human δ18O results to show that there are large variations in human oxygen isotope values within a population sample. This may relate to physiological factors influencing the preservation of the primary isotope signal, or due to human activities (such as brewing, boiling, stewing, differential access to water sources and so on causing variation in ingested water and food isotope values. We compare the number of outliers identified using various statistical methods. We determine that the most appropriate method for identifying migrants is dependent on the data but is likely to be the IQR or median absolute deviation from the median under most archaeological circumstances. Finally, through a spatial assessment of the dataset, we show that the degree of overlap in human isotope values from different locations across Europe is such that identifying individuals' homelands on the basis of oxygen isotope analysis alone is not possible for the regions analysed to date. Oxygen isotope analysis is a valid method for identifying first-generation migrants from an archaeological site when used appropriately, however it is difficult to identify migrants using statistical methods for a sample size of less than c. 25 individuals. In the absence of local previous analyses, each sample should be treated as an individual dataset and statistical techniques can be used to identify migrants, but in most cases pinpointing a specific

  1. Geochemistry and oxygen isotope composition of main-group pallasites and olivine-rich clasts in mesosiderites

    DEFF Research Database (Denmark)

    Greenwood, Richard C.; Barrat, Jean-Alix; Scott, Edward R. D.

    2015-01-01

    origin. Although the Dawn mission did not detect mesosiderite-like material on Vesta, evidence linking the mesosiderites and HEDs includes: (i) theirnearly identical oxygen isotope compositions; (ii) the presence in both of coarse-grained Mg-rich olivines; (iii) both have synchronous Lu-Hf and Mn-Cr ages...

  2. Raman spectroscopic characterisations and analytical discrimination between caffeine and demethylated analogues of pharmaceutical relevance

    Science.gov (United States)

    Edwards, H. G. M.; Munshi, T.; Anstis, M.

    2005-05-01

    The FT Raman spectrum of caffeine was analysed along with that of its demethylated analogues, theobromine and theophylline. The similar but not identical structures of these three compounds allowed a more detailed assignment of the Raman bands. Noticeable differences in the Raman spectra of these compounds were apparent and key marker bands have been identified for the spectroscopic identification of these three compounds.

  3. Unexpected variations in the triple oxygen isotope composition of stratospheric carbon dioxide

    Science.gov (United States)

    Wiegel, Aaron A.; Cole, Amanda S.; Hoag, Katherine J.; Atlas, Elliot L.; Schauffler, Sue M.; Boering, Kristie A.

    2013-10-01

    We report observations of stratospheric CO2 that reveal surprisingly large anomalous enrichments in 17O that vary systematically with latitude, altitude, and season. The triple isotope slopes reached 1.95 ± 0.05(1σ) in the middle stratosphere and 2.22 ± 0.07 in the Arctic vortex versus 1.71 ± 0.03 from previous observations and a remarkable factor of 4 larger than the mass-dependent value of 0.52. Kinetics modeling of laboratory measurements of photochemical ozone-CO2 isotope exchange demonstrates that non-mass-dependent isotope effects in ozone formation alone quantitatively account for the 17O anomaly in CO2 in the laboratory, resolving long-standing discrepancies between models and laboratory measurements. Model sensitivities to hypothetical mass-dependent isotope effects in reactions involving O3, O(1D), or CO2 and to an empirically derived temperature dependence of the anomalous kinetic isotope effects in ozone formation then provide a conceptual framework for understanding the differences in the isotopic composition and the triple isotope slopes between the laboratory and the stratosphere and between different regions of the stratosphere. This understanding in turn provides a firmer foundation for the diverse biogeochemical and paleoclimate applications of 17O anomalies in tropospheric CO2, O2, mineral sulfates, and fossil bones and teeth, which all derive from stratospheric CO2.

  4. Oxygen isotope systematics of chondrules in the Allende CV3 chondrite: High precision ion microprobe studies

    Digital Repository Service at National Institute of Oceanography (India)

    Rudraswami, N.G.; Ushikubo, T.; Nakashima, D.; Kita, N.T.

    grains and some of them were derived from precursors related to refractory inclusions. However, most relict olivine grains show oxygen isotope ratios that overlap with those in homogeneous chondrules. The delta sup(17)O values of four barred olivine...

  5. Expanding the isotopic toolbox: Applications of hydrogen and oxygen stable isotope ratios to food web studies

    Directory of Open Access Journals (Sweden)

    Hannah B Vander Zanden

    2016-03-01

    Full Text Available The measurement of stable carbon (δ13C and nitrogen (δ15N isotopes in tissues of organisms has formed the foundation of isotopic food web reconstructions, as these values directly reflect assimilated diet. In contrast, stable hydrogen (δ2H and oxygen (δ18O isotope measurements have typically been reserved for studies of migratory origin and paleoclimate reconstruction based on systematic relationships between organismal tissue and local environmental water. Recently, innovative applications using δ2H and, to a lesser extent, δ18O values have demonstrated potential for these elements to provide novel insights in modern food web studies. We explore the advantages and challenges associated with three applications of δ2H and δ18O values in food web studies. First, large δ2H differences between aquatic and terrestrial ecosystem end members can permit the quantification of energy inputs and nutrient fluxes between these two sources, with potential applications for determining allochthonous vs. autochthonous nutrient sources in freshwater systems and relative aquatic habitat utilization by terrestrial organisms. Next, some studies have identified a relationship between δ2H values and trophic position, which suggests that this marker may serve as a trophic indicator, in addition to the more commonly used δ15N values. Finally, coupled measurements of δ2H and δ18O values are increasing as a result of reduced analytical challenges to measure both simultaneously and may provide additional ecological information over single element measurements. In some organisms, the isotopic ratios of these two elements are tightly coupled, whereas the isotopic disequilibrium in other organisms may offer insight into the diet and physiology of individuals. Although a coherent framework for interpreting δ2H and δ18O data in the context of food web studies is emerging, many fundamental uncertainties remain. We highlight directions for targeted research that

  6. Confocal Raman Microscopy

    CERN Document Server

    Dieing, Thomas; Toporski, Jan

    2011-01-01

    Confocal Raman Microscopy is a relatively new technique that allows chemical imaging without specific sample preparation. By integrating a sensitive Raman spectrometer within a state-of-the-art microscope, Raman microscopy with a spatial resolution down to 200nm laterally and 500nm vertically can be achieved using visible light excitation. Recent developments in detector and computer technology as well as optimized instrument design have reduced integration times of Raman spectra by orders of magnitude, so that complete images consisting of tens of thousands of Raman spectra can be acquired in seconds or minutes rather than hours, which used to be standard just one decade ago. The purpose of this book is to provide the reader a comprehensive overview of the rapidly developing field of Confocal Raman Microscopy and its applications.

  7. Characterizing the oxygen isotopic composition of phosphate sources to aquatic ecosystems

    Science.gov (United States)

    Young, M.B.; McLaughlin, K.; Kendall, C.; Stringfellow, W.; Rollog, M.; Elsbury, K.; Donald, E.; Paytan, A.

    2009-01-01

    The oxygen isotopic composition of dissolved inorganic phosphate (δ18Op) in many aquatic ecosystems is not in isotopic equilibrium with ambient water and, therefore, may reflect the source δ18Op. Identification of phosphate sources to water bodies is critical for designing best management practices for phosphate load reduction to control eutrophication. In order for δ18O p to be a useful tool for source tracking, the δ18Op of phosphate sources must be distinguishable from one another; however, the δ18Op of potential sources has not been well characterized. We measured the δ18O p of a variety of known phosphate sources, including fertilizers, semiprocessed phosphorite ore, particulate aerosols, detergents, leachates of vegetation, soil, animal feces, and wastewater treatment plant effluent. We found a considerable range of δ18Op values (from +8.4 to +24.9‰) for the various sources, and statistically significant differences were found between several of the source types. δ18Op measured in three different fresh water systems was generally not in equilibrium with ambient water. Although there is overlap in δ18Op values among the groups of samples, our results indicate that some sources are isotopically distinct and δ18Op can be used for identifying phosphate sources to aquatic systems.

  8. Diode laser spectroscopy of oxygen electronic band at 760 nm

    International Nuclear Information System (INIS)

    Lucchesini, A.; De Rosa, M.; Gozzini, S.

    1998-01-01

    Collisional broadening and shift coefficients have been obtained by analyzing the line shapes of oxygen absorptions in the 760 nm electronic band. By using a diode laser spectrometer with commercially available etherostructure Al x Ga 1-x As diode lasers operating in 'free-running mode', line shape parameters have been collected at room temperature by varying the gas pressure. A systematic study has been carried on seven absorption lines by scanning the diode laser emission wavelength around the gas resonances. The weak absorption lines have been detected by using the wavelength modulation (WM) spectroscopy technique with second-harmonic detection

  9. Hot phonon generation by split-off hole band electrons in AlxGa1-xAs alloys investigated by picosecond Raman scattering

    International Nuclear Information System (INIS)

    Jacob, J.M.; Kim, D.S.; Zhou, J.F.; Song, J.J.

    1992-01-01

    The initial generation of hot LO phonons by the relaxation of hot carriers in GaAs and Al x Ga 1-x As alloy semiconductors is studied. Within the initial 2ps of photoexcitation, only those electrons originating from the split-off hole bands are found to generate a significant number of I-valley hot phonons when photon energies of 2.33eV are used. A picosecond Raman scattering technique is used to determine the hot phonon occupation number in a series of MBE grown Al x Ga 1-x As samples with 0≤x≤0.39. The Stokes and anti-Stokes lines were measured for both GaAs-like and AlAs-like LO phonon modes to determine their occupation numbers. The authors observe a rapid decrease in the phonon occupation numbers as the aluminum concentration increases beyond x = 0.2. This rapid decrease is explained by considering only those electrons photoexcited from the split-off hole band. Almost all of the electrons originating from the heavy and light-hole bands are shown to quickly transfer and remain in the X and L valleys without generating significant numbers of hot LO phonons during the initial 2ps and at a carrier density of 10 17 cm -3 . A model based upon the instantaneous thermalization of hot electrons photoexcited from the split-off hole bands is used to fit the data. They have obtained very good agreement between experiment and theory. This work provides a clear understanding to the relaxation of Γ valley hot electrons by the generation of hot phonons on subpicosecond and picosecond time scales, which has long standing implications to previous time resolved Raman experiments

  10. Raman Spectroscopy and in Situ Raman Spectroelectrochemistry of Isotopically Engineered Graphene Systems

    Czech Academy of Sciences Publication Activity Database

    Frank, Otakar; Dresselhaus, M. S.; Kalbáč, Martin

    2015-01-01

    Roč. 48, č. 1 (2015), s. 111-118 ISSN 0001-4842 R&D Projects: GA MŠk LH13022; GA MŠk LL1301 Institutional support: RVO:61388955 Keywords : Raman spectroscopy * spectroelectrochemistry * graphene Subject RIV: CG - Electrochemistry Impact factor: 22.003, year: 2015

  11. Oxygen isotope effect on 55Mn nuclear magnetic shielding in permanganate

    International Nuclear Information System (INIS)

    Haase, A.R.; Lutz, O.; Mueller, M.; Nolle, A.

    1976-01-01

    By Fourier transform NMR spectroscopy the 55 Mn resonance lines of the different permanganate species 55 Mn 16 Osub(4-n) 18 Osub(n) - (n=0,1,2,3,4) have been resolved in aqueous solutions of potassium permanganate. An isotope effect on the Larmor frequency of 55 Mn of (0.599 +- 0.015)ppm to lower frequency was found for the substition of an 16 O atom by an 18 O atom in the permanganate ion. An oxygen exchange rate in the permanganate-water system is given. (orig.) [de

  12. Resonance Raman spectroscopy of 2H-labelled spheroidenes in petroleum ether and in the Rhodobacter sphaeroides reaction centre.

    Science.gov (United States)

    Kok, P; Köhler, J; Groenen, E J; Gebhard, R; van der Hoef, I; Lugtenburg, J; Farhoosh, R; Frank, H A

    1997-03-01

    As a step towards the structural analysis of the carotenoid spheroidene in the Rhodobacter sphaeroides reaction centre, we present the resonance Raman spectra of 14-2H, 15-2H, 15'-2H, 14'-2H, 14,15'-2H2 and 15-15'-2H2 spheroidenes in petroleum ether and, except for 14,15'-2H2 spheroidene, in the Rb. sphaeroides R26 reaction center (RC). Analysis of the spectral changes upon isotopic substitution allows a qualitative assignment of most of the vibrational bands to be made. For the all-trans spheroidenes in solution the resonance enhancement of the Raman bands is determined by the participation of carbon carbon stretching modes in the centre of the conjugated chain, the C9 to C15' region. For the RC-bound 15,15'-cis spheroidenes, enhancement is determined by the participation of carbon-carbon stretching modes in the centre of the molecule, the C13 to C13' region. Comparison of the spectra in solution and in the RC reveals evidence for an out-of-plane distortion of the RC-bound spheroidene in the central C14 to C14' region of the carotenoid. The characteristic 1240 cm-1 band in the spectrum of the RC-bound spheroidene has been assigned to a normal mode that contains the coupled C12-C13 and C13'-C12' stretch vibrations.

  13. Quantitative analysis of microbicide concentrations in fluids, gels and tissues using confocal Raman spectroscopy.

    Directory of Open Access Journals (Sweden)

    Oranat Chuchuen

    Full Text Available Topical vaginal anti-HIV microbicides are an important focus in female-based strategies to prevent the sexual transmission of HIV. Understanding microbicide pharmacokinetics is essential to development, characterization and implementation of efficacious microbicide drug delivery formulations. Current methods to measure drug concentrations in tissue (e.g., LC-MS/MS, liquid chromatography coupled with tandem mass spectrometry are highly sensitive, but destructive and complex. This project explored the use of confocal Raman spectroscopy to detect microbicide drugs and to measure their local concentrations in fluids, drug delivery gels, and tissues. We evaluated three candidate microbicide drugs: tenofovir, Dapivirine and IQP-0528. Measurements were performed in freshly excised porcine buccal tissue specimens, gel vehicles and fluids using two Horiba Raman microscopes, one of which is confocal. Characteristic spectral peak calibrations for each drug were obtained using serial dilutions in the three matrices. These specific Raman bands demonstrated strong linear concentration dependences in the matrices and were characterized with respect to their unique vibrational signatures. At least one specific Raman feature was identified for each drug as a marker band for detection in tissue. Sensitivity of detection was evaluated in the three matrices. A specific peak was also identified for tenofovir diphosphate, the anti-HIV bioactive product of tenofovir after phosphorylation in host cells. Z-scans of drug concentrations vs. depth in excised tissue specimens, incubated under layers of tenofovir solution in a Transwell assay, showed decreasing concentration with depth from the surface into the tissue. Time-dependent concentration profiles were obtained from tissue samples incubated in the Transwell assay, for times ranging 30 minutes - 6 hours. Calibrations and measurements from tissue permeation studies for tenofovir showed good correlation with gold

  14. Quantitative Analysis of Microbicide Concentrations in Fluids, Gels and Tissues Using Confocal Raman Spectroscopy

    Science.gov (United States)

    Chuchuen, Oranat; Henderson, Marcus H.; Sykes, Craig; Kim, Min Sung; Kashuba, Angela D. M.; Katz, David F.

    2013-01-01

    Topical vaginal anti-HIV microbicides are an important focus in female-based strategies to prevent the sexual transmission of HIV. Understanding microbicide pharmacokinetics is essential to development, characterization and implementation of efficacious microbicide drug delivery formulations. Current methods to measure drug concentrations in tissue (e.g., LC-MS/MS, liquid chromatography coupled with tandem mass spectrometry) are highly sensitive, but destructive and complex. This project explored the use of confocal Raman spectroscopy to detect microbicide drugs and to measure their local concentrations in fluids, drug delivery gels, and tissues. We evaluated three candidate microbicide drugs: tenofovir, Dapivirine and IQP-0528. Measurements were performed in freshly excised porcine buccal tissue specimens, gel vehicles and fluids using two Horiba Raman microscopes, one of which is confocal. Characteristic spectral peak calibrations for each drug were obtained using serial dilutions in the three matrices. These specific Raman bands demonstrated strong linear concentration dependences in the matrices and were characterized with respect to their unique vibrational signatures. At least one specific Raman feature was identified for each drug as a marker band for detection in tissue. Sensitivity of detection was evaluated in the three matrices. A specific peak was also identified for tenofovir diphosphate, the anti-HIV bioactive product of tenofovir after phosphorylation in host cells. Z-scans of drug concentrations vs. depth in excised tissue specimens, incubated under layers of tenofovir solution in a Transwell assay, showed decreasing concentration with depth from the surface into the tissue. Time-dependent concentration profiles were obtained from tissue samples incubated in the Transwell assay, for times ranging 30 minutes - 6 hours. Calibrations and measurements from tissue permeation studies for tenofovir showed good correlation with gold standard LC-MS/MS data

  15. Effect of mechanical stress on the Raman and infrared bands of hydroxylapatite: A quantum mechanical first principle investigation.

    Science.gov (United States)

    Ulian, Gianfranco; Valdrè, Giovanni

    2018-01-01

    The calcium apatite minerals are among the most studied in the biomaterial field because of their similarity with the mineral phase of bone tissues, which is mainly the hexagonal polymorph of hydroxylapatite. Given the growing interest both in the microscopic processes governing the behaviour of these natural biomaterials and in recent experimental methods to investigate the Raman response of hydroxylapatite upon mechanical loading, we report in the present work a detailed quantum mechanical analysis by DFT/B3LYP-D* approach on the Raman and infrared responses of hydroxylapatite upon deformation of its unit cell. From the vibrational results, the piezo-spectroscopic components Δν = Π ij σ ij were calculated. For the first time to the authors' knowledge quantum mechanics (QM) was applied to resolve the piezo-spectroscopic response of hydroxylapatite. The QM results on the uniaxial stress responses of this phase on the piezo-spectroscopic components Π 11 and Π 33 of the symmetric P-O stretching mode were 2.54 ± 0.09cm -1 /GPa and 2.56 ± 0.06cm -1 /GPa, respectively (Raman simulation) and 2.48 ± 0.15cm -1 /GPa and Π 33 = 2.74 ± 0.08cm -1 /GPa, respectively, of the asymmetric P-O stretching (infrared spectroscopy simulation). These results are in excellent agreement with previous experimental data reported in literature. The quantum mechanical analysis of the other vibrational bands (not present in literature) shed more light on this new and very important application of both Raman and IR spectroscopies and extend the knowledge of the behaviour of hydroxylapatite, suggesting and addressing further experimental research and analytic strategy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. FT-Raman spectroscopic study of bayerite, boehmite, diaspore and gibbsite

    International Nuclear Information System (INIS)

    Ruan, H.D.; Frost, R.L.; Kloprogge, J.T.

    1998-01-01

    Full text: Bayerite and gibbsite are alumina trihydrate (Al(OH) 3 ). Gibbsite occurs abundantly in nature, usually as a major mineral component in bauxite whereas bayerite is rarely found in nature. Boehmite and diaspore are alumina oxohydroxide (AlOOH) and are two other important minerals in bauxite. The Raman spectra of these four minerals were obtained using a Fourier transform Raman spectrometer operating at 1064 nm. The spectra can be divided into two regions, the low frequency region from 200 to 1200 cm -1 and the hydroxyl stretching region from 3000 to 3700 cm -1 . Bayerite spectrum shows five absorption bands, 3652, 3542, 3449, 3438, and 3421 cm -1 and the gibbsite spectrum shows four strong and sharp absorption bands, 3619, 3523, 3433 and 3363 cm -1 in the hydroxyl stretching region. These values are consistent with those reported by Huneke et al. (1980) and Frost et al. (1999a). Four broad bands, 3426, 3365, 3229 and 2935 cm -1 and three weak bands, 3420, 3216 and 3090 cm -1 are present in this region for diaspore and boehmite. The Raman bands correspond well with the infrared absorption bands at 3620, 3525 cm -1 for gibbsite, 3365 cm -1 for diaspore and 3423, 3096 cm -1 for boehmite (Frost et al., 1999c) and these bands are assigned to be Raman and infrared active. The spectra of bayerite, gibbsite and diaspore are complex while the spectrum of boehmite only illustrates four absorption bands in the low frequency region. Common bands of RT-Raman spectra at 1019, 892, 816, 710, 568, 539, 506, 429, 395, 379, 21, 306, 255 and 242 cm -1 were observed for gibbsite, 1079,1068, 898, 866, 545, 434, 388, 322, 292, 250 and 239 cm -1 for bayerite, 705, 608, 446, 260 and 216 cm -1 for diaspore, and 674, 495 and 360 cm -1 for boehmite. The differences in the vibrational spectra of bayerite, gibbsite, diaspore and boehmite are due to differences in the molecular structure of these minerals. The 705, 446 and 260 cm -1 bands are the most intense in the Raman spectra of

  17. Meteoric water in normal fault systems: Oxygen and hydrogen isotopic measurements on authigenic phases in brittle fault rocks

    Science.gov (United States)

    Haines, S. H.; Anderson, R.; Mulch, A.; Solum, J. G.; Valley, J. W.; van der Pluijm, B. A.

    2009-12-01

    The nature of fluid circulation systems in normal fault systems is fundamental to understanding the nature of fluid movement within the upper crust, and has important implications for the on-going controversy about the strength of faults. Authigenic phases in clay gouges and fault breccias record the isotopic signature of the fluids they formed in equilibrium with, and can be used to understand the ‘plumbing system’ of brittle fault environments. We obtained paired oxygen and hydrogen isotopic measurements on authigenic illite and/or smectite in clay gouge from normal faults in two geologic environments, 1.) low-angle normal faults (Ruby Mountains detachment, NV; Badwater Turtleback, CA; Panamint range-front detachment; CA; Amargosa detachment; CA; Waterman Hills detachment, CA), and 2.) An intracratonic high-angle normal fault (Moab Fault, UT). All authigenic phases in these clay gouges are moderately light isotopically with respect to oxygen (illite δ18O -2.0 - + 11.5 ‰ SMOW, smectite δ18O +3.6 and 17.9 ‰) and very light isotopically with respect to hydrogen (illite δD -148 to -98 ‰ SMOW, smectite δD -147 to -92 ‰). Fluid compositions calculated from the authigenic clays at temperatures of 50 - 130 ○C (as indicated by clay mineralogy) indicate that both illite and smectite in normal fault clay gouge formed in the presence of near-pristine to moderately-evolved meteoric fluids and that igneous or metamorphic fluids are not involved in clay gouge formation in these normal fault settings. We also obtained paired oxygen and hydrogen isotopic measurements on chlorites derived from footwall chlorite breccias in 4 low-angle normal fault detachment systems (Badwater and Mormon Point Turtlebacks, CA, the Chemehuevi detachment, CA, and the Buckskin-Rawhide detachment, AZ). All chlorites are isotopically light to moderately light with respect to oxygen (δ18O +0.29 to +8.1 ‰ SMOW) and very light with respect to hydrogen (δD -97 to -113 ‰) and indicate

  18. Origin of the brines near WIPP from the drill holes ERDA-6 and WIPP-12 based on stable isotope concentrations of hydrogen and oxygen

    International Nuclear Information System (INIS)

    Spiegler, P.; Updegraff, D.

    1983-03-01

    Pathways which might alter the isotopic compositions of deuterium and oxygen-18 meteoric water, seawaters, and in hydration waters in gypsum to the isotopic compositions of brines encountered at ERDA-6 and WIPP-12 are discussed. Present geologic conditions do not favor the alteration of the isotopic compositions of waters that exist near the WIPP site to those of the brines by these pathways. It is concluded that the brines encountered at ERDA-6 and WIPP-12 are probably derived from ancient ocean waters that have been isotopically enriched in oxygen-18 by exchange interaction with rock. The dehydration of gypsum as a process of origin of these brines cannot be ruled out

  19. Distribution of oxygen isotopes in the water masses of Drake Passage and the South Atlantic

    Science.gov (United States)

    Meredith, Michael P.; Grose, Katie E.; McDonagh, Elaine L.; Heywood, Karen J.; Frew, Russell D.; Dennis, Paul F.

    1999-09-01

    Measurements of the ratio of stable isotopes of oxygen (18O and 16O) from samples collected on World Ocean Circulation Experiment sections SR1b (eastern Drake Passage) and A11 (Punta Arenas to Cape Town) are used, together with hydrographic data, to deduce information about the formation and variability of South Atlantic and Southern Ocean water masses. The Drake Passage surface waters south of the Polar Front (PF) are isotopically light (δ18O around -0.4‰) owing to the influence of meteoric waters. The salinity and δ18O of the A11 surface waters yield an apparent freshwater end-member which is much isotopically lighter than the local precipitation, thus advection of these waters from farther south dominates over local effects in determining the surface water properties. The Drake Passage section shows unusual proximity of the two main fronts of the Antarctic Circumpolar Current (the PF and Subantarctic Front (SAF)), and we observe cold, fresh, and isotopically light water derived from the temperature-minimum Winter Water at the SAF. This water is of the correct density to freshen the intermediate water north of the SAF and thus play a role in the formation of the comparatively fresh Antarctic Intermediate Water (AAIW) of the South Atlantic. This confirms the role of Antarctic water in forming the South Atlantic variety of AAIW. Across the A11 section the oxygen isotope and salinity data at the AAIW core show very similar traces, with waters in the Malvinas Current loop showing lowest values of both. At the eastern boundary of the South Atlantic, the input of Red Sea Water from east of South Africa is observed via the presence of anomalously isotopically heavy AAIW. We deduce potentially significant temporal variability in the isotopic composition of Weddell Sea Deep Water (WSDW) by comparing the Drake Passage data to earlier data covering the outflow of the Weddell Sea. The A11 data show WSDW consistent with such variability, indicating that its effects could

  20. Raman spectroscopic studies of the polymorphism in ZrO2 at high pressures

    International Nuclear Information System (INIS)

    Arashi, H.; Ishigame, M.

    1982-01-01

    The Raman spectra of ZrO 2 at high pressures are measured at room temperature using a diamondanvil pressure-cell. Two kinds of pressure transmitting medium, methanol and NaCl, are used to see the effect of stress components on the phase transformation. The pressure of phase transformation shows a considerable difference between the two media. In the case of methanol, a phase transformation is observed at 3.5 GPa, while in the case of NaCl, at 5.4 GPa. In the high-pressure phase, 19 Raman bands are observed. This number of bands far exceeds that which is expected for the tetragonal phase, D/sub 4h/ 15 in space group. From the relation between the number of Raman bands and the crystal structure, it is more reasonable to consider that the high-pressure phase belongs to a orthorhombic system. The space group of the high-pressure phase is discussed on the basis of the observed number of Raman bands. (author)

  1. Electrolytic separation factors for oxygen isotopes in light and heavy water solutions

    International Nuclear Information System (INIS)

    Gulens, J.; Olmstead, W.J.; Longhurst, T.H.; Gale, K.L.; Rolston, J.H.

    1987-01-01

    The electrolytic separation factor, α, has been measured for /sup 17/O and /sup 18/O at Pt and Ni anodes in both light and heavy water solutions of 6M KOH as a function of current density. For oxygen-17, isotopic separation effects were not observed, within the experimental uncertainty of +-2%, under all conditions studied. For oxygen-18, there is a small difference of 2% in α values between Pt and Ni in both light and heavy water solutions, but there is no significant difference in α values between light and heavy water solutions. In light waters solutions, the separation factor at Pt is small, α(/sup 18/O) ≤ 1.02 for i ≥ 0.1 A/cm/sub 2/. This value agrees reasonably well with theoretical estimates

  2. INFRARED AND RAMAN SPECTROSCOPIC STUDY OF ION ...

    African Journals Online (AJOL)

    Infrared and Raman spectroscopy techniques have been used to study the ionic interactions of strontium(II) and barium(II) with thiocyanate ion in liquid ammonia. A number of bands were observed in both n (CN) and n (CS) regions of infrared and Raman spectra and these were assigned to 1:1 contact ion pair, ...

  3. Pressure dependence of the Raman spectrum, lattice parameters and superconducting critical temperature of MgB2: evidence for pressure-driven phonon-assisted electronic topological transition

    International Nuclear Information System (INIS)

    Goncharov, A.F.; Struzhkin, V.V.

    2003-01-01

    We overview recent high-pressure studies of high-temperature superconductor MgB 2 by Raman scattering technique combined with measurements of superconducting critical temperature T c and lattice parameters up to 57 GPa. An anomalously broadened Raman band at 620 cm -1 is observed and assigned to the in-plane boron stretching E 2g mode. It exhibits a large Grueneisen parameter indicating that the vibration is highly anharmonic. The pressure dependencies of the E 2g mode and T c reveal anomalies at 15-22 GPa (isotope dependent). The anharmonic character of the E 2g phonon mode, its anomalous pressure dependence, and also that for T c are interpreted as a result of a phonon-assisted Lifshitz electronic topological transition

  4. Seasonal Variations in Stable Isotope Ratios of Oxygen and Hydrogen in Two Tundra Rivers in NE European Russia

    Energy Technology Data Exchange (ETDEWEB)

    Huitu, E.; Arvola, L. [Lammi Biological Station, University of Helsinki (Finland); Sonninen, E. [Radiocarbon Dating Laboratory, University of Helsinki (Finland)

    2013-07-15

    The variability in stable isotope ratios of oxygen and hydrogen ({delta} {sup 18}O and {delta}{sup 2}H values) in river waters in northeast European Russia was studied for the period from July 2007 to october 2008. Exceptional isotope composition in precipitation obtained during the sampling period was clearly traced in the composition of river waters. Water from permafrost thawing did not make a great contribution to river flow. (author)

  5. In-situ detection of drugs-of-abuse on clothing using confocal Raman microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Esam M.A. [Raman Spectroscopy Group, University Analytical Centre, Division of Chemical and Forensic Sciences, University of Bradford, Bradford BD7 1DP (United Kingdom); Edwards, Howell G.M. [Raman Spectroscopy Group, University Analytical Centre, Division of Chemical and Forensic Sciences, University of Bradford, Bradford BD7 1DP (United Kingdom)], E-mail: h.g.m.edwards@bradford.ac.uk; Hargreaves, Michael D.; Scowen, Ian J. [Raman Spectroscopy Group, University Analytical Centre, Division of Chemical and Forensic Sciences, University of Bradford, Bradford BD7 1DP (United Kingdom)

    2008-05-12

    This study describes the application of confocal Raman microscopy to the detection and identification of drugs-of-abuse in situ on undyed natural synthetic fibres, and coloured textile specimens. Raman spectra were obtained from drug particles trapped between the fibres of the specimens. Pure samples of cocaine hydrochloride and N-methyl-3,4-methylenedioxy-amphetamine HCl (MDMA-HCl) were used in this study. Raman spectra were collected from drug particles of an average size in the range 5-15 {mu}m. Despite the presence of spectral bands arising from the natural and synthetic polymer and dyed textiles, the drugs could be identified by their characteristic Raman bands. If necessary, interfering bands could be successfully removed by spectral subtraction. Furthermore, Raman spectra were recorded from drug particles trapped between the fibres of highly fluorescent specimens. Interference from the fibres, including background fluorescence, was overcome by careful focusing of the confocal beam and the resulting spectra allow ready differentiation from interference from the fibres substrate bands. Spectra of several drugs-of-abuse on dyed and undyed clothing substrates were readily obtained within 3 min with little or no sample preparation and with no alteration of the evidential material.

  6. In-situ detection of drugs-of-abuse on clothing using confocal Raman microscopy

    International Nuclear Information System (INIS)

    Ali, Esam M.A.; Edwards, Howell G.M.; Hargreaves, Michael D.; Scowen, Ian J.

    2008-01-01

    This study describes the application of confocal Raman microscopy to the detection and identification of drugs-of-abuse in situ on undyed natural synthetic fibres, and coloured textile specimens. Raman spectra were obtained from drug particles trapped between the fibres of the specimens. Pure samples of cocaine hydrochloride and N-methyl-3,4-methylenedioxy-amphetamine HCl (MDMA-HCl) were used in this study. Raman spectra were collected from drug particles of an average size in the range 5-15 μm. Despite the presence of spectral bands arising from the natural and synthetic polymer and dyed textiles, the drugs could be identified by their characteristic Raman bands. If necessary, interfering bands could be successfully removed by spectral subtraction. Furthermore, Raman spectra were recorded from drug particles trapped between the fibres of highly fluorescent specimens. Interference from the fibres, including background fluorescence, was overcome by careful focusing of the confocal beam and the resulting spectra allow ready differentiation from interference from the fibres substrate bands. Spectra of several drugs-of-abuse on dyed and undyed clothing substrates were readily obtained within 3 min with little or no sample preparation and with no alteration of the evidential material

  7. Combined simulation of carbon and water isotopes in a global ocean model

    Science.gov (United States)

    Paul, André; Krandick, Annegret; Gebbie, Jake; Marchal, Olivier; Dutkiewicz, Stephanie; Losch, Martin; Kurahashi-Nakamura, Takasumi; Tharammal, Thejna

    2013-04-01

    Carbon and water isotopes are included as passive tracers in the MIT general circulation model (MITgcm). The implementation of the carbon isotopes is based on the existing MITgcm carbon cycle component and involves the fractionation processes during photosynthesis and air-sea gas exchange. Special care is given to the use of a real freshwater flux boundary condition in conjunction with the nonlinear free surface of the ocean model. The isotopic content of precipitation and water vapor is obtained from an atmospheric GCM (the NCAR CAM3) and mapped onto the MITgcm grid system, but the kinetic fractionation during evaporation is treated explicitly in the ocean model. In a number of simulations, we test the sensitivity of the carbon isotope distributions to the formulation of fractionation during photosynthesis and compare the results to modern observations of δ13C and Δ14C from GEOSECS, WOCE and CLIVAR. Similarly, we compare the resulting distribution of oxygen isotopes to modern δ18O data from the NASA GISS Global Seawater Oxygen-18 Database. The overall agreement is good, but there are discrepancies in the carbon isotope composition of the surface water and the oxygen isotope composition of the intermediate and deep waters. The combined simulation of carbon and water isotopes in a global ocean model will provide a framework for studying present and past states of ocean circulation such as postulated from deep-sea sediment records.

  8. Optical trapping and Raman spectroscopy of single nanostructures using standing-wave Raman tweezers

    Science.gov (United States)

    Wu, Mu-ying; He, Lin; Chen, Gui-hua; Yang, Guang; Li, Yong-qing

    2017-08-01

    Optical tweezers integrated with Raman spectroscopy allows analyzing a single trapped micro-particle, but is generally less effective for individual nano-sized objects in the 10-100 nm range. The main challenge is the weak gradient force on nanoparticles that is insufficient to overcome the destabilizing effect of scattering force and Brownian motion. Here, we present standing-wave Raman tweezers for stable trapping and sensitive characterization of single isolated nanostructures with a low laser power by combining a standing-wave optical trap (SWOT) with confocal Raman spectroscopy. This scheme has stronger intensity gradients and balanced scattering forces, and thus is more stable and sensitive in measuring nanoparticles in liquid with 4-8 fold increase in the Raman signals. It can be used to analyze many nanoparticles that cannot be measured with single-beam Raman tweezers, including individual single-walled carbon nanotubes (SWCNT), graphene flakes, biological particles, polystyrene beads (100 nm), SERS-active metal nanoparticles, and high-refractive semiconductor nanoparticles with a low laser power of a few milliwatts. This would enable sorting and characterization of specific SWCNTs and other nanoparticles based on their increased Raman fingerprints.

  9. ANALYTICAL EMPLOYMENT OF STABLE ISOTOPES OF CARBON, NITROGEN, OXYGEN AND HYDROGEN FOR FOOD AUTHENTICATION

    Directory of Open Access Journals (Sweden)

    E. Novelli

    2011-04-01

    Full Text Available Stable isotopes of carbon, nitrogen, oxygen and hydrogen were used for analytical purposes for the discrimination of the type of production (farming vs. fishing in the case of sea bass and for geographical origin in the case of milk. These results corroborate similar experimental evidences and confirm the potential of this analytical tool to support of food traceability.

  10. Performance Analysis of a Hybrid Raman Optical Parametric Amplifier in the O- and E-Bands for CWDM PONs

    Directory of Open Access Journals (Sweden)

    Sasanthi Peiris

    2014-12-01

    Full Text Available We describe a hybrid Raman-optical parametric amplifier (HROPA operating at the O- and E-bands and designed for coarse wavelength division multiplexed (CWDM passive optical networks (PONs. We present the mathematical model and simulation results for the optimization of this HROPA design. Our analysis shows that separating the two amplification processes allows for optimization of each one separately, e.g., proper selection of pump optical powers and wavelengths to achieve maximum gain bandwidth and low gain ripple. Furthermore, we show that the proper design of optical filters incorporated in the HROPA architecture can suppress idlers generated during the OPA process, as well as other crosstalk that leaks through the passive optical components. The design approach enables error free performance for all nine wavelengths within the low half of the CWDM band, assigned to upstream traffic in a CWDM PON architecture, for all possible transmitter wavelength misalignments (±6 nm from the center wavelength of the channel band. We show that the HROPA can achieve error-free performance with a 170-nm gain bandwidth (e.g., 1264 nm–1436 nm, a gain of >20 dB and a gain ripple of <4 dB.

  11. UV resonance Raman finds peptide bond-Arg side chain electronic interactions.

    Science.gov (United States)

    Sharma, Bhavya; Asher, Sanford A

    2011-05-12

    We measured the UV resonance Raman excitation profiles and Raman depolarization ratios of the arginine (Arg) vibrations of the amino acid monomer as well as Arg in the 21-residue predominantly alanine peptide AAAAA(AAARA)(3)A (AP) between 194 and 218 nm. Excitation within the π → π* peptide bond electronic transitions result in UVRR spectra dominated by amide peptide bond vibrations. The Raman cross sections and excitation profiles indicate that the Arg side chain electronic transitions mix with the AP peptide bond electronic transitions. The Arg Raman bands in AP exhibit Raman excitation profiles similar to those of the amide bands in AP which are conformation specific. These Arg excitation profiles distinctly differ from the Arg monomer. The Raman depolarization ratios of Arg in monomeric solution are quite simple with ρ = 0.33 indicating enhancement by a single electronic transition. In contrast, we see very complex depolarization ratios of Arg in AP that indicate that the Arg residues are resonance enhanced by multiple electronic transitions.

  12. Cellulose I crystallinity determination using FT-Raman spectroscopy : univariate and multivariate methods

    Science.gov (United States)

    Umesh P. Agarwal; Richard S. Reiner; Sally A. Ralph

    2010-01-01

    Two new methods based on FT–Raman spectroscopy, one simple, based on band intensity ratio, and the other using a partial least squares (PLS) regression model, are proposed to determine cellulose I crystallinity. In the simple method, crystallinity in cellulose I samples was determined based on univariate regression that was first developed using the Raman band...

  13. Detection of aniline oligomers on polyaniline-gold interface using resonance Raman scattering.

    Science.gov (United States)

    Trchová, Miroslava; Morávková, Zuzana; Dybal, Jiří; Stejskal, Jaroslav

    2014-01-22

    In situ deposited conducting polyaniline films prepared by the oxidation of aniline with ammonium peroxydisulfate in aqueous media of various acidities on gold and silicon supports were characterized by Raman spectroscopy. Enhanced Raman bands were found in the spectra of polyaniline films produced in the solutions of weak acids or in water on gold surface. These bands were weak for the films prepared in solutions of a strong acid on a gold support. The same bands are present in the Raman spectra of the reaction intermediates deposited during aniline oxidation in water or aqueous solutions of weak or strong acids on silicon removed from the reaction mixture at the beginning of the reaction. Such films are formed by aniline oligomers adsorbed on the surface. They were detected on the polyaniline-gold interface using resonance Raman scattering on the final films deposited on gold. The surface resonance Raman spectroscopy of the monolayer of oligomers found in the bulk polyaniline film makes this method advantageous in surface science, with many applications in electrochemistry, catalysis, and biophysical, polymer, or analytical chemistry.

  14. Interaction of nitroimidazole sensitizers and oxygen in the radiosensitization of mammalian cells at ultrahigh dose rates

    International Nuclear Information System (INIS)

    Michaels, H.B.; Ling, C.C.; Epp, E.R.; Peterson, E.C.

    1981-01-01

    When CHO cells, equilibrated with 0.44% oxygen, are irradiated with single 3-nsec pulses of electrons from a 600-kV-field emission source, a breaking survival curve is observed. The breaking behavior, believed to be the result of radiolytic oxygen depletion, can be prevented by the presence of a relatively low concentration of the hypoxic cell sensitizer misonidazole; similar results are obtained with metronidazole and Ro-05-9963. The resulting survival curves exhibit a sensitized response similar to that obtained with conventional dose rate radiation for CHO cells under this oxygen concentration. This degree of sensitization is greater than that observed for CHO cells irradiated at ultrahigh dose rates under the same concentration of sensitizer in nitrogen. The data suggest that the nitroimidazole compounds interfere with the radiation chemical oxygen depletion process and that the radiosensitization observed in the nonbreaking survival curve is the consequence of sensitization by both the nitroimidazole and, primarily, the oxygen rather than a direct subsitution for oxygen by the sensitizer. This conclusion is also supported by data obtained in double-pulse experiments. The results are discussed with regard to the mechanisms of the oxygen depletion process and radiosensitization

  15. Oxygen isotope ratios in the shell of Mytilus edulis: archives of glacier meltwater in Greenland?

    DEFF Research Database (Denmark)

    Versteegh, E. A. A.; Blicher, Martin E.; Mortensen, J.

    2012-01-01

    Melting of the Greenland Ice Sheet (GrIS) is accelerating and will contribute significantly to global sea level rise during the 21st century. Instrumental data on GrIS melting only cover the last few decades, and proxy data extending our knowledge into the past are vital for validating models...... predicting the influence of ongoing climate change. We investigated a potential meltwater proxy in Godthåbsfjord (West Greenland), where glacier meltwater causes seasonal excursions with lower oxygen isotope water (δ18Ow) values and salinity. The blue mussel (Mytilus edulis) potentially records...... its potential as a palaeo-meltwater proxy. First, we confirmed that M. edulis shell calcite oxygen isotope (δ18Oc) values are in equilibrium with ambient water and generally reflect meltwater conditions. Subsequently we investigated if this species recorded the full range of δ18Ow values occurring...

  16. Study on coral annual banding for the investigation of Asian monsoon; Asian monsoon to sango nenrin kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, A. [Geological Survey of Japan, Tsukuba (Japan); Kawabata, H. [Tohoku University, Sendai (Japan)

    1998-07-01

    A coral skeleton is sampled at Kenya`s Malindi National Marine Park situated west of the Seychelles, and it offers information about the Afro-Asian monsoon. An X-ray profile of the specimen discloses the seasonal variation in the density of the coral skeleton. The oxygen isotopic ratio, which is generally affected by the seawater oxygen isotopic ratio composition which is dependent on the surface layer water temperature and fresh water, is found dominated, in the coral skeleton, practically by the surface layer water temperature. Accordingly, the oxygen isotopic ratio represents the seasonal and annual variations in the surface layer water temperature. It is inferred that the emergence of Ba/Ca ratio peaks in December into January reflects the presence of Ba from rivers, and there are indications that the Somali current has transported water to the coral sampling area from the Galana River which is the greatest river in Kenya. Five of the Ba/Ca ratio peaks coincide with peaks in the UV fluorescent band, which is attributed to the presence of terrigenous organic matters. The ENSO and Asian monsoon phenomena are estimated on the basis of the findings described above. 11 refs., 6 figs.

  17. Automated system measuring triple oxygen and nitrogen isotope ratios in nitrate using the bacterial method and N2 O decomposition by microwave discharge.

    Science.gov (United States)

    Hattori, Shohei; Savarino, Joel; Kamezaki, Kazuki; Ishino, Sakiko; Dyckmans, Jens; Fujinawa, Tamaki; Caillon, Nicolas; Barbero, Albane; Mukotaka, Arata; Toyoda, Sakae; Well, Reinhard; Yoshida, Naohiro

    2016-12-30

    Triple oxygen and nitrogen isotope ratios in nitrate are powerful tools for assessing atmospheric nitrate formation pathways and their contribution to ecosystems. N 2 O decomposition using microwave-induced plasma (MIP) has been used only for measurements of oxygen isotopes to date, but it is also possible to measure nitrogen isotopes during the same analytical run. The main improvements to a previous system are (i) an automated distribution system of nitrate to the bacterial medium, (ii) N 2 O separation by gas chromatography before N 2 O decomposition using the MIP, (iii) use of a corundum tube for microwave discharge, and (iv) development of an automated system for isotopic measurements. Three nitrate standards with sample sizes of 60, 80, 100, and 120 nmol were measured to investigate the sample size dependence of the isotope measurements. The δ 17 O, δ 18 O, and Δ 17 O values increased with increasing sample size, although the δ 15 N value showed no significant size dependency. Different calibration slopes and intercepts were obtained with different sample amounts. The slopes and intercepts for the regression lines in different sample amounts were dependent on sample size, indicating that the extent of oxygen exchange is also dependent on sample size. The sample-size-dependent slopes and intercepts were fitted using natural log (ln) regression curves, and the slopes and intercepts can be estimated to apply to any sample size corrections. When using 100 nmol samples, the standard deviations of residuals from the regression lines for this system were 0.5‰, 0.3‰, and 0.1‰, respectively, for the δ 18 O, Δ 17 O, and δ 15 N values, results that are not inferior to those from other systems using gold tube or gold wire. An automated system was developed to measure triple oxygen and nitrogen isotopes in nitrate using N 2 O decomposition by MIP. This system enables us to measure both triple oxygen and nitrogen isotopes in nitrate with comparable precision

  18. An experimental study on the effect of carbonic anhydrase on the oxygen isotope exchange kinetics and equilibrium in the carbonic acid system

    Science.gov (United States)

    Uchikawa, J.; Zeebe, R. E.

    2011-12-01

    Stable oxygen isotopes of marine biogenic carbonates are often depleted in 18O relative to the values expected for thermodynamic equilibrium with ambient seawater. One possibility is that 18O-depletion in carbonates is kinetically controlled. The kinetic isotope effect associated with the hydration of CO2 results in 18O-depleted HCO3-. If the HCO3- is utilized before re-establishing equilibrium with ambient water under rapid calcification, the 18O-depletion will be recorded in carbonates. But one caveat in this kinetic model is the fact that many marine calcifiers posses carbonic anhydrase, a zinc-bearing enzyme that catalyzes the CO2 hydration reaction. It is expected that this enzyme accelerates 18O-equilibration in the carbonic acid system by facilitating direct oxygen isotope exchange between HCO3- and H2O via CO2 hydration. Clearly this argues against the conceptual framework of the kinetic model. Yet the critical variable here is the effectiveness of the carbonic anhydrase, which is likely to depend on its concentration and the carbonate chemistry of the aqueous medium. It is also hitherto unknown whether the presence of carbonic anhydrase alters the equilibrium oxygen isotope fractionations between dissolved carbonate species and water. We performed a series of quantitative inorganic carbonate precipitation experiments to examine the changes in the oxygen isotope equilibration time as a function of carbonic anhydrase concentrations. We conducted experiments at pH 8.3 and 8.9. These pH values are similar to the average surface ocean pH and the elevated pH levels observed within calcification microenvironments of certain corals and planktonic foraminifera. A summary of our new experimental results will be presented.

  19. Two-Dimensional Raman Correlation Analysis of Diseased Esophagus in a Rat

    Science.gov (United States)

    Takanezawa, Sota; Morita, Shin-ichi; Maruyama, Atsushi; Murakami, Takurou N.; Kawashima, Norimichi; Endo, Hiroyuki; Iijima, Katsunori; Asakura, Tohru; Shimosegawa, Tooru; Sato, Hidetoshi

    2010-07-01

    Generalized two-dimensional (2D) Raman correlation analysis effectively distinguished a benign tumor from normal tissue. Line profiling Raman spectra of a rat esophagus, including a benign tumor, were measured and the generalized 2D synchronous and asynchronous spectra were calculated. In the autocorrelation area of the amide I band of proteins in the asynchronous map, a cross-like pattern was observed. A simulation study indicated that the pattern was caused by a sharp band component in the amide I band region. We considered that the benign tumor corresponded to the sharp component.

  20. Vibrational Imaging with High Sensitivity via Epidetected Coherent Anti-Stokes Raman Scattering Microscopy

    International Nuclear Information System (INIS)

    Volkmer, Andreas; Cheng, Ji-Xin; Sunney Xie, X.

    2001-01-01

    We demonstrate theoretically and experimentally a novel epidetection scheme for coherent anti-Stokes Raman scattering (CARS) microscopy that significantly improves the detection sensitivity. Calculations show that epidetected CARS (E-CARS) signals are present for scatterers smaller than the wavelength of light, whereas the large background signals from the surrounding bulk solvent are suppressed by destructive interference. E-CARS microscopy is capable of revealing small intracellular features that are otherwise buried by the strong water CARS signal

  1. Correlation and Stacking of Relative Paleointensity and Oxygen Isotope Data

    Science.gov (United States)

    Lurcock, P. C.; Channell, J. E.; Lee, D.

    2012-12-01

    The transformation of a depth-series into a time-series is routinely implemented in the geological sciences. This transformation often involves correlation of a depth-series to an astronomically calibrated time-series. Eyeball tie-points with linear interpolation are still regularly used, although these have the disadvantages of being non-repeatable and not based on firm correlation criteria. Two automated correlation methods are compared: the simulated annealing algorithm (Huybers and Wunsch, 2004) and the Match protocol (Lisiecki and Lisiecki, 2002). Simulated annealing seeks to minimize energy (cross-correlation) as "temperature" is slowly decreased. The Match protocol divides records into intervals, applies penalty functions that constrain accumulation rates, and minimizes the sum of the squares of the differences between two series while maintaining the data sequence in each series. Paired relative paleointensity (RPI) and oxygen isotope records, such as those from IODP Site U1308 and/or reference stacks such as LR04 and PISO, are warped using known warping functions, and then the un-warped and warped time-series are correlated to evaluate the efficiency of the correlation methods. Correlations are performed in tandem to simultaneously optimize RPI and oxygen isotope data. Noise spectra are introduced at differing levels to determine correlation efficiency as noise levels change. A third potential method, known as dynamic time warping, involves minimizing the sum of distances between correlated point pairs across the whole series. A "cost matrix" between the two series is analyzed to find a least-cost path through the matrix. This least-cost path is used to nonlinearly map the time/depth of one record onto the depth/time of another. Dynamic time warping can be expanded to more than two dimensions and used to stack multiple time-series. This procedure can improve on arithmetic stacks, which often lose coherent high-frequency content during the stacking process.

  2. Coral calcifying fluid aragonite saturation states derived from Raman spectroscopy

    Directory of Open Access Journals (Sweden)

    T. M. DeCarlo

    2017-11-01

    Full Text Available Quantifying the saturation state of aragonite (ΩAr within the calcifying fluid of corals is critical for understanding their biomineralization process and sensitivity to environmental changes including ocean acidification. Recent advances in microscopy, microprobes, and isotope geochemistry enable the determination of calcifying fluid pH and [CO32−], but direct quantification of ΩAr (where ΩAr =  [CO32−][Ca2+]∕Ksp has proved elusive. Here we test a new technique for deriving ΩAr based on Raman spectroscopy. First, we analysed abiogenic aragonite crystals precipitated under a range of ΩAr from 10 to 34, and we found a strong dependence of Raman peak width on ΩAr with no significant effects of other factors including pH, Mg∕Ca partitioning, and temperature. Validation of our Raman technique for corals is difficult because there are presently no direct measurements of calcifying fluid ΩAr available for comparison. However, Raman analysis of the international coral standard JCp-1 produced ΩAr of 12.3 ± 0.3, which we demonstrate is consistent with published skeletal Mg∕Ca, Sr∕Ca, B∕Ca, δ11B, and δ44Ca data. Raman measurements are rapid ( ≤  1 s, high-resolution ( ≤  1 µm, precise (derived ΩAr ± 1 to 2 per spectrum depending on instrument configuration, accurate ( ±2 if ΩAr < 20, and require minimal sample preparation, making the technique well suited for testing the sensitivity of coral calcifying fluid ΩAr to ocean acidification and warming using samples from natural and laboratory settings. To demonstrate this, we also show a high-resolution time series of ΩAr over multiple years of growth in a Porites skeleton from the Great Barrier Reef, and we evaluate the response of ΩAr in juvenile Acropora cultured under elevated CO2 and temperature.

  3. Oxygen measurement by multimode diode lasers employing gas correlation spectroscopy.

    Science.gov (United States)

    Lou, Xiutao; Somesfalean, Gabriel; Chen, Bin; Zhang, Zhiguo

    2009-02-10

    Multimode diode laser (MDL)-based correlation spectroscopy (COSPEC) was used to measure oxygen in ambient air, thereby employing a diode laser (DL) having an emission spectrum that overlaps the oxygen absorption lines of the A band. A sensitivity of 700 ppm m was achieved with good accuracy (2%) and linearity (R(2)=0.999). For comparison, measurements of ambient oxygen were also performed by tunable DL absorption spectroscopy (TDLAS) technique employing a vertical cavity surface emitting laser. We demonstrate that, despite slightly degraded sensitivity, the MDL-based COSPEC-based oxygen sensor has the advantages of high stability, low cost, ease-of-use, and relaxed requirements in component selection and instrument buildup compared with the TDLAS-based instrument.

  4. Ultrafast stimulated Raman spectroscopy in the near-infrared region

    International Nuclear Information System (INIS)

    Takaya, Tomohisa

    2016-01-01

    A number of electronic transitions in the near-infrared wavelength region are associated with migration or delocalization of electrons in large molecules or molecular systems. Time-resolved near-infrared Raman spectroscopy will be a powerful tool for investigating the structural dynamic of samples with delocalized electrons. However, the sensitivity of near-infrared spontaneous Raman spectrometers is significantly low due to an extremely small probability of Raman scattering and a low sensitivity of near-infrared detectors. Nonlinear Raman spectroscopy is one of the techniques that can overcome the sensitivity problems and enable us to obtain time-resolved Raman spectra in resonance with near-IR transitions. In this article, the author introduces recent progress of ultrafast time-resolved near-infrared stimulated Raman spectroscopy. Optical setup, spectral and temporal resolution, and applications of the spectrometer are described. (author)

  5. Engineered band structure for an enhanced performance on quantum dot-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Bin Bin [Key Laboratory of Macromolecular Science of Shaanxi Province and School of Materials Science and Engineering, Shaanxi Normal University, Xi' an 710062 (China); Department of Chemical Engineering, Institute of Chemical Industry, Shaanxi Institute of Technology, Xi' an 710300 (China); Wang, Ye Feng [School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi' an 710062 (China); Wei, Dong; Chen, Yu; Zeng, Jing Hui, E-mail: jhzeng@ustc.edu [Key Laboratory of Macromolecular Science of Shaanxi Province and School of Materials Science and Engineering, Shaanxi Normal University, Xi' an 710062 (China); Cui, Bin [School of Chemistry and Materials Science, Northwestern University, Xi' an 710620 (China)

    2016-06-20

    A photon-to-current efficiency of 2.93% is received for the Mn-doped CdS (MCdS)-quantum dot sensitized solar cells (QDSSCs) using Mn:ZnO (MZnO) nanowire as photoanode. Hydrothermal synthesized MZnO are spin-coated on fluorine doped tin oxide (FTO) glass with P25 paste to serve as photoanode after calcinations. MCdS was deposited on the MZnO film by the successive ionic layer adsorption and reaction method. The long lived excitation energy state of Mn{sup 2+} is located inside the conduction band in the wide bandgap ZnO and under the conduction band of CdS, which increases the energetic overlap of donor and acceptor states, reducing the “loss-in-potential,” inhibiting charge recombination, and accelerating electron injection. The engineered band structure is well reflected by the electrochemical band detected using cyclic voltammetry. Cell performances are evidenced by current density-voltage (J-V) traces, diffuse reflectance spectra, transient PL spectroscopy, and incident photon to current conversion efficiency characterizations. Further coating of CdSe on MZnO/MCdS electrode expands the light absorption band of the sensitizer, an efficiency of 4.94% is received for QDSSCs.

  6. Highly sensitive fiber-optic oxygen sensor based on palladium tetrakis (4-carboxyphenyl)porphyrin doped in ormosil

    International Nuclear Information System (INIS)

    Chu, Cheng-Shane; Chuang, Chih-Yung

    2014-01-01

    A simple, low-cost technique for fabrication of highly sensitive fiber-optic oxygen sensor is described. An organically modified silicate (ORMOSIL) as a matrix for the fabrication of oxygen sensing film was produced. The technique is based on coating the end of a plastic optical fiber with ormosil composite xerogel film sequestered with luminophore palladium (II) meso-tetra(4-carboxyphenyl)porphyrin (PdTCPP) prepared by a sol–gel process. The composite xerogel studied is tetraethylorthosilane (TEOS)/n-octyltriethoxysilane (Octyl-triEOS). Result shows that, expect for PdTCPP-doped TEOS/Octyl-triEOS composite xerogel show the high sensitivity and linear Stern–Volmer relationship which indicate the homogenous environment of the luminophore. The sensitivity of the optical oxygen sensor is quantified in terms of the ratio I N2 /I O2 , where I N2 and I O2 represent the detected fluorescence intensities in pure nitrogen and pure oxygen environments, respectively. The experimental result reveals that the PdTCPP-doped TEOS/Octyl-triEOS oxygen sensor has sensitivity of 153. - Highlights: • A simple, low-cost technique for fabrication of highly sensitive fiber-optic oxygen sensor is described. • ORMOSIL was produced to serve as a matrix for the fabrication of oxygen sensing film. • The fiber-optic oxygen sensor has sensitivity of I N2 /I 100O2 =153. • The stable and reproducible signals were obtained with the fiber-optic oxygen sensor

  7. Diffusivities of Redox-Sensitive Elements in Basalt vs. Oxygen Fugacity Determined by LA-ICP-MS

    Science.gov (United States)

    Szumila, Ian; Danielson, Lisa; Trail, Dustin

    2017-01-01

    Several diffusion experiments were conducted in a piston cylinder device across a range of oxygen fugacities (FMQ-3 FMQ-1.2, FMQ+6) at 1 GPa and 1300 C. This was done to explore the effects of oxygen fugacity (fO2) on diffusivity of redox sensitive trace elements. This allows investigation of how these elements diffuse across the fO2 range encountered in different reservoirs on planets and moons in our solar system. The University of Rochester LA-ICP-MS system was used for analysis of samples. Analyses were conducted using an Agilent 7900 quadrupole mass spectrometer connected to a Photon Machines 193 nm G2 laser ablation (LA) system equipped with a HelEx 2-volume sample chamber. Spots used were 35 micrometers circles spaced at 65 micrometers intervals. Laser fluence was 7.81 J/cm^2 with a rep rate of 10 Hz. The iolite software package was used to reduce data collected from laser ablation analysis of experiments with Si-29 used as the internal standard isotope. Iolite's global fit module was used to simultaneously fit elements' diffusivities in each experiment while keeping the Matano interface constant. Elements analysed include V, Nb, W, Mo, La, Ce, Pr, Sm, Eu, Gd, Ta, and W. Figures

  8. Oxygen-isotope wiggle maching as a tol for synchronising ice-cor and terrestrial records over Termination !

    NARCIS (Netherlands)

    Hoek, W.Z.; Bohncke, S.J.P.

    2001-01-01

    In NW Europe, the large number of terrestrial records that are now available from Termination 1 (15-10kcal yr BP) form the basis for a highly detailed picture of Lateglacial environmental change. Nevertheless, the Greenland oxygen-isotope records (GRIP/GISP2) are still regarded as the best

  9. Effects of Water Vapor on the Data Quality of the Stable Oxygen Isotopic Ratio of Atmospheric Carbon Dioxide

    Science.gov (United States)

    Evans, C. U.; White, J. W.; Vaughn, B.; Tans, P. P.; Pardo, L.

    2007-12-01

    The stable oxygen isotopic ratio of carbon dioxide can potentially track fundamental indicators of environmental change such as the balance between photosynthesis and respiration on regional to global scales. The Stable Isotope Laboratory (SIL) at the Institute of Arctic and Alpine Research (INSTAAR), University of Colorado at Boulder, has measured the stable isotopes of atmospheric carbon dioxide from more than 60 NOAA/Earth System Research Laboratory (ESRL) air flask-sampling sites since the early 1990s. If air is sampled without drying, oxygen can exchange between carbon dioxide and water in the flasks, entirely masking the desired signal. An attempt to investigate how water vapor is affecting the δ18O signal is accomplished by comparing the SIL measurements with specific humidity, calculated from the National Climatic Data Center (NCDC) global integrated surface hourly temperature and dew point database, at the time of sampling. Analysis of sites where samples have been collected initially without drying, and subsequently with a drying kit, in conjunction with the humidity data, has led to several conclusions. Samples that initially appear isotopically unaltered, in that their δ18O values are within the expected range, are being subtly influenced by the water vapor in the air. At Bermuda and other tropical to semi-tropical sites, the 'wet' sampling values have a seasonal cycle that is strongly anti-correlated to the specific humidity, while the 'dry' values have a seasonal cycle that is shifted earlier than the specific humidity cycle by 1-2 months. The latter phasing is expected given the seasonal phasing between climate over the ocean and land, while the former is consistent with a small, but measurable isotope exchange in the flasks. In addition, we note that there is a strong (r > 0.96) correlation between the average specific humidity and the percent of rejected samples for 'wet' sampling. This presents an opportunity for determining a threshold of

  10. Workshop on Oxygen in the Terrestrial Planets

    Science.gov (United States)

    2004-01-01

    This volume contains abstracts that have been accepted for presentation at the Workshop on Oxygen in the Terrestrial Planets, July 20-23,2004, Santa Fe, New Mexico. The contents include: 1) Experimental Constraints on Oxygen and Other Light Element Partitioning During Planetary Core Formation; 2) In Situ Determination of Fe(3+)/SigmaFe of Spinels by Electron Microprobe: An Evaluation of the Flank Method; 3) The Effect of Oxygen Fugacity on Large-Strain Deformation and Recrystallization of Olivine; 4) Plagioclase-Liquid Trace Element Oxygen Barometry and Oxygen Behaviour in Closed and Open System Magmatic Processes; 5) Core Formation in the Earth: Constraints from Ni and Co; 6) Oxygen Isotopic Compositions of the Terrestrial Planets; 7) The Effect of Oxygen Fugacity on Electrical Conduction of Olivine and Implications for Earth s Mantle; 8) Redox Chemical Diffusion in Silicate Melts: The Impact of the Semiconductor Condition; 9) Ultra-High Temperature Effects in Earth s Magma Ocean: Pt and W Partitioning; 10) Terrestrial Oxygen and Hydrogen Isotope Variations: Primordial Values, Systematics, Subsolidus Effects, Planetary Comparisons, and the Role of Water; 11) Redox State of the Moon s Interior; 12) How did the Terrestrial Planets Acquire Their Water?; 13) Molecular Oxygen Mixing Ratio and Its Seasonal Variability in the Martian Atmosphere; 14) Exchange Between the Atmosphere and the Regolith of Mars: Discussion of Oxygen and Sulfur Isotope Evidence; 15) Oxygen and Hydrogen Isotope Systematics of Atmospheric Water Vapor and Meteoric Waters: Evidence from North Texas; 16) Implications of Isotopic and Redox Heterogeneities in Silicate Reservoirs on Mars; 17) Oxygen Isotopic Variation of the Terrestrial Planets; 18) Redox Exchanges in Hydrous Magma; 19) Hydrothermal Systems on Terrestrial Planets: Lessons from Earth; 20) Oxygen in Martian Meteorites: A Review of Results from Mineral Equilibria Oxybarometers; 21) Non-Linear Fractionation of Oxygen Isotopes Implanted in

  11. Palaeotemperature reconstructions of the European permafrost zone during Oxygen Isotope Stage 3 compared with climate model results.

    NARCIS (Netherlands)

    van Huissteden, J.; Vandenberghe, J.; Pollard, D.

    2003-01-01

    A palaeotemperature reconstruction based on periglacial phenomena in Europe north of approximately 51 °N, is compared with high-resolution regional climate model simulations of the marine oxygen isotope Stage 3 (Stage 3) palaeoclimate. The experiments represent Stage 3 warm (interstadial), Stage 3

  12. Improved Sensitivity of Spectroscopic Quantification of Stable Isotope Content Using Capillary Absorption Spectroscopy

    Science.gov (United States)

    Moran, J.; Wilcox Freeburg, E.; Kriesel, J.; Linley, T. J.; Kelly, J.; Coleman, M. L.; Christensen, L. E.; Vance, S.

    2016-12-01

    Spectroscopy-based platforms have recently risen to the forefront for making stable isotope measurements of methane, carbon dioxide, water, or other analytes. These spectroscopy systems can be relatively straightforward to operate (versus a mass spectrometry platform), largely relieve the analyst of mass interference artifacts, and many can be used in the field. Despite these significant advantages, however, existing spectroscopy techniques suffer from a lack of measurement sensitivity that can ultimately limit select applications including spatially resolved and compound-specific measurements. Here we present a capillary absorption spectroscopy (CAS) system that is designed to mitigate sensitivity issues in spectroscopy-based stable isotope evaluation. The system uses mid-wave infrared excitation generated from a continuous wave quantum cascade laser. Importantly, the sample `chamber' is a flexible capillary with a total volume of less than one cc. Proprietary coatings on the internal surface of the fiber improve optical performance, guiding the light to a detector and facilitating high levels of interaction between the laser beam and gaseous analytes. We present data demonstrating that a tapered hollow fiber cell, with an internal diameter that broadens toward the detector, reduces optical feedback to further improve measurement sensitivity. Sensitivity of current hollow fiber / CAS systems enable measurements of only 10's of picomoles CO2 while theoretical improvements should enable measurements of as little as 10's of femtomoles. Continued optimization of sample introduction and improvements to optical feedback are being explored. Software is being designed to provide rapid integration of data and generation of processed isotope measurements using a graphical user interface. Taken together, the sensitivity improvements of the CAS system under development could, when coupled to a laser ablation sampling device, enable up to 2 µm spatial resolution (roughly the

  13. Visible light induced photoelectrochemical biosensing based on oxygen-sensitive quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Wang Wenjing; Bao Lei [State Key Laboratory of Analytical Chemistry for Life Science, Department of Chemistry, Nanjing University, Nanjing 210093 (China); Lei Jianping, E-mail: jpl@nju.edu.cn [State Key Laboratory of Analytical Chemistry for Life Science, Department of Chemistry, Nanjing University, Nanjing 210093 (China); Tu Wenwen [State Key Laboratory of Analytical Chemistry for Life Science, Department of Chemistry, Nanjing University, Nanjing 210093 (China); Ju Huangxian, E-mail: hxju@nju.edu.cn [State Key Laboratory of Analytical Chemistry for Life Science, Department of Chemistry, Nanjing University, Nanjing 210093 (China)

    2012-09-26

    Highlights: Black-Right-Pointing-Pointer The near-infrared QDs are synthesized in an aqueous solution. Black-Right-Pointing-Pointer QDs-based biosensor exhibits visible-light induced cathodic photocurrent. Black-Right-Pointing-Pointer The oxygen dependency of the photocurrent is verified. Black-Right-Pointing-Pointer A photoelectrochemical strategy is established by coupling with enzymatic reaction. Black-Right-Pointing-Pointer Photoelectrochemical sensor shows high upper detection limit, acceptable stability and accuracy. - Abstract: A visible light induced photoelectrochemical biosensing platform based on oxygen-sensitive near-infrared quantum dots (NIR QDs) was developed for detection of glucose. The NIR QDs were synthesized in an aqueous solution, and characterized with scanning electron microscopy and X-ray photoelectron spectroscopy. The as-prepared NIR QDs were employed to construct oxygen-sensitive photoelectrochemical biosensor on a fluorine-doped tin oxide (FTO) electrode. The oxygen dependency of the photocurrent was investigated at as-prepared electrode, which demonstrated the signal of photocurrent is suppressed with the decreasing of oxygen. Coupling with the consumption of oxygen during enzymatic reaction, a photoelectrochemical strategy was proposed for the detection of substrate. Using glucose oxidase (GOx) as a model enzyme, that is, GOx was covalently attached to the surface of CdTe QDs, the resulting biosensor showed the sensitive response to glucose. Under the irradiation of visible light of a wavelength at 505 nm, the proposed photoelectrochemical method could detect glucose ranging from 0.1 mM to 11 mM with a detection limit of 0.04 mM. The photoelectrochemical biosensor showed a good performance with high upper detection limit, acceptable stability and accuracy, providing an alternative method for monitoring biomolecules and extending the application of near-infrared QDs.

  14. Simulated oxygen isotopes in cave drip water and speleothem calcite in European caves

    Directory of Open Access Journals (Sweden)

    A. Wackerbarth

    2012-11-01

    Full Text Available Interpreting stable oxygen isotope18O records from stalagmites is still one of the complex tasks in speleothem research. Here, we present a novel model-based approach, where we force a model describing the processes and modifications of δ18O from rain water to speleothem calcite (Oxygen isotope Drip water and Stalagmite Model – ODSM with the results of a state-of-the-art atmospheric general circulation model enhanced by explicit isotope diagnostics (ECHAM5-wiso. The approach is neither climate nor cave-specific and allows an integrated assessment of the influence of different varying climate variables, e.g. temperature and precipitation amount, on the isotopic composition of drip water and speleothem calcite.

    First, we apply and evaluate this new approach under present-day climate conditions using observational data from seven caves from different geographical regions in Europe. Each of these caves provides measured δ18O values of drip water and speleothem calcite to which we compare our simulated isotope values. For six of the seven caves modeled δ18O values of drip water and speleothem calcite are in good agreement with observed values. The mismatch of the remaining caves might be caused by the complexity of the cave system, beyond the parameterizations included in our cave model.

    We then examine the response of the cave system to mid-Holocene (6000 yr before present, 6 ka climate conditions by forcing the ODSM with ECHAM5-wiso results from 6 ka simulations. For a set of twelve European caves, we compare the modeled mid-Holocene-to-modern difference in speleothem calcite δ18O to available measurements. We show that the general European changes are simulated well. However, local discrepancies are found, and might be explained either by a too low model resolution, complex local soil-atmosphere interactions affecting evapotranspiration or by cave specific factors

  15. Observation of localized strains on vertically grown single-walled carbon nanotube forests via polarized Raman spectroscopy

    International Nuclear Information System (INIS)

    Park, June; Seong, Maeng-Je; Heo, Kwang; Hong, Seunghun; Min, Yo-Sep

    2014-01-01

    Vertically grown single-walled carbon nanotube (V-SWCNT) forests, synthesized by water-assisted plasma-enhanced chemical vapor deposition, were studied using polarized micro-Raman spectroscopy. Among three different sections (root, center and end) along the vertical growth direction, the degree of V-SWCNT alignment was highest in the center section. Raman frequency red-shifts up to 7 and 13 cm −1 , for RBM and G-band, respectively, were observed in the center section, with respect to the Raman frequencies measured in the root and the end sections. Raman frequency downshift and concurrent linewidth broadening of the G-band, revealing a localized strain, were also observed in the center section. The existence of a localized strain in the center section of the V-SWCNT was further confirmed by observing a strong polarization anisotropy of up to 8 cm −1 in the G-band Raman frequency for different polarized Raman scattering configurations at the same probed spot. (paper)

  16. Calculation of the Raman intensity in graphene and carbon nanotubes

    Science.gov (United States)

    Moutinho, Marcus; Venezuela, Pedro

    2014-03-01

    Raman spectroscopy is one of the most important experimental techniques for characterization of carbon materials because it can give a lot of information about electronic and phonon structure in a non destructive way. We use a third-order quantum field model to obtain the theoretical Raman intensity for graphene and carbon nanotubes (CNT). The most important Raman peaks in graphitic materials comes from to the iLo and iTo phonon branches near to Γ and K points and, in this work, we focus our attention on some of these peaks, like the G, D and 2D bands, as a function of laser energy. The electronic and phonon dispersion used in our calculations reproduces the graphene ab initio results with GW corrections and the zone folding method is used to obtain the CNT ones. Our results show that the experimental G band Raman excitation profile for CNT can be reproduced if we use the proper electronic and phonon dispersions. We also show that the phonon dispersion may influence the shape of the graphene D band and the dispersive behavior of the 2D band for graphene and CNT. This work was supported by the Brazilian Nanocarbon Institute of Science and Technology (INCT/Nanocarbono), the Brazilian Network on Carbon Nanotube Research and the Brazilian agency CAPES

  17. Stable oxygen isotope variability in two contrasting glacier river catchments in Greenland

    DEFF Research Database (Denmark)

    Yde, Jacob C.; Knudsen, Niels T.; Steffensen, Jørgen P.

    2016-01-01

    the Greenland Ice Sheet (GrIS). At the Mittivakkat Gletscher river, a small river draining a local temperate glacier in southeast Greenland, diurnal oscillations in δ18O occurred with a 3 h time lag to the diurnal oscillations in run-off. The mean annual δ18O was -14.68±0.18‰ during the peak flow period...... event. Overall, a comparison of the δ18O compositions from glacial river water in Greenland shows distinct differences between water draining local glaciers and ice caps (between -23.0 and -13.7 ‰) and the GrIS (between -29.9 and -23.2 ‰). This study demonstrates that water isotope analyses can be used......Analysis of stable oxygen isotope (δ18O) characteristics is a useful tool to investigate water provenance in glacier river systems. In order to attain knowledge on the diversity of δ18O variations in Greenlandic rivers, we examined two contrasting glacierised catchments disconnected from...

  18. Oxygen stable isotopes during the Last Glacial Maximum climate: perspectives from data-model (iLOVECLIM) comparison

    NARCIS (Netherlands)

    Caley, T.; Roche, D.M.V.A.P.; Waelbroeck, C.; Michel, E.

    2014-01-01

    We use the fully coupled atmosphere-ocean three-dimensional model of intermediate complexity iLOVECLIM to simulate the climate and oxygen stable isotopic signal during the Last Glacial Maximum (LGM, 21 000 years). By using a model that is able to explicitly simulate the sensor (Î18O), results can be

  19. Temperature-sensitive gating of hCx26: high-resolution Raman spectroscopy sheds light on conformational changes.

    Science.gov (United States)

    Kniggendorf, Ann-Kathrin; Meinhardt-Wollweber, Merve; Yuan, Xiaogang; Roth, Bernhard; Seifert, Astrid; Fertig, Niels; Zeilinger, Carsten

    2014-07-01

    The temperature-sensitive gating of human Connexin 26 (hCx26) was analyzed with confocal Raman microscopy. High-resolution Raman spectra covering the spectral range between 400 and 1500 rel. cm(-1) with a spectral resolution of 1 cm(-1) were fully annotated, revealing notable differences between the spectrum recorded from solubilized hCx26 in Ca(2+)-buffered POPC at 10°C and any other set of protein conditions (temperature, Ca(2+) presence, POPC presence). Spectral components originating from specific amino acids show that the TM1/EL1 parahelix and probably the TM4 trans-membrane helix and the plug domain are involved in the gating process responsible for fully closing the hemichannel.

  20. Enhanced Raman scattering in porous silicon grating.

    Science.gov (United States)

    Wang, Jiajia; Jia, Zhenhong; Lv, Changwu

    2018-03-19

    The enhancement of Raman signal on monocrystalline silicon gratings with varying groove depths and on porous silicon grating were studied for a highly sensitive surface enhanced Raman scattering (SERS) response. In the experiment conducted, porous silicon gratings were fabricated. Silver nanoparticles (Ag NPs) were then deposited on the porous silicon grating to enhance the Raman signal of the detective objects. Results show that the enhancement of Raman signal on silicon grating improved when groove depth increased. The enhanced performance of Raman signal on porous silicon grating was also further improved. The Rhodamine SERS response based on Ag NPs/ porous silicon grating substrates was enhanced relative to the SERS response on Ag NPs/ porous silicon substrates. Ag NPs / porous silicon grating SERS substrate system achieved a highly sensitive SERS response due to the coupling of various Raman enhancement factors.

  1. Isotope shifting capacity of rock

    International Nuclear Information System (INIS)

    Blattner, P.; Department of Scientific and Industrial Research, Lower Hutt

    1980-01-01

    Any oxygen isotope shifted rock volume exactly defines a past throughput of water. An expression is derived that relates the throughput of an open system to the isotope shift of reservoir rock and present-day output. The small isotope shift of Ngawha reservoir rock and the small, high delta oxygen-18 output are best accounted for by a magmatic water source

  2. Oxygen isotope variability in snow from western Dronning Maud Land, Antarctica and its relation to temperature

    International Nuclear Information System (INIS)

    Helsen, M.M.; Wal, R.S.W. van de; Broeke, M.R. van den; As, D. van; Reijmer, C.H.; Meijer, H.A.J.

    2005-01-01

    This paper presents (delta) 18 O records from snow pits from four locations in Dronning Maud Land, Antarctica that contain at least four annual cycles. The aim of the study was to analyse in detail these records as well as the prevailing temperatures during accumulation in order to infer to what extent isotopic composition in this area can be interpreted as temperature information. The original seasonal amplitudes of the isotope records were reconstructed by use of a simple back-diffusion model. Automatic weather station data were used to describe the accumulation history and the near-surface temperatures; the temperatures at the atmospheric level of snow formation were inferred from a regional climate model. The results show that the strongly intermittent nature of the accumulation in this area can result in the exclusion of entire seasons from the isotope records. The temperature records also reveal that the oxygen isotope records in these snow pits are biased towards higher temperatures, since snowfall conditions are associated with higher temperatures. This effect is greatest at low temperatures. A comparison between the seasonal extreme isotopic and temperature values points out that on timescales of seasons to several years, isotopic variability cannot be interpreted with confidence as temperature changes at the accumulation sites

  3. ORIENTATIONAL MICRO-RAMAN SPECTROSCOPY ON HYDROXYAPATITE SINGLE-CRYSTALS AND HUMAN ENAMEL CRYSTALLITES

    NARCIS (Netherlands)

    TSUDA, H; ARENDS, J

    Single crystals of synthetic hydroxyapatite have been examined by orientational micro-Raman spectroscopy. The observed Raman bands include the PO43-/OH- internal and external. modes over the spectral range from 180 to 3600 cm(-1). The Raman-active symmetry tensors (A, E(1), and E(2)) of

  4. Sensitivity of ocean acidification and oxygen to the uncertainty in climate change

    International Nuclear Information System (INIS)

    Cao, Long; Wang, Shuangjing; Zheng, Meidi; Zhang, Han

    2014-01-01

    Due to increasing atmospheric CO 2 concentrations and associated climate change, the global ocean is undergoing substantial physical and biogeochemical changes. Among these, changes in ocean oxygen and carbonate chemistry have great implication for marine biota. There is considerable uncertainty in the projections of future climate change, and it is unclear how the uncertainty in climate change would also affect the projection of oxygen and carbonate chemistry. To investigate this issue, we use an Earth system model of intermediate complexity to perform a set of simulations, including that which involves no radiative effect of atmospheric CO 2 and those which involve CO 2 -induced climate change with climate sensitivity varying from 0.5 °C to 4.5 °C. Atmospheric CO 2 concentration is prescribed to follow RCP 8.5 pathway and its extensions. Climate change affects carbonate chemistry and oxygen mainly through its impact on ocean temperature, ocean ventilation, and concentration of dissolved inorganic carbon and alkalinity. It is found that climate change mitigates the decrease of carbonate ions at the ocean surface but has negligible effect on surface ocean pH. Averaged over the whole ocean, climate change acts to decrease oxygen concentration but mitigates the CO 2 -induced reduction of carbonate ion and pH. In our simulations, by year 2500, every degree increase of climate sensitivity warms the ocean by 0.8 °C and reduces ocean-mean dissolved oxygen concentration by 5.0%. Meanwhile, every degree increase of climate sensitivity buffers CO 2 -induced reduction in ocean-mean carbonate ion concentration and pH by 3.4% and 0.02 units, respectively. Our study demonstrates different sensitivities of ocean temperature, carbonate chemistry, and oxygen, in terms of both the sign and magnitude to the amount of climate change, which have great implications for understanding the response of ocean biota to climate change. (letters)

  5. Use of Raman microscopy and multivariate data analysis to observe the biomimetic growth of carbonated hydroxyapatite on bioactive glass.

    Science.gov (United States)

    Seah, Regina K H; Garland, Marc; Loo, Joachim S C; Widjaja, Effendi

    2009-02-15

    In the present contribution, the biomimetic growth of carbonated hydroxyapatite (HA) on bioactive glass were investigated by Raman microscopy. Bioactive glass samples were immersed in simulated body fluid (SBF) buffered solution at pH 7.40 up to 17 days at 37 degrees C. Raman microscopy mapping was performed on the bioglass samples immersed in SBF solution for different periods of time. The collected data was then analyzed using the band-target entropy minimization technique to extract the observable pure component Raman spectral information. In this study, the pure component Raman spectra of the precursor amorphous calcium phosphate, transient octacalcium phosphate, and matured HA were all recovered. In addition, pure component Raman spectra of calcite, silica glass, and some organic impurities were also recovered. The resolved pure component spectra were fit to the normalized measured Raman data to provide the spatial distribution of these species on the sample surfaces. The current results show that Raman microscopy and multivariate data analysis provide a sensitive and accurate tool to characterize the surface morphology, as well as to give more specific information on the chemical species present and the phase transformation of phosphate species during the formation of HA on bioactive glass.

  6. Sensitive determination of dopamine levels via surface-enhanced Raman scattering of Ag nanoparticle dimers.

    Science.gov (United States)

    Yu, Xiantong; He, XiaoXiao; Yang, Taiqun; Zhao, Litao; Chen, Qichen; Zhang, Sanjun; Chen, Jinquan; Xu, Jianhua

    2018-01-01

    Dopamine (DA) is an important neurotransmitter in the hypothalamus and pituitary gland, which can produce a direct influence on mammals' emotions in midbrain. Additionally, the level of DA is highly related with some important neurologic diseases such as schizophrenia, Parkinson, and Huntington's diseases, etc. In light of the important roles that DA plays in the disease modulation, it is of considerable significance to develop a sensitive and reproducible approach for monitoring DA. The objective of this study was to develop an efficient approach to quantitatively monitor the level of DA using Ag nanoparticle (NP) dimers and enhanced Raman spectroscopy. Ag NP dimers were synthesized for the sensitive detection of DA via surface-enhanced Raman scattering (SERS). Citrate was used as both the capping agent of NPs and sensing agent to DA, which is self-assembled on the surface of Ag NP dimers by reacting with the surface carboxyl group to form a stable amide bond. To improve accuracy and precision, the multiplicative effects model for surface-enhanced Raman spectroscopy was utilized to analyze the SERS assays. A low limits of detection (LOD) of 20 pM and a wide linear response range from 30 pM to 300 nM were obtained for DA quantitative detection. The SERS enhancement factor was theoretically valued at approximately 10 7 by discrete dipole approximation. DA was self-assembled on the citrate capped surface of Ag NPs dimers through the amide bond. The adsorption energy was estimated to be 256 KJ/mol using the Langmuir isotherm model. The density functional theory was used to simulate the spectral characteristics of SERS during the adsorption of DA on the surface of the Ag dimers. Furthermore, to improve the accuracy and precision of quantitative analysis of SERS assays with a multiplicative effects model for surface-enhanced Raman spectroscopy. A LOD of 20 pM DA-level was obtained, and the linear response ranged from 30 pM to 300 nM for quantitative DA detection. The

  7. Palaeotemperature estimation in the Holsteinian Interglacial (MIS 11) based on oxygen isotopes of aquatic gastropods from eastern Poland

    Science.gov (United States)

    Szymanek, Marcin

    2017-12-01

    For quantitative estimation of past water temperature of four Holsteinian (MIS 11) palaeolakes from eastern Poland, the oxygen isotope palaeothermometer was applied to shells of the aquatic gastropods Viviparus diluvianus and Valvata piscinalis. The δ18O composition of their shells demonstrated the average growth-season water temperatures during the mesocratic stage of the interglacial (Ortel Królewski Lake), during its climatic optimum - the Carpinus-Abies Zone (Ossówka-Hrud, Roskosz and Szymanowo Lakes), and in the post-optimum (Szymanowo Lake). The calculation was based on δ18OShell values and the δ18OWater assumed for the Holsteinian from the modern oxygen isotope composition of precipitation and the expected amount of evaporative enrichment. The mean oxygen isotope palaeotemperatures of Ortel Królewski lake waters were in the range of 18.1-21.9°C and were uniform for the Taxus and Pinus-Larix zones. Ossówka-Hrud and Roskosz Lakes had mean temperatures of 17.4-21.0°C during the climatic optimum, whereas the temperature of Szymanowo lake waters was estimated at 20.6-21.7°C at that time. These values are concordant with the pollen-inferred July air temperatures noted during the Holsteinian in eastern Poland. Relatively high values of 25°C in the post-optimum noted at Szymanowo were connected with the presence of a shallow and warm isolated bay indicated by pollen and mollusc records.

  8. Oxygen and carbon isotope analyses of a Late Quaternary core in the Zaire (Congo) fan

    International Nuclear Information System (INIS)

    Olausson, E.

    1984-01-01

    Oxygen and carbon isotope analyses have been carried out on samples from a core of the Angola Basin (6 0 50'S, 10 0 45'E, depth 2100 m). The pelagic foraminifer Globigerinoides ruber, a species with a shallow water habitat, and two benthic species Uvigerina peregrina and Bulimina aculeata have been analysed. The data are given relative to PDB. (Auth.)

  9. Fast and eco-friendly fabrication of uniform Ag substrates for highly sensitive surface-enhanced Raman scattering

    Science.gov (United States)

    Xu, Yongda; Li, Xin; Jiang, Lan; Meng, Ge; Ran, Peng; Lu, Yongfeng

    2017-05-01

    This study proposed a fast, simple, eco-friendly method for obtaining highly sensitive and uniform surface-enhanced Raman scattering (SERS) of silver (Ag) nanotextured substrates decorated with silver nanoparticles in open air. By splitting conventional femtosecond pulses (subpulse delay Δt = 0 ps) into pulse trains (subpulse delay Δt = 3 ps), the mean diameter of Ag nanoparticles was reduced by almost half and the amount of Ag nanoparticles with a diameter ranging from 20 to 60 nm was increased by more than 11 times. The substrate fabricated by femtosecond pulse trains has four main merits as follows: (1) High sensitivity: the maximum SERS enhancement factor is 1.26 × 109; (2) High efficiency: the fabrication rate can be up to 1600 μm2/s, which is 20-40 times faster than femtosecond photochemical reduction; (3) Good reproducibility: the relative standard deviation of the Raman signal intensity is 10.7%, which is one-third of that for conventional femtosecond laser; (4) Eco-friendly fabrication: neither chemical reagents nor vacuum conditions are needed during the fabrication process.

  10. Oxygen isotope fractionations across individual leaf carbohydrates in grass and tree species.

    Science.gov (United States)

    Lehmann, Marco M; Gamarra, Bruno; Kahmen, Ansgar; Siegwolf, Rolf T W; Saurer, Matthias

    2017-08-01

    Almost no δ 18 O data are available for leaf carbohydrates, leaving a gap in the understanding of the δ 18 O relationship between leaf water and cellulose. We measured δ 18 O values of bulk leaf water (δ 18 O LW ) and individual leaf carbohydrates (e.g. fructose, glucose and sucrose) in grass and tree species and δ 18 O of leaf cellulose in grasses. The grasses were grown under two relative humidity (rH) conditions. Sucrose was generally 18 O-enriched compared with hexoses across all species with an apparent biosynthetic fractionation factor (ε bio ) of more than 27‰ relative to δ 18 O LW , which might be explained by isotopic leaf water and sucrose synthesis gradients. δ 18 O LW and δ 18 O values of carbohydrates and cellulose in grasses were strongly related, indicating that the leaf water signal in carbohydrates was transferred to cellulose (ε bio  = 25.1‰). Interestingly, damping factor p ex p x , which reflects oxygen isotope exchange with less enriched water during cellulose synthesis, responded to rH conditions if modelled from δ 18 O LW but not if modelled directly from δ 18 O of individual carbohydrates. We conclude that δ 18 O LW is not always a good substitute for δ 18 O of synthesis water due to isotopic leaf water gradients. Thus, compound-specific δ 18 O analyses of individual carbohydrates are helpful to better constrain (post-)photosynthetic isotope fractionation processes in plants. © 2017 John Wiley & Sons Ltd.

  11. Three-ring stable oxygen isotope ratios indicating cooler and wetter climate conditions and high flood frequency periods in the Red River Basin, Manitoba, Canada

    International Nuclear Information System (INIS)

    Buhay, W.M.; Harms, P.; Marcino, D.; Mayer, B.; St. George, S.; Nielsen, E.

    2002-01-01

    In the Red River region of southern Manitoba, Canada, the frequency of flood events tends to increase during cooler and wetter climate conditions. Predictably, recorded Red River flood stages are primarily a result of meteorological conditions which produce an increase runoff due to excess snowmelt and heavy spring precipitation. Winter skewed precipitation periods corresponding to cooler and wetter conditions in the Red River Basin may provide traceable oxygen isotope signals in hydrologically sensitive trees occupying the basin. To test this hypothesis, three overlapping oak tree-ring chronologies (KPO1: 1990 to 1795; STVO1: 1985 to 1797; STVO2: 1990 to 1845) were annually sampled and processed for their cellulose

  12. Shape coexistence in selenium isotopes

    International Nuclear Information System (INIS)

    Liu Ying; Cao Zhongbin; Xu Furong

    2010-01-01

    Nuclear shape change and shape coexistence in the Selenium isotopes have been investigated by Total-Routhian-Surface (TRS) calculations. It is found that nuclear shapes vary significantly with increasing neutron number. The TRS calculations for the ground states of 66,72,92,94 Se isotopes show that both neutron-deficient and neutron-dripline Selenium isotopes have oblate and prolate shape coexistence. The cranking shell-model calculations for 72,94 Se give that prolate and oblate shape coexistence in low rotational frequency. However, oblate rotational bands disappear and prolate rotational bands become yrast bands with increasing rotational frequency, which is due to the intrusion of the g 9/2 orbitals. (authors)

  13. Quasi-free one nucleon knockout reactions on neutron-rich oxygen isotopes at the R3B-LAND setup

    Energy Technology Data Exchange (ETDEWEB)

    Atar, Leyla; Aumann, Thomas [TU Darmstadt, Darmstadt (Germany); GSI, Darmstadt (Germany); Bertulani, Carlos [Texas A and M University-Commerce, Commerce (United States); Paschalis, Stefanos [TU Darmstadt, Darmstadt (Germany); Nociforo, Chiara [GSI, Darmstadt (Germany); Collaboration: R3B-Collaboration

    2016-07-01

    Recent experiments have showed a reduction of spectroscopic strengths of about 60-70% for stable nuclei. When going to driplines this tendency is changing, loosely bound nucleons have spectroscopic strengths close unity while deeply bound nucleons have a large reduction of the strength. We aim to make a systematic study of spectroscopic factors (SF) of the Oxygen isotopes using quasi-free (p,2p) and (p,pn) knockout reactions in inverse kinematics. Quasi-free knockout reactions are a direct tool to study the occupancy and the location of valance and deeply bound single particle states. The Oxygen isotopes offer a large variation of separation energies which will allow us to obtain a qualitative and quantitative understanding of SF in a large variation of isospin asymmetry. For this we performed an experiment at the R3B-LAND setup at the GSI with a secondary beam {sup 14-24}O. The {sup 16-18}O and {sup 21-23}O isotopes have been analyzed and the preliminary results will be presented. The results include the partial cross sections, gamma ray spectra of the residual fragments in coincidence, and the SF obtained via comparison with theory.

  14. Resonance Raman study on indoleamine 2,3-dioxygenase: Control of reactivity by substrate-binding

    Energy Technology Data Exchange (ETDEWEB)

    Yanagisawa, Sachiko; Hara, Masayuki [Graduate School of Life Science and Picobiology Institute, University of Hyogo, Koto 3-2-1, Kamigori-cho, Ako-gun, Hyogo 678-1297 (Japan); Sugimoto, Hiroshi; Shiro, Yoshitsugu [Biometal Science Laboratory, RIKEN SPring-8 Center, Harima Institute, Koto 1-1-1, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Ogura, Takashi, E-mail: ogura@sci.u-hyogo.ac.jp [Graduate School of Life Science and Picobiology Institute, University of Hyogo, Koto 3-2-1, Kamigori-cho, Ako-gun, Hyogo 678-1297 (Japan)

    2013-06-20

    Highlights: • Indoleamine 2,3-dioygenase has been studied by resonance Raman spectroscopy. • Trp-binding to the enzyme induces high frequency shift of the Fe–His stretching mode. • Increased imidazolate character of histidine promotes the O–O bond cleavage step. • A fine-tuning of the reactivity of the O–O bond cleavage reaction is identified. • The results are consistent with the sequential oxygen-atom-transfer mechanism. - Abstract: Resonance Raman spectra of ligand-bound complexes including the 4-phenylimidazole complex and of free and L-Trp-bound forms of indoleamine 2, 3-dioxygenase in the ferric state were examined. Effects on the vinyl and propionate substituent groups of the heme were detected in a ligand-dependent fashion. The effects of phenyl group of 4-phenylimidazole on the vinyl and propionate Raman bands were evident when compared with the case of imidazole ligand. Substrate binding to the ferrous protein caused an upshift of the iron–histidine stretching mode by 3 cm{sup −1}, indicating an increase in negativity of the imidazole ring, which favors the O–O bond cleavage. The substrate binding event is likely to be communicated from the heme distal side to the iron–histidine bond through heme substituent groups and the hydrogen-bond network which includes water molecules, as identified in an X-ray structure of a 4-phenylimidazole complex. The results provide evidence for fine-tuning of the reactivity of O–O bond cleavage by the oxygenated heme upon binding of L-Trp.

  15. Cross-continental triple oxygen isotope analysis of tropospheric CO2

    Science.gov (United States)

    Liang, M. C.; Rangarajan, R.; Newman, S.; Laskar, A. H.

    2016-12-01

    The abundance variations of near surface atmospheric CO2 isotopologues (primarily 16O12C16O, 16O13C16O, 17O12C16O, and 18O12C16O) represent an integrated signal from anthropogenic/biogeochemical processes, including fossil fuel burning, biospheric photosynthesis and respiration, hydrospheric isotope exchange with water, and stratospheric photochemistry. Oxygen isotopes, in particular, are affected by the carbon and water cycles. Being a useful tracer that directly probes governing processes in CO2 biogeochemical cycles, D17O (= ln(1+d17O) - 0.516´ln(1+d18O)) provides an alternative constraint on the strengths of the associated cycles involving CO2. Here, we report more than one year of data obtained from Taiwan (Taipei), South China Sea, and USA (Pasadena, CA and Palos Verdes, CA). On average, the D17O values from these locations are similar and show no significant influence from the 2014-2016 El Nino event, in contrast to what has been reported for the 1997-1998 El Nino from the CO2 data collected from La Jolla, CA. Implications for utilizing the new tracer D17O for carbon cycling studies will be made.

  16. Separation of isotopes of nitrogen and oxygen by low temperature distillation of nitrogen oxide

    Energy Technology Data Exchange (ETDEWEB)

    Isomura, Shohei; Tonooka, Yasuhiko; Kaetsu, Hayato

    1987-02-01

    In general, the distillation parameters, such as the number of theoretical plate (NTP) and the height equivalent to a theoretical plate (HETP), can be obtained from the operation at the steady state. However, it is time-consuming to achieve the steady state especially in the case of isotope separation. In this paper, with the purpose of simultaneous separation of isotopes of nitrogen and oxygen by NO distillation, we tried to determine the distillation parameters by an analytical method through the transient-state operation. It was confirmed that the results from the analysis were in good agreement with those observed for the operation at the steady state. Enrichment of the isotopes was carried out using a distillation column with a height of 1 m and inside diameter of 12 mm. The dependence of HETP on liquid flow rate was measured by the proposed method. The obtained HETP values were from 2 to 4 cm. The operation time of about 5 h was found to be long enough to determine the distillation parameters.

  17. Separation of isotopes of nitrogen and oxygen by low temperature distillation of nitrogen oxide

    International Nuclear Information System (INIS)

    Isomura, Shohei; Tonooka, Yasuhiko; Kaetsu, Hayato

    1987-01-01

    In general, the distillation parameters, such as the number of theoretical plate (NTP) and the height equivalent to a theoretical plate (HETP), can be obtained from the operation at the steady state. However, it is time-consuming to achieve the steady state especially in the case of isotope separation. In this paper, with the purpose of simultaneous separation of isotopes of nitrogen and oxygen by NO distillation, we tried to determine the distillation parameters by an analytical method through the transient-state operation. It was confirmed that the results from the analysis were in good agreement with those observed for the operation at the steady state. Enrichment of the isotopes was carried out using a distillation column with a height of 1 m and inside diameter of 12 mm. The dependence of HETP on liquid flow rate was measured by the proposed method. The obtained HETP values were from 2 to 4 cm. The operation time of about 5 h was found to be long enough to determine the distillation parameters. (author)

  18. OXYGEN ISOTOPIC COMPOSITIONS OF THE ALLENDE TYPE C CAIs: EVIDENCE FOR ISOTOPIC EXCHANGE DURING NEBULAR MELTING AND ASTEROIDAL THERMAL METAMORPHISM

    Energy Technology Data Exchange (ETDEWEB)

    Krot, A N; Chaussidon, M; Yurimoto, H; Sakamoto, N; Nagashima, K; Hutcheon, I D; MacPherson, G J

    2008-02-21

    Based on the mineralogy and petrography, coarse-grained, igneous, anorthite-rich (Type C) calcium-aluminum-rich inclusions (CAIs) in the CV3 carbonaceous chondrite Allende have been recently divided into three groups: (i) CAIs with melilite and Al,Ti-diopside of massive and lacy textures (coarse grains with numerous rounded inclusions of anorthite) in a fine-grained anorthite groundmass (6-1-72, 100, 160), (ii) CAI CG5 with massive melilite, Al,Ti-diopside and anorthite, and (iii) CAIs associated with chondrule material: either containing chondrule fragments in their peripheries (ABC, TS26) or surrounded by chondrule-like, igneous rims (93) (Krot et al., 2007a,b). Here, we report in situ oxygen isotopic measurements of primary (melilite, spinel, Al,Ti-diopside, anorthite) and secondary (grossular, monticellite, forsterite) minerals in these CAIs. Spinel ({Delta}{sup 17}O = -25{per_thousand} to -20{per_thousand}), massive and lacy Al,Ti-diopside ({Delta}{sup 17}O = -20{per_thousand} to -5{per_thousand}) and fine-grained anorthite ({Delta}{sup 17}O = -15{per_thousand} to -2{per_thousand}) in 100, 160 and 6-1-72 are {sup 16}O-enriched relative spinel and coarse-grained Al,Ti-diopside and anorthite in ABC, 93 and TS26 ({Delta}{sup 17}O ranges from -20{per_thousand} to -15{per_thousand}, from -15{per_thousand} to -5{per_thousand}, and from -5{per_thousand} to 0{per_thousand}, respectively). In 6-1-72, massive and lacy Al,Ti-diopside grains are {sup 16}O-depleted ({Delta}{sup 17}O {approx} -13{per_thousand}) relative to spinel ({Delta}{sup 17}O = -23{per_thousand}). Melilite is the most {sup 16}O-depleted mineral in all Allende Type C CAIs. In CAI 100, melilite and secondary grossular, monticellite and forsterite (minerals replacing melilite) are similarly {sup 16}O-depleted, whereas grossular in CAI 160 is {sup 16}O-enriched ({Delta}{sup 17}O = -10{per_thousand} to -6{per_thousand}) relative to melilite ({Delta}{sup 17}O = -5{per_thousand} to -3{per_thousand}). We infer

  19. Evaluation of Shifted Excitation Raman Difference Spectroscopy and Comparison to Computational Background Correction Methods Applied to Biochemical Raman Spectra.

    Science.gov (United States)

    Cordero, Eliana; Korinth, Florian; Stiebing, Clara; Krafft, Christoph; Schie, Iwan W; Popp, Jürgen

    2017-07-27

    Raman spectroscopy provides label-free biochemical information from tissue samples without complicated sample preparation. The clinical capability of Raman spectroscopy has been demonstrated in a wide range of in vitro and in vivo applications. However, a challenge for in vivo applications is the simultaneous excitation of auto-fluorescence in the majority of tissues of interest, such as liver, bladder, brain, and others. Raman bands are then superimposed on a fluorescence background, which can be several orders of magnitude larger than the Raman signal. To eliminate the disturbing fluorescence background, several approaches are available. Among instrumentational methods shifted excitation Raman difference spectroscopy (SERDS) has been widely applied and studied. Similarly, computational techniques, for instance extended multiplicative scatter correction (EMSC), have also been employed to remove undesired background contributions. Here, we present a theoretical and experimental evaluation and comparison of fluorescence background removal approaches for Raman spectra based on SERDS and EMSC.

  20. Past 20,000-year history of Himalayan aridity: Evidence from oxygen isotope records in the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Chauhan, O.S.

    Late Quaternary climate history of the Himalayas is inferred from sea surface salinity (SSS) changes determined from the oxygen isotope in planktonic foraminifers, in a turbidity-free, 14C-dated core from the Bay of Bengal. The heaviest d18O...

  1. Raman characterization of bulk ferromagnetic nanostructured graphite

    International Nuclear Information System (INIS)

    Pardo, Helena; Divine Khan, Ngwashi; Faccio, Ricardo; Araújo-Moreira, F.M.; Fernández-Werner, Luciana

    2012-01-01

    Raman spectroscopy was used to characterize bulk ferromagnetic graphite samples prepared by controlled oxidation of commercial pristine graphite powder. The G:D band intensity ratio, the shape and position of the 2D band and the presence of a band around 2950 cm -1 showed a high degree of disorder in the modified graphite sample, with a significant presence of exposed edges of graphitic planes as well as a high degree of attached hydrogen atoms.

  2. Carbon and oxygen isotopic composition of coal and carbon dioxide derived from laboratory coal combustion: A preliminary study

    Science.gov (United States)

    Warwick, Peter D.; Ruppert, Leslie F.

    2016-01-01

    The concentration of carbon dioxide (CO2) in the atmosphere has dramatically increased from the start of the industrial revolution in the mid-1700s to present levels exceeding 400 ppm. Carbon dioxide derived from fossil fuel combustion is a greenhouse gas and a major contributor to on-going climate change. Carbon and oxygen stable isotope geochemistry is a useful tool to help model and predict the contributions of anthropogenic sources of CO2 in the global carbon cycle. Surprisingly few studies have addressed the carbon and oxygen isotopic composition of CO2 derived from coal combustion. The goal of this study is to document the relationships between the carbon and oxygen isotope signatures of coal and signatures of the CO2 produced from laboratory coal combustion in atmospheric conditions.Six coal samples were selected that represent various geologic ages (Carboniferous to Tertiary) and coal ranks (lignite to bituminous). Duplicate splits of the six coal samples were ignited and partially combusted in the laboratory at atmospheric conditions. The resulting coal-combustion gases were collected and the molecular composition of the collected gases and isotopic analyses of δ13C of CO2, δ13C of CH4, and δ18O of CO2 were analysed by a commercial laboratory. Splits (~ 1 g) of the un-combusted dried ground coal samples were analyzed for δ13C and δ18O by the U.S. Geological Survey Reston Stable Isotope Laboratory.The major findings of this preliminary work indicate that the isotopic signatures of δ13C (relative to the Vienna Pee Dee Belemnite scale, VPDB) of CO2 resulting from coal combustion are similar to the δ13CVPDB signature of the bulk coal (− 28.46 to − 23.86 ‰) and are not similar to atmospheric δ13CVPDB of CO2 (~ − 8 ‰, see http://www.esrl.noaa.gov/gmd/outreach/isotopes/c13tellsus.html). The δ18O values of bulk coal are strongly correlated to the coal dry ash yields and appear to have little or no influence on the δ18O values of CO2

  3. Interplay of crystal fractionation, sulfide saturation and oxygen fugacity on the iron isotope composition of arc lavas: An example from the Marianas

    Science.gov (United States)

    Williams, H. M.; Prytulak, J.; Woodhead, J. D.; Kelley, K. A.; Brounce, M.; Plank, T.

    2018-04-01

    Subduction zone systems are central to a multitude of processes from the evolution of the continental crust to the concentration of metals into economically viable deposits. The interplay between oxygen fugacity, sulfur saturation, fluid exsolution and fractionating mineral assemblages that gives rise to typical arc magma chemical signatures is, however, still poorly understood and novel geochemical approaches are required to make further progress. Here we examine a well-characterized suite of arc lavas from the Marianas (W. Pacific) for their stable Fe isotope composition. In agreement with previous work and mass balance considerations, contributions from sediments and/or fluids are shown to have negligible effect on Fe isotopes. Instead, we focus on disentangling processes occurring during basalt through dacite differentiation using a sample suite from the island of Anatahan. Anatahan whole rock Fe isotope compositions (δ57Fe) range from -0.05 ± 0.05 to 0.17 ± 0.03 (2 S.D.)‰. A fractionation model is constructed, where three distinct stages of differentiation are required to satisfy the combined major and trace element and isotopic observations. In particular, the sequestration of isotopically heavy Fe into magnetite and isotopically light Fe into sulfide melts yields important constraints. The data require that lavas are first undersaturated with respect to crystalline or molten sulfide, followed by the crystallisation of magnetite, which then triggers late sulfide saturation. The model demonstrates that the final stage of removal of liquid or crystalline sulfide can effectively sequester Cu (and presumably other chalcophiles) and that late stage exsolution of magmatic fluids or brines may not be required to do this, although these processes are not mutually exclusive. Finally, the new Fe isotope data are combined with previous Tl-Mo-V stable isotope determinations on the same samples. Importantly, the multi-valent transition metal stable isotope systems of

  4. Carbon 13 and oxygen 18 isotope record of the early eocene nammal formation, salt range, pakistan

    International Nuclear Information System (INIS)

    Ghazi, S.; Sajid, Z.

    2014-01-01

    The Nammal Formation is the lowermost unit of the Early Eocene succession in the Salt Range, Pakistan. It is well exposed throughout the Salt Range. The Nammal Formation having 30 to 35 meters thickness is predominantly composed of nodular limestone interbedded with marl and shale. The present study was focussed on stable carbon 13 and oxygen 18 isotopic analysis based on data from two stratigraphically important sections. The samples from the Nilawahan section provided with the delta 13C values varied between 1.34 to -1.56 (VPDB) and values of delta 18O fluctuated between -4.47 to -6.59 (VPDB). Likewise the sample analysis of BadshahPur section exhibited that the delta 13C values changes from 1.09 to -1.65 (VPDB) and delta 18O values range from -4.17 to -6.85 (VPDB). The isotopic records of carbon 13 and oxygen 18 indicated the shallow marine deposition of the Nammal Formation under tropical conditions. It highlighted the palaeo climatic and diagenetic conditions of the Nammal Formation at the time of deposition in the Salt Range region. (author)

  5. In Vitro Polarized Resonance Raman Study of N719 and N719-TBP in Dye Sensitized Solar Cells

    DEFF Research Database (Denmark)

    Hassing, Søren; Jernshøj, Kit Drescher; Nguyen, Phuong Tuyet

    2016-01-01

    Abstract: The working efficiency of dye-sensitized solar cells (DSCs) depends on the long-term stability of the dye itself and on the microscopic structure of the dye-semiconductor interface. Previous experimental studies of DSCs based on ruthenium dye with bipyridine ligands (N719) adsorbed...... to the TiO2substrate applied FTIR,un-polarized Raman (RS) and un-polarized resonance Raman (RRS) spectroscopy. In the un-polarized RRS studies of N719/TiO2 – DSCs the discussion of the adsorption of N719 was based on the rather weak carbonyl or carboxyl group stretching vibrations and on minor spectral...

  6. The source of phosphate in the oxidation zone of ore deposits: Evidence from oxygen isotope compositions of pyromorphite

    Science.gov (United States)

    Burmann, Fabian; Keim, Maximilian F.; Oelmann, Yvonne; Teiber, Holger; Marks, Michael A. W.; Markl, Gregor

    2013-12-01

    Pyromorphite (Pb5[PO4]3Cl) is an abundant mineral in oxidized zones of lead-bearing ore deposits and due to its very low solubility product effectively binds Pb during supergene alteration of galena (PbS). The capacity of a soil or near-surface fluid to immobilize dissolved Pb depends critically on the availability of phosphate in this soil or fluid. Potential phosphorus sources in soil include (i) release during biological processes, i.e. leaching from litter/lysis of microbial cells (after intracellular enzyme activity) in soil and hydrolysis from soil organic matter by extracellular enzymes and (ii) inorganic phosphate from the dissolution of apatite in the adjacent basement rocks. Intracellular enzyme activity in plants/microorganisms associated with kinetic fractionation produces an oxygen isotope composition distinctly different from inorganic processes in soil. This study presents the first oxygen isotope data for phosphate (δ18OP) in pyromorphite and a comprehensive data set for apatite from crystalline rocks. We investigated 38 pyromorphites from 26 localities in the Schwarzwald (Southwest Germany) and five samples from localities outside the Schwarzwald in addition to 12 apatite separates from gneissic and granitic host rocks. Pyromorphites had δ18OP values between +10‰ and +19‰, comparable to literature data on δ18OP in the readily available P fraction in soil (resin-extractable P) from which minerals potentially precipitate in soils. δ18OP values below the range of equilibrium isotope fractionation can be attributed either to apatites that formed geochemically (δ18OP of apatites:+6‰ to +9‰) or less likely to biological processes (extracellular enzyme activity). However, for most of our samples isotopic equilibrium with ambient water was indicated, which suggests biological activity. Therefore, we conclude that the majority of pyromorphites in oxidized zones of ore bodies formed from biologically cycled phosphate. This study highlights that

  7. Commissioning of the KATRIN Raman system for monitoring of the WGTS gas composition

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Sebastian; Bornschein, Beate; James, Timothy M.; Off, Andreas; Rupp, Simone; Seitz-Moskaliuk, Hendrik; Sturm, Michael; Wecker, Matthias [Karlsruhe Institute of Technology (Germany); Schloesser, Magnus [Universidad Complutense de Madrid (Spain); Karlsruhe Institute of Technology (Germany); Telle, Helmut H. [Universidad Complutense de Madrid (Spain)

    2015-07-01

    The Karlsruhe Tritium Neutrino (KATRIN) Experiment aims at determining the neutrino mass by the investigation of the endpoint energy-region of the tritium β-spectrum. Tritium in its molecular form ({sup 3}H{sub 2}) is injected into the Windowless Gaseous Tritium Source (WGTS) of KATRIN, and thus molecular effects, e.g. ro-vibrational excitations levels, have to be considered in the neutrino mass analysis in order to reach the design sensitivity of 200 meV/c{sup 2} (90% C.L.). As the source gas also contains impurities of the other hydrogen isotopes protium and deuterium - giving rise to different molecular excitation levels - continuous and precise monitoring of the source gas composition is required. Raman spectroscopy is the method of choice for this task as it is an inline and non-contact analysis method. In this talk, results from the recently performed commissioning phase of the KATRIN Raman system are presented: over the course of more than 50 days, consecutive Raman spectra (recorded with acquisition times of 60 s) of circulating tritium gas were acquired and analysed in real-time. In addition, valuable information on the system performance during long-term operation was gained.

  8. Development of a miRNA surface-enhanced Raman scattering assay using benchtop and handheld Raman systems

    Science.gov (United States)

    Schechinger, Monika; Marks, Haley; Locke, Andrea; Choudhury, Mahua; Cote, Gerard

    2018-01-01

    DNA-functionalized nanoparticles, when paired with surface-enhanced Raman spectroscopy (SERS), can rapidly detect microRNA. However, widespread use of this approach is hindered by drawbacks associated with large and expensive benchtop Raman microscopes. MicroRNA-17 (miRNA-17) has emerged as a potential epigenetic indicator of preeclampsia, a condition that occurs during pregnancy. Biomarker detection using an SERS point-of-care device could enable prompt diagnosis and prevention as early as the first trimester. Recently, strides have been made in developing portable Raman systems for field applications. An SERS assay for miRNA-17 was assessed and translated from traditional benchtop Raman microscopes to a handheld system. Three different photoactive molecules were compared as potential Raman reporter molecules: a chromophore, malachite green isothiocyanate (MGITC), a fluorophore, tetramethylrhodamine isothiocyanate, and a polarizable small molecule 5,5-dithio-bis-(2-nitrobenzoic acid) (DTNB). For the benchtop Raman microscope, the DTNB-labeled assay yielded the greatest sensitivity under 532-nm laser excitation, but the MGITC-labeled assay prevailed at 785 nm. Conversely, DTNB was preferable for the miniaturized 785-nm Raman system. This comparison showed significant SERS enhancement variation in response to 1-nM miRNA-17, implying that the sensitivity of the assay may be more heavily dependent on the excitation wavelength, instrumentation, and Raman reporter chosen than on the plasmonic coupling from DNA/miRNA-mediated nanoparticle assemblies.

  9. Raman Spectroscopy of Isotactic Polypropylene-Halloysite Nanocomposites

    Directory of Open Access Journals (Sweden)

    Elamin E. Ibrahim

    2012-01-01

    Full Text Available Raman spectroscopy investigations on nanocomposites obtained by dispersing halloysite within isotactic polypropylene are reported. A detailed analysis of the modifications of the regularity band associated to the polymeric matrix is presented. The Raman lines assigned to the polymeric matrix are broadened and weakened as the loading with halloysite is increased. The analysis of Raman lines indicates that the polymeric matrix becomes less crystalline upon the loading with halloysite and that the nanofiller is experiencing a weak dehydration upon dispersion within the polymeric matrix, probably due to the related thermal processing used to achieve the dispersion of halloysite.

  10. Raman spectroscopic monitoring of the bioeffects of nitroglycerin on Hb-O II in single red blood cell

    Science.gov (United States)

    Chiang, Huihua Kenny; Ruan, Hung-Shiang; Cheng, Hung-You; Fang, Tung-Ting

    2007-02-01

    Raman spectroscopy has been shown to have the potential for providing oxygenated ability of erythrocytes. Raman line at 1638 cm-1 has also been reported as one significant oxygenic indicator for erythrocytes. In this research, we develop the Raman spectroscopic monitoring of the bioeffects of Nitroglycerin on hemoglobin oxygen saturation in a single red blood cell (RBC). Nitroglycerin has been frequently used in the management of angina pectoris. Nitroglycerin liberates nitric oxide (NO) to blood vessels. NO is an oxidizer that easily converts hemoglobin to methemoglobin. The conversion may cause the decrease of oxygenated ability of erythrocytes. In this study, we observed the oxidize state of erythrocytes caused by the over dosage of Nitroglycerin. When the dose of Nitroglycerin exceeds 2x10 -4 M, the oxygenic state of erythrocytes decreases significantly. The Raman spectroscopic results demonstrate the observation of the bioeffects of Nitroglycerin on hemoglobin.

  11. Enhanced Raman scattering and nonlinear conductivity in Ag-doped hollow ZnO microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Tringe, Joseph W.; Levie, Harold W.; McCall, Scott K.; Teslich, Nick E.; Wall, Mark A.; Orme, Christine A.; Matthews, Manyalibo J. [Lawrence Livermore National Laboratory, Livermore, CA (United States)

    2012-10-15

    Hollow spherical ZnO particles doped with Ag were synthesized with a two-step oxidation and sublimation furnace annealing process. Ag nanoparticle precipitates, as observed by transmission electron microscopy, were present in the polycrystalline ZnO matrix at Ag concentrations below 0.02 mol%, significantly below the 0.8 mol% solubility limit for Ag in ZnO. Enhanced Raman scattering of ZnO phonon modes is observed, increasing with Ag nanoparticle concentration. A further enhancement in Raman scattering due to resonance effects was observed for LO phonons excited by 2.33-eV photons as compared with Raman scattering under 1.96-eV excitation. Room-temperature photoluminescence spectra showed both a near-band-edge emission due to free exciton transitions and a mid-gap transition due to the presence of singly ionized oxygen vacancies. ZnO:Ag particles were measured electrically in a packed column and in monolithic form, and in both cases displayed nonlinear current-voltage characteristics similar to those previously observed in sintered ZnO:Ag monoliths where Ag-enhanced disorder at grain boundaries is thought to control current transport. We demonstrate therefore that Ag simultaneously modifies the electrical and optical properties of ZnO particles through the introduction of vacancies and other defects. (orig.)

  12. Evolution of interfacial intercalation chemistry on epitaxial graphene/SiC by surface enhanced Raman spectroscopy

    International Nuclear Information System (INIS)

    Ferralis, Nicola; Carraro, Carlo

    2014-01-01

    Highlights: • H-intercalated epitaxial graphene–SiC interface studied with surface enhanced Raman. • Evolution of graphene and H–Si interface with UV-ozone, annealing and O-exposure. • H–Si interface and quasi-freestanding graphene are retained after UV-ozone treatment. • Enhanced ozonolytic reactivity at the edges of H-intercalated defected graphene. • Novel SERS method for characterizing near-surface graphene–substrate interfaces. - Abstract: A rapid and facile evaluation of the effects of physical and chemical processes on the interfacial layer between epitaxial graphene monolayers on SiC(0 0 0 1) surfaces is essential for applications in electronics, photonics, and optoelectronics. Here, the evolution of the atomic scale epitaxial graphene-buffer-layer–SiC interface through hydrogen intercalation, thermal annealings, UV-ozone etching and oxygen exposure is studied by means of single microparticle mediated surface enhanced Raman spectroscopy (smSERS). The evolution of the interfacial chemistry in the buffer layer is monitored through the Raman band at 2132 cm −1 corresponding to the Si-H stretch mode. Graphene quality is monitored directly by the selectively enhanced Raman signal of graphene compared to the SiC substrate signal. Through smSERS, a simultaneous correlation between optimized hydrogen intercalation in epitaxial graphene/SiC and an increase in graphene quality is uncovered. Following UV-ozone treatment, a fully hydrogen passivated interface is retained, while a moderate degradation in the quality of the hydrogen intercalated quasi-freestanding graphene is observed. While hydrogen intercalated defect free quasi-freestanding graphene is expected to be robust upon UV-ozone, thermal annealing, and oxygen exposure, ozonolytic reactivity at the edges of H-intercalated defected graphene results in enhanced amorphization of the quasi-freestanding (compared to non-intercalated) graphene, leading ultimately to its complete etching

  13. Evolution of interfacial intercalation chemistry on epitaxial graphene/SiC by surface enhanced Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ferralis, Nicola, E-mail: ferralis@mit.edu [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Carraro, Carlo [Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720 (United States)

    2014-11-30

    Highlights: • H-intercalated epitaxial graphene–SiC interface studied with surface enhanced Raman. • Evolution of graphene and H–Si interface with UV-ozone, annealing and O-exposure. • H–Si interface and quasi-freestanding graphene are retained after UV-ozone treatment. • Enhanced ozonolytic reactivity at the edges of H-intercalated defected graphene. • Novel SERS method for characterizing near-surface graphene–substrate interfaces. - Abstract: A rapid and facile evaluation of the effects of physical and chemical processes on the interfacial layer between epitaxial graphene monolayers on SiC(0 0 0 1) surfaces is essential for applications in electronics, photonics, and optoelectronics. Here, the evolution of the atomic scale epitaxial graphene-buffer-layer–SiC interface through hydrogen intercalation, thermal annealings, UV-ozone etching and oxygen exposure is studied by means of single microparticle mediated surface enhanced Raman spectroscopy (smSERS). The evolution of the interfacial chemistry in the buffer layer is monitored through the Raman band at 2132 cm{sup −1} corresponding to the Si-H stretch mode. Graphene quality is monitored directly by the selectively enhanced Raman signal of graphene compared to the SiC substrate signal. Through smSERS, a simultaneous correlation between optimized hydrogen intercalation in epitaxial graphene/SiC and an increase in graphene quality is uncovered. Following UV-ozone treatment, a fully hydrogen passivated interface is retained, while a moderate degradation in the quality of the hydrogen intercalated quasi-freestanding graphene is observed. While hydrogen intercalated defect free quasi-freestanding graphene is expected to be robust upon UV-ozone, thermal annealing, and oxygen exposure, ozonolytic reactivity at the edges of H-intercalated defected graphene results in enhanced amorphization of the quasi-freestanding (compared to non-intercalated) graphene, leading ultimately to its complete etching.

  14. Purity and Defect Characterization of Single-Wall Carbon Nanotubes Using Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Yasumitsu Miyata

    2011-01-01

    Full Text Available We investigated the purity and defects of single-wall carbon nanotubes (SWCNTs produced by various synthetic methods including chemical vapor deposition, arc discharge, and laser ablation. The SWCNT samples were characterized using scanning electron microscopy (SEM, thermogravimetric analysis (TGA, and Raman spectroscopy. Quantitative analysis of SEM images suggested that the G-band Raman intensity serves as an index for the purity. By contrast, the intensity ratio of G-band to D-band (G/D ratio reflects both the purity and the defect density of SWCNTs. The combination of G-band intensity and G/D ratio is useful for a quick, nondestructive evaluation of the purity and defect density of a SWCNT sample.

  15. Mode-dependent dispersion in Raman line shapes: Observation and implications from ultrafast Raman loss spectroscopy

    International Nuclear Information System (INIS)

    Umapathy, S.; Mallick, B.; Lakshmanna, A.

    2010-01-01

    Ultrafast Raman loss spectroscopy (URLS) enables one to obtain the vibrational structural information of molecular systems including fluorescent materials. URLS, a nonlinear process analog to stimulated Raman gain, involves a narrow bandwidth picosecond Raman pump pulse and a femtosecond broadband white light continuum. Under nonresonant condition, the Raman response appears as a negative (loss) signal, whereas, on resonance with the electronic transition the line shape changes from a negative to a positive through a dispersive form. The intensities observed and thus, the Franck-Condon activity (coordinate dependent), are sensitive to the wavelength of the white light corresponding to a particular Raman frequency with respect to the Raman pump pulse wavelength, i.e., there is a mode-dependent response in URLS.

  16. Differentiating the growth phases of single bacteria using Raman spectroscopy

    Science.gov (United States)

    Strola, S. A.; Marcoux, P. R.; Schultz, E.; Perenon, R.; Simon, A.-C.; Espagnon, I.; Allier, C. P.; Dinten, J.-M.

    2014-03-01

    In this paper we present a longitudinal study of bacteria metabolism performed with a novel Raman spectrometer system. Longitudinal study is possible with our Raman setup since the overall procedure to localize a single bacterium and collect a Raman spectrum lasts only 1 minute. Localization and detection of single bacteria are performed by means of lensfree imaging, whereas Raman signal (from 600 to 3200 cm-1) is collected into a prototype spectrometer that allows high light throughput (HTVS technology, Tornado Spectral System). Accomplishing time-lapse Raman spectrometry during growth of bacteria, we observed variation in the net intensities for some band groups, e.g. amides and proteins. The obtained results on two different bacteria species, i.e. Escherichia coli and Bacillus subtilis clearly indicate that growth affects the Raman chemical signature. We performed a first analysis to check spectral differences and similarities. It allows distinguishing between lag, exponential and stationary growth phases. And the assignment of interest bands to vibration modes of covalent bonds enables the monitoring of metabolic changes in bacteria caused by growth and aging. Following the spectra analysis, a SVM (support vector machine) classification of the different growth phases is presented. In sum this longitudinal study by means of a compact and low-cost Raman setup is a proof of principle for routine analysis of bacteria, in a real-time and non-destructive way. Real-time Raman studies on metabolism and viability of bacteria pave the way for future antibiotic susceptibility testing.

  17. Can oxygen stable isotopes be used to track precipitation moisture source in vascular plant-dominated peatlands?

    Science.gov (United States)

    Amesbury, Matthew J.; Charman, Dan J.; Newnham, Rewi M.; Loader, Neil J.; Goodrich, Jordan; Royles, Jessica; Campbell, David I.; Keller, Elizabeth D.; Baisden, W. Troy; Roland, Thomas P.; Gallego-Sala, Angela V.

    2015-11-01

    Variations in the isotopic composition of precipitation are determined by fractionation processes which occur during temperature- and humidity-dependent phase changes associated with evaporation and condensation. Oxygen stable isotope ratios have therefore been frequently used as a source of palaeoclimate data from a variety of proxy archives, which integrate this signal over time. Applications from ombrotrophic peatlands, where the source water used in cellulose synthesis is derived solely from precipitation, have been mostly limited to Northern Hemisphere Sphagnum-dominated bogs, with few in the Southern Hemisphere or in peatlands dominated by vascular plants. New Zealand (NZ) provides an ideal location to undertake empirical research into oxygen isotope fractionation in vascular peatlands because single taxon analysis can be easily carried out, in particular using the preserved root matrix of the restionaceous wire rush (Empodisma spp.) that forms deep Holocene peat deposits throughout the country. Furthermore, large gradients are observed in the mean isotopic composition of precipitation across NZ, caused primarily by the relative influence of different climate modes. Here, we test whether δ18O of Empodisma α-cellulose from ombrotrophic restiad peatlands in NZ can provide a methodology for developing palaeoclimate records of past precipitation δ18O. Surface plant, water and precipitation samples were taken over spatial (six sites spanning >10° latitude) and temporal (monthly measurements over one year) gradients. A link between the isotopic composition of root-associated water, the most likely source water for plant growth, and precipitation in both datasets was found. Back-trajectory modelling of precipitation moisture source for rain days prior to sampling showed clear seasonality in the temporal data that was reflected in root-associated water. The link between source water and plant cellulose was less clear, although mechanistic modelling predicted mean

  18. Frontal and band displacement chromatography of the hydrogen isotopes on palladium; Chromatographies frontale et de deplacement de bande des isotopes de l'hydrogene sur palladium

    Energy Technology Data Exchange (ETDEWEB)

    Botter, F; Menes, J; Tistchenko, S; Dirian, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    As a result of hydrogen isotope separations which we have carried out on supports containing palladium, we believe that we can now make a double contribution, theoretical and experimental, to the work which has already been published in this field. From the fundamental point of view we have developed and studied the validity of a simple model, in our particular case of a separation coefficient {alpha} which is very different to unity. This model, which is of a counter-current isotopic exchange, neglects the longitudinal diffusion in the gas phase and the lateral diffusion in the adsorbed phase and only takes into account the surface resistance to exchange between the phases. It is therefore possible to estimate the efficiency of a chromatography column in terms of the height equivalent of a theoretical plate (HETP). The slight differences observed between the actual chromatograms and the simple model justify both the research undertaken into a more complex model taking into account the diffusion, and the adoption of a simple model for comparing the efficiency of several columns. We describe also a new and simple graphical method for deducing the number of theoretical plates of a column in chromatograms of the frontal and band displacement types. Experimentally we give in particular the criteria for the validity of the model used, the law as a function of the {sup {alpha}}H{sub 2}-HD temperature, the study of the HETP as a function of the various parameters on several palladium containing supports, and the possibilities of an application to preparative chromatography. (authors) [French] Grace aux separations des isotopes de l'hydrogene que nous avons realisees sur masses palladiees, nous pensons apporter aux etudes precedemment publiees dans ce domaine, une double contribution, theorique et experimentale. Du point de vue fondamental, on a developpe et etudie la validite d'un modele simple, dans notre cas particulier d'un coefficient de separation {alpha} tres

  19. Assessment of nitrogen and oxygen isotopic fractionation during nitrification and its expression in the marine environment.

    Science.gov (United States)

    Casciotti, Karen L; Buchwald, Carolyn; Santoro, Alyson E; Frame, Caitlin

    2011-01-01

    Nitrification is a microbially-catalyzed process whereby ammonia (NH(3)) is oxidized to nitrite (NO(2)(-)) and subsequently to nitrate (NO(3)(-)). It is also responsible for production of nitrous oxide (N(2)O), a climatically important greenhouse gas. Because the microbes responsible for nitrification are primarily autotrophic, nitrification provides a unique link between the carbon and nitrogen cycles. Nitrogen and oxygen stable isotope ratios have provided insights into where nitrification contributes to the availability of NO(2)(-) and NO(3)(-), and where it constitutes a significant source of N(2)O. This chapter describes methods for determining kinetic isotope effects involved with ammonia oxidation and nitrite oxidation, the two independent steps in the nitrification process, and their expression in the marine environment. It also outlines some remaining questions and issues related to isotopic fractionation during nitrification. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Oxygen and U-Th isotopes and the timescales of hydrothermal exchange and melting in granitoid wall rocks at Mount Mazama, Crater Lake, Oregon

    Science.gov (United States)

    Ankney, Meagan E.; Bacon, Charles R.; Valley, John W.; Beard, Brian L.; Johnson, Clark M.

    2017-01-01

    We report new whole rock U-Th and in-situ oxygen isotope compositions for partially melted (0–50 vol% melt), low-δ18O Pleistocene granitoid blocks ejected during the ∼7.7 ka caldera-forming eruption of Mt. Mazama (Crater Lake, Oregon). The blocks are interpreted to represent wall rocks of the climactic magma chamber that, prior to eruption, experienced variable amounts of exchange with meteoric hydrothermal fluids and subsequent partial melting. U-Th and oxygen isotope results allow us to examine the timescales of hydrothermal circulation and partial melting, and provide an “outside in” perspective on the buildup to the climactic eruption of Mt. Mazama. Oxygen isotope compositions measured in the cores and rims of individual quartz (n = 126) and plagioclase (n = 91) crystals, and for transects across ten quartz crystals, document zonation in quartz (Δ18OCore-Rim ≤ 0.1–5.5‰), but show homogeneity in plagioclase (Δ18OCore-Rim ≤ ±0.8‰). We propose that oxygen isotope zonation in quartz records hydrothermal exchange followed by high-temperature exchange in response to partial melting caused by injection of basaltic to andesitic recharge magma into the deeper portions of the chamber. Results of modeling of oxygen diffusion in quartz indicates that hydrothermal exchange in quartz occurred over a period of ∼1000–63,000 years. Models also suggest that the onset of melting of the granitoids occurred a minimum of ∼10–200 years prior to the Mazama climactic eruption, an inference which is broadly consistent with results for magnetite homogenization and for Zr diffusion in melt previously reported by others.Uranium-thorium isotope compositions of most granitoid blocks are in 238U excess, and are in agreement with a 238U enriched array previously measured for volcanic rocks at Mt. Mazama. Uranium excess in the granitoids is likely due to enrichment via hydrothermal circulation, given their low δ18O values. The sample with the