WorldWideScience

Sample records for oxygen transfer rates

  1. Oxygen transfer rate estimation in oxidation ditches from clean water measurements.

    Science.gov (United States)

    Abusam, A; Keesman, K J; Meinema, K; Van Straten, G

    2001-06-01

    Standard methods for the determination of oxygen transfer rate are based on assumptions that are not valid for oxidation ditches. This paper presents a realistic and simple new method to be used in the estimation of oxygen transfer rate in oxidation ditches from clean water measurements. The new method uses a loop-of-CSTRs model, which can be easily incorporated within control algorithms, for modelling oxidation ditches. Further, this method assumes zero oxygen transfer rates (KLa) in the unaerated CSTRs. Application of a formal estimation procedure to real data revealed that the aeration constant (k = KLaVA, where VA is the volume of the aerated CSTR) can be determined significantly more accurately than KLa and VA. Therefore, the new method estimates k instead of KLa. From application to real data, this method proved to be more accurate than the commonly used Dutch standard method (STORA, 1980).

  2. Study of oxygen mass transfer coefficient and oxygen uptake rate in a stirred tank reactor for uranium ore bioleaching

    International Nuclear Information System (INIS)

    Zokaei-Kadijani, S.; Safdari, J.; Mousavian, M.A.; Rashidi, A.

    2013-01-01

    Highlights: ► Mass transfer coefficient does not depend on biomass concentration. ► The pulp density has a negative effect on mass transfer coefficient. ► The pulp density is the unique factor that affects maximum OUR. ► In this work, Neale’s correlation is corrected for prediction of mass transfer coefficient. ► Biochemical reaction is a limiting factor in the uranium bioleaching process. - Abstract: In this work, the volumetric oxygen mass transfer coefficient and the oxygen uptake rate (OUR) were studied for uranium ore bioleaching process by Acidthiobacillus ferrooxidans in a stirred tank reactor. The Box-Bohnken design method was used to study the effect of operating parameters on the oxygen mass transfer coefficient. The investigated factors were agitation speed (rpm), aeration rate (vvm) and pulp density (% weight/volume) of the stirred tank reactor. Analysis of experimental results showed that the oxygen mass transfer coefficient had low dependence on biomass concentration but had higher dependence on the agitation speed, aeration rate and pulp density. The obtained biological enhancement factors were equal to ones in experiments. On the other hand, the obtained values for Damkohler number (Da < 0.468) indicated that the process was limited by the biochemical reaction rate. Experimental results obtained for oxygen mass transfer coefficient were correlated with the empirical relations proposed by Garcia-Ochoa and Gomez (2009) and Neale and Pinches (1994). Due to the high relative error in the correlation of Neale and Pinches, that correlation was corrected and the coefficient of determination was calculated to be 89%. The modified correlation has been obtained based on a wide range of operating conditions, which can be used to determine the mass transfer coefficient in a bioreactor

  3. Oxygen transfer rate during the production of alginate by Azotobacter vinelandii under oxygen-limited and non oxygen-limited conditions

    Directory of Open Access Journals (Sweden)

    Peña Carlos F

    2011-02-01

    Full Text Available Abstract Background The oxygen transfer rate (OTR and dissolved oxygen tension (DOT play an important role in determining alginate production and its composition; however, no systematic study has been reported about the independent influence of the OTR and DOT. In this paper, we report a study about alginate production and the evolution of the molecular mass of the polymer produced by a wild-type A. vinelandii strain ATCC 9046, in terms of the maximum oxygen transfer rate (OTRmax in cultures where the dissolved oxygen tension (DOT was kept constant. Results The results revealed that in the two dissolved oxygen conditions evaluated, strictly controlled by gas blending at 0.5 and 5% DOT, an increase in the agitation rate (from 300 to 700 rpm caused a significant increase in the OTRmax (from 17 to 100 mmol L-1 h-1 for DOT of 5% and from 6 to 70 mmol L-1 h-1 for DOT of 0.5%. This increase in the OTRmax improved alginate production, as well as the specific alginate production rate (SAPR, reaching a maximal alginate concentration of 3.1 g L-1 and a SAPR of 0.031 g alg g biom-1 h-1 in the cultures at OTRmax of 100 mmol L-1 h-1. In contrast, the mean molecular mass (MMM of the alginate isolated from cultures developed under non-oxygen limited conditions increased by decreasing the OTRmax, reaching a maximal of 550 kDa at an OTRmax of 17 mmol L-1 h-1 . However, in the cultures developed under oxygen limitation (0.5% DOT, the MMM of the polymer was practically the same (around 200 kDa at 300 and 700 rpm, and this remained constant throughout the cultivation. Conclusions Overall, our results showed that under oxygen-limited and non oxygen-limited conditions, alginate production and its molecular mass are linked to the OTRmax, independently of the DOT of the culture.

  4. Measurement of oxygen transfer from air into organic solvents

    DEFF Research Database (Denmark)

    Ramesh, Hemalata; Mayr, Torsten; Hobisch, Mathias

    2016-01-01

    biological reactions require the supply of oxygen, most normally from air. However, reliable on-line measurements of oxygen concentration in organic solvents (and hence oxygen transfer rates from air to the solvent) has to date proven impossible due limitations in the current analytical methods. Results...... applications). Subsequently, we measured the oxygen transfer rates from air into these organic solvents. Conclusion The measurement of oxygen transfer rates from air into organic solvents using the dynamic method was established using the solvent resistant optical sensor. The feasibility of online oxygen...... For the first time, we demonstrate on-line oxygen measurements in non-aqueous media using a novel optical sensor. The sensor was used to measure oxygen concentration in various organic solvents including toluene, THF, isooctane, DMF, heptane and hexane (which have all been shown suitable for several biological...

  5. Oxygen transfer in slurry bioreactors.

    Science.gov (United States)

    Kawase, Y; Moo-Young, M

    1991-04-25

    The oxygen transfer in bioreactors with slurries having a yield stress was investigated. The volumetric mass transfer coefficients in a 40-L bubble column with simulated fermentation broths, the Theological properties of which were represented by the Casson model, were measured. Experimental data were compared with a theoretical correlation developed on the basis of a combination of Higbie's penetration theory and Kolmogoroff's theory of isotropic turbulence. Comparisons between the proposed correlation and data for the simulated broths show good agreement. The mass transfer data for actual mycelial fermentation broths reported previously by the authors were re-examined. Their Theological data was correlated by the Bingham plastic model. The oxygen transfer rate data in the mycelial fermentation broths fit the predictions of the proposed theoretical correlation.

  6. Evolution of factors affecting placental oxygen transfer

    DEFF Research Database (Denmark)

    Carter, A M

    2009-01-01

    A review is given of the factors determining placental oxygen transfer and the oxygen supply to the fetus. In the case of continuous variables, such as the rate of placental blood flow, it is not possible to trace evolutionary trends. Discontinuous variables, for which we can define character sta......, where fetal and adult haemoglobin are not different, developmental regulation of 2, 3-diphosphoglycerate ensures the high oxygen affinity of fetal blood. Oxygen diffusing capacity is dependent on diffusion distance, which may vary with the type of interhaemal barrier. It has been shown...

  7. Microbial activity catalyzes oxygen transfer in membrane-aerated nitritating biofilm reactors

    DEFF Research Database (Denmark)

    Pellicer i Nàcher, Carles; Domingo Felez, Carlos; Lackner, Susanne

    2013-01-01

    The remarkable oxygen transfer efficiencies attainable in membrane-aerated biofilm reactors (MABRs) are expected to favor their prompt industrial implementation. However, tests in clean water, currently used for the estimation of their oxygen transfer potential, lead to wrong estimates once biofilm...... is present, significantly complicating reactor modelling and control. This study shows for the first time the factors affecting oxygen mass transfer across membranes during clean water tests and reactor operation via undisturbed microelectrode inspection and bulk measurements. The mass transfer resistance...... of the liquid boundary layer developed at the membrane-liquid interface during clean water tests accounted for two thirds of the total mass transfer resistance, suggesting a strong underestimation of the oxygen transfer rates when it is absent (e.g. after biofilm growth). Reactor operation to attain partial...

  8. Oxygen-transfer performance of a newly designed, very low-volume membrane oxygenator.

    Science.gov (United States)

    Burn, Felice; Ciocan, Sorin; Carmona, Natalia Mendez; Berner, Marion; Sourdon, Joevin; Carrel, Thierry P; Tevaearai Stahel, Hendrik T; Longnus, Sarah L

    2015-09-01

    Oxygenation of blood and other physiological solutions are routinely required in fundamental research for both in vitro and in vivo experimentation. However, very few oxygenators with suitable priming volumes (parallel-oriented microporous polypropylene hollow fibres, placed inside a hollow shell with a lateral-luer outlet, and sealed at both extremities. With this design, perfusate is delivered via the core-tube to the centre of the mini-oxygenator, and exits via the luer port. A series of mini-oxygenators were constructed and tested in an in vitro perfusion circuit by monitoring oxygen transfer using modified Krebs-Henseleit buffer or whole porcine blood. Effects of perfusion pressure and temperature over flows of 5-60 ml × min(-1) were assessed. Twelve mini-oxygenators with a mean priming volume of 1.5 ± 0.3 ml were evaluated. With buffer, oxygen transfer reached a maximum of 14.8 ± 1.0 ml O2 × l(-1) (pO2: 450 ± 32 mmHg) at perfusate flow rates of 5 ml × min(-1) and decreased with an increase in perfusate flow to 7.8 ± 0.7 ml ml O2 × l(-1) (pO2: 219 ± 24 mmHg) at 60 ml × min(-1). Similarly, with blood perfusate, oxygen transfer also decreased as perfusate flow increased, ranging from 33 ± 5 ml O2 × l(-1) at 5 ml × min(-1) to 11 ± 2 ml O2 × l(-1) at 60 ml × min(-1). Furthermore, oxygen transfer capacity remained stable with blood perfusion over a period of at least 2 h. We have developed a new miniaturized membrane oxygenator with an ultra-low priming volume (circuits, such as small animal extracorporeal circulation and ex vivo organ perfusion. © The Author 2015. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  9. Image-Based Modeling of Blood Flow and Oxygen Transfer in Feto-Placental Capillaries.

    Directory of Open Access Journals (Sweden)

    Philip Pearce

    Full Text Available During pregnancy, oxygen diffuses from maternal to fetal blood through villous trees in the placenta. In this paper, we simulate blood flow and oxygen transfer in feto-placental capillaries by converting three-dimensional representations of villous and capillary surfaces, reconstructed from confocal laser scanning microscopy, to finite-element meshes, and calculating values of vascular flow resistance and total oxygen transfer. The relationship between the total oxygen transfer rate and the pressure drop through the capillary is shown to be captured across a wide range of pressure drops by physical scaling laws and an upper bound on the oxygen transfer rate. A regression equation is introduced that can be used to estimate the oxygen transfer in a capillary using the vascular resistance. Two techniques for quantifying the effects of statistical variability, experimental uncertainty and pathological placental structure on the calculated properties are then introduced. First, scaling arguments are used to quantify the sensitivity of the model to uncertainties in the geometry and the parameters. Second, the effects of localized dilations in fetal capillaries are investigated using an idealized axisymmetric model, to quantify the possible effect of pathological placental structure on oxygen transfer. The model predicts how, for a fixed pressure drop through a capillary, oxygen transfer is maximized by an optimal width of the dilation. The results could explain the prevalence of fetal hypoxia in cases of delayed villous maturation, a pathology characterized by a lack of the vasculo-syncytial membranes often seen in conjunction with localized capillary dilations.

  10. Effect of membranes on oxygen transfer rate and consumption within a newly developed three-compartment bioartificial liver device: Advanced experimental and theoretical studies.

    Science.gov (United States)

    Hilal-Alnaqbi, Ali; Mourad, Abdel-Hamid I; Yousef, Basem F

    2014-01-01

    A mathematical model is developed to predict oxygen transfer in the fiber-in-fiber (FIF) bioartificial liver device. The model parameters are taken from the constructed and tested FIF modules. We extended the Krogh cylinder model by including one more zone for oxygen transfer. Cellular oxygen uptake was based on Michaelis-Menten kinetics. The effect of varying a number of important model parameters is investigated, including (1) oxygen partial pressure at the inlet, (2) the hydraulic permeability of compartment B (cell region), (3) the hydraulic permeability of the inner membrane, and (4) the oxygen diffusivity of the outer membrane. The mathematical model is validated by comparing its output against the experimentally acquired values of an oxygen transfer rate and the hydrostatic pressure drop. Three governing simultaneous linear differential equations are derived to predict and validate the experimental measurements, e.g., the flow rate and the hydrostatic pressure drop. The model output simulated the experimental measurements to a high degree of accuracy. The model predictions show that the cells in the annulus can be oxygenated well even at high cell density or at a low level of gas phase PG if the value of the oxygen diffusion coefficient Dm is 16 × 10(-5) . The mathematical model also shows that the performance of the FIF improves by increasing the permeability of polypropylene membrane (inner fiber). Moreover, the model predicted that 60% of plasma has access to the cells in the annulus within the first 10% of the FIF bioreactor axial length for a specific polypropylene membrane permeability and can reach 95% within the first 30% of its axial length. © 2013 International Union of Biochemistry and Molecular Biology, Inc.

  11. Oxygen transfer rate identifies priming compounds in parsley cells.

    Science.gov (United States)

    Schilling, Jana Viola; Schillheim, Britta; Mahr, Stefan; Reufer, Yannik; Sanjoyo, Sandi; Conrath, Uwe; Büchs, Jochen

    2015-11-25

    In modern agriculture, the call for an alternative crop protection strategy increases because of the desired reduction of fungicide and pesticide use and the continuously evolving resistance of pathogens and pests to agrochemicals. The direct activation of the plant immune system does not provide a promising plant protection measure because of high fitness costs. However, upon treatment with certain natural or synthetic compounds, plant cells can promote to a fitness cost-saving, primed state of enhanced defense. In the primed state, plants respond to biotic and abiotic stress with faster and stronger activation of defense, and this is often associated with immunity and abiotic stress tolerance. Until now, the identification of chemical compounds with priming-inducing activity (so-called plant activators) relied on tedious and invasive approaches, or required the late detection of secreted furanocoumarin phytoalexins in parsley cell cultures. Thus, simple, fast, straightforward, and noninvasive techniques for identifying priming-inducing compounds for plant protection are very welcome. This report demonstrates that a respiration activity-monitoring system (RAMOS) can identify compounds with defense priming-inducing activity in parsley cell suspension in culture. RAMOS relies on the quasi-continuous, noninvasive online determination of the oxygen transfer rate (OTR). Treatment of parsley culture cells with the known plant activator salicylic acid (SA), a natural plant defense signal, resulted in an OTR increase. Addition of the defense elicitor Pep13, a cell wall peptide of Phythophthora sojae, induced two distinctive OTR peaks that were higher in SA-primed cells than in unprimed cells upon Pep13 challenge. Both, the OTR increase after priming with SA and the Pep13 challenge were dose-dependent. Furthermore, there was a close correlation of a compound's activity to enhance the oxygen consumption in parsley cells and its capacity to prime Pep13-induced furanocoumarin

  12. Influence of methanol/sorbitol co-feeding rate on pAOX1 induction in a Pichia pastoris Mut+ strain in bioreactor with limited oxygen transfer rate.

    Science.gov (United States)

    Carly, F; Niu, H; Delvigne, F; Fickers, P

    2016-04-01

    High Pichia pastoris biomass density could be obtained using high co-feeding rate of methanol and sorbitol in a fed-batch or continuous culture, while further higher feeding rate finally leads to oxygen limitation in bioreactor. In the literature, there is lack of report about AOX1 promoter regulation with regard to dissolved oxygen level (DO). Therefore, in this work, chemostat cultures were performed to investigate the cell growth, metabolism and regulation of the AOX1 promoter (pAOX1) regarding co-feeding rate of optimized methanol/sorbitol mixture (methanol fraction 0.60 C-mol/C-mol) using a P. pastoris Mut+/pAOX1-lacZ strain. The oxygen transfer rates (OTR) in bioreactor were kept in the range of typical values of large bioreactor, i.e., 4-8 g/(L h) if DO equals 30 % saturation or 5-10 g/(L h) if DO nears zero. For DO >0, an increase of the carbon fed led to an increase of pAOX1 induction. By contrast, when dissolved oxygen was completely depleted, methanol accumulated, causing a 30 % decrease of pAOX1 induction. However, this decrease is more likely to be lined to methanol accumulation than to low level of dissolved oxygen (sorbitol co-feeding allowed cells to adapt to oxygen transient limitations that often occur at industrial scale with reduced effect on pAOX1 induction. The optimal feeding rate tested here was 6.6 mmol C (DCW h)(-1) at an OTR of 8.28 g O2(L h)(-1) with over fivefold pAOX1 induction (probably directly associated with target protein productivity) compared with previous work.

  13. Determining the effect of solid and liquid vectors on the gaseous interfacial area and oxygen transfer rates in two-phase partitioning bioreactors

    Energy Technology Data Exchange (ETDEWEB)

    Quijano, Guillermo [Departmento de Ingenieria Quimica y Tecnologia del Medio Ambiente, Universidad de Valladolid, Paseo del Prado de la Magdalena, s/n, 47005 Valladolid (Spain); Departamento de Biotecnologia y Bioingenieria, Centro de Investigacion y de Estudios, Avanzados del IPN (Cinvestav), Apdo. Postal 14-740, 07360 Mexico, D.F. (Mexico); Rocha-Rios, Jose [Departmento de Ingenieria Quimica y Tecnologia del Medio Ambiente, Universidad de Valladolid, Paseo del Prado de la Magdalena, s/n, 47005 Valladolid (Spain); Departamento de Ingenieria de Procesos e Hidraulica (IPH), Universidad Autonoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco No. 186, 09340 Mexico, D.F. (Mexico); Hernandez, Maria; Villaverde, Santiago [Departmento de Ingenieria Quimica y Tecnologia del Medio Ambiente, Universidad de Valladolid, Paseo del Prado de la Magdalena, s/n, 47005 Valladolid (Spain); Revah, Sergio [Departamento de Procesos y Tecnologia, Universidad Autonoma Metropolitana-Cuajimalpa, c/o IPH, UAM-Iztapalapa, Av. San Rafael Atlixco No. 186, 09340 Mexico, D.F. (Mexico); Munoz, Raul, E-mail: mutora@iq.uva.es [Departmento de Ingenieria Quimica y Tecnologia del Medio Ambiente, Universidad de Valladolid, Paseo del Prado de la Magdalena, s/n, 47005 Valladolid (Spain); Thalasso, Frederic [Departamento de Biotecnologia y Bioingenieria, Centro de Investigacion y de Estudios, Avanzados del IPN (Cinvestav), Apdo. Postal 14-740, 07360 Mexico, D.F. (Mexico)

    2010-03-15

    The effect of liquid and solid transfer vectors (silicone oil and Desmopan, respectively) on the gaseous interfacial area (a{sub g}) was evaluated in a two-phase partitioning bioreactor (TPPB) using fresh mineral salt medium and the cultivation broth of a toluene degradation culture (Pseudomonas putida DOT-T1E cultures continuously cultivated with and without silicone oil at low toluene loading rates). Higher values of a{sub g} were recorded in the presence of both silicone oil and Desmopan compared to the values obtained in the absence of a vector, regardless of the aqueous medium tested (1.6 and 3 times higher, respectively, using fresh mineral salt medium). These improvements in a{sub g} were well correlated to the oxygen mass transfer enhancements supported by the vectors (1.3 and 2.5 for liquid and solid vectors, respectively, using fresh medium). In this context, oxygen transfer rates of 2.5 g O{sub 2} L{sup -1} h{sup -1} and 1.3 g O{sub 2} L{sup -1} h{sup -1} were recorded in the presence of Desmopan and silicone oil, respectively, which are in agreement with previously reported values in literature. These results suggest that mass transfer enhancements in TPPBs might correspond to an increase in a{sub g} rather than to the establishment of a high-performance gas/vector/water transfer pathway.

  14. Determining the effect of solid and liquid vectors on the gaseous interfacial area and oxygen transfer rates in two-phase partitioning bioreactors

    International Nuclear Information System (INIS)

    Quijano, Guillermo; Rocha-Rios, Jose; Hernandez, Maria; Villaverde, Santiago; Revah, Sergio; Munoz, Raul; Thalasso, Frederic

    2010-01-01

    The effect of liquid and solid transfer vectors (silicone oil and Desmopan, respectively) on the gaseous interfacial area (a g ) was evaluated in a two-phase partitioning bioreactor (TPPB) using fresh mineral salt medium and the cultivation broth of a toluene degradation culture (Pseudomonas putida DOT-T1E cultures continuously cultivated with and without silicone oil at low toluene loading rates). Higher values of a g were recorded in the presence of both silicone oil and Desmopan compared to the values obtained in the absence of a vector, regardless of the aqueous medium tested (1.6 and 3 times higher, respectively, using fresh mineral salt medium). These improvements in a g were well correlated to the oxygen mass transfer enhancements supported by the vectors (1.3 and 2.5 for liquid and solid vectors, respectively, using fresh medium). In this context, oxygen transfer rates of 2.5 g O 2 L -1 h -1 and 1.3 g O 2 L -1 h -1 were recorded in the presence of Desmopan and silicone oil, respectively, which are in agreement with previously reported values in literature. These results suggest that mass transfer enhancements in TPPBs might correspond to an increase in a g rather than to the establishment of a high-performance gas/vector/water transfer pathway.

  15. Investigation of tungsten mass transfer in rarefied air oxygen and water vapors

    International Nuclear Information System (INIS)

    Evsikov, A.S.; Makeev, A.A.; Lyubimova, L.L.; Sinyavskij, V.V.

    1989-01-01

    The results of experimental investigations of oxygen and water vapor effect on the rate of tungsten evaporation are presented. Methods for carrying out an experiment are presented. The experiments are carried out at the 2600 degC tungsten wire temperature and the pressure of oxygen and water vapors (2x10 -3 -5) Pa. Registration of final products of mass transfer is carried out by the DRON-2.0 diffractometer using a detachable substrate. Empirical dependence taking into account oxygen and water vapor effect on the rate of tungsten evaporation is suggested. It is marked that air oxygen and water vapor increase evaporation rate uniformly the difference is observed only in final products of interaction

  16. Electron transfer pathways in microbial oxygen biocathodes

    Energy Technology Data Exchange (ETDEWEB)

    Freguia, Stefano, E-mail: stefano@kais.kyoto-u.ac.j [Bio-analytical and Physical Chemistry Laboratory, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8205 (Japan); Tsujimura, Seiya, E-mail: seiya@kais.kyoto-u.ac.j [Bio-analytical and Physical Chemistry Laboratory, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8205 (Japan); Kano, Kenji, E-mail: kkano@kais.kyoto-u.ac.j [Bio-analytical and Physical Chemistry Laboratory, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8205 (Japan)

    2010-01-01

    The ability of some bacteria to enhance the rate of cathodic oxygen reduction to water has been recently discovered, opening the way to an entirely renewable and environmentally friendly concept of biocathode. In this study we reveal that several mechanisms may induce catalytic effects by bacteria. These comprise mechanisms that are putatively beneficial to the bacteria as well as mechanisms which are merely side effects, including quinone autoxidation and direct O{sub 2} reduction by heme compounds. Here we showed that 1 muM of ACNQ is able to generate a significant catalytic wave for oxygen reduction, with onset at approximately 0 V vs. SHE. Similarly, adsorption of hemin on a carbon surface catalyses O{sub 2} reduction to H{sub 2}O{sub 2} with an onset of +0.2 V vs. SHE. To evaluate the catalytic pathways of live cells on cathodic oxygen reduction, two species of electrochemically active bacteria were selected as pure cultures, namely Acinetobacter calcoaceticus and Shewanella putrefaciens. The former appears to exploit a self-excreted redox compound with redox characteristics matching those of pyrroloquinoline quinone (PQQ) for extracellular electron transfer. The latter appears to utilise outer membrane-bound redox compounds. Interaction of quinones and cytochromes with the membrane-bound electron transfer chain is yet to be proven.

  17. Combination of On-line pH and Oxygen Transfer Rate Measurement in Shake Flasks by Fiber Optical Technique and Respiration Activity MOnitoring System (RAMOS

    Directory of Open Access Journals (Sweden)

    Jochen Büchs

    2007-12-01

    Full Text Available Shake flasks are commonly used for process development in biotechnologyindustry. For this purpose a lot of information is required from the growth conditions duringthe fermentation experiments. Therefore, Anderlei et al. developed the RAMOS technology[1, 2], which proviedes on-line oxygen and carbondioxide transfer rates in shake flasks.Besides oxygen consumption, the pH in the medium also plays an important role for thesuccessful cultivation of micro-organisms and for process development. For online pHmeasurement fiber optical methods based on fluorophores are available. Here a combinationof the on-line Oxygen Transfer Rate (OTR measurements in the RAMOS device with anon-line, fiber optical pH measurement is presented. To demonstrate the application of thecombined measurement techniques, Escherichia coli cultivations were performed and on-line pH measurements were compared with off-line samples. The combination of on-lineOTR and pH measurements gives a lot of information about the cultivation and, therefore, itis a powerful technique for monitoring shake flask experiments as well as for processdevelopment.

  18. Oxygen mass transfer in a stirred tank bioreactor using different impeller configurations for environmental purposes

    Science.gov (United States)

    2013-01-01

    In this study, a miniature stirred tank bioreactor was designed for treatment of waste gas containing benzene, toluene and xylene. Oxygen mass transfer characteristics for various twin and single-impeller systems were investigated for 6 configurations in a vessel with 10 cm of inner diameter and working volume of 1.77L. Three types of impellers, namely, Rushton turbine, Pitched 4blades and Pitched 2blades impellers with downward pumping have been used. Deionized water was used as a liquid phase. With respect to other independent variables such as agitation speed, aeration rate, type of sparger, number of impellers, the relative performance of these impellers was assessed by comparing the values of (KLa) as a key parameter. Based on the experimental data, empirical correlations as a function of the operational conditions have been proposed, to study the oxygen transfer rates from air bubbles generated in the bioreactor. It was shown that twin Rushton turbine configuration demonstrates superior performance (23% to 77% enhancement in KLa) compared with other impeller compositions and that sparger type has negligible effect on oxygen mass transfer rate. Agitation speeds of 400 to 800 rpm were the most efficient speeds for oxygen mass transfer in the stirred bioreactor. PMID:23369581

  19. Molecular dynamics simulation of the first electron transfer step in the oxygen reduction reaction

    NARCIS (Netherlands)

    Hartnig, C.B.; Koper, M.T.M.

    2002-01-01

    We present a molecular dynamics simulation of solvent reorganization in the first electron transfer step in the oxygen reduction reaction, i.e. O2+e-¿O2-, modeled as taking place in the outer Helmholtz plane. The first electron transfer step is usually considered the rate-determining step from many

  20. Energy transfers between N_2(A"3Σ) nitrogen metastable molecules and oxygen atoms and molecules

    International Nuclear Information System (INIS)

    De Souza, Antonio Rogerio

    1985-01-01

    This research thesis aims at determining reaction coefficients for energy transfers between nitrogen in its metastable status and oxygen atoms and molecules, the variation of these coefficients with respect to temperature (mainly in the 200-400 K range), products formed and more particularly branching rates of O("1S) oxygen and of NO_2. Reaction coefficients are experimentally determined by using the technique of post-discharge in flow. The experimental set-up is described and the study of the best operating conditions is reported. In the next part, the author reports the study of the energy transfer between nitrogen in its metastable status N_2(A) and oxygen molecules. Reaction coefficients are determined for the first three vibrational levels. The author then reports the study of the transfer of N_2(A) molecules on oxygen atoms in their fundamental status. Reactions coefficients and their variations are determined for the three first vibrational levels. The author describes the dissociation method and the method of detection of atomic oxygen. A kinetic model is proposed for the analysis of formed products during a post-discharge in flow, and the branching rate for the formation of O("1S) oxygen between 190 and 365 K is determined. The author finally discusses publications on the role of these reactions in the interpretation of some atmospheric phenomena

  1. Oxygen ion transference number of doped lanthanum gallate

    Science.gov (United States)

    Wang, Shizhong; Wu, Lingli; Gao, Jie; He, Qiong; Liu, Meilin

    The transference numbers for oxygen ion (t O) in several LaGaO 3-based materials are determined from oxygen concentration cells using the materials as the electrolyte, including La 0.8Sr 0.2Ga 0.8Mg 0.2O 3- δ (LSGM8282), La 0.8Sr 0.2Ga 0.8Mg 0.15Co 0.05O 3- δ (LSGMC5) and La 0.8Sr 0.2Ga 0.8Mg 0.115Co 0.085O 3- δ (LSGMC8.5). Analysis indicates that the accuracy in determination of oxygen ion transference number depends on the electrode polarization resistances of the concentration cell as well as the transport properties of the materials studied. For example, the ratio of open cell voltage to Nernst potential is a good approximation to the ionic transference number for LSGM8282. However, this approximation is no longer adequate for LSGMC5 and LSGMC8.5; the effect of electrode polarization resistances must be taken into consideration in estimation of the ionic transference numbers. In particular, the ionic transference number for LSGMC5 is as high as 0.99, suggesting that it is a promising electrolyte material for low-temperature solid-state electrochemical applications.

  2. Study on oxygen transfer by solid jet aerator with multiple openings

    Directory of Open Access Journals (Sweden)

    B.K. Shukla

    2018-04-01

    Full Text Available In the current study, two different sets of solid jet aerators having area of openings equal to 594.96 mm2 and 246.30 mm2 with rectangular nozzles having rounded ends were studied. Each set consisted of aerators having one, two, four and eight openings. The oxygenation performance of every model was studied for five different discharges of 1.11 l/s, 2.10 l/s, 2.96 l/s, 3.83 l/s and 4.69 l/s were studied. At low discharges, the aerator having lesser number of openings demonstrated more oxygen-transfer efficiency whereas at higher discharges, the aerator having more number of openings yielded more oxygenation-efficiency. Maximum value of oxygen-transfer efficiency of 21.53 kg-O2/kW-hr was obtained for the discharge of 1.11 l/s for single nozzle aerator; however the maximum oxygen-transfer factor of 2.0 × 10−2 s−1 was obtained at discharge of 4.69 l/s for aerator having eight numbers of openings having area of 594.96 mm2. On the other hand, maximum oxygen transfer efficiency of 10.93 kg-O2/kW-hr was demonstrated by aerator with single opening at a discharge of 1.11 l/s and maximum oxygen transfer factor of 7.83 × 10−3 s−1 was obtained from aerator with eight openings at a discharge of 4.69 l/s corresponding to set of aerators with area of openings equal to 246.30 mm2. Multiple non-linear regression modelling was applied to predict oxygen transfer of the aerators for different combinations of input parameters. At the end, the models were compared with conventional methods of aeration and were found to be competitive with traditional devices. Keywords: Plunging jet, Jet aerator, Oxygen transfer, Aeration, Dissolved oxygen

  3. About the Role of the Bottleneck/Cork Interface on Oxygen Transfer.

    Science.gov (United States)

    Lagorce-Tachon, Aurélie; Karbowiak, Thomas; Paulin, Christian; Simon, Jean-Marc; Gougeon, Régis D; Bellat, Jean-Pierre

    2016-09-07

    The transfer of oxygen through a corked bottleneck was investigated using a manometric technique. First, the effect of cork compression on oxygen transfer was evaluated without considering the glass/cork interface. No significant effect of cork compression (at 23% strain, corresponding to the compression level of cork in a bottleneck for still wines) was noticeable on the effective diffusion coefficient of oxygen. The mean value of the effective diffusion coefficient is equal to 10(-8) m(2) s(-1), with a statistical distribution ranging from 10(-10) to 10(-7) m(2) s(-1), which is of the same order of magnitude as for the non-compressed cork. Then, oxygen transfer through cork compressed in a glass bottleneck was determined to assess the effect of the glass/cork interface. In the particular case of a gradient-imposed diffusion of oxygen through our model corked bottleneck system (dry cork without surface treatment; 200 and ∼0 hPa of oxygen on both sides of the sample), the mean effective diffusion coefficient is of 5 × 10(-7) m(2) s(-1), thus revealing the possible importance of the role of the glass/stopper interface in the oxygen transfer.

  4. Theoretical analysis and experimental study of oxygen transfer under regular and non-breaking waves

    Institute of Scientific and Technical Information of China (English)

    尹则高; 梁丙臣; 王乐

    2013-01-01

    The dissolved oxygen concentration is an important index of water quality, and the atmosphere is one of the important sources of the dissolved oxygen. In this paper, the mass conservation law and the dimensional analysis method are employed to study the oxygen transfer under regular and non-breaking waves, and a unified oxygen transfer coefficient equation is obtained with consi-deration of the effect of kinetic energy and wave period. An oxygen transfer experiment for the intermediate depth water wave is per-formed to measure the wave parameters and the dissolved oxygen concentration. The experimental data and the least squares method are used to determine the constant in the oxygen transfer coefficient equation. The experimental data and the previous reported data are also used to further validate the oxygen transfer coefficient, and the agreement is satisfactory. The unified equation shows that the oxygen transfer coefficient increases with the increase of a parameter coupled with the wave height and the wave length, but it de-creases with the increase of the wave period, which has a much greater influence on the oxygen transfer coefficient than the coupled parameter.

  5. Oxygen Transfer Model for a Flow-Through Hollow-Fiber Membrane Biofilm Reactor

    DEFF Research Database (Denmark)

    Gilmore, K. R.; Little, J. C.; Smets, Barth F.

    2009-01-01

    overpredicted the oxygen transfer by a factor of 1.3 relative to the result calculated from the outlet gas oxygen concentration, which was considered the most accurate of the measured benchmarks. A mass transfer coefficient derived from the clean water testing with oxygen sensors at the membrane......-liquid interface was the most accurate of the predictive models (overpredicted by a factor of 1.1) while a coefficient determined by measuring bulk liquid dissolved oxygen underpredicted the oxygen transfer by a factor of 3. The mechanistic model was found to be an adequate tool for design because it used...

  6. Oxygen ion transference number of doped lanthanum gallate

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shizhong; Wu, Lingli; Gao, Jie; He, Qiong [Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005 (China); Liu, Meilin [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245 (United States)

    2008-12-01

    The transference numbers for oxygen ion (t{sub O}) in several LaGaO{sub 3}-based materials are determined from oxygen concentration cells using the materials as the electrolyte, including La{sub 0.8}Sr{sub 0.2}Ga{sub 0.8}Mg{sub 0.2}O{sub 3-{delta}} (LSGM8282), La{sub 0.8}Sr{sub 0.2}Ga{sub 0.8}Mg{sub 0.15}Co{sub 0.05}O{sub 3-{delta}} (LSGMC5) and La{sub 0.8}Sr{sub 0.2}Ga{sub 0.8}Mg{sub 0.115}Co{sub 0.085}O{sub 3-{delta}} (LSGMC8.5). Analysis indicates that the accuracy in determination of oxygen ion transference number depends on the electrode polarization resistances of the concentration cell as well as the transport properties of the materials studied. For example, the ratio of open cell voltage to Nernst potential is a good approximation to the ionic transference number for LSGM8282. However, this approximation is no longer adequate for LSGMC5 and LSGMC8.5; the effect of electrode polarization resistances must be taken into consideration in estimation of the ionic transference numbers. In particular, the ionic transference number for LSGMC5 is as high as 0.99, suggesting that it is a promising electrolyte material for low-temperature solid-state electrochemical applications. (author)

  7. Gas hold-up and oxygen mass transfer in three pneumatic bioreactors operating with sugarcane bagasse suspensions.

    Science.gov (United States)

    Esperança, M N; Cunha, F M; Cerri, M O; Zangirolami, T C; Farinas, C S; Badino, A C

    2014-05-01

    Sugarcane bagasse is a low-cost and abundant by-product generated by the bioethanol industry, and is a potential substrate for cellulolytic enzyme production. The aim of this work was to evaluate the effects of air flow rate (QAIR), solids loading (%S), sugarcane bagasse type, and particle size on the gas hold-up (εG) and volumetric oxygen transfer coefficient (kLa) in three different pneumatic bioreactors, using response surface methodology. Concentric tube airlift (CTA), split-cylinder airlift (SCA), and bubble column (BC) bioreactor types were tested. QAIR and %S affected oxygen mass transfer positively and negatively, respectively, while sugarcane bagasse type and particle size (within the range studied) did not influence kLa. Using large particles of untreated sugarcane bagasse, the loop-type bioreactors (CTA and SCA) exhibited higher mass transfer, compared to the BC reactor. At higher %S, SCA presented a higher kLa value (0.0448 s−1) than CTA, and the best operational conditions in terms of oxygen mass transfer were achieved for %S 27.0 L min−1. These results demonstrated that pneumatic bioreactors can provide elevated oxygen transfer in the presence of vegetal biomass, making them an excellent option for use in three-phase systems for cellulolytic enzyme production by filamentous fungi.

  8. Oxygen respiration rates of benthic foraminifera as measured with oxygen microsensors

    DEFF Research Database (Denmark)

    Geslin, E.; Risgaard-Petersen, N.; Lombard, Fabien

    2011-01-01

    of the foraminiferal specimens. The results show a wide range of oxygen respiration rates for the different species (from 0.09 to 5.27 nl cell−1 h−1) and a clear correlation with foraminiferal biovolume showed by the power law relationship: R = 3.98 10−3 BioVol0.88 where the oxygen respiration rate (R) is expressed......Oxygen respiration rates of benthic foraminifera are still badly known, mainly because they are difficult to measure. Oxygen respiration rates of seventeen species of benthic foraminifera were measured using microelectrodes and calculated on the basis of the oxygen fluxes measured in the vicinity...... groups (nematodes, copepods, ostracods, ciliates and flagellates) suggests that benthic foraminifera have a lower oxygen respiration rates per unit biovolume. The total contribution of benthic foraminifera to the aerobic mineralisation of organic matter is estimated for the studied areas. The results...

  9. Strategies to overcome oxygen transfer limitations during hairy root cultivation of Azadiracta indica for enhanced azadirachtin production.

    Science.gov (United States)

    Srivastava, Smita; Srivastava, Ashok Kumar

    2012-07-01

    The vast untapped potential of hairy root cultures as a stable source of biologically active chemicals has focused the attention of scientific community toward its commercial exploitation. However, the major bottleneck remains its successful scale-up. Due to branching, the roots form an interlocked matrix that exhibits resistance to oxygen transfer. Thus, present work was undertaken to develop cultivation strategies like optimization of inlet gas composition (in terms of % (v/v) O(2) in air), air-flow rate and addition of oxygen vectors in the medium, to curb the oxygen transfer limitations during hairy root cultivation of Azadirachta indica for in vitro azadirachtin (a biopesticide) production. It was found that increasing the oxygen fraction in the inlet air (in the range, 20-100% (v/v) O(2) in air) increased the azadirachtin productivity by approximately threefold, to a maximum of 4.42 mg/L per day (at 100% (v/v) O(2) in air) with respect to 1.68 mg/L per day in control (air with no oxygen supplementation). Similarly, increasing the air-flow rate (in the range, 0.3-2 vvm) also increased the azadirachtin productivity to a maximum of 1.84 mg/L per day at 0.8 vvm of air-flow rate. On the contrary, addition of oxygen vectors (in the range, 1-4% (v/v); hydrogen peroxide, toluene, Tween 80, kerosene, silicone oil, and n-hexadecane), decreased the azadirachtin productivity with respect to control (1.76 mg/L per day).

  10. Towards a Biohybrid Lung: Endothelial Cells Promote Oxygen Transfer through Gas Permeable Membranes.

    Science.gov (United States)

    Menzel, Sarah; Finocchiaro, Nicole; Donay, Christine; Thiebes, Anja Lena; Hesselmann, Felix; Arens, Jutta; Djeljadini, Suzana; Wessling, Matthias; Schmitz-Rode, Thomas; Jockenhoevel, Stefan; Cornelissen, Christian Gabriel

    2017-01-01

    In patients with respiratory failure, extracorporeal lung support can ensure the vital gas exchange via gas permeable membranes but its application is restricted by limited long-term stability and hemocompatibility of the gas permeable membranes, which are in contact with the blood. Endothelial cells lining these membranes promise physiological hemocompatibility and should enable prolonged application. However, the endothelial cells increase the diffusion barrier of the blood-gas interface and thus affect gas transfer. In this study, we evaluated how the endothelial cells affect the gas exchange to optimize performance while maintaining an integral cell layer. Human umbilical vein endothelial cells were seeded on gas permeable cell culture membranes and cultivated in a custom-made bioreactor. Oxygen transfer rates of blank and endothelialized membranes in endothelial culture medium were determined. Cell morphology was assessed by microscopy and immunohistochemistry. Both setups provided oxygenation of the test fluid featuring small standard deviations of the measurements. Throughout the measuring range, the endothelial cells seem to promote gas transfer to a certain extent exceeding the blank membranes gas transfer performance by up to 120%. Although the underlying principles hereof still need to be clarified, the results represent a significant step towards the development of a biohybrid lung.

  11. Oxygen transfer rates and requirements in oxidative biocatalysis

    DEFF Research Database (Denmark)

    Pedersen, Asbjørn Toftgaard; Rehn, Gustav; Woodley, John

    2015-01-01

    Biocatalytic oxidation reactions offer several important benefits such as regio- and stereoselectivity, avoiding the use of toxic metal based catalysts and replacing oxidizing reagents by allowing the use of oxygen. However, the development of biocatalytic oxidation processes is a complex task......-up is relatively straight forward (Gabelman and Hwang, 1999), and membrane contactors are implemented for various industrial applications (Klaassen et al., 2005)....

  12. Aquatic respiration rate measurements at low oxygen concentrations.

    Directory of Open Access Journals (Sweden)

    Moritz Holtappels

    Full Text Available Despite its huge ecological importance, microbial oxygen respiration in pelagic waters is little studied, primarily due to methodological difficulties. Respiration measurements are challenging because of the required high resolution of oxygen concentration measurements. Recent improvements in oxygen sensing techniques bear great potential to overcome these limitations. Here we compare 3 different methods to measure oxygen consumption rates at low oxygen concentrations, utilizing amperometric Clark type sensors (STOX, optical sensors (optodes, and mass spectrometry in combination with (18-18O2 labeling. Oxygen concentrations and consumption rates agreed well between the different methods when applied in the same experimental setting. Oxygen consumption rates between 30 and 400 nmol L(-1 h(-1 were measured with high precision and relative standard errors of less than 3%. Rate detection limits in the range of 1 nmol L(-1 h(-1 were suitable for rate determinations in open ocean water and were lowest at the lowest applied O2 concentration.

  13. Effect of hypolimnetic oxygenation on oxygen depletion rates in two water-supply reservoirs.

    Science.gov (United States)

    Gantzer, Paul A; Bryant, Lee D; Little, John C

    2009-04-01

    Oxygenation systems, such as bubble-plume diffusers, are used to improve water quality by replenishing dissolved oxygen (DO) in the hypolimnia of water-supply reservoirs. The diffusers induce circulation and mixing, which helps distribute DO throughout the hypolimnion. Mixing, however, has also been observed to increase hypolimnetic oxygen demand (HOD) during system operation, thus accelerating oxygen depletion. Two water-supply reservoirs (Spring Hollow Reservoir (SHR) and Carvins Cove Reservoir (CCR)) that employ linear bubble-plume diffusers were studied to quantify diffuser effects on HOD. A recently validated plume model was used to predict oxygen addition rates. The results were used together with observed oxygen accumulation rates to evaluate HOD over a wide range of applied gas flow rates. Plume-induced mixing correlated well with applied gas flow rate and was observed to increase HOD. Linear relationships between applied gas flow rate and HOD were found for both SHR and CCR. HOD was also observed to be independent of bulk hypolimnion oxygen concentration, indicating that HOD is controlled by induced mixing. Despite transient increases in HOD, oxygenation caused an overall decrease in background HOD, as well as a decrease in induced HOD during diffuser operation, over several years. This suggests that the residual or background oxygen demand decreases from one year to the next. Despite diffuser-induced increases in HOD, hypolimnetic oxygenation remains a viable method for replenishing DO in thermally-stratified water-supply reservoirs such as SHR and CCR.

  14. Oxygen and carbon transfer during solidification of semiconductor grade silicon in different processes

    Science.gov (United States)

    Ribeyron, P. J.; Durand, F.

    2000-03-01

    A model is established for comparing the solute distribution resulting from four solidification processes currently applied to semiconductor grade silicon: Czochralski pulling (CZ), floating zone (FZ), 1D solidification and electromagnetic continuous pulling (EMCP). This model takes into account solid-liquid interface exchange, evaporation to or contamination by the gas phase, container dissolution, during steady-state solidification, and in the preliminary preparation of the melt. For simplicity, the transfers are treated in the crude approximation of perfectly mixed liquid and boundary layers. As a consequence, only the axial ( z) distribution can be represented. Published data on oxygen and carbon transfer give a set of acceptable values for the thickness of the boundary layers. In the FZ and EMCP processes, oxygen evaporation can change the asymptotic behaviour of the reference Pfann law. In CZ and in 1D-solidification, a large variety of solute profile curves can be obtained, because they are very sensitive to the balance between crucible dissolution and evaporation. The CZ process clearly brings supplementary degrees of freedom via the geometry of the crucible, important for the dissolution phenomena, and via the rotation rate of the crystal and of the crucible, important for acting on transfer kinetics.

  15. Determinants of oxygen and carbon dioxide transfer during extracorporeal membrane oxygenation in an experimental model of multiple organ dysfunction syndrome.

    Science.gov (United States)

    Park, Marcelo; Costa, Eduardo Leite Vieira; Maciel, Alexandre Toledo; Silva, Débora Prudêncio E; Friedrich, Natalia; Barbosa, Edzangela Vasconcelos Santos; Hirota, Adriana Sayuri; Schettino, Guilherme; Azevedo, Luciano Cesar Pontes

    2013-01-01

    Extracorporeal membrane oxygenation (ECMO) has gained renewed interest in the treatment of respiratory failure since the advent of the modern polymethylpentene membranes. Limited information exists, however, on the performance of these membranes in terms of gas transfers during multiple organ failure (MOF). We investigated determinants of oxygen and carbon dioxide transfer as well as biochemical alterations after the circulation of blood through the circuit in a pig model under ECMO support before and after induction of MOF. A predefined sequence of blood and sweep flows was tested before and after the induction of MOF with fecal peritonitis and saline lavage lung injury. In the multivariate analysis, oxygen transfer had a positive association with blood flow (slope = 66, Pmembrane PaCO(2) (slope = -0.96, P = 0.001) and SatO(2) (slope = -1.7, Ptransfer had a positive association with blood flow (slope = 17, Pmembrane PaCO(2) (slope = 1.2, Ptransfers were significantly determined by blood flow. Oxygen transfer was modulated by the pre-membrane SatO(2) and CO(2), while carbon dioxide transfer was affected by the gas flow, pre-membrane CO(2) and hemoglobin.

  16. Electrocatalysis of anodic oxygen-transfer reactions at modified lead dioxide electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Hsiao, Yun-Lin.

    1990-09-21

    The electrocatalytic activities were compared for pure and chloride-doped beta-PbO{sub 2} (Cl-PbO{sub 2}) films on gold and platinum substrates. Rate constants were increased significantly for oxidations of Mn{sup 2+}, toluene, benzyl alcohol, dimethylsulphoxide (DMSO) and benzaldehyde in acidic media by the incorporation of Cl{sup {minus}} into the oxide films. These reactions are concluded to occur by the electrocatalytic transfer of oxygen from H{sub 2}O to the reaction products. Results of x-ray diffraction studies indicate the Cl-PbO{sub 2} film continues to have the slightly distorted rutile structure of pure beta-PbO{sub 2}. The observed electrocatalytic phenomena are concluded to be the beneficial consequence of surface defects generated when Cl{sup {minus}} serves for charge compensation within the surface matrix and, thereby, increases the number of surface sites capable of adsorbing hydroxyl radicals which are transferred in the electrocatalytic O-transfer reactions. 91 refs., 44 figs., 10 tabs.

  17. Liquid films on shake flask walls explain increasing maximum oxygen transfer capacities with elevating viscosity.

    Science.gov (United States)

    Giese, Heiner; Azizan, Amizon; Kümmel, Anne; Liao, Anping; Peter, Cyril P; Fonseca, João A; Hermann, Robert; Duarte, Tiago M; Büchs, Jochen

    2014-02-01

    In biotechnological screening and production, oxygen supply is a crucial parameter. Even though oxygen transfer is well documented for viscous cultivations in stirred tanks, little is known about the gas/liquid oxygen transfer in shake flask cultures that become increasingly viscous during cultivation. Especially the oxygen transfer into the liquid film, adhering on the shake flask wall, has not yet been described for such cultivations. In this study, the oxygen transfer of chemical and microbial model experiments was measured and the suitability of the widely applied film theory of Higbie was studied. With numerical simulations of Fick's law of diffusion, it was demonstrated that Higbie's film theory does not apply for cultivations which occur at viscosities up to 10 mPa s. For the first time, it was experimentally shown that the maximum oxygen transfer capacity OTRmax increases in shake flasks when viscosity is increased from 1 to 10 mPa s, leading to an improved oxygen supply for microorganisms. Additionally, the OTRmax does not significantly undermatch the OTRmax at waterlike viscosities, even at elevated viscosities of up to 80 mPa s. In this range, a shake flask is a somehow self-regulating system with respect to oxygen supply. This is in contrary to stirred tanks, where the oxygen supply is steadily reduced to only 5% at 80 mPa s. Since, the liquid film formation at shake flask walls inherently promotes the oxygen supply at moderate and at elevated viscosities, these results have significant implications for scale-up. © 2013 Wiley Periodicals, Inc.

  18. Charge transfer induced activity of graphene for oxygen reduction

    International Nuclear Information System (INIS)

    Shen, Anli; Xia, Weijun; Dou, Shuo; Wang, Shuangyin; Zhang, Lipeng; Xia, Zhenhai

    2016-01-01

    Tetracyanoethylene (TCNE), with its strong electron-accepting ability, was used to dope graphene as a metal-free electrocatalyst for the oxygen reduction reaction (ORR). The charge transfer process was observed from graphene to TCNE by x-ray photoelectron spectroscopy and Raman characterizations. Our density functional theory calculations found that the charge transfer behavior led to an enhancement of the electrocatalytic activity for the ORR. (paper)

  19. PHOTOINDUCED TRANSFER OF OXYGEN FROM WATER: AN ARTIFICAL PHOTOSYNTHETIC SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Willner, Itamar; Otvos, John W.; Ford, William E.; Mettee, Howard; Calvin, Melvin

    1979-11-01

    The photoinduced splitting of water into hydrogen and oxygen has evoked great interest in recent years as a means for energy storag eand fuel production. Photoinduced reduction of water to hydrogen, using visible light, has been described using heterogeneous or homogeneous catalysts. However, the complementary part involving the oxidation of water to oxygen is required in order to create a cyclic artificial 'photosynthetic' fuel system. The major difficulty assocaited with the photooxidation of water involves the requirement for a four electron transfer to produce oxygen. A stepwise one-electron oxidation of water is unfavorable due to the implied formation of active hydroxyl radicals. Very recently, it has been reported that RuO{sub 2} can serve as a heterogeneous charge storage catalyst for oxygen production. On the basis of the limited knowledge about natural photosynthesis, in which manganese ions play an important role in oxygen evolution, synthetic manganese complexes, and in particular dimeric complexes, have been proposed as potential catalysts for oxygen production. So far, efforts directed toward this goal have been unsuccessful. Consequently, using a manganese complex, they attempted to perform a photoinduced oxidation of water whereby the active oxygen is transferred to a trapping substrate. In such a way, the requirement for a dimerization process to evolve molecular oxygen is avoided. They wish to report a photoinduced redox cycle sensitized by a manganese porphyrin, 5-(4{prime}-hexadecylpyridium)-10, 15, 20-tri (4{prime}-pyridyl)-porphinatomanganese(III) (abbreciated to Pn-Mn{sup III}) in which the resultant reaction is the oxidation of water and trapping of the single oxygen atom by a substrate (triphenylphosphine).

  20. Accelerated Oxygen Atom Transfer and C-H Bond Oxygenation by Remote Redox Changes in Fe3 Mn-Iodosobenzene Adducts.

    Science.gov (United States)

    de Ruiter, Graham; Carsch, Kurtis M; Gul, Sheraz; Chatterjee, Ruchira; Thompson, Niklas B; Takase, Michael K; Yano, Junko; Agapie, Theodor

    2017-04-18

    We report the synthesis, characterization, and reactivity of [LFe 3 (PhPz) 3 OMn( s PhIO)][OTf] x (3: x=2; 4: x=3), where 4 is one of very few examples of iodosobenzene-metal adducts characterized by X-ray crystallography. Access to these rare heterometallic clusters enabled differentiation of the metal centers involved in oxygen atom transfer (Mn) or redox modulation (Fe). Specifically, 57 Fe Mössbauer and X-ray absorption spectroscopy provided unique insights into how changes in oxidation state (Fe III 2 Fe II Mn II vs. Fe III 3 Mn II ) influence oxygen atom transfer in tetranuclear Fe 3 Mn clusters. In particular, a one-electron redox change at a distal metal site leads to a change in oxygen atom transfer reactivity by ca. two orders of magnitude. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Kinetics of oxygen uncoupling of a copper based oxygen carrier

    International Nuclear Information System (INIS)

    Hu, Wenting; Donat, Felix; Scott, S.A.; Dennis, J.S.

    2016-01-01

    Highlights: • The kinetics of a Cu-based oxygen carrier was determined using a TGA. • A diffusion model was applied to remove mass transfer effects from rate parameters. • Thermodynamics are separated from kinetics, usually difficult for the CLOU reaction. • The rate parameters correctly described the behaviour in a fluidised bed. • The rate parameters can be used to predict performance of large CLOU systems. - Abstract: Here, an oxygen carrier consisting of 60 wt% CuO supported on a mixture of Al_2O_3 and CaO (23 wt% and 17 wt% respectively) was synthesised by wet-mixing powdered CuO, Al(OH)_3 and Ca(OH)_2, followed by calcination at 1000 °C. Its suitability for chemical looping with oxygen uncoupling (CLOU) was investigated. After 25 repeated redox cycles in either a thermogravimetric analyser (TGA) or a laboratory-scale fluidised bed, (with 5 vol% H_2 in N_2 as the fuel, and air as the oxidant) no significant change in either the oxygen uncoupling capacity or the overall oxygen availability of the carrier was found. In the TGA, it was found that the rate of oxygen release from the material was controlled by intrinsic chemical kinetics and external transfer of mass from the surface of the particles to the bulk gas. By modelling the various resistances, values of the rate constant for the decomposition were obtained. The activation energy of the reaction was found to be 59.7 kJ/mol (with a standard error of 5.6 kJ/mol) and the corresponding pre-exponential factor was 632 m"3/mol/s. The local rate of conversion within a particle was assumed to occur either (i) by homogeneous chemical reaction, or (ii) in uniform, non-porous grains, each reacting as a kinetically-controlled shrinking core. Upon cross validation against a batch fluidised bed experiment, the homogeneous reaction model was found to be more plausible. By accurately accounting for the various artefacts (e.g. mass transfer resistances) present in both TGA and fluidised bed experiments, it was

  2. Effect of oxygen treatment on heart rate after abdominal surgery

    DEFF Research Database (Denmark)

    Rosenberg-Adamsen, S; Lie, C; Bernhard, A

    1999-01-01

    BACKGROUND: Cardiac complications are common during the postoperative period and may be associated with hypoxemia and tachycardia. Preliminary studies in high-risk patients after operation have shown a possible beneficial effect of oxygen therapy on arterial oxygen saturation and heart rate....... METHODS: The authors studied the effect of oxygen therapy on arterial oxygen saturation and heart rate in 100 consecutive unselected patients randomly and double blindly allocated to receive air or oxygen therapy between the first and fourth day after major abdominal surgery. RESULTS: The median arterial...... oxygen saturation rate increased significantly from 96% to 99% (P heart rate decreased significantly from 85 beats/min to 81 beats/min (P heart rate occurred...

  3. EFFECTS OF IMMOBILIZATION IN Ba-ALGINATE ON NITRILE-DEPENDENT OXYGEN UPTAKE RATES OF CANDIDA GUILLIERMONDII

    Directory of Open Access Journals (Sweden)

    Dias João Carlos Teixeira

    2001-01-01

    Full Text Available Yeast cells immobilized by entrapment in Ba-alginate gel were investigated for growth pattern and respiratory activity. The oxygen uptake rates (OUR of cells entrapped in gels with 4% alginate were 5.2 and 23% lower than the OUR of 2% alginate and free cells, respectively. The mass-transfer resistance offered by the matrix and growth of the entrapped cells determine a gradient of nutrients throughout the gel which is responsible for both a lower specific growth rate of immobilized cells with respect to that of free ones, and a heterogeneous biomass distribution, with progressively increasing cellular density from the inside to the outside of the matrix. Gel-matrix polymer concentration affected the maximum oxygen uptake of immobilized growing yeast cells.

  4. Promotion of multi-electron transfer for enhanced photocatalysis: A review focused on oxygen reduction reaction

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Changhua [Centre for Advanced Optoelectronic Functional Materials Research, and Key Laboratory for UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024 (China); College of Chemistry and Biology, Beihua University, Jilin 132013 (China); Zhang, Xintong, E-mail: xtzhang@nenu.edu.cn [Centre for Advanced Optoelectronic Functional Materials Research, and Key Laboratory for UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024 (China); Liu, Yichun [Centre for Advanced Optoelectronic Functional Materials Research, and Key Laboratory for UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024 (China)

    2015-12-15

    Highlights: • Oxygen reduction reaction (ORR) in photocatalysis process is focused. • Multi-electron transfer ORR is reviewed. • This review provides a guide to access to enhanced photocatalysis via multi-electron transfer. - Abstract: Semiconductor photocatalysis has attracted significant interest for solar light induced environmental remediation and solar fuel generation. As is well known, photocatalytic performance is determined by three steps: photoexcitation, separation and transport of photogenerated charge carriers, and surface reactions. To achieve higher efficiency, significant efforts have been made on improvement of efficiency of above first two steps, which have been well documented in recent review articles. In contrast, this review intends to focus on strategies moving onto the third step of improvement for enhanced photocatalysis wherein active oxygen species including superoxide radical, hydrogen peroxide, hydroxyl radical are in situ detected. Particularly, surface electron-transfer reduction of oxygen over single component photocatalysts is reviewed and systems enabling multi-electron transfer induced oxygen reduction reaction (ORR) are highlighted. It is expected this review could provide a guideline for readers to better understand the critical role of ORR over photocatalyst in charge carrier separation and transfer and obtain reliable results for enhanced aerobic photocatalysis.

  5. Study of magnetic field to promote oxygen transfer and its application in zinc–air fuel cells

    International Nuclear Information System (INIS)

    Shi, Jicheng; Xu, Hongfeng; Lu, Lu; Sun, Xin

    2013-01-01

    Highlights: ► High magnetic strength reduces R ct and increases C d in oxygen reduction reaction. ► Oxygen diffusion and transfer coefficient become large in high magnetic strength. ► The magnetic ZAFC discharge performance is better than the nonmagnetic ZAFC. ► Increased NdFeB/C load density improves the magnetic ZAFC discharge performance. ► Excess NdFeB/C load density decreases the magnetic ZAFC discharge performance. -- Abstract: This study investigates the effects of magnetic field on oxygen transfer and the correlations of electrochemical parameters in different magnetic strengths. The discharge performance of zinc–air fuel cell (ZAFC) was tested under magnetic and nonmagnetic conditions using neodymium–iron–boron/carbon (NdFeB/C) magnetic particles in ZAFC cathode. The results showed that the oxygen diffusion coefficient (D Oi ) and transfer coefficient (α i ) increased by 102.14% and 52.38% when the magnetic strength increased from 0 mT to 5.0 mT, respectively. In addition, the electric double-layer capacitance (C d ) increased from 8.16 to 22.46 μF cm −2 , the charge-transfer resistance (R ct ) decreased from 9.43 Ω cm 2 to 6.02 Ω cm 2 , and the oxygen reduction reaction (ORR) current was improved. With the NdFeB/C load density of 2.4 mg cm −2 in ZAFC cathode, the discharge current of magnetic ZAFC increased by 13.86% compared with the nonmagnetic ZAFC at the 0.80 V discharge voltage. These results indicate that magnetic strength has a positive correlation with D Oi , α i , and the ORR current. Under magnetic attractions, the oxygen transfer process is easier at the Pt/C catalytic surface, and the discharge performance of magnetic ZAFC is superior to the nonmagnetic ZAFC. At lower NdFeB/C load density, increasing the NdFeB/C load density facilitates oxygen transfer and improves the discharge performance of ZAFC. However, the magnetic ZAFC discharge performance decreases at a higher NdFeB/C load density because of the blocked oxygen

  6. Effects of Agitation, Aeration and Temperature on Production of a Novel Glycoprotein GP-1 by Streptomyces kanasenisi ZX01 and Scale-Up Based on Volumetric Oxygen Transfer Coefficient

    Directory of Open Access Journals (Sweden)

    Yong Zhou

    2018-01-01

    Full Text Available The effects of temperature, agitation and aeration on glycoprotein GP-1 production by Streptomyces kanasenisi ZX01 in bench-scale fermentors were systematically investigated. The maximum final GP-1 production was achieved at an agitation speed of 200 rpm, aeration rate of 2.0 vvm and temperature of 30 °C. By using a dynamic gassing out method, the effects of agitation and aeration on volumetric oxygen transfer coefficient (kLa were also studied. The values of volumetric oxygen transfer coefficient in the logarithmic phase increased with increase of agitation speed (from 14.53 to 32.82 h−1 and aeration rate (from 13.21 to 22.43 h−1. In addition, a successful scale-up from bench-scale to pilot-scale was performed based on volumetric oxygen transfer coefficient, resulting in final GP-1 production of 3.92, 4.03, 3.82 and 4.20 mg/L in 5 L, 15 L, 70 L and 500 L fermentors, respectively. These results indicated that constant volumetric oxygen transfer coefficient was appropriate for the scale-up of batch fermentation of glycoprotein GP-1 by Streptomyces kanasenisi ZX01, and this scale-up strategy successfully achieved 100-fold scale-up from bench-scale to pilot-scale fermentor.

  7. Excitation and charge transfer in low-energy hydrogen atom collisions with neutral oxygen

    Science.gov (United States)

    Barklem, P. S.

    2018-02-01

    Excitation and charge transfer in low-energy O+H collisions is studied; it is a problem of importance for modelling stellar spectra and obtaining accurate oxygen abundances in late-type stars including the Sun. The collisions have been studied theoretically using a previously presented method based on an asymptotic two-electron linear combination of atomic orbitals (LCAO) model of ionic-covalent interactions in the neutral atom-hydrogen-atom system, together with the multichannel Landau-Zener model. The method has been extended to include configurations involving excited states of hydrogen using an estimate for the two-electron transition coupling, but this extension was found to not lead to any remarkably high rates. Rate coefficients are calculated for temperatures in the range 1000-20 000 K, and charge transfer and (de)excitation processes involving the first excited S-states, 4s.5So and 4s.3So, are found to have the highest rates. Data are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/vizbin/qcat?J/A+A/610/A57. The data are also available at http://https://github.com/barklem/public-data

  8. Determination of Biological Oxygen Demand Rate Constant and ...

    African Journals Online (AJOL)

    Determination of Biological Oxygen Demand Rate Constant and Ultimate Biological Oxygen Demand for Liquid Waste Generated from Student Cafeteria at Jimma University: A Tool for Development of Scientific Criteria to Protect Aquatic Health in the Region.

  9. Visualisation of gas-liquid mass transfer around a rising bubble in a quiescent liquid using an oxygen sensitive dye

    Science.gov (United States)

    Dietrich, Nicolas; Hebrard, Gilles

    2018-02-01

    An approach for visualizing and measuring the mass transfer around a single bubble rising in a quiescent liquid is reported. A colorimetric technique, developed by (Dietrich et al. Chem Eng Sci 100:172-182, 2013) using an oxygen sensitive redox dye was implemented. It was based on the reduction of the colorimetric indicator in presence of oxygen, this reduction being catalysed by sodium hydroxide and glucose. In this study, resazurin was selected because it offered various reduced forms with colours ranging from transparent (without oxygen) to pink (in presence of oxygen). These advantages made it possible to visualize the spatio-temporal oxygen mass transfer around rising bubbles. Images were recorded by a CCD camera and, after post-processing, the shape, size, and velocity of the bubbles were measured and the colours around the bubbles mapped. A calibration, linking the level of colour with the dissolved oxygen concentration, enabled colour maps to be converted into oxygen concentration fields. A rheoscopic fluid was used to visualize the wake of the bubbles. A calculation method was also developed to determine the transferred oxygen fluxes around bubbles of two sizes (d = 0.82 mm and d = 2.12 mm) and the associated liquid-side mass transfer coefficients. The results compared satisfactorily with classical global measurements made by oxygen micro-sensors or from the classical models. This study thus constitutes a striking example of how this new colorimetric method could become a remarkable tool for exploring gas-liquid mass transfer in fluids.

  10. Influence of vascular network design on gas transfer in lung assist device technology.

    Science.gov (United States)

    Bassett, Erik K; Hoganson, David M; Lo, Justin H; Penson, Elliot J N; Vacanti, Joseph P

    2011-01-01

    Blood oxygenators are vital for the critically ill, but their use is limited to the hospital setting. A portable blood oxygenator or a lung assist device for ambulatory or long-term use would greatly benefit patients with chronic lung disease. In this work, a biomimetic blood oxygenator system was developed which consisted of a microfluidic vascular network covered by a gas permeable silicone membrane. This system was used to determine the influence of key microfluidic parameters-channel size, oxygen exposure length, and blood shear rate-on blood oxygenation and carbon dioxide removal. Total gas transfer increased linearly with flow rate, independent of channel size and oxygen exposure length. On average, CO(2) transfer was 4.3 times higher than oxygen transfer. Blood oxygen saturation was also found to depend on the flow rate per channel but in an inverse manner; oxygenation decreased and approached an asymptote as the flow rate per channel increased. These relationships can be used to optimize future biomimetic vascular networks for specific lung applications: gas transfer for carbon dioxide removal in patients with chronic obstructive pulmonary disease or oxygenation for premature infants requiring complete lung replacement therapy.

  11. Studies on the rheology and oxygen mass transfer in the clavulanic acid production by Streptomyces clavuligerus

    Directory of Open Access Journals (Sweden)

    E. R. Gouveia

    2000-12-01

    Full Text Available In the present work rheological characteristics and volumetric oxygen transfer coefficient (kLa were investigated during batch cultivations of Streptomyces clavuligerus NRRL 3585 for production of clavulanic acid. The experimental rheological data could be adequately described in terms of the power law model and logistic equation. Significant changes in the rheological parameters consistency index (K and flow behavior index (n were observed with the fermentation evolution. Interesting correlations between the consistency index (K/biomass concentration (C X and the flow behavior index (n/biomass concentration were proposed. Volumetric oxygen mass transfer coefficient (kLa was determined by the gas balance method. Classical correlation relating the volumetric oxygen mass transfer coefficient to the operating conditions, physical and to transport properties, including apparent viscosity (muap, could be applied to the experimental results.

  12. Improvement of AD Biosynthesis Response to Enhanced Oxygen Transfer by Oxygen Vectors in Mycobacterium neoaurum TCCC 11979.

    Science.gov (United States)

    Su, Liqiu; Shen, Yanbing; Gao, Tian; Luo, Jianmei; Wang, Min

    2017-08-01

    In steroid biotransformation, soybean oil can improve the productivity of steroids by increasing substrate solubility and strengthen the cell membrane permeability. However, little is known of its role as oxygen carrier and its mechanism of promoting the steroid biotransformation. In this work, soybean oil used as oxygen vector for the enhancement of androst-4-ene-3,17-dione (AD) production by Mycobacterium neoaurum TCCC 11979 (MNR) was investigated. Upon the addition of 16% (v/v) soybean oil, the volumetric oxygen transfer coefficient (K L a) value increased by 44%, and the peak molar yield of AD (55.76%) was achieved. Analysis of intracellular cofactor levels showed high NAD + , ATP level, and a low NADH/NAD + ratio. Meanwhile, the two key enzymes of the tricarboxylic acid (TCA) cycle, namely, isocitrate dehydrogenase and α-ketoglutarate dehydrogenase, were upregulated after incubation with soybean oil. These enhancements induced by the increasing of oxygen supply showed positive effects on phytosterol (PS) bioconversion. Results could contribute to the understanding of effects of soybean oil as oxygen vector on steroid biotransformation and provided a convenient method for enhancing the efficiency of aerobic steroid biocatalysis.

  13. Relationship between oxygen concentration, respiration and filtration rate in blue mussel Mytilus edulis

    Science.gov (United States)

    Tang, Baojun; Riisgård, Hans Ulrik

    2018-03-01

    The large water-pumping and particle-capturing gills of the filter-feeding blue mussel Mytilus edulis are oversized for respiratory purposes. Consequently, the oxygen uptake rate of the mussel has been suggested to be rather insensitive to decreasing oxygen concentrations in the ambient water, since the diffusion rate of oxygen from water flowing through the mussel determines oxygen uptake. We tested this hypothesis by measuring the oxygen uptake in mussels exposed to various oxygen concentrations. These concentrations were established via N2-bubbling of the water in a respiration chamber with mussels fed algal cells to stimulate fully opening of the valves. It was found that mussels exposed to oxygen concentrations decreasing from 9 to 2 mg O2/L resulted in a slow but significant reduction in the respiration rate, while the filtration rate remained high and constant. Thus, a decrease of oxygen concentration by 78% only resulted in a 25% decrease in respiration rate. However, at oxygen concentrations below 2 mg O2/L M. edulis responded by gradually closing its valves, resulting in a rapid decrease of filtration rate, concurrent with a rapid reduction of respiration rate. These observations indicated that M. edulis is no longer able to maintain its normal aerobic metabolism at oxygen concentration below 2 mg O2/L, and there seems to be an energy-saving mechanism in bivalve molluscs to strongly reduce their activity when exposed to low oxygen conditions.

  14. Functional and biocompatibility performances of an integrated Maglev pump-oxygenator.

    Science.gov (United States)

    Zhang, Tao; Cheng, Guangming; Koert, Andrew; Zhang, Juntao; Gellman, Barry; Yankey, G Kwame; Satpute, Aditee; Dasse, Kurt A; Gilbert, Richard J; Griffith, Bartley P; Wu, Zhongjun J

    2009-01-01

    To provide respiratory support for patients with lung failure, a novel compact integrated pump-oxygenator is being developed. The functional and biocompatibility performances of this device are presented. The pump-oxygenator is designed by combining a magnetically levitated pump/rotor with a uniquely configured hollow fiber membrane bundle to create an assembly free, ultracompact, all-in-one system. The hemodynamics, gas transfer and biocompatibility performances of this novel device were investigated both in vitro in a circulatory flow loop and in vivo in an ovine animal model. The in vitro results showed that the device was able to pump blood flow from 2 to 8 L/min against a wide range of pressures and to deliver an oxygen transfer rate more than 300 mL/min at a blood flow of 6 L/min. Blood damage tests demonstrated low hemolysis (normalized index of hemolysis [NIH] approximately 0.04) at a flow rate of 5 L/min against a 100-mm Hg afterload. The data from five animal experiments (4 h to 7 days) demonstrated that the device could bring the venous blood to near fully oxygen-saturated condition (98.6% +/- 1.3%). The highest oxygen transfer rate reached 386 mL/min. The gas transfer performance was stable over the study duration for three 7-day animals. There was no indication of blood damage. The plasma free hemoglobin and platelet count were within the normal ranges. No gross thrombus is found on the explanted pump components and fiber surfaces. Both in vitro and in vivo results demonstrated that the newly developed pump-oxygenator can achieve sufficient blood flow and oxygen transfer with excellent biocompatibility.

  15. Batch culture of Azotobacter vinelandii under oxygen limitation conditionS

    Energy Technology Data Exchange (ETDEWEB)

    Camacho Rubio, F.; Martinez Nieto, L.; Fernandez Serrano, M.; Jimenez Moleon, M.C. [Departamento de Ingenieria Quimica, Universidad de Granada, Granada (Spain)

    1996-12-01

    The batch culture of Azotobacter vinealandii on glucose under nitrogen-fixing conditions, seeking oxygen limitation conditions, has been studied in order to use it as a Biological Test System for the experimental study of oxygen transfer enhancement methods in aerobic fermenters. overall kinetic parameters for exponential growth and for linear growth (under oxygen limitation) have been determined. It was noted an appreciable influence of the oxygen transfer rate on glucose and oxygen uptake, which seems to be due to alginate production, excreted as a nitrogenase protection mechanisms. (Author) 12 refs.

  16. Comparison of specific oxygen uptake rates of two beach-scale ...

    African Journals Online (AJOL)

    The determined values of oxygen uptake rate during the endogenous reaction phase (between 0.1054 and 0.3564 mgO2/L.minute) and concentrations of mixed liquor suspended solids (between 1183 and 1957 mgMLSS/L) are comparable to those reported elsewhere in literature. Results of specific oxygen uptake rate of ...

  17. Multistate cohort models with proportional transfer rates

    DEFF Research Database (Denmark)

    Schoen, Robert; Canudas-Romo, Vladimir

    2006-01-01

    of transfer rates. The two living state case and hierarchical multistate models with any number of living states are analyzed in detail. Applying our approach to 1997 U.S. fertility data, we find that observed rates of parity progression are roughly proportional over age. Our proportional transfer rate...... approach provides trajectories by parity state and facilitates analyses of the implications of changes in parity rate levels and patterns. More women complete childbearing at parity 2 than at any other parity, and parity 2 would be the modal parity in models with total fertility rates (TFRs) of 1.40 to 2......We present a new, broadly applicable approach to summarizing the behavior of a cohort as it moves through a variety of statuses (or states). The approach is based on the assumption that all rates of transfer maintain a constant ratio to one another over age. We present closed-form expressions...

  18. Muon transfer from muonic hydrogen to heavier atoms; Transfert de charge muonique

    Energy Technology Data Exchange (ETDEWEB)

    Dupays, A

    2004-06-01

    This work concerns muon transfer from muonic hydrogen to heavier atoms. Recently, a method of measurement of the hyperfine structure of ground-state muonic hydrogen based on the collision energy dependence of the muon transfer rate to oxygen has been proposed. This proposal is based on measurements which where performed at the Paul Scherrer Institute in the early nineties which indicate that the muon transfer from muonic hydrogen to oxygen increases by a factor of 4 going from thermal to 0.12 eV energies. The motivation of our calculations was to confirm this behaviour. To study the collision energy dependence of the muon transfer rate, we have used a time-independent close-coupling method. We have set up an hyperspherical elliptic formalism valid for nonzero total angular momentum which allows accurate computations of state-to-state reactive and charge exchange processes. We have applied this formalism to muon-transfer process to oxygen and neon. The comparison with experimental results is in both cases excellent. Finally, the neon transfer rate dependence with energy suggests to use neon instead of oxygen to perform a measurement of the hyperfine structure of muonic hydrogen. The results of accurate calculations of the muon transfer rates from muonic protium and deuterium atoms to nitrogen, oxygen and neon are also reported. Very good agreement with measured rates is obtained and for the three systems, the isotopic effect is perfectly reproduced. (author)

  19. On the use of analytical approximate expressions for the transfer rate in excitation transfer kinetics

    International Nuclear Information System (INIS)

    Kusba, J.; Sipp, B.

    1985-01-01

    We present a discussion about the range of validity of the usual approximate transfer rate expressions used in the description of the kinetics of diffusion-modulated excitation transfer, for a reactive interaction of exponential functional form. We simulate the features of energy transfer by a numerical inversion of the exact Laplace transform of the transfer rate. It is shown that for high diffusion coefficients of the order of 10 -5 cm 2 s -1 , the kinetics may be well reproduced, even at short times, by the asymptotic form of the transfer rate. For slow molecular displacements, the short time static regime is brought to direct observation, but the transfer rate approaches is asymptotic value at a much later time

  20. Rate of oxygen isotope exchange between selenate and water.

    Science.gov (United States)

    Kaneko, Masanori; Poulson, Simon R

    2012-04-17

    The rate of oxygen isotope exchange between selenate and water was investigated at conditions of 10 to 80 °C and pH -0.6 to 4.4. Oxygen isotope exchange proceeds as a first-order reaction, and the exchange rate is strongly affected by reaction temperature and pH, with increased rates of isotope exchange at higher temperature and lower pH. Selenate speciation (HSeO(4)(-) vs SeO(4)(2-)) also has a significant effect on the rate of isotope exchange. The half-life for isotope exchange at example natural conditions (25 °C and pH 7) is estimated to be significantly in excess of 10(6) years. The very slow rate of oxygen isotope exchange between selenate and water under most environmental conditions demonstrates that selenate-δ(18)O signatures produced by biogeochemical processes will be preserved and hence that it will be possible to use the value of selenate-δ(18)O to investigate the biogeochemical behavior of selenate, in an analogous fashion to the use of sulfate-δ(18)O to study the biogeochemical behavior of sulfate.

  1. Isotopic effects in the muon transfer from pmu and dmu to heavier atoms.

    Science.gov (United States)

    Dupays, Arnaud

    2004-07-23

    The results of accurate hyperspherical calculations of the muon-transfer rates from muonic protium and deuterium atoms to nitrogen, oxygen, and neon are reported. Very good agreement with measured rates is obtained and, for the three systems, the isotopic effect is perfectly reproduced. The transfer rate is higher for deuterium in the cases of nitrogen and neon due to constructive interferences between two transfer paths. The lower transfer rate for deuterium in the case of oxygen results from a large resonant contribution. Copyright 2004 The American Physical Society

  2. Intergenerational transfers and the social discount rate

    International Nuclear Information System (INIS)

    Howarth, R.B.; Norgaard, R.B.

    1992-08-01

    This paper investigates the relationship between intergenerational asset transfers and the choice of the discount rate for use in cost-benefit analysis in a model of a competitive overlapping generations economy constrained by a socially managed exhaustible resource. Provided that there are no distortions in capital markets and that all agents hold perfect foresight, cost-benefit techniques will result in a Pareto efficient resource allocation if the discount rate is set equal to the market rate of interest. But since the path of the interest rate depends on the level of intergenerational transfers, cost-benefit techniques do not ensure a socially desirable distribution of welfare between generations; a social optimum will result only if intergenerational transfers are properly chosen and enforced. Decentralized private altruism may result in intergenerational transfers that both present and future individuals would agree are too small if members of the present generation attach positive weight to the general welfare of future generations, not simply their personal descendants. In a world where intergenerational transfers are non-optimal, second-best policy-making may imply a constrained optimum that is inefficient. Together, these findings suggest that cost-benefit analysis is at best a partial criterion to policy formulation that should be used only in conjunction with ethical principles that define the proper distribution of welfare between present and future generations

  3. Image-Based Modeling of Blood Flow and Oxygen Transfer in Feto-Placental Capillaries

    Czech Academy of Sciences Publication Activity Database

    Pearce, P.; Brownbill, P.; Janáček, Jiří; Jirkovská, M.; Kubínová, Lucie; Chernyavsky, I. L.; Jensen, O. E.

    2016-01-01

    Roč. 11, č. 10 (2016), č. článku e0165369. E-ISSN 1932-6203 Institutional support: RVO:67985823 Keywords : placenta * capillaries * oxygen transfer * confocal microscopy Subject RIV: EA - Cell Biology Impact factor: 2.806, year: 2016

  4. Oxygen-assisted charge transfer between ZnO quantum dots and graphene.

    Science.gov (United States)

    Guo, Wenhao; Xu, Shuigang; Wu, Zefei; Wang, Ning; Loy, M M T; Du, Shengwang

    2013-09-23

    Efficient charge transfer between ZnO quantum dots (QDs) and graphene is demonstrated by decorating ZnO QDs on top of graphene, with the assistance of oxygen molecules from the air. The electrical response of the device to UV light is greatly enhanced, and a photoconductive gain of up to 10(7) can be obtained. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Oxygen consumption rates by different oenological tannins in a model wine solution.

    Science.gov (United States)

    Pascual, Olga; Vignault, Adeline; Gombau, Jordi; Navarro, Maria; Gómez-Alonso, Sergio; García-Romero, Esteban; Canals, Joan Miquel; Hermosín-Gutíerrez, Isidro; Teissedre, Pierre-Louis; Zamora, Fernando

    2017-11-01

    The kinetics of oxygen consumption by different oenological tannins were measured in a model wine solution using the non-invasive method based on luminiscence. The results indicate that the oxygen consumption rate follows second-order kinetics depending on tannin and oxygen concentrations. They also confirm that the oxygen consumption rate is influenced by temperature in accordance with Arrhenius law. The indications are that ellagitannins are the fastest oxygen consumers of the different oenological tannins, followed in decreasing order by quebracho tannins, skin tannins, seed tannins and finally gallotannins. This methodology can therefore be proposed as an index for determining the effectiveness of different commercial tannins in protecting wines against oxidation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Phosphorus-31 NMR magnetization transfer measurements of metabolic reaction rates in the rat heart and kidney in vivo

    International Nuclear Information System (INIS)

    Koretsky, A.P.

    1984-01-01

    31 P NMR is a unique tool to study bioenergetics in living cells. The application of magnetization transfer techniques to the measurement of steady-state enzyme reaction rates provides a new approach to understanding the regulation of high energy phosphate metabolism. This dissertation is concerned with the measurement of the rates of ATP synthesis in the rat kidney and of the creatine kinase catalyzed reaction in the rat heart in situ. The theoretical considerations of applying magnetization transfer techniques to intact organs are discussed with emphasis on the problems associated with multiple exchange reactions and compartmentation of reactants. Experimental measurements of the ATP synthesis rate were compared to whole kidney oxygen consumption and Na + reabsorption rates to derive ATP/O values. The problems associated with ATP synthesis rate measurements in kidney, e.g. the heterogeneity of the inorganic phosphate resonance, are discussed and experiments to overcome these problems proposed. In heart, the forward rate through creatine kinase was measured to be larger than the reverse rate. To account for the difference in forward and reverse rates a model is proposed based on the compartmentation of a small pool of ATP

  7. Effective oxygen-consumption rates in fermentation broths with filamentous organisms

    Energy Technology Data Exchange (ETDEWEB)

    Reuss, M; Bajpai, R K; Berke, W

    1982-01-01

    The concept of coupling molecular diffusion and reaction has been applied in the past to various biological systems with clearly defined geometrical properties like pellets and immobilised enzymes/microorganisms. This paper investigates the use of the same principle to characterise the diffusional limitation in suspensions of filamentous microorganisms. Experimental results of oxygen-uptake measurements from Aspergillus niger fermentations in a 50 cu.dm turbine-agitated fermentor are presented with theoretical predictions of coupled diffusion and oxygen kinetics. Results are discussed on the basis of turbulence theory so that the mycelial broth can be structured in hypothetical spherical elements. Consideration of local energy-dissipation rates in the impeller region provides reasonable explanation of the strong influence of the impeller/tank diameter ratio on the effective oxygen-uptake rate at a given power input. (Refs. 18).

  8. Comparative oxygen consumption rates of subitaneous and delayed hatching eggs of the calanoid copepod Acartia tonsa (Dana)

    DEFF Research Database (Denmark)

    Hansen, Benni Winding; Drillet, Guillaume

    2013-01-01

    nanorespirometry to monitor initial oxygen consumption rate of individual eggs of the ubiquitous neritic calanoid copepod Acartia tonsa to distinguish between subitaneous and DHE. We hypothesized that subitaneous eggs exhibit higher initial oxygen consumption rates than DHE, and that initial egg oxygen consumption...... rate is correlated to the time for the individual egg to hatch. Subitaneous eggs exhibited higher initial oxygen consumption rates than DHE and there were no pattern in initial oxygen consumption rates vs. time to hatch or die from the eggs. Variability in initial oxygen consumption rates within...... batches of both subitaneous and DHE, as well as between these egg types, is prevalent. There was a continuum from sluggish- to fast metabolising eggs considering initial oxygen consumption rates most likely reflecting phenotypic variation within cohorts. No matter the individual initial egg oxygen...

  9. Improving rate capability and reducing over-potential of lithium-oxygen batteries through optimization of Dimethylsulfoxide-N/N-dimethylacetamide mixed electrolyte

    International Nuclear Information System (INIS)

    Chen, Chunguang; Li, Liangyu; Su, Junming; Zhang, Congcong; Chen, Xiang; Huang, Tao; Yu, Aishui

    2017-01-01

    Although dimethylsulfoxide (DMSO) solvent has been widely researched in rechargeable lithium-oxygen (Li-O 2 ) batteries, high polarization voltage and low rate capability limited its application. In this work, we reported a DMSO-based electrolyte system by adding N, N-dimethylacetamide (DMA) to adjust its physical and electrochemical properties. The ionic conductivity, viscosity, oxygen solubility and diffusion coefficient of the mixed electrolytes as well as their electrochemical performance in Li-O 2 batteries are researched. The electrochemical tests show that the optimized DMSO/DMA volume ratio is 30 to 70 based on the rate performance and polarization voltage of the cell. Compared with that of the pure DMSO-based electrolyte, the cell with the mixed electrolyte shows improved rate capability and reduced charge-discharge over-potential. When increasing current density from 0.2 to 0.5 mA cm −2 , the capability retention improves from 32% to 59%. Meanwhile, the charge-discharge voltage gap drops from 1.4V to 0.9V at a current density of 0.2 mA cm −2 . The improved electrochemical performance could be attributed to low viscosity, high oxygen solubility and diffusion coefficient as well as the low charge-transfer resistance with the mixed electrolyte.

  10. Pregnancy Rates After Compulsatory One and Conditional Two Embriyo Transfer

    Directory of Open Access Journals (Sweden)

    Seyhan Gümüşlü

    2013-06-01

    Full Text Available Objective: To predict our pregnancy rates after compulsatory one and conditional two embriyo transfer (ET number. Design: Retrospective Analysis Materiyal and Methods: One or two embryo transferred 362 patient were analyzed between March 2010 and September 2011. Results: Our clinical pregnancy rate was 31% and implantation rate was 25%. Our pregnancy rates after one or two ET were 30 and 32 % respectively ( P>0.05. We transferred embryos at second, third day or blastocyst stage. Pregnancy rates were 19, 30 and 48 % respectively (p< 0.001, implantation rates were 14.5, 23.5 and 42.4 % respectively ( P< 0.001. Our freezing rate was 39.5 %. Not to have freezing quality embrios or to have increased the the pregnancy rate from 21% to %45 significantly. When one embriyo transfered 95 % single and 5 % twins observed. When two embryos were transfered 81% single,17% twin and 2 % triplets observed. Conclusion: Pregnancy rates for one or two ET were statistically similar. If embryo quality allows us to culture up to blastocyt stage pregnancy rates were statistically increased. New Turkish ET policy resulted 95 % to 81 % single gestational sacs according to 1 or 2 ET at Gazi University IVF center.

  11. Oxygen-Reducing Biocathodes Operating with Passive Oxygen Transfer in Microbial Fuel Cells

    KAUST Repository

    Xia, Xue

    2013-02-19

    Oxygen-reducing biocathodes previously developed for microbial fuel cells (MFCs) have required energy-intensive aeration of the catholyte. To avoid the need for aeration, the ability of biocathodes to function with passive oxygen transfer was examined here using air cathode MFCs. Two-chamber, air cathode MFCs with biocathodes produced a maximum power density of 554 ± 0 mW/m 2, which was comparable to that obtained with a Pt cathode (576 ± 16 mW/m2), and 38 times higher than that produced without a catalyst (14 ± 3 mW/m2). The maximum current density with biocathodes in this air-cathode MFC was 1.0 A/m2, compared to 0.49 A/m2 originally produced in a two-chamber MFC with an aqueous cathode (with cathode chamber aeration). Single-chamber, air-cathode MFCs with the same biocathodes initially produced higher voltages than those with Pt cathodes, but after several cycles the catalytic activity of the biocathodes was lost. This change in cathode performance resulted from direct exposure of the cathodes to solutions containing high concentrations of organic matter in the single-chamber configuration. Biocathode performance was not impaired in two-chamber designs where the cathode was kept separated from the anode solution. These results demonstrate that direct-air biocathodes can work very well, but only under conditions that minimize heterotrophic growth of microorganisms on the cathodes. © 2013 American Chemical Society.

  12. Seasonal Oxygen Dynamics in a Thermokarst Bog in Interior Alaska: Implications for Rates of Methane Oxidation

    Science.gov (United States)

    Neumann, R. B.; Moorberg, C.; Wong, A.; Waldrop, M. P.; Turetsky, M. R.

    2015-12-01

    Methane is a potent greenhouse gas, and wetlands represent the largest natural source of methane to the atmosphere. However, much of the methane generated in anoxic wetlands never gets emitted to the atmosphere; up to >90% of generated methane can get oxidized to carbon dioxide. Thus, oxidation is an important methane sink and changes in the rate of methane oxidation can affect wetland methane emissions. Most methane is aerobically oxidized at oxic-anoxic interfaces where rates of oxidation strongly depend on methane and oxygen concentrations. In wetlands, oxygen is often the limiting substrate. To improve understanding of belowground oxygen dynamics and its impact on methane oxidation, we deployed two planar optical oxygen sensors in a thermokarst bog in interior Alaska. Previous work at this site indicated that, similar to other sites, rates of methane oxidation decrease over the growing season. We used the sensors to track spatial and temporal patterns of oxygen concentrations over the growing season. We coupled these in-situ oxygen measurements with periodic oxygen injection experiments performed against the sensor to quantify belowground rates of oxygen consumption. We found that over the season, the thickness of the oxygenated water layer at the peatland surface decreased. Previous research has indicated that in sphagnum-dominated peatlands, like the one studied here, rates of methane oxidation are highest at or slightly below the water table. It is in these saturated but oxygenated locations that both methane and oxygen are available. Thus, a seasonal reduction in the thickness of the oxygenated water layer could restrict methane oxidation. The decrease in thickness of the oxygenated layer coincided with an increase in the rate of oxygen consumption during our oxygen injection experiments. The increase in oxygen consumption was not explained by temperature; we infer it was due to an increase in substrate availability for oxygen consuming reactions and

  13. Oxygen effect on the electrical characteristics of pentacene transistors

    International Nuclear Information System (INIS)

    Hu Yan; Dong Guifang; Hu Yuanchuan; Wang Liduo; Qiu Yong

    2006-01-01

    The effect of oxygen on the electrical characteristics of organic thin film transistors with pentacene as the active layer has been investigated. The saturation currents and mobilities of the transistors increase as the ambient oxygen concentration decreases, which is ascribed to the formation of a charge transfer complex between pentacene and O 2 . The deposition rate of the pentacene layer affects this phenomenon. The transistor with the pentacene layer deposited at a rate of 15 nm min -1 shows higher sensitivity to oxygen concentration than the device with the pentacene layer deposited at 30 nm min -1 . We suggest that when deposited at a lower rate the pentacene film is less compact, leading to easier entrance of oxygen into the charge accumulation region

  14. The beneficial role of rubble mound coastal structures on seawater oxygenation

    Directory of Open Access Journals (Sweden)

    E. I. Daniil

    2000-10-01

    Full Text Available The beneficial role of rubble mound coastal structures on oxygenation under the effect of waves is discussed, based on analytical considerations and experimental data from laboratory experiments with permeable and impermeable structures. Significant oxygenation of the wave-protected area was observed as a result of horizontal transport through the permeable structure. A two-cell model describing the transport of dissolved oxygen (DO near a rubble mound breakwater structure was developed and used for the determination of the oxygen transfer coefficients from the experimental data. Oxygen transfer through the air–water interface is considered a source term in the transport equation and the oxygen flux through the structure is taken into account. The mass transport equations for both sides of the structure are solved analytically in terms of time evolution of DO concentration. The behaviour of the solution is illustrated for three different characteristic cases of initial conditions. The oxygen transfer through the air-water interface in the wave-influenced area increases the DO content in the area; the resulting oxygen flux through the structure is discussed. The analytical results depend on the initial conditions, the oxygen transfer coefficient and the exchange flow rate through the structure. Experiments with impermeable structures show that air water oxygen transfer in the harbour area is negligible in the absence of waves. In addition the ratio of the horizontal DO flux to the vertical flux into the seaward side tends towards a constant value, independent of the initial conditions.Key words: Oceanography: physical (air-sea interactions; surface waves and tides

  15. Pregnancy and Multiple Births rate after Transferring 2 or 3 Embryos

    Directory of Open Access Journals (Sweden)

    F Mostajeran

    2006-05-01

    Full Text Available Background: In vitro fertilization (IVF is a progressing common reproduction method and if the number of transferred embryo increases, the pregnancy rate and multiple pregnancies will increase which may lead to higher medical costs and human suffering. We compared pregnancy and multiple pregnancies rate after two or three transferred embryo via IVF. Methods: From April 2003 to June 2004, 301 referred infertile women to Isfahan infertility center underwent IVF with transferring two or three good quality embryos. Results: From 298 patients, 2 and 3 embryos were transferred in 155 patients and in 143 patients, respectively. Pregnancy rate was 19.4% versus 24.5% in 2 and 3 embryos transferred patients, respectively. Twin gestations were found in 5(3.2% of 2 embryos transferred patients and in 11(7.7% of 3 embryos transferred patients. Discussion: Transferring two or three embryos with good quality increase the rate of twin gestations in young women, without significant improve in the chance of singleton conception. Key words: In Vitro Fertilization, Multiple gestations, Embryo transfer

  16. Effects of extracellular zinc ion on the rate of oxygen consumption of ...

    African Journals Online (AJOL)

    The inhibitory effect of extracellular zinc ion on the rate of oxygen consumption of rat brain mitochondria pre-incubated in 1.0 mM Ca2+EDTA were determined. There was a significant increase [P<0.01] in the rate of oxygen consumption in the rat brain mitochondria pre-incubated in 1.0 mM. Ca2+EDTA in a succinate ...

  17. Development of a model to determine mass transfer coefficient and oxygen solubility in bioreactors

    Directory of Open Access Journals (Sweden)

    Johnny Lee

    2017-02-01

    where T is in degree Kelvin, and the subscripts refer to degree Celsius; E, ρ, σ are properties of water. Furthermore, using data from published data on oxygen solubility in water, it was found that solubility bears a linear and inverse relationship with the mass transfer coefficient.

  18. Measurement of oxygen consumption rate of osteoblasts from ...

    African Journals Online (AJOL)

    The cells were evaluated through live/dead assay, hematoxylin-eosin (HE) and alkaline phosphatase (ALP) staining. Moreover, Von-Kossa staining and Alizarin Red S staining were carried out for mineralized nodule formation. Following this, the oxygen consumption rates of osteoblasts in the earlier mentioned different ...

  19. Experimental evaluation of the oxygen transfer in bubble aeration systems. Full scale experiences in lengthened activated sludge reactors

    International Nuclear Information System (INIS)

    Andreottola, G.; Ragazzi, M.; Tatano, F.

    1999-01-01

    The results of some full-scale oxygen transfer measurements conduced at the lengthened activate sludge tanks of two WWTPs of Trentino Region, are presented and discussed. As far at the tests in clean water are concerned, the non-liner regression method seems non accurate; important conclusion on the correlation between oxygen transfer process and typical parameters (i.e., fine-bubble diffusers, specific air flux) are derived. As far as the test in the wastewater is concerned, an increase of α-value from the inlet to the end of aeration tanks has been observed in the 'Andalo' WWTP [it

  20. Cadmium accumulation in and tolerance of rice (Oryza sativa L.) varieties with different rates of radial oxygen loss

    International Nuclear Information System (INIS)

    Wang, M.Y.; Chen, A.K.; Wong, M.H.; Qiu, R.L.; Cheng, H.; Ye, Z.H.

    2011-01-01

    Cadmium (Cd) uptake and tolerance were investigated among 20 rice cultivars based on a field experiment (1.2 mg Cd kg -1 in soil) and a soil pot trial (control, 100 mg Cd kg -1 ), and rates of radial oxygen loss (ROL) were measured under a deoxygenated solution. Significant differences were found among the cultivars in: (1) brown rice Cd concentrations (0.11-0.29 mg kg -1 ) in a field soil, (2) grain Cd tolerance (34-113%) and concentrations (2.1-6.5 mg kg -1 ) in a pot trial, and (3) rates of ROL (15-31 mmol O 2 kg -1 root d.w. h -1 ). Target hazard quotients were calculated for the field experiment to assess potential Cd risk. Significant negative relationships were found between rates of ROL and concentrations of Cd in brown rice or straw under field and greenhouse conditions, indicating that rice cultivars with higher rates of ROL had higher capacities for limiting the transfer of Cd to rice and straw. - Highlights: → There are significant differences in brown rice Cd concentrations and rates of ROL among the rice cultivars. → The rates of ROL are significantly correlated with concentrations of Cd in brown rice. → Rice cultivars with higher rates of ROL have higher capacities for limiting the transfer of Cd to rice and straw. - Rice cultivars with high rates of ROL tended to accumulate low Cd in grains.

  1. The determination of oxygen in metals using an impulse heating furnace with a simple transfer lock

    International Nuclear Information System (INIS)

    Dale, L.S.; de Jong, S.; Kelly, J.W.; Whittem, R.N.

    1975-05-01

    An impulse heating furnace has been constructed for the determination of low levels of oxygen down to 100 μg g -1 in metals. The furnace is equipped with a sample transfer lock which permits samples to be loaded into outgassed crucibles in a helium atmosphere. As a result, blank levels in the range 2 to 3 μg oxygen are obtained; the modification also results in shorter sample processing time. The apparatus is described, and its suitability for oxygen determinations at these levels has been verified by comparison of results obtained on reference and analysed materials. (author)

  2. Micro-oxygenation of red wine: techniques, applications, and outcomes.

    Science.gov (United States)

    Schmidtke, Leigh M; Clark, Andrew C; Scollary, Geoff R

    2011-02-01

    Wine micro-oxygenation (MOX) is the controlled addition of oxygen to wine in a manner designed to ensure that complete mass transfer of molecular oxygen from gaseous to dissolved state occurs. MOX was initially developed to improve the body, structure, and fruitfulness in red wines with high concentrations of tannins and anthocyanins, by replicating the ingress of oxygen thought to arise from barrel maturation, but without the need for putting all wine to barrel. This review describes the operational parameters essential for the effective performance of the micro-oxidation process as well as the chemical and microbiological outcomes. The methodologies for introducing oxygen into the wine, the rates of oxygen addition, and their relationship to oxygen solubility in the wine matrix are examined. The review focuses on the techniques used for monitoring the MOX process, including sensory assessment, physicochemical properties, and the critical balance of the rate of oxygen addition in relation to maintaining the sulfur dioxide concentration. The chemistry of oxygen reactivity with wine components, the changes in wine composition that occur as a consequence of MOX, and the potential for wine spoilage if proper monitoring is not adopted are examined. Gaps in existing knowledge are addressed focusing on the limitations associated with the transfer of concepts from research trials in small volume tanks to commercial practice, and the dearth of kinetic data for the various chemical and physical processes that are claimed to occur during MOX.

  3. Oxygen isotope exchange rate between dissolved sulfate and water at hydrothermal temperatures

    International Nuclear Information System (INIS)

    Chiba, H.; Sakai, H.

    1985-01-01

    Oxygen isotope exchange rate between dissolved sulfate and water was experimentally determined at 100, 200 and 300 deg C. The isotope exchange rate is strongly dependent on temperature and pH of the solution. Combining the temperature and pH dependence of the reaction rate, the exchange reaction was estimated to be first-order with respect to sulfate. The logarithm of apparent rate constant of exchange reaction at a given temperature is a function of the pH calculated at the experimental temperatures. From the pH dependence of the apparent rate constant, it was deduced that the isotope exchange reaction between dissolved sulfate and water proceeds through collision between H 2 SO 4 0 and H 2 O at low pH, and between HSO 4 - and H 2 O at intermediate pH. The isotope exchange rate obtained indicates that oxygen isotope geothermometry utilizing the studied isotope exchange is suitable for temperature estimation of geothermal reservoirs. The extrapolated half-life of this reaction to oceanic temperature is about 10 9 years, implying that exchange between oceanic sulfate and water cannot control the oxygen isotope ratio of oceanic sulfates. (author)

  4. [Design of Oxygen Saturation, Heart Rate, Respiration Rate Detection System Based on Smartphone of Android Operating System].

    Science.gov (United States)

    Zhu, Mingshan; Zeng, Bixin

    2015-03-01

    In this paper, we designed an oxygen saturation, heart rate, respiration rate monitoring system based on smartphone of android operating system, physiological signal acquired by MSP430 microcontroller and transmitted by Bluetooth module.

  5. Single blastocyst transfer: The key to reduce multiple pregnancy rates without compromising the live birth rate

    Directory of Open Access Journals (Sweden)

    Uma M Sundhararaj

    2017-01-01

    Full Text Available Background: Historically, to achieve higher pregnancy rates, multiple embryos were transferred after an in-vitro fertilisation (IVF. However, this practice is being reassessed, because it leads to multiple pregnancies that is known to cause adverse maternal and fetal outcomes. Aim: To compare the pregnancy outcomes in fresh IVF or intracytoplasmic sperm injection (ICSI cycles among women undergoing elective single blastocyst transfer (eSBT vs. those undergoing double blastocyst transfer (DBT. Settings and Design: It is a retrospective data analysis of 582 patients undergoing fresh IVF/ICSI cycles performed from January 2012 to June 2015. Materials and Methods: Patients, who underwent IVF/ICSI and developed more than one blastocyst, were included in the study. Donor cycles were excluded from the study. All the embryos were cultured to blastocyst stage in sequential media followed by transfer of two blastocysts (DBT or eSBT and cryopreservation of the remaining. Statistical Analysis: Statistical analysis was performed using chi square test. Results: Out of 582 patients, in 149 patients one blastocyst was transferred and in 433 patients two blastocysts were transferred. There was no statistical difference in the biochemical pregnancy rate, clinical pregnancy rate and live birth rate in both the groups. Statistics demonstrated a significant drop in miscarriage rate in eSBT group. There was no incidence of twins in eSBT group, whereas twin birth rate per clinical pregnancy was 29.02% in DBT group. Conclusion: Single blastocyst transfer is an effective method to reduce the risk of multiple births without compromising the pregnancy outcomes. Given the promising potential of vitrification; the remaining blastocyst can be cryopreserved.

  6. Characterization of a continuous agitated cell reactor for oxygen dependent biocatalysis

    DEFF Research Database (Denmark)

    Pedersen, Asbjørn Toftgaard; Teresa de Melo Machado Simoes Carvalho, Ana; Sutherland, Euan

    2017-01-01

    Biocatalytic oxidation reactions employing molecular oxygen as the electron acceptor are difficult to conduct in a continuous flow reactor because of the requirement for high oxygen transfer rates. In this paper, the oxidation of glucose to glucono-1,5-lactone by glucose oxidase was used as a model...

  7. The mechanism by which oxygen and cytochrome c increase the rate of electron transfer from cytochrome a to cytochrome a3 of cytochrome c oxidase.

    Science.gov (United States)

    Bickar, D; Turrens, J F; Lehninger, A L

    1986-11-05

    When cytochrome c oxidase is isolated from mitochondria, the purified enzyme requires both cytochrome c and O2 to achieve its maximum rate of internal electron transfer from cytochrome a to cytochrome a3. When reductants other than cytochrome c are used, the rate of internal electron transfer is very slow. In this paper we offer an explanation for the slow reduction of cytochrome a3 when reductants other than cytochrome c are used and for the apparent allosteric effects of cytochrome c and O2. Our model is based on the conventional understanding of cytochrome oxidase mechanism (i.e. electron transfer from cytochrome a/CuA to cytochrome a3/CuB), but assumes a relatively rapid two-electron transfer between cytochrome a/CuA and cytochrome a3/CuB and a thermodynamic equilibrium in the "resting" enzyme (the enzyme as isolated) which favors reduced cytochrome a and oxidized cytochrome a3. Using the kinetic constants that are known for this reaction, we find that the activating effects of O2 and cytochrome c on the rate of electron transfer from cytochrome a to cytochrome a3 conform to the predictions of the model and so provide no evidence of any allosteric effects or control of cytochrome c oxidase by O2 or cytochrome c.

  8. Transfer Rate Edited experiment for the selective detection of Chemical Exchange via Saturation Transfer (TRE-CEST)

    Science.gov (United States)

    Friedman, Joshua I.; Xia, Ding; Regatte, Ravinder R.; Jerschow, Alexej

    2015-07-01

    Chemical Exchange Saturation Transfer (CEST) magnetic resonance experiments have become valuable tools in magnetic resonance for the detection of low concentration solutes with far greater sensitivity than direct detection methods. Accurate measures of rates of chemical exchange provided by CEST are of particular interest to biomedical imaging communities where variations in chemical exchange can be related to subtle variations in biomarker concentration, temperature and pH within tissues using MRI. Despite their name, however, traditional CEST methods are not truly selective for chemical exchange and instead detect all forms of magnetization transfer including through-space NOE. This ambiguity crowds CEST spectra and greatly complicates subsequent data analysis. We have developed a Transfer Rate Edited CEST experiment (TRE-CEST) that uses two different types of solute labeling in order to selectively amplify signals of rapidly exchanging proton species while simultaneously suppressing 'slower' NOE-dominated magnetization transfer processes. This approach is demonstrated in the context of both NMR and MRI, where it is used to detect the labile amide protons of proteins undergoing chemical exchange (at rates ⩾ 30 s-1) while simultaneously eliminating signals originating from slower (∼5 s-1) NOE-mediated magnetization transfer processes. TRE-CEST greatly expands the utility of CEST experiments in complex systems, and in-vivo, in particular, where it is expected to improve the quantification of chemical exchange and magnetization transfer rates while enabling new forms of imaging contrast.

  9. Heart Rate and Oxygen Uptake Recovery and the Level of Aerobic Capacity in Mountain Bikers

    Directory of Open Access Journals (Sweden)

    Michalik Kamil

    2017-12-01

    Full Text Available Introduction. Since mountain biking involves exercise of varying intensity, competitive performance may be affected by the rate of recovery. The aim of the current study was to determine whether maximal oxygen uptake is associated with the rate of heart rate and oxygen uptake recovery in mountain bike athletes.

  10. MASS TRANSFER COEFFICIENTS FOR A NON-NEWTONIAN FLUID AND WATER WITH AND WITHOUT ANTI-FOAM AGENTS

    Energy Technology Data Exchange (ETDEWEB)

    Leishear, R.

    2009-09-09

    Mass transfer rates were measured in a large scale system, which consisted of an 8.4 meter tall by 0.76 meter diameter column containing one of three fluids: water with an anti-foam agent, water without an anti-foam agent, and AZ101 simulant, which simulated a non-Newtonian nuclear waste. The testing contributed to the evaluation of large scale mass transfer of hydrogen in nuclear waste tanks. Due to its radioactivity, the waste was chemically simulated, and due to flammability concerns oxygen was used in lieu of hydrogen. Different liquids were used to better understand the mass transfer processes, where each of the fluids was saturated with oxygen, and the oxygen was then removed from solution as air bubbled up, or sparged, through the solution from the bottom of the column. Air sparging was supplied by a single tube which was co-axial to the column, the decrease in oxygen concentration was recorded, and oxygen measurements were then used to determine the mass transfer coefficients to describe the rate of oxygen transfer from solution. Superficial, average, sparging velocities of 2, 5, and 10 mm/second were applied to each of the liquids at three different column fill levels, and mass transfer coefficient test results are presented here for combinations of superficial velocities and fluid levels.

  11. MASS TRANSFER COEFFICIENTS FOR A NON-NEWTONIAN FLUID AND WATER WITH AND WITHOUT ANTI-FOAM AGENTS

    International Nuclear Information System (INIS)

    Leishear, R.

    2009-01-01

    Mass transfer rates were measured in a large scale system, which consisted of an 8.4 meter tall by 0.76 meter diameter column containing one of three fluids: water with an anti-foam agent, water without an anti-foam agent, and AZ101 simulant, which simulated a non-Newtonian nuclear waste. The testing contributed to the evaluation of large scale mass transfer of hydrogen in nuclear waste tanks. Due to its radioactivity, the waste was chemically simulated, and due to flammability concerns oxygen was used in lieu of hydrogen. Different liquids were used to better understand the mass transfer processes, where each of the fluids was saturated with oxygen, and the oxygen was then removed from solution as air bubbled up, or sparged, through the solution from the bottom of the column. Air sparging was supplied by a single tube which was co-axial to the column, the decrease in oxygen concentration was recorded, and oxygen measurements were then used to determine the mass transfer coefficients to describe the rate of oxygen transfer from solution. Superficial, average, sparging velocities of 2, 5, and 10 mm/second were applied to each of the liquids at three different column fill levels, and mass transfer coefficient test results are presented here for combinations of superficial velocities and fluid levels

  12. Modelling of the heat transfer during oxygen atoms recombination on metallic surfaces in a plasma reactor

    NARCIS (Netherlands)

    Cavadias, S; Cauquot, P; Amouroux, J

    1997-01-01

    Space shuttle overheating during the re-entry phase, due to catalytic oxygen recombination on the thermal protection system, is a problem of practical and theoretical interest. The energy transfer is characterised by the product of the accommodation and the recombination coefficients. Previous

  13. Noninvasive optical quantification of absolute blood flow, blood oxygenation, and oxygen consumption rate in exercising skeletal muscle

    Science.gov (United States)

    Gurley, Katelyn; Shang, Yu; Yu, Guoqiang

    2012-07-01

    This study investigates a method using novel hybrid diffuse optical spectroscopies [near-infrared spectroscopy (NIRS) and diffuse correlation spectroscopy (DCS)] to obtain continuous, noninvasive measurement of absolute blood flow (BF), blood oxygenation, and oxygen consumption rate (\\Vdot O2) in exercising skeletal muscle. Healthy subjects (n=9) performed a handgrip exercise to increase BF and \\Vdot O2 in forearm flexor muscles, while a hybrid optical probe on the skin surface directly monitored oxy-, deoxy-, and total hemoglobin concentrations ([HbO2], [Hb], and THC), tissue oxygen saturation (StO2), relative BF (rBF), and relative oxygen consumption rate (r\\Vdot O2). The rBF and r\\Vdot O2 signals were calibrated with absolute baseline BF and \\Vdot O2 obtained through venous and arterial occlusions, respectively. Known problems with muscle-fiber motion artifacts in optical measurements during exercise were mitigated using a novel gating algorithm that determined muscle contraction status based on control signals from a dynamometer. Results were consistent with previous findings in the literature. This study supports the application of NIRS/DCS technology to quantitatively evaluate hemodynamic and metabolic parameters in exercising skeletal muscle and holds promise for improving diagnosis and treatment evaluation for patients suffering from diseases affecting skeletal muscle and advancing fundamental understanding of muscle and exercise physiology.

  14. Integrating spatial and temporal oxygen data to improve the quantification of in situ petroleum biodegradation rates.

    Science.gov (United States)

    Davis, Gregory B; Laslett, Dean; Patterson, Bradley M; Johnston, Colin D

    2013-03-15

    Accurate estimation of biodegradation rates during remediation of petroleum impacted soil and groundwater is critical to avoid excessive costs and to ensure remedial effectiveness. Oxygen depth profiles or oxygen consumption over time are often used separately to estimate the magnitude and timeframe for biodegradation of petroleum hydrocarbons in soil and subsurface environments. Each method has limitations. Here we integrate spatial and temporal oxygen concentration data from a field experiment to develop better estimates and more reliably quantify biodegradation rates. During a nine-month bioremediation trial, 84 sets of respiration rate data (where aeration was halted and oxygen consumption was measured over time) were collected from in situ oxygen sensors at multiple locations and depths across a diesel non-aqueous phase liquid (NAPL) contaminated subsurface. Additionally, detailed vertical soil moisture (air-filled porosity) and NAPL content profiles were determined. The spatial and temporal oxygen concentration (respiration) data were modeled assuming one-dimensional diffusion of oxygen through the soil profile which was open to the atmosphere. Point and vertically averaged biodegradation rates were determined, and compared to modeled data from a previous field trial. Point estimates of biodegradation rates assuming no diffusion ranged up to 58 mg kg(-1) day(-1) while rates accounting for diffusion ranged up to 87 mg kg(-1) day(-1). Typically, accounting for diffusion increased point biodegradation rate estimates by 15-75% and vertically averaged rates by 60-80% depending on the averaging method adopted. Importantly, ignoring diffusion led to overestimation of biodegradation rates where the location of measurement was outside the zone of NAPL contamination. Over or underestimation of biodegradation rate estimates leads to cost implications for successful remediation of petroleum impacted sites. Crown Copyright © 2013. Published by Elsevier Ltd. All rights

  15. Transfer of spontaneously hatching or hatched blastocyst yields better pregnancy rates than expanded blastocyst transfer

    Directory of Open Access Journals (Sweden)

    Natachandra M Chimote

    2013-01-01

    Full Text Available Context: Blastocyst stage embryo transfer (ET has become routine practice in recent years. However, probably due to limitations of assisted hatching techniques, expanded blastocyst transfer (EBT is still the preferred mode. Inexplicably, not much consideration has been given to spontaneously hatching/hatched blastocyst transfer (SHBT. Aim: This study aimed to investigate developmental potential of spontaneously hatching/hatched blastocyst against EBT in in vitro fertilization (IVF cycles. Settings and Design: Prospective study of 146 women undergoing their first IVF- ET cycle. SUBJECTS AND Methods: On the basis of blastocyst status, women were classified into SHBT and EBT groups. Intracytoplasmic sperm injection cycles were excluded to remove male factor bias. Implantation rate (IR, clinical pregnancy rate, and live birth rate were the main outcome measures. Statistical Analysis: Graph-pad Prism 5 statistical package. Results: SHBT group showed significantly higher blastocyst formation rate (53.3 ± 17.5 vs. 43.1 ± 14.5%, P = 0.0098, top-quality blastocysts (71.8 vs. 53.7%, P = 0.0436, IR (43.6 vs. 27.9%, P = 0.0408, pregnancy rate (59.4 vs. 45.1%, P = 0.0173, and live birth rate (36.8 vs. 22.8%, P = 0.003 compared to EBT group. Multiple pregnancy rates remained comparable between the two groups. Implantation correlated strongly with top-quality blastocysts (Pearson, r = 0.4441 in SHBT group, while the correlation was nonsignificant in EBT group. Conclusion: Extending culture of expanded blastocysts by a few hours to allow transfer of spontaneously hatching/hatched blastocysts gives higher implantation and pregnancy rates with no added risk of multiple gestations. Spontaneously hatching/hatched blastocysts have a better potential to implant and develop into a positive pregnancy.

  16. Rate of oxygen consumption of hamster melanoma cells as a factor influencing their radioresistance

    International Nuclear Information System (INIS)

    Pajak, S.; Subczynski, W.; Panz, T.; Lukiewicz, S.

    1980-01-01

    It has been reported in recent years that the level of radiosensitivity of neoplasmic cells in vivo and of sphaeroids in vitro can be modified by controlling their rate of oxygen consumption. Thus, an attempt was made to compare this rate in the case of the melanotic and amelanotic lines of Bomirski hamster melanoma in vitro, as it is known that these two lines distinctly differ in their reactivity to ionizing radiations. The measurements carried out by the use of a new ESR method revealed that pigmented and pigmentless cells consume oxygen at significantly different rates. This means that oxygen utilization may contribute to the overall level of radioresistance of melanoma cells. (author)

  17. Experimental Analysis of File Transfer Rates over Wide-Area Dedicated Connections

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Nageswara S. [ORNL; Liu, Qiang [ORNL; Sen, Satyabrata [ORNL; Hinkel, Gregory Carl [ORNL; Imam, Neena [ORNL; Foster, Ian [University of Chicago; Kettimuthu, R. [Argonne National Laboratory (ANL); Settlemyer, Bradley [Los Alamos National Laboratory (LANL); Wu, Qishi [University of Memphis; Yun, Daqing [Harrisburg University

    2016-12-01

    File transfers over dedicated connections, supported by large parallel file systems, have become increasingly important in high-performance computing and big data workflows. It remains a challenge to achieve peak rates for such transfers due to the complexities of file I/O, host, and network transport subsystems, and equally importantly, their interactions. We present extensive measurements of disk-to-disk file transfers using Lustre and XFS file systems mounted on multi-core servers over a suite of 10 Gbps emulated connections with 0-366 ms round trip times. Our results indicate that large buffer sizes and many parallel flows do not always guarantee high transfer rates. Furthermore, large variations in the measured rates necessitate repeated measurements to ensure confidence in inferences based on them. We propose a new method to efficiently identify the optimal joint file I/O and network transport parameters using a small number of measurements. We show that for XFS and Lustre with direct I/O, this method identifies configurations achieving 97% of the peak transfer rate while probing only 12% of the parameter space.

  18. A comparison of measured radionuclide release rates from Three Mile Island Unit-2 core debris for different oxygen chemical potentials

    International Nuclear Information System (INIS)

    Baston, V.F.; Hofstetter, K.J.; Ryan, R.F.

    1987-01-01

    Chemical and radiochemical analyses of reactor coolant samples taken during defueling of the Three Mile Island Unit-2 (TMI-2) reactor provide relevant data to assist in understanding the solution chemistry of the radionuclides retained within the TMI-2 reactor coolant system. Hydrogen peroxide was added to various plant systems to provide disinfection for microbial contamination and has provided the opportunity to observe radionuclide release under different oxygen chemical potentials. A comparison of the radionuclide release rates with and without hydrogen peroxide has been made for these separate but related cases, i.e., the fuel transfer canal and connecting spent-fuel pool A with the TMI-2 reactor plenum in the fuel transfer canal, core debris grab sample laboratory experiments, and the reactor vessel fluid and associated core debris. Correlation and comparison of these data indicate a physical parameter dependence (surface-to-volume ratio) affecting all radionuclide release; however, selected radionuclides also demonstrate a chemical dependence release under the different oxygen chemical potentials. Chemical and radiochemical analyses of reactor coolant samples taken during defueling of the Three Mile Island Unit-2 (TMI-2) reactor provide relevant data to assist in understanding the solution chemistry of the radionuclides retained within the TMI-2 reactor coolant system

  19. Kinetic bottlenecks to chemical exchange rates for deep-sea animals - Part 1: Oxygen

    Science.gov (United States)

    Hofmann, A. F.; Peltzer, E. T.; Brewer, P. G.

    2012-10-01

    Ocean warming will reduce dissolved oxygen concentrations which can pose challenges to marine life. Oxygen limits are traditionally reported simply as a static concentration thresholds with no temperature, pressure or flow rate dependency. Here we treat the oceanic oxygen supply potential for heterotrophic consumption as a dynamic molecular exchange problem analogous to familiar gas exchange processes at the sea surface. A combination of the purely physico-chemical oceanic properties temperature, hydrostatic pressure, and oxygen concentration defines the ability of the ocean to supply oxygen to any given animal. This general oceanic oxygen supply potential is modulated by animal specific properties such as the diffusive boundary layer thickness to define and limit maximal oxygen supply rates. Here we combine all these properties into formal, mechanistic equations defining novel oceanic properties that subsume various relevant classical oceanographic parameters to better visualize, map, comprehend, and predict the impact of ocean deoxygenation on aerobic life. By explicitly including temperature and hydrostatic pressure into our quantities, various ocean regions ranging from the cold deep-sea to warm, coastal seas can be compared. We define purely physico-chemical quantities to describe the oceanic oxygen supply potential, but also quantities that contain organism-specific properties which in a most generalized way describe general concepts and dependencies. We apply these novel quantities to example oceanic profiles around the world and find that temperature and pressure dependencies of diffusion and partial pressure create zones of greatest physical constriction on oxygen supply typically at around 1000 m depth, which coincides with oxygen concentration minimum zones. In these zones, which comprise the bulk of the world ocean, ocean warming and deoxygenation have a clear negative effect for aerobic life. In some shallow and warm waters the enhanced diffusion and

  20. The change of longitudinal relaxation rate in oxygen enhanced pulmonary MRI depends on age and BMI but not diffusing capacity of carbon monoxide in healthy never-smokers.

    Directory of Open Access Journals (Sweden)

    Simon Sven Ivan Kindvall

    Full Text Available Oxygen enhanced pulmonary MRI is a promising modality for functional lung studies and has been applied to a wide range of pulmonary conditions. The purpose of this study was to characterize the oxygen enhancement effect in the lungs of healthy, never-smokers, in light of a previously established relationship between oxygen enhancement and diffusing capacity of carbon monoxide in the lung (DL,CO in patients with lung disease.In 30 healthy never-smoking volunteers, an inversion recovery with gradient echo read-out (Snapshot-FLASH was used to quantify the difference in longitudinal relaxation rate, while breathing air and 100% oxygen, ΔR1, at 1.5 Tesla. Measurements were performed under multiple tidal inspiration breath-holds.In single parameter linear models, ΔR1 exhibit a significant correlation with age (p = 0.003 and BMI (p = 0.0004, but not DL,CO (p = 0.33. Stepwise linear regression of ΔR1 yields an optimized model including an age-BMI interaction term.In this healthy, never-smoking cohort, age and BMI are both predictors of the change in MRI longitudinal relaxation rate when breathing oxygen. However, DL,CO does not show a significant correlation with the oxygen enhancement. This is possibly because oxygen transfer in the lung is not diffusion limited at rest in healthy individuals. This work stresses the importance of using a physiological model to understand results from oxygen enhanced MRI.

  1. Heterogeneous electron transfer and oxygen reduction reaction at nanostructured iron(II) phthalocyanine and its MWCNTs nanocomposites

    CSIR Research Space (South Africa)

    Mamuru, SA

    2010-05-01

    Full Text Available species within the porous layers of MWCNTs. Electron transfer process is much easier at the EPPGE-MWCNT and EPPGE-MWCNT-nanoFePc compared to the other electrodes. The best response for oxygen reduction reaction was at the EPPGE-MWCNTnanoFePc, yielding a 4...

  2. Determination of rate constants for the oxygen reduction reaction

    Energy Technology Data Exchange (ETDEWEB)

    Racz, A.; Walter, T.; Stimming, U. [Munich Technical Univ., Garching (Germany). Dept. of Physics

    2008-07-01

    The oxygen reduction reaction (ORR) in fuel cells is a complex and fundamental electrochemical reaction. However, greater insight is needed into this multi-electron reaction in order to develop efficient and innovative catalysts. The rotating ring disc electrode (RRDE) is a useful tool for studying reaction intermediates of the ORR and to better understand the reaction pathway. Carbon materials such as carbon nanofilaments-platelets (CNF-PL) have high electrical conductivity and may be considered for fuel cells. In particular Pt and RuSe{sub x}, deposited on CNF-PL materials could act as efficient catalysts in fuel cells. This study used the RRDE to evaluate the oxygen reduction kinetics of these catalysts in oxygen-saturated, diluted sulphuric acid at room temperature. Kinetic data and hydrogen peroxide formation were determined by depositing a thin-film of the catalyst on the Au disc. The values for the constants k1, k2 and k3 were obtained using diagnostic criteria and expressions to calculate the rate constants of the cathodic oxygen reduction reaction for RuSe on new carbon supports. A potential dependency of the constants k1 and k2 for RuSe{sub x}/CNF-PL was observed. The transition of the Tafel slopes for this catalyst was obtained. 4 refs., 1 fig.

  3. Oxygen consumption rate and mitochondrial density in human melanoma monolayer cultures and multicellular spheroids.

    Science.gov (United States)

    Hystad, M E; Rofstad, E K

    1994-05-15

    Rate of oxygen consumption per cell has been shown in previous studies to decrease with increasing depth in the viable rim of multicellular spheroids initiated from rodent cells, human colon-carcinoma cells, and human glioma cells, due to progressive accumulation of quiescent cells during spheroid growth. The purpose of our work was to determine oxygen-consumption profiles in human melanoma spheroids. Monolayer cultures of 4 lines (BEX-c, COX-c, SAX-c, and WIX-c) and spheroid cultures of 2 lines (BEX-c and WIX-c) were subjected to investigation. Spheroids were initiated from monolayer cell cultures and grown in spinner flasks. Rate of oxygen consumption was measured with a Clarke-type electrode. Mitochondrial density was determined by stereological analysis of transmission electron micrographs. Thickness of viable rim and cell packing density were assessed by light microscopy of central spheroid sections. Cell-cycle distribution was determined by analysis of DNA histograms measured by flow cytometry. Cell volume was measured by an electronic particle counter. Rate of oxygen consumption per cell differed by a factor of approximately 1.8 between the 4 cell lines and was positively correlated to total volume of mitochondria per cell. Rate of oxygen consumption per cell and total volume of mitochondria per cell were equal for monolayer cell cultures, 600-microns spheroids and 1,200-microns spheroids of the same line. Mitochondrial density and location in the cell did not differ between cells at the spheroid surface, in the middle of the viable rim and adjacent to the central necrosis. Cell-cycle distribution, cell volume, and cell-packing density in the outer and inner halves of the viable rim were not significantly different. Consequently, the rate of oxygen consumption per cell in inner regions of the viable rim was probably equal to that at the spheroid surface, suggesting that oxygen diffusion distances may be shorter in some melanomas than in many other tumor

  4. 3-D Numerical Investigation on Oxygen Transfer in a Horizontal Venturi Flow with Two Holes

    Directory of Open Access Journals (Sweden)

    Zegao Yin

    2018-02-01

    Full Text Available In order to investigate the dissolved oxygen increase caused by air suction in a horizontal Venturi flow with two holes, a 3-D computational fluid dynamics model was used to explore the water and bubble mixture flow, coupled with a dissolved oxygen transfer model. A series of experiments were conducted to validate the mathematical model. A relative saturation coefficient correlation was examined factoring in dissolved oxygen concentration at the inlet, water velocity at the inlet, the hole’s diameter, contraction ratio at throat section, and the downstream length of Venturi pipe. It was found that the relative saturation coefficient increases with increasing dissolved oxygen concentration at the inlet and downstream length of Venturi pipe respectively. However, it increases with decreasing water velocity at the inlet and contraction ratio at the throat section to some extent. The hole’s diameter plays a complex role in the relative saturation coefficient. The dimensional analysis method and the least square method were used to deduce a simple formula for the relative saturation coefficient, and this was consistent with related data.

  5. Core-debris quenching-heat-transfer rates under top- and bottom-reflood conditions

    International Nuclear Information System (INIS)

    Ginsberg, T.; Tutu, N.; Klages, J.; Schwarz, C.E.; Sanborn, Y.

    1983-02-01

    This paper presents recent experimental data for the quench-heat-transfer characteristics of superheated packed beds of spheres which were cooled, in separate experiments, by top- and bottom-flooding modes. Experiments were carried out with beds of 3-mm steel spheres of 330-mm height. The initial bed temperature was 810 K. The observed heat-transfer rates are strongly dependent on the mode of water injection. The results suggest that top-flood bed quench heat transfer is limited by the rate at which water can penetrate the bed under two-phase countercurrent-flow conditions. With bottom-reflood the heat-transfer rate is an order-of-magnitude greater than under top-flood conditions and appears to be limited by particle-to-fluid film boiling heat transfer

  6. Oxygen-Vacancy Abundant Ultrafine Co3O4/Graphene Composites for High-Rate Supercapacitor Electrodes.

    Science.gov (United States)

    Yang, Shuhua; Liu, Yuanyue; Hao, Yufeng; Yang, Xiaopeng; Goddard, William A; Zhang, Xiao Li; Cao, Bingqiang

    2018-04-01

    The metal oxides/graphene composites are one of the most promising supercapacitors (SCs) electrode materials. However, rational synthesis of such electrode materials with controllable conductivity and electrochemical activity is the topical challenge for high-performance SCs. Here, the Co 3 O 4 /graphene composite is taken as a typical example and develops a novel/universal one-step laser irradiation method that overcomes all these challenges and obtains the oxygen-vacancy abundant ultrafine Co 3 O 4 nanoparticles/graphene (UCNG) composites with high SCs performance. First-principles calculations show that the surface oxygen vacancies can facilitate the electrochemical charge transfer by creating midgap electronic states. The specific capacitance of the UCNG electrode reaches 978.1 F g -1 (135.8 mA h g -1 ) at the current densities of 1 A g -1 and retains a high capacitance retention of 916.5 F g -1 (127.3 mA h g -1 ) even at current density up to 10 A g -1 , showing remarkable rate capability (more than 93.7% capacitance retention). Additionally, 99.3% of the initial capacitance is maintained after consecutive 20 000 cycles, demonstrating enhanced cycling stability. Moreover, this proposed laser-assisted growth strategy is demonstrated to be universal for other metal oxide/graphene composites with tuned electrical conductivity and electrochemical activity.

  7. Enhanced kinetics of hole transfer and electrocatalysis during photocatalytic oxygen evolution by cocatalyst tuning

    KAUST Repository

    Nurlaela, Ela; Wang, Hai; Shinagawa, Tatsuya; Flanagan, Sean; Ould-Chikh, Samy; Qureshi, Muhammad; Mics, Zoltan; Sautet, Philippe; Le Bahers, Tangui; Canovas, Enrique; Bonn, Mischa; Takanabe, Kazuhiro

    2016-01-01

    Understanding photophysical and electrocatalytic processes during photocatalysis in a powder suspension system is crucial for developing efficient solar energy conversion systems. We report a substantial enhancement by a factor of 3 in photocatalytic effi-ciency for the oxygen evolution reaction (OER) by adding trace amounts (~0.05 wt%) of noble metals (Rh or Ru) to a 2 wt% cobalt oxide-modified Ta3N5 photocatalyst particulate. The optimized system exhibited high quantum efficiencies (QEs) of up to 28 and 8.4% at 500 and 600 nm in 0.1 M Na2S2O8 at pH 14. By isolating the electrochemical components to generate doped cobalt oxide electrodes, the electrocatalytic activity of cobalt oxide when doped with Ru or Rh was improved compared with cobalt oxide, as evidenced by the onset shift for electrochemical OER. Density functional theory (DFT) calculation shows that the ef-fects of a second metal addition perturbs the electronic structure and redox properties in such a way that both hole transfer kinetics and electrocatalytic rates improve. Time resolved terahertz spectroscopy (TRTS) measurement provides evidence of long-lived electron populations (>1 ns; with mobilities μe ~0.1-3 cm2 V-1 s-1), which are not perturbed by the addition of CoOx-related phases. Furthermore, we find that Ta3N5 phases alone suffer ultrafast hole trapping (within 10 ps); the CoOx and M-CoOx decorations most likely induce a kinetic competition between hole transfer toward the CoOx-related phases and trapping in the Ta3N5 phase, which is consistent with the improved OER rates. The present work not only provides a novel way to improve electrocatalytic and photocatalytic performance but also gives additional tools and insight to understand the characteristics of photocatalysts that can be used in a suspension system.

  8. Enhanced kinetics of hole transfer and electrocatalysis during photocatalytic oxygen evolution by cocatalyst tuning

    KAUST Repository

    Nurlaela, Ela

    2016-05-23

    Understanding photophysical and electrocatalytic processes during photocatalysis in a powder suspension system is crucial for developing efficient solar energy conversion systems. We report a substantial enhancement by a factor of 3 in photocatalytic effi-ciency for the oxygen evolution reaction (OER) by adding trace amounts (~0.05 wt%) of noble metals (Rh or Ru) to a 2 wt% cobalt oxide-modified Ta3N5 photocatalyst particulate. The optimized system exhibited high quantum efficiencies (QEs) of up to 28 and 8.4% at 500 and 600 nm in 0.1 M Na2S2O8 at pH 14. By isolating the electrochemical components to generate doped cobalt oxide electrodes, the electrocatalytic activity of cobalt oxide when doped with Ru or Rh was improved compared with cobalt oxide, as evidenced by the onset shift for electrochemical OER. Density functional theory (DFT) calculation shows that the ef-fects of a second metal addition perturbs the electronic structure and redox properties in such a way that both hole transfer kinetics and electrocatalytic rates improve. Time resolved terahertz spectroscopy (TRTS) measurement provides evidence of long-lived electron populations (>1 ns; with mobilities μe ~0.1-3 cm2 V-1 s-1), which are not perturbed by the addition of CoOx-related phases. Furthermore, we find that Ta3N5 phases alone suffer ultrafast hole trapping (within 10 ps); the CoOx and M-CoOx decorations most likely induce a kinetic competition between hole transfer toward the CoOx-related phases and trapping in the Ta3N5 phase, which is consistent with the improved OER rates. The present work not only provides a novel way to improve electrocatalytic and photocatalytic performance but also gives additional tools and insight to understand the characteristics of photocatalysts that can be used in a suspension system.

  9. Transfer rates of 19 typical pesticides and the relationship with their physicochemical property.

    Science.gov (United States)

    Chen, Hongping; Pan, Meiling; Pan, Rong; Zhang, Minglu; Liu, Xin; Lu, Chengyin

    2015-01-21

    Determining the transfer rate of pesticides during tea brewing is important to identify the potential exposure risks from pesticide residues in tea. In this study, the transfer rates of 19 typical pesticides from tea to brewing were investigated using gas chromatography tandem mass and ultraperformance liquid chromatography tandem mass. The leaching rates of five pesticides (isocarbophos, triazophos, fenvalerate, buprofezin, and pyridaben) during tea brewing were first reported. The pesticides exhibited different transfer rates; however, this result was not related to residual concentrations and tea types. Pesticides with low octanol-water partition coefficients (Logkow) and high water solubility demonstrated high transfer rates. The transfer rates of pesticides with water solubility > 29 mg L(-1) (or 25% (or 2.48) were >65% (or <35%). This result indicates that water solubility at approximately 20 mg L(-1) and LogKow at approximately 2.0 could be the demarcation lines of transfer rate. The results of this study can be used as a guide in the application of pesticides to tea trees and establishment of maximum residue limits of pesticides in tea to reduce pesticide exposure in humans.

  10. Transfer Rate Edited experiment for the selective detection of Chemical Exchange via Saturation Transfer (TRE-CEST).

    Science.gov (United States)

    Friedman, Joshua I; Xia, Ding; Regatte, Ravinder R; Jerschow, Alexej

    2015-07-01

    Chemical Exchange Saturation Transfer (CEST) magnetic resonance experiments have become valuable tools in magnetic resonance for the detection of low concentration solutes with far greater sensitivity than direct detection methods. Accurate measures of rates of chemical exchange provided by CEST are of particular interest to biomedical imaging communities where variations in chemical exchange can be related to subtle variations in biomarker concentration, temperature and pH within tissues using MRI. Despite their name, however, traditional CEST methods are not truly selective for chemical exchange and instead detect all forms of magnetization transfer including through-space NOE. This ambiguity crowds CEST spectra and greatly complicates subsequent data analysis. We have developed a Transfer Rate Edited CEST experiment (TRE-CEST) that uses two different types of solute labeling in order to selectively amplify signals of rapidly exchanging proton species while simultaneously suppressing 'slower' NOE-dominated magnetization transfer processes. This approach is demonstrated in the context of both NMR and MRI, where it is used to detect the labile amide protons of proteins undergoing chemical exchange (at rates⩾30s(-1)) while simultaneously eliminating signals originating from slower (∼5s(-1)) NOE-mediated magnetization transfer processes. TRE-CEST greatly expands the utility of CEST experiments in complex systems, and in-vivo, in particular, where it is expected to improve the quantification of chemical exchange and magnetization transfer rates while enabling new forms of imaging contrast. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Cadmium accumulation in and tolerance of rice (Oryza sativa L.) varieties with different rates of radial oxygen loss.

    Science.gov (United States)

    Wang, M Y; Chen, A K; Wong, M H; Qiu, R L; Cheng, H; Ye, Z H

    2011-06-01

    Cadmium (Cd) uptake and tolerance were investigated among 20 rice cultivars based on a field experiment (1.2 mg Cd kg⁻¹ in soil) and a soil pot trial (control, 100 mg Cd kg⁻¹), and rates of radial oxygen loss (ROL) were measured under a deoxygenated solution. Significant differences were found among the cultivars in: (1) brown rice Cd concentrations (0.11-0.29 mg kg⁻¹) in a field soil, (2) grain Cd tolerance (34-113%) and concentrations (2.1-6.5 mg kg⁻¹) in a pot trial, and (3) rates of ROL (15-31 mmol O₂ kg⁻¹ root d.w. h⁻¹). Target hazard quotients were calculated for the field experiment to assess potential Cd risk. Significant negative relationships were found between rates of ROL and concentrations of Cd in brown rice or straw under field and greenhouse conditions, indicating that rice cultivars with higher rates of ROL had higher capacities for limiting the transfer of Cd to rice and straw. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Optimization of perfluorocarbon emulsion properties for enhancing oxygen mass transfer in a bio-artificial liver support system

    CSIR Research Space (South Africa)

    Moolman, FS

    2004-07-29

    Full Text Available : With increase in the dispersed phase volume fraction (phi(p)) both the oxygen holding capacity and the viscosity increases. These issues are addressed here using simplified mass transfer models, amenable to analytical solution, for both gas-sparged and membrane...

  13. Heat transfer in a counterflow heat exchanger at low flow rates

    International Nuclear Information System (INIS)

    Hashimoto, A.; Hattori, N.; Naruke, K.

    1995-01-01

    A study was made of heat transfer in a double-tube heat exchanger at low flow rates of water. The temperatures of fluid and tube walls in the axial direction of tube were measured precisely at flow rate ratios of annulus to inner tube (or flow rate ratios of inner tube to annulus W i /W a , Re i approx. = 80 - 4000), W a /W i =0.1 - 1.1. In parallel with experiment, numerical calculation for forced-convection heat transfer was also carried out for laminar flows in the same tube configuration as experiment. Average over-all coefficients of heat transfer, obtained by experiments, indicate the same characteristics as numerical calculation in the examined range of flow rate ratio. Their experimental values, however, are somewhat larger than those of calculation at small values of flow rate ratio. (author)

  14. Characterization of Adipose Tissue Product Quality Using Measurements of Oxygen Consumption Rate.

    Science.gov (United States)

    Suszynski, Thomas M; Sieber, David A; Mueller, Kathryn; Van Beek, Allen L; Cunningham, Bruce L; Kenkel, Jeffrey M

    2018-03-14

    Fat grafting is a common procedure in plastic surgery but associated with unpredictable graft retention. Adipose tissue (AT) "product" quality is affected by the methods used for harvest, processing and transfer, which vary widely amongst surgeons. Currently, there is no method available to accurately assess the quality of AT. In this study, we present a novel method for the assessment of AT product quality through direct measurements of oxygen consumption rate (OCR). OCR has exhibited potential in predicting outcomes following pancreatic islet transplant. Our study aim was to reapportion existing technology for its use with AT preparations and to confirm that these measurements are feasible. OCR was successfully measured for en bloc and postprocessed AT using a stirred microchamber system. OCR was then normalized to DNA content (OCR/DNA), which represents the AT product quality. Mean (±SE) OCR/DNA values for fresh en bloc and post-processed AT were 149.8 (± 9.1) and 61.1 (± 6.1) nmol/min/mg DNA, respectively. These preliminary data suggest that: (1) OCR and OCR/DNA measurements of AT harvested using conventional protocol are feasible; and (2) standard AT processing results in a decrease in overall AT product quality. OCR measurements of AT using existing technology can be done and enables accurate, real-time, quantitative assessment of the quality of AT product prior to transfer. The availability and further validation of this type of assay could enable optimization of fat grafting protocol by providing a tool for the more detailed study of procedural variables that affect AT product quality.

  15. Electrochemical Water Oxidation and Stereoselective Oxygen Atom Transfer Mediated by a Copper Complex.

    Science.gov (United States)

    Kafentzi, Maria-Chrysanthi; Papadakis, Raffaello; Gennarini, Federica; Kochem, Amélie; Iranzo, Olga; Le Mest, Yves; Le Poul, Nicolas; Tron, Thierry; Faure, Bruno; Simaan, A Jalila; Réglier, Marius

    2018-04-06

    Water oxidation by copper-based complexes to form dioxygen has attracted attention in recent years, with the aim of developing efficient and cheap catalysts for chemical energy storage. In addition, high-valent metal-oxo species produced by the oxidation of metal complexes in the presence of water can be used to achieve substrate oxygenation with the use of H 2 O as an oxygen source. To date, this strategy has not been reported for copper complexes. Herein, a copper(II) complex, [(RPY2)Cu(OTf) 2 ] (RPY2=N-substituted bis[2-pyridyl(ethylamine)] ligands; R=indane; OTf=triflate), is used. This complex, which contains an oxidizable substrate moiety (indane), is used as a tool to monitor an intramolecular oxygen atom transfer reaction. Electrochemical properties were investigated and, upon electrolysis at 1.30 V versus a normal hydrogen electrode (NHE), both dioxygen production and oxygenation of the indane moiety were observed. The ligand was oxidized in a highly diastereoselective manner, which indicated that the observed reactivity was mediated by metal-centered reactive species. The pH dependence of the reactivity was monitored and correlated with speciation deduced from different techniques, ranging from potentiometric titrations to spectroscopic studies and DFT calculations. Water oxidation for dioxygen production occurs at neutral pH and is probably mediated by the oxidation of a mononuclear copper(II) precursor. It is achieved with a rather low overpotential (280 mV at pH 7), although with limited efficiency. On the other hand, oxygenation is maximum at pH 8-8.5 and is probably mediated by the electrochemical oxidation of an antiferromagnetically coupled dinuclear bis(μ-hydroxo) copper(II) precursor. This constitutes the first example of copper-centered oxidative water activation for a selective oxygenation reaction. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Understanding the biological activity of high rate algae ponds through the calculation of oxygen balances.

    Science.gov (United States)

    Arbib, Zouhayr; de Godos Crespo, Ignacio; Corona, Enrique Lara; Rogalla, Frank

    2017-06-01

    Microalgae culture in high rate algae ponds (HRAP) is an environmentally friendly technology for wastewater treatment. However, for the implementation of these systems, a better understanding of the oxygenation potential and the influence of climate conditions is required. In this work, the rates of oxygen production, consumption, and exchange with the atmosphere were calculated under varying conditions of solar irradiance and dilution rate during six months of operation in a real scale unit. This analysis allowed determining the biological response of these dynamic systems. The rates of oxygen consumption measured were considerably higher than the values calculated based on the organic loading rate. The response to light intensity in terms of oxygen production in the bioreactor was described with one of the models proposed for microalgae culture in dense concentrations. This model is based on the availability of light inside the culture and the specific response of microalgae to this parameter. The specific response to solar radiation intensity showed a reasonable stability in spite of the fluctuations due to meteorological conditions. The methodology developed is a useful tool for optimization and prediction of the performance of these systems.

  17. Lateral transfer of tetrahymanol-synthesizing genes has allowed multiple diverse eukaryote lineages to independently adapt to environments without oxygen

    Directory of Open Access Journals (Sweden)

    Takishita Kiyotaka

    2012-02-01

    Full Text Available Abstract Sterols are key components of eukaryotic cellular membranes that are synthesized by multi-enzyme pathways that require molecular oxygen. Because prokaryotes fundamentally lack sterols, it is unclear how the vast diversity of bacterivorous eukaryotes that inhabit hypoxic environments obtain, or synthesize, sterols. Here we show that tetrahymanol, a triterpenoid that does not require molecular oxygen for its biosynthesis, likely functions as a surrogate of sterol in eukaryotes inhabiting oxygen-poor environments. Genes encoding the tetrahymanol synthesizing enzyme squalene-tetrahymanol cyclase were found from several phylogenetically diverged eukaryotes that live in oxygen-poor environments and appear to have been laterally transferred among such eukaryotes. Reviewers This article was reviewed by Eric Bapteste and Eugene Koonin.

  18. Renal Blood Flow, Glomerular Filtration Rate, and Renal Oxygenation in Early Clinical Septic Shock.

    Science.gov (United States)

    Skytte Larsson, Jenny; Krumbholz, Vitus; Enskog, Anders; Bragadottir, Gudrun; Redfors, Bengt; Ricksten, Sven-Erik

    2018-06-01

    Data on renal hemodynamics, function, and oxygenation in early clinical septic shock are lacking. We therefore measured renal blood flow, glomerular filtration rate, renal oxygen consumption, and oxygenation in patients with early septic shock. Prospective comparative study. General and cardiothoracic ICUs. Patients with norepinephrine-dependent early septic shock (n = 8) were studied within 24 hours after arrival in the ICU and compared with postcardiac surgery patients without acute kidney injury (comparator group, n = 58). None. Data on systemic hemodynamics and renal variables were obtained during two 30-minute periods. Renal blood flow was measured by the infusion clearance of para-aminohippuric acid, corrected for renal extraction of para-aminohippuric acid. Renal filtration fraction was measured by renal extraction of chromium-51 labeled EDTA. Renal oxygenation was estimated from renal oxygen extraction. Renal oxygen delivery (-24%; p = 0.037) and the renal blood flow-to-cardiac index ratio (-21%; p = 0.018) were lower, renal vascular resistance was higher (26%; p = 0.027), whereas renal blood flow tended to be lower (-19%; p = 0.068) in the septic group. Glomerular filtration rate (-32%; p = 0.006) and renal sodium reabsorption (-29%; p = 0.014) were both lower in the septic group. Neither renal filtration fraction nor renal oxygen consumption differed significantly between groups. Renal oxygen extraction was significantly higher in the septic group (28%; p = 0.022). In the septic group, markers of tubular injury were elevated. In early clinical septic shock, renal function was lower, which was accompanied by renal vasoconstriction, a lower renal oxygen delivery, impaired renal oxygenation, and tubular sodium reabsorption at a high oxygen cost compared with controls.

  19. Rate of reaction of dimethylmercury with oxygen atoms in the gas phase

    DEFF Research Database (Denmark)

    Egsgaard, Helge

    1986-01-01

    The rate constant for the reaction of atomic oxygen (O(3P)) with dimethylmercury has been measured at room temperature at a pressure of about 1 Torr using a fast flow system with electron paramagnetic resonance and mass spectrometric detection. Some reaction products were identified. The rate...

  20. Spontaneous Emission and Energy Transfer Rates Near a Coated Metallic Cylinder

    OpenAIRE

    BRADLEY, LOUISE

    2014-01-01

    PUBLISHED The spontaneous emission and energy transfer rates of quantum systems in proximity to a dielectrically coated metallic cylinder are investigated using a Green's tensor formalism. The excitation of surface plasmon modes can significantly modify these rates. The spontaneous emission and energy transfer rates are investigated as a function of the material and dimensions of the core and coating, as well as the emission wavelength of the donor. For the material of the core we consider...

  1. Determination of external and internal mass transfer limitation in nitrifying microbial aggregates.

    Science.gov (United States)

    Wilén, Britt-Marie; Gapes, Daniel; Keller, Jürg

    2004-05-20

    In this article we present a study of the effects of external and internal mass transfer limitation of oxygen in a nitrifying system. The oxygen uptake rates (OUR) were measured on both a macro-scale with a respirometric reactor using off-gas analysis (Titrimetric and Off-Gas Analysis (TOGA) sensor) and on a micro-scale with microsensors. These two methods provide independent, accurate measurements of the reaction rates and concentration profiles around and in the granules. The TOGA sensor and microsensor measurements showed a significant external mass transfer effect at low dissolved oxygen (DO) concentrations in the bulk liquid while it was insignificant at higher DO concentrations. The oxygen distribution with anaerobic or anoxic conditions in the center clearly shows major mass transfer limitation in the aggregate interior. The large drop in DO concentration of 22-80% between the bulk liquid and aggregate surface demonstrates that the external mass transfer resistance is also highly important. The maximum OUR even for floccular biomass was only attained at much higher DO concentrations (approximately 8 mg/L) than typically used in such systems. For granules, the DO required for maximal activity was estimated to be >20 mg/L, clearly indicating the effects of the major external and internal mass transfer limitations on the overall biomass activity. Smaller aggregates had a larger volumetric OUR indicating that the granules may have a lower activity in the interior part of the aggregate. Copyright 2004 Wiley Periodicals, Inc.

  2. Validation of the Nonin 8600V Pulse Oximeter for heart rate and oxygen saturation measurements in rats.

    Science.gov (United States)

    Bernard, Susan L; An, Dowon; Glenny, Robb W

    2004-05-01

    This report validates the use and limitations of the Nonin Pulse Oximeter for measuring heart rate and oxygen saturation in rats. Eight anesthetized Sprague-Dawley rats were intubated and catheterized. Oxygen saturation was directly measured from arterial blood by using a Radiometer OSM3 Hemoximeter adjusted for rat blood as well as indirectly by using the Nonin Pulse Oximeter. Oxygen saturation was changed by varying the level of inhaled oxygen. Heart rate was measured in two ways: 1) by using the signal from the Nonin Pulse Oximeter and 2) by counting the pressure pulses from the transduced blood pressure. There was excellent agreement between heart rate values measured by the Nonin Pulse Oximeter and that measured by counting the pulses from the arterial blood pressure recording. The Nonin Pulse Oximeter underestimated oxygen saturations by about 3% to 5% compared to the Hemoximeter. Overall, the pulse oximeter reflected important trends in oxygen saturations, making it a useful tool for laboratory animal medicine.

  3. Radiative losses and electron cooling rates for carbon and oxygen plasma impurities

    International Nuclear Information System (INIS)

    Marchand, R.; Bonnin, X.

    1992-01-01

    Radiative losses and electron cooling rates are calculated for carbon and oxygen ions under conditions relevant to fusion plasmas. Both rates are calculated with the most recent recommended atomic data. A modified coronal model which includes the effects of metastable states is described and used to calculate the rates. Comparisons with other approaches are also discussed. (author). 36 ref, figs

  4. Critical appraisal on the role of catalysts for the oxygen reduction reaction in lithium-oxygen batteries

    International Nuclear Information System (INIS)

    Lodge, Andrew W.; Lacey, Matthew J.; Fitt, Matthew; Garcia-Araez, Nuria; Owen, John R.

    2014-01-01

    This work reports a detailed characterization of the reduction of oxygen in pyrrolidinium-based ionic liquids for application to lithium-oxygen batteries. It is found that, in the absence of Li + , all electron transfer kinetics are fast, and therefore, the reactions are limited by the mass transport rate. Reversible reduction of O 2 to O 2 • − and O 2 • − to O 2 2− take place at E 0 = 2.1 V and 0.8 V vs. Li + /Li, respectively. In the presence of Li + , O 2 is reduced to LiO 2 first and then to Li 2 O 2 . The solubility product constant of Li 2 O 2 is found to be around 10 −51 , corroborating the hypothesis that electrode passivation by Li 2 O 2 deposition is an important issue that limits the capacity delivered by lithium-oxygen batteries. Enhancing the rate of Li 2 O 2 formation by using different electrode materials would probably lead to faster electrode passivation and hence smaller charge due to oxygen reduction (smaller capacity of the battery). On the contrary, soluble redox catalysts can not only increase the reaction rate of Li 2 O 2 formation but also avoid electrode passivation since the fast diffusion of the soluble redox catalyst would displace the formation of Li 2 O 2 at a sufficient distance from the electrode surface

  5. Fluxes and exchange rates of radon and oxygen across an air-sea interface

    International Nuclear Information System (INIS)

    Duenas, C.; Fernandez, M.C.; La Torre, M. de

    1986-01-01

    The flux of 222 Rn and O 2 from shallow water off the Bay of Malaga has been measured. The mean value of flux of 222 Rn is evaluated to be 74 atoms/m 2 · s. The Bay is a weak source of oxygen to the atmosphere, where the net production of oxygen is found to be 1.82 mol/m 2 · y. Moreover, the gas exchange rates of 222 Rn and O 2 across the air-sea interface has been determined by the radon method. The gas exchange rates and the wind speed have been estimated. (author)

  6. Reducing twin pregnancy rates after IVF--elective single embryo transfer (eSET).

    LENUS (Irish Health Repository)

    Milne, P

    2010-01-01

    Multiple pregnancy is a major complication of IVF and is associated with increased maternal, fetal and neonatal morbidity. Elective single embryo transfer (eSET) during IVF, rather than the more standard transfer of two embryos (double embryo transfer or DET), has been shown to significantly reduce the multiple pregnancy rate associated with IVF, while maintaining acceptable pregnancy rates. Couples undergoing IVF in 2008 who met good prognostic criteria had eSET performed. Pregnancy and twinning rates were compared with those for similar couples in 2007 who had DET. Couples unsuccessful with a fresh cycle of treatment had subsequent frozen embryo transfer cycles with DET. The cumulative pregnancy rate was similar for each group. However there were no multiple pregnancies in the eSET group, compared to 4 twins of 5 pregnancies in the DET group. 96% of eligible couples agreed to eSET. ESET is successful in and acceptable to good prognosis Irish couples undergoing IVF.

  7. Oxygen uptake rate (OUR) control strategy for improving avermectin B

    African Journals Online (AJOL)

    Glucose metabolism plays a crucial role in the process of avermectin B1a biosynthesis. Controlling glucose feeding based on oxygen uptake rate (OUR) was established to improve the efficiency of avermectin B1a production. The result showed that avermectin B1a production was greatly enhanced by OUR control strategy.

  8. Influence of Prolonged Spaceflight on Heart Rate and Oxygen Uptake Kinetics

    Science.gov (United States)

    Hoffmann, U.; Moore, A.; Drescher, U.

    2013-02-01

    During prolonged spaceflight, physical training is used to minimize cardiovascular deconditioning. Measurement of the kinetics of cardiorespiratory parameters, in particular the kinetic analysis of heart rate, respiratory and muscular oxygen uptake, provides useful information with regard to the efficiency and regulation of the cardiorespiratory system. Practically, oxygen uptake kinetics can only be measured at the lung site (V’O2 resp). The dynamics of V’O2 resp, however, is not identical with the dynamics at the site of interest: skeletal muscle. Eight Astronauts were tested pre- and post-flight using pseudo random binary workload changes between 30 and 80 W. Their kinetic responses of heart rate, respiratory as well as muscular V’O2 kinetics were estimated by using time-series analysis. Statistical analysis revealed that the kinetic responses of respiratory as well as muscular V’O2 kinetics are slowed post-flight than pre-flight. Heart rate seems not to be influenced following flight. The influence of other factors (e. g. astronauts’ exercise training) may impact these parameters and is an area for future studies.

  9. A comparative study of oxygen transmission rates through polymer films based on fluorescence quenching

    DEFF Research Database (Denmark)

    Siró, Istvan; Plackett, David; Sommer-Larsen, Peter

    2010-01-01

    Information on oxygen permeability through polymer films is essential for some applications, especially in food packaging where the control of oxygen levels can be critical in avoiding food spoilage. A permeability testing device using fluorescence-based optical oxygen sensing was developed...... as a potential new instrument for measuring the oxygen permeability of packaging films. The fluorescence-based permeability tester was validated against two existing commercial oxygen permeability measuring devices, the Mocon Ox-Tran 2/20 and PBI-Dansensor OPT-5000. Oxygen transmission rates (OTR) of polylactide...... (PLA) and nanoclay-reinforced PLA films, as well as polyethylene/poly(ethylene terephthalate) (PE/PET) and polypropylene/poly(ethylene terephthalate) (PP/PET) laminated films were determined at 23°C and 50% relative humidity using each of these instruments. No significant differences were observed...

  10. Characterization of a continuous agitated cell reactor for oxygen dependent biocatalysis.

    Science.gov (United States)

    Toftgaard Pedersen, Asbjørn; de Carvalho, Teresa Melo; Sutherland, Euan; Rehn, Gustav; Ashe, Robert; Woodley, John M

    2017-06-01

    Biocatalytic oxidation reactions employing molecular oxygen as the electron acceptor are difficult to conduct in a continuous flow reactor because of the requirement for high oxygen transfer rates. In this paper, the oxidation of glucose to glucono-1,5-lactone by glucose oxidase was used as a model reaction to study a novel continuous agitated cell reactor (ACR). The ACR consists of ten cells interconnected by small channels. An agitator is placed in each cell, which mixes the content of the cell when the reactor body is shaken by lateral movement. Based on tracer experiments, a hydrodynamic model for the ACR was developed. The model consisted of ten tanks-in-series with back-mixing occurring within and between each cell. The back-mixing was a necessary addition to the model in order to explain the observed phenomenon that the ACR behaved as two continuous stirred tank reactors (CSTRs) at low flow rates, while it at high flow rates behaved as the expected ten CSTRs in series. The performance of the ACR was evaluated by comparing the steady state conversion at varying residence times with the conversion observed in a stirred batch reactor of comparable size. It was found that the ACR could more than double the overall reaction rate, which was solely due to an increased oxygen transfer rate in the ACR caused by the intense mixing as a result of the spring agitators. The volumetric oxygen transfer coefficient, k L a, was estimated to be 344 h -1 in the 100 mL ACR, opposed to only 104 h -1 in a batch reactor of comparable working volume. Interestingly, the large deviation from plug flow behavior seen in the tracer experiments was found to have little influence on the conversion in the ACR, since both a plug flow reactor (PFR) model and the backflow cell model described the data sufficiently well. Biotechnol. Bioeng. 2017;114: 1222-1230. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  11. Quantifying salinity and season effects on eastern oyster clearance and oxygen consumption rates

    Science.gov (United States)

    Casas, S.M.; Lavaud, Romain; LaPeyre, Megan K.; Comeau, L. A.; Filgueira, R.; LaPeyre, Jerome F.

    2018-01-01

    There are few data on Crassostrea virginica physiological rates across the range of salinities and temperatures to which they are regularly exposed, and this limits the applicability of growth and production models using these data. The objectives of this study were to quantify, in winter (17 °C) and summer (27 °C), the clearance and oxygen consumption rates of C. virginica from Louisiana across a range of salinities typical of the region (3, 6, 9, 15 and 25). Salinity and season (temperature and reproduction) affected C. virginica physiology differently; salinity impacted clearance rates with reduced feeding rates at low salinities, while season had a strong effect on respiration rates. Highest clearance rates were found at salinities of 9–25, with reductions ranging from 50 to 80 and 90 to 95% at salinities of 6 and 3, respectively. Oxygen consumption rates in summer were four times higher than in winter. Oxygen consumption rates were within a narrow range and similar among salinities in winter, but varied greatly among individuals and salinities in summer. This likely reflected varying stages of gonad development. Valve movements measured at the five salinities indicated oysters were open 50–60% of the time in the 6–25 salinity range and ~ 30% at a salinity of 3. Reduced opening periods, concomitant with narrower valve gap amplitudes, are in accord with the limited feeding at the lowest salinity (3). These data indicate the need for increased focus on experimental determination of optimal ranges and thresholds to better quantify oyster population responses to environmental changes.

  12. The electrode kinetics of the evolution and dissolution of oxygen at the urania-zirconia interfaces

    International Nuclear Information System (INIS)

    Badwal, S.P.S.; Bevan, D.J.M.; Bockris, J.O'M.

    1980-01-01

    In order to assess the potential of urania-yttria fluorite-type solid solutions as electrodes for high-temperature electrolysis of steam, oxygen evolution and dissolution reactions have been studied at the (Usub(0.7)Ysub(0.3))Osub (2+x)/YSZ interface. A current-interruption technique was used to separate overpotential and resistive potential drop. In oxygen and air the overpotential-current curves obey the Tafel law, suggesting that a charge-transfer process is rate determining. Activation energies of 120 kJ mole -1 and 165 kJ mole -1 were obtained for the cathodic reaction in oxygen and air respectively. The capacitance obtained from galvanostatic transients varied with potential, temperature, and oxygen partial pressure. The average value of n, the number of electrons involved in the overall charge-transfer reaction, was determined to be 4.01 from reversible potential measurements. The overpotential losses are small for porous electrodes at high psub(O 2 ). A mechanism for the oxygen transfer reaction has been proposed and its limitations discussed. (author)

  13. Identification of the site where the electron transfer chain of plant mitochondria is stimulated by electrostatic charge screening.

    NARCIS (Netherlands)

    Krab, K.; Wagner, M.J.; Wagner, A.M.; Moller, I.M.

    2000-01-01

    Modular kinetic analysis was used to determine the sites in plant mitochondria where charge-screening stimulates the rate of electron transfer from external NAD(P)H to oxygen. In mitochondria isolated from potato (Solanum tuberosum L.) tuber callus, stimulation of the rate of oxygen uptake was

  14. Electron transfer by excited benzoquinone anions: slow rates for two-electron transitions.

    Science.gov (United States)

    Zamadar, Matibur; Cook, Andrew R; Lewandowska-Andralojc, Anna; Holroyd, Richard; Jiang, Yan; Bikalis, Jin; Miller, John R

    2013-09-05

    Electron transfer (ET) rate constants from the lowest excited state of the radical anion of benzoquinone, BQ(-•)*, were measured in THF solution. Rate constants for bimolecular electron transfer reactions typically reach the diffusion-controlled limit when the free-energy change, ΔG°, reaches -0.3 eV. The rate constants for ET from BQ(-•)* are one-to-two decades smaller at this energy and do not reach the diffusion-controlled limit until -ΔG° is 1.5-2.0 eV. The rates are so slow probably because a second electron must also undergo a transition to make use of the energy of the excited state. Similarly, ET, from solvated electrons to neutral BQ to form the lowest excited state, is slow, while fast ET is observed at a higher excited state, which can be populated in a transition involving only one electron. A simple picture based on perturbation theory can roughly account for the control of electron transfer by the need for transition of a second electron. The picture also explains how extra driving force (-ΔG°) can restore fast rates of electron transfer.

  15. Using micro-patterned sensors and cell self-assembly for measuring the oxygen consumption rate of single cells

    International Nuclear Information System (INIS)

    Etzkorn, James R; Parviz, Babak A; Wu, Wen-Chung; Tian, Zhiyuan; Kim, Prince; Jang, Sei-Hum; Jen, Alex K-Y; Meldrum, Deirdre R

    2010-01-01

    We present a method for self-assembling arrays of live single cells on a glass chip using a photopatternable polymer to form micro-traps. We have studied the single-cell self-assembly method and optimized the process to obtain a 52% yield of single-trapped cells. We also report a method to measure the oxygen consumption rate of a single cell using micro-patterned sensors. These molecular oxygen sensors were fabricated around each micro-trap allowing optical interrogation of oxygen concentration in the immediate environment of the trapped cell. Micromachined micro-wells were then used to seal the trap, sensor and cell in order to determine the oxygen consumption rate of single cells. These techniques reported here add to the collection of tools for performing 'singe-cell' biology. An oxygen consumption rate of 1.05 ± 0.28 fmol min −1 was found for a data set consisting of 25 single A549 cells.

  16. Liquid-gas mass transfer at drop structures

    DEFF Research Database (Denmark)

    Matias, Natércia; Nielsen, Asbjørn Haaning; Vollertsen, Jes

    2017-01-01

    -water mass transfer, little is known about hydrogen sulfide emission under highly turbulent conditions (e.g., drop structures, hydraulic jumps). In this study, experimental work was carried out to analyze the influence of characteristics of drops on reaeration. Physical models were built, mimicking typical...... sewer drop structures and allowing different types of drops, drop heights, tailwater depths and flow rates. In total, 125 tests were performed. Based on their results, empirical expressions translating the relationship between the mass transfer of oxygen and physical parameters of drop structures were...... established. Then, by applying the two-film theory with two-reference substances, the relation to hydrogen sulfide release was defined. The experiments confirmed that the choice of the type of drop structure is critical to determine the uptake/emission rates. By quantifying the air-water mass transfer rates...

  17. Geometry effect on energy transfer rate in a coupled-quantum-well structure: nonlinear regime

    International Nuclear Information System (INIS)

    Salavati-fard, T; Vazifehshenas, T

    2014-01-01

    We study theoretically the effect of geometry on the energy transfer rate at nonlinear regime in a coupled-quantum-well system using the balance equation approach. To investigate comparatively the effect of both symmetric and asymmetric geometry, different structures are considered. The random phase approximation dynamic dielectric function is employed to include the contributions from both quasiparticle and plasmon excitations. Also, the short-range exchange interaction is taken into account through the Hubbard approximation. Our numerical results show that the energy transfer rate increases by increasing the well thicknesses in symmetric structures. Furthermore, by increasing spatial asymmetry, the energy transfer rate decreases for the electron temperature range of interest. From numerical calculations, it is obtained that the nonlinear energy transfer rate is proportional to the square of electron drift velocity in all structures and also, found that the influence of Hubbard local field correction on the energy transfer rate gets weaker by increasing the strength of applied electric field. (paper)

  18. Diffusion of oxygen in cork.

    Science.gov (United States)

    Lequin, Sonia; Chassagne, David; Karbowiak, Thomas; Simon, Jean-Marc; Paulin, Christian; Bellat, Jean-Pierre

    2012-04-04

    This work reports measurements of effective oxygen diffusion coefficient in raw cork. Kinetics of oxygen transfer through cork is studied at 298 K thanks to a homemade manometric device composed of two gas compartments separated by a cork wafer sample. The first compartment contains oxygen, whereas the second one is kept under dynamic vacuum. The pressure decrease in the first compartment is recorded as a function of time. The effective diffusion coefficient D(eff) is obtained by applying Fick's law to transient state using a numerical method based on finite differences. An analytical model derived from Fick's law applied to steady state is also proposed. Results given by these two methods are in close agreement with each other. The harmonic average of the effective diffusion coefficients obtained from the distribution of 15 cork wafers of 3 mm thickness is 1.1 × 10(-9) m(2) s(-1) with a large distribution over four decades. The statistical analysis of the Gaussian distribution obtained on a 3 mm cork wafer is extrapolated to a 48 mm cork wafer, which length corresponds to a full cork stopper. In this case, the probability density distribution gives a mean value of D(eff) equal to 1.6 × 10(-9) m(2) s(-1). This result shows that it is possible to obtain the effective diffusion coefficient of oxygen through cork from short time (few days) measurements performed on a thin cork wafer, whereas months are required to obtain the diffusion coefficient for a full cork stopper. Permeability and oxygen transfer rate are also calculated for comparison with data from other studies.

  19. In situ measurement of the rate of oxygen consumption by the Callovo-Oxfordian argillaceous rock

    International Nuclear Information System (INIS)

    Vinsot, A.; Lundy, M.; Claret, F.; Wechner, S.

    2012-01-01

    fluid to protect the rock from any contact with air. The borehole equipment was installed just after the drilling and isolated the test interval with a packer. The equipment includes several lines, which link the test interval to the drift, and make it possible to circulate gas and collect the pore water flowing from the rock into the test interval. In the drift, a gas circulation module allows to circulate the gas and to monitor its composition. This module includes a circulation pump, an oxygen specific probe and cylinders which can be disconnected for gas sample analyses. In addition, the gas circulation module makes possible the injection of pure oxygen at a controlled flow rate. Another module is dedicated to water extraction at a controlled flow rate and permits water composition monitoring. Before the first oxygen injection, a stable water production flow rate between 30 and 40 mL/day was obtained in the borehole. This flow rate indicates that the test interval wall is presumably saturated with water. The water composition is similar to those previously obtained in the URL. The first oxygen injection was performed by replacing the previous circulating gas by a mixture of gases containing 14% O 2 , 5% He, 5% Ne and 76% Ar at a total pressure close to 1.5 bars. As a result the oxygen partial pressure was close to 0.2 bars just after the gas replacement. Helium and neon served as reference non-reactive gases: the evolution of their content should only depend on the dissolution and diffusion processes in the rock pore water. As a consequence, they will help to calibrate the transport part in a reactive transport model. Following its first injection in the test interval, oxygen totally disappeared in the time frame of less than three days. No immediate effect on the extracted water composition was observed. In October 2011, pure oxygen was added three times to the circulating gas to reach each time more an oxygen partial pressure of 0.2 bars in the test interval

  20. Is the surface oxygen exchange rate linked to bulk ion diffusivity in mixed conducting Ruddlesden-Popper phases?

    Science.gov (United States)

    Tomkiewicz, Alex C; Tamimi, Mazin A; Huq, Ashfia; McIntosh, Steven

    2015-01-01

    The possible link between oxygen surface exchange rate and bulk oxygen anion diffusivity in mixed ionic and electronic conducting oxides is a topic of great interest and debate. While a large body of experimental evidence and theoretical analyses support a link, observed differences between bulk and surface composition of these materials are hard to reconcile with this observation. This is further compounded by potential problems with simultaneous measurement of both parameters. Here we utilize separate techniques, in situ neutron diffraction and pulsed isotopic surface exchange, to examine bulk ion mobility and surface oxygen exchange rates of three Ruddlesden-Popper phases, general form A(n-1)A(2)'B(n)O(3n+1), A(n-1)A(2)'B(n)X(3n+1); LaSrCo(0.5)Fe(0.5)O(4-δ) (n = 1), La(0.3)Sr(2.7)CoFeO(7-δ) (n = 2) and LaSr3Co(1.5)Fe(1.5)O(10-δ) (n = 3). These measurements are complemented by surface composition determination via high sensitivity-low energy ion scattering. We observe a correlation between bulk ion mobility and surface exchange rate between materials. The surface exchange rates vary by more than one order of magnitude with high anion mobility in the bulk of an oxygen vacancy-rich n = 2 Ruddlesden-Popper material correlating with rapid oxygen exchange. This is in contrast with the similar surface exchange rates which we may expect due to similar surface compositions across all three samples. We conclude that experimental limitations lead to inherent convolution of surface and bulk rates, and that surface exchange steps are not likely to be rate limiting in oxygen incorporation.

  1. The slope of the oxygen pulse curve does not depend on the maximal heart rate in elite soccer players

    Directory of Open Access Journals (Sweden)

    Raphael Rodrigues Perim

    2011-01-01

    Full Text Available INTRODUCTION: It is unknown whether an extremely high heart rate can affect oxygen pulse profile during progressive maximal exercise in healthy subjects. OBJECTIVE: Our aim was to compare relative oxygen pulse (adjusted for body weight curves in athletes at their maximal heart rate during treadmill cardiopulmonary exercise testing. METHODS: A total of 180 elite soccer players were categorized in quartiles according to their maximum heart rate values (n = 45. Oxygen consumption, maximum heart rate and relative oxygen pulse curves in the extreme quartiles, Q1 and Q4, were compared at intervals corresponding to 10% of the total duration of a cardiopulmonary exercise testing. RESULTS: Oxygen consumption was similar among all subjects during cardiopulmonary exercise testing; however subjects in Q1 started to exhibit lower maximum heart rate values when 20% of the test was complete. Conversely, the relative oxygen pulse was higher in this group when cardiopulmonary exercise testing was 40% complete (p<.01. Although the slopes of the lines were similar (p = .25, the regression intercepts differed (p<.01 between Q1 and Q4. During the last two minutes of testing, a flat or decreasing oxygen pulse was identified in 20% of the soccer players, and this trend was similar between subjects in Q1 and Q4. CONCLUSION: Relative oxygen pulse curve slopes, which serve as an indirect and non-invasive surrogate for stroke volume, suggest that the stroke volume is similar in young and aerobically fit subjects regardless of the maximum heart rate reached.

  2. Interaction of nitroimidazole sensitizers and oxygen in the radiosensitization of mammalian cells at ultrahigh dose rates

    International Nuclear Information System (INIS)

    Michaels, H.B.; Ling, C.C.; Epp, E.R.; Peterson, E.C.

    1981-01-01

    When CHO cells, equilibrated with 0.44% oxygen, are irradiated with single 3-nsec pulses of electrons from a 600-kV-field emission source, a breaking survival curve is observed. The breaking behavior, believed to be the result of radiolytic oxygen depletion, can be prevented by the presence of a relatively low concentration of the hypoxic cell sensitizer misonidazole; similar results are obtained with metronidazole and Ro-05-9963. The resulting survival curves exhibit a sensitized response similar to that obtained with conventional dose rate radiation for CHO cells under this oxygen concentration. This degree of sensitization is greater than that observed for CHO cells irradiated at ultrahigh dose rates under the same concentration of sensitizer in nitrogen. The data suggest that the nitroimidazole compounds interfere with the radiation chemical oxygen depletion process and that the radiosensitization observed in the nonbreaking survival curve is the consequence of sensitization by both the nitroimidazole and, primarily, the oxygen rather than a direct subsitution for oxygen by the sensitizer. This conclusion is also supported by data obtained in double-pulse experiments. The results are discussed with regard to the mechanisms of the oxygen depletion process and radiosensitization

  3. Determining Permissible Oxygen and Water Vapor Transmission Rate for Non-Retort Military Ration Packaging

    Science.gov (United States)

    2011-11-01

    OXYGEN AND WATER VAPOR TRANSMISSION RATE FOR NON- RETORT MILITARY RATION PACKAGING by Danielle Froio Alan Wright Nicole Favreau and Sarah...ANSI Std. Z39.18 RETORT STORAGE SHELF LIFE RETORT POUCHES SENSORY ANALYSIS OXYGEN CRACKERS PACKAGING SENSORY... Packaging for MRE. (a) MRE Retort Pouch Quad-Laminate Structure; (b) MRE Non- retort Pouch Tri-Laminate Structure

  4. Conversion rate of para-hydrogen to ortho-hydrogen by oxygen: implications for PHIP gas storage and utilization.

    Science.gov (United States)

    Wagner, Shawn

    2014-06-01

    To determine the storability of para-hydrogen before reestablishment of the room temperature thermal equilibrium mixture. Para-hydrogen was produced at near 100% purity and mixed with different oxygen quantities to determine the rate of conversion to the thermal equilibrium mixture of 75: 25% (ortho: para) by detecting the ortho-hydrogen (1)H nuclear magnetic resonance using a 9.4 T imager. The para-hydrogen to ortho-hydrogen velocity constant, k, near room temperature (292 K) was determined to be 8.27 ± 1.30 L/mol · min(-1). This value was calculated utilizing four different oxygen fractions. Para-hydrogen conversion to ortho-hydrogen by oxygen can be minimized for long term storage with judicious removal of oxygen contamination. Prior calculated velocity rates were confirmed demonstrating a dependence on only the oxygen concentration.

  5. High Yolk Testosterone Transfer Is Associated with an Increased Female Metabolic Rate.

    Science.gov (United States)

    Tschirren, Barbara; Ziegler, Ann-Kathrin; Canale, Cindy I; Okuliarová, Monika; Zeman, Michal; Giraudeau, Mathieu

    2016-01-01

    Yolk androgens of maternal origin are important mediators of prenatal maternal effects. Although in many species short-term benefits of exposure to high yolk androgen concentrations for the offspring have been observed, females differ substantially in the amount of androgens they transfer to their eggs. It suggests that costs for the offspring or the mother constrain the evolution of maternal hormone transfer. However, to date, the nature of these costs remains poorly understood. Unlike most previous work that focused on potential costs for the offspring, we here investigated whether high yolk testosterone transfer is associated with metabolic costs (i.e., a higher metabolic rate) for the mother. We show that Japanese quail (Coturnix japonica) females that deposit higher testosterone concentrations into their eggs have a higher resting metabolic rate. Because a higher metabolic rate is often associated with a shorter life span, this relationship may explain the negative association between yolk testosterone transfer and female longevity observed in the wild. Our results suggest that metabolic costs for the mother can balance the short-term benefits of yolk testosterone exposure for the offspring, thereby contributing to the maintenance of variation in maternal yolk hormone transfer in natural populations.

  6. Intra-particle oxygen diffusion limitation in solid-state fermentation

    NARCIS (Netherlands)

    Oostra, J.; Comte, le E.P.; Heuvel, van den J.C.; Tramper, J.; Rinzema, A.

    2001-01-01

    Oxygen limitation in solid-state fermentation (SSF) has been the topic of modeling studies, but thus far, there has been no experimental elucidation on oxygen-transfer limitation at the particle level. Therefore, intra-particle oxygen transfer was experimentally studied in cultures of Rhizopus

  7. Muon transfer to sulphur dioxide

    International Nuclear Information System (INIS)

    Mulhauser, F.; Schneuwly, H.

    1993-01-01

    A systematic study of muon capture and muon transfer has been performed in seven different H 2 + SO 2 gas mixtures. From the single-exponential time structure of the muonic sulphur x-rays, one determines the lifetime of the μp atoms under the given experimental conditions. The reduced muon transfer rates to the sulphur dioxide molecule, deduced from these lifetimes, all agree well with each other. The muonic oxygen time spectra show an additional structure as if μp atoms of another kind were present. Comparable time structures are observed in a D 2 + SO 2 mixture. (author)

  8. Rates of oxygen uptake increase independently of changes in heart rate in late stages of development and at hatching in the green iguana, Iguana iguana.

    Science.gov (United States)

    Sartori, Marina R; Abe, Augusto S; Crossley, Dane A; Taylor, Edwin W

    2017-03-01

    Oxygen consumption (VO 2 ), heart rate (f H ), heart mass (M h ) and body mass (M b ) were measured during embryonic incubation and in hatchlings of green iguana (Iguana iguana). Mean f H and VO 2 were unvarying in early stage embryos. VO 2 increased exponentially during the later stages of embryonic development, doubling by the end of incubation, while f H was constant, resulting in a 2.7-fold increase in oxygen pulse. Compared to late stage embryos, the mean inactive level of VO 2 in hatchlings was 1.7 fold higher, while f H was reduced by half resulting in a further 3.6 fold increase in oxygen pulse. There was an overall negative correlation between mean f H and VO 2 when data from hatchlings was included. Thus, predicting metabolic rate as VO 2 from measurements of f H is not possible in embryonic reptiles. Convective transport of oxygen to supply metabolism during embryonic incubation was more reliably indicated as an index of cardiac output (CO i ) derived from the product of f H and M h . However, a thorough analysis of factors determining rates of oxygen supply during development and eclosion in reptiles will require cannulation of blood vessels that proved impossible in the present study, to determine oxygen carrying capacity by the blood and arteriovenous oxygen content difference (A-V diff), plus patterns of blood flow. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Singlet oxygen quenching by oxygen in tetraphenyl-porphyrin solutions

    International Nuclear Information System (INIS)

    Dedic, Roman; Korinek, Miloslav; Molnar, Alexander; Svoboda, Antonin; Hala, Jan

    2006-01-01

    Time-resolved measurement of singlet oxygen infrared phosphorescence is a powerful tool for determination of quantum yields and kinetics of its photosensitization. This technique was employed to investigate in detail the previously observed effect of singlet oxygen quenching by oxygen. The question whether the singlet oxygen is quenched by oxygen in ground or in excited state was addressed by study of two complementary dependencies of singlet oxygen lifetimes: on dissolved oxygen concentration and on excitation intensity. Oxygen concentration dependence study of meso-tetra(4-sulphonato)phenylporphyrin (TPPS 4 ) phosphorescence kinetics showed linearity of the dependence of TPPS 4 triplet state rate-constant. Corresponding bimolecular quenching constant of (1.5±0.1)x10 9 l/mol s was obtained. On the other hand, rate constants of singlet oxygen depopulation exhibit nonlinear dependence on oxygen concentration. Comparison of zero oxygen concentration-extrapolated value of singlet oxygen lifetime of (6.5±0.4) μs to (3.7±0.1) μs observed under air-saturated conditions indicates importance of the effect of quenching of singlet oxygen by oxygen. Upward-sloping dependencies of singlet oxygen depopulation rate-constant on excitation intensity evidence that singlet oxygen is predominantly quenched by oxygen in excited singlet state

  10. Nitrogen-doped graphene prepared by a transfer doping approach for the oxygen reduction reaction application

    Science.gov (United States)

    Mo, Zaiyong; Zheng, Ruiping; Peng, Hongliang; Liang, Huagen; Liao, Shijun

    2014-01-01

    Well defined nitrogen-doped graphene (NG) is prepared by a transfer doping approach, in which the graphene oxide (GO) is deoxidized and nitrogen doped by the vaporized polyaniline, and the GO is prepared by a thermal expansion method from graphite oxide. The content of doped nitrogen in the doped graphene is high up to 6.25 at% by the results of elements analysis, and oxygen content is lowered to 5.17 at%. As a non-precious metal cathode electrocatalyst, the NG catalyst exhibits excellent activity toward the oxygen reduction reaction, as well as excellent tolerance toward methanol. In 0.1 M KOH solution, its onset potential, half-wave potential and limiting current density for the oxygen reduction reaction reach 0.98 V (vs. RHE), 0.87 V (vs. RHE) and 5.38 mA cm-2, respectively, which are comparable to those of commercial 20 wt% Pt/C catalyst. The well defined graphene structure of the catalyst is revealed clearly by HRTEM and Raman spectra. It is suggested that the nitrogen-doping and large surface area of the NG sheets give the main contribution to the high ORR catalytic activity.

  11. A conceptual design of catalytic gasification fuel cell hybrid power plant with oxygen transfer membrane

    Science.gov (United States)

    Shi, Wangying; Han, Minfang

    2017-09-01

    A hybrid power generation system integrating catalytic gasification, solid oxide fuel cell (SOFC), oxygen transfer membrane (OTM) and gas turbine (GT) is established and system energy analysis is performed. In this work, the catalytic gasifier uses steam, recycled anode off-gas and pure oxygen from OTM system to gasify coal, and heated by hot cathode off-gas at the same time. A zero-dimension SOFC model is applied and verified by fitting experimental data. Thermodynamic analysis is performed to investigate the integrated system performance, and system sensitivities on anode off-gas back flow ratio, SOFC fuel utilization, temperature and pressure are discussed. Main conclusions are as follows: (1) System overall electricity efficiency reaches 60.7%(HHV) while the gasifier operates at 700 °C and SOFC at 850 °C with system pressure at 3.04 bar; (2) oxygen enriched combustion simplify the carbon-dioxide capture process, which derives CO2 of 99.2% purity, but results in a penalty of 6.7% on system electricity efficiency; (3) with SOFC fuel utilization or temperature increasing, the power output of SOFC increases while GT power output decreases, and increasing system pressure can improve both the performance of SOFC and GT.

  12. IVF/ICSI outcomes after culture of human embryos at low oxygen tension: a meta-analysis

    Directory of Open Access Journals (Sweden)

    Gomes Sobrinho David B

    2011-11-01

    Full Text Available Abstract Background Improved pregnancy, implantation, and birth rates have been reported after the use of reduced O2 concentration during embryo culture, mainly due to a reduction of the cumulative detrimental effects of reactive oxygen species. However, some studies have failed to report any positive effects. The objective of this meta-analysis was to evaluate the effect of a low-O2 environment on IVF/intracytoplasmic sperm injection (ICSI outcomes. Methods All available published and ongoing randomised trials that compared the effects of low (~5%; OC~5 and atmospheric (~20%; OC~20 oxygen concentrations on IVF/ICSI outcomes were included. Search strategies included online surveys of databases from 1980 to 2011. The outcomes measured were fertilisation rate, implantation rate and ongoing pregnancy rates. The fixed effects model was used to calculate the odds ratio. Results Seven studies were included in this analysis. The pooled fertilisation rate did not differ significantly (P = 0.54 between the group of oocytes cultured at low O2 tension and the group at atmospheric O2 tension. Concerning all cycles, the implantation (P = 0.06 and ongoing pregnancy (P = 0.051 rates were not significantly different between the group receiving transferred sets containing only OC~5 embryos and the group receiving transferred sets with only OC~20 embryos. In a meta-analysis performed for only those trials in which embryos were transferred on day 2/3, implantation (P = 0.63 and ongoing pregnancy (P = 0.19 rates were not significantly different between the groups. In contrast, when a meta-analysis was performed using only trials in which embryos were transferred on days 5 and 6 (at the blastocyst stage, the group with transferred sets of only OC~5 embryos showed a statistically significantly higher implantation rate (P = 0.006 than the group receiving transferred sets with only OC~20 embryos, although the ongoing pregnancy (P = 0.19 rates were not significantly

  13. The effect of oxygen transfer mechanism on the cathode performance based on proton-conducting solid oxide fuel cells

    KAUST Repository

    Hou, Jie

    2015-01-01

    Two types of proton-blocking composites, La2NiO4+δ-LaNi0.6Fe0.4O3-δ (LNO-LNF) and Sm0.2Ce0.8O2-δ-LaNi0.6Fe0.4O3-δ (SDC-LNF), were evaluated as cathode materials for proton-conducting solid oxide fuel cells (H-SOFCs) based on the BaZr0.1Ce0.7Y0.2O3-δ (BZCY) electrolyte, in order to compare and investigate the influence of two different oxygen transfer mechanism on the performance of the cathode for H-SOFCs. The X-ray diffraction (XRD) results showed that the chemical compatibility of the components in both compounds was excellent up to 1000°C. Electrochemical studies revealed that LNO-LNF showed lower area specific polarization resistances in symmetrical cells and better electrochemical performance in single cell tests. The single cell with LNO-LNF cathode generated remarkable higher maximum power densities (MPDs) and lower interfacial polarization resistances (Rp) than that with SDC-LNF cathode. Correspondingly, the MPDs of the single cell with the LNO-LNF cathode were 490, 364, 266, 180 mW cm-2 and the Rp were 0.103, 0.279, 0.587, 1.367 Ω cm2 at 700, 650, 600 and 550°C, respectively. Moreover, after the single cell with LNO-LNF cathode optimized with an anode functional layer (AFL) between the anode and electrolyte, the power outputs reached 708 mW cm-2 at 700°C. These results demonstrate that the LNO-LNF composite cathode with the interstitial oxygen transfer mechanism is a more preferable alternative for H-SOFCs than SDC-LNF composite cathode with the oxygen vacancy transfer mechanism.

  14. Oxygen consumption rate v. rate of energy utilization of fishes: a comparison and brief history of the two measurements.

    Science.gov (United States)

    Nelson, J A

    2016-01-01

    Accounting for energy use by fishes has been taking place for over 200 years. The original, and continuing gold standard for measuring energy use in terrestrial animals, is to account for the waste heat produced by all reactions of metabolism, a process referred to as direct calorimetry. Direct calorimetry is not easy or convenient in terrestrial animals and is extremely difficult in aquatic animals. Thus, the original and most subsequent measurements of metabolic activity in fishes have been measured via indirect calorimetry. Indirect calorimetry takes advantage of the fact that oxygen is consumed and carbon dioxide is produced during the catabolic conversion of foodstuffs or energy reserves to useful ATP energy. As measuring [CO2 ] in water is more challenging than measuring [O2 ], most indirect calorimetric studies on fishes have used the rate of O2 consumption. To relate measurements of O2 consumption back to actual energy usage requires knowledge of the substrate being oxidized. Many contemporary studies of O2 consumption by fishes do not attempt to relate this measurement back to actual energy usage. Thus, the rate of oxygen consumption (M˙O2 ) has become a measurement in its own right that is not necessarily synonymous with metabolic rate. Because all extant fishes are obligate aerobes (many fishes engage in substantial net anaerobiosis, but all require oxygen to complete their life cycle), this discrepancy does not appear to be of great concern to the fish biology community, and reports of fish oxygen consumption, without being related to energy, have proliferated. Unfortunately, under some circumstances, these measures can be quite different from one another. A review of the methodological history of the two measurements and a look towards the future are included. © 2016 The Fisheries Society of the British Isles.

  15. Association of apneic oxygenation with decreased desaturation rates during rapid sequence intubation by a Chinese emergency medicine service.

    Science.gov (United States)

    Mao, Yong; Qin, Zong-He

    2015-01-01

    Rapid and safe airway management has always been of paramount importance in successful management of critically ill and injured patients in the emergency department. The achievement rate of emergency medicine inhabitants in airway management improved enhanced essentially subsequent to finishing anaesthesiology turn. There was a slightly higher rate of quick sequence intubation in the postapneic oxygenation groups (preapneic oxygenation 6.4%; postapneic oxygenation 9.1%). The majority of patients intubated in both groups were men (preapneic oxygenation 72.3%; postapneic oxygenation 63.5%). A higher percentage of patients in the preapneic oxygenation group had a Cormack-Lehane grade III or worse view (23.2% versus 11.8%). Anaesthesiology turns should be considered as an essential component of emergency medicine training programs. A collateral curriculum of this nature should also focus on the acquisition of skills in airway management.

  16. Live birth rate and number of blastomeres on day 2 transfer

    DEFF Research Database (Denmark)

    Azzarello, Antonino; Hoest, Thomas; Hay-Schmidt, Anders

    2016-01-01

    -lapse assessment, ACDs and/or recalculated fragmentation >25 % was recognized in 106/578 (18.3 %) of transferred embryos. None of them resulted in a live birth. After exclusion of these embryos, the number of blastomeres on the day of transfer did not have any impact on life birth rate. Conclusion Conventional...

  17. Feasibility of electrokinetic oxygen supply for soil bioremediation purposes.

    Science.gov (United States)

    Mena Ramírez, E; Villaseñor Camacho, J; Rodrigo Rodrigo, M A; Cañizares Cañizares, P

    2014-12-01

    This paper studies the possibility of providing oxygen to a soil by an electrokinetic technique, so that the method could be used in future aerobic polluted soil bioremediation treatments. The oxygen was generated from the anodic reaction of water electrolysis and transported to the soil in a laboratory-scale electrokinetic cell. Two variables were tested: the soil texture and the voltage gradient. The technique was tested in two artificial soils (clay and sand) and later in a real silty soil, and three voltage gradients were used: 0.0 (control), 0.5, and 1.0 V cm(-1). It was observed that these two variables strongly influenced the results. Oxygen transport into the soil was only available in the silty and sandy soils by oxygen diffusion, obtaining high dissolved oxygen concentrations, between 4 and 9 mg L(-1), useful for possible aerobic biodegradation processes, while transport was not possible in fine-grained soils such as clay. Electro-osmotic flow did not contribute to the transport of oxygen, and an increase in voltage gradients produced higher oxygen transfer rates. However, only a minimum fraction of the electrolytically generated oxygen was efficiently used, and the maximum oxygen transport rate observed, approximately 1.4 mgO2 L(-1)d(-1), was rather low, so this technique could be only tested in slow in-situ biostimulation processes for organics removal from polluted soils. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Factors determining the oxygen consumption rate (VO2) on-kinetics in skeletal muscles.

    OpenAIRE

    Korzeniewski, Bernard; Zoladz, Jerzy A

    2004-01-01

    Using a computer model of oxidative phosphorylation developed previously [Korzeniewski and Mazat (1996) Biochem. J. 319, 143-148; Korzeniewski and Zoladz (2001) Biophys. Chem. 92, 17-34], we analyse the effect of several factors on the oxygen-uptake kinetics, especially on the oxygen consumption rate (VO2) and half-transition time t(1/2), at the onset of exercise in skeletal muscles. Computer simulations demonstrate that an increase in the total creatine pool [PCr+/-Cr] (where Cr stands for c...

  19. Oxygen permeation flux through La1-ySryFeO3 limited by the carbon monoxide oxidation rate

    NARCIS (Netherlands)

    van Hassel, B.A.; van Hassel, B.A.; ten Elshof, Johan E.; Bouwmeester, Henricus J.M.

    1995-01-01

    The oxygen permeation flux through La1-ySryFeO3-δ (y = 0.1, 0.2) in a large oxygen partial pressure gradient (air/CO, CO2 mixture) was found to be limited by the carbon monoxide oxidation rate at the low oxygen partial pressure side of the membrane. The oxygen permeation flux through the membrane

  20. Theoretical study of electronic transfer current rate at dye-sensitized solar cells

    Science.gov (United States)

    AL-Agealy, Hadi J. M.; AlMaadhede, Taif Saad; Hassooni, Mohsin A.; Sadoon, Abbas K.; Ashweik, Ahmed M.; Mahdi, Hind Abdlmajeed; Ghadhban, Rawnaq Qays

    2018-05-01

    In this research, we present a theoretical study of electronic transfer kinetics rate in N719/TiO2 and N719/ZnO dye-sensitized solar cells (DSSC) systems using a simple model depending on the postulate of quantum mechanics theory. The evaluation of the electronic transition current rate in DSSC systems are function of many parameters such that; the reorientation transition energies ΛSe m D y e , the transition coupling parameter ℂT(0), potential exponential effect e-(E/C-EF ) kBT , unit cell volume VSem, and temperature T. Furthermore, the analysis of electronic transfer current rate in N719/TiO2 and N719/ZnO systems show that the rate upon dye-sensitization solar cell increases with increases of transition coupling parameter, decreasing potential that building at interface a results of different material in this devices and increasing with reorientation transition energy. On the other hand, we can find the electronic transfer behavior is dependent of the dye absorption spectrum and mainly depending on the reorientation of transition energy. The replacement of the solvents in both DSSC system caused increasing of current rates dramatically depending on polarity of solvent in subset devices. This change in current rate of electron transfer were attributed to much more available of recombination sites introduced by the solvents medium. The electronic transfer current dynamics are shown to occurs in N719/TiO2 system faster many time compare to ocuures at N719/ZnO system, this indicate that TiO2 a is a good and active material compare with ZnO to using in dye sensitized solar cell devices. In contrast, the large current rate in N719/TiO2 comparing to ZnO of N719/ZnO systems indicate that using TiO2 with N719 dye lead to increasing the efficiency of DSSC.

  1. A flexible well-mixed milliliter-scale reactor with high oxygen transfer rate for microbial cultivations

    DEFF Research Database (Denmark)

    Bolic, Andrijana; Larsson, Hilde Kristina; Hugelier, Siewert

    2016-01-01

    solution and replacement for existing microtiter plates, shaken flasks and bench scale bioreactors. In this work, a new design of a milliliter-scale bioreactor system is presented and characterized. The entire system consists of a platform with gas connections, heater, temperature sensor and optical fibers...... on the one side and a bioreactor with special designed magnetic stirrer and non-invasive optical sensors for measurement of pH, dissolved oxygen and optical density on the other side. The system has a high level of flexibility in terms of volume (0.5–2 mL), aeration (sparging and surface aeration) and mixing...

  2. High-rate deposition of photocatalytic TiO2 films by oxygen plasma assist reactive evaporation method

    International Nuclear Information System (INIS)

    Sakai, Tetsuya; Kuniyoshi, Yuji; Aoki, Wataru; Ezoe, Sho; Endo, Tatsuya; Hoshi, Yoichi

    2008-01-01

    High-rate deposition of titanium dioxide (TiO 2 ) film was attempted using oxygen plasma assisted reactive evaporation (OPARE) method. Photocatalytic properties of the film were investigated. During the deposition, the substrate temperature was fixed at 400 deg. C. The film deposition rate can be increased by increasing the supply of titanium atoms to the substrate, although oversupply of the titanium atoms causes oxygen deficiency in the films, which limits the deposition rate. The film structure depends strongly on the supply ratio of oxygen molecules to titanium atoms O 2 /Ti and changes from anatase to rutile structure as the O 2 /Ti supply ratio increased. Consequently, the maximum deposition rates of 77.0 nm min -1 and 145.0 nm min -1 were obtained, respectively, for the anatase and rutile film. Both films deposited at such high rates showed excellent hydrophilicity and organic decomposition performance. Even the film with rutile structure deposited at 145.0 nm min -1 had a contact angle of less than 2.5 deg. by UV irradiation for 5.0 h and an organics-decomposition performance index of 8.9 [μmol l -1 min -1 ] for methylene blue

  3. T1 relaxation time constants, influence of oxygen, and the oxygen transfer function of the human lung at 1.5 T—A meta-analysis

    Energy Technology Data Exchange (ETDEWEB)

    Dietrich, Olaf, E-mail: od@dtrx.net [Josef Lissner Laboratory for Biomedical Imaging, Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, Munich (Germany); Gaass, Thomas [Josef Lissner Laboratory for Biomedical Imaging, Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, Munich (Germany); Comprehensive Pneumology Center, German Center for Lung Research, Munich (Germany); Reiser, Maximilian F. [Josef Lissner Laboratory for Biomedical Imaging, Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, Munich (Germany)

    2017-01-15

    Purpose: To pool and summarize published data from magnetic resonance longitudinal relaxation measurements of the human lung at 1.5 T to provide a reliable basis of T{sub 1} relaxation time constants of healthy lung tissue both under respiration of room air and of pure oxygen. In particular, the oxygen-induced shortening of T{sub 1} was evaluated. Materials and methods: The PubMed database was comprehensively searched up to June 2016 for original publications in English containing quantitative T{sub 1} data (at least mean values and standard deviations) of the lung parenchyma of healthy subjects (minimum subject number: 3) at 1.5 T. From all included publications, T{sub 1} values of the lung of healthy subjects were extracted (inhaling room air and, if available, inhaling pure oxygen). Weighted mean values and standard deviations of all extracted data and the oxygen transfer function (OTF) were calculated. Results: 22 publications were included with a total number of 188 examined healthy subjects. 103 of these subjects (from 13 studies) were examined while breathing pure oxygen and room air; 85 subjects were examined only under room-air conditions. The weighted mean value (weighted sample standard deviation) of the room-air T{sub 1} values over all 22 studies was 1196 ms (152 ms). Based on studies with room-air and oxygen results, the mean T{sub 1} value at room-air conditions was 1172 ms (161 ms); breathing pure oxygen, the mean T{sub 1} value was reduced to 1054 ms (138 ms). This corresponds to a mean T{sub 1} reduction by 118 ms (35 ms) or 10.0 % (2.3 %) and to a mean OTF value of 1.22 (0.32) × 10{sup −3} s{sup −1}/(%O{sub 2}). Conclusion: This meta-analysis with data from 188 subjects indicates that the average T{sub 1} relaxation time constant of healthy lung tissue at 1.5 T is distributed around 1200 ms with a standard deviation of about 150 ms; breathing pure oxygen reduces this value significantly by 10 % to about 1050 ms.

  4. Polymer growth rate in a wire chamber with oxygen, water, or alcohol gas additives

    International Nuclear Information System (INIS)

    Boyarski, Adam M.

    2009-01-01

    The rate of polymer growth on wires was measured in a wire chamber while the chamber was aged initially with helium:isobutane (80:20) gas, and then with either oxygen, water, or alcohol added to the gas. At the completion of the aging process for each gas mixture, the carbon content on the wires was measured in a scanning electron microscope/energy dispersive X-ray (SEM/EDX) instrument. The same physical wires were used in all the gas mixtures, allowing measurement of polymer build-up or polymer depletion by each gas additive. It is found that the rate of polymer growth is not changed by the presence of oxygen, water, or alcohol. Conjecture that oxygen reduces breakdown by removing polymer deposits on field wires is negated by these measurements. Instead, it appears that the reduced breakdown is due to lower resistance in the polymer from oxygen ions being transported into the polymer. It is also observed that field wires bombarded by the electrons in the SEM and then placed back into the chamber show an abundance of single electrons being emitted, indicating that electron charge is trapped in the polymer layer and that a high electric field is necessary to remove the charge.

  5. Structure and charge transfer correlated with oxygen content for a Y0.8Ca0.2Ba2Cu3Oy (y = 6.84 6.32) system: a positron study

    Science.gov (United States)

    Cao, Shixun; Li, Lingwei; Liu, Fen; Li, Wenfeng; Chi, Changyun; Jing, Chao; Zhang, Jincang

    2005-05-01

    The structure and charge transfer correlated with oxygen content are studied by measuring the positron lifetime parameters of the Y0.8Ca0.2Ba2Cu3Oy system with a large range of oxygen content (y = 6.84-6.32). The local electron density ne is evaluated from the positron lifetime data. The positron lifetime parameters show a clear change around y = 6.50 where the compounds undergo the orthorhombic-tetragonal phase transition. The effect of ne and oxygen content on the structure, charge transfer and superconductivity are discussed. With the decrease of oxygen content y, O(4) tends to the Cu(1) site, causing carrier localization, and accordingly, the decrease of ne. This would prove that the localized carriers (electrons and holes) in the Cu-O chain region have great influence on the superconductivity by affecting the charge transfer between the reservoir layers and the conducting layers. The positron annihilation mechanism and its relation with superconductivity are also discussed.

  6. Determination of respiration rates in water with sub-micromolar oxygen concentrations

    Directory of Open Access Journals (Sweden)

    Emilio Garcia-Robledo

    2016-11-01

    Full Text Available It is crucial for our study and understanding of element transformations in low-oxygen waters that we are able to reproduce the in situ conditions during laboratory incubations to an extent that does not result in unacceptable artefacts. In this study we have explored how experimental conditions affect measured rates of O2 consumption in low-O2 waters from the anoxic basin of Golfo Dulce (Costa Rica and oceanic waters off Chile-Peru. High-sensitivity optode dots placed within all-glass incubation containers allowed for high resolution O2 concentration measurements in the nanomolar and low µmolar range and thus also for the determination of rates of oxygen consumption by microbial communities. Consumption rates increased dramatically (from 3 and up to 60 times by prolonged incubations, and started to increase after 4-5 hours in surface waters and after 10-15 h in water from below the upper mixed layer. Estimated maximum growth rates during the incubations suggest the growth of opportunistic microorganism with doubling times as low as 2.8 and 4.6 h for the coastal waters of Golfo Dulce (Costa Rica and oceanic waters off Chile and Peru, respectively. Deoxygenation by inert gas bubbling led to increases in subsequently determined rates, possibly by liberation of organics from lysis of sensitive organisms, particle or aggregate alterations or other processes mediated by the strong turbulence. Stirring of the water during the incubation led to an about 50% increase in samples previously deoxygenated by bubbling, but had no effect in untreated samples. Our data indicate that data for microbial activity obtained by short incubations of minimally manipulated water are most reliable, but deoxygenation is a prerequisite for many laboratory experiments, such as determination of denitrification rates, as O2 contamination by sampling is practically impossible to avoid.

  7. Uptake rate of cationic mitochondrial inhibitor MKT-077 determines cellular oxygen consumption change in carcinoma cells.

    Directory of Open Access Journals (Sweden)

    John L Chunta

    Full Text Available OBJECTIVE: Since tumor radiation response is oxygen-dependent, radiosensitivity can be enhanced by increasing tumor oxygenation. Theoretically, inhibiting cellular oxygen consumption is the most efficient way to increase oxygen levels. The cationic, rhodacyanine dye-analog MKT-077 inhibits mitochondrial respiration and could be an effective metabolic inhibitor. However, the relationship between cellular MKT-077 uptake and metabolic inhibition is unknown. We hypothesized that rat and human mammary carcinoma cells would take up MKT-077, causing a decrease in oxygen metabolism related to drug uptake. METHODS: R3230Ac rat breast adenocarcinoma cells were exposed to MKT-077. Cellular MKT-077 concentration was quantified using spectroscopy, and oxygen consumption was measured using polarographic electrodes. MKT-077 uptake kinetics were modeled by accounting for uptake due to both the concentration and potential gradients across the plasma and mitochondrial membranes. These kinetic parameters were used to model the relationship between MKT-077 uptake and metabolic inhibition. MKT-077-induced changes in oxygen consumption were also characterized in MDA-MB231 human breast carcinoma cells. RESULTS: Cells took up MKT-077 with a time constant of ∼1 hr, and modeling showed that over 90% of intracellular MKT-077 was bound or sequestered, likely by the mitochondria. The uptake resulted in a rapid decrease in oxygen consumption, with a time constant of ∼30 minutes. Surprisingly the change in oxygen consumption was proportional to uptake rate, not cellular concentration. MKT-077 proved a potent metabolic inhibitor, with dose-dependent decreases of 45-73% (p = 0.003. CONCLUSIONS: MKT-077 caused an uptake rate-dependent decrease in cellular metabolism, suggesting potential efficacy for increasing tumor oxygen levels and radiosensitivity in vivo.

  8. FORMING SELF-ASSEMBLED CELL ARRAYS AND MEASURING THE OXYGEN CONSUMPTION RATE OF A SINGLE LIVE CELL.

    Science.gov (United States)

    Etzkorn, James R; McQuaide, Sarah C; Anderson, Judy B; Meldrum, Deirdre R; Parviz, Babak A

    2009-06-01

    We report a method for forming arrays of live single cells on a chip using polymer micro-traps made of SU8. We have studied the toxicity of the microfabricated structures and the associated environment for two cell lines. We also report a method for measuring the oxygen consumption rate of a single cell using optical interrogation of molecular oxygen sensors placed in micromachined micro-wells by temporarily sealing the cells in the micro-traps. The new techniques presented here add to the collection of tools available for performing "single-cell" biology. A single-cell self-assembly yield of 61% was achieved with oxygen draw down rates of 0.83, 0.82, and 0.71 fmol/minute on three isolated live A549 cells.

  9. Dielectronic recombination rate coefficients to excited states of Be-like oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Izumi; Safronova, Ulyana I.; Kato, Takako

    2001-05-01

    We have calculated energy levels, radiative transition probabilities, and autoionization rates for Be-like oxygen (O{sup 4+}) including ls{sup 2}2lnl' (n=2 - 8, l {<=} n - 1) and 1s{sup 2}3l'nl (n=3 - 6, l {<=} n - l) states by multi-configurational Hartree-Fock method (Cowan code) and perturbation theory Z-expansion method (MZ code). The state selective dielectronic recombination rate coefficients to excited states of Be-like O ions are obtained. Configuration mixing plays an important role for the principal quantum number n distribution of the dielectronic recombination rate coefficients for 2snl (n {<=} 5) levels at low electron temperature. The orbital angular momentum quantum number l distribution of the rate coefficients shows a peak at l = 4. The total dielectronic recombination rate coefficient is derived as a function of electron temperature. (author)

  10. The relationship between body temperature, heart rate, breathing rate, and rate of oxygen consumption, in the tegu lizard (Tupinambis merianae) at various levels of activity.

    Science.gov (United States)

    Piercy, Joanna; Rogers, Kip; Reichert, Michelle; Andrade, Denis V; Abe, Augusto S; Tattersall, Glenn J; Milsom, William K

    2015-12-01

    The present study determined whether EEG and/or EMG recordings could be used to reliably define activity states in the Brazilian black and white tegu lizard (Tupinambis merianae) and then examined the interactive effects of temperature and activity states on strategies for matching O2 supply and demand. In a first series of experiments, the rate of oxygen consumption (VO2), breathing frequency (fR), heart rate (fH), and EEG and EMG (neck muscle) activity were measured in different sleep/wake states (sleeping, awake but quiet, alert, or moving). In general, metabolic and cardio-respiratory changes were better indictors of the transition from sleep to wake than were changes in the EEG and EMG. In a second series of experiments, the interactive effects of temperature (17, 27 and 37 °C) and activity states on fR, tidal volume (VT), the fraction of oxygen extracted from the lung per breath (FIO2-FEO2), fH, and the cardiac O2 pulse were quantified to determine the relative roles of each of these variables in accommodating changes in VO2. The increases in oxygen supply to meet temperature- and activity-induced increases in oxygen demand were produced almost exclusively by increases in fH and fR. Regression analysis showed that the effects of temperature and activity state on the relationships between fH, fR and VO2 was to extend a common relationship along a single curve, rather than separate relationships for each metabolic state. For these lizards, the predictive powers of fR and fH were maximized when the effects of changes in temperature, digestive state and activity were pooled. However, the best r(2) values obtained were 0.63 and 0.74 using fR and fH as predictors of metabolic rate, respectively.

  11. OXYGEN MANAGEMENT DURING ALCOHOLIC FERMENTATION

    OpenAIRE

    MOENNE VARGAS, MARÍA ISABE

    2013-01-01

    Oxygen additions are a common practice in winemaking, as oxygen has a positive effect in fermentative kinetics, biomass synthesis and improvement of color, structure and :flavor in treated wines. However, most oxygen additions are carried out heuristically through pump-over operations solely on a know-how basis, which is difficult to manage in terms of the exact quantity of oxygen transferred to the fermenting must. It is important to estímate the amount of oxygen added because...

  12. Manganese-Oxygen Intermediates in O-O Bond Activation and Hydrogen-Atom Transfer Reactions.

    Science.gov (United States)

    Rice, Derek B; Massie, Allyssa A; Jackson, Timothy A

    2017-11-21

    Biological systems capitalize on the redox versatility of manganese to perform reactions involving dioxygen and its derivatives superoxide, hydrogen peroxide, and water. The reactions of manganese enzymes influence both human health and the global energy cycle. Important examples include the detoxification of reactive oxygen species by manganese superoxide dismutase, biosynthesis by manganese ribonucleotide reductase and manganese lipoxygenase, and water splitting by the oxygen-evolving complex of photosystem II. Although these enzymes perform very different reactions and employ structurally distinct active sites, manganese intermediates with peroxo, hydroxo, and oxo ligation are commonly proposed in catalytic mechanisms. These intermediates are also postulated in mechanisms of synthetic manganese oxidation catalysts, which are of interest due to the earth abundance of manganese. In this Account, we describe our recent efforts toward understanding O-O bond activation pathways of Mn III -peroxo adducts and hydrogen-atom transfer reactivity of Mn IV -oxo and Mn III -hydroxo complexes. In biological and synthetic catalysts, peroxomanganese intermediates are commonly proposed to decay by either Mn-O or O-O cleavage pathways, although it is often unclear how the local coordination environment influences the decay mechanism. To address this matter, we generated a variety of Mn III -peroxo adducts with varied ligand environments. Using parallel-mode EPR and Mn K-edge X-ray absorption techniques, the decay pathway of one Mn III -peroxo complex bearing a bulky macrocylic ligand was investigated. Unlike many Mn III -peroxo model complexes that decay to oxo-bridged-Mn III Mn IV dimers, decay of this Mn III -peroxo adduct yielded mononuclear Mn III -hydroxo and Mn IV -oxo products, potentially resulting from O-O bond activation of the Mn III -peroxo unit. These results highlight the role of ligand sterics in promoting the formation of mononuclear products and mark an important

  13. Oxygen in the deep-sea: The challenge of maintaining uptake rates in a changing ocean

    Science.gov (United States)

    Hofmann, A. F.; Peltzer, E. T.; Brewer, P. G.

    2011-12-01

    Although focused on recently, ocean acidification is not the only effect of anthropogenic CO2 emissions on the ocean. Ocean warming will reduce dissolved oxygen concentrations and at the hypoxic limit for a given species this can pose challenges to marine life. The limit is traditionally reported simply as the static mass concentration property [O2]; here we treat it as a dynamic gas exchange problem for the animal analogous to gas exchange at the sea surface. The diffusive limit and its relationship to water velocity is critical for the earliest stages of marine life (eggs, embryos), but the effect is present for all animals at all stages of life. We calculate the external limiting O2 conditions for several representative metabolic rates and their relationship to flow of the bulk fluid under different environmental conditions. Ocean O2 concentrations decline by ≈ 14 μmol kg-1 for a 2 °C rise in temperature. At standard 1000 m depth conditions in the Pacific, flow over the surface would have to increase by ≈ 60% from 2.0 to 3.2 cm s-1 to compensate for this change. The functions derived allow new calculations of depth profiles of limiting O2 concentrations, as well as maximal diffusively sustainable metabolic oxygen consumption rates at various places around the world. Our treatment shows that there is a large variability in the global ocean in terms of facilitating aerobic life. This variability is greater than the variability of the oxygen concentration alone. It becomes clear that temperature and pressure dependencies of diffusion and partial pressure create a region typically around 1000 m depth where a maximal [O2] is needed to sustain a given metabolic rate. This zone of greatest physical constriction on the diffusive transport in the boundary layer is broadly consistent with the oxygen minimum zone, i.e., the zone of least oxygen concentration supply, resulting in a pronounced minimum of maximal diffusively sustainable metabolic oxygen consumption

  14. Microbial degradation rates of small peptides and amino acids in the oxygen minimum zone of Chilean coastal waters

    Science.gov (United States)

    Pantoja, Silvio; Rossel, Pamela; Castro, Rodrigo; Cuevas, L. Antonio; Daneri, Giovanni; Córdova, Candy

    2009-07-01

    We found similar microbial degradation rates of labile dissolved organic matter in oxic and suboxic waters off northern Chile. Rates of peptide hydrolysis and amino acid uptake in unconcentrated water samples were not low in the water column where oxygen concentration was depleted. Hydrolysis rates ranged from 65 to 160 nmol peptide L -1 h -1 in the top 20 m, 8-28 nmol peptide L -1 h -1 between 100 and 300 m (O 2-depleted zone), and 14-19 nmol peptide L -1 h -1 between 600 and 800 m. Dissolved free amino acid uptake rates were 9-26, 3-17, and 6 nmol L -1 h -1 at similar depth intervals. Since these findings are consistent with a model of comparable potential activity of microbes in degrading labile substrates of planktonic origin, we suggest, as do other authors, that differences in decomposition rates with high and low oxygen concentrations may be a matter of substrate lability. The comparison between hydrolysis and uptake rates indicates that microbial peptide hydrolysis occurs at similar or faster rates than amino acid uptake in the water column, and that the hydrolysis of peptides is not a rate-limiting step for the complete remineralization of labile macromolecules. Low O 2 waters process about 10 tons of peptide carbon per h, double the amount processed in surface-oxygenated water. In the oxygen minimum zone, we suggest that the C balance may be affected by the low lability of the dissolved organic matter when this is upwelled to the surface. An important fraction of dissolved organic matter is processed in the oxygen minimum layer, a prominent feature of the coastal ocean in the highly productive Humboldt Current System.

  15. Singlet oxygen production and quenching mechanisms in travelling microwave discharges

    International Nuclear Information System (INIS)

    Savin, Yu V; Goryachev, L V; Adamenkov, Yu A; Rakhimova, T V; Mankelevich, Yu A; Popov, N A; Adamenkov, A A; Egorov, V V; Ilyin, S P; Kolobyanin, Yu V; Kudryashov, E A; Rogozhnikov, G S; Vyskubenko, B A

    2004-01-01

    Experimental and theoretical studies of singlet oxygen excitation in travelling microwave (TMW) discharges are presented. Singlet oxygen O 2 (a 1 Δ g ) concentrations and atomic oxygen mole fraction have been measured for different pressures, input powers and distances from the MW resonator. It was shown that a steady-state TMW discharge with a coaxial cavity resonator could provide a maximal O 2 (a 1 Δ g ) yield of 22% for 2 Torr of pure oxygen and 27-30% for He : O 2 = 1 : 1 mixture. The two-dimensional (r, z) model developed for calculations of plasma-chemical kinetics, heat and mass transfer was used for simulation of processes in the TMW discharge under study. Effects of gas pressure, gas flow rate and input power are studied and compared with experimental measurements of O 2 (a 1 Δ g ) concentrations and atomic oxygen mole fractions

  16. Effects of oxygen supply on the biodegradation rate in oil hydrocarbons contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Zawierucha, I [Institute of Chemistry and Environment Protection, Jan Dlugosz University of Czestochowa, Waszyngtona 4/8, 42-200 Czestochowa (Poland); Malina, G, E-mail: iwona_zawierucha@o2.pl [Faculty of Hydrogeology and Geology Engineering, Department of Geology, Geophysics and Environment Protection, AGH University of Science and Technology, Mickiewicza 30, 30-059 Cracow (Poland)

    2011-04-01

    Respirometry studies using the 10-chamber Micro-Oxymax respirometer (Columbus, Ohio) were conducted to determine the effect of biostimulation (by diverse ways of O{sub 2} supply) on enhancing biodegradation in soils contaminated with oil hydrocarbons. Soil was collected from a former military airport in Kluczewo, Poland. Oxygen was supplied by means of aerated water, aqueous solutions of H{sub 2}O{sub 2} and KMnO{sub 4}. The biodegradation was evaluated on the basis of O{sub 2} uptake and CO{sub 2} production. The O{sub 2} consumption and CO{sub 2} production rates during hydrocarbons biodegradation were estimated from the slopes of cumulative curve linear regressions. The pertinent intrinsic and enhanced biodegradation rates were calculated on the basis of mass balance equation and O{sub 2} uptake and CO{sub 2} production rates. The biodegradation rates of 5-7 times higher as compared to a control were observed when the aqueous solution of KMnO{sub 4} in concentration of 20 g L{sup -1} was applied. Permanganate is known to readily oxidize alkene carbon - carbon double bonds; so it can be successfully applied in remediation technology for soils contaminated with oil hydrocarbons. While hydrocarbons are not completely mineralized by permanganate oxidation reactions, their structure is altered by polar functional groups providing vast improvements in aqueous solubility and availability for biodegradation. The 3% aqueous solution of H{sub 2}O{sub 2} caused significant improvement of the biodegradation rates as compared to a control (on average about 260%). Aerobic biodegradation of hydrocarbons can benefit from the presence of oxygen released during H{sub 2}O{sub 2} decomposition. Adding of aerated water resulted in an increase of biodegradation rates (about 114 - 229%) as compared to a control. The aerated water can both be the source of oxygen for microorganisms and determine the transport of substrate to bacteria cells.

  17. Effects of oxygen supply condition and specific biofilm interfacial area on phenol removal rate in a three-phase fluidized bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hirata, A.; Meutia, A. A.; Osawa, M.; Arai, M.; Tsuneda, S. [Waseda Univ., Dept. of Chemical Engineering, Tokyo (Japan)

    2000-02-01

    A theoretical and experimental evaluation of the effects of superficial gas velocity, oxygen concentration in the gas phase, and specific biofilm interfacial area on the volumetric removal rate of phenol is described. The reaction rate was found to follow first order reaction kinetics with respect to oxygen, and zero-order reaction kinetics with respect to phenol. A semi-theoretical equation was developed which is capable of predicting the volumetric removal rate and is used to explain the overall removal rate of phenol. Biological reaction as the rate-controlling step and oxygen absorption are both explicable by this equation. 14 refs., 5 figs.

  18. Study on the mass transfer of oxygen in an electrolytic reduction process of ACP

    International Nuclear Information System (INIS)

    Park, Byung Heung; Park, Sung Bin; Seo, Chung Seok; Park, Seong Won

    2005-01-01

    The Advanced Spent Fuel Conditioning Process (ACP) is a molten-salt-based back-end fuel cycle technology developed at KAERI. The target fuel type for the process is the oxide fuel unloaded from PWRs which are the main prototype reactor commercially operating in Korea. The volume and the radiotoxicity of the spent fuel decrease to quarters of the initial volume and radiotoxicity after being reduced to metal forms and removing some elements into a molten salt. The reduction of the two properties improves the convenience in managing the spent fuels and makes it possible for disposal sites to be made the best use of. Metallization of the spent oxide fuels is accomplished in an electrolytic reduction cell where a molten LiCl is adopted as an electric medium and Li 2 O is added to increase the activity of the oxygen ion in the system. A porous magnesia filter, a SUS solid conductor, and the metal oxides to be reduced constitute a cathode and anodes are made of platinum. The only cation in the liquid phase is lithium at the first stage and the ion diffuses through the pores of the magnesia filter and then receives electrons to become a metal. The reduced lithium metal snatches oxygen from the metal oxides in the filter and transforms into lithium oxide which diffuses back to the molten salt phase leaving the reduced metal at the inside of the filter. The lithium oxide is dissociated to lithium and oxygen ions once it dissolves in the molten salt if the concentration is within the solubility limit. Hence the actual diffusing element is oxygen in an ionic state rather than the lithium oxide since there is no concentration gradient for the lithium ion to move on - the lithium ion is the main cation in the system though some alkali and alkaline-earth metals dissolve in the molten salt phase to be cations. The analysis of the mass transfer of oxygen in the electrolytic reduction process is, thus, of importance for the metallization process to be completely interpreted

  19. Effect of phase change material on the heat transfer rate of different building materials

    Science.gov (United States)

    Hasan, Mushfiq; Alam, Shahnur; Ahmed, Dewan Hasan

    2017-12-01

    Phase change material (PCM) is widely known as latent heat storage. A comprehensive study is carried out to investigate the effect of PCM on heat transfer rate of building materials. Paraffin is used as PCM along with different conventional building materials to investigate the heat transfer rate from the heated region to the cold region. PCM is placed along with the three different types of building materials like plaster which is well know building material in urban areas and wood and straw which are commonly used in rural areas for roofing as well as wall panel material and investigated the heat transfer rate. An experimental setup was constructed with number of rectangular shape aluminum detachable casing (as cavity) and placed side by side. Series of rectangular cavity filled with convent ional building materials and PCM and these were placed in between two chambers filled with water at different temperature. Building materials and PCM were placed in different cavities with different combinations and investigated the heat transfer rate. The results show that using the PCM along with other building materials can be used to maintain lower temperature at the inner wall and chamber of the cold region. Moreover, the placement or orientation of the building materials and PCM make significant contribution to heat transfer rate from the heated zone to the cold zone.

  20. Transfer of human frozen-thawed embryos with further cleavage during culture increases pregnancy rates

    Directory of Open Access Journals (Sweden)

    Bharat V Joshi

    2010-01-01

    Full Text Available Aim: To compare the pregnancy rate following transfer of frozen-thawed embryos with or without overnight culture after thawing. Settings and Design: This is a retrospective analysis of frozen-thawed embryo transfer (FET cycles performed between January 2006 and December 2008. Materials and Methods: Out of 518 thaw cycles, 504 resulted in embryo transfers (ETs. Of the total FET cycles, 415 were performed after an overnight culture of embryos (group A; and in 89 cycles, ET was performed within 2 hours of embryo thawing (group B. Statistical Analysis: The data were statistically analyzed using chi-square test. Results: We observed that with FET, women ≤30 years of age had a significantly higher (P=0.003 pregnancy rate (PR=28.9% as compared to women >30 years of age (17.5%. A significantly higher (P<0.001FNx08 pregnancy rate was also observed in women receiving 3 frozen-thawed embryos (29% as compared to those who received less than 3 embryos (10.7%. The difference in PR between group A (PR=24.3% and group B (PR=20.3% was not statistically significant. However, within group A, ET with cleaved embryos showed significantly ( P≤0.01 higher pregnancy rate compared to the uncleaved embryos, depending on the number of cleaved embryos transferred. Conclusion: No significant difference was noticed between FETs made with transfer of embryos with overnight culture and those without culture. However, within the cultured group, transfer of embryos cleaved during overnight culture gave significantly higher PR than transfers without any cleavage.

  1. Mechanisms of electron transfer from structrual Fe(II) in reduced nontronite to oxygen for production of hydroxyl radicals

    Science.gov (United States)

    Yuan, Songhu; Liu, Xixiang; Liao, Wenjuan; Zhang, Peng; Wang, Xiaoming; Tong, Man

    2018-02-01

    Production of hydroxyl radicals (radOH) has been recently revealed upon oxygenation of sediments in redox-dynamic subsurface environments. In particular, Fe(II)-bearing clay minerals are the major sediment components contributing to radOH production upon oxygenation, and the produced radOH can oxidize contaminants and inactivate bacteria. Whereas, the mechanisms of radOH production from oxygenation of Fe(II)-bearing clay minerals remain elusive. The objectives of this study were to identify the structural variation of Fe(II) entities during the oxidation of Fe(II)-bearing clay minerals by O2, and to unravel the mechanisms of electron transfer within the mineral structure and from mineral to O2 for radOH production. Nontronite (NAu-2, 23% Fe) which was chemically reduced to 54.5% Fe(II) in total Fe was used as a model Fe(II)-bearing clay mineral. Production of radOH and oxidation of Fe(II) were measured during the oxidation of reduced NAu-2 by O2. A wide spectrum of spectroscopic techniques, including Fourier transform infrared spectroscopy (FTIR), Fe K-edge X-ray absorption spectroscopy (XAS), Mössbauer spectra, and X-ray photoelectron spectroscopy (XPS), were employed to explore the structural variation of Fe(II) entities in NAu-2 and the electron transfer within NAu-2 and from NAu-2 to O2. For 180 min oxidation of 1 g/L reduced NAu-2, a biphasic radOH production was observed, being quick within the initial 15 min and slow afterwards. Production of radOH correlates well with oxidation of Fe(II) in the reduced NAu-2. Within the initial 15 min, trioctahedral Fe(II)-Fe(II)-Fe(II) entities and edge Fe(II) in the reduced NAu-2 were preferentially and quickly oxidized, and electrons from the interior Fe(II)-Fe(II)-Fe(II) entities were most likely ejected from the basal siloxane plane to O2. Meanwhile, trioctahedral Fe(II)-Fe(II)-Fe(II) entities were mainly transformed to dioctahedral Fe(II)-Fe(II) entities. When the time of oxygenation was longer than 15 min

  2. Low-head hydropower impacts on steam dissolved oxygen

    International Nuclear Information System (INIS)

    Thene, J.R.; Stefan, H.G.; Daniil, E.I.

    1989-01-01

    A method to evaluate the effect of hydropower development on downstream dissolved oxygen (DO) is presented for a low head dam. Water, previously aerated during release over spillways and under gates, is diverted through the hydropower facility without further aeration. The oxygen transfer that occurs as a result of air entrainment at the various release points of a dam is measured. Oxygen transfer efficiencies are calculated and incorporated into an oxygen transfer model to predict average release DO concentrations. This model is used to systematically determine the effect of hydropower operation on downstream DO. Operational alternatives are investigated and a simple operational guide is developed to mitigate the effects of hydropower operation. Combinations of reduced generation and optimal releases from the dam allow the hydropower facility to operate within DO standards

  3. Metabolism of the intervertebral disc: effects of low levels of oxygen, glucose, and pH on rates of energy metabolism of bovine nucleus pulposus cells.

    Science.gov (United States)

    Bibby, Susan R S; Jones, Deborah A; Ripley, Ruth M; Urban, Jill P G

    2005-03-01

    In vitro measurements of metabolic rates of isolated bovine nucleus pulposus cells at varying levels of oxygen, glucose, and pH. To obtain quantitative information on the interactions between oxygen and glucose concentrations and pH, and the rates of oxygen and glucose consumption and lactic acid production, for disc nucleus cells. Disc cells depend on diffusion from blood vessels at the disc margins for supply of nutrients. Loss of supply is thought to lead to disc degeneration, but how loss of supply affects nutrient concentrations in the disc is not known; nutrient concentrations within discs can normally only be calculated, because concentration measurements are invasive. However, realistic predictions cannot be made until there are data from measurements of metabolic rates at conditions found in the disc in vivo, i.e., at low levels of oxygen, glucose, and pH. A metabolism chamber was designed to allow simultaneous recording of oxygen and glucose concentrations and of pH. These concentrations were measured electrochemically with custom-built glucose and oxygen sensors; lactic acid was measured biochemically. Bovine nucleus pulposus cells were isolated and inserted into the chamber, and simultaneous rates of oxygen and glucose consumption and of lactic acid production were measured over a range of glucose, oxygen, and pH levels. There were strong interactions between rates of metabolism and oxygen consumption and pH. At atmospheric oxygen levels, oxygen consumption rate at pH 6.2 was 32% of that at pH 7.4. The rate fell by 60% as oxygen concentration was decreased from 21 to 5% at pH 7.4, but only by 20% at pH 6.2. Similar interactions were seen for lactic acid production and glucose consumption rates; we found that glycolysis rates fell at low oxygen and glucose concentrations and low pH. Equations were derived that satisfactorily predict the effect of nutrient and metabolite concentrations on rates of lactic acid production rate and oxygen consumption. Disc

  4. Analysis of oxygen-enhanced combustion of gas power cycle

    Energy Technology Data Exchange (ETDEWEB)

    Maidana, Cristiano Frandalozo; Carotenuto, Adriano; Schneider, Paulo Smith [Universidade Federal do Rio Grande do Sul (GESTE/UFRGS), Porto Alegre, RS (Brazil). Grupo de Estudos Termicos e Energeticos], E-mails: cristiano.maidana@ufrgs.br, pss@mecanica.ufrgs.br

    2010-07-01

    The majority of combustion processes use air as oxidant, roughly taken as 21% O{sub 2} and 79% N{sub 2}, by volume. In many cases, these processes can be enhanced by using an oxidant that contains higher proportion of O{sub 2} than in air. This is known as oxygen-enhanced combustion or OEC, and can bring important benefits like higher thermal efficiencies, lower exhaust gas volumes, higher heat transfer efficiency, reduction fuel consumption, reduced equipment costs and substantially pollutant emissions reduction. Within this scenario, this paper aims to investigate the influence of 21-30% oxygen concentration on the performance of a air-fired natural gas fueled power plant. This power plant operates under a Brayton cycle with models with the help of an air flow splitter after the compressor output in order to dose the oxygen rate of combustion and to keep the flue gas intake of the turbine at a prescribed temperature. Simulations shows that the enhancing of the oxidant stream reduced fuel consumption of about 10%, driven by higher adiabatic flame temperatures, which improves thermal and heat transfer efficiencies. A conclusion obtained is that the use of oxygen in higher proportions can be a challenge to retrofit existing air-fired natural gas power turbine cycles, because of the technological limitation of its materials with higher flame temperatures. (author)

  5. Removal of copper by oxygenated pyrolytic tire char: kinetics and mechanistic insights.

    Science.gov (United States)

    Quek, Augustine; Balasubramanian, Rajashekhar

    2011-04-01

    The kinetics of copper ion (Cu(II)) removal from aqueous solution by pyrolytic tire char was modeled using five different conventional models. A modification to these models was also developed through a modified equation that accounts for precipitation. Conventional first- and second-order reaction models did not fit the copper sorption kinetics well, indicating a lack of simple rate-order dependency on solute concentration. Instead, a reversible first-order rate reaction showed the best fit to the data, indicating a dependence on surface functional groups. Due to the varying solution pH during the sorption process, modified external and internal mass transfer models were employed. Results showed that the sorption of copper onto oxygenated chars was limited by external mass transfer and internal resistance with and without the modification. However, the modification of the sorption process produced very different results for unoxygenated chars, which showed neither internal nor external limitation to sorption. Instead, its slow sorption rate indicates a lack of surface functional groups. The sorption of Cu(II) by oxygenated and unoxygenated chars was also found to occur via three and two distinct stages, respectively. Copyright © 2010 Elsevier Inc. All rights reserved.

  6. Singlet oxygen reactions with flavonoids. A theoretical-experimental study.

    Science.gov (United States)

    Morales, Javier; Günther, Germán; Zanocco, Antonio L; Lemp, Else

    2012-01-01

    Detection of singlet oxygen emission, λ(max) = 1270 nm, following laser excitation and steady-state methods were employed to measure the total reaction rate constant, k(T), and the reactive reaction rate constant, k(r), for the reaction between singlet oxygen and several flavonoids. Values of k(T) determined in deuterated water, ranging from 2.4×10(7) M(-1) s(-1) to 13.4×10(7) M(-1) s(-1), for rutin and morin, respectively, and the values measured for k(r), ranging from 2.8×10(5) M(-1) s(-1) to 65.7×10(5) M(-1) s(-1) for kaempferol and morin, respectively, being epicatechin and catechin chemically unreactive. These results indicate that all the studied flavonoids are good quenchers of singlet oxygen and could be valuable antioxidants in systems under oxidative stress, in particular if a flavonoid-rich diet was previously consumed. Analysis of the dependence of rate constant values with molecular structure in terms of global descriptors and condensed Fukui functions, resulting from electronic structure calculations, supports the formation of a charge transfer exciplex in all studied reactions. The fraction of exciplex giving reaction products evolves through a hydroperoxide and/or an endoperoxide intermediate produced by singlet oxygen attack on the double bond of the ring C of the flavonoid.

  7. Singlet oxygen reactions with flavonoids. A theoretical-experimental study.

    Directory of Open Access Journals (Sweden)

    Javier Morales

    Full Text Available Detection of singlet oxygen emission, λ(max = 1270 nm, following laser excitation and steady-state methods were employed to measure the total reaction rate constant, k(T, and the reactive reaction rate constant, k(r, for the reaction between singlet oxygen and several flavonoids. Values of k(T determined in deuterated water, ranging from 2.4×10(7 M(-1 s(-1 to 13.4×10(7 M(-1 s(-1, for rutin and morin, respectively, and the values measured for k(r, ranging from 2.8×10(5 M(-1 s(-1 to 65.7×10(5 M(-1 s(-1 for kaempferol and morin, respectively, being epicatechin and catechin chemically unreactive. These results indicate that all the studied flavonoids are good quenchers of singlet oxygen and could be valuable antioxidants in systems under oxidative stress, in particular if a flavonoid-rich diet was previously consumed. Analysis of the dependence of rate constant values with molecular structure in terms of global descriptors and condensed Fukui functions, resulting from electronic structure calculations, supports the formation of a charge transfer exciplex in all studied reactions. The fraction of exciplex giving reaction products evolves through a hydroperoxide and/or an endoperoxide intermediate produced by singlet oxygen attack on the double bond of the ring C of the flavonoid.

  8. The relationship between heart rate and rate of oxygen consumption in Galapagos marine iguanas (Amblyrhynchus cristatus) at two different temperatures.

    Science.gov (United States)

    Butler, Patrick J; Frappell, Peter B; Wang, Tobias; Wikelski, Martin

    2002-07-01

    To enable the use of heart rate (fH) for estimating field metabolic rate (FMR) in free-ranging Galapagos marine iguanas Amblyrhynchus cristatus, we determined the relationships between fH and mass-specific rate of oxygen consumption (sVO2) in seven iguanas before and during exercise on a treadmill and during the post-exercise period. The experiments were conducted at 27 and 35 degrees C, which are the temperatures that represent the lowest and highest average body temperatures of these animals in the field during summer. There were linear and significant relationships between fH and sVO2 at both temperatures (r(2)=0.86 and 0.91 at 27 degrees C and 36 degrees C, respectively). The slopes of the two regression lines did not differ, but there were significant differences in their intercepts. Thus, while heart rate can be used to predict FMR, the effects of temperature on the intercept of the regression must be taken into account when converting fH to sVO2. On the basis of our data, this can be achieved by applying the following formula: sVO2=0.0113fH-0.2983Q(10)((T(b)-27)/10). The increase in sVO2 with elevated body temperature results from an increase in fH, with no significant change in mass-specific oxygen pulse (sO(2) pulse; cardiac stroke volume times the difference in oxygen content between arterial and mixed venous blood). However, during exercise at both temperatures, increases in fH are insufficient to provide all of the additional O(2) required and there are also significant increases in the sO(2) pulses. This creates the situation whereby the same fH at the two temperatures can represent different values of sVO2.

  9. The oxygen consumption rates of different life stages of the endoparasitic nematode

    Directory of Open Access Journals (Sweden)

    Willie van Aardt

    2010-01-01

    Full Text Available The oxygen consumption rates of different life stages of the endoparasitic nematode, Pratylenchus zeae (Nematoda: Tylenchida during non- and post-anhydrobiosisPratylenchus zeae, widely distributed in tropical and subtropical regions, is an endoparasite in roots of maize and other crop plants. The nematode is attracted to plant roots by CO2 and root exudates and feeds primarily on cells of the root cortex, making channels and openings where the eggs are deposited, with the result that secondary infection occurs due to bacteria and fungi. Nothing is known about the respiration physiology of this nematode and how it manages to survive during dry seasons. To measure the oxygen consumption rate (VO2 of individual P. zeae (less than half a millimeter long, a special measuring technique namely Cartesian diver micro-respirometry was applied. The Cartesian divers were machined from Perspex, and proved to be more accurate to measure VO2 compared with heavier glass divers used in similar experiments on free living nematodes. An accuracy of better than one nanoliter of oxygen consumed per hour was achieved with a single P. zeae inside the diver. Cartesian diver micro-respirometry measurements are based in principle on the manometric changes that occur in a fl otation tube in a manometer set-up when oxygen is consumed by P. zeae and CO2 from the animal is chemically absorbed. VO2 was measured for eggs (length: < 0.05 mm, larvae (length: 0.36 mm and adults (length: 0.47 mm before induction to anhydrobiosis. P. zeae from infected maize roots were extracted and exposed aseptically to in vitro maize root cultures in a grow cabinet at 50 % to 60% relative humidity at 28 ºC using eggs, larvae and adults. VO2 was also measured for post-anhydrobiotic eggs, larvae and adults by taking 50 individuals, eggs and larvae from the culture and placing them in Petri-dishes with 1% agar/water to dry out for 11 days at 28 ºC and 50% relative humidity. The VO2 was measured

  10. Oxygen Partial Pressure Is a Rate-Limiting Parameter for Cell Proliferation in 3D Spheroids Grown in Physioxic Culture Condition.

    Science.gov (United States)

    Gomes, Aurélie; Guillaume, Ludivine; Grimes, David Robert; Fehrenbach, Jérôme; Lobjois, Valérie; Ducommun, Bernard

    2016-01-01

    The in situ oxygen partial pressure in normal and tumor tissues is in the range of a few percent. Therefore, when studying cell growth in 3D culture systems, it is essential to consider how the physiological oxygen concentration, rather than the one in the ambient air, influences the proliferation parameters. Here, we investigated the effect of reducing oxygen partial pressure from 21% to 5% on cell proliferation rate and regionalization in a 3D tumor spheroid model. We found that 5% oxygen concentration strongly inhibited spheroid growth, changed the proliferation gradient and reduced the 50% In Depth Proliferation index (IDP50), compared with culture at 21% oxygen. We then modeled the oxygen partial pressure profiles using the experimental data generated by culturing spheroids in physioxic and normoxic conditions. Although hypoxia occurred at similar depth in spheroids grown in the two conditions, oxygen partial pressure was a major rate-limiting factor with a critical effect on cell proliferation rate and regionalization only in spheroids grown in physioxic condition and not in spheroids grown at atmospheric normoxia. Our findings strengthen the need to consider conducting experiment in physioxic conditions (i.e., tissue normoxia) for proper understanding of cancer cell biology and the evaluation of anticancer drugs in 3D culture systems.

  11. Electron and Oxygen Atom Transfer Chemistry of Co(II) in a Proton Responsive, Redox Active Ligand Environment.

    Science.gov (United States)

    Cook, Brian J; Pink, Maren; Pal, Kuntal; Caulton, Kenneth G

    2018-05-21

    The bis-pyrazolato pyridine complex LCo(PEt 3 ) 2 serves as a masked form of three-coordinate Co II and shows diverse reactivity in its reaction with several potential outer sphere oxidants and oxygen atom transfer reagents. N-Methylmorpholine N-oxide (NMO) oxidizes coordinated PEt 3 from LCo(PEt 3 ) 2 , but the final cobalt product is still divalent cobalt, in LCo(NMO) 2 . The thermodynamics of a variety of oxygen atom transfer reagents, including NMO, are calculated by density functional theory, to rank their oxidizing power. Oxidation of LCo(PEt 3 ) 2 with AgOTf in the presence of LiCl as a trapping nucleophile forms the unusual aggregate [LCo(PEt 3 ) 2 Cl(LiOTf) 2 ] 2 held together by Li + binding to very nucleophilic chloride on Co(III) and triflate binding to those Li + . In contrast, Cp 2 Fe + effects oxidation to trivalent cobalt, to form (HL)Co(PEt 3 ) 2 Cl + ; proton and the chloride originate from solvent in a rare example of CH 2 Cl 2 dehydrochlorination. An unexpected noncomplementary redox reaction is reported involving attack by 2e reductant PEt 3 nucleophile on carbon of the 1e oxidant radical Cp 2 Fe + , forming a P-C bond and H + ; this reaction competes in the reaction of LCo(PEt 3 ) 2 with Cp 2 Fe + .

  12. Investigations into detonations of coal dust suspensions in oxygen-nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, D.; Fearnley, P.; Nettleton, M.

    1987-03-01

    The effect of particle size (practically monodispersed), volatile content and composition of gaseous oxygen-nitrogen mixtures on initiating flame acceleration rates in coal dust suspensions is investigated experimentally. Description is given of apparatus, material used and experiments carried out. The authors discusses: microwave interferograms, pressure oscillograms for various oxygen-nitrogen mixtures; development of ionization front speed in relation to distance from diaphragm; effect of composition on shock wave advance rates. It is concluded that: microwave interferometry can successfully be used in recording initiation of coal dust suspension detonations; ignition of confined coal dust suspensions by shock waves originated by detonation front in stoichiometric oxyacetylene mixtures can be explained by heating of coal particles in shock compression stream to ignition temperature (1000 K) by combined convection and radiation heat transfer. 16 refs.

  13. Liquid metal heat transfer in heat exchangers under low flow rate conditions

    International Nuclear Information System (INIS)

    Mochizuki, Hiroyasu

    2015-01-01

    The present paper describes the liquid metal heat transfer in heat exchangers under low flow rate conditions. Measured data from some experiments indicate that heat transfer coefficients of liquid metals at very low Péclet number are much lower than what are predicted by the well-known empirical relations. The cause of this phenomenon was not fully understood for many years. In the present study, one countercurrent-type heat exchanger is analyzed using three, separated countercurrent heat exchanger models: one is a heat exchanger model in the tube bank region, while the upper and lower plena are modeled as two heat exchangers with a single heat transfer tube. In all three heat exchangers, the same empirical correlation is used in the heat transfer calculation on the tube and the shell sides. The Nusselt number, as a function of the Péclet number, calculated from measured temperature and flow rate data in a 50 MW experimental facility was correctly reproduced by the calculation result, when the calculated result is processed in the same way as the experiment. Finally, it is clarified that the deviation is a superficial phenomenon which is caused by the heat transfer in the plena of the heat exchanger. (author)

  14. Measurement of infiltration rates in urban sewer systems by use of oxygen isotopes.

    Science.gov (United States)

    De Bénédittis, J; Bertrand-Krajewski, J L

    2005-01-01

    The paper presents the principle of a method to measure infiltration rates in sewer systems based on the use of oxygen isotopes and its application in Lyon (France). In the urban area of Lyon, significant differences in delta 18O that can reach 3 per thousand are observed between the oxygen isotopic compositions of groundwater originating from Rhone, Saone and from their associated alluvial aquifers. Drinking water supplying Lyon results mainly from pumping in the Rhone alluvial aquifer. Therefore, in some areas, the difference of isotopic composition between wastewater resulting from the consumption of drinking water and local groundwater can be used to measure infiltration in sewer systems. The application in the catchment of Ecully shows that the infiltration flow rate presents strong fluctuations at an hourly scale: it varies between 15 and 40 m3/h. This variability could be explained by non-constant discharges of pumping and by variations of the water level in the sewer.

  15. Rate constant for the reaction of atomic oxygen with phosphine at 298 K

    Science.gov (United States)

    Stief, L. J.; Payne, W. A.; Nava, D. F.

    1987-01-01

    The rate constant for the reaction of atomic oxygen with phosphine has been measured at 298 K using flash photolysis combined with time-resolved detection of O(3P) via resonance fluorescence. Atomic oxygen was produced by flash photolysis of N2O or NO highly diluted in argon. The results were shown to be independent of (PH3), (O), total pressure and the source of O(3P). The mean value of all the experiments is k1 = (3.6 + or -0.8) x 10 to the -11th cu cm/s (1 sigma). Two previous measurements of k1 differed by more than an order of magnitude, and the results support the higher value obtained in a discharge flow-mass spectrometry study. A comparison with rate data for other atomic and free radical reactions with phosphine is presented, and the role of these reactions in the aeronomy or photochemistry of Jupiter and Saturn is briefly considered.

  16. Thermodynamics and Kinetics of Sulfide Oxidation by Oxygen: A Look at Inorganically Controlled Reactions and Biologically Mediated Processes in the Environment

    Science.gov (United States)

    Luther, George W.; Findlay, Alyssa J.; MacDonald, Daniel J.; Owings, Shannon M.; Hanson, Thomas E.; Beinart, Roxanne A.; Girguis, Peter R.

    2011-01-01

    The thermodynamics for the first electron transfer step for sulfide and oxygen indicates that the reaction is unfavorable as unstable superoxide and bisulfide radical ions would need to be produced. However, a two-electron transfer is favorable as stable S(0) and peroxide would be formed, but the partially filled orbitals in oxygen that accept electrons prevent rapid kinetics. Abiotic sulfide oxidation kinetics improve when reduced iron and/or manganese are oxidized by oxygen to form oxidized metals which in turn oxidize sulfide. Biological sulfur oxidation relies on enzymes that have evolved to overcome these kinetic constraints to affect rapid sulfide oxidation. Here we review the available thermodynamic and kinetic data for H2S and HS• as well as O2, reactive oxygen species, nitrate, nitrite, and NOx species. We also present new kinetic data for abiotic sulfide oxidation with oxygen in trace metal clean solutions that constrain abiotic rates of sulfide oxidation in metal free solution and agree with the kinetic and thermodynamic calculations. Moreover, we present experimental data that give insight on rates of chemolithotrophic and photolithotrophic sulfide oxidation in the environment. We demonstrate that both anaerobic photolithotrophic and aerobic chemolithotrophic sulfide oxidation rates are three or more orders of magnitude higher than abiotic rates suggesting that in most environments biotic sulfide oxidation rates will far exceed abiotic rates due to the thermodynamic and kinetic constraints discussed in the first section of the paper. Such data reshape our thinking about the biotic and abiotic contributions to sulfide oxidation in the environment. PMID:21833317

  17. Temperature dependence of electrocatalytic and photocatalytic oxygen evolution reaction rates using NiFe oxide

    KAUST Repository

    Nurlaela, Ela

    2016-01-25

    The present work compares oxygen evolution reaction (OER) in electrocatalysis and photocatalysis in aqueous solutions using nanostructured NiFeOx as catalysts. The impacts of pH and reaction temperature on the electrocatalytic and photocatalytic OER kinetics were investigated. For electrocatalysis, a NiFeOx catalyst was hydrothermally decorated on Ni foam. In 1 M KOH solution, the NiFeOx electrocatalyst achieved 10 mA cm-2 at an overpotential of 260 mV. The same catalyst was decorated on the surface of Ta3N5 photocatalyst powder. The reaction was conducted in the presence of 0.1 M Na2S2O8 as a strong electron scavenger, thus likely leading to the OER being kinetically relevant. When compared with the bare Ta3N5, NiFeOx/Ta3N5 demonstrated a 5-fold improvement in photocatalytic activity in the OER under visible light irradiation, achieving a quantum efficiency of 24 % at 480 nm. Under the conditions investigated, a strong correlation between the electrocatalytic and photocatalytic performances was identified: an improvement in electrocatalysis corresponded with an improvement in photocatalysis without altering the identity of the materials. The rate change at different pH was likely associated with electrocatalytic kinetics that accordingly influenced the photocatalytic rates. The sensitivity of the reaction rates with respective to the reaction temperature resulted in an apparent activation energy of 25 kJ mol-1 in electrocatalysis, whereas that in photocatalysis was 16 kJ mol-1. The origin of the difference in these activation energy values is likely attributed to the possible effects of temperature on the individual thermodynamic and kinetic parameters of the reaction process. The work described herein demonstrates a method of “transferring the knowledge of electrocatalysis to photocatalysis” as a strong tool to rationally and quantitatively understand the complex reaction schemes involved in photocatalytic reactions.

  18. Lyoluminescence of irradiated carbohydrates - the role of dissolution rate and oxygen

    International Nuclear Information System (INIS)

    Baugh, P.J.; Laflin, P.

    1980-01-01

    The lyoluminescent emission from γ-irradiated carbohydrates is shown to be strictly controlled by the rate of dissolution of the solid and the availability of oxygen for reaction during dissolution. These effects are explained in terms of oxidation of trapped radicals diffusing from the dissolving carbohydrate which react in an 'active volume' set up at the onset of dissolution at the crystal-water interface. At irradiation doses greater than 82.5 krad for mannose there is a suppression of the emission which results from an incomplete oxidation of the diffusing radicals due to insufficient O 2 in the active volume leading to a reaction involving unoxidised radicals and peroxyl radicals which are believed to be the precursors of the emission. This reaction is suppressed when the oxygen supply to the 'active volume' is increased. This can be achieved by increasing the oxygen content of the injector gas and indirectly by decreasing the solubility of the carbohydrate. Under these conditions the linear dose range of the lyoluminescence response is extended to ca. 330 krad close to the dose at which trapped radicals saturate in the irradiated solid carbohydrate. Although lyoluminescence is a liquid surface-layer effect as expected the generation of the emission is greatly influenced by oxygen present in the injection atmosphere. Quenching of lyoluminescence by adding peroxyl radical quenchers Cu(II) ions and hydroquinone, suggests that the reaction involving these quenchers also occurs in the 'active volume'. The results generally can be interpreted in terms of a diffusion model. (author)

  19. Nonadiabatic rate constants for proton transfer and proton-coupled electron transfer reactions in solution: Effects of quadratic term in the vibronic coupling expansion.

    Science.gov (United States)

    Soudackov, Alexander V; Hammes-Schiffer, Sharon

    2015-11-21

    Rate constant expressions for vibronically nonadiabatic proton transfer and proton-coupled electron transfer reactions are presented and analyzed. The regimes covered include electronically adiabatic and nonadiabatic reactions, as well as high-frequency and low-frequency proton donor-acceptor vibrational modes. These rate constants differ from previous rate constants derived with the cumulant expansion approach in that the logarithmic expansion of the vibronic coupling in terms of the proton donor-acceptor distance includes a quadratic as well as a linear term. The analysis illustrates that inclusion of this quadratic term in the framework of the cumulant expansion framework may significantly impact the rate constants at high temperatures for proton transfer interfaces with soft proton donor-acceptor modes that are associated with small force constants and weak hydrogen bonds. The effects of the quadratic term may also become significant in these regimes when using the vibronic coupling expansion in conjunction with a thermal averaging procedure for calculating the rate constant. In this case, however, the expansion of the coupling can be avoided entirely by calculating the couplings explicitly for the range of proton donor-acceptor distances sampled. The effects of the quadratic term for weak hydrogen-bonding systems are less significant for more physically realistic models that prevent the sampling of unphysical short proton donor-acceptor distances. Additionally, the rigorous relation between the cumulant expansion and thermal averaging approaches is clarified. In particular, the cumulant expansion rate constant includes effects from dynamical interference between the proton donor-acceptor and solvent motions and becomes equivalent to the thermally averaged rate constant when these dynamical effects are neglected. This analysis identifies the regimes in which each rate constant expression is valid and thus will be important for future applications to proton

  20. Nonadiabatic rate constants for proton transfer and proton-coupled electron transfer reactions in solution: Effects of quadratic term in the vibronic coupling expansion

    International Nuclear Information System (INIS)

    Soudackov, Alexander V.; Hammes-Schiffer, Sharon

    2015-01-01

    Rate constant expressions for vibronically nonadiabatic proton transfer and proton-coupled electron transfer reactions are presented and analyzed. The regimes covered include electronically adiabatic and nonadiabatic reactions, as well as high-frequency and low-frequency proton donor-acceptor vibrational modes. These rate constants differ from previous rate constants derived with the cumulant expansion approach in that the logarithmic expansion of the vibronic coupling in terms of the proton donor-acceptor distance includes a quadratic as well as a linear term. The analysis illustrates that inclusion of this quadratic term in the framework of the cumulant expansion framework may significantly impact the rate constants at high temperatures for proton transfer interfaces with soft proton donor-acceptor modes that are associated with small force constants and weak hydrogen bonds. The effects of the quadratic term may also become significant in these regimes when using the vibronic coupling expansion in conjunction with a thermal averaging procedure for calculating the rate constant. In this case, however, the expansion of the coupling can be avoided entirely by calculating the couplings explicitly for the range of proton donor-acceptor distances sampled. The effects of the quadratic term for weak hydrogen-bonding systems are less significant for more physically realistic models that prevent the sampling of unphysical short proton donor-acceptor distances. Additionally, the rigorous relation between the cumulant expansion and thermal averaging approaches is clarified. In particular, the cumulant expansion rate constant includes effects from dynamical interference between the proton donor-acceptor and solvent motions and becomes equivalent to the thermally averaged rate constant when these dynamical effects are neglected. This analysis identifies the regimes in which each rate constant expression is valid and thus will be important for future applications to proton

  1. Mathematical Modelling of Intraretinal Oxygen Partial Pressure

    African Journals Online (AJOL)

    Erah

    The system of non-linear differential equations was solved numerically using Runge-kutta. Nystroms method. ... artery occlusion. Keywords: Mathematical modeling, Intraretinal oxygen pressure, Retinal capillaries, Oxygen ..... Mass transfer,.

  2. Outcome of mass transfer in a carbon-oxygen white dwarf binary system

    International Nuclear Information System (INIS)

    Khokhlov, A.M.

    1985-01-01

    The hydrostatic evolution of a carbon-oxygen white dwarf (COWD) experiencing accretion of matter from its companion, a second COWD, is calculated for accretion rates ranging from 10 to the -8th to 10 to the -5th solar masses per year. It is shown that, for accretion rates less than (3.3 + or - 1.5) x 10 to the -6th M/yr, the accretion of a C+O mixture by a COWD will ultimately lead to ignition of carbon at the center of the star, producing a thermonuclear explosion. For accretion rates greater than that value, the C-12 can be ignited near the white dwarf surface, followed by propagation of the thermonuclear burning front toward the center. It is concluded that a COWD accreting a C+O mixture is a highly plausible candidate for a type I presupernova. 18 references

  3. Oxygen-atom transfer chemistry and thermolytic properties of a di-tert-butylphosphate-ligated Mn4O4 cubane.

    Science.gov (United States)

    Van Allsburg, Kurt M; Anzenberg, Eitan; Drisdell, Walter S; Yano, Junko; Tilley, T Don

    2015-03-16

    [Mn4O4{O2P(OtBu)2}6] (1), an Mn4O4 cubane complex combining the structural inspiration of the photosystem II oxygen-evolving complex with thermolytic precursor ligands, was synthesized and fully characterized. Core oxygen atoms within complex 1 are transferred upon reaction with an oxygen-atom acceptor (PEt3), to give the butterfly complex [Mn4O2{O2P(OtBu)2}6(OPEt3)2]. The cubane structure is restored by reaction of the latter complex with the O-atom donor PhIO. Complex 1 was investigated as a precursor to inorganic Mn metaphosphate/pyrophosphate materials, which were studied by X-ray absorption spectroscopy to determine the fate of the Mn4O4 unit. Under the conditions employed, thermolyses of 1 result in reduction of the manganese to Mn(II) species. Finally, the related butterfly complex [Mn4O2{O2P(pin)}6(bpy)2] (pin = pinacolate) is described. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. High-data-transfer-rate read heads composed of spin-torque oscillators

    International Nuclear Information System (INIS)

    Mizushima, K; Kudo, K; Nagasawa, T; Sato, R

    2011-01-01

    The signal-to-noise ratios (SNRs) of the high-data-transfer-rate read heads beyond 3 Gbits/s composed of spin-torque oscillators (STOs) are calculated under the thermal magnetization fluctuations by using the recent nonlinear theories. The STO head senses the media field as a modulation in the oscillation frequency, enabling high signal transfer rates beyond the limit of ferromagnetic relaxation. The output (digital) signal is obtained by FM (frequency modulation) detection, which is commonly used in communication technologies. As the problem of rapid phase diffusion in STOs caused by the thermal fluctuations is overcome by employing a delay detection method, the sufficiently large SNRs are obtained even in nonlinear STOs less than 30 x 30 nm 2 in size.

  5. Inverse problem of estimating transient heat transfer rate on external wall of forced convection pipe

    International Nuclear Information System (INIS)

    Chen, W.-L.; Yang, Y.-C.; Chang, W.-J.; Lee, H.-L.

    2008-01-01

    In this study, a conjugate gradient method based inverse algorithm is applied to estimate the unknown space and time dependent heat transfer rate on the external wall of a pipe system using temperature measurements. It is assumed that no prior information is available on the functional form of the unknown heat transfer rate; hence, the procedure is classified as function estimation in the inverse calculation. The accuracy of the inverse analysis is examined by using simulated exact and inexact temperature measurements. Results show that an excellent estimation of the space and time dependent heat transfer rate can be obtained for the test case considered in this study

  6. Standard Test Method for Measuring Heat Transfer Rate Using a Thin-Skin Calorimeter

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2005-01-01

    1.1 This test method covers the design and use of a thin metallic calorimeter for measuring heat transfer rate (also called heat flux). Thermocouples are attached to the unexposed surface of the calorimeter. A one-dimensional heat flow analysis is used for calculating the heat transfer rate from the temperature measurements. Applications include aerodynamic heating, laser and radiation power measurements, and fire safety testing. 1.2 Advantages 1.2.1 Simplicity of ConstructionThe calorimeter may be constructed from a number of materials. The size and shape can often be made to match the actual application. Thermocouples may be attached to the metal by spot, electron beam, or laser welding. 1.2.2 Heat transfer rate distributions may be obtained if metals with low thermal conductivity, such as some stainless steels, are used. 1.2.3 The calorimeters can be fabricated with smooth surfaces, without insulators or plugs and the attendant temperature discontinuities, to provide more realistic flow conditions for ...

  7. Heart Rate and Oxygen Uptake Kinetics in Type 2 Diabetes Patients - A Pilot Study on the Influence of Cardiovascular Medication on Regulatory Processes.

    Science.gov (United States)

    Koschate, Jessica; Drescher, Uwe; Baum, Klaus; Brinkmann, Christian; Schiffer, Thorsten; Latsch, Joachim; Brixius, Klara; Hoffmann, Uwe

    2017-05-01

    The aim of this pilot study was to investigate whether there are differences in heart rate and oxygen uptake kinetics in type 2 diabetes patients, considering their cardiovascular medication. It was hypothesized that cardiovascular medication would affect heart rate and oxygen uptake kinetics and that this could be detected using a standardized exercise test. 18 subjects were tested for maximal oxygen uptake. Kinetics were measured in a single test session with standardized, randomized moderate-intensity work rate changes. Time series analysis was used to estimate kinetics. Greater maxima in cross-correlation functions indicate faster kinetics. 6 patients did not take any cardiovascular medication, 6 subjects took peripherally acting medication and 6 patients were treated with centrally acting medication. Maximum oxygen uptake was not significantly different between groups. Significant main effects were identified regarding differences in muscular oxygen uptake kinetics and heart rate kinetics. Muscular oxygen uptake kinetics were significantly faster than heart rate kinetics in the group with no cardiovascular medication (maximum in cross-correlation function of muscular oxygen uptake vs. heart rate; 0.32±0.08 vs. 0.25±0.06; p=0.001) and in the group taking peripherally acting medication (0.34±0.05 vs. 0.28±0.05; p=0.009) but not in the patients taking centrally acting medication (0.28±0.05 vs. 0.30±0.07; n.s.). It can be concluded that regulatory processes for the achievement of a similar maximal oxygen uptake are different between the groups. The used standardized test provided plausible results for heart rate and oxygen uptake kinetics in a single measurement session in this patient group. © Georg Thieme Verlag KG Stuttgart · New York.

  8. Irradiation of mammalian cells in the presence of diamide and low concentrations of oxygen at conventional and at ultrahigh dose rates

    International Nuclear Information System (INIS)

    Clark, E.P.; Michaels, H.B.; Peterson, E.C.; Epp, E.R.

    1983-01-01

    The response of cultured CHO cells to ultrahigh-dose-radiation (approx.10 9 Gy/sec) has been previously studied extensively using the thin-layer cell-handling technique developed in this laboratory. When the cells are equilibrated with a low concentration of oxygen, e.g., 0.44% O 2 , a breaking survival curve, due to radiolytic depletion of the oxygen, is observed. Hypoxic cells irradiated in the presence of the nitroimidazoles (e.g., misonidazole) are sensitized at ultrahigh dose rates in a dose-modifying manner, similar to that observed at conventional dose rates. These radiosensitizer compounds, if present in cells equilibrated with a low concentration of oxygen, prevent the breaking behavior of the survival curve, an observation believed to be due to the sensitizer interfering with the oxygen depletion process, leaving oxygen free to sensitize. Such experiments have recently been extended to studies with diamide, which, unlike the other sensitizers tested, acts primarily as a shoulder-modifying rather than a dose-modifying agent in hypoxic mammalian cells. These data indicate that diamide is active as a sensitizer at ultrahigh dose rates in a manner similar to that observed at conventional dose rates, and does modify the shape of the breaking survival curve observed with low concentrations of oxygen

  9. Nonheme Fe(IV) Oxo Complexes of Two New Pentadentate Ligands and Their Hydrogen-Atom and Oxygen-Atom Transfer Reactions.

    Science.gov (United States)

    Mitra, Mainak; Nimir, Hassan; Demeshko, Serhiy; Bhat, Satish S; Malinkin, Sergey O; Haukka, Matti; Lloret-Fillol, Julio; Lisensky, George C; Meyer, Franc; Shteinman, Albert A; Browne, Wesley R; Hrovat, David A; Richmond, Michael G; Costas, Miquel; Nordlander, Ebbe

    2015-08-03

    Two new pentadentate {N5} donor ligands based on the N4Py (N4Py = N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine) framework have been synthesized, viz. [N-(1-methyl-2-benzimidazolyl)methyl-N-(2-pyridyl)methyl-N-(bis-2-pyridyl methyl)amine] (L(1)) and [N-bis(1-methyl-2-benzimidazolyl)methyl-N-(bis-2-pyridylmethyl)amine] (L(2)), where one or two pyridyl arms of N4Py have been replaced by corresponding (N-methyl)benzimidazolyl-containing arms. The complexes [Fe(II)(CH3CN)(L)](2+) (L = L(1) (1); L(2) (2)) were synthesized, and reaction of these ferrous complexes with iodosylbenzene led to the formation of the ferryl complexes [Fe(IV)(O)(L)](2+) (L = L(1) (3); L(2) (4)), which were characterized by UV-vis spectroscopy, high resolution mass spectrometry, and Mössbauer spectroscopy. Complexes 3 and 4 are relatively stable with half-lives at room temperature of 40 h (L = L(1)) and 2.5 h (L = L(2)). The redox potentials of 1 and 2, as well as the visible spectra of 3 and 4, indicate that the ligand field weakens as ligand pyridyl substituents are progressively substituted by (N-methyl)benzimidazolyl moieties. The reactivities of 3 and 4 in hydrogen-atom transfer (HAT) and oxygen-atom transfer (OAT) reactions show that both complexes exhibit enhanced reactivities when compared to the analogous N4Py complex ([Fe(IV)(O)(N4Py)](2+)), and that the normalized HAT rates increase by approximately 1 order of magnitude for each replacement of a pyridyl moiety; i.e., [Fe(IV)(O)(L(2))](2+) exhibits the highest rates. The second-order HAT rate constants can be directly related to the substrate C-H bond dissociation energies. Computational modeling of the HAT reactions indicates that the reaction proceeds via a high spin transition state.

  10. A new method to measure and model dynamic oxygen microdistributions in moving biofilms.

    Science.gov (United States)

    Wang, Jian-Hui; Chen, You-Peng; Dong, Yang; Wang, Xi-Xi; Guo, Jin-Song; Shen, Yu; Yan, Peng; Ma, Teng-Fei; Sun, Xiu-Qian; Fang, Fang; Wang, Jing

    2017-10-01

    Biofilms in natural environments offer a superior solution to mitigate water pollution. Artificially intensified biofilm reactors represented by rotating biological contactors (RBCs) are widely applied and studied. Understanding the oxygen transfer process in biofilms is an important aspect of these studies, and describing this process in moving biofilms (such as biofilms in RBCs) is a particular challenge. Oxygen transfer in RBCs behaves differently than in other biological reactors due to the special oxygen supply mode that results from alternate exposure of the biofilm to wastewater and air. The study of oxygen transfer in biofilms is indispensable for understanding biodegradation in RBCs. However, the mechanisms are still not well known due to a lack of effective tools to dynamically analyze oxygen diffusion, reaction, and microdistribution in biofilms. A new experimental device, the Oxygen Transfer Modeling Device (OTMD), was designed and manufactured for this purpose, and a mathematical model was developed to model oxygen transfer in biofilm produced by an RBC. This device allowed the simulation of the local environment around the biofilm during normal RBC operation, and oxygen concentrations varying with time and depth in biofilm were measured using an oxygen microelectrode. The experimental data conformed well to the model description, indicating that the OTMD and the model were stable and reliable. Moreover, the OTMD offered a flexible approach to study the impact of a single-factor on oxygen transfer in moving biofilms. In situ environment of biofilm in an RBC was simulated, and dynamic oxygen microdistributions in the biofilm were measured and well fitted to the built model description. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Intramolecular electron transfer in ascorbate oxidase is enhanced in the presence of oxygen

    DEFF Research Database (Denmark)

    Farver, O; Wherland, S; Pecht, I

    1994-01-01

    Intramolecular electron transfer from the type 1 copper center to the type 3 copper(II) pair is induced in the multi-copper enzyme, ascorbate oxidase, following pulse radiolytic reduction of the type 1 Cu(II) ion. In the presence of a slight excess of dioxygen over ascorbate oxidase, interaction...... between the trinuclear copper center and O2 is observed even with singly reduced ascorbate oxidase molecules. Under these conditions, the rate constant for intramolecular electron transfer from type 1 Cu(I) to type 3 Cu(II) increases 5-fold to 1100 +/- 300 s-1 (20 degrees C, pH 5.8) as compared...

  12. Singlet Oxygen Reactions with Flavonoids. A Theoretical – Experimental Study

    Science.gov (United States)

    Morales, Javier; Günther, Germán; Zanocco, Antonio L.; Lemp, Else

    2012-01-01

    Detection of singlet oxygen emission, λmax = 1270 nm, following laser excitation and steady-state methods were employed to measure the total reaction rate constant, kT, and the reactive reaction rate constant, kr, for the reaction between singlet oxygen and several flavonoids. Values of kT determined in deuterated water, ranging from 2.4×107 M−1s−1 to 13.4×107 M−1s−1, for rutin and morin, respectively, and the values measured for kr, ranging from 2.8×105 M−1s−1 to 65.7×105 M−1s−1 for kaempferol and morin, respectively, being epicatechin and catechin chemically unreactive. These results indicate that all the studied flavonoids are good quenchers of singlet oxygen and could be valuable antioxidants in systems under oxidative stress, in particular if a flavonoid-rich diet was previously consumed. Analysis of the dependence of rate constant values with molecular structure in terms of global descriptors and condensed Fukui functions, resulting from electronic structure calculations, supports the formation of a charge transfer exciplex in all studied reactions. The fraction of exciplex giving reaction products evolves through a hydroperoxide and/or an endoperoxide intermediate produced by singlet oxygen attack on the double bond of the ring C of the flavonoid. PMID:22802966

  13. Effect of temperature, of oxygen content and the downstream effect on corrosion rate of structural materials in liquid sodium

    International Nuclear Information System (INIS)

    Ilincev, G.

    1988-01-01

    The effects were experimentally tested of temperature and of oxygen content on the corrosion rate of structural materials in liquid sodium and on reducing the corrosion rate down the sodium stream. The results of the experiments are shown in graphs and tables and are discussed in detail. The duration of all tests was standard 1,000 hours. The test parameters were set such as to determine the effect of temperature on corrosion of a quantity of various materials in sodium with a low oxygen content (1.2 to 2 ppm) at temperatures of 500 to 800 degC and in sodium with a high oxygen content (345 ppm) at temperatures of 500 to 700 degC. More experiments served the determination of the effect of a different oxygen content varying between 1.2 and 2 ppm at a constant temperature of 600 degC. The materials being tested included main structural materials used for fast reactor construction and materials allowing to establish the effect of main alloying elements on their corrosion in liquid sodium of different temperatures and purity grades. The relationships showing the effects of temperature and oxygen content in sodium on the rate of corrosion of various structural materials in hot parts of the installation and on the reduction in the rate of corrosion downstream due to sodium saturation with corrosion products were constructed using the experimental results. (Z.M.). 15 figs., 2 tabs., 7 refs

  14. Numerical analysis of mass transfer with graphite oxidation in a laminar flow of multi-component gas mixture through a circular tube

    International Nuclear Information System (INIS)

    Ogawa, Masuro

    1992-10-01

    In the present paper, mass transfer has been numerically studied in a laminar flow through a circular graphite tube to evaluate graphite corrosion rate and generation rate of carbon monoxide during a pipe rupture accident in a high temperature gas cooled reactor. In the analysis, heterogeneous (graphite oxidation and graphite/carbon dioxide reaction) and homogeneous (carbon monoxide combustion) chemical reactions were dealt in the multi-component gas mixture; helium, oxygen, carbon monoxide and carbon dioxide. Multi-component diffusion coefficients were used in a diffusion term. Mass conservation equations of each gas component, mass conservation equation and momentum conservation equations of the gas mixture were solved by using SIMPLE algorism. Chemical reactions between graphite and oxygen, graphite and carbon dioxide, and carbon monoxide combustion were taken into account in the present numerical analysis. An energy equation for the gas mixture was not solved and temperature was held to be constant in order to understand basic mass transfer characteristics without heat transfer. But, an energy conservation equation for single component gas was added to know heat transfer characteristics without mass transfer. The effects of these chemical reactions on the mass transfer coefficients were quantitatively and qualitatively clarified in the range of 50 to 1000 of inlet Reynolds numbers, 0 to 0.5 of inlet oxygen mass fraction and 800 to 1600degC of temperature. (author)

  15. Oxygen dependency of germinating Brassica seeds

    Science.gov (United States)

    Park, Myoung Ryoul; Hasenstein, Karl H.

    2016-02-01

    Establishing plants in space, Moon or Mars requires adaptation to altered conditions, including reduced pressure and composition of atmospheres. To determine the oxygen requirements for seed germination, we imbibed Brassica rapa seeds under varying oxygen concentrations and profiled the transcription patterns of genes related to early metabolism such as starch degradation, glycolysis, and fermentation. We also analyzed the activity of lactate dehydrogenase (LDH) and alcohol dehydrogenase (ADH), and measured starch degradation. Partial oxygen pressure (pO2) greater than 10% resulted in normal germination (i.e., protrusion of radicle about 18 hours after imbibition) but lower pO2 delayed and reduced germination. Imbibition in an oxygen-free atmosphere for three days resulted in no germination but subsequent transfer to air initiated germination in 75% of the seeds and the root growth rate was transiently greater than in roots germinated under ambient pO2. In hypoxic seeds soluble sugars degraded faster but the content of starch after 24 h was higher than at ambient oxygen. Transcription of genes related to starch degradation, α-amylase (AMY) and Sucrose Synthase (SUS), was higher under ambient O2 than under hypoxia. Glycolysis and fermentation pathway-related genes, glucose phosphate isomerase (GPI), 6-phosphofructokinase (PFK), fructose 1,6-bisphosphate aldolase (ALD), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), pyruvate decarboxylase (PDC), LDH, and ADH, were induced by low pO2. The activity of LDH and ADH was the highest in anoxic seeds. Germination under low O2 conditions initiated ethanolic fermentation. Therefore, sufficient oxygen availability is important for germination before photosynthesis provides necessary oxygen and the determination of an oxygen carrying capacity is important for uniform growth in space conditions.

  16. Evaluation of Water Distribution and Oxygen Mass Transfer in Sponge Support Media for a Down-flow Hanging Sponge Reactor

    International Nuclear Information System (INIS)

    Uemura, S.; Okubo, T.; Maeno, K.; Takahashi, M.; Kubota, K.; Harada, H.

    2016-01-01

    A down-flow hanging sponge reactor has been developed for sewage treatment, mainly in developing countries. This novel reactor employs polyurethane sponge material as a support medium, which promises a proliferation of a large amount of biomass, offering excellent pollutant removal capability. Three types of sponge medium were evaluated with respect to water distribution and oxygen mass transfer. Water was supplied to the device, which consisted of 40 pieces of sponge media connected in series, and a tracer experiment was carried out. The ratios of actual hydraulic retention time to theoretical hydraulic retention time were in the range of 25-67% depending on the type of support medium. By supplying deoxygenated water from the top of the device, the overall volumetric oxygen transfer coefficient, K L a, was evaluated. Despite the non-aerated conditions, the K L a values of the support media were very high, in the range of 0.56-4.88 (1/min), surpassing those of other mechanically aerated processes. Furthermore, it was found that the suspended solids concentration in the influent played a role in increasing the actual hydraulic retention time/theoretical hydraulic retention time ratio, suggesting that managing the influent suspended solids concentration is prerequisite for preventing clogging problems in the down-flow hanging.

  17. Design and application of new type of oxygen supplier for water and ...

    African Journals Online (AJOL)

    A new oxygen supplier was designed to inject both ozone and air into the water under high pressure. The oxygen transfer coefficient (KLa) of the system with air and ozone were 0.0264 and 0.4900, respectively. The oxygen transfer efficiencies of the system with ozone and air were 73.58 and 52.17%, respectively.

  18. Computational Investigation of Amine–Oxygen Exciplex Formation

    Science.gov (United States)

    Haupert, Levi M.; Simpson, Garth J.; Slipchenko, Lyudmila V.

    2012-01-01

    It has been suggested that fluorescence from amine-containing dendrimer compounds could be the result of a charge transfer between amine groups and molecular oxygen [Chu, C.-C.; Imae, T. Macromol. Rapid Commun. 2009, 30, 89.]. In this paper we employ equation-of-motion coupled cluster computational methods to study the electronic structure of an ammonia–oxygen model complex to examine this possibility. The results reveal several bound electronic states with charge transfer character with emission energies generally consistent with previous observations. However, further work involving confinement, solvent, and amine structure effects will be necessary for more rigorous examination of the charge transfer fluorescence hypothesis. PMID:21812447

  19. Computational design and in vitro characterization of an integrated maglev pump-oxygenator.

    Science.gov (United States)

    Zhang, Juntao; Taskin, M Ertan; Koert, Andrew; Zhang, Tao; Gellman, Barry; Dasse, Kurt A; Gilbert, Richard J; Griffith, Bartley P; Wu, Zhongjun J

    2009-10-01

    For the need for respiratory support for patients with acute or chronic lung diseases to be addressed, a novel integrated maglev pump-oxygenator (IMPO) is being developed as a respiratory assist device. IMPO was conceptualized to combine a magnetically levitated pump/rotor with uniquely configured hollow fiber membranes to create an assembly-free, ultracompact system. IMPO is a self-contained blood pump and oxygenator assembly to enable rapid deployment for patients requiring respiratory support or circulatory support. In this study, computational fluid dynamics (CFD) and computer-aided design were conducted to design and optimize the hemodynamics, gas transfer, and hemocompatibility performances of this novel device. In parallel, in vitro experiments including hydrodynamic, gas transfer, and hemolysis measurements were conducted to evaluate the performance of IMPO. Computational results from CFD analysis were compared with experimental data collected from in vitro evaluation of the IMPO. The CFD simulation demonstrated a well-behaved and streamlined flow field in the main components of this device. The results of hydrodynamic performance, oxygen transfer, and hemolysis predicted by computational simulation, along with the in vitro experimental data, indicate that this pump-lung device can provide the total respiratory need of an adult with lung failure, with a low hemolysis rate at the targeted operating condition. These detailed CFD designs and analyses can provide valuable guidance for further optimization of this IMPO for long-term use.

  20. Quantifying the Interactions between Maternal and Fetal Heart Rates by Transfer Entropy.

    Directory of Open Access Journals (Sweden)

    Faezeh Marzbanrad

    Full Text Available Evidence of the short term relationship between maternal and fetal heart rates has been found in previous studies. However there is still limited knowledge about underlying mechanisms and patterns of the coupling throughout gestation. In this study, Transfer Entropy (TE was used to quantify directed interactions between maternal and fetal heart rates at various time delays and gestational ages. Experimental results using maternal and fetal electrocardiograms showed significant coupling for 63 out of 65 fetuses, by statistically validating against surrogate pairs. Analysis of TE showed a decrease in transfer of information from fetus to the mother with gestational age, alongside the maturation of the fetus. On the other hand, maternal to fetal TE was significantly greater in mid (26-31 weeks and late (32-41 weeks gestation compared to early (16-25 weeks gestation (Mann Whitney Wilcoxon (MWW p<0.05. TE further increased from mid to late, for the fetuses with RMSSD of fetal heart rate being larger than 4 msec in the late gestation. This difference was not observed for the fetuses with smaller RMSSD, which could be associated with the quiet sleep state. Delay in the information transfer from mother to fetus significantly decreased (p = 0.03 from mid to late gestation, implying a decrease in fetal response time. These changes occur concomitant with the maturation of the fetal sensory and autonomic nervous systems with advancing gestational age. The effect of maternal respiratory rate derived from maternal ECG was also investigated and no significant relationship was found between breathing rate and TE at any lag. In conclusion, the application of TE with delays revealed detailed information on the fetal-maternal heart rate coupling strength and latency throughout gestation, which could provide novel clinical markers of fetal development and well-being.

  1. The influence of pH on gas-liquid mass transfer in non-Newtonian fluids

    OpenAIRE

    Li Shaobai; Fan Jungeng; Xu Shuang; Li Rundong; Luan Jingde

    2017-01-01

    In this study, the effect of pH on the mass transfer of oxygen bubble swarms in non-Newtonian fluids was experimentally studied. The volumetric liquid side mass transfer coefficient (kLa), liquid side mass transfer coefficient (kL), and specific interfacial area (a) were investigated. The pH was regulated by the addition of hydrochloric acid and sodium hydroxide (NaOH). It was found that the kLa increased with the gas flow rate increasing and decreased with the apparent viscosity of the liqui...

  2. Event-Associated Oxygen Consumption Rate Increases ca. Five-Fold When Interictal Activity Transforms into Seizure-Like Events In Vitro

    Directory of Open Access Journals (Sweden)

    Karl Schoknecht

    2017-09-01

    Full Text Available Neuronal injury due to seizures may result from a mismatch of energy demand and adenosine triphosphate (ATP synthesis. However, ATP demand and oxygen consumption rates have not been accurately determined, yet, for different patterns of epileptic activity, such as interictal and ictal events. We studied interictal-like and seizure-like epileptiform activity induced by the GABAA antagonist bicuculline alone, and with co-application of the M-current blocker XE-991, in rat hippocampal slices. Metabolic changes were investigated based on recording partial oxygen pressure, extracellular potassium concentration, and intracellular flavine adenine dinucleotide (FAD redox potential. Recorded data were used to calculate oxygen consumption and relative ATP consumption rates, cellular ATP depletion, and changes in FAD/FADH2 ratio by applying a reactive-diffusion and a two compartment metabolic model. Oxygen-consumption rates were ca. five times higher during seizure activity than interictal activity. Additionally, ATP consumption was higher during seizure activity (~94% above control than interictal activity (~15% above control. Modeling of FAD transients based on partial pressure of oxygen recordings confirmed increased energy demand during both seizure and interictal activity and predicted actual FAD autofluorescence recordings, thereby validating the model. Quantifying metabolic alterations during epileptiform activity has translational relevance as it may help to understand the contribution of energy supply and demand mismatches to seizure-induced injury.

  3. Dramatic Influence of an Anionic Donor on the Oxygen-Atom Transfer Reactivity of a MnV–Oxo Complex

    Science.gov (United States)

    Neu, Heather M; Quesne, Matthew G; Yang, Tzuhsiung; Prokop-Prigge, Katharine A; Lancaster, Kyle M; Donohoe, James; DeBeer, Serena; de Visser, Sam P; Goldberg, David P

    2014-01-01

    Addition of an anionic donor to an MnV(O) porphyrinoid complex causes a dramatic increase in 2-electron oxygen-atom-transfer (OAT) chemistry. The 6-coordinate [MnV(O)(TBP8Cz)(CN)]− was generated from addition of Bu4N+CN− to the 5-coordinate MnV(O) precursor. The cyanide-ligated complex was characterized for the first time by Mn K-edge X-ray absorption spectroscopy (XAS) and gives Mn–O=1.53 Å, Mn–CN=2.21 Å. In combination with computational studies these distances were shown to correlate with a singlet ground state. Reaction of the CN− complex with thioethers results in OAT to give the corresponding sulfoxide and a 2e−-reduced MnIII(CN)− complex. Kinetic measurements reveal a dramatic rate enhancement for OAT of approximately 24 000-fold versus the same reaction for the parent 5-coordinate complex. An Eyring analysis gives ΔH≠=14 kcal mol−1, ΔS≠=−10 cal mol−1 K−1. Computational studies fully support the structures, spin states, and relative reactivity of the 5- and 6-coordinate MnV(O) complexes. PMID:25256417

  4. Oxygen discharge and post-discharge kinetics experiments and modeling for the electric oxygen-iodine laser system.

    Science.gov (United States)

    Palla, A D; Zimmerman, J W; Woodard, B S; Carroll, D L; Verdeyen, J T; Lim, T C; Solomon, W C

    2007-07-26

    Laser oscillation at 1315 nm on the I(2P1/2)-->I(2P3/2) transition of atomic iodine has been obtained by a near resonant energy transfer from O2(a1Delta) produced using a low-pressure oxygen/helium/nitric oxide discharge. In the electric discharge oxygen-iodine laser (ElectricOIL) the discharge production of atomic oxygen, ozone, and other excited species adds levels of complexity to the singlet oxygen generator (SOG) kinetics which are not encountered in a classic purely chemical O2(a1Delta) generation system. The advanced model BLAZE-IV has been introduced to study the energy-transfer laser system dynamics and kinetics. Levels of singlet oxygen, oxygen atoms, and ozone are measured experimentally and compared with calculations. The new BLAZE-IV model is in reasonable agreement with O3, O atom, and gas temperature measurements but is under-predicting the increase in O2(a1Delta) concentration resulting from the presence of NO in the discharge and under-predicting the O2(b1Sigma) concentrations. A key conclusion is that the removal of oxygen atoms by NOX species leads to a significant increase in O2(a1Delta) concentrations downstream of the discharge in part via a recycling process; however, there are still some important processes related to the NOX discharge kinetics that are missing from the present modeling. Further, the removal of oxygen atoms dramatically inhibits the production of ozone in the downstream kinetics.

  5. Heat transfer in intermediate heat exchanger under low flow rate conditions

    International Nuclear Information System (INIS)

    Mochizuki, H.

    2008-01-01

    The present paper describes the heat transfer in intermediate heat exchangers (IHXs) of liquid metal cooled fast reactors when flow rate is low such as a natural circulation condition. Although empirical correlations of heat transfer coefficients for IHX were derived using test data at the fast reactor 'Monju' and 'Joyo' and also at the 50 MW steam generator facility, the heat transfer coefficient was very low compared to the well known correlation for liquid metals proposed by Seban-Shimazaki. The heat conduction in IHX was discussed as a possible cause of the low Nusselt number. As a result, the heat conduction is not significant under the natural circulation condition, and the heat conduction term in the energy equation can be neglected in the one-dimensional plant dynamics calculation. (authors)

  6. The development of efficient two-photon singlet oxygen sensitizers

    DEFF Research Database (Denmark)

    Nielsen, Christian Benedikt

    The development of efficient two-photon singlet oxygen sensitizers is addressed focusing on organic synthesis. Photophysical measurements were carried out on new lipophilic molecules, where two-photon absorption cross sections and singlet oxygen quantumyields were measured. Design principles...... for making efficient two-photon singlet oxygen sensitizers were then constructed from these results. Charge-transfer in the excited state of the prepared molecules was shown to play a pivotal role in the generationof singlet oxygen. This was established through studies of substituent effects on both...... the singlet oxygen yield and the two-photon absorption cross section, where it was revealed that a careful balancing of the amount of charge transfer present in theexcited state of the sensitizer is necessary to obtain both a high singlet oxygen quantum yield and a high two-photon cross section. An increasing...

  7. Increasing vaginal progesterone gel supplementation after frozen-thawed embryo transfer significantly increases the delivery rate

    DEFF Research Database (Denmark)

    Alsbjerg, Birgit; Polyzos, Nikolaos P; Elbaek, Helle Olesen

    2013-01-01

    The aim of this study was to evaluate the reproductive outcome in patients receiving frozen-thawed embryo transfer before and after doubling of the vaginal progesterone gel supplementation. The study was a retrospective study performed in The Fertility Clinic, Skive Regional Hospital, Denmark....... A total of 346 infertility patients with oligoamenorrhoea undergoing frozen-thawed embryo transfer after priming with oestradiol and vaginal progesterone gel were included. The vaginal progesterone dose was changed from 90mg (Crinone) once a day to twice a day and the reproductive outcome during the two...... rate (8.7% versus 20.5%, respectively; P=0.002). Doubling of the vaginal progesterone gel supplementation during frozen-thawed embryo transfer cycles decreased the early pregnancy loss rate, resulting in a significantly higher delivery rate. This study evaluated the reproductive outcome of 346 women...

  8. Quantifying the Interactions between Maternal and Fetal Heart Rates by Transfer Entropy

    Science.gov (United States)

    Marzbanrad, Faezeh; Kimura, Yoshitaka; Palaniswami, Marimuthu; Khandoker, Ahsan H.

    2015-01-01

    Evidence of the short term relationship between maternal and fetal heart rates has been found in previous studies. However there is still limited knowledge about underlying mechanisms and patterns of the coupling throughout gestation. In this study, Transfer Entropy (TE) was used to quantify directed interactions between maternal and fetal heart rates at various time delays and gestational ages. Experimental results using maternal and fetal electrocardiograms showed significant coupling for 63 out of 65 fetuses, by statistically validating against surrogate pairs. Analysis of TE showed a decrease in transfer of information from fetus to the mother with gestational age, alongside the maturation of the fetus. On the other hand, maternal to fetal TE was significantly greater in mid (26–31 weeks) and late (32–41 weeks) gestation compared to early (16–25 weeks) gestation (Mann Whitney Wilcoxon (MWW) pgestation. This difference was not observed for the fetuses with smaller RMSSD, which could be associated with the quiet sleep state. Delay in the information transfer from mother to fetus significantly decreased (p = 0.03) from mid to late gestation, implying a decrease in fetal response time. These changes occur concomitant with the maturation of the fetal sensory and autonomic nervous systems with advancing gestational age. The effect of maternal respiratory rate derived from maternal ECG was also investigated and no significant relationship was found between breathing rate and TE at any lag. In conclusion, the application of TE with delays revealed detailed information on the fetal-maternal heart rate coupling strength and latency throughout gestation, which could provide novel clinical markers of fetal development and well-being. PMID:26701122

  9. A Stirred Microchamber for Oxygen Consumption Rate Measurements With Pancreatic Islets

    Science.gov (United States)

    Papas, Klearchos K.; Pisania, Anna; Wu, Haiyan; Weir, Gordon C.; Colton, Clark K.

    2010-01-01

    Improvements in pancreatic islet transplantation for treatment of diabetes are hindered by the absence of meaningful islet quality assessment methods. Oxygen consumption rate (OCR) has previously been used to assess the quality of organs and primary tissue for transplantation. In this study, we describe and characterize a stirred microchamber for measuring OCR with small quantities of islets. The device has a titanium body with a chamber volume of about 200 µL and is magnetically stirred and water jacketed for temperature control. Oxygen partial pressure (pO2) is measured by fluorescence quenching with a fiber optic probe, and OCR is determined from the linear decrease of pO2 with time. We demonstrate that measurements can be made rapidly and with high precision. Measurements with βTC3 cells and islets show that OCR is directly proportional to the number of viable cells in mixtures of live and dead cells and correlate linearly with membrane integrity measurements made with cells that have been cultured for 24 h under various stressful conditions. PMID:17497731

  10. Comparison of pregnancy rate between fresh embryo transfers and frozen-thawed embryo transfers following ICSI treatment

    Directory of Open Access Journals (Sweden)

    Zahra Basirat

    2016-01-01

    Full Text Available Background: The use of assisted reproductive technology (ART is increasing in the world. The rate, efficacy and safety of ART are very different among countries. There is an increase in the use of intra cytoplasmic sperm injection (ICSI, single fresh embryo transfer (ET and frozen-thawed embryo transfer (FET. Objective: The objective of this study was to compare pregnancy rate in fresh ET and FET. Materials and Methods: In this retrospective cross-sectional study 1014 ICSI-ET cycles (426 fresh ET and 588 FET from 753 women undergoing ICSI treatment referred to Fatemezahra Infertility and Reproductive Health Research Center in Babol, Iran from 2008 to 2013 were reviewed. Results: There were no significant differences between biochemical pregnancy rate (23% versus 18.8%, OR 1.301; 95% CI .95-1.774, gestational sac (95.6% versus 100% in FET, OR 0.60; 95% CI 0.54-0.67, and fetal heart activity (87.2% versus 93.6% OR .46; 95% CI .16-1.32 in fresh ET and FET cycles, respectively. P< 0.05 was considered statistically significant for all measures. Conclusion: Although, the result showed no significantly difference between the fresh ET and the FET cycles, however the embryos are able to be stored for subsequent ART. Therefore, we recommend FET cycles as an option alongside the fresh ET.

  11. Endometrial thickness significantly affects clinical pregnancy and live birth rates in frozen-thawed embryo transfer cycles.

    Science.gov (United States)

    Bu, Zhiqin; Wang, Keyan; Dai, Wei; Sun, Yingpu

    2016-07-01

    In order to explore the relationship between endometrial thickness on the day of embryo transfer and pregnancy outcomes in frozen-thawed embryo transfer (FET) cycles, we retrospectively analyzed data from 2997 patients undergoing their first FET cycles from January 2010 to December 2012. All patients were divided into three groups (Group A, ≤8 mm; Group B, 9-13 mm; Group C, ≥14 mm) according to the endometrial thickness on embryo transfer day. Compared with patients in the other two groups, patients with thin endometrial thickness in Group A had significantly lower clinical pregnancy rate (33.4%, 41.3% and 45.4%, p birth rate (23.8%, 32.2% and 34.0%, p confidence interval (CI): 1.10-1.77, p birth rate (aOR: 1.50; 95% CI: 1.16-1.95, p < 0.01) were significant. We conclude that for patients undergoing FET, endometrial thickness on the embryo transfer day significantly affects IVF outcomes in cleavage embryo transfer cycles independent of other factors.

  12. Oxygen at Nanomolar Levels Reversibly Suppresses Process Rates and Gene Expression in Anammox and Denitrification in the Oxygen Minimum Zone off Northern Chile

    OpenAIRE

    Dalsgaard, Tage; Stewart, Frank J.; Thamdrup, Bo; De Brabandere, Loreto; Revsbech, Niels Peter; Ulloa, Osvaldo; Canfield, Don E.; DeLong, Edward

    2014-01-01

    A major percentage (20 to 40%) of global marine fixed-nitrogen loss occurs in oxygen minimum zones (OMZs). Concentrations of O[subscript 2] and the sensitivity of the anaerobic N[subscript 2]-producing processes of anammox and denitrification determine where this loss occurs. We studied experimentally how O[subscript 2] at nanomolar levels affects anammox and denitrification rates and the transcription of nitrogen cycle genes in the anoxic OMZ off Chile. Rates of anammox and denitrification w...

  13. The effect of gold nanoparticles on exchange processes in collision complexes of triplet and singlet oxygen molecules with excited eosin molecules

    Science.gov (United States)

    Bryukhanov, V. V.; Minaev, B. M.; Tsibul'nikova, A. V.; Slezhkin, V. A.

    2015-07-01

    We have studied exchange processes in contact complexes of triplet eosin molecules with oxygen molecules in the triplet (3Σ{/g -}) and singlet (1Δ g ) states in thin polyvinylbutyral films in the presence of gold nanoparticles. Upon resonant excitation of surface plasmons in gold nanoparticles into the absorption band of eosin molecules-singlet oxygen sensitizers-we have obtained an increase in the intensity of the delayed fluorescence and an increase in the lifetime of the dye with simultaneous quenching of the luminescence of singlet oxygen. The kinetics of the delayed fluorescence of the dye as a result of singlet-triplet annihilation of triplet eosin molecules with singlet oxygen molecules has been investigated. To compare theoretical and experimental data, we have numerically simulated energy transfer processes. Rate constants of energy transfer and of singlet-triplet annihilation, as well as quenching constants of triplet states of the dye by molecular oxygen, have been calculated. Luminescence quantum yield 1Δ g of polyvinylbutyral has been estimated. We have analyzed quantum-chemically electronic mechanisms of singlet-triplet annihilation of oxygen and eosin.

  14. Transfer Rates of Enteric Microorganisms in Recycled Water during Machine Clothes Washing▿

    Science.gov (United States)

    O'Toole, Joanne; Sinclair, Martha; Leder, Karin

    2009-01-01

    Approximately 15% of overall Australian household water usage is in the laundry; hence, a significant reduction in household drinking water demand could be achieved if potable-quality water used for clothes washing is replaced with recycled water. To investigate the microbiological safety of using recycled water in washing machines, bacteriophages MS-2 and PRD-1, Escherichia coli, and Cryptosporidium parvum oocysts were used in a series of experiments to investigate the transfer efficiency of enteric microorganisms from washing machine water to objects including hands, environmental surfaces, air, and fabric swatches. By determining the transference efficiency, it is possible to estimate the numbers of microorganisms that the user will be exposed to if recycled water with various levels of residual microorganisms is used in washing machines. Results, expressed as transfer rates to a given surface area per object, showed that the mean transfer efficiency of E. coli, bacteriophages MS-2 and PRD-1, and C. parvum oocysts from seeded water to fabric swatches ranged from 0.001% to 0.090%. Greatest exposure to microorganisms occurred through direct contact of hands with seeded water and via hand contact with contaminated fabric swatches. No microorganisms were detected in the air samples during the washing machine spin cycle, and transfer rates of bacteriophages from water to environmental surfaces were 100-fold less than from water directly to hands. Findings from this study provide relevant information that can be used to refine regulations governing recycled water and to allay public concerns about the use of recycled water. PMID:19124592

  15. Natural oxygenation of Champagne wine during ageing on lees: A metabolomics picture of hormesis.

    Science.gov (United States)

    Roullier-Gall, Chloé; Witting, Michael; Moritz, Franco; Gil, Ryan B; Goffette, Delphine; Valade, Michel; Schmitt-Kopplin, Philippe; Gougeon, Régis D

    2016-07-15

    The oxygenation of Champagne wine after 4 and 6 years of aging on lees in bottle was investigated by FTICR-MS and UPLC-Q-TOF-MS. Three levels of permeability were considered for the stoppers, ranging from 0.2 to 1.8 mg/L/year of oxygen transfer rate. Our results confirmed a good repeatability of ultra-high resolution FTICR-MS, both in terms of m/z and coefficient of variation of peak intensities among biological replicates. Vintages appeared to be the most discriminated features, and metabolite annotations suggested that the oldest wines (2006) were characterized by a higher sensitivity towards oxygenation. Within each vintage, the oxygenation mechanisms appeared to be different for low and high ingresses of oxygen, in agreement with the hormesis character of wine oxygenation. In the particular case of single variety wines and for a given level of stopper permeability, our results also showed that variety discrimination could be easily achieved among wines. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Dust appearance rates during neutral beam injection and after oxygen bake in the DIII-D tokamak

    International Nuclear Information System (INIS)

    Yu, J.H.; Smirnov, R.D.; Rudakov, D.L.

    2011-01-01

    A simple model to quantify source and sink terms of dust observed in tokamaks using fast visible imaging is presented. During neutral beam injection (NBI), dust appearance rates increase in front of the neutral beam port by up to a factor of 5. The images show dust streaming from the port box as previously settled dust becomes mobilized during beam injection. Following an oxygen bake and vent, the dust observation rate is a factor of 2 lower than that after a vessel entry vent with no oxygen bake. Detected dust levels decay on a shot-to-shot basis in a roughly exponential fashion, with a decay time of approximately 20 s of plasma exposure. Appearance rates of dust mass are estimated using assumed lognormal and power law functional forms for the dust size distribution. The two dust size distributions differ significantly on the amount the dust material carried by the largest particles, highlighting the need for further dust studies in order to make accurate forecasts to ITER.

  17. The F-16 Onboard Oxygen Generating System: Performance Evaluation and Man Rating

    Science.gov (United States)

    1983-08-01

    OXYGEN GENERATING , YSTEM: PERFORMANCE EVALUATION AND MAN RATING Thomas C. Horch , Captain, USAF Richard L. Miller, Ph.D. John B. Bomar, Jr...C. Horch , Capt, USAF; R. L. Miller, 8. CONTRACT OR GRANT NUMBER(i) Ph.D.; J. B. Bomar, Jr., Lt Col, IJSAF, BSC; J. B. Tedor, Maj, USAF, BSC; R. D...limitation (as of 1983); however, the information may no longer need protection since it is 14 years. At the time of its publication, Capt Thomas Horch

  18. Are there ethnic differences in pregnancy rates in African-American versus white women undergoing frozen blastocyst transfers?

    Science.gov (United States)

    Csokmay, John M; Hill, Micah J; Maguire, Marcy; Payson, Mark D; Fujimoto, Victor Y; Armstrong, Alicia Y

    2011-01-01

    To determine whether frozen-thawed blastocyst transfer pregnancy rates (PR) are lower in African-American compared with white women. Retrospective review of frozen blastocyst cycles. University-based assisted reproductive technology (ART) program. All patients who underwent a frozen blastocyst transfer between 2003 and 2008. None. Live birth rate. One hundred sixty-nine patients underwent transfer of a frozen-thawed blastocyst. African-American women had a higher incidence of leiomyoma (40% vs. 10%) and tubal and uterine factor infertility. There was no difference in the live birth rate for African-American patients (28.0%) compared with white patients (30.2%). Of the patients who underwent a frozen-thawed blastocyst transfer, 58% (n=98) had their fresh, autologous IVF cycle, which produced the cryopreserved blastocyst, at Walter Reed Medical Center. A higher peak serum E2 level was noted in African-American patients (5,355 pg/mL) compared with white patients (4,541 pg/mL). During the fresh cycle, the live birth rates between African-American and white patients were significantly different at 16.7% versus 39.7%, respectively. Live birth rates after frozen blastocyst transfer are not different between African-American and white women despite a fourfold higher incidence of leiomyomas in African-American women. Copyright © 2011. Published by Elsevier Inc.

  19. Gas Transfer in Cellularized Collagen-Membrane Gas Exchange Devices.

    Science.gov (United States)

    Lo, Justin H; Bassett, Erik K; Penson, Elliot J N; Hoganson, David M; Vacanti, Joseph P

    2015-08-01

    Chronic lower respiratory disease is highly prevalent in the United States, and there remains a need for alternatives to lung transplant for patients who progress to end-stage lung disease. Portable or implantable gas oxygenators based on microfluidic technologies can address this need, provided they operate both efficiently and biocompatibly. Incorporating biomimetic materials into such devices can help replicate native gas exchange function and additionally support cellular components. In this work, we have developed microfluidic devices that enable blood gas exchange across ultra-thin collagen membranes (as thin as 2 μm). Endothelial, stromal, and parenchymal cells readily adhere to these membranes, and long-term culture with cellular components results in remodeling, reflected by reduced membrane thickness. Functionally, acellular collagen-membrane lung devices can mediate effective gas exchange up to ∼288 mL/min/m(2) of oxygen and ∼685 mL/min/m(2) of carbon dioxide, approaching the gas exchange efficiency noted in the native lung. Testing several configurations of lung devices to explore various physical parameters of the device design, we concluded that thinner membranes and longer gas exchange distances result in improved hemoglobin saturation and increases in pO2. However, in the design space tested, these effects are relatively small compared to the improvement in overall oxygen and carbon dioxide transfer by increasing the blood flow rate. Finally, devices cultured with endothelial and parenchymal cells achieved similar gas exchange rates compared with acellular devices. Biomimetic blood oxygenator design opens the possibility of creating portable or implantable microfluidic devices that achieve efficient gas transfer while also maintaining physiologic conditions.

  20. Charge transfer through single molecule contacts: How reliable are rate descriptions?

    Directory of Open Access Journals (Sweden)

    Denis Kast

    2011-08-01

    Full Text Available Background: The trend for the fabrication of electrical circuits with nanoscale dimensions has led to impressive progress in the field of molecular electronics in the last decade. However, a theoretical description of molecular contacts as the building blocks of future devices is challenging, as it has to combine the properties of Fermi liquids in the leads with charge and phonon degrees of freedom on the molecule. Outside of ab initio schemes for specific set-ups, generic models reveal the characteristics of transport processes. Particularly appealing are descriptions based on transfer rates successfully used in other contexts such as mesoscopic physics and intramolecular electron transfer. However, a detailed analysis of this scheme in comparison with numerically exact solutions is still elusive.Results: We show that a formulation in terms of transfer rates provides a quantitatively accurate description even in domains of parameter space where strictly it is expected to fail, e.g., at lower temperatures. Typically, intramolecular phonons are distributed according to a voltage driven steady state that can only roughly be captured by a thermal distribution with an effective elevated temperature (heating. An extension of a master equation for the charge–phonon complex, to effectively include the impact of off-diagonal elements of the reduced density matrix, provides very accurate solutions even for stronger electron–phonon coupling.Conclusion: Rate descriptions and master equations offer a versatile model to describe and understand charge transfer processes through molecular junctions. Such methods are computationally orders of magnitude less expensive than elaborate numerical simulations that, however, provide exact solutions as benchmarks. Adjustable parameters obtained, e.g., from ab initio calculations allow for the treatment of various realizations. Even though not as rigorously formulated as, e.g., nonequilibrium Green’s function

  1. Physiology of Aspergillus niger in Oxygen-Limited Continuous Cultures: Influence of Aeration, Carbon Source Concentration and Dilution Rate

    DEFF Research Database (Denmark)

    Diano, Audrey; Peeters, J.; Dynesen, Jens Østergaard

    2009-01-01

    In industrial production of enzymes using the filamentous fungus Aspergilhis niger supply of sufficient oxygen is often a limitation, resulting in the formation of by-products such as polyols. In order to identify the mechanisms behind formation of the different by-products we studied the effect...... of low oxygen availability, at different carbon source concentrations and at different specific growth rates, on the metabolism of A. niger, using continuous cultures. The results show that there is an increase in the production of tricarboxylic acid (TCA) cycle intermediates at low oxygen concentrations...

  2. Seasonal transfer of oxygen isotopes from precipitation and soil to the tree ring: source water versus needle water enrichment.

    Science.gov (United States)

    Treydte, Kerstin; Boda, Sonja; Graf Pannatier, Elisabeth; Fonti, Patrick; Frank, David; Ullrich, Bastian; Saurer, Matthias; Siegwolf, Rolf; Battipaglia, Giovanna; Werner, Willy; Gessler, Arthur

    2014-05-01

    For accurate interpretation of oxygen isotopes in tree rings (δ(18) O), it is necessary to disentangle the mechanisms underlying the variations in the tree's internal water cycle and to understand the transfer of source versus leaf water δ(18) O to phloem sugars and stem wood. We studied the seasonal transfer of oxygen isotopes from precipitation and soil water through the xylem, needles and phloem to the tree rings of Larix decidua at two alpine sites in the Lötschental (Switzerland). Weekly resolved δ(18) O records of precipitation, soil water, xylem and needle water, phloem organic matter and tree rings were developed. Week-to-week variations in needle-water (18) O enrichment were strongly controlled by weather conditions during the growing season. These short-term variations were, however, not significantly fingerprinted in tree-ring δ(18) O. Instead, seasonal trends in tree-ring δ(18) O predominantly mirrored trends in the source water, including recent precipitation and soil water pools. Modelling results support these findings: seasonal tree-ring δ(18) O variations are captured best when the week-to-week variations of the leaf water signal are suppressed. Our results suggest that climate signals in tree-ring δ(18) O variations should be strongest at temperate sites with humid conditions and precipitation maxima during the growing season. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  3. Embryo transfer simulation improves pregnancy rates and decreases time to proficiency in Reproductive Endocrinology and Infertility fellow embryo transfers.

    Science.gov (United States)

    Heitmann, Ryan J; Hill, Micah J; Csokmay, John M; Pilgrim, Justin; DeCherney, Alan H; Deering, Shad

    2017-05-01

    To design and evaluate an ET simulator to train Reproductive Endocrinology and Infertility (REI) fellows' techniques of ET. Simulation model development and retrospective cohort analysis. Not applicable. Patients undergoing IVF. Simulation model evaluation and implementation of ET simulation training. Pregnancy rates. The REI fellow and faculty evaluation responses (n = 19/21 [90%]) of the model demonstrated realistic characteristics, with evaluators concluding the model was suitable for training in almost all evaluated areas. A total of 12 REI fellows who performed ET were analyzed: 6 before ET trainer and 6 after ET trainer. Pregnancy rates were 31% in the initial 10 ETs per fellow before simulator vs. 46% after simulator. One of six pre-ET trainer fellows (17%) had pregnancy rates ≥40% in their first 10 ETs; whereas four of six post-ET trainer fellows had pregnancy rates ≥40% in their first 10 ETs. The average number of ETs to obtain >40% pregnancy efficiency was 27 ETs before trainer vs. 15 ETs after trainer. Pregnancy rates were similar in the two groups after 20 ETs, and collective terminal pregnancy rates were >50% after 40 ETs. Embryo transfer simulation improved REI fellow pregnancy rates in their first 10 transfers and led to a more rapid ET proficiency. These data suggest potential value in adopting ET simulation, even in programs with a robust history of live ET in fellowship training. Published by Elsevier Inc.

  4. Effects of oxygen and catalyst on tetraphenylborate decomposition rate

    International Nuclear Information System (INIS)

    Walker, D.D.

    1999-01-01

    Previous studies indicate that palladium catalyzes rapid decomposition of alkaline tetraphenylborate slurries. Oxygen inhibits the reaction at low temperature (25 C), presumably by preventing activation of the catalyst. The present study investigated oxygen's inhibiting effectiveness at higher temperature (45 C) and catalyst concentrations

  5. [Evaluation of heart impact in the 100 m extreme intensity sport using near-infrared non-invasive muscle oxygen detecting device and sports heart rate detection technology].

    Science.gov (United States)

    Wang, Pei-Yong; Long, Fei-Xiao; Fu, Lan-Ying; Li, Yue; Ding, Hai-Shu; Qu, An-Lian; Zhou, Xiao-Ping

    2010-02-01

    Using continuous two wavelength near-infrared technology to detect the variation in the consistency of oxygen hemoglobin in the muscle and the sports heart rate wireless real time collection technology, we devised the real time muscle tissue oxygenation and instantaneous heart rate experiment scheme and implemented it for the process of the 100 m run with two parameters given simultaneously. The experiment shows that the concentration of the oxygen hemoglobin in the muscle tissue continues decreasing after the end of the 100 m run, and the time interval between the moment when the concentration of the oxygen hemoglobin attains the minimum value and the moment when the athletes finish the 100 m run is (6.65 +/- 1.10) sec; while the heart rate continues increasing after the end of the 100 m run, and the time interval between the moment when the heart rate attains the maximum value and the moment when the athletes finish the 100 m run is (8.00 +/- 1.57) sec. The results show that the two wavelength near-infrared tissue oxygenation detection technology and the sports heart rate real time collection equipment can accurately measure the sports tissue oxygenation and the heart rate in the extreme intensity sport, and reveal the process of muscle oxygen transportation and consumption and its dynamic character with the heart rate in the extreme intensity sport.

  6. Long-range electron transfer in porphyrin-containing [2]-rotaxanes: tuning the rate by metal cation coordination.

    Science.gov (United States)

    Andersson, Mikael; Linke, Myriam; Chambron, Jean-Claude; Davidsson, Jan; Heitz, Valérie; Hammarström, Leif; Sauvage, Jean-Pierre

    2002-04-24

    A series of [2]-rotaxanes has been synthesized in which two Zn(II)-porphyrins (ZnP) electron donors were attached as stoppers on the rod. A macrocycle attached to a Au(III)-porphyrin (AuP+) acceptor was threaded on the rod. By selective excitation of either porphyrin, we could induce an electron transfer from the ZnP to the AuP+ unit that generated the same ZnP*+-AuP* charge-transfer state irrespective of which porphyrin was excited. Although the reactants were linked only by mechanical or coordination bonds, electron-transfer rate constants up to 1.2x10(10) x s(-1) were obtained over a 15-17 A edge-to-edge distance between the porphyrins. The resulting charge-transfer state had a relatively long lifetime of 10-40 ns and was formed in high yield (>80%) in most cases. By a simple variation of the link between the reactants, viz. a coordination of the phenanthroline units on the rotaxane rod and ring by either Ag+ or Cu+, we could enhance the electron-transfer rate from the ZnP to the excited 3AuP+. We interpret our data in terms of an enhanced superexchange mechanism with Ag+ and a change to a stepwise hopping mechanism with Cu+, involving the oxidized Cu(phen)22+ unit as a real intermediate. When the ZnP unit was excited instead, electron transfer from the excited 1ZnP to AuP+ was not affected, or even slowed, by Ag+ or Cu+. We discuss this asymmetry in terms of the different orbitals involved in mediating the reaction in an electron- and a hole-transfer mechanism. Our results show the possibility to tune the rates of electron transfer between noncovalently linked reactants by a convenient modification of the link. The different effect of Ag+ and Cu+ on the rate with ZnP and AuP+ excitation shows an additional possibility to control the electron-transfer reactions by selective excitation. We also found that coordination of the Cu+ introduced an energy-transfer reaction from 1ZnP to Cu(phen)2+ (k = 5.1x10(9) x s(-1)) that proceeded in competition with electron

  7. Comparison of experimental methods for determination of the volumetric mass transfer coefficient in fermentation processes

    Energy Technology Data Exchange (ETDEWEB)

    Tobajas, M.; Garcia-Calvo, E. [Dept. de Ingenieria Quimica, Univ. de Alcala, Alcala de Henares (Spain)

    2000-05-01

    Mass transfer in bioreactors has been examined. In the present work, dynamic methods are used for the determination of K{sub L}a values for water, model media and a fermentation broth (Candida utilis) in an airlift reactor. The conventional dynamic method is applied at the end of the microbial process in order to avoid an alteration in the metabolism of the microorganisms. New dynamic methods are used to determine K{sub L}a in an airlift reactor during the microbial growth of Candida utilis on glucose. One of the methods is based on the continuous measurement of carbon dioxide production while the other method is based on the relationship between the oxygen transfer and biomass growth rates. These methods of determining K{sub L}a does not interfere with the microorganisms action. A theoretical mass transfer model has been used for K{sub L}a estimation for the systems described above. Some differences between calculated and measured values are found for fermentation processes due to the model is developed for two-phase air-water systems. Nevertheless, the average deviation between the predicted values and those obtained from the relationship between oxygen transfer and biomass production rates are lower than 25% in any case. (orig.)

  8. Fluidic oscillator-mediated microbubble generation to provide cost effective mass transfer and mixing efficiency to the wastewater treatment plants.

    Science.gov (United States)

    Rehman, Fahad; Medley, Gareth J D; Bandulasena, Hemaka; Zimmerman, William B J

    2015-02-01

    Aeration is one of the most energy intensive processes in the waste water treatment plants and any improvement in it is likely to enhance the overall efficiency of the overall process. In the current study, a fluidic oscillator has been used to produce microbubbles in the order of 100 μm in diameter by oscillating the inlet gas stream to a pair of membrane diffusers. Volumetric mass transfer coefficient was measured for steady state flow and oscillatory flow in the range of 40-100l/min. The highest improvement of 55% was observed at the flow rates of 60, 90 and 100l/min respectively. Standard oxygen transfer rate and efficiency were also calculated. Both standard oxygen transfer rate and efficiency were found to be considerably higher under oscillatory air flow conditions compared to steady state airflow. The bubble size distributions and bubble densities were measured using an acoustic bubble spectrometer and confirmed production of monodisperse bubbles with approximately 100 μm diameters with fluidic oscillation. The higher number density of microbubbles under oscillatory flow indicated the effect of the fluidic oscillation in microbubble production. Visual observations and dissolved oxygen measurements suggested that the bubble cloud generated by the fluidic oscillator was sufficient enough to provide good mixing and to maintain uniform aerobic conditions. Overall, improved mass transfer coefficients, mixing efficiency and energy efficiency of the novel microbubble generation method could offer significant savings to the water treatment plants as well as reduction in the carbon footprint. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. A brief clinical case of monitoring of oxygenator performance and patient-machine interdependency during prolonged veno-venous extracorporeal membrane oxygenation.

    Science.gov (United States)

    Belliato, Mirko; Degani, Antonella; Buffa, Antonino; Sciutti, Fabio; Pagani, Michele; Pellegrini, Carlo; Iotti, Giorgio Antonio

    2017-10-01

    Monitoring veno-venous extracorporeal membrane oxygenation (vvECMO) during 76 days of continuous support in a 42-years old patient with end-stage pulmonary disease, listed for double-lung transplantation. Applying a new monitor (Landing ® , Eurosets, Medolla, Italy) and describing how measured and calculated parameters can be used to understand the variable interdependency between artificial membrane lung (ML) and patient native lung (NL). During vvECMO, in order to understand how the respiratory function is shared between ML and NL, ideally we should obtain data about oxygen transfer and CO 2 removal, both by ML and NL. Measurements for NL can be made on the mechanical ventilator. Measurements for ML are typically made from gas analysis on blood samples drawn from the ECMO system before and after the oxygenator, and therefore are non-continuous. Differently, the Landing monitor provides a continuous measurement of the oxygen transfer from the ML, combined with hemoglobin level, saturation of drained blood and saturation of reinfused blood. Moreover, the Landing monitor provides hemodynamics data about circulation through the ECMO system, with blood flow, pre-oxygenator pressure and post-oxygenator pressure. Of note, measurements include the drain negative pressure, whose monitoring may be particularly useful to prevent hemolysis. Real-time monitoring of vvECMO provides data helpful to understand the complex picture of a patient with severely damaged lungs on one side and an artificial lung on the other side. Data from vvECMO monitoring may help to adapt the settings of both mechanical ventilator and vvECMO. Data about oxygen transfer by the oxygenator are important to evaluate the performance of the device and may help to avoid unnecessary replacements, thus reducing risks and costs.

  10. Influence of dissolved oxygen on the nitrification kinetics in a circulating bed biofilm reactor

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, R.; Melo, L.F. [University of Minho, Braga (Portugal). Dept. Bioengineering; Lazarova, V.; Manem, J. [Centre of International Research for Water and Environment (CIRSEE), Lyonnaise des Eaux, Le Pecq (France)

    1998-12-01

    The influence of dissolved oxygen concentration on the nitrification kinetics was studied in the circulating bed reactor (CBR). The study was partly performed at laboratory scale with synthetic water, and partly at pilot scale with secondary effluent as feed water. The nitrification kinetics of the laboratory CBR as a function of the oxygen concentration can be described according to the half order and zero order rate equations of the diffusion-reaction model applied to porous catalysts. When oxygen was the rate limiting substrate, the nitrification rate was close to a half order function of the oxygen concentration. The average oxygen diffusion coefficient estimated by fitting the diffusion-reaction model to the experimental results was around 66% of the respective value in water. The experimental results showed that either the ammonia or the oxygen concentration could be limiting for the nitrification kinetics. The latter occurred for an oxygen to ammonia concentration ratio below 1.5-2 gO{sub 2}/gN-NH{sub 4}{sup +} for both laboratory and pilot scale reactors. The volumetric oxygen mass transfer coefficient (k{sub L}a) determined in the laboratory scale reactor was 0.017 s{sup -1} for a superficial air velocity of 0.02 m s{sup -1}, and the one determined in the pilot scale reactor was 0.040 s{sup -1} for a superficial air velocity of 0.031 m s{sup -1}. The k{sub L}a for the pilot scale reactor did not change significantly after biofilm development, compared to the value measured without biofilm. (orig.) With 7 figs., 5 tabs., 24 refs.

  11. [Poverty, public transfers and health: An analysis on self-rated health of social benefit recipients in Germany].

    Science.gov (United States)

    Pförtner, T-K; Schumann, N

    2016-09-01

    Prevention and reduction of poverty are key elements of social welfare policy in Germany. This study is the first analysis of self-rated health of individuals that escape poverty by benefiting form public transfers. Analyses are based on the German Socio-economic Panel (GSOEP) of 2010. Self-rated health was based on subjective assessment of general health status. Subjects were directly asked about receipt of public transfers. Income poverty was based on the equalized disposable income and is applied to a threshold of 60% of the median-based average income. We analyzed the association between self-rated health and pre- and post-transfer poverty by means of descriptive analyses and binary logistic regression. After adjusting for age, we found a significantly higher risk of poor self-rated health among those who escaped income poverty due to the receipt of social transfers compared to others (ORWomen: 1.85; 95%-CI: 1.27-2.69; ORMen: 2.57; 95%-CI: 1.63-4.05), in particular to those at risk of post-transfer poverty. These poverty-related inequalities in health were predominantly explained by nationality, occupational status, household type and long-term care within the household. This study provides first evidence that the receipt of public transfers is associated with increased risk of poor health in the light of impending income-poverty. This study adds to the current debate about the social and health implications of public transfers in the relationship between poverty and health. © Georg Thieme Verlag KG Stuttgart · New York.

  12. The log mean heat transfer rate method of heat exchanger considering the influence of heat radiation

    International Nuclear Information System (INIS)

    Wong, K.-L.; Ke, M.-T.; Ku, S.-S.

    2009-01-01

    The log mean temperature difference (LMTD) method is conventionally used to calculate the total heat transfer rate of heat exchangers. Because the heat radiation equation contains the 4th order exponential of temperature which is very complicate in calculations, thus LMTD method neglects the influence of heat radiation. From the recent investigation of a circular duct in some practical situations, it is found that even in the situation of the temperature difference between outer duct surface and surrounding is low to 1 deg. C, the heat radiation effect can not be ignored in the situations of lower ambient convective heat coefficient and greater surface emissivities. In this investigation, the log mean heat transfer rate (LMHTR) method which considering the influence of heat radiation, is developed to calculate the total heat transfer rate of heat exchangers.

  13. Generation of Triplet Excited States via Photoinduced Electron Transfer in meso-anthra-BODIPY: Fluorogenic Response toward Singlet Oxygen in Solution and in Vitro

    KAUST Repository

    Filatov, Mikhail A.; Karuthedath, Safakath; Polestshuk, Pavel M.; Savoie, Huguette; Flanagan, Keith J.; Sy, Cindy; Sitte, Elisabeth; Telitchko, Maxime; Laquai, Fré dé ric; Boyle, Ross W.; Senge, Mathias O.

    2017-01-01

    Heavy atom-free BODIPY-anthracene dyads (BADs) generate locally excited triplet states by way of photoinduced electron transfer (PeT), followed by recombination of the resulting charge-separated states (CSS). Subsequent quenching of the triplet states by molecular oxygen produces singlet oxygen (1O2), which reacts with the anthracene moiety yielding highly fluorescent species. The steric demand of the alkyl substituents in the BODIPY subunit defines the site of 1O2 addition. Novel bis- and tetraepoxides and bicyclic acetal products, arising from rearrangements of anthracene endoperoxides were isolated and characterized. 1O2 generation by BADs in living cells enables visualization of the dyads distribution, promising new imaging applications.

  14. Generation of Triplet Excited States via Photoinduced Electron Transfer in meso-anthra-BODIPY: Fluorogenic Response toward Singlet Oxygen in Solution and in Vitro

    KAUST Repository

    Filatov, Mikhail A.

    2017-04-14

    Heavy atom-free BODIPY-anthracene dyads (BADs) generate locally excited triplet states by way of photoinduced electron transfer (PeT), followed by recombination of the resulting charge-separated states (CSS). Subsequent quenching of the triplet states by molecular oxygen produces singlet oxygen (1O2), which reacts with the anthracene moiety yielding highly fluorescent species. The steric demand of the alkyl substituents in the BODIPY subunit defines the site of 1O2 addition. Novel bis- and tetraepoxides and bicyclic acetal products, arising from rearrangements of anthracene endoperoxides were isolated and characterized. 1O2 generation by BADs in living cells enables visualization of the dyads distribution, promising new imaging applications.

  15. Response of Microbial Soil Carbon Mineralization Rates to Oxygen Limitations

    Science.gov (United States)

    Keiluweit, M.; Denney, A.; Nico, P. S.; Fendorf, S. E.

    2014-12-01

    The rate of soil organic matter (SOM) mineralization is known to be controlled by climatic factors as well as molecular structure, mineral-organic associations, and physical protection. What remains elusive is to what extent oxygen (O2) limitations impact overall rates of microbial SOM mineralization (oxidation) in soils. Even within upland soils that are aerobic in bulk, factors limiting O2 diffusion such as texture and soil moisture can result in an abundance of anaerobic microsites in the interior of soil aggregates. Variation in ensuing anaerobic respiration pathways can further impact SOM mineralization rates. Using a combination of (first) aggregate model systems and (second) manipulations of intact field samples, we show how limitations on diffusion and carbon bioavailability interact to impose anaerobic conditions and associated respiration constraints on SOM mineralization rates. In model aggregates, we examined how particle size (soil texture) and amount of dissolved organic carbon (bioavailable carbon) affect O2 availability and distribution. Monitoring electron acceptor profiles (O2, NO3-, Mn and Fe) and SOM transformations (dissolved, particulate, mineral-associated pools) across the resulting redox gradients, we then determined the distribution of operative microbial metabolisms and their cumulative impact on SOM mineralization rates. Our results show that anaerobic conditions decrease SOM mineralization rates overall, but those are partially offset by the concurrent increases in SOM bioavailability due to transformations of protective mineral phases. In intact soil aggregates collected from soils varying in texture and SOM content, we mapped the spatial distribution of anaerobic microsites. Optode imaging, microsensor profiling and 3D tomography revealed that soil texture regulates overall O2 availability in aggregate interiors, while particulate SOM in biopores appears to control the fine-scale distribution of anaerobic microsites. Collectively, our

  16. High cell density fed-batch fermentations for lipase production: feeding strategies and oxygen transfer.

    Science.gov (United States)

    Salehmin, M N I; Annuar, M S M; Chisti, Y

    2013-11-01

    This review is focused on the production of microbial lipases by high cell density fermentation. Lipases are among the most widely used of the enzyme catalysts. Although lipases are produced by animals and plants, industrial lipases are sourced almost exclusively from microorganisms. Many of the commercial lipases are produced using recombinant species. Microbial lipases are mostly produced by batch and fed-batch fermentation. Lipases are generally secreted by the cell into the extracellular environment. Thus, a crude preparation of lipases can be obtained by removing the microbial cells from the fermentation broth. This crude cell-free broth may be further concentrated and used as is, or lipases may be purified from it to various levels. For many large volume applications, lipases must be produced at extremely low cost. High cell density fermentation is a promising method for low-cost production: it allows a high concentration of the biomass and the enzyme to be attained rapidly and this eases the downstream recovery of the enzyme. High density fermentation enhances enzyme productivity compared with the traditional submerged culture batch fermentation. In production of enzymes, a high cell density is generally achieved through fed-batch operation, not through perfusion culture which is cumbersome. The feeding strategies used in fed-batch fermentations for producing lipases and the implications of these strategies are discussed. Most lipase-producing microbial fermentations require oxygen. Oxygen transfer in such fermentations is discussed.

  17. Morphological Change and Decreasing Transfer Rate of Biofilm-Featured Listeria monocytogenes EGDe.

    Science.gov (United States)

    Lee, Yuejia; Wang, Chinling

    2017-03-01

    Listeria monocytogenes , a lethal foodborne pathogen, has the ability to resist the hostile food processing environment and thus frequently contaminates ready-to-eat foods during processing. It is commonly accepted that the tendency of L. monocytogenes ' to generate biofilms on various surfaces enhances its resistance to the harshness of the food processing environment. However, the role of biofilm formation in the transferability of L. monocytogenes EGDe remains controversial. We examined the growth of Listeria biofilms on stainless steel surfaces and their effect on the transferability of L. monocytogenes EGDe. The experiments were a factorial 2 × 2 design with at least three biological replicates. Through scanning electron microscopy, a mature biofilm with intensive aggregates of cells was observed on the surface of stainless steel after 3 or 5 days of incubation, depending on the initial level of inoculation. During biofilm development, L. monocytogenes EGDe carried out binary fission vigorously before a mature biofilm was formed and subsequently changed its cellular morphology from rod shaped to sphere shaped. Furthermore, static biofilm, which was formed after 3 days of incubation at 25°C, significantly inhibited the transfer rate of L. monocytogenes EGDe from stainless steel blades to 15 bologna slices. During 7 days of storage at 4°C, however, bacterial growth rate was not significantly impacted by whether bacteria were transferred from biofilm and the initial concentrations of transferred bacteria on the slice. In conclusion, this study is the first to report a distinct change in morphology of L. monocytogenes EGDe at the late stage of biofilm formation. More importantly, once food is contaminated by L. monocytogenes EGDe, contamination proceeds independently of biofilm development and the initial level of contamination when food is stored at 4°C, even if contamination with L. monocytogenes EGDe was initially undetectable before storage.

  18. Rate of Iron Transfer Through the Horse Spleen Ferritin Shell Determined by the Rate of Formation of Prussian Blue and Fe-desferrioxamine Within the Ferritin Cavity

    Science.gov (United States)

    Zhang, Bo; Watt, Richard K.; Galvez, Natividad; Dominquez-Vera, Jose M.; Watt, Gerald D.

    2005-01-01

    Iron (2+ and 3+) is believed to transfer through the three-fold channels in the ferritin shell during iron deposition and release in animal ferritins. However, the rate of iron transit in and out through these channels has not been reported. The recent synthesis of [Fe(CN)(sub 6)](3-), Prussian Blue (PB) and desferrioxamine (DES) all trapped within the horse spleen ferritin (HoSF) interior makes these measurements feasible. We report the rate of Fe(2+) penetrating into the ferritin interior by adding external Fe(2+) to [Fe(CN)(sub 6)](3-) encapsulated in the HoSF interior and measuring the rate of formation of the resulting encapsulated PB. The rate at which Fe(2+) reacts with [Fe(CN)(sub 6)](3-) in the HoSF interior is much slower than the formation of free PB in solution and is proceeded by a lag period. We assume this lag period and the difference in rate represent the transfer of Fe(2+) through the HoSF protein shell. The calculated diffusion coefficient, D approx. 5.8 x 10(exp -20) square meters per second corresponds to the measured lag time of 10-20 s before PB forms within the HoSF interior. The activation energy for Fe(2+) transfer from the outside solution through the protein shell was determined to be 52.9 kJ/mol by conducting the reactions at 10 to approximately 40 C. The reaction of Fe(3+) with encapsulated [Fe(CN)6](4-) also readily forms PB in the HoSF interior, but the rate is faster than the corresponding Fe(2+) reaction. The rate for Fe(3+) transfer through the ferritin shell was confirmed by measuring the rate of the formation of Fe-DES inside HoSF and an activation energy of 58.4 kJ/mol was determined. An attempt was made to determine the rate of iron (2+ and 3+) transit out from the ferritin interior by adding excess bipyridine or DES to PB trapped within the HoSF interior. However, the reactions are slow and occur at almost identical rates for free and HoSF-encapsulated PB, indicating that the transfer of iron from the interior through the

  19. Pattern transfer with stabilized nanoparticle etch masks

    International Nuclear Information System (INIS)

    Hogg, Charles R; Majetich, Sara A; Picard, Yoosuf N; Narasimhan, Amrit; Bain, James A

    2013-01-01

    Self-assembled nanoparticle monolayer arrays are used as an etch mask for pattern transfer into Si and SiO x substrates. Crack formation within the array is prevented by electron beam curing to fix the nanoparticles to the substrate, followed by a brief oxygen plasma to remove excess carbon. This leaves a dot array of nanoparticle cores with a minimum gap of 2 nm. Deposition and liftoff can transform the dot array mask into an antidot mask, where the gap is determined by the nanoparticle core diameter. Reactive ion etching is used to transfer the dot and antidot patterns into the substrate. The effect of the gap size on the etching rate is modeled and compared with the experimental results. (paper)

  20. Radionuclide mass transfer rates from a pinhole in a waste container for an inventory-limited and a constant concentration source

    International Nuclear Information System (INIS)

    LeNeveu, D.M.

    1996-03-01

    Analytical solutions for transient and steady state diffusive mass transfer rates from a pinhole in a waste container are developed for constant concentration and inventory-limited source conditions. Mass transport in three media are considered, inside the pinhole (medium 2), outside the container (medium 3) and inside the container (medium 1). Simple equations are developed for radionuclide mass transfer rates from a pinhole. It is shown that the medium with the largest mass transfer resistance need only be considered to provide a conservative estimate of mass transfer rates. (author) 11 refs., 3 figs

  1. Using rates of oxygen and nitrate reduction to map the subsurface distribution of groundwater denitrification

    Science.gov (United States)

    Kolbe, T.; De Dreuzy, J. R.; Abbott, B. W.; Aquilina, L.; Babey, T.; Green, C. T.; Fleckenstein, J. H.; Labasque, T.; Laverman, A.; Marçais, J.; Peiffer, S.; Thomas, Z.; Pinay, G.

    2017-12-01

    Widespread fertilizer application over the last 70 years has caused serious ecological and socioeconomic problems in aquatic and estuarine ecosystems. When surplus nitrogen leaches as nitrate (a major groundwater pollutant) to the aquifer, complex flow dynamics and naturally occurring degradation processes control its transport. Under the conditions of depleted oxygen and abundant electron donors, microorganisms reduce NO3- to N2 (denitrification). Denitrification rates vary over orders of magnitude among sites within the same aquifer, complicating estimation of denitrification capacity at the catchment scale. Because it is impractical or impossible to access the subsurface to directly quantify denitrification rates, reactivity is often assumed to occur continuous along flowlines, potentially resulting in substantial over- or underestimation of denitrification. Here we investigated denitrification in an unconfined crystalline aquifer in western France using a combination of common tracers (chlorofluorocarbons, O2, NO3-, and N2) measured in 16 wells to inform a time-based modeling approach. We found that spatially variable denitrification rates arise from the intersection of nitrate rich water with reactive zones defined by the abundance of electron donors (primarily pyrite). Furthermore, based on observed reaction rates of the sequential reduction of oxygen and nitrate, we present a general framework to estimate the location and intensity of the reactive zone in aquifers. Accounting for the vertical distribution of reaction rates results in large differences in estimations of net denitrification rates that assume homogeneous reactivity. This new framework provides a tractable approach for quantifying catchment and regional groundwater denitrification rates that could be used to improve estimation of groundwater resilience to nitrate pollution and develop more realistic management strategies.

  2. On the rate of triplet excitation transfer in the diffuse limit

    International Nuclear Information System (INIS)

    Davidovich, M.A.; Knox, R.S.

    1979-11-01

    The usefulness of spectral data in estimating intermolecular triplet excitation transfer rates in found to be rather limited and to depend explicitly on the mechaisms which allow the optical transitions. Necessary conditions for the validity of such use of spectra are given, and the otherwise required correction factors are discussed and estimated. (Author) [pt

  3. Heme biomolecule as redox mediator and oxygen shuttle for efficient charging of lithium-oxygen batteries

    Science.gov (United States)

    Ryu, Won-Hee; Gittleson, Forrest S.; Thomsen, Julianne M.; Li, Jinyang; Schwab, Mark J.; Brudvig, Gary W.; Taylor, André D.

    2016-01-01

    One of the greatest challenges with lithium-oxygen batteries involves identifying catalysts that facilitate the growth and evolution of cathode species on an oxygen electrode. Heterogeneous solid catalysts cannot adequately address the problematic overpotentials when the surfaces become passivated. However, there exists a class of biomolecules which have been designed by nature to guide complex solution-based oxygen chemistries. Here, we show that the heme molecule, a common porphyrin cofactor in blood, can function as a soluble redox catalyst and oxygen shuttle for efficient oxygen evolution in non-aqueous Li-O2 batteries. The heme's oxygen binding capability facilitates battery recharge by accepting and releasing dissociated oxygen species while benefiting charge transfer with the cathode. We reveal the chemical change of heme redox molecules where synergy exists with the electrolyte species. This study brings focus to the rational design of solution-based catalysts and suggests a sustainable cross-link between biomolecules and advanced energy storage. PMID:27759005

  4. Maximum Plant Uptakes for Water, Nutrients, and Oxygen Are Not Always Met by Irrigation Rate and Distribution in Water-based Cultivation Systems.

    Science.gov (United States)

    Blok, Chris; Jackson, Brian E; Guo, Xianfeng; de Visser, Pieter H B; Marcelis, Leo F M

    2017-01-01

    Growing on rooting media other than soils in situ -i.e., substrate-based growing- allows for higher yields than soil-based growing as transport rates of water, nutrients, and oxygen in substrate surpass those in soil. Possibly water-based growing allows for even higher yields as transport rates of water and nutrients in water surpass those in substrate, even though the transport of oxygen may be more complex. Transport rates can only limit growth when they are below a rate corresponding to maximum plant uptake. Our first objective was to compare Chrysanthemum growth performance for three water-based growing systems with different irrigation. We compared; multi-point irrigation into a pond (DeepFlow); one-point irrigation resulting in a thin film of running water (NutrientFlow) and multi-point irrigation as droplets through air (Aeroponic). Second objective was to compare press pots as propagation medium with nutrient solution as propagation medium. The comparison included DeepFlow water-rooted cuttings with either the stem 1 cm into the nutrient solution or with the stem 1 cm above the nutrient solution. Measurements included fresh weight, dry weight, length, water supply, nutrient supply, and oxygen levels. To account for differences in radiation sum received, crop performance was evaluated with Radiation Use Efficiency (RUE) expressed as dry weight over sum of Photosynthetically Active Radiation. The reference, DeepFlow with substrate-based propagation, showed the highest RUE, even while the oxygen supply provided by irrigation was potentially growth limiting. DeepFlow with water-based propagation showed 15-17% lower RUEs than the reference. NutrientFlow showed 8% lower RUE than the reference, in combination with potentially limiting irrigation supply of nutrients and oxygen. Aeroponic showed RUE levels similar to the reference and Aeroponic had non-limiting irrigation supply of water, nutrients, and oxygen. Water-based propagation affected the subsequent

  5. Oxygen consumption rate and Na+/K+-ATPase activity in early developmental stages of the sea urchin Paracentrotus lividus Lam.

    Science.gov (United States)

    Tomšić, Sanja; Stanković, Suzana; Lucu, Čedomil

    2011-09-01

    Changes in oxygen consumption rate and Na+/K+-ATPase activity during early development were studied in the sea urchin Paracentrotus lividus Lam. The oxygen consumption rate increased from 0.12 μmol O2 mg protein-1 h-1 in unfertilized eggs to 0.38 μmol O2 mg protein-1 h-1 25 min after fertilization. Specific activity of the Na+/K+-ATPase was significantly stimulated after fertilization, ranging up to 1.07 μmol Pi h-1 mg protein-1 in the late blastula stage and slightly lower values in the early and late pluteus stages.

  6. Incremental rate of prefrontal oxygenation determines performance speed during cognitive Stroop test: the effect of ageing.

    Science.gov (United States)

    Endo, Kana; Liang, Nan; Idesako, Mitsuhiro; Ishii, Kei; Matsukawa, Kanji

    2018-02-19

    Cognitive function declines with age. The underlying mechanisms responsible for the deterioration of cognitive performance, however, remain poorly understood. We hypothesized that an incremental rate of prefrontal oxygenation during a cognitive Stroop test decreases in progress of ageing, resulting in a slowdown of cognitive performance. To test this hypothesis, we identified, using multichannel near-infrared spectroscopy, the characteristics of the oxygenated-hemoglobin concentration (Oxy-Hb) responses of the prefrontal cortex to both incongruent Stroop and congruent word-reading test. Spatial distributions of the significant changes in the three components (initial slope, peak amplitude, and area under the curve) of the Oxy-Hb response were compared between young and elderly subjects. The Stroop interference time (as a difference in total periods for executing Stroop and word-reading test, respectively) approximately doubled in elderly as compared to young subjects. The Oxy-Hb in the rostrolateral, but not caudal, prefrontal cortex increased during the Stroop test in both age groups. The initial slope of the Oxy-Hb response, rather than the peak and area under the curve, had a strong correlation with cognitive performance speed. Taken together, it is likely that the incremental rate of prefrontal oxygenation may decrease in progress of ageing, resulting in a decline in cognitive performance.

  7. The impact of the oxygen scavenger on the dose-rate dependence and dose sensitivity of MAGIC type polymer gels

    Science.gov (United States)

    Khan, Muzafar; Heilemann, Gerd; Kuess, Peter; Georg, Dietmar; Berg, Andreas

    2018-03-01

    Recent developments in radiation therapy aimed at more precise dose delivery along with higher dose gradients (dose painting) and more efficient dose delivery with higher dose rates e.g. flattening filter free (FFF) irradiation. Magnetic-resonance-imaging based polymer gel dosimetry offers 3D information for precise dose delivery techniques. Many of the proposed polymer gels have been reported to exhibit a dose response, measured as relaxation rate ΔR2(D), which is dose rate dependent. A lack of or a reduced dose-rate sensitivity is very important for dosimetric accuracy, especially with regard to the increasing clinical use of FFF irradiation protocols with LINACs at high dose rates. Some commonly used polymer gels are based on Methacrylic-Acid-Gel-Initiated-by-Copper (MAGIC). Here, we report on the dose sensitivity (ΔR2/ΔD) of MAGIC-type gels with different oxygen scavenger concentration for their specific dependence on the applied dose rate in order to improve the dosimetric performance, especially for high dose rates. A preclinical x-ray machine (‘Yxlon’, E  =  200 kV) was used for irradiation to cover a range of dose rates from low \\dot{D} min  =  0.6 Gy min-1 to high \\dot{D} max  =  18 Gy min-1. The dose response was evaluated using R2-imaging of the gel on a human high-field (7T) MR-scanner. The results indicate that all of the investigated dose rates had an impact on the dose response in polymer gel dosimeters, being strongest in the high dose region and less effective for low dose levels. The absolute dose rate dependence \\frac{(Δ R2/Δ D)}{Δ \\dot{D}} of the dose response in MAGIC-type gel is significantly reduced using higher concentrations of oxygen scavenger at the expense of reduced dose sensitivity. For quantitative dose evaluations the relative dose rate dependence of a polymer gel, normalized to its sensitivity is important. Based on this normalized sensitivity the dose rate sensitivity was reduced distinctly

  8. Role of turbulent flow seawater in the corrosion enhancement of an Al–Zn–Mg alloy: an electrochemical impedance spectroscopy (EIS analysis of oxygen reduction reaction (ORR

    Directory of Open Access Journals (Sweden)

    Marcela C. Quevedo

    2018-04-01

    Full Text Available The effect of flow on the corrosion of Al–14 wt% Zn–8 wt% Mg alloy in aerated synthetic seawater at ambient temperature was studied using a rotating cylinder electrode (RCE under turbulent regime conditions by means of electrochemical impedance spectroscopy (EIS. The overall electrochemical corrosion process was found to be strongly influenced by the oxygen mass transfer process under turbulent flow conditions on the cathodic kinetics, driving to a significant increase in corrosion rate.At corrosion potential, Ecorr value, contributions from the anodic and cathodic processes involved were observed in the impedance diagrams. Instead, at a cathodic potential of −1.2 V (sce, impedance measurements proved the predominance of the mass-transfer process for oxygen. A primary analysis of the impedance plots allowed to confirm such situation. Keywords: Aluminum alloy, Corrosion, EIS, Flow, Oxygen, Mass transfer, Rotating cylinder electrode, Seawater

  9. Simultaneous, noninvasive, in vivo, continuous monitoring of hematocrit, vascular volume, hemoglobin oxygen saturation, pulse rate and breathing rate in humans and other animal models using a single light source

    Science.gov (United States)

    Dent, Paul; Tun, Sai Han; Fillioe, Seth; Deng, Bin; Satalin, Josh; Nieman, Gary; Wilcox, Kailyn; Searles, Quinn; Narsipur, Sri; Peterson, Charles M.; Goodisman, Jerry; Mostrom, James; Steinmann, Richard; Chaiken, J.

    2018-02-01

    We previously reported a new algorithm "PV[O]H" for continuous, noninvasive, in vivo monitoring of hematocrit changes in blood and have since shown its utility for monitoring in humans during 1) hemodialysis, 2) orthostatic perturbations and 3) during blood loss and fluid replacement in a rat model. We now show that the algorithm is sensitive to changes in hemoglobin oxygen saturation. We document the phenomenology of the effect and explain the effect using new results obtained from humans and rat models. The oxygen sensitivity derives from the differential absorption of autofluorescence originating in the static tissues by oxy and deoxy hemoglobin. Using this approach we show how to perform simultaneous, noninvasive, in vivo, continuous monitoring of hematocrit, vascular volume, hemoglobin oxygen saturation, pulse rate and breathing rate in mammals using a single light source. We suspect that monitoring of changes in this suite of vital signs can be provided with improved time response, sensitivity and precision compared to existing methodologies. Initial results also offer a more detailed glimpse into the systemic oxygen transport in the circulatory system of humans.

  10. Vitamin C supplementation enhances compact morulae formation but reduces the hatching blastocyst rate of bovine somatic cell nuclear transfer embryos.

    Science.gov (United States)

    Li, Qian; Wang, Yong-Sheng; Wang, Li-Jun; Zhang, Hui; Li, Rui-Zhe; Cui, Chen-Chen; Li, Wen-Zhe; Zhang, Yong; Jin, Ya-Ping

    2014-08-01

    Vitamin C, an antioxidant that reduces reactive oxygen species (ROS) in cells, is capable of significantly improving the developmental competence of porcine and mouse somatic cell nuclear transfer (SCNT) embryos, both in vitro and in vivo. In the present study, the effects of vitamin C on the developmental competence of bovine SCNT embryos were investigated. The results indicated that vitamin C (40 μg/mL) positively affected the scavenging of intracellular ROS, cleavage rate at 24 h (76.67 vs. 68.26%, pvitamin C supplementation did not significantly affect the blastocyst formation rate and proportion of inner cell mass over total cells per blastocyst on day 7. Moreover, vitamin C supplementation obviously impaired the total cell numbers per blastocyst (97.20 ± 11.35 vs. 88.57 ± 10.43, pVitamin C supplementation preferentially improved the viability of bovine SCNT embryos prior to the blastocyst stage, but did not enhance the formation and quality of blastocysts in vitro. In conclusion, the effect of vitamin C on the development of bovine SCNT embryos is complex, and vitamin C is not a suitable antioxidant chemical for the in vitro culture of bovine SCNT embryos.

  11. The Mechanisms of Oxygen Reduction in the Terminal Reducing Segment of the Chloroplast Photosynthetic Electron Transport Chain.

    Science.gov (United States)

    Kozuleva, Marina A; Ivanov, Boris N

    2016-07-01

    The review is dedicated to ascertainment of the roles of the electron transfer cofactors of the pigment-protein complex of PSI, ferredoxin (Fd) and ferredoxin-NADP reductase in oxygen reduction in the photosynthetic electron transport chain (PETC) in the light. The data regarding oxygen reduction in other segments of the PETC are briefly analyzed, and it is concluded that their participation in the overall process in the PETC under unstressful conditions should be insignificant. Data concerning the contribution of Fd to the oxygen reduction in the PETC are examined. A set of collateral evidence as well as results of direct measurements of the involvement of Fd in this process in the presence of isolated thylakoids led to the inference that this contribution in vivo is negligible. The increase in oxygen reduction rate in the isolated thylakoids in the presence of either Fd or Fd plus NADP + under increasing light intensity was attributed to the increase in oxygen reduction executed by the membrane-bound oxygen reductants. Data are presented which imply that a main reductant of the O 2 molecule in the terminal reducing segment of the PETC is the electron transfer cofactor of PSI, phylloquinone. The physiological significance of characteristic properties of oxygen reductants in this segment of the PETC is discussed. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  12. Limitations of potentiometric oxygen sensors operating at low oxygen levels

    DEFF Research Database (Denmark)

    Lund, Anders; Jacobsen, Torben; Hansen, Karin Vels

    2011-01-01

    The electrochemical processes that limit the range of oxygen partial pressures in which potentiometric oxygen sensors can be used, were analysed using a theoretical and an experimental approach. Electrochemical impedance spectroscopy was performed on porous Pt/yttria stabilised zirconia (YSZ......) electrodes between 10−6 and 0.2 bar and at temperatures between 500 and 950 °C. The flow of oxide ions and electron holes through a sensor cell, with a YSZ electrolyte, were calculated under similar conditions. The oxygen permeation of the sensor cell was insignificant at an oxygen partial pressure of 10......−6 bar for an inlet flow rate higher than 2 L h−1 between 600 and 800 °C. The polarisation resistance measured between 10−6 and 10−4 bar was found to be inversely proportional to the oxygen partial pressure, nearly temperature independent and inversely proportional to the inlet gas flow rate, which shows...

  13. Oxygen and SO2 Consumption Rates in White and Rosé Wines: Relationship with and Effects on Wine Chemical Composition.

    Science.gov (United States)

    Carrascón, Vanesa; Bueno, Mónica; Fernandez-Zurbano, Purificación; Ferreira, Vicente

    2017-11-01

    This Article addresses the study of O 2 and SO 2 consumption rates of white and rosé wines, their relationship to the initial chemical composition, and their effects on the chemical changes experienced by wine during oxidation. Eight wines were subjected to five consecutive air-saturation cycles. O 2 was monitored periodically; SO 2 , color, and antioxidant indexes were determined after each cycle, and the initial and final compositions of the wines were thoroughly determined. Wines consumed oxygen at progressively decreasing rates. In the last cycles, after a strong decrease, consistent increases of oxygen levels were seen. Oxygen consumption rates were satisfactorily modeled, being proportional to wine copper, quercetin, and kaempherol contents and negatively proportional to cinnamic acids. SO 2 consumption rates were highly diverse between wines and were positively related to free SO 2 , Mn, and pH, among others. In the last saturations, SO 2 consumption took place regardless of O 2 consumption, implying that SO 2 should reduce chemical species oxidized in previous saturations. Some volatile phenols seem to be the end point of radical-mediated oxidation of polyphenols taking place preferably in the first saturation.

  14. Dietary isothiocyanate sulforaphene induces reactive oxygen ...

    African Journals Online (AJOL)

    intracellular oxygen species (ROS) measurement, mitochondrial membrane depolarization and western blot analysis were performed in four time-intervals to explore sulforaphene activity. ..... proteins were transferred to PVDF membranes.

  15. TRANSFER

    African Journals Online (AJOL)

    This paper reports on further studies on long range energy transfer between curcumine as donor and another thiazine dye, thionine, which is closely related to methylene blue as energy harvester (Figure 1). Since thionine is known to have a higher quantum yield of singlet oxygen sensitization than methylene blue [8], it is ...

  16. Convective Heat Transfer Scaling of Ignition Delay and Burning Rate with Heat Flux and Stretch Rate in the Equivalent Low Stretch Apparatus

    Science.gov (United States)

    Olson, Sandra

    2011-01-01

    To better evaluate the buoyant contributions to the convective cooling (or heating) inherent in normal-gravity material flammability test methods, we derive a convective heat transfer correlation that can be used to account for the forced convective stretch effects on the net radiant heat flux for both ignition delay time and burning rate. The Equivalent Low Stretch Apparatus (ELSA) uses an inverted cone heater to minimize buoyant effects while at the same time providing a forced stagnation flow on the sample, which ignites and burns as a ceiling fire. Ignition delay and burning rate data is correlated with incident heat flux and convective heat transfer and compared to results from other test methods and fuel geometries using similarity to determine the equivalent stretch rates and thus convective cooling (or heating) rates for those geometries. With this correlation methodology, buoyant effects inherent in normal gravity material flammability test methods can be estimated, to better apply the test results to low stretch environments relevant to spacecraft material selection.

  17. One-dimensional simulation of stratification and dissolved oxygen in McCook Reservoir, Illinois

    Science.gov (United States)

    Robertson, Dale M.

    2000-01-01

    As part of the Chicagoland Underflow Plan/Tunnel and Reservoir Plan, the U.S. Army Corps of Engineers, Chicago District, plans to build McCook Reservoir.a flood-control reservoir to store combined stormwater and raw sewage (combined sewage). To prevent the combined sewage in the reservoir from becoming anoxic and producing hydrogen sulfide gas, a coarse-bubble aeration system will be designed and installed on the basis of results from CUP 0-D, a zero-dimensional model, and MAC3D, a three-dimensional model. Two inherent assumptions in the application of MAC3D are that density stratification in the simulated water body is minimal or not present and that surface heat transfers are unimportant and, therefore, may be neglected. To test these assumptions, the previously tested, one-dimensional Dynamic Lake Model (DLM) was used to simulate changes in temperature and dissolved oxygen in the reservoir after a 1-in-100-year event. Results from model simulations indicate that the assumptions made in MAC3D application are valid as long as the aeration system, with an air-flow rate of 1.2 cubic meters per second or more, is operated while the combined sewage is stored in the reservoir. Results also indicate that the high biochemical oxygen demand of the combined sewage will quickly consume the dissolved oxygen stored in the reservoir and the dissolved oxygen transferred through the surface of the reservoir; therefore, oxygen must be supplied by either the rising bubbles of the aeration system (a process not incorporated in DLM) or some other technique to prevent anoxia.

  18. Ceramics for Molten Materials Transfer

    Science.gov (United States)

    Standish, Evan; Stefanescu, Doru M.; Curreri, Peter A.

    2009-01-01

    The paper reviews the main issues associated with molten materials transfer and handling on the lunar surface during the operation of a hig h temperature electrowinning cell used to produce oxygen, with molten iron and silicon as byproducts. A combination of existing technolog ies and purposely designed technologies show promise for lunar exploi tation. An important limitation that requires extensive investigation is the performance of refractory currently used for the purpose of m olten metal containment and transfer in the lunar environment associa ted with electrolytic cells. The principles of a laboratory scale uni t at a scale equivalent to the production of 1 metric ton of oxygen p er year are introduced. This implies a mass of molten materials to be transferred consistent with the equivalent of 1kg regolithlhr proces sed.

  19. Rapid vibrational and rotational energy-transfer rates in heated carbon dioxide collisions by double-resonance laser spectroscopy

    International Nuclear Information System (INIS)

    Thomason, M.D.

    1982-07-01

    Rates for resonant vibrational and rotational energy transfer from the 001 state by CO 2 + CO 2 collisions have been measured. All data were obtained by double resonance spectroscopy with CO 2 lasers in a 2.5 meter absorption cell at 700 0 K. Results for rotation transfer include pumped-level relaxation and the response of other 001 levels with ΔJ up to 18. These data are compared to four relevant collision models via a 35-level rate equation analysis. Sequence-band (002 → 101) and hot-band (011 → 110) lasting have been used to observe resonant nu 3 -transfer relaxation involving 001 + 001 reversible 002 + 000, 001 + 100 reversible 101 + 000, and 001 + 010 reversible 011 + 000. A multilevel rate analysis has been utilized to determine the rate coefficients for 001 going to the 002, the 101, and the 011 levels. Part of the hot-band data has been interpreted as due to 110 + 000 reversible 100 + 010, and the associated rate constant has been estimated. The results of the study are compared to the theory and to other experiments

  20. Oxygen transport membrane system and method for transferring heat to catalytic/process reactors

    Science.gov (United States)

    Kelly, Sean M; Kromer, Brian R; Litwin, Michael M; Rosen, Lee J; Christie, Gervase Maxwell; Wilson, Jamie R; Kosowski, Lawrence W; Robinson, Charles

    2014-01-07

    A method and apparatus for producing heat used in a synthesis gas production is provided. The disclosed method and apparatus include a plurality of tubular oxygen transport membrane elements adapted to separate oxygen from an oxygen containing stream contacting the retentate side of the membrane elements. The permeated oxygen is combusted with a hydrogen containing synthesis gas stream contacting the permeate side of the tubular oxygen transport membrane elements thereby generating a reaction product stream and radiant heat. The present method and apparatus also includes at least one catalytic reactor containing a catalyst to promote the stream reforming reaction wherein the catalytic reactor is surrounded by the plurality of tubular oxygen transport membrane elements. The view factor between the catalytic reactor and the plurality of tubular oxygen transport membrane elements radiating heat to the catalytic reactor is greater than or equal to 0.5.

  1. Oxygen transport membrane system and method for transferring heat to catalytic/process reactors

    Science.gov (United States)

    Kelly, Sean M.; Kromer, Brian R.; Litwin, Michael M.; Rosen, Lee J.; Christie, Gervase Maxwell; Wilson, Jamie R.; Kosowski, Lawrence W.; Robinson, Charles

    2016-01-19

    A method and apparatus for producing heat used in a synthesis gas production process is provided. The disclosed method and apparatus include a plurality of tubular oxygen transport membrane elements adapted to separate oxygen from an oxygen containing stream contacting the retentate side of the membrane elements. The permeated oxygen is combusted with a hydrogen containing synthesis gas stream contacting the permeate side of the tubular oxygen transport membrane elements thereby generating a reaction product stream and radiant heat. The present method and apparatus also includes at least one catalytic reactor containing a catalyst to promote the steam reforming reaction wherein the catalytic reactor is surrounded by the plurality of tubular oxygen transport membrane elements. The view factor between the catalytic reactor and the plurality of tubular oxygen transport membrane elements radiating heat to the catalytic reactor is greater than or equal to 0.5

  2. Oxygen transport enhancement by functionalized magnetic nanoparticles (FMP) in bioprocesses

    Science.gov (United States)

    Ataide, Filipe Andre Prata

    The enhancement of fluid properties, namely thermal conductivity and mass diffusivity for a wide range of applications, through the use of nanosized particles' suspensions has been gathering increasing interest in the scientific community. In previous studies, Olle et al. (2006) showed an enhancement in oxygen absorption to aqueous solutions of up to 6-fold through the use of functionalized nanosized magnetic particles with oleic acid coating. Krishnamurthy et al. (2006) showed a remarkable 26-fold enhancement in dye diffusion in water. These two publications are landmarks in mass transfer enhancement in chemical systems through the use of nanoparticles. The central goal of this Ph.D. thesis was to develop functionalized magnetic nanoparticles to enhance oxygen transport in bioprocesses. The experimental protocol for magnetic nanoparticles synthesis and purification adopted in this thesis is a modification of that reported by Olle et al. (2006). This is facilitated by employing twice the quantity of ammonia, added at a slower rate, and by filtering the final nanoparticle solution in a cross-flow filtration modulus against 55 volumes of distilled water. This modification in the protocol resulted in improved magnetic nanoparticles with measurably higher mass transfer enhancement. Magnetic nanoparticles with oleic acid and Hitenol-BC coating were screened for oxygen transfer enhancement, since these particles are relatively inexpensive and easy to synthesize. A glass 0.5-liter reactor was custom manufactured specifically for oxygen transport studies in magnetic nanoparticles suspensions. The reactor geometry, baffles and Rushton impeller are of standard dimensions. Mass transfer tests were conducted through the use of the sulphite oxidation method, applying iodometric back-titration. A 3-factor central composite circumscribed design (CCD) was adopted for design of experiments in order to generate sufficiently informative data to model the effect of magnetic

  3. Diffusive-dispersive mass transfer in the capillary fringe: Impact of water table fluctuations and heterogeneities

    DEFF Research Database (Denmark)

    Grathwohl, Peter; Haberer, Cristina; Ye, Yu

    Diffusive–dispersive mass transfer in the capillary fringe is important for many groundwater quality issues such as transfer of volatile compounds into (and out of) the groundwater, the supply of oxygen for aerobic degradation of hydrocarbons as well as for precipitation of minerals (e.g. iron...... hydroxides). 2D-laboratory scale experiments were used to investigate the transfer of oxygen into groundwater under non-reactive and reactive conditions, at steady state and with water table fluctuations. Results show that transfer of oxygen is limited by transverse dispersion in the capillary fringe...... and the dispersion coefficients are the same as below the water table. Water table fluctuations cause temporarily increased fluxes of oxygen into groundwater during draining conditions and entrapped air after water table rise. High-permeability inclusions in the capillary fringe enhance mass transfer of oxygen...

  4. Value of cerebral blood flow rate and regional oxygen consumption studies in cerebral ischaemia

    Energy Technology Data Exchange (ETDEWEB)

    Clanet, M

    1987-06-18

    Studies of experimentally-induced ischaemia have shown that the intensity of neuronal suffering is related to the fall in perfusion rate. Below a certain level, called functional threshold, cerebral function is reversibly altered, whereas at a lower level (tissue necrosis threshold) the damage inflicted on neurons is irreversible. Between these two thresholds lies a ''penumbra zone''. This concept of thresholds must be mitigated by 2 parameters: duration of ischaemia and selective vulnerability of the various structures affected. Variations in blood flow rate only indirectly affect the state of tissues. Techniques developed from positron emission tomography make it possible to evaluate the metabolic activity of brain tissue in vivo: oxygen consumption (CMRO/sub 2/), oxygen extraction (EO/sub 2/) and glucose consumption (CMRG) which are thus correlated to cerebral blood flow and cerebral blood volume, sometimes also to tissue pH. Normal relations between blood flow rate and metabolism may be altered. Misery perfusion reflects a fall in cerebral blood flow with an increase in EO/sub 2/ and often a decrease in CMRO/sub 2/, whereas luxury perfusion reflects an increase in cerebral blood flow rate with reduction of CMRO/sub 2/, EO/sub 2/ and CMRG. The type of alteration encountered in human ischaemia varies according to the nature of the accident: studies of transient accidents emphasize the different haemodynamic aspects of occlusion of the wider arteries. The metabolic and haemodynamic profiles of established ischaemic accidents vary according to their type and to the time of the study, reflecting the complexity of the physiopathological mechanisms involved; they are frequently associated with metabolic repercussions at a distance from the ischaemic focus, which supports the concept of diaschisis.

  5. Value of cerebral blood flow rate and regional oxygen consumption studies in cerebral ischaemia

    International Nuclear Information System (INIS)

    Clanet, M.

    1987-01-01

    Studies of experimentally-induced ischaemia have shown that the intensity of neuronal suffering is related to the fall in perfusion rate. Below a certain level, called functional threshold, cerebral function is reversibly altered, whereas at a lower level (tissue necrosis threshold) the damage inflicted on neurons is irreversible. Between these two thresholds lies a ''penumbra zone''. This concept of thresholds must be mitigated by 2 parameters: duration of ischaemia and selective vulnerability of the various structures affected. Variations in blood flow rate only indirectly affect the state of tissues. Techniques developed from positron emission tomography make it possible to evaluate the metabolic activity of brain tissue in vivo: oxygen consumption (CMRO 2 ), oxygen extraction (EO 2 ) and glucose consumption (CMRG) which are thus correlated to cerebral blood flow and cerebral blood volume, sometimes also to tissue pH. Normal relations between blood flow rate and metabolism may be altered. Misery perfusion reflects a fall in cerebral blood flow with an increase in EO 2 and often a decrease in CMRO 2 , whereas luxury perfusion reflects an increase in cerebral blood flow rate with reduction of CMRO 2 , EO 2 and CMRG. The type of alteration encountered in human ischaemia varies according to the nature of the accident: studies of transient accidents emphasize the different haemodynamic aspects of occlusion of the wider arteries. The metabolic and haemodynamic profiles of established ischaemic accidents vary according to their type and to the time of the study, reflecting the complexity of the physiopathological mechanisms involved; they are frequently associated with metabolic repercussions at a distance from the ischaemic focus, which supports the concept of diaschisis [fr

  6. Dependence of nitrite oxidation on nitrite and oxygen in low-oxygen seawater

    Science.gov (United States)

    Sun, Xin; Ji, Qixing; Jayakumar, Amal; Ward, Bess B.

    2017-08-01

    Nitrite oxidation is an essential step in transformations of fixed nitrogen. The physiology of nitrite oxidizing bacteria (NOB) implies that the rates of nitrite oxidation should be controlled by concentration of their substrate, nitrite, and the terminal electron acceptor, oxygen. The sensitivities of nitrite oxidation to oxygen and nitrite concentrations were investigated using 15N tracer incubations in the Eastern Tropical North Pacific. Nitrite stimulated nitrite oxidation under low in situ nitrite conditions, following Michaelis-Menten kinetics, indicating that nitrite was the limiting substrate. The nitrite half-saturation constant (Ks = 0.254 ± 0.161 μM) was 1-3 orders of magnitude lower than in cultivated NOB, indicating higher affinity of marine NOB for nitrite. The highest rates of nitrite oxidation were measured in the oxygen depleted zone (ODZ), and were partially inhibited by additions of oxygen. This oxygen sensitivity suggests that ODZ specialist NOB, adapted to low-oxygen conditions, are responsible for apparently anaerobic nitrite oxidation.

  7. Investigations of effect of phase change mass transfer rate on cavitation process with homogeneous relaxation model

    Energy Technology Data Exchange (ETDEWEB)

    He, Zhixia; Zhang, Liang; Saha, Kaushik; Som, Sibendu; Duan, Lian; Wang, Qian

    2017-12-01

    The super high fuel injection pressure and micro size of nozzle orifice has been an important development trend for the fuel injection system. Accordingly, cavitation transient process, fuel compressibility, amount of noncondensable gas in the fuel and cavitation erosion have attracted more attention. Based on the fact of cavitation in itself is a kind of thermodynamic phase change process, this paper takes the perspective of the cavitation phase change mass transfer process to analyze above mentioned phenomenon. The two-phase cavitating turbulent flow simulations with VOF approach coupled with HRM cavitation model and U-RANS of standard k-ε turbulence model were performed for investigations of cavitation phase change mass transfer process. It is concluded the mass transfer time scale coefficient in the Homogenous Relaxation Model (HRM) representing mass transfer rate should tend to be as small as possible in a condition that ensured the solver stable. At very fast mass transfer rate, the phase change occurs at very thin interface between liquid and vapor phase and condensation occurs more focused and then will contribute predictably to a more serious cavitation erosion. Both the initial non-condensable gas in fuel and the fuel compressibility can accelerate the cavitation mass transfer process.

  8. Measurement of the variable track-etch rate of hydrogen, carbon and oxygen Ions in CR-39

    International Nuclear Information System (INIS)

    Lengar, I.; Skvarc, J.; Ilic, R.

    2003-01-01

    The ratio of the track-etch rate to the bulk-etch rate for hydrogen, carbon and oxygen ions was studied for the CR-39 detector with addition of dioctylphthalate. The response was reconstructed from etch-pit growth curves obtained by the multi-step etching technique. A theoretical analysis of the correctness of the method due to the 'missing track segment' is assessed and utilisation of the results obtained for the calibration of fast neutron dosimetry is discussed. (author)

  9. The mitochondrial outer membrane protein mitoNEET is a redox enzyme catalyzing electron transfer from FMNH2 to oxygen or ubiquinone.

    Science.gov (United States)

    Wang, Yiming; Landry, Aaron P; Ding, Huangen

    2017-06-16

    Increasing evidence suggests that mitoNEET, a target of the type II diabetes drug pioglitazone, is a key regulator of energy metabolism in mitochondria. MitoNEET is anchored to the mitochondrial outer membrane via its N-terminal α helix domain and hosts a redox-active [2Fe-2S] cluster in its C-terminal cytosolic region. The mechanism by which mitoNEET regulates energy metabolism in mitochondria, however, is not fully understood. Previous studies have shown that mitoNEET specifically interacts with the reduced flavin mononucleotide (FMNH 2 ) and that FMNH 2 can quickly reduce the mitoNEET [2Fe-2S] clusters. Here we report that the reduced mitoNEET [2Fe-2S] clusters can be readily oxidized by oxygen. In the presence of FMN, NADH, and flavin reductase, which reduces FMN to FMNH 2 using NADH as the electron donor, mitoNEET mediates oxidation of NADH with a concomitant reduction of oxygen. Ubiquinone-2, an analog of ubiquinone-10, can also oxidize the reduced mitoNEET [2Fe-2S] clusters under anaerobic or aerobic conditions. Compared with oxygen, ubiquinone-2 is more efficient in oxidizing the mitoNEET [2Fe-2S] clusters, suggesting that ubiquinone could be an intrinsic electron acceptor of the reduced mitoNEET [2Fe-2S] clusters in mitochondria. Pioglitazone or its analog NL-1 appears to inhibit the electron transfer activity of mitoNEET by forming a unique complex with mitoNEET and FMNH 2 The results suggest that mitoNEET is a redox enzyme that may promote oxidation of NADH to facilitate enhanced glycolysis in the cytosol and that pioglitazone may regulate energy metabolism in mitochondria by inhibiting the electron transfer activity of mitoNEET. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Extremely environment-hard and low work function transfer-mold field emitter arrays

    Energy Technology Data Exchange (ETDEWEB)

    Nakamoto, Masayuki, E-mail: m-nakamoto@rie.shizuoka.ac.jp [Research Institute of Electronics, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, Shizuoka 432-8011 (Japan); Moon, Jonghyun [Research Institute of Electronics, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, Shizuoka 432-8011 (Japan)

    2013-06-15

    Extremely environment-hard and low work function field-emitter arrays (FEAs) were fabricated by a transfer-mold emitter fabrication method to produce highly reliable vacuum nanoelectronic devices able to operate stably at low voltage in highly oxidizing atmospheres. Amorphous carbon (a-C) having a work function of 3.6 eV and sp{sup 3} fraction of 85.6% prepared by plasma-enhanced chemical vapor deposition was used as the emitter material. The field-emission characteristics of the obtained transfer-mold FEAs strongly depended on their work function and morphology. The environment-hard characteristics of the transfer-mold a-C FEAs were compared with those of the transfer-mold titanium nitride FEAs and nickel FEAs. X-ray photoelectron spectroscopy was used to confirm the stable chemical states of the FEAs after oxygen radical treatment. The small amount of material oxidized (6.3%) at the surface of the a-C FEAs compared with 11.8% for the TiN-FEAs and 39.0% for Ni FEAs after oxygen radical treatment explained their almost constant work function in oxidizing atmospheres. The emission fluctuation rates of transfer-mold a-C FEAs without resistive layers under in situ radical treatment were as low as ±5.0%, compared with 5–100% for conventional FEAs with resistive layers not under highly oxidizing atmospheres. Therefore, the present environment-hard and low work function transfer-mold a-C FEAs are expected to be useful for reliable vacuum nanoelectronic devices.

  11. A model for oxygen conservation associated with titration during pediatric oxygen therapy.

    Directory of Open Access Journals (Sweden)

    Grace Wu

    Full Text Available Continuous oxygen treatment is essential for managing children with hypoxemia, but access to oxygen in low-resource countries remains problematic. Given the high burden of pneumonia in these countries and the fact that flow can be gradually reduced as therapy progresses, oxygen conservation through routine titration warrants exploration.To determine the amount of oxygen saved via titration during oxygen therapy for children with hypoxemic pneumonia.Based on published clinical data, we developed a model of oxygen flow rates needed to manage hypoxemia, assuming recommended flow rate at start of therapy, and comparing total oxygen used with routine titration every 3 minutes or once every 24 hours versus no titration.Titration every 3 minutes or every 24 hours provided oxygen savings estimated at 11.7% ± 5.1% and 8.1% ± 5.1% (average ± standard error of the mean, n = 3, respectively. For every 100 patients, 44 or 30 kiloliters would be saved-equivalent to 733 or 500 hours at 1 liter per minute.Ongoing titration can conserve oxygen, even performed once-daily. While clinical validation is necessary, these findings could provide incentive for the routine use of pulse oximeters for patient management, as well as further development of automated systems.

  12. Effective transfer entropy approach to information flow between exchange rates and stock markets

    International Nuclear Information System (INIS)

    Sensoy, Ahmet; Sobaci, Cihat; Sensoy, Sadri; Alali, Fatih

    2014-01-01

    We investigate the strength and direction of information flow between exchange rates and stock prices in several emerging countries by the novel concept of effective transfer entropy (an alternative non-linear causality measure) with symbolic encoding methodology. Analysis shows that before the 2008 crisis, only low level interaction exists between these two variables and exchange rates dominate stock prices in general. During crisis, strong bidirectional interaction arises. In the post-crisis period, the strong interaction continues to exist and in general stock prices dominate exchange rates

  13. Islet oxygen consumption rate (OCR) dose predicts insulin independence for first clinical islet allotransplants

    Science.gov (United States)

    Kitzmann, JP; O’Gorman, D; Kin, T; Gruessner, AC; Senior, P; Imes, S; Gruessner, RW; Shapiro, AMJ; Papas, KK

    2014-01-01

    Human islet allotransplant (ITx) for the treatment of type 1 diabetes is in phase III clinical registration trials in the US and standard of care in several other countries. Current islet product release criteria include viability based on cell membrane integrity stains, glucose stimulated insulin release (GSIR), and islet equivalent (IE) dose based on counts. However, only a fraction of patients transplanted with islets that meet or exceed these release criteria become insulin independent following one transplant. Measurements of islet oxygen consumption rate (OCR) have been reported as highly predictive of transplant outcome in many models. In this paper we report on the assessment of clinical islet allograft preparations using islet oxygen consumption rate (OCR) dose (or viable IE dose) and current product release assays in a series of 13 first transplant recipients. The predictive capability of each assay was examined and successful graft function was defined as 100% insulin independence within 45 days post-transplant. Results showed that OCR dose was most predictive of CTO. IE dose was also highly predictive, while GSIR and membrane integrity stains were not. In conclusion, OCR dose can predict CTO with high specificity and sensitivity and is a useful tool for evaluating islet preparations prior to clinical ITx. PMID:25131089

  14. High rate performance of LiMn2O4 cathodes for lithium ion batteries synthesized by low temperature oxygen plasma assisted sol–gel process

    International Nuclear Information System (INIS)

    Chen, C.-L.; Chiu, K.-F.; Chen, Y.-R.; Chen, C.C.; Lin, H.C.; Chiang, H.Y.

    2013-01-01

    Nano-crystalline LiMn 2 O 4 thin films have been synthesized by the sol–gel process at low temperature (623 K). The low temperature prepared films are treated by a direct current pulsed oxygen plasma, and tested as cathodes for lithium batteries. The plasma treated films are able to sustain charge–discharge cycles under significant high current density of up to 5.4 A/g corresponding to 45 C for battery operation. The capacity ratio for discharging at 1.2 A/g and 0.024 A/g is over 65%, indicating low internal resistance, which meets the requirement of fast charge and discharge for electric vehicles. The stable high current density performances can be attributed to the formation of a dense surface morphology that is induced by the plasma irradiation. The formation of the surface morphology results in the more uniform current distribution on the film surface, which decreases the interface charge transfer resistances as measured by the electrochemical impedance spectra. - Highlights: • A low temperature process has been used to synthesize LiMn 2 O 4 thin films. • Plasma treatment can reduce the interface charge transfer resistances for LiMn 2 O 4 . • LiMn 2 O 4 cathodes treated by plasma treatment can deliver high rate capability

  15. Increasing The Number of Embryos Transferred from Two to Three, Does not Increase Pregnancy Rates in Good Prognosis Patients

    Directory of Open Access Journals (Sweden)

    Mahnaz Ashrafi

    2015-10-01

    Full Text Available Background: To compare the pregnancy outcomes after two embryos versus three embryos transfers (ETs in women undergoing in vitro fertilization (IVF/intracytoplasmic sperm injection (ICSI cycles. Materials and Methods: This retrospective study was performed on three hundred eighty seven women with primary infertility and with at least one fresh embryo in good quality in order to transfer at each IVF/ICSI cycle, from September 2006 to June 2010. Patients were categorized into two groups according to the number of ET as follows: ET2 and ET3 groups, indicating two and three embryos were respectively transferred. Pregnancy outcomes were compared between ET2 and ET3 groups. Chi square and student t tests were used for data analysis. Results: Clinical pregnancy and live birth rates were similar between two groups. The rates of multiple pregnancies were 27 and 45.2% in ET2 and ET3 groups, respectively. The rate of multiple pregnancies in young women was significantly increased when triple instead of double embryos were transferred. Logistic regression analysis indicated two significant prognostic variables for live birth that included number and quality of transferred embryos; it means that the chance of live birth following ICSI treatment increased 3.2-fold when the embryo with top quality (grade A was transferred, but the number of ET had an inverse relationship with live birth rate; it means that probability of live birth in women with transfer of two embryos was three times greater than those who had three ET. Conclusion: Due to the difficulty of implementation of the elective single-ET technique in some infertility centers in the world, we suggest transfer of double instead of triple embryos when at least one good quality embryo is available for transfer in women aged 39 years or younger. However, to reduce the rate of multiple pregnancies, it is recommended to consider the elective single ET strategy.

  16. Effects of the oxygenation level on formation of different reactive oxygen species during photodynamic therapy.

    Science.gov (United States)

    Price, Michael; Heilbrun, Lance; Kessel, David

    2013-01-01

    We examined the effect of the oxygenation level on efficacy of two photosensitizing agents, both of which target lysosomes for photodamage, but via different photochemical pathways. Upon irradiation, the chlorin termed NPe6 forms singlet oxygen in high yield while the bacteriopheophorbide WST11 forms only oxygen radicals (in an aqueous environment). Photokilling efficacy by WST11 in cell culture was impaired when the atmospheric oxygen concentration was reduced from 20% to 1%, while photokilling by NPe6 was unaffected. Studies in a cell-free system revealed that the rates of photobleaching of these agents, as a function of the oxygenation level, were correlated with results described above. Moreover, the rate of formation of oxygen radicals by either agent was more sensitive to the level of oxygenation than was singlet oxygen formation by NPe6. These data indicate that the photochemical process that leads to oxygen radical formation is more dependent on the oxygenation level than is the pathway leading to formation of singlet oxygen. © 2013 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2013 The American Society of Photobiology.

  17. Pump--probe measurements of state-to-state rotational energy transfer rates in N2 (v=1)

    International Nuclear Information System (INIS)

    Sitz, G.O.; Farrow, R.L.

    1990-01-01

    We report direct measurements of the state-to-state rotational energy transfer rates for N 2 (υ=1) at 298 K. Stimulated Raman pumping of Q-branch (υ=1 left-arrow 0) transitions is used to prepare a selected rotational state of N 2 in the υ=1 state. After allowing an appropriate time interval for collisions to occur, 2+2 resonance-enhanced multiphoton ionization is used (through the a 1 Π g left-arrow X 1 Σ + g transition) to detect the relative population of the pumped level and other levels to which rotational energy transfer has occurred. We have performed a series of measurements in which a single even rotational level (J i =0--14) is excited and the time-dependent level populations are recorded at three or more delay times. This data set is then globally fit to determine the best set of state-to-state rate constants. The fitting procedure does not place any constraints (such as an exponential gap law) on the J or energy dependence of the rates. We compare our measurements and best-fit rates with results predicted from phenomenological rate models and from a semiclassical scattering calculation of Koszykowski et al. [J. Phys. Chem. 91, 41 (1987)]. Excellent agreement is obtained with two of the models and with the scattering calculation. We also test the validity of the energy-corrected sudden (ECS) scaling theory for N 2 by using our experimental transfer rates as basis rates (J=L→0), finding that the ECS scaling expressions accurately predict the remaining rates

  18. Determination of pesticide residue transfer rates (percent) from dried tea leaves to brewed tea.

    Science.gov (United States)

    Wang, Jian; Cheung, Wendy; Leung, Daniel

    2014-01-29

    This paper presents a study on pesticide residue transfer rates (%) from dried tea leaves to brewed tea. In the study, a brewing procedure simulated the preparation of a hot tea drink as in routine. After brewing, pesticide residues were extracted from brewed tea using a method known as QuEChERS (quick, easy, cheap, effective, rugged, and safe). An UHPLC/ESI-MS/MS method was developed and validated to identify and quantify up to 172 pesticides in both tea leaves and brewed tea samples. Quantification was achieved using matrix-matched standard calibration curves with isotopically labeled standards or a chemical analogue as internal standards, and the calibration curves consisted of six points (0.4, 2.0, 8.0, 16.0, 24.0, and 40.0 μg/L equivalent in sample). The method was validated at four concentration levels (4.0, 12, 20.0, and 32.0 μg/L equivalent in sample) using five different brewed tea matrices on two separate days per matrix. Method performance parameters included overall recovery, intermediate precision, and measurement uncertainty, which were evaluated according to a nested experimental design. Approximately, 95% of the pesticides studied had recoveries between 81 and 110%, intermediate precision ≤20%, and measurement uncertainty ≤40%. From a pilot study of 44 incurred tea samples, pesticide residues were examined for their ability to transfer from dried tea leaves to brewed tea. Each sample, both tea leaves and brewed tea, was analyzed in duplicate. Pesticides were found to have different transfer rates (%). For example, imidacloprid, methomyl, and carbendazim had transfer rates of 84.9, 83.4, and 92.4%, respectively.

  19. Effect of Gutai Decoction (固胎汤) on the Abortion Rate of in vitro Fertilization and Embryo Transfer

    Institute of Scientific and Technical Information of China (English)

    LIU Ying; WU Jing-zhi

    2006-01-01

    Objective: To study the effect of Chinese herbal medicine Gutai Decoction (固胎汤, GTD) on the abortion rate of in vitro fertilization and embryo transfer (IVF-ET). Methods: Observed were two hundred and forty-seven women having received IVF-ET and with β-human chorionic gonadotropin (β-HCG) > 25 IU/L on the 14th day after transferring. All were treated conventionally with progesterone 20-80 mg per day after transferring and if necessary the treatment was supplemented with Progynova 2 - 4 mg per day, with the medication withdrawn gradually from the 9th week of pregnancy till stopped completely. Among them 131 cases received GTD medication additionally, for 109 cases of whom the medication started from the 2nd day of transferring (taken as Group A) and for the other 22 cases from the 14th day after transferring (taken as Group B), the other 116 cases with no additional GTD treatment given were taken as the control group, with the medication lasting to the 12th week. The abortion rate in them was observed. Results: The abortion rate in Group A, Group B and the control group was 12.84%, 13.64% and 23.28%, respectively, the difference between the GTD treated groups and the control group was significant (P<0.05). Conclusion: Chinese medicine GTD could reduce abortion rate in women receiving IVF-ET.

  20. Topology and immersion depth of an integral membrane protein by paramagnetic rates from dissolved oxygen.

    Science.gov (United States)

    Al-Abdul-Wahid, M Sameer; Verardi, Raffaello; Veglia, Gianluigi; Prosser, R Scott

    2011-09-01

    In studies of membrane proteins, knowledge of protein topology can provide useful insight into both structure and function. In this work, we present a solution NMR method for the measurement the tilt angle and average immersion depth of alpha helices in membrane proteins, from analysis of the paramagnetic relaxation rate enhancements arising from dissolved oxygen. No modification to the micelle or protein is necessary, and the topology of both transmembrane and amphipathic helices are readily determined. We apply this method to the measure the topology of a monomeric mutant of phospholamban (AFA-PLN), a 52-residue membrane protein containing both an amphipathic and a transmembrane alpha helix. In dodecylphosphocholine micelles, the amphipathic helix of AFA-PLN was found to have a tilt angle of 87° ± 1° and an average immersion depth of 13.2 Å. The transmembrane helix was found to have an average immersion depth of 5.4 Å, indicating residues 41 and 42 are closest to the micelle centre. The resolution of paramagnetic relaxation rate enhancements from dissolved oxygen compares favourably to those from Ni (II), a hydrophilic paramagnetic species.

  1. Topology and immersion depth of an integral membrane protein by paramagnetic rates from dissolved oxygen

    International Nuclear Information System (INIS)

    Al-Abdul-Wahid, M. Sameer; Verardi, Raffaello; Veglia, Gianluigi; Prosser, R. Scott

    2011-01-01

    In studies of membrane proteins, knowledge of protein topology can provide useful insight into both structure and function. In this work, we present a solution NMR method for the measurement the tilt angle and average immersion depth of alpha helices in membrane proteins, from analysis of the paramagnetic relaxation rate enhancements arising from dissolved oxygen. No modification to the micelle or protein is necessary, and the topology of both transmembrane and amphipathic helices are readily determined. We apply this method to the measure the topology of a monomeric mutant of phospholamban (AFA-PLN), a 52-residue membrane protein containing both an amphipathic and a transmembrane alpha helix. In dodecylphosphocholine micelles, the amphipathic helix of AFA-PLN was found to have a tilt angle of 87° ± 1° and an average immersion depth of 13.2 Å. The transmembrane helix was found to have an average immersion depth of 5.4 Å, indicating residues 41 and 42 are closest to the micelle centre. The resolution of paramagnetic relaxation rate enhancements from dissolved oxygen compares favourably to those from Ni (II), a hydrophilic paramagnetic species.

  2. Electron transfer rates and equilibria between substituted phenoxide ions and phenoxyl radicals

    International Nuclear Information System (INIS)

    Steenken, S.; Neta, P.

    1979-01-01

    The rate constants for electron transfer from a series of substituted isomeric dihydroxy- and diaminobenzenes to different substituted phenoxyl radicals were measured by observing the decay or buildup of one of the radicals invoved. In many cases the electron transfer reactions were reversible and the equilibrium constants could be calculated from the individual rate constants for attainment of equilibrium and from the concentrations of the species involved at equilibrium. From the equilibrium constants the one-electron redox potentials for 15 individual Q - ./Q 2- pairs were determined, using the value for hydroquinone (23 mV at pH 13.5) as a reference. The potential for catechol (43 mV) is near that of hydroquinone; resorcinol is oxidized much less readily (300 mV), while phenol is even a weaker reductant (>500mV). Methyl, methoxy, and hydroxy substituents decrease the redox potentials while acetyl and carboxyl substituents increase these values. Ascorbate has a potential (15mV) similar to that of hydroquinone, while TMPD (82mV) and p-phenylenediamine (183mV) are less easily oxidized

  3. A theoretical model for oxygen transport in skeletal muscle under conditions of high oxygen demand.

    Science.gov (United States)

    McGuire, B J; Secomb, T W

    2001-11-01

    Oxygen transport from capillaries to exercising skeletal muscle is studied by use of a Krogh-type cylinder model. The goal is to predict oxygen consumption under conditions of high demand, on the basis of a consideration of transport processes occurring at the microvascular level. Effects of the decline in oxygen content of blood flowing along capillaries, intravascular resistance to oxygen diffusion, and myoglobin-facilitated diffusion are included. Parameter values are based on human skeletal muscle. The dependence of oxygen consumption on oxygen demand, perfusion, and capillary density are examined. When demand is moderate, the tissue is well oxygenated and consumption is slightly less than demand. When demand is high, capillary oxygen content declines rapidly with axial distance and radial oxygen transport is limited by diffusion resistance within the capillary and the tissue. Under these conditions, much of the tissue is hypoxic, consumption is substantially less than demand, and consumption is strongly dependent on capillary density. Predicted consumption rates are comparable with experimentally observed maximal rates of oxygen consumption.

  4. Production of a recombinant phospholipase A2 in Escherichia coli using resonant acoustic mixing that improves oxygen transfer in shake flasks.

    Science.gov (United States)

    Valdez-Cruz, Norma A; Reynoso-Cereceda, Greta I; Pérez-Rodriguez, Saumel; Restrepo-Pineda, Sara; González-Santana, Jesus; Olvera, Alejandro; Zavala, Guadalupe; Alagón, Alejandro; Trujillo-Roldán, Mauricio A

    2017-07-25

    Shake flasks are widely used during the development of bioprocesses for recombinant proteins. Cultures of recombinant Escherichia coli with orbital mixing (OM) have an oxygen limitation negatively affecting biomass growth and recombinant-protein production. With the aim to improve mixing and aeration in shake flask cultures, we analyzed cultures subjected to OM and the novel resonant acoustic mixing (RAM) by applying acoustic energy to E. coli BL21-Gold (DE3): a producer of recombinant phospholipase A2 (rPLA2) from Micrurus laticollaris snake venom. Comparing OM with RAM (200 rpm vs. 7.5g) at the same initial volumetric oxygen transfer coefficient (k L a ≈ 80 h -1 ) ~69% less biomass was obtained with OM compared with RAM. We analyzed two more conditions increasing agitation until maximal speed (12.5 and 20g), and ~1.6- and ~1.4-fold greater biomass was obtained as compared with cultures at 7.5g. Moreover, the specific growth rate was statistically similar in all cultures carried out in RAM, but ~1.5-fold higher than that in cultures carried out under OM. Almost half of the glucose was consumed in OM, whereas between 80 and 100% of the glucose was consumed in RAM cultures, doubling biomass per glucose yields. Differential organic acid production was observed, but acetate production was prevented at the maximal RAM (20g). The amount of rPLA2 in both, OM and RAM cultures, represented 38 ± 5% of the insoluble protein. A smaller proportion of α-helices and β-sheet of purified inclusion bodies (IBs) were appreciated by ATR-FTIR from cultures carried out under OM, than those from RAM. At maximal agitation by RAM, internal E. coli localization patterns of protein aggregation changed, as well as, IBs proteolytic degradation, in conjunction with the formation of small external vesicles, although these changes did not significantly affect the cell survival response. In moderate-cell-density recombinant E. coli BL21-Gold (DE3) cultures, the agitation increases in

  5. The effect of air bubble position after blastocyst transfer on pregnancy rates in IVF cycles.

    Science.gov (United States)

    Friedman, Brooke E; Lathi, Ruth B; Henne, Melinda B; Fisher, Stephanie L; Milki, Amin A

    2011-03-01

    To investigate the relationship between air bubble position after blastocyst transfer (BT) and pregnancy rates (PRs). Retrospective cohort study. University-based infertility center. Three hundred fifteen consecutive nondonor BTs by a single provider. Catheters were loaded with 25 μL of culture media, 20 μL of air, 25 μL of media containing the blastocysts, 20 μL of air, and a small amount of additional media. The distance from the air bubble to the fundus, as seen on abdominal ultrasound examination, was measured at the time of transfer. Air bubble location was categorized as 20 mm from the fundus. Clinical pregnancy rate. After controlling for age, parity, FSH and frozen transfers, and accounting for repeated cycles per patient, the PRs for both the >20-mm (38.3%) and the 10-20-mm (42.0%) from the fundus group were significantly reduced compared with the group in which the bubble was Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  6. Bactericidal action of photogenerated singlet oxygen from photosensitizers used in plaque disclosing agents.

    Directory of Open Access Journals (Sweden)

    Kirika Ishiyama

    Full Text Available BACKGROUND: Photodynamic therapy (PDT has been suggested as an efficient clinical approach for the treatment of dental plaque in the field of dental care. In PDT, once the photosensitizer is irradiated with light of a specific wavelength, it transfers the excitation energy to molecular oxygen, which gives rise to singlet oxygen. METHODOLOGY/PRINCIPAL FINDINGS: Since plaque disclosing agents usually contain photosensitizers such as rose bengal, erythrosine, and phloxine, they could be used for PTD upon photoactivation. The aim of the present study is to compare the ability of these three photosensitizers to produce singlet oxygen in relation to their bactericidal activity. The generation rates of singlet oxygen determined by applying an electron spin resonance technique were in the order phloxine > erythrosine ≒ rose bengal. On the other hand, rose bengal showed the highest bactericidal activity against Streptococcus mutans, a major causative pathogen of caries, followed by erythrosine and phloxine, both of which showed activity similar to each other. One of the reasons for the discrepancy between the singlet oxygen generating ability and bactericidal activity was the incorporation efficiency of the photosensitizers into the bacterial cells. The incorporation rate of rose bengal was the highest among the three photosensitizers examined in the present study, likely leading to the highest bactericidal activity. Meanwhile, the addition of L-histidine, a singlet oxygen quencher, cancelled the bactericidal activity of any of the three photoactivated photosensitizers, proving that singlet oxygen was responsible for the bactericidal action. CONCLUSIONS: It is strongly suggested that rose bengal is a suitable photosensitizer for the plaque disclosing agents as compared to the other two photosensitizers, phloxine and erythrosine, when used for PDT.

  7. Apparent oxygen utilization rates calculated from tritium and helium-3 profiles at the Bermuda Atlantic Time-series Study site

    Directory of Open Access Journals (Sweden)

    R. H. R. Stanley

    2012-06-01

    Full Text Available We present three years of Apparent Oxygen Utilization Rates (AOUR estimated from oxygen and tracer data collected over the ocean thermocline at monthly resolution between 2003 and 2006 at the Bermuda Atlantic Time-series Study (BATS site. We estimate water ages by calculating a transit time distribution from tritium and helium-3 data. The vertically integrated AOUR over the upper 500 m, which is a regional estimate of export, during the three years is 3.1 ± 0.5 mol O2 m−2 yr−1. This is comparable to previous AOUR-based estimates of export production at the BATS site but is several times larger than export estimates derived from sediment traps or 234Th fluxes. We compare AOUR determined in this study to AOUR measured in the 1980s and show AOUR is significantly greater today than decades earlier because of changes in AOU, rather than changes in ventilation rates. The changes in AOU are likely a methodological artefact associated with problems with early oxygen measurements.

  8. Influence of oxygen flow rate on metal-insulator transition of vanadium oxide thin films grown by RF magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Xu; Liu, Xinkun; Li, Haizhu; Huang, Mingju [Henan University, Key Lab of Informational Opto-Electronical Materials and Apparatus, School of Physics and Electronics, Kaifeng (China); Zhang, Angran [South China Normal University, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, Guangzhou (China)

    2017-03-15

    High-quality vanadium oxide (VO{sub 2}) films have been fabricated on Si (111) substrates by radio frequency (RF) magnetron sputtering deposition method. The sheet resistance of VO{sub 2} has a significant change (close to 5 orders of magnitude) in the process of the metal-insulator phase transition (MIT). The field emission-scanning electron microscope (FE-SEM) results show the grain size of VO{sub 2} thin films is larger with the increase of oxygen flow. The X-ray diffraction (XRD) results indicate the thin films fabricated at different oxygen flow rates grow along the (011) crystalline orientation. As the oxygen flow rate increases from 3 sccm to 6 sccm, the phase transition temperature of the films reduces from 341 to 320 K, the width of the thermal hysteresis loop decreases from 32 to 9 K. The thin films fabricated in the condition of 5 sccm have a high temperature coefficient of resistance (TCR) -3.455%/K with a small resistivity of 2.795 ρ/Ω cm. (orig.)

  9. Effects of levosimendan on glomerular filtration rate, renal blood flow, and renal oxygenation after cardiac surgery with cardiopulmonary bypass: a randomized placebo-controlled study.

    Science.gov (United States)

    Bragadottir, Gudrun; Redfors, Bengt; Ricksten, Sven-Erik

    2013-10-01

    Acute kidney injury develops in a large proportion of patients after cardiac surgery because of the low cardiac output syndrome. The inodilator levosimendan increases cardiac output after cardiac surgery with cardiopulmonary bypass, but a detailed analysis of its effects on renal perfusion, glomerular filtration, and renal oxygenation in this group of patients is lacking. We therefore evaluated the effects of levosimendan on renal blood flow, glomerular filtration rate, renal oxygen consumption, and renal oxygen demand/supply relationship, i.e., renal oxygen extraction, early after cardiac surgery with cardiopulmonary bypass. Prospective, placebo-controlled, and randomized trial. Cardiothoracic ICU of a tertiary center. Postcardiac surgery patients (n=30). The patients were randomized to receive levosimendan, 0.1 µg/kg/min after a loading dose of 12 µg/kg (n=15), or placebo (n=15). The experimental procedure started 4-6 hours after surgery in the ICU during propofol sedation and mechanical ventilation. Systemic hemodynamic were evaluated by a pulmonary artery thermodilution catheter. Renal blood flow and glomerular filtration rate were measured by the renal vein retrograde thermodilution technique and by renal extraction of Cr-EDTA, respectively. Central venous pressure was kept constant by colloid/crystalloid infusion. Compared to placebo, levosimendan increased cardiac index (22%), stroke volume index (15%), and heart rate (7%) and decreased systemic vascular resistance index (21%), whereas mean arterial pressure was not affected. Levosimendan induced significant increases in renal blood flow (12%, prenal vascular resistance (18%, prenal oxygen consumption, or renal oxygen extraction, compared to placebo. After cardiac surgery with cardiopulmonary bypass, levosimendan induces a vasodilation, preferentially of preglomerular resistance vessels, increasing both renal blood flow and glomerular filtration rate without jeopardizing renal oxygenation. Due to its

  10. An effective device for gas-liquid oxygen removal in enclosed microalgae culture.

    Science.gov (United States)

    Su, Zhenfeng; Kang, Ruijuan; Shi, Shaoyuan; Cong, Wei; Cai, Zhaoling

    2010-01-01

    A high-performance gas-liquid transmission device (HPTD) was described in this paper. To investigate the HPTD mass transfer characteristics, the overall volumetric mass transfer coefficients, K(A)(La,CO(2)) for the absorption of gaseous CO(2) and K(A)(La,O(2)) for the desorption of dissolved O(2) were determined, respectively, by titration and dissolved oxygen electrode. The mass transfer capability of carbon dioxide was compared with that of dissolved oxygen in the device, and the operating conditions were optimized to suit for the large-scale enclosed micro-algae cultivation. Based on the effectiveness evaluation of the HPTD applied in one enclosed flat plate Spirulina culture system, it was confirmed that the HPTD can satisfy the demand of the enclosed system for carbon supplement and excessive oxygen removal.

  11. Oxygen atom transfer from a trans-dioxoruthenium(VI) complex to nitric oxide.

    Science.gov (United States)

    Man, Wai-Lun; Lam, William W Y; Ng, Siu-Mui; Tsang, Wenny Y K; Lau, Tai-Chu

    2012-01-02

    In aqueous acidic solutions trans-[Ru(VI)(L)(O)(2)](2+) (L=1,12-dimethyl-3,4:9,10-dibenzo-1,12-diaza-5,8-dioxacyclopentadecane) is rapidly reduced by excess NO to give trans-[Ru(L)(NO)(OH)](2+). When ≤1 mol equiv NO is used, the intermediate Ru(IV) species, trans-[Ru(IV)(L)(O)(OH(2))](2+), can be detected. The reaction of [Ru(VI)(L)(O)(2)](2+) with NO is first order with respect to [Ru(VI)] and [NO], k(2)=(4.13±0.21)×10(1) M(-1) s(-1) at 298.0 K. ΔH(≠) and ΔS(≠) are (12.0±0.3) kcal mol(-1) and -(11±1) cal mol(-1) K(-1), respectively. In CH(3)CN, ΔH(≠) and ΔS(≠) have the same values as in H(2)O; this suggests that the mechanism is the same in both solvents. In CH(3)CN, the reaction of [Ru(VI)(L)(O)(2)](2+) with NO produces a blue-green species with λ(max) at approximately 650 nm, which is characteristic of N(2)O(3). N(2)O(3) is formed by coupling of NO(2) with excess NO; it is relatively stable in CH(3)CN, but undergoes rapid hydrolysis in H(2)O. A mechanism that involves oxygen atom transfer from [Ru(VI)(L)(O)(2)](2+) to NO to produce NO(2) is proposed. The kinetics of the reaction of [Ru(IV)(L)(O)(OH(2))](2+) with NO has also been investigated. In this case, the data are consistent with initial one-electron O(-) transfer from Ru(IV) to NO to produce the nitrito species [Ru(III)(L)(ONO)(OH(2))](2+) (k(2)>10(6) M(-1) s(-1)), followed by a reaction with another molecule of NO to give [Ru(L)(NO)(OH)](2+) and NO(2)(-) (k(2)=54.7 M(-1) s(-1)). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Dose-rate and oxygen effects in models of lipid membranes: linoleic acid

    Energy Technology Data Exchange (ETDEWEB)

    Raleigh, J A; Kremers, W; Gaboury, B [Atomic Energy of Canada Ltd., Pinawa, Manitoba. Whiteshell Nuclear Research Establishment

    1977-03-01

    Cellular membranes have been suggested as possible loci for the development of the oxygen effect in radiobiology. Unsaturated lipids from membranes are subject to very efficient radiation-induced peroxidation, and the deleterious effects generally associated with lipid autoxidation could be initiated by ionizing radiation. Oxidative damage in lipids was characterized not only by high yields but also by a profound dose-rate effect. At dose-rates of x irradiation below 100 rad/min, a very sharp rise occurred in oxidative damage. This damage has been quantified spectrophotometrically in terms of diene conjugation (O.D. 234 mm) and chromatographically in terms of specific 9- and 13-hydroperoxide formation in linoleic acid micelles. Radical scavenging experiments indicated that hydroxyl radical attack initiated the oxidative damage. Dimethyl sulphoxide is exceptional in that it did not protect, but sensitized, linoleic acid to radiation-induced peroxidation. The yields of hydroperoxides were substantial (G = 10 to 40) and could be related to biological changes known to be effected by autoxidizing lipids.

  13. Ceramic oxygen transport membrane array reactor and reforming method

    Science.gov (United States)

    Kelly, Sean M.; Christie, Gervase Maxwell; Robinson, Charles; Wilson, Jamie R; Gonzalez, Javier E.; Doraswami, Uttam R.

    2017-10-03

    The invention relates to a commercially viable modular ceramic oxygen transport membrane system for utilizing heat generated in reactively-driven oxygen transport membrane tubes to generate steam, heat process fluid and/or provide energy to carry out endothermic chemical reactions. The system provides for improved thermal coupling of oxygen transport membrane tubes to steam generation tubes or process heater tubes or reactor tubes for efficient and effective radiant heat transfer.

  14. Computation of single- and two-phase heat transfer rates suitable for water-cooled tubes and subchannels

    International Nuclear Information System (INIS)

    Groeneveld, D.C.; Leung, L.K.H.; Cheng, S.C.; Nguyen, C.

    1989-01-01

    A computational method for predicting heat transfer, valid for a wide range of flow conditions (from pool boiling and laminar flow conditions to highly turbulent flow), has been developed. It correctly identifies the heat transfer modes and predicts the heat transfer rates as well as transition points (such as the critical heat flux point) on the boiling curve. The computational heat transfer method consists of a combination of carefully chosen heat transfer equations for each heat transfer mode. Each of these equations has been selected because of their accuracy, wide range of application, and correct asymptotic trends. Using a mechanistically-based heat transfer logic, these equations have been combined in a convenient software package suitable for PC or mainframe application. The computational method has been thoroughly tested against many sets of experimental data. The parametric and asymptotic trends of the prediction method have been examined in detail. Correction factors are proposed for extending the use of individual predictive techniques to various geometric configurations and upstream conditions. (orig.)

  15. The influence of pH on gas-liquid mass transfer in non-Newtonian fluids

    Directory of Open Access Journals (Sweden)

    Li Shaobai

    2017-01-01

    Full Text Available In this study, the effect of pH on the mass transfer of oxygen bubble swarms in non-Newtonian fluids was experimentally studied. The volumetric liquid side mass transfer coefficient (kLa, liquid side mass transfer coefficient (kL, and specific interfacial area (a were investigated. The pH was regulated by the addition of hydrochloric acid and sodium hydroxide (NaOH. It was found that the kLa increased with the gas flow rate increasing and decreased with the apparent viscosity of the liquid increasing. In the case of pH 7 was attributed to the decomposition of the Xanthan molecular structure by the hydroxyl of NaOH.

  16. Nature of oxygen donors and radiation defects in oxygen-doped germanium

    International Nuclear Information System (INIS)

    Fukuoka, Noboru; Atobe, Kozo; Honda, Makoto; Matsuda, Koji.

    1991-01-01

    The nature of oxygen donors and radiation defects in oxygen-doped germanium were studied through measurements of the infrared absorption spectrum, deep level transient spectroscopy spectrum and carrier concentration. It is revealed that a new donor is not formed in oxygen-doped germanium. An A-center (interstitial oxygen-vacancy pair) forms a complex with a thermal donor in its annealing stage at 60degC-140degC. The introduction rate of defects by 1.5 MeV electron irradiation was enhanced in thermal-donor-doped samples. (author)

  17. Investigating rate-limiting barriers to nanoscale nonviral gene transfer with nanobiophotonics

    Science.gov (United States)

    Chen, Hunter H.

    Nucleic acids are a novel class of therapeutics poised to address many unmet clinical needs. Safe and efficient delivery remains a significant challenge that has delayed the realization of the full therapeutic potential of nucleic acids. Nanoscale nonviral vectors offer an attractive alternative to viral vectors as natural and synthetic polymers or polypeptides may be rationally designed to meet the unique demands of individual applications. A mechanistic understanding of cellular barriers is necessary to develop guidelines for designing custom gene carriers which are expected to greatly impact this delivery challenge. The work herein focused on the relationships among nanocomplex stability, intracellular trafficking and unpacking kinetics, and DNA degradation. Ultrasensitive nanosensors based on QD-FRET were developed to characterize the biophysical properties of nanocomplexes and study these rate-limiting steps. Quantitative image analysis enabled the distributions of the subpopulation of condensed or released DNA to be determined within the major cellular compartments encountered during gene transfer. The steady state stability and unpacking kinetics within these compartments were found to impact transgene expression, elucidating multiple design strategies to achieve efficient gene transfer. To address enzymatic barriers, a novel two-step QD-FRET nanosensor was developed to analyze unpacking and DNA degradation simultaneously, which has not been accomplished previously. Bioresponsive strategies such as disulfide crosslinking and thermosensitivity were evaluated by QD-FRET and quantitative compartmental analysis as case studies to determine appropriate design specifications for thiolated polymers and thermoresponsive polypeptides. Relevant nanobiophotonic tools were developed as a platform to study major rate-limiting barriers to nanomedicine and demonstrated the feasibility of using mechanistic information gained from these tools to guide the rational design of

  18. Analyzing the dependence of oxygen incorporation current density on overpotential and oxygen partial pressure in mixed conducting oxide electrodes.

    Science.gov (United States)

    Guan, Zixuan; Chen, Di; Chueh, William C

    2017-08-30

    The oxygen incorporation reaction, which involves the transformation of an oxygen gas molecule to two lattice oxygen ions in a mixed ionic and electronic conducting solid, is a ubiquitous and fundamental reaction in solid-state electrochemistry. To understand the reaction pathway and to identify the rate-determining step, near-equilibrium measurements have been employed to quantify the exchange coefficients as a function of oxygen partial pressure and temperature. However, because the exchange coefficient contains contributions from both forward and reverse reaction rate constants and depends on both oxygen partial pressure and oxygen fugacity in the solid, unique and definitive mechanistic assessment has been challenging. In this work, we derive a current density equation as a function of both oxygen partial pressure and overpotential, and consider both near and far from equilibrium limits. Rather than considering specific reaction pathways, we generalize the multi-step oxygen incorporation reaction into the rate-determining step, preceding and following quasi-equilibrium steps, and consider the number of oxygen ions and electrons involved in each. By evaluating the dependence of current density on oxygen partial pressure and overpotential separately, one obtains the reaction orders for oxygen gas molecules and for solid-state species in the electrode. We simulated the oxygen incorporation current density-overpotential curves for praseodymium-doped ceria for various candidate rate-determining steps. This work highlights a promising method for studying the exchange kinetics far away from equilibrium.

  19. Wii, Kinect, and Move. Heart Rate, Oxygen Consumption, Energy Expenditure, and Ventilation due to Different Physically Active Video Game Systems in College Students.

    Science.gov (United States)

    Scheer, Krista S; Siebrant, Sarah M; Brown, Gregory A; Shaw, Brandon S; Shaw, Ina

    Nintendo Wii, Sony Playstation Move , and Microsoft XBOX Kinect are home video gaming systems that involve player movement to control on-screen game play. Numerous investigations have demonstrated that playing Wii is moderate physical activity at best, but Move and Kinect have not been as thoroughly investigated. The purpose of this study was to compare heart rate, oxygen consumption, and ventilation while playing the games Wii Boxing, Kinect Boxing, and Move Gladiatorial Combat. Heart rate, oxygen consumption, and ventilation were measured at rest and during a graded exercise test in 10 males and 9 females (19.8 ± 0.33 y, 175.4 ± 2.0 cm, 80.2 ± 7.7 kg,). On another day, in a randomized order, the participants played Wii Boxing, K inect Boxing, and Move Gladiatorial Combat while heart rate, ventilation, and oxygen consumption were measured. There were no differences in heart rate (116.0 ± 18.3 vs. 119.3 ± 17.6 vs. 120.1 ± 17.6 beats/min), oxygen consumption (9.2 ± 3.0 vs. 10.6 ± 2.4 vs. 9.6 ± 2.4 ml/kg/min), or minute ventilation (18.9 ± 5.7 vs. 20.8 ± 8.0 vs. 19.7 ± 6.4 L/min) when playing Wii boxing, Kinect boxing, or Move Gladiatorial Combat (respectively). Playing Nintendo Wii Boxing, XBOX Kinect Boxing, and Sony PlayStation Move Gladiatorial Combat all increase heart rate, oxygen consumption, and ventilation above resting levels but there were no significant differences between gaming systems. Overall, playing a "physically active" home video game system does not meet the minimal threshold for moderate intensity physical activity, regardless of gaming system.

  20. Effect of air bubble localization after transfer on embryo transfer outcomes.

    Science.gov (United States)

    Tiras, Bulent; Korucuoglu, Umit; Polat, Mehtap; Saltik, Ayse; Zeyneloglu, Hulusi Bulent; Yarali, Hakan

    2012-09-01

    Our study aimed to provide information about the effects of air bubble localization after transfer on embryo transfer outcomes. Retrospective analysis of 7489 ultrasound-guided embryo transfers. Group 1 included 6631 embryo transfers in which no movement of the air bubbles was observed after transfer. Group 2 consisted of 407 embryo transfers in which the air bubbles moved towards the uterine fundus spontaneously, a little time after transfer. Group 3 included 370 embryo transfers in which the air bubbles moved towards the uterine fundus with ejection, immediately after transfer. Group 4 consisted of 81 embryo transfers in which the air bubbles moved towards the cervical canal. The four patient groups were different from one another with respect to positive pregnancy tests. Post hoc test revealed that this difference was between group 4 and other groups. An initial finding of our study was significantly decreased positive pregnancy test rates and clinical pregnancy rates with air bubbles moving towards the cervical canal after transfer. Although air bubbles moving towards the uterine fundus with ejection were associated with higher pregnancy rates, higher miscarriage rates and similar live birth rates were observed compared to air bubbles remaining stable after transfer. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  1. Oxygen Sensing by the Hybrid Langmuir-Blodgett Films of Iridium(III Complexes and Synthetic Saponite on the Basis of Energy Transfer

    Directory of Open Access Journals (Sweden)

    Hisako Sato

    2017-09-01

    Full Text Available An ultra-thin hybrid film of amphiphilic iridium(III complexes and synthetic saponite was manipulated by means of the modified Langmuir-Blodgett method. In the film deposited onto a quartz substrate, the external mixed molecular layer of amphiphilic iridium(III complexes was reinforced by the inner layer of exfoliated synthetic saponite. As components of the molecular layer, two iridium(III complexes were used: [Ir(dfppy2(dc9bpy]+ (dfppyH = 2-(4′,6′-difluorophenyl pyridine; dc9bpy = 4,4′-dinonyl-2,2′-bipyridine (denoted as DFPPY and [Ir(piq2(dc9bpy]+ (piqH = 1-phenyisoquinoline denoted as PIQ. The emission spectra from the films changed from blue to red maxima with the decrease of a ratio of DFPPY/PIQ due to the energy transfer from excited DFPPY to PIQ. The intensity of red decreased with the increase of oxygen pressure through the quenching of excited iridium(III complexes, promising a possibility as an oxygen-sensing film.

  2. SCEPTIC, Pressure Drop, Flow Rate, Heat Transfer, Temperature in Reactor Heat Exchanger

    International Nuclear Information System (INIS)

    Kattchee, N.; Reynolds, W.C.

    1975-01-01

    1 - Nature of physical problem solved: SCEPTIC is a program for calculating pressure drop, flow rates, heat transfer rates, and temperature in heat exchangers such as fuel elements of typical gas or liquid cooled nuclear reactors. The effects of turbulent and heat interchange between flow passages are considered. 2 - Method of solution: The computation procedure amounts to a nodal of lumped parameter type of calculation. The axial mesh size is automatically selected to assure that a prescribed accuracy of results is obtained. 3 - Restrictions on the complexity of the problem: Maximum number of subchannels is 25, maximum number of heated surfaces is 46

  3. A general real-time formulation for multi-rate mass transfer problems

    Directory of Open Access Journals (Sweden)

    O. Silva

    2009-08-01

    Full Text Available Many flow and transport phenomena, ranging from delayed storage in pumping tests to tailing in river or aquifer tracer breakthrough curves or slow kinetics in reactive transport, display non-equilibrium (NE behavior. These phenomena are usually modeled by non-local in time formulations, such as multi-porosity, multiple processes non equilibrium, continuous time random walk, memory functions, integro-differential equations, fractional derivatives or multi-rate mass transfer (MRMT, among others. We present a MRMT formulation that can be used to represent all these models of non equilibrium. The formulation can be extended to non-linear phenomena. Here, we develop an algorithm for linear mass transfer, which is accurate, computationally inexpensive and easy to implement in existing groundwater or river flow and transport codes. We illustrate this approach by application to published data involving NE groundwater flow and solute transport in rivers and aquifers.

  4. Final Report: Cathode Catalysis in Hydrogen/Oxygen Fuel Cells: New Catalysts, Mechanism, and Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Gewirth, Andrew A. [Univ. of Illinois, Urbana, IL (United States). Dept. of Chemistry; Kenis, Paul J. [Univ. of Illinois, Urbana, IL (United States). Dept. of Chemical and Biomolecular Engineering; Nuzzo, Ralph G. [Univ. of Illinois, Urbana, IL (United States). Dept. of Chemistry; Rauchfuss, Thomas B. [Univ. of Illinois, Urbana, IL (United States). Dept. of Chemistry

    2016-01-18

    In this research, we prosecuted a comprehensive plan of research directed at developing new catalysts and new understandings relevant to the operation of low temperature hydrogen-oxygen fuel cells. The focal point of this work was one centered on the Oxygen Reduction Reaction (ORR), the electrochemical process that most fundamentally limits the technological utility of these environmentally benign energy conversion devices. Over the period of grant support, we developed new ORR catalysts, based on Cu dimers and multimers. In this area, we developed substantial new insight into design rules required to establish better ORR materials, inspired by the three-Cu active site in laccase which has the highest ORR onset potential of any material known. We also developed new methods of characterization for the ORR on conventional (metal-based) catalysts. Finally, we developed a new platform to study the rate of proton transfer relevant to proton coupled electron transfer (PCET) reactions, of which the ORR is an exemplar. Other aspects of work involved theory and prototype catalyst testing.

  5. Carbon mineralization and oxygen dynamics in sediments with deep oxygen penetration, Lake Superior

    DEFF Research Database (Denmark)

    Li, Jiying; Crowe, Sean Andrew; Miklesh, David

    2012-01-01

    To understand carbon and oxygen dynamics in sediments with deep oxygen penetration, we investigated eight locations (160–318-m depth) throughout Lake Superior. Despite the 2–4 weight percent organic carbon content, oxygen penetrated into the sediment by 3.5 to > 12 cm at all locations. Such deep ...... volume-specific carbon degradation rates were 0.3–1.5 µmol cm−3 d−1; bioturbation coefficient near the sediment surface was 3–8 cm2 yr−1. These results indicate that carbon cycling in large freshwater systems conforms to many of the same trends as in marine systems.......To understand carbon and oxygen dynamics in sediments with deep oxygen penetration, we investigated eight locations (160–318-m depth) throughout Lake Superior. Despite the 2–4 weight percent organic carbon content, oxygen penetrated into the sediment by 3.5 to > 12 cm at all locations. Such deep......, suggesting that temporal variability in deeply oxygenated sediments may be greater than previously acknowledged. The oxygen uptake rates (4.4–7.7 mmol m−2 d−1, average 6.1 mmol m−2 d−1) and carbon mineralization efficiency (∼ 90% of deposited carbon) were similar to those in marine hemipelagic and pelagic...

  6. Oxygen consumption in EPDM irradiated under different oxygen pressures and at different LET

    International Nuclear Information System (INIS)

    Dely, N.; Ngono-Ravache, Y.; Ramillon, J.-M.; Balanzat, E.

    2005-01-01

    We conceived a novel set-up for measuring the radiochemical yields of oxygen consumption in polymers. The measurement is based on a sampling of the gas mixture with a mass spectrometer, before and after irradiation. We irradiated an ethylene, propylene and 1,4-hexadiene terpolymer (EPDM) with 1 MeV electron and 10.75 MeV/A carbon beams. Samples were irradiated under oxygen within a wide range of pressure (5-200 mbar). The yields under C irradiation are four times smaller than the yields under electron irradiation. This shows that radiooxidation is very sensitive to the linear energy transfer of the projectiles and hence to the heterogeneity of the energy deposition. The oxygen consumption yields do not vary significantly in the range of pressure investigated; even at 5 mbar, the kinetics is still governed by the bimolecular recombination of peroxy radicals

  7. Influence of mass transfer resistance on overall nitrate removal rate in upflow sludge bed reactors.

    Science.gov (United States)

    Ting, Wen-Huei; Huang, Ju-Sheng

    2006-09-01

    A kinetic model with intrinsic reaction kinetics and a simplified model with apparent reaction kinetics for denitrification in upflow sludge bed (USB) reactors were proposed. USB-reactor performance data with and without sludge wasting were also obtained for model verification. An independent batch study showed that the apparent kinetic constants k' did not differ from the intrinsic k but the apparent Ks' was significantly larger than the intrinsic Ks suggesting that the intra-granule mass transfer resistance can be modeled by changes in Ks. Calculations of the overall effectiveness factor, Thiele modulus, and Biot number combined with parametric sensitivity analysis showed that the influence of internal mass transfer resistance on the overall nitrate removal rate in USB reactors is more significant than the external mass transfer resistance. The simulated residual nitrate concentrations using the simplified model were in good agreement with the experimental data; the simulated results using the simplified model were also close to those using the kinetic model. Accordingly, the simplified model adequately described the overall nitrate removal rate and can be used for process design.

  8. Graphene–cyclodextrin–cytochrome c layered assembly with improved electron transfer rate and high supramolecular recognition capability

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Cheng-Bin; Guo, Cong-Cong; Jiang, Dan; Tang, Qian, E-mail: qiantang@swu.edu.cn; Liu, Chang-Hua; Ma, Xue-Bing

    2014-06-01

    This study aimed to develop a new graphene-based layered assembly, named graphene–cyclodextrin–cytochrome c with improved electron transfer rate. This assembly has combined high conductivity of graphene nanosheets (GNs), selectively binding properties and electronegativity of cyclodextrins (CDs), as well as electropositivity of cytochrome c (Cyt c). This assembly can also mimic the confined environments of the intermembrane space of mitochondria. A β-cyclodextrin (β-CD) functionalized GN (GN–CD) assembly was initially prepared by a simple wet-chemical strategy, i.e., in situ thermal reduction of graphene oxide with hydrazine hydrate in the presence of β-CD. Cyt c was then intercalated to the GN–CD assembly to form a layered self-assembled structure, GN–CD–Cyt c, through electrostatic interaction. Compared with GNs and GN–CD, GN–CD–Cyt c assembly displayed improved electron transfer rate and high supramolecular recognition capability toward six probe molecules. - Highlights: • A new tertiary layered assembly named GN–CD–Cyt c was prepared. • Compared with GNs and GN–CD, GN–CD–Cyt c shows improved electron transfer rate. • GN–CD–Cyt c displays high supramolecular recognition capability.

  9. Graphene–cyclodextrin–cytochrome c layered assembly with improved electron transfer rate and high supramolecular recognition capability

    International Nuclear Information System (INIS)

    Gong, Cheng-Bin; Guo, Cong-Cong; Jiang, Dan; Tang, Qian; Liu, Chang-Hua; Ma, Xue-Bing

    2014-01-01

    This study aimed to develop a new graphene-based layered assembly, named graphene–cyclodextrin–cytochrome c with improved electron transfer rate. This assembly has combined high conductivity of graphene nanosheets (GNs), selectively binding properties and electronegativity of cyclodextrins (CDs), as well as electropositivity of cytochrome c (Cyt c). This assembly can also mimic the confined environments of the intermembrane space of mitochondria. A β-cyclodextrin (β-CD) functionalized GN (GN–CD) assembly was initially prepared by a simple wet-chemical strategy, i.e., in situ thermal reduction of graphene oxide with hydrazine hydrate in the presence of β-CD. Cyt c was then intercalated to the GN–CD assembly to form a layered self-assembled structure, GN–CD–Cyt c, through electrostatic interaction. Compared with GNs and GN–CD, GN–CD–Cyt c assembly displayed improved electron transfer rate and high supramolecular recognition capability toward six probe molecules. - Highlights: • A new tertiary layered assembly named GN–CD–Cyt c was prepared. • Compared with GNs and GN–CD, GN–CD–Cyt c shows improved electron transfer rate. • GN–CD–Cyt c displays high supramolecular recognition capability

  10. Investigation of the oxygen exchange mechanism on Pt|yttria stabilized zirconia at intermediate temperatures: Surface path versus bulk path.

    Science.gov (United States)

    Opitz, Alexander K; Lutz, Alexander; Kubicek, Markus; Kubel, Frank; Hutter, Herbert; Fleig, Jürgen

    2011-11-30

    The oxygen exchange kinetics of platinum on yttria-stabilized zirconia (YSZ) was investigated by means of geometrically well-defined Pt microelectrodes. By variation of electrode size and temperature it was possible to separate two temperature regimes with different geometry dependencies of the polarization resistance. At higher temperatures (550-700 °C) an elementary step located close to the three phase boundary (TPB) with an activation energy of ∼1.6 eV was identified as rate limiting. At lower temperatures (300-400 °C) the rate limiting elementary step is related to the electrode area and exhibited a very low activation energy in the order of 0.2 eV. From these observations two parallel pathways for electrochemical oxygen exchange are concluded.The nature of these two elementary steps is discussed in terms of equivalent circuits. Two combinations of parallel rate limiting reaction steps are found to explain the observed geometry dependencies: (i) Diffusion through an impurity phase at the TPB in parallel to diffusion of oxygen through platinum - most likely along Pt grain boundaries - as area-related process. (ii) Co-limitation of oxygen diffusion along the Pt|YSZ interface and charge transfer at the interface with a short decay length of the corresponding transmission line (as TPB-related process) in parallel to oxygen diffusion through platinum.

  11. Behaviour of oxygen in liquid sodium

    International Nuclear Information System (INIS)

    Torre Cabezas, M. de la

    1975-01-01

    In this work, the vacuum distillation method has been used for the determination of oxygen concentration in liquid sodium. During this investigation, more than 800 analyses have been made and a fluctuation of between 15 and 20$ has been noted in the results. The performance of a cold trap to remove oxygen from sodium has been studied and the corresponding mass transfer coefficient evaluated. The value of this coefficient was in good agreement with those achieved by other workers. (Authors) 69 refs

  12. High-Energy-Density Metal-Oxygen Batteries: Lithium-Oxygen Batteries vs Sodium-Oxygen Batteries.

    Science.gov (United States)

    Song, Kyeongse; Agyeman, Daniel Adjei; Park, Mihui; Yang, Junghoon; Kang, Yong-Mook

    2017-12-01

    The development of next-generation energy-storage devices with high power, high energy density, and safety is critical for the success of large-scale energy-storage systems (ESSs), such as electric vehicles. Rechargeable sodium-oxygen (Na-O 2 ) batteries offer a new and promising opportunity for low-cost, high-energy-density, and relatively efficient electrochemical systems. Although the specific energy density of the Na-O 2 battery is lower than that of the lithium-oxygen (Li-O 2 ) battery, the abundance and low cost of sodium resources offer major advantages for its practical application in the near future. However, little has so far been reported regarding the cell chemistry, to explain the rate-limiting parameters and the corresponding low round-trip efficiency and cycle degradation. Consequently, an elucidation of the reaction mechanism is needed for both lithium-oxygen and sodium-oxygen cells. An in-depth understanding of the differences and similarities between Li-O 2 and Na-O 2 battery systems, in terms of thermodynamics and a structural viewpoint, will be meaningful to promote the development of advanced metal-oxygen batteries. State-of-the-art battery design principles for high-energy-density lithium-oxygen and sodium-oxygen batteries are thus reviewed in depth here. Major drawbacks, reaction mechanisms, and recent strategies to improve performance are also summarized. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. First principles study of dissolved oxygen water adsorption on Fe (001 surfaces

    Directory of Open Access Journals (Sweden)

    Dong ZHANG

    2018-02-01

    Full Text Available In order to study the mechanism of dissolved oxygen content on the surface corrosion behavior of Fe-based heat transfer, the first principle is used to study the adsorption of O2 monomolecular, H2O monolayer and dissolved oxygen system on Fe-based heat transfer surface. The GGA/PBE approximation is used to calculate the adsorption energy, state density and population change during the adsorption process. Calculations prove that when the dissolved oxygen is adsorbed on the Fe-based surface, the water molecule tends to adsorb at the top sites, and the oxygen molecule tends to adsorb at Griffiths. When the H2O molecule adsorbs and interacts on the Fe (001 surface, the charge distribution of the interfacial double electric layer changes to cause the Fe atoms to lose electrons, resulting in the change of the surface potential. When the O2 molecule adsorbs on the Fe (001 crystal surfaces, the electrons on the Fe (001 surface are lost and the surface potential increases. O2 molecule and the surface of the Fe atoms are prone to electron transfer, in which O atom's 2p orbit for the adsorption of O2 molecule on Fe (001 crystal surface play a major role. With the increase of the proportion of O2 molecule in the dissolved oxygen water, the absolute value of the adsorption energy increases, and the interaction of the Fe-based heat transfer surface is stronger. This study explores the influence law of different dissolved oxygen on the Fe base heat exchange surface corrosion, and the base metal corrosion mechanism for experimental study provides a theoretical reference.

  14. Photo-excitation of carotenoids causes cytotoxicity via singlet oxygen production

    International Nuclear Information System (INIS)

    Yoshii, Hiroshi; Yoshii, Yukie; Asai, Tatsuya; Furukawa, Takako; Takaichi, Shinichi; Fujibayashi, Yasuhisa

    2012-01-01

    Highlights: ► Some photo-excited carotenoids have photosensitizing ability. ► They are able to produce ROS. ► Photo-excited fucoxanthin can produce singlet oxygen through energy transfer. -- Abstract: Carotenoids, natural pigments widely distributed in algae and plants, have a conjugated double bond system. Their excitation energies are correlated with conjugation length. We hypothesized that carotenoids whose energy states are above the singlet excited state of oxygen (singlet oxygen) would possess photosensitizing properties. Here, we demonstrated that human skin melanoma (A375) cells are damaged through the photo-excitation of several carotenoids (neoxanthin, fucoxanthin and siphonaxanthin). In contrast, photo-excitation of carotenoids that possess energy states below that of singlet oxygen, such as β-carotene, lutein, loroxanthin and violaxanthin, did not enhance cell death. Production of reactive oxygen species (ROS) by photo-excited fucoxanthin or neoxanthin was confirmed using a reporter assay for ROS production with HeLa Hyper cells, which express a fluorescent indicator protein for intracellular ROS. Fucoxanthin and neoxanthin also showed high cellular penetration and retention. Electron spin resonance spectra using 2,2,6,6-tetramethil-4-piperidone as a singlet oxygen trapping agent demonstrated that singlet oxygen was produced via energy transfer from photo-excited fucoxanthin to oxygen molecules. These results suggest that carotenoids such as fucoxanthin, which are capable of singlet oxygen production through photo-excitation and show good penetration and retention in target cells, are useful as photosensitizers in photodynamic therapy for skin disease.

  15. Optical measurements of atomic oxygen concentration, temperature and nitric oxide production rate in flames

    Science.gov (United States)

    Myhr, Franklin Henry

    An optical method for measuring nitric oxide (NO) production rates in flames was developed and characterized in a series of steady, one-dimensional, atmospheric-pressure laminar flames of 0.700 Hsb2/0.199 Nsb2/0.101 COsb2 or 0.700 CHsb4/0.300 Nsb2 (by moles) with dry air, with equivalence ratios from 0.79 to 1.27. Oxygen atom concentration, (O), was measured by two-photon laser-induced fluorescence (LIF), temperature was measured by ultraviolet Rayleigh scattering, and nitrogen concentration was calculated from supplied reactant flows; together this information was used to calculate the NO production rate through the thermal (Zel'dovich) mechanism. Measurements by two other techniques were compared with results from the above method. In the first comparison, gas sampling was used to measure axial NO concentration profiles, the slopes of which were multiplied by velocity to obtain total NO production rates. In the second comparison, LIF measurements of hydroxyl radical (OH) were used with equilibrium water concentrations and a partial equilibrium assumption to find (O). Nitric oxide production rates from all three methods agreed reasonably well. Photolytic interference was observed during (O) LIF measurements in all of the flames; this is the major difficulty in applying the optical technique. Photolysis of molecular oxygen in lean flames has been well documented before, but the degree of interference observed in the rich flames suggests that some other molecule is also dissociating; the candidates are OH, CO, COsb2 and Hsb2O. An extrapolative technique for removing the effects of photolysis from (O) LIF measurements worked well in all flames where NO production was significant. Using the optical method to measure NO production rates in turbulent flames will involve a tradeoff among spatial resolution, systematic photolysis error, and random shot noise. With the conventional laser system used in this work, a single pulse with a resolution of 700 mum measured NO

  16. A CENSUS OF OXYGEN IN STAR-FORMING GALAXIES: AN EMPIRICAL MODEL LINKING METALLICITIES, STAR FORMATION RATES, AND OUTFLOWS

    International Nuclear Information System (INIS)

    Zahid, H. J.; Dima, G. I.; Kewley, L. J.; Erb, D. K.; Davé, R.

    2012-01-01

    In this contribution, we present the first census of oxygen in star-forming galaxies in the local universe. We examine three samples of galaxies with metallicities and star formation rates (SFRs) at z = 0.07, 0.8, and 2.26, including the Sloan Digital Sky Survey (SDSS) and DEEP2 survey. We infer the total mass of oxygen produced and mass of oxygen found in the gas-phase from our local SDSS sample. The star formation history is determined by requiring that galaxies evolve along the relation between stellar mass and SFR observed in our three samples. We show that the observed relation between stellar mass and SFR for our three samples is consistent with other samples in the literature. The mass-metallicity relation is well established for our three samples, and from this we empirically determine the chemical evolution of star-forming galaxies. Thus, we are able to simultaneously constrain the SFRs and metallicities of galaxies over cosmic time, allowing us to estimate the mass of oxygen locked up in stars. Combining this work with independent measurements reported in the literature, we conclude that the loss of oxygen from the interstellar medium of local star-forming galaxies is likely to be a ubiquitous process with the oxygen mass loss scaling (almost) linearly with stellar mass. We estimate the total baryonic mass loss and argue that only a small fraction of the baryons inferred from cosmological observations accrete onto galaxies.

  17. Real-time monitoring of specific oxygen uptake rates of embryonic stem cells in a microfluidic cell culture device.

    Science.gov (United States)

    Super, Alexandre; Jaccard, Nicolas; Cardoso Marques, Marco Paulo; Macown, Rhys Jarred; Griffin, Lewis Donald; Veraitch, Farlan Singh; Szita, Nicolas

    2016-09-01

    Oxygen plays a key role in stem cell biology as a signaling molecule and as an indicator of cell energy metabolism. Quantification of cellular oxygen kinetics, i.e. the determination of specific oxygen uptake rates (sOURs), is routinely used to understand metabolic shifts. However current methods to determine sOUR in adherent cell cultures rely on cell sampling, which impacts on cellular phenotype. We present real-time monitoring of cell growth from phase contrast microscopy images, and of respiration using optical sensors for dissolved oxygen. Time-course data for bulk and peri-cellular oxygen concentrations obtained for Chinese hamster ovary (CHO) and mouse embryonic stem cell (mESCs) cultures successfully demonstrated this non-invasive and label-free approach. Additionally, we confirmed non-invasive detection of cellular responses to rapidly changing culture conditions by exposing the cells to mitochondrial inhibiting and uncoupling agents. For the CHO and mESCs, sOUR values between 8 and 60 amol cell(-1) s(-1) , and 5 and 35 amol cell(-1) s(-1) were obtained, respectively. These values compare favorably with literature data. The capability to monitor oxygen tensions, cell growth, and sOUR, of adherent stem cell cultures, non-invasively and in real time, will be of significant benefit for future studies in stem cell biology and stem cell-based therapies. © 2016 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Sensory characteristics changes of red Grenache wines submitted to different oxygen exposures pre and post bottling.

    Science.gov (United States)

    Caillé, Soline; Samson, Alain; Wirth, Jérémie; Diéval, Jean-Baptiste; Vidal, Stéphane; Cheynier, Véronique

    2010-02-15

    It is widely accepted that oxygen contributes to wine development by impacting its colour, aromatic bouquet, and mouth-feel properties. The wine industry can now also take advantage of engineered solutions to deliver known amounts of oxygen into bottles through the closures. This study was aimed at monitoring the influence of oxygen pick-up, before (micro-oxygenation, Mox) and after (nano-oxygenation) bottling, on wine sensory evolution. Red Grenache wines were prepared either by flash release (FR) or traditional soaking (Trad) and with or without Mox during elevage (FR+noMox, FR+Mox, Trad+noMox, Trad+Mox). The rate of nano oxygenation was controlled by combining consistent oxygen transfer rate (OTR) closures and different oxygen controlled storage conditions. Wine sensory characteristics were analyzed by sensory profile, at bottling (T0) and after 5 and 10 months of ageing, by a panel of trained judges. Effects of winemaking techniques and OTR were analyzed by multivariate analysis (principal component analysis and agglomerative hierarchical clustering) and analysis of variance. Results showed that, at bottling, Trad wines were perceived more animal and FR wines more bitter and astringent. Mox wines showed more orange shade. At 5 and 10 months, visual and olfactory differences were observed according to the OTR levels: modalities with higher oxygen ingress were darker and fruitier but also perceived significantly less animal than modalities with lower oxygen. Along the 10 months of ageing, the influence of OTR became more important as shown by increased significance levels of the observed differences. As the mouth-feel properties of the wines were mainly dictated by winemaking techniques, OTR had only little impact on "in mouth" attributes. Copyright 2009 Elsevier B.V. All rights reserved.

  19. The rate of second electron transfer to QB(-) in bacterial reaction center of impaired proton delivery shows hydrogen-isotope effect.

    Science.gov (United States)

    Maróti, Ágnes; Wraight, Colin A; Maróti, Péter

    2015-02-01

    The 2nd electron transfer in reaction center of photosynthetic bacterium Rhodobacter sphaeroides is a two step process in which protonation of QB(-) precedes interquinone electron transfer. The thermal activation and pH dependence of the overall rate constants of different RC variants were measured and compared in solvents of water (H2O) and heavy water (D2O). The electron transfer variants where the electron transfer is rate limiting (wild type and M17DN, L210DN and H173EQ mutants) do not show solvent isotope effect and the significant decrease of the rate constant of the second electron transfer in these mutants is due to lowering the operational pKa of QB(-)/QBH: 4.5 (native), 3.9 (L210DN), 3.7 (M17DN) and 3.1 (H173EQ) at pH7. On the other hand, the proton transfer variants where the proton transfer is rate limiting demonstrate solvent isotope effect of pH-independent moderate magnitude (2.11±0.26 (WT+Ni(2+)), 2.16±0.35 (WT+Cd(2+)) and 2.34±0.44 (L210DN/M17DN)) or pH-dependent large magnitude (5.7 at pH4 (L213DN)). Upon deuteration, the free energy and the enthalpy of activation increase in all proton transfer variants by about 1 kcal/mol and the entropy of activation becomes negligible in L210DN/M17DN mutant. The results are interpreted as manifestation of equilibrium and kinetic solvent isotope effects and the structural, energetic and kinetic possibility of alternate proton delivery pathways are discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Effect of embryo age and recipient asynchrony on pregnancy rates in a commercial equine embryo transfer program.

    Science.gov (United States)

    Jacob, J C F; Haag, K T; Santos, G O; Oliveira, J P; Gastal, M O; Gastal, E L

    2012-04-01

    In the present study, 809 uterine flushes and 454 embryo transfers performed in mares over a 4-yr interval were examined to evaluate the effects of: (1) the day of embryo collection on recovery rates; (2) the degree of synchrony between donor and recipient mares on pregnancy rates; (3) the recipient day post ovulation on pregnancy rates; and (4) the age of the embryo at recovery on pregnancy rates at 60 days. Uterine flushes were performed on Days 6, 7, 8, 9, and 10 (Day 0 = ovulation) and embryos were transferred to recipients with degrees of synchrony varying between +1 to -6 (recipient ovulated 1 day before through 6 days after the donor). Recipient mares ranged from 2 to 8 days post ovulation. Embryo recovery rates were similar for flushes performed on Day 7 (61%), Day 8 (66%), Day 9 (59%), and Day 10 (56%), but the embryo recovery rate was lower (P recipient mares on Day 2 (33%) compared with mares on Day 3 (66%), Day 4 (66%), Day 5 (62%), Day 6 (55%), Day 7 (58%), and Day 8 (56%). Pregnancy rate was higher (P recipient mares does not need to be as restricted as previously reported in horses. Acceptable pregnancy rates (e.g., 70%, 99/142) were obtained even when recipient mares ovulated 4 to 5 days after the donors; (3) similar pregnancy rates were obtained when recipient mares received embryos within a large range of days post ovulation (Days 3 to 8); and (4) Day 7 embryos produced higher pregnancy rates when compared with Days 8 and 9 embryos. In clinical terms, the application of these new findings will be beneficial to large equine embryo transfer operations in producing more pregnancies per season. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Biofilm structure and mass transfer in a gas phase trickle-bed biofilter.

    Science.gov (United States)

    Zhu, X; Suidan, M T; Alonso, C; Yu, T; Kim, B J; Kim, B R

    2001-01-01

    Mass transport phenomena occurring in the biofilms of gas phase trickle-bed biofilters are investigated in this study. The effect of biofilm structure on mass transfer mechanisms is examined using experimental observation from the operating of biofilters, microelectrode techniques and microscopic examination. Since the biofilms of biofilters used for waste gas treatment are not completely saturated with water, there is not a distinguishable liquid layer outside the biofilm. Results suggest that due to this characteristic, gas phase substrates (such as oxygen or volatile organic compounds) may not be limited by the aqueous phase because transport of the compound into the biofilm can occur directly through non-wetted areas. On the other hand, for substrates that are present only in the liquid phase, such as nitrate, the mass transfer limitation is more serious because of the limited liquid supply. Microscopic observations show that a layered structure with void spaces exists within the biofilm. Oxygen concentration distributions along the depth of the biofilms are examined using an oxygen microelectrode. Results indicate that there are some high dissolved oxygen zones inside the biofilm, which suggests the existence of passages for oxygen transfer into the deeper sections of the biofilm in a gas phase trickle-bed biofilter. Both the low gas-liquid mass transfer resistance and the resulting internal structure contribute to the high oxygen penetration within the biofilms in gas phase trickle-bed biofilters.

  2. Determination of the Minimal Fresh Gas Flow to Maintain a Therapeutic Inspired Oxygen Concentration in a Semi-Closed Anesthesia Circle System Using an Oxygen Concentrator as the Oxygen Source

    National Research Council Canada - National Science Library

    Grano, Joan

    2001-01-01

    The purpose of this study was to determine the rate of oxygen dilution, resulting from argon accumulation, using 3 low fresh gas flow rates using an oxygen concentrator in a semi-closed anesthesia circle system...

  3. Oxygen therapy reduces postoperative tachycardia

    DEFF Research Database (Denmark)

    Stausholm, K; Kehlet, H; Rosenberg, J

    1995-01-01

    Concomitant hypoxaemia and tachycardia in the postoperative period is unfavourable for the myocardium. Since hypoxaemia per se may be involved in the pathogenesis of postoperative tachycardia, we have studied the effect of oxygen therapy on tachycardia in 12 patients randomly allocated to blinded...... air or oxygen by facemask on the second or third day after major surgery. Inclusion criteria were arterial hypoxaemia (oxygen saturation 90 beat.min-1). Each patient responded similarly to oxygen therapy: an increase in arterial oxygen saturation and a decrease...... in heart rate (p oxygen has a positive effect on the cardiac oxygen delivery and demand balance....

  4. Oxygen sensitive polymeric nanocapsules for optical dissolved oxygen sensors

    Science.gov (United States)

    Sun, Zhijuan; Cai, Chenxin; Guo, Fei; Ye, Changhuai; Luo, Yingwu; Ye, Shuming; Luo, Jianchao; Zhu, Fan; Jiang, Chunyue

    2018-04-01

    Immobilization of the oxygen-sensitive probes (OSPs) in the host matrix greatly impacts the performance and long-term usage of the optical dissolved oxygen (DO) sensors. In this work, fluorescent dyes, as the OSPs, were encapsulated with a crosslinked fluorinated polymer shell by interfacial confined reversible addition fragmentation chain transfer miniemulsion polymerization to fabricate oxygen sensitive polymeric nanocapsules (NCs). The location of fluorescent dyes and the fluorescent properties of the NCs were fully characterized by fourier transform infrared spectrometer, x-ray photoelectron spectrometer and fluorescent spectrum. Dye-encapsulated capacity can be precisely tuned from 0 to 1.3 wt% without self-quenching of the fluorescent dye. The crosslinked fluorinated polymer shell is not only extremely high gas permeability, but also prevents the fluorescent dyes from leakage in aqueous as well as in various organic solvents, such as ethanol, acetone and tetrahydrofuran (THF). An optical DO sensor based on the oxygen sensitive NCs was fabricated, showing high sensitivity, short response time, full reversibility, and long-term operational stability of online monitoring DO. The sensitivity of the optical DO sensor is 7.02 (the ratio of the response value in fully deoxygenated and saturated oxygenated water) in the range 0.96-14.16 mg l-1 and the response time is about 14.3 s. The sensor’s work curve was fit well using the modified Stern-Volmer equation by two-site model, and its response values are hardly affected by pH ranging from 2 to 12 and keep constant during continuous measurement for 3 months. It is believed that the oxygen sensitive polymeric NCs-based optical DO sensor could be particularly useful in long-term online DO monitoring in both aqueous and organic solvent systems.

  5. Effects of Transferring to the Rehabilitation Ward on Long-Term Mortality Rate of First-Time Stroke Survivors: A Population-Based Study.

    Science.gov (United States)

    Chen, Chien-Min; Yang, Yao-Hsu; Chang, Chia-Hao; Chen, Pau-Chung

    2017-12-01

    To assess the long-term health outcomes of acute stroke survivors transferred to the rehabilitation ward. Long-term mortality rates of first-time stroke survivors during hospitalization were compared among the following sets of patients: patients transferred to the rehabilitation ward, patients receiving rehabilitation without being transferred to the rehabilitation ward, and patients receiving no rehabilitation. Retrospective cohort study. Patients (N = 11,419) with stroke from 2005 to 2008 were initially assessed for eligibility. After propensity score matching, 390 first-time stroke survivors were included. None. Cox proportional hazards regression model was used to assess differences in 5-year poststroke mortality rates. Based on adjusted hazard ratios (HRs), the patients receiving rehabilitation without being transferred to the rehabilitation ward (adjusted HR, 2.20; 95% confidence interval [CI], 1.36-3.57) and patients receiving no rehabilitation (adjusted HR, 4.00; 95% CI, 2.55-6.27) had significantly higher mortality risk than the patients transferred to the rehabilitation ward. Mortality rate of the stroke survivors was affected by age ≥65 years (compared with age stroke (adjusted HR, 1.55), stroke severity (Stroke Severity Index [SSI] score≥20, compared with SSI scorestroke survivors transferred to the rehabilitation ward had a 5-year mortality rate 2.2 times lower than those who received rehabilitation without transfer to the rehabilitation ward and 4 times lower than those who received no rehabilitation. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  6. The determination and analysis of site-specific rates of mitochondrial reactive oxygen species production

    DEFF Research Database (Denmark)

    Quinlan, Casey L; Perevoschikova, Irina V; Goncalves, Renata L S

    2013-01-01

    Mitochondrial reactive oxygen species (ROS) are widely implicated in physiological and pathological pathways. We propose that it is critical to understand the specific sites of mitochondrial ROS production and their mechanisms of action. Mitochondria possess at least eight distinct sites of ROS...... production in the electron transport chain and matrix compartment. In this chapter, we describe the nature of the mitochondrial ROS-producing machinery and the relative capacities of each site. We provide detailed methods for the measurement of H2O2 release and the conditions under which maximal rates from...

  7. Estimating Survival Rates in Engineering for Community College Transfer Students Using Grades in Calculus and Physics

    Science.gov (United States)

    Laugerman, Marcia; Shelley, Mack; Rover, Diane; Mickelson, Steve

    2015-01-01

    This study uses a unique synthesized set of data for community college students transferring to engineering by combining several cohorts of longitudinal data along with transcript-level data, from both the Community College and the University, to measure success rates in engineering. The success rates are calculated by developing Kaplan-Meier…

  8. Modification of pure oxygen absorption equipment for concurrent stripping of carbon dioxide

    Science.gov (United States)

    Watten, B.J.; Sibrell, P.L.; Montgomery, G.A.; Tsukuda, S.M.

    2004-01-01

    The high solubility of carbon dioxide precludes significant desorption within commercial oxygen absorption equipment. This operating characteristic of the equipment limits its application in recirculating water culture systems despite its ability to significantly increase allowable fish loading rates (kg/(L min)). Carbon dioxide (DC) is typically removed by air stripping. This process requires a significant energy input for forced air movement, air heating in cold climates and water pumping. We developed a modification for a spray tower that provides for carbon dioxide desorption as well as oxygen absorption. Elimination of the air-stripping step reduces pumping costs while allowing dissolved nitrogen to drop below saturation concentrations. This latter response provides for an improvement in oxygen absorption efficiency within the spray tower. DC desorption is achieved by directing head-space gases from the spray tower (O2, N2, CO2) through a sealed packed tower scrubber receiving a 2 N NaOH solution. Carbon dioxide is selectively removed from the gas stream, by chemical reaction, forming the product Na 2CO3. Scrubber off-gas, lean with regard to carbon dioxide but still rich with oxygen, is redirected through the spray tower for further stripping of DC and absorption of oxygen. Make-up NaOH is metered into the scrubbing solution sump on an as needed basis as directed by a feedback control loop programmed to maintain a scrubbing solution pH of 11.4-11.8. The spent NaOH solution is collected, then regenerated for reuse, in a batch process that requires relatively inexpensive hydrated lime (Ca(OH)2). A by-product of the regeneration step is an alkaline filter cake, which may have use in bio-solids stabilization. Given the enhanced gas transfer rates possible with chemical reaction, the required NaOH solution flow rate through the scrubber represents a fraction of the spray tower water flow rate. Further, isolation of the water being treated from the atmosphere (1

  9. Mapping of cerebral metabolic rate of oxygen using dynamic susceptibility contrast and blood oxygen level dependent MR imaging in acute ischemic stroke

    Energy Technology Data Exchange (ETDEWEB)

    Gersing, Alexandra S.; Schwaiger, Benedikt J. [Technical University Munich, Klinikum rechts der Isar, Department of Neuroradiology, Munich (Germany); University of California, Department of Radiology and Biomedical Imaging, San Francisco, CA (United States); Ankenbrank, Monika; Toth, Vivien; Bauer, Jan S.; Zimmer, Claus [Technical University Munich, Klinikum rechts der Isar, Department of Neuroradiology, Munich (Germany); Janssen, Insa [Technical University Munich, Department of Neurosurgery, Munich (Germany); Kooijman, Hendrik [Philips Healthcare, Hamburg (Germany); Wunderlich, Silke [Technical University Munich, Department of Neurology, Munich (Germany); Preibisch, Christine [Technical University Munich, Klinikum rechts der Isar, Department of Neuroradiology, Munich (Germany); Technical University Munich, Department of Neurology, Munich (Germany)

    2015-12-15

    MR-derived cerebral metabolic rate of oxygen utilization (CMRO{sub 2}) has been suggested to be analogous to PET-derived CMRO{sub 2} and therefore may be used for detection of viable tissue at risk for infarction. The purpose of this study was to evaluate MR-derived CMRO{sub 2} mapping in acute ischemic stroke in relation to established diffusion- and perfusion-weighted imaging. In 23 patients (mean age 63 ± 18.7 years, 11 women) with imaging findings for acute ischemic stroke, relative oxygen extraction fraction was calculated from quantitative transverse relaxation times (T2, T2*) and relative cerebral blood volume using a quantitative blood oxygenation level dependent (BOLD) approach in order to detect a local increase of deoxyhemoglobin. Relative CMRO{sub 2} (rCMRO{sub 2}) maps were calculated by multiplying relative oxygen extraction fraction (rOEF) by cerebral blood flow, derived from PWI. After co-registration, rCMRO{sub 2} maps were evaluated in comparison with apparent diffusion coefficient (ADC) and time-to-peak (TTP) maps. Mean rCMRO{sub 2} values in areas with diffusion-restriction or TTP/ADC mismatch were compared with rCMRO{sub 2} values in the contralateral tissue. In tissue with diffusion restriction, mean rCMRO{sub 2} values were significantly decreased compared to perfusion-impaired (17.9 [95 % confidence interval 10.3, 25.0] vs. 58.1 [95 % confidence interval 50.1, 70.3]; P < 0.001) and tissue in the contralateral hemisphere (68.2 [95 % confidence interval 61.4, 75.0]; P < 0.001). rCMRO{sub 2} in perfusion-impaired tissue showed no significant change compared to tissue in the contralateral hemisphere (58.1 [95 % confidence interval 50.1, 70.3] vs. 66.7 [95 % confidence interval 53.4, 73.4]; P = 0.34). MR-derived CMRO{sub 2} was decreased within diffusion-restricted tissue and stable within perfusion-impaired tissue, suggesting that this technique may be adequate to reveal different pathophysiological stages in acute stroke. (orig.)

  10. Boosting biomethane yield and production rate with graphene: The potential of direct interspecies electron transfer in anaerobic digestion.

    Science.gov (United States)

    Lin, Richen; Cheng, Jun; Zhang, Jiabei; Zhou, Junhu; Cen, Kefa; Murphy, Jerry D

    2017-09-01

    Interspecies electron transfer between bacteria and archaea plays a vital role in enhancing energy efficiency of anaerobic digestion (AD). Conductive carbon materials (i.e. graphene nanomaterial and activated charcoal) were assessed to enhance AD of ethanol (a key intermediate product after acidogenesis of algae). The addition of graphene (1.0g/L) resulted in the highest biomethane yield (695.0±9.1mL/g) and production rate (95.7±7.6mL/g/d), corresponding to an enhancement of 25.0% in biomethane yield and 19.5% in production rate. The ethanol degradation constant was accordingly improved by 29.1% in the presence of graphene. Microbial analyses revealed that electrogenic bacteria of Geobacter and Pseudomonas along with archaea Methanobacterium and Methanospirillum might participate in direct interspecies electron transfer (DIET). Theoretical calculations provided evidence that graphene-based DIET can sustained a much higher electron transfer flux than conventional hydrogen transfer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Cerebral Metabolic Rate of Oxygen (CMRO2 ) Mapping by Combining Quantitative Susceptibility Mapping (QSM) and Quantitative Blood Oxygenation Level-Dependent Imaging (qBOLD).

    Science.gov (United States)

    Cho, Junghun; Kee, Youngwook; Spincemaille, Pascal; Nguyen, Thanh D; Zhang, Jingwei; Gupta, Ajay; Zhang, Shun; Wang, Yi

    2018-03-07

    To map the cerebral metabolic rate of oxygen (CMRO 2 ) by estimating the oxygen extraction fraction (OEF) from gradient echo imaging (GRE) using phase and magnitude of the GRE data. 3D multi-echo gradient echo imaging and perfusion imaging with arterial spin labeling were performed in 11 healthy subjects. CMRO 2 and OEF maps were reconstructed by joint quantitative susceptibility mapping (QSM) to process GRE phases and quantitative blood oxygen level-dependent (qBOLD) modeling to process GRE magnitudes. Comparisons with QSM and qBOLD alone were performed using ROI analysis, paired t-tests, and Bland-Altman plot. The average CMRO 2 value in cortical gray matter across subjects were 140.4 ± 14.9, 134.1 ± 12.5, and 184.6 ± 17.9 μmol/100 g/min, with corresponding OEFs of 30.9 ± 3.4%, 30.0 ± 1.8%, and 40.9 ± 2.4% for methods based on QSM, qBOLD, and QSM+qBOLD, respectively. QSM+qBOLD provided the highest CMRO 2 contrast between gray and white matter, more uniform OEF than QSM, and less noisy OEF than qBOLD. Quantitative CMRO 2 mapping that fits the entire complex GRE data is feasible by combining QSM analysis of phase and qBOLD analysis of magnitude. © 2018 International Society for Magnetic Resonance in Medicine.

  12. Gas exchange efficiency of an oxygenator with integrated pulsatile displacement blood pump for neonatal patients.

    Science.gov (United States)

    Schlanstein, Peter C; Borchardt, Ralf; Mager, Ilona; Schmitz-Rode, Thomas; Steinseifer, Ulrich; Arens, Jutta

    2014-01-01

    Oxygenators have been used in neonatal extracorporeal membrane oxygenation (ECMO) since the 1970s. The need to develop a more effective oxygenator for this patient cohort exists due to their size and blood volume limitations. This study sought to validate the next design iteration of a novel oxygenator for neonatal ECMO with an integrated pulsatile displacement pump, thereby superseding an additional blood pump. Pulsating blood flow within the oxygenator is generated by synchronized active air flow expansion and contraction of integrated silicone pump tubes and hose pinching valves located at the oxygenator inlet and outlet. The current redesign improved upon previous prototypes by optimizing silicone pump tube distribution within the oxygenator fiber bundle; introduction of an oval shaped inner fiber bundle core, and housing; and a higher fiber packing density, all of which in combination reduced the priming volume by about 50% (50 to 27 mL and 41 to 20 mL, respectively). Gas exchange efficiency was tested for two new oxygenators manufactured with different fiber materials: one with coating and one with smaller pore size, both capable of long-term use (OXYPLUS® and CELGARD®). Results demonstrated that the oxygen transfer for both oxygenators was 5.3-24.7 mlO2/min for blood flow ranges of 100-500 mlblood/min. Carbon dioxide transfer for both oxygenators was 3.7-26.3 mlCO2/min for the same blood flow range. These preliminary results validated the oxygenator redesign by demonstrating an increase in packing density and thus in gas transfer, an increase in pumping capacity and a reduction in priming volume.

  13. Anomalous resonance-radiation energy-transfer rate in a scattering dispersive medium

    International Nuclear Information System (INIS)

    Shekhtman, V.L.

    1992-01-01

    This paper describes a generalization of the concept of group velocity as an energy-transfer rate in a dispersive medium with complex refractive index when the polaritons, which are energy carriers, undergo scattering, in contrast to the classical concept of the group velocity of free polaritons (i.e., without scattering in the medium). The concept of delay time from quantum multichannel-scattering, theory is used as the fundamental concept. Based on Maxwell's equations and the new mathematical Φ-function method, a consistent conceptual definition of group velocity in terms of the ratio of the coherent-energy flux density to the coherent-energy density is obtained for the first time, and a critical analysis of the earlier (Brillouin) understanding of energy-transfer rate is given in the light of radiation-trapping theory and the quantum theory of resonance scattering. The role of generalized group velocity is examined for the interpretation of the phenomenon of multiple resonance scattering, or radiation diffusion. The question of causality for the given problem is touched upon; a new relationship is obtained, called the microcausality condition, which limits the anomalous values of group velocity by way of the indeterminacy principle and the relativistic causality principle for macroscopic time intervals directly measurable in experiment, whereby attention is focused on the connection of the given microcausality condition and the well-known Wigner inequality for the time delay of spherical waves. 22 refs

  14. Localized electron transfer rates and microelectrode-based enrichment of microbial communities within a phototrophic microbial mat

    Directory of Open Access Journals (Sweden)

    Jerome eBabauta

    2014-01-01

    Full Text Available Phototrophic microbial mats frequently exhibit sharp, light-dependent redox gradients that regulate microbial respiration on specific electron acceptors as a function of depth. In this work, a benthic phototrophic microbial mat from Hot Lake, a hypersaline, epsomitic lake located near Oroville in north-central Washington, was used to develop a microscale electrochemical method to study local electron transfer processes within the mat. To characterize the physicochemical variables influencing electron transfer, we initially quantified redox potential, pH and dissolved oxygen gradients by depth in the mat under photic and aphotic conditions. We further demonstrated that power output of a mat fuel cell was light-dependent. To study local electron transfer processes, we deployed a microscale electrode (microelectrode with tip size ~20 µm. To enrich a subset of microorganisms capable of interacting with the microelectrode, we anodically polarized the microelectrode in the mat. Subsequently, to characterize the microelectrode-associated community and compare it to the neighboring mat community, we performed amplicon sequencing of the V1-V3 region of the 16S gene. Differences in Bray-Curtis beta diversity, illustrated by large changes in relative abundance at the phylum level, suggested successful enrichment of specific mat community members on the microelectrode surface. The microelectrode-associated community exhibited substantially reduced alpha diversity and elevated relative abundances of Prosthecochloris, Loktanella, Catellibacterium, other unclassified members of Rhodobacteraceae, Thiomicrospira, and Limnobacter, compared with the community at an equivalent depth in the mat. Our results suggest that local electron transfer to an anodically polarized microelectrode selected for a specific microbial population, with substantially more abundance and diversity of sulfur-oxidizing phylotypes compared with the neighboring mat community.

  15. Localized electron transfer rates and microelectrode-based enrichment of microbial communities within a phototrophic microbial mat.

    Science.gov (United States)

    Babauta, Jerome T; Atci, Erhan; Ha, Phuc T; Lindemann, Stephen R; Ewing, Timothy; Call, Douglas R; Fredrickson, James K; Beyenal, Haluk

    2014-01-01

    Phototrophic microbial mats frequently exhibit sharp, light-dependent redox gradients that regulate microbial respiration on specific electron acceptors as a function of depth. In this work, a benthic phototrophic microbial mat from Hot Lake, a hypersaline, epsomitic lake located near Oroville in north-central Washington, was used to develop a microscale electrochemical method to study local electron transfer processes within the mat. To characterize the physicochemical variables influencing electron transfer, we initially quantified redox potential, pH, and dissolved oxygen gradients by depth in the mat under photic and aphotic conditions. We further demonstrated that power output of a mat fuel cell was light-dependent. To study local electron transfer processes, we deployed a microscale electrode (microelectrode) with tip size ~20 μm. To enrich a subset of microorganisms capable of interacting with the microelectrode, we anodically polarized the microelectrode at depth in the mat. Subsequently, to characterize the microelectrode-associated community and compare it to the neighboring mat community, we performed amplicon sequencing of the V1-V3 region of the 16S gene. Differences in Bray-Curtis beta diversity, illustrated by large changes in relative abundance at the phylum level, suggested successful enrichment of specific mat community members on the microelectrode surface. The microelectrode-associated community exhibited substantially reduced alpha diversity and elevated relative abundances of Prosthecochloris, Loktanella, Catellibacterium, other unclassified members of Rhodobacteraceae, Thiomicrospira, and Limnobacter, compared with the community at an equivalent depth in the mat. Our results suggest that local electron transfer to an anodically polarized microelectrode selected for a specific microbial population, with substantially more abundance and diversity of sulfur-oxidizing phylotypes compared with the neighboring mat community.

  16. Solar Energy Systems for Lunar Oxygen Generation

    Science.gov (United States)

    Colozza, Anthony J.; Heller, Richard S.; Wong, Wayne A.; Hepp, Aloysius F.

    2010-01-01

    An evaluation of several solar concentrator-based systems for producing oxygen from lunar regolith was performed. The systems utilize a solar concentrator mirror to provide thermal energy for the oxygen production process. Thermal energy to power a Stirling heat engine and photovoltaics are compared for the production of electricity. The electricity produced is utilized to operate the equipment needed in the oxygen production process. The initial oxygen production method utilized in the analysis is hydrogen reduction of ilmenite. Utilizing this method of oxygen production a baseline system design was produced. This baseline system had an oxygen production rate of 0.6 kg/hr with a concentrator mirror size of 5 m. Variations were performed on the baseline design to show how changes in the system size and process (rate) affected the oxygen production rate. An evaluation of the power requirements for a carbothermal lunar regolith reduction reactor has also been conducted. The reactor had a total power requirement between 8,320 to 9,961 W when producing 1000 kg/year of oxygen. The solar concentrator used to provide the thermal power (over 82 percent of the total energy requirement) would have a diameter of less than 4 m.

  17. Ameliorative effects of low dose/low dose-rate irradiation on reactive oxygen species-related diseases model mice

    International Nuclear Information System (INIS)

    Nomura, Takaharu

    2008-01-01

    Living organisms have developed complex biological system which protects themselves against environmental radiation, and irradiation with proper dose, dose-rate and irradiation time can stimulate their biological responses against oxidative stress evoked by the irradiation. Because reactive oxygen species are involved in various human diseases, non-toxic low dose/low dose-rate radiation can be utilized for the amelioration of such diseases. In this study, we used mouse experimental models for fatty liver, nephritis, diabetes, and ageing to elucidate the ameliorative effect of low dose/low dose-rate radiation in relation to endogenous antioxidant activity. Single irradiation at 0.5 Gy ameliorates carbon tetrachloride-induced fatty liver. The irradiation increases hepatic anti-oxidative system involving glutathione and glutathione peroxidase, suggesting that endogenous radical scavenger is essential for the ameliorative effect of low dose radiation on carbon tetrachloride-induced fatty liver. Single irradiation at 0.5 Gy ameliorates ferric nitrilotriacetate-induced nephritis. The irradiation increases catalase and decreases superoxide dismutase in kidney. The result suggests that low dose radiation reduced generation of hydroxide radical generation by reducing cellular hydroperoxide level. Single irradiation at 0.5 Gy at 12 week of age ameliorates incidence of type I diabetes in non-obese diabetic (NOD) mice through the suppression of inflammatory activity of splenocytes, and resultant apoptosis of β-cells in pancreas. The irradiation activities of superoxide dismutase and catalase, which coordinately diminish intracellular reactive oxygen species. Continuous irradiation at 0.70 mGy/hr from 10 week of age elongates life span, and suppresses alopecia in type II diabetesmice. The irradiation improved glucose clearance without affecting insulin-resistance, and increased pancreatic catalase activity. The results suggest that continuous low dose-rate irradiation protect

  18. The effects of oxygen on process rates and gene expression of anammox and denitrification in the Eastern South Pacific oxygen minimum zone

    DEFF Research Database (Denmark)

    Dalsgaard, Tage; Stewart, Frank; De Brabandere, Loreto

    Oxygen concentrations were consistently below our detection limit of 90 nM for a distance of > 2000 km in the oxygen minimum zone (OMZ) along the coasts of Chile and Peru. In most cases, anammox and denitrification were only detected when in situ oxygen concentrations were below detection...... differently to oxygen. When normalized to a housekeeping gene (rpoB), the expression of 4 out of 9 N-cycle-genes changed with increasing oxygen concentration: The expression of ammonium monooxygenase (amoC) was stimulated, whereas expression of nitrite reductase (nirS), nitric oxide reductase (nor...

  19. Laminar oxy-fuel diffusion flame supported by an oxygen-permeable-ion-transport membrane

    KAUST Repository

    Hong, Jongsup

    2013-03-01

    A numerical model with detailed gas-phase chemistry and transport was used to predict homogeneous fuel conversion processes and to capture the important features (e.g., the location, temperature, thickness and structure of a flame) of laminar oxy-fuel diffusion flames stabilized on the sweep side of an oxygen permeable ion transport membrane (ITM). We assume that the membrane surface is not catalytic to hydrocarbon or syngas oxidation. It has been demonstrated that an ITM can be used for hydrocarbon conversion with enhanced reaction selectivity such as oxy-fuel combustion for carbon capture technologies and syngas production. Within an ITM unit, the oxidizer flow rate, i.e., the oxygen permeation flux, is not a pre-determined quantity, since it depends on the oxygen partial pressures on the feed and sweep sides and the membrane temperature. Instead, it is influenced by the oxidation reactions that are also dependent on the oxygen permeation rate, the initial conditions of the sweep gas, i.e., the fuel concentration, flow rate and temperature, and the diluent. In oxy-fuel combustion applications, the sweep side is fuel-diluted with CO2, and the entire unit is preheated to achieve a high oxygen permeation flux. This study focuses on the flame structure under these conditions and specifically on the chemical effect of CO2 dilution. Results show that, when the fuel diluent is CO2, a diffusion flame with a lower temperature and a larger thickness is established in the vicinity of the membrane, in comparison with the case in which N2 is used as a diluent. Enhanced OH-driven reactions and suppressed H radical chemistry result in the formation of products with larger CO and H2O and smaller H2 concentrations. Moreover, radical concentrations are reduced due to the high CO2 fraction in the sweep gas. CO2 dilution reduces CH3 formation and slows down the formation of soot precursors, C2H2 and C2H4. The flame location impacts the species diffusion and heat transfer from the

  20. Organodioxygen complexes of some heavy metal ions and their oxygen transfer reactions

    International Nuclear Information System (INIS)

    Tarafder, M.T.H.; Mei Ling; Gino Mariotto

    2003-09-01

    Several novel organodioxygen complexes of lanthanide ions, viz., lanthanum(m) and cerium(IV) have been synthesized containing a number of organic co- ligands. The complexes characterized were, [La(0 2 )(det)(N0 3 ) 2 ] (1), [La(O 2 )(tet)(NO 3 ) 2 ] (2), [La(O 2 )(C 5 H 5 N)2NO 3 ] (3), [La(O 2 )(C 6 H 18 N 3 PO) 2 (NO 3 ) 2 ] (4), [La(0 2 )(OPPh 3 ) 2 (N0 3 ) 2 ] (5), [La(O 2 ) 2 (NH 2 CH 2 CH 2 NH 2 ) 2 NO 3 ] (6), [La(O 2 )(PPh 3 ) 2 (NO 3 ) 2 ] (7) and [Ce(O 2 )(C 6 H 18 N 3 PO) 2 (NO 3 ) 3 ] (8). IR and Raman spectra revealed that (3) was a peroxo complex while the others were, in particular, superoxo type. The IR spectrum of (3) gives V 1 (O-O) at 851 cm -1 while the Raman spectra of (4), (5), (7) and (8) give V 1 (O 2 ) bands at 1046 cm -1 , 1032 cm 1 , 1100 cm -1 and 1046 cm -1 , respectively. The oxygen transfer reactions of two selected complexes were carried out under stoichiometric conditions. The complex containing a bidentate ligand, (6), was found to oxidize triphenylphosphine and trans-stilbene to their oxides while the complex containing tridentate ligand (1) was stable and inert towards oxidation. (author)

  1. Investigation of the oxygen exchange mechanism on Pt|yttria stabilized zirconia at intermediate temperatures: Surface path versus bulk path

    International Nuclear Information System (INIS)

    Opitz, Alexander K.; Lutz, Alexander; Kubicek, Markus; Kubel, Frank; Hutter, Herbert; Fleig, Juergen

    2011-01-01

    Highlights: → Oxygen exchange kinetics of Pt on YSZ investigated by means of Pt model electrodes. → Two different geometry dependencies of the polarization resistance identified. → At higher temperatures the oxygen exchange reaction proceeds via a Pt surface path. → At lower temperatures a bulk path through the Pt thin film electrode is discussed. - Abstract: The oxygen exchange kinetics of platinum on yttria-stabilized zirconia (YSZ) was investigated by means of geometrically well-defined Pt microelectrodes. By variation of electrode size and temperature it was possible to separate two temperature regimes with different geometry dependencies of the polarization resistance. At higher temperatures (550-700 deg. C) an elementary step located close to the three phase boundary (TPB) with an activation energy of ∼1.6 eV was identified as rate limiting. At lower temperatures (300-400 deg. C) the rate limiting elementary step is related to the electrode area and exhibited a very low activation energy in the order of 0.2 eV. From these observations two parallel pathways for electrochemical oxygen exchange are concluded. The nature of these two elementary steps is discussed in terms of equivalent circuits. Two combinations of parallel rate limiting reaction steps are found to explain the observed geometry dependencies: (i) Diffusion through an impurity phase at the TPB in parallel to diffusion of oxygen through platinum - most likely along Pt grain boundaries - as area-related process. (ii) Co-limitation of oxygen diffusion along the Pt|YSZ interface and charge transfer at the interface with a short decay length of the corresponding transmission line (as TPB-related process) in parallel to oxygen diffusion through platinum.

  2. Determination of relative CMRO2 from CBF and BOLD changes: significant increase of oxygen consumption rate during visual stimulation

    DEFF Research Database (Denmark)

    Kim, S.G.; Rostrup, Egill; Larsson, H.B.

    1999-01-01

    signal changes were measured simultaneously using the flow-sensitive alternating inversion recovery (FAIR) technique. During hypercapnia established by an end-tidal CO2 increase of 1.46 kPa, CBF in the visual cortex increased by 47.3 +/- 17.3% (mean +/- SD; n = 9), and deltaR2* was -0.478 +/- 0.147 sec......The blood oxygenation level-dependent (BOLD) effect in functional magnetic resonance imaging depends on at least partial uncoupling between cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO2) changes. By measuring CBF and BOLD simultaneously, the relative change in CMRO2 can...

  3. Trans-membrane electron transfer in red blood cells immobilized in a chitosan film on a glassy carbon electrode

    International Nuclear Information System (INIS)

    Yu, Chunmei; Wang, Li; Zhu, Zhenkun; Bao, Ning; Gu, Haiying

    2014-01-01

    We have studied the trans-membrane electron transfer in human red blood cells (RBCs) immobilized in a chitosan film on a glassy carbon electrode (GCE). Electron transfer results from the presence of hemoglobin (Hb) in the RBCs. The electron transfer rate (k s ) of Hb in RBCs is 0.42 s −1 , and <1.13 s −1 for Hb directly immobilized in the chitosan film. Only Hb molecules in RBCs that are closest to the plasma membrane and the surface of the electrode can undergo electron transfer to the electrode. The immobilized RBCs displayed sensitive electrocatalytic response to oxygen and hydrogen peroxide. It is believed that this cellular biosensor is of potential significance in studies on the physiological status of RBCs based on observing their electron transfer on the modified electrode. (author)

  4. [Study of blood oxygen saturation, heart rate changes and plateau reaction of the Antarctic Kunlun station investigation team in different plateau environments].

    Science.gov (United States)

    Zhao, Shun-yun; Wu, Xin-min; Guo, Ya-min; Zhang, Shu-shun; An, Yan-ming; Li, Bing; Wang, Hao

    2013-06-11

    To explore the blood oxygen saturation and heart rate changes of the Antarctic explorers. During August 2010 to April 2011, the changes in blood oxygen saturation, heart rate and plateau reaction of 16 Antarctic expedition team in different plateau environments (Tibetan plateau versus Antarctic plateau) were monitored with the noninvasive pulse oximeter MD300-C. The extent of acute mountain sickness was determined according to the Lake Louise Consensus acute mountain reaction symptom scores and judgment method. The changes of blood oxygen saturation, heart rate at different altitudes of 110, 3650, 4300 m (96.8% ± 1.2%,89.1% ± 1.2%, 86.1% ± 2.0%, (75.0 ± 5.4) times/min, (104.0 ± 4.3) times/min, (113.0 ± 5.2) times/min,F = 214.155, 240.088,both P rate at different altitudes of 2000, 2500, 3000, 3500 and 4087 m(91.9% ± 1.3%,90.5% ± 1.3%,87.6% ± 1.4%,85.0% ± 1.8%,81.5% ± 2.2%, (85.9 ± 3.2) times/min, (90.6 ± 2.8) times/min, (97.8 ± 4.1) times/min, (102.0 ± 3.4) times/min, (106.3 ± 3.9) times/min, F = 105.418, 90.174, both P rate were both correlated with the risk of altitude sickness (r = -0.446 and 0.565, both P rate of the Antarctic explorers. And with the increases of altitude, the risk of altitude sickness gradually increases.

  5. Development of Novel Electrode Materials for the Electrocatalysis of Oxygen-Transfer and Hydrogen-Transfer Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Brett Kimball [Iowa State Univ., Ames, IA (United States)

    2002-01-01

    Throughout this thesis, the fundamental aspects involved in the electrocatalysis of anodic O-transfer reactions and cathodic H-transfer reactions have been studied. The investigation into anodic O-transfer reactions at undoped and Fe(III)[doped MnO2 films] revealed that MnO2 film electrodes prepared by a cycling voltammetry deposition show improved response for DMSO oxidation at the film electrodes vs. the Au substrate. Doping of the MnO2 films with Fe(III) further enhanced electrode activity. Reasons for this increase are believed to involve the adsorption of DMSO by the Fe(III) sites. The investigation into anodic O-transfer reactions at undoped and Fe(III)-doped RuO2 films showed that the Fe(III)-doped RuO2-film electrodes are applicable for anodic detection of sulfur compounds. The Fe(III) sites in the Fe-RuO2 films are speculated to act as adsorption sites for the sulfur species while the Ru(IV) sites function for anodic discharge of H2O to generate the adsorbed OH species. The investigation into cathodic H-transfer reactions, specifically nitrate reduction, at various pure metals and their alloys demonstrated that the incorporation of metals into alloy materials can create a material that exhibits bifunctional properties for the various steps involved in the overall nitrate reduction reaction. The Sb10Sn20Ti70, Cu63Ni37 and Cu25Ni75 alloy electrodes exhibited improved activity for nitrate reduction as compared to their pure component metals. The Cu63Ni37 alloy displayed the highest activity for nitrate reduction. The final investigation was a detailed study of the electrocatalytic activity of cathodic H-transfer reactions (nitrate reduction) at various compositions of Cu-Ni alloy electrodes. Voltammetric response for NO3- at the Cu-Ni alloy electrode is superior to

  6. Transferência de oxigênio em reatores de leito fluidizado com circulação em tubos concêntricos em meios bifásico e trifásico com variação da relação entre diâmetros Oxygen transfer in two and three-phase internal-loop airlift reactor with riser diameter variation

    Directory of Open Access Journals (Sweden)

    Leandro Santos de Araújo

    2010-09-01

    Full Text Available A eficiência do reator de leito fluidizado com circulação em tubos concêntricos depende das condições hidrodinâmicas que influem na transferência de oxigênio ao biofilme. Este trabalho investigou a influência da relação entre diâmetros dos tubos e da concentração de meio suporte (areia, sobre o coeficiente global de transferência de oxigênio (K La. Os ensaios - em reatores de 2,6 m de altura, com diâmetro externo de 250 mm e internos de 100, 125, 150 e 200 mm - empregaram vazões de ar até 2.500 L.h-1 e concentrações de até 150 g.L-1 de areia. O K La aumentou ligeiramente com 30 g.L-1 e diminuiu para concentrações maiores, confirmando relatos da literatura em condições semelhantes. Um modelo para K La em meio bifásico foi ajustado para as diversas relações ensaiadas entre a área externa e a interna, postulando-se uma redução na razão entre a transferência na fase líquida e o diâmetro da bolha com o aumento da vazão de ar.The efficiency of the concentric tubes internal-loop airlift reactor depends on the hydrodynamic conditions that affect oxygen transfer to the biofilm. This work studied the effects of the relation between diameters of the tubes and of the carrier (sand concentration on the global oxygen transfer coefficient (K La. The tests - in 2,6 m high reactors with 250 mm external diameter and 100, 125, 150 and 200 mm internal diameters - were performed with air flow taxes up to 2,500 L.h-1 and sand concentrations up to 150 g.L-1. The K La increased slightly for 30 g.L-1 and decreased for higher concentrations, in accordance with related data for similar conditions. A model for K La in biphasic medium was fitted embracing all the external/internal area relationships tested, based on the reduction of the liquid phase transfer coefficient and the bubble diameter ratio with increasing air flow rates.

  7. Theoretical and computational study of the energy dependence of the muon transfer rate from hydrogen to higher-Z gases

    Energy Technology Data Exchange (ETDEWEB)

    Bakalov, Dimitar, E-mail: dbakalov@inrne.bas.bg [Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Tsarigradsko chaussée 72, Sofia 1784 (Bulgaria); Adamczak, Andrzej [Institute of Nuclear Physics, Polish Academy of Sciences, ul. Radzikowskiego 152, 31-342 Krakow (Poland); Stoilov, Mihail [Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Tsarigradsko chaussée 72, Sofia 1784 (Bulgaria); Vacchi, Andrea [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, Via A. Valerio 2, 34127 Trieste (Italy)

    2015-01-23

    The recent PSI Lamb shift experiment and the controversy about proton size revived the interest in measuring the hyperfine splitting in muonic hydrogen as an alternative possibility for comparing ordinary and muonic hydrogen spectroscopy data on proton electromagnetic structure. This measurement critically depends on the energy dependence of the muon transfer rate to heavier gases in the epithermal range. The available data provide only qualitative information, and the theoretical predictions have not been verified. We propose a new method by measurements of the transfer rate in thermalized target at different temperatures, estimate its accuracy and investigate the optimal experimental conditions. - Highlights: • Method for measuring the energy dependence of muon transfer rate to higher-Z gases. • Thermalization and depolarization of muonic hydrogen studied by Monte Carlo method. • Optimal experimental conditions determined by Monte Carlo simulations. • Mathematical model and for estimating the uncertainty of the experimental results.

  8. Transference of mass in fermentation process

    International Nuclear Information System (INIS)

    Rios E, R.; Buitrago H, G

    1998-01-01

    Based on bibliographical references, in a theoretical model based on a fermentation process, the relationship between the speed of oxygen transfer and the biochemistry demand is implemented, in order to discover the different conditions of aeration and of agitation speed, under those which the microbial growth is not affected by deficiency in the oxygen supply. This correlation was adapted to the cultivation of B. Thuringiensis, and of this form, maximum biomass concentration to the one, which is possible to supply oxygen efficiently with a group of defined operation conditions, could be estimated

  9. Oxygen consumption rates in hovering hummingbirds reflect substrate-dependent differences in P/O ratios: carbohydrate as a 'premium fuel'.

    Science.gov (United States)

    Welch, Kenneth C; Altshuler, Douglas L; Suarez, Raul K

    2007-06-01

    The stoichiometric relationship of ATP production to oxygen consumption, i.e. the P/O ratio, varies depending on the nature of the metabolic substrate used. The latest estimates reveal a P/O ratio approximately 15% higher when glucose is oxidized compared with fatty acid oxidation. Because the energy required to produce aerodynamic lift for hovering is independent of the metabolic fuel oxidized, we hypothesized that the rate of oxygen consumption, VO2, should decline as the respiratory quotient, RQ (VCO2/VO2), increases from 0.71 to 1.0 as hummingbirds transition from a fasted to a fed state. Here, we show that hovering VO2 values in rufous (Selasphorus rufus) and Anna's hummingbirds (Calypte anna) are significantly greater when fats are metabolized (RQ=0.71) than when carbohydrates are used (RQ=1.0). Because hummingbirds gained mass during our experiments, making mass a confounding variable, we estimated VO2 per unit mechanical power output. Expressed in this way, the difference in VO2 when hummingbirds display an RQ=0.71 (fasted) and an RQ=1.0 (fed) is between 16 and 18%, depending on whether zero or perfect elastic energy storage is assumed. These values closely match theoretical expectations, indicating that a combination of mechanical power estimates and ;indirect calorimetry', i.e. the measurement of rates of gas exchange, enables precise estimates of ATP turnover and metabolic flux rates in vivo. The requirement for less oxygen when oxidizing carbohydrate suggests that carbohydrate oxidation may facilitate hovering flight in hummingbirds at high altitude.

  10. Factors determining the oxygen consumption rate (VO2) on-kinetics in skeletal muscles.

    Science.gov (United States)

    Korzeniewski, Bernard; Zoladz, Jerzy A

    2004-05-01

    Using a computer model of oxidative phosphorylation developed previously [Korzeniewski and Mazat (1996) Biochem. J. 319, 143-148; Korzeniewski and Zoladz (2001) Biophys. Chem. 92, 17-34], we analyse the effect of several factors on the oxygen-uptake kinetics, especially on the oxygen consumption rate (VO2) and half-transition time t(1/2), at the onset of exercise in skeletal muscles. Computer simulations demonstrate that an increase in the total creatine pool [PCr+/-Cr] (where Cr stands for creatine and PCr for phosphocreatine) and in glycolytic ATP supply lengthen the half-transition time, whereas increase in mitochondrial content, in parallel activation of ATP supply and ATP usage, in oxygen concentration, in proton leak, in resting energy demand, in resting cytosolic pH and in initial alkalization decrease this parameter. Theoretical studies show that a decrease in the activity of creatine kinase (CK) [displacement of this enzyme from equilibrium during on-transient (rest-to-work transition)] accelerates the first stage of the VO2 on-transient, but slows down the second stage of this transient. It is also demonstrated that a prior exercise terminated a few minutes before the principal exercise shortens the transition time. Finally, it is shown that at a given ATP demand, and under conditions where CK works near the thermodynamic equilibrium, the half-transition time of VO2 kinetics is determined by the amount of PCr that has to be transformed into Cr during rest-to-work transition; therefore any factor that diminishes the difference in [PCr] between rest and work at a given energy demand will accelerate the VO2 on-kinetics. Our conclusions agree with the general idea formulated originally by Easterby [(1981) Biochem. J. 199, 155-161] that changes in metabolite concentrations determine the transition times between different steady states in metabolic systems.

  11. Diffusion of oxygen through cork stopper: is it a Knudsen or a Fickian mechanism?

    Science.gov (United States)

    Lagorce-Tachon, Aurélie; Karbowiak, Thomas; Simon, Jean-Marc; Gougeon, Régis; Bellat, Jean-Pierre

    2014-09-17

    The aim of this work is to identify which law governs oxygen transfer through cork: Knudsen or Fickian mechanism. This is important to better understand wine oxidation during post-bottling aging. Oxygen transfer through cork wafers is measured at 298 K using a manometric permeation technique. Depending on the mechanism, we can extract the transport coefficients. Increasing the initial pressure of oxygen from 50 to 800 hPa leads to a change in the values of the transport coefficients. This implies that oxygen transport through cork does not obey the Knudsen law. From these results, we conclude that the limiting step of oxygen transport through cork occurs in the cell wall following Fickian law. From the diffusion dependence's coefficients with pressure, we also extract by applying transition state theory an apparent activation volume of 45 ± 4 nm(3). This high value indicates that oxygen molecules also diffuse from one site to another by passing through a gas phase.

  12. Theory of oxygen isotope exchange

    NARCIS (Netherlands)

    den Otter, M.W.; Boukamp, Bernard A.; Bouwmeester, Henricus J.M.

    2001-01-01

    Transients for oxygen molecular mass numbers 32, 34 and 36 are derived which can be used for the interpretation of oxygen isotope exchange data based on measurement of concentrations of 16O2, 16O18O and 18O2 in the gas phase. Key parameters in the theory are the rate at which oxygen molecules are

  13. Comparison of the OxyMask and Venturi mask in the delivery of supplemental oxygen: Pilot study in oxygen-dependent patients

    Science.gov (United States)

    Beecroft, Jaime M; Hanly, Patrick J

    2006-01-01

    BACKGROUND: The OxyMask (Southmedic Inc, Canada) is a new face mask for oxygen delivery that uses a small ‘diffuser’ to concentrate and direct oxygen toward the mouth and nose. The authors hypothesized that this unique design would enable the OxyMask to deliver oxygen more efficiently than a Venturi mask (Hudson RCI, USA) in patients with chronic hypoxemia. METHODS: Oxygen-dependent patients with chronic, stable respiratory disease were recruited to compare the OxyMask and Venturi mask in a randomized, single-blind, cross-over design. Baseline blood oxygen saturation (SaO2) was established breathing room air, followed in a random order by supplemental oxygen through the OxyMask or Venturi mask. Oxygen delivery was titrated to maintain SaO2 4% to 5% and 8% to 9% above baseline for two separate 30 min periods of stable breathing. Oxygen flow rate, partial pressure of inspired and expired oxygen (PO2) and carbon dioxide (PCO2), minute ventilation, heart rate, nasal and oral breathing, SaO2 and transcutaneous PCO2 were collected continuously. The study was repeated following alterations to the OxyMask design, which improved clearance of carbon dioxide. RESULTS: Thirteen patients, aged 28 to 79 years, were studied initially using the original OxyMask. Oxygen flow rate was lower, inspired PO2 was higher and expired PO2 was lower while using the OxyMask. Minute ventilation and inspired and expired PCO2 were significantly higher while using the OxyMask, whereas transcutaneous PCO2, heart rate and the ratio of nasal to oral breathing did not change significantly throughout the study. Following modification of the OxyMask, 13 additional patients, aged 18 to 79 years, were studied using the same protocol. The modified OxyMask provided a higher inspired PO2 at a lower flow rate, without evidence of carbon dioxide retention. CONCLUSIONS: Oxygen is delivered safely and more efficiently by the OxyMask than by the Venturi mask in stable oxygen-dependent patients. PMID:16896425

  14. Experimental study on ceramic membrane technology for onboard oxygen generation

    Directory of Open Access Journals (Sweden)

    Jiang Dongsheng

    2016-08-01

    Full Text Available The ceramic membrane oxygen generation technology has advantages of high concentration of produced oxygen and potential nuclear and biochemical protection capability. The present paper studies the ceramic membrane technology for onboard oxygen generation. Comparisons are made to have knowledge of the effects of two kinds of ceramic membrane separation technologies on oxygen generation, namely electricity driven ceramic membrane separation oxygen generation technology (EDCMSOGT and pressure driven ceramic membrane separation oxygen generation technology (PDCMSOGT. Experiments were conducted under different temperatures, pressures of feed air and produced oxygen flow rates. On the basis of these experiments, the flow rate of feed air, electric power provided, oxygen recovery rate and concentration of produced oxygen are compared under each working condition. It is concluded that the EDCMSOGT is the oxygen generation means more suitable for onboard conditions.

  15. 14 CFR 25.1441 - Oxygen equipment and supply.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Oxygen equipment and supply. 25.1441... Oxygen equipment and supply. (a) If certification with supplemental oxygen equipment is requested, the... oxygen available in each source of supply. (d) The oxygen flow rate and the oxygen equipment for...

  16. Biomarkers’ Responses to Reductive Dechlorination Rates and Oxygen Stress in Bioaugmentation Culture KB-1TM

    Directory of Open Access Journals (Sweden)

    Gretchen L. W. Heavner

    2018-02-01

    Full Text Available Using mRNA transcript levels for key functional enzymes as proxies for the organohalide respiration (OHR rate, is a promising approach for monitoring bioremediation populations in situ at chlorinated solvent-contaminated field sites. However, to date, no correlations have been empirically derived for chlorinated solvent respiring, Dehalococcoides mccartyi (DMC containing, bioaugmentation cultures. In the current study, genome-wide transcriptome and proteome data were first used to confirm the most highly expressed OHR-related enzymes in the bioaugmentation culture, KB-1TM, including several reductive dehalogenases (RDases and a Ni-Fe hydrogenase, Hup. Different KB-1™ DMC strains could be resolved at the RNA and protein level through differences in the sequence of a common RDase (DET1545-like homologs and differences in expression of their vinyl chloride-respiring RDases. The dominant strain expresses VcrA, whereas the minor strain utilizes BvcA. We then used quantitative reverse-transcriptase PCR (qRT-PCR as a targeted approach for quantifying transcript copies in the KB-1TM consortium operated under a range of TCE respiration rates in continuously-fed, pseudo-steady-state reactors. These candidate biomarkers from KB-1TM demonstrated a variety of trends in terms of transcript abundance as a function of respiration rate over the range: 7.7 × 10−12 to 5.9 × 10−10 microelectron equivalents per cell per hour (μeeq/cell∙h. Power law trends were observed between the respiration rate and transcript abundance for the main DMC RDase (VcrA and the hydrogenase HupL (R2 = 0.83 and 0.88, respectively, but not transcripts for 16S rRNA or three other RDases examined: TceA, BvcA or the RDase DET1545 homologs in KB1TM. Overall, HupL transcripts appear to be the most robust activity biomarker across multiple DMC strains and in mixed communities including DMC co-cultures such as KB1TM. The addition of oxygen induced cell stress that caused respiration

  17. Biomarkers' Responses to Reductive Dechlorination Rates and Oxygen Stress in Bioaugmentation Culture KB-1TM.

    Science.gov (United States)

    Heavner, Gretchen L W; Mansfeldt, Cresten B; Debs, Garrett E; Hellerstedt, Sage T; Rowe, Annette R; Richardson, Ruth E

    2018-02-08

    Using mRNA transcript levels for key functional enzymes as proxies for the organohalide respiration (OHR) rate, is a promising approach for monitoring bioremediation populations in situ at chlorinated solvent-contaminated field sites. However, to date, no correlations have been empirically derived for chlorinated solvent respiring, Dehalococcoides mccartyi (DMC) containing, bioaugmentation cultures. In the current study, genome-wide transcriptome and proteome data were first used to confirm the most highly expressed OHR-related enzymes in the bioaugmentation culture, KB-1 TM , including several reductive dehalogenases (RDases) and a Ni-Fe hydrogenase, Hup. Different KB-1™ DMC strains could be resolved at the RNA and protein level through differences in the sequence of a common RDase (DET1545-like homologs) and differences in expression of their vinyl chloride-respiring RDases. The dominant strain expresses VcrA, whereas the minor strain utilizes BvcA. We then used quantitative reverse-transcriptase PCR (qRT-PCR) as a targeted approach for quantifying transcript copies in the KB-1 TM consortium operated under a range of TCE respiration rates in continuously-fed, pseudo-steady-state reactors. These candidate biomarkers from KB-1 TM demonstrated a variety of trends in terms of transcript abundance as a function of respiration rate over the range: 7.7 × 10 -12 to 5.9 × 10 -10 microelectron equivalents per cell per hour (μeeq/cell∙h). Power law trends were observed between the respiration rate and transcript abundance for the main DMC RDase (VcrA) and the hydrogenase HupL (R² = 0.83 and 0.88, respectively), but not transcripts for 16S rRNA or three other RDases examined: TceA, BvcA or the RDase DET1545 homologs in KB1 TM . Overall, HupL transcripts appear to be the most robust activity biomarker across multiple DMC strains and in mixed communities including DMC co-cultures such as KB1 TM . The addition of oxygen induced cell stress that caused respiration rates

  18. Day 4 good morula embryo transfer provided compatible live birth rate with day 5 blastocyst embryo in fresh IVF/ET cycles.

    Science.gov (United States)

    Li, Ryh-Sheng; Hwu, Yuh-Ming; Lee, Robert Kuo-Kuang; Li, Sheng-Hsiang; Lin, Ming-Huei

    2018-02-01

    Embryo transfers during cleavage stage (day 2 or day 3) and blastocyst stages (day 5 or day 6) are common in current daily practice in fresh IVF/ET cycles. Data regarding transferring day 4 embryos, morula/compact stage, is still restricted and the grading system is also inconsistent, as between IVF clinics. This study provided a new detailed classification system for morula/compact stage embryos and compared successes rates between day 4 and day 5 ET. This was a retrospective study. A review of medical records from January 1st, 2013, to December 31st 2015, performed for all conventional insemination and ICSI cycles with a GnRH-antagonist protocol at the Infertility Division of MacKay Memorial Hospital in Taipei City, Taiwan. There were 427 cycles included in our study, 107 in study group (day 4 MET) and 320 in control group (day 5 BET). Pregnancy rates and live birth rate were compatible, as between morula embryo transfer (MET) and blastocyst embryo transfer (BET). The implantation rate (36.3% vs. 39.6%, respectively, p = 0.500), clinical pregnancy rate (49.5% vs. 51.9%, respectively, p = 0.737), and live birth rate (42.1% vs. 45.6%, respectively, p = 0.574) were statistically insignificant between groups. The term birth rate was statistically higher in the MET group than in the BET group (95.7% vs. 79.5%, respectively, p = 0.006). When the clinical outcomes between day 4 good MET and day 5 good BET were compared, the results were compatible. The implantation rate (48.8% vs. 41.1%, respectively, p = 0.335), clinical pregnancy rate (55.0% vs. 53.2%, respectively, p = 0.867), and live birth rate (47.5% vs. 47.1%, respectively, p = 1.000) showed no significant difference. The term birth rate was also higher in day 4 good MET group than in day 5 good BET group (100% vs. 78.3%, respectively, p = 0.025). In this study, we performed day 4 MET avoid BET on Sunday. The grading system we provided was more detailed for embryo selection and it was easier to

  19. Effects of oxygen content and heating rate on phase transition behavior in Bi2(V0.95Ti0.05)O5.475-x

    International Nuclear Information System (INIS)

    Taninouchi, Yu-ki; Uda, Tetsuya; Ichitsubo, Tetsu; Awakura, Yasuhiro; Matsubara, Eiichiro

    2011-01-01

    Highlights: → Phase transition behavior of oxide-ion conductor Bi 2 (V 0.95 Ti 0.05 )O 5.475-x , which has various thermal histories and physical forms. → At the same heating rate of 10 K min -1 , Bi 2 (V 0.95 Ti 0.05 )O 5.475-x with less oxygen content exhibits transition from α f to β f at a higher temperature and the transition from β f to γ f at a lower temperature. → α f directly transformed to β f at fast heating rates. At a slower heating rate of 2 K min -1 , β f precipitated from α f due to the sufficient diffusion of Ti and oxygen vacancies. - Abstract: The phase transition behavior of oxide-ion conductor Bi 2 (V 0.95 Ti 0.05 )O 5.475-x , which has various thermal histories and sample forms, has been studied by means of differential scanning calorimetry. Thermogravimetric analysis revealed that the oxygen content per compositional formula varied with the applied thermal treatment, although no significant structural difference was observed by X-ray diffraction (XRD) analysis. The phase transition behavior from α f to β f and from β f to γ f , observed at a heating rate of 10 K min -1 , are markedly affected by the sample preparation. For example, the endothermic peak of the transition from α f to β f appeared at around 400 deg. C for quenched powder and at around 320 deg. C for powder cooled at 0.5 K min -1 . The trend of the transition temperatures can be qualitatively explained in terms of oxygen content, i.e., Bi 2 (V 0.95 Ti 0.05 )O 5.475-x with less oxygen content exhibits the transition from α f to β f at a higher temperature and the transition from β f to γ f at a lower temperature. We confirmed the two types of transition behavior from α f to β f depending on heating rate of DSC and high-temperature X-ray diffraction (HT-XRD) analysis. At rapid heating rates of 10 and 40 K min -1 , α f transformed to β f directly. Meanwhile, at a slow heating rate of 2 K min -1 , the β f precipitated from α f because slow heating

  20. Simultaneous pH-sensitive and oxygen-sensitive MRI of human gliomas at 3 T using multi-echo amine proton chemical exchange saturation transfer spin-and-gradient echo echo-planar imaging (CEST-SAGE-EPI).

    Science.gov (United States)

    Harris, Robert J; Yao, Jingwen; Chakhoyan, Ararat; Raymond, Catalina; Leu, Kevin; Liau, Linda M; Nghiemphu, Phioanh L; Lai, Albert; Salamon, Noriko; Pope, Whitney B; Cloughesy, Timothy F; Ellingson, Benjamin M

    2018-04-06

    To introduce a new pH-sensitive and oxygen-sensitive MRI technique using amine proton CEST echo spin-and-gradient echo (SAGE) EPI (CEST-SAGE-EPI). pH-weighting was obtained using CEST estimations of magnetization transfer ratio asymmetry (MTR asym ) at 3 ppm, and oxygen-weighting was obtained using R2' measurements. Glutamine concentration, pH, and relaxation rates were varied in phantoms to validate simulations and estimate relaxation rates. The values of MTR asym and R2' in normal-appearing white matter, T 2 hyperintensity, contrast enhancement, and macroscopic necrosis were measured in 47 gliomas. Simulation and phantom results confirmed an increase in MTR asym with decreasing pH. The CEST-SAGE-EPI estimates of R 2 , R2*, and R2' varied linearly with gadolinium diethylenetriamine penta-acetic acid concentration (R 2  = 6.2 mM -1 ·sec -1 and R2* = 6.9 mM -1 ·sec -1 ). The CEST-SAGE-EPI and Carr-Purcell-Meiboom-Gill estimates of R 2 (R 2  = 0.9943) and multi-echo gradient-echo estimates of R2* (R 2  = 0.9727) were highly correlated. T 2 lesions had lower R2' and higher MTR asym compared with normal-appearing white matter, suggesting lower hypoxia and high acidity, whereas contrast-enhancement tumor regions had elevated R2' and MTR asym , indicating high hypoxia and acidity. The CEST-SAGE-EPI technique provides simultaneous pH-sensitive and oxygen-sensitive image contrasts for evaluation of the brain tumor microenvironment. Advantages include fast whole-brain acquisition, in-line B 0 correction, and simultaneous estimation of CEST effects, R 2 , R2*, and R2' at 3 T. © 2018 International Society for Magnetic Resonance in Medicine.

  1. Enhancing oxygen transport through Mixed-Ionic-and-Electronic-Conducting ceramic membranes

    Science.gov (United States)

    Yu, Anthony S.

    Ceramic membranes based on Mixed-Ionic-and-Electronic-Conducting (MIEC) oxides are capable of separating oxygen from air in the presence of an oxygen partial-pressure gradient. These MIEC membranes show great promise for oxygen consuming industrial processes, such as the production of syngas from steam reforming of natural gas (SRM), as well as for electricity generation in Solid Oxide Fuel Cells (SOFC). For both applications, the overall performance is dictated by the rate of oxygen transport across the membrane. Oxygen transport across MIEC membranes is composed of a bulk oxygen-ion diffusion process and surface processes, such as surface reactions and adsorption/desorption of gaseous reactants/products. The main goal of this thesis was to determine which process is rate-limiting in order to significantly enhance the overall rate of oxygen transport in MIEC membrane systems. The rate-limiting step was determined by evaluating the total resistance to oxygen transfer, Rtot. Rtot is the sum of a bulk diffusion resistance in the membrane itself, Rb, and interfacial loss components, Rs. Rb is a function of the membrane's ionic conductivity and thickness, while Rs arises primarily from slow surface-exchange kinetics that cause the P(O2) at the surfaces of the membrane to differ from the P(O 2) in the adjacent gas phases. Rtot can be calculated from the Nernst potential across the membrane and the measured oxygen flux. The rate-limiting process can be determined by evaluating the relative contributions of the various losses, Rs and Rb, to Rtot. Using this method, this thesis demonstrates that for most membrane systems, Rs is the dominating factor. In the development of membrane systems with high oxygen transport rates, thin membranes with high ionic conductivities are required to achieve fast bulk oxygen-ion diffusion. However, as membrane thickness is decreased, surface reaction kinetics become more important in determining the overall transport rate. The two

  2. TURBULENT OXYGEN FLAMES IN TYPE Ia SUPERNOVAE

    International Nuclear Information System (INIS)

    Aspden, A. J.; Bell, J. B.; Woosley, S. E.

    2011-01-01

    In previous studies, we examined turbulence-flame interactions in carbon-burning thermonuclear flames in Type Ia supernovae. In this study, we consider turbulence-flame interactions in the trailing oxygen flames. The two aims of the paper are to examine the response of the inductive oxygen flame to intense levels of turbulence, and to explore the possibility of transition to detonation in the oxygen flame. Scaling arguments analogous to the carbon flames are presented and then compared against three-dimensional simulations for a range of Damkoehler numbers (Da 16 ) at a fixed Karlovitz number. The simulations suggest that turbulence does not significantly affect the oxygen flame when Da 16 16 >1, turbulence enhances heat transfer and drives the propagation of a flame that is narrower than the corresponding inductive flame would be. Furthermore, burning under these conditions appears to occur as part of a combined carbon-oxygen turbulent flame with complex compound structure. The simulations do not appear to support the possibility of a transition to detonation in the oxygen flame, but do not preclude it either.

  3. Avaliação de oxigenador de membrana infantil em ovinos Evaluation of infant membrane oxygenator in sheep

    Directory of Open Access Journals (Sweden)

    Renata Geron Finoti

    2008-09-01

    Full Text Available OBJETIVO: Analisar a segurança e a eficácia de um novo oxigenador de membrana denominado OXM -1500. MÉTODOS: No período de maio de 2005 a setembro de 2006, foram estudados seis ovinos da raça Santa Inês, sendo cinco machos e uma fêmea, com peso corpóreo médio de 14,1 (±5 kg, superfície corpórea de 0,6 (±0,2 m² e idade média de 3,8 (±1,5 meses. Todos foram submetidos a circulação extracorpórea (CEC com avaliação nos tempos 10, 30, 60, 120, 180 e 240 minutos, obtendo-se os valores de taxa de transferência de oxigênio (TTO2 e de taxa de transferência de gás carbônico (TTCO2, hemoglobina sérica (HBS e livre (HBL, plaquetometria, leucometria e taxa de transferência de calor. RESULTADOS: Houve adequadas TTO2 e TTCO2. A lesão da maioria dos elementos figurados do sangue foi insignificante, sem alterações dos níveis de HBS, HBL, plaquetas e o número de leucócitos diminuíram com o tempo. A troca de calor foi efetiva (p OBJECTIVE: To analyze the security and efficacy of a new membrane oxygenator, the so-called OXM - 1500. METHODS: From May 2005 to September 2006, six sheep of Santa Inês breed (five male and one female, respectively were studied. The average body weight was 14.1 (±5 kg, body surface 0.6 (±0.2 m² and a mean age 3.8 (±1.5 months. All of them were submitted to extracorporeal circulation (CEC with evaluation at 10, 30, 60, 120, 180 and 240 minutes. The following values were obtained: values of oxygen transference (TTO2 and carbon dioxide transference (TTCO2, haemoglobin (HBS and free haemoglobin (HBL, the score of platelets and of leucocytes, and heat transference rate. RESULTS: TTO2 and TTCO2 were adequate. Lesion of the majority formed blood elements was insignificant; there no modifications in HBS, HBL levels; platelets and leucocytes decreased over time. Heat exchange was effective (p < 0.05. CONCLUSIONS: The membrane OXM - 1500 infant oxygenator, tested in sheep, showed adequate oxygenation capacity

  4. Maximum Plant Uptakes for Water, Nutrients, and Oxygen Are Not Always Met by Irrigation Rate and Distribution in Water-based Cultivation Systems

    NARCIS (Netherlands)

    Blok, Chris; Jackson, Brian E.; Guo, Xianfeng; Visser, De Pieter H.B.; Marcelis, Leo F.M.

    2017-01-01

    Growing on rooting media other than soils in situ -i.e., substrate-based growing- allows for higher yields than soil-based growing as transport rates of water, nutrients, and oxygen in substrate surpass those in soil. Possibly water-based growing allows for even higher yields as transport rates of

  5. Synthesis and characterization of the WxRuySez from the electrochemical reduction of oxygen and their possible application as electrode in fuel cell

    International Nuclear Information System (INIS)

    Ramirez R, S.D.

    1995-01-01

    In this communication the synthesis of the W 0.03 RuSe 0.47 O 0.3 from the transition metal carbonyl compounds and the chalcogenide in m Xylene, the chemical characterization of the novel material was performed by neutron activation analysis (NAA), using the TRIGA Mark III Reactor from the Nuclear Center of Mexico. The oxygen present in the material was determined by Rutherford Backscattering Spectrometry (RBS). Also the RuSe 5.7 y WSe 2 were synthesized and characterized by NAA. The electro kinetic oxygen reduction behaviour of the W 0.03 RuSe 0.47 O 0.3 deposited in glassy carbon was investigated in aqueous H 2 SO 4 0.5M. The rotating disk electrode electrochemical technique was used for determining the kinetic parameters: The reaction was of first order which implied that the rate determining step is the transfer of one electron, the Tafel slope was 0.115 V/decade; the electron transfer coefficient found was of 0.5, and the activation energy in the oxygen reduction reaction was 0.47 eV. (Author)

  6. cis-Stilbene and (1 alpha,2 beta,3 alpha)-(2-ethenyl-3-methoxycyclopropyl)benzene as mechanistic probes in the Mn(III)(salen)-catalyzed epoxidation: influence of the oxygen source and the counterion on the diastereoselectivity of the competitive concerted and radical-type oxygen transfer.

    Science.gov (United States)

    Adam, Waldemar; Roschmann, Konrad J; Saha-Möller, Chantu R; Seebach, Dieter

    2002-05-08

    cis-Stilbene (1) has been epoxidized by a set of diverse oxygen donors [OxD], catalyzed by the Mn(III)(salen)X complexes 3 (X = Cl, PF(6)), to afford a mixture of cis- and trans-epoxides 2. The cis/trans ratios range from 29:71 (extensive isomerization) to 92:8, which depends both on the oxygen source [OxD] and on the counterion X of the catalyst. When (1 alpha,2 beta,3 alpha)-(2-ethenyl-3-methoxycyclopropyl)-benzene (4) is used as substrate, a mechanistic probe which differentiates between radical and cationic intermediates, no cationic ring-opening products are found in this epoxidation reaction; thus, isomerized epoxide product arises from intermediary radicals. The dependence of the diastereoselectivity on the oxygen source is rationalized in terms of a bifurcation step in the catalytic cycle, in which concerted Lewis-acid-activated oxygen transfer competes with stepwise epoxidation by the established Mn(V)(oxo) species. The experimental counterion effect is attributed to the computationally assessed ligand-dependent reaction profiles and stereoselectivities of the singlet, triplet, and quintet spin states available to the manganese species.

  7. A procedure for the measurement of Oxygen Consumption Rates (OCRs) in red wines and some observations about the influence of wine initial chemical composition.

    Science.gov (United States)

    Marrufo-Curtido, Almudena; Carrascón, Vanesa; Bueno, Mónica; Ferreira, Vicente; Escudero, Ana

    2018-05-15

    The rates at which wine consumes oxygen are important technological parameters for whose measurement there are not accepted procedures. In this work, volumes of 8 wines are contacted with controlled volumes of air in air-tight tubes containing oxygen-sensors and are further agitated at 25 °C until O 2 consumption is complete. Three exposure levels of O 2 were used: low (10 mg/L) and medium or high (18 or 32 mg/L plus the required amount to oxidize all wine SO 2 ). In each oxygen level, 2-4 independent segments following pseudo-first order kinetics were identified, plus an initial segment at which wine consumed O 2 very fast. Overall, multivariate data techniques identify six different Oxygen-Consumption-Rates (OCRs) as required to completely define wine O 2 consumption. Except the last one, all could be modeled from the wine initial chemical composition. Total acetaldehyde, Mn, Cu/Fe, blue and red pigments and gallic acid seem to be essential to determine these OCRs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Oxygen Concentration Inside a Functioning Photosynthetic Cell

    OpenAIRE

    Kihara, Shigeharu; Hartzler, Daniel A.; Savikhin, Sergei

    2014-01-01

    The excess oxygen concentration in the photosynthetic membranes of functioning oxygenic photosynthetic cells was estimated using classical diffusion theory combined with experimental data on oxygen production rates of cyanobacterial cells. The excess oxygen concentration within the plesiomorphic cyanobacterium Gloeobactor violaceus is only 0.025 μM, or four orders of magnitude lower than the oxygen concentration in air-saturated water. Such a low concentration suggests that the first oxygenic...

  9. Comparison of heat transfer in liquid and slush nitrogen by numerical simulation of cooling rates for French straws used for sperm cryopreservation.

    Science.gov (United States)

    Sansinena, M; Santos, M V; Zaritzky, N; Chirife, J

    2012-05-01

    Slush nitrogen (SN(2)) is a mixture of solid nitrogen and liquid nitrogen, with an average temperature of -207 °C. To investigate whether plunging a French plastic straw (commonly used for sperm cryopreservation) in SN(2) substantially increases cooling rates with respect to liquid nitrogen (LN(2)), a numerical simulation of the heat conduction equation with convective boundary condition was used to predict cooling rates. Calculations performed using heat transfer coefficients in the range of film boiling confirmed the main benefit of plunging a straw in slush over LN(2) did not arise from their temperature difference (-207 vs. -196 °C), but rather from an increase in the external heat transfer coefficient. Numerical simulations using high heat transfer (h) coefficients (assumed to prevail in SN(2)) suggested that plunging in SN(2) would increase cooling rates of French straw. This increase of cooling rates was attributed to a less or null film boiling responsible for low heat transfer coefficients in liquid nitrogen when the straw is placed in the solid-liquid mixture or slush. In addition, predicted cooling rates of French straws in SN(2) tended to level-off for high h values, suggesting heat transfer was dictated by heat conduction within the liquid filled plastic straw. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Rate for energy transfer from excited cyclohexane to nitrous oxide in the liquid phase

    International Nuclear Information System (INIS)

    Wada, T.; Hatano, Y.

    1975-01-01

    Pure liquid cyclohexane and cyclohexane solutions of nitrous oxide have been photolyzed at 163 nm. The quantum yield of the product hydrogen in the photolysis of pure cyclohexane is found to be 1.0. The addition of nitrous oxide results in the reduction in the yield of hydrogen and in the formation of nitrogen. The decrement of the hydrogen yield is approximately equal to the increment of the nitrogen yield. About 40 percent of the hydrogen yield in pure cyclohexane is found to be produced through a path which is not affected by the addition of nitrous oxide. The effect of the addition of nitrous oxide is attributed to energy transfer from excited cyclohexane to nitrous oxide with the rate constant of k = 1.0 x 10 11 M -1 sec -1 (at 15 0 C). This value is about a factor of 10 larger than that expected as for diffusion-controlled rate. A contribution of the energy transfer process to the formation of nitrogen in the radiolysis of cyclohexane solutions of nitrous oxide has also been discussed. (auth)

  11. Performance Testing of Molten Regolith Electrolysis with Transfer of Molten Material for the Production of Oxygen and Metals on the Moon

    Science.gov (United States)

    Sibille, Laurent; Sadoway, Donald; Tripathy, Prabhat; Standish, Evan; Sirk, Aislinn; Melendez, Orlando; Stefanescu, Doru

    2010-01-01

    Previously, we have demonstrated the production of oxygen by electrolysis of molten regolith simulants at temperatures near 1600 C. Using an inert anode and suitable cathode, direct electrolysis (no supporting electrolyte) of the molten silicate is carried out, resulting in the production of molten metallic products at the cathode and oxygen gas at the anode. Initial direct measurements of current efficiency have confirmed that the process offer potential advantages of high oxygen production rates in a smaller footprint facility landed on the moon, with a minimum of consumables brought from Earth. We now report the results of a scale-up effort toward the goal of achieving production rates equivalent to 1 metric ton O2/year, a benchmark established for the support of a lunar base. We previously reported on the electrochemical behavior of the molten electrolyte as dependent on anode material, sweep rate and electrolyte composition in batches of 20-200g and at currents of less than 0.5 A. In this paper, we present the results of experiments performed at currents up to 10 Amperes) and in larger volumes of regolith simulant (500 g - 1 kg) for longer durations of electrolysis. The technical development of critical design components is described, including: inert anodes capable of passing continuous currents of several Amperes, container materials selection, direct gas analysis capability to determine the gas components co-evolving with oxygen. To allow a continuous process, a system has been designed and tested to enable the withdrawal of cathodically-reduced molten metals and spent molten oxide electrolyte. The performance of the withdrawal system is presented and critiqued. The design of the electrolytic cell and the configuration of the furnace were supported by modeling the thermal environment of the system in an effort to realize a balance between external heating and internal joule heating. We will discuss the impact these simulations and experimental findings have

  12. Changes of heart rate variability and prefrontal oxygenation during Tai Chi practice versus arm ergometer cycling

    OpenAIRE

    Lu, Xi; Hui-Chan, Christina Wan-Ying; Tsang, William Wai-Nam

    2016-01-01

    [Purpose] Exercise has been shown to improve cardiovascular fitness and cognitive function. Whether the inclusion of mind over exercise would increase parasympathetic control of the heart and brain activities more than general exercise at a similar intensity is not known. The aim of this study was to compare the effects of Tai Chi (mind-body exercise) versus arm ergometer cycling (body-focused exercise) on the heart rate variability and prefrontal oxygenation level. [Subjects and Methods] A T...

  13. Determination of oxygen content in steel using activation analysis with 14 MeV neutron

    International Nuclear Information System (INIS)

    Calado, C.E.

    1978-01-01

    In the quantitative analysis of oxygen in steel by fast neutron activation analysis the oxygen content is evaluated from the measured activity of 16 N produced. Steel s mples are irradiated in 14 MeV neutron flux. After irradiation the samples are pneumatically transfered to the counting terminal where activity is measured. Oxygen concentrations, are obtained by comparison with standards of specified oxygen content [pt

  14. ODH, oxygen deficiency hazard cryogenic analysis

    International Nuclear Information System (INIS)

    Augustynowicz, S.D.

    1994-01-01

    An oxygen deficiency exists when the concentration of oxygen, by volume, drops to a level at which atmosphere supplying respiratory protection must be provided. Since liquid cryogens can expand by factors of 700 (LN 2 ) to 850 (LH e ), the uncontrolled release into an enclosed space can easily cause an oxygen-deficient condition. An oxygen deficiency hazard (ODH) fatality rate per hour (OE) is defined as: OE = Σ N i P i F i , where N i = number of components, P i = probability of failure or operator error, and F i = fatality factor. ODHs range from open-quotes unclassifiedclose quotes (OE -9 1/h) to class 4, which is the most hazardous (OE>10 -1 1/h). For Superconducting Super Collider Laboratory (SSCL) buildings where cryogenic systems exist, failure rate, fatality factor, reduced oxygen ratio, and fresh air circulation are examined

  15. Evaporation rates and surface profiles on heterogeneous surfaces with mass transfer and surface reaction

    Energy Technology Data Exchange (ETDEWEB)

    Flytzani-Stephanopoulos, M; Schmidt, L D

    1979-01-01

    Simple models incorporating surface reaction and diffusion of volatile products through a boundary layer are developed to calculate effective rates of evaporation and local surface profiles on surfaces having active and inactive regions. The coupling between surface heterogeneities with respect to a particular reaction and external mass transfer may provide a mechanism for the surface rearrangement and metal loss encountered in several catalytic systems of practical interest. Calculated transport rates for the volatilization of platinum in oxidizing environments and the rearrangement of this metal during the ammonia oxidation reaction agree well with published experimental data.

  16. Impact of Yangtze river water transfer on the water quality of the Lixia river watershed, China.

    Directory of Open Access Journals (Sweden)

    Xiaoxue Ma

    Full Text Available To improve water quality and reduce the negative impacts of sudden inputs of water pollution in the Lixia River watershed, China, a series of experimental water transfers from the Yangtze River to the Lixia River were conducted from 2 December 2006 to 7 January 2007. Water samples were collected every six days at 55 monitoring sites during this period. Eight water parameters (water temperature, pH, dissolved oxygen (DO, chemical oxygen demand (COD, potassium permanganate index (CODMn, ammonia nitrogen (NH4+-N, electrical conductivity (EC, and water transparency (WT were analyzed to determine changes in nutrient concentrations during water transfers. The comprehensive pollution index (Pi and single-factor (Si evaluation methods were applied to evaluate spatio-temporal patterns of water quality during water transfers. Water quality parameters displayed different spatial and temporal distribution patterns within the watershed. Water quality was improved significantly by the water transfers, especially for sites closer to water intake points. The degree of improvement is positively related to rates of transfer inflow and drainage outflow. The effects differed for different water quality parameters at each site and at different water transfer times. There were notable decreases in NH4+-N, DO, COD, and CODMn across the entire watershed. However, positive effects on EC and pH were not observed. It is concluded that freshwater transfers from the Yangtze River can be used as an emergency measure to flush pollutants from the Lixia River watershed. Improved understanding of the effects of water transfers on water quality can help the development and implementation of effective strategies to improve water quality within this watershed.

  17. The elastic transfer model of angular rate modulation in F1-ATPase stalling and controlled rotation experiments

    Science.gov (United States)

    Volkán-Kacsó, S.

    2017-06-01

    The recent experimental, theoretical and computational advances in the field of F1-ATPase single-molecule microscopy are briefly surveyed. The role of theory is revealed in the statistical analysis, interpretation and prediction of single-molecule experimental trajectories, and in linking them with atomistic simulations. In particular, a theoretical model of elastically coupled molecular group transfer is reviewed and a detailed method for its application in stalling and controlled rotation experiments is provided. It is shown how the model can predict, using previous experiments, the rates of ligand binding/release processes (steps) and their exponential dependence on rotor angle in these experiments. The concept of Brønsted slopes is reviewed in the context of the single-molecule experiments, and the rate versus rotor angle relations are explained using the elastic model. These experimental data are treated in terms of the effect of thermodynamic driving forces on the rates assuming that the rotor shaft is elastically coupled to stator ring subunits in which the steps occur. In the application of the group transfer model on an extended angular range processes leading up to the transfer are discussed. Implications for large-scale atomistic simulation are suggested for the treatment of torque-generating steps.

  18. Electron transfer function versus oxygen delivery: a comparative study for several hexacoordinated globins across the animal kingdom.

    Science.gov (United States)

    Kiger, Laurent; Tilleman, Lesley; Geuens, Eva; Hoogewijs, David; Lechauve, Christophe; Moens, Luc; Dewilde, Sylvia; Marden, Michael C

    2011-01-01

    Caenorhabditis elegans globin GLB-26 (expressed from gene T22C1.2) has been studied in comparison with human neuroglobin (Ngb) and cytoglobin (Cygb) for its electron transfer properties. GLB-26 exhibits no reversible binding for O(2) and a relatively low CO affinity compared to myoglobin-like globins. These differences arise from its mechanism of gaseous ligand binding since the heme iron of GLB-26 is strongly hexacoordinated in the absence of external ligands; the replacement of this internal ligand, probably the E7 distal histidine, is required before binding of CO or O(2) as for Ngb and Cygb. Interestingly the ferrous bis-histidyl GLB-26 and Ngb, another strongly hexacoordinated globin, can transfer an electron to cytochrome c (Cyt-c) at a high bimolecular rate, comparable to those of inter-protein electron transfer in mitochondria. In addition, GLB-26 displays an unexpectedly rapid oxidation of the ferrous His-Fe-His complex without O(2) actually binding to the iron atom, since the heme is oxidized by O(2) faster than the time for distal histidine dissociation. These efficient mechanisms for electron transfer could indicate a family of hexacoordinated globin which are functionally different from that of pentacoordinated globins.

  19. Surface monofunctionalized polymethyl pentene hollow fiber membranes by plasma treatment and hemocompatibility modification for membrane oxygenators

    Science.gov (United States)

    Huang, Xin; Wang, Weiping; Zheng, Zhi; Fan, Wenling; Mao, Chun; Shi, Jialiang; Li, Lei

    2016-01-01

    The hemocompatibility of polymethyl pentene (PMP) hollow fiber membranes (HFMs) was improved through surface modification for membrane oxygenator applications. The modification was performed stepwise with the following: (1) oxygen plasma treatment, (2) functionalization of monosort hydroxyl groups through NaBH4 reduction, and (3) grafting 2-methacryloyloxyethyl phosphorylcholine (MPC) or heparin. SEM, ATR-FTIR, and XPS analyses were conducted to confirm successful grafting during the modification. The hemocompatibility of PMP HFMs was analyzed and compared through protein adsorption, platelet adhesion, and coagulation tests. Pure CO2 and O2 permeation rates, as well as in vitro gas exchange rates, were determined to evaluate the mass transfer properties of PMP HFMs. SEM results showed that different nanofibril topographies were introduced on the HFM surface. ATR-FTIR and XPS spectra indicated the presence of functionalization of monosort hydroxyl group and the grafting of MPC and heparin. Hemocompatibility evaluation results showed that the modified PMP HFMs presented optimal hemocompatibility compared with pristine HFMs. Gas permeation results revealed that gas permeation flux increased in the modified HFMs because of dense surface etching during the plasma treatment. The results of in vitro gas exchange rates showed that all modified PMP HFMs presented decreased gas exchange rates because of potential surface fluid wetting. The proposed strategy exhibits a potential for fabricating membrane oxygenators for biomedical applications to prevent coagulation formation and alter plasma-induced surface topology and composition.

  20. Fast kinetics of the oxygen effect in irradiated mammalian cells

    International Nuclear Information System (INIS)

    Watts, M.E.; Maughan, R.L.; Michael, B.D.

    1978-01-01

    A technique using a fast gas transfer with a single pulse of electrons (the gas-explosion technique) has been used to investigate the time-dependence of the dose-modifying action of oxygen in irradiated V79 Chinese hamster cells. Oxygen did not significantly alter the shapes of the survival curves. The dose-modifying factor between the fully oxic and fully hypoxic (oxygen at 9000 ms) curve was 2.6. The dose-modifying factor for the survival curve drawn for oxygen contact at 0.3 ms after irradiation was 1.5 relative to the hypoxic curve. The duration of the post-effect (oxygen contact after irradiation) indicated that oxygen-dependent damage has a lifetime extending into the ms time-range. In the pre-effect time region (oxygen contact before irradiation) 1 to 2 ms oxygen contact was required to achieve the full sensitization. The results are discussed with reference to the diffusion time for oxygen to reach the sensitive site within the cell. (U.K.)

  1. Oxygen consumption and heart rate responses to isolated ballet exercise sets.

    Science.gov (United States)

    Rodrigues-Krause, Josianne; Dos Santos Cunha, Giovani; Alberton, Cristine Lima; Follmer, Bruno; Krause, Mauricio; Reischak-Oliveira, Alvaro

    2014-01-01

    Ballet stage performances are associated with higher cardiorespiratory demand than rehearsals and classes. Hence, new interest is emerging to create periodized training that enhances dancers' fitness while minimizing delayed exercise-induced fatigue and possible injuries. Finding out in what zones of intensity dancers work during different ballet movements may support the use of supplemental training adjusted to the needs of the individual dancer. Therefore, the main purpose of this study was to describe dancers' oxygen consumption (VO2) and heart rate (HR) responses during the performance of nine isolated ballet exercise sets, as correlated with their first and second ventilatory thresholds (VT1 and VT2). Twelve female ballet dancers volunteered for the study. Their maximum oxygen consumption (VO2max), VT1, and VT2 were determined by use of an incremental treadmill test. Nine sets of ballet movements were assessed: pliés, tendus, jetés, rond de jambes, fondus, grand adage (adage), grand battements, temps levés, and sautés. The sets were randomly executed and separated by 5 minute rest periods. ANOVA for repeated measurements followed by the Bonferroni Post-hoc test were applied (p ballet sets. This stratification followed closely, but not exactly, the variation in HR. For example, rond de jambes (156.8 ± 19 b·min(-1)) did not show any significant difference from all the other ballet sets, nor VT1 or VT2. It is concluded that the workloads of isolated ballet sets, based on VO2 responses, vary between low and moderate aerobic intensity in relation to dancers' VT1 and VT2. However, ballet set workloads may be higher when based on HR responses, due to the intermittent and isometric components of dance.

  2. Metabolic pathway analysis of Scheffersomyces (Pichia) stipitis: effect of oxygen availability on ethanol synthesis and flux distributions.

    Science.gov (United States)

    Unrean, Pornkamol; Nguyen, Nhung H A

    2012-06-01

    Elementary mode analysis (EMA) identifies all possible metabolic states of the cell metabolic network. Investigation of these states can provide a detailed insight into the underlying metabolism in the cell. In this study, the flux states of Scheffersomyces (Pichia) stipitis metabolism were examined. It was shown that increasing oxygen levels led to a decrease of ethanol synthesis. This trend was confirmed by experimental evaluation of S. stipitis in glucose-xylose fermentation. The oxygen transfer rate for an optimal ethanol production was 1.8 mmol/l/h, which gave the ethanol yield of 0.40 g/g and the ethanol productivity of 0.25 g/l/h. For a better understanding of the cell's regulatory mechanism in response to oxygenation levels, EMA was used to examine metabolic flux patterns under different oxygen levels. Up- and downregulation of enzymes in the network during the change of culturing condition from oxygen limitation to oxygen sufficiency were identified. The results indicated the flexibility of S. stipitis metabolism to cope with oxygen availability. In addition, relevant genetic targets towards improved ethanol-producing strains under all oxygenation levels were identified. These targeted genes limited the metabolic functionality of the cell to function according to the most efficient ethanol synthesis pathways. The presented approach is promising and can contribute to the development of culture optimization and strain engineers for improved lignocellulosic ethanol production by S. stipitis.

  3. Evaluation of the effect of indomethacin and piroxicam administration before embryo transfer on pregnancy rate.

    Science.gov (United States)

    Kumbasar, Serkan; Gül, Özer; Şık, Aytek

    2017-03-01

    The aim of this study was to evaluate the effect of non-steroidal anti-inflammatory drug (NSAID) administration before embryo transfer (ET) on pregnancy rates in women undergoing in vitro fertilization/intracytoplasmic sperm injection ET. Our study included 255 patients diagnosed with primary or secondary infertility caused by a male or tubal-related factor, endometriosis or unexplained factors. The patients were divided randomly into three groups. Two groups were administered oral piroxicam (10 mg capsules) or 100 mg indomethacin (rectal suppository), respectively, 1-2 h before ET. As a control, the third group did not receive any form of treatment before ET. Basal levels of follicle-stimulating hormone, luteinizing hormone, and level 17β-estradiol on the day of human chorionic gonadotropin administration, the collected and transferred number of embryos, and the number of grade A embryos obtained were determined in all patients. The implantation, clinical pregnancy, and miscarriage rates of the groups were compared. The clinical pregnancy rate per ET and the implantation rate were 35.2% and 12.15% in the piroxicam group, 31.7% and 10.9% in the indomethacin group, and 32.9% and 12.5% in the control, respectively. The miscarriage rates of groups 1, 2 and 3 were 12%, 11.7% and 11.7%, respectively (P = 0.964). The differences in clinical pregnancy rates among the groups were not statistically significant (P = 0.887). There were also no significant differences in the implantation rates (P = 0.842). These results suggest that NSAID administration before ET has no additional effect on pregnancy outcome in patients undergoing in vitro fertilization. © 2017 Japan Society of Obstetrics and Gynecology.

  4. A study on the effects of system pressure on heat and mass transfer rates of an air cooler

    International Nuclear Information System (INIS)

    Jung, Hyung Ho

    2002-01-01

    In the present paper, the effects of inlet pressure on the heat and mass transfer rates of an air cooler are numerically predicted by a local analysis method. The pressures of the moist air vary from 2 to 4 bars. The psychometric properties such as dew point temperature, relative humidity and humidity ratio are employed to treat the condensing water vapor in the moist air when the surface temperatures are dropped below the dew point. The effects of the inlet pressures on the heat transfer rate, the dew point temperature, the rate of condensed water, the outlet temperature of air and cooling water are calculated. The condensation process of water vapor is discussed in detail. The results of present calculations are compared with the test data and shows good agreements

  5. Rate dependence of electron transfer on donor-acceptor separation and on free enthalpy change. The Ru(bpy)32+/viologen2+ system

    International Nuclear Information System (INIS)

    Rau, H.; Frank, R.; Greiner, G.

    1986-01-01

    By attachment of hydrocarbon chains of different lengths to the bipyridyl ligands in Ru(bpy) 3 2+ we have adjusted the donor-acceptor separation in the electron-transfer system Ru[(C/sub n/H/sub 2n+1/) 2 bpyl 3 2+ /methylviolgen. Two electron-transfer reactions with different ΔG are investigated in fluid solution: the quenching of the excited complexes by methylviologen (MV 2+ ) which is exergonic with -0.4 eV and the thermal back electron transfer which is exergonic with -1.7 eV. We observe an exponential decrease of the quenching rate on distance. The back electron transfer is independent of donor-acceptor separation; electron transfer is found to take place at distances of 1.5 nm and more. The results are discussed in terms of a hypothesis on the interdependence of transfer distance and free enthalpy change and compared with current theories. In the framework of the simple classical Marcus model, the Marcus equation relating transfer rate and free enthalpy change is transposed into the Rehm-Weller equation by simple mathematical manipulations and the implications of this are discussed

  6. A unique mode of tissue oxygenation and the adaptive radiation of teleost fishes.

    Science.gov (United States)

    Randall, D J; Rummer, J L; Wilson, J M; Wang, S; Brauner, C J

    2014-04-15

    Teleost fishes constitute 95% of extant aquatic vertebrates, and we suggest that this is related in part to their unique mode of tissue oxygenation. We propose the following sequence of events in the evolution of their oxygen delivery system. First, loss of plasma-accessible carbonic anhydrase (CA) in the gill and venous circulations slowed the Jacobs-Stewart cycle and the transfer of acid between the plasma and the red blood cells (RBCs). This ameliorated the effects of a generalised acidosis (associated with an increased capacity for burst swimming) on haemoglobin (Hb)-O2 binding. Because RBC pH was uncoupled from plasma pH, the importance of Hb as a buffer was reduced. The decrease in buffering was mediated by a reduction in the number of histidine residues on the Hb molecule and resulted in enhanced coupling of O2 and CO2 transfer through the RBCs. In the absence of plasma CA, nearly all plasma bicarbonate ultimately dehydrated to CO2 occurred via the RBCs, and chloride/bicarbonate exchange was the rate-limiting step in CO2 excretion. This pattern of CO2 excretion across the gills resulted in disequilibrium states for CO2 hydration/dehydration reactions and thus elevated arterial and venous plasma bicarbonate levels. Plasma-accessible CA embedded in arterial endothelia was retained, which eliminated the localized bicarbonate disequilibrium forming CO2 that then moved into the RBCs. Consequently, RBC pH decreased which, in conjunction with pH-sensitive Bohr/Root Hbs, elevated arterial oxygen tensions and thus enhanced tissue oxygenation. Counter-current arrangement of capillaries (retia) at the eye and later the swim bladder evolved along with the gas gland at the swim bladder. Both arrangements enhanced and magnified CO2 and acid production and, therefore, oxygen secretion to those specialised tissues. The evolution of β-adrenergically stimulated RBC Na(+)/H(+) exchange protected gill O2 uptake during stress and further augmented plasma disequilibrium states

  7. Oxygen influence on luminescence properties of rare-earth doped NaLaF{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Tuomela, A., E-mail: anu.tuomela@oulu.fi [Research Center of Molecular Materials, University of Oulu, P.O. Box 3000, FIN-90014 (Finland); Pankratov, V., E-mail: vladimirs.pankratovs@oulu.fi [Research Center of Molecular Materials, University of Oulu, P.O. Box 3000, FIN-90014 (Finland); Sarakovskis, A.; Doke, G.; Grinberga, L. [Institute of Solid State Physics, University of Latvia, 8 Kengaraga, LV-1063 Riga (Latvia); Vielhauer, S. [Institute of Physics, University of Tartu, Riia 142, Tartu 51014 (Estonia); Huttula, M. [Research Center of Molecular Materials, University of Oulu, P.O. Box 3000, FIN-90014 (Finland)

    2016-11-15

    Luminescence properties of erbium and europium doped NaLaF{sub 4} with different oxygen content have been studied. Vacuum ultraviolet (VUV) excitation luminescence spectroscopy technique has been applied by using synchrotron radiation excitation. It was found that oxygen impurity leads to significant degradation of Er{sup 3+} or Eu{sup 3+} emission under VUV excitation. The intensive O{sup 2−}–Er{sup 3+} charge transfer excitation band has been detected from oxygen abundant NaLaF{sub 4} in the 150–165 nm spectral range. This band reveals a competing absorption mechanism in oxygen containing NaLaF{sub 4}. It is clearly demonstrated that one reason for the Er{sup 3+} emission degradation in oxygen abundant NaLaF{sub 4} is strong suppression of 4f–5d transitions in Er{sup 3+} ion. The degradation of the Eu{sup 3+} emission under VUV excitation was explained by diminishing of F{sup −}–Eu{sup 3+} charge transfer absorption band as well as by competing relaxation centers in the oxygen abundant NaLaF{sub 4}.

  8. Monitoring bioremediation of weathered diesel NAPL using oxygen depletion profiles

    International Nuclear Information System (INIS)

    Davis, G.B.; Johnston, C.D.; Patterson, B.M.; Barber, C.; Bennett, M.

    1995-01-01

    Semicontinuous logging of oxygen concentrations at multiple depths has been used to evaluate the progress of an in situ bioremediation trial at a site contaminated by weathered diesel nonaqueous-phase liquid (NAPL). The evaluation trial consisted of periodic addition of nutrients and aeration of a 100-m 2 trial plot. During the bioremediation trial, aeration was stopped periodically, and decreases in dissolved and gaseous oxygen concentrations were monitored using data loggers attached to in situ oxygen sensors placed at multiple depths above and within a thin NAPL-contaminated zone. Oxygen usage rate coefficients were determined by fitting zero- and first-order rate equations to the oxygen depletion curves. For nutrient-amended sites within the trial plot, estimates of oxygen usage rate coefficients were significantly higher than estimates from unamended sites. These rates also converted to NPL degradation rates, comparable to those achieved in previous studies, despite the high concentrations and weathered state of the NAPL at this test site

  9. Simultaneous Monitoring of Vascular Oxygenation and Tissue Oxygen Tension of Breast Tumors Under Hyperbaric Oxygen Exposure

    National Research Council Canada - National Science Library

    Xia, Mengna

    2005-01-01

    The goals of the study in the first stage are 1) to develop a mathematic model by which we can derive tumor blood flow and metabolic rate of oxygen from hemoglobin concentration during interventions, 2...

  10. An in silico analysis of oxygen uptake of a mild COPD patient during rest and exercise using a portable oxygen concentrator

    Directory of Open Access Journals (Sweden)

    Katz I

    2016-09-01

    Full Text Available Ira Katz,1,2 Marine Pichelin,1 Spyridon Montesantos,1 Min-Yeong Kang,3 Bernard Sapoval,3,4 Kaixian Zhu,5 Charles-Philippe Thevenin,5 Robert McCoy,6 Andrew R Martin,7 Georges Caillibotte1 1Medical R&D, Air Liquide Santé International, Centre de Recherche Paris-Saclay, Les Loges-en-Josas, France; 2Department of Mechanical Engineering, Lafayette College, Easton, PA, USA; 3Physique de la Matière Condensée, CNRS, Ecole Polytechnique, Palaiseau, 4Centre de Mathématiques et de leurs Applications, CNRS, UniverSud, Cachan, 5Centre Explor!, Air Liquide Healthcare, Gentilly, France; 6Valley Inspired Products, Inc, Apple Valley, MN, USA; 7Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada Abstract: Oxygen treatment based on intermittent-flow devices with pulse delivery modes available from portable oxygen concentrators (POCs depends on the characteristics of the delivered pulse such as volume, pulse width (the time of the pulse to be delivered, and pulse delay (the time for the pulse to be initiated from the start of inhalation as well as a patient’s breathing characteristics, disease state, and respiratory morphology. This article presents a physiological-based analysis of the performance, in terms of blood oxygenation, of a commercial POC at different settings using an in silico model of a COPD patient at rest and during exercise. The analysis encompasses experimental measurements of pulse volume, width, and time delay of the POC at three different settings and two breathing rates related to rest and exercise. These experimental data of device performance are inputs to a physiological-based model of oxygen uptake that takes into account the real dynamic nature of gas exchange to illustrate how device- and patient-specific factors can affect patient oxygenation. This type of physiological analysis that considers the true effectiveness of oxygen transfer to the blood, as opposed to delivery to the nose (or mouth, can be

  11. The effect of ultrasound irradiation on the convective heat transfer rate during immersion cooling of a stationary sphere.

    Science.gov (United States)

    Kiani, Hossein; Sun, Da-Wen; Zhang, Zhihang

    2012-11-01

    It has been proven that ultrasound irradiation can enhance the rate of heat transfer processes. The objective of this work was to study the heat transfer phenomenon, mainly the heat exchange at the surface, as affected by ultrasound irradiation around a stationary copper sphere (k=386W m(-1)K(-1), C(p)=384J kg(-1)K(-1), ρ=8660kg m(-3)) during cooling. The sphere (0.01m in diameter) was immersed in an ethylene glycol-water mixture (-10°C) in an ultrasonic cooling system that included a refrigerated circulator, a flow meter, an ultrasound generator and an ultrasonic bath. The temperature of the sphere was recorded using a data logger equipped with a T-type thermocouple in the center of the sphere. The temperature of the cooling medium was also monitored by four thermocouples situated at different places in the bath. The sphere was located at different positions (0.02, 0.04 and 0.06m) above the transducer surface of the bath calculated considering the center of the sphere as the center of the reference system and was exposed to different intensities of ultrasound (0, 120, 190, 450, 890, 1800, 2800, 3400 and 4100W m(-2)) during cooling. The frequency of the ultrasound was 25kHz. It was demonstrated that ultrasound irradiation can increase the rate of heat transfer significantly, resulting in considerably shorter cooling times. Higher intensities caused higher cooling rates, and Nu values were increased from about 23-27 to 25-108 depending on the intensity of ultrasound and the position of the sphere. However, high intensities of ultrasound led to the generation of heat at the surface of the sphere, thus limiting the lowest final temperature achieved. An analytical solution was developed considering the heat generation and was fitted to the experimental data with R(2) values in the range of 0.910-0.998. Visual observations revealed that both cavitation and acoustic streaming were important for heat transfer phenomenon. Cavitation clouds at the surface of the sphere

  12. Analysis of heart rate and oxygen uptake kinetics studied by two different pseudo-random binary sequence work rate amplitudes.

    Science.gov (United States)

    Drescher, U; Koschate, J; Schiffer, T; Schneider, S; Hoffmann, U

    2017-06-01

    The aim of the study was to compare the kinetics responses of heart rate (HR), pulmonary (V˙O 2 pulm) and predicted muscular (V˙O 2 musc) oxygen uptake between two different pseudo-random binary sequence (PRBS) work rate (WR) amplitudes both below anaerobic threshold. Eight healthy individuals performed two PRBS WR protocols implying changes between 30W and 80W and between 30W and 110W. HR and V˙O 2 pulm were measured beat-to-beat and breath-by-breath, respectively. V˙O 2 musc was estimated applying the approach of Hoffmann et al. (Eur J Appl Physiol 113: 1745-1754, 2013) considering a circulatory model for venous return and cross-correlation functions (CCF) for the kinetics analysis. HR and V˙O 2 musc kinetics seem to be independent of WR intensity (p>0.05). V˙O 2 pulm kinetics show prominent differences in the lag of the CCF maximum (39±9s; 31±4s; p<0.05). A mean difference of 14W between the PRBS WR amplitudes impacts venous return significantly, while HR and V˙O 2 musc kinetics remain unchanged. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Microbial methane production in oxygenated water column of an oligotrophic lake

    Science.gov (United States)

    Grossart, Hans-Peter; Frindte, Katharina; Dziallas, Claudia; Eckert, Werner; Tang, Kam W.

    2011-01-01

    The prevailing paradigm in aquatic science is that microbial methanogenesis happens primarily in anoxic environments. Here, we used multiple complementary approaches to show that microbial methane production could and did occur in the well-oxygenated water column of an oligotrophic lake (Lake Stechlin, Germany). Oversaturation of methane was repeatedly recorded in the well-oxygenated upper 10 m of the water column, and the methane maxima coincided with oxygen oversaturation at 6 m. Laboratory incubations of unamended epilimnetic lake water and inoculations of photoautotrophs with a lake-enrichment culture both led to methane production even in the presence of oxygen, and the production was not affected by the addition of inorganic phosphate or methylated compounds. Methane production was also detected by in-lake incubations of lake water, and the highest production rate was 1.8–2.4 nM⋅h−1 at 6 m, which could explain 33–44% of the observed ambient methane accumulation in the same month. Temporal and spatial uncoupling between methanogenesis and methanotrophy was supported by field and laboratory measurements, which also helped explain the oversaturation of methane in the upper water column. Potentially methanogenic Archaea were detected in situ in the oxygenated, methane-rich epilimnion, and their attachment to photoautotrophs might allow for anaerobic growth and direct transfer of substrates for methane production. Specific PCR on mRNA of the methyl coenzyme M reductase A gene revealed active methanogenesis. Microbial methane production in oxygenated water represents a hitherto overlooked source of methane and can be important for carbon cycling in the aquatic environments and water to air methane flux. PMID:22089233

  14. Simulation and experiment for oxygen-enriched combustion engine using liquid oxygen to solidify CO2

    Science.gov (United States)

    Liu, Yongfeng; Jia, Xiaoshe; Pei, Pucheng; Lu, Yong; Yi, Li; Shi, Yan

    2016-01-01

    For capturing and recycling of CO2 in the internal combustion engine, Rankle cycle engine can reduce the exhaust pollutants effectively under the condition of ensuring the engine thermal efficiency by using the techniques of spraying water in the cylinder and optimizing the ignition advance angle. However, due to the water spray nozzle need to be installed on the cylinder, which increases the cylinder head design difficulty and makes the combustion conditions become more complicated. In this paper, a new method is presented to carry out the closing inlet and exhaust system for internal combustion engines. The proposed new method uses liquid oxygen to solidify part of cooled CO2 from exhaust system into dry ice and the liquid oxygen turns into gas oxygen which is sent to inlet system. The other part of CO2 is sent to inlet system and mixed with oxygen, which can reduce the oxygen-enriched combustion detonation tendency and make combustion stable. Computing grid of the IP52FMI single-cylinder four-stroke gasoline-engine is established according to the actual shape of the combustion chamber using KIVA-3V program. The effects of exhaust gas recirculation (EGR) rate are analyzed on the temperatures, the pressures and the instantaneous heat release rates when the EGR rate is more than 8%. The possibility of enclosing intake and exhaust system for engine is verified. The carbon dioxide trapping device is designed and the IP52FMI engine is transformed and the CO2 capture experiment is carried out. The experimental results show that when the EGR rate is 36% for the optimum EGR rate. When the liquid oxygen of 35.80-437.40 g is imported into the device and last 1-20 min, respectively, 21.50-701.30 g dry ice is obtained. This research proposes a new design method which can capture CO2 for vehicular internal combustion engine.

  15. Mass transfer inside a flux hood for the sampling of gaseous emissions from liquid surfaces - Experimental assessment and emission rate rescaling

    Science.gov (United States)

    Prata, Ademir A.; Lucernoni, Federico; Santos, Jane M.; Capelli, Laura; Sironi, Selena; Le-Minh, Nhat; Stuetz, Richard M.

    2018-04-01

    This study assesses the mass transfer of compounds inside the US EPA flux hood, one of the enclosure devices most commonly employed for the direct measurement of atmospheric emissions from liquid surfaces in wastewater treatment plants (WWTPs). Experiments comprised the evaporation of water and the volatilisation of a range of volatile organic compounds (VOCs). Special attention was given to the evaluation of the mass transfer coefficients in the microenvironment created by the flux hood and the effects of concentration build up in the hood's headspace. The VOCs emission rates and the water evaporation rates generally increased with the sweep air flow rate, as did the mass transfer coefficients for all compounds. The emission of compounds whose volatilisation is significantly influenced by the gas phase was greatly affected by concentration build up, whereas this effect was not significant for liquid phase-controlled compounds. The gas-film mass transfer coefficient (kG) estimated inside the US EPA flux hood was of the same order as the respective kG reported in the literature for wind tunnel-type devices, but the emission rates measured by the flux hood can be expected to be lower, due to the concentration build-up. Compared against an emission model for the passive surfaces in WWTPs, the mass transfer of acetic acid (representing a gas phase-dominated compound) inside the US EPA flux hood was equivalent to conditions of wind speeds at 10 m height (U10) of 0.27, 0.51 and 0.99 m s-1, respectively, for sweep air flow rates of 2, 5 and 10 L min-1. On the other hand, for higher wind speeds, the emission rates of gas phase-controlled compounds obtained with the flux hood can be considerably underestimated: for instance, at U10 = 5 m s-1, the emission rates of acetic acid inside the flux hood would be approximately 23, 12 and 6 times lower than the emission rates in the field, for sweep air flow rates of 2, 5 and 10 L min-1, respectively. A procedure is presented in

  16. High-temperature electromass transfer in the perovskite La-Sr-Ga-Fe-Mg-O ceramics

    International Nuclear Information System (INIS)

    Aleksandrovskij, V.V.; Kaleva, G.M.; Mosunov, A.V.; Politova, E.D.; Stefanovich, S.Yu.; Avetistov, A.K.; Venskovskij, N.U.

    2001-01-01

    Physicochemical mechanism of oxygen-ion transfer in perovskite-like solid solutions within La-Sr-Ga-Fe-Mg-O system was studied using kinetic dependences of oxygen deficit at variation of gas medium composition. One discusses relation between the phenomenon of mass loss, linear deformation and conducting features of a ceramic material. Oxygen-ion transfer was determined to proceed by vacancy jumping mechanism. On the basis of data on dielectric relaxation in lanthanum gallate base solid solutions one obtained new evidences of vacancy correlation under high temperature [ru

  17. Exploring the Critical Role of Motivation to Transfer in the Training Transfer Process

    Science.gov (United States)

    Grohmann, Anna; Beller, Johannes; Kauffeld, Simone

    2014-01-01

    The present study aims at exploring the critical role of motivation to transfer within the training transfer process. In a sample of N?=?252 employees of one industrial company, one peer rating and several self-ratings of transfer were used to investigate the mediating role of motivation to transfer in the relationship between training…

  18. Next Generation Life Support (NGLS): Variable Oxygen Regulator

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the Variable Oxygen Regulator Element is to develop an oxygen-rated, contaminant-tolerant oxygen regulator to control suit pressure with a...

  19. BODIPY-pyrene and perylene dyads as heavy atom-free singlet oxygen sensitizers

    KAUST Repository

    Filatov, Mikhail A.

    2018-02-23

    Dyads combining BODIPY as an electron acceptor and pyrene or perylene as electron donor subunits were prepared and studied their photophysical properties studied by steady-state and transient spectroscopy. Depending on the structure of the subunits and polarity of the media, the dyads show either bright fluorescence or photo-induced electron transfer (PeT) in solution. Charge-transfer (CT) states formed as a result of PeT and were found to yield triplet excited states of the BODIPY. In the presence of molecular oxygen, the dyads sensitize singlet oxygen (1O2) with quantum yields of up to 0.75.

  20. BODIPY-pyrene and perylene dyads as heavy atom-free singlet oxygen sensitizers

    KAUST Repository

    Filatov, Mikhail A.; Karuthedath, Safakath; Polestshuk, Pavel M.; Callaghan, Susan; Flanagan, Keith J.; Wiesner, Thomas; Laquai, Fré dé ric; Senge, Mathias O.

    2018-01-01

    Dyads combining BODIPY as an electron acceptor and pyrene or perylene as electron donor subunits were prepared and studied their photophysical properties studied by steady-state and transient spectroscopy. Depending on the structure of the subunits and polarity of the media, the dyads show either bright fluorescence or photo-induced electron transfer (PeT) in solution. Charge-transfer (CT) states formed as a result of PeT and were found to yield triplet excited states of the BODIPY. In the presence of molecular oxygen, the dyads sensitize singlet oxygen (1O2) with quantum yields of up to 0.75.

  1. Preparation of nitrogen-doped graphitic carboncages as electrocatalyst for oxygen reduction reaction

    International Nuclear Information System (INIS)

    Yan, Jing; Meng, Hui; Yu, Wendan; Yuan, Xiaoli; Lin, Worong; Ouyang, Wenpeng; Yuan, Dingsheng

    2014-01-01

    Nitrogen-doped carbon nanomaterials have been attracted increasing research interests in lithium-O 2 and Zinc-O 2 batteries, ultracapacitors and fuel cells. Herein, nitrogen-doped graphitic carboncages (N-GCs) have been prepared by mesoporous Fe 2 O 3 as a catalyst and lysine as a nitrogen doped carbon source. Due to the catalysis of Fe 2 O 3 , the N-GCs have a high graphitization degree at a low temperature, which is detected by X-ray diffraction and Raman spectrometer. Simultaneously, the heteroatom nitrogen is in-situ doped into carbon network. Therefore, the excellent electrocatalysis performance for oxygen reduction reaction is expected. The electrochemical measurement indicates that The N-GCs for oxygen reduction reaction in O 2 -saturated 0.1 mol L −1 KOH show a four-electron transfer process and exhibit excellent electrocatalytic activity (E ORR = -0.05 V vs. Ag/AgCl) and good stability (i/i 0 = 90% at -0.35 V after 4000 s with a rotation rate of 1600 rpm)

  2. Calculation of the mass transfer coefficient for the combustion of a carbon particle

    Energy Technology Data Exchange (ETDEWEB)

    Scala, Fabrizio [Istituto di Ricerche sulla Combustione - CNR, P.le Tecchio 80, 80125 Napoli (Italy)

    2010-01-15

    In this paper we address the calculation of the mass transfer coefficient around a burning carbon particle in an atmosphere of O{sub 2}, N{sub 2}, CO{sub 2}, CO, and H{sub 2}O. The complete set of Stefan-Maxwell equations is analytically solved under the assumption of no homogeneous reaction in the boundary layer. An expression linking the oxygen concentration and the oxygen flux at the particle surface (as a function of the bulk gas composition) is derived which can be used to calculate the mass transfer coefficient. A very simple approximate explicit expression is also given for the mass transfer coefficient, that is shown to be valid in the low oxygen flux limit or when the primary combustion product is CO{sub 2}. The results are given in terms of a correction factor to the equimolar counter-diffusion mass transfer coefficient, which is typically available in the literature for specific geometries and/or fluid-dynamic conditions. The significance of the correction factor and the accuracy of the different available expressions is illustrated for several cases of practical interest. Results show that under typical combustion conditions the use of the equimolar counter-diffusion mass transfer coefficient can lead to errors up to 10%. Larger errors are possible in oxygen-enriched conditions, while the error is generally low in oxy-combustion. (author)

  3. Theoretical prediction of the effect of heat transfer parameters on cooling rates of liquid-filled plastic straws used for cryopreservation of spermatozoa.

    Science.gov (United States)

    Sansinen, M; Santos, M V; Zaritzky, N; Baez, R; Chirife, J

    2010-01-01

    Heat transfer plays a key role in cryopreservation of liquid semen in plastic straws. The effect of several parameters on the cooling rate of a liquid-filled polypropylene straw when plunged into liquid nitrogen was investigated using a theoretical model. The geometry of the straw containing the liquid was assimilated as two concentric finite cylinders of different materials: the fluid and the straw; the unsteady-state heat conduction equation for concentric cylinders was numerically solved. Parameters studied include external (convection) heat transfer coefficient (h), the thermal properties of straw manufacturing material and wall thickness. It was concluded that the single most important parameter affecting the cooling rate of a liquid column contained in a straw is the external heat transfer coefficient in LN2. Consequently, in order to attain maximum cooling rates, conditions have to be designed to obtain the highest possible heat transfer coefficient when the plastic straw is plunged in liquid nitrogen.

  4. Pilot-scale biopesticide production by Bacillus thuringiensis subsp. kurstaki using starch industry wastewater as raw material.

    Science.gov (United States)

    Ndao, Adama; Sellamuthu, Balasubramanian; Gnepe, Jean R; Tyagi, Rajeshwar D; Valero, Jose R

    2017-09-02

    Pilot-scale Bacillus thuringiensis based biopesticide production (2000 L bioreactor) was conducted using starch industry wastewater (SIW) as a raw material using optimized operational parameters obtained in 15 L and 150 L fermenters. In pilot scale fermentation process the oxygen transfer rate is a major limiting factor for high product yield. Thus, the volumetric mass transfer coefficient (K L a) remains a tool to determine the oxygen transfer capacity [oxygen utilization rate (OUR) and oxygen transfer rate (OTR)] to obtain better bacterial growth rate and entomotoxicity in new bioreactor process optimization and scale-up. This study results demonstrated that the oxygen transfer rate in 2000 L bioreactor was better than 15 L and 150 L fermenters. The better oxygen transfer in 2000 L bioreactor augmented the bacterial growth [total cell (TC) and viable spore count (SC)] and delta-endotoxin yield. Prepared a stable biopesticide formulation for field use and its entomotoxicity was also evaluated. This study result corroborates the feasibility of industrial scale operation of biopesticide production using starch industry wastewater as raw material.

  5. Negative transfer of heart rate control following biofeedback training: a partial replication.

    Science.gov (United States)

    Steptoe, A; Macready, D

    1985-09-01

    Ability to raise and lower heart rate (HR) on instruction was tested before and after unidirectional biofeedback training in two groups of 10 male volunteers. Instructional control was assessed in 2-min trials before training, and after 5 and 10 biofeedback trials of increasing (Group I) and decreasing (Group D) HR. The magnitude of HR elevations produced by Group D diminished following training, while modifications in Group I were unchanged. This negative transfer effect is discussed in relation to whether voluntary speeding and slowing HR reflect distinct capacities.

  6. Method of simultaneous continuous determination of transfer rates of iron and chromium into solution during Fe-Cr alloys dissolution

    International Nuclear Information System (INIS)

    Shirinov, T.I.; Florianovich, G.M.; Skuratnik, Ya.B.

    1978-01-01

    Radiometry method of simultaneous continuous registration of transfer rates of iron and chromium into solution from Fe-Cr alloys with various composition has been developed. Using gamma-spectrometer components of Fe-Cr alloys can be determined with high sensitivity in separate samples according to Fe 59 and Cr 51 radioactive labels, obtained by neutron activation. The above method is applied to estimate Fe and Cr transfer rates into H 2 SO 4 solution at the temperature of 50 deg from Fe - 28% Cr alloy during its active dissolution. It is established, that beginning with some seconds of alloy and solution contact, its components transfer into the solution in the same composition, as in the alloy. The method enables to determine Fe with the accuracy of up to 5% and Cr with that of up to 10%

  7. Evaluation of gene expression and alginate production in response to oxygen transfer in continuous culture of Azotobacter vinelandii.

    Directory of Open Access Journals (Sweden)

    Alvaro Díaz-Barrera

    Full Text Available Alginates are polysaccharides used as food additives and encapsulation agents in biotechnology, and their functional properties depend on its molecular weight. In this study, different steady-states in continuous cultures of A. vinelandii were established to determine the effect of the dilution rate (D and the agitation rate on alginate production and expression of genes involved in alginate polymerization and depolymerization. Both, the agitation and dilution rates, determined the partitioning of the carbon utilization from sucrose into alginate and CO2 under oxygen-limiting conditions. A low D (0.07 h(-1 and 500 rpm resulted in the highest carbon utilization into alginate (25%. Quantitative real-time polymerase chain reaction was used to determine the transcription level of six genes involved in alginate polymerization and depolymerization. In chemostat cultures at 0.07 h(-1, the gene expression was affected by changes in the agitation rate. By increasing the agitation rate from 400 to 600 rpm, the algE7 gene expression decreased tenfold, whereas alyA1, algL and alyA2 gene expression increased between 1.5 and 2.8 times under similar conditions evaluated. Chemostat at 0.07 h(-1 showed a highest alginate molecular weight (580 kDa at 500 rpm whereas similar molecular weights (480 kDa were obtained at 400 and 600 rpm. The highest molecular weight was not explained by changes in the expression of alg8 and alg44 (genes involved in alginate polymerization. Nonetheless, a different expression pattern observed for lyases could explain the highest alginate molecular weight obtained. Overall, the results suggest that the control of alginate molecular weight in A. vinelandii cells growing in continuous mode is determined by a balance between the gene expression of intracellular and extracellular lyases in response to oxygen availability. These findings better our understanding of the biosynthesis of bacterial alginate and help us progress toward obtain

  8. Oxygen input and oxygen yield of tanks of great depth in theory and practice; Theorie und Praxis von Sauerstoffeintrag und -ertrag bei groesseren Beckentiefen

    Energy Technology Data Exchange (ETDEWEB)

    Poepel, H.J.; Wagner, M. [Technische Hochschule Darmstadt (Germany). Inst. fuer Wasserversorgung, Abwasserbeseitigung und Raumplanung; Weidmann, F.

    1999-07-01

    Activated sludge tanks are nowadays planned and built with greater depths (8.00 to 12.00 m) than hitherto (4.00 to 6.00 m); some are already in operation. For such depths there exist no confirmed dimensioning approaches. The fundamentals of oxygen transfer in deep tanks are pointed out and a model for calculating the influence of depth is set up. It is confirmed via an extensive test program with variation of water depth, the rate of density of membrane aerators, and air volume flows. It permits converting oxygen supply parameters of an aeration system established for a certain blow-in depth to a given alternative depth. For oxygen yield, too, relations are developed, which indicate gross yield for different compressor types (sliding vane rotary compressor, turbo compressor, screw-type compressor) as a function of blow-in-depth, air volume flow and rate of density with great accuracy. (orig.) [German] Belebungsbecken werden heute tiefer (8,00 bis 12,00 m) als bisher (4,00 bis 6,00 m) geplant, gebaut und bereits betrieben. Fuer diese Tiefen liegen keine gesicherten Bemesssungsansaetze vor. Die Grundlagen des Sauerstoffuebergangs in tiefen Becken werden dargelegt und ein Modell zur Berechnung des Tiefeneinflusses erstellt. Ueber ein ausfuehrliches Versuchsprogramm mit Variation der Wassertiefe, der Belegungsdichte mit Membranbelueftern und der Luftvolumenstroeme wird das Modell bestaetigt. Damit koennen Sauerstoffzufuhrparametern eines Belueftungssystems, die fuer eine bestimmte Einblastiefe bekannt sind, auf beliebige andere Tiefen umgerechnet werden. Auch fuer den Sauerstoffertrag werden Beziehungen entwickelt, die den Bruttoertrag fuer unterschiedliche Verdichterarten (Drehkolben-, Turbo- und Schraubenverdichter) in Abhaengigkeit von Einblastiefe, Luftvolumenstrom und Belegungsdichte mit grosser Genauigkeit festlegen. (orig.)

  9. Oxygen isotope exchange on palladium catalysts

    International Nuclear Information System (INIS)

    Kravchuk, L.S.; Beschetvertnaya, T.I.; Novorodskij, V.G.; Novikova, M.G.; Zaretskij, M.V.; Valieva, S.V.

    1983-01-01

    Oxygen heteromolecular isotope exchange on unreduced palladium catalysts, distingushing by metal content is studied. Content of 18 O in gaseous phase is eoual to 46%. Calculations of heteroexchange rates are conducted with decrease of the 18 O in the gaseous phase over solid sample. Method of oxygen thermodesorption has been used to establish that palladium, deposited on γ-Al 2 O 3 during exchange process is in oxidized state; in this case strength of Pd-O bond is determined by content dispersity) of the metal. It is shown that significant increase of exchange rate on the samples with Pd >> 0.5 mass.% content can be induced as by side decomposition reaction of its oxide and corresponding dilution of gaseous mixture by ''light'' oxygen so by possibility of exchange with oxygen of PdO phase

  10. Determining productivity of transferred benthic biofilms within wetlands differing in anthropogenic stressors

    International Nuclear Information System (INIS)

    Frederick, K.; Foote, L.; Ciborowski, J.

    2010-01-01

    Algal biofilms are a fundamental contributor to wetland productivity. The films maintain high turnover rates, nutrient uptake and storage capacities are prevalent in shallow water as well as over large littoral zones. This study investigated biofilm transfer techniques as a means of accelerating carbon capture, plant production, and colonization in reclaimed oil sand wetlands affected by process water. The study examined the productivity of transferred biofilms and their ability to accelerate succession; methods of transferring biofilms; and the community composition of algae in relation to other substrates. Microcosms with 4 types of substrates were submersed in experimental trenches containing either process water or natural water. Dissolved oxygen, chlorophyll, and biomass standing crop sampling was conducted at intervals throughout a 1-year period. Analysis of variance (ANOVA) was conducted to compare the substrate types. Results of the study will be used to assess the impacts of oil sands process affected materials (OSPM) on benthic biofilm productivity and the initial carbon accumulation process.

  11. Determining productivity of transferred benthic biofilms within wetlands differing in anthropogenic stressors

    Energy Technology Data Exchange (ETDEWEB)

    Frederick, K.; Foote, L. [Alberta Univ., Edmonton, AB (Canada); Ciborowski, J. [Windsor Univ., ON (Canada)

    2010-07-01

    Algal biofilms are a fundamental contributor to wetland productivity. The films maintain high turnover rates, nutrient uptake and storage capacities are prevalent in shallow water as well as over large littoral zones. This study investigated biofilm transfer techniques as a means of accelerating carbon capture, plant production, and colonization in reclaimed oil sand wetlands affected by process water. The study examined the productivity of transferred biofilms and their ability to accelerate succession; methods of transferring biofilms; and the community composition of algae in relation to other substrates. Microcosms with 4 types of substrates were submersed in experimental trenches containing either process water or natural water. Dissolved oxygen, chlorophyll, and biomass standing crop sampling was conducted at intervals throughout a 1-year period. Analysis of variance (ANOVA) was conducted to compare the substrate types. Results of the study will be used to assess the impacts of oil sands process affected materials (OSPM) on benthic biofilm productivity and the initial carbon accumulation process.

  12. Development of a Mass Transfer Model and Its Application to the Behavior of the Cs, Sr, Ba, and Oxygen ions in an Electrolytic Reduction Process for SF

    International Nuclear Information System (INIS)

    Park, Byung Heung; Kang, Dae Seung; Seo, Chung Seok; Park, Seong Won

    2005-01-01

    Isotopes of alkali and alkaline earth metals (AM and AEM) are the main contributors to the heat load and the radiotoxicity of spent fuel (SF). These components are separated from the SF and dissolved in a molten LiCl in an electrolytic reduction process. A mass transfer model is developed to describe the diffusion behavior of Cs, Sr, and Ba in the SF into the molten salt. The model is an analytical solution of Fick's second law of diffusion for a cylinder which is the shape of a cathode in the electrolytic reduction process. And the model is also applied to depict the concentration profile of the oxygen ion which is produced by the electrolysis of Li 2 O. The regressed diffusion coefficients of the model correlating the experimentally measured data are evaluated to be greater in the order of Ba, Cs, and Sr for the metal ions and the diffusion of the oxygen ion is slower than the metal ions which implies that different mechanisms govern the diffusion of the metal ions and the oxygen ions in a molten LiCl.

  13. Association between minor loading vein architecture and light- and CO2-saturated rates of photosynthetic oxygen evolution among Arabidopsis thaliana ecotypes from different latitudes

    Directory of Open Access Journals (Sweden)

    Christopher M Cohu

    2013-07-01

    Full Text Available Through microscopic analysis of veins and assessment of light- and CO2-saturated rates of photosynthetic oxygen evolution, we investigated the relationship between minor loading vein anatomy and photosynthesis of mature leaves in three ecotypes of Arabidopsis thaliana grown under four different combinations of temperature and photon flux density (PFD. All three ecotypes exhibited greater numbers and cross-sectional area of phloem cells as well as higher photosynthesis rates in response to higher PFD and especially lower temperature. The Swedish ecotype exhibited the strongest response to these conditions, the Italian ecotype the weakest response, and the Col-0 ecotype exhibited an intermediate response. Among all three ecotypes, strong linear relationships were found between light- and CO2-saturated rates of photosynthetic oxygen evolution and the number and area of either sieve elements or of companion and phloem parenchyma cells in foliar minor loading veins, with the Swedish ecotype showing the highest number of cells in minor loading veins (and largest minor veins coupled with unprecedented high rates of photosynthesis. Linear, albeit less significant, relationships were also observed between number and cross-sectional area of tracheids per minor loading vein versus light- and CO2-saturated rates of photosynthetic oxygen evolution. We suggest that sugar distribution infrastructure in the phloem is co-regulated with other features that set the upper limit for photosynthesis. The apparent genetic differences among Arabidopsis ecotypes should allow for future identification of the gene(s involved in augmenting sugar-loading and -transporting phloem cells and maximal rates of photosynthesis.

  14. The oxygen effect and cellular adaptation

    International Nuclear Information System (INIS)

    Meshcherikova, V.V.; Vajnson, A.A.; Yarmonenko, S.P.

    1979-01-01

    The radiomodifying effect of oxygen was shown to depend on the level of cellular oxygenation prior to irradiation. Acute hypoxia created at the time of irradiation protects previously normally oxygenated cells with DMF approximately 1.4 times larger than that of cells cultured for 24 hours under conditions of mild hypoxia. It is suggested that a decrease in the radioprotective effect of acute hypoxia on chronically hypoxic cells is correlated with an appreciable decrease in the rate of oxygen consumption by these cells, due to which the oxygen concentration near the intracellular targets in chronically hypoxic cells may be higher than in normal cells under conditions of poor oxygenation

  15. Reduction of momentum transfer rates by parallel electric fields: A two-fluid demonstration

    International Nuclear Information System (INIS)

    Delamere, P.A.; Stenbaek-Nielsen, H.C.; Otto, A.

    2002-01-01

    Momentum transfer between an ionized gas cloud moving relative to an ambient magnetized plasma is a general problem in space plasma physics. Obvious examples include the Io-Jupiter interaction, comets, and coronal mass ejections. Active plasma experiments have demonstrated that momentum transfer rates associated with Alfven wave propagation are poorly understood. Barium injection experiments from the Combined Release and Radiation Effects Satellite (CRRES) have shown that dense ionized clouds are capable of ExB drifting over large distances perpendicular to the magnetic field. The CRRES 'skidding' distances were much larger than predicted by magnetohydrodynamic theory and it has been proposed that parallel electric fields were a key component in the skidding phenomenon. A two-fluid code was used to demonstrate the role of parallel electric fields in reducing momentum transfer between two distinct plasma populations. In this study, a dense plasma was initialized moving relative to an ambient plasma and perpendicular to B. Parallel electric fields were introduced via a friction term in the electron momentum equation and the collision frequency was scaled in proportion to the field-aligned current density. The simulation results showed that parallel electric fields decreased the decelerating magnetic tension force on the plasma cloud through a magnetic diffusion/reconnection process

  16. Validity of using a 3-dimensional PET scanner during inhalation of 15O-labeled oxygen for quantitative assessment of regional metabolic rate of oxygen in man

    Science.gov (United States)

    Hori, Yuki; Hirano, Yoshiyuki; Koshino, Kazuhiro; Moriguchi, Tetsuaki; Iguchi, Satoshi; Yamamoto, Akihide; Enmi, Junichiro; Kawashima, Hidekazu; Zeniya, Tsutomu; Morita, Naomi; Nakagawara, Jyoji; Casey, Michael E.; Iida, Hidehiro

    2014-09-01

    Use of 15O labeled oxygen (15O2) and positron emission tomography (PET) allows quantitative assessment of the regional metabolic rate of oxygen (CMRO2) in vivo, which is essential to understanding the pathological status of patients with cerebral vascular and neurological disorders. The method has, however, been challenging, when a 3D PET scanner is employed, largely attributed to the presence of gaseous radioactivity in the trachea and the inhalation system, which results in a large amount of scatter and random events in the PET assessment. The present study was intended to evaluate the adequacy of using a recently available commercial 3D PET scanner in the assessment of regional cerebral radioactivity distribution during an inhalation of 15O2. Systematic experiments were carried out on a brain phantom. Experiments were also performed on a healthy volunteer following a recently developed protocol for simultaneous assessment of CMRO2 and cerebral blood flow, which involves sequential administration of 15O2 and C15O2. A particular intention was to evaluate the adequacy of the scatter-correction procedures. The phantom experiment demonstrated that errors were within 3% at the practically maximum radioactivity in the face mask, with the greatest radioactivity in the lung. The volunteer experiment demonstrated that the counting rate was at peak during the 15O gas inhalation period, within a verified range. Tomographic images represented good quality over the entire FOV, including the lower part of the cerebral structures and the carotid artery regions. The scatter-correction procedures appeared to be important, particularly in the process to compensate for the scatter originating outside the FOV. Reconstructed images dramatically changed if the correction was carried out using inappropriate procedures. This study demonstrated that accurate reconstruction could be obtained when the scatter compensation was appropriately carried out. This study also suggested the

  17. Relationship between relative cerebral blood flow, relative cerebral blood volume, and relative cerebral metabolic rate of oxygen in the preterm neonatal brain.

    Science.gov (United States)

    Nourhashemi, Mina; Kongolo, Guy; Mahmoudzadeh, Mahdi; Goudjil, Sabrina; Wallois, Fabrice

    2017-04-01

    The mechanisms responsible for coupling between relative cerebral blood flow (rCBF), relative cerebral blood volume (rCBV), and relative cerebral metabolic rate of oxygen ([Formula: see text]), an important function of the microcirculation in preterm infants, remain unclear. Identification of a causal relationship between rCBF-rCBV and [Formula: see text] in preterms may, therefore, help to elucidate the principles of cortical hemodynamics during development. We simultaneously recorded rCBF and rCBV and estimated [Formula: see text] by two independent acquisition systems: diffuse correlation spectroscopy and near-infrared spectroscopy, respectively, in 10 preterms aged between 28 and 35 weeks of gestational age. Transfer entropy was calculated in order to determine the directionality between rCBF-rCBV and [Formula: see text]. The surrogate method was applied to determine statistical significance. The results show that rCBV and [Formula: see text] have a predominant driving influence on rCBF at the resting state in the preterm neonatal brain. Statistical analysis robustly detected the correct directionality of rCBV on rCBF and [Formula: see text] on rCBF. This study helps to clarify the early organization of the rCBV-rCBF and [Formula: see text] inter-relationship in the immature cortex.

  18. Correlation among Singlet-Oxygen Quenching, Free-Radical Scavenging, and Excited-State Intramolecular-Proton-Transfer Activities in Hydroxyflavones, Anthocyanidins, and 1-Hydroxyanthraquinones.

    Science.gov (United States)

    Nagaoka, Shin-Ichi; Bandoh, Yuki; Nagashima, Umpei; Ohara, Keishi

    2017-10-26

    Singlet-oxygen ( 1 O 2 ) quenching, free-radical scavenging, and excited-state intramolecular proton-transfer (ESIPT) activities of hydroxyflavones, anthocyanidins, and 1-hydroxyanthraquinones were studied by means of laser, stopped-flow, and steady-state spectroscopies. In hydroxyflavones and anthocyanidins, the 1 O 2 quenching activity positively correlates to the free-radical scavenging activity. The reason for this correlation can be understood by considering that an early step of each reaction involves electron transfer from the unfused phenyl ring (B-ring), which is singly bonded to the bicyclic chromen or chromenylium moiety (A- and C-rings). Substitution of an electron-donating OH group at B-ring enhances the electron transfer leading to activation of the 1 O 2 quenching and free-radical scavenging. In 3-hydroxyflavones, the OH substitution at B-ring reduces the activity of ESIPT within C-ring, which can be explained in terms of the nodal-plane model. As a result, the 1 O 2 quenching and free-radical scavenging activities negatively correlate to the ESIPT activity. A catechol structure at B-ring is another factor that enhances the free-radical scavenging in hydroxyflavones. In contrast to these hydroxyflavones, 1-hydroxyanthraquinones having an electron-donating OH substituent adjacent to the O-H---O═C moiety susceptible to ESIPT do not show a simple correlation between their 1 O 2 quenching and ESIPT activities, because the OH substitution modulates these reactions.

  19. Muon transfer rates in collisions of hydrogen isotope mesic atoms on 'bare' nuclei. Multichannel adiabatic approach

    International Nuclear Information System (INIS)

    Korobov, V.I.; Melezhik, V.S.; Ponomarev, L.I.

    1992-01-01

    A numerical scheme for solving the problem of slow collisions in the three-body adiabatic approach is applied for calculation of muon transfer rates in collisions of hydrogen isotope atoms on bare nuclei. It is demonstrated that the multichannel adiabatic approach allows one to reach high accuracy results (∼3%) estimating the cross sections of charge transfer processes which are the best ones up to date. The method is appliable in a wide range of energies (0.001-50 eV) which is of interest for analysis of muon catalysed fusion experiments. 20 refs.; 3 figs.; 5 tabs

  20. Surface oxygen vacancy and oxygen permeation flux limits of perovskite ion transport membranes

    KAUST Repository

    Hunt, Anton

    2015-09-01

    © 2015 Elsevier B.V. The mechanisms and quantitative models for how oxygen is separated from air using ion transport membranes (ITMs) are not well understood, largely due to the experimental complexity for determining surface exchange reactions at extreme temperatures (>800°C). This is especially true when fuels are present at the permeate surface. For both inert and reactive (fuels) operations, solid-state oxygen surface vacancies (δ) are ultimately responsible for driving the oxygen flux, JO2. In the inert case, the value of δ at either surface is a function of the local PO2 and temperature, whilst the magnitude of δ dictates both the JO2 and the inherent stability of the material. In this study values of δ are presented based on experimental measurements under inert (CO2) sweep: using a permeation flux model and local PO2 measurements, collected by means of a local gas-sampling probe in our large-scale reactor, we can determine δ directly. The ITM assessed was La0.9Ca0.1FeO3-δ (LCF); the relative resistances to JO2 were quantified using the pre-defined permeation flux model and local PO2 values. Across a temperature range from 825°C to 1056°C, δ was found to vary from 0.007 to 0.029 (<1%), safely within material stability limits, whilst the permeate surface exchange resistance dominates. An inert JO2 limit was identified owing to a maximum sweep surface δ, δmaxinert. The physical presence of δmaxinert is attributed to a rate limiting step shift from desorption to associative electron transfer steps on the sweep surface as PO2 is reduced. Permeate surface exchange limitations under non-reactive conditions suggest that reactive (fuel) operation is necessary to accelerate surface chemistry for future work, to reduce flux resistance and push δpast δmaxinert in a stable manner.

  1. Oxygen supplementation in anesthetized brown bears (Ursus arctos)-how low can you go?

    Science.gov (United States)

    Fahlman, Åsa; Arnemo, Jon M; Pringle, John; Nyman, Görel

    2014-07-01

    Hypoxemia is anticipated during wildlife anesthesia and thus should be prevented. We evaluated the efficacy of low flow rates of supplemental oxygen for improvement of arterial oxygenation in anesthetized brown bears (Ursus arctos). The study included 32 free-ranging brown bears (yearlings, subadults, and adults; body mass 12-250 kg) that were darted with medetomidine-zolazepam-tiletamine (MZT) from a helicopter in Sweden. During anesthesia, oxygen was administered intranasally from portable oxygen cylinders at different flow rates (0.5-3 L/min). Arterial blood samples were collected before (pre-O2), during, and after oxygen therapy and immediately processed with a portable analyzer. Rectal temperature, respiratory rate, heart rate, and pulse oximetry-derived hemoglobin oxygen saturation were recorded. Intranasal oxygen supplementation at the evaluated flow rates significantly increased the partial pressure of arterial oxygen (PaO2) from pre-O2 values of 9.1 ± 1.3 (6.3-10.9) kPa to 20.4 ± 6.8 (11.1-38.7) kPa during oxygen therapy. When oxygen therapy was discontinued, the PaO2 decreased to values not significantly different from the pre-O2 values. In relation to the body mass of the bears, the following oxygen flow rates are recommended: 0.5 L/min to bears bears 51-100 kg, 2 L/min to bears 101-200 kg, and 3 L/min to bears 201-250 kg. In conclusion, low flow rates of intranasal oxygen were sufficient to improve arterial oxygenation in brown bears anesthetized with MZT. Because hypoxemia quickly recurred when oxygen was discontinued, oxygen supplementation should be provided continuously throughout anesthesia.

  2. Recombination rates of hydrogen and oxygen over pure and impure plutonium oxides

    International Nuclear Information System (INIS)

    Morales, L.

    1999-01-01

    Long-term, safe storage of excess plutonium-bearing materials is required until stabilization and disposal methods are implemented or defined. The US Department of Energy (DOE) has established a plan to address the stabilization, packing, and storage of plutonium-bearing materials from around the complex. The DOE's standard method, DOE-STD-3013-96 and its proposed revision, for stabilizing pure and impure actinide materials is by calcination in air followed by sealing the material in welded stainless steel containers. The 3013 standard contains and equation that predicts the total pressure buildup in the can over the anticipated storage time of 50 yr. This equation was meant to model a worst-case scenario to ensure that pressures would not exceed the strength of the container at the end of 50 yr. As a result, concerns about pressure generation in the storage cans, both absolute values and rates, have been raised with regard to rupture and dispersal of nuclear materials. Similar issues have been raised about the transportation of these materials around the complex. The purpose of this work is to provide a stronger technical basis for the 3013 standard by measuring the recombination rates of hydrogen/oxygen mixtures in contact with pure and impure plutonium oxides. The goal of these experiments was to determine whether the rate of recombination is faster than the rate of water radiolysis under controlled conditions. This was accomplished by using a calibrated pressure-volume-temperature apparatus to measure the recombination rates in a fixed volume as the gas mixture was brought into contact with oxide powders whose temperatures ranged from 50 to 300 C. These conditions were selected in order to bracket the temperature conditions expected in a typical storage can. In addition, a 2% H 2 /air mixture encompasses scenarios in which the cans are sealed in air, and over time various amounts of hydrogen are formed

  3. A fibre-optic oxygen sensor for monitoring human breathing

    International Nuclear Information System (INIS)

    Chen, Rongsheng; Formenti, Federico; Hahn, Clive E W; Farmery, Andrew D; Obeid, Andy

    2013-01-01

    The development and construction of a tapered-tip fibre-optic fluorescence based oxygen sensor is described. The sensor is suitable for fast and real-time monitoring of human breathing. The sensitivity and response time of the oxygen sensor were evaluated in vitro with a gas pressure chamber system, where oxygen partial pressure was rapidly changed between 5 and 15 kPa, and then in vivo in five healthy adult participants who synchronized their breathing to a metronome set at 10, 20, 30, 40, 50, and 60 breaths min –1 . A Datex Ultima medical gas analyser was used to monitor breathing rate as a comparator. The sensor's response time in vitro was less than 150 ms, which allows accurate continuous measurement of inspired and expired oxygen pressure. Measurements of breathing rate by means of our oxygen sensor and of the Datex Ultima were in strong agreement. The results demonstrate that the device can reliably resolve breathing rates up to 60 breaths min –1 , and that it is a suitable cost-effective alternative for monitoring breathing rates and end-tidal oxygen partial pressure in the clinical setting. The rapid response time of the sensor may allow its use for monitoring rapid breathing rates as occur in children and the newborn. (note)

  4. Heat transfer rate within non-spherical thick grains

    Directory of Open Access Journals (Sweden)

    Huchet Florian

    2017-01-01

    Full Text Available The prediction of the internal heat conduction into non-spherical thick grains constitutes a significant issue for physical modeling of a large variety of application involving convective exchanges between fluid and grains. In that context, the present paper deals with heat rate measurements of various sizes of particles, the thermal sensors being located at the interface fluid/grain and into the granular materials. Their shape is designed as cuboid in order to control the surface exchanges. In enclosed coneshaped apparatus, a sharp temperature gradient is ensured from a hot source releasing the air stream temperature equal to about 400°C. Two orientations of grain related to the air stream are considered: diagonally and straight arrangements. The thermal diffusivity of the grains and the Biot numbers are estimated from an analytical solution established for slab. The thermal kinetics evolution is correlated to the sample granular mass and its orientation dependency is demonstrated. Consequently, a generalized scaling law is proposed which is funded from the effective area of the heat transfer at the grain-scale, the dimensionless time being defined from the calculated diffusional coefficients.

  5. Heat transfer rate within non-spherical thick grains

    Science.gov (United States)

    Huchet, Florian; Richard, Patrick; Joniot, Jules; Le Guen, Laurédan

    2017-06-01

    The prediction of the internal heat conduction into non-spherical thick grains constitutes a significant issue for physical modeling of a large variety of application involving convective exchanges between fluid and grains. In that context, the present paper deals with heat rate measurements of various sizes of particles, the thermal sensors being located at the interface fluid/grain and into the granular materials. Their shape is designed as cuboid in order to control the surface exchanges. In enclosed coneshaped apparatus, a sharp temperature gradient is ensured from a hot source releasing the air stream temperature equal to about 400°C. Two orientations of grain related to the air stream are considered: diagonally and straight arrangements. The thermal diffusivity of the grains and the Biot numbers are estimated from an analytical solution established for slab. The thermal kinetics evolution is correlated to the sample granular mass and its orientation dependency is demonstrated. Consequently, a generalized scaling law is proposed which is funded from the effective area of the heat transfer at the grain-scale, the dimensionless time being defined from the calculated diffusional coefficients.

  6. Pedaling rate is an important determinant of human oxygen uptake during exercise on the cycle ergometer.

    Science.gov (United States)

    Formenti, Federico; Minetti, Alberto E; Borrani, Fabio

    2015-09-01

    Estimation of human oxygen uptake (V˙o2) during exercise is often used as an alternative when its direct measurement is not feasible. The American College of Sports Medicine (ACSM) suggests estimating human V˙o2 during exercise on a cycle ergometer through an equation that considers individual's body mass and external work rate, but not pedaling rate (PR). We hypothesized that including PR in the ACSM equation would improve its V˙o2 prediction accuracy. Ten healthy male participants' (age 19-48 years) were recruited and their steady-state V˙o2 was recorded on a cycle ergometer for 16 combinations of external work rates (0, 50, 100, and 150 W) and PR (50, 70, 90, and 110 revolutions per minute). V˙o2 was calculated by means of a new equation, and by the ACSM equation for comparison. Kinematic data were collected by means of an infrared 3-D motion analysis system in order to explore the mechanical determinants of V˙o2. Including PR in the ACSM equation improved the accuracy for prediction of sub-maximal V˙o2 during exercise (mean bias 1.9 vs. 3.3 mL O2 kg(-1) min(-1)) but it did not affect the accuracy for prediction of maximal V˙o2 (P > 0.05). Confirming the validity of this new equation, the results were replicated for data reported in the literature in 51 participants. We conclude that PR is an important determinant of human V˙o2 during cycling exercise, and it should be considered when predicting oxygen consumption. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  7. Factors affecting conception rates in cattle following embryo transfer ...

    African Journals Online (AJOL)

    Embryo Transfer Technology (ETT) plays an important role in improving productivity of dairy cattle (Bos indicus). Embryo Transfer Technology allows top quality female livestock to improve a herd or flock in much the same way that artificial insemination has allowed greater use of superior sires. The technology hastens ...

  8. Calculation of rate coefficients of some proton-transfer ion-molecule reactions in weakly ionized gases

    International Nuclear Information System (INIS)

    Stiller, W.

    1985-01-01

    A classical collision theory is used to describe thermal bimolecular rate coefficeints for reaction between positive and negative ions and polar molecules in a carrier gas. Special attention is paid to ion-molecule reaction in which proton transfer occurs. These reactions play an important role in terrestrial plasma devices, in ionosphere, in planetary atmospheres and in interstellar matter. The equilibrium rate coefficients of the reactions are calculated based on a microscopic reactive cross section derived from a long distance polar molecule-ion potential. The results are compared with experimental values of afterglow measurements. (D.Gy.)

  9. Mathematical modeling of oxygen transport in solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, Ann Mari

    1997-12-31

    This thesis develops mathematical models to describe the electrochemical performance of a solid oxide fuel cell cathode based on electrochemical kinetics and mass transfer. The individual effects of various coupled processes are investigated. A one-dimensional model is developed based on porous electrode theory. Two different mechanisms are investigated for the charge transfer reaction. One of these assumes that intermediately adsorbed oxygen atoms are reduced at the electrode/electrolyte interface, similar to the models proposed for metal electrodes. Simulated polarization curves exhibit limited currents due to depletion of oxygen adsorbates at high cathodic overvoltages. An empirical correlation is confirmed to exist between the limiting current an the oxygen partial pressure, however, a similar correlation often assumed to exist between the measured polarization resistance and the oxygen partial pressure could not be justified. For the other model, oxygen vacancies are assumed to be exchanged directly at the electrode/electrolyte interface. The electrochemical behaviour is improved by reducing the oxygen partial pressure, due to increased vacancy concentration of the electrode material. Simulated polarization curves exhibit Tafel-like slopes in the cathodic direction, which are due to polarization concentration, and not activation polarization in the conventional sense. Anodic limiting currents are predicted due to lack of available free sites for vacancy exchange at the cathode side. The thesis also presents a theoretical treatment of current and potential distributions in simple two-dimensional cell geometries, and a two-dimensional model for a porous electrode-electrolyte system for investigation of the effect of interfacial diffusion of adsorbates along the electrode/electrolyte interface. 172 refs., 60 figs., 11 tabs.

  10. Implementing an Oxygen Supplementation and Monitoring Protocol on Inpatient Pediatric Bronchiolitis: An Exercise in Deimplementation

    Directory of Open Access Journals (Sweden)

    Brian LeCleir

    2017-01-01

    Full Text Available Aim. Our goal in this study is to evaluate the effectiveness of our oxygen (O2 protocol to reduce length of stay (LOS for children hospitalized with bronchiolitis. Methods. In this retrospective cohort study, the outcomes of children ≤ 24 months old that were admitted with bronchiolitis and placed on the O2 protocol were compared to historical controls. The primary outcome was hospital length of stay. Secondary outcomes were duration of O2 supplementation, rates of pediatric intensive care unit transfer, and readmission. Results. Groups were not significantly different in age, gender, and rates of respiratory distress score assessment. Significantly more severely ill patients were in the O2 protocol group. There were no significant differences between control and O2 protocol groups with regard to mean LOS, rates of pediatric intensive care unit transfer, or seven-day readmission rates. By multiple regression analysis, the use of the O2 protocol was associated with a nearly 20% significant decrease in the length of hospitalization (p=0.030. Conclusion. Use of O2 supplementation protocol increased LOS in the more ill patients with bronchiolitis but decreased overall LOS by having a profound effect on patients with mild bronchiolitis.

  11. Information transfer with rate-modulated Poisson processes: a simple model for nonstationary stochastic resonance.

    Science.gov (United States)

    Goychuk, I

    2001-08-01

    Stochastic resonance in a simple model of information transfer is studied for sensory neurons and ensembles of ion channels. An exact expression for the information gain is obtained for the Poisson process with the signal-modulated spiking rate. This result allows one to generalize the conventional stochastic resonance (SR) problem (with periodic input signal) to the arbitrary signals of finite duration (nonstationary SR). Moreover, in the case of a periodic signal, the rate of information gain is compared with the conventional signal-to-noise ratio. The paper establishes the general nonequivalence between both measures notwithstanding their apparent similarity in the limit of weak signals.

  12. The effect of oxygen content during an initial sustained inflation on heart rate in asphyxiated near-term lambs.

    Science.gov (United States)

    Sobotka, K S; Ong, T; Polglase, G R; Crossley, K J; Moss, T J M; Hooper, S B

    2015-07-01

    At birth, an initial sustained inflation (SI) uniformly aerates the lungs, increases arterial oxygenation and rapidly improves circulatory recovery in asphyxiated newborns. We hypothesised that lung aeration, in the absence of an increase in arterial oxygenation, can increase heart rate (HR) in asphyxiated near-term lambs. Lambs were delivered and instrumented at 139±2 days of gestation. Asphyxia was induced by umbilical cord clamping and then delaying the onset of ventilation until mean carotid arterial pressures (CAPs) had decreased <20 mm Hg. Lambs then received a single 30-s SI using nitrogen (N2; n=6), 5% oxygen (O2; n=6), 21% O2 (n=6) or 100% O2 (n=6) followed by ventilation in air for 30 min. HR, CAP and pulmonary blood flow (PBF) were continuously recorded. HR and PBF increased more quickly in lambs resuscitated with 100% and 21% O2 than with 5% O2 or N2. HR and PBF recovery in the 5% O2 group was delayed relative to all other oxygen SI groups. HR in 5%, 21% and 100% O2 groups reached 100 bpm before the SI was complete. HR and PBF in the N2 group did not increase until 10 s after the SI was completed and ventilation was initiated with air. CAP tended to increase quicker in all O2 groups than in N2 group. Oxygen content during an SI is important for circulatory recovery in asphyxiated lambs. This increase in HR is likely driven by the increase in PBF and venous return to the heart. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  13. Enhancement of Condensation Heat Transfer Rate of the Air-Steam Mixture on a Passive Condenser System Using Annular Fins

    Directory of Open Access Journals (Sweden)

    Yeong-Jun Jang

    2017-11-01

    Full Text Available This paper presents an experimental investigation on the enhancement of the heat transfer rate of steam condensation on the external surfaces of a vertical tube with annular fins. A cylindrical condenser tube, which is 40 mm in outer diameter and 1000 mm in length, with annular disks of uniform cross-sectional area is fabricated in the manner of ensuring perfect contact between the base surface and fins. A total of 13 annular fins of 80 mm diameter were installed along the tube height in order to increase the effective heat transfer area by 85%. Through a series of condensation tests for the air-steam mixture under natural convection conditions, the heat transfer data was measured in the pressure range of between 2 and 5 bar, and the air mass fraction from 0.3 to 0.7. The rates of heat transfer of the finned tube are compared to those that are measured on a bare tube to demonstrate the enhanced performance by extended surfaces. In addition, based on the experimental results and the characteristics of steam condensation, the applicability of finned tubes to a large condenser system with a bundle layout is evaluated.

  14. Graphene-cyclodextrin-cytochrome c layered assembly with improved electron transfer rate and high supramolecular recognition capability.

    Science.gov (United States)

    Gong, Cheng-Bin; Guo, Cong-Cong; Jiang, Dan; Tang, Qian; Liu, Chang-Hua; Ma, Xue-Bing

    2014-06-01

    This study aimed to develop a new graphene-based layered assembly, named graphene-cyclodextrin-cytochrome c with improved electron transfer rate. This assembly has combined high conductivity of graphene nanosheets (GNs), selectively binding properties and electronegativity of cyclodextrins (CDs), as well as electropositivity of cytochrome c (Cyt c). This assembly can also mimic the confined environments of the intermembrane space of mitochondria. A β-cyclodextrin (β-CD) functionalized GN (GN-CD) assembly was initially prepared by a simple wet-chemical strategy, i.e., in situ thermal reduction of graphene oxide with hydrazine hydrate in the presence of β-CD. Cyt c was then intercalated to the GN-CD assembly to form a layered self-assembled structure, GN-CD-Cyt c, through electrostatic interaction. Compared with GNs and GN-CD, GN-CD-Cyt c assembly displayed improved electron transfer rate and high supramolecular recognition capability toward six probe molecules. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Experimental study on the influence of oxygen content in the combustion air on the combustion characteristics

    International Nuclear Information System (INIS)

    Bělohradský, Petr; Skryja, Pavel; Hudák, Igor

    2014-01-01

    This study was focused on the experimental investigation of the very promising combustion technology called as the oxygen-enhanced combustion (OEC), which uses the oxidant containing higher proportion of oxygen than in the atmospheric air, i.e. more than 21%. The work investigated and compared the characteristics of two OEC methods, namely the premix enrichment and air-oxy/fuel combustion, when the overall oxygen concentration was varied from 21% to 46%. The combustion tests were performed with the experimental two-gas-staged burner of low-NO x type at the burner thermal input of 750 kW for two combustion regimes – one-staged and two-staged combustion. The oxygen concentration in the flue gas was maintained in the neighborhood of 3% vol. (on dry basis). The aim of tests was to assess the impact of the oxidant composition, type of OEC method and fuel-staging on the characteristic combustion parameters in detail. The investigated parameters included the concentration of nitrogen oxides (NO x ) in the flue gas, flue gas temperature, heat flux to the combustion chamber wall, and lastly the stability, shape and dimensions of flame. It was observed that NO x emission is significantly lower when the air-oxy/fuel method is used compared to the premix enrichment method. Moreover, when the fuel was staged, NO x emission was below 120 mg/Nm 3 at all investigated oxygen flow rates. Increasing oxygen concentration resulted in higher heating intensity due to higher concentrations of CO 2 and H 2 O. The available heat at 46% O 2 was higher by 20% compared with that at 21% O 2 . - Highlights: • Premix-enrichment and air-oxy/fuel combustion methods were experimentally studied. • NO x increased sharply as oxygen concentration increased during PE tests. • NO x was below 120 mg/Nm 3 for all investigated oxygen flow rates in AO tests. • Radiative heat transfer was enhanced ca. 20% as O 2 concentration was increased. • OEC flames were observed stable, more luminous and

  16. Modeling and experimental methods to predict oxygen distribution in bone defects following cell transplantation.

    Science.gov (United States)

    Heylman, Christopher M; Santoso, Sharon; Krebs, Melissa D; Saidel, Gerald M; Alsberg, Eben; Muschler, George F

    2014-04-01

    We have developed a mathematical model that allows simulation of oxygen distribution in a bone defect as a tool to explore the likely effects of local changes in cell concentration, defect size or geometry, local oxygen delivery with oxygen-generating biomaterials (OGBs), and changes in the rate of oxygen consumption by cells within a defect. Experimental data for the oxygen release rate from an OGB and the oxygen consumption rate of a transplanted cell population are incorporated into the model. With these data, model simulations allow prediction of spatiotemporal oxygen concentration within a given defect and the sensitivity of oxygen tension to changes in critical variables. This information may help to minimize the number of experiments in animal models that determine the optimal combinations of cells, scaffolds, and OGBs in the design of current and future bone regeneration strategies. Bone marrow-derived nucleated cell data suggest that oxygen consumption is dependent on oxygen concentration. OGB oxygen release is shown to be a time-dependent function that must be measured for accurate simulation. Simulations quantify the dependency of oxygen gradients in an avascular defect on cell concentration, cell oxygen consumption rate, OGB oxygen generation rate, and OGB geometry.

  17. Preferences of subfertile women regarding elective single embryo transfer : additional in vitro fertilization cycles are acceptable, lower pregnancy rates are not

    NARCIS (Netherlands)

    Twisk, Moniek; van der Veen, Fulco; Repping, Sjoerd; Heineman, Maas-Jan; Korevaar, Johanna C.; Bossuyt, Patrick M. M.

    2007-01-01

    With identical pregnancy rates after elective single embryo transfer (ET) and double ET strategies consisting of three cycles of IVF or intracytoplasmic sperm injection (ICSI) plus transfers of thawed/frozen embryos if available, 46% of the women undergoing IVF/ICSI favor elective single ET. If

  18. Preferences of subfertile women regarding elective single embryo transfer: additional in vitro fertilization cycles are acceptable, lower pregnancy rates are not

    NARCIS (Netherlands)

    Twisk, Moniek; van der Veen, Fulco; Repping, Sjoerd; Heineman, Maas-Jan; Korevaar, Johanna C.; Bossuyt, Patrick M. M.

    2007-01-01

    With identical pregnancy rates after elective single embryo transfer (ET) and double ET strategies consisting of three cycles of IVF or intracytoplasmic sperm injection (ICSI) plus transfers of thawed/frozen embryos if available, 46% of the women undergoing IVF/ICSI favor elective single ET. If

  19. Oxygen atom transfer reactions from Mimoun complexes to sulfides and sulfoxides. A bonding evolution theory analysis.

    Science.gov (United States)

    González-Navarrete, Patricio; Sensato, Fabricio R; Andrés, Juan; Longo, Elson

    2014-08-07

    In this research, a comprehensive theoretical investigation has been conducted on oxygen atom transfer (OAT) reactions from Mimoun complexes to sulfides and sulfoxides. The joint use of the electron localization function (ELF) and Thom's catastrophe theory (CT) provides a powerful tool to analyze the evolution of chemical events along a reaction pathway. The progress of the reaction has been monitored by structural stability domains from ELF topology while the changes between them are controlled by turning points derived from CT which reveal that the reaction mechanism can be separated in several steps: first, a rupture of the peroxo O1-O2 bond, then a rearrangement of lone pairs of the sulfur atom occurs and subsequently the formation of S-O1 bond. The OAT process involving the oxidation of sulfides and sulfoxides is found to be an asynchronous process where O1-O2 bond breaking and S-O1 bond formation processes do not occur simultaneously. Nucleophilic/electrophilic characters of both dimethyl sulfide and dimethyl sulfoxide, respectively, are sufficiently described by our results, which hold the key to unprecedented insight into the mapping of electrons that compose the bonds while the bonds change.

  20. Oxygen-Partial-Pressure Sensor for Aircraft Oxygen Mask

    Science.gov (United States)

    Kelly, Mark; Pettit, Donald

    2003-01-01

    A device that generates an alarm when the partial pressure of oxygen decreases to less than a preset level has been developed to help prevent hypoxia in a pilot or other crewmember of a military or other high-performance aircraft. Loss of oxygen partial pressure can be caused by poor fit of the mask or failure of a hose or other component of an oxygen distribution system. The deleterious physical and mental effects of hypoxia cause the loss of a military aircraft and crew every few years. The device is installed in the crewmember s oxygen mask and is powered via communication wiring already present in all such oxygen masks. The device (see figure) includes an electrochemical sensor, the output potential of which is proportional to the partial pressure of oxygen. The output of the sensor is amplified and fed to the input of a comparator circuit. A reference potential that corresponds to the amplified sensor output at the alarm oxygen-partial-pressure level is fed to the second input of the comparator. When the sensed partial pressure of oxygen falls below the minimum acceptable level, the output of the comparator goes from the low state (a few millivolts) to the high state (near the supply potential, which is typically 6.8 V for microphone power). The switching of the comparator output to the high state triggers a tactile alarm in the form of a vibration in the mask, generated by a small 1.3-Vdc pager motor spinning an eccentric mass at a rate between 8,000 and 10,000 rpm. The sensation of the mask vibrating against the crewmember s nose is very effective at alerting the crewmember, who may already be groggy from hypoxia and is immersed in an environment that is saturated with visual cues and sounds. Indeed, the sensation is one of rudeness, but such rudeness could be what is needed to stimulate the crewmember to take corrective action in a life-threatening situation.

  1. Numerical study of pressure fluctuations transfer law in different flow rate of turbine mode in a prototype pump turbine

    International Nuclear Information System (INIS)

    Sun, Y K; Zuo, Z G; Liu, S H; Wu, Y L; Liu, J T; Qin, D Q; Wei, X Z

    2013-01-01

    Numerical simulation using SST k-w turbulence model was carried out, to predict pressure fluctuation transfer law in turbine mode. Three operating points with different mass flow rates are simulated. The results of numerical simulation show that, the amplitude and frequency of pressure fluctuations in different positions are very different. The transfer law of amplitude and frequency of pressure fluctuations change with different position and different mass flow rate. Blade passing frequency (BPF) is the first dominant frequency in vaneless space, while component in this frequency got smaller in the upstream and downstream of vaneless space when the mass flow is set. Furthermore triple blade passing frequency (3BPF) component obtained a different transfer law through the whole flow passage. The amplitude and frequency of pressure fluctuations is also different in different circumference position of vaneless space. When the mass flow is different, the distribution of pressure fluctuations in circumference is different. The frequency component of pressure fluctuations in all the positions is different too

  2. On the Statistical Properties of Turbulent Energy Transfer Rate in the Inner Heliosphere

    Science.gov (United States)

    Sorriso-Valvo, Luca; Carbone, Francesco; Perri, Silvia; Greco, Antonella; Marino, Raffaele; Bruno, Roberto

    2018-01-01

    The transfer of energy from large to small scales in solar wind turbulence is an important ingredient of the long-standing question of the mechanism of the interplanetary plasma heating. Previous studies have shown that magnetohydrodynamic (MHD) turbulence is statistically compatible with the observed solar wind heating as it expands in the heliosphere. However, in order to understand which processes contribute to the plasma heating, it is necessary to have a local description of the energy flux across scales. To this aim, it is customary to use indicators such as the magnetic field partial variance of increments (PVI), which is associated with the local, relative, scale-dependent magnetic energy. A more complete evaluation of the energy transfer should also include other terms, related to velocity and cross-helicity. This is achieved here by introducing a proxy for the local, scale-dependent turbulent energy transfer rate ɛ_{Δ t}(t), based on the third-order moment scaling law for MHD turbulence. Data from Helios 2 are used to determine the statistical properties of such a proxy in comparison with the magnetic and velocity fields PVI, and the correlation with local solar wind heating is computed. PVI and ɛ_{Δ t}(t) are generally well correlated; however, ɛ_{Δ t}(t) is a very sensitive proxy that can exhibit large amplitude values, both positive and negative, even for low amplitude peaks in the PVI. Furthermore, ɛ_{Δ t}(t) is very well correlated with local increases of the temperature when large amplitude bursts of energy transfer are localized, thus suggesting an important role played by this proxy in the study of plasma energy dissipation.

  3. Oxygen therapy for cluster headache

    DEFF Research Database (Denmark)

    Petersen, Anja S; Barloese, Mads Cj; Lund, Nunu Lt

    2017-01-01

    -controlled, crossover inpatient study, and 102 CH attacks were treated with 100% oxygen delivered by demand valve oxygen (DVO), O2ptimask or simple mask (15 liters/min) or placebo delivered by DVO for 15 minutes. Primary endpoint: Two-point decrease of pain on a five-point rating scale within 15 minutes. Results Only...

  4. Technical characterization of dialysis fluid flow and mass transfer rate in dialyzers with various filtration coefficients using dimensionless correlation equation.

    Science.gov (United States)

    Fukuda, Makoto; Yoshimura, Kengo; Namekawa, Koki; Sakai, Kiyotaka

    2017-06-01

    The objective of the present study is to evaluate the effect of filtration coefficient and internal filtration on dialysis fluid flow and mass transfer coefficient in dialyzers using dimensionless mass transfer correlation equations. Aqueous solution of vitamin B 12 clearances were obtained for REXEED-15L as a low flux dialyzer, and APS-15EA and APS-15UA as high flux dialyzers. All the other design specifications were identical for these dialyzers except for filtration coefficient. The overall mass transfer coefficient was calculated, moreover, the exponents of Reynolds number (Re) and film mass transfer coefficient of the dialysis-side fluid (k D ) for each flow rate were derived from the Wilson plot and dimensionless correlation equation. The exponents of Re were 0.4 for the low flux dialyzer whereas 0.5 for the high flux dialyzers. Dialysis fluid of the low flux dialyzer was close to laminar flow because of its low filtration coefficient. On the other hand, dialysis fluid of the high flux dialyzers was assumed to be orthogonal flow. Higher filtration coefficient was associated with higher k D influenced by mass transfer rate through diffusion and internal filtration. Higher filtration coefficient of dialyzers and internal filtration affect orthogonal flow of dialysis fluid.

  5. Charge transfer in astrophysical nebulae

    International Nuclear Information System (INIS)

    Shields, G.A.

    1990-01-01

    Charge transfer has become a standard ingredient in models of ionized nebulae, supernovae remnants and active galactic nuclei. Charge transfer rate coefficients and the physics of ionized nebulae are considered. Charge transfer is applied to the ionization structure and line emission of ionized nebulae. Photoionized nebulae observations are used to test theoretical predictions of charge transfer rates. (author)

  6. Determining the Source of Water Vapor in a Cerium Oxide Electrochemical Oxygen Separator to Achieve Aviator Grade Oxygen

    Science.gov (United States)

    Graf, John; Taylor, Dale; Martinez, James

    2014-01-01

    ]. Combined with a mechanical compressor, a Solid Electrolyte Oxygen Separator (SEOS) should be capable of producing ABO grade oxygen at pressures >2400 psia, on the space station. Feasibility tests using a SEOS integrated with a mechanical compressor identified an unexpected contaminant in the oxygen: water vapour was found in the oxygen product, sometimes at concentrations higher than 40 ppm (the ABO limit for water vapour is 7 ppm). If solid electrolyte membranes are really "infinitely selective" to oxygen as they are reported to be, where did the water come from? If water is getting into the oxygen, what other contaminants might get into the oxygen? Microscopic analyses of wafers, welds, and oxygen delivery tubes were performed in an attempt to find the source of the water vapour contamination. Hot and cold pressure decay tests were performed. Measurements of water vapour as a function of O2 delivery rate, O2 delivery pressure, and process air humidity levels were the most instructive in finding the source of water contamination (Fig 3). Water contamination was directly affected by oxygen delivery rate (doubling the oxygen production rate cut the water level in half). Water was affected by process air humidity levels and delivery pressure in a way that indicates the water was diffusing into the oxygen delivery system.

  7. NLP modeling for the optimization of LiBr-H2O absorption refrigeration systems with exergy loss rate, heat transfer area, and cost as single objective functions

    DEFF Research Database (Denmark)

    Mussati, Sergio F.; Gernaey, Krist; Morosuk, Tatiana

    2016-01-01

    exergy loss rate, the total heat transfer area, and the total annual cost of the system. It was found that the optimal solution obtained by minimization of the total exergy loss rate provides “theoretical” upper bounds not only for the total heat transfer area of the system but also for each process unit...... and all stream temperatures, while the optimal solution obtained by minimization of the total heat transfer area provides the lower bounds for these model variables, to solve a cost optimization problem. The minimization of the total exergy loss rate by varying parametrically the available total heat...... transfer area between these bounds was also performed, allowing to see how the optimal distribution of the available total heat transfer area among the system components, as well as the operating conditions (stream temperature, pressure, composition, and mass flow rate) and heat loads, vary qualitatively...

  8. Effects of transfer of embryos independently cultured in essential and sequential culture media on pregnancy rates in assisted reproduction cycles.

    Science.gov (United States)

    Geber, Selmo; Bossi, Renata; Guimarães, Fernando; Valle, Marcello; Sampaio, Marcos

    2012-10-01

    Several culture media are available to be used in ART. However it is uncertain whether embryos would preferably benefit from one type of medium or the association of different media. We performed this study to evaluate the impact of simultaneous transfer of embryos independently cultured in two distinct culture media, on pregnancy outcome. A total of 722 couples who underwent infertility treatment were sequentially allocated into three groups: those who had half of the embryos individually cultured in MEM and the other half cultured in sequential media (MEM + Seq Group) (n = 243); those who had all embryos cultured only in sequential medium (Seq Group) (n = 239); and those who had all embryos cultured only in MEM (MEM Group) (n = 240). The pregnancy rate was higher in the MEM + Seq group (51.8 %) than the Seq group (36.7 %) (p < 0.001). However the pregnancy rate observed in the MEM group was similar to the others (44.2 %). When a logistic regression test was applied it demonstrated that the number of transferred embryos did not interfere in the pregnancy rates. Our results suggests that offering different culture conditions for sibling embryos with subsequent transfer of embryos that were kept in distinct culture media, might increase pregnancy rates in assisted reproduction cycles.

  9. Frozen-Thawed Embryo Transfer Cycles Have a Lower Incidence of Ectopic Pregnancy Compared With Fresh Embryo Transfer Cycles.

    Science.gov (United States)

    Zhang, Xinyu; Ma, Caihong; Wu, Zhangxin; Tao, Liyuan; Li, Rong; Liu, Ping; Qiao, Jie

    2017-01-01

    To evaluate the risk of ectopic pregnancy of embryo transfer. A retrospective cohort study on the incidence of ectopic pregnancy in fresh and frozen-thawed embryo transfer cycles from January 1 st , 2010, to January 1 st , 2015. Infertile women undergoing frozen-thawed transfer cycles or fresh transfer cycles. In-vitro fertilization, fresh embryo transfer, frozen-thawed embryo transfer, ectopic pregnancy. Ectopic pregnancy rate and clinical pregnancy rate. A total of 69 756 in vitro fertilization-embryo transfer cycles from 2010 to 2015 were analyzed, including 45 960 (65.9%) fresh and 23 796 (34.1%) frozen-thawed embryo transfer cycles. The clinical pregnancy rate per embryo transfer was slightly lower in fresh embryo transfer cycles compared with frozen-thawed embryo transfer cycles (40.8% vs 43.1%, P cycles, blastocyst transfer shows a significantly lower incidence of ectopic pregnancy (0.8% vs 1.8%, P = .002) in comparison with day 3 cleavage embryo transfer. The risk of ectopic pregnancy is lower in frozen-thawed embryo transfer cycles than fresh embryo transfer cycles, and blastocyst transfer could further decrease the ectopic pregnancy rate in frozen-thawed embryo transfer cycles.

  10. Interferometric study on the mass transfer in cryogenic distillation under magnetic field

    Science.gov (United States)

    Bao, S. R.; Zhang, R. P.; Y Rong, Y.; Zhi, X. Q.; Qiu, L. M.

    2017-12-01

    Cryogenic distillation has long been used for the mass production of industrial gases because of its features of high efficiency, high purity, and capability to produce noble gases. It is of great theoretical and practical significance to explore methods to improve the mass transfer efficiency in cryogenic distillation. The negative correlation between the susceptibility of paramagnetic oxygen and temperature provides a new possibility of comprehensive utilization of boiling point and susceptibility differences in cryogenic distillation. Starting from this concept, we proposed a novel distillation intensifying method by using gradient magnetic field, in which the magnetic forces enhance the transport of the oxygen molecules to the liquid phase in the distillation. In this study, a cryogenic testbed was designed and fabricated to study the diffusion between oxygen and nitrogen under magnetic field. A Mach-Zehnder interferometer was used to visualize the concentration distribution during the diffusion process. The mass transfer characteristics with and without magnetic field, in the chamber filled with the magnetized medium, were systematically studied. The concentration redistribution of oxygen was observed, and the stable stratified diffusion between liquid oxygen and nitrogen was prolonged by the non-uniform magnetic field. The experimental results show that the magnetic field can efficiently influence the mass transfer in cryogenic distillation, which can provide a new mechanism for the optimization of air separation process.

  11. Oxygen transfer properties and dimensions of red blood cells in high-altitude camelids, dromedary camel and goat.

    Science.gov (United States)

    Yamaguchi, K; Jürgens, K D; Bartels, H; Piiper, J

    1987-01-01

    To estimate the advantage of the small red blood cells (RBC) of high-altitude camelids for O2 transfer, the kinetics of O2 uptake into and release from the RBC obtained from llama, vicuña and alpaca were investigated at 37 degrees C with a stopped-flow technique. O2 transfer conductance of RBC (G) was estimated from the rate of O2 saturation change and the corresponding O2 pressure difference between medium and hemoglobin. For comparison, O2 kinetics for the RBC of a low-altitude camelid (dromedary camel) and the pygmy goat were determined and previously measured values for human RBC were used. O2 transfer of RBC was found to be strongly influenced by extracellular diffusion, except with O2 release into dithionite solutions of sufficiently high concentration (greater than 30 mM). The G values measured in these 'standard' conditions, Gst (in mmol X min-1 X Torr-1 X (ml RBC)-1) were: high-altitude camelids, 0.58 (averaged for llama, alpaca and vicuña since there were no significant interspecific differences); camel 0.42; goat, 0.42; man, 0.39. The differences can in part be attributed to expected effects of the size and shape of the RBC (volume, surface area, mean thickness), as well as to the intracellular O2 diffusivity which depends on the concentration of cellular hemoglobin. The high Gst of RBC of high-altitude camelids may be considered to enhance O2 transfer in lungs and tissues. But the O2 transfer conductance of blood, theta, equal to Gst multiplied by hematocrit (in mmol X min-1 X Torr-1 X (ml blood)-1), was only slightly higher as compared to other species: 0.20 (llama, alpaca, vicuña), 0.14 (camel), 0.18 (goat), 0.17 (man).

  12. A protocol for adult somatic cell nuclear transfer in medaka fish (Oryzias latipes) with a high rate of viable clone formation.

    Science.gov (United States)

    Bubenshchikova, Ekaterina; Kaftanovskaya, Elena; Adachi, Tomoko; Hashimoto, Hisashi; Kinoshita, Masato; Wakamatsu, Yuko

    2013-12-01

    Previously, we successfully generated fully grown, cloned medaka (the Japanese rice fish, Oryzias latipes) using donor nuclei from primary culture cells of adult caudal fin tissue and nonenucleated recipient eggs that were heat shock-treated to induce diploidization of the nuclei. However, the mechanism of clone formation using this method is unknown, and the rate of adult clone formation is not high enough for studies in basic and applied sciences. To gain insight into the mechanism and increase the success rate of this method of clone formation, we tested two distinct nuclear transfer protocols. In one protocol, the timing of transfer of donor nuclei was changed, and in the other, the size of the donor cells was changed; each protocol was based on our original methodology. Ultimately, we obtained an unexpectedly high rate of adult clone formation using the protocol that differed with respect to the timing of donor nuclei transfer. Specifically, 17% of the transplants that developed to the blastula stage ultimately developed into adult clones. The success rate with this method was 13 times higher than that obtained using the original method. Analyses focusing on the reasons for this high success rate of clone formation will help to elucidate the mechanism of clone formation that occurs with this method.

  13. Estimating of gas transfer velocity using triple isotopes of dissolved oxygen.

    Digital Repository Service at National Institute of Oceanography (India)

    Sarma, V.V.S.S.; Abe, O.; Honda, M.; Saino, T.

    variations in oxygen isotopes are found to be higher than the direct estimations at low wind speed (<5 m s sup(-1)) and lower at high wind speeds (>13 m s sup(-1)) and showed significant spatial variability. The method presented here can be used to derive...

  14. Oxygen transport in waterlogged soils, Part II. Diffusion coefficients

    International Nuclear Information System (INIS)

    Obando Moncayo, F.H.

    2004-01-01

    Several equations are available for Oxygen Transport in Waterlogged Soils and have been used for soils and plants. All of them are some form of first Fick's law as given by dQ = - DA(dc/dx)/dt. This equation illustrates some important aspects of aeration in waterlogged soils; first, D is a property of the medium and the gas, and is affected by temperature T. Likewise, the amount of diffusing substance dQ in dt is a direct function of the cross sectional area A and inversely proportional to the distance x. In fact, increasing the water content of air-dry soil, drastically decreases A and creates a further resistance for the flow of oxygen through water films around root plants, soil micro organisms and soil aggregates. The solid phase is also limiting the cross-section of surface of the free gaseous diffusion and the length and tortuosity of diffusion path in soil. In most of cases, soil gas porosity and tortuosity of soil voids are expressed in the equations of diffusion as a broad 'diffusion coefficient' (apparent coefficient diffusion). The process of soil respiration is complicated, involves many parameters, and is difficult to realistically quantify. With regard to the oxygen supply, it is convenient to distinguish macro and micro models, and hence, the flux of oxygen is assumed to have two steps. The first step is related to oxygen diffusion from the atmosphere and the air-filled porosity. The second step is related to the oxygen diffusion through water-films in and around plant roots, soil micro organisms and aggregates. Because of these models we obtain coefficients of macro or micro diffusion, rates of macro or micro diffusion, etc. In the macro diffusion process oxygen is transferred in the soil profile, mainly from the soil surface to a certain depth of the root zone, while micro diffusion deals with the flux over very short distances. Both processes, macro and micro diffusion are highly influenced by soil water content. Of course, if water is added to

  15. The effect of rumen content transfer on rate of bacteria and protozoa growth

    International Nuclear Information System (INIS)

    Suharyono; M Winugroho; Y Widiati; S Marijati

    1998-01-01

    The aims the experiment wants to know the benefit of rate of microbial protein in rumen content and to complete the information that isolates is useful for ruminant animals feed. The result indicated that buffaloes from East Nusa Tenggara is the best when they are used as donor rumen transfer making isolate. When rumen of ongole cattle generation was mixed in rumen content of buffaloes from East Nusa Tenggara and incubated 48 h, the rate of bacteria cell growth is better than rate of protozoa cell growth comparing to the other animals. The values are 30.99 mg/h/100 ml and 24.92 mg.h/100 ml respectively. The results of isolate selection in 48 h incubation indicated that treatment F is the best. The results rates of bacteria cell growth and rate of protozoa's cell growth are 26.96 mg/h/100 ml and 2.53 mg/h/100 respectively. The result of in vitro study indicated that pH and ammonia concentration support the rate of bacteria cell growth and do not cause the toxicity of microbes and animal . The rate of bacteria cell growth on D treatment is significant to A,B, and C treatments. The values are 21.44 mg/h/100 ml. 7.99; 13.13; and 13.38 mg/h/100 ml respectively. The result rates of protozoa's cell growth tends lower than rates of bacteria cell. The overall conclusion is a lower or a higher rate of microorganism cell growth depends on the environment condition. (author)

  16. Wine evolution and spatial distribution of oxygen during storage in high-density polyethylene tanks.

    Science.gov (United States)

    del Alamo-Sanza, María; Laurie, V Felipe; Nevares, Ignacio

    2015-04-01

    Porous plastic tanks are permeable to oxygen due to the nature of the polymers with which they are manufactured. In the wine industry, these types of tanks are used mainly for storing wine surpluses. Lately, their use in combination with oak pieces has also been proposed as an alternative to mimic traditional barrel ageing. In this study, the spatial distribution of dissolved oxygen in a wine-like model solution, and the oxygen transfer rate (OTR) of high-density polyethylene tanks (HDPE), was analysed by means of a non-invasive opto-luminescence detector. Also, the chemical and sensory evolution of red wine, treated with oak pieces, and stored in HDPE tanks was examined and compared against traditional oak barrel ageing. The average OTR calculated for these tanks was within the commonly accepted amounts reported for new barrels. With regards to wine evolution, a number of compositional and sensory differences were observed between the wines aged in oak barrels and those stored in HDPE tanks with oak barrel alternatives. The use of HDPE tanks in combination with oak wood alternatives is a viable alternative too for ageing wine. © 2014 Society of Chemical Industry.

  17. A survey of the reaction rate constants for the thermal dissociation and recombination of nitrogen and oxygen

    Science.gov (United States)

    Marraffa, Lionel; Dulikravich, George S.; Keeney, Timothy C.; Deiwert, George S.

    1988-01-01

    The objective of the present report is to survey the various values of forward and backward reaction rate constants used by investigators in the field of high-temperature (T greater than 2000 K) gas reactions involving nitrogen and oxygen only. The objective is to find those values that correlate well so that they can be used for the studies of hypersonic flow and supersonic combustion with reasonable confidence. Relatively good agreement among these various values is observed for temperatures lower than 10,000 K.

  18. An iterative regularization method in estimating the transient heat-transfer rate on the surface of the insulation layer of a double circular pipe

    International Nuclear Information System (INIS)

    Chen, W.-L.; Yang, Y.-C.

    2009-01-01

    In this study, a conjugate gradient method based inverse algorithm is applied to estimate the unknown space- and time-dependent heat-transfer rate on the surface of the insulation layer of a double circular pipe heat exchanger using temperature measurements. It is assumed that no prior information is available on the functional form of the unknown heat-transfer rate; hence the procedure is classified as the function estimation in inverse calculation. The temperature data obtained from the direct problem are used to simulate the temperature measurements. The accuracy of the inverse analysis is examined by using simulated exact and inexact temperature measurements. Results show that an excellent estimation on the space- and time-dependent heat-transfer rate can be obtained for the test case considered in this study.

  19. Enhancing Activity for the Oxygen Evolution Reaction

    DEFF Research Database (Denmark)

    Frydendal, Rasmus; Busch, Michael; Halck, Niels Bendtsen

    2014-01-01

    Electrochemical production of hydrogen, facilitated in electrolyzers, holds great promise for energy storage and solar fuel production. A bottleneck in the process is the catalysis of the oxygen evolution reaction, involving the transfer of four electrons. The challenge is that the binding energies...... of all reaction intermediates cannot be optimized individually. However, experimental investigations have shown that drastic improvements can be realized for manganese and cobalt-based oxides if gold is added to the surface or used as substrate. We propose an explanation for these enhancements based...... that the oxygen evolution reaction overpotential decreases by 100–300 mV for manganese oxides and 100 mV for cobalt oxides....

  20. Oxygen consumption by hydrazine in long sample lines

    International Nuclear Information System (INIS)

    Chi, Lisheng; Turner, Carl-W.

    2012-09-01

    In nuclear power plants secondary side system dissolved oxygen concentration is a strictly controlled chemistry parameter intended to minimize corrosion and fouling of steam cycle components. Low dissolved oxygen concentration is maintained by a combination of mechanical de-aeration and chemical reaction. The dissolved oxygen concentration in feedwater is monitored by sampling systems to ensure it remains within station specification during operation. The sample lines in a nuclear power plant's sampling system can be from 5 to nearly 200 meters in length, resulting in sample residence times between the take-off point to the analyzer from a few seconds to several minutes, depending on the flow rate and the length of the sample line. For many chemical parameters the residence time is of no concern. For measurements of dissolved oxygen and hydrazine in the secondary coolant, however, for residence times longer than one minute, it is uncertain whether the sample is representative of conditions in the secondary coolant, especially for samples taken from locations where the temperature is well over 100 deg. C. To address this concern, a series of tests were conducted under both warm-up and power operation conditions, respectively, to investigate the effect of temperature, residence time, sample line length, surface area, hydrazine-to-oxygen ratio, and the concentrations of dissolved oxygen and hydrazine on the consumption of oxygen by hydrazine. The test results revealed that dissolved oxygen measurements in CANDU plants are underestimated to various degrees, depending on the sampling system operating conditions. Two distinct types of behaviours are observed for the oxygen removal rate: 1) the percentage removal of dissolved oxygen is invariant with time during the tests, and increases with increasing residence time in the test section, when the reaction between hydrazine and oxygen is better described by a homogenous reaction mechanism, and 2) the percentage oxygen

  1. Oxygen consumption and mortality rate of mice after X radiation under the influence of magnetic fields

    International Nuclear Information System (INIS)

    Rekbi, M.

    1984-01-01

    In this work it was studied whether an influence on the oxygen use was to be expected as a result of a magnetic pulsating field. This could not be determined. An increased effect of the magnetic field with respect to the reduction of the mortality rate was, however, to be observed. Thereby the influence of similar constant and pulsating fields was discussed from various perspectives. The question of the biological effect mechanism of the magnetic field (main issue of the influence of the magnetic field during or after the irradiation) can only be answered by further comprehensive investigations. (orig./MG) [de

  2. Singlet oxygen-mediated damage to proteins and its consequences

    DEFF Research Database (Denmark)

    Davies, Michael Jonathan

    2003-01-01

    by the transfer of energy to ground state (triplet) molecular oxygen by either protein-bound, or other, chromophores. Singlet oxygen can also be generated by a range of other enzymatic and non-enzymatic reactions including processes mediated by heme proteins, lipoxygenases, and activated leukocytes, as well...... the absorption of UV radiation by the protein, or bound chromophore groups, thereby generating excited states (singlet or triplets) or radicals via photo-ionisation. The second major process involves indirect oxidation of the protein via the formation and subsequent reactions of singlet oxygen generated...... as radical termination reactions. This paper reviews the data available on singlet oxygen-mediated protein oxidation and concentrates primarily on the mechanisms by which this excited state species brings about changes to both the side-chains and backbone of amino acids, peptides, and proteins. Recent work...

  3. Determination of Erosion/Corrosion Rates in Hanford Tank Farms Radioactive Waste Transfer System Pipelines

    International Nuclear Information System (INIS)

    Washenfelder, D. J.; Girardot, C. L.; Wilson, E. R.; Page, J. A.; Engeman, J. K.; Gunter, J. R.; Johnson, J. M.; Baide, D. G.; Cooke, G. A.; Larson, J. D.; Castleberry, J. L.; Boomer, K. D.

    2015-01-01

    The twenty-eight double-shell underground radioactive waste storage tanks at the U. S. Department of Energy's Hanford Site near Richland, WA are interconnected by the Waste Transfer System network of buried steel encased pipelines and pipe jumpers in below-grade pits. The pipeline material is stainless steel or carbon steel in 51 mm to 152 mm (2 in. to 6 in.) sizes. The pipelines carry slurries ranging up to 20 volume percent solids and supernatants with less than one volume percent solids at velocities necessary to prevent settling. The pipelines, installed between 1976 and 2011, were originally intended to last until the 2028 completion of the double-shell tank storage mission. The mission has been subsequently extended. In 2010 the Tank Operating Contractor began a systematic evaluation of the Waste Transfer System pipeline conditions applying guidelines from API 579-1/ASME FFS-1 (2007), Fitness-For-Service. Between 2010 and 2014 Fitness-for-Service examinations of the Waste Transfer System pipeline materials, sizes, and components were completed. In parallel, waste throughput histories were prepared allowing side-by-side pipeline wall thinning rate comparisons between carbon and stainless steel, slurries and supernatants and throughput volumes. The work showed that for transfer volumes up to 6.1E+05 m"3 (161 million gallons), the highest throughput of any pipeline segment examined, there has been no detectable wall thinning in either stainless or carbon steel pipeline material regardless of waste fluid characteristics or throughput. The paper describes the field and laboratory evaluation methods used for the Fitness-for-Service examinations, the results of the examinations, and the data reduction methodologies used to support Hanford Waste Transfer System pipeline wall thinning conclusions.

  4. Determination of Erosion/Corrosion Rates in Hanford Tank Farms Radioactive Waste Transfer System Pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Washenfelder, D. J.; Girardot, C. L.; Wilson, E. R.; Page, J. A.; Engeman, J. K.; Gunter, J. R.; Johnson, J. M.; Baide, D. G.; Cooke, G. A.; Larson, J. D.; Castleberry, J. L.; Boomer, K. D.

    2015-11-05

    The twenty-eight double-shell underground radioactive waste storage tanks at the U. S. Department of Energy’s Hanford Site near Richland, WA are interconnected by the Waste Transfer System network of buried steel encased pipelines and pipe jumpers in below-grade pits. The pipeline material is stainless steel or carbon steel in 51 mm to 152 mm (2 in. to 6 in.) sizes. The pipelines carry slurries ranging up to 20 volume percent solids and supernatants with less than one volume percent solids at velocities necessary to prevent settling. The pipelines, installed between 1976 and 2011, were originally intended to last until the 2028 completion of the double-shell tank storage mission. The mission has been subsequently extended. In 2010 the Tank Operating Contractor began a systematic evaluation of the Waste Transfer System pipeline conditions applying guidelines from API 579-1/ASME FFS-1 (2007), Fitness-For-Service. Between 2010 and 2014 Fitness-for-Service examinations of the Waste Transfer System pipeline materials, sizes, and components were completed. In parallel, waste throughput histories were prepared allowing side-by-side pipeline wall thinning rate comparisons between carbon and stainless steel, slurries and supernatants and throughput volumes. The work showed that for transfer volumes up to 6.1E+05 m3 (161 million gallons), the highest throughput of any pipeline segment examined, there has been no detectable wall thinning in either stainless or carbon steel pipeline material regardless of waste fluid characteristics or throughput. The paper describes the field and laboratory evaluation methods used for the Fitness-for-Service examinations, the results of the examinations, and the data reduction methodologies used to support Hanford Waste Transfer System pipeline wall thinning conclusions.

  5. Oxygen binding properties, capillary densities and heart weights in high altitude camelids.

    Science.gov (United States)

    Jürgens, K D; Pietschmann, M; Yamaguchi, K; Kleinschmidt, T

    1988-01-01

    The oxygen binding properties of the blood of the camelid species vicuna, llama, alpaca and dromedary camel were measured and evaluated with respect to interspecific differences. The highest blood oxygen affinity, not only among camelids but of all mammals investigated so far, was found in the vicuna (P50 = 17.6 Torr compared to 20.3-21.6 Torr in the other species). Low hematocrits (23-34%) and small red blood cells (21-30 microns 3) are common features of all camelids, but the lowest values are found in the Lama species. Capillary densities were determined in heart and soleus muscle of vicuna and llama. Again, the vicuna shows exceptional values (3720 cap/mm2 on average in the heart) for a mammal of this body size. Finally, heart weight as percent of body weight is higher in the vicuna (0.7-0.9%) than in the other camelids studied (0.5-0.7%). The possibility that these parameters, measured in New World tylopodes at sea level, are not likely to change considerably with transfer to high altitude, is discussed. In the vicuna, a unique combination of the following features seems to be responsible for an outstanding physical capability at high altitude: saturation of blood with oxygen in the lung is favored by a high blood oxygen affinity, oxygen supply being facilitated by low diffusion distances in the muscle tissue. Loading, as well as unloading, of oxygen is improved by a relatively high oxygen transfer conductance of the red blood cells, which is due to their small size and which compensates the negative effect of a low hematocrit on the oxygen conductance of blood.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Determination of in vitro oxygen consumption rates for tumor cells

    International Nuclear Information System (INIS)

    Cardenas-Navia, L.I.; Moeller, B.J.; Kirkpatrick, J.P.; Laursen, T.A.; Dewhirst, M.W.

    2003-01-01

    To determine pO 2 at the surface of a monolayer of confluent HCT 116 cells, and to then determine consumption rate in vitro by examining the pO 2 profile in media above the cells. Materials and Methods: A recessed-tip polarographic oxygen microelectrode (diameter ∼10μm) was used to measure pO 2 profiles of media above a confluent monolayer of HCT 116 human colon adenocarcinoma cells in a T25 flask exposed to a 95% air, 5% CO 2 mixture. A two-dimensional finite element analysis of the diffusion equation was used to fit the data, thereby extracting a steady-state O 2 consumption rate. The diffusion equation was solved for zeroth and first-order expressions. No-flux boundary conditions were imposed on its bottom and side boundaries and experimental data was used for boundary conditions at the gas-media boundary. All flasks show an O 2 gradient in the media, with a mean (SE) media layer of 1677 (147) μm and a mean pO 2 at the cell layer/media interface of 44 (8) mm Hg (n=9). pO 2 gradient over the entire media layer is 630 (90) mm Hg/cm, equivalent to a consumption rate of 6.3 x 10 -4 (9.0 x 10 -5 ) mm Hg/s. The mean values for the zeroth and first order rate constants are 8.1 x 10 -9 (1.3 x 10 -9 ) g mol O 2 /cm 3 s and 1.0 x 10 3 (0.46 x 10 3 ) /s, respectively. Control experiments in flasks containing no cells show slight gradients in pO 2 of 38 (12) mm Hg/cm, resulting from some O 2 diffusion through the flask into the surrounding water bath. An addition of 10 -3 M NaCN to the media results in a dramatic increase in pO 2 at the cell layer, consistent with a shut-down in respiration. Under normal cell culture conditions there is an O 2 gradient present in the media of cull culture systems, resulting in physiologic O 2 concentrations at the cell layer, despite the non-physiologic O 2 concentration of the gas mixture to which the cell culture system is exposed. This significant (p -6 ) O 2 gradient in the media of cell culture systems is a result of cell O 2

  7. Influence of inlet velocity of air and solid particle feed rate on holdup mass and heat transfer characteristics in cyclone heat exchanger

    International Nuclear Information System (INIS)

    Mothilal, T.; Pitchandi, K.

    2015-01-01

    Present work elaborates the effect of inlet velocity of air and solid particle feed rate on holdup mass and heat transfer characteristics in a cyclone heat exchanger. The RNG k-ε turbulence model was adopted for modeling high turbulence flow and Discrete phase model (DPM) to track solid particles in a cyclone heat exchanger by ANSYS FLUENT software. The effect of inlet air velocity (5 to 25 m/s) and inlet solid particle feed rate of (0.2 to 2.5 g/s) at different particle diameter (300 to 500 μm) on holdup mass and heat transfer rate in cyclone heat exchanger was studied at air inlet temperature of 473 K. Results show that holdup mass and heat transfer rate increase with increase in inlet air velocity and inlet solid particle feed rate. Influence of solid particle feed rate on holdup mass has more significance. Experimental setup was built for high efficiency cyclone. Good agreement was found between experimental and simulation pressure drop. Empirical correlation was derived for dimensionless holdup mass and Nusselt number based on CFD data by regression technique. Correlation predicts dimensional holdup mass with +5% to -8% errors of experimental data and Nusselt number with +9% to -3%

  8. Influence of inlet velocity of air and solid particle feed rate on holdup mass and heat transfer characteristics in cyclone heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Mothilal, T. [T. J. S. Engineering College, Gummidipoond (India); Pitchandi, K. [Sri Venkateswara College of Engineering, Sriperumbudur (India)

    2015-10-15

    Present work elaborates the effect of inlet velocity of air and solid particle feed rate on holdup mass and heat transfer characteristics in a cyclone heat exchanger. The RNG k-ε turbulence model was adopted for modeling high turbulence flow and Discrete phase model (DPM) to track solid particles in a cyclone heat exchanger by ANSYS FLUENT software. The effect of inlet air velocity (5 to 25 m/s) and inlet solid particle feed rate of (0.2 to 2.5 g/s) at different particle diameter (300 to 500 μm) on holdup mass and heat transfer rate in cyclone heat exchanger was studied at air inlet temperature of 473 K. Results show that holdup mass and heat transfer rate increase with increase in inlet air velocity and inlet solid particle feed rate. Influence of solid particle feed rate on holdup mass has more significance. Experimental setup was built for high efficiency cyclone. Good agreement was found between experimental and simulation pressure drop. Empirical correlation was derived for dimensionless holdup mass and Nusselt number based on CFD data by regression technique. Correlation predicts dimensional holdup mass with +5% to -8% errors of experimental data and Nusselt number with +9% to -3%.

  9. Single-embryo transfer versus multiple-embryo transfer.

    Science.gov (United States)

    Gerris, Jan

    2009-01-01

    Despite the progress made in assisted reproductive technology, live birth rates remain disappointingly low. Multiple-embryo transfer has been an accepted practice with which to increase the success rate. This has led to a higher incidence of multiple-order births compared with natural conception, which not only increase the risk of mortality and morbidity to both mother and children but are also associated with social and economic consequences. Elective single-embryo transfer (eSET) was developed in an effort to increase singleton pregnancies in assisted reproduction. Studies comparing eSET with multiple-embryo transfer highlight the benefit of this approach and suggest that, with careful patient selection and the transfer of good-quality embryos, the risk of a multiple-order pregnancy can be reduced without significantly decreasing live birth rates. Although the use of eSET has gradually increased in clinical practice, its acceptance has been limited by factors such as availability of funding and awareness of the procedure. An open discussion of eSET is warranted in an effort to enable a broader understanding by physicians and patients of the merits of this approach. Ultimately, eSET may provide a more cost-effective, potentially safer approach to patients undergoing assisted reproduction technology.

  10. Characterization and modelling of the heat transfers in a pilot-scale reactor during composting under forced aeration

    International Nuclear Information System (INIS)

    Guardia, A. de; Petiot, C.; Benoist, J.C.; Druilhe, C.

    2012-01-01

    The paper focused on the modelling of the heat transfers during composting in a pilot-scale reactor under forced aeration. The model took into account the heat production and the transfers by evaporation, convection between material and gas crossing the material, conduction and surface convection between gas and material in bottom and upper parts of the reactor. The model was adjusted thanks to the measurements practised during fifteen composting experiments in which five organic wastes were, each, composted under three constant aeration rates. Heat production was considered proportional to oxygen consumption rate and the enthalpy per mole oxygen consumed was assumed constant. The convective heat transfer coefficients were determined on basis of the continuous measurements of the temperatures of both the lid and the bottom part of the reactor. The model allowed a satisfying prediction of the temperature of the composting material. In most cases, the mean absolute discard between the experimental and the simulated temperatures was inferior to 2.5 °C and the peaks of temperature occurred with less than 8 h delay. For the half of the experiments the temperature discard between the simulated peak and the experimental one was inferior to 5 °C. On basis of the calculation of a stoichiometric production of water through oxidation of the biodegradable organic matter, the simulation of water going out from material as vapour also allowed a rather satisfying prediction of the mass of water in final mixture. The influence of the aeration rate on every type of heat loss was characterized. Finally, the model was used to evaluate the impacts on material temperature caused by the change of the insulation thickness, the ambient temperature, take the lid away, the increase or the decrease of the mass of waste to compost.

  11. Photoprotection and triplet energy transfer in higher plants: the role of electronic and nuclear fluctuations.

    Science.gov (United States)

    Cupellini, Lorenzo; Jurinovich, Sandro; Prandi, Ingrid G; Caprasecca, Stefano; Mennucci, Benedetta

    2016-04-28

    Photosynthetic organisms employ several photoprotection strategies to avoid damage due to the excess energy in high light conditions. Among these, quenching of triplet chlorophylls by neighboring carotenoids (Cars) is fundamental in preventing the formation of singlet oxygen. Cars are able to accept the triplets from chlorophylls by triplet energy transfer (TET). We have here studied TET rates in CP29, a minor light-harvesting complex (LHC) of the Photosystem II in plants. A fully atomistic strategy combining classical molecular dynamics of the LHC in its natural environment with a hybrid time-dependent density functional theory/polarizable MM description of the TET is used. We find that the structural fluctuations of the pigment-protein complex can largely enhance the transfer rates with respect to those predicted using the crystal structure, reducing the triplet quenching times in the subnanosecond scale. These findings add a new perspective for the interpretation of the photoprotection function and its relation with structural motions of the LHC.

  12. Mechanism of singlet oxygen deactivation in an electric discharge oxygen – iodine laser

    Energy Technology Data Exchange (ETDEWEB)

    Azyazov, V N; Mikheyev, P A; Torbin, A P [Samara Branch of the P.N. Lebedev Physical Institute, Russian Academy of Sciences, Samara (Russian Federation); Pershin, A A [S.P. Korolev Samara State Aerospace University, Samara (Russian Federation); Heaven, M C [Emory University, Atlanta, GA, 30322 (United States)

    2014-12-31

    We have determined the influence of the reaction of molecular singlet oxygen with a vibrationally excited ozone molecule O{sub 2}(a {sup 1}Δ) + O{sub 3}(ν) → 2O{sub 2} + O on the removal rate of O{sub 2}(a {sup 1}Δ) in an electric-discharge-driven oxygen – iodine laser. This reaction has been shown to be a major channel of O{sub 2}(a {sup 1}Δ) loss at the output of an electric-discharge singlet oxygen generator. In addition, it can also contribute significantly to the loss of O{sub 2}(a {sup 1}Δ) in the discharge region of the generator. (lasers)

  13. Design a Wearable Device for Blood Oxygen Concentration and Temporal Heart Beat Rate

    Science.gov (United States)

    Myint, Cho Zin; Barsoum, Nader; Ing, Wong Kiing

    2010-06-01

    The wireless network technology is increasingly important in healthcare as a result of the aging population and the tendency to acquire chronic disease such as heart attack, high blood pressure amongst the elderly. A wireless sensor network system that has the capability to monitor physiological sign such as SpO2 (Saturation of Arterial Oxygen) and heart beat rate in real-time from the human's body is highlighted in this study. This research is to design a prototype sensor network hardware, which consists of microcontroller PIC18F series and transceiver unit. The sensor is corporate into a wearable body sensor network which is small in size and easy to use. The sensor allows a non invasive, real time method to provide information regarding the health of the body. This enables a more efficient and economical means for managing the health care of the population.

  14. Oxygen Switching of the Epitaxial Graphene-Metal Interaction

    DEFF Research Database (Denmark)

    Larciprete, Rosanna; Ulstrup, Søren; Lacovig, Paolo

    2012-01-01

    as on clean Ir(111), giving only a slightly higher oxygen coverage. Upon lifting, the C 1s signal shows a downshift in binding energy, due to the charge transfer to graphene from the oxygen-covered metal surface. Moreover, the characteristic spectral signatures of the graphenesubstrate interaction...... in the valence band are removed, and the spectrum of strongly hole-doped, quasi free-standing graphene with a single Dirac cone around the K point is observed. The oxygen can be deintercalated by annealing, and this process takes place at around T = 600 K, in a rather abrupt way. A small amount of carbon atoms...... demonstrate that oxygen intercalation is an efficient method for fully decoupling an extended layer of graphene from a metal substrate, such as Ir(111). They pave the way for the fundamental research on graphene, where extended, ordered layers of free-standing graphene are important and, due to the stability...

  15. Assessment of external heat transfer coefficient during oocyte vitrification in liquid and slush nitrogen using numerical simulations to determine cooling rates.

    Science.gov (United States)

    Santos, M V; Sansinena, M; Zaritzky, N; Chirife, J

    2012-01-01

    In oocyte vitrification, plunging directly into liquid nitrogen favor film boiling and strong nitrogen vaporization. A survey of literature values of heat transfer coefficients (h) for film boiling of small metal objects with different geometries plunged in liquid nitrogen revealed values between 125 to 1000 W per per square m per K. These h values were used in a numerical simulation of cooling rates of two oocyte vitrification devices (open-pulled straw and Cryotop), plunged in liquid and slush nitrogen conditions. Heat conduction equation with convective boundary condition was considered a linear mathematical problem and was solved using the finite element method applying the variational formulation. COMSOL Multiphysics was used to simulate the cooling process of the systems. Predicted cooling rates for OPS and Cryotop when cooled at -196 degree C (liquid nitrogen) or -207 degree C (average for slush nitrogen) for heat transfer coefficients estimated to be representative of film boiling, indicated lowering the cooling temperature produces only a maximum 10 percent increase in cooling rates; confirming the main benefit of plunging in slush over liquid nitrogen does not arise from their temperature difference. Numerical simulations also demonstrated that a hypothetical four-fold increase in the cooling rate of vitrification devices when plunging in slush nitrogen would be explained by an increase in heat transfer coefficient. This improvement in heat transfer (i.e., high cooling rates) in slush nitrogen is attributed to less or null film boiling when a sample is placed in slush (mixture of liquid and solid nitrogen) because it first melts the solid nitrogen before causing the liquid to boil and form a film.

  16. On the Reaction of 1,3-Diphenylisobenzofuran and (2-Iodoethynyl(phenyliodonium Triflate. A Unique Case of Oxygen Transfer from the Diels-Alder Adduct to the Diene

    Directory of Open Access Journals (Sweden)

    Mercè Font-Bardia

    2012-07-01

    Full Text Available Reaction of 1,3-diphenylisobenzofuran (DPIBF with 2-(iodoethynyl(phenyl-iodonium triflate at room temperature gave the expected Diels-Alder adduct, but using an excess of DFIBF (2 equiv. and performing the reaction at 55 °C or heating at this temperature during the concentration stage, the initial orange solution or product mixture became dark brown and the products 1,2-phenylene-1,2-bis(phenylmethanone and 2-(3-iodo-1,4-diphenylnaphthyl(phenyliodonium triflate were obtained, which suggests an oxygen transfer between DPIBF and the initial adduct.

  17. The Effect of Intercourse around Embryo Transfer on Pregnancy Rate in Assisted Reproductive Technology Cycles

    Directory of Open Access Journals (Sweden)

    Nasim Tabibnejad

    2009-01-01

    Full Text Available Background: Implantation failure is the most important cause of recurrent in vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI failure. Several reports suggest that intercourse during theperitransfer period might improve pregnancy rates. This study is designed to determine whetherintercourse during the peritransfer period will improve pregnancy and implantation rates in patientsundergoing IVF or ICSI.Materials and Methods: In a randomized control trial study, 390 women with at least five yearsinfertility were evaluated. In the study group, 195 patients had intercourse at least once 12 hours afterembryo transfer. Implantation and clinical pregnancy rates were compared with 195 patients in thecontrol group who had no intercourse for the entire assisted reproductive technology (ART cycle.Results: Implantation rate in the study group was 6.5% in comparison with 5.5% for the controlgroup. Clinical pregnancy rates were not significantly higher in study patients when compared tothe control group (14.2% and 11.7% respectively.Conclusion: The results showed that intercourse during the peritransfer period can not increasepregnancy outcome.

  18. Fast removal of oxygen from biological systems

    International Nuclear Information System (INIS)

    Dewey, D.L.; Michael, B.D.

    1975-01-01

    Reference is made to the fact that if radiation is given at a high enough dose rate, the biological effect of oxygen is less than at low dose rates. Examples are given of 'break-point' experiments showing the effect. It is stated that the rapid removal of a substance by radiation is not confined to oxygen: the only criterion required to demonstrate the effect is that the chemical causes a measurable sensitization or protection at a concentration small enough so that it can be depleted at a relatively low dose of radiation. Sufficient confidence is now placed in the effect that it can be used the other way round; that is, to measure the position of the break-point and from this measurement determine the oxygen concentration at the target site at the instant before irradiation. Examples are given of the use of the high dose rate technique for measuring the oxygen concentration inside mammalian cells (Chinese hamster cells). The effects of partial pressures of inert gases, and the effect of elevated gas pressures, are discussed. (U.K.)

  19. Proton conductive Pt-Co nanoparticles anchoring on citric acid functionalized graphene for efficient oxygen reduction reaction

    Science.gov (United States)

    Zhao, Yige; Liu, Jingjun; Wu, Yijun; Wang, Feng

    2017-08-01

    Designing highly efficient electro-catalysts for the oxygen reduction reaction (ORR) has been regarded as a demanding task in the development of renewable energy sources. However, little attention has been paid on improving Pt-based catalysts by promoting proton transfer from the electrolyte solutions to the catalyst layer at the cathode. Herein, we design proton conductive Pt-Co alloy nanoparticles anchoring on citric acid functionalized graphene (Pt-Co/CA-G) catalysts for efficient ORR. The facile modification approach for graphene can introduce oxygenated functional groups on the graphene surface to promote proton transfer as well as keeping the high electron conductivity without destroying the graphene original structure. The electrochemical results show that the Pt-Co/CA-G catalyst exhibits more excellent ORR activity and stability than the commercial Pt/C catalyst, which can be attributed to its improved proton transfer ability. The fast proton transfer comes from the hydrogen-bonding networks formed by the interaction between the oxygenated functional groups and water molecules. This work provides not only a novel and simple approach to modify graphene but also an effective strategy to improve Pt-based catalysts for the ORR.

  20. Study on fine particles influence on sodium sulfite and oxygen gas-liquid reaction

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Shuchang; Zhao, Bo; Wang, Shujuan; Zhuo, Yuqun; Chen, Changhe [Tsinghua Univ., Beijing (China). Dept. of Thermal Engineering; Ministry of Education, Beijing (China). Key Lab. for Thermal Science and Power Engineering

    2013-07-01

    Wet limestone scrubbing is the most common flue gas desulfurization process for control of sulfur dioxide emissions from the combustion of fossil fuels, and forced oxidation is a key part of the reaction. During the reaction which controlled by gas-liquid mass transfer, the fine particles' characteristic, size, solid loading and temperature has a great influence on gas-liquid mass transfer. In the present work is to explain how these factors influence the reaction between Na{sub 2}SO{sub 3} and O{sub 2} and find the best react conditions through experiment. The oxidation rate was experimentally studied by contacting pure oxygen with a sodium sulfite solution with active carbon particle in a stirred tank, and the system pressure drop was record by the pressure sensor. At the beginning the pressure is about 215 kPa and Na{sub 2}SO{sub 3} is about 0.5mol/L. The temperature is 40, 50, 60, 70, 80 C. Compare the results of no particles included, we can conclude that high temperature, proper loadings and smaller particles resulting in higher mass transfer coefficients k{sub L}.