WorldWideScience

Sample records for oxygen species generated

  1. Magnetic nanoparticles: reactive oxygen species generation and potential therapeutic applications

    Science.gov (United States)

    Mai, Trang; Hilt, J. Zach

    2017-07-01

    Magnetic nanoparticles have been demonstrated to produce reactive oxygen species (ROS), which play a major role in various cellular pathways, via Fenton and Haber-Weiss reaction. ROS act as a double-edged sword inside the body. At normal conditions, the generation of ROS is in balance with their elimination by scavenger systems, and they can promote cell proliferation as well as differentiation. However, at an increased level, they can cause damages to protein, lead to cellular apoptosis, and contribute to many diseases including cancer. Many recent studies proposed a variety of strategies to either suppress toxicity of ROS generation or exploit the elevated ROS levels for cancer therapy.

  2. Mechanisms of nanotoxicity: Generation of reactive oxygen species

    Directory of Open Access Journals (Sweden)

    Peter P. Fu

    2014-03-01

    Full Text Available Nanotechnology is a rapidly developing field in the 21st century, and the commercial use of nanomaterials for novel applications is increasing exponentially. To date, the scientific basis for the cytotoxicity and genotoxicity of most manufactured nanomaterials are not understood. The mechanisms underlying the toxicity of nanomaterials have recently been studied intensively. An important mechanism of nanotoxicity is the generation of reactive oxygen species (ROS. Overproduction of ROS can induce oxidative stress, resulting in cells failing to maintain normal physiological redox-regulated functions. This in turn leads to DNA damage, unregulated cell signaling, change in cell motility, cytotoxicity, apoptosis, and cancer initiation. There are critical determinants that can affect the generation of ROS. These critical determinants, discussed briefly here, include: size, shape, particle surface, surface positive charges, surface-containing groups, particle dissolution, metal ion release from nanometals and nanometal oxides, UV light activation, aggregation, mode of interaction with cells, inflammation, and pH of the medium.

  3. Photosensitizing Nanoparticles and The Modulation of Reactive Oxygen Species generation

    Directory of Open Access Journals (Sweden)

    Dayane Batista Tada

    2015-05-01

    Full Text Available The association of PhotoSensitizer (PS molecules with nanoparticles (NPs forming photosensitizing NPs, has emerged as a therapeutic strategy to improve PS tumor targeting, to protect PS from deactivation reactions and to enhance both PS solubility and circulation time. Since association with NPs usually alters PS photophysical and photochemical properties, photosensitizing NPs are an important tool to modulate reactive oxygen species (ROS generation. Depending on the design of the photosensitizing NP, i.e., type of PS, the NP material and the method applied for the construction of the photosensitizing NP, the deactivation routes of the excited state can be controlled, allowing the generation of either singlet oxygen or other ROS. Controlling the type of generated ROS is desirable not only in biomedical applications, as in Photodynamic Therapy where the type of ROS affects therapeutic efficiency, but also in other technological relevant fields like energy conversion, where the electron and energy transfer processes are necessary to increase the efficiency of photoconversion cells. The current review highlights some of the recent developments in the design of Photosensitizing NPs aimed at modulating the primary photochemical events after light absorption.

  4. Generation of Reactive Oxygen Species from Silicon Nanowires

    Directory of Open Access Journals (Sweden)

    Stephen S. Leonard

    2014-01-01

    Full Text Available Processing and synthesis of purified nanomaterials of diverse composition, size, and properties is an evolving process. Studies have demonstrated that some nanomaterials have potential toxic effects and have led to toxicity research focusing on nanotoxicology. About two million workers will be employed in the field of nanotechnology over the next 10 years. The unknown effects of nanomaterials create a need for research and development of techniques to identify possible toxicity. Through a cooperative effort between National Institute for Occupational Safety and Health and IBM to address possible occupational exposures, silicon-based nanowires (SiNWs were obtained for our study. These SiNWs are anisotropic filamentary crystals of silicon, synthesized by the vapor-liquid-solid method and used in bio-sensors, gas sensors, and field effect transistors. Reactive oxygen species (ROS can be generated when organisms are exposed to a material causing cellular responses, such as lipid peroxidation, H 2 O 2 production, and DNA damage. SiNWs were assessed using three different in vitro environments (H 2 O 2 , RAW 264.7 cells, and rat alveolar macrophages for ROS generation and possible toxicity identification. We used electron spin resonance, analysis of lipid peroxidation, measurement of H 2 O 2 production, and the comet assay to assess generation of ROS from SiNW and define possible mechanisms. Our results demonstrate that SiNWs do not appear to be significant generators of free radicals.

  5. Kinetics of oxygen species in an electrically driven singlet oxygen generator

    Science.gov (United States)

    Azyazov, V. N.; Torbin, A. P.; Pershin, A. A.; Mikheyev, P. A.; Heaven, M. C.

    2015-12-01

    The kinetics of oxygen species in the gaseous medium of a discharge singlet oxygen generator has been revisited. Vibrationally excited ozone O3(υ) formed in O + O2 recombination is thought to be a significant agent in the deactivation of singlet oxygen O2(a1Δ), oxygen atom removal and ozone formation. It is shown that the process O3(υ ⩾ 2) + O2(a1Δ) → 2O2 + O is the main O2(a1Δ) deactivation channel in the post-discharge zone. If no measures are taken to decrease the oxygen atom concentration, the contribution of this process to the overall O2(a1Δ) removal is significant, even in the discharge zone. A simplified model for the kinetics of vibrationally excited ozone is proposed. Calculations based on this model yield results that are in good agreement with the experimental data.

  6. Mechanisms of nanotoxicity: generation of reactive oxygen species.

    Science.gov (United States)

    Fu, Peter P; Xia, Qingsu; Hwang, Huey-Min; Ray, Paresh C; Yu, Hongtao

    2014-03-01

    Nanotechnology is a rapidly developing field in the 21(st) century, and the commercial use of nanomaterials for novel applications is increasing exponentially. To date, the scientific basis for the cytotoxicity and genotoxicity of most manufactured nanomaterials are not understood. The mechanisms underlying the toxicity of nanomaterials have recently been studied intensively. An important mechanism of nanotoxicity is the generation of reactive oxygen species (ROS). Overproduction of ROS can induce oxidative stress, resulting in cells failing to maintain normal physiological redox-regulated functions. This in turn leads to DNA damage, unregulated cell signaling, change in cell motility, cytotoxicity, apoptosis, and cancer initiation. There are critical determinants that can affect the generation of ROS. These critical determinants, discussed briefly here, include: size, shape, particle surface, surface positive charges, surface-containing groups, particle dissolution, metal ion release from nanometals and nanometal oxides, UV light activation, aggregation, mode of interaction with cells, inflammation, and pH of the medium. Copyright © 2014. Published by Elsevier B.V.

  7. Kinetics of oxygen species in an electrically driven singlet oxygen generator

    International Nuclear Information System (INIS)

    Azyazov, V.N.; Torbin, A.P.; Pershin, A.A.; Mikheyev, P.A.; Heaven, M.C.

    2015-01-01

    Highlights: • Vibrational excitation of O_3 increases the rate constant for O_3 + O_2(a) → 2O_2(X) + O. • Vibrationally excited O_3 is produced by the O + O_2(X) + M → O_3 + M reaction. • Ozone concentrations are impacted by the reactions of vibrationally excited O_3. • Relevant to ozone concentrations in oxygen discharges and the upper atmosphere. - Abstract: The kinetics of oxygen species in the gaseous medium of a discharge singlet oxygen generator has been revisited. Vibrationally excited ozone O_3(υ) formed in O + O_2 recombination is thought to be a significant agent in the deactivation of singlet oxygen O_2(a"1Δ), oxygen atom removal and ozone formation. It is shown that the process O_3(υ ⩾ 2) + O_2(a"1Δ) → 2O_2 + O is the main O_2(a"1Δ) deactivation channel in the post-discharge zone. If no measures are taken to decrease the oxygen atom concentration, the contribution of this process to the overall O_2(a"1Δ) removal is significant, even in the discharge zone. A simplified model for the kinetics of vibrationally excited ozone is proposed. Calculations based on this model yield results that are in good agreement with the experimental data.

  8. Kinetics of oxygen species in an electrically driven singlet oxygen generator

    Energy Technology Data Exchange (ETDEWEB)

    Azyazov, V.N., E-mail: azyazov@fian.smr.ru [Samara State Aerospace University, 443086 (Russian Federation); Lebedev Physical Institute of RAS, Samara 443011 (Russian Federation); Torbin, A.P.; Pershin, A.A. [Samara State Aerospace University, 443086 (Russian Federation); Lebedev Physical Institute of RAS, Samara 443011 (Russian Federation); Mikheyev, P.A., E-mail: mikheyev@fian.smr.ru [Samara State Aerospace University, 443086 (Russian Federation); Lebedev Physical Institute of RAS, Samara 443011 (Russian Federation); Heaven, M.C., E-mail: mheaven@emory.edu [Emory University, Atlanta, GA 30322 (United States)

    2015-12-16

    Highlights: • Vibrational excitation of O{sub 3} increases the rate constant for O{sub 3} + O{sub 2}(a) → 2O{sub 2}(X) + O. • Vibrationally excited O{sub 3} is produced by the O + O{sub 2}(X) + M → O{sub 3} + M reaction. • Ozone concentrations are impacted by the reactions of vibrationally excited O{sub 3}. • Relevant to ozone concentrations in oxygen discharges and the upper atmosphere. - Abstract: The kinetics of oxygen species in the gaseous medium of a discharge singlet oxygen generator has been revisited. Vibrationally excited ozone O{sub 3}(υ) formed in O + O{sub 2} recombination is thought to be a significant agent in the deactivation of singlet oxygen O{sub 2}(a{sup 1}Δ), oxygen atom removal and ozone formation. It is shown that the process O{sub 3}(υ ⩾ 2) + O{sub 2}(a{sup 1}Δ) → 2O{sub 2} + O is the main O{sub 2}(a{sup 1}Δ) deactivation channel in the post-discharge zone. If no measures are taken to decrease the oxygen atom concentration, the contribution of this process to the overall O{sub 2}(a{sup 1}Δ) removal is significant, even in the discharge zone. A simplified model for the kinetics of vibrationally excited ozone is proposed. Calculations based on this model yield results that are in good agreement with the experimental data.

  9. Endogenous mechanisms of reactive oxygen species (ROS generation

    Directory of Open Access Journals (Sweden)

    Agata Sarniak

    2016-11-01

    Full Text Available The main cellular source of reactive oxygen species (ROS is mitochondrial respiratory chain and active NADPH responsible for “respiratory burst” of phagocytes. Whatsmore ROS are produced in endoplasmic reticulum, peroxisomes, with the participation of xanthine and endothelial oxidase and during autoxidation process of small molecules. Mitochondrial respiratory chain is the main cellular source of ROS. It is considered that in aerobic organisms ROS are mainly formed during normal oxygen metabolism, as byproducts of oxidative phosphorylation, during the synthesis of ATP. The intermembranous phagocyte enzyme – activated NADPH oxidase, responsible for the “respiratory burst” of phagocytes, which is another source of ROS, plays an important role in defense of organism against infections.The aim of this article is to resume actuall knowledge about structure and function of the mitochondrial electron transport chain in which ROS are the byproducts and about NADPH oxidase as well as the function of each of its components in the “respiratory burst” of phagocytes.

  10. Photofunctional Co-Cr Alloy Generating Reactive Oxygen Species for Photodynamic Applications

    Directory of Open Access Journals (Sweden)

    Kang-Kyun Wang

    2013-01-01

    Full Text Available We report the fabrication of photofunctional Co-Cr alloy plate that is prepared by a simple modification process for photodynamic application. Photoinduced functionality is provided by the photosensitizer of hematoporphyrin (Hp that initially generates reactive oxygen species (ROS such as superoxide anion radical and singlet oxygen. The photosensitizer with carboxyl group was chemically bonded to the surface of the Co-Cr alloy plate by esterification reaction. Microstructure and elemental composition of the Co-Cr alloy plate were checked with scanning electron microscopy (SEM and energy dispersive X-ray spectrometer (EDS. Fabrication of the photofunctionality of the Co-Cr alloy plate was confirmed with X-ray photoelectron spectroscopy (XPS, reflectance UV-Vis absorption, and emission spectroscopy. Reactive oxygen generation from the photofunctional Co-Cr alloy plate was confirmed by using the decomposition reaction of 1,3-diphenylisobenzofuran (DPBF. The results suggest that the immobilized photosensitizer molecules on the surface of Co-Cr alloy plate still possess their optical and functional properties including reactive oxygen generation. To open the possibility for its application as a photodynamic material to biological system, the fabricated photofunctional Co-Cr alloy is applied to the decomposition of smooth muscle cells.

  11. Manipulation of environmental oxygen modifies reactive oxygen and nitrogen species generation during myogenesis

    Directory of Open Access Journals (Sweden)

    Rachel McCormick

    2016-08-01

    Data demonstrate that satellite cell proliferation increased when cells were grown in 6% O2 compared with 20% O2. Myoblasts grown in 20% O2 showed an increase in DCF fluorescence and DHE oxidation compared with myoblasts grown at 6% O2. Myotubes grown in 20% O2 also showed an increase in DCF and DAF-FM fluorescence and DHE oxidation compared with myotubes grown in 6% O2. The catalase and MnSOD contents were also increased in myoblasts and myotubes that were maintained in 20% O2 compared with myoblasts and myotubes grown in 6% O2. These data indicate that intracellular RONS activities in myoblasts and myotubes at rest are influenced by changes in environmental oxygen concentration and that the increased ROS may influence myogenesis in a negative manner.

  12. Cytotoxicity of InP/ZnS quantum dots related to reactive oxygen species generation

    Science.gov (United States)

    Chibli, Hicham; Carlini, Lina; Park, Soonhyang; Dimitrijevic, Nada M.; Nadeau, Jay L.

    2011-06-01

    Indium phosphide (InP) quantum dots (QDs) have emerged as a presumably less hazardous alternative to cadmium-based particles, but their cytotoxicity has not been well examined. Although their constituent elements are of very low toxicity to cells in culture, they nonetheless exhibit phototoxicity related to generation of reactive oxygen species by excited electrons and/or holes interacting with water and molecular oxygen. Using spin-trap electron paramagnetic resonance (EPR) spectroscopy and reporter assays, we find a considerable amount of superoxide and a small amount of hydroxyl radical formed under visible illumination of biocompatible InP QDs with a single ZnS shell, comparable to what is seen with CdTe. A double thickness shell reduces the reactive oxygen species concentration approximately two-fold. Survival assays in five cell lines correspondingly indicate a distinct reduction in toxicity with the double-shell InP QDs. Toxicity varies significantly across cell lines according to the efficiency of uptake, being overall significantly less than what is seen with CdTe or CdSe/ZnS. This indicates that InP QDs are a useful alternative to cadmium-containing QDs, while remaining capable of electron-transfer processes that may be undesirable or which may be exploited for photosensitization applications.

  13. Cytotoxicity of InP/ZnS quantum dots related to reactive oxygen species generation.

    Energy Technology Data Exchange (ETDEWEB)

    Chibli, H.; Carlini, L.; Park, S.; Dimitrijevic, N. M.; Nadeau, J. L. (Center for Nanoscale Materials); ( CSE); (McGill Univ.)

    2011-01-01

    Indium phosphide (InP) quantum dots (QDs) have emerged as a presumably less hazardous alternative to cadmium-based particles, but their cytotoxicity has not been well examined. Although their constituent elements are of very low toxicity to cells in culture, they nonetheless exhibit phototoxicity related to generation of reactive oxygen species by excited electrons and/or holes interacting with water and molecular oxygen. Using spin-trap electron paramagnetic resonance (EPR) spectroscopy and reporter assays, we find a considerable amount of superoxide and a small amount of hydroxyl radical formed under visible illumination of biocompatible InP QDs with a single ZnS shell, comparable to what is seen with CdTe. A double thickness shell reduces the reactive oxygen species concentration approximately two-fold. Survival assays in five cell lines correspondingly indicate a distinct reduction in toxicity with the double-shell InP QDs. Toxicity varies significantly across cell lines according to the efficiency of uptake, being overall significantly less than what is seen with CdTe or CdSe/ZnS. This indicates that InP QDs are a useful alternative to cadmium-containing QDs, while remaining capable of electron-transfer processes that may be undesirable or which may be exploited for photosensitization applications.

  14. Electron Spin Resonance Spectroscopy for Studying the Generation and Scavenging of Reactive Oxygen Species by Nanomaterials

    Science.gov (United States)

    Yin, Jun-Jie; Zhao, Baozhong; Xia, Qingsu; Fu, Peter P.

    2013-09-01

    One fundamental mechanism widely described for nanotoxicity involves oxidative damage due to generation of free radicals and other reactive oxygen species. Indeed, the ability of nanoscale materials to facilitate the transfer of electrons, and thereby promote oxidative damage or in some instances provide antioxidant protection, may be a fundamental property of these materials. Any assessment of a nanoscale material's safety must therefore consider the potential for toxicity arising from oxidative damage. Therefore, rapid and predictive methods are needed to assess oxidative damage elicited by nanoscale materials. The use of electron spin resonance (ESR) to study free radical related bioactivity of nanomaterials has several advantages for free radical determination and identification. Specifically it can directly assess antioxidant quenching or prooxidant generation of relevant free radicals and reactive oxygen species. In this chapter, we have reported some nonclassical behaviors of the electron spin relaxation properties of unpaired electrons in different fullerenes and the investigation of anti/prooxidant activity by various types of nanomaterials using ESR. In addition, we have reviewed the mechanisms of free radical formation photosensitized by different nanomaterials. This chapter also included the use of spin labels, spin traps and ESR oximetry to systematically examine the enzymatic mimetic activities of nanomaterials.

  15. Photoluminescent Gold Nanoclusters in Cancer Cells: Cellular Uptake, Toxicity, and Generation of Reactive Oxygen Species.

    Science.gov (United States)

    Matulionyte, Marija; Dapkute, Dominyka; Budenaite, Laima; Jarockyte, Greta; Rotomskis, Ricardas

    2017-02-10

    In recent years, photoluminescent gold nanoclusters have attracted considerable interest in both fundamental biomedical research and practical applications. Due to their ultrasmall size, unique molecule-like optical properties, and facile synthesis gold nanoclusters have been considered very promising photoluminescent agents for biosensing, bioimaging, and targeted therapy. Yet, interaction of such ultra-small nanoclusters with cells and other biological objects remains poorly understood. Therefore, the assessment of the biocompatibility and potential toxicity of gold nanoclusters is of major importance before their clinical application. In this study, the cellular uptake, cytotoxicity, and intracellular generation of reactive oxygen species (ROS) of bovine serum albumin-encapsulated (BSA-Au NCs) and 2-(N-morpholino) ethanesulfonic acid (MES)capped photoluminescent gold nanoclusters (Au-MES NCs) were investigated. The results showed that BSA-Au NCs accumulate in cells in a similar manner as BSA alone, indicating an endocytotic uptake mechanism while ultrasmall Au-MES NCs were distributed homogeneously throughout the whole cell volume including cell nucleus. The cytotoxicity of BSA-Au NCs was negligible, demonstrating good biocompatibility of such BSA-protected Au NCs. In contrast, possibly due to ultrasmall size and thin coating layer, Au-MES NCs exhibited exposure time-dependent high cytotoxicity and higher reactivity which led to highly increased generation of reactive oxygen species. The results demonstrate the importance of the coating layer to biocompatibility and toxicity of ultrasmall photoluminescent gold nanoclusters.

  16. Photoluminescent Gold Nanoclusters in Cancer Cells: Cellular Uptake, Toxicity, and Generation of Reactive Oxygen Species

    Directory of Open Access Journals (Sweden)

    Marija Matulionyte

    2017-02-01

    Full Text Available In recent years, photoluminescent gold nanoclusters have attracted considerable interest in both fundamental biomedical research and practical applications. Due to their ultrasmall size, unique molecule-like optical properties, and facile synthesis gold nanoclusters have been considered very promising photoluminescent agents for biosensing, bioimaging, and targeted therapy. Yet, interaction of such ultra-small nanoclusters with cells and other biological objects remains poorly understood. Therefore, the assessment of the biocompatibility and potential toxicity of gold nanoclusters is of major importance before their clinical application. In this study, the cellular uptake, cytotoxicity, and intracellular generation of reactive oxygen species (ROS of bovine serum albumin-encapsulated (BSA-Au NCs and 2-(N-morpholino ethanesulfonic acid (MEScapped photoluminescent gold nanoclusters (Au-MES NCs were investigated. The results showed that BSA-Au NCs accumulate in cells in a similar manner as BSA alone, indicating an endocytotic uptake mechanism while ultrasmall Au-MES NCs were distributed homogeneously throughout the whole cell volume including cell nucleus. The cytotoxicity of BSA-Au NCs was negligible, demonstrating good biocompatibility of such BSA-protected Au NCs. In contrast, possibly due to ultrasmall size and thin coating layer, Au-MES NCs exhibited exposure time-dependent high cytotoxicity and higher reactivity which led to highly increased generation of reactive oxygen species. The results demonstrate the importance of the coating layer to biocompatibility and toxicity of ultrasmall photoluminescent gold nanoclusters.

  17. Controllable generation of reactive oxygen species by femtosecond-laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Wei; He, Hao, E-mail: haohe@tju.edu.cn; Wang, Yintao; Wang, Yisen; Hu, Minglie; Wang, Chingyue [Ultrafast Laser Laboratory, Key Laboratory of Optoelectronic Information Technology (Ministry of Education), College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin (China)

    2014-02-24

    Femtosecond lasers have been advancing Biophotonics research in the past two decades with multiphoton microscopy, microsurgery, and photodynamic therapy. Nevertheless, laser irradiation is identified to bring photodamage to cells via reactive oxygen species (ROS) generation with unclear mechanism. Meanwhile, currently in biological researches, there is no effective method to provide controllable ROS production precisely, which originally is leaked from mitochondria during respiration and plays a key role in a lot of important cellular processes and cellular signaling pathways. In this study, we show the process of how the tightly focused femtosecond-laser induces ROS generation solely in mitochondria at the very beginning and then release to cytosol if the stimulus is intense enough. At certain weak power levels, the laser pulses induce merely moderate Ca{sup 2+} release but this is necessary for the laser to generate ROS in mitochondria. Cellular original ROS are also involved with a small contribution. When the power is above a threshold, ROS are then released to cytosol, indicating photodamage overwhelming cellular repair ability. The mechanisms in those two cases are quite different. Those results clarify parts of the mechanism in laser-induced ROS generation. Hence, it is possible to further this optical scheme to provide controllable ROS generation for ROS-related biological researches including mitochondrial diseases and aging.

  18. Controllable generation of reactive oxygen species by femtosecond-laser irradiation

    Science.gov (United States)

    Yan, Wei; He, Hao; Wang, Yintao; Wang, Yisen; Hu, Minglie; Wang, Chingyue

    2014-02-01

    Femtosecond lasers have been advancing Biophotonics research in the past two decades with multiphoton microscopy, microsurgery, and photodynamic therapy. Nevertheless, laser irradiation is identified to bring photodamage to cells via reactive oxygen species (ROS) generation with unclear mechanism. Meanwhile, currently in biological researches, there is no effective method to provide controllable ROS production precisely, which originally is leaked from mitochondria during respiration and plays a key role in a lot of important cellular processes and cellular signaling pathways. In this study, we show the process of how the tightly focused femtosecond-laser induces ROS generation solely in mitochondria at the very beginning and then release to cytosol if the stimulus is intense enough. At certain weak power levels, the laser pulses induce merely moderate Ca2+ release but this is necessary for the laser to generate ROS in mitochondria. Cellular original ROS are also involved with a small contribution. When the power is above a threshold, ROS are then released to cytosol, indicating photodamage overwhelming cellular repair ability. The mechanisms in those two cases are quite different. Those results clarify parts of the mechanism in laser-induced ROS generation. Hence, it is possible to further this optical scheme to provide controllable ROS generation for ROS-related biological researches including mitochondrial diseases and aging.

  19. Controllable generation of reactive oxygen species by femtosecond-laser irradiation

    International Nuclear Information System (INIS)

    Yan, Wei; He, Hao; Wang, Yintao; Wang, Yisen; Hu, Minglie; Wang, Chingyue

    2014-01-01

    Femtosecond lasers have been advancing Biophotonics research in the past two decades with multiphoton microscopy, microsurgery, and photodynamic therapy. Nevertheless, laser irradiation is identified to bring photodamage to cells via reactive oxygen species (ROS) generation with unclear mechanism. Meanwhile, currently in biological researches, there is no effective method to provide controllable ROS production precisely, which originally is leaked from mitochondria during respiration and plays a key role in a lot of important cellular processes and cellular signaling pathways. In this study, we show the process of how the tightly focused femtosecond-laser induces ROS generation solely in mitochondria at the very beginning and then release to cytosol if the stimulus is intense enough. At certain weak power levels, the laser pulses induce merely moderate Ca 2+ release but this is necessary for the laser to generate ROS in mitochondria. Cellular original ROS are also involved with a small contribution. When the power is above a threshold, ROS are then released to cytosol, indicating photodamage overwhelming cellular repair ability. The mechanisms in those two cases are quite different. Those results clarify parts of the mechanism in laser-induced ROS generation. Hence, it is possible to further this optical scheme to provide controllable ROS generation for ROS-related biological researches including mitochondrial diseases and aging

  20. Hemoglobin fructation promotes heme degradation through the generation of endogenous reactive oxygen species

    Science.gov (United States)

    Goodarzi, M.; Moosavi-Movahedi, A. A.; Habibi-Rezaei, M.; Shourian, M.; Ghourchian, H.; Ahmad, F.; Farhadi, M.; Saboury, A. A.; Sheibani, N.

    2014-09-01

    Protein glycation is a cascade of nonenzymatic reactions between reducing sugars and amino groups of proteins. It is referred to as fructation when the reducing monosaccharide is fructose. Some potential mechanisms have been suggested for the generation of reactive oxygen species (ROS) by protein glycation reactions in the presence of glucose. In this state, glucose autoxidation, ketoamine, and oxidative advance glycation end products (AGEs) formation are considered as major sources of ROS and perhaps heme degradation during hemoglobin glycation. However, whether fructose mediated glycation produces ROS and heme degradation is unknown. Here we report that ROS (H2O2) production occurred during hemoglobin fructation in vitro using chemiluminescence methods. The enhanced heme exposure and degradation were determined using UV-Vis and fluorescence spectrophotometry. Following accumulation of ROS, heme degradation products were accumulated reaching a plateau along with the detected ROS. Thus, fructose may make a significant contribution to the production of ROS, glycation of proteins, and heme degradation during diabetes.

  1. Comparison of stainless and mild steel welding fumes in generation of reactive oxygen species

    Directory of Open Access Journals (Sweden)

    Frazer David

    2010-11-01

    Full Text Available Abstract Background Welding fumes consist of a wide range of complex metal oxide particles which can be deposited in all regions of the respiratory tract. The welding aerosol is not homogeneous and is generated mostly from the electrode/wire. Over 390,000 welders were reported in the U.S. in 2008 while over 1 million full-time welders were working worldwide. Many health effects are presently under investigation from exposure to welding fumes. Welding fume pulmonary effects have been associated with bronchitis, metal fume fever, cancer and functional changes in the lung. Our investigation focused on the generation of free radicals and reactive oxygen species from stainless and mild steel welding fumes generated by a gas metal arc robotic welder. An inhalation exposure chamber located at NIOSH was used to collect the welding fume particles. Results Our results show that hydroxyl radicals (.OH were generated from reactions with H2O2 and after exposure to cells. Catalase reduced the generation of .OH from exposed cells indicating the involvement of H2O2. The welding fume suspension also showed the ability to cause lipid peroxidation, effect O2 consumption, induce H2O2 generation in cells, and cause DNA damage. Conclusion Increase in oxidative damage observed in the cellular exposures correlated well with .OH generation in size and type of welding fumes, indicating the influence of metal type and transition state on radical production as well as associated damage. Our results demonstrate that both types of welding fumes are able to generate ROS and ROS-related damage over a range of particle sizes; however, the stainless steel fumes consistently showed a significantly higher reactivity and radical generation capacity. The chemical composition of the steel had a significant impact on the ROS generation capacity with the stainless steel containing Cr and Ni causing more damage than the mild steel. Our results suggest that welding fumes may cause acute

  2. Generation of reactive oxygen species from porous silicon microparticles in cell culture medium.

    Science.gov (United States)

    Low, Suet Peng; Williams, Keryn A; Canham, Leigh T; Voelcker, Nicolas H

    2010-06-01

    Nanostructured (porous) silicon is a promising biodegradable biomaterial, which is being intensively researched as a tissue engineering scaffold and drug-delivery vehicle. Here, we tested the biocompatibility of non-treated and thermally-oxidized porous silicon particles using an indirect cell viability assay. Initial direct cell culture on porous silicon determined that human lens epithelial cells only poorly adhered to non-treated porous silicon. Using an indirect cell culture assay, we found that non-treated microparticles caused complete cell death, indicating that these particles generated a toxic product in cell culture medium. In contrast, thermally-oxidized microparticles did not reduce cell viability significantly. We found evidence for the generation of reactive oxygen species (ROS) by means of the fluorescent probe 2',7'-dichlorofluorescin. Our results suggest that non-treated porous silicon microparticles produced ROS, which interacted with the components of the cell culture medium, leading to the formation of cytotoxic species. Oxidation of porous silicon microparticles not only mitigated, but also abolished the toxic effects.

  3. Plasmonic photocatalyst-like fluorescent proteins for generating reactive oxygen species

    Science.gov (United States)

    Leem, Jung Woo; Kim, Seong-Ryul; Choi, Kwang-Ho; Kim, Young L.

    2018-03-01

    The recent advances in photocatalysis have opened a variety of new possibilities for energy and biomedical applications. In particular, plasmonic photocatalysis using hybridization of semiconductor materials and metal nanoparticles has recently facilitated the rapid progress in enhancing photocatalytic efficiency under visible or solar light. One critical underlying aspect of photocatalysis is that it generates and releases reactive oxygen species (ROS) as intermediate or final products upon light excitation or activation. Although plasmonic photocatalysis overcomes the limitation of UV irradiation, synthesized metal/semiconductor nanomaterial photocatalysts often bring up biohazardous and environmental issues. In this respect, this review article is centered in identifying natural photosensitizing organic materials that can generate similar types of ROS as those of plasmonic photocatalysis. In particular, we propose the idea of plasmonic photocatalyst-like fluorescent proteins for ROS generation under visible light irradiation. We recapitulate fluorescent proteins that have Type I and Type II photosensitization properties in a comparable manner to plasmonic photocatalysis. Plasmonic photocatalysis and protein photosensitization have not yet been compared systemically in terms of ROS photogeneration under visible light, although the phototoxicity and cytotoxicity of some fluorescent proteins are well recognized. A comprehensive understanding of plasmonic photocatalyst-like fluorescent proteins and their potential advantages will lead us to explore new environmental, biomedical, and defense applications.

  4. Controlled intracellular generation of reactive oxygen species in human mesenchymal stem cells using porphyrin conjugated nanoparticles.

    Science.gov (United States)

    Lavado, Andrea S; Chauhan, Veeren M; Zen, Amer Alhaj; Giuntini, Francesca; Jones, D Rhodri E; Boyle, Ross W; Beeby, Andrew; Chan, Weng C; Aylott, Jonathan W

    2015-09-14

    Nanoparticles capable of generating controlled amounts of intracellular reactive oxygen species (ROS), that advance the study of oxidative stress and cellular communication, were synthesized by functionalizing polyacrylamide nanoparticles with zinc(II) porphyrin photosensitisers. Controlled ROS production was demonstrated in human mesenchymal stem cells (hMSCs) through (1) production of nanoparticles functionalized with varying percentages of Zn(II) porphyrin and (2) modulating the number of doses of excitation light to internalized nanoparticles. hMSCs challenged with nanoparticles functionalized with increasing percentages of Zn(II) porphyrin and high numbers of irradiations of excitation light were found to generate greater amounts of ROS. A novel dye, which is transformed into fluorescent 7-hydroxy-4-trifluoromethyl-coumarin in the presence of hydrogen peroxide, provided an indirect indicator for cumulative ROS production. The mitochondrial membrane potential was monitored to investigate the destructive effect of increased intracellular ROS production. Flow cytometric analysis of nanoparticle treated hMSCs suggested irradiation with excitation light signalled controlled apoptotic cell death, rather than uncontrolled necrotic cell death. Increased intracellular ROS production did not induce phenotypic changes in hMSC subcultures.

  5. Generation of Reactive Oxygen Species via NOXa Is Important for Development and Pathogenicity of Mycosphaerella graminicola.

    Science.gov (United States)

    Choi, Yoon-E; Lee, Changsu; Goodwin, Stephen B

    2016-03-01

    The ascomycete fungus Mycosphaerella graminicola (synonym Zymoseptoria tritici) is an important pathogen of wheat causing economically significant losses. The primary nutritional mode of this fungus is thought to be hemibiotrophic. This pathogenic lifestyle is associated with an early biotrophic stage of nutrient uptake followed by a necrotrophic stage aided possibly by production of a toxin or reactive oxygen species (ROS). In many other fungi, the genes CREA and AREA are important during the biotrophic stage of infection, while the NOXa gene product is important during necrotrophic growth. To test the hypothesis that these genes are important for pathogenicity of M. graminicola, we employed an over-expression strategy for the selected target genes CREA, AREA, and NOXa, which might function as regulators of nutrient acquisition or ROS generation. Increased expressions of CREA, AREA, and NOXa in M. graminicola were confirmed via quantitative real-time PCR and strains were subsequently assayed for pathogenicity. Among them, the NOXa over-expression strain, NO2, resulted in significantly increased virulence. Moreover, instead of the usual filamentous growth, we observed a predominance of yeast-like growth of NO2 which was correlated with ROS production. Our data indicate that ROS generation via NOXa is important to pathogenicity as well as development in M. graminicola.

  6. Curcumin-induced inhibition of cellular reactive oxygen species generation: novel therapeutic implications.

    Science.gov (United States)

    Balasubramanyam, M; Koteswari, A Adaikala; Kumar, R Sampath; Monickaraj, S Finny; Maheswari, J Uma; Mohan, V

    2003-12-01

    There is evidence for increased levels of circulating reactive oxygen species (ROS) in diabetics, as indirectly inferred by the findings of increased lipid peroxidation and decreased antioxidant status. Direct measurements of intracellular generation of ROS using fluorescent dyes also demonstrate an association of oxidative stress with diabetes. Although phenolic compounds attenuate oxidative stress-related tissue damage, there are concerns over toxicity of synthetic phenolic antioxidants and this has considerably stimulated interest in investigating the role of natural phenolics in medicinal applications. Curcumin (the primary active principle in turmeric, Curcuma longa Linn.) has been claimed to represent a potential antioxidant and antiinflammatory agent with phytonutrient and bioprotective properties. However there are lack of molecular studies to demonstrate its cellular action and potential molecular targets. In this study the antioxidant effect of curcumin as a function of changes in cellular ROS generation was tested. Our results clearly demonstrate that curcumin abolished both phorbol-12 myristate-13 acetate (PMA) and thapsigargin-induced ROS generation in cells from control and diabetic subjects. The pattern of these ROS inhibitory effects as a function of dose-dependency suggests that curcumin mechanistically interferes with protein kinase C (PKC) and calcium regulation. Simultaneous measurements of ROS and Ca2+ influx suggest that a rise in cytosolic Ca2+ may be a trigger for increased ROS generation. We suggest that the antioxidant and antiangeogenic actions of curcumin, as a mechanism of inhibition of Ca2+ entry and PKC activity, should be further exploited to develop suitable and novel drugs for the treatment of diabetic retinopathy and other diabetic complications.

  7. PKCα promotes generation of reactive oxygen species via DUOX2 in hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Wang, Jiajun; Shao, Miaomiao; Liu, Min; Peng, Peike; Li, Lili; Wu, Weicheng; Wang, Lan; Duan, Fangfang; Zhang, Mingming; Song, Shushu; Jia, Dongwei; Ruan, Yuanyuan; Gu, Jianxin

    2015-01-01

    Hepatocellular carcinoma (HCC) remains the second leading cause of cancer-related death worldwide, and elevated rates of reactive oxygen species (ROS) have long been considered as a hallmark of almost all types of cancer including HCC. Protein kinase C alpha (PKCα), a serine/threonine kinase among conventional PKC family, is recognized as a major player in signal transduction and tumor progression. Overexpression of PKCα is commonly observed in human HCC and associated with its poor prognosis. However, how PKCα is involved in hepatocellular carcinogenesis remains not fully understood. In this study, we found that among the members of conventional PKC family, PKCα, but not PKCβI or βII, promoted ROS production in HCC cells. PKCα stimulated generation of ROS by up-regulating DUOX2 at post-transcriptional level. Depletion of DUOX2 abrogated PKCα-induced activation of AKT/MAPK pathways as well as cell proliferation, migration and invasion in HCC cells. Moreover, the expression of DUOX2 and PKCα was well positively correlated in both HCC cell lines and patient samples. Collectively, our findings demonstrate that PKCα plays a critical role in HCC development by inducing DUOX2 expression and ROS generation, and propose a strategy to target PKCα/DUOX2 as a potential adjuvant therapy for HCC treatment. - Highlights: • PKCα promotes the generation of ROS in hepatocellular carcinoma. • PKCα induces ROS production by up-regulating DUOX2 at post-transcriptional level. • DUOX2 is required for PKCα-induced AKT/MAPK activation and tumor progression in HCC. • The expression of PKCα is positively correlated with DUOX2 in HCC

  8. PKCα promotes generation of reactive oxygen species via DUOX2 in hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jiajun; Shao, Miaomiao; Liu, Min; Peng, Peike; Li, Lili; Wu, Weicheng; Wang, Lan [Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, 200032 Shanghai (China); Duan, Fangfang [Institute of Biomedical Science, Fudan University, Shanghai (China); Zhang, Mingming; Song, Shushu [Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, 200032 Shanghai (China); Jia, Dongwei, E-mail: jiadongwei@fudan.edu.cn [Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, 200032 Shanghai (China); Ruan, Yuanyuan, E-mail: yuanyuanruan@fudan.edu.cn [Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, 200032 Shanghai (China); Gu, Jianxin [Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, 200032 Shanghai (China); Institute of Biomedical Science, Fudan University, Shanghai (China)

    2015-08-07

    Hepatocellular carcinoma (HCC) remains the second leading cause of cancer-related death worldwide, and elevated rates of reactive oxygen species (ROS) have long been considered as a hallmark of almost all types of cancer including HCC. Protein kinase C alpha (PKCα), a serine/threonine kinase among conventional PKC family, is recognized as a major player in signal transduction and tumor progression. Overexpression of PKCα is commonly observed in human HCC and associated with its poor prognosis. However, how PKCα is involved in hepatocellular carcinogenesis remains not fully understood. In this study, we found that among the members of conventional PKC family, PKCα, but not PKCβI or βII, promoted ROS production in HCC cells. PKCα stimulated generation of ROS by up-regulating DUOX2 at post-transcriptional level. Depletion of DUOX2 abrogated PKCα-induced activation of AKT/MAPK pathways as well as cell proliferation, migration and invasion in HCC cells. Moreover, the expression of DUOX2 and PKCα was well positively correlated in both HCC cell lines and patient samples. Collectively, our findings demonstrate that PKCα plays a critical role in HCC development by inducing DUOX2 expression and ROS generation, and propose a strategy to target PKCα/DUOX2 as a potential adjuvant therapy for HCC treatment. - Highlights: • PKCα promotes the generation of ROS in hepatocellular carcinoma. • PKCα induces ROS production by up-regulating DUOX2 at post-transcriptional level. • DUOX2 is required for PKCα-induced AKT/MAPK activation and tumor progression in HCC. • The expression of PKCα is positively correlated with DUOX2 in HCC.

  9. Controlled intracellular generation of reactive oxygen species in human mesenchymal stem cells using porphyrin conjugated nanoparticles

    Science.gov (United States)

    Lavado, Andrea S.; Chauhan, Veeren M.; Alhaj Zen, Amer; Giuntini, Francesca; Jones, D. Rhodri E.; Boyle, Ross W.; Beeby, Andrew; Chan, Weng C.; Aylott, Jonathan W.

    2015-08-01

    Nanoparticles capable of generating controlled amounts of intracellular reactive oxygen species (ROS), that advance the study of oxidative stress and cellular communication, were synthesized by functionalizing polyacrylamide nanoparticles with zinc(ii) porphyrin photosensitisers. Controlled ROS production was demonstrated in human mesenchymal stem cells (hMSCs) through (1) production of nanoparticles functionalized with varying percentages of Zn(ii) porphyrin and (2) modulating the number of doses of excitation light to internalized nanoparticles. hMSCs challenged with nanoparticles functionalized with increasing percentages of Zn(ii) porphyrin and high numbers of irradiations of excitation light were found to generate greater amounts of ROS. A novel dye, which is transformed into fluorescent 7-hydroxy-4-trifluoromethyl-coumarin in the presence of hydrogen peroxide, provided an indirect indicator for cumulative ROS production. The mitochondrial membrane potential was monitored to investigate the destructive effect of increased intracellular ROS production. Flow cytometric analysis of nanoparticle treated hMSCs suggested irradiation with excitation light signalled controlled apoptotic cell death, rather than uncontrolled necrotic cell death. Increased intracellular ROS production did not induce phenotypic changes in hMSC subcultures.Nanoparticles capable of generating controlled amounts of intracellular reactive oxygen species (ROS), that advance the study of oxidative stress and cellular communication, were synthesized by functionalizing polyacrylamide nanoparticles with zinc(ii) porphyrin photosensitisers. Controlled ROS production was demonstrated in human mesenchymal stem cells (hMSCs) through (1) production of nanoparticles functionalized with varying percentages of Zn(ii) porphyrin and (2) modulating the number of doses of excitation light to internalized nanoparticles. hMSCs challenged with nanoparticles functionalized with increasing percentages of Zn

  10. Light-Emitting Photon-Upconversion Nanoparticles in the Generation of Transdermal Reactive-Oxygen Species.

    Science.gov (United States)

    Prieto, Martin; Rwei, Alina Y; Alejo, Teresa; Wei, Tuo; Lopez-Franco, Maria Teresa; Mendoza, Gracia; Sebastian, Victor; Kohane, Daniel S; Arruebo, Manuel

    2017-12-06

    Common photosensitizers used in photodynamic therapy do not penetrate the skin effectively. In addition, the visible blue and red lights used to excite such photosensitizers have shallow penetration depths through tissue. To overcome these limitations, we have synthesized ultraviolet- and visible-light-emitting, energy-transfer-based upconversion nanoparticles and coencapsulated them inside PLGA-PEG (methoxy poly(ethylene glycol)-b-poly(lactic-co-glycolic acid)) nanoparticles with the photosensitizer protoporphyrin IX. Nd 3+ has been introduced as a sensitizer in the upconversion nanostructure to allow its excitation at 808 nm. The subcytotoxic doses of the hybrid nanoparticles have been evaluated on different cell lines (i.e., fibroblasts, HaCaT, THP-1 monocytic cell line, U251MG (glioblastoma cell line), and mMSCs (murine mesenchymal stem cells). Upon NIR (near infrared)-light excitation, the upconversion nanoparticles emitted UV and VIS light, which consequently activated the generation of reactive-oxygen species (ROS). In addition, after irradiating at 808 nm, the resulting hybrid nanoparticles containing both upconversion nanoparticles and protoporphyrin IX generated 3.4 times more ROS than PLGA-PEG nanoparticles containing just the same dose of protoporphyrin IX. Their photodynamic effect was also assayed on different cell cultures, demonstrating their efficacy in selectively killing treated and irradiated cells. Compared to the topical application of the free photosensitizer, enhanced skin permeation and penetration were observed for the nanoparticulate formulation, using an ex vivo human-skin-permeation experiment. Whereas free protoporphyrin IX remained located at the outer layer of the skin, nanoparticle-encapsulated protoporphyrin IX was able to penetrate through the epidermal layer slightly into the dermis.

  11. Intracellular expression of reactive oxygen species-generating NADPH oxidase NOX4 in normal and cancer thyroid tissues

    NARCIS (Netherlands)

    Weyemi, Urbain; Caillou, Bernard; Talbot, Monique; Ameziane-El-Hassani, Rabii; Lacroix, Ludovic; Lagent-Chevallier, Odile; Al Ghuzlan, Abir; Roos, Dirk; Bidart, Jean-Michel; Virion, Alain; Schlumberger, Martin; Dupuy, Corinne

    2010-01-01

    NADPH oxidase 4 (NOX4) belongs to the NOX family that generates reactive oxygen species (ROS). Function and tissue distribution of NOX4 have not yet been entirely clarified. To date, in the thyroid gland, only DUOX1/2 NOX systems have been described. NOX4 mRNA expression, as shown by real-time PCR,

  12. Atmospheric plasma generates oxygen atoms as oxidizing species in aqueous solutions

    Czech Academy of Sciences Publication Activity Database

    Hefny, M.M.; Pattyn, C.; Lukeš, Petr; Benedikt, J.

    2016-01-01

    Roč. 49, č. 40 (2016), s. 404002 ISSN 0022-3727 R&D Projects: GA MŠk(CZ) LD14080 Grant - others:European Cooperation in Science and Technology(XE) COST TD1208 Institutional support: RVO:61389021 Keywords : atmospheric pressure plasma * transport of reactive species * reactive oxygen species * aqueous phase chemistry * plasma and liquids * phenol aqueous chemistry Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.588, year: 2016 http://iopscience.iop.org/article/10.1088/0022-3727/49/40/404002

  13. Reactive Oxygen Species

    DEFF Research Database (Denmark)

    Franchina, Davide G.; Dostert, Catherine; Brenner, Dirk

    2018-01-01

    T cells are a central component of defenses against pathogens and tumors. Their effector functions are sustained by specific metabolic changes that occur upon activation, and these have been the focus of renewed interest. Energy production inevitably generates unwanted products, namely reactive...... and transcription factors, influencing the outcome of the T cell response. We discuss here how ROS can directly fine-tune metabolism and effector functions of T cells....... oxygen species (ROS), which have long been known to trigger cell death. However, there is now evidence that ROS also act as intracellular signaling molecules both in steady-state and upon antigen recognition. The levels and localization of ROS contribute to the redox modeling of effector proteins...

  14. Impact of plasma jet vacuum ultraviolet radiation on reactive oxygen species generation in bio-relevant liquids

    Energy Technology Data Exchange (ETDEWEB)

    Jablonowski, H.; Hammer, M. U.; Reuter, S. [Center for Innovation Competence plasmatis, Felix-Hausdorff-Str. 2, 17489 Greifswald (Germany); Leibniz Institute for Plasma Science and Technology, INP Greifswald e.V. Felix-Hausdorff-Str. 2, 17489 Greifswald (Germany); Bussiahn, R.; Weltmann, K.-D.; Woedtke, Th. von [Leibniz Institute for Plasma Science and Technology, INP Greifswald e.V. Felix-Hausdorff-Str. 2, 17489 Greifswald (Germany)

    2015-12-15

    Plasma medicine utilizes the combined interaction of plasma produced reactive components. These are reactive atoms, molecules, ions, metastable species, and radiation. Here, ultraviolet (UV, 100–400 nm) and, in particular, vacuum ultraviolet (VUV, 10–200 nm) radiation generated by an atmospheric pressure argon plasma jet were investigated regarding plasma emission, absorption in a humidified atmosphere and in solutions relevant for plasma medicine. The energy absorption was obtained for simple solutions like distilled water (dH{sub 2}O) or ultrapure water and sodium chloride (NaCl) solution as well as for more complex ones, for example, Rosewell Park Memorial Institute (RPMI 1640) cell culture media. As moderate stable reactive oxygen species, hydrogen peroxide (H{sub 2}O{sub 2}) was studied. Highly reactive oxygen radicals, namely, superoxide anion (O{sub 2}{sup •−}) and hydroxyl radicals ({sup •}OH), were investigated by the use of electron paramagnetic resonance spectroscopy. All species amounts were detected for three different treatment cases: Plasma jet generated VUV and UV radiation, plasma jet generated UV radiation without VUV part, and complete plasma jet including all reactive components additionally to VUV and UV radiation. It was found that a considerable amount of radicals are generated by the plasma generated photoemission. From the experiments, estimation on the low hazard potential of plasma generated VUV radiation is discussed.

  15. Aircraft Oxygen Generation

    Science.gov (United States)

    2012-02-01

    An Oxygen Enriched Air System for the AV-8A Harrier (NADC-81198-60).” 70 Horch , T., et. al. “The F-16 Onboard Oxygen Generating System: Performance...Only and Safety Privileged). Horch , T., Miller, R., Bomar, J., Tedor, J., Holden, R., Ikels, K., & Lozano, P. (1983). The F-16 Onboard Oxygen

  16. Generation of reactive oxygen species and charge carriers in plasmonic photocatalytic Au@TiO2 nanostructures with enhanced activity.

    Science.gov (United States)

    He, Weiwei; Cai, Junhui; Jiang, Xiumei; Yin, Jun-Jie; Meng, Qingbo

    2018-06-13

    The combination of semiconductor and plasmonic nanostructures, endowed with high efficiency light harvesting and surface plasmon confinement, has been a promising way for efficient utilization of solar energy. Although the surface plasmon resonance (SPR) assisted photocatalysis has been extensively studied, the photochemical mechanism, e.g. the effect of SPR on the generation of reactive oxygen species and charge carriers, is not well understood. In this study, we take Au@TiO2 nanostructures as a plasmonic photocatalyst to address this critical issue. The Au@TiO2 core/shell nanostructures with tunable SPR property were synthesized by the templating method with post annealing thermal treatment. It was found that Au@TiO2 nanostructures exhibit enhanced photocatalytic activity in either sunlight or visible light (λ > 420 nm). Electron spin resonance spectroscopy with spin trapping and spin labeling was used to investigate the enhancing effect of Au@TiO2 on the photo-induced reactive oxygen species and charge carriers. The formation of Au@TiO2 core/shell nanostructures resulted in a dramatic increase in light-induced generation of hydroxyl radicals, singlet oxygen, holes and electrons, as compared with TiO2 alone. This enhancement under visible light (λ > 420 nm) irradiation may be dominated by SPR induced local electrical field enhancement, while the enhancement under sunlight irradiation is dominated by the higher electron transfer from TiO2 to Au. These results unveiled that the superior photocatalytic activity of Au@TiO2 nanostructures correlates with enhanced generation of reactive oxygen species and charge carriers.

  17. Salinomycin induces autophagy in colon and breast cancer cells with concomitant generation of reactive oxygen species.

    Directory of Open Access Journals (Sweden)

    Berlinda Verdoodt

    Full Text Available BACKGROUND: Salinomycin is a polyether ionophore antibiotic that has recently been shown to induce cell death in human cancer cells displaying multiple mechanisms of drug resistance. The underlying mechanisms leading to cell death after salinomycin treatment have not been well characterized. We therefore investigated the role of salinomycin in caspase dependent and independent cell death in colon cancer (SW480, SW620, RKO and breast cancer cell lines (MCF-7, T47D, MDA-MB-453. METHODOLOGY/PRINCIPAL FINDINGS: We detected features of apoptosis in all cell lines tested, but the executor caspases 3 and 7 were only strongly activated in RKO and MDA-MB-453 cells. MCF-7 and SW620 cells instead presented features of autophagy such as cytoplasmic vacuolization and LC3 processing. Caspase proficient cell lines activated autophagy at lower salinomycin concentrations and before the onset of caspase activation. Salinomycin also led to the formation of reactive oxygen species (ROS eliciting JNK activation and induction of the transcription factor JUN. Salinomycin mediated cell death could be partially inhibited by the free radical scavenger N-acetyl-cysteine, implicating ROS formation in the mechanism of salinomycin toxicity. CONCLUSIONS: Our data indicate that, in addition to its previously reported induction of caspase dependent apoptosis, the initiation of autophagy is an important and early effect of salinomycin in tumor cells.

  18. Inorganic Polyphosphates Regulate Hexokinase Activity and Reactive Oxygen Species Generation in Mitochondria of Rhipicephalus (Boophilus) microplus Embryo

    Science.gov (United States)

    Fraga, Amanda; Moraes, Jorge; da Silva, José Roberto; Costa, Evenilton P.; Menezes, Jackson; da Silva Vaz Jr, Itabajara; Logullo, Carlos; da Fonseca, Rodrigo Nunes; Campos, Eldo

    2013-01-01

    The physiological roles of polyphosphates (poly P) recently found in arthropod mitochondria remain obscure. Here, the possible involvement of poly P with reactive oxygen species generation in mitochondria of Rhipicephalus microplus embryos was investigated. Mitochondrial hexokinase and scavenger antioxidant enzymes, such as superoxide dismutase, catalase, and glutathione reductase were assayed during embryogenesis of R. microplus. The influence of poly P3 and poly P15 were analyzed during the period of higher enzymatic activity during embryogenesis. Both poly Ps inhibited hexokinase activity by up to 90% and, interestingly, the mitochondrial membrane exopolyphosphatase activity was stimulated by the hexokinase reaction product, glucose-6-phosphate. Poly P increased hydrogen peroxide generation in mitochondria in a situation where mitochondrial hexokinase is also active. The superoxide dismutase, catalase and glutathione reductase activities were higher during embryo cellularization, at the end of embryogenesis and during embryo segmentation, respectively. All of the enzymes were stimulated by poly P3. However, superoxide dismutase was not affected by poly P15, catalase activity was stimulated only at high concentrations and glutathione reductase was the only enzyme that was stimulated in the same way by both poly Ps. Altogether, our results indicate that inorganic polyphosphate and mitochondrial membrane exopolyphosphatase regulation can be correlated with the generation of reactive oxygen species in the mitochondria of R. microplus embryos. PMID:23983617

  19. Sites of reactive oxygen species generation by mitochondria oxidizing different substrates

    Directory of Open Access Journals (Sweden)

    Casey L. Quinlan

    2013-01-01

    Full Text Available Mitochondrial radical production is important in redox signaling, aging and disease, but the relative contributions of different production sites are poorly understood. We analyzed the rates of superoxide/H2O2 production from different defined sites in rat skeletal muscle mitochondria oxidizing a variety of conventional substrates in the absence of added inhibitors: succinate; glycerol 3-phosphate; palmitoylcarnitine plus carnitine; or glutamate plus malate. In all cases, the sum of the estimated rates accounted fully for the measured overall rates. There were two striking results. First, the overall rates differed by an order of magnitude between substrates. Second, the relative contribution of each site was very different with different substrates. During succinate oxidation, most of the superoxide production was from the site of quinone reduction in complex I (site IQ, with small contributions from the flavin site in complex I (site IF and the quinol oxidation site in complex III (site IIIQo. However, with glutamate plus malate as substrate, site IQ made little or no contribution, and production was shared between site IF, site IIIQo and 2-oxoglutarate dehydrogenase. With palmitoylcarnitine as substrate, the flavin site in complex II (site IIF was a major contributor (together with sites IF and IIIQo, and with glycerol 3-phosphate as substrate, five different sites all contributed, including glycerol 3-phosphate dehydrogenase. Thus, the relative and absolute contributions of specific sites to the production of reactive oxygen species in isolated mitochondria depend very strongly on the substrates being oxidized, and the same is likely true in cells and in vivo.

  20. Testosterone improves erectile function through inhibition of reactive oxygen species generation in castrated rats

    Directory of Open Access Journals (Sweden)

    Rui Li

    2016-05-01

    Full Text Available Testosterone is overwhelmingly important in regulating erectile physiology. However, the associated molecular mechanisms are poorly understood. The purpose of this study was to explore the effects and mechanisms of testosterone in erectile dysfunction (ED in castrated rats. Forty male Sprague-Dawley rats were randomized to four groups (control, sham-operated, castration and castration-with-testosterone-replacement. Reactive oxygen species (ROS production was measured by dihydroethidium (DHE staining. Erectile function was assessed by the recording of intracavernous pressure (ICP and mean arterial blood pressure (MAP. Protein expression levels were examined by western blotting. We found that castration reduced erectile function and that testosterone restored it. Nitric oxide synthase (NOS activity was decrease in the castrated rats, and testosterone administration attenuated this decrease (each p < 0.05. The testosterone, dihydrotestosterone, cyclic guanosine monophosphate (cGMP and cyclic adenosine monophosphate (cAMP concentrations were lower in the castrated rats, and testosterone restored these levels (each p < 0.05. Furthermore, the cyclooxygenase-2 (COX-2 and prostacyclin synthase (PTGIS expression levels and phospho-endothelial nitric oxide synthase (p-eNOS, Ser1177/endothelial nitric oxide synthase (eNOS ratio were reduced in the castrated rats compared with the controls (each p < 0.05. In addition, the p40phox and p67phox expression levels were increased in the castrated rats, and testosterone reversed these changes (each p < 0.05. Overall, our results demonstrate that testosterone ameliorates ED after castration by reducing ROS production and increasing the activity of the eNOS/cGMP and COX-2/PTGIS/cAMP signaling pathways.

  1. Lysophosphatidic acid induces reactive oxygen species generation by activating protein kinase C in PC-3 human prostate cancer cells

    International Nuclear Information System (INIS)

    Lin, Chu-Cheng; Lin, Chuan-En; Lin, Yueh-Chien; Ju, Tsai-Kai; Huang, Yuan-Li; Lee, Ming-Shyue; Chen, Jiun-Hong; Lee, Hsinyu

    2013-01-01

    Highlights: •LPA induces ROS generation through LPA 1 and LPA 3 . •LPA induces ROS generation by activating PLC. •PKCζ mediates LPA-induced ROS generation. -- Abstract: Prostate cancer is one of the most frequently diagnosed cancers in males, and PC-3 is a cell model popularly used for investigating the behavior of late stage prostate cancer. Lysophosphatidic acid (LPA) is a lysophospholipid that mediates multiple behaviors in cancer cells, such as proliferation, migration and adhesion. We have previously demonstrated that LPA enhances vascular endothelial growth factor (VEGF)-C expression in PC-3 cells by activating the generation of reactive oxygen species (ROS), which is known to be an important mediator in cancer progression. Using flow cytometry, we showed that LPA triggers ROS generation within 10 min and that the generated ROS can be suppressed by pretreatment with the NADPH oxidase (Nox) inhibitor diphenylene iodonium. In addition, transfection with LPA 1 and LPA 3 siRNA efficiently blocked LPA-induced ROS production, suggesting that both receptors are involved in this pathway. Using specific inhibitors and siRNA, phospholipase C (PLC) and protein kinase C (PKC) were also suggested to participate in LPA-induced ROS generation. Overall, we demonstrated that LPA induces ROS generation in PC-3 prostate cancer cells and this is mediated through the PLC/PKC/Nox pathway

  2. Lysophosphatidic acid induces reactive oxygen species generation by activating protein kinase C in PC-3 human prostate cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chu-Cheng; Lin, Chuan-En; Lin, Yueh-Chien [Institute of Zoology, College of Life Science, National Taiwan University, Taipei, Taiwan, ROC (China); Ju, Tsai-Kai [Instrumentation Center, National Taiwan University, Taipei, Taiwan, ROC (China); Technology Commons, College of Life Science, National Taiwan University, Taipei, Taiwan, ROC (China); Huang, Yuan-Li [Department of Biotechnology, Asia University, Taichung, Taiwan, ROC (China); Lee, Ming-Shyue [Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC (China); Chen, Jiun-Hong [Institute of Zoology, College of Life Science, National Taiwan University, Taipei, Taiwan, ROC (China); Department of Life Science, College of Life Science, National Taiwan University, Taipei, Taiwan, ROC (China); Lee, Hsinyu, E-mail: hsinyu@ntu.edu.tw [Institute of Zoology, College of Life Science, National Taiwan University, Taipei, Taiwan, ROC (China); Department of Life Science, College of Life Science, National Taiwan University, Taipei, Taiwan, ROC (China); Center for Biotechnology, National Taiwan University, Taipei, Taiwan, ROC (China); Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan, ROC (China)

    2013-11-01

    Highlights: •LPA induces ROS generation through LPA{sub 1} and LPA{sub 3}. •LPA induces ROS generation by activating PLC. •PKCζ mediates LPA-induced ROS generation. -- Abstract: Prostate cancer is one of the most frequently diagnosed cancers in males, and PC-3 is a cell model popularly used for investigating the behavior of late stage prostate cancer. Lysophosphatidic acid (LPA) is a lysophospholipid that mediates multiple behaviors in cancer cells, such as proliferation, migration and adhesion. We have previously demonstrated that LPA enhances vascular endothelial growth factor (VEGF)-C expression in PC-3 cells by activating the generation of reactive oxygen species (ROS), which is known to be an important mediator in cancer progression. Using flow cytometry, we showed that LPA triggers ROS generation within 10 min and that the generated ROS can be suppressed by pretreatment with the NADPH oxidase (Nox) inhibitor diphenylene iodonium. In addition, transfection with LPA{sub 1} and LPA{sub 3} siRNA efficiently blocked LPA-induced ROS production, suggesting that both receptors are involved in this pathway. Using specific inhibitors and siRNA, phospholipase C (PLC) and protein kinase C (PKC) were also suggested to participate in LPA-induced ROS generation. Overall, we demonstrated that LPA induces ROS generation in PC-3 prostate cancer cells and this is mediated through the PLC/PKC/Nox pathway.

  3. Atmospheric plasma generates oxygen atoms as oxidizing species in aqueous solutions

    International Nuclear Information System (INIS)

    Hefny, Mohamed Mokhtar; Pattyn, Cedric; Benedikt, Jan; Lukes, Petr

    2016-01-01

    A remote microscale atmospheric pressure plasma jet ( µ APPJ) with He, He/H 2 O, He/O 2 , and He/O 2 /H 2 O gas mixtures was used to study the transport of reactive species from the gas phase into the liquid and the following aqueous phase chemistry. The effects induced by the µ APPJ in water were quantitatively studied using phenol as a chemical probe and by measuring H 2 O 2 concentration and pH values. These results were combined with the analysis of the absolute densities of the reactive species and the modeling of convective/diffusion transport and recombination reactions in the effluent of the plasma jet. Additionally, modified plasma jets were used to show that the role of emitted photons in aqueous chemistry is negligible for these plasma sources. The fastest phenol degradation was measured for the He/O 2 plasma, followed by He/H 2 O, He/O 2 /H 2 O, and He plasmas. The modeled quantitative flux of O atoms into the liquid in the He/O 2 plasma case was highly comparable with the phenol degradation rate and showed a very high transfer efficiency of reactive species from the plasma into the liquid, where more than half of the O atoms leaving the jet nozzle entered the liquid. The results indicate that the high oxidative effect of He/O 2 plasma was primarily due to solvated O atoms, whereas OH radicals dominated the oxidative effects induced in water by plasmas with other gas mixtures. These findings help to understand, in a quantitative way, the complex interaction of cold atmospheric plasmas with aqueous solutions and will allow a better understanding of the interaction of these plasmas with water or buffered solutions containing biological macromolecules, microorganisms, or even eukaryotic cells. Additionally, the µ APPJ He/O 2 plasma source seems to be an ideal tool for the generation of O atoms in aqueous solutions for any future studies of their reactivity. (paper)

  4. Generation and Role of Reactive Oxygen and Nitrogen Species Induced by Plasma, Lasers, Chemical Agents, and Other Systems in Dentistry

    Science.gov (United States)

    Jha, Nayansi; Ryu, Jae Jun

    2017-01-01

    The generation of reactive oxygen and nitrogen species (RONS) has been found to occur during inflammatory procedures, during cell ischemia, and in various crucial developmental processes such as cell differentiation and along cell signaling pathways. The most common sources of intracellular RONS are the mitochondrial electron transport system, NADH oxidase, and cytochrome P450. In this review, we analyzed the extracellular and intracellular sources of reactive species, their cell signaling pathways, the mechanisms of action, and their positive and negative effects in the dental field. In dentistry, ROS can be found—in lasers, photosensitizers, bleaching agents, cold plasma, and even resin cements, all of which contribute to the generation and prevalence of ROS. Nonthermal plasma has been used as a source of ROS for biomedical applications and has the potential for use with dental stem cells as well. There are different types of dental stem cells, but their therapeutic use remains largely untapped, with the focus currently on only periodontal ligament stem cells. More research is necessary in this area, including studies about ROS mechanisms with dental cells, along with the utilization of reactive species in redox medicine. Such studies will help to provide successful treatment modalities for various diseases. PMID:29204250

  5. Generation of reactive oxygen species (ROS) is a key factor for stimulation of macrophage proliferation by ceramide 1-phosphate

    International Nuclear Information System (INIS)

    Arana, Lide; Gangoiti, Patricia; Ouro, Alberto; Rivera, Io-Guané; Ordoñez, Marta; Trueba, Miguel; Lankalapalli, Ravi S.; Bittman, Robert; Gomez-Muñoz, Antonio

    2012-01-01

    We previously demonstrated that ceramide 1-phosphate (C1P) is mitogenic for fibroblasts and macrophages. However, the mechanisms involved in this action were only partially described. Here, we demonstrate that C1P stimulates reactive oxygen species (ROS) formation in primary bone marrow-derived macrophages, and that ROS are required for the mitogenic effect of C1P. ROS production was dependent upon prior activation of NADPH oxidase by C1P, which was determined by measuring phosphorylation of the p40phox subunit and translocation of p47phox from the cytosol to the plasma membrane. In addition, C1P activated cytosolic calcium-dependent phospholipase A 2 and protein kinase C-α, and NADPH oxidase activation was blocked by selective inhibitors of these enzymes. These inhibitors, and inhibitors of ROS production, blocked the mitogenic effect of C1P. By using BHNB-C1P (a photolabile caged-C1P analog), we demonstrate that all of these C1P actions are caused by intracellular C1P. It can be concluded that the enzyme responsible for C1P-stimulated ROS generation in bone marrow-derived macrophages is NADPH oxidase, and that this enzyme is downstream of PKC-α and cPLA 2 -α in this pathway. -- Highlights: ► Ceramide 1-phosphate (C1P) stimulates reactive oxygen species (ROS) formation. ► The enzyme responsible for ROS generation by C1P in macrophages is NADPH oxidase. ► NADPH oxidase lies downstream of cPLA 2 -α and PKC-α in this pathway. ► ROS generation is essential for the stimulation of macrophage proliferation by C1P.

  6. In situ fluorescence spectroscopy correlates ionomer degradation to reactive oxygen species generation in an operating fuel cell.

    Science.gov (United States)

    Prabhakaran, Venkateshkumar; Arges, Christopher G; Ramani, Vijay

    2013-11-21

    The rate of generation of reactive oxygen species (ROS) within the polymer electrolyte membrane (PEM) of an operating proton exchange member fuel cell (PEMFC) was monitored using in situ fluorescence spectroscopy. A modified barrier layer was introduced between the PEM and the electrocatalyst layer to eliminate metal-dye interactions and fluorescence resonance energy transfer (FRET) effects during measurements. Standard fuel cell operating parameters (temperature, relative humidity, and electrode potential) were systematically varied to evaluate their influence on the rate of ROS generation during PEMFC operation. Independently, the macroscopic rate of PEM degradation was measured by monitoring the fluoride ion emission rate (FER) in the effluent stream at each operating condition. The ROS generation reaction rate constant (estimated from the in situ fluorescence experiments) correlated perfectly with the measured FER across all conditions, demonstrating unequivocally for the first time that a direct correlation exists between in situ ROS generation and PEM macroscopic degradation. The activation energy for ROS generation within the PEM was estimated to be 12.5 kJ mol(-1).

  7. Phenethyl isothiocyanate inhibits growth of human chronic myeloid leukemia K562 cells via reactive oxygen species generation and caspases.

    Science.gov (United States)

    Wang, Yating; Wei, Sixi; Wang, Jishi; Fang, Qin; Chai, Qixiang

    2014-07-01

    Phenethyl isothiocyanate (PEITC), a potential cancer chemopreventive constituent of cruciferous vegetables, including watercress, has been reported to inhibit cancer cell growth by arresting the cell cycle and inducing apoptosis in various human cancer cell models. However, the role of PEITC in the inhibition of human chronic myeloid leukemia (CML) K562 cell growth and its underlying mechanisms have yet to be elucidated. In the present study, PEITC was found to induce cell death through the induction of reactive oxygen species (ROS) stress and oxidative damage. Heme oxygenase‑1 (HO‑1), which participates in the development of numerous tumors and the sensitivity of these tumors to chemotherapeutic drugs, plays a protective role by modulating oxidative injury. Therefore, the present study assessed the inhibitory effect of PEITC on K562 cells and whether HO‑1 facilitated cell apoptosis and ROS generation. PEITC was found to suppress cell growth and cause apoptosis by promoting Fas and Fas ligand expression, increasing ROS generation and by the successive release of cytochrome c as well as the activation of caspase‑9 and caspase‑3. PEITC was also combined with the HO‑1 inhibitor zinc protoporphyrin IX and the inducer hemin to assess whether HO‑1 determines cell survival and ROS generation. The results of the present study suggest that PEITC may be a potential anti‑tumor compound for CML therapy, and that HO‑1 has a critical function in PEITC‑induced apoptosis and ROS generation.

  8. Advanced glycation end products delay corneal epithelial wound healing through reactive oxygen species generation.

    Science.gov (United States)

    Shi, Long; Chen, Hongmei; Yu, Xiaoming; Wu, Xinyi

    2013-11-01

    Delayed healing of corneal epithelial wounds is a serious complication in diabetes. Advanced glycation end products (AGEs) are intimately associated with the diabetic complications and are deleterious to the wound healing process. However, the effect of AGEs on corneal epithelial wound healing has not yet been evaluated. In the present study, we investigated the effect of AGE-modified bovine serum albumin (BSA) on corneal epithelial wound healing and its underlying mechanisms. Our data showed that AGE-BSA significantly increased the generation of intracellular ROS in telomerase-immortalized human corneal epithelial cells. However, the generation of intracellular ROS was completely inhibited by antioxidant N-acetylcysteine (NAC), anti-receptor of AGEs (RAGE) antibodies, or the inhibitor of NADPH oxidase. Moreover, AGE-BSA increased NADPH oxidase activity and protein expression of NADPH oxidase subunits, p22phox and Nox4, but anti-RAGE antibodies eliminated these effects. Furthermore, prevention of intracellular ROS generation using NAC or anti-RAGE antibodies rescued AGE-BSA-delayed epithelial wound healing in porcine corneal organ culture. In conclusion, our results demonstrated that AGE-BSA impaired corneal epithelial wound healing ex vivo. AGE-BSA increased intracellular ROS generation through NADPH oxidase activation, which accounted for the delayed corneal epithelial wound healing. These results may provide better insights for understanding the mechanism of delayed healing of corneal epithelial wounds in diabetes.

  9. Sodium Lauryl Sulfate Stimulates the Generation of Reactive Oxygen Species through Interactions with Cell Membranes.

    Science.gov (United States)

    Mizutani, Taeko; Mori, Ryota; Hirayama, Misaki; Sagawa, Yuki; Shimizu, Kenji; Okano, Yuri; Masaki, Hitoshi

    2016-12-01

    Sodium lauryl sulfate (SLS), a representative anionic surfactant, is well-known to induce rough skin following single or multiple topical applications. The mechanism by which SLS induces rough skin is thought to result from the disruption of skin moisture function consisting of NMF and epidermal lipids. However, a recent study demonstrated that topically applied SLS easily penetrates into the living cell layers of the epidermis, which suggests that physiological alterations of keratinocytes might cause the SLS-induced rough skin. This study was conducted to clarify the effects of SLS on keratinocytes to demonstrate the contribution of SLS to the induction of rough skin. In addition, the potentials of other widely used anionic surfactants to induce rough skin were evaluated. HaCaT keratinocytes treated with SLS had increased levels of intracellular ROS and IL-1α secretion. Application of SLS on the surface of a reconstructed epidermal equivalent also showed the increased generation of ROS. Further, SLS-treated cells showed an increase of intracellular calpain activity associated with the increase of intracellular Ca 2+ concentration. The increase of intracellular ROS was abolished by the addition of BAPTA-AM, a specific chelator of Ca 2+ . In addition, IL-1α also stimulated ROS generation by HaCaT keratinocytes. An ESR spin-labeling study demonstrated that SLS increased the fluidity of membranes of liposomes and cells. Together, those results indicate that SLS initially interacts with cell membranes, which results in the elevation of intracellular Ca 2+ influx. Ca 2+ stimulates the secretion of IL-1α due to the activation of calpain, and also increases ROS generation. IL-1α also stimulates ROS generation by HaCaT keratinocytes. We conclude from these results that the elevation of intracellular ROS levels is one of the causes of SLS-induced rough skin. Finally, among the other anionic surfactants tested, sodium lauryl phosphate has less potential to induce rough

  10. (Gold core)/(titania shell) nanostructures for plasmon-enhanced photon harvesting and generation of reactive oxygen species

    KAUST Repository

    Fang, Caihong; Jia, Henglei; Chang, Shuai; Ruan, Qifeng; Wang, Peng; Chen, Tao; Wang, Jianfang

    2014-01-01

    Integration of gold and titania in a nanoscale core/shell architecture can offer large active metal/semiconductor interfacial areas and avoid aggregation and reshaping of the metal nanocrystal core. Such hybrid nanostructures are very useful for studying plasmon-enhanced/enabled processes and have great potential in light-harvesting applications. Herein we report on a facile route to (gold nanocrystal core)/(titania shell) nanostructures with their plasmon band synthetically variable from ∼700 nm to over 1000 nm. The coating method has also been applied to other mono- and bi-metallic Pd, Pt, Au nanocrystals. The gold/titania nanostructures have been employed as the scattering layer in dye-sensitized solar cells, with the resultant cells exhibiting a 13.3% increase in the power conversion efficiency and a 75% decrease in the scattering-layer thickness. Moreover, under resonant excitation, the gold/titania nanostructures can efficiently utilize low-energy photons to generate reactive oxygen species, including singlet oxygen and hydroxyl radicals.

  11. A mutation in the mitochondrial protein UQCRB promotes angiogenesis through the generation of mitochondrial reactive oxygen species

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Junghwa [Chemical Genomics National Research Lab., Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Jung, Hye Jin [Department of Pharmaceutical Engineering, Sun Moon University, Asansi, Chungnam 330-150 (Korea, Republic of); Jeong, Seung Hun; Kim, Hyoung Kyu; Han, Jin [National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Department of Health Sciences and Technology, Cardiovascular and Metabolic Disease Center, Inje University, Busan (Korea, Republic of); Kwon, Ho Jeong, E-mail: kwonhj@yonsei.ac.kr [Chemical Genomics National Research Lab., Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Department of Internal Medicine, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of)

    2014-12-12

    Highlights: • We constructed mitochondrial protein UQCRB mutant stable cell lines on the basis of a human case report. • These mutant cell lines exhibit pro-angiogenic activity with enhanced VEGF expression. • Proliferation of mutant cell lines was regulated by UQCRB inhibitors. • UQCRB may have a functional role in angiogenesis. - Abstract: Ubiquinol-cytochrome c reductase binding protein (UQCRB) is one of the subunits of mitochondrial complex III and is a target protein of the natural anti-angiogenic small molecule terpestacin. Previously, the biological role of UQCRB was thought to be limited to the maintenance of complex III. However, the identification and validation of UQCRB as a target protein of terpestacin enabled the role of UQCRB in oxygen sensing and angiogenesis to be elucidated. To explore the biological role of this protein further, UQCRB mutant stable cell lines were generated on the basis of a human case report. We demonstrated that these cell lines exhibited glycolytic and pro-angiogenic activities via mitochondrial reactive oxygen species (mROS)-mediated HIF1 signal transduction. Furthermore, a morphological abnormality in mitochondria was detected in UQCRB mutant stable cell lines. In addition, the proliferative effect of the UQCRB mutants was significantly regulated by the UQCRB inhibitors terpestacin and A1938. Collectively, these results provide a molecular basis for UQCRB-related biological processes and reveal potential key roles of UQCRB in angiogenesis and mitochondria-mediated metabolic disorders.

  12. A mutation in the mitochondrial protein UQCRB promotes angiogenesis through the generation of mitochondrial reactive oxygen species

    International Nuclear Information System (INIS)

    Chang, Junghwa; Jung, Hye Jin; Jeong, Seung Hun; Kim, Hyoung Kyu; Han, Jin; Kwon, Ho Jeong

    2014-01-01

    Highlights: • We constructed mitochondrial protein UQCRB mutant stable cell lines on the basis of a human case report. • These mutant cell lines exhibit pro-angiogenic activity with enhanced VEGF expression. • Proliferation of mutant cell lines was regulated by UQCRB inhibitors. • UQCRB may have a functional role in angiogenesis. - Abstract: Ubiquinol-cytochrome c reductase binding protein (UQCRB) is one of the subunits of mitochondrial complex III and is a target protein of the natural anti-angiogenic small molecule terpestacin. Previously, the biological role of UQCRB was thought to be limited to the maintenance of complex III. However, the identification and validation of UQCRB as a target protein of terpestacin enabled the role of UQCRB in oxygen sensing and angiogenesis to be elucidated. To explore the biological role of this protein further, UQCRB mutant stable cell lines were generated on the basis of a human case report. We demonstrated that these cell lines exhibited glycolytic and pro-angiogenic activities via mitochondrial reactive oxygen species (mROS)-mediated HIF1 signal transduction. Furthermore, a morphological abnormality in mitochondria was detected in UQCRB mutant stable cell lines. In addition, the proliferative effect of the UQCRB mutants was significantly regulated by the UQCRB inhibitors terpestacin and A1938. Collectively, these results provide a molecular basis for UQCRB-related biological processes and reveal potential key roles of UQCRB in angiogenesis and mitochondria-mediated metabolic disorders

  13. Lysosomal membrane permeabilization: Carbon nanohorn-induced reactive oxygen species generation and toxicity by this neglected mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Mei, E-mail: happy_deercn@163.com [Nanotube Research Center, National Institute of Advanced Industrial Science and Technology 5-2, 1-1-1 Higashi, Tsukuba 305-8565 (Japan); Zhang, Minfang; Tahara, Yoshio; Chechetka, Svetlana; Miyako, Eijiro [Nanotube Research Center, National Institute of Advanced Industrial Science and Technology 5-2, 1-1-1 Higashi, Tsukuba 305-8565 (Japan); Iijima, Sumio [Nanotube Research Center, National Institute of Advanced Industrial Science and Technology 5-2, 1-1-1 Higashi, Tsukuba 305-8565 (Japan); Faculty of Science and Technology, Meijo University, 1-501 Shiogamaguchi, Tenpaku, Nagoya 468-8502 (Japan); Yudasaka, Masako, E-mail: m-yudasaka@aist.go.jp [Nanotube Research Center, National Institute of Advanced Industrial Science and Technology 5-2, 1-1-1 Higashi, Tsukuba 305-8565 (Japan)

    2014-10-01

    Understanding the molecular mechanisms responsible for the cytotoxic effects of carbon nanomaterials is important for their future biomedical applications. Carbon nanotubular materials induce the generation of reactive oxygen species (ROS), which causes cell death; however, the exact details of this process are still unclear. Here, we identify a mechanism of ROS generation that is involved in the apoptosis of RAW264.7 macrophages caused by excess uptake of carbon nanohorns (CNHs), a typical type of carbon nanotubule. CNH accumulated in the lysosomes, where they induced lysosomal membrane permeabilization (LMP) and the subsequent release of lysosomal proteases, such as cathepsins, which in turn caused mitochondrial dysfunction and triggered the generation of ROS in the mitochondria. The nicotinamide adenine dinucleotide phosphate oxidase was not directly involved in CNH-related ROS production, and the ROS generation cannot be regulated by mitochondrial electron transport chain. ROS fed back to amplify the mitochondrial dysfunction, leading to the subsequent activation of caspases and cell apoptosis. Carbon nanotubules commonly accumulate in the lysosomes after internalization in cells; however, lysosomal dysfunction has not attracted much attention in toxicity studies of these materials. These results suggest that LMP, a neglected mechanism, may be the primary reason for carbon nanotubule toxicity. - Highlights: • We clarify an apoptotic mechanism of RAW264.7 cells caused by carbon nanohorns. • In the meantime, the mechanism of CNH-induced ROS generation is identified. • LMP is the initial factor of CNH-induced ROS generation and cell death. • Cathepsins work as mediators that connect LMP and mitochondrial dysfunction.

  14. Human Leukemic Cells performing Oxidative Phosphorylation (OXPHOS Generate an Antioxidant Response Independently of Reactive Oxygen species (ROS Production

    Directory of Open Access Journals (Sweden)

    Abrar Ul Haq Khan

    2016-01-01

    Full Text Available Tumor cell metabolism is altered during leukemogenesis. Cells performing oxidative phosphorylation (OXPHOS generate reactive oxygen species (ROS through mitochondrial activity. To limit the deleterious effects of excess ROS, certain gene promoters contain antioxidant response elements (ARE, e.g. the genes NQO-1 and HO-1. ROS induces conformational changes in KEAP1 and releases NRF2, which activates AREs. We show in vitro and in vivo that OXPHOS induces, both in primary leukemic cells and cell lines, de novo expression of NQO-1 and HO-1 and also the MAPK ERK5 and decreases KEAP1 mRNA. ERK5 activates the transcription factor MEF2, which binds to the promoter of the miR-23a–27a–24-2 cluster. Newly generated miR-23a destabilizes KEAP1 mRNA by binding to its 3′UTR. Lower KEAP1 levels increase the basal expression of the NRF2-dependent genes NQO-1 and HO-1. Hence, leukemic cells performing OXPHOS, independently of de novo ROS production, generate an antioxidant response to protect themselves from ROS.

  15. Newly synthesized bis-benzimidazole compound 8 induces apoptosis, autophagy and reactive oxygen species generation in HeLa cells.

    Science.gov (United States)

    Chu, Naying; Yao, Guodong; Liu, Yuan; Cheng, Maosheng; Ikejima, Takashi

    2016-09-01

    Compound 8 (C8) is a newly synthesized bis-benzimidazole derivative and exerts significant anti-tumor activity in vitro. Previous studies demonstrated that C8 induced apoptosis and autophagy in human promyelocytic leukemia HL60 cells. However, cytotoxicity study on human peripheral blood mononuclear cells (hPBMC) showed that C8 exhibited less toxicity in normal cells. In this study, the molecular mechanism of C8 on human cervical carcinoma HeLa cells was investigated. The results showed that C8 inhibited the growth of HeLa cells and triggered both apoptotic and autophagic cell death. Subsequent experiment also indicated that reactive oxygen species (ROS) generation was induced in C8-treated HeLa cells. Since ROS scavenger decreased the ratio of apoptotic and autophagic cells, ROS generation contributed to C8-induced apoptosis and autophagy. Furthermore, inhibitors of apoptosis and autophagy also reduced ROS generation, respectively. Autophagy inhibition increased cell growth compared to C8-treated group and attenuated apoptotic cell death, indicating that C8-induced autophagy promoted apoptosis for cell death. However, the percentage of autophagic cells was enhanced when limiting apoptosis process. Taken together, C8 induced ROS-mediated apoptosis and autophagy in HeLa cells, autophagy promoted apoptosis but the former was antagonized by the latter. The data also gave us a new perspective on the anti-tumor effect of C8. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Dissolution and reactive oxygen species generation of inhaled cemented tungsten carbide particles in artificial human lung fluids

    International Nuclear Information System (INIS)

    Stefaniak, A B; Leonard, S S; Hoover, M D; Virji, M A; Day, G A

    2009-01-01

    Inhalation of both cobalt (Co) and tungsten carbide (WC) particles is associated with development of hard metal lung disease (HMD) via generation of reactive oxygen species (ROS), whereas Co alone is sufficient to cause asthma via solubilization and hapten formation. We characterized bulk and aerodynamically size-separated W, WC, Co, spray dryer (pre-sintered), and chamfer grinder (post-sintered) powders. ROS generation was measured in the murine RAW 264.7 cell line using electron spin resonance. When dose was normalized to surface area, hydroxyl radical generation was independent of particle size, which suggests that particle surface chemistry may be an important exposure factor. Chamfer grinder particles generated the highest levels of ROS, consistent with the hypothesis that intimate contact of metals is important for ROS generation. In artificial extracellular lung fluid, alkylbenzyldimethylammonium chloride (ABDC), added to prevent mold growth during experiments, did not influence dissolution of Co (44.0±5.2 vs. 48.3±6.4%); however, dissolution was higher (p<0.05) in the absence of phosphate (62.0±5.4 vs. 48.3±6.4%). In artificial macrophage phagolysosomal fluid, dissolution of Co (36.2±10.4%) does not appear to be influenced (p=0.30) by the absence of glycine (29.8±2.1%), phosphate (39.6±8.6%), or ABDC (44.0±10.5%). These results aid in assessing and understanding Co and W inhalation dosimetry.

  17. Reactive Oxygen Species Generation-Scavenging and Signaling during Plant-Arbuscular Mycorrhizal and Piriformospora indica Interaction under Stress Condition.

    Science.gov (United States)

    Nath, Manoj; Bhatt, Deepesh; Prasad, Ram; Gill, Sarvajeet S; Anjum, Naser A; Tuteja, Narendra

    2016-01-01

    A defined balance between the generation and scavenging of reactive oxygen species (ROS) is essential to utilize ROS as an adaptive defense response of plants under biotic and abiotic stress conditions. Moreover, ROS are not only a major determinant of stress response but also act as signaling molecule that regulates various cellular processes including plant-microbe interaction. In particular, rhizosphere constitutes the biologically dynamic zone for plant-microbe interactions which forms a mutual link leading to reciprocal signaling in both the partners. Among plant-microbe interactions, symbiotic associations of arbuscular mycorrhizal fungi (AMF) and arbuscular mycorrhizal-like fungus especially Piriformospora indica with plants are well known to improve plant growth by alleviating the stress-impacts and consequently enhance the plant fitness. AMF and P. indica colonization mainly enhances ROS-metabolism, maintains ROS-homeostasis, and thereby averts higher ROS-level accrued inhibition in plant cellular processes and plant growth and survival under stressful environments. This article summarizes the major outcomes of the recent reports on the ROS-generation, scavenging and signaling in biotic-abiotic stressed plants with AMF and P. indica colonization. Overall, a detailed exploration of ROS-signature kinetics during plant-AMF/ P. indica interaction can help in designing innovative strategies for improving plant health and productivity under stress conditions.

  18. Tetraspanin is required for generation of reactive oxygen species by the dual oxidase system in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Hiroki Moribe

    2012-09-01

    Full Text Available Reactive oxygen species (ROS are toxic but essential molecules responsible for host defense and cellular signaling. Conserved NADPH oxidase (NOX family enzymes direct the regulated production of ROS. Hydrogen peroxide (H(2O(2 generated by dual oxidases (DUOXs, a member of the NOX family, is crucial for innate mucosal immunity. In addition, H(2O(2 is required for cellular signaling mediated by protein modifications, such as the thyroid hormone biosynthetic pathway in mammals. In contrast to other NOX isozymes, the regulatory mechanisms of DUOX activity are less understood. Using Caenorhabditis elegans as a model, we demonstrate that the tetraspanin protein is required for induction of the DUOX signaling pathway in conjunction with the dual oxidase maturation factor (DUOXA. In the current study, we show that genetic mutation of DUOX (bli-3, DUOXA (doxa-1, and peroxidase (mlt-7 in C. elegans causes the same defects as a tetraspanin tsp-15 mutant, represented by exoskeletal deficiencies due to the failure of tyrosine cross-linking of collagen. The deficiency in the tsp-15 mutant was restored by co-expression of bli-3 and doxa-1, indicating the involvement of tsp-15 in the generation of ROS. H(2O(2 generation by BLI-3 was completely dependent on TSP-15 when reconstituted in mammalian cells. We also demonstrated that TSP-15, BLI-3, and DOXA-1 form complexes in vitro and in vivo. Cell-fusion-based analysis suggested that association with TSP-15 at the cell surface is crucial for BLI-3 activation to release H(2O(2. This study provides the first evidence for an essential role of tetraspanin in ROS generation.

  19. Physalis angulata induces death of promastigotes and amastigotes of Leishmania (Leishmania) amazonensis via the generation of reactive oxygen species.

    Science.gov (United States)

    Da Silva, B J M; Da Silva, R R P; Rodrigues, A P D; Farias, L H S; Do Nascimento, J L M; Silva, E O

    2016-03-01

    Leishmaniasis are a neglected group of emerging diseases that have been found in 98 countries and are caused by protozoa of the genus Leishmania. The therapy for leishmaniasis causes several side effects and leads to drug-resistant strains. Natural products from plants have exhibited activities against Leishmania in various experimental models. Physalis angulata is a widely used plant in popular medicine, and in the literature it has well-documented leishmanicidal activity. However, its mechanism of action is still unknown. Thus, this study aims to evaluate the mechanism driving the leishmanicidal activity of an aqueous extract of P. angulata root (AEPa). AEPa was effective against both promastigotes and intracellular amastigote forms of Leishmania amazonensis. This effect was mediated by an increase of reactive oxygen species (ROS), but not of nitric oxide (NO). The increased production of ROS induces cell death by phenotypes seems by apoptosis cell death in Leishmania, but not autophagy or necrosis. In addition, morphological analysis of macrophages showed that AEPa induced a high number of cytoplasmic projections, increased the volume of cytoplasm and number of vacuoles, caused cytoskeleton alterations and resulted in high spreading ability. AEPa also promoted superoxide anion (O2(-)) production in both uninfected macrophages and those infected with Leishmania. Therefore, these results revealed that AEPa causes cell death by phenotypes seems by apoptosis cell death in L. amazonensis and modulates macrophage activation through morphofunctional alterations and O2(-) generation to induce Leishmania death. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Circulating Glutamate and Taurine Levels Are Associated with the Generation of Reactive Oxygen Species in Paroxysmal Atrial Fibrillation

    Directory of Open Access Journals (Sweden)

    Shintaro Takano

    2016-01-01

    Full Text Available Atrial fibrillation (AF is the most common cardiac arrhythmia, but its proarrhythmic mechanism remains to be elucidated. Glutamate (Glu and taurine (Tau are present in the myocardium at substantially higher concentrations than in the plasma, suggesting their active role in myocardium. Here, we tested the hypothesis that the metabolism of Glu and Tau is altered in association with the generation of reactive oxygen species (ROS in patients with AF. Fifty patients with paroxysmal AF and 50 control subjects without a history of AF were consecutively enrolled. Circulating Glu and Tau levels were measured and correlations between Glu/Tau and ROS levels were examined. Glu/Tau content was significantly higher in patients with AF versus controls (Glu: 79.2±23.9 versus 60.5±25.2 nmol/L; Tau: 78.8±19.8 versus 68.5±20.8 nmol/L; mean ± standard deviation (SD, p<0.001 for both. Glu/Tau levels also showed an independent association with AF by multiple logistic regression analysis. Glu and Tau levels both showed significant positive associations with plasma hydroperoxide concentrations. These data suggest a novel pathophysiological role of Glu and Tau in association with ROS production in paroxysmal AF, providing new insights into the elevated amino acid content in cardiac disease.

  1. Can systemically generated reactive oxygen species help to monitor disease activity in generalized vitiligo? A pilot study

    Directory of Open Access Journals (Sweden)

    Richeek Pradhan

    2014-01-01

    Full Text Available Background: Generalized vitiligo is a disease with unpredictable bursts of activity, goal of treatment during the active phase being to stabilize the lesions. This emphasizes the need for a prospective marker for monitoring disease activity to help decide the duration of therapy. Aims and Objectives: In the present study, we examined whether reactive oxygen species (ROS generated in erythrocytes can be translated into a marker of activity in vitiligo. Materials and Methods: Level of intracellular ROS was measured flow cytometrically in erythrocytes from venous blood of 21 patients with generalized vitiligo and 21 healthy volunteers using the probe dichlorodihydrofluorescein diacetate. Results: The levels of ROS differed significantly between patients and healthy controls, as well as between active versus stable disease groups. In the active disease group, ROS levels were significantly lower in those being treated with systemic steroids than those that were not. ROS levels poorly correlated with disease duration or body surface area involved. Conclusion: A long-term study based on these findings can be conducted to further validate the potential role of ROS in monitoring disease activity vitiligo.

  2. Low-level laser therapy activates NF-kB via generation of reactive oxygen species in mouse embryonic fibroblasts.

    Directory of Open Access Journals (Sweden)

    Aaron C-H Chen

    Full Text Available Despite over forty years of investigation on low-level light therapy (LLLT, the fundamental mechanisms underlying photobiomodulation at a cellular level remain unclear.In this study, we isolated murine embryonic fibroblasts (MEF from transgenic NF-kB luciferase reporter mice and studied their response to 810 nm laser radiation. Significant activation of NF-kB was observed at fluences higher than 0.003 J/cm(2 and was confirmed by Western blot analysis. NF-kB was activated earlier (1 hour by LLLT compared to conventional lipopolysaccharide treatment. We also observed that LLLT induced intracellular reactive oxygen species (ROS production similar to mitochondrial inhibitors, such as antimycin A, rotenone and paraquat. Furthermore, we observed similar NF-kB activation with these mitochondrial inhibitors. These results, together with inhibition of laser induced NF-kB activation by antioxidants, suggests that ROS play an important role in the laser induced NF-kB signaling pathways. However, LLLT, unlike mitochondrial inhibitors, induced increased cellular ATP levels, which indicates that LLLT also upregulates mitochondrial respiration.We conclude that LLLT not only enhances mitochondrial respiration, but also activates the redox-sensitive NFkB signaling via generation of ROS. Expression of anti-apoptosis and pro-survival genes responsive to NFkB could explain many clinical effects of LLLT.

  3. Reactive Oxygen Species Generated by NADPH Oxidases Promote Radicle Protrusion and Root Elongation during Rice Seed Germination

    Directory of Open Access Journals (Sweden)

    Wen-Yan Li

    2017-01-01

    Full Text Available Seed germination is a complicated biological process that requires regulation through various enzymatic and non-enzymatic mechanisms. Although it has been recognized that reactive oxygen species (ROS regulate radicle emergence and root elongation in a non-enzymatic manner during dicot seed germination, the role of ROS in monocot seed germination remains unknown. NADPH oxidases (NOXs are the major ROS producers in plants; however, whether and how NOXs regulate rice seed germination through ROS generation remains unclear. Here, we report that diphenyleneiodinium (DPI, a specific NOX inhibitor, potently inhibited embryo and seedling growth—especially that of the radicle and of root elongation—in a dose-dependent manner. Notably, the DPI-mediated inhibition of radicle and root growth could be eliminated by transferring seedlings from DPI to water. Furthermore, ROS production/accumulation during rice seed germination was quantified via histochemistry. Superoxide radicals (O2−, hydrogen peroxide (H2O2 and hydroxyl radicals (•OH accumulated steadily in the coleorhiza, radicle and seedling root of germinating rice seeds. Expression profiles of the nine typical NOX genes were also investigated. According to quantitative PCR, OsNOX5, 7 and 9 were expressed relatively higher. When seeds were incubated in water, OsNOX5 expression progressively increased in the embryo from 12 to 48 h, whereas OsNOX7 and 9 expressions increased from 12 to 24 h and decreased thereafter. As expected, DPI inhibits the expression at predetermined time points for each of these genes. Taken together, these results suggest that ROS produced by NOXs are involved in radicle and root elongation during rice seed germination, and OsNOX5, 7 and 9 could play crucial roles in rice seed germination. These findings will facilitate further studies of the roles of ROS generated by NOXs during seed germination and seedling establishment and also provide valuable information for the

  4. Osimertinib induces autophagy and apoptosis via reactive oxygen species generation in non-small cell lung cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Zheng-Hai; Cao, Wen-Xiang; Su, Min-Xia; Chen, Xiuping; Lu, Jin-Jian, E-mail: jinjianlu@umac.mo

    2017-04-15

    Osimertinib (OSI), also known as AZD9291, is a third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor that has been approved for the treatment of non-small cell lung cancer (NSCLC) patients harboring EGFR T790M mutation. Herein, we indicated for the first time that OSI increased the accumulations of cytoplasmic vacuoles, the expression of phosphatidylethanolamine-modified microtubule-associated protein light-chain 3 (LC3-II), and the formation of GFP-LC3 puncta in various cancer cells. The OSI-induced expression of LC3-II was further increased when combined treatment with chloroquine (CQ), an autophagy inhibitor, and the mRFP-EGFP-LC3 plasmid-transfected cells exposed to OSI led to the production of more red-fluorescent puncta than green-fluorescent puncta, indicating OSI induced autophagic flux in the NSCLC cells. Knockdown of EGFR showed no effect on the OSI-induced expression of LC3-II in NCI-H1975 cells. In addition, OSI increased reactive oxygen species (ROS) generation and scavenge of ROS via pretreatment with N-acetyl-L-cysteine (NAC), catalase (CAT), or vitamin E (Vita E) significantly inhibited OSI-induced the accumulations of cytoplasmic vacuoles, the expression of LC3-II, as well as the formation of GFP-LC3 puncta. Combinative treatment with CQ could not remarkably change the OSI-induced cell viability decrease, whereas the OSI-induced cell viability decrease and apoptosis could be reversed through pretreatment with NAC, CAT, and Vita E, respectively. Taken together, this is the first report that OSI induces an accompanied autophagy and the generation of ROS is critical for the OSI-induced autophagy, cell viability decrease, and apoptosis in NSCLC cells. - Highlights: • Osimertinib induced the expressions of cytoplasmic vacuoles and autophagic markers in different cancer cells. • Osimertinib induced autophagic flux in NSCLC NCI-H1975 and HCC827 cell lines. • ROS generation contributed to osimertinib-induced cytoplasmic

  5. Osimertinib induces autophagy and apoptosis via reactive oxygen species generation in non-small cell lung cancer cells

    International Nuclear Information System (INIS)

    Tang, Zheng-Hai; Cao, Wen-Xiang; Su, Min-Xia; Chen, Xiuping; Lu, Jin-Jian

    2017-01-01

    Osimertinib (OSI), also known as AZD9291, is a third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor that has been approved for the treatment of non-small cell lung cancer (NSCLC) patients harboring EGFR T790M mutation. Herein, we indicated for the first time that OSI increased the accumulations of cytoplasmic vacuoles, the expression of phosphatidylethanolamine-modified microtubule-associated protein light-chain 3 (LC3-II), and the formation of GFP-LC3 puncta in various cancer cells. The OSI-induced expression of LC3-II was further increased when combined treatment with chloroquine (CQ), an autophagy inhibitor, and the mRFP-EGFP-LC3 plasmid-transfected cells exposed to OSI led to the production of more red-fluorescent puncta than green-fluorescent puncta, indicating OSI induced autophagic flux in the NSCLC cells. Knockdown of EGFR showed no effect on the OSI-induced expression of LC3-II in NCI-H1975 cells. In addition, OSI increased reactive oxygen species (ROS) generation and scavenge of ROS via pretreatment with N-acetyl-L-cysteine (NAC), catalase (CAT), or vitamin E (Vita E) significantly inhibited OSI-induced the accumulations of cytoplasmic vacuoles, the expression of LC3-II, as well as the formation of GFP-LC3 puncta. Combinative treatment with CQ could not remarkably change the OSI-induced cell viability decrease, whereas the OSI-induced cell viability decrease and apoptosis could be reversed through pretreatment with NAC, CAT, and Vita E, respectively. Taken together, this is the first report that OSI induces an accompanied autophagy and the generation of ROS is critical for the OSI-induced autophagy, cell viability decrease, and apoptosis in NSCLC cells. - Highlights: • Osimertinib induced the expressions of cytoplasmic vacuoles and autophagic markers in different cancer cells. • Osimertinib induced autophagic flux in NSCLC NCI-H1975 and HCC827 cell lines. • ROS generation contributed to osimertinib-induced cytoplasmic

  6. Reactive oxygen species generation in aqueous solutions containing GdVO4:Eu3+ nanoparticles and their complexes with methylene blue

    Science.gov (United States)

    Hubenko, Kateryna; Yefimova, Svetlana; Tkacheva, Tatyana; Maksimchuk, Pavel; Borovoy, Igor; Klochkov, Vladimir; Kavok, Nataliya; Opolonin, Oleksander; Malyukin, Yuri

    2018-04-01

    It this letter, we report the study of free radicals and reactive oxygen species (ROS) generation in water solutions containing gadolinium orthovanadate GdVO4:Eu3+ nanoparticles (VNPs) and their complexes with methylene blue (MB) photosensitizer. The catalytic activity was studied under UV-Vis and X-ray irradiation by three methods (conjugated dienes test, OH· radical, and singlet oxygen detection). It has been shown that the VNPs-MB complexes reveal high efficiency of ROS generation under UV-Vis irradiation associated with both high efficiency of OH· radicals generation by VNPs and singlet oxygen generation by MB due to nonradiative excitation energy transfer from VNPs to MB molecules. Contrary to that under X-ray irradiation, the strong OH . radicals scavenging by VNPs has been observed.

  7. Humic acid effect on catalase activity and the generation of reactive oxygen species in corn (Zea mays).

    Science.gov (United States)

    Cordeiro, Flávio Couto; Santa-Catarina, Claudete; Silveira, Vanildo; de Souza, Sonia Regina

    2011-01-01

    Humic acids (HAs) have positive effects on plant physiology, but the molecular mechanisms underlying these events are only partially understood. The induction of root growth and emission of lateral roots (LRs) promoted by exogenous auxin is a natural phenomenon. Exogenous auxins are also associated with HA. Gas nitric oxide (NO) is a secondary messenger produced endogenously in plants. It is associated with metabolic events dependent on auxin. With the application of auxin, NO production is significantly increased, resulting in positive effects on plant physiology. Thus it is possible to evaluate the beneficial effects of the application of HA as an effect of auxin. To investigate the effects of HA the parameters of root growth, Zea mays was studied by evaluating the application of 3 mM C L⁻¹ of HA extracted from Oxisol and 100 µM SNP (sodium nitroprusside) and the NO donor, subject to two N-NO₃⁻, high dose (5.0 mM N-NO₃⁻) and low dose (5.0 mM N-NO₃⁻). Treatments with HA and NO were positively increased, regardless of the N-NO₃⁻ taken, as assessed by fresh weight and dry root, issue of LRs. The effects were more pronounced in the treatment with a lower dose of N-NO₃⁻. Detection of reactive oxygen species (ROS) in vivo and catalase activity were evaluated; these tests were associated with root growth. Under application of the bioactive substances tested, detection of ROS and catalase activity increased, especially in treatments with lower doses of N-NO₃⁻. The results of this experiment indicate that the effects of HA are dependent on ROS generation, which act as a messenger that induces root growth and the emission of LRs.

  8. Decitabine induces delayed reactive oxygen species (ROS) accumulation in leukemia cells and induces the expression of ROS generating enzymes.

    Science.gov (United States)

    Fandy, Tamer E; Jiemjit, Anchalee; Thakar, Manjusha; Rhoden, Paulette; Suarez, Lauren; Gore, Steven D

    2014-03-01

    Azanucleoside DNA methyltransferase (DNMT) inhibitors are currently approved by the U.S. Food and Drug Administration for treatment of myelodysplastic syndrome. The relative contributions of DNMT inhibition and other off-target effects to their clinical efficacy remain unclear. Data correlating DNA methylation reversal and clinical response have been conflicting. Consequently, it is necessary to investigate so-called off-target effects and their impact on cell survival and differentiation. Flow cytometry was used for cell cycle, apoptosis, and reactive oxygen species (ROS) accumulation analysis. Gene expression analysis was performed using real-time PCR. DNA methylation was detected by methylation-specific PCR. Mitochondrial membrane potential was analyzed using JC-1 dye staining. Western blotting was used for quantitative protein expression analysis. 5-Aza-2'-deoxycytidine (DAC) induced cell-cycle arrest and apoptosis in leukemia cells. p53 expression was dispensable for DAC-induced apoptosis. DAC induced delayed ROS accumulation in leukemia cells but not in solid tumor cells and p53 expression was dispensable for ROS increase. ROS increase was deoxycytidine kinase dependent, indicating that incorporation of DAC into nuclear DNA is required for ROS generation. ROS accumulation by DAC was caspase-independent and mediated the dissipation of the mitochondrial membrane potential. Concordantly, ROS scavengers diminished DAC-induced apoptosis. DAC induced the expression of different NADPH oxidase isoforms and upregulated Nox4 protein expression in an ATM-dependent manner, indicating the involvement of DNA damage signaling in Nox4 upregulation. These data highlight the importance of mechanisms other than DNA cytosine demethylation in modulating gene expression and suggest investigating the relevance of ROS accumulation to the clinical activity of DAC. ©2014 AACR

  9. Generation of reactive oxygen species by a novel berberine–bile acid analog mediates apoptosis in hepatocarcinoma SMMC-7721 cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qingyong, E-mail: li_qingyong@126.com [Key Laboratory of Forest Plant Ecology (Northeast Forestry University), Ministry of Education (China); Zhang, Li; Zu, Yuangang; Liu, Tianyu; Zhang, Baoyou; He, Wuna [Key Laboratory of Forest Plant Ecology (Northeast Forestry University), Ministry of Education (China)

    2013-04-19

    Graphical abstract: - Highlights: • Anticancer effects of B4, a novel berberine–bile acid analog, were tested. • B4 inhibited cell proliferation in hepatocellular carcinoma cells. • It also stimulated mitochondrial ROS production and membrane depolarization. • Effects of B4 were inhibited by a non-specific ROS scavenger. • Regulation of ROS generation may be a strategy for treating hepatic carcinoma. - Abstract: 2,3-Methenedioxy-9-O-(3′α,7′α-dihydroxy-5′β-cholan-24′-propy-lester) berberine (B4) is a novel berberine–bile acid analog synthesized in our laboratory. Previously, we showed that B4 exerted greater cytotoxicity than berberine in several human cancer cell lines. Therefore, we further evaluated the mechanism governing its anticancer actions in hepatocellular carcinoma SMMC-7721 cells. B4 inhibited the proliferation of SMMC-7721 cells, and stimulated reactive oxygen species (ROS) production and mitochondrial membrane depolarization; anti-oxidant capacity was reduced. B4 also induced the release of cytochrome c from the mitochondria to the cytosol and an increase in poly ADP-ribose polymerase (PARP) cleavage products, reflective of caspase-3 activation. Moreover, B4 induced the nuclear translocation of apoptosis-inducing factor (AIF) and a rise in DNA fragmentation. Pretreatment with the anti-oxidant N-acetylcysteine (NAC) inhibited B4-mediated effects, including cytotoxicity, ROS production, mitochondrial membrane depolarization increase in intracellular Ca{sup 2+}, cytochrome c release, PARP cleavage, and AIF translocation. Our data suggest that B4 induces ROS-triggered caspase-dependent and caspase-independent apoptosis pathways in SMMC-7721 cells and that ROS production may be a specific potential strategy for treating hepatic carcinoma.

  10. Efficacy of the Reactive Oxygen Species Generated by Immobilized TiO2 in the Photocatalytic Degradation of Diclofenac

    Directory of Open Access Journals (Sweden)

    B. Di Credico

    2015-01-01

    Full Text Available We report on the photodegradation of diclofenac (DCF by hydrothermal anatase nanocrystals either free or immobilized in porous silica matrix (TS in connection to the type and amount of reactive oxygen species (ROS, in order to have deeper insight into their role in the photocatalysis and to provide an effective tool to implement the DCF mineralization. TiO2 and TS exhibit a remarkable efficiency in the DCF abatement, supporting that the utilization of anatase nanoparticles with the highly reactive {001}, {010}, and {101} exposed surfaces can be an effective way for enhancing the photooxidation even of the persistent pollutants. Furthermore, the hydrothermal TiO2, when immobilized in silica matrix, preserves its functional properties, combining high photoactivity with an easy technical use and recovery of the catalyst. The catalysts performances have been related to the presence of OH•, O21, and O2-• species by electron paramagnetic resonance spin-trap technique. The results demonstrated that the ROS concentration increases with the increase of photoactivity and indicated a significant involvement of O21 in the DCF degradation. The efficacy of TiO2 when immobilized on a silica matrix was associated with the high ROS life time and with the presence of singlet oxygen, which contributes to the complete photomineralization of DCF.

  11. The Fumarate Reductase of Bacteroides thetaiotaomicron, unlike That of Escherichia coli, Is Configured so that It Does Not Generate Reactive Oxygen Species

    Directory of Open Access Journals (Sweden)

    Zheng Lu

    2017-01-01

    Full Text Available The impact of oxidative stress upon organismal fitness is most apparent in the phenomenon of obligate anaerobiosis. The root cause may be multifaceted, but the intracellular generation of reactive oxygen species (ROS likely plays a key role. ROS are formed when redox enzymes accidentally transfer electrons to oxygen rather than to their physiological substrates. In this study, we confirm that the predominant intestinal anaerobe Bacteroides thetaiotaomicron generates intracellular ROS at a very high rate when it is aerated. Fumarate reductase (Frd is a prominent enzyme in the anaerobic metabolism of many bacteria, including B. thetaiotaomicron, and prior studies of Escherichia coli Frd showed that the enzyme is unusually prone to ROS generation. Surprisingly, in this study biochemical analysis demonstrated that the B. thetaiotaomicron Frd does not react with oxygen at all: neither superoxide nor hydrogen peroxide is formed. Subunit-swapping experiments indicated that this difference does not derive from the flavoprotein subunit at which ROS normally arise. Experiments with the related enzyme succinate dehydrogenase discouraged the hypothesis that heme moieties are responsible. Thus, resistance to oxidation may reflect a shift of electron density away from the flavin moiety toward the iron-sulfur clusters. This study shows that the autoxidizability of a redox enzyme can be suppressed by subtle modifications that do not compromise its physiological function. One implication is that selective pressures might enhance the oxygen tolerance of an organism by manipulating the electronic properties of its redox enzymes so they do not generate ROS.

  12. Caspase-3-dependent apoptosis of citreamicin ε-induced heLa iells Is associated with reactive oxygen species generation

    KAUST Repository

    Liu, Lingli

    2013-07-15

    Citreamicins, members of the polycyclic xanthone family, are promising antitumor agents that are produced by Streptomyces species. Two diastereomers, citreamicin ε A (1) and B (2), were isolated from a marine-derived Streptomyces species. The relative configurations of these two diastereomers were determined using NMR spectroscopy and successful crystallization of citreamicin ε A (1). Both diastereomers showed potent cytotoxic activity against HeLa (cervical cancer) and HepG2 (hepatic carcinoma) cells with IC 50 values ranging from 30 to 100 nM. The terminal deoxynucleotidyl transferase dUTP nick-end labeling assay confirmed that citreamicin ε A (1) induced cellular apoptosis, and Western blot analysis showed that apoptosis occurred via activation of caspase-3. The 2,7-dichlorofluorescein diacetate assay indicated that citreamicin ε substantially increased the intracellular concentration of reactive oxygen species (ROS). To confirm the hypothesis that citreamicin ε induced apoptosis through an increase in the intracellular ROS concentration, the oxidized products, oxicitreamicin ε A (3) and B (4), were obtained from a one-step reaction catalyzed by Ag 2O. These products, with a reduced capacity to increase the intracellular ROS concentration, exhibited a significantly weakened cytotoxicity in both HeLa and HepG2 cells compared with that of citreamicin ε A (1) and B (2). © 2013 American Chemical Society.

  13. Developing the next generation of graphene-based platforms for cancer therapeutics: The potential role of reactive oxygen species.

    Science.gov (United States)

    Tabish, Tanveer A; Zhang, Shaowei; Winyard, Paul G

    2018-05-01

    Graphene has a promising future in applications such as disease diagnosis, cancer therapy, drug/gene delivery, bio-imaging and antibacterial approaches owing to graphene's unique physical, chemical and mechanical properties alongside minimal toxicity to normal cells, and photo-stability. However, these unique features and bioavailability of graphene are fraught with uncertainties and concerns for environmental and occupational exposure. Changes in the physicochemical properties of graphene affect biological responses including reactive oxygen species (ROS) production. Lower production of ROS by currently available theranostic agents, e.g. magnetic nanoparticles, carbon nanotubes, gold nanostructures or polymeric nanoparticles, restricts their clinical application in cancer therapy. Oxidative stress induced by graphene accumulated in living organs is due to acellular factors which may affect physiological interactions between graphene and target tissues and cells. Acellular factors include particle size, shape, surface charge, surface containing functional groups, and light activation. Cellular responses such as mitochondrial respiration, graphene-cell interactions and pH of the medium are also determinants of ROS production. The mechanisms of ROS production by graphene and the role of ROS for cancer treatment, are poorly understood. The aim of this review is to set the theoretical basis for further research in developing graphene-based theranostic platforms. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Developing the next generation of graphene-based platforms for cancer therapeutics: The potential role of reactive oxygen species

    Directory of Open Access Journals (Sweden)

    Tanveer A. Tabish

    2018-05-01

    Full Text Available Graphene has a promising future in applications such as disease diagnosis, cancer therapy, drug/gene delivery, bio-imaging and antibacterial approaches owing to graphene's unique physical, chemical and mechanical properties alongside minimal toxicity to normal cells, and photo-stability. However, these unique features and bioavailability of graphene are fraught with uncertainties and concerns for environmental and occupational exposure. Changes in the physicochemical properties of graphene affect biological responses including reactive oxygen species (ROS production. Lower production of ROS by currently available theranostic agents, e.g. magnetic nanoparticles, carbon nanotubes, gold nanostructures or polymeric nanoparticles, restricts their clinical application in cancer therapy. Oxidative stress induced by graphene accumulated in living organs is due to acellular factors which may affect physiological interactions between graphene and target tissues and cells. Acellular factors include particle size, shape, surface charge, surface containing functional groups, and light activation. Cellular responses such as mitochondrial respiration, graphene-cell interactions and pH of the medium are also determinants of ROS production. The mechanisms of ROS production by graphene and the role of ROS for cancer treatment, are poorly understood. The aim of this review is to set the theoretical basis for further research in developing graphene-based theranostic platforms.

  15. Effect of release of dopamine on iron transformations and reactive oxygen species (ROS) generation under conditions typical of coastal waters.

    Science.gov (United States)

    Sun, Yingying; Pham, A Ninh; Waite, T David

    2018-01-24

    Seasonally persistent blooms of Ulvaria obscura var. blyttii, the prominent species present in green tides in the northern Pacific and Atlantic, have been well documented in recent decades. The synthesis and release of dopamine (DA) by Ulvaria obscura var. blyttii has been proposed to be associated with the suppression and inhibition of the growth of other organisms competing for limited resources. To better understand the potential benefits obtained from the release of DA, the transformation of DA as well its concomitant impact on the local seawater environment are investigated in this study. The results show that, despite several toxic quinones being produced during the oxidation of DA, aminochrome (DAC) is likely to be the only quinone playing an allelopathic role in view of its expected accumulation in the surrounding environment. As a consequence of the direct oxidation of DA and DA induced generation of 5,6-dihydroxyindole (DHI), high concentrations of H 2 O 2 accumulate over time, especially in the presence of elements including iron, calcium and magnesium. The oxidative stress to other organisms induced by the release of DA may be particularly detrimental as a result of H 2 O 2 induced reduction in photosynthesis, inactivation of antioxidant systems or even the generation of ˙OH. DA induced iron mobilization may benefit the continuously persistent blooms of Ulvaria obscura var. blyttii or even the whole community via alleviation in iron deficiency within the bloom region.

  16. Photodynamic Inactivation of Candida albicans with Imidazoacridinones: Influence of Irradiance, Photosensitizer Uptake and Reactive Oxygen Species Generation.

    Directory of Open Access Journals (Sweden)

    Aleksandra Taraszkiewicz

    Full Text Available The increasing applicability of antifungal treatments, the limited range of available drug classes and the emergence of drug resistance in Candida spp. suggest the need for new treatment options. To explore the applicability of C. albicans photoinactivation, we examined nine structurally different imidazoacridinone derivatives as photosensitizing agents. The most effective derivatives showed a >10(4-fold reduction of viable cell numbers. The fungicidal action of the three most active compounds was compared at different radiant powers (3.5 to 63 mW/cm2, and this analysis indicated that 7 mW/cm2 was the most efficient. The intracellular accumulation of these compounds in fungal cells correlated with the fungicidal activity of all 9 derivatives. The lack of effect of verapamil, an inhibitor targeting Candida ABC efflux pumps, suggests that these imidazoacridinones are not substrates for ABC transporters. Thus, unlike azoles, a major class of antifungals used against Candida, ABC transporter-mediated resistance is unlikely. Electron paramagnetic resonance (EPR-spin trapping data suggested that the fungicidal light-induced action of these derivatives might depend on the production of superoxide anion. The highest generation rate of superoxide anion was observed for 1330H, 1610H, and 1611. Singlet oxygen production was also detected upon the irradiation of imidazoacridinone derivatives with UV laser light, with a low to moderate yield, depending on the type of compound. Thus, imidazoacridinone derivatives examined in the present study might act via mixed type I/type II photodynamic mechanism. The presented data indicate lack of direct correlation between the structures of studied imidazoacridinones, cell killing ability, and ROS production. However, we showed for the first time that for imidazoacridinones not only intracellular accumulation is necessary prerequisite of lethal photosensitization of C. albicans, but also localization within particular

  17. Properties of photocatalytically generated oxygen species produced by Ag2Se-graphene oxide heterojunction and its application for the visible-light degradation of ammonia

    Science.gov (United States)

    Meng, Ze-Da; Zhao, Wei; Kim, Sukyoung

    2017-11-01

    Reactive oxygen species (ROS) can be produced by the interactions between sunlight and light-absorbing substances in aqueous environments, and these ROS are capable of destroying various organic pollutants in wastewater. In this study, the photocatalytic degradation of ammonia in petrochemical wastewater was investigated by solar light photocatalysis. We used graphene oxide modified Ag2Se nanoparticles to enhance the activity of photochemically generated oxygen (PGO) species. There was a catastrophic decrease in the surface area and pore volume of the Ag2Se-graphene oxide (Ag2Se-G) samples because of the deposition of Ag2Se. The generation of ROS was detected by the oxidation of 1,5- diphenyl carbazide (DPCI) to 1,5-diphenyl carbazone (DPCO). It was revealed that the photocurrent density and PGO effect increased with the graphene oxide modified. The experimental results indicate that this heterogeneous catalyst achieved a degradation of 88.43% under visiblelight irradiation. The NH3 degradation product was N2 and neither NO2- nor NO3- were detected.[Figure not available: see fulltext.

  18. Photoactivation by visible light of CdTe quantum dots for inline generation of reactive oxygen species in an automated multipumping flow system

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, David S.M.; Frigerio, Christian; Santos, Joao L.M. [Requimte, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira no. 228, 4050-313 Porto (Portugal); Prior, Joao A.V., E-mail: joaoavp@ff.up.pt [Requimte, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira no. 228, 4050-313 Porto (Portugal)

    2012-07-20

    Highlights: Black-Right-Pointing-Pointer CdTe quantum dots generate free radical species upon exposure to visible radiation. Black-Right-Pointing-Pointer A high power visible LED lamp was used as photoirradiation element. Black-Right-Pointing-Pointer The laboratory-made LED photocatalytic unit was implemented inline in a MPFS. Black-Right-Pointing-Pointer Free radical species oxidize luminol producing a strong chemiluminescence emission. Black-Right-Pointing-Pointer Epinephrine scavenges free radical species quenching chemiluminescence emission. - Abstract: Quantum dots (QD) are semiconductor nanocrystals able to generate free radical species upon exposure to an electromagnetic radiation, usually in the ultraviolet wavelength range. In this work, CdTe QD were used as highly reactive oxygen species (ROS) generators for the control of pharmaceutical formulations containing epinephrine. The developed approach was based on the chemiluminometric monitoring of the quenching effect of epinephrine on the oxidation of luminol by the produced ROS. Due to the relatively low energy band-gap of this chalcogenide a high power visible light emitting diode (LED) lamp was used as photoirradiation element and assembled in a laboratory-made photocatalytic unit. Owing to the very short lifetime of ROS and to ensure both reproducible generation and time-controlled reaction implementation and development, all reactional processes were implemented inline by using an automated multipumping micro-flow system. A linear working range for epinephrine concentration of up to 2.28 Multiplication-Sign 10{sup -6} mol L{sup -1} (r = 0.9953; n = 5) was verified. The determination rate was about 79 determinations per hour and the detection limit was about 8.69 Multiplication-Sign 10{sup -8} mol L{sup -1}. The results obtained in the analysis of epinephrine pharmaceutical formulations by using the proposed methodology were in good agreement with those furnished by the reference procedure, with

  19. Airborne particulate matter PM2.5 from Mexico City affects the generation of reactive oxygen species by blood neutrophils from asthmatics: an in vitro approach

    Directory of Open Access Journals (Sweden)

    Ceballos Guillermo

    2009-06-01

    Full Text Available Abstract Background The Mexico City Metropolitan Area is densely populated, and toxic air pollutants are generated and concentrated at a higher rate because of its geographic characteristics. It is well known that exposure to particulate matter, especially to fine and ultra-fine particles, enhances the risk of cardio-respiratory diseases, especially in populations susceptible to oxidative stress. The aim of this study was to evaluate the effect of fine particles on the respiratory burst of circulating neutrophils from asthmatic patients living in Mexico City. Methods In total, 6 subjects diagnosed with mild asthma and 11 healthy volunteers were asked to participate. Neutrophils were isolated from peripheral venous blood and incubated with fine particles, and the generation of reactive oxygen species was recorded by chemiluminescence. We also measured plasma lipoperoxidation susceptibility and plasma myeloperoxidase and paraoxonase activities by spectrophotometry. Results Asthmatic patients showed significantly lower plasma paraoxonase activity, higher susceptibility to plasma lipoperoxidation and an increase in myeloperoxidase activity that differed significantly from the control group. In the presence of fine particles, neutrophils from asthmatic patients showed an increased tendency to generate reactive oxygen species after stimulation with fine particles (PM2.5. Conclusion These findings suggest that asthmatic patients have higher oxidation of plasmatic lipids due to reduced antioxidant defense. Furthermore, fine particles tended to increase the respiratory burst of blood human neutrophils from the asthmatic group. On the whole, increased myeloperoxidase activity and susceptibility to lipoperoxidation with a concomitant decrease in paraoxonase activity in asthmatic patients could favor lung infection and hence disrupt the control of asthmatic crises.

  20. Efficient oxidative dissolution of V2O3 by the in situ electro-generated reactive oxygen species on N-doped carbon felt electrodes

    International Nuclear Information System (INIS)

    Xue, Yudong; Wang, Yunting; Zheng, Shili; Sun, Zhi; Zhang, Yi; Jin, Wei

    2017-01-01

    Highlights: • Novel alkaline electro-Fenton-like was applied for V 2 O 3 oxidative dissolution. • N-doped carbon felt electrode was fabricated for the two-electron ORR. • ROS including ·OH and HO 2 − was in-situ generated from the electrochemical system. • A significant enhancement of V 2 O 3 dissolution was achieved due to the ROS. - Abstract: Oxidative dissolution is a critical step for the efficient remediation of heavy metal oxides in large-scale solid wastes. In the present study, a novel electro-oxidative dissolution process of V 2 O 3 to VO 4 3− is achieved by the in-situ generated reactive oxygen species on the N-doped carbon felt cathode in alkaline media. The electro-catalytic HO 2 − generation and hydrophilic behavior were significantly enhanced by the introduction of nitrogen-containing functional groups. Besides, the mechanism of electrochemical vanadium conversion is systematically illustrated, and a vanadium self-induced electro-Fenton-like reaction is proposed. By employing the radical quenching and ESR measurements, the contributions for V(III) dissolution is determined to be 43.5% by HO 2 − and 56.5% by hydroxyl radicals, respectively. It should be noted that the V 2 O 3 solid particles can be efficiently dissolved via adsorption-reaction scheme on the carbon felt electrode. This novel electrochemical strategy provides a promising solution for the heavy metal oxide treatment and further understanding for the in situ reactive oxygen species.

  1. On methods for the detection of reactive oxygen species generation by human spermatozoa: analysis of the cellular responses to catechol oestrogen, lipid aldehyde, menadione and arachidonic acid.

    Science.gov (United States)

    Aitken, R J; Smith, T B; Lord, T; Kuczera, L; Koppers, A J; Naumovski, N; Connaughton, H; Baker, M A; De Iuliis, G N

    2013-03-01

    Oxidative stress is known to have a major impact on human sperm function and, as a result, there is a need to develop sensitive methods for measuring reactive oxygen species (ROS) generation by these cells. A variety of techniques have been developed for this purpose including chemiluminescence (luminol and lucigenin), flow cytometry (MitoSOX Red, dihydroethidium, 4,5-diaminofluorescein diacetate and 2',7'-dichlorodihydrofluorescein diacetate) and spectrophotometry (nitroblue tetrazolium). The relative sensitivity of these assays and their comparative ability to detect ROS generated in different subcellular compartments of human spermatozoa, have not previously been investigated. To address this issue, we have compared the performance of these assays when ROS generation was triggered with a variety of reagents including 2-hydroxyestradiol, menadione, 4-hydroxynonenal and arachidonic acid. The results revealed that menadione predominantly induced release of ROS into the extracellular space where these metabolites could be readily detected by luminol-peroxidase and, to a lesser extent, 2',7'-dichlorodihydrofluorescein. However, such sensitivity to extracellular ROS meant that these assays were particularly vulnerable to interference by leucocytes. The remaining reagents predominantly elicited ROS generation by the sperm mitochondria and could be optimally detected by MitoSOX Red and DHE. Examination of spontaneous ROS generation by defective human spermatozoa revealed that MitoSOX Red was the most effective indicator of oxidative stress, thereby emphasizing the general importance of mitochondrial dysregulation in the aetiology of defective sperm function. © 2013 American Society of Andrology and European Academy of Andrology.

  2. Rap1 signaling is required for suppression of Ras-generated reactive oxygen species and protection against oxidative stress in T lymphocytes

    NARCIS (Netherlands)

    Remans, Philip H. J.; Gringhuis, Sonja I.; van Laar, Jacob M.; Sanders, Marjolein E.; Papendrecht-van der Voort, Ellen A. M.; Zwartkruis, Fried J. T.; Levarht, E. W. Nivine; Rosas, Marcela; Coffer, Paul J.; Breedveld, Ferdinand C.; Bos, Johannes L.; Tak, Paul P.; Verweij, Cornelis L.; Reedquist, Kris A.

    2004-01-01

    Transient production of reactive oxygen species (ROS) plays an important role in optimizing transcriptional and proliferative responses to TCR signaling in T lymphocytes. Conversely, chronic oxidative stress leads to decreased proliferative responses and enhanced transcription of inflammatory gene

  3. NADPH oxidase-mediated generation of reactive oxygen species: A new mechanism for X-ray-induced HeLa cell death

    International Nuclear Information System (INIS)

    Liu Qing; He Xiaoqing; Liu Yongsheng; Du Bingbing; Wang Xiaoyan; Zhang Weisheng; Jia Pengfei; Dong Jingmei; Ma Jianxiu; Wang Xiaohu; Li Sha; Zhang Hong

    2008-01-01

    Oxidative damage is an important mechanism in X-ray-induced cell death. Radiolysis of water molecules is a source of reactive oxygen species (ROS) that contribute to X-ray-induced cell death. In this study, we showed by ROS detection and a cell survival assay that NADPH oxidase has a very important role in X-ray-induced cell death. Under X-ray irradiation, the upregulation of the expression of NADPH oxidase membrane subunit gp91 phox was dose-dependent. Meanwhile, the cytoplasmic subunit p47 phox was translocated to the cell membrane and localized with p22 phox and gp91 phox to form reactive NADPH oxidase. Our data suggest, for the first time, that NADPH oxidase-mediated generation of ROS is an important contributor to X-ray-induced cell death. This suggests a new target for combined gene transfer and radiotherapy.

  4. Curcumin enhances the effects of irinotecan on colorectal cancer cells through the generation of reactive oxygen species and activation of the endoplasmic reticulum stress pathway.

    Science.gov (United States)

    Huang, Yan-Feng; Zhu, Da-Jian; Chen, Xiao-Wu; Chen, Qi-Kang; Luo, Zhen-Tao; Liu, Chang-Chun; Wang, Guo-Xin; Zhang, Wei-Jie; Liao, Nv-Zhu

    2017-06-20

    Although initially effective against metastatic colorectal cancer (CRC), irinotecan-based chemotherapy leads to resistance and adverse toxicity. Curcumin is well known for its anti-cancer effects in many cancers, including CRC. Here, we describe reactive oxygen species (ROS) generation and endoplasmic reticulum (ER) stress as important mechanisms by which curcumin enhances irinotecan's effects on CRC cells. CRC cell lines were treated with curcumin and/or irinotecan for 24 h, and then evaluated using cell proliferation assays, cell apoptosis assays, cell cycle analysis, intracellular Ca2+ measurements, ROS measurements and immunoblotting for key ER stress-related proteins. We found that cell viability was inhibited and apoptosis was increased, accompanied by ROS generation and ER stress activation in CRC cells treated with curcumin alone or in combination with irinotecan. Blocking ROS production attenuated the expression of two markers of ER stress: binding of immunoglobulin protein (BIP) and CCAAT/enhancer-binding protein homologous protein (CHOP). Blocking CHOP expression using RNA interference also inhibited ROS generation. These results demonstrated that curcumin could enhance the effects of irinotecan on CRC cells by inhibiting cell viability and inducing cell cycle arrest and apoptosis, and that these effects may be mediated, in part, by ROS generation and activation of the ER stress pathway.

  5. Ex vivo effects of an Oenothera paradoxa extract on the reactive oxygen species generation and neutral endopeptidase activity in neutrophils from patients after acute myocardial infarction.

    Science.gov (United States)

    Kiss, Anna K; Kapłon-Cieślicka, Agnieszka; Filipiak, Krzysztof J; Opolski, Grzegorz; Naruszewicz, Marek

    2012-04-01

    Oxidative stress induced by reactive oxygen species (ROS) is considered to play an important part in the aetiology of coronary heart disease. Apart from ROS, neutrophils are a source of neutral endopeptidase (NEP) that inactivates protective natriuretic peptides. The aim of the present study was to evaluate the in vitro ROS generation and inhibition of NEP activity in neutrophils obtained from healthy volunteers and from patients after acute myocardial infarction (AMI) by an aqueous extract of Oenothera paradoxa. Neutrophils isolated from AMI patients showed two-fold higher ROS generation compared with cells from healthy donors, especially in the lucigenin-enhanced luminescence model, which suggests intensive O₂⁻ generation. The addition of O. paradoxa extract at concentrations of 0.2, 2 and 20 µg/mL resulted in a significant reduction in ROS generation. The extracellular NEP activity was higher in patients after AMI compared with healthy individuals (15.0 ± 0.9 versus 10.3 ± 0.5 nmol AMC/10(6) cells/60 min; p = 0.001). The addition of O. paradoxa extract at concentrations of 20, 50 and 100 µg/mL resulted in a significant reduction in NEP activity in both groups. O. paradoxa extract appears to be an interesting candidate for supplementation in the prevention of cardiovascular diseases. Copyright © 2011 John Wiley & Sons, Ltd.

  6. Cells with dysfunctional telomeres are susceptible to reactive oxygen species hydrogen peroxide via generation of multichromosomal fusions and chromosomal fragments bearing telomeres

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Seon Rang [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of); Department of Biochemistry, College of Medicine, Korea University, Seoul 136-705 (Korea, Republic of); Park, Jeong-Eun; Juhn, Kyoung-Mi; Ju, Yeun-Jin; Jeong, Jaemin [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of); Kang, Chang-Mo; Yun, Hyun Jin [Division of Radiation Effect, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of); Yun, Mi Yong; Shin, Hyun-Jin; Joo, Hyun-Yoo; Park, Eun-Ran; Park, In-Chul; Hong, Sung Hee; Hwang, Sang-Gu [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of); Kim, Haekwon [Department of Biotechnology, Seoul Woman' s University, Seoul 139-774 (Korea, Republic of); Cho, Myung-Haing [Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul 151-742 (Korea, Republic of); Kim, Sang Hoon [Department of Biology, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Park, Gil Hong [Department of Biochemistry, College of Medicine, Korea University, Seoul 136-705 (Korea, Republic of); Lee, Kee-Ho, E-mail: khlee@kirams.re.kr [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of)

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Under conditions of telomere erosion, cells become extremely sensitive to H{sub 2}O{sub 2}. Black-Right-Pointing-Pointer Chromosomal regions adjacent to telomeres are cleaved by H{sub 2}O{sub 2} under such conditions. Black-Right-Pointing-Pointer H{sub 2}O{sub 2} thus causes multichromosomal fusions and generation of small chromosomal fragments. Black-Right-Pointing-Pointer N-acetylcysteine prevents H{sub 2}O{sub 2}-induced chromosomal aberrations. -- Abstract: During genotoxic stress, reactive oxygen species hydrogen peroxide (H{sub 2}O{sub 2}) is a prime mediator of the DNA damage response. Telomeres function both to assist in DNA damage repair and to inhibit chromosomal end-to-end fusion. Here, we show that telomere dysfunction renders cells susceptible to H{sub 2}O{sub 2}, via generation of multichromosomal fusion and chromosomal fragments. H{sub 2}O{sub 2} caused formation of multichromosomal end-to-end fusions involving more than three chromosomes, preferentially when telomeres were erosive. Interestingly, extensive chromosomal fragmentation (yielding small-sized fragments) occurred only in cells exhibiting such multichromosomal fusions. Telomeres were absent from fusion points, being rather present in the small fragments, indicating that H{sub 2}O{sub 2} cleaves chromosomal regions adjacent to telomeres. Restoration of telomere function or addition of the antioxidant N-acetylcysteine prevented development of chromosomal aberrations and rescued the observed hypersensitivity to H{sub 2}O{sub 2}. Thus, chromosomal regions adjacent to telomeres become sensitive to reactive oxygen species hydrogen peroxide when telomeres are dysfunctional, and are cleaved to produce multichromosomal fusions and small chromosomal fragments bearing the telomeres.

  7. Diosgenin Induces Apoptosis in HepG2 Cells through Generation of Reactive Oxygen Species and Mitochondrial Pathway

    Directory of Open Access Journals (Sweden)

    Dae Sung Kim

    2012-01-01

    Full Text Available Diosgenin, a naturally occurring steroid saponin found abundantly in legumes and yams, is a precursor of various synthetic steroidal drugs. Diosgenin is studied for the mechanism of its action in apoptotic pathway in human hepatocellular carcinoma cells. Based on DAPI staining, diosgenin-treated cells manifested nuclear shrinkage, condensation, and fragmentation. Treatment of HepG2 cells with 40 μM diosgenin resulted in activation of the caspase-3, -8, -9 and cleavage of poly-ADP-ribose polymerase (PARP and the release of cytochrome c. In the upstream, diosgenin increased the expression of Bax, decreased the expression of Bid and Bcl-2, and augmented the Bax/Bcl-2 ratio. Diosgenin-induced, dose-dependent induction of apoptosis was accompanied by sustained phosphorylation of JNK, p38 MAPK and apoptosis signal-regulating kinase (ASK-1, as well as generation of the ROS. NAC administration, a scavenger of ROS, reversed diosgene-induced cell death. These results suggest that diosgenin-induced apoptosis in HepG2 cells through Bcl-2 protein family-mediated mitochndria/caspase-3-dependent pathway. Also, diosgenin strongly generated ROS and this oxidative stress might induce apoptosis through activation of ASK1, which are critical upstream signals for JNK/p38 MAPK activation in HepG2 cancer cells.

  8. TMEM16A Contributes to Endothelial Dysfunction by Facilitating Nox2 NADPH Oxidase-Derived Reactive Oxygen Species Generation in Hypertension.

    Science.gov (United States)

    Ma, Ming-Ming; Gao, Min; Guo, Kai-Min; Wang, Mi; Li, Xiang-Yu; Zeng, Xue-Lin; Sun, Lu; Lv, Xiao-Fei; Du, Yan-Hua; Wang, Guan-Lei; Zhou, Jia-Guo; Guan, Yong-Yuan

    2017-05-01

    Ca 2+ -activated Cl - channels play a crucial role in various physiological processes. However, the role of TMEM16A in vascular endothelial dysfunction during hypertension is unclear. In this study, we investigated the specific involvement of TMEM16A in regulating endothelial function and blood pressure and the underlying mechanism. Reverse transcription-polymerase chain reaction, Western blotting, coimmunoprecipitation, confocal imaging, patch-clamp recordings, and TMEM16A endothelial-specific transgenic and knockout mice were used. We found that TMEM16A was expressed abundantly and functioned as a Ca 2+ -activated Cl - channel in endothelial cells. Angiotensin II induced endothelial dysfunction with an increase in TMEM16A expression. The knockout of endothelial-specific TMEM16A significantly lowered the blood pressure and ameliorated endothelial dysfunction in angiotensin II-induced hypertension, whereas the overexpression of endothelial-specific TMEM16A resulted in the opposite effects. These results were related to the increased reactive oxygen species production, Nox2-containing NADPH oxidase activation, and Nox2 and p22phox protein expression that were facilitated by TMEM16A on angiotensin II-induced hypertensive challenge. Moreover, TMEM16A directly bound with Nox2 and reduced the degradation of Nox2 through the proteasome-dependent degradation pathway. Therefore, TMEM16A is a positive regulator of endothelial reactive oxygen species generation via Nox2-containing NADPH oxidase, which induces endothelial dysfunction and hypertension. Modification of TMEM16A may be a novel therapeutic strategy for endothelial dysfunction-associated diseases. © 2017 American Heart Association, Inc.

  9. Effect of extracellular generation of the reactive oxygen species, singlet oxygen (1O2), on the electrophysiological properties of cultured cortical neurons

    DEFF Research Database (Denmark)

    Breitenbach, Thomas; Sinks, Louise, E.; Vionogradov, Sergej A.

    (ABM) were made from cultured rat cortical neurons to provide insight into the events following extracellular generation of 1O2. Membrane resistance (Rm), capacitance (Cm), holding current (Ihold), and firing properties were monitored throughout. The V/I relationship was investigated with 1 s duration...... current steps of 0.1 nA (-0.4 - 1 nA). The PS, dissolved in ABM (10 µM), was administered by local application directly to the neuron monitored. The intensity of the applied light at 455 nm was adjusted by neutral density filters. Phosphorescence at 700 nm proved the presence of the PS, which was absent...

  10. Ultraviolet B preconditioning enhances the hair growth-promoting effects of adipose-derived stem cells via generation of reactive oxygen species.

    Science.gov (United States)

    Jeong, Yun-Mi; Sung, Young Kwan; Kim, Wang-Kyun; Kim, Ji Hye; Kwack, Mi Hee; Yoon, Insoo; Kim, Dae-Duk; Sung, Jong-Hyuk

    2013-01-01

    Hypoxia induces the survival and regenerative potential of adipose-derived stem cells (ASCs), but there are tremendous needs to find alternative methods for ASC preconditioning. Therefore, this work investigated: (1) the ability of low-dose ultraviolet B (UVB) radiation to stimulate the survival, migration, and tube-forming activity of ASCs in vitro; (2) the ability of UVB preconditioning to enhance the hair growth-promoting capacity of ASCs in vivo; and (3) the mechanism of action for ASC stimulation by UVB. Although high-dose UVB decreased the proliferation of ASCs, low-dose (10 or 20 mJ/cm(2)) treatment increased their survival, migration, and tube-forming activity. In addition, low-dose UVB upregulated the expression of ASC-derived growth factors, and a culture medium conditioned by UVB-irradiated ASCs increased the proliferation of dermal papilla and outer root sheet cells. Notably, injection of UVB-preconditioned ASCs into C(3)H/HeN mice significantly induced the telogen-to-anagen transition and increased new hair weight in vivo. UVB treatment significantly increased the generation of reactive oxygen species (ROS) in cultured ASCs, and inhibition of ROS generation by diphenyleneiodonium chloride (DPI) significantly attenuated UVB-induced ASC stimulation. Furthermore, NADPH oxidase 4 (Nox4) expression was induced in ASCs by UVB irradiation, and Nox4 silencing by small interfering RNA, like DPI, significantly reduced UVB-induced ROS generation. These results suggest that the primary involvement of ROS generation in UVB-mediated ASC stimulation occurs via the Nox4 enzyme. This is the first indication that a low dose of UVB radiation and/or the control of ROS generation could potentially be incorporated into a novel ASC preconditioning method for hair regeneration.

  11. Dopamine in human follicular fluid is associated with cellular uptake and metabolism-dependent generation of reactive oxygen species in granulosa cells: implications for physiology and pathology.

    Science.gov (United States)

    Saller, S; Kunz, L; Berg, D; Berg, U; Lara, H; Urra, J; Hecht, S; Pavlik, R; Thaler, C J; Mayerhofer, A

    2014-03-01

    Is the neurotransmitter dopamine (DA) in the human ovary involved in the generation of reactive oxygen species (ROS)? Human ovarian follicular fluid contains DA, which causes the generation of ROS in cultured human granulosa cells (GCs), and alterations of DA levels in follicular fluid and DA uptake/metabolism in GCs in patients with polycystic ovary syndrome (PCOS) are linked to increased levels of ROS. DA is an important neurotransmitter in the brain, and the metabolism of DA results in the generation of ROS. DA was detected in human ovarian homogenates, but whether it is present in follicular fluid and plays a role in the follicle is not known. We used human follicular fluid from patients undergoing in vitro fertilization (IVF), GCs from patients with or without PCOS and also employed mathematical modeling to investigate the presence of DA and its effects on ROS. DA in follicular fluid and GCs was determined by enzyme-linked immunosorbent assay. GC viability, apoptosis and generation of ROS were monitored in GCs upon addition of DA. Inhibitors of DA uptake and metabolism, an antioxidant and DA receptor agonists, were used to study cellular uptake and the mechanism of DA-induced ROS generation. Human GCs were examined for the presence and abundance of transcripts of the DA transporter (DAT; SLC6A3), the DA-metabolizing enzymes monoamine oxidases A/B (MAO-A/B) and catechol-O-methyltransferase and the vesicular monoamine transporter. A computational model was developed to describe and predict DA-induced ROS generation in human GCs. We found DA in follicular fluid of ovulatory follicles of the human ovary and in GCs. DAT and MAO-A/B, which are expressed by GCs, are prerequisites for a DA receptor-independent generation of ROS in GCs. Blockers of DAT and MAO-A/B, as well as an antioxidant, prevented the generation of ROS (P human follicular compartment, functions of DA could only be studied in IVF-derived GCs, which can be viewed as a cellular model for the

  12. The effect of tobacco smoke exposure on the generation of reactive oxygen species and cellular membrane damage using co-culture model of blood brain barrier with astrocytes.

    Science.gov (United States)

    Seo, Seung-Beom; Choe, Eun Sang; Kim, Kwang-Sik; Shim, Soon-Mi

    2017-06-01

    Brain tissue is known to be vulnerable to the exposure by tobacco smoke. Tobacco smoke can induce generation of reactive oxygen species (ROS), causing inflammatory activity and blood-brain barrier (BBB) impairment. The aim of the present study was to investigate the effect of tobacco smoke on cell cytotoxicity, generation of ROS, and cellular membrane damage in astrocytes and BBB using a co-culture system. Cell viability of U373MG cells was reduced in a dose-dependent manner, ranging from 96.7% to 40.3% by tobacco smoke condensate (TSC). Cell viability of U373MG co-cultured with human brain microvascular endothelial cells (HBMECs) was 104.9% at the IC 50 value of TSC. Trans-epithelial electric resistance values drastically decreased 80% following 12-h incubation. The value was maintained until 48 h and then increased at 72-h incubation (85%). It then decreased to 75% at 120 h. Generation of ROS increased in a dose-dependent manner, ranging from 102.7% to 107.9%, when various concentrations of TSC (4-16 mg/mL) were administered to the U373MG monoculture. When TSC was added into U373MG co-cultured with HBMECs, production of ROS ranged from 101.7% to 102.6%, slightly increasing over 12 h. Maximum exposure-generated ROS of 104.8% was reached at 24 h. Cell cytotoxicity and oxidative stress levels in the U373MG co-culture model system with HBMECs were lower than U373MG monoculture. HBMECs effectively acted as a barrier to protect the astrocytes (U373MG) from toxicity of TSC.

  13. Deconvoluting Mixtures ofEmissions Sources to Investigate PM2.5's Ability to Generate Reactive Oxygen Species and its Associations with Cardiorespiratory Effects

    Science.gov (United States)

    Weber, R. J.; Bates, J.; Abrams, J.; Verma, V.; Fang, T.; Klein, M.; Strickland, M. J.; Sarnat, S. E.; Chang, H. H.; Mulholland, J. A.; Tolbert, P. E.; Russell, A. G.

    2015-12-01

    It is hypothesized that fine particulate matter (PM2.5) inhalation can catalytically generate reactive oxygen species (ROS) in excess of the body's antioxidant capacity, leading to oxidative stress and ultimately adverse health. PM2.5 emissions from different sources vary widely in chemical composition, with varied effects on the body. Here, the ability of mixtures of different sources of PM2.5 to generate ROS and associations of this capability with acute health effects were investigated. A dithiothreitol (DTT) assay that integrates over different sources was used to quantify ROS generation potential of ambient water-soluble PM2.5 in Atlanta from June 2012 - June 2013. PM2.5 source impacts, estimated using the Chemical Mass Balance method with ensemble-averaged source impact profiles, were related to DTT activity using a linear regression model, which provided information on intrinsic DTT activity (i.e., toxicity) of each source. The model was then used to develop a time series of daily DTT activity over a ten-year period (1998-2010) for use in an epidemiologic study. Light-duty gasoline vehicles exhibited the highest intrinsic DTT activity, followed by biomass burning and heavy-duty diesel vehicles. Biomass burning contributed the largest fraction to total DTT activity, followed by gasoline and diesel vehicles (45%, 20% and 14%, respectively). These results suggest the importance of aged oxygenated organic aerosols and metals in ROS generation. Epidemiologic analyses found significant associations between estimated DTT activity and emergency department visits for congestive heart failure and asthma/wheezing attacks in the 5-county Atlanta area. Estimated DTT activity was the only pollutant measure out of PM2.5, O3, and PM2.5 constituents elemental carbon and organic carbon) that exhibited a significant link to congestive heart failure. In two-pollutant models, DTT activity was significantly associated with asthma/wheeze and congestive heart failure while PM2

  14. Reactive oxygen species generation mediated by NADPH oxidase and PI3K/Akt pathways contribute to invasion of Streptococcus agalactiae in human endothelial cells.

    Science.gov (United States)

    Oliveira, Jessica Silva Santos de; Santos, Gabriela da Silva; Moraes, João Alfredo; Saliba, Alessandra Mattos; Barja-Fidalgo, Thereza Christina; Mattos-Guaraldi, Ana Luíza; Nagao, Prescilla Emy

    2018-01-01

    BACKGROUND Streptococcus agalactiae can causes sepsis, pneumonia, and meningitis in neonates, the elderly, and immunocompromised patients. Although the virulence properties of S. agalactiae have been partially elucidated, the molecular mechanisms related to reactive oxygen species (ROS) generation in infected human endothelial cells need further investigation. OBJECTIVES This study aimed to evaluate the influence of oxidative stress in human umbilical vein endothelial cells (HUVECs) during S. agalactiae infection. METHODS ROS production during S. agalactiae-HUVEC infection was detected using the probe CM-H2DCFDA. Microfilaments labelled with phalloidin-FITC and p47phox-Alexa 546 conjugated were analysed by immunofluorescence. mRNA levels of p47phox (NADPH oxidase subunit) were assessed using Real Time qRT-PCR. The adherence and intracellular viability of S. agalactiae in HUVECs with or without pre-treatment of DPI, apocynin (NADPH oxidase inhibitors), and LY294002 (PI3K inhibitor) were evaluated by penicillin/gentamicin exclusion. Phosphorylation of p47phox and Akt activation by S. agalactiae were evaluated by immunoblotting analysis. FINDINGS Data showed increased ROS production 15 min after HUVEC infection. Real-Time qRT-PCR and western blotting performed in HUVEC infected with S. agalactiae detected alterations in mRNA levels and activation of p47phox. Pre-treatment of endothelial cells with NADPH oxidase (DPI and apocynin) and PI3K/Akt pathway (LY294002) inhibitors reduced ROS production, bacterial intracellular viability, and generation of actin stress fibres in HUVECs infected with S. agalactiae. CONCLUSIONS ROS generation via the NADPH oxidase pathway contributes to invasion of S. agalactiae in human endothelial cells accompanied by cytoskeletal reorganisation through the PI3K/Akt pathway, which provides novel evidence for the involvement of oxidative stress in S. agalactiae pathogenesis.

  15. The influence of endogenously generated reactive oxygen species on the inotropic and chronotropic effects of adrenoceptor and ET-receptor stimulation

    NARCIS (Netherlands)

    Sand, Carsten; Peters, Stephan L. M.; Pfaffendorf, Martin; van Zwieten, Pieter A.

    2003-01-01

    Reactive oxygen species (ROS) play a role in cardiovascular diseases such as heart failure and hypertension. Furthermore, increasing evidence has accumulated suggesting that ROS can also be formed subsequent to the stimulation of various receptors, thus functioning as second messengers. The

  16. Characterization of xanthophyll pigments, photosynthetic performance, photon energy dissipation, reactive oxygen species generation and carbon isotope discrimination during artemisinin-induced stress in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    M Iftikhar Hussain

    Full Text Available Artemisinin, a potent antimalarial drug, is phytotoxic to many crops and weeds. The effects of artemisinin on stress markers, including fluorescence parameters, photosystem II photochemistry, photon energy dissipation, lipid peroxidation, reactive oxygen species generation and carbon isotope discrimination in Arabidopsis thaliana were studied. Arabidopsis ecotype Columbia (Col-0 seedlings were grown in perlite and watered with 50% Hoagland nutrient solution. Adult plants of Arabidopsis were treated with artemisinin at 0, 40, 80, 160 μM for one week. Artemisinin, in the range 40-160 μM, decreased the fresh biomass, chl a, b and leaf mineral contents. Photosynthetic efficiency, yield and electron transport rate in Arabidopsis were also reduced following exposure to 80 and 160 μM artemisinin. The ΦNPQ and NPQ were less than control. Artemisinin treatment caused an increase in root oxidizability and lipid peroxidation (MDA contents of Arabidopsis. Calcium and nitrogen contents decreased after 80 and 160 μM artemisinin treatment compared to control. δ13C values were less negative following treatment with artemisinin as compared to the control. Artemisinin also decreased leaf protein contents in Arabidopsis. Taken together, these data suggest that artemisinin inhibits many physiological and biochemical processes in Arabidopsis.

  17. Myricetin-induced apoptosis of triple-negative breast cancer cells is mediated by the iron-dependent generation of reactive oxygen species from hydrogen peroxide.

    Science.gov (United States)

    Knickle, Allison; Fernando, Wasundara; Greenshields, Anna L; Rupasinghe, H P Vasantha; Hoskin, David W

    2018-05-06

    Myricetin is a dietary phytochemical with anticancer activity; however, the effect of myricetin on breast cancer cells remains unclear. Here, we show that myricetin inhibited the growth of triple-negative breast cancer (TNBC) cells but was less inhibitory for normal cells. The effect of myricetin was comparable to epigallocatechin gallate and doxorubicin, and greater than resveratrol and cisplatin. Myricetin-treated TNBC cells showed evidence of early and late apoptosis/necrosis, which was associated with intracellular reactive oxygen species (ROS) accumulation, extracellular regulated kinase 1/2 and p38 mitogen-activated protein kinase activation, mitochondrial membrane destabilization and cytochrome c release, and double-strand DNA breaks. The antioxidant N-acetyl-cysteine protected myricetin-treated TNBC cells from cytotoxicity due to DNA damage. Myricetin also induced hydrogen peroxide (H 2 O 2 ) production in cell-free culture medium, as well as in the presence of TNBC cells and normal cells. In addition, deferriprone-mediated inhibition of intracellular ROS generation via the iron-dependent Fenton reaction and inhibition of extracellular ROS accumulation with superoxide dismutase plus catalase prevented myricetin-induced cytotoxicity in TNBC cell cultures. We conclude that the cytotoxic effect of myricetin on TNBC cells was due to oxidative stress initiated by extracellular H 2 O 2 formed by autoxidation of myricetin, leading to intracellular ROS production via the Fenton reaction. Copyright © 2018. Published by Elsevier Ltd.

  18. 7-ketocholesterol induces apoptosis of MC3T3-E1 cells associated with reactive oxygen species generation, endoplasmic reticulum stress and caspase-3/7 dependent pathway

    Directory of Open Access Journals (Sweden)

    Yuta Sato

    2017-03-01

    Full Text Available Type 2 diabetes mellitus (T2DM is associated with an increased risk of bone fractures without reduction of bone mineral density. The cholesterol oxide 7-ketocholesterol (7KCHO has been implicated in numerous diseases such as atherosclerosis, Alzheimer's disease, Parkinson's disease, cancer, age-related macular degeneration and T2DM. In the present study, 7KCHO decreased the viability of MC3T3-E1 cells, increased reactive oxygen species (ROS production and apoptotic rate, and upregulated the caspase-3/7 pathway. Furthermore, these effects of 7KCHO were abolished by pre-incubation of the cells with N-acetylcysteine (NAC, an ROS inhibitor. Also, 7KCHO enhanced the mRNA expression of two endoplasmic reticulum (ER stress markers; CHOP and GRP78, in MC3T3-E1 cells. Pre-incubation of the cells with NAC suppressed the 7KCHO-induced upregulation of CHOP, but not GRP78. In conclusion, we demonstrated that 7KCHO induced apoptosis of MC3T3-E1 cells associated with ROS generation, ER stress, and caspase-3/7 activity, and the effects of 7KCHO were abolished by the ROS inhibitor NAC. These findings may provide new insight into the relationship between oxysterol and pathophysiology of osteoporosis seen in T2DM.

  19. SIRT3 Expression Decreases with Reactive Oxygen Species Generation in Rat Cortical Neurons during Early Brain Injury Induced by Experimental Subarachnoid Hemorrhage

    Directory of Open Access Journals (Sweden)

    Wei Huang

    2016-01-01

    Full Text Available Sirtuin3 (SIRT3 is an important protein deacetylase which predominantly presents in mitochondria and exhibits broad bioactivities including regulating energy metabolism and counteracting inflammatory effect. Since inflammatory cascade was proved to be critical for pathological damage following subarachnoid hemorrhage (SAH, we investigated the overall expression and cell-specific distribution of SIRT3 in the cerebral cortex of Sprague-Dawley rats with experimental SAH induced by internal carotid perforation. Results suggested that SIRT3 was expressed abundantly in neurons and endothelia but rarely in gliocytes in normal cerebral cortex. After experimental SAH, mRNA and protein expressions of SIRT3 decreased significantly as early as 8 hours and dropped to the minimum value at 24 h after SAH. By contrast, SOD2 expression increased slowly as early as 12 hours after experimental SAH, rose up sharply at the following 12 hours, and then was maintained at a higher level. In conclusion, attenuated SIRT3 expression in cortical neurons was associated closely with enhanced reactive oxygen species generation and cellular apoptosis, implying that SIRT3 might play an important neuroprotective role during early brain injury following SAH.

  20. d -Limonene sensitizes docetaxel-induced cytotoxicity in human prostate cancer cells: Generation of reactive oxygen species and induction of apoptosis

    Directory of Open Access Journals (Sweden)

    Rabi Thangaiyan

    2009-01-01

    Full Text Available Background: Clinical trials have shown that docetaxel combined with other novel agents can improve the survival of androgen-independent prostate cancer patients. d -Limonene, a non-nutrient dietary component, has been found to inhibit various cancer cell growths without toxicity. We sought to characterize whether a non-toxic dose of d -limonene may enhance tumor response to docetaxel in an in vitro model of metastatic prostate cancer. Materials and Methods: Human prostate carcinoma DU-145 and normal prostate epithelial PZ-HPV-7 cells were treated with various concentrations of d -limonene, docetaxel or a combination of both, and cell viability was determined by MTT assay. Intracellular reactive oxygen species (ROS, reduced glutathione (GSH and caspase activity were measured. Apoptosis and apoptosis-related proteins were studied by enzyme-linked immunosorbent assay and Western blotting, respectively. Results: d -Limonene and docetaxel in combination significantly enhanced the cytotoxicity to DU-145 cells than PZ-HPV-7 cells. Exposure of DU-145 cells to a combined d -limonene and docetaxel resulted in higher ROS generation, depletion of GSH, accompanied by increased caspase activity than docetaxel alone. It also triggered a series of effects involving cytochrome c , cleavages of caspase-9, 3 and poly (ADP-ribose polymerase, and a shift in Bad:Bcl-xL ratio in favor of apoptosis. Apoptotic effect was significantly blocked on pretreatment with N -acetylcystein, indicating that antitumor effect is initiated by ROS generation, and caspase cascades contribute to the cell death. Conclusion: Our results show, for the first time, that d -limonene enhanced the antitumor effect of docetaxel against prostate cancer cells without being toxic to normal prostate epithelial cells. The combined beneficial effect could be through the modulation of proteins involved in mitochondrial pathway of apoptosis. d -Limonene could be used as a potent non-toxic agent to

  1. The mechanism of Intralipid®-mediated cardioprotection complex IV inhibition by the active metabolite, palmitoylcarnitine, generates reactive oxygen species and activates reperfusion injury salvage kinases.

    Directory of Open Access Journals (Sweden)

    Phing-How Lou

    Full Text Available Intralipid® administration at reperfusion elicits protection against myocardial ischemia-reperfusion injury. However, the underlying mechanisms are not fully understood.Sprague-Dawley rat hearts were exposed to 15 min of ischemia and 30 min of reperfusion in the absence or presence of Intralipid® 1% administered at the onset of reperfusion. In separate experiments, the reactive oxygen species (ROS scavenger N-(2-mercaptopropionyl-glycine was added either alone or with Intralipid®. Left ventricular work and activation of Akt, STAT3, and ERK1/2 were used to evaluate cardioprotection. ROS production was assessed by measuring the loss of aconitase activity and the release of hydrogen peroxide using Amplex Red. Electron transport chain complex activities and proton leak were measured by high-resolution respirometry in permeabilized cardiac fibers. Titration experiments using the fatty acid intermediates of Intralipid® palmitoyl-, oleoyl- and linoleoylcarnitine served to determine concentration-dependent inhibition of complex IV activity and mitochondrial ROS release.Intralipid® enhanced postischemic recovery and activated Akt and Erk1/2, effects that were abolished by the ROS scavenger N-(2-mercaptopropionylglycine. Palmitoylcarnitine and linoleoylcarnitine, but not oleoylcarnitine concentration-dependently inhibited complex IV. Only palmitoylcarnitine reached high tissue concentrations during early reperfusion and generated significant ROS by complex IV inhibition. Palmitoylcarnitine (1 µM, administered at reperfusion, also fully mimicked Intralipid®-mediated protection in an N-(2-mercaptopropionyl-glycine -dependent manner.Our data describe a new mechanism of postconditioning cardioprotection by the clinically available fat emulsion, Intralipid®. Protection is elicited by the fatty acid intermediate palmitoylcarnitine, and involves inhibition of complex IV, an increase in ROS production and activation of the RISK pathway.

  2. The hydroxypyridinone iron chelator CP94 increases methyl-aminolevulinate-based photodynamic cell killing by increasing the generation of reactive oxygen species

    Directory of Open Access Journals (Sweden)

    Yuktee Dogra

    2016-10-01

    Full Text Available Methyl-aminolevulinate-based photodynamic therapy (MAL-PDT is utilised clinically for the treatment of non-melanoma skin cancers and pre-cancers and the hydroxypyridinone iron chelator, CP94, has successfully been demonstrated to increase MAL-PDT efficacy in an initial clinical pilot study. However, the biochemical and photochemical processes leading to CP94-enhanced photodynamic cell death, beyond the well-documented increases in accumulation of the photosensitiser protoporphyrin IX (PpIX, have not yet been fully elucidated. This investigation demonstrated that MAL-based photodynamic cell killing of cultured human squamous carcinoma cells (A431 occurred in a predominantly necrotic manner following the generation of singlet oxygen and ROS. Augmenting MAL-based photodynamic cell killing with CP94 co-treatment resulted in increased PpIX accumulation, MitoSOX-detectable ROS generation (probably of mitochondrial origin and necrotic cell death, but did not affect singlet oxygen generation. We also report (to our knowledge, for the first time the detection of intracellular PpIX-generated singlet oxygen in whole cells via electron paramagnetic resonance spectroscopy in conjunction with a spin trap.

  3. The Comparative Study of the Effects of Extremely Low Frequency Electromagnetic Fields and Infrasound on Water Molecule Dissociation and Generation of Reactive Oxygen Species

    Science.gov (United States)

    2008-11-01

    ISTC Project No. #1592P The Comparative Study of The Effects of Extremely Low Frequency Electromagnetic Fields and Infrasound on Water Molecule...performed under the agreement with the International Science and Technology Center ( ISTC ), Moscow. REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704...dissociation and generation of reactive oxygen spaces. 5a. CONTRACT NUMBER ISTC Registration No: A-1592p 5b. GRANT NUMBER 5c. PROGRAM ELEMENT

  4. Reactive oxygen species, health and longevity

    Directory of Open Access Journals (Sweden)

    Vittorio Emanuele Bianchi

    2016-09-01

    Full Text Available Reactive oxygen species (ROS are considered responsible of ageing in animal and humans. Mitochondria are both source and target of ROS. Various strategies to reduce ROS production have been considered to extend lifespan. Caloric restriction, exercise, and antioxidants are thought to be able to protect cells from structural and functional damage. However, there is evidence that ROS production has a detrimental effect on health, but at physiological levels are necessary to stimulate longevity. They play an important effect on secondary signal transduction stimulating innate immunology and mitochondriogenesis. During exercise at moderate intensity, skeletal muscles generate ROS that are necessary for the remodelling of the muscular cells. Physical inactivity determines excessive ROS production and muscle atrophy. Caloric restriction (CR can reduce ROS generation and improve longevity while antioxidant supplementation has shown a negative effect on longevity reducing the muscle adaptation to exercise and increasing mortality risk in patients with chronic diseases. The role of ROS in chronic diseases in also influenced by sex steroids that decrease in aging. The physiology of longevity is the result of integrated biological mechanisms that influence mitochondrial function and activity. The main objective of this review is to evaluate the effects of ROS on mitochondriogenesis and lifespan extension.

  5. Oxygen negative glow: reactive species and emissivity

    International Nuclear Information System (INIS)

    Sahli, Khaled

    1991-01-01

    This research thesis addresses the study of a specific type of oxygen plasma created by electron beams (1 keV, 20 mA/cm"2), negative glow of a luminescent discharge in abnormal regime. The objective is to test the qualities of this plasma as source of two 'active' species of oxygen (singlet molecular oxygen and atomic oxygen) which are useful in applications. The experiment mainly bears on the use of VUV (120 to 150 nm) absorption spectroscopy measurements of concentrations of these both species, and on the recording of plasma emissivity space profiles in the visible region (450 to 850 nm). It appears that low concentrations of singlet oxygen definitely exclude this type of discharge for iodine laser applications. On the contrary, concentrations measured for atomic oxygen show it is a good candidate for the oxidation of large surfaces by sheets of beams. The satisfying comparison of emissivity results with a published model confirm the prevailing role of fast electrons, and gives evidence of an important effect of temperature: temperature can reach 1000 K, and this is in agreement with the presented measurement [fr

  6. STS-84 oxygen generator for Mir installation

    Science.gov (United States)

    1997-01-01

    In the SPACEHAB Payload Processing Facility, McDonnell Douglas- SPACEHAB technicians prepare a Russian-made oxygen generator for flight in a SPACEHAB Double Module. The oxygen generator, manufactured in Russia by RSC Energia, will be carried aboard the Space Shuttle Atlantis on Mission STS-84 for the Shuttles scheduled docking with the Russian Space Station Mir next month. The nearly 300-pound generator will replace one of two Mir units that have been malfunctioning recently. The generator functions by electrolysis, which separates water into its oxygen and hydrogen components. The hydrogen is vented and the oxygen is used for breathing by the Mir crew. The generator is 4.2 feet in length and 1.4 feet in diameter. STS-84, which is planned to include a Mir crew exchange of astronaut C. Michael Foale for Jerry M. Linenger, is targeted for a May 15 liftoff. It will be the sixth Shuttle-Mir docking.

  7. Norepinephrine-induced apoptotic and hypertrophic responses in H9c2 cardiac myoblasts are characterized by different repertoire of reactive oxygen species generation

    Directory of Open Access Journals (Sweden)

    Anita Thakur

    2015-08-01

    Full Text Available Despite recent advances, the role of ROS in mediating hypertrophic and apoptotic responses in cardiac myocytes elicited by norepinephrine (NE is rather poorly understood. We demonstrate through our experiments that H9c2 cardiac myoblasts treated with 2 µM NE (hypertrophic dose generate DCFH-DA positive ROS only for 2 h; while those treated with 100 µM NE (apoptotic dose sustains generation for 48 h, followed by apoptosis. Though the levels of DCFH fluorescence were comparable at early time points in the two treatment sets, its quenching by DPI, catalase and MnTmPyP suggested the existence of a different repertoire of ROS. Both doses of NE also induced moderate levels of H2O2 but with different kinetics. Sustained but intermittent generation of highly reactive species detectable by HPF was seen in both treatment sets but no peroxynitrite was generated in either conditions. Sustained generation of hydroxyl radicals with no appreciable differences were noticed in both treatment sets. Nevertheless, despite similar profile of ROS generation between the two conditions, extensive DNA damage as evident from the increase in 8-OH-dG content, formation of γ-H2AX and PARP cleavage was seen only in cells treated with the higher dose of NE. We therefore conclude that hypertrophic and apoptotic doses of NE generate distinct but comparable repertoire of ROS/RNS leading to two very distinct downstream responses.

  8. Life Support Systems: Oxygen Generation and Recovery

    Data.gov (United States)

    National Aeronautics and Space Administration — The Advanced Exploration Systems (AES) Life Support Systems project Oxygen Generation and Recovery technology development area encompasses several sub-tasks in an...

  9. Advanced Singlet Oxygen Generator for a COIL

    National Research Council Canada - National Science Library

    Kodymova, Jarmila; Zagidullin, M; Nikolaev, V; Svistun, M; Khvatov, N; Hruby, J; Spalek, O; Jirasek, V; Censsky, M

    2005-01-01

    This report results from a contract tasking Academy of Sciences as follows: The Grantee will develop new and radically different ideas for a high performance, advanced singlet oxygen generator for driving a supersonic COIL...

  10. Reactive oxygen species, health and longevity

    OpenAIRE

    Vittorio Emanuele Bianchi; Giancarlo Falcioni

    2016-01-01

    Reactive oxygen species (ROS) are considered responsible of ageing in animal and humans. Mitochondria are both source and target of ROS. Various strategies to reduce ROS production have been considered to extend lifespan. Caloric restriction, exercise, and antioxidants are thought to be able to protect cells from structural and functional damage. However, there is evidence that ROS production has a detrimental effect on health, but at physiological levels are necessary to stimulate longevity....

  11. Production and correlation of reactive oxygen and nitrogen species in gas- and liquid-phase generated by helium plasma jets under different pulse widths

    Science.gov (United States)

    Liu, Zhijie; Zhou, Chunxi; Liu, Dingxin; Xu, Dehui; Xia, Wenjie; Cui, Qingjie; Wang, Bingchuan; Kong, Michael G.

    2018-01-01

    In this paper, we present the effects of the pulse width (PW) on the plasma jet's discharge characteristics, particularly focusing on the production and correlation of the reactive oxygen and nitrogen species (RONS) in gas- and liquid-phase. It is found that the length of plasma jet plume first increases before the PW of 10 μs, then gradually decreases and finally almost remains unchanged beyond 150 μs. The plasma bullet disappears after the falling edge of the voltage pulse at low PW, while it terminates far ahead of the falling edge of voltage pulse at high PW. This is mainly attributed to accumulation of space charges that lead to weakening of the reduced electric field with an increase of PW from low to high. More important, it is found that the excited reactive species, the positive and negative ions from plasma jet, and the concentrations of NO2- and NO3- in deionized water exposed to plasma jet also display the first increasing and then decreasing change trend with increase of PW, while the concentration of H2O2 in water almost displays the linearly increasing trend. This mainly results from the formation of the H3O+ and HO2-, as well as their ion water clusters that can produce more OH radicals to be converted into H2O2, while the NO2- and NO3- in gas phase can transport into water and exist most stably in water. The water cluster formation at gas-liquid interface is an important key process that can affect the chemical nature and dose of aqueous RONS in water; this is beneficial for understanding how the RONS are formed in liquid-phase.

  12. Corosolic Acid Induces Non-Apoptotic Cell Death through Generation of Lipid Reactive Oxygen Species Production in Human Renal Carcinoma Caki Cells

    Directory of Open Access Journals (Sweden)

    Seon Min Woo

    2018-04-01

    Full Text Available Corosolic acid is one of the pentacyclic triterpenoids isolated from Lagerstroemia speciose and has been reported to exhibit anti-cancer and anti-proliferative activities in various cancer cells. In the present study, we investigated the molecular mechanisms of corosolic acid in cancer cell death. Corosolic acid induces a decrease of cell viability and an increase of cell cytotoxicity in human renal carcinoma Caki cells. Corosolic acid-induced cell death is not inhibited by apoptosis inhibitor (z-VAD-fmk, a pan-caspase inhibitor, necroptosis inhibitor (necrostatin-1, or ferroptosis inhibitors (ferrostatin-1 and deferoxamine (DFO. Furthermore, corosolic acid significantly induces reactive oxygen species (ROS levels, but antioxidants (N-acetyl-l-cysteine (NAC and trolox do not inhibit corosolic acid-induced cell death. Interestingly, corosolic acid induces lipid oxidation, and α-tocopherol markedly prevents corosolic acid-induced lipid peroxidation and cell death. Anti-chemotherapeutic effects of α-tocopherol are dependent on inhibition of lipid oxidation rather than inhibition of ROS production. In addition, corosolic acid induces non-apoptotic cell death in other renal cancer (ACHN and A498, breast cancer (MDA-MB231, and hepatocellular carcinoma (SK-Hep1 and Huh7 cells, and α-tocopherol markedly inhibits corosolic acid-induced cell death. Therefore, our results suggest that corosolic acid induces non-apoptotic cell death in cancer cells through the increase of lipid peroxidation.

  13. Bamboo vinegar decreases inflammatory mediator expression and NLRP3 inflammasome activation by inhibiting reactive oxygen species generation and protein kinase C-α/δ activation.

    Directory of Open Access Journals (Sweden)

    Chen-Lung Ho

    Full Text Available Bamboo vinegar (BV, a natural liquid derived from the condensation produced during bamboo charcoal production, has been used in agriculture and as a food additive, but its application to immune modulation has not been reported. Here, we demonstrated that BV has anti-inflammatory activities both in vitro and in vivo. BV reduced inducible nitric oxide synthase expression and nitric oxide levels in, and interleukin-6 secretion by, lipopolysaccharide-activated macrophages without affecting tumor necrosis factor-α secretion and cyclooxygenase-2 expression. The mechanism for the anti-inflammatory effect of BV involved decreased reactive oxygen species production and protein kinase C-α/δ activation. Furthermore, creosol (2-methoxy-4-methylphenol was indentified as the major anti-inflammatory compound in BV. Impaired cytokine expression and NLR family, pyrin domain-containing 3 (NLRP3 inflammasome activation was seen in mice treated with creosol. These findings provide insights into how BV regulates inflammation and suggest that it may be a new source for the development of anti-inflammatory agents or a healthy supplement for preventing and ameliorating inflammation- and NLRP3 inflammasome-related diseases, including metabolic syndrome.

  14. Rhizome extracts of Curcuma zedoaria Rosc induce caspase dependant apoptosis via generation of reactive oxygen species in filarial parasite Setaria digitata in vitro.

    Science.gov (United States)

    Senathilake, K S; Karunanayake, E H; Samarakoon, S R; Tennekoon, K H; de Silva, E D

    2016-08-01

    ), superoxide dismutase (SOD) and catalase activities, increased reactive oxygen levels (ROS) and lipid peroxidation were also observed indicating that an apoptotic event is induced by reactive oxygen species. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Acetoacetate is a more efficient energy-yielding substrate for human mesenchymal stem cells than glucose and generates fewer reactive oxygen species.

    Science.gov (United States)

    Board, Mary; Lopez, Colleen; van den Bos, Christian; Callaghan, Richard; Clarke, Kieran; Carr, Carolyn

    2017-07-01

    Stem cells have been assumed to demonstrate a reliance on anaerobic energy generation, suited to their hypoxic in vivo environment. However, we found that human mesenchymal stem cells (hMSCs) have an active oxidative metabolism with a range of substrates. More ATP was consistently produced from substrate oxidation than glycolysis by cultured hMSCs. Strong substrate preferences were shown with the ketone body, acetoacetate, being oxidised at up to 35 times the rate of glucose. ROS-generation was 45-fold lower during acetoacetate oxidation compared with glucose and substrate preference may be an adaptation to reduce oxidative stress. The UCP2 inhibitor, genipin, increased ROS production with either acetoacetate or glucose by 2-fold, indicating a role for UCP2 in suppressing ROS production. Addition of pyruvate stimulated acetoacetate oxidation and this combination increased ATP production 27-fold, compared with glucose alone, which has implications for growth medium composition. Oxygen tension during culture affected metabolism by hMSCs. Between passages 2 and 5, rates of both glycolysis and substrate-oxidation increased at least 2-fold for normoxic (20% O 2 )- but not hypoxic (5% O 2 )-cultured hMSCs, despite declining growth rates and no detectable signs of differentiation. Culture of the cells with 3-hydroxybutyrate abolished the increased rates of these pathways. These findings have implications for stem cell therapy, which necessarily involves in vitro culture of cells, since low passage number normoxic cultured stem cells show metabolic adaptations without detectable changes in stem-like status. Copyright © 2017. Published by Elsevier Ltd.

  16. Mechanical strain stimulates vasculogenesis and expression of angiogenesis guidance molecules of embryonic stem cells through elevation of intracellular calcium, reactive oxygen species and nitric oxide generation.

    Science.gov (United States)

    Sharifpanah, Fatemeh; Behr, Sascha; Wartenberg, Maria; Sauer, Heinrich

    2016-12-01

    Differentiation of embryonic stem (ES) cells may be regulated by mechanical strain. Herein, signaling molecules underlying mechanical stimulation of vasculogenesis and expression of angiogenesis guidance cues were investigated in ES cell-derived embryoid bodies. Treatment of embryoid bodies with 10% static mechanical strain using a Flexercell strain system significantly increased CD31-positive vascular structures and the angiogenesis guidance molecules plexinB1, ephrin B2, neuropilin1 (NRP1), semaphorin 4D (sem4D) and robo4 as well as vascular endothelial growth factor (VEGF), fibroblast growth factor-2 (FGF-2) and platelet-derived growth factor-BB (PDGF-BB) as evaluated by Western blot and real time RT-PCR. In contrast ephrin type 4 receptor B (EphB4) expression was down-regulated upon mechanical strain, indicating an arterial-type differentiation. Robo1 protein expression was modestly increased with no change in mRNA expression. Mechanical strain increased intracellular calcium as well as reactive oxygen species (ROS) and nitric oxide (NO). Mechanical strain-induced vasculogenesis was abolished by the NOS inhibitor L-NAME, the NADPH oxidase inhibitor VAS2870, upon chelation of intracellular calcium by BAPTA as well as upon siRNA inactivation of ephrin B2, NRP1 and robo4. BAPTA blunted the strain-induced expression of angiogenic growth factors, the increase in NO and ROS as well as the expression of NRP1, sem4D and plexinB1, whereas ephrin B2, EphB4 as well as robo1 and robo4 expression were not impaired. Mechanical strain stimulates vasculogenesis of ES cells by the intracellular messengers ROS, NO and calcium as well as by upregulation of angiogenesis guidance molecules and the angiogenic growth factors VEGF, FGF-2 and PDGF-BB. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. High-power generator of singlet oxygen

    Czech Academy of Sciences Publication Activity Database

    Jirásek, Vít; Čenský, Miroslav; Špalek, Otomar; Kodymová, Jarmila

    2013-01-01

    Roč. 36, č. 10 (2013), s. 1755-1763 ISSN 0930-7516 Grant - others:Laser Science and Technology Centre(IN) LASTEC/FE/RKT/54/10-11 Institutional research plan: CEZ:AV0Z10100523 Keywords : high-pressure singlet oxygen generator * spray generator * centrifugal separation Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.175, year: 2013

  18. Using Paraquat to Generate Anion Free Radicals and Hydrogen Peroxide in "In Vitro": Antioxidant Effect of Vitamin E--A Procedure to Teach Theoretical and Experimental Principles of Reactive Oxygen Species Biochemistry

    Science.gov (United States)

    Jimenez-Del-Rio, Marlene; Suarez-Cedeno, Gerson; Velez-Pardo, Carlos

    2010-01-01

    The theoretical basis of reactive oxygen species and their impact on health issues are relatively easy to understand by biomedical students. The detection of reactive oxygen species requires expensive equipment, the procedures are time consuming and costly, and the results are hard to interpret. Moreover, cause-and-effect relationships in the…

  19. A Conformational Change in C-Reactive Protein Enhances Leukocyte Recruitment and Reactive Oxygen Species Generation in Ischemia/Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Jan R. Thiele

    2018-04-01

    Full Text Available IntroductionC-reactive protein circulates as a pentameric protein (pCRP. pCRP is a well-established diagnostic marker as plasma levels rise in response to tissue injury and inflammation. We recently described pro-inflammatory properties of CRP, which are mediated by conformational changes from pCRP to bioactive isoforms expressing pro-inflammatory neo-epitopes [pCRP* and monomeric C-reactive protein (mCRP]. Here, we investigate the role of CRP isoforms in renal ischemia/reperfusion injury (IRI.MethodsRat kidneys in animals with and without intraperitoneally injected pCRP were subjected to IRI by the time of pCRP exposure and were subsequently analyzed for monocyte infiltration, caspase-3 expression, and tubular damage. Blood urea nitrogen (BUN was analyzed pre-ischemia and post-reperfusion. CRP effects on leukocyte recruitment were investigated via intravital imaging of rat-striated muscle IRI. Localized conformational CRP changes were analyzed by immunohistochemistry using conformation specific antibodies. 1,6-bis(phosphocholine-hexane (1,6-bisPC, which stabilizes CRP in its native pentameric form was used to validate CRP effects. Leukocyte activation was assessed by quantification of reactive oxygen species (ROS induction by CRP isoforms ex vivo and in vitro through electron spin resonance spectroscopy. Signaling pathways were analyzed by disrupting lipid rafts with nystatin and subsequent ROS detection. In order to confirm the translational relevance of our findings, biopsies of microsurgical human free tissue transfers before and after IRI were examined by immunofluorescence for CRP deposition and co-localization of CD68+ leukocytes.ResultsThe application of pCRP aggravates tissue damage in renal IRI. 1,6-bisPC reverses these effects via inhibition of the conformational change that leads to exposure of pro-inflammatory epitopes in CRP (pCRP* and mCRP. Structurally altered CRP induces leukocyte–endothelial interaction and induces ROS

  20. Mitochondria and Reactive Oxygen Species: Physiology and Pathophysiology

    Directory of Open Access Journals (Sweden)

    Subhashini Bolisetty

    2013-03-01

    Full Text Available The air that we breathe contains nearly 21% oxygen, most of which is utilized by mitochondria during respiration. While we cannot live without it, it was perceived as a bane to aerobic organisms due to the generation of reactive oxygen and nitrogen metabolites by mitochondria and other cellular compartments. However, this dogma was challenged when these species were demonstrated to modulate cellular responses through altering signaling pathways. In fact, since this discovery of a dichotomous role of reactive species in immune function and signal transduction, research in this field grew at an exponential pace and the pursuit for mechanisms involved began. Due to a significant number of review articles present on the reactive species mediated cell death, we have focused on emerging novel pathways such as autophagy, signaling and maintenance of the mitochondrial network. Despite its role in several processes, increased reactive species generation has been associated with the origin and pathogenesis of a plethora of diseases. While it is tempting to speculate that anti-oxidant therapy would protect against these disorders, growing evidence suggests that this may not be true. This further supports our belief that these reactive species play a fundamental role in maintenance of cellular and tissue homeostasis.

  1. Imaging Reactive Oxygen Species in Arthritis

    Directory of Open Access Journals (Sweden)

    Wei-Tsung Chen

    2004-07-01

    Full Text Available Reactive oxygen species (ROS have been shown to play a role in the pathogenesis of arthritides. Luminol was used as the primary reporter of ROS and photons resulting from the chemiluminescence reaction were detected using a super-cooled CCD photon counting system. Luminol was injected intravenously into groups of animals with different models of arthritis. Imaging signal correlated well with the severity of arthritis in focal and pan-arthritis as determined by histological measurement of ROS by formazan. Measurements were highly reproducible, sensitive, and repeatable. In vivo chemiluminescence imaging is expected to become a useful modality to elucidate the role of ROS in the pathogenesis of arthritides and in determining therapeutic efficacy of protective therapies.

  2. 21 CFR 868.5440 - Portable oxygen generator.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Portable oxygen generator. 868.5440 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5440 Portable oxygen generator. (a) Identification. A portable oxygen generator is a device that is intended to release oxygen for respiratory...

  3. Evaluation of the use of reactive oxygen species (ROS generated through oxyion® technology in strawberry (Fragaria × ananassa (Duchesne ex Weston Duchesne ex Rozier cv. Monterrey storage

    Directory of Open Access Journals (Sweden)

    Rafael Andres Ramirez

    2018-04-01

    Full Text Available Reactive oxygen species (ROS play a key role in oxidative stress processes at the biological level. In most cases the presence of these chemical species is undesirable due to the impact they have on tissues and cellular structures, however, their effects can be used to control the incidence of microorganisms responsible for deterioration processes in fruits and vegetables. In the present study the feasibility of combining low temperature storage with the presence of reactive oxygen species generated using Oxyion® technology to control the deterioration process in strawberry (Fragaria X ananassa was studied. The treatments used were as follows: control storage (4°C ± 2°C without Oxyion® and ROS storage (4°C ± 2°C with Oxyion®, for two product categories according to weight and maturation state according to NTC 4103 (ICONTEC, 1997. The variables were monitored with measuring points at 1, 3, 5, 7, 10 and 15 days after harvest in percentage of loss of mass, soluble solids, respiratory intensity, acidity, resistance, color and ethylene and significant interactions among variables. At the conclusion of the study, Oxyion® technology was found to have statistically significant differences compared to control, and have allowed to less weight loss, higher resistance and lower exogenous ethylene production, extending the life of strawberry cv. Monterrey in a 40% during storage, additionally the losses by action of microorganisms present in strawberries surface were reduced considerably, generating a positive precedent in the processes of storage and conservation of fruits for Colombia.

  4. Experimental study on ceramic membrane technology for onboard oxygen generation

    OpenAIRE

    Jiang Dongsheng; Bu Xueqin; Sun Bing; Lin Guiping; Zhao Hongtao; Cai Yan; Fang Ling

    2016-01-01

    The ceramic membrane oxygen generation technology has advantages of high concentration of produced oxygen and potential nuclear and biochemical protection capability. The present paper studies the ceramic membrane technology for onboard oxygen generation. Comparisons are made to have knowledge of the effects of two kinds of ceramic membrane separation technologies on oxygen generation, namely electricity driven ceramic membrane separation oxygen generation technology (EDCMSOGT) and pressure d...

  5. Reactive oxygen species and nitric oxide signaling in bystander cells.

    Science.gov (United States)

    Jella, Kishore Kumar; Moriarty, Roisin; McClean, Brendan; Byrne, Hugh J; Lyng, Fiona M

    2018-01-01

    It is now well accepted that radiation induced bystander effects can occur in cells exposed to media from irradiated cells. The aim of this study was to follow the bystander cells in real time following addition of media from irradiated cells and to determine the effect of inhibiting these signals. A human keratinocyte cell line, HaCaT cells, was irradiated (0.005, 0.05 and 0.5 Gy) with γ irradiation, conditioned medium was harvested after one hour and added to recipient bystander cells. Reactive oxygen species, nitric oxide, Glutathione levels, caspase activation, cytotoxicity and cell viability was measured after the addition of irradiated cell conditioned media to bystander cells. Reactive oxygen species and nitric oxide levels in bystander cells treated with 0.5Gy ICCM were analysed in real time using time lapse fluorescence microscopy. The levels of reactive oxygen species were also measured in real time after the addition of extracellular signal-regulated kinase and c-Jun amino-terminal kinase pathway inhibitors. ROS and glutathione levels were observed to increase after the addition of irradiated cell conditioned media (0.005, 0.05 and 0.5 Gy ICCM). Caspase activation was found to increase 4 hours after irradiated cell conditioned media treatment (0.005, 0.05 and 0.5 Gy ICCM) and this increase was observed up to 8 hours and there after a reduction in caspase activation was observed. A decrease in cell viability was observed but no major change in cytotoxicity was found in HaCaT cells after treatment with irradiated cell conditioned media (0.005, 0.05 and 0.5 Gy ICCM). This study involved the identification of key signaling molecules such as reactive oxygen species, nitric oxide, glutathione and caspases generated in bystander cells. These results suggest a clear connection between reactive oxygen species and cell survival pathways with persistent production of reactive oxygen species and nitric oxide in bystander cells following exposure to irradiated cell

  6. Closed Loop Control of Oxygen Delivery and Oxygen Generation

    Science.gov (United States)

    2017-08-01

    were used for this study and were connected via a USB cable to allow communication. The ventilator was modified to allow closed loop control of oxygen...connected via a USB cable to allow communication. The ventilator was modified to allow closed loop control of oxygen based on the oxygen saturation...2017-4119, 28 Aug 2017. oximetry (SpO2) and intermittent arterial blood sampling for arterial oxygen tension (partial pressure of oxygen [PaO2]) and

  7. A Compact Medical Oxygen Generator for Spacecraft, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — An on-board oxygen concentrator is required during long duration manned space missions to supply medical oxygen. Commercial medical oxygen generators are pressure...

  8. A Low-Power Medical Oxygen Generator, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — An on-board oxygen concentrator is required during long duration manned space missions to supply medical oxygen. The commercial medical oxygen generators based on...

  9. A Low-Power Medical Oxygen Generator, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — An on-board oxygen concentrator is required during long duration manned space missions to supply medical oxygen. The commercial medical oxygen generators based on...

  10. Experimental study on ceramic membrane technology for onboard oxygen generation

    Directory of Open Access Journals (Sweden)

    Jiang Dongsheng

    2016-08-01

    Full Text Available The ceramic membrane oxygen generation technology has advantages of high concentration of produced oxygen and potential nuclear and biochemical protection capability. The present paper studies the ceramic membrane technology for onboard oxygen generation. Comparisons are made to have knowledge of the effects of two kinds of ceramic membrane separation technologies on oxygen generation, namely electricity driven ceramic membrane separation oxygen generation technology (EDCMSOGT and pressure driven ceramic membrane separation oxygen generation technology (PDCMSOGT. Experiments were conducted under different temperatures, pressures of feed air and produced oxygen flow rates. On the basis of these experiments, the flow rate of feed air, electric power provided, oxygen recovery rate and concentration of produced oxygen are compared under each working condition. It is concluded that the EDCMSOGT is the oxygen generation means more suitable for onboard conditions.

  11. Impact of solar UV radiation on toxicity of ZnO nanoparticles through photocatalytic reactive oxygen species (ROS) generation and photo-induced dissolution

    Science.gov (United States)

    The present study investigated the impact of solar UV radiation on ZnO nanoparticle toxicity through photocatalytic ROS generation and photo-induced dissolution. Toxicity of ZnO nanoparticles to Daphnia magna was examined under laboratory light versus simulated solar UV radiatio...

  12. Muramyl dipeptide (MDP) induces reactive oxygen species (ROS) generation via the NOD2/COX-2/NOX4 signaling pathway in human umbilical vein endothelial cells (HUVECs).

    Science.gov (United States)

    Kong, Ling-Jun; Liu, Xiao-Qian; Xue, Ying; Gao, Wei; Lv, Qian-Zhou

    2018-03-20

    Vascular endothelium dysfunction caused by oxidative stress accelerates the pathologic process of cardiovascular diseases. NOD2, an essential receptor of innate immune system, has been demonstrated to play a critical role in atherosclerosis. Here, the aim of our study was to investigate the effect and underlying molecular mechanism of muramyl dipeptide (MDP) on NOX4-mediated ROS generation in human umbilical vein endothelial cells (HUVECs). 2,7-dichlorofluorescein diacetate staining was to measure the intracellular ROS level and showed MDP promoted ROS production in a time- and dose-dependent manner. The mRNA and protein levels of NOX4 and COX-2 were detected by real-time PCR and western blot. Small interfering RNA (siRNA) was used to silence NOD2 or COX-2 gene expression and investigate the mechanism of NOD2-mediated signaling pathway in HUVECs. Data showed that MDP induced NOX4 and COX-2 expression in a time- and dose-dependent manner. NOD2 knock-down suppressed up-regulation of COX-2 and NOX4 in HUVECs treated with MDP. Furthermore, silence of COX-2 in HUVECs down-regulated the NOX4 expression after MDP stimulation. Collectively, we indicated that NOD2 played a leading role in MDP-induced COX-2/NOX4/ROS signaling pathway in HUVECs, which was a novel regulatory mechanism in the progress of ROS generation.

  13. The role of reactive oxygen species (ROS and cytochrome P-450 2E1 in the generation of carcinogenic etheno-DNA adducts

    Directory of Open Access Journals (Sweden)

    Kirsten Linhart

    2014-01-01

    Full Text Available Exocyclic etheno-DNA adducts are mutagenic and carcinogenic and are formed by the reaction of lipidperoxidation (LPO products such as 4-hydoxynonenal or malondialdehyde with DNA bases. LPO products are generated either via inflammation driven oxidative stress or via the induction of cytochrome P-450 2E1 (CYP2E1. In the liver CYP2E1 is induced by various compounds including free fatty acids, acetone and ethanol. Increased levels of CYP2E1 and thus, oxidative stress are observed in the liver of patients with non-alcoholic steatohepatitis (NASH as well as in the chronic alcoholic. In addition, chronic ethanol ingestion also increases CYP2E1 in the mucosa of the oesophagus and colon. In all these tissues CYP2E1 correlates significantly with the levels of carcinogenic etheno-DNA adducts. In contrast, in patients with non-alcoholic steatohepatitis (NASH hepatic etheno-DNA adducts do not correlate with CYP2E1 indicating that in NASH etheno-DNA adducts formation is predominately driven by inflammation rather than by CYP2E1 induction. Since etheno-DNA adducts are strong mutagens producing various types of base pair substitution mutations as well as other types of genetic damage, it is strongly believed that they are involved in ethanol mediated carcinogenesis primarily driven by the induction of CYP2E1.

  14. Ursolic Acid-enriched herba cynomorii extract induces mitochondrial uncoupling and glutathione redox cycling through mitochondrial reactive oxygen species generation: protection against menadione cytotoxicity in h9c2 cells.

    Science.gov (United States)

    Chen, Jihang; Wong, Hoi Shan; Ko, Kam Ming

    2014-01-27

    Herba Cynomorii (Cynomorium songaricum Rupr., Cynomoriaceae) is one of the most commonly used 'Yang-invigorating' tonic herbs in Traditional Chinese Medicine (TCM). An earlier study in our laboratory has demonstrated that HCY2, an ursolic acid-enriched fraction derived from Herba Cynomorii, increased mitochondrial ATP generation capacity (ATP-GC) and induced mitochondrial uncoupling as well as a cellular glutathione response, thereby protecting against oxidant injury in H9c2 cells. In this study, we demonstrated that pre-incubation of H9c2 cells with HCY2 increased mitochondrial reactive oxygen species (ROS) generation in these cells, which is likely an event secondary to the stimulation of the mitochondrial electron transport chain. The suppression of mitochondrial ROS by the antioxidant dimethylthiourea abrogated the HCY2-induced enhancement of mitochondrial uncoupling and glutathione reductase (GR)-mediated glutathione redox cycling, and also protected against menadione-induced cytotoxicity. Studies using specific inhibitors of uncoupling protein and GR suggested that the HCY2-induced mitochondrial uncoupling and glutathione redox cycling play a determining role in the cytoprotection against menadione-induced oxidant injury in H9c2 cells. Experimental evidence obtained thus far supports the causal role of HCY2-induced mitochondrial ROS production in eliciting mitochondrial uncoupling and glutathione antioxidant responses, which offer cytoprotection against oxidant injury in H9c2 cells.

  15. Mechanisms of group A Streptococcus resistance to reactive oxygen species.

    Science.gov (United States)

    Henningham, Anna; Döhrmann, Simon; Nizet, Victor; Cole, Jason N

    2015-07-01

    Streptococcus pyogenes, also known as group A Streptococcus (GAS), is an exclusively human Gram-positive bacterial pathogen ranked among the 'top 10' causes of infection-related deaths worldwide. GAS commonly causes benign and self-limiting epithelial infections (pharyngitis and impetigo), and less frequent severe invasive diseases (bacteremia, toxic shock syndrome and necrotizing fasciitis). Annually, GAS causes 700 million infections, including 1.8 million invasive infections with a mortality rate of 25%. In order to establish an infection, GAS must counteract the oxidative stress conditions generated by the release of reactive oxygen species (ROS) at the infection site by host immune cells such as neutrophils and monocytes. ROS are the highly reactive and toxic byproducts of oxygen metabolism, including hydrogen peroxide (H2O2), superoxide anion (O2•(-)), hydroxyl radicals (OH•) and singlet oxygen (O2*), which can damage bacterial nucleic acids, proteins and cell membranes. This review summarizes the enzymatic and regulatory mechanisms utilized by GAS to thwart ROS and survive under conditions of oxidative stress. © FEMS 2015.

  16. Mitochondrial Reactive Oxygen Species Trigger Hypoxia-Induced Transcription

    Science.gov (United States)

    Chandel, N. S.; Maltepe, E.; Goldwasser, E.; Mathieu, C. E.; Simon, M. C.; Schumacker, P. T.

    1998-09-01

    Transcriptional activation of erythropoietin, glycolytic enzymes, and vascular endothelial growth factor occurs during hypoxia or in response to cobalt chloride (CoCl2) in Hep3B cells. However, neither the mechanism of cellular O2 sensing nor that of cobalt is fully understood. We tested whether mitochondria act as O2 sensors during hypoxia and whether hypoxia and cobalt activate transcription by increasing generation of reactive oxygen species (ROS). Results show (i) wild-type Hep3B cells increase ROS generation during hypoxia (1.5% O2) or CoCl2 incubation, (ii) Hep3B cells depleted of mitochondrial DNA (ρ 0 cells) fail to respire, fail to activate mRNA for erythropoietin, glycolytic enzymes, or vascular endothelial growth factor during hypoxia, and fail to increase ROS generation during hypoxia; (iii) ρ 0 cells increase ROS generation in response to CoCl2 and retain the ability to induce expression of these genes; and (iv) the antioxidants pyrrolidine dithiocarbamate and ebselen abolish transcriptional activation of these genes during hypoxia or CoCl2 in wild-type cells, and abolish the response to CoCl2 in ρ 0 cells. Thus, hypoxia activates transcription via a mitochondria-dependent signaling process involving increased ROS, whereas CoCl2 activates transcription by stimulating ROS generation via a mitochondria-independent mechanism.

  17. Oxidized amino acid residues in the vicinity of Q(A and Pheo(D1 of the photosystem II reaction center: putative generation sites of reducing-side reactive oxygen species.

    Directory of Open Access Journals (Sweden)

    Laurie K Frankel

    Full Text Available Under a variety of stress conditions, Photosystem II produces reactive oxygen species on both the reducing and oxidizing sides of the photosystem. A number of different sites including the Mn4O5Ca cluster, P680, PheoD1, QA, QB and cytochrome b559 have been hypothesized to produce reactive oxygen species in the photosystem. In this communication using Fourier-transform ion cyclotron resonance mass spectrometry we have identified several residues on the D1 and D2 proteins from spinach which are oxidatively modified and in close proximity to QA (D1 residues (239F, (241Q, (242E and the D2 residues (238P, (239T, (242E and (247M and PheoD1 (D1 residues (130E, (133L and (135F. These residues may be associated with reactive oxygen species exit pathways located on the reducing side of the photosystem, and their modification may indicate that both QA and PheoD1 are sources of reactive oxygen species on the reducing side of Photosystem II.

  18. Advanced chemical oxygen iodine lasers for novel beam generation

    Science.gov (United States)

    Wu, Kenan; Zhao, Tianliang; Huai, Ying; Jin, Yuqi

    2018-03-01

    Chemical oxygen iodine laser, or COIL, is an impressive type of chemical laser that emits high power beam with good atmospheric transmissivity. Chemical oxygen iodine lasers with continuous-wave plane wave output are well-developed and are widely adopted in directed energy systems in the past several decades. Approaches of generating novel output beam based on chemical oxygen iodine lasers are explored in the current study. Since sophisticated physical processes including supersonic flowing of gaseous active media, chemical reacting of various species, optical power amplification, as well as thermal deformation and vibration of mirrors take place in the operation of COIL, a multi-disciplinary model is developed for tracing the interacting mechanisms and evaluating the performance of the proposed laser architectures. Pulsed output mode with repetition rate as high as hundreds of kHz, pulsed output mode with low repetition rate and high pulse energy, as well as novel beam with vector or vortex feature can be obtained. The results suggest potential approaches for expanding the applicability of chemical oxygen iodine lasers.

  19. The bystander effect: is reactive oxygen species the driver?

    International Nuclear Information System (INIS)

    Szumiel, I.

    2003-01-01

    The paper reviews selected examples of the bystander effect, such as clonogenic survival decrease, chromosomal aberrations and mutations. The similarities and differences between the biological effects in directly targeted and bystander cells are briefly discussed. Also reviewed are the experimental data which support the role of reactive oxygen species (ROS), especially *O 2 - , as mediators of the bystander effect. Endogenously generated ROS, due to activation of NAD(P)H oxidases, play a kay role in the introduction of DNA damage in bystander cells. All the observed effects in bystander cells, such as alteration in gene expression patterns, chromosomal aberrations, sister chromatid exchanges, mutations, genome instability and neoplastic transformation are the consequence of DNA damage. (author)

  20. Redox mechanism of reactive oxygen species in exercise

    Directory of Open Access Journals (Sweden)

    Feng He

    2016-11-01

    Full Text Available It is well known that regular exercise benefits health. However, unaccustomed and/or exhaustive exercise can generate excessive reactive oxygen species (ROS, leading to oxidative stress-related tissue damage and impaired muscle contractility. ROS are produced in both aerobic and anaerobic exercise. Although mitochondria, NADPH oxidases and xanthine oxidase have all been identified as contributors to ROS production, the exact redox mechanisms underlying exercise-induced oxidative stress remain elusive. Interestingly, moderate exposure to ROS is necessary to induce the body’s adaptive responses such as the activation of antioxidant defense mechanisms. Dietary antioxidant manipulation can also reduce ROS levels and muscle fatigue, as well as enhance exercise recovery. To elucidate the complex role of ROS in exercise, this article updates on new findings of ROS origins within skeletal muscles associated with various types of exercises such as endurance, sprint and mountain climbing, corresponding antioxidant defense systems as well as dietary manipulation against damage caused by ROS.

  1. Mechanisms of polymer degradation using an oxygen plasma generator

    Science.gov (United States)

    Colony, Joe A.; Sanford, Edward L.

    1987-01-01

    An RF oxygen plasma generator was used to produce polymer degradation which appears to be similar to that which has been observed in low Earth orbit. Mechanisms of this type of degradation were studied by collecting the reaction products in a cryogenic trap and identifying the molecular species using infrared, mass spectral, and X-ray diffraction techniques. No structurally dependent species were found from Kapton, Teflon, or Saran polymers. However, very reactive free radical entities are produced during the polymer degradation, as well as carbon dioxide and water. Reactions of the free radicals with the glass reaction vessel, with copper metal in the cold trap, and with a triphenyl phosphate scavenger in the cold trap, demonstrated the reactivity of the primary products.

  2. Solar Energy Systems for Lunar Oxygen Generation

    Science.gov (United States)

    Colozza, Anthony J.; Heller, Richard S.; Wong, Wayne A.; Hepp, Aloysius F.

    2010-01-01

    An evaluation of several solar concentrator-based systems for producing oxygen from lunar regolith was performed. The systems utilize a solar concentrator mirror to provide thermal energy for the oxygen production process. Thermal energy to power a Stirling heat engine and photovoltaics are compared for the production of electricity. The electricity produced is utilized to operate the equipment needed in the oxygen production process. The initial oxygen production method utilized in the analysis is hydrogen reduction of ilmenite. Utilizing this method of oxygen production a baseline system design was produced. This baseline system had an oxygen production rate of 0.6 kg/hr with a concentrator mirror size of 5 m. Variations were performed on the baseline design to show how changes in the system size and process (rate) affected the oxygen production rate. An evaluation of the power requirements for a carbothermal lunar regolith reduction reactor has also been conducted. The reactor had a total power requirement between 8,320 to 9,961 W when producing 1000 kg/year of oxygen. The solar concentrator used to provide the thermal power (over 82 percent of the total energy requirement) would have a diameter of less than 4 m.

  3. Reactive oxygen species, essential molecules, during plant-pathogen interactions.

    Science.gov (United States)

    Camejo, Daymi; Guzmán-Cedeño, Ángel; Moreno, Alexander

    2016-06-01

    Reactive oxygen species (ROS) are continually generated as a consequence of the normal metabolism in aerobic organisms. Accumulation and release of ROS into cell take place in response to a wide variety of adverse environmental conditions including salt, temperature, cold stresses and pathogen attack, among others. In plants, peroxidases class III, NADPH oxidase (NOX) locates in cell wall and plasma membrane, respectively, may be mainly enzymatic systems involving ROS generation. It is well documented that ROS play a dual role into cells, acting as important signal transduction molecules and as toxic molecules with strong oxidant power, however some aspects related to its function during plant-pathogen interactions remain unclear. This review focuses on the principal enzymatic systems involving ROS generation addressing the role of ROS as signal molecules during plant-pathogen interactions. We described how the chloroplasts, mitochondria and peroxisomes perceive the external stimuli as pathogen invasion, and trigger resistance response using ROS as signal molecule. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  4. Reactive oxygen species-generating mitochondrial DNA mutation up-regulates hypoxia-inducible factor-1alpha gene transcription via phosphatidylinositol 3-kinase-Akt/protein kinase C/histone deacetylase pathway.

    Science.gov (United States)

    Koshikawa, Nobuko; Hayashi, Jun-Ichi; Nakagawara, Akira; Takenaga, Keizo

    2009-11-27

    Lewis lung carcinoma-derived high metastatic A11 cells constitutively overexpress hypoxia-inducible factor (HIF)-1alpha mRNA compared with low metastatic P29 cells. Because A11 cells exclusively possess a G13997A mutation in the mitochondrial NADH dehydrogenase subunit 6 (ND6) gene, we addressed here a causal relationship between the ND6 mutation and the activation of HIF-1alpha transcription, and we investigated the potential mechanism. Using trans-mitochondrial cybrids between A11 and P29 cells, we found that the ND6 mutation was directly involved in HIF-1alpha mRNA overexpression. Stimulation of HIF-1alpha transcription by the ND6 mutation was mediated by overproduction of reactive oxygen species (ROS) and subsequent activation of phosphatidylinositol 3-kinase (PI3K)-Akt and protein kinase C (PKC) signaling pathways. The up-regulation of HIF-1alpha transcription was abolished by mithramycin A, an Sp1 inhibitor, but luciferase reporter and chromatin immunoprecipitation assays indicated that Sp1 was necessary but not sufficient for HIF-1alpha mRNA overexpression in A11 cells. On the other hand, trichostatin A, a histone deacetylase (HDAC) inhibitor, markedly suppressed HIF-1alpha transcription in A11 cells. In accordance with this, HDAC activity was high in A11 cells but low in P29 cells and in A11 cells treated with the ROS scavenger ebselene, the PI3K inhibitor LY294002, and the PKC inhibitor Ro31-8220. These results suggest that the ROS-generating ND6 mutation increases HIF-1alpha transcription via the PI3K-Akt/PKC/HDAC pathway, leading to HIF-1alpha protein accumulation in hypoxic tumor cells.

  5. U.S. Army Oxygen Generation System Development

    Science.gov (United States)

    2010-04-01

    cathode. This method is used to produce breathing oxygen onboard nuclear submarines. The other electrochemical method uses a hot ceramic membrane that...This program uses a ceramic membrane supported by a nickel superalloy matrix, making the oxygen generator cells much less prone to cracking. The...challenge of this process is the same as those of fuel cells. The environment in electrochemical oxygen generators is extremely aggressive; the ceramic

  6. Matairesinol inhibits angiogenesis via suppression of mitochondrial reactive oxygen species

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Boram; Kim, Ki Hyun; Jung, Hye Jin [Chemical Genomics National Research Laboratory, Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Kwon, Ho Jeong, E-mail: kwonhj@yonsei.ac.kr [Chemical Genomics National Research Laboratory, Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2012-04-27

    Highlights: Black-Right-Pointing-Pointer Matairesinol suppresses mitochondrial ROS generation during hypoxia. Black-Right-Pointing-Pointer Matairesinol exhibits potent anti-angiogenic activity both in vitro and in vivo. Black-Right-Pointing-Pointer Matairesinol could be a basis for the development of novel anti-angiogenic agents. -- Abstract: Mitochondrial reactive oxygen species (mROS) are involved in cancer initiation and progression and function as signaling molecules in many aspects of hypoxia and growth factor-mediated signaling. Here we report that matairesinol, a natural small molecule identified from the cell-based screening of 200 natural plants, suppresses mROS generation resulting in anti-angiogenic activity. A non-toxic concentration of matairesinol inhibited the proliferation of human umbilical vein endothelial cells. The compound also suppressed in vitro angiogenesis of tube formation and chemoinvasion, as well as in vivo angiogenesis of the chorioallantoic membrane at non-toxic doses. Furthermore, matairesinol decreased hypoxia-inducible factor-1{alpha} in hypoxic HeLa cells. These results demonstrate that matairesinol could function as a novel angiogenesis inhibitor by suppressing mROS signaling.

  7. Hot oxygen atoms: Their generation and chemistry

    International Nuclear Information System (INIS)

    Ferrieri, R.A.; Chu, Yung Y.; Wolf, A.P.

    1987-01-01

    Oxygen atoms with energies between 1 and 10 eV have been produced through ion beam sputtering from metal oxide targets. Argon ion beams were used on Ta 2 O 5 and V 2 O 5 . Results show that some control may be exerted over the atom's kinetic energy by changing the target. Reactions of the hot O( 3 P) with cis- and trans-butenes were investigated

  8. The inhibitory effect of CIL-102 on the growth of human astrocytoma cells is mediated by the generation of reactive oxygen species and induction of ERK1/2 MAPK

    Energy Technology Data Exchange (ETDEWEB)

    Teng, Chih-Chuan [Institute of Nursing and Department of Nursing, Chang Gung University of Science and Technology, Chronic Diseases and Health Promotion Research Center, CGUST, Taiwan (China); Institute of Basic Medicine Science, National Cheng Kung University, Tainan, Taiwan (China); Kuo, Hsing-Chun [Institute of Nursing and Department of Nursing, Chang Gung University of Science and Technology, Chronic Diseases and Health Promotion Research Center, CGUST, Taiwan (China); Cheng, Ho-Chen [Department of General Education, Chang Gung University of Science and Technology, CGUST, Taiwan (China); Wang, Ting-Chung [Department of Neurosurgery, Chang Gung Memorial Hospital, Chia-Yi Center, Chiayi, Taiwan (China); Graduate Institute of Clinical Medical Sciences, Chang Gung University, Gueishan, Taiwan (China); Sze, Chun-I, E-mail: szec@mail.ncku.edu.tw [Institute of Basic Medicine Science, Department of Cell Biology and Anatomy and Pathology, National Cheng Kung University, Tainan, Taiwan (China)

    2012-08-15

    CIL-102 (1-[4-(furo[2,3-b]quinolin-4-ylamino)phenyl]ethanone) is the major active agent of the alkaloid derivative of Camptotheca acuminata, with multiple pharmacological activities, including anticancer effects and promotion of apoptosis. The mechanism by which CIL-102 inhibits growth remains poorly understood in human astrocytoma cells. Herein, we investigated the molecular mechanisms by which CIL-102 affects the generation of reactive oxygen species (ROS) and cell cycle G2/M arrest in glioma cells. Treatment of U87 cells with 1.0 μM CIL-102 resulted in phosphorylation of extracellular signal-related kinase (ERK1/2), downregulation of cell cycle-related proteins (cyclin A, cyclin B, cyclin D1, and cdk1), and phosphorylation of cdk1Tyr{sup 15} and Cdc25cSer{sup 216}. Furthermore, treatment with the ERK1/2 inhibitor PD98059 abolished CIL-102-induced Cdc25cSer{sup 216} expression and reversed CIL-102-inhibited cdk1 activation. In addition, N-acetyl cysteine (NAC), an ROS scavenger, blocked cell cycle G2/M arrest and phosphorylation of ERK1/2 and Cdc25cSer{sup 216} in U87 cells. CIL-102-mediated ERK1/2 and ROS production, and cell cycle arrest were blocked by treatment with specific inhibitors. In conclusion, we have identified a novel CIL-102-inhibited proliferation in U87 cells by activating the ERK1/2 and Cdc25cSer{sup 216} cell cycle-related proteins and inducing ROS production; this might be a new mechanism in human astrocytoma cells. -- Highlights: ► We show the effects of CIL-102 on the G2/M arrest of human astrocytoma cells. ► ROS and the Ras/ERK1/2 triggering pathways are involved in the CIL-102 treatment. ► CIL-102 induces sustained activation of ERK1/2 and Cdc25c and ROS are required.

  9. The inhibitory effect of CIL-102 on the growth of human astrocytoma cells is mediated by the generation of reactive oxygen species and induction of ERK1/2 MAPK

    International Nuclear Information System (INIS)

    Teng, Chih-Chuan; Kuo, Hsing-Chun; Cheng, Ho-Chen; Wang, Ting-Chung; Sze, Chun-I

    2012-01-01

    CIL-102 (1-[4-(furo[2,3-b]quinolin-4-ylamino)phenyl]ethanone) is the major active agent of the alkaloid derivative of Camptotheca acuminata, with multiple pharmacological activities, including anticancer effects and promotion of apoptosis. The mechanism by which CIL-102 inhibits growth remains poorly understood in human astrocytoma cells. Herein, we investigated the molecular mechanisms by which CIL-102 affects the generation of reactive oxygen species (ROS) and cell cycle G2/M arrest in glioma cells. Treatment of U87 cells with 1.0 μM CIL-102 resulted in phosphorylation of extracellular signal-related kinase (ERK1/2), downregulation of cell cycle-related proteins (cyclin A, cyclin B, cyclin D1, and cdk1), and phosphorylation of cdk1Tyr 15 and Cdc25cSer 216 . Furthermore, treatment with the ERK1/2 inhibitor PD98059 abolished CIL-102-induced Cdc25cSer 216 expression and reversed CIL-102-inhibited cdk1 activation. In addition, N-acetyl cysteine (NAC), an ROS scavenger, blocked cell cycle G2/M arrest and phosphorylation of ERK1/2 and Cdc25cSer 216 in U87 cells. CIL-102-mediated ERK1/2 and ROS production, and cell cycle arrest were blocked by treatment with specific inhibitors. In conclusion, we have identified a novel CIL-102-inhibited proliferation in U87 cells by activating the ERK1/2 and Cdc25cSer 216 cell cycle-related proteins and inducing ROS production; this might be a new mechanism in human astrocytoma cells. -- Highlights: ► We show the effects of CIL-102 on the G2/M arrest of human astrocytoma cells. ► ROS and the Ras/ERK1/2 triggering pathways are involved in the CIL-102 treatment. ► CIL-102 induces sustained activation of ERK1/2 and Cdc25c and ROS are required.

  10. Are mitochondrial reactive oxygen species required for autophagy?

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Jianfei, E-mail: jjf73@pitt.edu [Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh (United States); Maeda, Akihiro; Ji, Jing [Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh (United States); Baty, Catherine J.; Watkins, Simon C. [Center for Biologic Imaging, Department of Cell Biology and Physiology, University of Pittsburgh (United States); Greenberger, Joel S. [Department of Radiation Oncology, University of Pittsburgh (United States); Kagan, Valerian E., E-mail: kagan@pitt.edu [Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh (United States)

    2011-08-19

    Highlights: {yields} Autophageal and apoptotic pathways were dissected in cytochrome c deficient cells. {yields} Staurosporine (STS)-induced autophagy was not accompanied by ROS generation. {yields} Autophagy was detectable in mitochondrial DNA deficient {rho}{sup 0} cells. {yields} Mitochondrial ROS are not required for the STS-induced autophagy in HeLa cells. -- Abstract: Reactive oxygen species (ROS) are said to participate in the autophagy signaling. Supporting evidence is obscured by interference of autophagy and apoptosis, whereby the latter heavily relies on ROS signaling. To dissect autophagy from apoptosis we knocked down expression of cytochrome c, the key component of mitochondria-dependent apoptosis, in HeLa cells using shRNA. In cytochrome c deficient HeLa1.2 cells, electron transport was compromised due to the lack of electron shuttle between mitochondrial respiratory complexes III and IV. A rapid and robust LC3-I/II conversion and mitochondria degradation were observed in HeLa1.2 cells treated with staurosporine (STS). Neither generation of superoxide nor accumulation of H{sub 2}O{sub 2} was detected in STS-treated HeLa1.2 cells. A membrane permeable antioxidant, PEG-SOD, plus catalase exerted no effect on STS-induced LC3-I/II conversion and mitochondria degradation. Further, STS caused autophagy in mitochondria DNA-deficient {rho}{sup o} HeLa1.2 cells in which both electron transport and ROS generation were completely disrupted. Counter to the widespread view, we conclude that mitochondrial ROS are not required for the induction of autophagy.

  11. Are mitochondrial reactive oxygen species required for autophagy?

    International Nuclear Information System (INIS)

    Jiang, Jianfei; Maeda, Akihiro; Ji, Jing; Baty, Catherine J.; Watkins, Simon C.; Greenberger, Joel S.; Kagan, Valerian E.

    2011-01-01

    Highlights: → Autophageal and apoptotic pathways were dissected in cytochrome c deficient cells. → Staurosporine (STS)-induced autophagy was not accompanied by ROS generation. → Autophagy was detectable in mitochondrial DNA deficient ρ 0 cells. → Mitochondrial ROS are not required for the STS-induced autophagy in HeLa cells. -- Abstract: Reactive oxygen species (ROS) are said to participate in the autophagy signaling. Supporting evidence is obscured by interference of autophagy and apoptosis, whereby the latter heavily relies on ROS signaling. To dissect autophagy from apoptosis we knocked down expression of cytochrome c, the key component of mitochondria-dependent apoptosis, in HeLa cells using shRNA. In cytochrome c deficient HeLa1.2 cells, electron transport was compromised due to the lack of electron shuttle between mitochondrial respiratory complexes III and IV. A rapid and robust LC3-I/II conversion and mitochondria degradation were observed in HeLa1.2 cells treated with staurosporine (STS). Neither generation of superoxide nor accumulation of H 2 O 2 was detected in STS-treated HeLa1.2 cells. A membrane permeable antioxidant, PEG-SOD, plus catalase exerted no effect on STS-induced LC3-I/II conversion and mitochondria degradation. Further, STS caused autophagy in mitochondria DNA-deficient ρ o HeLa1.2 cells in which both electron transport and ROS generation were completely disrupted. Counter to the widespread view, we conclude that mitochondrial ROS are not required for the induction of autophagy.

  12. Effects of proline on photosynthesis, root reactive oxygen species ...

    African Journals Online (AJOL)

    Effects of 0.2 mM proline applied to saline nutrient solution on biomass, chlorophyll content, photosynthetic parameters, reactive oxygen species and antioxidant enzymes activities of two melon cultivars (cv. Yuhuang and cv. Xuemei) were examined. Results indicate that exogenous proline increased the fresh and dry ...

  13. Formation of reactive oxygen species in rat epithelial cells upon ...

    Indian Academy of Sciences (India)

    In our study, we investigated the influence of fly ash on the promotion of early inflammatory reactions like the formation of reactive oxygen species (ROS) in rat lung epithelial cells (RLE-6TN). Furthermore, we determined the formation of nitric oxide (NO). The cells show a clear dose-response relationship concerning the ...

  14. Luminometric determination of antioxidant capacity towards individual reactive oxygen species

    Czech Academy of Sciences Publication Activity Database

    Komrsková, D.; Lojek, Antonín; Hrbáč, J.; Číž, Milan

    2005-01-01

    Roč. 3, č. 1 (2005), S25 [Cells VI - Biological Days /18./. 24.10.2005-26.10.2005, České Budějovice] R&D Projects: GA ČR(CZ) GA524/01/1219 Institutional research plan: CEZ:AV0Z50040507 Keywords : chemiluminescence * reactive oxygen species * scavenger Subject RIV: BO - Biophysics

  15. High Pressure Oxygen Generation for Future Exploration Missions, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is the development of a cathode feed electrolysis cell stack capable of generating 3600 psi oxygen at a relevant scale for future exploration...

  16. Targeted modulation of reactive oxygen species in the vascular endothelium.

    Science.gov (United States)

    Shuvaev, Vladimir V; Muzykantov, Vladimir R

    2011-07-15

    'Endothelial cells lining vascular luminal surface represent an important site of signaling and injurious effects of reactive oxygen species (ROS) produced by other cells and endothelium itself in ischemia, inflammation and other pathological conditions. Targeted delivery of ROS modulating enzymes conjugated with antibodies to endothelial surface molecules (vascular immunotargeting) provides site-specific interventions in the endothelial ROS, unattainable by other formulations including PEG-modified enzymes. Targeting of ROS generating enzymes (e.g., glucose oxidase) provides ROS- and site-specific models of endothelial oxidative stress, whereas targeting of antioxidant enzymes SOD and catalase offers site-specific quenching of superoxide anion and H(2)O(2). These targeted antioxidant interventions help to clarify specific role of endothelial ROS in vascular and pulmonary pathologies and provide basis for design of targeted therapeutics for treatment of these pathologies. In particular, antibody/catalase conjugates alleviate acute lung ischemia/reperfusion injury, whereas antibody/SOD conjugates inhibit ROS-mediated vasoconstriction and inflammatory endothelial signaling. Encapsulation in protease-resistant, ROS-permeable carriers targeted to endothelium prolongs protective effects of antioxidant enzymes, further diversifying the means for targeted modulation of endothelial ROS. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Salicylic acid signaling inhibits apoplastic reactive oxygen species signaling.

    Science.gov (United States)

    Xu, Enjun; Brosché, Mikael

    2014-06-04

    Reactive oxygen species (ROS) are used by plants as signaling molecules during stress and development. Given the amount of possible challenges a plant face from their environment, plants need to activate and prioritize between potentially conflicting defense signaling pathways. Until recently, most studies on signal interactions have focused on phytohormone interaction, such as the antagonistic relationship between salicylic acid (SA)-jasmonic acid and cytokinin-auxin. In this study, we report an antagonistic interaction between SA signaling and apoplastic ROS signaling. Treatment with ozone (O3) leads to a ROS burst in the apoplast and induces extensive changes in gene expression and elevation of defense hormones. However, Arabidopsis thaliana dnd1 (defense no death1) exhibited an attenuated response to O3. In addition, the dnd1 mutant displayed constitutive expression of defense genes and spontaneous cell death. To determine the exact process which blocks the apoplastic ROS signaling, double and triple mutants involved in various signaling pathway were generated in dnd1 background. Simultaneous elimination of SA-dependent and SA-independent signaling components from dnd1 restored its responsiveness to O3. Conversely, pre-treatment of plants with SA or using mutants that constitutively activate SA signaling led to an attenuation of changes in gene expression elicited by O3. Based upon these findings, we conclude that plants are able to prioritize the response between ROS and SA via an antagonistic action of SA and SA signaling on apoplastic ROS signaling.

  18. Spray generator of singlet oxygen for a chemical oxygen-iodine laser

    Czech Academy of Sciences Publication Activity Database

    Jirásek, Vít; Hrubý, Jan; Špalek, Otomar; Čenský, Miroslav; Kodymová, Jarmila

    2010-01-01

    Roč. 100, č. 4 (2010), s. 779-791 ISSN 0946-2171 Grant - others:European Office of Aerospace R&D(US) FA8655-09-1-3091 Institutional research plan: CEZ:AV0Z10100523; CEZ:AV0Z20760514 Keywords : spray generator of singlet oxygen * singlet oxygen * chemical oxygen-iodine laser Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.239, year: 2010

  19. Combined effect of protein and oxygen on reactive oxygen and nitrogen species in the plasma treatment of tissue

    Science.gov (United States)

    Gaur, Nishtha; Szili, Endre J.; Oh, Jun-Seok; Hong, Sung-Ha; Michelmore, Andrew; Graves, David B.; Hatta, Akimitsu; Short, Robert D.

    2015-09-01

    The influence of protein and molecular, ground state oxygen (O2) on the plasma generation, and transport of reactive oxygen and nitrogen species (RONS) in tissue are investigated. A tissue target, comprising a 1 mm thick gelatin film (a surrogate for real tissue), is placed on top of a 96-well plate; each well is filled with phosphate buffered saline (PBS, pH 7.4) containing one fluorescent or colorimetric reporter that is specific for one of three RONS (i.e., H2O2, NO2-, or OH•) or a broad spectrum reactive oxygen species reporter (2,7-dichlorodihydrofluorescein). A helium cold atmospheric plasma (CAP) jet contacts the top of the gelatin surface, and the concentrations of RONS generated in PBS are measured on a microplate reader. The data show that H2O2, NO2-, or OH• are generated in PBS underneath the target. Independently, measurements are made of the O2 concentration in the PBS with and without the gelatin target. Adding bovine serum albumin protein to the PBS or gelatin shows that protein either raises or inhibits RONS depending upon the O2 concentration. Our results are discussed in the context of plasma-soft tissue interactions that are important in the development of CAP technology for medicine, biology, and food manufacturing.

  20. Reactive Oxygen Species on the Early Earth and Survival of Bacteria

    Science.gov (United States)

    Balk, Melikea; Mason, Paul; Stams, Alfons J. M.; Smidt, Hauke; Freund, Friedemann; Rothschild, Lynn

    2011-01-01

    An oxygen-rich atmosphere appears to have been a prerequisite for complex, multicellular life to evolve on Earth and possibly elsewhere in the Universe. However it remains unclear how free oxygen first became available on the early Earth. A potentially important, and as yet poorly constrained pathway, is the production of oxygen through the weathering of rocks and release into the near-surface environment. Reactive Oxygen Species (ROS), as precursors to molecular oxygen, are a key step in this process, and may have had a decisive impact on the evolution of life, present and past. ROS are generated from minerals in igneous rocks during hydrolysis of peroxy defects, which consist of pairs of oxygen anions oxidized to the valence state -1 and during (bio) transformations of iron sulphide minerals. ROS are produced and consumed by intracellular and extracellular reactions of Fe, Mn, C, N, and S species. We propose that, despite an overall reducing or neutral oxidation state of the macroenvironment and the absence of free O2 in the atmosphere, organisms on the early Earth had to cope with ROS in their microenvironments. They were thus under evolutionary pressure to develop enzymatic and other defences against the potentially dangerous, even lethal effects of oxygen and its derived ROS. Conversely it appears that microorganisms learned to take advantage of the enormous reactive potential and energy gain provided by nascent oxygen. We investigate how oxygen might be released through weathering. We test microorganisms in contact with rock surfaces and iron sulphides. We model bacteria such as Deionococcus radiodurans and Desulfotomaculum, Moorella and Bacillus species for their ability to grow or survive in the presence of ROS. We examine how early Life might have adapted to oxygen.

  1. Low Po2 conditions induce reactive oxygen species formation during contractions in single skeletal muscle fibers

    OpenAIRE

    Zuo, Li; Shiah, Amy; Roberts, William J.; Chien, Michael T.; Wagner, Peter D.; Hogan, Michael C.

    2013-01-01

    Contractions in whole skeletal muscle during hypoxia are known to generate reactive oxygen species (ROS); however, identification of real-time ROS formation within isolated single skeletal muscle fibers has been challenging. Consequently, there is no convincing evidence showing increased ROS production in intact contracting fibers under low Po2 conditions. Therefore, we hypothesized that intracellular ROS generation in single contracting skeletal myofibers increases during low Po2 compared wi...

  2. Oxygen pathway modeling estimates high reactive oxygen species production above the highest permanent human habitation.

    Directory of Open Access Journals (Sweden)

    Isaac Cano

    Full Text Available The production of reactive oxygen species (ROS from the inner mitochondrial membrane is one of many fundamental processes governing the balance between health and disease. It is well known that ROS are necessary signaling molecules in gene expression, yet when expressed at high levels, ROS may cause oxidative stress and cell damage. Both hypoxia and hyperoxia may alter ROS production by changing mitochondrial Po2 (PmO2. Because PmO2 depends on the balance between O2 transport and utilization, we formulated an integrative mathematical model of O2 transport and utilization in skeletal muscle to predict conditions to cause abnormally high ROS generation. Simulations using data from healthy subjects during maximal exercise at sea level reveal little mitochondrial ROS production. However, altitude triggers high mitochondrial ROS production in muscle regions with high metabolic capacity but limited O2 delivery. This altitude roughly coincides with the highest location of permanent human habitation. Above 25,000 ft., more than 90% of exercising muscle is predicted to produce abnormally high levels of ROS, corresponding to the "death zone" in mountaineering.

  3. Role of metal ion impurities in generation of oxygen gas within anodic alumina

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, K. [Keio Univ., Yokohama (Japan). Chemical Lab.; Habazaki, H. [Hokkaido Univ., Sapporo (Japan). Graduate School of Engineering; Skeldon, P.; Thompson, G.E.; Wood, G.C. [University of Manchester Inst. of Science and Technology (United Kingdom). Corrosion and Protection Centre

    2002-07-01

    The generation of oxygen gas within an amorphous anodic alumina film is reported. The film was formed by anodizing aluminum, which was first electropolished and then chemically polished in CrO{sub 3}-H{sub 3}PO{sub 4} solution, in sodium tungstate electrolyte. The procedure results in incorporation of mobile Cr{sup 3+} species, from the chemical polishing film, and mobile W{sup 6+} species, from the electrolyte, into the amorphous structure. The tungsten species are present in the outer 27% of the film thickness, while Cr{sup 6+} species occupy a thin layer within the tungsten-containing region. Above the Cr{sup 3+} containing layer, a band develops that contains oxygen bubbles of a few nanometres size. The oxygen is generated by oxidation of O{sup 2-} ions of the alumina. A mechanism of oxygen generation within the alumina is proposed based on the electronic band structure of the oxide, modified by the Cr{sup 3+} and W{sup 6+} species, and on the ionic transport processes during oxide growth. (author)

  4. Current generation by minority-species heating

    International Nuclear Information System (INIS)

    Fisch, N.J.

    1981-01-01

    It is proposed that electric currents be generated from the preferential heating of ions travelling in one direction but with no net momentum injected into the system. This can be accomplished with, for example, travelling waves in a two-ion-species plasma. The current can be generated efficiently enough for the scheme to be of interest in maintaining steady-state toroidal currents in a reactor. (author)

  5. Current generation by minority species heating

    International Nuclear Information System (INIS)

    Fisch, N.J.

    1980-07-01

    It is proposed that electric currents be generated from the preferential heating of ions traveling in one direction but with no net momentum injected into the system. This can be accomplished with, for example, traveling waves in a two-ion-species plasma. The current can be generated efficiently enough for the scheme to be of interest in maintaining steady-state toroidal currents in a reactor

  6. Reactive oxygen species production and discontinuous gas exchange in insects

    OpenAIRE

    Boardman, Leigh; Terblanche, John S.; Hetz, Stefan K.; Marais, Elrike; Chown, Steven L.

    2011-01-01

    While biochemical mechanisms are typically used by animals to reduce oxidative damage, insects are suspected to employ a higher organizational level, discontinuous gas exchange mechanism to do so. Using a combination of real-time, flow-through respirometry and live-cell fluorescence microscopy, we show that spiracular control associated with the discontinuous gas exchange cycle (DGC) in Samia cynthia pupae is related to reactive oxygen species (ROS). Hyperoxia fails to increase mean ROS produ...

  7. HIF and reactive oxygen species regulate oxidative phosphorylation in cancer

    Czech Academy of Sciences Publication Activity Database

    Hervouet, E.; Čížková, Alena; Demont, J.; Vojtíšková, Alena; Pecina, Petr; Franssen-van Hal, N.; Keijer, J.; Simonnet, H.; Ivánek, Robert; Kmoch, S.; Godinot, C.; Houštěk, Josef

    2008-01-01

    Roč. 29, č. 8 (2008), s. 1528-1537 ISSN 0143-3334 R&D Projects: GA MŠk(CZ) 1M0520; GA ČR GA303/07/0781 Institutional research plan: CEZ:AV0Z50110509; CEZ:AV0Z50520514 Keywords : carcinoma * mitochondrial biogenesis * reactive oxygen species Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.930, year: 2008

  8. Targeted modulation of reactive oxygen species in the vascular endothelium

    OpenAIRE

    Shuvaev, Vladimir V.; Muzykantov, Vladimir R.

    2011-01-01

    Endothelial cells lining vascular luminal surface represent an important site of signaling and injurious effects of reactive oxygen species (ROS) produced by other cells and endothelium itself in ischemia, inflammation and other pathological conditions. Targeted delivery of ROS modulating enzymes conjugated with antibodies to endothelial surface molecules (vascular immunotargeting) provides site-specific interventions in the endothelial ROS, unattainable by other formulations including PEG-mo...

  9. Free radicals, reactive oxygen species, oxidative stress and its classification.

    Science.gov (United States)

    Lushchak, Volodymyr I

    2014-12-05

    Reactive oxygen species (ROS) initially considered as only damaging agents in living organisms further were found to play positive roles also. This paper describes ROS homeostasis, principles of their investigation and technical approaches to investigate ROS-related processes. Especial attention is paid to complications related to experimental documentation of these processes, their diversity, spatiotemporal distribution, relationships with physiological state of the organisms. Imbalance between ROS generation and elimination in favor of the first with certain consequences for cell physiology has been called "oxidative stress". Although almost 30years passed since the first definition of oxidative stress was introduced by Helmut Sies, to date we have no accepted classification of oxidative stress. In order to fill up this gape here classification of oxidative stress based on its intensity is proposed. Due to that oxidative stress may be classified as basal oxidative stress (BOS), low intensity oxidative stress (LOS), intermediate intensity oxidative stress (IOS), and high intensity oxidative stress (HOS). Another classification of potential interest may differentiate three categories such as mild oxidative stress (MOS), temperate oxidative stress (TOS), and finally severe (strong) oxidative stress (SOS). Perspective directions of investigations in the field include development of sophisticated classification of oxidative stresses, accurate identification of cellular ROS targets and their arranged responses to ROS influence, real in situ functions and operation of so-called "antioxidants", intracellular spatiotemporal distribution and effects of ROS, deciphering of molecular mechanisms responsible for cellular response to ROS attacks, and ROS involvement in realization of normal cellular functions in cellular homeostasis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. Centrifugal spray generator of singlet oxygen for a chemical oxygen-iodine laser

    Czech Academy of Sciences Publication Activity Database

    Špalek, Otomar; Hrubý, Jan; Čenský, Miroslav; Jirásek, Vít; Kodymová, Jarmila

    2010-01-01

    Roč. 100, č. 4 (2010), s. 793-802 ISSN 0946-2171 Grant - others:European Office of Aerospace R&D(US) FA8655-09-1-3091 Institutional research plan: CEZ:AV0Z10100523; CEZ:AV0Z20760514 Keywords : centrifugal generator of singlet oxygen * chemical oxygen-iodine laser Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.239, year: 2010

  11. Reactive species formed on proteins exposed to singlet oxygen

    DEFF Research Database (Denmark)

    Davies, Michael Jonathan

    2004-01-01

    Singlet oxygen ((1)O(2)) is believed to be generated in biological systems by a range of endogenous processes (e.g. enzymatic and chemical reactions) and exogenous stimuli (e.g. UV or visible light in the presence of a sensitiser). Kinetic data is consistent with proteins being a major target...... hydroperoxides, which can be reduced to the corresponding alcohols; other products arising from radical intermediates can also be generated, particularly in the presence of UV light and metal ions. With His side-chains, poorly characterised peroxides are also formed. Reaction with Met and Cys has been proposed...

  12. Surface-Selective Preferential Production of Reactive Oxygen Species on Piezoelectric Ceramics for Bacterial Killing

    OpenAIRE

    Tan, Guoxin; Wang, Shuangying; Zhu, Ye; Zhou, Lei; Yu, Peng; Wang, Xiaolan; He, Tianrui; Chen, Junqi; Mao, Chuanbin; Ning, Chengyun

    2016-01-01

    Reactive oxygen species (ROS) can be used to kill bacterial cells, and thus the selective generation of ROS from material surfaces is an emerging direction in antibacterial material discovery. We found the polarization of piezoelectric ceramic causes the two sides of the disk to become positively and negatively charged, which translate into cathode and anode surfaces in an aqueous solution. Because of the microelectrolysis of water, ROS are preferentially formed on the cathode surface. Conseq...

  13. Reactive oxygen species inhibit catalytic activity of peptidylarginine deiminase

    DEFF Research Database (Denmark)

    Damgaard, Dres; Bjørn, Mads Emil; Jensen, Peter Østrup

    2017-01-01

    on calcium and reducing conditions. However, reactive oxygen species (ROS) have been shown to induce citrullination of histones in granulocytes. Here we examine the ability of H2O2 and leukocyte-derived ROS to regulate PAD activity using citrullination of fibrinogen as read-out. H2O2 at concentrations above...... from stimulated leukocytes was unaffected by exogenously added H2O2 at concentrations up to 1000 µM. The role of ROS in regulating PAD activity may play an important part in preventing hypercitrullination of proteins....

  14. Incorporation of transition metal ions and oxygen generation during anodizing of aluminium alloys

    International Nuclear Information System (INIS)

    Habazaki, H.; Konno, H.; Shimizu, K.; Nagata, S.; Skeldon, P.; Thompson, G.E.

    2004-01-01

    Enrichment of nickel at the alloy/film interface and incorporation of nickel species into the anodic film have been examined for a sputtering-deposited Al-1.2at.%Ni alloy in order to assist understanding of oxygen generation in barrier anodic alumina films. Anodizing of the alloy proceeds in two stages similarly to other dilute aluminium alloys, for example Al-Cr and Al-Cu alloys, where the Gibbs free energies per equivalent for formation of alloying element oxide exceeds the value for alumina. In the first stage, a nickel-free alumina film is formed, with nickel enriching in an alloy layer, 2 nm thick, immediately beneath the anodic oxide film. In the second stage, nickel atoms are oxidized together with aluminium, with oxygen generation forming gas bubbles within the anodic oxide film. This stage commences after accumulation of about 5.4 x 10 15 nickel atoms cm -2 in the enriched alloy layer. Oxygen generation also occurs when a thin layer of the alloy, containing about 2.0 x 10 19 nickel atoms m -2 , on electropolished aluminium, is completely anodized, contrasting with thin Al-Cr and Al-Cu alloy layers on electropolished aluminium, for which oxygen generation is essentially absent. A mechanism of oxygen generation, based on electron impurity levels of amorphous alumina and local oxide compositions, is discussed in order to explain the observations

  15. Enhanced expression of WD repeat-containing protein 35 (WDR35 stimulated by domoic acid in rat hippocampus: involvement of reactive oxygen species generation and p38 mitogen-activated protein kinase activation

    Directory of Open Access Journals (Sweden)

    Tsunekawa Koji

    2013-01-01

    Full Text Available Abstract Background Domoic acid (DA is an excitatory amino acid analogue of kainic acid (KA that acts via activation of glutamate receptors to elicit a rapid and potent excitotoxic response, resulting in neuronal cell death. Recently, DA was shown to elicit reactive oxygen species (ROS production and induce apoptosis accompanied by activation of p38 mitogen-activated protein kinase (MAPK in vitro. We have reported that WDR35, a WD-repeat protein, may mediate apoptosis in several animal models. In the present study, we administered DA to rats intraperitoneally, then used liquid chromatography/ion trap tandem mass spectrometry (LC-MS/MS to identify and quantify DA in the brains of the rats and performed histological examinations of the hippocampus. We further investigated the potential involvement of glutamate receptors, ROS, p38 MAPK, and WDR35 in DA-induced toxicity in vivo. Results Our results showed that intraperitoneally administered DA was present in the brain and induced neurodegenerative changes including apoptosis in the CA1 region of the hippocampus. DA also increased the expression of WDR35 mRNA and protein in a dose- and time-dependent manner in the hippocampus. In experiments using glutamate receptor antagonists, the AMPA/KA receptor antagonist NBQX significantly attenuated the DA-induced increase in WDR35 protein expression, but the NMDA receptor antagonist MK-801 did not. In addition, the radical scavenger edaravone significantly attenuated the DA-induced increase in WDR35 protein expression. Furthermore, NBQX and edaravone significantly attenuated the DA-induced increase in p38 MAPK phosphorylation. Conclusion In summary, our results indicated that DA activated AMPA/KA receptors and induced ROS production and p38 MAPK phosphorylation, resulting in an increase in the expression of WDR35 in vivo.

  16. Interactions between Exosomes from Breast Cancer Cells and Primary Mammary Epithelial Cells Leads to Generation of Reactive Oxygen Species Which Induce DNA Damage Response, Stabilization of p53 and Autophagy in Epithelial Cells

    Science.gov (United States)

    Dutta, Sujoy; Warshall, Case; Bandyopadhyay, Chirosree; Dutta, Dipanjan; Chandran, Bala

    2014-01-01

    Exosomes are nanovesicles originating from multivesicular bodies and are released by all cell types. They contain proteins, lipids, microRNAs, mRNAs and DNA fragments, which act as mediators of intercellular communications by inducing phenotypic changes in recipient cells. Tumor-derived exosomes have been shown to play critical roles in different stages of tumor development and metastasis of almost all types of cancer. One of the ways by which exosomes affect tumorigenesis is to manipulate the tumor microenvironments to create tumor permissive “niches”. Whether breast cancer cell secreted exosomes manipulate epithelial cells of the mammary duct to facilitate tumor development is not known. To address whether and how breast cancer cell secreted exosomes manipulate ductal epithelial cells we studied the interactions between exosomes isolated from conditioned media of 3 different breast cancer cell lines (MDA-MB-231, T47DA18 and MCF7), representing three different types of breast carcinomas, and normal human primary mammary epithelial cells (HMECs). Our studies show that exosomes released by breast cancer cell lines are taken up by HMECs, resulting in the induction of reactive oxygen species (ROS) and autophagy. Inhibition of ROS by N-acetyl-L-cysteine (NAC) led to abrogation of autophagy. HMEC-exosome interactions also induced the phosphorylation of ATM, H2AX and Chk1 indicating the induction of DNA damage repair (DDR) responses. Under these conditions, phosphorylation of p53 at serine 15 was also observed. Both DDR responses and phosphorylation of p53 induced by HMEC-exosome interactions were also inhibited by NAC. Furthermore, exosome induced autophagic HMECs were found to release breast cancer cell growth promoting factors. Taken together, our results suggest novel mechanisms by which breast cancer cell secreted exosomes manipulate HMECs to create a tumor permissive microenvironment. PMID:24831807

  17. Insulin and IGF-1 improve mitochondrial function in a PI-3K/Akt-dependent manner and reduce mitochondrial generation of reactive oxygen species in Huntington's disease knock-in striatal cells.

    Science.gov (United States)

    Ribeiro, Márcio; Rosenstock, Tatiana R; Oliveira, Ana M; Oliveira, Catarina R; Rego, A Cristina

    2014-09-01

    Oxidative stress and mitochondrial dysfunction have been described in Huntington's disease, a disorder caused by expression of mutant huntingtin (mHtt). IGF-1 was previously shown to protect HD cells, whereas insulin prevented neuronal oxidative stress. In this work we analyzed the role of insulin and IGF-1 in striatal cells derived from HD knock-in mice on mitochondrial production of reactive oxygen species (ROS) and related antioxidant and signaling pathways influencing mitochondrial function. Insulin and IGF-1 decreased mitochondrial ROS induced by mHtt and normalized mitochondrial SOD activity, without affecting intracellular glutathione levels. IGF-1 and insulin promoted Akt phosphorylation without changing the nuclear levels of phosphorylated Nrf2 or Nrf2/ARE activity. Insulin and IGF-1 treatment also decreased mitochondrial Drp1 phosphorylation, suggesting reduced mitochondrial fragmentation, and ameliorated mitochondrial function in HD cells in a PI-3K/Akt-dependent manner. This was accompanied by increased total and phosphorylated Akt, Tfam, and mitochondrial-encoded cytochrome c oxidase II, as well as Tom20 and Tom40 in mitochondria of insulin- and IGF-1-treated mutant striatal cells. Concomitantly, insulin/IGF-1-treated mutant cells showed reduced apoptotic features. Hence, insulin and IGF-1 improve mitochondrial function and reduce mitochondrial ROS caused by mHtt by activating the PI-3K/Akt signaling pathway, in a process independent of Nrf2 transcriptional activity, but involving enhanced mitochondrial levels of Akt and mitochondrial-encoded complex IV subunit. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. STS-84 oxygen generator for Mir on display at SPACEHAB

    Science.gov (United States)

    1997-01-01

    Representatives of RSC Energia in Russia and other onlookers in the SPACEHAB Payload Processing Facility examine an oxygen generator which the Space Shuttle Atlantis will carry to the Russian Mir Space Station on Mission STS-84. Sergei Romanov, second from right in the white shirt, is the spokesperson for generator manufacturer RSC Energia. The nearly 300-pound generator will be strapped down on the inside surface of a SPACEHAB Double Module for the trip to Mir. It will replace one of two Mir units that have been malfunctioning recently. The generator functions by electrolysis, which separates water into its oxygen and hydrogen components. The hydrogen is vented and the oxygen is used for breathing by the Mir crew. The generator is 4.2 feet in length and 1.4 feet in diameter. STS-84, which is planned to include a Mir crew exchange of astronaut C. Michael Foale for Jerry M. Linenger, is targeted for a May 15 liftoff. It will be the sixth Shuttle-Mir docking.

  19. Studies of MHD generator performance with oxygen enriched coal combustion

    Science.gov (United States)

    Wormhoudt, J.; Yousefian, V.; Kolb, C. E.; Martinez-Sanchez, M.

    1980-07-01

    This paper presents calculations made using the Aerodyne PACKAGE (Plasma Analysis, Chemical Kinetics, and Generator Efficiency) computer code which bear on two questions which arise in connection with choices between oxygen enrichment and air preheating to attain the high combustion temperatures needed for open-cycle, coal-fired MHD power generation. The first question is which method produces the highest enthalpy extraction per unit channel length. The second is, in test facilities intended to study tradeoffs between oxygen enrichment and preheated air, can good generator performance be obtained from the same physical channel for different combustor compositions. The answer to the first question is found to depend on what combustor conditions are taken to be comparable. As for the second question, it is found that operation with channel input from off-design combustor conditions can cause serious problems, which can be partially alleviated by changing the channel load factors.

  20. Phenol by direct hydroxylation of benzene with nitrous oxide - role of surface oxygen species in the reaction pathways

    Energy Technology Data Exchange (ETDEWEB)

    Reitzmann, A.; Klemm, E.; Emig, G. [Erlangen-Nuernberg Univ., Erlangen (Germany). Lehrstuhl fuer Technische Chemie 1; Buchholz, S.A.; Zanthoff, H.W. [Bochum Univ. (Germany). Inst. of Technical Chemistry

    1998-12-31

    Transient experiments in a Temporal Analysis of Products (TAP) Reactor were performed to elucidate the role of surface oyxgen species in the oxidation of benzene to phenol on ZSM-5 type zeolites with nitrous oxide as a selective oxidant. It was shown by puls experiments with nitrous oxide that the mean lifetime of the generated surface oxygen species is between 0.2s at 500 C and about 4.2 s at 400 C. Afterwards the surface oxygen species desorb as molecular oxygen into the gas phase where total oxidation will take place if hydrocarbons are present. Dual puls experiments consisting of a nitrous oxide puls followed by a benzene puls allowed studying the reactivity of the surface oxygen species formed during the first puls. The observation of the phenol formation was impeded due to the strong sorption of phenol. Multipulse experiments were necessary to reach a pseudo steady state phenol yield. (orig.)

  1. Toxicological and pathophysiological roles of reactive oxygen and nitrogen species

    International Nuclear Information System (INIS)

    Roberts, Ruth A.; Smith, Robert A.; Safe, Stephen; Szabo, Csaba; Tjalkens, Ronald B.; Robertson, Fredika M.

    2010-01-01

    'Oxidative and Nitrative Stress in Toxicology and Disease' was the subject of a symposium held at the EUROTOX meeting in Dresden 15th September 2009. Reactive oxygen (ROS) and reactive nitrogen species (RNS) produced during tissue pathogenesis and in response to viral or chemical toxicants, induce a complex series of downstream adaptive and reparative events driven by the associated oxidative and nitrative stress. As highlighted by all the speakers, ROS and RNS can promote diverse biological responses associated with a spectrum of disorders including neurodegenerative/neuropsychiatric and cardiovascular diseases. Similar pathways are implicated during the process of liver and skin carcinogenesis. Mechanistically, reactive oxygen and nitrogen species drive sustained cell proliferation, cell death including both apoptosis and necrosis, formation of nuclear and mitochondrial DNA mutations, and in some cases stimulation of a pro-angiogenic environment. Here we illustrate the pivotal role played by oxidative and nitrative stress in cell death, inflammation and pain and its consequences for toxicology and disease pathogenesis. Examples are presented from five different perspectives ranging from in vitro model systems through to in vivo animal model systems and clinical outcomes.

  2. Microfabricated Collector-Generator Electrode Sensor for Measuring Absolute pH and Oxygen Concentrations.

    Science.gov (United States)

    Dengler, Adam K; Wightman, R Mark; McCarty, Gregory S

    2015-10-20

    Fast-scan cyclic voltammetry (FSCV) has attracted attention for studying in vivo neurotransmission due to its subsecond temporal resolution, selectivity, and sensitivity. Traditional FSCV measurements use background subtraction to isolate changes in the local electrochemical environment, providing detailed information on fluctuations in the concentration of electroactive species. This background subtraction removes information about constant or slowly changing concentrations. However, determination of background concentrations is still important for understanding functioning brain tissue. For example, neural activity is known to consume oxygen and produce carbon dioxide which affects local levels of oxygen and pH. Here, we present a microfabricated microelectrode array which uses FSCV to detect the absolute levels of oxygen and pH in vitro. The sensor is a collector-generator electrode array with carbon microelectrodes spaced 5 μm apart. In this work, a periodic potential step is applied at the generator producing transient local changes in the electrochemical environment. The collector electrode continuously performs FSCV enabling these induced changes in concentration to be recorded with the sensitivity and selectivity of FSCV. A negative potential step applied at the generator produces a transient local pH shift at the collector. The generator-induced pH signal is detected using FSCV at the collector and correlated to absolute solution pH by postcalibration of the anodic peak position. In addition, in oxygenated solutions a negative potential step at the generator produces hydrogen peroxide by reducing oxygen. Hydrogen peroxide is detected with FSCV at the collector electrode, and the magnitude of the oxidative peak is proportional to absolute oxygen concentrations. Oxygen interference on the pH signal is minimal and can be accounted for with a postcalibration.

  3. Release of intracellular Calcium increase production of mitochondrial reactive oxygen species in renal distal epithelial cells

    DEFF Research Database (Denmark)

    Bjerregaard, Henning F.

    peroxide (H2O2) has traditionally been regarded as toxic by-products of aerobic metabolism. However, recent findings indicate that H2O2 act as a signalling molecule. The aim of the present study was to monitor, in real time, the rates of ROS generation in order to directly determine their production......Release of intracellular Calcium increase production of mitochondrial reactive oxygen species in renal distal epithelial cells. Henning F. Bjerregaard, Roskilde University, Department of Science, Systems and Models , 4000 Roskilde, Denmark. HFB@ RUC.DK Reactive oxygen species (ROS) like, hydrogen...... to G-protein stimulation of phospholipase C and release of inositol -3 phosphate. Cd (0.4 mM) treatment of A6 cells enhanced the ROS production after one minutes incubation. The production rate was constant for at least 10 to 20 min. Experiments showed that the Cd induced increase in ROS production...

  4. Reactive oxygen species in disease: Rebuttal of a conventional concept

    Directory of Open Access Journals (Sweden)

    Luis Vitetta

    2015-09-01

    Full Text Available The production of intracellular reactive oxygen species and reactive nitrogen species has long been proposed as leading to the random deleterious modification of macromolecules (i.e., nucleic acids, proteins with an associated progressive development of the age associated systemic diseases (e.g., diabetes, Parkinson’s disease as well as contributing to the ageing process.   Superoxide anion (hydrogen peroxide and nitric oxide (peroxynitrite comprise regulated intracellular second messenger pro-oxidant systems, with specific sub-cellular locales of production and are essential for the normal function of the metabolome and cellular electro-physiology.  We have posited that the formation of superoxide anion and its metabolic product hydrogen peroxide, and nitric oxide, do not conditionally lead to random damage of macromolecular species such as nucleic acids or proteins.  Under normal physiological conditions their production is intrinsically regulated that is very much consistent with their second messenger purpose of function.   We further propose that the concept of an orally administered small molecule antioxidant as a therapy to abrogate free radical activity (to control oxidative stress is a chimera.  As such we consider that free radicals are not a major overwhelming player in the development of the chronic diseases or the ageing process.

  5. [Relationship among the Oxygen Concentration, Reactive Oxygen Species and the Biological Characteristics of Mouse Bone Marrow Hematopoietic Stem Cells].

    Science.gov (United States)

    Ren, Si-Hua; He, Yu-Xin; Ma, Yi-Ran; Jin, Jing-Chun; Kang, Dan

    2016-02-01

    To investigate the effects of oxygen concentration and reactive oxygen species (ROS) on the biological characteristics of hematopoietic stem cells (HSC) and to analyzed the relationship among the oxygen concentration, ROS and the biological characteristics of mouse HSC through simulation of oxygen environment experienced by PB HSC during transplantation. The detection of reactive oxygen species (ROS), in vitro amplification, directional differentiation (BFU-E, CFU-GM, CFU-Mix), homing of adhesion molecules (CXCR4, CD44, VLA4, VLA5, P-selectin), migration rate, CFU-S of NOD/SCID mice irradiated with sublethal dose were performed to study the effect of oxgen concentration and reactive oxygen species on the biological characteristics of mouse BM-HSC and the relationship among them. The oxygen concentrations lower than normal oxygen concentration (especially hypoxic oxygen environment) could reduce ROS level and amplify more Lin(-) c-kit(+) Sca-1(+) BM HSC, which was more helpful to the growth of various colonies (BFU-E, CFU-GM, CFU-Mix) and to maintain the migratory ability of HSC, thus promoting CFU-S growth significantly after the transplantation of HSC in NOD/SCID mice irradiated by a sublethal dose. BM HSC exposed to oxygen environments of normal, inconstant oxygen level and strenuously thanging of oxygen concentration could result in higher level of ROS, at the same time, the above-mentioned features and functional indicators were relatively lower. The ROS levels of BM HSC in PB HSCT are closely related to the concentrations and stability of oxygen surrounding the cells. High oxygen concentration results in an high level of ROS, which is not helpful to maintain the biological characteristics of BM HSC. Before transplantation and in vitro amplification, the application of antioxidancs and constant oxygen level environments may be beneficial for transplantation of BMMSC.

  6. Crosstalk between nitrite, myoglobin and reactive oxygen species to regulate vasodilation under hypoxia.

    Directory of Open Access Journals (Sweden)

    Matthias Totzeck

    Full Text Available The systemic response to decreasing oxygen levels is hypoxic vasodilation. While this mechanism has been known for more than a century, the underlying cellular events have remained incompletely understood. Nitrite signaling is critically involved in vessel relaxation under hypoxia. This can be attributed to the presence of myoglobin in the vessel wall together with other potential nitrite reductases, which generate nitric oxide, one of the most potent vasodilatory signaling molecules. Questions remain relating to the precise concentration of nitrite and the exact dose-response relations between nitrite and myoglobin under hypoxia. It is furthermore unclear whether regulatory mechanisms exist which balance this interaction. Nitrite tissue levels were similar across all species investigated. We then investigated the exact fractional myoglobin desaturation in an ex vivo approach when gassing with 1% oxygen. Within a short time frame myoglobin desaturated to 58±12%. Given that myoglobin significantly contributes to nitrite reduction under hypoxia, dose-response experiments using physiological to pharmacological nitrite concentrations were conducted. Along all concentrations, abrogation of myoglobin in mice impaired vasodilation. As reactive oxygen species may counteract the vasodilatory response, we used superoxide dismutase and its mimic tempol as well as catalase and ebselen to reduce the levels of reactive oxygen species during hypoxic vasodilation. Incubation of tempol in conjunction with catalase alone and catalase/ebselen increased the vasodilatory response to nitrite. Our study shows that modest hypoxia leads to a significant nitrite-dependent vessel relaxation. This requires the presence of vascular myoglobin for both physiological and pharmacological nitrite levels. Reactive oxygen species, in turn, modulate this vasodilation response.

  7. Investigation, Analysis, and Testing of Self-contained Oxygen Generators

    Science.gov (United States)

    Keddy, Christopher P.; Haas, Jon P.; Starritt, Larry

    2008-01-01

    Self Contained Oxygen Generators (SCOGs) have widespread use in providing emergency breathing oxygen in a variety of environments including mines, submarines, spacecraft, and aircraft. These devices have definite advantages over storing of gaseous or liquid oxygen. The oxygen is not generated until a chemical briquette containing a chlorate or perchlorate oxidizer and a solid metallic fuel such as iron is ignited starting a thermal decomposition process allowing gaseous oxygen to be produced. These devices are typically very safe to store, easy to operate, and have primarily only a thermal hazard to the operator that can be controlled by barriers or furnaces. Tens of thousands of these devices are operated worldwide every year without major incident. This report examines the rare case of a SCOG whose behavior was both abnormal and lethal. This particular type of SCOG reviewed is nearly identical to a flight qualified version of SCOG slated for use on manned space vehicles. This Investigative Report is a compilation of a NASA effort in conjunction with other interested parties including military and aerospace to understand the causes of the particular SCOG accident and what preventative measures can be taken to ensure this incident is not repeated. This report details the incident and examines the root causes of the observed SCOG behavior from forensic evidence. A summary of chemical and numerical analysis is provided as a background to physical testing of identical SCOG devices. The results and findings of both small scale and full scale testing are documented on a test-by-test basis along with observations and summaries. Finally, conclusions are presented on the findings of this investigation, analysis, and testing along with suggestions on preventative measures for any entity interested in the safe use of these devices.

  8. Reactive oxygen species in health and disease : Finding the right balance

    NARCIS (Netherlands)

    van der Wijst, Monique

    2016-01-01

    When oxygen takes up an electron, reactive oxygen species are formed. These free radicals can react with important molecules in our body (DNA, proteins), just like iron rusts (oxidation). Too many reactive oxygen species, called oxidative stress, result in cellular damage causing either cell death

  9. Are mitochondria a permanent source of reactive oxygen species?

    Science.gov (United States)

    Staniek, K; Nohl, H

    2000-11-20

    The observation that in isolated mitochondria electrons may leak out of the respiratory chain to form superoxide radicals (O(2)(radical-)) has prompted the assumption that O(2)(radical-) formation is a compulsory by-product of respiration. Since mitochondrial O(2)(radical-) formation under homeostatic conditions could not be demonstrated in situ so far, conclusions drawn from isolated mitochondria must be considered with precaution. The present study reveals a link between electron deviation from the respiratory chain to oxygen and the coupling state in the presence of antimycin A. Another important factor is the analytical system applied for the detection of activated oxygen species. Due to the presence of superoxide dismutase in mitochondria, O(2)(radical-) release cannot be realistically determined in intact mitochondria. We therefore followed the release of the stable dismutation product H(2)O(2) by comparing most frequently used H(2)O(2) detection methods. The possible interaction of the detection systems with the respiratory chain was avoided by a recently developed method, which was compared with conventional methods. Irrespective of the methods applied, the substrates used for respiration and the state of respiration established, intact mitochondria could not be made to release H(2)O(2) from dismutating O(2)(radical-). Although regular mitochondrial respiration is unlikely to supply single electrons for O(2)(radical-) formation our study does not exclude the possibility of the respiratory chain becoming a radical source under certain conditions.

  10. Calcific Uremic Arteriolopathy: Pathophysiology, Reactive Oxygen Species and Therapeutic Approaches

    Directory of Open Access Journals (Sweden)

    Kurt M. Sowers

    2010-01-01

    Full Text Available Calcific uremic arteriolopathy (CUA/calciphylaxis is an important cause of morbidity and mortality in patients with chronic kidney disease requiring renal replacement. Once thought to be rare, it is being increasingly recognized and reported on a global scale. The uremic milieu predisposes to multiple metabolic toxicities including increased levels of reactive oxygen species and inflammation. Increased oxidative stress and inflammation promote this arteriolopathy by adversely affecting endothelial function resulting in a prothrombotic milieu and significant remodeling effects on vascular smooth muscle cells. These arteriolar pathological effects include intimal hyperplasia, inflammation, endovascular fibrosis and vascular smooth muscle cell apoptosis and differentiation into bone forming osteoblast-like cells resulting in medial calcification. Systemic factors promoting this vascular condition include elevated calcium, parathyroid hormone and hyperphosphatemia with consequent increases in the calcium × phosphate product. The uremic milieu contributes to a marked increased in upstream reactive oxygen species—oxidative stress and subsequent downstream increased inflammation, in part, via activation of the nuclear transcription factor NFκB and associated downstream cytokine pathways. Consitutive anti-calcification proteins such as Fetuin-A and matrix GLA proteins and their signaling pathways may be decreased, which further contributes to medial vascular calcification. The resulting clinical entity is painful, debilitating and contributes to the excess morbidity and mortality associated with chronic kidney disease and end stage renal disease. These same histopathologic conditions also occur in patients without uremia and therefore, the term calcific obliterative arteriolopathy could be utilized in these conditions.

  11. Evaluation of Oxygen Concentrators and Chemical Oxygen Generators at Altitude and Temperature Extremes

    Science.gov (United States)

    2015-04-22

    Current COGs typically contain one or more of the following solid compounds: sodium chlorate , sodium perchlorate, potassium superoxide, or...produces heat. The COGs evaluated in this study are the O2PAK, TraumAid, and BOB. 3.2.1 O2PAK. The main ingredient in the O2PAK is sodium chlorate ...In 1902, the Lancet reported on Kamm’s oxygen generator invention for medical use. The device used chlorate cakes and manganese oxide and, when

  12. The antioxidant action of Polypodium leucotomos extract and kojic acid: reactions with reactive oxygen species

    Directory of Open Access Journals (Sweden)

    A.J. Gomes

    2001-11-01

    Full Text Available Two natural products Polypodium leucotomos extract (PL and kojic acid (KA were tested for their ability to scavenge reactive oxygen species (·OH, ·O2-, H2O2, ¹O2 in phosphate buffer. Hydroxyl radicals were generated by the Fenton reaction, and the rate constants of scavenging were 1.6 x 10(9 M-1 s-1 for KA and 1.0 x 10(9 M-1 s-1 for PL, similar to that of ethanol (1.4 x 10(9 M-1 s-1. With superoxide anions generated by the xanthine/hypoxanthine system, KA and PL (0.2-1.0 mg/ml inhibited ·O2-dependent reduction of nitroblue tetrazolium by up to 30 and 31%, respectively. In the detection of ¹O2 by rose bengal irradiation, PL at 1.0 mg/ml quenched singlet oxygen by 43% relative to azide and KA by 36%. The present study demonstrates that PL showed an antioxidant effect, scavenging three of four reactive oxygen species tested here. Unlike KA, PL did not significantly scavenge hydrogen peroxide.

  13. A comparative kinetic and mechanistic study between tetrahydrozoline and naphazoline toward photogenerated reactive oxygen species.

    Science.gov (United States)

    Criado, Susana; García, Norman A

    2010-01-01

    Kinetic and mechanistic aspects of the vitamin B2 (riboflavin [Rf])-sensitized photo-oxidation of the imidazoline derivates (IDs) naphazoline (NPZ) and tetrahydrozoline (THZ) were investigated in aqueous solution. The process appears as important on biomedical grounds, considering that the vitamin is endogenously present in humans, and IDs are active components of ocular medicaments of topical application. Under aerobic visible light irradiation, a complex picture of competitive interactions between sensitizer, substrates and dissolved oxygen takes place: the singlet and triplet ((3)Rf*) excited states of Rf are quenched by the IDs: with IDs concentrations ca. 5.0 mM and 0.02 mM Rf, (3)Rf* is quenched by IDs, in a competitive fashion with dissolved ground state oxygen. Additionally, the reactive oxygen species: O(2)((1)Delta(g)), O(2)(*-), HO(*) and H(2)O(2), generated from (3)Rf* and Rf(*-), were detected with the employment of time-resolved methods or specific scavengers. Oxygen uptake experiments indicate that, for NPZ, only H(2)O(2) was involved in the photo-oxidation. In the case of THZ, O(2)(*-), HO(*) and H(2)O(2) were detected, whereas only HO(*) was unambiguously identified as THZ oxidative agents. Upon direct UV light irradiation NPZ and THZ generate O(2)((1)Delta(g)), with quantum yields of 0.2 (literature value, employed as a reference) and 0.08, respectively, in acetonitrile.

  14. Generation of Oxygen Free Radicals by Proflavine: Implication in Protein Degradation

    Directory of Open Access Journals (Sweden)

    Mansour K.M. Gatasheh

    2017-07-01

    Full Text Available Proflavine, an acridine dye, is a known DNA intercalating agent. In the present study, we show that proflavine alone on photoillumination can generate reactive oxygen species (ROS. These proflavine-derived ROS cause damage to proteins, and this effect is enhanced when the divalent metal ion Cu (II is included in the reaction. Bathocuproine, a specific Cu (I sequestering agent, when present in the reaction mixture containing Cu (II, was found to inhibit the protein degradation, showing that Cu (I is an essential intermediate in the reaction. The effect of several scavengers of ROS such as superoxide dismutase, sodium azide, potassium iodide, and thiourea were examined on the protein damaging reaction. Potassium iodide was found to be the most effective in inhibiting protein damage followed by sodium azide and thiourea. Our results indicate the involvement of superoxide, singlet oxygen, triplet oxygen, and hydroxyl radicals in proflavine-induced damage to proteins.

  15. Reversible Photochemical Control of Singlet Oxygen Generation Using Diarylethene Photochromic Switches

    NARCIS (Netherlands)

    Hou, Lili; Zhang, Xiaoyan; Pijper, Thomas C.; Browne, Wesley R.; Feringa, Bernard

    2014-01-01

    Reversible noninvasive control over the generation of singlet oxygen is demonstrated in a bicomponent system comprising a diarylethene photochromic switch and a porphyrin photosensitizer by selective irradiation at distinct wavelengths. The efficient generation of singlet oxygen by the

  16. UVA Photoirradiation of Oxygenated Benz[a]anthracene and 3-Methylcholanthene - Generation of Singlet Oxygen and Induction of Lipid Peroxidation

    Directory of Open Access Journals (Sweden)

    Diógenes Herreño Sáenz

    2008-03-01

    Full Text Available Polycyclic aromatic hydrocarbons (PAHs are widespread genotoxic environmental pollutants and potentially pose a health risk to humans. Although the biological and toxicological activities, including metabolism, mutagenicity, and carcinogenicity, of PAHs have been thoroughly studied, their phototoxicity and photo-induced biological activity have not been well examined. We have long been interested in phototoxicity of PAHs and their derivatives induced by irradiation with UV light. In this paper we report the photoirradiation of a series of oxygenated benz[a]anthracene (BA and 3-methylcholanthene (3-MC by UVA light in the presence of a lipid, methyl linoleate. The studied PAHs include 2-hydroxy-BA (2-OH-BA, 3-hydroxy-BA (3-OH-BA, 5-hydroxymethyl-BA (5-CH2OH-BA, 7-hydroxymethyl-BA (7-CH2OH-BA, 12-hydroxymethyl-BA (12-CH2OH-BA, 7-hydroxymethyl-12-methyl-BA (7-CH2OH-12-MBA, 5-formyl-BA (5-CHO-BA, BA 5,6-cis-dihydrodiol (BA 5,6-cis-diol, 1-hydroxy-3- methylcholanthene (1-OH-3-MC, 1-keto-3-methylcholanthene (1-keto-3-MC, and 3-MC 1,2-diol. The results indicate that upon photoirradiation by UVA at 7 and 21 J/cm2, respectively all these compounds induced lipid peroxidation and exhibited a relationship between the dose of the light and the level of lipid peroxidation induced. To determine whether or not photoirradiation of these compounds by UVA light produces ROS, an ESR spin-trap technique was employed to provide direct evidence. Photoirradiation of 3-keto-3-MC by UVA (at 389 nm in the presence of 2,2,6,6-tetramethylpiperidine (TEMP, a specific probe for singlet oxygen, resulted in the formation of TEMPO, indicating that singlet oxygen was generated. These overall results suggest that UVA photoirradiation of oxygenated BA and 3-methylcholanthrene generates singlet oxygen, one of the reactive oxygen species (ROS, which induce lipid peroxidation.

  17. Luteolin as reactive oxygen generator by X-ray and UV irradiation

    Science.gov (United States)

    Toyama, Michiru; Mori, Takashi; Takahashi, Junko; Iwahashi, Hitoshi

    2018-05-01

    Non-toxic X-ray-responsive substances can be used in the radiosensitization of cancer, like porphyrin mediated radiotherapy. However, most X-ray-responsive substances are toxic. To find novel non-toxic X-ray-responsive substances, we studied the X-ray and UV reactivity of 40 non-toxic compounds extracted from plants. Dihydroethidium was used as an indicator to detect reactive oxygen species (ROS) generated by the compounds under X-ray or UV irradiation. We found that 13 of the investigated compounds generated ROS under X-ray irradiation and 17 generated ROS under UV irradiation. Only 4 substances generated ROS under both X-ray and UV. In particular, luteolin exhibited the highest activity among the investigated compounds; therefore, the ROS generated by luteolin were thoroughly characterized. To identify the ROS, we employed a combination of ROS detection reagents and their quenchers. O2·- generation by luteolin was monitored using dihydroethidium and superoxide dismutase (as an O2·- quencher). OH· and 1O2 generation was determined using aminophenyl fluorescein with ethanol (OH· quencher) and Singlet Oxygen Sensor Green® with NaN3 (1O2 quencher), respectively. Generation of O2·- under X-ray and UV irradiation was observed; however, no OH· or 1O2 was detected. The production of ROS from luteolin is surprising, because luteolin is a well-known antioxidant.

  18. Molecular and biochemical mechanisms in teratogenesis involving reactive oxygen species

    International Nuclear Information System (INIS)

    Wells, Peter G.; Bhuller, Yadvinder; Chen, Connie S.; Jeng, Winnie; Kasapinovic, Sonja; Kennedy, Julia C.; Kim, Perry M.; Laposa, Rebecca R.; McCallum, Gordon P.; Nicol, Christopher J.; Parman, Toufan; Wiley, Michael J.; Wong, Andrea W.

    2005-01-01

    Developmental pathologies may result from endogenous or xenobiotic-enhanced formation of reactive oxygen species (ROS), which oxidatively damage cellular macromolecules and/or alter signal transduction. This minireview focuses upon several model drugs (phenytoin, thalidomide, methamphetamine), environmental chemicals (benzo[a]pyrene) and gamma irradiation to examine this hypothesis in vivo and in embryo culture using mouse, rat and rabbit models. Embryonic prostaglandin H synthases (PHSs) and lipoxygenases bioactivate xenobiotics to free radical intermediates that initiate ROS formation, resulting in oxidation of proteins, lipids and DNA. Oxidative DNA damage and embryopathies are reduced in PHS knockout mice, and in mice treated with PHS inhibitors, antioxidative enzymes, antioxidants and free radical trapping agents. Thalidomide causes embryonic DNA oxidation in susceptible (rabbit) but not resistant (mouse) species. Embryopathies are increased in mutant mice deficient in the antioxidative enzyme glucose-6-phosphate dehydrogenase (G6PD), or by glutathione (GSH) depletion, or inhibition of GSH peroxidase or GSH reductase. Inducible nitric oxide synthase knockout mice are partially protected. Inhibition of Ras or NF-kB pathways reduces embryopathies, implicating ROS-mediated signal transduction. Atm and p53 knockout mice deficient in DNA damage response/repair are more susceptible to xenobiotic or radiation embryopathies, suggesting a teratological role for DNA damage, consistent with enhanced susceptibility to methamphetamine in ogg1 knockout mice with deficient repair of oxidative DNA damage. Even endogenous embryonic oxidative stress carries a risk, since untreated G6PD- or ATM-deficient mice have increased embryopathies. Thus, embryonic processes regulating the balance of ROS formation, oxidative DNA damage and repair, and ROS-mediated signal transduction may be important determinants of teratological risk

  19. Surface-Selective Preferential Production of Reactive Oxygen Species on Piezoelectric Ceramics for Bacterial Killing.

    Science.gov (United States)

    Tan, Guoxin; Wang, Shuangying; Zhu, Ye; Zhou, Lei; Yu, Peng; Wang, Xiaolan; He, Tianrui; Chen, Junqi; Mao, Chuanbin; Ning, Chengyun

    2016-09-21

    Reactive oxygen species (ROS) can be used to kill bacterial cells, and thus the selective generation of ROS from material surfaces is an emerging direction in antibacterial material discovery. We found the polarization of piezoelectric ceramic causes the two sides of the disk to become positively and negatively charged, which translate into cathode and anode surfaces in an aqueous solution. Because of the microelectrolysis of water, ROS are preferentially formed on the cathode surface. Consequently, the bacteria are selectively killed on the cathode surface. However, the cell experiment suggested that the level of ROS is safe for normal mammalian cells.

  20. REACTIVE OXYGEN SPECIES AT THE CROSSROADS OF INFLAMMASOME AND INFLAMMATION

    Directory of Open Access Journals (Sweden)

    Anantha eHarijith

    2014-09-01

    Full Text Available Inflammasomes form a crucial part of the innate immune system. These are multi-protein oligomer platforms that are composed of intracellular sensors which are coupled with caspase and interleukin activating systems. Nod-like receptor protein (NLRP 3, and 6 and NLRC4 and AIM2 are the prominent members of the inflammasome family. Inflammasome activation leads to pyroptosis, a process of programmed cell death distinct from apoptosis through activation of Caspase and further downstream targets such as IL-1β and IL-18 leading to activation of inflammatory cascade. Reactive oxygen species (ROS serve as important inflammasome activating signals. ROS activate inflammasome through mitogen-activated protein kinases (MAPK and extracellular signal-regulated protein kinases 1 and 2 (ERK1/2. Dysregulation of inflammasome is plays a significant role in various pathological process. Viral infections such as Dengue and Respiratory syncytial virus activate inflammasomes. Crystal compounds in silicosis and gout also activate ROS. In diabetes, inhibition of autophagy with resultant accumulation of dysfunctional mitochondria leads to enhanced ROS production activating inflammasomes. Activation of inflammasomes can be dampened by antioxidants such as SIRT-1. Inflammasome and related cascade could serve as future therapeutic targets for various pathological conditions.

  1. Reactive oxygen species (ROS) and cancer: Role of antioxidative nutraceuticals.

    Science.gov (United States)

    Prasad, Sahdeo; Gupta, Subash C; Tyagi, Amit K

    2017-02-28

    Extensive research over the past half a century indicates that reactive oxygen species (ROS) play an important role in cancer. Although low levels of ROS can be beneficial, excessive accumulation can promote cancer. One characteristic of cancer cells that distinguishes them from normal cells is their ability to produce increased numbers of ROS and their increased dependence on an antioxidant defense system. ROS are produced as a byproduct intracellularly by mitochondria and other cellular elements and exogenously by pollutants, tobacco, smoke, drugs, xenobiotics, and radiation. ROS modulate various cell signaling pathways, which are primarily mediated through the transcription factors NF-κB and STAT3, hypoxia-inducible factor-1α, kinases, growth factors, cytokines and other proteins, and enzymes; these pathways have been linked to cellular transformation, inflammation, tumor survival, proliferation, invasion, angiogenesis, and metastasis of cancer. ROS are also associated with epigenetic changes in genes, which is helpful in diagnosing diseases. This review considers the role of ROS in the various stages of cancer development. Finally, we provide evidence that nutraceuticals derived from Mother Nature are highly effective in eliminating cancer cells. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Use the Protonmotive Force: Mitochondrial Uncoupling and Reactive Oxygen Species.

    Science.gov (United States)

    Berry, Brandon J; Trewin, Adam J; Amitrano, Andrea M; Kim, Minsoo; Wojtovich, Andrew P

    2018-04-04

    Mitochondrial respiration results in an electrochemical proton gradient, or protonmotive force (pmf), across the mitochondrial inner membrane. The pmf is a form of potential energy consisting of charge (∆ψ m ) and chemical (∆pH) components, that together drive ATP production. In a process called uncoupling, proton leak into the mitochondrial matrix independent of ATP production dissipates the pmf and energy is lost as heat. Other events can directly dissipate the pmf independent of ATP production as well, such as chemical exposure or mechanisms involving regulated mitochondrial membrane electrolyte transport. Uncoupling has defined roles in metabolic plasticity and can be linked through signal transduction to physiologic events. In the latter case, the pmf impacts mitochondrial reactive oxygen species (ROS) production. Although capable of molecular damage, ROS also have signaling properties that depend on the timing, location, and quantity of their production. In this review, we provide a general overview of mitochondrial ROS production, mechanisms of uncoupling, and how these work in tandem to affect physiology and pathologies, including obesity, cardiovascular disease, and immunity. Overall, we highlight that isolated bioenergetic models-mitochondria and cells-only partially recapitulate the complex link between the pmf and ROS signaling that occurs in vivo. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Light irradiation helps magnetotactic bacteria eliminate intracellular reactive oxygen species.

    Science.gov (United States)

    Li, Kefeng; Wang, Pingping; Chen, Chuanfang; Chen, Changyou; Li, Lulu; Song, Tao

    2017-09-01

    Magnetotactic bacteria (MTB) demonstrate photoresponse. However, little is known about the biological significance of this behaviour. Magnetosomes exhibit peroxidase-like activity and can scavenge reactive oxygen species (ROS). Magnetosomes extracted from the Magnetospirillum magneticum strain AMB-1 show enhanced peroxidase-like activity under illumination. The present study investigated the effects of light irradiation on nonmagnetic (without magnetosomes) and magnetic (with magnetosomes) AMB-1 cells. Results showed that light irradiation did not affect the growth of nonmagnetic and magnetic cells but significantly increased magnetosome synthesis and reduced intracellular ROS level in magnetic cells. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was performed to analyse the expression level of magnetosome formation-associated genes (mamA, mms6, mms13 and mmsF) and stress-related genes (recA, oxyR, SOD, amb0664 and amb2684). Results showed that light irradiation upregulated the expression of mms6, mms13 and mmsF. Furthermore, light irradiation upregulated the expression of stress-related genes in nonmagnetic cells but downregulated them in magnetic cells. Additionally, magnetic cells exhibited stronger phototactic behaviour than nonmagnetic ones. These results suggested that light irradiation could heighten the ability of MTB to eliminate intracellular ROS and help them adapt to lighted environments. This phenomenon may be related to the enhanced peroxidase-like activity of magnetosomes under light irradiation. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  4. Pleiotropic Effects of Biguanides on Mitochondrial Reactive Oxygen Species Production

    Directory of Open Access Journals (Sweden)

    Alena Pecinova

    2017-01-01

    Full Text Available Metformin is widely prescribed as a first-choice antihyperglycemic drug for treatment of type 2 diabetes mellitus, and recent epidemiological studies showed its utility also in cancer therapy. Although it is in use since the 1970s, its molecular target, either for antihyperglycemic or antineoplastic action, remains elusive. However, the body of the research on metformin effect oscillates around mitochondrial metabolism, including the function of oxidative phosphorylation (OXPHOS apparatus. In this study, we focused on direct inhibitory mechanism of biguanides (metformin and phenformin on OXPHOS complexes and its functional impact, using the model of isolated brown adipose tissue mitochondria. We demonstrate that biguanides nonspecifically target the activities of all respiratory chain dehydrogenases (mitochondrial NADH, succinate, and glycerophosphate dehydrogenases, but only at very high concentrations (10−2–10−1 M that highly exceed cellular concentrations observed during the treatment. In addition, these concentrations of biguanides also trigger burst of reactive oxygen species production which, in combination with pleiotropic OXPHOS inhibition, can be toxic for the organism. We conclude that the beneficial effect of biguanides should probably be associated with subtler mechanism, different from the generalized inhibition of the respiratory chain.

  5. Role of Melanin in Melanocyte Dysregulation of Reactive Oxygen Species

    Directory of Open Access Journals (Sweden)

    Noah C. Jenkins

    2013-01-01

    Full Text Available We have recently reported a potential alternative tumor suppressor function for p16 relating to its capacity to regulate oxidative stress and observed that oxidative dysregulation in p16-depleted cells was most profound in melanocytes, compared to keratinocytes or fibroblasts. Moreover, in the absence of p16 depletion or exogenous oxidative insult, melanocytes exhibited significantly higher basal levels of reactive oxygen species (ROS than these other epidermal cell types. Given the role of oxidative stress in melanoma development, we speculated that this increased susceptibility of melanocytes to oxidative stress (and greater reliance on p16 for suppression of ROS may explain why genetic compromise of p16 is more commonly associated with predisposition to melanoma rather than other cancers. Here we show that the presence of melanin accounts for this differential oxidative stress in normal and p16-depleted melanocytes. Thus the presence of melanin in the skin appears to be a double-edged sword: it protects melanocytes as well as neighboring keratinocytes in the skin through its capacity to absorb UV radiation, but its synthesis in melanocytes results in higher levels of intracellular ROS that may increase melanoma susceptibility.

  6. Next Generation Life Support (NGLS): Variable Oxygen Regulator

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the Variable Oxygen Regulator Element is to develop an oxygen-rated, contaminant-tolerant oxygen regulator to control suit pressure with a...

  7. Khz-cp (crude polysaccharide extract obtained from the fusion of Ganoderma lucidum and Polyporus umbellatus mycelia) induces apoptosis by increasing intracellular calcium levels and activating P38 and NADPH oxidase-dependent generation of reactive oxygen species in SNU-1 cells.

    Science.gov (United States)

    Kim, Tae Hwan; Kim, Ju Sung; Kim, Zoo Haye; Huang, Ren Bin; Chae, Young Lye; Wang, Ren Sheng

    2014-07-10

    Khz-cp is a crude polysaccharide extract that is obtained after nuclear fusion in Ganoderma lucidum and Polyporus umbellatus mycelia (Khz). It inhibits the growth of cancer cells. Khz-cp was extracted by solvent extraction. The anti-proliferative activity of Khz-cp was confirmed by using Annexin-V/PI-flow cytometry analysis. Intracellular calcium increase and measurement of intracellular reactive oxygen species (ROS) were performed by using flow cytometry and inverted microscope. SNU-1 cells were treated with p38, Bcl-2 and Nox family siRNA. siRNA transfected cells was employed to investigate the expression of apoptotic, growth and survival genes in SNU-1 cells. Western blot analysis was performed to confirm the expression of the genes. In the present study, Khz-cp induced apoptosis preferentially in transformed cells and had only minimal effects on non-transformed cells. Furthermore, Khz-cp was found to induce apoptosis by increasing the intracellular Ca2+ concentration ([Ca2+]i) and activating P38 to generate reactive oxygen species (ROS) via NADPH oxidase and the mitochondria. Khz-cp-induced apoptosis was caspase dependent and occurred via a mitochondrial pathway. ROS generation by NADPH oxidase was critical for Khz-cp-induced apoptosis, and although mitochondrial ROS production was also required, it appeared to occur secondary to ROS generation by NADPH oxidase. Activation of NADPH oxidase was shown by the translocation of the regulatory subunits p47phox and p67phox to the cell membrane and was necessary for ROS generation by Khz-cp. Khz-cp triggered a rapid and sustained increase in [Ca2+]i that activated P38. P38 was considered to play a key role in the activation of NADPH oxidase because inhibition of its expression or activity abrogated membrane translocation of the p47phox and p67phox subunits and ROS generation. In summary, these data indicate that Khz-cp preferentially induces apoptosis in cancer cells and that the signaling mechanisms involve an

  8. Reactive oxygen species: role in the development of cancer and various chronic conditions

    Directory of Open Access Journals (Sweden)

    Waris Gulam

    2006-05-01

    Full Text Available Abstract Oxygen derived species such as superoxide radical, hydrogen peroxide, singlet oxygen and hydroxyl radical are well known to be cytotoxic and have been implicated in the etiology of a wide array of human diseases, including cancer. Various carcinogens may also partly exert their effect by generating reactive oxygen species (ROS during their metabolism. Oxidative damage to cellular DNA can lead to mutations and may, therefore, play an important role in the initiation and progression of multistage carcinogenesis. The changes in DNA such as base modification, rearrangement of DNA sequence, miscoding of DNA lesion, gene duplication and the activation of oncogenes may be involved in the initiation of various cancers. Elevated levels of ROS and down regulation of ROS scavengers and antioxidant enzymes are associated with various human diseases including various cancers. ROS are also implicated in diabtes and neurodegenerative diseases. ROS influences central cellular processes such as proliferation a, apoptosis, senescence which are implicated in the development of cancer. Understanding the role of ROS as key mediators in signaling cascades may provide various opportunities for pharmacological intervention.

  9. Determination of reactive oxygen species from ZnO micro-nano structures with shape-dependent photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    He, Weiwei; Zhao, Hongxiao; Jia, Huimin [Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, Xuchang University, Henan 461000 (China); Yin, Jun-Jie [Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD 20740 (United States); Zheng, Zhi, E-mail: zhengzhi99999@gmail.com [Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, Xuchang University, Henan 461000 (China)

    2014-05-01

    Graphical abstract: ZnO micro/nano structures with shape dependent photocatalytic activity were prepared by hydrothermal reaction. The generations of hydroxyl radical, superoxide and singlet oxygen from irradiated ZnO were identified precisely by electron spin resonance spectroscopy. The type of reactive oxygen species was determined by band gap structure of ZnO. - Highlights: • ZnO micro/nano structures with different morphologies were prepared by solvothermal reaction. • Multi-pod like ZnO structures exhibited superior photocatalytic activity. • The generations of hydroxyl radical, superoxide and singlet oxygen from irradiated ZnO were characterized precisely by electron spin resonance spectroscopy. • The type of reactive oxygen species was determined by band gap structure of ZnO. - Abstract: ZnO micro/nano structures with different morphologies have been prepared by the changing solvents used during their synthesis by solvothermal reaction. Three typical shapes of ZnO structures including hexagonal, bell bottom like and multi-pod formed and were characterized by scanning electron microscopy and X-ray diffraction. Multi pod like ZnO structures exhibited the highest photocatalytic activity toward degradation of methyl orange. Using electron spin resonance spectroscopy coupled with spin trapping techniques, we demonstrate an effective way to identify precisely the generation of hydroxyl radicals, superoxide and singlet oxygen from the irradiated ZnO multi pod structures. The type of reactive oxygen species formed was predictable from the band gap structure of ZnO. These results indicate that the shape of micro-nano structures significantly affects the photocatalytic activity of ZnO, and demonstrate the value of electron spin resonance spectroscopy for characterizing the type of reactive oxygen species formed during photoexcitation of semiconductors.

  10. Determination of reactive oxygen species from ZnO micro-nano structures with shape-dependent photocatalytic activity

    International Nuclear Information System (INIS)

    He, Weiwei; Zhao, Hongxiao; Jia, Huimin; Yin, Jun-Jie; Zheng, Zhi

    2014-01-01

    Graphical abstract: ZnO micro/nano structures with shape dependent photocatalytic activity were prepared by hydrothermal reaction. The generations of hydroxyl radical, superoxide and singlet oxygen from irradiated ZnO were identified precisely by electron spin resonance spectroscopy. The type of reactive oxygen species was determined by band gap structure of ZnO. - Highlights: • ZnO micro/nano structures with different morphologies were prepared by solvothermal reaction. • Multi-pod like ZnO structures exhibited superior photocatalytic activity. • The generations of hydroxyl radical, superoxide and singlet oxygen from irradiated ZnO were characterized precisely by electron spin resonance spectroscopy. • The type of reactive oxygen species was determined by band gap structure of ZnO. - Abstract: ZnO micro/nano structures with different morphologies have been prepared by the changing solvents used during their synthesis by solvothermal reaction. Three typical shapes of ZnO structures including hexagonal, bell bottom like and multi-pod formed and were characterized by scanning electron microscopy and X-ray diffraction. Multi pod like ZnO structures exhibited the highest photocatalytic activity toward degradation of methyl orange. Using electron spin resonance spectroscopy coupled with spin trapping techniques, we demonstrate an effective way to identify precisely the generation of hydroxyl radicals, superoxide and singlet oxygen from the irradiated ZnO multi pod structures. The type of reactive oxygen species formed was predictable from the band gap structure of ZnO. These results indicate that the shape of micro-nano structures significantly affects the photocatalytic activity of ZnO, and demonstrate the value of electron spin resonance spectroscopy for characterizing the type of reactive oxygen species formed during photoexcitation of semiconductors

  11. Effects of the Oxygenation level on Formation of Different Reactive Oxygen Species During Photodynamic Therapy

    OpenAIRE

    Price, Michael; Heilbrun, Lance; Kessel, David

    2013-01-01

    We examined the effect of the oxygenation level on efficacy of two photosensitizing agents, both of which target lysosomes for photodamage but via different photochemical pathways. Upon irradiation, the chlorin termed NPe6 forms singlet oxygen in high yield while the bacteriopheophorbide WST11 forms only oxygen radicals (in an aqueous environment). Photokilling efficacy by WST11 in cell culture was impaired when the atmospheric oxygen concentration was reduced from 20% to 1%, while photokilli...

  12. Growth enhancement and gene expression of Arabidopsis thaliana irradiated with active oxygen species

    Science.gov (United States)

    Watanabe, Satoshi; Ono, Reoto; Hayashi, Nobuya; Shiratani, Masaharu; Tashiro, Kosuke; Kuhara, Satoru; Inoue, Asami; Yasuda, Kaori; Hagiwara, Hiroko

    2016-07-01

    The characteristics of plant growth enhancement effect and the mechanism of the enhancement induced by plasma irradiation are investigated using various active species in plasma. Active oxygen species in oxygen plasma are effective for growth enhancement of plants. DNA microarray analysis of Arabidopsis thaliana indicates that the genes coding proteins that counter oxidative stresses by eliminating active oxygen species are expressed at significantly high levels. The size of plant cells increases owing to oxygen plasma irradiation. The increases in gene expression levels and cell size suggest that the increase in the expression level of the expansin protein is essential for plant growth enhancement phenomena.

  13. Combined application of XANES and XPS to study oxygen species adsorbed on Ag foil

    CERN Document Server

    Bukhtiyarov, V I; Kaichev, V V; Knop-Gericke, A; Mayer, R W; Schloegl, R

    2001-01-01

    Adsorbed oxygen species realized in the course of ethylene epoxidation over polycrystalline silver have been characterized by X-ray absorption near the edge structure and X-ray photoelectron spectroscopy. Namely, the combined application of XANES and XPS in similar UHV conditions using the same sample allowed us to assign an XAS feature to the nucleophilic and electrophilic oxygen. This is of great significance, since these species are suggested to be included into the active center for ethylene epoxidation. The differences in the oxygen-silver bonding of these oxygen species are discussed.

  14. The Escherichia coli BtuE protein functions as a resistance determinant against reactive oxygen species.

    Directory of Open Access Journals (Sweden)

    Felipe A Arenas

    2011-01-01

    Full Text Available This work shows that the recently described Escherichia coli BtuE peroxidase protects the bacterium against oxidative stress that is generated by tellurite and by other reactive oxygen species elicitors (ROS. Cells lacking btuE (ΔbtuE displayed higher sensitivity to K(2TeO(3 and other oxidative stress-generating agents than did the isogenic, parental, wild-type strain. They also exhibited increased levels of cytoplasmic reactive oxygen species, oxidized proteins, thiobarbituric acid reactive substances, and lipoperoxides. E. coli ΔbtuE that was exposed to tellurite or H(2O(2 did not show growth changes relative to wild type cells either in aerobic or anaerobic conditions. Nevertheless, the elimination of btuE from cells deficient in catalases/peroxidases (Hpx(- resulted in impaired growth and resistance to these toxicants only in aerobic conditions, suggesting that BtuE is involved in the defense against oxidative damage. Genetic complementation of E. coli ΔbtuE restored toxicant resistance to levels exhibited by the wild type strain. As expected, btuE overexpression resulted in decreased amounts of oxidative damage products as well as in lower transcriptional levels of the oxidative stress-induced genes ibpA, soxS and katG.

  15. Effects of the oxygenation level on formation of different reactive oxygen species during photodynamic therapy.

    Science.gov (United States)

    Price, Michael; Heilbrun, Lance; Kessel, David

    2013-01-01

    We examined the effect of the oxygenation level on efficacy of two photosensitizing agents, both of which target lysosomes for photodamage, but via different photochemical pathways. Upon irradiation, the chlorin termed NPe6 forms singlet oxygen in high yield while the bacteriopheophorbide WST11 forms only oxygen radicals (in an aqueous environment). Photokilling efficacy by WST11 in cell culture was impaired when the atmospheric oxygen concentration was reduced from 20% to 1%, while photokilling by NPe6 was unaffected. Studies in a cell-free system revealed that the rates of photobleaching of these agents, as a function of the oxygenation level, were correlated with results described above. Moreover, the rate of formation of oxygen radicals by either agent was more sensitive to the level of oxygenation than was singlet oxygen formation by NPe6. These data indicate that the photochemical process that leads to oxygen radical formation is more dependent on the oxygenation level than is the pathway leading to formation of singlet oxygen. © 2013 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2013 The American Society of Photobiology.

  16. Detection and Characterization of Reactive Oxygen and Nitrogen Species in Biological Systems by Monitoring Species-Specific Products.

    Science.gov (United States)

    Hardy, Micael; Zielonka, Jacek; Karoui, Hakim; Sikora, Adam; Michalski, Radosław; Podsiadły, Radosław; Lopez, Marcos; Vasquez-Vivar, Jeannette; Kalyanaraman, Balaraman; Ouari, Olivier

    2018-05-20

    Since the discovery of the superoxide dismutase enzyme, the generation and fate of short-lived oxidizing, nitrosating, nitrating, and halogenating species in biological systems has been of great interest. Despite the significance of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in numerous diseases and intracellular signaling, the rigorous detection of ROS and RNS has remained a challenge. Recent Advances: Chemical characterization of the reactions of selected ROS and RNS with electron paramagnetic resonance (EPR) spin traps and fluorescent probes led to the establishment of species-specific products, which can be used for specific detection of several forms of ROS and RNS in cell-free systems and in cultured cells in vitro and in animals in vivo. Profiling oxidation products from the ROS and RNS probes provides a rigorous method for detection of those species in biological systems. Formation and detection of species-specific products from the probes enables accurate characterization of the oxidative environment in cells. Measurement of the total signal (fluorescence, chemiluminescence, etc.) intensity does not allow for identification of the ROS/RNS formed. It is critical to identify the products formed by using chromatographic or other rigorous techniques. Product analyses should be accompanied by monitoring of the intracellular probe level, another factor controlling the yield of the product(s) formed. More work is required to characterize the chemical reactivity of the ROS/RNS probes, and to develop new probes/detection approaches enabling real-time, selective monitoring of the specific products formed from the probes. Antioxid. Redox Signal. 28, 1416-1432.

  17. Real-Time In Vivo Monitoring of Reactive Oxygen Species in Guard Cells.

    Science.gov (United States)

    Park, Ky Young; Roubelakis-Angelakis, Kalliopi A

    2018-01-01

    The intra-/intercellular homeostasis of reactive oxygen species (ROS), and especially of superoxides (O 2 .- ) and hydrogen peroxide (O 2 .- ) participate in signalling cascades which dictate developmental processes and reactions to biotic/abiotic stresses. Polyamine oxidases terminally oxidize/back convert polyamines generating H 2 O 2 . Recently, an NADPH-oxidase/Polyamine oxidase feedback loop was identified to control oxidative burst under salinity. Thus, the real-time localization/monitoring of ROS in specific cells, such as the guard cells, can be of great interest. Here we present a detailed description of the real-time in vivo monitoring of ROS in the guard cells using H 2 O 2 - and O 2 .- specific fluorescing probes, which can be used for studying ROS accumulation generated from any source, including the amine oxidases-dependent pathway, during development and stress.

  18. Effects of oxygen on responses to heating in two lizard species sampled along an elevational gradient.

    Science.gov (United States)

    DuBois, P Mason; Shea, Tanner K; Claunch, Natalie M; Taylor, Emily N

    2017-08-01

    Thermal tolerance is an important variable in predictive models about the effects of global climate change on species distributions, yet the physiological mechanisms responsible for reduced performance at high temperatures in air-breathing vertebrates are not clear. We conducted an experiment to examine how oxygen affects three variables exhibited by ectotherms as they heat-gaping threshold, panting threshold, and loss of righting response (the latter indicating the critical thermal maximum)-in two lizard species along an elevational (and therefore environmental oxygen partial pressure) gradient. Oxygen partial pressure did not impact these variables in either species. We also exposed lizards at each elevation to severely hypoxic gas to evaluate their responses to hypoxia. Severely low oxygen partial pressure treatments significantly reduced the gaping threshold, panting threshold, and critical thermal maximum. Further, under these extreme hypoxic conditions, these variables were strongly and positively related to partial pressure of oxygen. In an elevation where both species overlapped, the thermal tolerance of the high elevation species was less affected by hypoxia than that of the low elevation species, suggesting the high elevation species may be adapted to lower oxygen partial pressures. In the high elevation species, female lizards had higher thermal tolerance than males. Our data suggest that oxygen impacts the thermal tolerance of lizards, but only under severely hypoxic conditions, possibly as a result of hypoxia-induced anapyrexia. Copyright © 2017. Published by Elsevier Ltd.

  19. Lycopene cyclase paralog CruP protects against reactive oxygen species in oxygenic photosynthetic organisms.

    Science.gov (United States)

    Bradbury, Louis M T; Shumskaya, Maria; Tzfadia, Oren; Wu, Shi-Biao; Kennelly, Edward J; Wurtzel, Eleanore T

    2012-07-03

    In photosynthetic organisms, carotenoids serve essential roles in photosynthesis and photoprotection. A previous report designated CruP as a secondary lycopene cyclase involved in carotenoid biosynthesis [Maresca J, et al. (2007) Proc Natl Acad Sci USA 104:11784-11789]. However, we found that cruP KO or cruP overexpression plants do not exhibit correspondingly reduced or increased production of cyclized carotenoids, which would be expected if CruP was a lycopene cyclase. Instead, we show that CruP aids in preventing accumulation of reactive oxygen species (ROS), thereby reducing accumulation of β-carotene-5,6-epoxide, a ROS-catalyzed autoxidation product, and inhibiting accumulation of anthocyanins, which are known chemical indicators of ROS. Plants with a nonfunctional cruP accumulate substantially higher levels of ROS and β-carotene-5,6-epoxide in green tissues. Plants overexpressing cruP show reduced levels of ROS, β-carotene-5,6-epoxide, and anthocyanins. The observed up-regulation of cruP transcripts under photoinhibitory and lipid peroxidation-inducing conditions, such as high light stress, cold stress, anoxia, and low levels of CO(2), fits with a role for CruP in mitigating the effects of ROS. Phylogenetic distribution of CruP in prokaryotes showed that the gene is only present in cyanobacteria that live in habitats characterized by large variation in temperature and inorganic carbon availability. Therefore, CruP represents a unique target for developing resilient plants and algae needed to supply food and biofuels in the face of global climate change.

  20. Humic acid in drinking well water induces inflammation through reactive oxygen species generation and activation of nuclear factor-κB/activator protein-1 signaling pathways: A possible role in atherosclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Hseu, You-Cheng [Department of Cosmeceutics, China Medical University, Taichung 40402, Taiwan (China); Department of Molecular and Cellular Oncology, University of Texas, MD Anderson Cancer Center, TX 77030 (United States); Senthil Kumar, K.J. [Department of Cosmeceutics, China Medical University, Taichung 40402, Taiwan (China); Chen, Chih-Sheng; Cho, Hsin-Ju; Lin, Shu-Wei; Shen, Pei-Chun [Institute of Nutrition, China Medical University, Taichung 40402, Taiwan (China); Lin, Cheng-Wen [Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 40402, Taiwan (China); Lu, Fung-Jou [Institute of Medicine, Chun Shan Medical University, Taichung 40201, Taiwan (China); Yang, Hsin-Ling, E-mail: hlyang@mail.cmu.edu.tw [Institute of Nutrition, China Medical University, Taichung 40402, Taiwan (China); Department of Molecular and Cellular Oncology, University of Texas, MD Anderson Cancer Center, TX 77030 (United States)

    2014-01-15

    Humic acid (HA) has been implicated as one of the etiological factors in the peripheral vasculopathy of blackfoot disease (BFD) in Taiwan. However, the underlying pathophysiological mechanisms of BFD are not well defined. In this study, we used an in vitro and in vivo model, in which HA (25–200 μg/mL) activated macrophages to produce pro-inflammatory molecules by activating their transcriptional factors. HA exposure induced NO and PGE{sub 2} production followed by induction of iNOS and COX-2 through NF-κB/AP-1 transactivation in macrophages. In addition, the production of TNF-α and IL-1β was significantly increased by HA. Moreover, HA-induced iNOS and COX-2 expression were down-regulated by the NF-κB and AP-1 inhibitors pyrrolidine dithiocarbamate (PDTC) and Tanshinone, respectively. Furthermore, generations of ROS and nitrotyrosine, as well as activation of the AKT and MAPKs signaling cascades were observed after HA exposure. Specifically, HA-induced NF-κB activation was mediated by ROS and AKT, and that HA-induced AP-1 activation was mediated by JNK and ERK. Notably, HA-mediated AKT, JNK, and ERK activation was ROS-independent. The inflammatory potential of HA was correlated with increased expression of HO-1 and Nrf2. Furthermore, an in vivo study confirms that mice exposed to HA, the serum levels of TNF-α and IL-1β was significantly increased in a dose-dependent manner. This report marks the first confirmation that environmental exposure of HA induces inflammation in macrophages, which may be one of the main causes of early atherogenesis in blackfoot disease. - Highlights: • Humic acid (HA) induce pro-inflammatory cytokines and mediators in macrophages. • HA-induced inflammation is mediated by ROS and NF-κB/AP-1 signaling pathways. • The inflammatory potential of HA correlated with activation of Nrf2/HO-1 genes. • HA exposure to mice increased pro-inflammatory cytokines production in vivo. • HA may be one of the main causes of early

  1. Humic acid in drinking well water induces inflammation through reactive oxygen species generation and activation of nuclear factor-κB/activator protein-1 signaling pathways: A possible role in atherosclerosis

    International Nuclear Information System (INIS)

    Hseu, You-Cheng; Senthil Kumar, K.J.; Chen, Chih-Sheng; Cho, Hsin-Ju; Lin, Shu-Wei; Shen, Pei-Chun; Lin, Cheng-Wen; Lu, Fung-Jou; Yang, Hsin-Ling

    2014-01-01

    Humic acid (HA) has been implicated as one of the etiological factors in the peripheral vasculopathy of blackfoot disease (BFD) in Taiwan. However, the underlying pathophysiological mechanisms of BFD are not well defined. In this study, we used an in vitro and in vivo model, in which HA (25–200 μg/mL) activated macrophages to produce pro-inflammatory molecules by activating their transcriptional factors. HA exposure induced NO and PGE 2 production followed by induction of iNOS and COX-2 through NF-κB/AP-1 transactivation in macrophages. In addition, the production of TNF-α and IL-1β was significantly increased by HA. Moreover, HA-induced iNOS and COX-2 expression were down-regulated by the NF-κB and AP-1 inhibitors pyrrolidine dithiocarbamate (PDTC) and Tanshinone, respectively. Furthermore, generations of ROS and nitrotyrosine, as well as activation of the AKT and MAPKs signaling cascades were observed after HA exposure. Specifically, HA-induced NF-κB activation was mediated by ROS and AKT, and that HA-induced AP-1 activation was mediated by JNK and ERK. Notably, HA-mediated AKT, JNK, and ERK activation was ROS-independent. The inflammatory potential of HA was correlated with increased expression of HO-1 and Nrf2. Furthermore, an in vivo study confirms that mice exposed to HA, the serum levels of TNF-α and IL-1β was significantly increased in a dose-dependent manner. This report marks the first confirmation that environmental exposure of HA induces inflammation in macrophages, which may be one of the main causes of early atherogenesis in blackfoot disease. - Highlights: • Humic acid (HA) induce pro-inflammatory cytokines and mediators in macrophages. • HA-induced inflammation is mediated by ROS and NF-κB/AP-1 signaling pathways. • The inflammatory potential of HA correlated with activation of Nrf2/HO-1 genes. • HA exposure to mice increased pro-inflammatory cytokines production in vivo. • HA may be one of the main causes of early atherogenesis

  2. The role of reactive oxygen species in the degradation of lignin derived dissolved organic matter

    Science.gov (United States)

    Waggoner, Derek C.; Wozniak, Andrew S.; Cory, Rose M.; Hatcher, Patrick G.

    2017-07-01

    Evidence suggests that reactive oxygen species (ROS) are important in transforming the chemical composition of the large pool of terrestrially-derived dissolved organic matter (DOM) exported from land to water annually. However, due to the challenges inherent in isolating the effects of individual ROS on DOM composition, the role of ROS in the photochemical alteration of DOM remains poorly characterized. In this work, terrestrial DOM was independently exposed to singlet oxygen (1O2), and superoxide (O2-rad under controlled laboratory conditions). Using ultra-high resolution mass spectrometry to track molecular level alterations of DOM by ROS, these findings suggest exposure to 1O2 (generated using Rose Bengal and visible light) removed formulas with an O/C > 0.3, and primarily resulted in DOM comprised of formulas with higher oxygen content, while O2-rad exposure (from KO2 in DMSO) removed formulas with O/C 1.5). Comparison of DOM altered by ROS in this study to riverine and coastal DOM showed that (20-80%) overlap in formulas, providing evidence for the role of ROS in shaping the composition of DOM exported from rivers to oceans.

  3. Redox state, reactive oxygen species and adaptive growth in colonial hydroids.

    Science.gov (United States)

    Blackstone, N W

    2001-06-01

    Colonial metazoans often encrust surfaces over which the food supply varies in time or space. In such an environment, adaptive colony development entails adjusting the timing and spacing of feeding structures and gastrovascular connections to correspond to this variable food supply. To investigate the possibility of such adaptive growth, within-colony differential feeding experiments were carried out using the hydroid Podocoryna carnea. Indeed, such colonies strongly exhibited adaptive growth, developing dense arrays of polyps (feeding structures) and gastrovascular connections in areas that were fed relative to areas that were starved, and this effect became more consistent over time. To investigate mechanisms of signaling between the food supply and colony development, measurements were taken of metabolic parameters that have been implicated in signal transduction in other systems, particularly redox state and levels of reactive oxygen species. Utilizing fluorescence microscopy of P. carnea cells in vivo, simultaneous measurements of redox state [using NAD(P)H] and hydrogen peroxide (using 2',7'-dichlorofluorescin diacetate) were taken. Both measures focused on polyp epitheliomuscular cells, since these exhibit the greatest metabolic activity. Colonies 3-5h after feeding were relatively oxidized, with low levels of peroxide, while colonies 24h after feeding were relatively reduced, with high levels of peroxide. The functional role of polyps in feeding and generating gastrovascular flow probably produced this dichotomy. Polyps 3-5h after feeding contract maximally, and this metabolic demand probably shifts the redox state in the direction of oxidation and diminishes levels of reactive oxygen species. In contrast, 24h after feeding, polyps are quiescent, and this lack of metabolic demand probably shifts the redox state in the direction of reduction and increases levels of reactive oxygen species. Within-colony differential feeding experiments were carried out on

  4. Mitochondrial Signaling in Plants Under Hypoxia: Use of Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS)

    DEFF Research Database (Denmark)

    Hebelstrup, Kim; Møller, Ian Max

    2015-01-01

    Hypoxia commonly occurs in roots in water-saturated soil and in maturing and germinating seeds. We here review the role of the mitochondria in the cellular response to hypoxia with an emphasis on the turnover of Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS) and their potential...

  5. Candida albicans Biofilms Do Not Trigger Reactive Oxygen Species and Evade Neutrophil Killing

    Science.gov (United States)

    Xie, Zhihong; Thompson, Angela; Sobue, Takanori; Kashleva, Helena; Xu, Hongbin; Vasilakos, John; Dongari-Bagtzoglou, Anna

    2012-01-01

    Neutrophils are found within Candida albicans biofilms in vivo and could play a crucial role in clearing the pathogen from biofilms forming on catheters and mucosal surfaces. Our goal was to compare the antimicrobial activity of neutrophils against developing and mature C. albicans biofilms and identify biofilm-specific properties mediating resistance to immune cells. Antibiofilm activity was measured with the 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)2H-tetrazolium-5-carboxanilide assay and a molecular Candida viability assay. Reactive oxygen species generation was assessed by measuring fluorescence of 5-(and-6)-chloromethyl-2′,7′-dichlorodihydrofluorescein diacetate, acetyl ester in preloaded neutrophils. We found that mature biofilms were resistant to leukocytic killing and did not trigger reactive oxygen species, even though neutrophils retained their viability and functional activation potential. Beta-glucans found in the extracellular matrix negatively affected antibiofilm activities. We conclude that these polymers act as a decoy mechanism to prevent neutrophil activation and that this represents an important innate immune evasion mechanism of C. albicans biofilms. PMID:23033146

  6. Involvement of oxygen reactive species in the cellular response of carcinoma cells to irradiation

    International Nuclear Information System (INIS)

    Tulard, A.

    2004-06-01

    After a presentation of oxygen reactive species and their sources, the author describes the enzymatic and non-enzymatic anti-oxidative defenses, the physiological roles of oxygen reactive species, the oxidative stress, the water radiolysis, the anti-oxidative enzymes and the effects of ionizing radiations. The author then reports an investigation on the contribution of oxygen reactive species in the cellular response to irradiation, and an investigation on the influence of the breathing chain on the persistence of a radio-induced oxidative stress. He also reports a research on molecular mechanisms involved in the cellular radio-sensitivity

  7. Involvement of Reactive Oxygen Species in Sonodynamically Induced Apoptosis Using a Novel Porphyrin Derivative

    Directory of Open Access Journals (Sweden)

    Nagahiko Yumita, Yumiko Iwase, Koji Nishi, Hajime Komatsu, Kazuyoshi Takeda, Kenji Onodera, Toshio Fukai, Toshihiko Ikeda, Shin-ichiro Umemura, Kazuho Okudaira, Yasunori Momose

    2012-01-01

    Full Text Available In this study, we investigated the induction of apoptosis by ultrasound in the presence of the novel porphyrin derivative DCPH-P-Na(I. HL-60 cells were exposed to ultrasound for up to 3 min in the presence and absence of DCPH-P-Na(I, and the induction of apoptosis was examined by analyzing cell morphology, DNA fragmentation, and caspase-3 activity. Reactive oxygen species were measured by means of ESR and spin trapping technique. Cells treated with 8 μM DCPH-P-Na(I and ultrasound clearly showed membrane blebbing and cell shrinkage, whereas significant morphologic changes were not observed in cells exposed to either ultrasound or DCPH-P-Na(I alone. Also, DNA ladder formation and caspase-3 activation were observed in cells treated with both ultrasound and DCPH-P-Na(I but not in cells treated with ultrasound or DCPH-P-Na(I alone. In addition, the combination of DCPH-P-Na(I and the same acoustical arrangement of ultrasound substantially enhanced nitroxide generation by the cells. Sonodynamically induced apoptosis, caspase-3 activation, and nitroxide generation were significantly suppressed by histidine. These results indicate that the combination of ultrasound and DCPH-P-Na(I induced apoptosis in HL-60 cells. The significant reduction in sonodynamically induced apoptosis, nitroxide generation, and caspase-3 activation by histidine suggests active species such as singlet oxygen are important in the sonodynamic induction of apoptosis. These experimental results support the possibility of sonodynamic treatment for cancer using the induction of apoptosis.

  8. Reactive oxygen species produced by irradiation of some phthalocyanine derivatives

    Czech Academy of Sciences Publication Activity Database

    Černý, J.; Karásková, M.; Rakušan, J.; Nešpůrek, Stanislav

    2010-01-01

    Roč. 210, č. 1 (2010), s. 82-88 ISSN 1010-6030 R&D Projects: GA AV ČR KAN400720701 Institutional research plan: CEZ:AV0Z40500505 Keywords : singlet oxygen * photosensitizer * phthalocyanine Subject RIV: CG - Electrochemistry Impact factor: 2.243, year: 2010

  9. Multiple antioxidant proteins protect Chlorobaculum tepidum against oxygen and reactive oxygen species

    DEFF Research Database (Denmark)

    Li, Hui; Jubelirer, Sara; Garcia Costas, Amaya M

    2009-01-01

    include cytochrome bd quinol oxidase, NADH oxidase, rubredoxin oxygen oxidoreductase, several thiol peroxidases, alkyl hydroperoxide reductase, superoxide dismutase, methionine sulfoxide reductase, and rubrerythrin. To test the physiological functions of some of these proteins, ten genes were...

  10. Oxygen-containing coke species in zeolite-catalyzed conversion of methanol to hydrocarbons

    KAUST Repository

    Liu, Zhaohui; Dong, Xinglong; Liu, Xin; Han, Yu

    2016-01-01

    Zeolites are the most commonly used catalysts for methanol-to-hydrocarbon (MTH) conversion. Here, we identified two oxygen-containing compounds as coke species in zeolite catalysts after MTH reactions. We investigated the possible influences

  11. Oxygen isotopic analyses of individual planktic foraminifera species: Implications for seasonality in the western Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Naidu, P.D.; Niitsuma, N.; Naik, S.S.

    The variation of stable isotopes between individual shells of planktic foraminifera of a given species and size may provide short-term seasonal insight on Paleoceanography. In this context, oxygen isotope analyses of individual Globigerinoides...

  12. Prodrugs activated by reactive oxygen species for use in the treatment of inflammatory diseases and cancer

    DEFF Research Database (Denmark)

    2018-01-01

    Prodrugs activated predominantly or exclusively in inflammatory tissue, more particularly prodrugs of methotrexate and derivatives thereof, which are selectively activated by Reactive Oxygen Species (ROS) in inflammatory tissues associated with cancer and inflammatory diseases, as well as method...

  13. Mitochondrion-derived reactive oxygen species lead to enhanced amyloid beta formation

    NARCIS (Netherlands)

    Leuner, K.; Schutt, T.; Kurz, C.; Eckert, S.H.; Schiller, C.; Occhipinti, A.; Mai, S.; Jendrach, M.; Eckert, G.P.; Kruse, S.E.; Palmiter, R.D.; Brandt, U.; Drose, S.; Wittig, I.; Willem, M.; Haass, C.; Reichert, A.S.; Muller, W.E.

    2012-01-01

    AIMS: Intracellular amyloid beta (Abeta) oligomers and extracellular Abeta plaques are key players in the progression of sporadic Alzheimer's disease (AD). Still, the molecular signals triggering Abeta production are largely unclear. We asked whether mitochondrion-derived reactive oxygen species

  14. Solar light-induced production of reactive oxygen species by single walled carbon nanotubes in water

    Science.gov (United States)

    Photosensitizing processes of engineered nanomaterials (ENMs) which include photo-induced production of reactive oxygen species (ROS) convert light energy into oxidizing chemical energy that mediates transformations of nanomaterials. The oxidative stress associated with ROS may p...

  15. Reactive oxygen species play no role in the candidacidal activity of the salivary antimicrobial peptide histatin 5

    OpenAIRE

    Veerman, Enno C. I.; Nazmi, Kamran; van '​t HOF, Wim; Bolscher, Jan G. M.; den Hertog, Alice L.; Nieuw Amerongen, Arie V.

    2004-01-01

    The mechanism of action of antimicrobial peptides is still a matter of debate. The formation of ROS (reactive oxygen species) has been suggested to be the crucial step in the fungicidal mechanism of a number of antimicrobial peptides, including histatin 5 and lactoferrin-derived peptides. In the present study we have investigated the effects of histatin 5 and of a more amphipathic synthetic derivative, dhvar4, on the generation of ROS in the yeast Candida albicans, using dihydroethidium as an...

  16. Production of Reactive Oxygen Species by Multipotent Stromal Cells/Mesenchymal Stem Cells Upon Exposure to Fas Ligand

    OpenAIRE

    Rodrigues, Melanie; Turner, Omari; Stolz, Donna; Griffith, Linda G.; Wells, Alan

    2011-01-01

    Multipotent stromal cells (MSCs) can be differentiated into osteoblasts and chondrocytes, making these cells candidates to regenerate cranio-facial injuries and lesions in long bones. A major problem with cell replacement therapy, however, is the loss of transplanted MSCs at the site of graft. Reactive oxygen species (ROS) and nonspecific inflammation generated at the ischemic site have been hypothesized to lead to MSCs loss; studies in vitro show MSCs dying both in the presence of ROS or cyt...

  17. Singlet oxygen: photosensitized generation, detection and reaction with organic molecules

    Energy Technology Data Exchange (ETDEWEB)

    Barik, Atanu; Indira Priyadarsini, K; Mohan, Hari; Bajaj, P N; Sapre, A V; Mittal, J P; Mukherjee, T [Radiation and Photochemistry Div., Bhabha Atomic Research Centre, Mumbai (India)

    2006-10-15

    Singlet molecular oxygen ({sup 1}O{sub 2}) is an excited state of molecular oxygen, having antiparallel spin in the same {pi} antibonding orbital. The study of singlet oxygen production and reactivity has emerged as a rich and diverse area, with implication in diverse fields, such as synthetic chemistry, polymer chemistry, photodynamic therapy, etc. There are several known methods to produce singlet oxygen, and also various techniques employed to detect it. Out of these, photosensitization method is the most popular one. In this article, photosensitized production of singlet oxygen from triplet oxygen and photosensitizers in presence of light, and its detection by the infrared luminescence at 1270 nm have been presented. Further, some results using different types of photosensitizers, effect of solvent on singlet oxygen quantum yields and lifetime have been discussed. The quenching rate constants of singlet oxygen have been determined with different types of organic molecules such as derivatives of thiourea and its analogues, hydroxy indoles and antioxidants and the results have been presented. (author)

  18. Singlet oxygen: photosensitized generation, detection and reaction with organic molecules

    International Nuclear Information System (INIS)

    Barik, Atanu; Indira Priyadarsini, K.; Hari Mohan; Bajaj, P.N.; Sapre, A.V.; Mittal, J.P.; Mukherjee, T.

    2006-10-01

    Singlet molecular oxygen ( 1 O 2 ) is an excited state of molecular oxygen, having antiparallel spin in the same π antibonding orbital. The study of singlet oxygen production and reactivity has emerged as a rich and diverse area, with implication in diverse fields, such as synthetic chemistry, polymer chemistry, photodynamic therapy, etc. There are several known methods to produce singlet oxygen, and also various techniques employed to detect it. Out of these, photosensitization method is the most popular one. In this article, photosensitized production of singlet oxygen from triplet oxygen and photosensitizers in presence of light, and its detection by the infrared luminescence at 1270 nm have been presented. Further, some results using different types of photosensitizers, effect of solvent on singlet oxygen quantum yields and lifetime have been discussed. The quenching rate constants of singlet oxygen have been determined with different types of organic molecules such as derivatives of thiourea and its analogues, hydroxy indoles and antioxidants and the results have been presented. (author)

  19. DMPD: NF-kappaB activation by reactive oxygen species: fifteen years later. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 16723122 NF-kappaB activation by reactive oxygen species: fifteen years later. Gloi...svg) (.html) (.csml) Show NF-kappaB activation by reactive oxygen species: fifteen years later. PubmedID 167...23122 Title NF-kappaB activation by reactive oxygen species: fifteen years later.

  20. Atrial fibrillation in the elderly: the potential contribution of reactive oxygen species

    Science.gov (United States)

    Schillinger, Kurt J.; Patel, Vickas V.

    2012-01-01

    Atrial fibrillation (AF) is the most commonly encountered cardiac arrhythmia, and is a significant source of healthcare expenditures throughout the world. It is an arrhythmia with a very clearly defined predisposition for individuals of advanced age, and this fact has led to intense study of the mechanistic links between aging and AF. By promoting oxidative damage to multiple subcellular and cellular structures, reactive oxygen species (ROS) have been shown to induce the intra- and extra-cellular changes necessary to promote the pathogenesis of AF. In addition, the generation and accumulation of ROS have been intimately linked to the cellular processes which underlie aging. This review begins with an overview of AF pathophysiology, and introduces the critical structures which, when damaged, predispose an otherwise healthy atrium to AF. The available evidence that ROS can lead to damage of these critical structures is then reviewed. Finally, the evidence linking the process of aging to the pathogenesis of AF is discussed. PMID:23341843

  1. Enhanced reactive oxygen species through direct copper sulfide nanoparticle-doxorubicin complexation

    Science.gov (United States)

    Li, Yajuan; Cupo, Michela; Guo, Liangran; Scott, Julie; Chen, Yi-Tzai; Yan, Bingfang; Lu, Wei

    2017-12-01

    CuS-based nanostructures loading the chemotherapeutic agent doxorubicin (DOX) exerted excellent cancer photothermal chemotherapy under multi-external stimuli. The DOX loading was generally designed through electrostatic interaction or chemical linkers. However, the interaction between DOX molecules and CuS nanoparticles has not been investigated. In this work, we use PEGylated hollow copper sulfide nanoparticles (HCuSNPs) to directly load DOX through the DOX/Cu2+ chelation process. Distinctively, the synthesized PEG-HCuSNPs-DOX release the DOX/Cu2+ complexes into surrounding environment, which generate significant reactive oxygen species (ROS) in a controlled manner by near-infrared laser. The CuS nanoparticle-mediated photothermal ablation facilitates the ROS-induced cancer cell killing effect. Our current work reveals a DOX/Cu2+-mediated ROS-enhanced cell-killing effect in addition to conventional photothermal chemotherapy through the direct CuS nanoparticle-DOX complexation.

  2. Ionized gas (plasma) delivery of reactive oxygen species (ROS) into artificial cells

    International Nuclear Information System (INIS)

    Hong, Sung-Ha; Jenkins, A Toby A; Szili, Endre J; Short, Robert D

    2014-01-01

    This study was designed to enhance our understanding of how reactive oxygen species (ROS), generated ex situ by ionized gas (plasma), can affect the regulation of signalling processes within cells. A model system, comprising of a suspension of phospholipid vesicles (cell mimics) encapsulating a ROS reporter, was developed to study the plasma delivery of ROS into cells. For the first time it was shown that plasma unequivocally delivers ROS into cells over a sustained period and without compromising cell membrane integrity. An important consideration in cell and biological assays is the presence of serum, which significantly reduced the transfer efficiency of ROS into the vesicles. These results are key to understanding how plasma treatments can be tailored for specific medical or biotechnology applications. Further, the phospholipid vesicle ROS reporter system may find use in other studies involving the application of free radicals in biology and medicine. (fast track communication)

  3. Inactivation of pyruvate dehydrogenase kinase 2 by mitochondrial reactive oxygen species.

    Science.gov (United States)

    Hurd, Thomas R; Collins, Yvonne; Abakumova, Irina; Chouchani, Edward T; Baranowski, Bartlomiej; Fearnley, Ian M; Prime, Tracy A; Murphy, Michael P; James, Andrew M

    2012-10-12

    Reactive oxygen species are byproducts of mitochondrial respiration and thus potential regulators of mitochondrial function. Pyruvate dehydrogenase kinase 2 (PDHK2) inhibits the pyruvate dehydrogenase complex, thereby regulating entry of carbohydrates into the tricarboxylic acid (TCA) cycle. Here we show that PDHK2 activity is inhibited by low levels of hydrogen peroxide (H(2)O(2)) generated by the respiratory chain. This occurs via reversible oxidation of cysteine residues 45 and 392 on PDHK2 and results in increased pyruvate dehydrogenase complex activity. H(2)O(2) derives from superoxide (O(2)(.)), and we show that conditions that inhibit PDHK2 also inactivate the TCA cycle enzyme, aconitase. These findings suggest that under conditions of high mitochondrial O(2)(.) production, such as may occur under nutrient excess and low ATP demand, the increase in O(2)() and H(2)O(2) may provide feedback signals to modulate mitochondrial metabolism.

  4. Ionized gas (plasma) delivery of reactive oxygen species (ROS) into artificial cells

    Science.gov (United States)

    Hong, Sung-Ha; Szili, Endre J.; Jenkins, A. Toby A.; Short, Robert D.

    2014-09-01

    This study was designed to enhance our understanding of how reactive oxygen species (ROS), generated ex situ by ionized gas (plasma), can affect the regulation of signalling processes within cells. A model system, comprising of a suspension of phospholipid vesicles (cell mimics) encapsulating a ROS reporter, was developed to study the plasma delivery of ROS into cells. For the first time it was shown that plasma unequivocally delivers ROS into cells over a sustained period and without compromising cell membrane integrity. An important consideration in cell and biological assays is the presence of serum, which significantly reduced the transfer efficiency of ROS into the vesicles. These results are key to understanding how plasma treatments can be tailored for specific medical or biotechnology applications. Further, the phospholipid vesicle ROS reporter system may find use in other studies involving the application of free radicals in biology and medicine.

  5. Photoreactivity of Metal-Organic Frameworks in Aqueous Solutions: Metal Dependence of Reactive Oxygen Species Production.

    Science.gov (United States)

    Liu, Kai; Gao, Yanxin; Liu, Jing; Wen, Yifan; Zhao, Yingcan; Zhang, Kunyang; Yu, Gang

    2016-04-05

    Promising applications of metal-organic frameworks (MOFs) in various fields have raised concern over their environmental fate and safety upon inevitable discharge into aqueous environments. Currently, no information regarding the transformation processes of MOFs is available. Due to the presence of repetitive π-bond structure and semiconductive property, photochemical transformations are an important fate process that affects the performance of MOFs in practical applications. In the current study, the generation of reactive oxygen species (ROS) in isoreticular MIL-53s was studied. Scavengers were employed to probe the production of (1)O2, O2(•-), and •OH, respectively. In general, MIL-53(Cr) and MIL-53(Fe) are dominated by type I and II photosensitization reactions, respectively, and MIL-53(Al) appears to be less photoreactive. The generation of ROS in MIL-53(Fe) may be underestimated due to dismutation. Further investigation of MIL-53(Fe) encapsulated diclofenac transformation revealed that diclofenac can be easily transformed by MIL-53(Fe) generated ROS. However, the cytotoxicity results implied that the ROS generated from MIL-53s have little effect on the viability of the human hepatocyte (HepG2) cell line. These results suggest that the photogeneration of ROS by MOFs may be metal-node dependent, and the application of MIL-53s as drug carriers needs to be carefully considered due to their high photoreactivity.

  6. Reactive Oxygen Species Production by Forward and Reverse Electron Fluxes in the Mitochondrial Respiratory Chain

    Science.gov (United States)

    Selivanov, Vitaly A.; Votyakova, Tatyana V.; Pivtoraiko, Violetta N.; Zeak, Jennifer; Sukhomlin, Tatiana; Trucco, Massimo; Roca, Josep; Cascante, Marta

    2011-01-01

    Reactive oxygen species (ROS) produced in the mitochondrial respiratory chain (RC) are primary signals that modulate cellular adaptation to environment, and are also destructive factors that damage cells under the conditions of hypoxia/reoxygenation relevant for various systemic diseases or transplantation. The important role of ROS in cell survival requires detailed investigation of mechanism and determinants of ROS production. To perform such an investigation we extended our rule-based model of complex III in order to account for electron transport in the whole RC coupled to proton translocation, transmembrane electrochemical potential generation, TCA cycle reactions, and substrate transport to mitochondria. It fits respiratory electron fluxes measured in rat brain mitochondria fueled by succinate or pyruvate and malate, and the dynamics of NAD+ reduction by reverse electron transport from succinate through complex I. The fitting of measured characteristics gave an insight into the mechanism of underlying processes governing the formation of free radicals that can transfer an unpaired electron to oxygen-producing superoxide and thus can initiate the generation of ROS. Our analysis revealed an association of ROS production with levels of specific radicals of individual electron transporters and their combinations in species of complexes I and III. It was found that the phenomenon of bistability, revealed previously as a property of complex III, remains valid for the whole RC. The conditions for switching to a state with a high content of free radicals in complex III were predicted based on theoretical analysis and were confirmed experimentally. These findings provide a new insight into the mechanisms of ROS production in RC. PMID:21483483

  7. High Pressure Electrochemical Oxygen Generation for ISS, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Giner, Inc. has developed an advanced electrochemical static vapor feed oxygen (O2) concentrator (SVFOC) that offers a simple alternative to the use of pressure...

  8. High Pressure Electrochemical Oxygen Generation for ISS, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Giner, Inc. has developed an advanced high pressure electrochemical oxygen concentrator (EOC) that offers a simple alternative to the use of pressure swing...

  9. Marine species in ambient low-oxygen regions subject to double jeopardy impacts of climate change.

    Science.gov (United States)

    Stortini, Christine H; Chabot, Denis; Shackell, Nancy L

    2017-06-01

    We have learned much about the impacts of warming on the productivity and distribution of marine organisms, but less about the impact of warming combined with other environmental stressors, including oxygen depletion. Also, the combined impact of multiple environmental stressors requires evaluation at the scales most relevant to resource managers. We use the Gulf of St. Lawrence, Canada, characterized by a large permanently hypoxic zone, as a case study. Species distribution models were used to predict the impact of multiple scenarios of warming and oxygen depletion on the local density of three commercially and ecologically important species. Substantial changes are projected within 20-40 years. A eurythermal depleted species already limited to shallow, oxygen-rich refuge habitat (Atlantic cod) may be relatively uninfluenced by oxygen depletion but increase in density within refuge areas with warming. A more stenothermal, deep-dwelling species (Greenland halibut) is projected to lose ~55% of its high-density areas under the combined impacts of warming and oxygen depletion. Another deep-dwelling, more eurythermal species (Northern shrimp) would lose ~4% of its high-density areas due to oxygen depletion alone, but these impacts may be buffered by warming, which may increase density by 8% in less hypoxic areas, but decrease density by ~20% in the warmest parts of the region. Due to local climate variability and extreme events, and that our models cannot project changes in species sensitivity to hypoxia with warming, our results should be considered conservative. We present an approach to effectively evaluate the individual and cumulative impacts of multiple environmental stressors on a species-by-species basis at the scales most relevant to managers. Our study may provide a basis for work in other low-oxygen regions and should contribute to a growing literature base in climate science, which will continue to be of support for resource managers as climate change

  10. Phototoxicity Evaluation of Pharmaceutical Substances with a Reactive Oxygen Species Assay Using Ultraviolet A

    Science.gov (United States)

    Lee, Yong Sun; Yi, Jung-Sun; Lim, Hye Rim; Kim, Tae Sung; Ahn, Il Young; Ko, Kyungyuk; Kim, JooHwan; Park, Hye-Kyung; Sohn, Soo Jung; Lee, Jong Kwon

    2017-01-01

    With ultraviolet and visible light exposure, some pharmaceutical substances applied systemically or topically may cause phototoxic skin irritation. The major factor in phototoxicity is the generation of reactive oxygen species (ROS) such as singlet oxygen and superoxide anion that cause oxidative damage to DNA, lipids and proteins. Thus, measuring the generation of ROS can predict the phototoxic potential of a given substance indirectly. For this reason, a standard ROS assay (ROS assay) was developed and validated and provides an alternative method for phototoxicity evaluation. However, negative substances are over-predicted by the assay. Except for ultraviolet A (UVA), other UV ranges are not a major factor in causing phototoxicity and may lead to incorrect labeling of some non-phototoxic substances as being phototoxic in the ROS assay when using a solar simulator. A UVA stimulator is also widely used to evaluate phototoxicity in various test substances. Consequently, we identified the applicability of a UVA simulator to the ROS assay for photoreactivity. In this study, we tested 60 pharmaceutical substances including 50 phototoxins and 10 non-phototoxins to predict their phototoxic potential via the ROS assay with a UVA simulator. Following the ROS protocol, all test substances were dissolved in dimethyl sulfoxide or sodium phosphate buffer. The final concentration of the test solutions in the reaction mixture was 20 to 200 μM. The exposure was with 2.0~2.2 mW/cm2 irradiance and optimization for a relevant dose of UVA was performed. The generation of ROS was compared before and after UVA exposure and was measured by a microplate spectrophotometer. Sensitivity and specificity values were 85.7% and 100.0% respectively, and the accuracy was 88.1%. From this analysis, the ROS assay with a UVA simulator is suitable for testing the photoreactivity and estimating the phototoxic potential of various test pharmaceutical substances. PMID:28133512

  11. Oxygen Generating Biomaterials Preserve Skeletal Muscle Homeostasis under Hypoxic and Ischemic Conditions

    Science.gov (United States)

    2013-08-26

    injection” protocol for myogenic cell transplantation throughout large volumes of muscles in a Duchenne muscular dystrophy patient: eighteen months follow-up...Oxygen Generating Biomaterials Preserve Skeletal Muscle Homeostasis under Hypoxic and Ischemic Conditions Catherine L. Ward, Benjamin T. Corona...investigation was to determine if sodium percarbonate (SPO), an oxygen generating biomaterial, is capable of maintaining resting skeletal muscle

  12. Involvement of reactive oxygen species (ROS) in the induction of genetic instability by radiation

    International Nuclear Information System (INIS)

    Tominaga, Hideyuki; Kodama, Seiji; Suzuki, Keiji; Watanabe, Masami; Matsuda, Naoki

    2004-01-01

    Radiation generates reactive oxygen species (ROS) that interact with cellular molecules, including DNA, lipids, and proteins. To know how ROS contribute to the induction of genetic instability, we examined the effect of the anti-ROS condition, using both ascorbic acid phosphate (APM) treatment or a low oxygen condition, on the induction of delayed reproductive cell death and delayed chromosome aberrations. The primary surviving colonies of mouse m5S-derived cl. 2011-14 cells irradiated with 6 Gy of X-rays were replated and allowed to form secondary colonies. The anti-ROS treatments were applied to either preirradiation culture or postirradiation cultures for primary or secondary colony formation. Both anti-ROS conditions relieved X-ray-induced acute cell killing to a similar extent. These anti-ROS conditions also relieved genetic instability when those conditions were applied during primary colony formation. However, no effect was observed when the conditions were applied during preirradiation culture and secondary colony formation. We also demonstrated that the amounts of ROS in X-ray-irradiated cells rapidly increase and then decrease at 6 hr postirradiation, and the levels of ROS then gradually decrease to a baseline within 2 weeks. The APM treatment kept the ROS production at a lower level than an untreated control. These results suggest that the cause of genetic instability might be fixed by ROS during a 2-week postirradiation period. (author)

  13. The Role of Reactive Oxygen Species (ROS in the Biological Activities of Metallic Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ahmed Abdal Dayem

    2017-01-01

    Full Text Available Nanoparticles (NPs possess unique physical and chemical properties that make them appropriate for various applications. The structural alteration of metallic NPs leads to different biological functions, specifically resulting in different potentials for the generation of reactive oxygen species (ROS. The amount of ROS produced by metallic NPs correlates with particle size, shape, surface area, and chemistry. ROS possess multiple functions in cellular biology, with ROS generation a key factor in metallic NP-induced toxicity, as well as modulation of cellular signaling involved in cell death, proliferation, and differentiation. In this review, we briefly explained NP classes and their biomedical applications and describe the sources and roles of ROS in NP-related biological functions in vitro and in vivo. Furthermore, we also described the roles of metal NP-induced ROS generation in stem cell biology. Although the roles of ROS in metallic NP-related biological functions requires further investigation, modulation and characterization of metallic NP-induced ROS production are promising in the application of metallic NPs in the areas of regenerative medicine and medical devices.

  14. Induction of Tca8113 tumor cell apoptosis by icotinib is associated with reactive oxygen species mediated p38-MAPK activation.

    Science.gov (United States)

    Yang, Cailing; Yan, Jianguo; Yuan, Guoyan; Zhang, Yinghua; Lu, Derong; Ren, Mingxin; Cui, Weigang

    2014-08-01

    Icotinib, a selective EGFR tyrosine kinase inhibitor (EGFR-TKI), has been shown to exhibit anti-tumor activity against several tumor cell lines. However, the exact molecular mechanism of icotinib's anti-tumor effect remains unknown. This study aims to examine the zytotoxic effect of icotinib on Tca8113 cells and its potential molecular mechanism. Icotinib significantly resulted in dose-dependent cell death as determined by MTT assay, accompanied by increased levels of Bax and DNA fragmentation. Icotinib could also induce Reactive Oxygen Species (ROS) generation. Further studies confirmed that scavenging of reactive oxygen species by N-acetyl-L-cysteine (NAC), and pharmacological inhibition of MAPK reversed icotinib-induced apoptosis in Tca8113 cells. Our data provide evidence that icotinib induces apoptosis, possibly via ROS-mediated MAPK pathway in Tca8113 cells.

  15. Radiation induces aerobic glycolysis through reactive oxygen species

    International Nuclear Information System (INIS)

    Zhong, Jim; Rajaram, Narasimhan; Brizel, David M.; Frees, Amy E.; Ramanujam, Nirmala; Batinic-Haberle, Ines; Dewhirst, Mark W.

    2013-01-01

    Background and purpose: Although radiation induced reoxygenation has been thought to increase radiosensitivity, we have shown that its associated oxidative stress can have radioprotective effects, including stabilization of the transcription factor hypoxia inducible factor 1 (HIF-1). HIF-1 is known to regulate many of the glycolytic enzymes, thereby promoting aerobic glycolysis, which is known to promote treatment resistance. Thus, we hypothesized that reoxygenation after radiation would increase glycolysis. We previously showed that blockade of oxidative stress using a superoxide dismutase (SOD) mimic during reoxygenation can downregulate HIF-1 activity. Here we tested whether concurrent use of this drug with radiotherapy would reduce the switch to a glycolytic phenotype. Materials and methods: 40 mice with skin fold window chambers implanted with 4T1 mammary carcinomas were randomized into (1) no treatment, (2) radiation alone, (3) SOD mimic alone, and (4) SOD mimic with concurrent radiation. All mice were imaged on the ninth day following tumor implantation (30 h following radiation treatment) following injection of a fluorescent glucose analog, 2-[N-(7-nitrobenz-2-oxa-1,3-diaxol-4-yl)amino]-2-deoxyglucose (2-NBDG). Hemoglobin saturation was measured by using hyperspectral imaging to quantify oxygenation state. Results: Mice treated with radiation showed significantly higher 2-NBDG fluorescence compared to controls (p = 0.007). Hemoglobin saturation analysis demonstrated reoxygenation following radiation, coinciding with the observed increase in glycolysis. The concurrent use of the SOD mimic with radiation demonstrated a significant reduction in 2-NBDG fluorescence compared to effects seen after radiation alone, while having no effect on reoxygenation. Conclusions: Radiation induces an increase in tumor glucose demand approximately 30 h following therapy during reoxygenation. The use of an SOD mimic can prevent the increase in aerobic glycolysis when used

  16. Interconnection of reactive oxygen species chemistry across the interfaces of atmospheric, environmental, and biological processes.

    Science.gov (United States)

    Anglada, Josep M; Martins-Costa, Marilia; Francisco, Joseph S; Ruiz-López, Manuel F

    2015-03-17

    Oxidation reactions are ubiquitous and play key roles in the chemistry of the atmosphere, in water treatment processes, and in aerobic organisms. Ozone (O3), hydrogen peroxide (H2O2), hydrogen polyoxides (H2Ox, x > 2), associated hydroxyl and hydroperoxyl radicals (HOx = OH and HO2), and superoxide and ozonide anions (O2(-) and O3(-), respectively) are the primary oxidants in these systems. They are commonly classified as reactive oxygen species (ROS). Atmospheric chemistry is driven by a complex system of chain reactions of species, including nitrogen oxides, hydroxyl and hydroperoxide radicals, alkoxy and peroxy radicals, and ozone. HOx radicals contribute to keeping air clean, but in polluted areas, the ozone concentration increases and creates a negative impact on plants and animals. Indeed, ozone concentration is used to assess air quality worldwide. Clouds have a direct effect on the chemical composition of the atmosphere. On one hand, cloud droplets absorb many trace atmospheric gases, which can be scavenged by rain and fog. On the other hand, ionic species can form in this medium, which makes the chemistry of the atmosphere richer and more complex. Furthermore, recent studies have suggested that air-cloud interfaces might have a significant impact on the overall chemistry of the troposphere. Despite the large differences in molecular composition, concentration, and thermodynamic conditions among atmospheric, environmental, and biological systems, the underlying chemistry involving ROS has many similarities. In this Account, we examine ROS and discuss the chemical characteristics common to all of these systems. In water treatment, ROS are key components of an important subset of advanced oxidation processes. Ozonation, peroxone chemistry, and Fenton reactions play important roles in generating sufficient amounts of hydroxyl radicals to purify wastewater. Biochemical processes within living organisms also involve ROS. These species can come from pollutants in

  17. Radiation-Driven Formation of Reactive Oxygen Species in Oxychlorine-Containing Mars Surface Analogues

    Science.gov (United States)

    Georgiou, Christos D.; Zisimopoulos, Dimitrios; Kalaitzopoulou, Electra; Quinn, Richard C.

    2017-04-01

    The present study demonstrates that γ-radiolyzed perchlorate-containing Mars soil salt analogues (in a CO2 atmosphere) generate upon H2O wetting the reactive oxygen species (ROS) superoxide radical (O2•-), hydrogen peroxide (H2O2), and hydroxyl radicals (•OH). This study also validates that analogue radiolysis forms oxychlorine species that, in turn, can UV-photolyze to •OH upon UV photolysis. This investigation was made possible by the development of a new assay for inorganic-origin O2•- and H2O2 determination and by the modification of a previous assay for soil •OH. Results show that radiolyzed Mg(ClO4)2 generates H2O2 and •OH; and when included as part of a mixture analogous to the salt composition of samples analyzed at the Mars Phoenix site, the analogue generated O2•-, H2O2, and •OH, with •OH levels 150-fold higher than in the radiolyzed Mg(ClO4)2 samples. Radiolyzed Mars Phoenix site salt analogue that did not contain Mg(ClO4)2 generated only •OH also at 150-fold higher concentration than Mg(ClO4)2 alone. Additionally, UV photolysis of the perchlorate γ radiolysis product chlorite (ClO2-) generated the oxychlorine products trihalide (Cl3-), chlorine dioxide (ClO2•), and hypochlorite (ClO-), with the formation of •OH by UV photolysis of ClO-. While the generation of ROS may have contributed in part to 14CO2 production in the Viking Labeled Release (LR) experiment and O2 (g) release in the Viking Gas Exchange (GEx) experiment, our results indicate that they are not likely to be the major contributor to the LR and GEx results. However, due to their highly reactive nature, they are expected to play a significant role in the alteration of organics on Mars. Additionally, experiments with hypochlorite show that the thermal stability of NaClO is in the range of the thermal stability observed for thermally liable oxidant responsible for the Viking LR results.

  18. Real-time in vivo detection of biomaterial-induced reactive oxygen species.

    Science.gov (United States)

    Liu, Wendy F; Ma, Minglin; Bratlie, Kaitlin M; Dang, Tram T; Langer, Robert; Anderson, Daniel G

    2011-03-01

    The non-specific host response to implanted biomaterials is often a key challenge of medical device design. To evaluate biocompatibility, measuring the release of reactive oxygen species (ROS) produced by inflammatory cells in response to biomaterial surfaces is a well-established method. However, the detection of ROS in response to materials implanted in vivo has not yet been demonstrated. Here, we develop a bioluminescence whole animal imaging approach to observe ROS released in response to subcutaneously-implanted materials in live animals. We compared the real-time generation of ROS in response to two representative materials, polystyrene and alginate, over the course of 28 days. High levels of ROS were observed near polystyrene, but not alginate implants, and persisted throughout the course of 28 days. Histological analysis revealed that high levels of ROS correlated not only with the presence of phagocytic cells at early timepoints, but also fibrosis at later timepoints, suggesting that ROS may be involved in both the acute and chronic phase of the foreign body response. These data are the first in vivo demonstration of ROS generation in response to implanted materials, and describe a novel technique to evaluate the host response. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Detection of the Level of Reactive Oxygen Species Induced by Ionizing Radiation in Cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Kyu; Chung, Dong Min; Kim, Jin-Hong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    By definition, the direct effect is referred to interaction between photon and DNA molecule, whereas the indirect effect is mediated by the reactive oxygen species (ROS) generated by radiolysis and subsequent reaction. It has been reported that ROS produced after exposure to IR can react with cellular materials such as DNA, proteins, carbohydrates and lipids. ROS is free radicals such as the superoxide anion, hydroxyl radicals and the non-radical hydrogen peroxide. Cells generate ROS during aerobic metabolism. Excessive production of ROS can lead to oxidative stress, genetic alteration and even cell death. It has been reported that ROS plays a critical role in radiation-induced cell injury. Thus, it is of great interest to determine the radiation-induced ROS level. Many kinds of methods to detect the level of ROS have been developed so far. There were random changes of fluorescence intensity in the treatment after irradiation. This result meant that this protocol was not appropriate for determination of radiation-induced ROS. On the other hand, the fluorescence intensity was increased in a dose-dependent manner when the cells were treated with the DCFH-DA solution before irradiation. Conclusions can be drawn from the experimental results of this study. In order to properly measure the ROS level in the cells exposed to ionizing radiation, the cells should be treated with the DCFH-DA solution before irradiation.

  20. Tuning of redox regulatory mechanisms, reactive oxygen species and redox homeostasis under salinity stress

    Directory of Open Access Journals (Sweden)

    Hossain eSazzad

    2016-05-01

    Full Text Available Soil salinity is a crucial environmental constraint which limits biomass production at many sites on a global scale. Saline growth conditions cause osmotic and ionic imbalances, oxidative stress and perturb metabolism, e.g. the photosynthetic electron flow. The plant ability to tolerate salinity is determined by multiple biochemical and physiological mechanisms protecting cell functions, in particular by regulating proper water relations and maintaining ion homeostasis. Redox homeostasis is a fundamental cell property. Its regulation includes control of reactive oxygen species (ROS generation, sensing deviation from and readjustment of the cellular redox state. All these redox related functions have been recognized as decisive factors in salinity acclimation and adaptation. This review focuses on the core response of plants to overcome the challenges of salinity stress through regulation of ROS generation and detoxification systems and to maintain redox homeostasis. Emphasis is given to the role of NADH oxidase (RBOH, alternative oxidase (AOX, the plastid terminal oxidase (PTOX and the malate valve with the malate dehydrogenase isoforms under salt stress. Overwhelming evidence assigns an essential auxiliary function of ROS and redox homeostasis to salinity acclimation of plants.

  1. Monochloramine produces reactive oxygen species in liver by converting xanthine dehydrogenase into xanthine oxidase.

    Science.gov (United States)

    Sakuma, Satoru; Miyoshi, Emi; Sadatoku, Namiko; Fujita, Junko; Negoro, Miki; Arakawa, Yukio; Fujimoto, Yohko

    2009-09-15

    In the present study, we assessed the influence of monochloramine (NH(2)Cl) on the conversion of xanthine dehydrogenase (XD) into xanthine oxidase (XO) in rat liver in vitro. When incubated with the partially purified cytosolic fraction from rat liver, NH(2)Cl (2.5-20 microM) dose-dependently enhanced XO activity concomitant with a decrease in XD activity, implying that NH(2)Cl can convert XD into the reactive oxygen species (ROS) producing form XO. The NH(2)Cl (5 microM)-induced XD/XO interconversion in the rat liver cytosol was completely inhibited when added in combination with an inhibitor of NH(2)Cl methionine (25 microM). A sulfhydryl reducing agent, dithiothreitol at concentrations of 0.1, 1 and 5 mM also dose-dependently reversed the NH(2)Cl (5 microM)-induced XD/XO interconversion. These imply that NH(2)Cl itself acts on the XD/XO interconversion, and that this conversion occurs at the cysteine residues in XD. Furthermore, using the fluorescent probe 2',7'-dichlorodihydrofluorescein diacetate, it was found that NH(2)Cl could increase ROS generation in the cytoplasm of rat primary hepatocyte cultures, and that this increase might be reversed by an XO inhibitor, allopurinol. These results suggest that NH(2)Cl has the potential to convert XD into XO in the liver, which in turn may induce the ROS generation in this region.

  2. Reactive oxygen species signaling and stomatal movement: Current updates and future perspectives

    Directory of Open Access Journals (Sweden)

    Rachana Singh

    2017-04-01

    Full Text Available Reactive oxygen species (ROS, a by-product of aerobic metabolism were initially studied in context to their damaging effect but recent decades witnessed significant advancements in understanding the role of ROS as signaling molecules. Contrary to earlier views, it is becoming evident that ROS production is not necessarily a symptom of cellular dysfunction but it might represent a necessary signal in adjusting the cellular machinery according to the altered conditions. Stomatal movement is controlled by multifaceted signaling network in response to endogenous and environmental signals. Furthermore, the stomatal aperture is regulated by a coordinated action of signaling proteins, ROS-generating enzymes, and downstream executors like transporters, ion pumps, plasma membrane channels, which control the turgor pressure of the guard cell. The earliest hallmarks of stomatal closure are ROS accumulation in the apoplast and chloroplasts and thereafter, there is a successive increase in cytoplasmic Ca2+ level which rules the multiple kinases activity that in turn regulates the activity of ROS-generating enzymes and various ion channels. In addition, ROS also regulate the action of multiple proteins directly by oxidative post translational modifications to adjust guard cell signaling. Notwithstanding, an active progress has been made with ROS signaling mechanism but the regulatory action for ROS signaling processes in stomatal movement is still fragmentary. Therefore, keeping in view the above facts, in this mini review the basic concepts and role of ROS signaling in the stomatal movement have been presented comprehensively along with recent highlights.

  3. α-Syntrophin stabilizes catalase to reduce endogenous reactive oxygen species levels during myoblast differentiation.

    Science.gov (United States)

    Moon, Jae Yun; Choi, Su Jin; Heo, Cheol Ho; Kim, Hwan Myung; Kim, Hye Sun

    2017-07-01

    α-Syntrophin is a component of the dystrophin-glycoprotein complex that interacts with various intracellular signaling proteins in muscle cells. The α-syntrophin knock-down C2 cell line (SNKD), established by infecting lentivirus particles with α-syntrophin shRNA, is characterized by a defect in terminal differentiation and increase in cell death. Since myoblast differentiation is accompanied by intensive mitochondrial biogenesis, the generation of intracellular reactive oxygen species (ROS) is also increased during myogenesis. Two-photon microscopy imaging showed that excessive intracellular ROS accumulated during the differentiation of SNKD cells as compared with control cells. The formation of 4-hydroxynonenal adduct, a byproduct of lipid peroxidation during oxidative stress, significantly increased in differentiated SNKD myotubes and was dramatically reduced by epigallocatechin-3-gallate, a well-known ROS scavenger. Among antioxidant enzymes, catalase was significantly decreased during differentiation of SNKD cells without changes at the mRNA level. Of interest was the finding that the degradation of catalase was rescued by MG132, a proteasome inhibitor, in the SNKD cells. This study demonstrates a novel function of α-syntrophin. This protein plays an important role in the regulation of oxidative stress from endogenously generated ROS during myoblast differentiation by modulating the protein stability of catalase. © 2017 Federation of European Biochemical Societies.

  4. Levels of semenogelin in human spermatozoa decrease during capacitation: involvement of reactive oxygen species and zinc.

    Science.gov (United States)

    de Lamirande, E; Lamothe, G

    2010-07-01

    Semenogelin (Sg), the main protein of human semen coagulum, prevents sperm capacitation. The objective of this study was to examine the role of Sg and its mechanism of action. Sg blocked sperm capacitation triggered by various stimuli, via inhibition of superoxide anion (O(2)*-; luminescence assay) and nitric oxide (NO*; tested using diaminofluorescein) generation. Triton-soluble and -insoluble sperm fractions contained Sg and Sg peptides (immunoblotting), the level of which decreased with initiation of capacitation. This drop was prevented by superoxide dismutase and NO* synthase inhibitor and was reproduced by addition of O(2)*- and NO*. Zinc (Zn(2+)) blocked and a zinc chelator (TPEN) promoted the decline in Sg levels. There was a decreased labelling of Sg on the head in capacitating spermatozoa with the two fixation techniques tested (immunocytochemistry). Reactive oxygen species (ROS) (O(2)*- and NO*) caused, these changes, and zinc prevented them. Spermatozoa quickly internalized Sg upon incubation and Sg was then rapidly degraded in a zinc-inhibitable manner. Sg blocked capacitation mainly via inhibition of ROS generation. Spermatozoa appeared permeable to Sg and processed Sg in a zinc-inhibitable fashion. ROS themselves could promote sperm disposal of Sg which maybe one of the mechanisms that allows initiation of capacitation.

  5. The Role of Mitochondrial Reactive Oxygen Species in Cardiovascular Injury and Protective Strategies

    Directory of Open Access Journals (Sweden)

    Danina M. Muntean

    2016-01-01

    Full Text Available Ischaemia/reperfusion (I/R injury of the heart represents a major health burden mainly associated with acute coronary syndromes. While timely coronary reperfusion has become the established routine therapy in patients with ST-elevation myocardial infarction, the restoration of blood flow into the previously ischaemic area is always accompanied by myocardial injury. The central mechanism involved in this phenomenon is represented by the excessive generation of reactive oxygen species (ROS. Besides their harmful role when highly generated during early reperfusion, minimal ROS formation during ischaemia and/or at reperfusion is critical for the redox signaling of cardioprotection. In the past decades, mitochondria have emerged as the major source of ROS as well as a critical target for cardioprotective strategies at reperfusion. Mitochondria dysfunction associated with I/R myocardial injury is further described and ultimately analyzed with respect to its role as source of both deleterious and beneficial ROS. Furthermore, the contribution of ROS in the highly investigated field of conditioning strategies is analyzed. In the end, the vascular sources of mitochondria-derived ROS are briefly reviewed.

  6. High-Pressure Oxygen Generation for Outpost EVA Study

    Science.gov (United States)

    Jeng, Frank F.; Conger, Bruce; Ewert, Michael K.; Anderson, Molly S.

    2009-01-01

    The amount of oxygen consumption for crew extravehicular activity (EVA) in future lunar exploration missions will be significant. Eight technologies to provide high pressure EVA O2 were investigated. They are: high pressure O2 storage, liquid oxygen (LOX) storage followed by vaporization, scavenging LOX from Lander followed by vaporization, LOX delivery followed by sorption compression, water electrolysis followed by compression, stand-alone high pressure water electrolyzer, Environmental Control and Life Support System (ECLSS) and Power Elements sharing a high pressure water electrolyzer, and ECLSS and In-Situ Resource Utilization (ISRU) Elements sharing a high pressure electrolyzer. A trade analysis was conducted comparing launch mass and equivalent system mass (ESM) of the eight technologies in open and closed ECLSS architectures. Technologies considered appropriate for the two architectures were selected and suggested for development.

  7. The effect of plutonium dioxide water surface coverage on the generation of hydrogen and oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Veirs, Douglas K. [Los Alamos National Laboratory; Berg, John M. [Los Alamos National Laboratory; Crowder, Mark L. [Savannah River National Laboratory

    2012-06-20

    The conditions for the production of oxygen during radiolysis of water adsorbed onto plutonium dioxide powder are discussed. Studies in the literature investigating the radiolysis of water show that both oxygen and hydrogen can be generated from water adsorbed on high-purity plutonium dioxide powder. These studies indicate that there is a threshold in the amount of water below which oxygen is not generated. The threshold is associated with the number of monolayers of adsorbed water and is shown to occur at approximately two monolayers of molecularly adsorbed water. Material in equilibrium with 50% relative humidity (RH) will be at the threshold for oxygen generation. Using two monolayers of molecularly adsorbed water as the threshold for oxygen production, the total pressure under various conditions is calculated assuming stoichiometric production of hydrogen and oxygen. The specific surface area of the oxide has a strong effect on the final partial pressure. The specific surface areas resulting in the highest pressures within a 3013 container are evaluated. The potential for oxygen generation is mitigated by reduced relative humidity, and hence moisture adsorption, at the oxide surface which occurs if the oxide is warmer than the ambient air. The potential for oxygen generation approaches zero as the temperature difference between the ambient air and the material approaches 6 C.

  8. Detection of reactive oxygen species in isolated, perfused lungs by electron spin resonance spectroscopy

    Directory of Open Access Journals (Sweden)

    Schudt Christian

    2005-07-01

    Full Text Available Abstract Background The sources and measurement of reactive oxygen species (ROS in intact organs are largely unresolved. This may be related to methodological problems associated with the techniques currently employed for ROS detection. Electron spin resonance (ESR with spin trapping is a specific method for ROS detection, and may address some these technical problems. Methods We have established a protocol for the measurement of intravascular ROS release from isolated buffer-perfused and ventilated rabbit and mouse lungs, combining lung perfusion with the spin probe l-hydroxy-3-carboxy-2,2,5,5-tetramethylpyrrolidine (CPH and ESR spectroscopy. We then employed this technique to characterize hypoxia-dependent ROS release, with specific attention paid to NADPH oxidase-dependent superoxide formation as a possible vasoconstrictor pathway. Results While perfusing lungs with CPH over a range of inspired oxygen concentrations (1–21 %, the rate of CP• formation exhibited an oxygen-dependence, with a minimum at 2.5 % O2. Addition of superoxide dismutase (SOD to the buffer fluid illustrated that a minor proportion of this intravascular ROS leak was attributable to superoxide. Stimulation of the lungs by injection of phorbol-12-myristate-13-acetate (PMA into the pulmonary artery caused a rapid increase in CP• formation, concomitant with pulmonary vasoconstriction. Both the PMA-induced CPH oxidation and the vasoconstrictor response were largely suppressed by SOD. When the PMA challenge was performed at different oxygen concentrations, maximum superoxide liberation and pulmonary vasoconstriction occurred at 5 % O2. Using a NADPH oxidase inhibitor and NADPH-oxidase deficient mice, we illustrated that the PMA-induced superoxide release was attributable to the stimulation of NADPH oxidases. Conclusion The perfusion of isolated lungs with CPH is suitable for detection of intravascular ROS release by ESR spectroscopy. We employed this technique to

  9. Super-oxidation of silicon nanoclusters: magnetism and reactive oxygen species at the surface

    Energy Technology Data Exchange (ETDEWEB)

    Lepeshkin, Sergey; Baturin, Vladimir; Tikhonov, Evgeny; Matsko, Nikita; Uspenskii, Yurii; Naumova, Anastasia; Feya, Oleg; Schoonen, Martin A.; Oganov, Artem R.

    2016-01-01

    Oxidation of silicon nanoclusters depending on the temperature and oxygen pressure is explored from first principles using the evolutionary algorithm, and structural and thermodynamic analysis. From our calculations of 90 SinOm clusters we found that under normal conditions oxidation does not stop at the stoichiometric SiO2 composition, as it does in bulk silicon, but goes further placing extra oxygen atoms on the cluster surface. These extra atoms are responsible for light emission, relevant to reactive oxygen species and many of them are magnetic. We argue that the super-oxidation effect is size-independent and discuss its relevance to nanotechnology and miscellaneous applications, including biomedical ones.

  10. Induction of apoptosis by plumbagin through reactive oxygen species-mediated inhibition of topoisomerase II

    International Nuclear Information System (INIS)

    Kawiak, Anna; Piosik, Jacek; Stasilojc, Grzegorz; Gwizdek-Wisniewska, Anna; Marczak, Lukasz; Stobiecki, Maciej; Bigda, Jacek; Lojkowska, Ewa

    2007-01-01

    Reactive oxygen species (ROS) have been recognized as key molecules, which can selectively modify proteins and therefore regulate cellular signalling including apoptosis. Plumbagin, a naphthoquinone exhibiting antitumor activity, is known to generate ROS and has been found to inhibit the activity of topoisomerase II (Topo II) through the stabilization of the Topo II-DNA cleavable complex. The objective of this research was to clarify the role of ROS and Topo II inhibition in the induction of apoptosis mediated by plumbagin. As determined by the comet assay, plumbagin induced DNA cleavage in HL-60 cells, whereas in a cell line with reduced Topo II activity-HL-60/MX2, the level of DNA damage was significantly decreased. The onset of DNA strand break formation in HL-60 cells was delayed in comparison with the generation of intracellular ROS. In HL-60/MX2 cells, ROS were generated at a similar rate, whereas a significant reduction in the level of DNA damage was detected. The pretreatment of cells with N-acetylcysteine (NAC) attenuated plumbagin-induced DNA damage, pointing out to the involvement of ROS generation in cleavable complex formation. These results suggest that plumbagin-induced ROS does not directly damage DNA but requires the involvement of Topo II. Furthermore, experiments carried out using light spectroscopy indicated no direct interactions between plumbagin and DNA. The induction of apoptosis was significantly delayed in HL-60/MX2 cells indicating the involvement of Topo II inhibition in plumbagin-mediated apoptosis. Thus, these findings strongly suggest ROS-mediated inhibition of Topo II as an important mechanism contributing to the apoptosis-inducing properties of plumbagin

  11. Wavelength dependence of the efficiency of singlet oxygen generation upon photoexcitation of photosensitizers

    Directory of Open Access Journals (Sweden)

    Starukhin A.

    2017-01-01

    Full Text Available The dependence of the efficiency of singlet oxygen (1Δg generation upon excitation of photosensitizer at different wavelength was observed for several derivatives of palladium porphyrin in carbon tetrachloride. The efficiency of singlet oxygen generation upon excitation in a blue region of the spectrum (Soret band exceeds by several times the efficiency at excitation in the red spectral region (Q band. The effect of enhancement of singlet oxygen generation upon CW photoexcitation to Soret band of photosensitizer may be explained by influence of high laying triplet states of a donor molecule on the triplet-triplet energy transfer.

  12. Space Technology Game Changing Development- Next Generation Life Support: Spacecraft Oxygen Recovery (SCOR)

    Science.gov (United States)

    Abney, Morgan; Barta, Daniel

    2015-01-01

    The Next Generation Life Support Spacecraft Oxygen Recovery (SCOR) project element is dedicated to developing technology that enables oxygen recovery from metabolically produced carbon dioxide in space habitats. The state-of-the-art system on the International Space Station uses Sabatier technology to recover (is) approximately 50% oxygen from carbon dioxide. The remaining oxygen required for crew respiration is supplied from Earth. For long duration manned missions beyond low-Earth orbit, resupply of oxygen becomes economically and logistically prohibitive. To mitigate these challenges, the SCOR project element is targeting development of technology to increase the recovery of oxygen to 75% or more, thereby reducing the total oxygen resupply required for future missions.

  13. Pentose Phosphate Shunt Modulates Reactive Oxygen Species and Nitric Oxide Production Controlling Trypanosoma cruzi in Macrophages

    Directory of Open Access Journals (Sweden)

    Sue-jie Koo

    2018-02-01

    Full Text Available Metabolism provides substrates for reactive oxygen species (ROS and nitric oxide (NO generation, which are a part of the macrophage (Mφ anti-microbial response. Mφs infected with Trypanosoma cruzi (Tc produce insufficient levels of oxidative species and lower levels of glycolysis compared to classical Mφs. How Mφs fail to elicit a potent ROS/NO response during infection and its link to glycolysis is unknown. Herein, we evaluated for ROS, NO, and cytokine production in the presence of metabolic modulators of glycolysis and the Krebs cycle. Metabolic status was analyzed by Seahorse Flux Analyzer and mass spectrometry and validated by RNAi. Tc infection of RAW264.7 or bone marrow-derived Mφs elicited a substantial increase in peroxisome proliferator-activated receptor (PPAR-α expression and pro-inflammatory cytokine release, and moderate levels of ROS/NO by 18 h. Interferon (IFN-γ addition enhanced the Tc-induced ROS/NO release and shut down mitochondrial respiration to the levels noted in classical Mφs. Inhibition of PPAR-α attenuated the ROS/NO response and was insufficient for complete metabolic shift. Deprivation of glucose and inhibition of pyruvate transport showed that Krebs cycle and glycolysis support ROS/NO generation in Tc + IFN-γ stimulated Mφs. Metabolic profiling and RNAi studies showed that glycolysis-pentose phosphate pathway (PPP at 6-phosphogluconate dehydrogenase was essential for ROS/NO response and control of parasite replication in Mφ. We conclude that IFN-γ, but not inhibition of PPAR-α, supports metabolic upregulation of glycolytic-PPP for eliciting potent ROS/NO response in Tc-infected Mφs. Chemical analogs enhancing the glucose-PPP will be beneficial in controlling Tc replication and dissemination by Mφs.

  14. Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations

    Science.gov (United States)

    Kalyanaraman, Balaraman; Darley-Usmar, Victor; Davies, Kelvin J.A.; Dennery, Phyllis A.; Forman, Henry Jay; Grisham, Matthew B.; Mann, Giovanni E.; Moore, Kevin; Roberts, L. Jackson; Ischiropoulos, Harry

    2013-01-01

    The purpose of this position paper is to present a critical analysis of the challenges and limitations of the most widely used fluorescent probes for detecting and measuring reactive oxygen and nitrogen species. Where feasible, we have made recommendations for the use of alternate probes and appropriate analytical techniques that measure the specific products formed from the reactions between fluorescent probes and reactive oxygen and nitrogen species. We have proposed guidelines that will help present and future researchers with regard to the optimal use of selected fluorescent probes and interpretation of results. PMID:22027063

  15. Comparison of Mitochondrial Reactive Oxygen Species Production of Ectothermic and Endothermic Fish Muscle

    Directory of Open Access Journals (Sweden)

    Lilian Wiens

    2017-09-01

    Full Text Available Recently we demonstrated that the capacity of isolated muscle mitochondria to produce reactive oxygen species, measured as H2O2 efflux, is temperature-sensitive in isolated muscle mitochondria of ectothermic fish and the rat, a representative endothermic mammal. However, at physiological temperatures (15° and 37°C for the fish and rat, respectively, the fraction of total mitochondrial electron flux that generated H2O2, the fractional electron leak (FEL, was far lower in the rat than in fish. Those results suggested that the elevated body temperatures associated with endothermy may lead to a compensatory decrease in mitochondrial ROS production relative to respiratory capacity. To test this hypothesis we compare slow twitch (red muscle mitochondria from the endothermic Pacific bluefin tuna (Thunnus orientalis with mitochondria from three ectothermic fishes [rainbow trout (Oncorhynchus mykiss, common carp (Cyprinus carpio, and the lake sturgeon (Acipenser fulvescens] and the rat. At a common assay temperature (25°C rates of mitochondrial respiration and H2O2 efflux were similar in tuna and the other fishes. The thermal sensitivity of fish mitochondria was similar irrespective of ectothermy or endothermy. Comparing tuna to the rat at a common temperature, respiration rates were similar, or lower depending on mitochondrial substrates. FEL was not different across fish species at a common assay temperature (25°C but was markedly higher in fishes than in rat. Overall, endothermy and warming of Pacific Bluefin tuna red muscle may increase the potential for ROS production by muscle mitochondria but the evolution of endothermy in this species is not necessarily associated with a compensatory reduction of ROS production relative to the respiratory capacity of mitochondria.

  16. The electrochemical generation of useful chemical species from lunar materials

    Science.gov (United States)

    Tsai, Kan J.; Kuchynka, Daniel J.; Sammells, Anthony F.

    1989-01-01

    The current status of work on an electrochemical technology for the simultaneous generation of oxygen and lithium from a Li2O containing molten salt (Li2O-LiCl-LiF) is discussed. The electrochemical cell utilizes an oxygen vacancy conducting solid electrolyte, yttria-stabilized zirconia, to effect separation between the oxygen evolving and lithium reduction half-cell reactions. The cell, which operates at 700 to 800 C, possesses rapid electrode kinetics at the lithium-alloy electrode with exchange current density values being greater than 60 mA/sq cm, showing high reversibility for this reaction. When used in the electrolytic mode, lithium produced at the negative electrode would be continuously removed from the cell for later use (under lunar conditions) as an easily storable reducting agent (compared to H2) for the chemical refining of lunar ores via the general reaction: 2Li + MO yields Li2O + M where MO represents a lunar ore. Emphasis to this time has been on the simulated lunar ore ilmenite (FeTiO3), which we have found becomes chemically reduced by Li at 432 C. Furthermore, both Fe2O3 and TiO2 have been reduced by Li to give the corresponding metal. This electrochemical approach provides a convenient route for producing metals under lunar conditions and oxygen for the continuous maintenance of human habitats on the Moon's surface. Because of the high reversibility of this electrochemical system, it has also formed the basis for the lithium-oxygen secondary battery. This secondary lithium-oxygen battery system posses the highest theoretical energy density yet investigated.

  17. Emerging roles of hypoxia-inducible factors and reactive oxygen species in cancer and pluripotent stem cells

    Directory of Open Access Journals (Sweden)

    Shigeo Saito

    2015-06-01

    Full Text Available Eukaryotic organisms require oxygen homeostasis to maintain proper cellular function for survival. During conditions of low oxygen tension (hypoxia, cells activate the transcription of genes that induce an adaptive response, which supplies oxygen to tissues. Hypoxia and hypoxia-inducible factors (HIFs may contribute to the maintenance of putative cancer stem cells, which can continue self-renewal indefinitely and express stemness genes in hypoxic stress environments (stem cell niches. Reactive oxygen species (ROS have long been recognized as toxic by-products of aerobic metabolism that are harmful to living cells, leading to DNA damage, senescence, or cell death. HIFs may promote a cancer stem cell state, whereas the loss of HIFs induces the production of cellular ROS and activation of proteins p53 and p16Ink4a, which lead to tumor cell death and senescence. ROS seem to inhibit HIF regulation in cancer cells. By contrast, controversial data have suggested that hypoxia increases the generation of ROS, which prevents hydroxylation of HIF proteins by inducing their transcription as negative feedback. Moreover, hypoxic conditions enhance the generation of induced pluripotent stem cells (iPSCs. During reprogramming of somatic cells into a PSC state, cells attain a metabolic state typically observed in embryonic stem cells (ESCs. ESCs and iPSCs share similar bioenergetic metabolisms, including decreased mitochondrial number and activity, and induced anaerobic glycolysis. This review discusses the current knowledge regarding the emerging roles of ROS homeostasis in cellular reprogramming and the implications of hypoxic regulation in cancer development.

  18. Mobile phone radiation induces reactive oxygen species production and DNA damage in human spermatozoa in vitro.

    Directory of Open Access Journals (Sweden)

    Geoffry N De Iuliis

    Full Text Available BACKGROUND: In recent times there has been some controversy over the impact of electromagnetic radiation on human health. The significance of mobile phone radiation on male reproduction is a key element of this debate since several studies have suggested a relationship between mobile phone use and semen quality. The potential mechanisms involved have not been established, however, human spermatozoa are known to be particularly vulnerable to oxidative stress by virtue of the abundant availability of substrates for free radical attack and the lack of cytoplasmic space to accommodate antioxidant enzymes. Moreover, the induction of oxidative stress in these cells not only perturbs their capacity for fertilization but also contributes to sperm DNA damage. The latter has, in turn, been linked with poor fertility, an increased incidence of miscarriage and morbidity in the offspring, including childhood cancer. In light of these associations, we have analyzed the influence of RF-EMR on the cell biology of human spermatozoa in vitro. PRINCIPAL FINDINGS: Purified human spermatozoa were exposed to radio-frequency electromagnetic radiation (RF-EMR tuned to 1.8 GHz and covering a range of specific absorption rates (SAR from 0.4 W/kg to 27.5 W/kg. In step with increasing SAR, motility and vitality were significantly reduced after RF-EMR exposure, while the mitochondrial generation of reactive oxygen species and DNA fragmentation were significantly elevated (P<0.001. Furthermore, we also observed highly significant relationships between SAR, the oxidative DNA damage bio-marker, 8-OH-dG, and DNA fragmentation after RF-EMR exposure. CONCLUSIONS: RF-EMR in both the power density and frequency range of mobile phones enhances mitochondrial reactive oxygen species generation by human spermatozoa, decreasing the motility and vitality of these cells while stimulating DNA base adduct formation and, ultimately DNA fragmentation. These findings have clear implications

  19. Generation of Induced Pluripotent Stem Cells from Mammalian Endangered Species.

    Science.gov (United States)

    Ben-Nun, Inbar Friedrich; Montague, Susanne C; Houck, Marlys L; Ryder, Oliver; Loring, Jeanne F

    2015-01-01

    For some highly endangered species there are too few reproductively capable animals to maintain adequate genetic diversity, and extraordinary measures are necessary to prevent their extinction. Cellular reprogramming is a means to capture the genomes of individual animals as induced pluripotent stem cells (iPSCs), which may eventually facilitate reintroduction of genetic material into breeding populations. Here, we describe a method for generating iPSCs from fibroblasts of mammalian endangered species.

  20. Release of proteins from intact chloroplasts induced by reactive oxygen species during biotic and abiotic stress.

    Science.gov (United States)

    Kwon, Kwang-Chul; Verma, Dheeraj; Jin, Shuangxia; Singh, Nameirakpam D; Daniell, Henry

    2013-01-01

    Plastids sustain life on this planet by providing food, feed, essential biomolecules and oxygen. Such diverse metabolic and biosynthetic functions require efficient communication between plastids and the nucleus. However, specific factors, especially large molecules, released from plastids that regulate nuclear genes have not yet been fully elucidated. When tobacco and lettuce transplastomic plants expressing GFP within chloroplasts, were challenged with Erwinia carotovora (biotic stress) or paraquat (abiotic stress), GFP was released into the cytoplasm. During this process GFP moves gradually towards the envelope, creating a central red zone of chlorophyll fluorescence. GFP was then gradually released from intact chloroplasts into the cytoplasm with an intact vacuole and no other visible cellular damage. Different stages of GFP release were observed inside the same cell with a few chloroplasts completely releasing GFP with detection of only red chlorophyll fluorescence or with no reduction in GFP fluorescence or transitional steps between these two phases. Time lapse imaging by confocal microscopy clearly identified sequence of these events. Intactness of chloroplasts during this process was evident from chlorophyll fluorescence emanated from thylakoid membranes and in vivo Chla fluorescence measurements (maximum quantum yield of photosystem II) made before or after infection with pathogens to evaluate their photosynthetic competence. Hydrogen peroxide and superoxide anion serve as signal molecules for generation of reactive oxygen species and Tiron, scavenger of superoxide anion, blocked release of GFP from chloroplasts. Significant increase in ion leakage in the presence of paraquat and light suggests changes in the chloroplast envelope to facilitate protein release. Release of GFP-RC101 (an antimicrobial peptide), which was triggered by Erwinia infection, ceased after conferring protection, further confirming this export phenomenon. These results suggest a

  1. Release of proteins from intact chloroplasts induced by reactive oxygen species during biotic and abiotic stress.

    Directory of Open Access Journals (Sweden)

    Kwang-Chul Kwon

    Full Text Available Plastids sustain life on this planet by providing food, feed, essential biomolecules and oxygen. Such diverse metabolic and biosynthetic functions require efficient communication between plastids and the nucleus. However, specific factors, especially large molecules, released from plastids that regulate nuclear genes have not yet been fully elucidated. When tobacco and lettuce transplastomic plants expressing GFP within chloroplasts, were challenged with Erwinia carotovora (biotic stress or paraquat (abiotic stress, GFP was released into the cytoplasm. During this process GFP moves gradually towards the envelope, creating a central red zone of chlorophyll fluorescence. GFP was then gradually released from intact chloroplasts into the cytoplasm with an intact vacuole and no other visible cellular damage. Different stages of GFP release were observed inside the same cell with a few chloroplasts completely releasing GFP with detection of only red chlorophyll fluorescence or with no reduction in GFP fluorescence or transitional steps between these two phases. Time lapse imaging by confocal microscopy clearly identified sequence of these events. Intactness of chloroplasts during this process was evident from chlorophyll fluorescence emanated from thylakoid membranes and in vivo Chla fluorescence measurements (maximum quantum yield of photosystem II made before or after infection with pathogens to evaluate their photosynthetic competence. Hydrogen peroxide and superoxide anion serve as signal molecules for generation of reactive oxygen species and Tiron, scavenger of superoxide anion, blocked release of GFP from chloroplasts. Significant increase in ion leakage in the presence of paraquat and light suggests changes in the chloroplast envelope to facilitate protein release. Release of GFP-RC101 (an antimicrobial peptide, which was triggered by Erwinia infection, ceased after conferring protection, further confirming this export phenomenon. These

  2. Low Po2 conditions induce reactive oxygen species formation during contractions in single skeletal muscle fibers

    Science.gov (United States)

    Shiah, Amy; Roberts, William J.; Chien, Michael T.; Wagner, Peter D.; Hogan, Michael C.

    2013-01-01

    Contractions in whole skeletal muscle during hypoxia are known to generate reactive oxygen species (ROS); however, identification of real-time ROS formation within isolated single skeletal muscle fibers has been challenging. Consequently, there is no convincing evidence showing increased ROS production in intact contracting fibers under low Po2 conditions. Therefore, we hypothesized that intracellular ROS generation in single contracting skeletal myofibers increases during low Po2 compared with a value approximating normal resting Po2. Dihydrofluorescein was loaded into single frog (Xenopus) fibers, and fluorescence was used to monitor ROS using confocal microscopy. Myofibers were exposed to two maximal tetanic contractile periods (1 contraction/3 s for 2 min, separated by a 60-min rest period), each consisting of one of the following treatments: high Po2 (30 Torr), low Po2 (3–5 Torr), high Po2 with ebselen (antioxidant), or low Po2 with ebselen. Ebselen (10 μM) was administered before the designated contractile period. ROS formation during low Po2 treatment was greater than during high Po2 treatment, and ebselen decreased ROS generation in both low- and high-Po2 conditions (P Po2. Force was reduced >30% for each condition except low Po2 with ebselen, which only decreased ∼15%. We concluded that single myofibers under low Po2 conditions develop accelerated and more oxidative stress than at Po2 = 30 Torr (normal human resting Po2). Ebselen decreases ROS formation in both low and high Po2, but only mitigates skeletal muscle fatigue during reduced Po2 conditions. PMID:23576612

  3. Reactive oxygen species-driven HIF1α triggers accelerated glycolysis in endothelial cells exposed to low oxygen tension

    International Nuclear Information System (INIS)

    Paik, Jin-Young; Jung, Kyung-Ho; Lee, Jin-Hee; Park, Jin-Won; Lee, Kyung-Han

    2017-01-01

    Endothelial cells and their metabolic state regulate glucose transport into underlying tissues. Here, we show that low oxygen tension stimulates human umbilical vein endothelial cell 18 F–fluorodeoxyglucose ( 18 F–FDG) uptake and lactate production. This was accompanied by augmented hexokinase activity and membrane Glut-1, and increased accumulation of hypoxia-inducible factor-1α (HIF1α). Restoration of oxygen reversed the metabolic effect, but this was blocked by HIF1α stabilization. Hypoxia-stimulated 18 F–FDG uptake was completely abrogated by silencing of HIF1α expression or by a specific inhibitor. There was a rapid and marked increase of reactive oxygen species (ROS) by hypoxia, and ROS scavenging or NADPH oxidase inhibition completely abolished hypoxia-stimulated HIF1α and 18 F–FDG accumulation, placing ROS production upstream of HIF1α signaling. Hypoxia-stimulated HIF1α and 18 F–FDG accumulation was blocked by the protein kinase C (PKC) inhibitor, staurosporine. The phosphatidylinositol 3-kinase (PI3K) inhibitor, wortmannin, blocked hypoxia-stimulated 18 F–FDG uptake and attenuated hypoxia-responsive element binding of HIF1α without influencing its accumulation. Thus, ROS-driven HIF1α accumulation, along with PKC and PI3K signaling, play a key role in triggering accelerated glycolysis in endothelial cells under hypoxia, thereby contributing to 18 F–FDG transport.

  4. Feasibility Analysis of Liquefying Oxygen Generated from Water Electrolysis Units on Lunar Surface

    Science.gov (United States)

    Jeng, Frank F.

    2009-01-01

    Concepts for liquefying oxygen (O2) generated from water electrolysis subsystems on the Lunar surface were explored. Concepts for O2 liquefaction units capable of generating 1.38 lb/hr (0.63 kg/hr) liquid oxygen (LOX) were developed. Heat and mass balance calculations for the liquefaction concepts were conducted. Stream properties, duties of radiators, heat exchangers and compressors for the selected concepts were calculated and compared.

  5. Involvement of reactive oxygen species in the electrochemical inhibition of barnacle (Amphibalanus amphitrite) settlement

    Science.gov (United States)

    Rodolfo E. Perez-Roa; Marc A. Anderson; Dan Rittschof; Christopher G. Hunt; Daniel R. Noguera

    2009-01-01

    The role of reactive oxygen species (ROS) in electrochemical biofouling inhibition was investigated using a series of abiotic tests and settlement experiments with larvae of the barnacle Amphibalanus amphitrite, a cosmopolitan fouler. Larval settlement, a measure of biofouling potential, was reduced from 43% ± 14% to 5% ± 6% upon the application of...

  6. Lysosome-Targeting Amplifiers of Reactive Oxygen Species as Anticancer Prodrugs

    Czech Academy of Sciences Publication Activity Database

    Daum, S.; Reshetnikov, M.S.V.; Šíša, Miroslav; Dumych, T.; Lootsik, M. D.; Bilyy, R.; Bila, E.; Janko, C.; Alexiou, C.; Herrmann, M.; Sellner, L.; Mokhir, A.

    2017-01-01

    Roč. 56, č. 49 (2017), s. 15545-15549 ISSN 1433-7851 Institutional support: RVO:61389030 Keywords : aminoferrocene * cancer * lysosomes * prodrugs * reactive oxygen species Subject RIV: ED - Physiology OBOR OECD: Organic chemistry Impact factor: 11.994, year: 2016

  7. Herbivore derived fatty acid-amides elicit reactive oxygen species burst in plants

    Science.gov (United States)

    The formation of a reactive oxygen species (ROS) burst is a central response of plants to many forms of stress including pathogen attack, several abiotic stresses, damage and insect infestation. These ROS act as a direct defense as well as signaling and regulatory molecules. Perception of microbe or...

  8. Hydrolase stabilization via entanglement in poly(propylene sulfide) nanoparticles: stability towards reactive oxygen species

    International Nuclear Information System (INIS)

    Allen, Brett L; Johnson, Jermaine D; Walker, Jeremy P

    2012-01-01

    In the advancement of green syntheses and sustainable reactions, enzymatic biocatalysis offers extremely high reaction rates and selectivity that goes far beyond the reach of chemical catalysts; however, these enzymes suffer from typical environmental constraints, e.g. operational temperature, pH and tolerance to oxidative environments. A common hydrolase enzyme, diisopropylfluorophosphatase (DFPase, EC 3.1.8.2), has demonstrated a pronounced efficacy for the hydrolysis of a variety of substrates for potential toxin remediation, but suffers from the aforementioned limitations. As a means to enhance DFPase’s stability in oxidative environments, enzymatic covalent immobilization within the polymeric matrix of poly(propylene sulfide) (PPS) nanoparticles was performed. By modifying the enzyme’s exposed lysine residues via thiolation, DFPase is utilized as a comonomer/crosslinker in a mild emulsion polymerization. The resultant polymeric polysulfide shell acts as a ‘sacrificial barrier’ by first oxidizing to polysulfoxides and polysulfones, rendering DFPase in an active state. DFPase–PPS nanoparticles thus retain activity upon exposure to as high as 50 parts per million (ppm) of hypochlorous acid (HOCl), while native DFPase is observed as inactive at 500 parts per billion (ppb). This trend is also confirmed by enzyme-generated (chloroperoxidase (CPO), EC 1.11.1.10) reactive oxygen species (ROS) including both HOCl (3 ppm) and ClO 2 (100 ppm). (paper)

  9. Friend or foe? Reactive oxygen species production, scavenging and signaling in plant response to environmental stresses.

    Science.gov (United States)

    Czarnocka, Weronika; Karpiński, Stanisław

    2018-01-10

    In the natural environment, plants are exposed to a variety of biotic and abiotic stress conditions that trigger rapid changes in the production and scavenging of reactive oxygen species (ROS). The production and scavenging of ROS is compartmentalized, which means that, depending on stimuli type, they can be generated and eliminated in different cellular compartments such as the apoplast, plasma membrane, chloroplasts, mitochondria, peroxisomes, and endoplasmic reticulum. Although the accumulation of ROS is generally harmful to cells, ROS play an important role in signaling pathways that regulate acclimatory and defense responses in plants, such as systemic acquired acclimation (SAA) and systemic acquired resistance (SAR). However, high accumulations of ROS can also trigger redox homeostasis disturbance which can lead to cell death, and in consequence, to a limitation in biomass and yield production. Different ROS have various half-lifetimes and degrees of reactivity toward molecular components such as lipids, proteins, and nucleic acids. Thus, they play different roles in intra- and extra-cellular signaling. Despite their possible damaging effect, ROS should mainly be considered as signaling molecules that regulate local and systemic acclimatory and defense responses. Over the past two decades it has been proven that ROS together with non-photochemical quenching (NPQ), hormones, Ca 2+ waves, and electrical signals are the main players in SAA and SAR, two physiological processes essential for plant survival and productivity in unfavorable conditions. Copyright © 2018. Published by Elsevier Inc.

  10. Reactive oxygen species as a signal in glucose-stimulated insulin secretion.

    Science.gov (United States)

    Pi, Jingbo; Bai, Yushi; Zhang, Qiang; Wong, Victoria; Floering, Lisa M; Daniel, Kiefer; Reece, Jeffrey M; Deeney, Jude T; Andersen, Melvin E; Corkey, Barbara E; Collins, Sheila

    2007-07-01

    One of the unique features of beta-cells is their relatively low expression of many antioxidant enzymes. This could render beta-cells susceptible to oxidative damage but may also provide a system that is sensitive to reactive oxygen species as signals. In isolated mouse islets and INS-1(832/13) cells, glucose increases intracellular accumulation of H2O2. In both models, insulin secretion could be stimulated by provision of either exogenous H2O2 or diethyl maleate, which raises intracellular H2O2 levels. Provision of exogenous H2O2 scavengers, including cell permeable catalase and N-acetyl-L-cysteine, inhibited glucose-stimulated H2O2 accumulation and insulin secretion (GSIS). In contrast, cell permeable superoxide dismutase, which metabolizes superoxide into H2O2, had no effect on GSIS. Because oxidative stress is an important risk factor for beta-cell dysfunction in diabetes, the relationship between glucose-induced H2O2 generation and GSIS was investigated under various oxidative stress conditions. Acute exposure of isolated mouse islets or INS-1(832/13) cells to oxidative stressors, including arsenite, 4-hydroxynonenal, and methylglyoxal, led to decreased GSIS. This impaired GSIS was associated with increases in a battery of endogenous antioxidant enzymes. Taken together, these findings suggest that H2O2 derived from glucose metabolism is one of the metabolic signals for insulin secretion, whereas oxidative stress may disturb its signaling function.

  11. Acrolein activates matrix metalloproteinases by increasing reactive oxygen species in macrophages.

    Science.gov (United States)

    O'Toole, Timothy E; Zheng, Yu-Ting; Hellmann, Jason; Conklin, Daniel J; Barski, Oleg; Bhatnagar, Aruni

    2009-04-15

    Acrolein is a ubiquitous component of environmental pollutants such as automobile exhaust, cigarette, wood, and coal smoke. It is also a natural constituent of several foods and is generated endogenously during inflammation or oxidation of unsaturated lipids. Because increased inflammation and episodic exposure to acrolein-rich pollutants such as traffic emissions or cigarette smoke have been linked to acute myocardial infarction, we examined the effects of acrolein on matrix metalloproteinases (MMPs), which destabilize atherosclerotic plaques. Our studies show that exposure to acrolein resulted in the secretion of MMP-9 from differentiated THP-1 macrophages. Acrolein-treatment of macrophages also led to an increase in reactive oxygen species (ROS), free intracellular calcium ([Ca2+](i)), and xanthine oxidase (XO) activity. ROS production was prevented by allopurinol, but not by rotenone or apocynin and by buffering changes in [Ca2+](I) with BAPTA-AM. The increase in MMP production was abolished by pre-treatment with the antioxidants Tiron and N-acetyl cysteine (NAC) or with the xanthine oxidase inhibitors allopurinol or oxypurinol. Finally, MMP activity was significantly stimulated in aortic sections from apoE-null mice containing advanced atherosclerotic lesions after exposure to acrolein ex vivo. These observations suggest that acrolein exposure results in MMP secretion from macrophages via a mechanism that involves an increase in [Ca2+](I), leading to xanthine oxidase activation and an increase in ROS production. ROS-dependent activation of MMPs by acrolein could destabilize atherosclerotic lesions during brief episodes of inflammation or pollutant exposure.

  12. Acrolein activates matrix metalloproteinases by increasing reactive oxygen species in macrophages

    International Nuclear Information System (INIS)

    O'Toole, Timothy E.; Zheng Yuting; Hellmann, Jason; Conklin, Daniel J.; Barski, Oleg; Bhatnagar, Aruni

    2009-01-01

    Acrolein is a ubiquitous component of environmental pollutants such as automobile exhaust, cigarette, wood, and coal smoke. It is also a natural constituent of several foods and is generated endogenously during inflammation or oxidation of unsaturated lipids. Because increased inflammation and episodic exposure to acrolein-rich pollutants such as traffic emissions or cigarette smoke have been linked to acute myocardial infarction, we examined the effects of acrolein on matrix metalloproteinases (MMPs), which destabilize atherosclerotic plaques. Our studies show that exposure to acrolein resulted in the secretion of MMP-9 from differentiated THP-1 macrophages. Acrolein-treatment of macrophages also led to an increase in reactive oxygen species (ROS), free intracellular calcium ([Ca 2+ ] i ), and xanthine oxidase (XO) activity. ROS production was prevented by allopurinol, but not by rotenone or apocynin and by buffering changes in [Ca 2+ ] I with BAPTA-AM. The increase in MMP production was abolished by pre-treatment with the antioxidants Tiron and N-acetyl cysteine (NAC) or with the xanthine oxidase inhibitors allopurinol or oxypurinol. Finally, MMP activity was significantly stimulated in aortic sections from apoE-null mice containing advanced atherosclerotic lesions after exposure to acrolein ex vivo. These observations suggest that acrolein exposure results in MMP secretion from macrophages via a mechanism that involves an increase in [Ca 2+ ] I , leading to xanthine oxidase activation and an increase in ROS production. ROS-dependent activation of MMPs by acrolein could destabilize atherosclerotic lesions during brief episodes of inflammation or pollutant exposure.

  13. The Role of Reactive Oxygen Species and Autophagy in Periodontitis and Their Potential Linkage

    Directory of Open Access Journals (Sweden)

    Chengcheng Liu

    2017-06-01

    Full Text Available Periodontitis is a chronic inflammatory disease that causes damage to periodontal tissues, which include the gingiva, periodontal ligament, and alveolar bone. The major cause of periodontal tissue destruction is an inappropriate host response to microorganisms and their products. Specifically, a homeostatic imbalance between reactive oxygen species (ROS and antioxidant defense systems has been implicated in the pathogenesis of periodontitis. Elevated levels of ROS acting as intracellular signal transducers result in autophagy, which plays a dual role in periodontitis by promoting cell death or blocking apoptosis in infected cells. Autophagy can also regulate ROS generation and scavenging. Investigations are ongoing to elucidate the crosstalk mechanisms between ROS and autophagy. Here, we review the physiological and pathological roles of ROS and autophagy in periodontal tissues. The redox-sensitive pathways related to autophagy, such as mTORC1, Beclin 1, and the Atg12-Atg5 complex, are explored in depth to provide a comprehensive overview of the crosstalk between ROS and autophagy. Based on the current evidence, we suggest that a potential linkage between ROS and autophagy is involved in the pathogenesis of periodontitis.

  14. Reactive oxygen species induced by Streptococcus pyogenes invasion trigger apoptotic cell death in infected epithelial cells.

    Science.gov (United States)

    Aikawa, Chihiro; Nozawa, Takashi; Maruyama, Fumito; Tsumoto, Kohei; Hamada, Shigeyuki; Nakagawa, Ichiro

    2010-06-01

    Streptococcus pyogenes (group A streptococcus, GAS), one of the most common pathogens of humans, attaches and invades into human pharyngeal or skin epithelial cells. We have previously reported that induction of apoptosis is associated with GAS invasion, which induces mitochondrial dysfunction and apoptotic cell death. We demonstrate here that GAS-induced apoptosis is mediated by reactive oxygen species (ROS) production. Both the induction of apoptosis and ROS production markedly increased upon invasion of wild-type GAS strain JRS4 into HeLa cells; however, the apoptotic response was not observed in fibronectin-binding protein F1-disrupted mutant SAM1-infected cells. In Bcl-2-overexpressing HeLa cells (HBD98-2-4), the induction of apoptosis, ROS production and mitochondrial dysfunction were significantly suppressed, whereas the numbers of invaded GAS was not different between HeLa (mock cells) and the HeLa HBD98-2-4 cells. Whereas Rac1 activation occurred during GAS invasion, ROS production in GAS-infected cells was clearly inhibited by transfection with the Rac1 mutants (L37 or V12L37), but not by the dominant active mutant (V12L61) or by the dominant negative mutant (N17). These observations indicate that GAS invasion triggers ROS production through Rac1 activation and generated ROS induced mitochondrial dysfunction leading to cellular apoptosis.

  15. Reactive oxygen species mediates homocysteine-induced mitochondrial biogenesis in human endothelial cells: Modulation by antioxidants

    International Nuclear Information System (INIS)

    Perez-de-Arce, Karen; Foncea, Rocio; Leighton, Federico

    2005-01-01

    It has been proposed that homocysteine (Hcy)-induces endothelial dysfunction and atherosclerosis by generation of reactive oxygen species (ROS). A previous report has shown that Hcy promotes mitochondrial damage. Considering that oxidative stress can affect mitochondrial biogenesis, we hypothesized that Hcy-induced ROS in endothelial cells may lead to increased mitochondrial biogenesis. We found that Hcy-induced ROS (1.85-fold), leading to a NF-κB activation and increase the formation of 3-nitrotyrosine. Furthermore, expression of the mitochondrial biogenesis factors, nuclear respiratory factor-1 and mitochondrial transcription factor A, was significantly elevated in Hcy-treated cells. These changes were accompanied by increase in mitochondrial mass and higher mRNA and protein expression of the subunit III of cytochrome c oxidase. These effects were significantly prevented by pretreatment with the antioxidants, catechin and trolox. Taken together, our results suggest that ROS is an important mediator of mitochondrial biogenesis induced by Hcy, and that modulation of oxidative stress by antioxidants may protect against the adverse vascular effects of Hcy

  16. The Emerging Role of Reactive Oxygen Species Signaling during Lateral Root Development.

    Science.gov (United States)

    Manzano, Concepción; Pallero-Baena, Mercedes; Casimiro, Ilda; De Rybel, Bert; Orman-Ligeza, Beata; Van Isterdael, Gert; Beeckman, Tom; Draye, Xavier; Casero, Pedro; Del Pozo, Juan C

    2014-07-01

    Overall root architecture is the combined result of primary and lateral root growth and is influenced by both intrinsic genetic programs and external signals. One of the main questions for root biologists is how plants control the number of lateral root primordia and their emergence through the main root. We recently identified S-phase kinase-associated protein2 (SKP2B) as a new early marker for lateral root development. Here, we took advantage of its specific expression pattern in Arabidopsis (Arabidopsis thaliana) in a cell-sorting and transcriptomic approach to generate a lateral root-specific cell sorting SKP2B data set that represents the endogenous genetic developmental program. We first validated this data set by showing that many of the identified genes have a function during root growth or lateral root development. Importantly, genes encoding peroxidases were highly represented in our data set. Thus, we next focused on this class of enzymes and showed, using genetic and chemical inhibitor studies, that peroxidase activity and reactive oxygen species signaling are specifically required during lateral root emergence but, intriguingly, not for primordium specification itself. © 2014 American Society of Plant Biologists. All Rights Reserved.

  17. Dim artificial light at night affects mating, reproductive output, and reactive oxygen species in Drosophila melanogaster.

    Science.gov (United States)

    McLay, Lucy Katherine; Nagarajan-Radha, Venkatesh; Green, Mark Philip; Jones, Therésa Melanie

    2018-05-07

    Humans are lighting the night-time environment with ever increasing extent and intensity, resulting in a variety of negative ecological effects in individuals and populations. Effects of light at night on reproductive fitness traits are demonstrated across taxa however, the mechanisms underlying these effects are largely untested. One possible mechanism is that light at night may result in perturbed reactive oxygen species (ROS) and oxidative stress levels. Here, we reared Drosophila melanogaster under either dim (10 lx) light or no light (0 lx) at night for three generations and then compared mating and lifetime oviposition patterns. In a second experiment, we explored whether exposure to light at night treatments resulted in variation in ROS levels in the heads and ovaries of six, 23- and 36-day-old females. We demonstrate that dim light at night affects mating and reproductive output: 10 lx flies courted for longer prior to mating, and female oviposition patterns differed to 0 lx females. ROS levels were lower in the ovaries but not heads, of 10 lx compared with 0 lx females. We suggest that reduced ROS levels may reflect changes in ovarian physiology and cell signaling, which may be related to the differences observed in oviposition patterns. Taken together, our results indicate negative consequences for invertebrates under more stressful, urban, lit conditions and further investigation into the mechanisms driving these changes is warranted to manage invertebrate communities in a brighter future. © 2018 Wiley Periodicals, Inc.

  18. Global Plant Stress Signaling: Reactive Oxygen Species at the Cross-Road

    Directory of Open Access Journals (Sweden)

    Nasser eSewelam

    2016-02-01

    Full Text Available Current technologies have changed biology into a data-intensive field and significantly increased our understanding of signal transduction pathways in plants. However, global defense signaling networks in plants have not been established yet. Considering the apparent intricate nature of signaling mechanisms in plants (due to their sessile nature, studying the points at which different signaling pathways converge, rather than the branches, represents a good start to unravel global plant signaling networks. In this regard, growing evidence shows that the generation of reactive oxygen species (ROS is one of the most common plant responses to different stresses, representing a point at which various signaling pathways come together. In this review, the complex nature of plant stress signaling networks will be discussed. An emphasis on different signaling players with a specific attention to ROS as the primary source of the signaling battery in plants will be presented. The interactions between ROS and other signaling components, e.g. calcium, redox homeostasis, membranes, G-proteins, MAPKs, plant hormones and transcription factors will be assessed. A better understanding of the vital roles ROS are playing in plant signaling would help innovate new strategies to improve plant productivity under the circumstances of the increasing severity of environmental conditions and the high demand of food and energy worldwide

  19. Reactive Oxygen Species and Antioxidant in Seminal Plasma and Their Impact on Male Fertility

    Directory of Open Access Journals (Sweden)

    Mohammad Eid Hammadeh

    2009-01-01

    Full Text Available Spermatozoa generate reactive oxygen species (ROS in physiological amounts, which play arole in sperm functions during sperm capacitation, acrosome reaction (AR, and oocyte fusion. Inaddition, damaged sperm are likely to be the source of ROS. The most important ROS producedby human sperm are hydrogen peroxide, superoxide anion and hydroxyl radicals. Besides, humanseminal plasma and sperm possess an antioxidant system to scavenge ROS and prevent ROS relatedcellular damage. Under normal circumstances, there is an appropriate balance between oxidants andantioxidants. A shift in the levels of ROS towards pro-oxidants in semen can induce oxidative stress(OS on spermatozoa.Male infertility is associated with increased ROS and decreased total antioxidant activity in theseminal plasma. ROS induce nuclear DNA strand breaks. Besides, due to a high polyunsaturatedfatty acid content human sperm plasma membranes are highly sensitive to ROS induced lipidperoxidation thus decreasing membrane fluidity. This will result in increased lipid peroxidation(LPO, decreased sperm motility, viability, function and ultimately lead to infertility. The protectiveaction of antioxidants against the deleterious effect of ROS on cellular lipids, proteins and DNA hasbeen supported by several scientific studies.The purpose of the present review is to address the possible relationship between ROS andantioxidants production in seminal plasma, and the role they may play in influencing the outcomeof assisted reproductive technology (ART.

  20. Roles of Reactive Oxygen Species in Anticancer Therapy with Salvia miltiorrhiza Bunge

    Directory of Open Access Journals (Sweden)

    Yu-Chiang Hung

    2016-01-01

    Full Text Available Cancer is a leading cause of death worldwide. We aim to provide a systematic review about the roles of reactive oxygen species (ROS in anticancer therapy with Salvia miltiorrhiza Bunge (Danshen. Danshen, including its lipophilic and hydrophilic constituents, is potentially beneficial for treating various cancers. The mechanisms of ROS-related anticancer effects of Danshen vary depending on the specific type of cancer cells involved. Danshen may enhance TNF-α-induced apoptosis, upregulate caspase-3, caspase-8, caspase-9, endoplasmic reticulum stress, P21, P53, Bax/Bcl-2, DR5, and AMP-activated protein kinase, or activate the p38/JNK, mitogen-activated protein kinase, and FasL signaling pathways. Conversely, Danshen may downregulate human telomerase reverse transcriptase mRNA, telomerase, survivin, vascular endothelial growth factor/vascular endothelial growth factor receptor 2, CD31, NF-κB, Erk1/2, matrix metalloproteinases, microtubule assembly, and receptor tyrosine kinases including epidermal growth factor receptors, HER2, and P-glycoprotein and inhibit the PI3K/Akt/mTOR or estrogen receptor signaling pathways. Therefore, Danshen may inhibit cancer cells proliferation through antioxidation on tumor initiation and induce apoptosis or autophagy through ROS generation on tumor progression, tumor promotion, and tumor metastasis. Based on the available evidence regarding its anticancer properties, this review provides new insights for further anticancer research or clinical trials with Danshen.

  1. The Effect of Reactive Oxygen Species on Embryo Quality in IVF.

    Science.gov (United States)

    Siristatidis, Charalampos; Vogiatzi, Paraskevi; Varounis, Christos; Askoxylaki, Marily; Chrelias, Charalampos; Papantoniou, Nikolaos

    2016-01-01

    BACKROUND/AIM: Reactive oxygen species (ROS) are involved in critical biological processes in human reproduction. The aim of this study was to evaluate the association of embryo quality following in vitro fertilization (IVF), with ROS levels in the serum and follicular fluid (FF). Eighty-five participants underwent ovarian stimulation and IVF; ROS levels were measured in blood samples on the day of oocyte retrieval and in the FF from follicular aspirates using enzyme-linked immunosorbent assay. These values were associated with the quality of embryos generated. Univariable zero-inflated Poisson model revealed that ROS levels at both oocyte retrieval and in FF were not associated with the number of grade I, II, III and IV embryos (p>0.05). Age, body mass index, stimulation protocol and smoking status were not associated with the number of embryos of any grade (p>0.05). Neither ROS levels in serum nor in FF are associated with the quality of embryos produced following IVF. Copyright © 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  2. Irradiation of skin with visible light induces reactive oxygen species and matrix-degrading enzymes.

    Science.gov (United States)

    Liebel, Frank; Kaur, Simarna; Ruvolo, Eduardo; Kollias, Nikiforos; Southall, Michael D

    2012-07-01

    Daily skin exposure to solar radiation causes cells to produce reactive oxygen species (ROS), which are a primary factor in skin damage. Although the contribution of the UV component to skin damage has been established, few studies have examined the effects of non-UV solar radiation on skin physiology. Solar radiation comprises UV, and thus the purpose of this study was to examine the physiological response of skin to visible light (400-700 nm). Irradiation of human skin equivalents with visible light induced production of ROS, proinflammatory cytokines, and matrix metalloproteinase (MMP)-1 expression. Commercially available sunscreens were found to have minimal effects on reducing visible light-induced ROS, suggesting that UVA/UVB sunscreens do not protect the skin from visible light-induced responses. Using clinical models to assess the generation of free radicals from oxidative stress, higher levels of free radical activity were found after visible light exposure. Pretreatment with a photostable UVA/UVB sunscreen containing an antioxidant combination significantly reduced the production of ROS, cytokines, and MMP expression in vitro, and decreased oxidative stress in human subjects after visible light irradiation. Taken together, these findings suggest that other portions of the solar spectrum aside from UV, particularly visible light, may also contribute to signs of premature photoaging in skin.

  3. Alpha-particles microbeam irradiation: impact of reactive oxygen species in bystander effect

    International Nuclear Information System (INIS)

    Hanot, M.

    2008-11-01

    Ionizing radiation-induced bystander effects arise in bystander cells that receive signals from directly irradiated cells. To date, free radicals are believed to play an active role in the bystander response, but this is incompletely characterized. To mark temporal and spatial impacts of bystander effect, we employed a precise α-particle microbeam to target a small fraction of sub-confluent osteoblastic cell cultures (MC3T3-E1). We identified the cellular membrane and mitochondria like two distinct places generating reactive oxygen species. The global oxidative stress observed after irradiation was significantly attenuated after filipin treatment, evidencing the pivotal role of membrane in MC3T3-E1 cells bystander response. To determine impact of bystander effect at a cell level, cellular consequences of this membrane-dependant bystander effect were then investigated. A variable fraction of the cell population (10 to 100%) was individually targeted. In this case, mitotic death and micronuclei yield both increased in bystander cells as well as in targeted cells demonstrating a role of bystander signals between irradiated cells in an autocrine or paracrine manner. Our results indicate a complex interaction of direct irradiation and bystander signals that lead to a membrane-dependant amplification of cell responses. (author)

  4. Reactive oxygen species dynamics in roots of salt sensitive and salt tolerant cultivars of rice.

    Science.gov (United States)

    Saini, Shivani; Kaur, Navdeep; Pati, Pratap Kumar

    2018-06-01

    Salinity stress is one of the major constraints for growth and survival of plants that affects rice productivity worldwide. Hence, in the present study, roots of two contrasting salinity sensitive cultivars, IR64 (IR64, salt sensitive) and Luna Suvarna (LS, salt tolerant) were compared with regard to the levels of reactive oxygen species (ROS) to derive clues for their differential salt stress adaptation mechanisms. In our investigation, the tolerant cultivar exhibited longer primary roots, more lateral roots, higher root number leading to increased root biomass, with respect to IR64. It was observed that LS roots maintained higher level of H 2 O 2 in comparison to IR64. The activities of various enzymes involved in enzymatic antioxidant defense mechanism (SOD, CAT, GPX, DHAR and MDHAR) were found to be greater in LS roots. Further, the higher transcript level accumulation of genes encoding ROS generating (RbohA, RbohD and RbohE) and scavenging enzymes (Fe-SOD, Chloroplastic Cu/Zn-SOD, CAT and DHAR) were noticed in the roots of tolerant cultivar, LS. Moreover, the content of other stress markers such as total protein and proline were also elevated in LS roots. While, the expression of proline biosynthesis gene (P5CS) and proline catabolism gene (PDH) was observed to be lower in LS. Copyright © 2018. Published by Elsevier Inc.

  5. High salt-induced excess reactive oxygen species production resulted in heart tube malformation during gastrulation.

    Science.gov (United States)

    Gao, Lin-Rui; Wang, Guang; Zhang, Jing; Li, Shuai; Chuai, Manli; Bao, Yongping; Hocher, Berthold; Yang, Xuesong

    2018-09-01

    An association has been proved between high salt consumption and cardiovascular mortality. In vertebrates, the heart is the first functional organ to be formed. However, it is not clear whether high-salt exposure has an adverse impact on cardiogenesis. Here we report high-salt exposure inhibited basement membrane breakdown by affecting RhoA, thus disturbing the expression of Slug/E-cadherin/N-cadherin/Laminin and interfering with mesoderm formation during the epithelial-mesenchymal transition(EMT). Furthermore, the DiI + cell migration trajectory in vivo and scratch wound assays in vitro indicated that high-salt exposure restricted cell migration of cardiac progenitors, which was caused by the weaker cytoskeleton structure and unaltered corresponding adhesion junctions at HH7. Besides, down-regulation of GATA4/5/6, Nkx2.5, TBX5, and Mef2c and up-regulation of Wnt3a/β-catenin caused aberrant cardiomyocyte differentiation at HH7 and HH10. High-salt exposure also inhibited cell proliferation and promoted apoptosis. Most importantly, our study revealed that excessive reactive oxygen species(ROS)generated by high salt disturbed the expression of cardiac-related genes, detrimentally affecting the above process including EMT, cell migration, differentiation, cell proliferation and apoptosis, which is the major cause of malformation of heart tubes. © 2018 Wiley Periodicals, Inc.

  6. Explorations on Temperature, Oxygen, Nutrients and Habitat Demands of Fish Species Found in River Coruh

    Directory of Open Access Journals (Sweden)

    Bilal Akbulut

    2009-04-01

    Full Text Available For the protection of our natural resources, fish species being economic and ecological richness of the natural in the basin of the Çoruh to know their request is extremely a vital important issue. In this study, temperature and oxygen demand, food and habitat of 18 fish species in six families found in river Çoruh assessed and discussed with the literature and database. Limiting the impact of water temperature on the reproductive, growth and nutrition emphasized. The fish species in the basin spawn at temperatures between 14-30°C according to database. Three species belonging to a family feed with animal food floating in the water. The species belonging to the other families more feed mixed with plant and animal foods diet in the floor or near the ground. Importance of their environmental demands has clarified for conservation and sustainable use of these fish species inhabiting in Çoruh River.

  7. Syngas Generation from Methane Using a Chemical-Looping Concept: A Review of Oxygen Carriers

    Directory of Open Access Journals (Sweden)

    Kongzhai Li

    2013-01-01

    Full Text Available Conversion of methane to syngas using a chemical-looping concept is a novel method for syngas generation. This process is based on the transfer of gaseous oxygen source to fuel (e.g., methane by means of a cycling process using solid oxides as oxygen carriers to avoid direct contact between fuel and gaseous oxygen. Syngas is produced through the gas-solid reaction between methane and solid oxides (oxygen carriers, and then the reduced oxygen carriers can be regenerated by a gaseous oxidant, such as air or water. The oxygen carrier is recycled between the two steps, and the syngas with a ratio of H2/CO = 2.0 can be obtained successively. Air is used instead of pure oxygen allowing considerable cost savings, and the separation of fuel from the gaseous oxidant avoids the risk of explosion and the dilution of product gas with nitrogen. The design and elaboration of suitable oxygen carriers is a key issue to optimize this method. As one of the most interesting oxygen storage materials, ceria-based and perovskite oxides were paid much attention for this process. This paper briefly introduced the recent research progresses on the oxygen carriers used in the chemical-looping selective oxidation of methane (CLSOM to syngas.

  8. Zooplankton Distribution and Species Composition Along an Oxygen Gradient in Puget Sound, WA

    Science.gov (United States)

    Keister, J. E.; Essington, T.; Li, L.; Horne, J. K.; Sato, M.; Parker-Stetter, S. L.; Moriarty, P.

    2016-02-01

    Low dissolved oxygen (hypoxia) is one of the most pronounced, pervasive, and significant disturbances in marine ecosystems, yet our understanding of its effects is incomplete, particularly with respect to impacts on lower trophic levels. As part of a study of how hypoxia affects predator-prey relationships and energy flow through marine food webs, we are studying relationships between ocean chemistry and zooplankton in Puget Sound, Washington—a deep, seasonally hypoxic fjord in the Pacific Northwest that supports a productive and diverse pelagic community. From summer through fall in two years that differed in the timing and intensity of hypoxia, we conducted multi-frequency bioacoustic surveys, CTD casts, and depth-stratified zooplankton sampling to examine changes in distribution and species composition of animals in relation to oxygen concentrations. We exploited a natural gradient in oxygen along the axis of the fjord by sampling at moderately hypoxic and normoxic sites with otherwise similar hydrography and species composition to disentangle the effects of oxygen from changes in other environmental factors. Our results support the hypothesis that zooplankton species composition and vertical distributions are altered by hypoxia, but only when examined at the species and life-stage level. Relatively few taxa showed clear responses to hypoxia, and bioacoustic backscatter data (which was dominated by adult euphausiids and amphipods) indicated that those taxa were not affected by the levels of hypoxia we observed. Examination of net tow data revealed more subtle changes, including behavioral avoidance of low oxygen by some copepods and young euphausiid life stages. Overall, the high species diversity and relatively low susceptibility of many zooplankton to hypoxia in Puget Sound may confer ecosystem resilience to near-future projected changes in this region.

  9. Reactive oxygen species accumulation and homeostasis are involved in plant immunity to an opportunistic fungal pathogen.

    Science.gov (United States)

    Taheri, Parissa; Kakooee, Tahereh

    2017-09-01

    Alternaria blight is a major and destructive disease of potato worldwide. In recent years, A. tenuissima is recognized as the most prevalent species of this phytopathogenic fungus in potato fields of Asian countries, which causes high yield losses every year. Any potato cultivar with complete resistance to this disease is not recognized, so far. Therefore, screening resistance levels of potatoes and identification of plant defense mechanisms against this fungus might be important for designing novel and effective disease management strategies for controlling the disease. In this research, the role of reactive oxygen species, antioxidants, lignin and phenolics in potato basal resistance to A. tenuissima was compared in the partially resistant Ramus and susceptible Bamba cultivars. Priming O 2 - and H 2 O 2 production and enhanced activity of peroxidase (POX) and catalase (CAT) during interaction with A. tenuissima were observed in Ramus cultivar. Application of ROS generating systems and scavengers revealed critical role of O 2 - and H 2 O 2 in potato defense, which was associated with lignification and phenolics production. More OH - and lipid peroxidation in the susceptible Bamba compared to Ramus cultivar showed their negative effects on resistance. Priming the POX and CAT activity, in correlation with upregulation of the corresponding genes was observed in Ramus. The POX and CAT inhibitors increased disease progress, which was related with decreased lignification. This assay demonstrated not only POX-dependency of lignification, but also its dependence on CAT. However, POX had more importance than CAT in potato defense and in lignification. These findings highlight the function of ROS accumulation and homeostasis in potato resistance against A. tenuissima. Copyright © 2017 Elsevier GmbH. All rights reserved.

  10. Automatic generation of gene finders for eukaryotic species

    DEFF Research Database (Denmark)

    Terkelsen, Kasper Munch; Krogh, A.

    2006-01-01

    and quality of reliable gene annotation grows. Results We present a procedure, Agene, that automatically generates a species-specific gene predictor from a set of reliable mRNA sequences and a genome. We apply a Hidden Markov model (HMM) that implements explicit length distribution modelling for all gene......Background The number of sequenced eukaryotic genomes is rapidly increasing. This means that over time it will be hard to keep supplying customised gene finders for each genome. This calls for procedures to automatically generate species-specific gene finders and to re-train them as the quantity...... structure blocks using acyclic discrete phase type distributions. The state structure of the each HMM is generated dynamically from an array of sub-models to include only gene features represented in the training set. Conclusion Acyclic discrete phase type distributions are well suited to model sequence...

  11. Reactive Oxygen Species and Their Implications on CD4+ T Cells in Type 1 Diabetes.

    Science.gov (United States)

    Previte, Dana M; Piganelli, Jon D

    2017-11-28

    Previous work has indicated that type 1 diabetes (T1D) pathology is highly driven by reactive oxygen species (ROS). One way in which ROS shape the autoimmune response demonstrated in T1D is by promoting CD4 + T cell activation and differentiation. As CD4 + T cells are a significant contributor to pancreatic β cell destruction in T1D, understanding how ROS impact their development, activation, and differentiation is critical. Recent Advances: CD4 + T cells themselves generate ROS via nicotinamide adenine dinucleotide phosphate (NADPH) oxidase expression and electron transport chain activity. Moreover, T cells can also be exposed to exogenous ROS generated by other immune cells (e.g., macrophages and dendritic cells) and β cells. Genetically modified animals and ROS inhibitors have demonstrated that ROS blockade during activation results in CD4 + T cell hyporesponsiveness and reduced diabetes incidence. Critical Issues and Future Directions: Although the majority of studies with regard to T1D and CD4 + T cells have been done to examine the influence of redox on CD4 + T cell activation, this is not the only circumstance in which a T cell can be impacted by redox. ROS and redox have also been shown to play roles in CD4 + T cell-related tolerogenic mechanisms, including thymic selection and regulatory T cell-mediated suppression. However, the effect of these mechanisms with respect to T1D pathogenesis remains elusive. Therefore, pursuing these avenues may provide valuable insight into the global role of ROS and redox in autoreactive CD4 + T cell formation and function. Antioxid. Redox Signal. 00, 000-000.

  12. Up-regulation of A1M/α1-microglobulin in skin by heme and reactive oxygen species gives protection from oxidative damage.

    Science.gov (United States)

    Olsson, Magnus G; Allhorn, Maria; Larsson, Jörgen; Cederlund, Martin; Lundqvist, Katarina; Schmidtchen, Artur; Sørensen, Ole E; Mörgelin, Matthias; Akerström, Bo

    2011-01-01

    During bleeding the skin is subjected to oxidative insults from free heme and radicals, generated from extracellular hemoglobin. The lipocalin α(1)-microglobulin (A1M) was recently shown to have reductase properties, reducing heme-proteins and other substrates, and to scavenge heme and radicals. We investigated the expression and localization of A1M in skin and the possible role of A1M in the protection of skin tissue from damage induced by heme and reactive oxygen species. Skin explants, keratinocyte cultures and purified collagen I were exposed to heme, reactive oxygen species, and/or A1M and investigated by biochemical methods and electron microscopy. The results demonstrate that A1M is localized ubiquitously in the dermal and epidermal layers, and that the A1M-gene is expressed in keratinocytes and up-regulated after exposure to heme and reactive oxygen species. A1M inhibited the heme- and reactive oxygen species-induced ultrastructural damage, up-regulation of antioxidation and cell cycle regulatory genes, and protein carbonyl formation in skin and keratinocytes. Finally, A1M bound to purified collagen I (K(d) = 0.96×10(-6) M) and could inhibit and repair the destruction of collagen fibrils by heme and reactive oxygen species. The results suggest that A1M may have a physiological role in protection of skin cells and matrix against oxidative damage following bleeding.

  13. Exposure of vitamins to UVB and UVA radiation generates singlet oxygen.

    Science.gov (United States)

    Knak, Alena; Regensburger, Johannes; Maisch, Tim; Bäumler, Wolfgang

    2014-05-01

    Deleterious effects of UV radiation in tissue are usually attributed to different mechanisms. Absorption of UVB radiation in cell constituents like DNA causes photochemical reactions. Absorption of UVA radiation in endogenous photosensitizers like vitamins generates singlet oxygen via photosensitized reactions. We investigated two further mechanisms that might be involved in UV mediated cell tissue damage. Firstly, UVB radiation and vitamins also generate singlet oxygen. Secondly, UVB radiation may change the chemical structure of vitamins that may change the role of such endogenous photosensitizers in UVA mediated mechanisms. Vitamins were irradiated in solution using monochromatic UVB (308 nm) or UVA (330, 355, or 370 nm) radiation. Singlet oxygen was directly detected and quantified by its luminescence at 1270 nm. All investigated molecules generated singlet oxygen with a quantum yield ranging from 0.007 (vitamin D3) to 0.64 (nicotinamide) independent of the excitation wavelength. Moreover, pre-irradiation of vitamins with UVB changed their absorption in the UVB and UVA spectral range. Subsequently, molecules such as vitamin E and vitamin K1, which normally exhibit no singlet oxygen generation in the UVA, now produce singlet oxygen when exposed to UVA at 355 nm. This interplay of different UV sources is inevitable when applying serial or parallel irradiation with UVA and UVB in experiments in vitro. These results should be of particular importance for parallel irradiation with UVA and UVB in vivo, e.g. when exposing the skin to solar radiation.

  14. Regulation of reactive oxygen and nitrogen species by salicylic acid in rice plants under salinity stress conditions

    Science.gov (United States)

    Mun, Bong-Gyu; Khan, Abdul Latif; Waqas, Muhammad; Kim, Hyun-Ho; Shahzad, Raheem; Imran, Muhammad

    2018-01-01

    This study investigated the regulatory role of exogenous salicylic acid (SA) in rice and its effects on toxic reactive oxygen and nitrogen species during short-term salinity stress. SA application (0.5 and 1.0 mM) during salinity-induced stress (100 mM NaCl) resulted in significantly longer shoot length and higher chlorophyll and biomass accumulation than with salinity stress alone. NaCl-induced reactive oxygen species production led to increased levels of lipid peroxidation in rice plants, which were significantly reduced following SA application. A similar finding was observed for superoxide dismutase; however, catalase (CAT) and ascorbate peroxidase (APX) were significantly reduced in rice plants treated with SA and NaCl alone and in combination. The relative mRNA expression of OsCATA and OsAPX1 was lower in rice plants during SA stress. Regarding nitrogenous species, S-nitrosothiol (SNO) was significantly reduced initially (one day after treatment [DAT]) but then increased in plants subjected to single or combined stress conditions. Genes related to SNO biosynthesis, S-nitrosoglutathione reductase (GSNOR1), NO synthase-like activity (NOA), and nitrite reductase (NIR) were also assessed. The mRNA expression of GSNOR1 was increased relative to that of the control, whereas OsNOA was expressed at higher levels in plants treated with SA and NaCl alone relative to the control. The mRNA expression of OsNR was decreased in plants subjected to single or combination treatment, except at 2 DAT, compared to the control. In conclusion, the current findings suggest that SA can regulate the generation of NaCl-induced oxygen and nitrogen reactive species in rice plants. PMID:29558477

  15. Cytotoxicity But No Mutagenicity In Bacteria With Externally Generated Singlet Oxygen

    Science.gov (United States)

    Midden, W. Robert; Dahl, Thomas A.; Hartman, Philip E.

    1988-02-01

    Singlet oxygen is believed to be an important intermediate responsible for the cytotoxicity of HpD phototherapy. It has been recognized as a possible intermediate in photosensitization for more than 20 years. However, it has been difficult to obtain conclusive evidence of its biological characteristics in the past because most of the methods available for its generation that are compatible with biological systems also generate other reactive intermediates whose effects are difficult to distinguish from singlet oxygen. We have used a recently devised separated-surface-sensi-tizer (S-S-S) system for singlet oxygen generation' to measure the cytotoxicity and mutagenicity of singlet oxygen in bacteria. The S-S-S system employs rose bengal as a sensitizer immobilized on one surface of a glass plate. The glass plate is placed sensitizer-side down a small distance (plate is illuminated from above to generate singlet oxygen at the surface of the sensitizer. The singlet oxygen thus generated can diffuse the short dis-tance to the surface of the membrane to react with the bacteria. Because of the short lifetime of singlet oxygen in air, increasing the distance between the sensitizer and the membrane causes a decline in the amount of singlet oxygen reaching the membrane according to a function derived from the Einstein-Smoluchowski equation for net displacement by diffusion. Plotting the log of the effect measured (e.g., cytotoxicity) vs. the square of the distance gives a straight line. The slope of this line can be used to calculate the gas phase half life of the intermediate responsible for the observed effects. We have found that bacteria are rapidly killed in the illuminated S-S-S system and that the gas phase half life of the agent responsible for cell killing is the same as that of singlet oxygen. This observation and other simple chemical tests have conclusively estab-lished that singlet oxygen is responsible for the cytotoxicity observed with bacteria. Dosimetry

  16. The tripeptide feG regulates the production of intracellular reactive oxygen species by neutrophils

    Directory of Open Access Journals (Sweden)

    Davison Joseph S

    2006-06-01

    Full Text Available Abstract Background The D-isomeric form of the tripeptide FEG (feG is a potent anti-inflammatory agent that suppresses type I hypersensitivity (IgE-mediated allergic reactions in several animal species. One of feG's primary actions is to inhibit leukocyte activation resulting in loss of their adhesive and migratory properties. Since activation of neutrophils is often associated with an increase in respiratory burst with the generation of reactive oxygen species (ROS, we examined the effect of feG on the respiratory burst in neutrophils of antigen-sensitized rats. A role for protein kinase C (PKC in the actions of feG was evaluated by using selective isoform inhibitors for PKC. Results At 18h after antigen (ovalbumin challenge of sensitized Sprague-Dawley rats a pronounced neutrophilia occurred; a response that was reduced in animals treated with feG (100 μg/kg. With antigen-challenged animals the protein kinase C (PKC activator, PMA, significantly increased intracellular ROS of circulating neutrophils, as determined by flow cytometry using the fluorescent probe dihydrorhodamine-123. This increase was prevented by treatment with feG at the time of antigen challenge. The inhibitor of PKCδ, rottlerin, which effectively prevented intracellular ROS production by circulating neutrophils of animals receiving a naïve antigen, failed to inhibit PMA-stimulated ROS production if the animals were challenged with antigen. feG treatment, however, re-established the inhibitory effects of the PKCδ inhibitor on intracellular ROS production. The extracellular release of superoxide anion, evaluated by measuring the oxidative reduction of cytochrome C, was neither modified by antigen challenge nor feG treatment. However, hispidin, an inhibitor of PKCβ, inhibited the release of superoxide anion from circulating leukocytes in all groups of animals. feG prevented the increased expression of the β1-integrin CD49d on the circulating neutrophils elicited by antigen

  17. Theoretical analysis of ozone generation by pulsed dielectric barrier discharge in oxygen

    Science.gov (United States)

    Wei, L. S.; Zhou, J. H.; Wang, Z. H.; Cen, K. F.

    2007-08-01

    The use of very short high-voltage pulses combined with a dielectric layer results in high-energy electrons that dissociate oxygen molecules into atoms, which are a prerequisite for the subsequent production of ozone by collisions with oxygen molecules and third particles. The production of ozone depends on both the electrical and the physical parameters. For ozone generation by pulsed dielectric barrier discharge in oxygen, a mathematical model, which describes the relation between ozone concentration and these parameters that are of importance in its design, is developed according to dimensional analysis theory. A formula considering the ozone destruction factor is derived for predicting the characteristics of the ozone generation, within the range of the corona inception voltage to the gap breakdown voltage. The trend showing the dependence of the concentration of ozone in oxygen on these parameters generally agrees with the experimental results, thus confirming the validity of the mathematical model.

  18. Biocompatible ZnS:Mn quantum dots for reactive oxygen generation and detection in aqueous media

    Science.gov (United States)

    Diaz-Diestra, Daysi; Beltran-Huarac, Juan; Bracho-Rincon, Dina P.; González-Feliciano, José A.; González, Carlos I.; Weiner, Brad R.; Morell, Gerardo

    2015-12-01

    We report here the versatility of Mn-doped ZnS quantum dots (ZnS:Mn QDs) synthesized in aqueous medium for generating reactive oxygen species and for detecting cells. Our experiments provide evidence leading to the elimination of Cd-based cores in CdSe/ZnS systems by substitution of Mn-doped ZnS. Advanced electron microscopy, X-ray diffraction, and optical spectroscopy were applied to elucidate the formation, morphology, and dispersion of the products. We study for the first time the ability of ZnS:Mn QDs to act as immobilizing agents for Tyrosinase (Tyr) enzyme. It was found that ZnS:Mn QDs show no deactivation of Tyr enzyme, which efficiently catalyzed the hydrogen peroxide (H2O2) oxidation and its eventual reduction (-0.063 V vs. Ag/AgCl) on the biosensor surface. The biosensor showed a linear response in the range of 12 μmol/L-0.1 mmol/L at low operation potential. Our observations are explained in terms of a catalase-cycled kinetic mechanism based on the binding of H2O2 to the axial position of one of the active copper sites of the oxy-Tyr during the catalase cycle to produce deoxy-Tyr. A singlet oxygen quantum yield of 0.62 in buffer and 0.54 in water was found when ZnS:Mn QDs were employed as a photosensitizer in the presence of a chemical scavenger and a standard dye. These results are consistent with a chemical trapping energy transfer mechanism. Our results also indicate that ZnS:Mn QDs are well tolerated by HeLa Cells reaching cell viabilities as high as 88 % at 300 µg/mL of QDs for 24 h of incubation. The ability of ZnS:Mn QDs as luminescent nanoprobes for bioimaging is also discussed.

  19. Characteristics of Honeycomb-Type Oxygen Generator with Electrolyte Based on Doped Bismuth Oxide

    Science.gov (United States)

    Chen, Yu-Wen; Liu, Yi-Xin; Wang, Sea-Fue; Devasenathipathy, Rajkumar

    2018-03-01

    An oxygen generator using Y-doped Bi2O3 as electrolyte to transport oxygen ions has been developed, having honeycomb-type structure with dimensions of 40 mm × 35 mm × 30 mm and consisting of 13 × 12 channels. External wire circuitry for the channels arrayed using parallel, series, and hybrid connection was evaluated to achieve the best oxygen separation efficiency. It was observed that the oxygen generator with hybrid connection facilitated evolution of oxygen at maximum of 117 sccm and high purity > 99.9% at 550°C under current flow of 14 A. Addition of 5 wt.% silane and 3 wt.% glass-ceramic powder to the Ag slurry used at both electrodes not only increased the coverage of the metal electrode on the ceramic substrate during dip coating but also prevented cracking at the electrode layer of the module under stress from the electric field and temperature during high-temperature operation, thus reducing the decay rate of the oxygen generator in durability testing.

  20. Staphyloxanthin photobleaching sensitizes methicillin-resistant Staphylococcus aureus to reactive oxygen species attack

    Science.gov (United States)

    Dong, Pu-Ting; Mohammad, Haroon; Hui, Jie; Wang, Xiaoyu; Li, Junjie; Liang, Lijia; Seleem, Mohamed N.; Cheng, Ji-Xin

    2018-02-01

    Given that the dearth of new antibiotic development loads an existential burden on successful infectious disease therapy, health organizations are calling for alternative approaches to combat methicillin-resistant Staphylococcus aureus (MRSA) infections. Here, we report a drug-free photonic approach to eliminate MRSA through photobleaching of staphyloxanthin, an indispensable membrane-bound antioxidant of S. aureus. The photobleaching process, uncovered through a transient absorption imaging study and quantitated by absorption spectroscopy and mass spectrometry, decomposes staphyloxanthin, and sensitizes MRSA to reactive oxygen species attack. Consequently, staphyloxanthin bleaching by low-level blue light eradicates MRSA synergistically with external or internal reactive oxygen species. The effectiveness of this synergistic therapy is validated in MRSA culture, MRSAinfected macrophage cells. Collectively, these findings highlight broad applications of staphyloxanthin photobleaching for treatment of MRSA infections.

  1. Identification of different oxygen species in oxide nanostructures with 17O solid-state NMR spectroscopy

    Science.gov (United States)

    Wang, Meng; Wu, Xin-Ping; Zheng, Sujuan; Zhao, Li; Li, Lei; Shen, Li; Gao, Yuxian; Xue, Nianhua; Guo, Xuefeng; Huang, Weixin; Gan, Zhehong; Blanc, Frédéric; Yu, Zhiwu; Ke, Xiaokang; Ding, Weiping; Gong, Xue-Qing; Grey, Clare P.; Peng, Luming

    2015-01-01

    Nanostructured oxides find multiple uses in a diverse range of applications including catalysis, energy storage, and environmental management, their higher surface areas, and, in some cases, electronic properties resulting in different physical properties from their bulk counterparts. Developing structure-property relations for these materials requires a determination of surface and subsurface structure. Although microscopy plays a critical role owing to the fact that the volumes sampled by such techniques may not be representative of the whole sample, complementary characterization methods are urgently required. We develop a simple nuclear magnetic resonance (NMR) strategy to detect the first few layers of a nanomaterial, demonstrating the approach with technologically relevant ceria nanoparticles. We show that the 17O resonances arising from the first to third surface layer oxygen ions, hydroxyl sites, and oxygen species near vacancies can be distinguished from the oxygen ions in the bulk, with higher-frequency 17O chemical shifts being observed for the lower coordinated surface sites. H217O can be used to selectively enrich surface sites, allowing only these particular active sites to be monitored in a chemical process. 17O NMR spectra of thermally treated nanosized ceria clearly show how different oxygen species interconvert at elevated temperature. Density functional theory calculations confirm the assignments and reveal a strong dependence of chemical shift on the nature of the surface. These results open up new strategies for characterizing nanostructured oxides and their applications. PMID:26601133

  2. Production of reactive oxygen species during the aerobic and anaerobic exercise

    Directory of Open Access Journals (Sweden)

    Edilson Serpeloni Cyrino

    2006-06-01

    Full Text Available The protective effect of physical exercise against diseases is well established in literature, although it is known that exercising generates free radicals. Despite the mitochondria being the main source of free radicals, the processes of ischemia, inflammation, and reperfusion can also form free radicals. The purpose of this literature review was to investigate the impact of both aerobic and anaerobic physical exercise on the generation of reactive oxygen species (ROS. We verified that cellular and tissue damage by free radicals, caused by lipid peroxidation and inflammation, occurs in both types of physical exercises, especially in high intensity efforts. There are indications that ROS generation during physical exercise cannot be modulated by regular training, however, the cellular environment can increase antioxidant endogenous concentration to compensate for that stress. Moreover, ROS regulation can differently occur in aerobic and anaerobic exercises. Therefore, the control of oxidative stress may be very important, particularly, in anaerobic exercises. RESUMOO efeito protetor do exercício físico contra doenças está bem estabelecido na literatura, embora haja conhecimento de que sua prática gera radicais livres. Apesar de a mitocôndria ser a principal fonte de radicais livres, os processos de isquemia, inflamação e reperfusão também podem causar formação de radicais livres. Apartir de uma ampla revisão da literatura, o objetivo deste estudo foi investigar o impacto do exercício físico sob condições de aerobiose e anaerobiose sobre a geração de espécies reativas de oxigênio (ERO. Verificou-se que o dano celular e tecidual por radicais livres, causado por peroxidação lipídica e inflamação, ocorre em ambos os tipos de exercícios físicos, sobretudo em esforços de alta intensidade. Existem indicações de que a geração de ERO durante o exercício físico não pode ser modulada pelo treinamento regular, contudo, o

  3. Enhanced reactive oxygen species overexpression by CuO nanoparticles in poorly differentiated hepatocellular carcinoma cells

    Science.gov (United States)

    Kung, Mei-Lang; Hsieh, Shu-Ling; Wu, Chih-Chung; Chu, Tian-Huei; Lin, Yu-Chun; Yeh, Bi-Wen; Hsieh, Shuchen

    2015-01-01

    Copper oxide nanoparticles (CuO NPs) are known to exhibit toxic effects on a variety of cell types and organs. To determine the oxidative impact of CuO NPs on hepatocellular carcinoma (HCC) cells, well-differentiated (HepG2) and poorly differentiated (SK-Hep-1) cells were exposed to CuO NPs. Cell viability assay showed that the median inhibition concentration (IC50) for SK-Hep-1 and HepG2 cells was 25 μg ml-1 and 85 μg ml-1, respectively. Cellular fluorescence intensity using DCFH-DA staining analysis revealed significant intracellular reactive oxygen species (ROS) generation of up to 242% in SK-Hep-1 cells, compared with 86% in HepG2 cells. HPLC analysis demonstrated that a CuO NP treatment caused cellular GSH depletion of 58% and a GSH/GSSG ratio decrease to ~0.1 in SK-Hep-1 cells. The oxidative stress caused by enhanced superoxide anion production was observed in both HepG2 (146%) and SK-Hep-1 (192%) cells. The Griess assay verified that CuO NPs induced NO production (170%) in SK-Hep-1 cells. Comet assay and western blot further demonstrated that CuO NPs induced severe DNA strand breakage (70%) in SK-Hep-1 cells and caused DNA damage via increased γ-H2AX levels. These results suggest that well-differentiated HepG2 cells possess a robust antioxidant defense system against CuO NP-induced ROS stress and exhibit more tolerance to oxidative stress. Conversely, poorly differentiated SK-Hep-1 cells exhibited a deregulated antioxidant defense system that allowed accumulation of CuO NP-induced ROS and resulted in severe cytotoxicity.Copper oxide nanoparticles (CuO NPs) are known to exhibit toxic effects on a variety of cell types and organs. To determine the oxidative impact of CuO NPs on hepatocellular carcinoma (HCC) cells, well-differentiated (HepG2) and poorly differentiated (SK-Hep-1) cells were exposed to CuO NPs. Cell viability assay showed that the median inhibition concentration (IC50) for SK-Hep-1 and HepG2 cells was 25 μg ml-1 and 85 μg ml-1, respectively

  4. Chemical generation of volatile species of copper – Optimization, efficiency and investigation of volatile species nature

    Czech Academy of Sciences Publication Activity Database

    Šoukal, Jakub; Benada, Oldřich; Matoušek, Tomáš; Dědina, Jiří; Musil, Stanislav

    2017-01-01

    Roč. 977, JUL (2017), s. 10-19 ISSN 0003-2670 Institutional support: RVO:68081715 ; RVO:61388971 Keywords : generation of volatile species * copper * analytical atomic spectrometry Subject RIV: CB - Analytical Chemistry, Separation; EE - Microbiology, Virology (MBU-M) OBOR OECD: Analytical chemistry; Microbiology (MBU-M) Impact factor: 4.950, year: 2016

  5. Ratiometric reactive oxygen species nanoprobe for noninvasive in vivo imaging of subcutaneous inflammation/infection

    OpenAIRE

    Zhou, Jun; Weng, Hong; Huang, Yihui; Gu, Yueqing; Tang, Liping; Hu, Wenjing

    2016-01-01

    Release of reactive oxygen species (ROS) accompanied with acute inflammation and infection often results in cell death and tissue injury. Several ROS-reactive bioluminescent probes have been investigated in recent years to detect ROS activity in vivo. Unfortunately, these probes cannot be used to quantify the degree of ROS activity and inflammatory responses due to the fact that the extent of the bioluminescent signals is also probe-concentration dependent. To address this challenge, we fabri...

  6. Real-time in vivo detection of biomaterial-induced reactive oxygen species

    OpenAIRE

    Liu, Wendy F.; Ma, Minglin; Bratlie, Kaitlin M.; Dang, Tram T.; Langer, Robert; Anderson, Daniel G.

    2010-01-01

    The non-specific host response to implanted biomaterials is often a key challenge of medical device design. To evaluate biocompatibility, measuring the release of reactive oxygen species (ROS) produced by inflammatory cells in response to biomaterial surfaces is a well-established method. However, the detection of ROS in response to materials implanted in vivo has not yet been demonstrated. Here, we develop a bioluminescence whole animal imaging approach to observe ROS released in response to...

  7. Reactive oxygen species formation during tetanic contractions in single isolated Xenopus myofibers

    OpenAIRE

    Zuo, Li; Nogueira, Leonardo; Hogan, Michael C.

    2011-01-01

    Contracting skeletal muscle produces reactive oxygen species (ROS) that have been shown to affect muscle function and adaptation. However, real-time measurement of ROS in contracting myofibers has proven to be difficult. We used amphibian (Xenopus laevis) muscle to test the hypothesis that ROS are formed during contractile activity in isolated single skeletal muscle fibers and that this contraction-induced ROS formation affects fatigue development. Single myofibers were loaded with 5 μM dihyd...

  8. (3) Melatonin Protects Oocytes and Granulosa Cells from Reactive Oxygen Species during the Ovulatory Process

    OpenAIRE

    田村, 博史; Hiroshi, TAMURA; 山口大学大学院医学系研究科産科婦人科学; Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine

    2009-01-01

    Reactive oxygen species (ROS) are produced within the follicle especially during the ovulatory process. ROS play a physiological role in the process of ovulation, e.g. follicle rapture. However, excessive amount of ROS causes oxidative stress and damages oocytes and luteinized granulosa cells. On the other hand, antioxidant defense systems including superoxide dismutase (SOD) or glutathione (GSH) are present in follicles. The balance between ROS and antioxidants within the follicle seems to b...

  9. Global Inhibition of Reactive Oxygen Species (ROS) Inhibits Paclitaxel-Induced Painful Peripheral Neuropathy

    OpenAIRE

    Fidanboylu, Mehmet; Griffiths, Lisa A.; Flatters, Sarah J. L.

    2011-01-01

    Paclitaxel (Taxol (R)) is a widely used chemotherapeutic agent that has a major dose limiting side-effect of painful peripheral neuropathy. Currently there is no effective therapy for the prevention or treatment of chemotherapy-induced painful peripheral neuropathies. Evidence for mitochondrial dysfunction during paclitaxel-induced pain was previously indicated with the presence of swollen and vacuolated neuronal mitochondria. As mitochondria are a major source of reactive oxygen species (ROS...

  10. The scavenging effects of tea polyphenol and quercetin on active oxygen species

    International Nuclear Information System (INIS)

    Fang Ruoying; Cheng Jiwu; Hu Tianxi; Tu Tiechen; Dong Jirong; Wang Wenfeng; Lin Nianyun

    1993-01-01

    The abilities of scavenging active oxygen species, O 2 free radical and OH., by tea polyphenols and quercetin have been studied by chemiluminescence, ESR and pulse radiolysis. Tea polyphenols and quercetin are all phenolic antioxidants. The synergetic studies show that both tea polyphenols and quercetin are strong free radical scavengers. Tea polyphenols are better than quercetin. the results from CL studies are in good accord with those from ESR and PR studies

  11. Respiratory adaptations to oxygen lack in three species of Glossiphoniidae (Hirudinea) in Lake Esrom, Denmark

    DEFF Research Database (Denmark)

    Pohle, B. D.; Hamburger, K.

    2005-01-01

    The weight-specific respiration rate (µl O2 mg-1 AFDW h-1) of three species of leech from Lake Esrom, Denmark, Glossiphonia concolor, G. complanata and Helobdella stagnalis was measured in a closed stirred chamber with a micro electrode. At declining oxygen concentration (mg O2 l-1) all three spe...... at 10 and 20 °C, respectively. The results were discussed in relation to habitat and spatial distribution of the three species in the lake....

  12. Impact of hypothalamic reactive oxygen species in the control of energy metabolism and food intake

    Directory of Open Access Journals (Sweden)

    Anne eDrougard

    2015-02-01

    Full Text Available Hypothalamus is a key area involved in the control of metabolism and food intake via the integrations of numerous signals (hormones, neurotransmitters, metabolites from various origins. These factors modify hypothalamic neurons activity and generate adequate molecular and behavioral responses to control energy balance. In this complex integrative system, a new concept has been developed in recent years, that includes reactive oxygen species (ROS as a critical player in energy balance. ROS are known to act in many signaling pathways in different peripheral organs, but also in hypothalamus where they regulate food intake and metabolism by acting on different types of neurons, including proopiomelanocortin (POMC and agouti-related protein (AgRP/neuropeptide Y (NPY neurons. Hypothalamic ROS release is under the influence of different factors such as pancreatic and gut hormones, adipokines (leptin, apelin,..., neurotransmitters and nutrients (glucose, lipids,.... The sources of ROS production are multiple including NADPH oxidase, but also the mitochondria which is considered as the main ROS producer in the brain. ROS are considered as signaling molecules, but conversely impairment of this neuronal signaling ROS pathway contributes to alterations of autonomic nervous system and neuroendocrine function, leading to metabolic diseases such as obesity and type 2 diabetes.In this review we focus our attention on factors that are able to modulate hypothalamic ROS release in order to control food intake and energy metabolism, and whose deregulations could participate to the development of pathological conditions. This novel insight reveals an original mechanism in the hypothalamus that controls energy balance and identify hypothalamic ROS signaling as a potential therapeutic strategy to treat metabolic disorders.

  13. Integration of intracellular telomerase monitoring by electrochemiluminescence technology and targeted cancer therapy by reactive oxygen species.

    Science.gov (United States)

    Zhang, Huairong; Li, Binxiao; Sun, Zhaomei; Zhou, Hong; Zhang, Shusheng

    2017-12-01

    Cancer therapies based on reactive oxygen species (ROS) have emerged as promising clinical treatments. Electrochemiluminescence (ECL) technology has also attracted considerable attention in the field of clinical diagnosis. However, studies about the integration of ECL diagnosis and ROS cancer therapy are very rare. Here we introduce a novel strategy that employs ECL technology and ROS to fill the above vacancy. Briefly, an ITO electrode was electrodeposited with polyluminol-Pt NPs composite films and modified with aptamer DNA to capture HL-60 cancer cells with high specificity. After that, mesoporous silica nanoparticles (MSNs) filled with phorbol 12-myristate 13-acetate (PMA) were closed by the telomerase primer DNA (T-primer DNA) and aptamer. After aptamer on MSN@PMA recognized and combined with the HL-60 cancer cells with high specificity, T-primer DNA on MSN@PMA could be moved away from the MSN@PMA surface after extension by telomerase in the HL-60 cancer cells and PMA was released to induce the production of ROS by the HL-60 cancer cells. After that, the polyluminol-Pt NPs composite films could react with hydrogen peroxide (a major ROS) and generate an ECL signal. Thus the intracellular telomerase activity of the HL-60 cancer cells could be detected in situ . Besides, ROS could induce apoptosis in the HL-60 cancer cells with high efficacy by causing oxidative damage to the lipids, protein, and DNA. Above all, the designed platform could not only detect intracellular telomerase activity instead of that of extracted telomerase, but could also kill targeted tumors by ECL technology and ROS.

  14. Convergent Evolution of Pathogen Effectors toward Reactive Oxygen Species Signaling Networks in Plants.

    Science.gov (United States)

    Jwa, Nam-Soo; Hwang, Byung Kook

    2017-01-01

    Microbial pathogens have evolved protein effectors to promote virulence and cause disease in host plants. Pathogen effectors delivered into plant cells suppress plant immune responses and modulate host metabolism to support the infection processes of pathogens. Reactive oxygen species (ROS) act as cellular signaling molecules to trigger plant immune responses, such as pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity. In this review, we discuss recent insights into the molecular functions of pathogen effectors that target multiple steps in the ROS signaling pathway in plants. The perception of PAMPs by pattern recognition receptors leads to the rapid and strong production of ROS through activation of NADPH oxidase Respiratory Burst Oxidase Homologs (RBOHs) as well as peroxidases. Specific pathogen effectors directly or indirectly interact with plant nucleotide-binding leucine-rich repeat receptors to induce ROS production and the hypersensitive response in plant cells. By contrast, virulent pathogens possess effectors capable of suppressing plant ROS bursts in different ways during infection. PAMP-triggered ROS bursts are suppressed by pathogen effectors that target mitogen-activated protein kinase cascades. Moreover, pathogen effectors target vesicle trafficking or metabolic priming, leading to the suppression of ROS production. Secreted pathogen effectors block the metabolic coenzyme NADP-malic enzyme, inhibiting the transfer of electrons to the NADPH oxidases (RBOHs) responsible for ROS generation. Collectively, pathogen effectors may have evolved to converge on a common host protein network to suppress the common plant immune system, including the ROS burst and cell death response in plants.

  15. Convergent Evolution of Pathogen Effectors toward Reactive Oxygen Species Signaling Networks in Plants

    Directory of Open Access Journals (Sweden)

    Nam-Soo Jwa

    2017-09-01

    Full Text Available Microbial pathogens have evolved protein effectors to promote virulence and cause disease in host plants. Pathogen effectors delivered into plant cells suppress plant immune responses and modulate host metabolism to support the infection processes of pathogens. Reactive oxygen species (ROS act as cellular signaling molecules to trigger plant immune responses, such as pathogen-associated molecular pattern (PAMP-triggered immunity (PTI and effector-triggered immunity. In this review, we discuss recent insights into the molecular functions of pathogen effectors that target multiple steps in the ROS signaling pathway in plants. The perception of PAMPs by pattern recognition receptors leads to the rapid and strong production of ROS through activation of NADPH oxidase Respiratory Burst Oxidase Homologs (RBOHs as well as peroxidases. Specific pathogen effectors directly or indirectly interact with plant nucleotide-binding leucine-rich repeat receptors to induce ROS production and the hypersensitive response in plant cells. By contrast, virulent pathogens possess effectors capable of suppressing plant ROS bursts in different ways during infection. PAMP-triggered ROS bursts are suppressed by pathogen effectors that target mitogen-activated protein kinase cascades. Moreover, pathogen effectors target vesicle trafficking or metabolic priming, leading to the suppression of ROS production. Secreted pathogen effectors block the metabolic coenzyme NADP-malic enzyme, inhibiting the transfer of electrons to the NADPH oxidases (RBOHs responsible for ROS generation. Collectively, pathogen effectors may have evolved to converge on a common host protein network to suppress the common plant immune system, including the ROS burst and cell death response in plants.

  16. Impact of hypothalamic reactive oxygen species in the regulation of energy metabolism and food intake.

    Science.gov (United States)

    Drougard, Anne; Fournel, Audren; Valet, Philippe; Knauf, Claude

    2015-01-01

    Hypothalamus is a key area involved in the control of metabolism and food intake via the integrations of numerous signals (hormones, neurotransmitters, metabolites) from various origins. These factors modify hypothalamic neurons activity and generate adequate molecular and behavioral responses to control energy balance. In this complex integrative system, a new concept has been developed in recent years, that includes reactive oxygen species (ROS) as a critical player in energy balance. ROS are known to act in many signaling pathways in different peripheral organs, but also in hypothalamus where they regulate food intake and metabolism by acting on different types of neurons, including proopiomelanocortin (POMC) and agouti-related protein (AgRP)/neuropeptide Y (NPY) neurons. Hypothalamic ROS release is under the influence of different factors such as pancreatic and gut hormones, adipokines (leptin, apelin,…), neurotransmitters and nutrients (glucose, lipids,…). The sources of ROS production are multiple including NADPH oxidase, but also the mitochondria which is considered as the main ROS producer in the brain. ROS are considered as signaling molecules, but conversely impairment of this neuronal signaling ROS pathway contributes to alterations of autonomic nervous system and neuroendocrine function, leading to metabolic diseases such as obesity and type 2 diabetes. In this review we focus our attention on factors that are able to modulate hypothalamic ROS release in order to control food intake and energy metabolism, and whose deregulations could participate to the development of pathological conditions. This novel insight reveals an original mechanism in the hypothalamus that controls energy balance and identify hypothalamic ROS signaling as a potential therapeutic strategy to treat metabolic disorders.

  17. Reactive oxygen species mediate TNFR1 increase after TRPV1 activation in mouse DRG neurons

    Directory of Open Access Journals (Sweden)

    Westlund Karin N

    2009-06-01

    Full Text Available Abstract Background Transient receptor potential vanilloid subtype 1 (TRPV1 is activated by low pH/protons and is well known to be involved in hyperalgesia during inflammation. Tumor necrosis factor α (TNF-α, a proinflammatory cytokine, is involved in nociceptive responses causing hyperalgesia through TNF receptor type 1 (TNFR1 activation. Reactive oxygen species (ROS production is also prominently increased in inflamed tissue. The present study investigated TNFR1 receptors in primary cultured mouse dorsal root ganglion (DRG neurons after TRPV1 activation and the involvement of ROS. C57BL/6 mice, both TRPV1 knockout and wild type, were used for immunofluorescent and live cell imaging. The L4 and L5 DRGs were dissected bilaterally and cultured overnight. TRPV1 was stimulated with capsaicin or its potent analog, resiniferatoxin. ROS production was measured with live cell imaging and TNFR1 was detected with immunofluorescence in DRG primary cultures. The TRPV1 knockout mice, TRPV1 antagonist, capsazepine, and ROS scavenger, N-tert-Butyl-α-phenylnitrone (PBN, were employed to explore the functional relationship among TRPV1, ROS and TNFR1 in these studies. Results The results demonstrate that TRPV1 activation increases TNFR1 receptors and ROS generation in primary cultures of mouse DRG neurons. Activated increases in TNFR1 receptors and ROS production are absent in TRPV1 deficient mice. The PBN blocks increases in TNFR1 and ROS production induced by capsaicin/resiniferatoxin. Conclusion TRPV1 activation increases TNFR1 in cultured mouse DRG neurons through a ROS signaling pathway, a novel sensitization mechanism in DRG neurons.

  18. Longevity of animals under reactive oxygen species stress and disease susceptibility due to global warming

    Science.gov (United States)

    Paital, Biswaranjan; Panda, Sumana Kumari; Hati, Akshaya Kumar; Mohanty, Bobllina; Mohapatra, Manoj Kumar; Kanungo, Shyama; Chainy, Gagan Bihari Nityananda

    2016-01-01

    The world is projected to experience an approximate doubling of atmospheric CO2 concentration in the next decades. Rise in atmospheric CO2 level as one of the most important reasons is expected to contribute to raise the mean global temperature 1.4 °C-5.8 °C by that time. A survey from 128 countries speculates that global warming is primarily due to increase in atmospheric CO2 level that is produced mainly by anthropogenic activities. Exposure of animals to high environmental temperatures is mostly accompanied by unwanted acceleration of certain biochemical pathways in their cells. One of such examples is augmentation in generation of reactive oxygen species (ROS) and subsequent increase in oxidation of lipids, proteins and nucleic acids by ROS. Increase in oxidation of biomolecules leads to a state called as oxidative stress (OS). Finally, the increase in OS condition induces abnormality in physiology of animals under elevated temperature. Exposure of animals to rise in habitat temperature is found to boost the metabolism of animals and a very strong and positive correlation exists between metabolism and levels of ROS and OS. Continuous induction of OS is negatively correlated with survivability and longevity and positively correlated with ageing in animals. Thus, it can be predicted that continuous exposure of animals to acute or gradual rise in habitat temperature due to global warming may induce OS, reduced survivability and longevity in animals in general and poikilotherms in particular. A positive correlation between metabolism and temperature in general and altered O2 consumption at elevated temperature in particular could also increase the risk of experiencing OS in homeotherms. Effects of global warming on longevity of animals through increased risk of protein misfolding and disease susceptibility due to OS as the cause or effects or both also cannot be ignored. Therefore, understanding the physiological impacts of global warming in relation to

  19. Longevity of animals under reactive oxygen species stress and disease susceptibility due to global warming.

    Science.gov (United States)

    Paital, Biswaranjan; Panda, Sumana Kumari; Hati, Akshaya Kumar; Mohanty, Bobllina; Mohapatra, Manoj Kumar; Kanungo, Shyama; Chainy, Gagan Bihari Nityananda

    2016-02-26

    The world is projected to experience an approximate doubling of atmospheric CO2 concentration in the next decades. Rise in atmospheric CO2 level as one of the most important reasons is expected to contribute to raise the mean global temperature 1.4 °C-5.8 °C by that time. A survey from 128 countries speculates that global warming is primarily due to increase in atmospheric CO2 level that is produced mainly by anthropogenic activities. Exposure of animals to high environmental temperatures is mostly accompanied by unwanted acceleration of certain biochemical pathways in their cells. One of such examples is augmentation in generation of reactive oxygen species (ROS) and subsequent increase in oxidation of lipids, proteins and nucleic acids by ROS. Increase in oxidation of biomolecules leads to a state called as oxidative stress (OS). Finally, the increase in OS condition induces abnormality in physiology of animals under elevated temperature. Exposure of animals to rise in habitat temperature is found to boost the metabolism of animals and a very strong and positive correlation exists between metabolism and levels of ROS and OS. Continuous induction of OS is negatively correlated with survivability and longevity and positively correlated with ageing in animals. Thus, it can be predicted that continuous exposure of animals to acute or gradual rise in habitat temperature due to global warming may induce OS, reduced survivability and longevity in animals in general and poikilotherms in particular. A positive correlation between metabolism and temperature in general and altered O2 consumption at elevated temperature in particular could also increase the risk of experiencing OS in homeotherms. Effects of global warming on longevity of animals through increased risk of protein misfolding and disease susceptibility due to OS as the cause or effects or both also cannot be ignored. Therefore, understanding the physiological impacts of global warming in relation to

  20. Fanconi anemia links reactive oxygen species to insulin resistance and obesity.

    Science.gov (United States)

    Li, Jie; Sipple, Jared; Maynard, Suzette; Mehta, Parinda A; Rose, Susan R; Davies, Stella M; Pang, Qishen

    2012-10-15

    Insulin resistance is a hallmark of obesity and type 2 diabetes. Reactive oxygen species (ROS) have been proposed to play a causal role in insulin resistance. However, evidence linking ROS to insulin resistance in disease settings has been scant. Since both oxidative stress and diabetes have been observed in patients with the Fanconi anemia (FA), we sought to investigate the link between ROS and insulin resistance in this unique disease model. Mice deficient for the Fanconi anemia complementation group A (Fanca) or Fanconi anemia complementation group C (Fancc) gene seem to be diabetes-prone, as manifested by significant hyperglycemia and hyperinsulinemia, and rapid weight gain when fed with a high-fat diet. These phenotypic features of insulin resistance are characterized by two critical events in insulin signaling: a reduction in tyrosine phosphorylation of the insulin receptor (IR) and an increase in inhibitory serine phosphorylation of the IR substrate-1 in the liver, muscle, and fat tissues from the insulin-challenged FA mice. High levels of ROS, spontaneously accumulated or generated by tumor necrosis factor alpha in these insulin-sensitive tissues of FA mice, were shown to underlie the FA insulin resistance. Treatment of FA mice with the natural anti-oxidant Quercetin restores IR signaling and ameliorates the diabetes- and obesity-prone phenotypes. Finally, pairwise screen identifies protein-tyrosine phosphatase (PTP)-α and stress kinase double-stranded RNA-dependent protein kinase (PKR) that mediate the ROS effect on FA insulin resistance. These findings establish a pathogenic and mechanistic link between ROS and insulin resistance in a unique human disease setting. ROS accumulation contributes to the insulin resistance in FA deficiency by targeting both PTP-α and PKR.

  1. AMPK signaling in skeletal muscle during exercise: Role of reactive oxygen and nitrogen species.

    Science.gov (United States)

    Morales-Alamo, David; Calbet, Jose A L

    2016-09-01

    Reactive oxygen and nitrogen species (RONS) are generated during exercise depending on intensity, duration and training status. A greater amount of RONS is released during repeated high-intensity sprint exercise and when the exercise is performed in hypoxia. By activating adenosine monophosphate-activated kinase (AMPK), RONS play a critical role in the regulation of muscle metabolism but also in the adaptive responses to exercise training. RONS may activate AMPK by direct an indirect mechanisms. Directly, RONS may activate or deactivate AMPK by modifying RONS-sensitive residues of the AMPK-α subunit. Indirectly, RONS may activate AMPK by reducing mitochondrial ATP synthesis, leading to an increased AMP:ATP ratio and subsequent Thr(172)-AMPK phosphorylation by the two main AMPK kinases: LKB1 and CaMKKβ. In presence of RONS the rate of Thr(172)-AMPK dephosphorylation is reduced. RONS may activate LKB1 through Sestrin2 and SIRT1 (NAD(+)/NADH.H(+)-dependent deacetylase). RONS may also activate CaMKKβ by direct modification of RONS sensitive motifs and, indirectly, by activating the ryanodine receptor (Ryr) to release Ca(2+). Both too high (hypoxia) and too low (ingestion of antioxidants) RONS levels may lead to Ser(485)-AMPKα1/Ser(491)-AMPKα2 phosphorylation causing inhibition of Thr(172)-AMPKα phosphorylation. Exercise training increases muscle antioxidant capacity. When the same high-intensity training is applied to arm and leg muscles, arm muscles show signs of increased oxidative stress and reduced mitochondrial biogenesis, which may be explained by differences in RONS-sensing mechanisms and basal antioxidant capacities between arm and leg muscles. Efficient adaptation to exercise training requires optimal exposure to pulses of RONS. Inappropriate training stimulus may lead to excessive RONS formation, oxidative inactivation of AMPK and reduced adaptation or even maladaptation. Theoretically, exercise programs should be designed taking into account the

  2. [Effects of allelochemical dibutyl phthalate on Gymnodinium breve reactive oxygen species].

    Science.gov (United States)

    Bie, Cong-Cong; Li, Feng-Min; Li, Yuan-Yuan; Wang, Zhen-Yu

    2012-02-01

    The purpose of this study was to investigate the mechanism of inhibitory action of dibutyl phthalate (DBP) on red tide algae Gymnodinium breve. Reactive oxygen species (ROS) level, contents of *OH and H2O2, and O2*(-) production rate were investigated, and also for the effects of electron transfer inhibitors on the ROS induction of DBP. The results showed that DBP triggered the synthesis of reactive oxygen species ROS, and with the increase of concentration of DBP, *OH and H2O2 contents in cells accumulated, as for the 3 mg x L(-1) DBP treated algae cultures, OH showed a peak of 33 U x mL(-1) at 48 h, which was about 2. 4 times higher than that in the controlled, and H2O2 contents was about 250 nmol x (10(7) cells)(-1) at 72 h, which was about 5 times higher and also was the highest during the whole culture. Rotenone (an inhibitor of complex I in the mitochondria electron transport chain) decreased the DBP induced ROS production, and dicumarol (an inhibitor of the redox enzyme system in the plasma membrane) stimulated the DBP induced ROS production. Taken all together, the results demonstrated DBP induced over production of reactive oxygen species in G. breve, which is the main inhibitory mechanism, and mitochondria and plasma membrane seem to be the main target site of DBP. These conclusions were of scientific meaning on uncovering the inhibitory mechanism of allelochemical on algae.

  3. Neuroprotection of taurine against reactive oxygen species is associated with inhibiting NADPH oxidases.

    Science.gov (United States)

    Han, Zhou; Gao, Li-Yan; Lin, Yu-Hui; Chang, Lei; Wu, Hai-Yin; Luo, Chun-Xia; Zhu, Dong-Ya

    2016-04-15

    It is well established that taurine shows potent protection against glutamate-induced injury to neurons in stroke. The neuroprotection may result from multiple mechanisms. Increasing evidences suggest that NADPH oxidases (Nox), the primary source of superoxide induced by N-methyl-d-aspartate (NMDA) receptor activation, are involved in the process of oxidative stress. We found that 100μM NMDA induced oxidative stress by increasing the reactive oxygen species level, which contributed to the cell death, in vitro. Neuron cultures pretreated with 25mM taurine showed lower percentage of death cells and declined reactive oxygen species level. Moreover, taurine attenuated Nox2/Nox4 protein expression and enzyme activity and declined intracellular calcium intensity during NMDA-induced neuron injury. Additionally, taurine also showed neuroprotection against H2O2-induced injury, accompanying with Nox inhibition. So, we suppose that protection of taurine against reactive oxygen species during NMDA-induced neuron injury is associated with Nox inhibition, probably in a calcium-dependent manner. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Nitric Oxide is Required for Homeostasis of Oxygen and Reactive Oxygen Species in Barley Roots under Aerobic Conditions

    DEFF Research Database (Denmark)

    Gupta, Kapuganti J; Hebelstrup, Kim; Kruger, Nicholas J

    2014-01-01

    Oxygen, the terminal electron acceptor for mitochondrial electron transport, is vital for plants because of its role in the production of ATP by oxidative phosphorylation. While photosynthetic oxygen production contributes to the oxygen supply in leaves, reducing the risk of oxygen limitation of ...... electron transport chain (Gupta et al., 2011). Thus, NO could influence oxygen consumption under normal aerobic conditions in roots, and it is this specific function that is assessed here.......Oxygen, the terminal electron acceptor for mitochondrial electron transport, is vital for plants because of its role in the production of ATP by oxidative phosphorylation. While photosynthetic oxygen production contributes to the oxygen supply in leaves, reducing the risk of oxygen limitation...

  5. Development of ITM oxygen technology for integration in IGCC and other advanced power generation

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Phillip A. [Air Products And Chemicals, Inc., Allentown, PA (United States)

    2015-03-31

    Ion Transport Membrane (ITM) technology is based on the oxygen-ion-conducting properties of certain mixed-metal oxide ceramic materials that can separate oxygen from an oxygen-containing gas, such as air, under a suitable driving force. The “ITM Oxygen” air separation system that results from the use of such ceramic membranes produces a hot, pure oxygen stream and a hot, pressurized, oxygen-depleted stream from which significant amounts of energy can be extracted. Accordingly, the technology integrates well with other high-temperature processes, including power generation. Air Products and Chemicals, Inc., the Recipient, in conjunction with a dozen subcontractors, developed ITM Oxygen technology under this five-phase Cooperative Agreement from the laboratory bench scale to implementation in a pilot plant capable of producing power and 100 tons per day (TPD) of purified oxygen. A commercial-scale membrane module manufacturing facility (the “CerFab”), sized to support a conceptual 2000 TPD ITM Oxygen Development Facility (ODF), was also established and operated under this Agreement. In the course of this work, the team developed prototype ceramic production processes and a robust planar ceramic membrane architecture based on a novel ceramic compound capable of high oxygen fluxes. The concept and feasibility of the technology was thoroughly established through laboratory pilot-scale operations testing commercial-scale membrane modules run under industrial operating conditions with compelling lifetime and reliability performance that supported further scale-up. Auxiliary systems, including contaminant mitigation, process controls, heat exchange, turbo-machinery, combustion, and membrane pressure vessels were extensively investigated and developed. The Recipient and subcontractors developed efficient process cycles that co-produce oxygen and power based on compact, low-cost ITMs. Process economics assessments show significant benefits relative to state

  6. Reactive species in non-equilibrium atmospheric-pressure plasmas: Generation, transport, and biological effects

    Energy Technology Data Exchange (ETDEWEB)

    Lu, X., E-mail: luxinpei@hotmail.com [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240 (China); Naidis, G.V. [Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow 125412 (Russian Federation); Laroussi, M. [Plasma Engineering & Medicine Institute, Old Dominion University, Norfolk, VA 23529 (United States); Reuter, S. [Leibniz Institute for Plasma Science and Technology, Felix-Hausdorff-Strasse 2, 17489 Greifswald (Germany); Graves, D.B. [Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720 (United States); Ostrikov, K. [Institute for Future Environments, Queensland University of Technology, Brisbane, QLD 4000 (Australia); School of Physics, Chemistry, and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD 4000 (Australia); Commonwealth Scientific and Industrial Research Organization, P.O.Box 218, Lindfield, NSW 2070 (Australia); School of Physics, The University of Sydney, Sydney, NSW 2006 (Australia)

    2016-05-04

    Non-equilibrium atmospheric-pressure plasmas have recently become a topical area of research owing to their diverse applications in health care and medicine, environmental remediation and pollution control, materials processing, electrochemistry, nanotechnology and other fields. This review focuses on the reactive electrons and ionic, atomic, molecular, and radical species that are produced in these plasmas and then transported from the point of generation to the point of interaction with the material, medium, living cells or tissues being processed. The most important mechanisms of generation and transport of the key species in the plasmas of atmospheric-pressure plasma jets and other non-equilibrium atmospheric-pressure plasmas are introduced and examined from the viewpoint of their applications in plasma hygiene and medicine and other relevant fields. Sophisticated high-precision, time-resolved plasma diagnostics approaches and techniques are presented and their applications to monitor the reactive species and plasma dynamics in the plasma jets and other discharges, both in the gas phase and during the plasma interaction with liquid media, are critically reviewed. The large amount of experimental data is supported by the theoretical models of reactive species generation and transport in the plasmas, surrounding gaseous environments, and plasma interaction with liquid media. These models are presented and their limitations are discussed. Special attention is paid to biological effects of the plasma-generated reactive oxygen and nitrogen (and some other) species in basic biological processes such as cell metabolism, proliferation, survival, etc. as well as plasma applications in bacterial inactivation, wound healing, cancer treatment and some others. Challenges and opportunities for theoretical and experimental research are discussed and the authors’ vision for the emerging convergence trends across several disciplines and application domains is presented to

  7. Establishment and intra-/inter-laboratory validation of a standard protocol of reactive oxygen species assay for chemical photosafety evaluation.

    Science.gov (United States)

    Onoue, Satomi; Hosoi, Kazuhiro; Wakuri, Shinobu; Iwase, Yumiko; Yamamoto, Toshinobu; Matsuoka, Naoko; Nakamura, Kazuichi; Toda, Tsuguto; Takagi, Hironori; Osaki, Naoto; Matsumoto, Yasuhiro; Kawakami, Satoru; Seto, Yoshiki; Kato, Masashi; Yamada, Shizuo; Ohno, Yasuo; Kojima, Hajime

    2013-11-01

    A reactive oxygen species (ROS) assay was previously developed for photosafety evaluation of pharmaceuticals, and the present multi-center study aimed to establish and validate a standard protocol for ROS assay. In three participating laboratories, two standards and 42 coded chemicals, including 23 phototoxins and 19 nonphototoxic drugs/chemicals, were assessed by the ROS assay according to the standardized protocol. Most phototoxins tended to generate singlet oxygen and/or superoxide under UV-vis exposure, but nonphototoxic chemicals were less photoreactive. In the ROS assay on quinine (200 µm), a typical phototoxic drug, the intra- and inter-day precisions (coefficient of variation; CV) were found to be 1.5-7.4% and 1.7-9.3%, respectively. The inter-laboratory CV for quinine averaged 15.4% for singlet oxygen and 17.0% for superoxide. The ROS assay on 42 coded chemicals (200 µm) provided no false negative predictions upon previously defined criteria as compared with the in vitro/in vivo phototoxicity, although several false positives appeared. Outcomes from the validation study were indicative of satisfactory transferability, intra- and inter-laboratory variability, and predictive capacity of the ROS assay. Copyright © 2012 John Wiley & Sons, Ltd.

  8. Singlet oxygen generator for a solar powered chemically pumped iodine laser

    Science.gov (United States)

    Busch, G. E.

    1984-01-01

    The potential of solid phase endoperoxides as a means to produce single-delta oxygen in the gas phase in concentrations useful to chemical oxygen-iodine lasers was investigated. The 1,4 - endoperoxide of ethyl 3- (4-methyl - 1-naphthyl) propanoate was deposited over an indium-oxide layer on a glass plate. Single-delta oxygen was released from the endoperoxide upon heating the organic film by means of an electrical discharge through the conductive indium oxide coating. The evolution of singlet-delta oxygen was determined by measuring the dimol emission signal at 634 nm. Comparison of the measured signal with an analytic model leads to two main conclusions: virtually all the oxygen being evolved is in the singlet-delta state and in the gas phase, and there is no significant quenching other than energy pooling on the time scale of the experiment (approximately 10 msec). The use of solid phase endoperoxide as a singlet-delta oxygen generator for an oxygen-iodine laser appears promising.

  9. Chemical luminescence measurement of singlet oxygen generated by photodynamic therapy in solutions in real time

    Science.gov (United States)

    Luo, Shiming; Xing, Da; Zhou, Jing; Qin, Yanfang; Chen, Qun

    2005-04-01

    Photodynamic therapy (PDT) is a cancer therapy that utilizes optical energy to activate a photosensitizer drug in a target tissue. Reactive oxygen species (ROS), such as 1O2 and superoxide, are believed to be the major cytotoxic agents involved in PDT. Although current PDT dosimetry mostly involves measurements of light and photosensitizer doses delivered to a patient, the quantification of ROS production during a treatment would be the ultimate dosimetry of PDT. Technically, it is very difficult and expensive to directly measure the fluorescence from 1O2, due to its extreme short lifetime and weak signal strength. In this paper, Photofrin(R) and 635nm laser were used to generate 1O2 and superoxide in a PDT in solution. Compound 3,7- dihydro-6-{4-[2-(N"-(5-fluoresceinyl) thioureido) ethoxy] phenyl}-2- methylimidazo{1,2-a} pyrazin-3-one sodium salt,an Cyp- ridina luciferin analog commonly referred as FCLA, was used as a chemical reporter of ROS. The 532nm chemiluminescence (CL) from the reaction of the FCLA and ROS was detected with a photon multiplier tube (PMT) system operating at single photon counting mode. With the setup, we have made detections of ROS generated by PDT in real time. By varying the amount of conventional PDT dosage (photosensitizer concentration, light irradiation fluence and its delivery rate) and the amount of FCLA, the intensity of CL and its consumption rate were investigated. The results show that the intensity and temporal profile of CL are highly related to the PDT treatment parameters. This suggests that FCLA CL may provide a highly potential alternative for ROS detection during PDT.

  10. The characterisation of vapour-phase alkali metal-tellurium-oxygen species

    International Nuclear Information System (INIS)

    Gomme, R.A.; Ogden, J.S.; Bowsher, B.R.

    1986-10-01

    Detailed assessments of hypothetical severe accidents in light water reactors require the identification of the chemical forms of the radionuclides in order to determine their transport characteristics. Caesium and tellurium are important volatile fission products in accident scenarios. This report describes detailed studies to characterise the chemical species that vaporise from heated mixtures of various alkali metal-tellurium-oxygen systems. The molecular species were characterised by a combination of quadrupole mass spectrometry and matrix isolation-infrared spectroscopy undertaken in conjunction with experiments involving oxygen-18 substitution. The resulting spectra were interpreted in terms of a vapour-phase molecule with the stoichiometry M 2 TeO 3 (M = K,Rb,Cs) for M/Te molecular ratios of ∼ 2, and polymeric species for ratios < 2. This work has demonstrated the stability of caesium tellurite. The formation of this relatively low-volatility, water-soluble species could significantly modify the transport and release of caesium and tellurium. The data presented in this report should allow more comprehensive thermodynamic calculations to be undertaken that assist in the quantification of fission product behaviour during severe reactor accidents. (author)

  11. Adrenaline and reactive oxygen species elicit proteome and energetic metabolism modifications in freshly isolated rat cardiomyocytes

    International Nuclear Information System (INIS)

    Costa, Vera Marisa; Silva, Renata; Tavares, Ludgero Canario; Vitorino, Rui; Amado, Francisco; Carvalho, Felix; Bastos, Maria de Lourdes; Carvalho, Marcia; Carvalho, Rui Albuquerque; Remiao, Fernando

    2009-01-01

    The sustained elevation of plasma and interstitial catecholamine levels, namely adrenaline (ADR), and the generation of reactive oxygen species (ROS) are well recognized hallmarks of several cardiopathologic conditions, like cardiac ischemia/reperfusion (I/R) and heart failure (HF). The present work aimed to investigate the proteomics and energetic metabolism of cardiomyocytes incubated with ADR and/or ROS. To mimic pathologic conditions, freshly isolated calcium-tolerant cardiomyocytes from adult rat were incubated with ADR alone or in the presence of a system capable of generating ROS [(xanthine with xanthine oxidase) (XXO)]. Two-dimensional electrophoresis with matrix-assisted laser desorption/ionization and time-of-flight mass spectrometer analysis were used to define protein spot alterations in the cardiomyocytes incubated with ADR and/or ROS. Moreover, the energetic metabolism and the activity of mitochondrial complexes were evaluated by nuclear magnetic resonance and spectrophotometric determinations, respectively. The protein extract was mainly constituted by cardiac mitochondrial proteins and the alterations found were included in five functional classes: (i) structural proteins, notably myosin light chain-2; (ii) redox regulation proteins, in particular superoxide dismutase (SOD); (iii) energetic metabolism proteins, encompassing ATP synthase alpha chain and dihydrolipoyllysine-residue acetyltransferase component of pyruvate dehydrogenase complex; (iv) stress response proteins, like the heat shock proteins; and (v) regulatory proteins, like cytochrome c and voltage-dependent anion channel 1. The XXO system elicited alterations in cardiac contractile proteins, as they showed high levels of cleavage, and also altered energetic metabolism, through increased lactate and alanine levels. The cardiomyocytes incubation with ADR resulted in an accentuated increase in mitochondrial complexes activity and the decrease in alanine/lactate ratio, thus reflecting a high

  12. Singlet oxygen treatment of tumor cells triggers extracellular singlet oxygen generation, catalase inactivation and reactivation of intercellular apoptosis-inducing signaling☆

    Science.gov (United States)

    Riethmüller, Michaela; Burger, Nils; Bauer, Georg

    2015-01-01

    Intracellular singlet oxygen generation in photofrin-loaded cells caused cell death without discrimination between nonmalignant and malignant cells. In contrast, extracellular singlet oxygen generation caused apoptosis induction selectively in tumor cells through singlet oxygen-mediated inactivation of tumor cell protective catalase and subsequent reactivation of intercellular ROS-mediated apoptosis signaling through the HOCl and the NO/peroxynitrite signaling pathway. Singlet oxygen generation by extracellular photofrin alone was, however, not sufficient for optimal direct inactivation of catalase, but needed to trigger the generation of cell-derived extracellular singlet oxygen through the interaction between H2O2 and peroxynitrite. Thereby, formation of peroxynitrous acid, generation of hydroxyl radicals and formation of perhydroxyl radicals (HO2.) through hydroxyl radical/H2O2 interaction seemed to be required as intermediate steps. This amplificatory mechanism led to the formation of singlet oxygen at a sufficiently high concentration for optimal inactivation of membrane-associated catalase. At low initial concentrations of singlet oxygen, an additional amplification step needed to be activated. It depended on singlet oxygen-dependent activation of the FAS receptor and caspase-8, followed by caspase-8-mediated enhancement of NOX activity. The biochemical mechanisms described here might be considered as promising principle for the development of novel approaches in tumor therapy that specifically direct membrane-associated catalase of tumor cells and thus utilize tumor cell-specific apoptosis-inducing ROS signaling. PMID:26225731

  13. Singlet oxygen treatment of tumor cells triggers extracellular singlet oxygen generation, catalase inactivation and reactivation of intercellular apoptosis-inducing signaling.

    Science.gov (United States)

    Riethmüller, Michaela; Burger, Nils; Bauer, Georg

    2015-12-01

    Intracellular singlet oxygen generation in photofrin-loaded cells caused cell death without discrimination between nonmalignant and malignant cells. In contrast, extracellular singlet oxygen generation caused apoptosis induction selectively in tumor cells through singlet oxygen-mediated inactivation of tumor cell protective catalase and subsequent reactivation of intercellular ROS-mediated apoptosis signaling through the HOCl and the NO/peroxynitrite signaling pathway. Singlet oxygen generation by extracellular photofrin alone was, however, not sufficient for optimal direct inactivation of catalase, but needed to trigger the generation of cell-derived extracellular singlet oxygen through the interaction between H2O2 and peroxynitrite. Thereby, formation of peroxynitrous acid, generation of hydroxyl radicals and formation of perhydroxyl radicals (HO2(.)) through hydroxyl radical/H2O2 interaction seemed to be required as intermediate steps. This amplificatory mechanism led to the formation of singlet oxygen at a sufficiently high concentration for optimal inactivation of membrane-associated catalase. At low initial concentrations of singlet oxygen, an additional amplification step needed to be activated. It depended on singlet oxygen-dependent activation of the FAS receptor and caspase-8, followed by caspase-8-mediated enhancement of NOX activity. The biochemical mechanisms described here might be considered as promising principle for the development of novel approaches in tumor therapy that specifically direct membrane-associated catalase of tumor cells and thus utilize tumor cell-specific apoptosis-inducing ROS signaling. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  14. The role of reactive oxygen species in near-ultraviolet (320-400 nm) light inactivation of Escherichia coli

    International Nuclear Information System (INIS)

    Sammartano, L.J.

    1988-01-01

    The purpose of the present study was to further elucidate the mechanism of near-UV inactivation in Escherichia coli. Several genetic and biochemical techniques were employed to examine the role of oxygen reactive species in near-UV mediated damage to DNA and membrane components, and to identify endogenous photosensitizers. The results demonstrate that the near-UV inactivation process is initiated when the radiant energy is absorbed by components of the respiratory chain, including cytochromes. The absorption of energy causes the chromophore to be electronically excited into the triplet state which leads to subsequent generation of oxygen reactive species within the membrane. The first line of cellular defense against this oxidative stress is a complex network of antioxidants and scavengers, including catalase, superoxide dismutase and glutathione reductase. E. coli cells also have a second line of defense that incorporates repair systems. In this study evidence is provided for an excision repair pathway that is unique to near-UV mediated damage. Results suggest that a unique, but as yet unidentified, DNA lesion occurs in near-UV irradiated cells. Evidence is also presented that shows near-UV mediated damage also occurs in the membrane

  15. Reactive oxygen species modulator 1 (Romo1) as a novel diagnostic marker for lung cancer-related malignant effusion

    Science.gov (United States)

    Lee, Seung Hyeun; Park, Myung Jae; Choi, Sue In; Lee, Eun Joo; Lee, Sang Yeub; In, Kwang Ho

    2017-01-01

    Abstract Reactive oxygen species modulator 1 (Romo1) is a novel protein that plays an important role in intracellular reactive oxygen species generation. Recently, Romo1 has been suggested to have diagnostic and prognostic potential in lung cancer. However, there is no data on the diagnostic value of Romo1 level in malignant pleural effusion. We evaluated the clinical usefulness of Romo1 in pleural fluid for the diagnosis of malignant effusion in lung cancer patients. Pleural fluid Romo1 level was measured using enzyme-linked immunosorbent assay and compared between lung cancer-associated malignant effusion (n = 53; 29 adenocarcinomas and 24 squamous cell carcinomas) and benign pleural effusions (n = 91; 31 tuberculous pleurisy, 30 parapneumonic effusion, and 30 transudate). The discriminative power of Romo1 for lung cancer-associated malignant effusion was determined using receiver operating characteristic (ROC) curve analysis and compared with those of other tumor markers. Median Romo1 level in lung cancer-associated malignant effusion was 99.3 ng/mL, which was significantly higher than that in benign pleural effusions (P effusion from benign effusions was 67.0 ng/mL with a sensitivity of 73.8% and a specificity of 84.1%. The area under the curve was 0.837 (95% confidence interval [CI]: 0.750–0.886), which was significantly better than that of cytokeratin 19 fragments (P effusion. PMID:28121949

  16. Heavy-metal-induced reactive oxygen species: phytotoxicity and physicochemical changes in plants.

    Science.gov (United States)

    Shahid, Muhammad; Pourrut, Bertrand; Dumat, Camille; Nadeem, Muhammad; Aslam, Muhammad; Pinelli, Eric

    2014-01-01

    As a result of the industrial revolution, anthropogenic activities have enhanced there distribution of many toxic heavy metals from the earth's crust to different environmental compartments. Environmental pollution by toxic heavy metals is increasing worldwide, and poses a rising threat to both the environment and to human health.Plants are exposed to heavy metals from various sources: mining and refining of ores, fertilizer and pesticide applications, battery chemicals, disposal of solid wastes(including sewage sludge), irrigation with wastewater, vehicular exhaust emissions and adjacent industrial activity.Heavy metals induce various morphological, physiological, and biochemical dysfunctions in plants, either directly or indirectly, and cause various damaging effects. The most frequently documented and earliest consequence of heavy metal toxicity in plants cells is the overproduction of ROS. Unlike redox-active metals such as iron and copper, heavy metals (e.g, Pb, Cd, Ni, AI, Mn and Zn) cannot generate ROS directly by participating in biological redox reactions such as Haber Weiss/Fenton reactions. However, these metals induce ROS generation via different indirect mechanisms, such as stimulating the activity of NADPH oxidases, displacing essential cations from specific binding sites of enzymes and inhibiting enzymatic activities from their affinity for -SH groups on the enzyme.Under normal conditions, ROS play several essential roles in regulating the expression of different genes. Reactive oxygen species control numerous processes like the cell cycle, plant growth, abiotic stress responses, systemic signalling, programmed cell death, pathogen defence and development. Enhanced generation of these species from heavy metal toxicity deteriorates the intrinsic antioxidant defense system of cells, and causes oxidative stress. Cells with oxidative stress display various chemical,biological and physiological toxic symptoms as a result of the interaction between ROS and

  17. Hydrous Ferric Oxides in Sediment Catalyze Formation of Reactive Oxygen Species during Sulfide Oxidation

    Directory of Open Access Journals (Sweden)

    Sarah A. Murphy

    2016-11-01

    Full Text Available Abstract: This article describes the formation of reactive oxygen species as a result of the oxidation of dissolved sulfide by Fe(III-containing sediments suspended in oxygenated seawater over the pH range 7.00 and 8.25. Sediment samples were obtained from across the coastal littoral zone in South Carolina, US, at locations from the beach edge to the forested edge of a Spartina dominated estuarine salt marsh and suspended in aerated seawater. Reactive oxygen species (superoxide and hydrogen peroxide production was initiated in sediment suspensions by the addition of sodium bisulfide. The subsequent loss of HS-, formation of Fe(II (as indicated by Ferrozine, and superoxide and hydrogen peroxide were monitored over time. The concentration of superoxide rose from the baseline and then persisted at an apparent steady state concentration of approximately 500 nanomolar at pH 8.25 and 200 nanomolar at pH 7.00 respectively until >97% hydrogen sulfide was consumed. Measured superoxide was used to predict hydrogen peroxide yield based on superoxide dismutation. Dismutation alone quantitatively predicted hydrogen peroxide formation at pH 8.25 but over predicted hydrogen peroxide formation at pH 7 by a factor of approximately 102. Experiments conducted with episodic spikes of added hydrogen peroxide indicated rapid hydrogen peroxide consumption could account for its apparent low instantaneous yield, presumably the result of its reaction with Fe(II species, polysulfides or bisulfite. All sediment samples were characterized for total Fe, Cu, Mn, Ni, Co and hydrous ferric oxide by acid extraction followed by mass spectrometric or spectroscopic characterization. Sediments with the highest loadings of hydrous ferric oxide were the only sediments that produced significant dissolved Fe(II species or ROS as a result of sulfide exposure.

  18. Multiphase composition changes and reactive oxygen species formation during limonene oxidation in the new Cambridge Atmospheric Simulation Chamber (CASC)

    Science.gov (United States)

    Gallimore, Peter J.; Mahon, Brendan M.; Wragg, Francis P. H.; Fuller, Stephen J.; Giorio, Chiara; Kourtchev, Ivan; Kalberer, Markus

    2017-08-01

    The chemical composition of organic aerosols influences their impacts on human health and the climate system. Aerosol formation from gas-to-particle conversion and in-particle reaction was studied for the oxidation of limonene in a new facility, the Cambridge Atmospheric Simulation Chamber (CASC). Health-relevant oxidising organic species produced during secondary organic aerosol (SOA) formation were quantified in real time using an Online Particle-bound Reactive Oxygen Species Instrument (OPROSI). Two categories of reactive oxygen species (ROS) were identified based on time series analysis: a short-lived component produced during precursor ozonolysis with a lifetime of the order of minutes, and a stable component that was long-lived on the experiment timescale (˜ 4 h). Individual organic species were monitored continuously over this time using Extractive Electrospray Ionisation (EESI) Mass Spectrometry (MS) for the particle phase and Proton Transfer Reaction (PTR) MS for the gas phase. Many first-generation oxidation products are unsaturated, and we observed multiphase aging via further ozonolysis reactions. Volatile products such as C9H14O (limonaketone) and C10H16O2 (limonaldehyde) were observed in the gas phase early in the experiment, before reacting again with ozone. Loss of C10H16O4 (7-hydroxy limononic acid) from the particle phase was surprisingly slow. A combination of reduced C = C reactivity and viscous particle formation (relative to other SOA systems) may explain this, and both scenarios were tested in the Pretty Good Aerosol Model (PG-AM). A range of characterisation measurements were also carried out to benchmark the chamber against existing facilities. This work demonstrates the utility of CASC, particularly for understanding the reactivity and health-relevant properties of organic aerosols using novel, highly time-resolved techniques.

  19. Reactive oxygen species explicit dosimetry (ROSED) of a type 1 photosensitizer

    Science.gov (United States)

    Ong, Yi Hong; Kim, Michele M.; Huang, Zheng; Zhu, Timothy C.

    2018-02-01

    Type I photodynamic therapy (PDT) is based on the use of photochemical reactions mediated through an interaction between a tumor-selective photosensitizer, photoexcitation with a specific wavelength of light, and production of reactive oxygen species (ROS). The goal of this study is to develop a model to calculate reactive oxygen species concentration ([ROS]rx) after Tookad®-mediated vascular PDT. Mice with radiation-induced fibrosarcoma (RIF) tumors were treated with different light fluence and fluence rate conditions. Explicit measurements of photosensitizer drug concentration were made via diffuse reflective absorption spectrum using a contact probe before and after PDT. Blood flow and tissue oxygen concentration over time were measured during PDT as a mean to validate the photochemical parameters for the ROSED calculation. Cure index was computed from the rate of tumor regrowth after treatment and was compared against three calculated dose metrics: total light fluence, PDT dose, reacted [ROS]rx. The tumor growth study demonstrates that [ROS]rx serves as a better dosimetric quantity for predicting treatment outcome, as a clinically relevant tumor growth endpoint.

  20. Reactive oxygen species and associated reactivity of peroxymonosulfate activated by soluble iron species.

    Science.gov (United States)

    Watts, Richard J; Yu, Miao; Teel, Amy L

    2017-10-01

    The activation of peroxymonosulfate by iron (II), iron (III), and iron (III)-EDTA for in situ chemical oxidation (ISCO) was compared using nitrobenzene as a hydroxyl radical probe, anisole as a hydroxyl radical+sulfate radical probe, and hexachloroethane as a reductant+nucleophile probe. In addition, activated peroxymonosulfate was investigated for the treatment of the model groundwater contaminants perchloroethylene (PCE) and trichloroethylene (TCE). The relative activities of hydroxyl radical and sulfate radical in the degradation of the probe compounds and PCE and TCE were isolated using the radical scavengers tert-butanol and isopropanol. Iron (II), iron (III), and iron (III)-EDTA effectively activated peroxymonosulfate to generate hydroxyl radical and sulfate radical, but only a minimal flux of reductants or nucleophiles. Iron (III)-EDTA was a more effective activator than iron (II) and iron (III), and also provided a non-hydroxyl radical, non-sulfate radical degradation pathway. The contribution of sulfate radical relative to hydroxyl radical followed the order of anisole>TCE>PCE >nitrobenzene; i.e., sulfate radical was less dominant in the oxidation of more oxidized target compounds. Sulfate radical is often assumed to be the primary oxidant in activated peroxymonosulfate and persulfate systems, but the results of this research demonstrate that the reactivity of sulfate radical with the target compound must be considered before drawing such a conclusion. Published by Elsevier B.V.

  1. Reactive oxygen species and associated reactivity of peroxymonosulfate activated by soluble iron species

    Science.gov (United States)

    Watts, Richard J.; Yu, Miao; Teel, Amy L.

    2017-10-01

    The activation of peroxymonosulfate by iron (II), iron (III), and iron (III)-EDTA for in situ chemical oxidation (ISCO) was compared using nitrobenzene as a hydroxyl radical probe, anisole as a hydroxyl radical + sulfate radical probe, and hexachloroethane as a reductant + nucleophile probe. In addition, activated peroxymonosulfate was investigated for the treatment of the model groundwater contaminants perchloroethylene (PCE) and trichloroethylene (TCE). The relative activities of hydroxyl radical and sulfate radical in the degradation of the probe compounds and PCE and TCE were isolated using the radical scavengers tert-butanol and isopropanol. Iron (II), iron (III), and iron (III)-EDTA effectively activated peroxymonosulfate to generate hydroxyl radical and sulfate radical, but only a minimal flux of reductants or nucleophiles. Iron (III)-EDTA was a more effective activator than iron (II) and iron (III), and also provided a non-hydroxyl radical, non-sulfate radical degradation pathway. The contribution of sulfate radical relative to hydroxyl radical followed the order of anisole > > TCE > PCE > > nitrobenzene; i.e., sulfate radical was less dominant in the oxidation of more oxidized target compounds. Sulfate radical is often assumed to be the primary oxidant in activated peroxymonosulfate and persulfate systems, but the results of this research demonstrate that the reactivity of sulfate radical with the target compound must be considered before drawing such a conclusion.

  2. Ameliorative effects of low dose/low dose-rate irradiation on reactive oxygen species-related diseases model mice

    International Nuclear Information System (INIS)

    Nomura, Takaharu

    2008-01-01

    Living organisms have developed complex biological system which protects themselves against environmental radiation, and irradiation with proper dose, dose-rate and irradiation time can stimulate their biological responses against oxidative stress evoked by the irradiation. Because reactive oxygen species are involved in various human diseases, non-toxic low dose/low dose-rate radiation can be utilized for the amelioration of such diseases. In this study, we used mouse experimental models for fatty liver, nephritis, diabetes, and ageing to elucidate the ameliorative effect of low dose/low dose-rate radiation in relation to endogenous antioxidant activity. Single irradiation at 0.5 Gy ameliorates carbon tetrachloride-induced fatty liver. The irradiation increases hepatic anti-oxidative system involving glutathione and glutathione peroxidase, suggesting that endogenous radical scavenger is essential for the ameliorative effect of low dose radiation on carbon tetrachloride-induced fatty liver. Single irradiation at 0.5 Gy ameliorates ferric nitrilotriacetate-induced nephritis. The irradiation increases catalase and decreases superoxide dismutase in kidney. The result suggests that low dose radiation reduced generation of hydroxide radical generation by reducing cellular hydroperoxide level. Single irradiation at 0.5 Gy at 12 week of age ameliorates incidence of type I diabetes in non-obese diabetic (NOD) mice through the suppression of inflammatory activity of splenocytes, and resultant apoptosis of β-cells in pancreas. The irradiation activities of superoxide dismutase and catalase, which coordinately diminish intracellular reactive oxygen species. Continuous irradiation at 0.70 mGy/hr from 10 week of age elongates life span, and suppresses alopecia in type II diabetesmice. The irradiation improved glucose clearance without affecting insulin-resistance, and increased pancreatic catalase activity. The results suggest that continuous low dose-rate irradiation protect

  3. BODIPY-Au(I): A Photosensitizer for Singlet Oxygen Generation and Photodynamic Therapy.

    Science.gov (United States)

    Üçüncü, Muhammed; Karakuş, Erman; Kurulgan Demirci, Eylem; Sayar, Melike; Dartar, Suay; Emrullahoğlu, Mustafa

    2017-05-19

    Upon complexation with Au(I), a photoinactive BODIPY derivative was transformed into a highly photoactive triplet sensitizer. Along with high efficiency in singlet oxygen generation (Φ Δ = 0.84), the new BODIPY-Au(I) skeleton showed excellent photocytotoxic activity against cancer cell lines (EC 50 = 2.5 nM).

  4. Induction of oxygen free radical generation in human monocytes by lipoprotein(a)

    DEFF Research Database (Denmark)

    Riis Hansen, P; Kharazmi, A; Jauhiainen, M

    1994-01-01

    The mechanism behind the association of elevated plasma lipoprotein(a) [Lp(a)] levels with atherosclerotic disease is unknown. In the present study, Lp(a) induced generation of oxygen free radicals by monocytes from selected healthy individuals in vitro. This observation may provide a link between...

  5. Porous layered double hydroxides synthesized using oxygen generated by decomposition of hydrogen peroxide

    NARCIS (Netherlands)

    Gonzalez Rodriguez, P.; de Ruiter, M.P.; Wijnands, Tom; ten Elshof, Johan E.

    2017-01-01

    Porous magnesium-aluminium layered double hydroxides (LDH) were prepared through intercalation and decomposition of hydrogen peroxide (H2O2). This process generates oxygen gas nano-bubbles that pierce holes in the layered structure of the material by local pressure build-up. The decomposition of the

  6. Chemically reactive species in liquids generated by atmospheric-pressure plasmas and their roles in plasma medicine

    Energy Technology Data Exchange (ETDEWEB)

    Hamaguchi, Satoshi [Center for Atomic and Molecular Technologies, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2013-07-11

    Plasmas whose gas temperatures are close to room temperature may be generated in ambient air or a gas at atmospheric pressure with the use of low-frequency high voltage or low-power radio-frequency (RF) or microwave power applied to electrodes. Such plasmas can serve as a powerful source of free radicals and/or chemically reactive species that arise from atoms and molecules of the ambient gas. Recently use of such plasmas for medical purposes has attracted much attention as they can be implemented in possible medical devices that can cause blood coagulation, heal wounds, facilitate angiogenesis, sterilize surgical devices as well as living tissues without harming healthy cells, and selectively inactivate cancer cells. Especially of interest among reactive species generated by atmospheric-pressure plasmas (APP) are reactive oxygen species (ROS) and reactive nitrogen species (RNS) that are generated in liquid phase. Since most living tissues and cells are immersed in liquids (such as blood or culture media), reactive species generated by APPs in the gas phase are transported to the liquid phase and possibly converted to different types of reactive species therein before causing some influence on the tissues or cells. In this study, the rate equations are solved to evaluate concentrations of various reactive species in pure water that are originated by plasma reactions in atmosphere and possible effects of such species (including ROS/RNS) on living tissues and cells are discussed.

  7. Chemically reactive species in liquids generated by atmospheric-pressure plasmas and their roles in plasma medicine

    International Nuclear Information System (INIS)

    Hamaguchi, Satoshi

    2013-01-01

    Plasmas whose gas temperatures are close to room temperature may be generated in ambient air or a gas at atmospheric pressure with the use of low-frequency high voltage or low-power radio-frequency (RF) or microwave power applied to electrodes. Such plasmas can serve as a powerful source of free radicals and/or chemically reactive species that arise from atoms and molecules of the ambient gas. Recently use of such plasmas for medical purposes has attracted much attention as they can be implemented in possible medical devices that can cause blood coagulation, heal wounds, facilitate angiogenesis, sterilize surgical devices as well as living tissues without harming healthy cells, and selectively inactivate cancer cells. Especially of interest among reactive species generated by atmospheric-pressure plasmas (APP) are reactive oxygen species (ROS) and reactive nitrogen species (RNS) that are generated in liquid phase. Since most living tissues and cells are immersed in liquids (such as blood or culture media), reactive species generated by APPs in the gas phase are transported to the liquid phase and possibly converted to different types of reactive species therein before causing some influence on the tissues or cells. In this study, the rate equations are solved to evaluate concentrations of various reactive species in pure water that are originated by plasma reactions in atmosphere and possible effects of such species (including ROS/RNS) on living tissues and cells are discussed

  8. Molecular evolution of the reactive oxygen-generating NADPH oxidase (Nox/Duox family of enzymes

    Directory of Open Access Journals (Sweden)

    Lambeth J David

    2007-07-01

    Full Text Available Abstract Background NADPH-oxidases (Nox and the related Dual oxidases (Duox play varied biological and pathological roles via regulated generation of reactive oxygen species (ROS. Members of the Nox/Duox family have been identified in a wide variety of organisms, including mammals, nematodes, fruit fly, green plants, fungi, and slime molds; however, little is known about the molecular evolutionary history of these enzymes. Results We assembled and analyzed the deduced amino acid sequences of 101 Nox/Duox orthologs from 25 species, including vertebrates, urochordates, echinoderms, insects, nematodes, fungi, slime mold amoeba, alga and plants. In contrast to ROS defense enzymes, such as superoxide dismutase and catalase that are present in prokaryotes, ROS-generating Nox/Duox orthologs only appeared later in evolution. Molecular taxonomy revealed seven distinct subfamilies of Noxes and Duoxes. The calcium-regulated orthologs representing 4 subfamilies diverged early and are the most widely distributed in biology. Subunit-regulated Noxes represent a second major subdivision, and appeared first in fungi and amoeba. Nox5 was lost in rodents, and Nox3, which functions in the inner ear in gravity perception, emerged the most recently, corresponding to full-time adaptation of vertebrates to land. The sea urchin Strongylocentrotus purpuratus possesses the earliest Nox2 co-ortholog of vertebrate Nox1, 2, and 3, while Nox4 first appeared somewhat later in urochordates. Comparison of evolutionary substitution rates demonstrates that Nox2, the regulatory subunits p47phox and p67phox, and Duox are more stringently conserved in vertebrates than other Noxes and Nox regulatory subunits. Amino acid sequence comparisons identified key catalytic or regulatory regions, as 68 residues were highly conserved among all Nox/Duox orthologs, and 14 of these were identical with those mutated in Nox2 in variants of X-linked chronic granulomatous disease. In addition to

  9. Communication: CO oxidation by silver and gold cluster cations: Identification of different active oxygen species

    International Nuclear Information System (INIS)

    Popolan, Denisia M.; Bernhardt, Thorsten M.

    2011-01-01

    The oxidation of carbon monoxide with nitrous oxide on mass-selected Au 3 + and Ag 3 + clusters has been investigated under multicollision conditions in an octopole ion trap experiment. The comparative study reveals that for both gold and silver cations carbon dioxide is formed on the clusters. However, whereas in the case of Au 3 + the cluster itself acts as reactive species that facilitates the formation of CO 2 from N 2 O and CO, for silver the oxidized clusters Ag 3 O x + (n= 1-3) are identified as active in the CO oxidation reaction. Thus, in the case of the silver cluster cations N 2 O is dissociated and one oxygen atom is suggested to directly react with CO, whereas a second kind of oxygen strongly bound to silver is acting as a substrate for the reaction.

  10. Communication: CO oxidation by silver and gold cluster cations: Identification of different active oxygen species

    Science.gov (United States)

    Popolan, Denisia M.; Bernhardt, Thorsten M.

    2011-03-01

    The oxidation of carbon monoxide with nitrous oxide on mass-selected Au3+ and Ag3+ clusters has been investigated under multicollision conditions in an octopole ion trap experiment. The comparative study reveals that for both gold and silver cations carbon dioxide is formed on the clusters. However, whereas in the case of Au3+ the cluster itself acts as reactive species that facilitates the formation of CO2 from N2O and CO, for silver the oxidized clusters Ag3Ox+ (n = 1-3) are identified as active in the CO oxidation reaction. Thus, in the case of the silver cluster cations N2O is dissociated and one oxygen atom is suggested to directly react with CO, whereas a second kind of oxygen strongly bound to silver is acting as a substrate for the reaction.

  11. MINIMAL ROLE FOR REACTIVE OXYGEN SPECIES IN DICHLOROACETIC ACID-INDUCED DYSMORPHOLOGY IN MOUSE WHOLE EMBRYO CULTURE.

    Science.gov (United States)

    Administration of dichloroacetate (DCA) to pregnant rats produces craniofacial, heart and other defects in their offspring. Exposure of zebrafish to DCA induces malformations and increases superoxide and nitric oxide production suggesting that reactive oxygen species (ROS) are as...

  12. Thiazolidinone prodrugs activated by reactive oxygen species for use in the treatment of inflammatory diseases and cancer

    DEFF Research Database (Denmark)

    2018-01-01

    Prodrugs activated predominantly or exclusively in inflammatory tissue, more particularly prodrugs of methotrexate and derivatives thereof, which are selectively activated by Reactive Oxygen Species (ROS) in inflammatory tissues associated with cancer and inflammatory diseases, as well as method...

  13. Contribution of reactive oxygen species to the pathogenesis of pulmonary arterial hypertension

    Science.gov (United States)

    Naik, Jay S.; Weise-Cross, Laura; Detweiler, Neil D.; Herbert, Lindsay M.; Yellowhair, Tracylyn R.; Resta, Thomas C.

    2017-01-01

    Pulmonary arterial hypertension is associated with a decreased antioxidant capacity. However, neither the contribution of reactive oxygen species to pulmonary vasoconstrictor sensitivity, nor the therapeutic efficacy of antioxidant strategies in this setting are known. We hypothesized that reactive oxygen species play a central role in mediating both vasoconstrictor and arterial remodeling components of severe pulmonary arterial hypertension. We examined the effect of the chemical antioxidant, TEMPOL, on right ventricular systolic pressure, vascular remodeling, and enhanced vasoconstrictor reactivity in both chronic hypoxia and hypoxia/SU5416 rat models of pulmonary hypertension. SU5416 is a vascular endothelial growth factor receptor antagonist and the combination of chronic hypoxia/SU5416 produces a model of severe pulmonary arterial hypertension with vascular plexiform lesions/fibrosis that is not present with chronic hypoxia alone. The major findings from this study are: 1) compared to hypoxia alone, hypoxia/SU5416 exposure caused more severe pulmonary hypertension, right ventricular hypertrophy, adventitial lesion formation, and greater vasoconstrictor sensitivity through a superoxide and Rho kinase-dependent Ca2+ sensitization mechanism. 2) Chronic hypoxia increased medial muscularization and superoxide levels, however there was no effect of SU5416 to augment these responses. 3) Treatment with TEMPOL decreased right ventricular systolic pressure in both hypoxia and hypoxia/SU5416 groups. 4) This effect of TEMPOL was associated with normalization of vasoconstrictor responses, but not arterial remodeling. Rather, medial hypertrophy and adventitial fibrotic lesion formation were more pronounced following chronic TEMPOL treatment in hypoxia/SU5416 rats. Our findings support a major role for reactive oxygen species in mediating enhanced vasoconstrictor reactivity and pulmonary hypertension in both chronic hypoxia and hypoxia/SU5416 rat models, despite a

  14. Biocompatible ZnS:Mn quantum dots for reactive oxygen generation and detection in aqueous media

    International Nuclear Information System (INIS)

    Diaz-Diestra, Daysi; Beltran-Huarac, Juan; Bracho-Rincon, Dina P.; González-Feliciano, José A.; González, Carlos I.; Weiner, Brad R.; Morell, Gerardo

    2015-01-01

    We report here the versatility of Mn-doped ZnS quantum dots (ZnS:Mn QDs) synthesized in aqueous medium for generating reactive oxygen species and for detecting cells. Our experiments provide evidence leading to the elimination of Cd-based cores in CdSe/ZnS systems by substitution of Mn-doped ZnS. Advanced electron microscopy, X-ray diffraction, and optical spectroscopy were applied to elucidate the formation, morphology, and dispersion of the products. We study for the first time the ability of ZnS:Mn QDs to act as immobilizing agents for Tyrosinase (Tyr) enzyme. It was found that ZnS:Mn QDs show no deactivation of Tyr enzyme, which efficiently catalyzed the hydrogen peroxide (H 2 O 2 ) oxidation and its eventual reduction (−0.063 V vs. Ag/AgCl) on the biosensor surface. The biosensor showed a linear response in the range of 12 μmol/L–0.1 mmol/L at low operation potential. Our observations are explained in terms of a catalase-cycled kinetic mechanism based on the binding of H 2 O 2 to the axial position of one of the active copper sites of the oxy-Tyr during the catalase cycle to produce deoxy-Tyr. A singlet oxygen quantum yield of 0.62 in buffer and 0.54 in water was found when ZnS:Mn QDs were employed as a photosensitizer in the presence of a chemical scavenger and a standard dye. These results are consistent with a chemical trapping energy transfer mechanism. Our results also indicate that ZnS:Mn QDs are well tolerated by HeLa Cells reaching cell viabilities as high as 88 % at 300 µg/mL of QDs for 24 h of incubation. The ability of ZnS:Mn QDs as luminescent nanoprobes for bioimaging is also discussed.Graphical Abstract

  15. Biocompatible ZnS:Mn quantum dots for reactive oxygen generation and detection in aqueous media

    Energy Technology Data Exchange (ETDEWEB)

    Diaz-Diestra, Daysi; Beltran-Huarac, Juan, E-mail: juan.beltran1@upr.edu; Bracho-Rincon, Dina P.; González-Feliciano, José A.; González, Carlos I.; Weiner, Brad R.; Morell, Gerardo [University of Puerto Rico, Molecular Sciences Research Center (United States)

    2015-12-15

    We report here the versatility of Mn-doped ZnS quantum dots (ZnS:Mn QDs) synthesized in aqueous medium for generating reactive oxygen species and for detecting cells. Our experiments provide evidence leading to the elimination of Cd-based cores in CdSe/ZnS systems by substitution of Mn-doped ZnS. Advanced electron microscopy, X-ray diffraction, and optical spectroscopy were applied to elucidate the formation, morphology, and dispersion of the products. We study for the first time the ability of ZnS:Mn QDs to act as immobilizing agents for Tyrosinase (Tyr) enzyme. It was found that ZnS:Mn QDs show no deactivation of Tyr enzyme, which efficiently catalyzed the hydrogen peroxide (H{sub 2}O{sub 2}) oxidation and its eventual reduction (−0.063 V vs. Ag/AgCl) on the biosensor surface. The biosensor showed a linear response in the range of 12 μmol/L–0.1 mmol/L at low operation potential. Our observations are explained in terms of a catalase-cycled kinetic mechanism based on the binding of H{sub 2}O{sub 2} to the axial position of one of the active copper sites of the oxy-Tyr during the catalase cycle to produce deoxy-Tyr. A singlet oxygen quantum yield of 0.62 in buffer and 0.54 in water was found when ZnS:Mn QDs were employed as a photosensitizer in the presence of a chemical scavenger and a standard dye. These results are consistent with a chemical trapping energy transfer mechanism. Our results also indicate that ZnS:Mn QDs are well tolerated by HeLa Cells reaching cell viabilities as high as 88 % at 300 µg/mL of QDs for 24 h of incubation. The ability of ZnS:Mn QDs as luminescent nanoprobes for bioimaging is also discussed.Graphical Abstract.

  16. Hydrogen-oxygen steam generator applications for increasing the efficiency, maneuverability and reliability of power production

    Science.gov (United States)

    Schastlivtsev, A. I.; Borzenko, V. I.

    2017-11-01

    The comparative feasibility study of the energy storage technologies showed good applicability of hydrogen-oxygen steam generators (HOSG) based energy storage systems with large-scale hydrogen production. The developed scheme solutions for the use of HOSGs for thermal power (TPP) and nuclear power plants (NPP), and the feasibility analysis that have been carried out have shown that their use makes it possible to increase the maneuverability of steam turbines and provide backup power supply in the event of failure of the main steam generating equipment. The main design solutions for the integration of hydrogen-oxygen steam generators into the main power equipment of TPPs and NPPs, as well as their optimal operation modes, are considered.

  17. Laser-induced generation of singlet oxygen and its role in the cerebrovascular physiology

    Science.gov (United States)

    Semyachkina-Glushkovskaya, O. V.; Sokolovski, S. G.; Goltsov, A.; Gekaluyk, A. S.; Saranceva, E. I.; Bragina, O. A.; Tuchin, V. V.; Rafailov, E. U.

    2017-09-01

    For over 55 years, laser technology has expanded from laboratory research to widespread fields, for example telecommunication and data storage amongst others. Recently application of lasers in biology and medicine presents itself as one of the emerging areas. In this review, we will outline the recent advances in using lasers for the generation of singlet oxygen, traditionally used to kill tumour cells or induce thrombotic stroke model due to damage vascular effects. Over the last two decade, completely new results on cerebrovascular effects of singlet oxygen generated during photodynamic therapy (PDT) have been shown alongside promising applications for delivery of drugs and nanoparticles into the brain for therapy of brain cancer. Furthermore, a ;gold key; has been found to overcome the limitations of PDT, such as low light penetration and high toxicity of photosensitizers, by direct generation of singlet oxygen using quantum-dot laser diodes emitting in the near infrared (NIR) spectral range. It is our motivation to highlight these pioneering results in this review, to improve understanding of the biological role of singlet oxygen and to provide new perspectives for improving clinical application of laser based therapy in further research.

  18. High performance electrode for electrochemical oxygen generator cell based on solid electrolyte ion transport membrane

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Wei; Shao, Zongping; Ran, Ran; Chen, Zhihao; Zeng, Pingying; Gu, Hongxia; Jin, Wanqin; Xu, Nanping [College of Chemistry and Chemical Engineering, Nanjing University of Technology, No. 5 Xin Mofan Road, Nanjing 210009, JiangSu (China)

    2007-06-30

    A double-layer composite electrode based on Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 0.2}O{sub 3-{delta}} + Sm{sub 0.2}Ce{sub 0.8}O{sub 1.9} (BSCF + SDC) and BSCF + SDC + Ag was investigated to be a promising cathode and also anode for the electrochemical oxygen generator based on samaria doped ceria electrolyte. The Ag particles in the second layer were not only the current collector but also the improver for the oxygen adsorption at the electrode. a.c. impedance results indicated that the electrode polarization resistance, as low as 0.0058 {omega} cm{sup 2} was reached at 800 C under air. In oxygen generator cell performance test, the electrode resistance dropped to half of the value at zero current density under an applied current density of 2.34 A cm{sup -2} at 700 C, and on the same conditions the oxygen generator cell was continual working for more than 900 min with a Faradic efficiency of {proportional_to}100%. (author)

  19. How neotropical hummingbird versus bat species generate lift to hover

    Science.gov (United States)

    Ingersoll, Rivers; Lentink, David

    2017-11-01

    Both hummingbirds and nectar bats evolved the ability to hover in front of flowers providing them access to energy rich nectar. Hummingbirds have been found to generate more than a quarter of their weight support during the upstroke by inverting their wings-much more than generalist birds during slow hovering flight. In contrast to hummingbirds, bats have membrane wings which they partially fold during the upstroke. It has been hypothesized that bats generate some vertical lift force during the upstroke although the complex wake structures make it hard to quantify upstroke function through flow measurement. To compare the kinematics and aerodynamic forces generated by both groups, we caught and trained over 100 individuals spanning 18 hummingbird and 3 bat species in Coto Brus, Costa Rica. We used 3D calibrated high-speed cameras to measure wingbeat kinematics and a novel aerodynamic force platform to measure the instantaneous vertical lift force in vivo. This data gives us new insight into how ecology shapes the evolution of hovering flight across taxa in the same ecosystem. This research is supported by NSF CAREER Award 1552419 and the KACST Center of Excellence for Aeronautics and Astronautics at Stanford.

  20. Enhancement of the Acrolein-Induced Production of Reactive Oxygen Species and Lung Injury by GADD34

    Directory of Open Access Journals (Sweden)

    Yang Sun

    2015-01-01

    Full Text Available Chronic obstructive pulmonary disease (COPD is characterized by lung destruction and inflammation. As a major compound of cigarette smoke, acrolein plays a critical role in the induction of respiratory diseases. GADD34 is known as a growth arrest and DNA damage-related gene, which can be overexpressed in adverse environmental conditions. Here we investigated the effects of GADD34 on acrolein-induced lung injury. The intranasal exposure of acrolein induced the expression of GADD34, developing the pulmonary damage with inflammation and increase of reactive oxygen species (ROS. Conversely, the integrality of pulmonary structure was preserved and the generation of ROS was reduced in GADD34-knockout mice. Acrolein-induced phosphorylation of eIF2α in GADD34-knockout epithelial cells by shRNA protected cell death by reducing misfolded protein-caused oxidative stress. These data indicate that GADD34 participates in the development of acrolein-induced lung injury.

  1. Enhancement of the acrolein-induced production of reactive oxygen species and lung injury by GADD34.

    Science.gov (United States)

    Sun, Yang; Ito, Sachiko; Nishio, Naomi; Tanaka, Yuriko; Chen, Nana; Liu, Lintao; Isobe, Ken-ichi

    2015-01-01

    Chronic obstructive pulmonary disease (COPD) is characterized by lung destruction and inflammation. As a major compound of cigarette smoke, acrolein plays a critical role in the induction of respiratory diseases. GADD34 is known as a growth arrest and DNA damage-related gene, which can be overexpressed in adverse environmental conditions. Here we investigated the effects of GADD34 on acrolein-induced lung injury. The intranasal exposure of acrolein induced the expression of GADD34, developing the pulmonary damage with inflammation and increase of reactive oxygen species (ROS). Conversely, the integrality of pulmonary structure was preserved and the generation of ROS was reduced in GADD34-knockout mice. Acrolein-induced phosphorylation of eIF2α in GADD34-knockout epithelial cells by shRNA protected cell death by reducing misfolded protein-caused oxidative stress. These data indicate that GADD34 participates in the development of acrolein-induced lung injury.

  2. Practical use of chemical probes for reactive oxygen species produced in biological systems by {gamma}-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Min Hee; Moon, Yu Ran; Chung, Byung Yeoup; Kim, Jae-Sung [Radiation Research Division for Bio-technology, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup-si, Jeollabuk-do 580-185 (Korea, Republic of); Lee, Kang-Soo [Crop Production and Technology Major, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Cho, Jae-Young [Bio-environmental Science Major, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Kim, Jin-Hong [Radiation Research Division for Bio-technology, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup-si, Jeollabuk-do 580-185 (Korea, Republic of)], E-mail: jhongkim@kaeri.re.kr

    2009-05-15

    Application of chemical probes, for detection of reactive oxygen species (ROS), was tested during {gamma}-irradiation. The ethanol/{alpha}-(4-pyridyl-1-oxide)-N-tert-butylnitrone (4-POBN) and 3,3'-diaminobenzidine (DAB) were structurally stable enough to detect {sup {center_dot}}OH and H{sub 2}O{sub 2}, increasingly generated by {gamma}-irradiation up to 1000 Gy. Interestingly, the production rate of H{sub 2}O{sub 2}, but not {sup {center_dot}}OH, during {gamma}-irradiation, was significantly different between in vitro systems of lettuce and spinach. These results suggest that 4-POBN and DAB could be utilized as a semi-quantitative probe to quantify {sup {center_dot}}OH and H{sub 2}O{sub 2}, produced by {gamma}-irradiation up to 1000 Gy.

  3. Enhancement of the Acrolein-Induced Production of Reactive Oxygen Species and Lung Injury by GADD34

    Science.gov (United States)

    Sun, Yang; Ito, Sachiko; Nishio, Naomi; Tanaka, Yuriko; Chen, Nana; Isobe, Ken-ichi

    2015-01-01

    Chronic obstructive pulmonary disease (COPD) is characterized by lung destruction and inflammation. As a major compound of cigarette smoke, acrolein plays a critical role in the induction of respiratory diseases. GADD34 is known as a growth arrest and DNA damage-related gene, which can be overexpressed in adverse environmental conditions. Here we investigated the effects of GADD34 on acrolein-induced lung injury. The intranasal exposure of acrolein induced the expression of GADD34, developing the pulmonary damage with inflammation and increase of reactive oxygen species (ROS). Conversely, the integrality of pulmonary structure was preserved and the generation of ROS was reduced in GADD34-knockout mice. Acrolein-induced phosphorylation of eIF2α in GADD34-knockout epithelial cells by shRNA protected cell death by reducing misfolded protein-caused oxidative stress. These data indicate that GADD34 participates in the development of acrolein-induced lung injury. PMID:25821552

  4. The determination and analysis of site-specific rates of mitochondrial reactive oxygen species production

    DEFF Research Database (Denmark)

    Quinlan, Casey L; Perevoschikova, Irina V; Goncalves, Renata L S

    2013-01-01

    Mitochondrial reactive oxygen species (ROS) are widely implicated in physiological and pathological pathways. We propose that it is critical to understand the specific sites of mitochondrial ROS production and their mechanisms of action. Mitochondria possess at least eight distinct sites of ROS...... production in the electron transport chain and matrix compartment. In this chapter, we describe the nature of the mitochondrial ROS-producing machinery and the relative capacities of each site. We provide detailed methods for the measurement of H2O2 release and the conditions under which maximal rates from...

  5. Impact of reactive oxygen species on antioxidant capacity of male reproductive system.

    Science.gov (United States)

    Riaz, Muhammad; Mahmood, Zahed; Shahid, Muhammad; Saeed, M Usman Qamar; Tahir, Imtiaz Mahmood; Shah, Sm Ali; Munir, Naveed; El-Ghorab, Ahmed

    2016-09-01

    The present research work was aimed to study the mutual interaction of reactive oxygen species (ROS) and basal cells antioxidant capacity in the male reproductive system and to further establish the association between selected heavy metals and stress markers. Total oxidant status (TOS) and total antioxidant status (TAS) of serum and seminal plasma were determined by automated photometric methods. The concentrations of Selenium (Se), Lead (Pb), and Cadmium (Cd) were determined by using atomic absorption spectrophotometer. The TOS was increased significantly (P male infertility. © The Author(s) 2015.

  6. Reactive oxygen species modulator 1, a novel protein, combined with carcinoembryonic antigen in differentiating malignant from benign pleural effusion.

    Science.gov (United States)

    Chen, Xianmeng; Zhang, Na; Dong, Jiahui; Sun, Gengyun

    2017-05-01

    The differential diagnosis of malignant pleural effusion and benign pleural effusion remains a clinical problem. Reactive oxygen species modulator 1 is a novel protein overexpressed in various human tumors. The objective of this study was to evaluate the diagnostic value of joint detection of reactive oxygen species modulator 1 and carcinoembryonic antigen in the differential diagnosis of malignant pleural effusion and benign pleural effusion. One hundred two consecutive patients with pleural effusion (including 52 malignant pleural effusion and 50 benign pleural effusion) were registered in this study. Levels of reactive oxygen species modulator 1 and carcinoembryonic antigen were measured by enzyme-linked immunosorbent assay and radioimmunoassay, respectively. Results showed that the concentrations of reactive oxygen species modulator 1 both in pleural fluid and serum of patients with malignant pleural effusion were significantly higher than those of benign pleural effusion (both p pleural fluid reactive oxygen species modulator 1 were 61.54% and 82.00%, respectively, with the optimized cutoff value of 589.70 pg/mL. However, the diagnostic sensitivity and specificity of serum reactive oxygen species modulator 1 were only 41.38% and 86.21%, respectively, with the cutoff value of 27.22 ng/mL, indicating that serum reactive oxygen species modulator 1 may not be a good option in the differential diagnosis of malignant pleural effusion and benign pleural effusion. The sensitivity and specificity of pleural fluid carcinoembryonic antigen were 69.23% and 88.00%, respectively, at the cutoff value of 3.05 ng/mL, while serum carcinoembryonic antigen were 80.77% and 72.00% at the cutoff value of 2.60 ng/mL. The sensitivity could be raised to 88.17% in parallel detection of plural fluid reactive oxygen species modulator 1 and carcinoembryonic antigen concentration, and the specificity could be improved to 97.84% in serial detection.

  7. Reactive oxygen species' role in endothelial dysfunction by electron paramagnetic resonance

    Science.gov (United States)

    Wassall, Cynthia D.

    The endothelium is a single layer of cells lining the arteries and is involved in many physiological reactions which are responsible for vascular tone. Free radicals are important participants in these chemical reactions in the endothelium. Here we quantify free radicals, ex vivo, in biological tissue with continuous wave electron paramagnetic resonance (EPR). In all of the experiments in this thesis, we use a novel EPR spin trapping technique that has been developed for tissue segments. EPR spin trapping is often considered the 'gold standard' in reactive oxygen species (ROS) detection because of its sensitivity and non-invasive nature. In all experiments, tissue was placed in physiological saline solution with 190-mM PBN (N-tert -butyl-α-phenylnitrone), 10% by volume dimethyl-sulphoxide (DMSO) for cryopreservation, and incubated in the dark for between 30 minutes up to 2 hours at 37°C while gently being stirred. Tissue and supernatant were then loaded into a syringe and frozen at -80°C until EPR analysis. In our experiments, the EPR spectra were normalized with respect to tissue volume. Conducting experiments at liquid nitrogen temperature leads to some experimental advantages. The freezing of the spin adducts renders them stable over a longer period, which allows ample time to analyze tissue samples for ROS. The dielectric constant of ice is greatly reduced over its liquid counterpart; this property of water enables larger sample volumes to be inserted into the EPR cavity without overloading it and leads to enhanced signal detection. Due to Maxwell-Boltzmann statistics, the population difference goes up as the temperature goes down, so this phenomenon enhances the signal intensity as well. With the 'gold standard' assertion in mind, we investigated whether slicing tissue to assay ROS that is commonly used in fluorescence experiments will show more free radical generation than tissue of a similar volume that remains unsliced. Sliced tissue exhibited a 76

  8. Mechanism of artemisinin phytotoxicity action: induction of reactive oxygen species and cell death in lettuce seedlings.

    Science.gov (United States)

    Yan, Zhi-Qiang; Wang, Dan-Dan; Ding, Lan; Cui, Hai-Yan; Jin, Hui; Yang, Xiao-Yan; Yang, Jian-She; Qin, Bo

    2015-03-01

    Artemisinin has been recognized as an allelochemical that inhibits growth of several plant species. However, its mode of action is not well clarified. In this study, the mechanism of artemisinin phytotoxicity on lettuce seedlings was investigated. Root and shoot elongation of lettuce seedlings were inhibited by artemisinin in a concentration-dependent manner. The compound effectively arrested cell division and caused loss of cell viability in root tips of lettuce. Overproduction of reactive oxygen species (ROS) was induced by artemisinin. Lipid peroxidation, proline overproduction and reduction of chlorophyll content in lettuce seedlings were found after treatments. These results suggested that artemisinin could induce ROS overproduction, which caused membrane lipids peroxidation and cell death, and impacted mitosis and physiological processes, resulting in growth inhibition of receptor plants. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  9. Oxygen-containing coke species in zeolite-catalyzed conversion of methanol to hydrocarbons

    KAUST Repository

    Liu, Zhaohui

    2016-10-06

    Zeolites are the most commonly used catalysts for methanol-to-hydrocarbon (MTH) conversion. Here, we identified two oxygen-containing compounds as coke species in zeolite catalysts after MTH reactions. We investigated the possible influences of the oxygen-containing compounds on coke formation, catalyst deactivation, product selectivity, and the induction period of the MTH reaction through a series of controlled experiments in which one of the identified compounds (2,3-dimethyl-2-cyclopenten-1-one) was co-fed with methanol over a zeolite H-ZSM-5 catalyst. Our results allow us to infer that once produced, the oxygen-containing compounds block the Brønsted acid sites by strong chemisorption and their rapid conversion to aromatics expedites the formation of coke and thus the deactivation of the catalyst. A minor effect of the production of such compounds during the MTH reaction is that the aromatic-based catalytic cycle can be slightly promoted to give higher selectivity to ethylene.

  10. Reactive oxygen species production, induced by atmospheric modification, alter conidial quality of Beauveria bassiana.

    Science.gov (United States)

    Pérez-Guzmán, D; Montesinos-Matías, R; Arce-Cervantes, O; Gómez-Quiroz, L E; Loera, O; Garza-López, P M

    2016-08-01

    The aim of this study was to determine the relationship between reactive oxygen species (ROS) production and conidial infectivity in Beauveria bassiana. Beauveria bassiana Bb 882.5 was cultured in solid-state culture (SSC) using rice under three oxygen conditions (21%, or pulses at 16 and 26%). Hydrophobicity was determined using exclusion phase assay. Bioassays with larvae or adults of Tenebrio molitor allowed the measurements of infectivity parameters. A fluorometric method was used for ROS quantification (superoxide and total peroxides). NADPH oxidase (NOX) activity was determined by specific inhibition. Conidial hydrophobicity decreased by O2 pulses. Mortality of larvae was only achieved with conidia harvested from cultures under 21% O2 ; whereas for adult insects, the infectivity parameters deteriorated in conidia obtained after pulses at 16 and 26% O2 . At day 7, ROS production increased after 16 and 26% O2 treatments. NOX activity induced ROS production at early stages of the culture. Modification of atmospheric oxygen increases ROS production, reducing conidial quality and infectivity. This is the first study in which conidial infectivity and ROS production in B. bassiana has been related, enhancing the knowledge of the effect of O2 pulses in B. bassiana. © 2016 The Society for Applied Microbiology.

  11. Gastric injury induced by hemorrhage, local ischemia, and oxygen radical generation

    International Nuclear Information System (INIS)

    Wadhwa, S.S.; Perry, M.A.

    1987-01-01

    Gastric mucosal injury caused by local intra-arterial generation of oxygen-derived free radicals was compared with gastric injury caused by 30 min of hemorrhage-induced ischemia or local ischemia. The index of injury was the loss of 51 Cr-labeled red cells across the gastric mucosa. Generation of oxygen radicals in the celiac artery caused a rapid increase in mucosal blood loss during the period of radical generation, and this loss was maintained after radical production ceased. Local ischemia produced similar mucosal injury; however, this occurred after reperfusion of the stomach and not during the ischemic episode. Hemorrhage-induced ischemia produced a threefold greater mucosal blood loss than local ischemia. The results of this study indicate that (1) oxygen radicals generated enzymatically in the blood supply to the stomach cause mucosal bleeding of similar magnitude to that observed after local ischemia and (2) that gastric ischemia induced by systemic hypotension produces more severe gastric injury than the same level of local hypotension

  12. Covariance of oxygen and hydrogen isotopic composition in plant water: Species effects

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, L.W.; DeNiro, M.J. (Univ. of California, Los Angeles (United States))

    1989-12-01

    Leaf water becomes enriched in the heavy isotopes of oxygen and hydrogen during evapotranspiration. The magnitude of the enrichment has been shown to be influenced by temperature and humidity, but the effects of species-specific factors on leaf water enrichment of D and {sup 18}O have not been studied for different plants growing together. To learn whether leaf water enrichment patterns and processes for D and {sup 18}O are different for individual species growing under the same environmental conditions the authors tested the proposal that leaf waters in plants with crassulacean acid metabolism (CAM) show high sloped (m in the leaf water equation {delta}D = m {delta}{sup 18}O + b) than in C{sub 3} plants. They determined the relationships between the stable hydrogen ({delta}D) and oxygen ({delta}{sup 18}O) isotope ratios of leaf waters collected during the diurnal cycle of evapotranspiration for Yucca schidigera, Ephedra aspera, Agave deserti, Prunus ilicifolia, Yucca whipplei, Heteromeles arbutifolia, Dyckia fosteriana, Simmondsia chinensis, and Encelia farinosa growing at two sites in southern California. The findings indicate that m in the aforementioned equation is related to the overall residence time for water in the leaf and proportions of water subjected to repeated evapotranspiration enrichments of heavy isotopes.

  13. Reactive oxygen species in the paraventricular nucleus of the hypothalamus alter sympathetic activity during metabolic syndrome.

    Directory of Open Access Journals (Sweden)

    JOSIANE CAMPOS CRUZ

    2015-12-01

    Full Text Available The paraventricular nucleus of the hypothalamus (PVN contains heterogeneous populations of neurons involved in autonomic and neuroendocrine regulation. The PVN plays an important role in the sympathoexcitatory response to increasing circulating levels of angiotensin II (Ang-II, which activates AT1 receptors in the circumventricular organs (OCVs, mainly in the subfornical organ (SFO. Circulating Ang-II induces a de novo synthesis of Ang-II in SFO neurons projecting to pre-autonomic PVN neurons. Activation of AT1 receptors induces intracellular increases in reactive oxygen species (ROS, leading to increases in sympathetic nerve activity (SNA. Chronic sympathetic nerve activation promotes a series of metabolic disorders that characterizes the metabolic syndrome (MetS: dyslipidemia, hyperinsulinemia, glucose intolerance, hyperleptinemia and elevated plasma hormone levels, such as noradrenaline, glucocorticoids, leptin, insulin and Ang-II. This review will discuss the contribution of our laboratory and others regarding the sympathoexcitation caused by peripheral Ang-II-induced reactive oxygen species along the subfornical organ and paraventricular nucleus of the hypothalamus. We hypothesize that this mechanism could be involved in metabolic disorders underlying MetS.

  14. Reactive oxygen species and lipid peroxidation product-scavenging ability of yogurt organisms.

    Science.gov (United States)

    Lin, M Y; Yen, C L

    1999-08-01

    The antioxidative activity of the intracellular extracts of yogurt organisms was investigated. All 11 strains tested, including five strains of Streptococcus thermophilus and six strains of Lactobacillus delbrueckii ssp. bulgaricus, demonstrated an antioxidative effect on the inhibition of linoleic acid peroxidation. The antioxidative effect of intracellular extracts of 10(8) cells of yogurt organisms was equivalent to 25 to 96 ppm butylated hydroxytoluene, which indicated that all strains demonstrated excellent antioxidative activity. The scavenging of reactive oxygen species, hydroxyl radical, and hydrogen peroxide was studied for intracellular extracts of yogurt organisms. All strains showed reactive oxygen species-scavenging ability. Lactobacillus delbrueckii ssp. bulgaricus Lb demonstrated the highest hydroxyl radical-scavenging ability at 234 microM. Streptococcus thermophilus MC and 821 and L. delbrueckii ssp. bulgaricus 448 and 449 scavenged the most hydrogen peroxide at approximately 50 microM. The scavenging ability of lipid peroxidation products, t-butylhydroperoxide and malondialdehyde, was also evaluated. Results showed that the extracts were not able to scavenge the t-butylhydroperoxide. Nevertheless, malondialdehyde was scavenged well by most strains.

  15. Resolving Contributions of Oxygen-Consuming and ROS-Generating Enzymes at the Synapse

    Directory of Open Access Journals (Sweden)

    Engy A. Abdel-Rahman

    2016-01-01

    Full Text Available Disruption of cellular redox homeostasis is implicated in a wide variety of pathologic conditions and aging. A fundamental factor that dictates such balance is the ratio between mitochondria-mediated complete oxygen reduction into water and incomplete reduction into superoxide radical by mitochondria and NADPH oxidase (NOX enzymatic activity. Here we determined mitochondrial as well as NOX-dependent rates of oxygen consumption in parallel with H2O2 generation in freshly isolated synaptosomes using high resolution respirometry combined with fluorescence or electrochemical sensory. Our results indicate that although synaptic mitochondria exhibit substantially higher respiratory activities (8–82-fold greater than NOX oxygen consumption depending on mitochondrial respiratory state, NADPH-dependent oxygen consumption is associated with greater H2O2 production (6-7-fold higher NOX-H2O2. We also show that, in terms of the consumed oxygen, while synaptic mitochondria “leaked” 0.71%±0.12 H2O2 during NAD+-linked resting, 0.21%±0.04 during NAD+-linked active respiration, and 0.07%±0.02 during FAD+-linked active respiration, NOX converted 38%±13 of O2 into H2O2. Our results indicate that NOX rather than mitochondria is the major source of synaptic H2O2. The present approach may assist in the identification of redox-modulating synaptic factors that underlie a variety of physiological and pathological processes in neurons.

  16. Reactive oxygen species and nitric oxide in plant mitochondria: origin and redundant regulatory systems.

    Science.gov (United States)

    Blokhina, Olga; Fagerstedt, Kurt V

    2010-04-01

    Plant mitochondria differ from their mammalian counterparts in many respects, which are due to the unique and variable surroundings of plant mitochondria. In green leaves, plant mitochondria are surrounded by ample respiratory substrates and abundant molecular oxygen, both resulting from active photosynthesis, while in roots and bulky rhizomes and fruit carbohydrates may be plenty, whereas oxygen levels are falling. Several enzymatic complexes in mitochondrial electron transport chain (ETC) are capable of reactive oxygen species (ROS) formation under physiological and pathological conditions. Inherently connected parameters such as the redox state of electron carriers in the ETC, ATP synthase activity and inner mitochondrial membrane potential, when affected by external stimuli, can give rise to ROS formation via complexes I and III, and by reverse electron transport (RET) from complex II. Superoxide radicals produced are quickly scavenged by superoxide dismutase (MnSOD), and the resulting H(2)O(2) is detoxified by peroxiredoxin-thioredoxin system or by the enzymes of ascorbate-glutathione cycle, found in the mitochondrial matrix. Arginine-dependent nitric oxide (NO)-releasing activity of enzymatic origin has been detected in plant mitochondria. The molecular identity of the enzyme is not clear but the involvement of mitochondria-localized enzymes responsible for arginine catabolism, arginase and ornithine aminotransferase has been shown in the regulation of NO efflux. Besides direct control by antioxidants, mitochondrial ROS production is tightly controlled by multiple redundant systems affecting inner membrane potential: NAD(P)H-dependent dehydrogenases, alternative oxidase (AOX), uncoupling proteins, ATP-sensitive K(+) channel and a number of matrix and intermembrane enzymes capable of direct electron donation to ETC. NO removal, on the other hand, takes place either by reactions with molecular oxygen or superoxide resulting in peroxynitrite, nitrite or nitrate

  17. Sinoporphyrin sodium, a novel sensitizer, triggers mitochondrial-dependent apoptosis in ECA-109 cells via production of reactive oxygen species

    Directory of Open Access Journals (Sweden)

    Wang H

    2014-06-01

    Full Text Available Haiping Wang,1 Xiaobing Wang,1 Shaoliang Zhang,2 Pan Wang,1 Kun Zhang,1 Quanhong Liu1 1Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 2Qinglong High-Tech Co, Ltd, Yichun, Jiangxi, People's Republic of China Background: Sonodynamic therapy (SDT is a promising method that uses ultrasound to activate certain chemical sensitizers for the treatment of cancer. The purpose of this study was to investigate the sonoactivity of a novel sensitizer, sinoporphyrin sodium (DVDMS, and its sonotoxicity in an esophageal cancer (ECA-109 cell line. Methods: The fluorescence intensity of DVDMS, hematoporphyrin, protoporphyrin IX, and Photofrin II was detected by fluorescence microscopy and flow cytometry. Generation of singlet oxygen was measured using a 1, 3-diphenylisobenzofuran experiment. A 3-(4, 5-dimethylthiazol-2-yl-2, 5-diphenyl tetrazolium bromide assay was used to examine cell viability. Production of reactive oxygen species (ROS and destabilization of the mitochondrial membrane potential were assessed by flow cytometry. Apoptosis was analyzed using Annexin-PE/7-amino-actinomycin D staining. Confocal microscopy was performed to assess mitochondrial damage and identify release of cytochrome C after treatment. Western blots were used to determine expression of oxidative stress-related and apoptosis-associated protein. Ultrastructural changes in the cell were studied by scanning electron microscopy. Results: DVDMS showed higher autofluorescence intensity and singlet oxygen production efficiency compared with other photosensitizers in both cancerous and normal cells. Compared with hematoporphyrin, DVDMS-mediated SDT was more cytotoxic in ECA-109 cells. Abundant intracellular ROS was found in the SDT groups, and the cytotoxicity

  18. Effect of polyunsaturated fatty acids on the reactive oxygen and nitrogen species production by raw 264.7 macrophages

    Czech Academy of Sciences Publication Activity Database

    Ambrožová, Gabriela; Pekarová, Michaela; Lojek, Antonín

    2010-01-01

    Roč. 49, č. 3 (2010), s. 133-139 ISSN 1436-6207 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : polyunsaturated fatty acids * reactive oxygen species * reactive nitrogen species Subject RIV: BO - Biophysics Impact factor: 3.343, year: 2010

  19. HFE gene variants and iron-induced oxygen radical generation in idiopathic pulmonary fibrosis.

    Science.gov (United States)

    Sangiuolo, Federica; Puxeddu, Ermanno; Pezzuto, Gabriella; Cavalli, Francesco; Longo, Giuliana; Comandini, Alessia; Di Pierro, Donato; Pallante, Marco; Sergiacomi, Gianluigi; Simonetti, Giovanni; Zompatori, Maurizio; Orlandi, Augusto; Magrini, Andrea; Amicosante, Massimo; Mariani, Francesca; Losi, Monica; Fraboni, Daniela; Bisetti, Alberto; Saltini, Cesare

    2015-02-01

    In idiopathic pulmonary fibrosis (IPF), lung accumulation of excessive extracellular iron and macrophage haemosiderin may suggest disordered iron homeostasis leading to recurring microscopic injury and fibrosing damage. The current study population comprised 89 consistent IPF patients and 107 controls. 54 patients and 11 controls underwent bronchoalveolar lavage (BAL). Haemosiderin was assessed by Perls' stain, BAL fluid malondialdehyde (MDA) by high-performance liquid chromatography, BAL cell iron-dependent oxygen radical generation by fluorimetry and the frequency of hereditary haemochromatosis HFE gene variants by reverse dot blot hybridisation. Macrophage haemosiderin, BAL fluid MDA and BAL cell unstimulated iron-dependent oxygen radical generation were all significantly increased above controls (pHFE allelic variants was markedly higher in IPF compared with controls (40.4% versus 22.4%, OR 2.35, p=0.008) and was associated with higher iron-dependent oxygen radical generation (HFE variant 107.4±56.0, HFE wild type (wt) 59.4±36.4 and controls 16.7±11.8 fluorescence units per 10(5) BAL cells; p=0.028 HFE variant versus HFE wt, p=0.006 HFE wt versus controls). The data suggest iron dysregulation associated with HFE allelic variants may play an important role in increasing susceptibility to environmental exposures, leading to recurring injury and fibrosis in IPF. Copyright ©ERS 2015.

  20. Phenomenological model of photoluminescence degradation and photoinduced defect formation in silicon nanocrystal ensembles under singlet oxygen generation

    Energy Technology Data Exchange (ETDEWEB)

    Gongalsky, Maxim B., E-mail: mgongalsky@gmail.com; Timoshenko, Victor Yu. [Faculty of Physics, Moscow State M.V. Lomonosov University, 119991 Moscow (Russian Federation)

    2014-12-28

    We propose a phenomenological model to explain photoluminescence degradation of silicon nanocrystals under singlet oxygen generation in gaseous and liquid systems. The model considers coupled rate equations, which take into account the exciton radiative recombination in silicon nanocrystals, photosensitization of singlet oxygen generation, defect formation on the surface of silicon nanocrystals as well as quenching processes for both excitons and singlet oxygen molecules. The model describes well the experimentally observed power law dependences of the photoluminescence intensity, singlet oxygen concentration, and lifetime versus photoexcitation time. The defect concentration in silicon nanocrystals increases by power law with a fractional exponent, which depends on the singlet oxygen concentration and ambient conditions. The obtained results are discussed in a view of optimization of the photosensitized singlet oxygen generation for biomedical applications.

  1. Toward enhanced hydrogen generation from water using oxygen permeating LCF membranes

    KAUST Repository

    Wu, Xiao-Yu

    2015-01-01

    © the Owner Societies. Hydrogen production from water thermolysis can be enhanced by the use of perovskite-type mixed ionic and electronic conducting (MIEC) membranes, through which oxygen permeation is driven by a chemical potential gradient. In this work, water thermolysis experiments were performed using 0.9 mm thick La0.9Ca0.1FeO3-δ (LCF-91) perovskite membranes at 990 °C in a lab-scale button-cell reactor. We examined the effects of the operating conditions such as the gas species concentrations and flow rates on the feed and sweep sides on the water thermolysis rate and oxygen flux. A single step reaction mechanism is proposed for surface reactions, and three-resistance permeation models are derived. Results show that water thermolysis is facilitated by the LCF-91 membrane especially when a fuel is added to the sweep gas. Increasing the gas flow rate and water concentration on the feed side or the hydrogen concentration on the sweep side enhances the hydrogen production rate. In this work, hydrogen is used as the fuel by construction, so that a single-step surface reaction mechanism can be developed and water thermolysis rate parameters can be derived. Both surface reaction rate parameters for oxygen incorporation/dissociation and hydrogen-oxygen reactions are fitted at 990 °C. We compare the oxygen fluxes in water thermolysis and air separation experiments, and identify different limiting steps in the processes involving various oxygen sources and sweep gases for this 0.9 mm thick LCF-91 membrane. In the air feed-inert sweep case, the bulk diffusion and sweep side surface reaction are the two limiting steps. In the water feed-inert sweep case, surface reaction on the feed side dominates the oxygen permeation process. Yet in the water feed-fuel sweep case, surface reactions on both the feed and sweep sides are rate determining when hydrogen concentration in the sweep side is in the range of 1-5 vol%. Furthermore, long term studies show that the surface

  2. Activation of apurinic/apyrimidinic endonuclease in human cells by reactive oxygen species and its correlation with their adaptive response to genotoxicity of free radicals

    OpenAIRE

    Ramana, Chilakamarti V.; Boldogh, Istvan; Izumi, Tadahide; Mitra, Sankar

    1998-01-01

    Apurinic/apyrimidinic (AP) endonuclease (APE; EC 4.2.99.18) plays a central role in repair of DNA damage due to reactive oxygen species (ROS) because its DNA 3′-phosphoesterase activity removes 3′ blocking groups in DNA that are generated by DNA glycosylase/AP-lyases during removal of oxidized bases and by direct ROS reaction with DNA. The major human APE (APE-1) gene is activated selectively by sublethal levels of a variety of ROS and ROS generators, including ionizing radiation, but not by ...

  3. Oxygen transport membrane reactor based method and system for generating electric power

    Science.gov (United States)

    Kelly, Sean M.; Chakravarti, Shrikar; Li, Juan

    2017-02-07

    A carbon capture enabled system and method for generating electric power and/or fuel from methane containing sources using oxygen transport membranes by first converting the methane containing feed gas into a high pressure synthesis gas. Then, in one configuration the synthesis gas is combusted in oxy-combustion mode in oxygen transport membranes based boiler reactor operating at a pressure at least twice that of ambient pressure and the heat generated heats steam in thermally coupled steam generation tubes within the boiler reactor; the steam is expanded in steam turbine to generate power; and the carbon dioxide rich effluent leaving the boiler reactor is processed to isolate carbon. In another configuration the synthesis gas is further treated in a gas conditioning system configured for carbon capture in a pre-combustion mode using water gas shift reactors and acid gas removal units to produce hydrogen or hydrogen-rich fuel gas that fuels an integrated gas turbine and steam turbine system to generate power. The disclosed method and system can also be adapted to integrate with coal gasification systems to produce power from both coal and methane containing sources with greater than 90% carbon isolation.

  4. Relations between oxygen and hydrogen generated by radiolysis in the systems of a CANDU 600

    International Nuclear Information System (INIS)

    Romano, Christian; Chocron, Mauricio; Urrutia, Guillermo

    1999-01-01

    The water that constitutes the coolant of the primary heat transport system, the moderator and the liquid control zones, decomposed under radiation producing as stable products oxygen, hydrogen and hydrogen peroxide throughout a complex mechanisms of radiolysis that involves ions and free radicals. These compound formed in different proportions alters the chemical control established for each system which purpose is to minimize the corrosion of the structural materials. In the present paper have been presented results of the modelling of the mentioned processes and it has been found that in the absence of a vapor phase, a relatively low concentration of hydrogen added to the water would be sufficient to control the formation of oxygen and hydrogen peroxide. The last species however, would remain in relatively high values inside a coolant fuel channel in the reactor core. (author)

  5. Promotion of hydrogen entry into iron from NaOH solution by iron-oxygen species

    International Nuclear Information System (INIS)

    Flis-Kabulska, I.; Flis, J.; Zakroczymski, T.

    2007-01-01

    This study was carried out to explain reasons of the enhanced hydrogen entry into iron at low polarisations. Hydrogen permeation rate (HPR) through a 35-μm thick iron membrane was studied with the electrochemical technique in 0.1 M NaOH at 25 o C. A rotating split-ring disk electrode was used to detect soluble Fe(II) species. Enhanced hydrogen entry (HPR peaks) was observed at low cathodic and low anodic polarisations during voltammetric cycling, and also during galvanostatic anodic polarisation applied after cathodic charging. HPR peaks occurred at potentials from about -1.2 to -0.9 V (NHE) which were more cathodic than the potentials of thermodynamic stability of Fe(OH) 2 or Fe 3 O 4 , and of the formation of soluble Fe(II) species. It has been suggested that the enhanced hydrogen entry is associated with the presence of FeOH ad . In this species oxygen is bound with hydrogen (oxo-hydride), hence it can be supposed that the mechanism of its promoting effect can be similar to that of hydrides of other elements of the VIb group

  6. USING OXYGEN-CONSUMING THERMOSET PLASTICS TO GENERATE HYPOXIC CONDITIONS IN MICROFLUIDIC DEVICES FOR POTENTIAL CELL CULTURE APPLICATIONS

    DEFF Research Database (Denmark)

    Sticker, Drago; Rothbauer, Mario; Ehgartner, Josef

    The precise control of the oxygen concentration in a cellular environment allows the study of cells under physiologically relevant conditions. This work reports on a novel method for the generation of reduced dissolved oxygen concentrations in microfluidic chambers for cell- and organ-on-chip app......The precise control of the oxygen concentration in a cellular environment allows the study of cells under physiologically relevant conditions. This work reports on a novel method for the generation of reduced dissolved oxygen concentrations in microfluidic chambers for cell- and organ...

  7. Lignin Contribution to the Global Carbon Pool: Investigating the Abiotic Modification of Lignin by Reactive Oxygen Species

    Science.gov (United States)

    Waggoner, Derek Charles

    Evidence suggests that reactive oxygen species (ROS), largely generated through photochemical processes, are important in transforming the chemical composition of the large pool of terrestrially-derived dissolved organic matter (DOM) exported from land to water annually. However, due to the challenges inherent in isolating the effects of individual ROS on DOM composition, the role of ROS in the photochemical alteration of DOM remains poorly characterized. The main focus of the studies within this dissertation aim to more thoroughly characterize the alterations to lignin, used as an analog for terrestrial DOM, resulting from reactions with ROS. To investigate the possibility that the alteration of lignin, through reactions involving ROS, could lead to the production of compounds not recognized as having terrestrial origin, lignin-derived DOM was prepared from a sample of Atlantic white cedar (Chamaecyparis thyoides) and used for a number of studies. Lignin-derived DOM was independently exposed to hydroxyl radical (•OH) generated by Fenton reaction, singlet oxygen (1O2) produced using the photosensitizer Rose Bengal, and superoxide (O2-•) via stable potassium superoxide solution, under controlled laboratory conditions to accentuate how each ROS is responsible for the alteration of lignin. Advanced analytical techniques including high performance liquid chromatography (HPLC), nuclear magnetic resonance (NMR), and Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS), were employed to characterize alteration to lignin taking place following various ROS treatments. Results of these studies have shown distinct differences in the types of new compounds observed from exposure to each ROS as well as ROS reactivity. The alteration of lignin to compounds not typically associated with terrestrial DOM has been demonstrated upon exposure to ROS. It is also suggested that ROS could selectively react with different fractions of lignin like compounds based

  8. Effects of Actinobacillus pleuropneumoniae cytotoxins on generation of oxygen radicals by porcine neutrophils

    Directory of Open Access Journals (Sweden)

    Simson Tarigan

    1999-03-01

    Full Text Available Cytotoxins produced by Actinobacillus pleuropneumoniae (App suggested to be the most important pathogenic and virulent factors for this organism. However, the mechanisms on how the cytotoxins contribute to the disease process remain unclear. The purpose of this study is to investigate the effect of the cytotoxins on the oxidative-burst metabolism of porcine neutrophils. In this study, neutrophils were firstly loaded with an oxidative probe dichlorofluorescin diacetate (DCFHDA then expose to cytotoxins. Cells producing oxygen radicals emitted fluorescence and its intensity was measured with a FACScan flow cytometer. All cytotoxins derived from either App serotypes producing ApxI and ApxII, App serotypes producing ApxII only, or App serotypes producing ApxII and ApxIII were capable of stimulating neutrophils for oxygen-radical generation. However, compared with phorbol myristate acetate (PMA, App cytotoxins were much weaker as stimulants for oxygen radicals. In addition, Apx preparation stimulated an oxidative-burst metabolism of neutrophils at a low, narrow range of Apx doses. At higher doses, the toxins inhibit the oxidative burst metabolism. The effects of cytotoxins produced by App during infection on recruited neutrophils into the lungs are assumed to be comparable to those observed in this in vitro study. Neutrophils, and other host cells, adjacent to the bacteria become lysis due to high toxin concentration, whereas those at some distance to the bacteria produce oxygen radicals which in turn cause tissue damage or necrosis.

  9. Metal bacteriochlorins which act as dual singlet oxygen and superoxide generators.

    Science.gov (United States)

    Fukuzumi, Shunichi; Ohkubo, Kei; Zheng, Xiang; Chen, Yihui; Pandey, Ravindra K; Zhan, Riqiang; Kadish, Karl M

    2008-03-06

    A series of stable free-base, Zn(II) and Pd(II) bacteriochlorins containing a fused six- or five-member diketo- or imide ring have been synthesized as good candidates for photodynamic therapy sensitizers, and their electrochemical, photophysical, and photochemical properties were examined. Photoexcitation of the palladium bacteriochlorin affords the triplet excited state without fluorescence emission, resulting in formation of singlet oxygen with a high quantum yield due to the heavy atom effect of palladium. Electrochemical studies revealed that the zinc bacteriochlorin has the smallest HOMO-LUMO gap of the investigated compounds, and this value is significantly lower than the triplet excited-state energy of the compound in benzonitrile. Such a small HOMO-LUMO gap of the zinc bacteriochlorin enables intermolecular photoinduced electron transfer from the triplet excited state to the ground state to produce both the radical cation and the radical anion. The radical anion thus produced can transfer an electron to molecular oxygen to produce superoxide anion which was detected by electron spin resonance. The same photosensitizer can also act as an efficient singlet oxygen generator. Thus, the same zinc bacteriochlorin can function as a sensitizer with a dual role in that it produces both singlet oxygen and superoxide anion in an aprotic solvent (benzonitrile).

  10. Dependence of Initial Oxygen Concentration on Ozone Yield Using Inductive Energy Storage System Pulsed Power Generator

    Science.gov (United States)

    Go, Tomio; Tanaka, Yasushi; Yamazaki, Nobuyuki; Mukaigawa, Seiji; Takaki, Koichi; Fujiwara, Tamiya

    Dependence of initial oxygen concentration on ozone yield using streamer discharge reactor driven by an inductive energy storage system pulsed power generator is described in this paper. Fast recovery type diodes were employed as semiconductor opening switch to interrupt a circuit current within 100 ns. This rapid current change produced high-voltage short pulse between a secondary energy storage inductor. The repetitive high-voltage short pulse was applied to a 1 mm diameter center wire electrode placed in a cylindrical pulse corona reactor. The streamer discharge successfully occurred between the center wire electrode and an outer cylinder ground electrode of 2 cm inner diameter. The ozone was produced with the streamer discharge and increased with increasing pulse repetition rate. The ozone yield changed in proportion to initial oxygen concentration contained in the injected gas mixture at 800 ns forward pumping time of the current. However, the decrease of the ozone yield by decreasing oxygen concentration in the gas mixture at 180 ns forward pumping time of the current was lower than the decrease at 800 ns forward pumping time of the current. This dependence of the initial oxygen concentration on ozone yield at 180 ns forward pumping time is similar to that of dielectric barrier discharge reactor.

  11. Cross talk between increased intracellular zinc (Zn2+) and accumulation of reactive oxygen species in chemical ischemia.

    Science.gov (United States)

    Slepchenko, Kira G; Lu, Qiping; Li, Yang V

    2017-10-01

    Both zinc (Zn 2+ ) and reactive oxygen species (ROS) have been shown to accumulate during hypoxic-ischemic stress and play important roles in pathological processes. To understand the cross talk between the two of them, here we studied Zn 2+ and ROS accumulation by employing fluorescent probes in HeLa cells to further the understanding of the cause and effect relationship of these two important cellular signaling systems during chemical-ischemia, stimulated by oxygen and glucose deprivation (OGD). We observed two Zn 2+ rises that were divided into four phases in the course of 30 min of OGD. The first Zn 2+ rise was a transient, which was followed by a latent phase during which Zn 2+ levels recovered; however, levels remained above a basal level in most cells. The final phase was the second Zn 2+ rise, which reached a sustained plateau called Zn 2+ overload. Zn 2+ rises were not observed when Zn 2+ was removed by TPEN (a Zn 2+ chelator) or thapsigargin (depleting Zn 2+ from intracellular stores) treatment, indicating that Zn 2+ was from intracellular storage. Damaging mitochondria with FCCP significantly reduced the second Zn 2+ rise, indicating that the mitochondrial Zn 2+ accumulation contributes to Zn 2+ overload. We also detected two OGD-induced ROS rises. Two Zn 2+ rises preceded two ROS rises. Removal of Zn 2+ reduced or delayed OGD- and FCCP-induced ROS generation, indicating that Zn 2+ contributes to mitochondrial ROS generation. There was a Zn 2+ -induced increase in the functional component of NADPH oxidase, p47 phox , thus suggesting that NADPH oxidase may mediate Zn 2+ -induced ROS accumulation. We suggest a new mechanism of cross talk between Zn 2+ and mitochondrial ROS through positive feedback processes that eventually causes excessive free Zn 2+ and ROS accumulations during the course of ischemic stress. Copyright © 2017 the American Physiological Society.

  12. Diffusion of a multi-species component and its role in oxygen and water transport in silicates

    Science.gov (United States)

    Zhang, Youxue; Stolper, E. M.; Wasserburg, G. J.

    1991-01-01

    The diffusion of a multispecies component is complicated by the different diffusion coefficient of each species and the interconversion reactions among the species. A diffusion equation is derived that incorporates the diffusive fluxes of all species contributing to the component's concentration. The effect of speciation on diffusion is investigated experimentally by measuring concentration profiles of all species developed during diffusion experiments. Data on water diffusion in rhyolitic glasses indicate that H2O molecules predominate over OH groups as the diffusing species at very low to high water concentrations. A simple theoretical relationship is drawn between the effective total oxygen diffusion coefficient and the total water concentration of silicates at low water content.

  13. Comparative Study of Different Methods to Determine the Role of Reactive Oxygen Species Induced by Zinc Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Nigar A. Najim

    2016-08-01

    Full Text Available Accumulation of reactive oxygen species (ROS followed by an increase in oxidative stress is associated with cellular responses to nanoparticle induced cell damages. Finding the best method for assessing intracellular ROS production is the key step in the detection of oxidative stress induced injury. This study evaluates and compares four different methods for the measurement of intracellular ROS generation using fluorogenic probe, 2´,7´-dichlorofluorescein diacetate (DCFH-DA. Hydrogen peroxide (H2O2 was utilised as a positive control to assess the reactivity of the probe. Spherically shaped zinc oxide (ZnO nanoparticles with an average particle size of 85.7 nm were used to determine the diverse roles of ROS in nanotoxicity in Hs888Lu and U937 cell lines. The results showed that different methods exhibit different patterns of ROS measurement. In conclusion this study found that the time point at which the DCFH-DA is added to the reaction, the incubation time and the oxidative species that is responsible for the oxidation of DCFH, have impact on the intracellular ROS measurement.

  14. Reactive Oxygen Species Play a Role in the Infection of the Necrotrophic Fungi, Rhizoctonia solani in Wheat.

    Science.gov (United States)

    Foley, Rhonda C; Kidd, Brendan N; Hane, James K; Anderson, Jonathan P; Singh, Karam B

    2016-01-01

    Rhizoctonia solani is a nectrotrophic fungal pathogen that causes billions of dollars of damage to agriculture worldwide and infects a broad host range including wheat, rice, potato and legumes. In this study we identify wheat genes that are differentially expressed in response to the R. solani isolate, AG8, using microarray technology. A significant number of wheat genes identified in this screen were involved in reactive oxygen species (ROS) production and redox regulation. Levels of ROS species were increased in wheat root tissue following R. solani infection as determined by Nitro Blue Tetrazolium (NBT), 3,3'-diaminobenzidine (DAB) and titanium sulphate measurements. Pathogen/ROS related genes from R. solani were also tested for expression patterns upon wheat infection. TmpL, a R. solani gene homologous to a gene associated with ROS regulation in Alternaria brassicicola, and OAH, a R. solani gene homologous to oxaloacetate acetylhydrolase which has been shown to produce oxalic acid in Sclerotinia sclerotiorum, were highly induced in R. solani when infecting wheat. We speculate that the interplay between the wheat and R. solani ROS generating proteins may be important for determining the outcome of the wheat/R. solani interaction.

  15. Reactive Oxygen Species Play a Role in the Infection of the Necrotrophic Fungi, Rhizoctonia solani in Wheat.

    Directory of Open Access Journals (Sweden)

    Rhonda C Foley

    Full Text Available Rhizoctonia solani is a nectrotrophic fungal pathogen that causes billions of dollars of damage to agriculture worldwide and infects a broad host range including wheat, rice, potato and legumes. In this study we identify wheat genes that are differentially expressed in response to the R. solani isolate, AG8, using microarray technology. A significant number of wheat genes identified in this screen were involved in reactive oxygen species (ROS production and redox regulation. Levels of ROS species were increased in wheat root tissue following R. solani infection as determined by Nitro Blue Tetrazolium (NBT, 3,3'-diaminobenzidine (DAB and titanium sulphate measurements. Pathogen/ROS related genes from R. solani were also tested for expression patterns upon wheat infection. TmpL, a R. solani gene homologous to a gene associated with ROS regulation in Alternaria brassicicola, and OAH, a R. solani gene homologous to oxaloacetate acetylhydrolase which has been shown to produce oxalic acid in Sclerotinia sclerotiorum, were highly induced in R. solani when infecting wheat. We speculate that the interplay between the wheat and R. solani ROS generating proteins may be important for determining the outcome of the wheat/R. solani interaction.

  16. Chaetocin reactivates the lytic replication of Epstein-Barr virus from latency via reactive oxygen species.

    Science.gov (United States)

    Zhang, Shilun; Yin, Juan; Zhong, Jiang

    2017-01-01

    Oxidative stress, regarded as a negative effect of free radicals in vivo, takes place when organisms suffer from harmful stimuli. Some viruses can induce the release of reactive oxygen species (ROS) in infected cells, which may be closely related with their pathogenicity. In this report, chaetocin, a fungal metabolite reported to have antimicrobial and cytostatic activity, was studied for its effect on the activation of latent Epstein-Barr virus (EBV) in B95-8 cells. We found that chaetocin remarkably up-regulated EBV lytic transcription and DNA replication at a low concentration (50 nmol L -1 ). The activation of latent EBV was accompanied by an increased cellular ROS level. N-acetyl-L-cysteine (NAC), an ROS inhibitor, suppressed chaetocin-induced EBV activation. Chaetocin had little effect on histone H3K9 methylation, while NAC also significantly reduced H3K9 methylation. These results suggested that chaetocin reactivates latent EBV primarily via ROS pathways.

  17. Fundamental roles of reactive oxygen species and protective mechanisms in the female reproductive system

    Directory of Open Access Journals (Sweden)

    Okada Futoshi

    2005-09-01

    Full Text Available Abstract Controlled oxidation, such as disulfide bond formation in sperm nuclei and during ovulation, plays a fundamental role in mammalian reproduction. Excess oxidation, however, causes oxidative stress, resulting in the dysfunction of the reproductive process. Antioxidation reactions that reduce the levels of reactive oxygen species are of prime importance in reproductive systems in maintaining the quality of gametes and support reproduction. While anti-oxidative enzymes, such as superoxide dismutase and peroxidase, play a central role in eliminating oxidative stress, reduction-oxidation (redox systems, comprised of mainly glutathione and thioredoxin, function to reduce the levels of oxidized molecules. Aldo-keto reductase, using NADPH as an electron donor, detoxifies carbonyl compounds resulting from the oxidation of lipids and proteins. Thus, many antioxidative and redox enzyme genes are expressed and aggressively protect gametes and embryos in reproductive systems.

  18. Research on killing Escherichia Coli by reactive oxygen species based on strong ionization discharging plasma

    International Nuclear Information System (INIS)

    Li, Y J; Tian, Y P; Zhang, Z T; Li, R H; Cai, L J; Gao, J Y

    2013-01-01

    Reactive oxygen species solution produced by strong ionization discharging plasma was used to kill Escherichia coli by spraying. Several effect factors such as pH value, solution temperature, spraying time and exposure time were observed in this study, and their effects on killing rate of Escherichia coli were discussed and analysed. Results show that the treating efficiency of ROS solution for Escherichia coli is higher in alkaline solution than that in acid solution. The killing rate of Escherichia coli increases while the spraying time and exposure time are longer and the temperature is lower. The effects of different factors on killing rate of Escherichia coli are as follows: spraying time > pH value > exposure time > solution temperature.

  19. Temperature controls oxidative phosphorylation and reactive oxygen species production through uncoupling in rat skeletal muscle mitochondria.

    Science.gov (United States)

    Jarmuszkiewicz, Wieslawa; Woyda-Ploszczyca, Andrzej; Koziel, Agnieszka; Majerczak, Joanna; Zoladz, Jerzy A

    2015-06-01

    Mitochondrial respiratory and phosphorylation activities, mitochondrial uncoupling, and hydrogen peroxide formation were studied in isolated rat skeletal muscle mitochondria during experimentally induced hypothermia (25 °C) and hyperthermia (42 °C) compared to the physiological temperature of resting muscle (35 °C). For nonphosphorylating mitochondria, increasing the temperature from 25 to 42 °C led to a decrease in membrane potential, hydrogen peroxide production, and quinone reduction levels. For phosphorylating mitochondria, no temperature-dependent changes in these mitochondrial functions were observed. However, the efficiency of oxidative phosphorylation decreased, whereas the oxidation and phosphorylation rates and oxidative capacities of the mitochondria increased, with increasing assay temperature. An increase in proton leak, including uncoupling protein-mediated proton leak, was observed with increasing assay temperature, which could explain the reduced oxidative phosphorylation efficiency and reactive oxygen species production. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Reactive Oxygen Species-Mediated Mechanisms of Action of Targeted Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Hanna-Riikka Teppo

    2017-01-01

    Full Text Available Targeted cancer therapies, involving tyrosine kinase inhibitors and monoclonal antibodies, for example, have recently led to substantial prolongation of survival in many metastatic cancers. Compared with traditional chemotherapy and radiotherapy, where reactive oxygen species (ROS have been directly linked to the mediation of cytotoxic effects and adverse events, the field of oxidative stress regulation is still emerging in targeted cancer therapies. Here, we provide a comprehensive review regarding the current evidence of ROS-mediated effects of antibodies and tyrosine kinase inhibitors, use of which has been indicated in the treatment of solid malignancies and lymphomas. It can be concluded that there is rapidly emerging evidence of ROS-mediated effects of some of these compounds, which is also relevant in the context of drug resistance and how to overcome it.

  1. The Role of Heme and Reactive Oxygen Species in Proliferation and Survival of Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Marcia Cristina Paes

    2011-01-01

    Full Text Available Trypanosoma cruzi, the protozoan responsible for Chagas disease, has a complex life cycle comprehending two distinct hosts and a series of morphological and functional transformations. Hemoglobin degradation inside the insect vector releases high amounts of heme, and this molecule is known to exert a number of physiological functions. Moreover, the absence of its complete biosynthetic pathway in T. cruzi indicates heme as an essential molecule for this trypanosomatid survival. Within the hosts, T. cruzi has to cope with sudden environmental changes especially in the redox status and heme is able to increase the basal production of reactive oxygen species (ROS which can be also produced as byproducts of the parasite aerobic metabolism. In this regard, ROS sensing is likely to be an important mechanism for the adaptation and interaction of these organisms with their hosts. In this paper we discuss the main features of heme and ROS susceptibility in T. cruzi biology.

  2. Restraining reactive oxygen species in Listeria monocytogenes promotes the apoptosis of glial cells.

    Science.gov (United States)

    Li, Sen; Li, Yixuan; Chen, Guowei; Zhang, Jingchen; Xu, Fei; Wu, Man

    2017-07-01

    Listeria monocytogenes is a facultative anaerobic foodborne pathogen that can traverse the blood-brain barrier and cause brain infection. L. monocytogenes infection induces host cell apoptosis in several cell types. In this study, we investigated the apoptosis of human glioma cell line U251 invaded by L. monocytogenes and evaluated the function of bacterial reactive oxygen species (ROS) during infection. Bacterial ROS level was reduced by carrying out treatment with N-acetyl cysteine (NAC) and diphenyleneiodonium chloride (DPI). After infection, the apoptosis of U251 cells was examined by flow cytometry assay and propidium iodide staining. DPI and NAC efficiently decreased ROS level in L. monocytogenes without affecting bacterial growth. Moreover, the apoptosis of glial cells was enhanced upon invasion of DPI- and NAC-pretreated L. monocytogenes. Results indicate that the apoptosis of glial cells can be induced by L. monocytogenes, and that the inhibition of bacterial ROS increases the apoptosis of host cells.

  3. The Injury and Therapy of Reactive Oxygen Species in Intracerebral Hemorrhage Looking at Mitochondria

    Directory of Open Access Journals (Sweden)

    Jie Qu

    2016-01-01

    Full Text Available Intracerebral hemorrhage is an emerging major health problem often resulting in death or disability. Reactive oxygen species (ROS have been identified as one of the major damaging factors in ischemic stroke. However, there is less discussion about ROS in hemorrhage stroke. Metabolic products of hemoglobin, excitatory amino acids, and inflammatory cells are all sources of ROS, and ROS harm the central nervous system through cell death and structural damage, especially disruption of the blood-brain barrier. We have considered the antioxidant system of the CNS itself and the drugs aiming to decrease ROS after ICH, and we find that mitochondria are key players in all of these aspects. Moreover, when the mitochondrial permeability transition pore opens, ROS-induced ROS release, which leads to extensive liberation of ROS and mitochondrial failure, occurs. Therefore, the mitochondrion may be a significant target for elucidating the problem of ROS in ICH; however, additional experimental support is required.

  4. Horseradish peroxidase embedded in polyacrylamide nanoparticles enables optical detection of reactive oxygen species

    DEFF Research Database (Denmark)

    Poulsen, A.K.; Scharff-Poulsen, Anne Marie; Olsen, L.F.

    2007-01-01

    We have synthesized and characterized new nanometer-sized polyacrylamide particles containing horseradish peroxidase and fluorescent dyes. Proteins and dyes are encapsulated by radical polymerization in inverse microemulsion. The activity of the encapsulated enzyme has been examined and it mainta......We have synthesized and characterized new nanometer-sized polyacrylamide particles containing horseradish peroxidase and fluorescent dyes. Proteins and dyes are encapsulated by radical polymerization in inverse microemulsion. The activity of the encapsulated enzyme has been examined...... for quantification of hydrogen peroxide and other reactive oxygen species in microenvironments, and we propose that the particles may find use as nanosensors for use in, e.g., living cells. (C) 2007 Elsevier Inc. All rights reserved....

  5. Reactive oxygen species-related activities of nano-iron metal and nano-iron oxides.

    Science.gov (United States)

    Wu, Haohao; Yin, Jun-Jie; Wamer, Wayne G; Zeng, Mingyong; Lo, Y Martin

    2014-03-01

    Nano-iron metal and nano-iron oxides are among the most widely used engineered and naturally occurring nanostructures, and the increasing incidence of biological exposure to these nanostructures has raised concerns about their biotoxicity. Reactive oxygen species (ROS)-induced oxidative stress is one of the most accepted toxic mechanisms and, in the past decades, considerable efforts have been made to investigate the ROS-related activities of iron nanostructures. In this review, we summarize activities of nano-iron metal and nano-iron oxides in ROS-related redox processes, addressing in detail the known homogeneous and heterogeneous redox mechanisms involved in these processes, intrinsic ROS-related properties of iron nanostructures (chemical composition, particle size, and crystalline phase), and ROS-related bio-microenvironmental factors, including physiological pH and buffers, biogenic reducing agents, and other organic substances. Copyright © 2014. Published by Elsevier B.V.

  6. Using consensus bayesian network to model the reactive oxygen species regulatory pathway.

    Directory of Open Access Journals (Sweden)

    Liangdong Hu

    Full Text Available Bayesian network is one of the most successful graph models for representing the reactive oxygen species regulatory pathway. With the increasing number of microarray measurements, it is possible to construct the bayesian network from microarray data directly. Although large numbers of bayesian network learning algorithms have been developed, when applying them to learn bayesian networks from microarray data, the accuracies are low due to that the databases they used to learn bayesian networks contain too few microarray data. In this paper, we propose a consensus bayesian network which is constructed by combining bayesian networks from relevant literatures and bayesian networks learned from microarray data. It would have a higher accuracy than the bayesian networks learned from one database. In the experiment, we validated the bayesian network combination algorithm on several classic machine learning databases and used the consensus bayesian network to model the Escherichia coli's ROS pathway.

  7. ent-Jungermannenone C Triggers Reactive Oxygen Species-Dependent Cell Differentiation in Leukemia Cells.

    Science.gov (United States)

    Yue, Zongwei; Xiao, Xinhua; Wu, Jinbao; Zhou, Xiaozhou; Liu, Weilong; Liu, Yaxi; Li, Houhua; Chen, Guoqiang; Wu, Yingli; Lei, Xiaoguang

    2018-02-23

    Acute myeloid leukemia (AML) is a hematologic malignancy that is characterized by clonal proliferation of myeloid blasts. Despite the progress that has been made in the treatment of various malignant hematopoietic diseases, the effective treatment of AML remains very challenging. Differentiation therapy has emerged as a promising approach for leukemia treatment, and new and effective chemical agents to trigger the differentiation of AML cells, especially drug-resistant cells, are urgently required. Herein, the natural product jungermannenone C, a tetracyclic diterpenoid isolated from liverworts, is reported to induce cell differentiation in AML cells. Interestingly, the unnatural enantiomer of jungermannenone C (1) was found to be more potent than jungermannenone C in inducing cell differentiation. Furthermore, compound 1 targets peroxiredoxins I and II by selectively binding to the conserved cysteine residues and leads to cellular reactive oxygen species accumulation. Accordingly, ent-jungermannenone C (1) shows potential for further investigation as an effective differentiation therapy against AML.

  8. Reactive Oxygen and Nitrogen Species in the Development of Pulmonary Hypertension

    Directory of Open Access Journals (Sweden)

    David J.R. Fulton

    2017-07-01

    Full Text Available Pulmonary arterial hypertension (PAH is a progressive disease of the lung vasculature that involves the loss of endothelial function together with inappropriate smooth muscle cell growth, inflammation, and fibrosis. These changes underlie a progressive remodeling of blood vessels that alters flow and increases pulmonary blood pressure. Elevated pressures in the pulmonary artery imparts a chronic stress on the right ventricle which undergoes compensatory hypertrophy but eventually fails. How PAH develops remains incompletely understood and evidence for the altered production of reactive oxygen and nitrogen species (ROS, RNS respectively in the pulmonary circulation has been well documented. There are many different types of ROS and RNS, multiple sources, and collective actions and interactions. This review summarizes past and current knowledge of the sources of ROS and RNS and how they may contribute to the loss of endothelial function and changes in smooth muscle proliferation in the pulmonary circulation.

  9. Mitochondrial reactive oxygen species regulate the strength of inhibitory GABA-mediated synaptic transmission

    Science.gov (United States)

    Accardi, Michael V.; Daniels, Bryan A.; Brown, Patricia M. G. E.; Fritschy, Jean-Marc; Tyagarajan, Shiva K.; Bowie, Derek

    2014-01-01

    Neuronal communication imposes a heavy metabolic burden in maintaining ionic gradients essential for action potential firing and synaptic signalling. Although cellular metabolism is known to regulate excitatory neurotransmission, it is still unclear whether the brain’s energy supply affects inhibitory signalling. Here we show that mitochondrial-derived reactive oxygen species (mROS) regulate the strength of postsynaptic GABAA receptors at inhibitory synapses of cerebellar stellate cells. Inhibition is strengthened through a mechanism that selectively recruits α3-containing GABAA receptors into synapses with no discernible effect on resident α1-containing receptors. Since mROS promotes the emergence of postsynaptic events with unique kinetic properties, we conclude that newly recruited α3-containing GABAA receptors are activated by neurotransmitter released onto discrete postsynaptic sites. Although traditionally associated with oxidative stress in neurodegenerative disease, our data identify mROS as a putative homeostatic signalling molecule coupling cellular metabolism to the strength of inhibitory transmission.

  10. X-ray induced singlet oxygen generation by nanoparticle-photosensitizer conjugates for photodynamic therapy: determination of singlet oxygen quantum yield

    OpenAIRE

    Clement, Sandhya; Deng, Wei; Camilleri, Elizabeth; Wilson, Brian C.; Goldys, Ewa M.

    2016-01-01

    Singlet oxygen is a primary cytotoxic agent in photodynamic therapy. We show that CeF3 nanoparticles, pure as well as conjugated through electrostatic interaction with the photosensitizer verteporfin, are able to generate singlet oxygen as a result of UV light and 8?keV X-ray irradiation. The X-ray stimulated singlet oxygen quantum yield was determined to be 0.79???0.05 for the conjugate with 31 verteporfin molecules per CeF3 nanoparticle, the highest conjugation level used. From this result ...

  11. Influence of Vitamins on Secondary Reactive Oxygen Species Production in Sera of Patients with Resectable NSCLC

    Directory of Open Access Journals (Sweden)

    Thierry Patrice

    2016-07-01

    Full Text Available Background: Singlet oxygen (1O2 oxidizes targets through the production of secondary reactive oxygen species (SOS. Cancers induce oxidative stress changing with progression, the resulting antioxidant status differing from one patient to the other. The aim of this study was to determine the oxidative status of patients with resectable Non-Small cell lung cancers (NSCLC and the potential influence of antioxidants, compared to sera from healthy donors. Materials and Methods: Serum samples from 10 women and 28 men, 19 adenocarcinomas (ADK, 15 patients N1 or M1 were submitted to a photoreaction producing 1O2. Then, samples were supplemented with vitamins (Vit C, Vit E, or glutathione (GSH. Results: Squamous cell carcinomas (SCC and metastatic SCCs induced a lower SOS rate. While Vit C increased SOS in controls as in patients with metastases, Vit E or the combination of Vit E and C strongly reduced SOS. GSH alone lightly decreased SOS in controls but had no effect in patients either alone or combined with Vit C. Conclusion: In “early” lung cancers, SOS are comparable or lower than for healthy persons. The role of Vitamins varies with gender, cancer type, and metastases. This suggests that an eventual supplementation should be performed on a per-patient basis to evidence any effect.

  12. The role of metals in production and scavenging of reactive oxygen species in photosystem II.

    Science.gov (United States)

    Pospíšil, Pavel

    2014-07-01

    Metal ions play a crucial role in enzymatic reactions in all photosynthetic organisms such as cyanobacteria, algae and plants. It well known that metal ions maintain the binding of substrate in the active site of the metalloenzymes and control the redox activity of the metalloenzyme in the enzymatic reaction. A large pigment-protein complex, PSII, known to serve as a water-plastoquinone oxidoreductase, contains three metal centers comprising non-heme iron, heme iron of Cyt b559 and the water-splitting manganese complex. Metal ions bound to PSII proteins maintain the electron transport from water to plastoquinone and regulate the pro-oxidant and antioxidant activity in PSII. In this review, attention is focused on the role of PSII metal centers in (i) the formation of superoxide anion and hydroxyl radicals by sequential one-electron reduction of molecular oxygen and the formation of hydrogen peroxide by incomplete two-electron oxidation of water; and (ii) the elimination of superoxide anion radical by one-electron oxidation and reduction (superoxide dismutase activity) and of hydrogen peroxide by two-electron oxidation and reduction (catalase activity). The balance between the formation and elimination of reactive oxygen species by PSII metal centers is discussed as an important aspect in the prevention of photo-oxidative damage of PSII proteins and lipids. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  13. Effect of ectomycorrhizal colonization and drought on reactive oxygen species metabolism of Nothofagus dombeyi roots.

    Science.gov (United States)

    Alvarez, Maricel; Huygens, Dries; Fernandez, Carlos; Gacitúa, Yessy; Olivares, Erick; Saavedra, Isabel; Alberdi, Miren; Valenzuela, Eduardo

    2009-08-01

    Infection with ectomycorrhizal fungi can increase the ability of plants to resist drought stress through morphophysiological and biochemical mechanisms. However, the metabolism of antioxidative enzyme activities in the ectomycorrhizal symbiosis remains poorly understood. This study investigated biomass production, reactive oxygen metabolism (hydrogen peroxide and malondialdehyde concentration) and antioxidant enzyme activity (superoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase) in pure cultures of the ectomycorrhizal fungi Descolea antartica Sing. and Pisolithus tinctorius (Pers.) Coker & Couch, and non-mycorrhizal and mycorrhizal roots of Nothofagus dombeyi (Mirb.) roots under well-watered conditions and drought conditions (DC). The studied ectomycorrhizal fungi regulated their antioxidative enzyme metabolism differentially in response to drought, resulting in cellular damage in D. antartica but not in P. tinctorius. Ectomycorrhizal inoculation and water treatment had a significant effect on all parameters studied, including relative water content of the plant. As such, N. dombeyi plants in symbiosis experienced a lower oxidative stress effect than non-mycorrhizal plants under DC. Additionally, ectomycorrhizal N. dombeyi roots showed a greater antioxidant enzyme activity relative to non-mycorrhizal roots, an effect which was further expressed under DC. The association between the non-specific P. tinctorius and N. dombeyi had a more effective reactive oxygen species (ROS) metabolism than the specific D. antartica-N. dombeyi symbiosis. We conclude that the combination of effective ROS prevention and ROS detoxification by ectomycorrhizal plants resulted in reduced cellular damage and increased plant growth relative to non-mycorrhizal plants under drought.

  14. Effects of Reactive Oxygen Species on Tubular Transport along the Nephron.

    Science.gov (United States)

    Gonzalez-Vicente, Agustin; Garvin, Jeffrey L

    2017-03-23

    Reactive oxygen species (ROS) are oxygen-containing molecules naturally occurring in both inorganic and biological chemical systems. Due to their high reactivity and potentially damaging effects to biomolecules, cells express a battery of enzymes to rapidly metabolize them to innocuous intermediaries. Initially, ROS were considered by biologists as dangerous byproducts of respiration capable of causing oxidative stress, a condition in which overproduction of ROS leads to a reduction in protective molecules and enzymes and consequent damage to lipids, proteins, and DNA. In fact, ROS are used by immune systems to kill virus and bacteria, causing inflammation and local tissue damage. Today, we know that the functions of ROS are not so limited, and that they also act as signaling molecules mediating processes as diverse as gene expression, mechanosensation, and epithelial transport. In the kidney, ROS such as nitric oxide (NO), superoxide (O₂ - ), and their derivative molecules hydrogen peroxide (H₂O₂) and peroxynitrite (ONO₂ - ) regulate solute and water reabsorption, which is vital to maintain electrolyte homeostasis and extracellular fluid volume. This article reviews the effects of NO, O₂ - , ONO₂ - , and H₂O₂ on water and electrolyte reabsorption in proximal tubules, thick ascending limbs, and collecting ducts, and the effects of NO and O₂ - in the macula densa on tubuloglomerular feedback.

  15. Nitric Oxide and Reactive Oxygen Species in the Pathogenesis of Preeclampsia

    Directory of Open Access Journals (Sweden)

    Keiichi Matsubara

    2015-03-01

    Full Text Available Preeclampsia (PE is characterized by disturbed extravillous trophoblast migration toward uterine spiral arteries leading to increased uteroplacental vascular resistance and by vascular dysfunction resulting in reduced systemic vasodilatory properties. Its pathogenesis is mediated by an altered bioavailability of nitric oxide (NO and tissue damage caused by increased levels of reactive oxygen species (ROS. Furthermore, superoxide (O2− rapidly inactivates NO and forms peroxynitrite (ONOO−. It is known that ONOO− accumulates in the placental tissues and injures the placental function in PE. In addition, ROS could stimulate platelet adhesion and aggregation leading to intravascular coagulopathy. ROS-induced coagulopathy causes placental infarction and impairs the uteroplacental blood flow in PE. The disorders could lead to the reduction of oxygen and nutrients required for normal fetal development resulting in fetal growth restriction. On the other hand, several antioxidants scavenge ROS and protect tissues against oxidative damage. Placental antioxidants including catalase, superoxide dismutase (SOD, and glutathione peroxidase (GPx protect the vasculature from ROS and maintain the vascular function. However, placental ischemia in PE decreases the antioxidant activity resulting in further elevated oxidative stress, which leads to the appearance of the pathological conditions of PE including hypertension and proteinuria. Oxidative stress is defined as an imbalance between ROS and antioxidant activity. This review provides new insights about roles of oxidative stress in the pathophysiology of PE.

  16. Health assessment of gasoline and fuel oxygenate vapors: generation and characterization of test materials.

    Science.gov (United States)

    Henley, Michael; Letinski, Daniel J; Carr, John; Caro, Mario L; Daughtrey, Wayne; White, Russell

    2014-11-01

    In compliance with the Clean Air Act regulations for fuel and fuel additive registration, the petroleum industry, additive manufacturers, and oxygenate manufacturers have conducted comparative toxicology testing on evaporative emissions of gasoline alone and gasoline containing fuel oxygenates. To mimic real world exposures, a generation method was developed that produced test material similar in composition to the re-fueling vapor from an automotive fuel tank at near maximum in-use temperatures. Gasoline vapor was generated by a single-step distillation from a 1000-gallon glass-lined kettle wherein approximately 15-23% of the starting material was slowly vaporized, separated, condensed and recovered as test article. This fraction was termed vapor condensate (VC) and was prepared for each of the seven test materials, namely: baseline gasoline alone (BGVC), or gasoline plus an ether (G/MTBE, G/ETBE, G/TAME, or G/DIPE), or gasoline plus an alcohol (G/EtOH or G/TBA). The VC test articles were used for the inhalation toxicology studies described in the accompanying series of papers in this journal. These studies included evaluations of subchronic toxicity, neurotoxicity, immunotoxicity, genotoxicity, reproductive and developmental toxicity. Results of these studies will be used for comparative risk assessments of gasoline and gasoline/oxygenate blends by the US Environmental Protection Agency. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Protective effects of myricitrin against osteoporosis via reducing reactive oxygen species and bone-resorbing cytokines

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Qiang; Gao, Bo; Wang, Long; Hu, Ya-Qian; Lu, Wei-Guang; Yang, Liu; Luo, Zhuo-Jing; Liu, Jian, E-mail: liujianhq@sina.com

    2014-11-01

    Oxidative stress is a crucial pathogenic factor in the development of osteoporosis. Myricitrin, isolated from Myrica cerifera, is a potent antioxidant. We hypothesized that myricitrin possessed protective effects against osteoporosis by partially reducing reactive oxygen species (ROS) and bone-resorbing cytokines in osteoblastic MC3T3-E1 cells and human bone marrow stromal cells (hBMSCs). We investigated myricitrin on osteogenic differentiation under oxidative stress. Hydrogen peroxide (H{sub 2}O{sub 2}) was used to establish an oxidative cell injury model. Our results revealed that myricitrin significantly improved some osteogenic markers in these cells. Myricitrin decreased lipid production and reduced peroxisome proliferator-activated receptor gamma-2 (PPARγ2) expression in hBMSCs. Moreover, myricitrin reduced the expression of receptor activator of nuclear factor kappa-B ligand (RANKL) and IL-6 and partially suppressed ROS production. In vivo, we established a murine ovariectomized (OVX) osteoporosis model. Our results demonstrated that myricitrin supplementation reduced serum malondialdehyde (MDA) activity and increased reduced glutathione (GSH) activity. Importantly, it ameliorated the micro-architecture of trabecular bones in the 4th lumbar vertebrae (L4) and distal femur. Taken together, these results indicated that the protective effects of myricitrin against osteoporosis are linked to a reduction in ROS and bone-resorbing cytokines, suggesting that myricitrin may be useful in bone metabolism diseases, particularly osteoporosis. - Highlights: • Myricitrin protects MC3T3-E1 cells and hBMSCs from oxidative stress. • It is accompanied by a decrease in oxidative stress and bone-resorbing cytokines. • Myricitrin decreases serum reactive oxygen species to some degree. • Myricitrin partly reverses ovariectomy effects in vivo. • Myricitrin may represent a beneficial anti-osteoporosis treatment method.

  18. Induction of reactive oxygen species in marine phytoplankton under crude oil exposure.

    Science.gov (United States)

    Ozhan, Koray; Zahraeifard, Sara; Smith, Aaron P; Bargu, Sibel

    2015-12-01

    Exposure of phytoplankton to the water-accommodated fraction of crude oil can elicit a number of stress responses, but the mechanisms that drive these responses are unclear. South Louisiana crude oil was selected to investigate its effects on population growth, chlorophyll a (Chl a) content, antioxidative defense, and lipid peroxidation, for the marine diatom, Ditylum brightwellii, and the dinoflagellate, Heterocapsa triquetra, in laboratory-based microcosm experiments. The transcript levels of several possible stress-responsive genes in D. brightwellii were also measured. The microalgae were exposed to crude oil for up to 96 h, and Chl a content, superoxide dismutase (SOD), the glutathione pool (GSH and GSSG), and lipid peroxidation content were analyzed. The cell growth of both phytoplankton species was inhibited with increasing crude oil concentrations. Crude oil exposure did not affect Chl a content significantly in cells. SOD activities showed similar responses in both species, being enhanced at 4- and 8-mg/L crude oil exposure. Only H. triquetra demonstrated enhanced activity in GSSG pool and lipid peroxidation at 8-mg/L crude oil exposure, suggesting that phytoplankton species have distinct physiological responses and tolerance levels to crude oil exposure. This study indicated the activation of reactive oxygen species (ROS) in phytoplankton under crude oil exposure; however, the progressive damage in cells is still unknown. Thus, ROS-related damage in nucleic acid, lipids, proteins, and DNA, due to crude oil exposure could be a worthwhile subject of study to better understand crude oil toxicity at the base of the food web.

  19. Hydrodeoxygenation of aliphatic and aromatic oxygenates on sulphided catalysts for production of second generation biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Senol, O.I.

    2007-07-01

    Environmental concerns and diminishing petroleum reserves have increased the importance of biofuels for traffic fuel applications. Second generation biofuels produced from wood, vegetable oils and animal fats have been considered promising for delivering biofuels in large amount with low production cost. The abundance of oxygen in the form of various aliphatic and aromatic oxygenates decreases the quality of biofuels, however, and therefore the oxygen content of biofuels must be reduced. Upgrading of biofuels can be achieved by hydrodeoxygenation (HDO), which is similar to hydrodesulphurisation in oil refining. In HDO, oxygen-containing compounds are converted to hydrocarbons by eliminating oxygen in the form of water in the presence of hydrogen and a sulphided catalyst. Due to the low sulphur content of biofuels, a sulphiding agent is typically added to the HDO feed to maintain activity and stability of the catalyst. The aim of this work was to investigate HDO using aliphatic and aromatic oxygenates as model compounds on sulphided NiMo/gamma-Al{sub 2}O3 and CoMo/gamma-Al{sub 2}O3 catalysts. The effects of side product, water, and of sulphiding agents, H{sub 2}S and CS{sub 2}, on HDO were determined. The primary focus was on the HDO of aliphatic oxygenates, because a reasonable amount of data regarding the HDO of aromatic oxygenates already exists. The HDO of aliphatic esters produced hydrocarbons from intermediate alcohol, carboxylic acid, aldehyde and ether compounds. A few sulphur-containing compounds were also detected in trace amounts, and their formation caused desulphurisation of the catalysts. Hydrogenation reactions and acid-catalysed reactions (dehydration, hydrolysis, esterification, E{sub 2} elimination and SN{sub 2} nucleophilic substitution) played a major role in the HDO of aliphatic oxygenates. The NiMo catalyst showed a higher activity for HDO and hydrogenation reactions than the CoMo catalyst, but both catalysts became deactivated because of

  20. Advancements in oxygen generation and humidity control by water vapor electrolysis

    Science.gov (United States)

    Heppner, D. B.; Sudar, M.; Lee, M. C.

    1988-01-01

    Regenerative processes for the revitalization of manned spacecraft atmospheres or other manned habitats are essential for realization of long-term space missions. These processes include oxygen generation through water electrolysis. One promising technique of water electrolysis is the direct conversion of the water vapor contained in the cabin air to oxygen. This technique is the subject of the present program on water vapor electrolysis development. The objectives were to incorporate technology improvements developed under other similar electrochemical programs and add new ones; design and fabricate a mutli-cell electrochemical module and a testing facility; and demonstrate through testing the improvements. Each aspect of the water vapor electrolysis cell was reviewed. The materials of construction and sizing of each element were investigated analytically and sometime experimentally. In addition, operational considerations such as temperature control in response to inlet conditions were investigated. Three specific quantitative goals were established.

  1. Analytical study of ozone generation in a single discharge in oxygen

    International Nuclear Information System (INIS)

    Hernandez A, A.O.

    1995-01-01

    The present thesis work, in the case of the equations description the generation ozone process, an atomic oxygen it was described, in the first part, the analysis of perturbative method used in [1] to solve this kind of equations, so on the solutions in the stationary and temporal cases were rensed by means of a constant flux velocity. The second part present the solutions to the sat dy state equations for constant mean flux velocity (Poiseuille form) at low pressures. Finally, the resulting equations were compared with other authors reports. [1] C. Gutierrez-Tapia, E. Camps and O. Olea-Cardoso, Perturbative method for ozone synthesis from oxygen in a single discharge. IEEE Trans. on Plasma Sci. 22(5) 979-985, 1994. (Author)

  2. Mobilization of Intracellular Copper by Gossypol and Apogossypolone Leads to Reactive Oxygen Species-Mediated Cell Death: Putative Anticancer Mechanism

    Directory of Open Access Journals (Sweden)

    Haseeb Zubair

    2016-06-01

    Full Text Available There is compelling evidence that serum, tissue and intracellular levels of copper are elevated in all types of cancer. Copper has been suggested as an important co-factor for angiogenesis. It is also a major metal ion present inside the nucleus, bound to DNA bases, particularly guanine. We have earlier proposed that the interaction of phenolic-antioxidants with intracellular copper leads to the generation of reactive oxygen species (ROS that ultimately serve as DNA cleaving agents. To further validate our hypothesis we show here that the antioxidant gossypol and its semi-synthetic derivative apogossypolone induce copper-mediated apoptosis in breast MDA-MB-231, prostate PC3 and pancreatic BxPC-3 cancer cells, through the generation of ROS. MCF10A breast epithelial cells refractory to the cytotoxic property of these compounds become sensitized to treatment against gossypol, as well as apogossypolone, when pre-incubated with copper. Our present results confirm our earlier findings and strengthen our hypothesis that plant-derived antioxidants mobilize intracellular copper instigating ROS-mediated cellular DNA breakage. As cancer cells exist under significant oxidative stress, this increase in ROS-stress to cytotoxic levels could be a successful anticancer approach.

  3. Variations in creatine kinase activity and reactive oxygen species levels are involved in capacitation of bovine spermatozoa.

    Science.gov (United States)

    Córdoba, M; Pintos, L; Beconi, M T

    2008-12-01

    The generation of reactive oxygen species (ROS) is associated with some factors such as oxidative substrate sources, mitochondrial function and NAD(P)H oxidase activity. In bovine spermatozoa, heparin capacitation produces a respiratory burst sensitive to diphenyleneiodonium (DPI). Creatine kinase (CK) is related to extramitochondrial ATP disponibility. Our purpose was to determine the variation in ROS level and its relation with NAD(P)H oxidase sensitive to DPI and CK participation, as factors involved in redox state and energy generation in capacitation. The chlortetracycline technique was used to evaluate capacitation. CK activity and ROS level were measured by spectrophotometry and spectrofluorometry respectively. The capacitation percentage was increased by heparin or quercetin treatment (P level as control (238.62 +/- 23.47 arbitrary units per 10(8) spermatozoa) (P > 0.05). CK activity decreased by 50% with heparin or quercetin (P level variations were observed in heparin- or quercetin-treated samples (P bovine spermatozoa, capacitation requires equilibrium between oxidative damage susceptibility and ROS levels. CK activity is associated with redox state variation and energy sources. In conclusion, capacitation induction depends on NADPH oxidase and the shuttle creatine-creatine phosphate, both sensitive to DPI.

  4. Perfluorooctane sulfonate (PFOS) induces reactive oxygen species (ROS) production in human microvascular endothelial cells: role in endothelial permeability.

    Science.gov (United States)

    Qian, Yong; Ducatman, Alan; Ward, Rebecca; Leonard, Steve; Bukowski, Valerie; Lan Guo, Nancy; Shi, Xianglin; Vallyathan, Val; Castranova, Vincent

    2010-01-01

    Perfluorooctane sulfonate (PFOS) is a member of the perfluoroalkyl acids (PFAA) containing an eight-carbon backbone. PFOS is a man-made chemical with carbon-fluorine bonds that are among the strongest in organic chemistry, and PFOS is widely used in industry. Human occupational and environmental exposure to PFOS occurs globally. PFOS is non-biodegradable and is persistent in the human body and environment. In this study, data demonstrated that exposure of human microvascular endothelial cells (HMVEC) to PFOS induced the production of reactive oxygen species (ROS) at both high and low concentrations. Morphologically, it was found that exposure to PFOS induced actin filament remodeling and endothelial permeability changes in HMVEC. Furthermore, data demonstrated that the production of ROS plays a regulatory role in PFOS-induced actin filament remodeling and the increase in endothelial permeability. Our results indicate that the generation of ROS may play a role in PFOS-induced aberrations of the endothelial permeability barrier. The results generated from this study may provide a new insight into the potential adverse effects of PFOS exposure on humans at the cellular level.

  5. Reactive oxygen species-mediated DNA damage and apoptosis in human skin epidermal cells after exposure to nickel nanoparticles.

    Science.gov (United States)

    Alarifi, Saud; Ali, Daoud; Alakhtani, Saad; Al Suhaibani, Entissar S; Al-Qahtani, Ahmed A

    2014-01-01

    Nickel nanoparticles (NiNPs) are increasingly used in various applications due to their unique properties. However, there is little information concerning the toxicity of NiNPs in the human skin cell (A431). The present study was designed to investigate the cytotoxicity, apoptosis, and DNA damage due to NiNPs in A431 cells. A cellular proliferative capacity test showed that NiNPs induce significant cytotoxicity in a dose- and time-dependent manner. NiNPs were also found to induce oxidative stress evidenced by the generation of reactive oxygen species (ROS) and depletion of glutathione (GSH). Further, co-treatment with the antioxidant N-acetylcysteine (NAC) mitigated the ROS generation due to NiNPs, suggesting the potential mechanism of oxidative stress. NiNPs also induced significant elevation of lipid peroxidation, catalase, and superoxide dismutase and caspase-3 activity in A431 cells. In addition, NAC suppressed NiNP-induced caspase-3 activity. DNA fragmentation analysis using the comet assay showed that the NiNPs cause genotoxicity in a dose- and time-dependent manner. Therefore, the study points out the capability of the NiNPs to induce oxidative stress resulting in apoptosis and genotoxicity. This study warrants more careful assessment of NiNPs before their industrial applications.

  6. Beta-hydroxybutyrate increases reactive oxygen species in late but not in early postimplantation embryonic cells in vitro.

    Science.gov (United States)

    Forsberg, H; Eriksson, U J; Melefors, O; Welsh, N

    1998-02-01

    Embryonic dysmorphogenesis has been blocked by antioxidant treatment in vivo and in vitro, suggesting that embryonic excess of reactive oxygen species (ROS) has a role in the teratogenic process of diabetic pregnancy. We report that the basal levels of ROS in dispersed rat embryonic cells in vitro, as determined by fluorescence of dichlorofluorescein (DCF), were not different in cells from control and diabetic pregnancy at day 10 or 12. Beta-hydroxybutyrate (beta-HB) and succinic acid monomethyl ester both augmented DCF fluorescence in cells from day 12 embryos of normal and diabetic rats but not from day 10 embryos. Cells of day 10 and day 12 embryos from normal and diabetic rats responded to increasing glucose concentrations with a dosage-dependent alleviation of DCF fluorescence. Day 10 embryonic cells exhibited high glucose utilization rates and high pentose phosphate shunt rates, but low mitochondrial oxidation rates. Moreover, in vitro culture of embryos between gestational days 9 and 10 in the presence of 20% oxygen induced an increased and glucose-sensitive oxidation of glucose compared with embryos not cultured in vitro. At gestation day 12, however, pentose phosphate shunt rates showed a decrease, whereas the mitochondrial beta-HB oxidation rates were increased compared with those at gestation day 10. This was paralleled by a lower expression of glucose 6-phosphate dehydrogenase- and phosphofructokinase-mRNA levels at day 12 than at day 10. On the other hand, H-ferritin mRNA expression at day 12 was high compared with day 10. None of the mRNA species investigated were affected by the diabetic state of the mother. It was concluded that beta-HB-induced stimulation of mitochondrial oxidative events may lead to the generation of ROS at gestational day 12, but probably not at day 10, when only a minute amount of mitochondrial activity occurs. Thus our results do not support the notion of diabetes-induced mitochondrial oxidative stress before the development of

  7. Moscatilin Inhibits Lung Cancer Cell Motility and Invasion via Suppression of Endogenous Reactive Oxygen Species

    Directory of Open Access Journals (Sweden)

    Akkarawut Kowitdamrong

    2013-01-01

    Full Text Available Lung cancer is the leading cause of death among cancer patients worldwide, and most of them have died from metastasis. Migration and invasion are prerequisite processes associated with high metastasis potential in cancers. Moscatilin, a bibenzyl derivative isolated from the Thai orchid Dendrobium pulchellum, has been shown to have anticancer effect against numerous cancer cell lines. However, little is known regarding the effect of moscatilin on cancer cell migration and invasion. The present study demonstrates that nontoxic concentrations of moscatilin were able to inhibit human nonsmall cell lung cancer H23 cell migration and invasion. The inhibitory effect of moscatilin was associated with an attenuation of endogenous reactive oxygen species (ROS, in which hydroxyl radical (OH∙ was identified as a dominant species in the suppression of filopodia formation. Western blot analysis also revealed that moscatilin downregulated activated focal adhesion kinase (phosphorylated FAK, Tyr 397 and activated ATP-dependent tyrosine kinase (phosphorylated Akt, Ser 473, whereas their parental counterparts were not detectable changed. In conclusion, our results indicate the novel molecular basis of moscalitin-inhibiting lung cancer cell motility and invasion and demonstrate a promising antimetastatic potential of such an agent for lung cancer therapy.

  8. In vitro bacterial cytotoxicity of CNTs: reactive oxygen species mediate cell damage edges over direct physical puncturing.

    Science.gov (United States)

    Rajavel, Krishnamoorthy; Gomathi, Rajkumar; Manian, Sellamuthu; Rajendra Kumar, Ramasamy Thangavelu

    2014-01-21

    Understanding the bacterial cytotoxicity of CNTs is important for a wide variety of applications in the biomedical, environmental, and health sectors. A majority of the earlier reports attributed the bactericidal cytotoxicity of CNTs to bacterial cell membrane damage by direct physical puncturing. Our results reveal that bacterial cell death via bacterial cell membrane damage is induced by reactive oxygen species (ROS) produced from CNTs and is not due to direct physical puncturing by CNTs. To understand the actual mechanism of bacterial killing, we elucidated the bacterial cytotoxicity of SWCNTs and MWCNTs against Gram-negative human pathogenic bacterial species Escherichia coli, Shigella sonnei, Klebsiella pneumoniae, and Pseudomonas aeruginosa and its amelioration upon functionalizing the CNTs with antioxidant tannic acid (TA). Interestingly, the bacterial cells treated with CNTs exhibited severe cell damage under laboratory (ambient) and sunlight irradiation conditions. However, CNTs showed no cytotoxicity to the bacterial cells when incubated in the dark. The quantitative assessments carried out by us made it explicit that CNTs are effective generators of ROS such as (1)O2, O2(•-), and (•)OH in an aqueous medium under both ambient and sunlight-irradiated conditions. Both naked and TA-functionalized CNTs showed negligible ROS production in the dark. Furthermore, strong correlations were obtained between ROS produced by CNTs and the bacterial cell mortality (with the correlation coefficient varying between 0.7618 and 0.9891) for all four tested pathogens. The absence of bactericidal cytotoxicity in both naked and functionalized CNTs in the dark reveals that the presence of ROS is the major factor responsible for the bactericidal action compared to direct physical puncturing. This understanding of the bactericidal activity of the irradiated CNTs, mediated through the generation of ROS, could be interesting for novel applications such as regulated ROS delivery

  9. The F-16 Onboard Oxygen Generating System: Performance Evaluation and Man Rating

    Science.gov (United States)

    1983-08-01

    OXYGEN GENERATING , YSTEM: PERFORMANCE EVALUATION AND MAN RATING Thomas C. Horch , Captain, USAF Richard L. Miller, Ph.D. John B. Bomar, Jr...C. Horch , Capt, USAF; R. L. Miller, 8. CONTRACT OR GRANT NUMBER(i) Ph.D.; J. B. Bomar, Jr., Lt Col, IJSAF, BSC; J. B. Tedor, Maj, USAF, BSC; R. D...limitation (as of 1983); however, the information may no longer need protection since it is 14 years. At the time of its publication, Capt Thomas Horch

  10. Using the International Space Station (ISS) Oxygen Generation Assembly (OGA) Is Not Feasible for Mars Transit

    Science.gov (United States)

    Jones, Harry W.

    2016-01-01

    A review of two papers on improving the International Space Station (ISS) Oxygen Generation Assembly (OGA) shows that it would not save substantial mass on a Mars transit. The ISS OGA requires redesign for satisfactory operation, even for the ISS. The planned improvements of the OGA for ISS would not be sufficient to make it suitable for Mars, because Mars transit life support has significantly different requirements than ISS. The OGA for Mars should have lower mass, better reliability and maintainability, greater safety, radiation hardening, and capability for quiescent operation. NASA's methodical, disciplined systems engineering process should be used to develop the appropriate system.

  11. Modulation of Neutrophil Extracellular Trap and Reactive Oxygen Species Release by Periodontal Bacteria.

    Science.gov (United States)

    Hirschfeld, Josefine; White, Phillipa C; Milward, Michael R; Cooper, Paul R; Chapple, Iain L C

    2017-12-01

    Oral bacteria are the main trigger for the development of periodontitis, and some species are known to modulate neutrophil function. This study aimed to explore the release of neutrophil extracellular traps (NETs), associated antimicrobial proteins, and reactive oxygen species (ROS) in response to periodontal bacteria, as well as the underlying pathways. Isolated peripheral blood neutrophils were stimulated with 19 periodontal bacteria. NET and ROS release, as well as the expression of NET-bound antimicrobial proteins, elastase, myeloperoxidase, and cathepsin G, in response to these species was measured using fluorescence-based assays. NET and ROS release was monitored after the addition of NADP (NADPH) oxidase pathway modulators and inhibitors of Toll-like receptors (TLRs). Moreover, bacterial entrapment by NETs was visualized microscopically, and bacterial killing was assessed by bacterial culture. Certain microorganisms, e.g., Veillonella parvula and Streptococcus gordonii , stimulated higher levels of ROS and NET release than others. NETs were found to entrap, but not kill, all periodontal bacteria tested. NADPH oxidase pathway modulators decreased ROS production but not NET production in response to the bacteria. Interestingly, TLR inhibitors did not impact ROS and NET release. These data suggest that the variability in the neutrophil response toward different bacteria may contribute to the pathogenesis of periodontal diseases by mechanisms such as bacterial avoidance of host responses and activation of neutrophils. Moreover, our results indicate that bacterium-stimulated NET release may arise in part via NADPH oxidase-independent mechanisms. The role of TLR signaling in bacterium-induced ROS and NET release needs to be further elucidated. Copyright © 2017 American Society for Microbiology.

  12. Efficiency factors of singlet oxygen generation from core-modified expanded porphyrin: tetrathiarubyrin in ethanol

    CERN Document Server

    Ha, J H; Kim, Y R; Jung, G Y; Lee, Y H; Shin, K

    2001-01-01

    The photophysical properties and the singlet oxygen generation efficiency of tetrathiarubyrin have been investigated to elucidate the possibility of its use as a photodynamic therapy (PDT) photosensitizer by steady-state and time-resolved spectroscopic methods. The observed photophysical properties were affected by various molecular aspects, such as extended pi conjugation, structural distortion, and internal heavy atom. The steady-state electronic absorption spectrum was red-shifted due to the extended pi-conjugation, and the spin orbital coupling was enhanced by the structural distortion and the internal heavy atom effect. As a result of the enhanced spin orbital coupling, the triplet quantum yield increased to 0.90 +- 0.10 and the triplet state lifetime was shortened to 7.0 +- 1.2 mu s. Since the triplet state decays at a relatively faster rate, the efficiency of the oxygen quenching of the triplet state decreases. The singlet oxygen quantum yield was estimated to be 0.52 +- 0.02, which is somewhat lower t...

  13. Inverse correlation between reactive oxygen species in unwashed semen and sperm motion parameters as measured by a computer-assisted semen analyzer.

    Science.gov (United States)

    Takeshima, Teppei; Yumura, Yasushi; Yasuda, Kengo; Sanjo, Hiroyuki; Kuroda, Shinnosuke; Yamanaka, Hiroyuki; Iwasaki, Akira

    2017-01-01

    This study investigated the correlation between sperm motion parameters obtained by a computer-assisted semen analyzer and levels of reactive oxygen species in unwashed semen. In total, 847 patients, except for azoospermic patients were investigated. At the time of each patient's first consultation, semen parameters were measured using SMAS™ or CellSoft 3000™, and production of reactive oxygen species was measured using a computer-driven LKB Wallac Luminometer 1251 Analyzer. The patients were divided into two groups: reactive oxygen species - positive and negative. The semen parameters within each group were measured using one of the two computer-assisted semen analyzer systems and then compared. Correlations between reactive oxygen species levels and sperm motion parameters in semen from the reactive oxygen species - positive group were also investigated. Reactive oxygen species were detected in semen samples of 282 cases (33.3%). Sperm concentration (P semen damage sperm concentration, motility, and other sperm motion parameters.

  14. Covariance of oxygen and hydrogen isotopic compositions in plant water: species effects

    International Nuclear Information System (INIS)

    Cooper, L.W.; DeNiro, M.J.

    1989-01-01

    Leaf water becomes enriched in the heavy isotopes of oxygen and hydrogen during evapotranspiration. The magnitude of the enrichment has been shown to be influenced by temperature and humidity, but the effects of species—specific factors on leaf water enrichment of D and 18 O have not been studied for different plants growing together. Accordingly, to learn whether leaf water enrichment patterns and processes for D and 18 O are different for individual species growing under the same environmental conditions we tested the proposal that leaf waters in plants with crassulacean acid metabolism (CAM) show higher slopes (m in the leaf water equation °D = m ° 18 O + b) than in C 3 plants. We determined the relationships between the stable hydrogen (°D) and oxygen (° 18 O) isotope ratios of leaf waters collected during the diurnal cycle of evapotranspiration for Yucca schidigera, Ephedra aspera, Agave deserti, Prunus ilicifolia, Yucca whipplei, Heteromeles arbutifolia, Dyckia fosteriana, Simmondsia chinensis, and Encelia farinosa growing at two sites in southern California. Slopes (m in the above leaf water equation) ranged from 1.50 to 3.21, compared to °8 for meteoric water, but differences in slope could not be attributed to carboxylation pathway (CAM vs. C 3 ) nor climate (coastal California vs. Sonoran Desert). Higher slopes were correlated with greater overall ranges of leaf water enrichment of D and 18 O. Water in plants with higher slopes also differed most from unaltered meteoric water. Leaf water isotope ratios in plants with lower slopes were better correlated with temperature and humidity. The findings indicate that m in the aforementioned equation is related to the overall residence time for water in the leaf and proportions of water subjected to repeated evapotranspiration enrichments of heavy isotopes

  15. Mitochondrial reactive oxygen species mediate the lipopolysaccharide-induced pro-inflammatory response in human gingival fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xue; Wang, Xiaoxuan [Department of Periodontology, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081 (China); Zheng, Ming, E-mail: zhengm@bjmu.edu.cn [Department of Physiology and Pathophysiology, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191 (China); Luan, Qing Xian, E-mail: kqluanqx@126.com [Department of Periodontology, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081 (China)

    2016-09-10

    Although periodontal diseases are initiated by bacteria that colonize the tooth surface and gingival sulcus, the host response is believed to play an essential role in the breakdown of connective tissue and bone. Mitochondrial reactive oxygen species (mtROS) have been proposed to regulate the activation of the inflammatory response by the innate immune system. However, the role of mtROS in modulating the response of human gingival fibroblasts (HGFs) to immune stimulation by lipopolysaccharides (LPS) has yet to be fully elucidated. Here, we showed that LPS from Porphyromonas gingivalis stimulated HGFs to increase mtROS production, which could be inhibited by treatment with a mitochondrial-targeted exogenous antioxidant (mito-TEMPO) or transfection with manganese superoxide dismutase (MnSOD). A time-course study revealed that an increase in the concentration of mtROS preceded the expression of inflammatory cytokines in HGFs. Mito-TEMPO treatment or MnSOD transfection also significantly prevented the LPS-induced increase of interleukin (IL)-1β, IL-6, and tumor necrosis factor-α. Furthermore, suppressing LPS-induced mtROS generation inhibited the activation of p38, c-Jun N-terminal kinase, and inhibitor of nuclear factor-κB kinase, as well as the nuclear localization of nuclear factor-κB. These results demonstrate that mtROS generation is a key signaling event in the LPS-induced pro-inflammatory response of HGFs. - Highlights: • Inflammation is thought to promote pathogenic changes in periodontitis. • We investigated mtROS as a regulator of inflammation in gingival fibroblasts. • Targeted antioxidants were used to inhibit mtROS production after LPS challenge. • Inhibiting mtROS generation suppressed the secretion of pro-inflammatory cytokines. • JNK, p38, IKK, and NF-κB were shown to act as transducers of mtROS signaling.

  16. Mitochondrial reactive oxygen species mediate the lipopolysaccharide-induced pro-inflammatory response in human gingival fibroblasts

    International Nuclear Information System (INIS)

    Li, Xue; Wang, Xiaoxuan; Zheng, Ming; Luan, Qing Xian

    2016-01-01

    Although periodontal diseases are initiated by bacteria that colonize the tooth surface and gingival sulcus, the host response is believed to play an essential role in the breakdown of connective tissue and bone. Mitochondrial reactive oxygen species (mtROS) have been proposed to regulate the activation of the inflammatory response by the innate immune system. However, the role of mtROS in modulating the response of human gingival fibroblasts (HGFs) to immune stimulation by lipopolysaccharides (LPS) has yet to be fully elucidated. Here, we showed that LPS from Porphyromonas gingivalis stimulated HGFs to increase mtROS production, which could be inhibited by treatment with a mitochondrial-targeted exogenous antioxidant (mito-TEMPO) or transfection with manganese superoxide dismutase (MnSOD). A time-course study revealed that an increase in the concentration of mtROS preceded the expression of inflammatory cytokines in HGFs. Mito-TEMPO treatment or MnSOD transfection also significantly prevented the LPS-induced increase of interleukin (IL)-1β, IL-6, and tumor necrosis factor-α. Furthermore, suppressing LPS-induced mtROS generation inhibited the activation of p38, c-Jun N-terminal kinase, and inhibitor of nuclear factor-κB kinase, as well as the nuclear localization of nuclear factor-κB. These results demonstrate that mtROS generation is a key signaling event in the LPS-induced pro-inflammatory response of HGFs. - Highlights: • Inflammation is thought to promote pathogenic changes in periodontitis. • We investigated mtROS as a regulator of inflammation in gingival fibroblasts. • Targeted antioxidants were used to inhibit mtROS production after LPS challenge. • Inhibiting mtROS generation suppressed the secretion of pro-inflammatory cytokines. • JNK, p38, IKK, and NF-κB were shown to act as transducers of mtROS signaling.

  17. Reduction in reactive oxygen species production by mitochondria from elderly subjects with normal and impaired glucose tolerance.

    Science.gov (United States)

    Ghosh, Sangeeta; Lertwattanarak, Raweewan; Lefort, Natalie; Molina-Carrion, Marjorie; Joya-Galeana, Joaquin; Bowen, Benjamin P; Garduno-Garcia, Jose de Jesus; Abdul-Ghani, Muhammad; Richardson, Arlan; DeFronzo, Ralph A; Mandarino, Lawrence; Van Remmen, Holly; Musi, Nicolas

    2011-08-01

    Aging increases the risk of developing impaired glucose tolerance (IGT) and type 2 diabetes. It has been proposed that increased reactive oxygen species (ROS) generation by dysfunctional mitochondria could play a role in the pathogenesis of these metabolic abnormalities. We examined whether aging per se (in subjects with normal glucose tolerance [NGT]) impairs mitochondrial function and how this relates to ROS generation, whether older subjects with IGT have a further worsening of mitochondrial function (lower ATP production and elevated ROS generation), and whether exercise reverses age-related changes in mitochondrial function. Mitochondrial ATP and ROS production were measured in muscle from younger individuals with NGT, older individuals with NGT, and older individuals with IGT. Measurements were performed before and after 16 weeks of aerobic exercise. ATP synthesis was lower in older subjects with NGT and older subjects with IGT versus younger subjects. Notably, mitochondria from older subjects (with NGT and IGT) displayed reduced ROS production versus the younger group. ATP and ROS production were similar between older groups. Exercise increased ATP synthesis in the three groups. Mitochondrial ROS production also increased after training. Proteomic analysis revealed downregulation of several electron transport chain proteins with aging, and this was reversed by exercise. Old mitochondria from subjects with NGT and IGT display mitochondrial dysfunction as manifested by reduced ATP production but not with respect to increased ROS production. When adjusted to age, the development of IGT in elderly individuals does not involve changes in mitochondrial ATP and ROS production. Lastly, exercise reverses the mitochondrial phenotype (proteome and function) of old mitochondria.

  18. Lipoteichoic acid from Staphylococcus aureus induces lung endothelial cell barrier dysfunction: role of reactive oxygen and nitrogen species.

    Directory of Open Access Journals (Sweden)

    Amy Barton Pai

    Full Text Available Tunneled central venous catheters (TCVCs are used for dialysis access in 82% of new hemodialysis patients and are rapidly colonized with Gram-positive organism (e.g. Staphylococcus aureus biofilm, a source of recurrent infections and chronic inflammation. Lipoteichoic acid (LTA, a cell wall ribitol polymer from Gram-positive organisms, mediates inflammation through the Toll-like receptor 2 (TLR2. The effect of LTA on lung endothelial permeability is not known. We tested the hypothesis that LTA from Staphylococcus aureus induces alterations in the permeability of pulmonary microvessel endothelial monolayers (PMEM that result from activation of TLR2 and are mediated by reactive oxygen/nitrogen species (RONS. The permeability of PMEM was assessed by the clearance rate of Evans blue-labeled albumin, the activation of the TLR2 pathway was assessed by Western blot, and the generation of RONS was measured by the fluorescence of oxidized dihydroethidium and a dichlorofluorescein derivative. Treatment with LTA or the TLR2 agonist Pam((3CSK((4 induced significant increases in albumin permeability, IκBα phosphorylation, IRAK1 degradation, RONS generation, and endothelial nitric oxide synthase (eNOS activation (as measured by the p-eNOS(ser1177:p-eNOS(thr495 ratio. The effects on permeability and RONS were effectively prevented by co-administration of the superoxide scavenger Tiron, the peroxynitrite scavenger Urate, or the eNOS inhibitor L-NAME and these effects as well as eNOS activation were reduced or prevented by pretreatment with an IRAK1/4 inhibitor. The results indicate that the activation of TLR2 and the generation of ROS/RNS mediates LTA-induced barrier dysfunction in PMEM.

  19. Solid polymer electrolyte water electrolysis system development. [to generate oxygen for manned space station applications

    Science.gov (United States)

    1975-01-01

    Solid polymer electrolyte technology used in a water electrolysis system (WES) to generate oxygen and hydrogen for manned space station applications was investigated. A four-man rated, low pressure breadboard water electrolysis system with the necessary instrumentation and controls was fabricated and tested. A six man rated, high pressure, high temperature, advanced preprototype WES was developed. This configuration included the design and development of an advanced water electrolysis module, capable of operation at 400 psig and 200 F, and a dynamic phase separator/pump in place of a passive phase separator design. Evaluation of this system demonstrated the goal of safe, unattended automated operation at high pressure and high temperature with an accumulated gas generation time of over 1000 hours.

  20. Species specificity of resistance to oxygen diffusion in thin cuticular membranes from amphibious plants

    DEFF Research Database (Denmark)

    Frost-Christensen, Henning; Jørgensen, Lise Bolt; Floto, Franz

    2003-01-01

    oxygen, diffusion, cuticula, amphibious plants, Hygrophila, Berula, Lobelia, Mentha, Potamogeton, Veronica, aquatic plants, submerged plants......oxygen, diffusion, cuticula, amphibious plants, Hygrophila, Berula, Lobelia, Mentha, Potamogeton, Veronica, aquatic plants, submerged plants...

  1. Ozone generation in positive and negative corona discharge fed by humid oxygen and carbon dioxide

    International Nuclear Information System (INIS)

    Skalny, J D; Orszagh, J; MatejcIk, S; Mason, N J

    2008-01-01

    The effect of humidity on ozone generation of positive and negative corona discharges fed by O 2 and CO 2 has been studied in the humidity range of 100-20 000 ppm. The experiments were carried out at an ambient temperature and pressure of 100 kPa. The increase in humidity of CO 2 conspicuously suppressed the ozone generation in negative corona discharge at all values of the input energy densities into the discharge. The effect was less pronounced in oxygen. In contrast to decrease of ozone concentration observed in negative corona discharge, the presence of water both in O 2 and CO 2 acts catalytically. The ozone concentration has been found to increase remarkably (approximately 10 times) in oxygen, if the humidity was increased from 100 to 20 000 ppm. The dependence of ozone concentration on the gas humidity exhibited an extreme. The increase observed at humidity up to approximately 5000 ppm was followed by the marginal reduction in ozone concentration. Anyway, the values of this were considerably higher than those found in dry CO 2 . The effect of humidity on ozone concentration will be discussed in relation to plasma chemical processes in studied discharges and their macroscopic parameters.

  2. The Synergistic Effect of Proteins and Reactive Oxygen Species on Electrochemical Behaviour of 316L Stainless Steel for Biomedical Applications

    Science.gov (United States)

    Simionescu, N.; Benea, L.; Dumitrascu, V. M.

    2018-06-01

    The stainless steels, especially 316L type is the most used metallic biomaterials for biomedical applications due to their good biocompatibility, low price, excellent corrosion resistance, availability, easy processing and high strength. Due to these favorable properties 316L stainless steel has become the most attractive biomaterial for dental implants, stents and orthopedic implants. However an implant material in the human body is exposed to an action effect of other molecules, including proteins (such as albumin) and reactive oxygen species (such as hydrogen peroxide - H2O2 ) produced by bacteria and immune cells. In the literature there are few studies to follow the effect of proteins and reactive oxygen species on 316L stainless steel used as implant material and are still unclear. The degree of corrosion resistance is the first criterion in the use of a metallic biomaterial in the oral or body environment. The aim of this research work is to investigate the influence of proteins (albumin) and reactive oxygen species (H2O2 ) in combination, taking into account the synergistic effect of these two factors on 316L stainless steel. Albumin is present in the body near implants and reactive oxygen species could appear in inflammatory processes as well. The study shows that the presence of albumin and reactive species influences the corrosion resistance of 316L stainless steel in biological solutions. In this research work the corrosion behavior of 316L stainless steel is analyzed by electrochemical methods such as: open circuit potential (OCP), Electrochemical Impedance Spectroscopy (EIS). It was found that, the electrochemical results are in a good agreement with micro photographs taken before and after corrosion assays. The albumin and reactive oxygen species have influence on 316L stainless steel behavior.

  3. Generation of Triplet Excited States via Photoinduced Electron Transfer in meso-anthra-BODIPY: Fluorogenic Response toward Singlet Oxygen in Solution and in Vitro

    KAUST Repository

    Filatov, Mikhail A.; Karuthedath, Safakath; Polestshuk, Pavel M.; Savoie, Huguette; Flanagan, Keith J.; Sy, Cindy; Sitte, Elisabeth; Telitchko, Maxime; Laquai, Fré dé ric; Boyle, Ross W.; Senge, Mathias O.

    2017-01-01

    Heavy atom-free BODIPY-anthracene dyads (BADs) generate locally excited triplet states by way of photoinduced electron transfer (PeT), followed by recombination of the resulting charge-separated states (CSS). Subsequent quenching of the triplet states by molecular oxygen produces singlet oxygen (1O2), which reacts with the anthracene moiety yielding highly fluorescent species. The steric demand of the alkyl substituents in the BODIPY subunit defines the site of 1O2 addition. Novel bis- and tetraepoxides and bicyclic acetal products, arising from rearrangements of anthracene endoperoxides were isolated and characterized. 1O2 generation by BADs in living cells enables visualization of the dyads distribution, promising new imaging applications.

  4. Generation of Triplet Excited States via Photoinduced Electron Transfer in meso-anthra-BODIPY: Fluorogenic Response toward Singlet Oxygen in Solution and in Vitro

    KAUST Repository

    Filatov, Mikhail A.

    2017-04-14

    Heavy atom-free BODIPY-anthracene dyads (BADs) generate locally excited triplet states by way of photoinduced electron transfer (PeT), followed by recombination of the resulting charge-separated states (CSS). Subsequent quenching of the triplet states by molecular oxygen produces singlet oxygen (1O2), which reacts with the anthracene moiety yielding highly fluorescent species. The steric demand of the alkyl substituents in the BODIPY subunit defines the site of 1O2 addition. Novel bis- and tetraepoxides and bicyclic acetal products, arising from rearrangements of anthracene endoperoxides were isolated and characterized. 1O2 generation by BADs in living cells enables visualization of the dyads distribution, promising new imaging applications.

  5. Sirtuin-3 (Sirt3) regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production

    DEFF Research Database (Denmark)

    Jing, Enxuan; Emanuelli, Brice; Hirschey, Matthew D

    2011-01-01

    Sirt3 is a member of the sirtuin family of protein deacetylases that is localized in mitochondria and regulates mitochondrial function. Sirt3 expression in skeletal muscle is decreased in models of type 1 and type 2 diabetes and regulated by feeding, fasting, and caloric restriction. Sirt3 knockout...... mice exhibit decreased oxygen consumption and develop oxidative stress in skeletal muscle, leading to JNK activation and impaired insulin signaling. This effect is mimicked by knockdown of Sirt3 in cultured myoblasts, which exhibit reduced mitochondrial oxidation, increased reactive oxygen species......, activation of JNK, increased serine and decreased tyrosine phosphorylation of IRS-1, and decreased insulin signaling. Thus, Sirt3 plays an important role in diabetes through regulation of mitochondrial oxidation, reactive oxygen species production, and insulin resistance in skeletal muscle....

  6. The role of UCP 1 in production of reactive oxygen species by mitochondria isolated from brown adipose tissue

    Czech Academy of Sciences Publication Activity Database

    Dlasková, Andrea; Clarke, K.J.; Porter, R. K.

    2010-01-01

    Roč. 1797, č. 8 (2010), s. 1470-1476 ISSN 0005-2728 Institutional research plan: CEZ:AV0Z50110509 Keywords : Mitochondria * Reactive oxygen species * Uncoupling protein 1 Subject RIV: ED - Physiology Impact factor: 5.132, year: 2010

  7. Induction of molecular endpoints by reactive oxygen species in human lung cells predicted by physical chemical properties of engineered nanoparticles

    Science.gov (United States)

    A series of six titanium dioxide and two cerium oxide engineered nanomaterials were assessed for their ability to induce cytotoxicity, reactive oxygen species (ROS), and various types of DNA and protein damage in human respiratory BEAS-2B cells exposed in vitro for 72 hours at se...

  8. Surgery-induced reactive oxygen species enhance colon carcinoma cell binding by disrupting the liver endothelial cell lining

    NARCIS (Netherlands)

    Gül, Nuray; Bögels, Marijn; Grewal, Simran; van der Meer, Anne Jan; Rojas, Lucy Baldeon; Fluitsma, Donna M.; van den Tol, M. Petrousjka; Hoeben, Kees A.; van Marle, Jan; de Vries, Helga E.; Beelen, Robert H. J.; van Egmond, Marjolein

    2011-01-01

    Resection of primary colorectal cancer is associated with enhanced risk of development of liver metastases. It was previously demonstrated that surgery initiated an early inflammatory response resulting in elevated tumour cell adhesion in the liver. Because reactive oxygen species (ROS) are shown to

  9. Surgery-induced reactive oxygen species enhance colon carcinoma cell binding by disrupting the liver endothelial cell lining

    NARCIS (Netherlands)

    Gül, N.; Bögels, M.; Grewal, S.; van der Meer, A.J.; Rojas, L.B.; Fluitsma, D.M.; van den Tol, M.P.; Hoeben, K.A.; van Marle, J.; de Vries, H.E.; Beelen, R.H.J.; van Egmond, M.

    2011-01-01

    Objective: Resection of primary colorectal cancer is associated with enhanced risk of development of liver metastases. It was previously demonstrated that surgery initiated an early inflammatory response resulting in elevated tumour cell adhesion in the liver. Because reactive oxygen