WorldWideScience

Sample records for oxygen self-diffusion coefficients

  1. Oxygen transport in waterlogged soils, Part II. Diffusion coefficients

    International Nuclear Information System (INIS)

    Obando Moncayo, F.H.

    2004-01-01

    Several equations are available for Oxygen Transport in Waterlogged Soils and have been used for soils and plants. All of them are some form of first Fick's law as given by dQ = - DA(dc/dx)/dt. This equation illustrates some important aspects of aeration in waterlogged soils; first, D is a property of the medium and the gas, and is affected by temperature T. Likewise, the amount of diffusing substance dQ in dt is a direct function of the cross sectional area A and inversely proportional to the distance x. In fact, increasing the water content of air-dry soil, drastically decreases A and creates a further resistance for the flow of oxygen through water films around root plants, soil micro organisms and soil aggregates. The solid phase is also limiting the cross-section of surface of the free gaseous diffusion and the length and tortuosity of diffusion path in soil. In most of cases, soil gas porosity and tortuosity of soil voids are expressed in the equations of diffusion as a broad 'diffusion coefficient' (apparent coefficient diffusion). The process of soil respiration is complicated, involves many parameters, and is difficult to realistically quantify. With regard to the oxygen supply, it is convenient to distinguish macro and micro models, and hence, the flux of oxygen is assumed to have two steps. The first step is related to oxygen diffusion from the atmosphere and the air-filled porosity. The second step is related to the oxygen diffusion through water-films in and around plant roots, soil micro organisms and aggregates. Because of these models we obtain coefficients of macro or micro diffusion, rates of macro or micro diffusion, etc. In the macro diffusion process oxygen is transferred in the soil profile, mainly from the soil surface to a certain depth of the root zone, while micro diffusion deals with the flux over very short distances. Both processes, macro and micro diffusion are highly influenced by soil water content. Of course, if water is added to

  2. Solubility and diffusion coefficient of oxygen in silicon

    International Nuclear Information System (INIS)

    Itoh, Yoshiko; Nozaki, Tadashi

    1985-01-01

    The solubility and diffusion coefficient of oxygen in silicon between 1000 0 C and 1375 0 C were examined by charged particle activation analysis with the 16 O( 3 He,p) 18 F reaction, in which oxygen was activated with an equal probability over the depth of up to 250μm by a specially devised apparatus. Silicon wafers of known histories were heated in oxygen or argon for 12 to 473 hours, and the resultant oxygen depth profiles were determined by the activation, subsequent stepwise etching and 18 F activity measurement. The solubility thus obtained is given as 9.3 x 10 21 exp[-27.6kcal mol -1 /RT] at.cm -3 ; the diffusion coefficient has been found to be approximated as 3.2 exp[-67.1kcal mol -1 /RT] cm 2 s -1 over 1150 0 C, under which the apparent activation energy seems to decrease with decrease of temperature. (author)

  3. Calculation of self-diffusion coefficients in iron

    Directory of Open Access Journals (Sweden)

    Baohua Zhang

    2014-01-01

    Full Text Available On the basis of available P-V-T equation of state of iron, the temperature and pressure dependence of self-diffusion coefficients in iron polymorphs (α, δ, γ and ɛ phases have been successfully reproduced in terms of the bulk elastic and expansivity data by means of a thermodynamical model that interconnects point defects parameters with bulk properties. The calculated diffusion parameters, such as self-diffusion coefficient, activation energy and activation volume over a broad temperature range (500-2500 K and pressure range (0-100 GPa, compare favorably well with experimental or theoretical ones when the uncertainties are considered.

  4. Measurement of oxygen chemical diffusion in PuO2-x and analysis of oxygen diffusion in PuO2-x and (Pu,U)O2-x

    International Nuclear Information System (INIS)

    Kato, Masato; Uchida, Teppei; Sunaoshi, Takeo

    2013-01-01

    Oxygen chemical diffusion in PuO 2-x was investigated in the temperature range of 1473-1873 K by thermogravimetry as functions of oxygen-to-metal (O/M) ratios and temperatures. The oxygen chemical diffusion coefficients, D were determined assuming that the reduction curves were dominated by a diffusion process. The O/M ratio and Pu content dependence on the chemical diffusion coefficients were evaluated. The chemical diffusion coefficient had its minimum value at around O/M=1.98 and decreased with increasing Pu content in (U,Pu)O 2-x . The self-diffusion coefficients were evaluated. A model for describing the relationship among O/M ratio, oxygen chemical diffusion, and self-diffusion was proposed based on defect chemistry. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Self-diffusion coefficients of the metastable Lennard-Jones vapor

    International Nuclear Information System (INIS)

    Nie Chu; Zhou Youhua; Marlow, W H; Hassan, Y A

    2008-01-01

    Self-diffusion coefficients of a metastable Lennard-Jones vapor were obtained using the memory function formalism and the frequency moments of the velocity autocorrelation function at reduced temperatures from 0.75 to 1.0. The radial density distribution functions used to evaluate the second, fourth and sixth frequency moments of the velocity autocorrelation function were obtained from the restricted canonical ensemble Monte Carlo simulation (Corti and Debenedetti 1994 Chem. Eng. Sci. 49 2717). The self-diffusion coefficients at reduced temperature 0.75 do not vary monotonically as the density increases, and for the other three temperatures the self-diffusion coefficients vary normally

  6. Self-diffusion coefficients of the metastable Lennard-Jones vapor

    Energy Technology Data Exchange (ETDEWEB)

    Nie Chu; Zhou Youhua [School of Physics and Information Engineering, Jianghan University, Wuhan 430056 (China); Marlow, W H; Hassan, Y A [Department of Nuclear Engineering, Texas A and M University, College Station, TX 77843 (United States)], E-mail: yhzhou@jhun.edu.cn

    2008-10-15

    Self-diffusion coefficients of a metastable Lennard-Jones vapor were obtained using the memory function formalism and the frequency moments of the velocity autocorrelation function at reduced temperatures from 0.75 to 1.0. The radial density distribution functions used to evaluate the second, fourth and sixth frequency moments of the velocity autocorrelation function were obtained from the restricted canonical ensemble Monte Carlo simulation (Corti and Debenedetti 1994 Chem. Eng. Sci. 49 2717). The self-diffusion coefficients at reduced temperature 0.75 do not vary monotonically as the density increases, and for the other three temperatures the self-diffusion coefficients vary normally.

  7. Measurement of oxygen chemical diffusion in PuO{sub 2-x} and analysis of oxygen diffusion in PuO{sub 2-x} and (Pu,U)O{sub 2-x}

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Masato; Uchida, Teppei [Advanced Nuclear System Research and Development Directorate, Japan Atomic Energy Agency, 4-33 Muramatsu, Tokai-mura, Ibaraki 319-1194 (Japan); Sunaoshi, Takeo [Inspection Development Company Ltd., 4-33 Muramatsu, Tokai-mura, Ibaraki 319-1194 (Japan)

    2013-02-15

    Oxygen chemical diffusion in PuO{sub 2-x} was investigated in the temperature range of 1473-1873 K by thermogravimetry as functions of oxygen-to-metal (O/M) ratios and temperatures. The oxygen chemical diffusion coefficients, D were determined assuming that the reduction curves were dominated by a diffusion process. The O/M ratio and Pu content dependence on the chemical diffusion coefficients were evaluated. The chemical diffusion coefficient had its minimum value at around O/M=1.98 and decreased with increasing Pu content in (U,Pu)O{sub 2-x}. The self-diffusion coefficients were evaluated. A model for describing the relationship among O/M ratio, oxygen chemical diffusion, and self-diffusion was proposed based on defect chemistry. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Oxygen Chemical Diffusion Coefficients of (Pu,Am)O2 Fuels

    International Nuclear Information System (INIS)

    Watanabe, M.; Kato, M.; Matsumoto, T.

    2015-01-01

    Minor actinide (MA)-bearing MOX fuels have been developed as candidate fuels which are used in fast neutron spectrum cores such as sodium-cooled fast reactor (SFR) cores and experimental accelerator driven system (ADS) cores. Americium (Am) which is one of the MA elements significantly affects basic properties. It is known that Am content causes oxygen potential to increase and that influences irradiation behaviour such as fuel-cladding chemical interaction (FCCI) and chemical state of fission products. However, the effects of Am content on changes of basic properties are not clear. In this work, the oxygen chemical diffusion coefficients were calculated from measured data and the relationship between oxygen diffusion and oxygen potential of (Pu,Am)O 2-x was discussed. (authors)

  9. Oxygen potentials, oxygen diffusion coefficients and defect equilibria of nonstoichiometric (U,Pu)O{sub 2±x}

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Masato, E-mail: kato.masato@jaea.go.jp [Fukushima Fuels and Materials Department, Japan Atomic Energy Agency, 4002 Narita-chou, O-arai machi, Ibaraki 311-1919 (Japan); Fast Reactor Fuel Cycle Technology Development Division, Japan Atomic Energy Agency, 4-33 Muramatsu Tokai-mura, Ibaraki 319-1194 (Japan); Watanabe, Masashi [Fukushima Fuels and Materials Department, Japan Atomic Energy Agency, 4002 Narita-chou, O-arai machi, Ibaraki 311-1919 (Japan); Fast Reactor Fuel Cycle Technology Development Division, Japan Atomic Energy Agency, 4-33 Muramatsu Tokai-mura, Ibaraki 319-1194 (Japan); Matsumoto, Taku; Hirooka, Shun; Akashi, Masatoshi [Fast Reactor Fuel Cycle Technology Development Division, Japan Atomic Energy Agency, 4-33 Muramatsu Tokai-mura, Ibaraki 319-1194 (Japan)

    2017-04-15

    Oxygen potential of (U,Pu)O{sub 2±x} was evaluated based on defect chemistry using an updated experimental data set. The relationship between oxygen partial pressure and deviation x in (U,Pu)O{sub 2±x} was analyzed, and equilibrium constants of defect formation were determined as functions of Pu content and temperature. Brouwer's diagrams were constructed using the determined equilibrium constants, and a relational equation to determine O/M ratio was derived as functions of O/M ratio, Pu content and temperature. In addition, relationship between oxygen potential and oxygen diffusion coefficients were described. - Highlights: •Brouwer’s diagrams for (U,Pu)O2 were constructed using the updated oxygen potential experimental data set. •Equilibrium constants of defect formation were determined as functions of Pu content and temperature. •Oxygen potential, oxygen diffusion coefficients, point defect concentration were described as functions of O/M ratio, Pu content and temperature.

  10. Dense fluid self-diffusion coefficient calculations using perturbation theory and molecular dynamics

    Directory of Open Access Journals (Sweden)

    COELHO L. A. F.

    1999-01-01

    Full Text Available A procedure to correlate self-diffusion coefficients in dense fluids by using the perturbation theory (WCA coupled with the smooth-hard-sphere theory is presented and tested against molecular simulations and experimental data. This simple algebraic expression correlates well the self-diffusion coefficients of carbon dioxide, ethane, propane, ethylene, and sulfur hexafluoride. We have also performed canonical ensemble molecular dynamics simulations by using the Hoover-Nosé thermostat and the mean-square displacement formula to compute self-diffusion coefficients for the reference WCA intermolecular potential. The good agreement obtained from both methods, when compared with experimental data, suggests that the smooth-effective-sphere theory is a useful procedure to correlate diffusivity of pure substances.

  11. Oxygen self-diffusion mechanisms in monoclinic Zr O2 revealed and quantified by density functional theory, random walk analysis, and kinetic Monte Carlo calculations

    Science.gov (United States)

    Yang, Jing; Youssef, Mostafa; Yildiz, Bilge

    2018-01-01

    In this work, we quantify oxygen self-diffusion in monoclinic-phase zirconium oxide as a function of temperature and oxygen partial pressure. A migration barrier of each type of oxygen defect was obtained by first-principles calculations. Random walk theory was used to quantify the diffusivities of oxygen interstitials by using the calculated migration barriers. Kinetic Monte Carlo simulations were used to calculate diffusivities of oxygen vacancies by distinguishing the threefold- and fourfold-coordinated lattice oxygen. By combining the equilibrium defect concentrations obtained in our previous work together with the herein calculated diffusivity of each defect species, we present the resulting oxygen self-diffusion coefficients and the corresponding atomistically resolved transport mechanisms. The predicted effective migration barriers and diffusion prefactors are in reasonable agreement with the experimentally reported values. This work provides insights into oxygen diffusion engineering in Zr O2 -related devices and parametrization for continuum transport modeling.

  12. Molecular dynamics simulation of self-diffusion coefficients for liquid metals

    International Nuclear Information System (INIS)

    Ju Yuan-Yuan; Zhang Qing-Ming; Gong Zi-Zheng; Ji Guang-Fu

    2013-01-01

    The temperature-dependent coefficients of self-diffusion for liquid metals are simulated by molecular dynamics methods based on the embedded-atom-method (EAM) potential function. The simulated results show that a good inverse linear relation exists between the natural logarithm of self-diffusion coefficients and temperature, though the results in the literature vary somewhat, due to the employment of different potential functions. The estimated activation energy of liquid metals obtained by fitting the Arrhenius formula is close to the experimental data. The temperature-dependent shear-viscosities obtained from the Stokes—Einstein relation in conjunction with the results of molecular dynamics simulation are generally consistent with other values in the literature. (atomic and molecular physics)

  13. Water self-diffusion through narrow oxygenated carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Striolo, Alberto [School of Chemical Biological and Materials Engineering, University of Oklahoma, Norman, OK 73019 (United States)

    2007-11-28

    The hydrophobic interior of carbon nanotubes, which is reminiscent of ion channels in cellular membranes, has inspired scientific research directed towards the production of, for example, membranes for water desalination, drug-delivery devices, and nanosyringes. To develop these technologies it is crucial to understand and predict the equilibrium and transport properties of confined water. We present here a series of molecular dynamics simulation results conducted to understand the extent to which the presence of a few oxygenated active sites, modeled as carbonyls, affects the transport properties of confined water. The model for the carbon nanotube is not intended to be realistic. Its only purpose is to allow us to understand the effect of a few oxygenated sites on the transport properties of water confined in a narrow cylindrical pore, which is otherwise hydrophobic. At low hydration levels we found little, if any, water diffusion. The diffusion, which appears to be of the Fickian type for sufficiently large hydration levels, becomes faster as the number of confined water molecules increases, reaches a maximum, and slows as water fills the carbon nanotubes. We explain our findings on the basis of two collective motion mechanisms observed from the analysis of sequences of simulation snapshots. We term the two mechanisms 'cluster-breakage' and 'cluster-libration' mechanisms. We observe that the cluster-breakage mechanism produces longer displacements for the confined water molecules than the cluster-libration one, but deactivates as water fills the carbon nanotube. From a practical point of view, our results are particularly important for two reasons: (1) at low hydration levels the presence of only eight carbonyl groups can prevent the diffusion of water through (8, 8) carbon nanotubes; and (2) the extremely fast self-diffusion coefficients observed for water within narrow carbon nanotubes are significantly decreased in the presence of only a

  14. Water self-diffusion through narrow oxygenated carbon nanotubes

    International Nuclear Information System (INIS)

    Striolo, Alberto

    2007-01-01

    The hydrophobic interior of carbon nanotubes, which is reminiscent of ion channels in cellular membranes, has inspired scientific research directed towards the production of, for example, membranes for water desalination, drug-delivery devices, and nanosyringes. To develop these technologies it is crucial to understand and predict the equilibrium and transport properties of confined water. We present here a series of molecular dynamics simulation results conducted to understand the extent to which the presence of a few oxygenated active sites, modeled as carbonyls, affects the transport properties of confined water. The model for the carbon nanotube is not intended to be realistic. Its only purpose is to allow us to understand the effect of a few oxygenated sites on the transport properties of water confined in a narrow cylindrical pore, which is otherwise hydrophobic. At low hydration levels we found little, if any, water diffusion. The diffusion, which appears to be of the Fickian type for sufficiently large hydration levels, becomes faster as the number of confined water molecules increases, reaches a maximum, and slows as water fills the carbon nanotubes. We explain our findings on the basis of two collective motion mechanisms observed from the analysis of sequences of simulation snapshots. We term the two mechanisms 'cluster-breakage' and 'cluster-libration' mechanisms. We observe that the cluster-breakage mechanism produces longer displacements for the confined water molecules than the cluster-libration one, but deactivates as water fills the carbon nanotube. From a practical point of view, our results are particularly important for two reasons: (1) at low hydration levels the presence of only eight carbonyl groups can prevent the diffusion of water through (8, 8) carbon nanotubes; and (2) the extremely fast self-diffusion coefficients observed for water within narrow carbon nanotubes are significantly decreased in the presence of only a few oxygenated active

  15. Influence of oxygen partial pressure on defect concentrations and on oxygen diffusion in UO2+x

    International Nuclear Information System (INIS)

    Pizzi, Elisabetta

    2013-01-01

    The hyper-stoichiometric uranium dioxide (UO 2+x ) is stable over a wide range of temperature and compositions. Such variations of composition and the eventual presence of doping elements or impurities lead to a variation of anionic and electronic defect concentrations. Moreover, many properties of this material are affected by its composition modifications, in particular their atomic transport properties. Firstly we developed a point defect model to evaluate the dependence of the electronic and oxygen defect concentrations upon temperature, equilibrium oxygen partial pressure and impurity content. The physical constants of the model, in particular the equilibrium constants of the defect formation reactions were determined from deviation from stoichiometry and electrical conductivity measurements of literature. This work enabled us to interpret our measures of conductivity, oxygen chemical and self- diffusion coefficients. From a quantitative standpoint, the analysis of our experimental results allows to evaluate the oxygen interstitial diffusion coefficient but also its formation energy. Moreover, an estimate of oxygen di-interstitial formation energy is also provided. Presence of oxygen clusters leads oxygen self- and chemical diffusion to decrease. X-ray Absorption Spectroscopy characterization shows the presence of the same defect in the entire deviation from stoichiometry studied, confirming the approach used to develop the model. (author) [fr

  16. Oxygen diffusion coefficient in isolated chicken red and white skeletal muscle fibers in ontogenesis.

    Science.gov (United States)

    Baranov, V I; Belichenko, V M; Shoshenko, C A

    2000-09-01

    Oxygen diffusion from medium to cultured isolated muscle fibers from red gastrocnemius muscle (deep part) (RGM) and white pectoralis muscle (WPM) of embryonic and postnatal chickens (about 6 months) was explored. The intracellular effective O(2) diffusion coefficient (D(i)) in muscle fiber was calculated from a model of a cylindrical fiber with a uniform distribution of an oxygen sink based on these experimentally measured parameters: critical tension of O(2) (PO(2)) on the surface of a fiber, specific rate of O(2) consumption by a weight unit of muscle fibers (;VO(2)), and average diameter of muscle fibers. The results document the rapid hypertrophic growth of RGM fibers when compared to WPM fibers in the second half of the embryonic period and the higher values of;VO(2) and critical PO(2) during the ontogenetic period under study. The oxygen D(i) in RGM fibers of embryos and 1-day chickens was two to three times higher than observed for WPM fibers. For senior chickens, the oxygen D(i) value in RGM and WPM fibers does not differ. The D(i) of O(2) in both RGM and WPM fibers increased from 1.4-2.7 x 10(-8) to 90-95 x 10(-8) cm(2)/s with an ontogenetic increase in fiber diameter from 7. 5 to 67.0 microm. At all stages the oxygen D(i) values in RGM and WPM fibers are significantly lower than the O(2) diffusion coefficient in water: for 11-day embryos they are 889 and 1714 times lower and for adult individuals 25 and 27 times lower, respectively. Why oxygen D(i) values in RGM and WPM fibers are so low and why they are gradually increasing during the course of hypertrophic ontogenetic growth are still unclear. Copyright 2000 Academic Press.

  17. Diffusion of oxygen in cork.

    Science.gov (United States)

    Lequin, Sonia; Chassagne, David; Karbowiak, Thomas; Simon, Jean-Marc; Paulin, Christian; Bellat, Jean-Pierre

    2012-04-04

    This work reports measurements of effective oxygen diffusion coefficient in raw cork. Kinetics of oxygen transfer through cork is studied at 298 K thanks to a homemade manometric device composed of two gas compartments separated by a cork wafer sample. The first compartment contains oxygen, whereas the second one is kept under dynamic vacuum. The pressure decrease in the first compartment is recorded as a function of time. The effective diffusion coefficient D(eff) is obtained by applying Fick's law to transient state using a numerical method based on finite differences. An analytical model derived from Fick's law applied to steady state is also proposed. Results given by these two methods are in close agreement with each other. The harmonic average of the effective diffusion coefficients obtained from the distribution of 15 cork wafers of 3 mm thickness is 1.1 × 10(-9) m(2) s(-1) with a large distribution over four decades. The statistical analysis of the Gaussian distribution obtained on a 3 mm cork wafer is extrapolated to a 48 mm cork wafer, which length corresponds to a full cork stopper. In this case, the probability density distribution gives a mean value of D(eff) equal to 1.6 × 10(-9) m(2) s(-1). This result shows that it is possible to obtain the effective diffusion coefficient of oxygen through cork from short time (few days) measurements performed on a thin cork wafer, whereas months are required to obtain the diffusion coefficient for a full cork stopper. Permeability and oxygen transfer rate are also calculated for comparison with data from other studies.

  18. Oxygen diffusion through soil covers on sulphidic mine tailings

    International Nuclear Information System (INIS)

    Yanful, E.K.

    1993-01-01

    Engineered soil covers are being evaluated under Canada's Mine Environment Neutral Drainage (MEND) program for their effectiveness in preventing and controlling acid generation in sulfidic mill tailings. A critical parameter for predicting the performance of these covers is the diffusion coefficient of gaseous oxygen in the cover materials. Laboratory experiments conducted to determine the effective diffusion coefficient of a candidate cover material, a glacial till from an active mine site, are described. The diffusion coefficient is determined by fitting a semianalytic solution of the one-dimensional, transient diffusion equation to experimental gaseous oxygen concentration versus time graphs. Effective diffusion coefficients determined at high water saturations (85%--95%) were of the order of 8 x 10 -8 m 2 /s. The diffusion coefficients decreased with increase in water saturation as a result of the low diffusivity of gaseous oxygen in water relative to that in air and the low solubility of oxygen in water. Placement of soil covers in high saturation conditions would ensure that the flux of oxygen into tailings underneath such covers is low, resulting in low acid flux. This is confirmed by combined laboratory, field, and modeling studies

  19. Multi-charge-state molecular dynamics and self-diffusion coefficient in the warm dense matter regime

    Science.gov (United States)

    Fu, Yongsheng; Hou, Yong; Kang, Dongdong; Gao, Cheng; Jin, Fengtao; Yuan, Jianmin

    2018-01-01

    We present a multi-ion molecular dynamics (MIMD) simulation and apply it to calculating the self-diffusion coefficients of ions with different charge-states in the warm dense matter (WDM) regime. First, the method is used for the self-consistent calculation of electron structures of different charge-state ions in the ion sphere, with the ion-sphere radii being determined by the plasma density and the ion charges. The ionic fraction is then obtained by solving the Saha equation, taking account of interactions among different charge-state ions in the system, and ion-ion pair potentials are computed using the modified Gordon-Kim method in the framework of temperature-dependent density functional theory on the basis of the electron structures. Finally, MIMD is used to calculate ionic self-diffusion coefficients from the velocity correlation function according to the Green-Kubo relation. A comparison with the results of the average-atom model shows that different statistical processes will influence the ionic diffusion coefficient in the WDM regime.

  20. Oxygen exchange at gas/oxide interfaces: how the apparent activation energy of the surface exchange coefficient depends on the kinetic regime.

    Science.gov (United States)

    Fielitz, Peter; Borchardt, Günter

    2016-08-10

    In the dedicated literature the oxygen surface exchange coefficient KO and the equilibrium oxygen exchange rate [Fraktur R] are considered to be directly proportional to each other regardless of the experimental circumstances. Recent experimental observations, however, contradict the consequences of this assumption. Most surprising is the finding that the apparent activation energy of KO depends dramatically on the kinetic regime in which it has been determined, i.e. surface exchange controlled vs. mixed or diffusion controlled. This work demonstrates how the diffusion boundary condition at the gas/solid interface inevitably entails a correlation between the oxygen surface exchange coefficient KO and the oxygen self-diffusion coefficient DO in the bulk ("on top" of the correlation between KO and [Fraktur R] for the pure surface exchange regime). The model can thus quantitatively explain the range of apparent activation energies measured in the different regimes: in the surface exchange regime the apparent activation energy only contains the contribution of the equilibrium exchange rate, whereas in the mixed or in the diffusion controlled regime the contribution of the oxygen self-diffusivity has also to be taken into account, which may yield significantly higher apparent activation energies and simultaneously quantifies the correlation KO ∝ DO(1/2) observed for a large number of oxides in the mixed or diffusion controlled regime, respectively.

  1. Determination of diffusion coefficients of oxygen atoms in ZrO2 using first-principles calculations

    International Nuclear Information System (INIS)

    Segi, Takashi; Okuda, Takanari

    2014-01-01

    Density functional theory and nudged elastic band calculations were performed in order to determine the diffusion coefficient for oxygen from monoclinic ZrO 2 . The calculated values for monoclinic ZrO 2 at 1000 K and 1500 K were 5.88 × 10 -16 cm 2 s -1 and 2.91 × 10 -11 cm 2 s -1 , respectively, and agreed with previously determined experimental values. In addition, the results of the nudged elastic band calculations suggest that interstitial oxygen sites exist between stable oxygen sites, and if oxygen atoms occupy these sites, stable structures with values for the lattice angle β of greater than 80.53° may be obtained. (author)

  2. Oxygen diffusion in glasses and ceramic materials

    International Nuclear Information System (INIS)

    Kolitsch, A.; Richter, E.; Wolf, M.

    1978-10-01

    A survey is given on the published works to study oxygen diffusion in glasses and ceramic materials in the last years. In the first part methods are described for the measurement of oxygen diffusion coefficients and in the second part the published reports on oxygen diffusion in glasses, ceramic and other oxides are discussed. The most important results are summarized in different tables. (author)

  3. Molecular Diffusion Coefficients: Experimental Determination and Demonstration.

    Science.gov (United States)

    Fate, Gwendolyn; Lynn, David G.

    1990-01-01

    Presented are laboratory methods which allow the demonstration and determination of the diffusion coefficients of compounds ranging in size from water to small proteins. Included are the procedures involving the use of a spectrometer, UV cell, triterated agar, and oxygen diffusion. Results including quantification are described. (CW)

  4. Uranium self-diffusion in uranium monocarbide; Determination du coefficient d'autodiffusion de l'uranium dans son monocarbure

    Energy Technology Data Exchange (ETDEWEB)

    Villaine, P [Commissariat a l' Energie Atomique, 38 - Grenoble (France). Centre d' Etudes Nucleaires

    1967-10-01

    Uranium self diffusion in near-stoichiometric stabilized uranium monocarbide has been investigated in the temperature range 1450-2000 deg. C. A thin layer of {sup 235}UC was deposited onto the samples and the diffusion profiles were analyzed by both sectioning and alpha-spectrometry techniques. The variation with temperature of the self-diffusion coefficient can be expressed by the equation: D = 7.5 x 10{sup -5} exp [-(81 {+-} 10) kcal/mole / RT] Cm{sup 2} s{sup -1} The coefficient D decreases with increasing carbon content. Autoradiographs and profile analysis have evidenced a preferential grain-boundary diffusion at all temperatures and compositions investigated. This phenomenon was used for a study of grain-boundary migration and for the evaluation of grain-boundary diffusion coefficients. The activation energy thus derived is close to the volume diffusion activation energy. (author) [French] L'autodiffusion de l'uranium dans le monocarbure d'uranium de composition voisine de la stoechiometrie et stabilise par recuit prealable, a ete etudiee entre 1450 et 2000 deg. C par la methode du depot mince de traceur, suivie des techniques d'abrasion comptage et de spectrometrie alpha. La variation avec la temperature du coefficient d'autodiffusion peut s'ecrire: D = 7.5 x 10{sup -5} exp [-(81 {+-} 10) kcal/mole / RT] Cm{sup 2} s{sup -1} Le coefficient D decroit avec une augmentation de la teneur en carbone. L'observation d'autoradiographies et l'analyse de profils de diffusion ont mis en evidence l'importance d'une diffusion intergranulaire preferentielle pour toutes les compositions etudiees et a toutes les temperatures. Cette diffusion a egalement ete utilisee pour l'etude de la migration des joints de grains et pour le calcul approche du coefficient de diffusion mtergranulaire. L'energie d'activation ainsi determinee est voisine de celle correspondant a la diffusion volumique. (auteur)

  5. Numerical convergence of the self-diffusion coefficient and viscosity obtained with Thomas-Fermi-Dirac molecular dynamics

    Science.gov (United States)

    Danel, J.-F.; Kazandjian, L.; Zérah, G.

    2012-06-01

    Computations of the self-diffusion coefficient and viscosity in warm dense matter are presented with an emphasis on obtaining numerical convergence and a careful evaluation of the standard deviation. The transport coefficients are computed with the Green-Kubo relation and orbital-free molecular dynamics at the Thomas-Fermi-Dirac level. The numerical parameters are varied until the Green-Kubo integral is equal to a constant in the t→+∞ limit; the transport coefficients are deduced from this constant and not by extrapolation of the Green-Kubo integral. The latter method, which gives rise to an unknown error, is tested for the computation of viscosity; it appears that it should be used with caution. In the large domain of coupling constant considered, both the self-diffusion coefficient and viscosity turn out to be well approximated by simple analytical laws using a single effective atomic number calculated in the average-atom model.

  6. Self-diffusion coefficient of iron as affected by chelating agents using tracer technique

    International Nuclear Information System (INIS)

    Massoud, M.A.; Abd-El-Sabour, M.F.; Omar, M.A.

    1983-01-01

    The effect of Fe 2 (So 4 ) 3 , Fe-DTPA, and Fe-EDDHA on the self-diffusion coefficient of Fe in some soils of Egypt was studied. The effect of chelating compounds on the ratio between solid phase fraction of the labile Fe and its concentration in the soil solution (capacity factor) was also studied. The data reveals the following items of more interesting: 1) The use of chelating agents, i.e., DTPA and EDDHA increased the amount of Fe in soil solution, hence the capacity factor was decreased using these compounds. It seems that as the addition of Fe was in the chelated form in soil solution, the slight loss of 59Fe from solution when 59Fe - chelate was used could be attributed to the isotopic exchange with soil Fe. 2) It was found that the addition of either Fe-DTPA or Fe-EDDHA significantly increased the self-diffusion of Fe in soil as compared with Fe 2 (So 4 ) 3 . It was also noticed that the self-diffusion for Fe in the alluvial soil was greater than in the calcareous one due to the instance competition between Ca and Fe for the chelating ligands in the calcareous soil. It was also seen that soil texture affects Fe self-diffusion

  7. Zirconium metal-water oxidation kinetics. III. Oxygen diffusion in oxide and alpha Zircaloy phases

    International Nuclear Information System (INIS)

    Pawel, R.E.

    1976-10-01

    The reaction of Zircaloy in steam at elevated temperature involves the growth of discrete layers of oxide and oxygen-rich alpha Zircaloy from the parent beta phase. The multiphase, moving boundary diffusion problem involved is encountered in a number of important reaction schemes in addition to that of Zircaloy-oxygen and can be completely (albeitly ideally) characterized through an appropriate model in terms of oxygen diffusion coefficients and equilibrium concentrations for the various phases. Conversely, kinetic data for phase growth and total oxygen consumption rates can be used to compute diffusion coefficients. Equations are developed that express the oxygen diffusion coefficients in the oxide and alpha phases in terms of the reaction rate constants and equilibrium solubility values. These equations were applied to recent experimental kinetic data on the steam oxidation of Zircaloy-4 to determine the effective oxygen diffusion coefficients in these phases over the temperature range 1000--1500 0 C

  8. Self-diffusion coefficient of iron as affected by chelating agents using tracer technique

    Energy Technology Data Exchange (ETDEWEB)

    Massoud, M.A.; Abd-El-Sabour, M.F. (Agriculture Dept. for Soil and Water Research, Nuclear Research Centre, A.E.A., Cairo (Egypt)); Omar, M.A. (Ain Shams Univ., Cairo (Egypt). Faculty of Agriculture)

    1983-01-01

    The effect of Fe/sub 2/(So/sub 4/)/sub 3/, Fe-DTPA, and Fe-EDDHA on the self-diffusion coefficient of Fe in some soils of Egypt was studied. The effect of chelating compounds on the ratio between solid phase fraction of the labile Fe and its concentration in the soil solution (capacity factor) was also studied. The data reveals the following items of more interesting: 1) The use of chelating agents, i.e., DTPA and EDDHA increased the amount of Fe in soil solution, hence the capacity factor was decreased using these compounds. It seems that as the addition of Fe was in the chelated form in soil solution, the slight loss of 59Fe from solution when 59Fe - chelate was used could be attributed to the isotopic exchange with soil Fe. 2) It was found that the addition of either Fe-DTPA or Fe-EDDHA significantly increased the self-diffusion of Fe in soil as compared with Fe/sub 2/(So/sub 4/)/sub 3/. It was also noticed that the self-diffusion for Fe in the alluvial soil was greater than in the calcareous one due to the instance competition between Ca and Fe for the chelating ligands in the calcareous soil. It was also seen that soil texture affects Fe self-diffusion.

  9. Oxygen diffusion in nanocrystalline yttria-stabilized zirconia: the effect of grain boundaries.

    Science.gov (United States)

    De Souza, Roger A; Pietrowski, Martha J; Anselmi-Tamburini, Umberto; Kim, Sangtae; Munir, Zuhair A; Martin, Manfred

    2008-04-21

    The transport of oxygen in dense samples of yttria-stabilized zirconia (YSZ), of average grain size d approximately 50 nm, has been studied by means of 18O/16O exchange annealing and secondary ion mass spectrometry (SIMS). Oxygen diffusion coefficients (D*) and oxygen surface exchange coefficients (k*) were measured for temperatures 673oxygen partial pressure of 900 mbar. No evidence is found for fast diffusion along grain boundaries. Rather, the analysis indicates that grain boundaries hinder oxygen transport.

  10. Determination of the cationic self-diffusion coefficient in ThO2-5%UO2 nuclear fuel

    International Nuclear Information System (INIS)

    Sabioni, A.C.S.

    1984-01-01

    The cation self-diffusion coefficient for the ThO 2 -5%UO 2 by means of the densification model developed by Assmann and Stehle was determined. The experimental data of the fuel densification, used in the calculations, were obtained from thermal resinter tests. Our result is comparable to previously published values for U and Th diffusion in polycrystalline ThO 2 and (Th, U)O 2 . (Author) [pt

  11. Effect of EDTA and gypsum on self diffusion coefficient of zinc in alkali soil

    International Nuclear Information System (INIS)

    Gupta, G.N.; Deb, D.L.

    1981-01-01

    The effect of EDTA and gypsum application on the rate of zinc diffusion was studied in an alkali soil. Gypsum application at the rate of half gypsum requirement (GR) increased the apparent self diffusion coefficient of zinc (DaZn) and decreased the capacity factor (B) of soil. The higher rates (full GR and double GR) depressed the rate of zinc diffusion and increased the B value. Application of EDTA at the rate of 0.77 μeg -1 of soil produced 1600 and 24 fold increase in DaZn and DpZn values respectively and 100 times drop in B value. Addition of 55 ppm Zn to the soil significantly increased the DaZn and DpZn values. (author)

  12. Effective Diffusion Coefficients in Coal Chars

    DEFF Research Database (Denmark)

    Johnsson, Jan Erik; Jensen, Anker

    2001-01-01

    Knowledge of effective diffusion coefficients in char particles is important when interpreting experimental reactivity measurements and modeling char combustion or NO and N2O reduction. In this work, NO and N2O reaction with a bituminous coal char was studied in a fixed-bed quartz glass reactor....... In the case of strong pore diffusion limitations, the error in the interpretation of experimental results using the mean pore radius could be a factor of 5 on the intrinsic rate constant. For an average coal char reacting with oxygen at 1300 K, this would be the case for particle sizes larger than about 50...

  13. Fundamental data: Solubility of nickel and oxygen and diffusivity of iron and oxygen in molten LBE

    International Nuclear Information System (INIS)

    Abella, J.; Verdaguer, A.; Colominas, S.; Ginestar, K.; Martinelli, L.

    2011-01-01

    Experiments for determining nickel solubility limit and iron diffusion coefficient are presented and their results are discussed. Nickel solubility limit is determined by two methods: ex situ by solid sampling followed by ICP-AES analysis and in situ by Laser Induced Breakdown Spectroscopy and their results are compared. The iron diffusion coefficient is obtained using the technique of rotating specimen dissolution. Also a method to determine the oxygen solubility and diffusivity in LBE is developed and results at 460, 500 and 540 deg. C are presented. It is based on the following electrochemical cell: O 2 (reference mixture), Pt //YSZ//O 2 (LBE) which can work as an oxygen sensor or as a coulometric pump.

  14. Maxwell-Stefan diffusion coefficient estimation for ternary systems: an ideal ternary alcohol system.

    Science.gov (United States)

    Allie-Ebrahim, Tariq; Zhu, Qingyu; Bräuer, Pierre; Moggridge, Geoff D; D'Agostino, Carmine

    2017-06-21

    The Maxwell-Stefan model is a popular diffusion model originally developed to model diffusion of gases, which can be considered thermodynamically ideal mixtures, although its application has been extended to model diffusion in non-ideal liquid mixtures as well. A drawback of the model is that it requires the Maxwell-Stefan diffusion coefficients, which are not based on measurable quantities but they have to be estimated. As a result, numerous estimation methods, such as the Darken model, have been proposed to estimate these diffusion coefficients. However, the Darken model was derived, and is only well defined, for binary systems. This model has been extended to ternary systems according to two proposed forms, one by R. Krishna and J. M. van Baten, Ind. Eng. Chem. Res., 2005, 44, 6939-6947 and the other by X. Liu, T. J. H. Vlugt and A. Bardow, Ind. Eng. Chem. Res., 2011, 50, 10350-10358. In this paper, the two forms have been analysed against the ideal ternary system of methanol/butan-1-ol/propan-1-ol and using experimental values of self-diffusion coefficients. In particular, using pulsed gradient stimulated echo nuclear magnetic resonance (PGSTE-NMR) we have measured the self-diffusion coefficients in various methanol/butan-1-ol/propan-1-ol mixtures. The experimental values of self-diffusion coefficients were then used as the input data required for the Darken model. The predictions of the two proposed multicomponent forms of this model were then compared to experimental values of mutual diffusion coefficients for the ideal alcohol ternary system. This experimental-based approach showed that the Liu's model gives better predictions compared to that of Krishna and van Baten, although it was only accurate to within 26%. Nonetheless, the multicomponent Darken model in conjunction with self-diffusion measurements from PGSTE-NMR represents an attractive method for a rapid estimation of mutual diffusion in multicomponent systems, especially when compared to exhaustive

  15. Self diffusion in tungsten

    International Nuclear Information System (INIS)

    Mundy, J.N.; Rothman, S.J.; Lam, N.Q.; Nowicki, L.J.; Hoff, H.A.

    1978-01-01

    The lack of understanding of self-diffusion in Group VI metals together with the wide scatter in the measured values of tungsten self-diffusion has prompted the present measurements to be made over a wide temperature range (1/2Tsub(m) to Tsub(m)). The diffusion coefficients have been measured in the temperature range 1430-2630 0 C. The present measurements show non-linear Arrhenius behavior but a reliable two-exponential fit of the data should await further measurements. (Auth.)

  16. Determination of the diffusion coefficient of hydrogen ion in hydrogels.

    Science.gov (United States)

    Schuszter, Gábor; Gehér-Herczegh, Tünde; Szűcs, Árpád; Tóth, Ágota; Horváth, Dezső

    2017-05-17

    The role of diffusion in chemical pattern formation has been widely studied due to the great diversity of patterns emerging in reaction-diffusion systems, particularly in H + -autocatalytic reactions where hydrogels are applied to avoid convection. A custom-made conductometric cell is designed to measure the effective diffusion coefficient of a pair of strong electrolytes containing sodium ions or hydrogen ions with a common anion. This together with the individual diffusion coefficient for sodium ions, obtained from PFGSE-NMR spectroscopy, allows the determination of the diffusion coefficient of hydrogen ions in hydrogels. Numerical calculations are also performed to study the behavior of a diffusion-migration model describing ionic diffusion in our system. The method we present for one particular case may be extended for various hydrogels and diffusing ions (such as hydroxide) which are relevant e.g. for the development of pH-regulated self-healing mechanisms and hydrogels used for drug delivery.

  17. Counterion self-diffusion in polyelectrolyte solutions

    Science.gov (United States)

    Schipper, F. J. M.; Hollander, J. G.; Leyte, J. C.

    1997-12-01

    The self-diffusion coefficient of 0953-8984/9/50/019/img1, tetra-methylammonium 0953-8984/9/50/019/img2, tetra-ethylammonium 0953-8984/9/50/019/img3, tetra-propylammonium 0953-8984/9/50/019/img4 and tetra-butylammonium 0953-8984/9/50/019/img5 in solutions of the weak polymethacrylic acid (PMA) were measured with PFG NMR. No additional salt was present in any of the experiments. The polyion concentration and degree of neutralization were varied. The maximum relative counterion self-diffusion coefficient against polyion concentration, that was reported earlier, was observed for both alkali and tetra-alkylammonium 0953-8984/9/50/019/img6 counterions. We propose that the maximum is due to the combination of the obstruction by the polyion and the changing counterion distribution at increasing polyion concentration. An explanation of this proposal is offered in terms of the Poisson - Boltzmann - Smoluchowski (PBS) model for polyelectrolytes. Qualitative agreement of this model with experiment was found for the dependence of the counterion self-diffusion coefficient on the degree of neutralization of the polyion, on counterion radius and on polyion concentration, over a concentration range from 0.01 to 1 0953-8984/9/50/019/img7. Adaption of the theoretical obstruction, to fit the self-diffusion data of the solvent, also greatly improves the model predictions on the counterion self-diffusion.

  18. Form of multicomponent Fickian diffusion coefficients matrix

    International Nuclear Information System (INIS)

    Wambui Mutoru, J.; Firoozabadi, Abbas

    2011-01-01

    Highlights: → Irreversible thermodynamics establishes form of multicomponent diffusion coefficients. → Phenomenological coefficients and thermodynamic factors affect sign of diffusion coefficients. → Negative diagonal elements of diffusion coefficients matrix can occur in non-ideal mixtures. → Eigenvalues of the matrix of Fickian diffusion coefficients may not be all real. - Abstract: The form of multicomponent Fickian diffusion coefficients matrix in thermodynamically stable mixtures is established based on the form of phenomenological coefficients and thermodynamic factors. While phenomenological coefficients form a symmetric positive definite matrix, the determinant of thermodynamic factors matrix is positive. As a result, the Fickian diffusion coefficients matrix has a positive determinant, but its elements - including diagonal elements - can be negative. Comprehensive survey of reported diffusion coefficients data for ternary and quaternary mixtures, confirms that invariably the determinant of the Fickian diffusion coefficients matrix is positive.

  19. Self diffusion in isotopic fluid

    International Nuclear Information System (INIS)

    Tankeshwar, K.

    1991-01-01

    Expressions for the second and fourth frequency sum rules of the velocity auto-correlation function have been obtained for an isotopic fluid. These expressions and Mori memory function formalism have been used to study the influence of the particle mass and mole fraction on the self diffusion coefficient. Our results confirm the weak mass dependence of the self diffusion. The influence of the mole fraction of the light particles on the self diffusion constant has been found to increase for the larger particle mass. (author). 17 refs, 1 fig., 2 tabs

  20. Stress dependence of oxygen diffusion in ZrO2 film

    International Nuclear Information System (INIS)

    Yamamoto, Yasunori; Morishita, Kazunori; Iwakiri, Hirotomo; Kaneta, Yasunori

    2013-01-01

    First principles calculations were performed to evaluate the effect of stress on the diffusion process of oxygen atoms in monoclinic and tetragonal ZrO 2 . The formation and migration energies of an oxygen vacancy were obtained as a function of applied stress. Our results show that the formation and migration energies increase when the compressive stress is applied, which causes a reduction in the diffusion coefficient of an oxygen atom in ZrO 2 . This may explain the experimental observation that the oxide film grows in proportion to the cubic root of time

  1. Temperature dependence of Self-diffusion coefficient (SDC) of liquid ...

    African Journals Online (AJOL)

    PROF HORSFALL

    2018-04-09

    Apr 9, 2018 ... inverse square relationship between the natural logarithm of self-diffusion ... using the Equilibrium Molecular Dynamics (MD) and ..... Density, and Viscosity of Liquid Aluminum and. Iron. J. Phys. Chem. Ref. Data 35 ... Atomic Diffusion in Condensed Matter. Nature. 381: 137. Einstein, A (1905). Annalen der ...

  2. Phase stability and oxygen diffusion in RBa2Cu3O6+x (R=Y, Nd)

    International Nuclear Information System (INIS)

    Mozhaev, A.P.; Mazo, G.N.; Galkin, A.A.; Khromova, N.V.

    1996-01-01

    Phase stability boundaries of RBa 2 Cu 3 O 6 + x (R=Y, Nd) compounds for oxygen partial pressure wide range were determined by means of Coulomb titration. Phase decomposition is shown to occur without formation of liquid phase. Principial differences in the chemical composition of decomposition product of Y- and Nd-containing phases were detected. Dependences of oxygen non-stoichiometry of the compounds on temperature were determined. Fragments of P o 2 -T-x-diagrams were plotted. Oxygen diffusion coefficients within wide range of temperatures and partial pressures of oxygen were determined. Dependence of diffusion parameters on oxygen non-stoichiometry and P o 2 was determined. Oxygen diffusion was determined to occur more rapidly in orthorhombic phase than in tetragonal one. Diffusion coefficients were shown to increase at transition from Y-to Nd-containing phase. 13 refs., 6 figs., 2 tabs

  3. Determination of uranium self-diffusion coefficients in the U O2 nuclear fuel by secondary ion mass spectrometry

    International Nuclear Information System (INIS)

    Ferraz, Wilmar Barbosa

    1998-01-01

    This study of uranium self-diffusion in UO 2 presents a great technological interest because its knowledge is necessary to interpret the mechanism of many important processes like, for example, sintering, creep, grain growth, in-reactor densification and others. The present work deals with new measurements of uranium diffusion in UO 2 single crystals and polycrystals through an original mythology based on the utilization of 235 U as tracer and depth profiling by secondary ions mass spectrometry (SIMS). The diffusion experiments were performed between 1498 and 1697 deg C, in H 2 atmosphere. In our experimental conditions, the uranium volume diffusion coefficients measured in UO 2 single crystals can be described by the following Arrhenius relation: D(cm 2 /s) = 8.54x10 -7 exp[-4.4(eV)/K T]. The uranium grain-boundary diffusion experiments performed in UO 2 polycrystals corresponded to the type-B diffusion. In this case, it was possible to determine the product D'δ, where D is the grain-boundary diffusion and is the width of the grain-boundary. In our experimental conditions, the product D'δ can be described by the following relation: D'δ (cm 3 /s) = 1.62x10 -5 exp[-5.6(eV)/K T]. These results that the uranium volume diffusion coefficients, measured in UO 2 single crystals, are 5 orders of magnitude lower than the uranium grain boundary diffusion coefficients measured in UO 2 polycrystalline pellets, in the same experimental conditions. This large difference between these two types of diffusivities indicates that the grain boundary is a preferential via for uranium diffusion in UO 2 polycrystalline pellet. (author)

  4. Diffusion coefficients of rare earth elements in fcc Fe: A first-principles study

    Science.gov (United States)

    Wang, Haiyan; Gao, Xueyun; Ren, Huiping; Chen, Shuming; Yao, Zhaofeng

    2018-01-01

    The diffusion data and corresponding detailed insights are particularly important for the understanding of the related kinetic processes in Fe based alloys, e.g. solute strengthening, phase transition, solution treatment etc. We present a density function theory study of the diffusivity of self and solutes (La, Ce, Y and Nb) in fcc Fe. The five-frequency model was employed to calculate the microscopic parameters in the correlation factors of the solute diffusion. The interactions of the solutes with the first nearest-neighbor vacancy (1nn) are all attractive, and can be well understood on the basis of the combination of the strain-relief effects and the electronic effects. It is found that among the investigated species, Ce is the fastest diffusing solute in fcc Fe matrix followed by Nb, and the diffusion coefficients of these two solutes are about an order of magnitude higher than that of Fe self-diffusion. And the results show that the diffusion coefficient of La is slightly higher than that of Y, and both species are comparable to that of Fe self-diffusion.

  5. Assessment of oxygen diffusion coefficients by studying high-temperature oxidation behaviour of Zr1Nb fuel cladding in the temperature range of 1100–1300 °C

    Energy Technology Data Exchange (ETDEWEB)

    Négyesi, M., E-mail: negy@seznam.cz [Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Trojanova 13, 120 00 Praha 2 (Czech Republic); UJP PRAHA a.s., Nad Kamínkou 1345, 156 10 Praha – Zbraslav (Czech Republic); Chmela, T. [UJP PRAHA a.s., Nad Kamínkou 1345, 156 10 Praha – Zbraslav (Czech Republic); Veselský, T. [Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Trojanova 13, 120 00 Praha 2 (Czech Republic); Krejčí, J. [Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Trojanova 13, 120 00 Praha 2 (Czech Republic); CHEMCOMEX Praha a.s., Elišky Přemyslovny 379, 156 10 Praha – Zbraslav (Czech Republic); Novotný, L.; Přibyl, A. [UJP PRAHA a.s., Nad Kamínkou 1345, 156 10 Praha – Zbraslav (Czech Republic); Bláhová, O. [New Technologies Research Centre, University of West Bohemia, Univerzitní 8, 306 14 Plzeň (Czech Republic); Burda, J. [NRI Rez plc, Husinec-Řež 130, 250 68 Řež (Czech Republic); Siegl, J. [Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Trojanova 13, 120 00 Praha 2 (Czech Republic); Vrtílková, V. [UJP PRAHA a.s., Nad Kamínkou 1345, 156 10 Praha – Zbraslav (Czech Republic)

    2015-01-15

    The paper deals with high-temperature steam oxidation behaviour of Zr1Nb fuel cladding. First of all, comprehensive experimental program was conducted to provide sufficient experimental data, such as the thicknesses of evolved phase layers and the overall weight gain kinetics, as well as the oxygen concentration and nanohardness values at phase boundaries. Afterwards, oxygen diffusion coefficients in the oxide, in the α-Zr(O) layer, in the double-phase (α + β)-Zr region, and in the β-phase region have been estimated based on the experimental data employing analytical solution of the multiphase moving boundary problem, assuming the equilibrium conditions being fulfilled at the interface boundaries. Eventually, the determined oxygen diffusion coefficients served as input into the in-house numerical code, which was designed to predict the high-temperature oxidation behaviour of Zr1Nb fuel cladding. Very good agreement has been achieved between the numerical calculations and the experimental data.

  6. Diffusion of oxygen through cork stopper: is it a Knudsen or a Fickian mechanism?

    Science.gov (United States)

    Lagorce-Tachon, Aurélie; Karbowiak, Thomas; Simon, Jean-Marc; Gougeon, Régis; Bellat, Jean-Pierre

    2014-09-17

    The aim of this work is to identify which law governs oxygen transfer through cork: Knudsen or Fickian mechanism. This is important to better understand wine oxidation during post-bottling aging. Oxygen transfer through cork wafers is measured at 298 K using a manometric permeation technique. Depending on the mechanism, we can extract the transport coefficients. Increasing the initial pressure of oxygen from 50 to 800 hPa leads to a change in the values of the transport coefficients. This implies that oxygen transport through cork does not obey the Knudsen law. From these results, we conclude that the limiting step of oxygen transport through cork occurs in the cell wall following Fickian law. From the diffusion dependence's coefficients with pressure, we also extract by applying transition state theory an apparent activation volume of 45 ± 4 nm(3). This high value indicates that oxygen molecules also diffuse from one site to another by passing through a gas phase.

  7. Oxygen diffusion in high-Tc superconductors

    International Nuclear Information System (INIS)

    Rothman, S.J.; Routbort, J.L.

    1992-07-01

    The cuprate superconductors are fascinating not only because of their technical promise, but also because of their structures, especially the anisotropy of the crystal lattice. There are some structural similarities among these compounds, but also significant differences. Measurements of the oxygen tracer diffusion coefficients have been carried out as a function of temperature, oxygen partial pressure, crystal orientation, and doping in the La-Sr-Cu-0, Y-Ba-Cu-0, and Bi-Sr-Ca-Cu-0 systems. These measurements have revealed a variety of defect mechanisms operating in these compounds; the exact nature of the mechanism depends on the details of the structure

  8. On the self-diffusion process in liquid metals and alloys by the radioactive tracer method

    International Nuclear Information System (INIS)

    Ganovici, L.

    1978-01-01

    A theoretical and experimental study of self-diffusion process in liquid metals and alloys is presented. There are only a few pure metals for which diffusion coefficients in a liquid state are known. The thesis aims at increasing the number of liquid metals for which diffusion coefficients are available, by determining these values for liquids: Cd, Tl, Sb and Te. The self-diffusion coefficients of Te in some tellurium based liquid alloys such as Tl 2 Te, PbTe and Bi 90 Te 10 were also determined. Self-diffusion coefficients have been measured using two radioactive tracer methods: a) the capillary-reservoir method; b) the semi-infinite capillary method. The self-diffusion coefficients were derived from the measured radioactive concentration profile, using the solutions of Fick's second law for appropriate initial and limit conditions. The temperature dependence study of self-diffusion coefficients in liquids Cd, Tl, Sb and Te, was used to check some theoretical models on the diffusion mechanism in metallic melts. The experimental diffusion data interpreted in terms of the Arrhenius type temperature dependence, was used to propose two simple empiric relations for determining self diffusion coefficients of group I liquid metals and for liquid semi-metals. It was established a marked decrease of self-diffusion coefficients of liquid Te close to the solidification temperature. The diffusivity of Te in liquid Tl 2 Te points to an important decrease close to the solidification temperature. A simplified model was proposed for the diffusion structural unit in this alloy and the hard sphere model for liquid metals was checked by comparing the theoretical and experimental self-diffusion coefficients. (author)

  9. Stress dependence of oxygen diffusion in ZrO{sub 2} film

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Yasunori, E-mail: yasu-yamamoto@iae.kyoto-u.ac.jp [Graduate School of Energy Science, Kyoto University, Uji, Kyoto 611-0011 (Japan); Morishita, Kazunori [Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011 (Japan); Iwakiri, Hirotomo [Faculty of Education, University of the Ryukyus, Nakagami-gun, Okinawa 903-0213 (Japan); Kaneta, Yasunori [Akita National College of Technology, Akita, Akita 011-8511 (Japan)

    2013-05-15

    First principles calculations were performed to evaluate the effect of stress on the diffusion process of oxygen atoms in monoclinic and tetragonal ZrO{sub 2}. The formation and migration energies of an oxygen vacancy were obtained as a function of applied stress. Our results show that the formation and migration energies increase when the compressive stress is applied, which causes a reduction in the diffusion coefficient of an oxygen atom in ZrO{sub 2}. This may explain the experimental observation that the oxide film grows in proportion to the cubic root of time.

  10. Self-diffusion of Er and Hf inpure and HfO2-doped polycrystalline Er2O3

    International Nuclear Information System (INIS)

    Scheidecker, R.W.

    1979-01-01

    Using a tracer technique, self-diffusion of Er and Hf was measured over the approximate temperature interval of 1600 to 1970 0 C in pure and HfO 2 -doped polycryatalline Er 2 O 3 . Up to about 10 m/o HfO 2 dopant level, the Er self-diffusion coefficients followed a relationship based on cation vacancies. Above 10 m/o HfO 2 , deviation from this relationship occurred, apparently due to clustering of cation vacancies and oxygen interstitials around the dopant hafnia ion. The activation energy for the self-diffusion of Er in pure Er 2 O 3 was 82.2 Kcal/mole and increased with the HfO 2 dopant level present. Self-diffusion of Hf was measured in pure Er 2 O 3 having two impurity levels, and a separation of the grain boundary. The volume diffusion of Hf showed both extrinsic and intrinsic behavior with the transition temperature increasing with the impurity level present in Er 2 O 3 . The activation energy for Hf volume diffusion in the intrinsic region was high, i.e. 235 -+ 9.5 Kcal/mole. The grain boundary diffusion was apparently extrinsic over the entire temperature interval Very low Hf self diffusion rates were found in both pure and HfO 2 doped Er 2 O 3 compositions. Despite a clustering effect, the HfO 2 dopant increased the Hf volume diffusion coefficients

  11. Thermodynamic calculations of self- and hetero-diffusion parameters in germanium

    International Nuclear Information System (INIS)

    Saltas, V.; Vallianatos, F.

    2015-01-01

    In the present work, the diffusion coefficients of n- and p-type dopants (P, As, Sb, Al) and self-diffusion in crystalline germanium are calculated from the bulk elastic properties of the host material based on the cBΩ thermodynamic model. The calculated diffusion coefficients as a function of temperature and the activation enthalpies prove to be in full agreement with the reported experimental results. Additional point defect parameters such as activation entropy, activation volume and activation Gibbs free energy are also calculated for each diffusing element. The pressure dependence of self-diffusion coefficients in germanium is also verified at high temperatures (876 K–1086 K), in agreement with reported results ranging from ambient pressure up to 600 MPa and is further calculated at pressures up to 3 GPa, where the phase transition to Ge II occurs. - Highlights: • Calculation of diffusivities of n- and p-type dopants in Ge from elastic properties. • Calculation of point defect parameters according to the cBΩ thermodynamic model. • Prediction of the pressure dependence of self-diffusion coefficients in Ge

  12. System-size corrections for self-diffusion coefficients calculated from molecular dynamics simulations: The case of CO{sub 2}, n-alkanes, and poly(ethylene glycol) dimethyl ethers

    Energy Technology Data Exchange (ETDEWEB)

    Moultos, Othonas A.; Economou, Ioannis G. [Chemical Engineering Program, Texas A& M University at Qatar, P.O. Box 23847, Doha (Qatar); Zhang, Yong; Maginn, Edward J., E-mail: ed@nd.edu [Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556 (United States); Tsimpanogiannis, Ioannis N. [Chemical Engineering Program, Texas A& M University at Qatar, P.O. Box 23847, Doha (Qatar); Environmental Research Laboratory, National Center for Scientific Research “Demokritos,” 15310 Aghia Paraskevi Attikis (Greece)

    2016-08-21

    Molecular dynamics simulations were carried out to study the self-diffusion coefficients of CO{sub 2}, methane, propane, n-hexane, n-hexadecane, and various poly(ethylene glycol) dimethyl ethers (glymes in short, CH{sub 3}O–(CH{sub 2}CH{sub 2}O){sub n}–CH{sub 3} with n = 1, 2, 3, and 4, labeled as G1, G2, G3, and G4, respectively) at different conditions. Various system sizes were examined. The widely used Yeh and Hummer [J. Phys. Chem. B 108, 15873 (2004)] correction for the prediction of diffusion coefficient at the thermodynamic limit was applied and shown to be accurate in all cases compared to extrapolated values at infinite system size. The magnitude of correction, in all cases examined, is significant, with the smallest systems examined giving for some cases a self-diffusion coefficient approximately 15% lower than the infinite system-size extrapolated value. The results suggest that finite size corrections to computed self-diffusivities must be used in order to obtain accurate results.

  13. REVIEW ARTICLE: Oxygen diffusion and precipitation in Czochralski silicon

    Science.gov (United States)

    Newman, R. C.

    2000-06-01

    The objective of this article is to review our understanding of the properties of oxygen impurities in Czochralski silicon that is used to manufacture integrated circuits (ICs). These atoms, present at a concentration of ~1018 cm-3, occupy bond-centred sites (Oi) in as-grown Si and the jump rate between adjacent sites defines `normal' diffusion for the temperature range 1325 - 330 °C. Anneals at high temperatures lead to the formation of amorphous SiO2 precipitates that act as traps for fast diffusing metallic contaminants, such as Fe and Cu, that may be inadvertently introduced at levels as low as 1011 cm-3. Without this `gettering', there may be severe degradation of fabricated ICs. To accommodate the local volume increase during oxygen precipitation, there is parallel generation of self-interstitials that diffuse away and form lattice defects. High temperature (T > 700 °C) anneals are now well understood. Details of lower temperature processes are still a matter of debate: measurements of oxygen diffusion into or out of the Si surface and Oi atom aggregation have implied enhanced diffusion that has variously been attributed to interactions of Oi atoms with lattice vacancies, self-interstitials, metallic elements, carbon, hydrogen impurities etc. There is strong evidence for oxygen-hydrogen interactions at T continue to decrease as the size of future device features decreases below the lower end of the sub-micron range, currently close to 0.18 µm.

  14. Oxygen diffusion model of the mixed (U,Pu)O{sub 2±x}: Assessment and application

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Emily, E-mail: eemevans@gmail.com [Den-Service de la Corrosion et du Comportement des Matériaux dans leur Environment (SCCME), CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, Cedex (France); Guéneau, Christine [Den-Service de la Corrosion et du Comportement des Matériaux dans leur Environment (SCCME), CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, Cedex (France); Crocombette, Jean-Paul [Den-Service de Recherche de Métallurgie Physique (SRMP), CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, Cedex (France)

    2017-03-15

    The uranium-plutonium (U,Pu)O{sub 2±x} mixed oxide (MOX) is used as a nuclear fuel in some light water reactors and considered for future reactor generations. To gain insight into fuel restructuring, which occurs during the fuel lifetime as well as possible accident scenarios understanding of the thermodynamic and kinetic behavior is crucial. A comprehensive evaluation of thermo-kinetic properties is incorporated in a computational CALPHAD type model. The present DICTRA based model describes oxygen diffusion across the whole range of plutonium, uranium and oxygen compositions and temperatures by incorporating vacancy and interstitial migration pathways for oxygen. The self and chemical diffusion coefficients are assessed for the binary UO{sub 2±x} and PuO{sub 2−x} systems and the description is extended to the ternary mixed oxide (U,Pu)O{sub 2±x} by extrapolation. A simulation to validate the applicability of this model is considered.

  15. Thermodynamics and Cation Diffusion in the Oxygen Ion Conductor Lsgm

    Science.gov (United States)

    Martin, M.; Schulz, O.

    Perovskite type oxides based on LaGaO3 are of large technical interest because of their high oxygen-ion conductivity. Lanthanum gallate doped with Sr on A- and Mg on B-sites, La1-xSrxGa1-yMgyO3-(x+y)/2 (LSGM), reaches higher oxygen-ion conductivities than yttria-doped zirconia (YSZ). Thus LSGM represents a promising alternative for YSZ as electrolyte in solid oxide fuel cells (SOFC). Cells using thin LSGM-layers as electrolyte are expected to operate at intermediate temperatures around 700°C for more than 30000 hours without severe degradation. A potential long term degradation effect of LSGM is kinetic demixing of the electrolyte, caused by different cation diffusion coefficients. In this paper we report on experimental studies concerning the phase diagram of LSGM and the diffusion of cations. Cation self-diffusion of 139La, 84Sr and 25Mg and cation impurity diffusion of 144Nd, 89Y and 56Fe in polycrystalline LSGM samples was investigated by secondary ion mass spectrometry (SIMS) for temperatures between 900°C and 1400°C. It was found that diffusion occurs by means of bulk and grain boundaries. The bulk diffusion coefficients are similar for all cations with activation energies which are strongly dependent on temperature. At high temperatures, the activation energies are about 5 eV, while at low temperatures values of about 2 eV are found. These results are explained by a frozen in defect structure at low temperatures. This means that the observed activation energy at low temperatures represents only the migration energy of the different cations while the observed activation energy at high temperatures is the sum of the defect formation energy and the migration energy. The migration energies for all cations are nearly identical, although 139La, 84Sr and 144Nd are occupying A-sites while 25Mg and 56Fe are occupying B-sites in the perovskite-structure. To explain these experimental findings we propose a defect cluster containing cation vacancies in both the A

  16. Anisotropic Oxygen Ion Diffusion in Layered PrBaCo 2 O 5+δ

    KAUST Repository

    Burriel, Mónica

    2012-02-14

    Oxygen diffusion and surface exchange coefficients have been measured on polycrystalline samples of the double perovskite oxide PrBaCo 2O 5+δ by the isotope exchange depth profile method, using a time-of-flight SIMS instrument. The measured diffusion coefficients show an activation energy of 1.02 eV, as compared to 0.89 eV for the surface exchange coefficients in the temperature range from 300 to 670 °C. Inhomogeneity was observed in the distribution of the oxygen-18 isotopic fraction from grain to grain in the ceramic samples, which was attributed to anisotropy in the diffusion and exchange of oxygen. By the use of a novel combination of electron back scattered diffraction measurements, time-of-flight, and focused ion beam SIMS, this anisotropy was confirmed by in-depth analysis of single grains of known orientation in a ceramic sample exchanged at 300 °C. Diffusion was shown to be faster in a grain oriented with the surface normal close to 100 and 010 (ab-plane oriented) than a grain with a surface normal close to 001 (c-axis oriented). The magnitude of this anisotropy is estimated to be close to a factor of 4, but this is only a lower bound due to experimental limitations. These findings are consistent with recent molecular dynamic simulations of this material where anisotropy in the oxygen transport was predicted. © 2012 American Chemical Society.

  17. Anisotropic Oxygen Ion Diffusion in Layered PrBaCo 2 O 5+δ

    KAUST Repository

    Burriel, Mó nica; Peñ a-Martí nez, Juan; Chater, Richard J.; Fearn, Sarah; Berenov, Andrey V.; Skinner, Stephen J.; Kilner, John A.

    2012-01-01

    Oxygen diffusion and surface exchange coefficients have been measured on polycrystalline samples of the double perovskite oxide PrBaCo 2O 5+δ by the isotope exchange depth profile method, using a time-of-flight SIMS instrument. The measured diffusion coefficients show an activation energy of 1.02 eV, as compared to 0.89 eV for the surface exchange coefficients in the temperature range from 300 to 670 °C. Inhomogeneity was observed in the distribution of the oxygen-18 isotopic fraction from grain to grain in the ceramic samples, which was attributed to anisotropy in the diffusion and exchange of oxygen. By the use of a novel combination of electron back scattered diffraction measurements, time-of-flight, and focused ion beam SIMS, this anisotropy was confirmed by in-depth analysis of single grains of known orientation in a ceramic sample exchanged at 300 °C. Diffusion was shown to be faster in a grain oriented with the surface normal close to 100 and 010 (ab-plane oriented) than a grain with a surface normal close to 001 (c-axis oriented). The magnitude of this anisotropy is estimated to be close to a factor of 4, but this is only a lower bound due to experimental limitations. These findings are consistent with recent molecular dynamic simulations of this material where anisotropy in the oxygen transport was predicted. © 2012 American Chemical Society.

  18. A model for self-diffusion of guanidinium-based ionic liquids: a molecular simulation study.

    Science.gov (United States)

    Klähn, Marco; Seduraman, Abirami; Wu, Ping

    2008-11-06

    We propose a novel self-diffusion model for ionic liquids on an atomic level of detail. The model is derived from molecular dynamics simulations of guanidinium-based ionic liquids (GILs) as a model case. The simulations are based on an empirical molecular mechanical force field, which has been developed in our preceding work, and it relies on the charge distribution in the actual liquid. The simulated GILs consist of acyclic and cyclic cations that were paired with nitrate and perchlorate anions. Self-diffusion coefficients are calculated at different temperatures from which diffusive activation energies between 32-40 kJ/mol are derived. Vaporization enthalpies between 174-212 kJ/mol are calculated, and their strong connection with diffusive activation energies is demonstrated. An observed formation of cavities in GILs of up to 6.5% of the total volume does not facilitate self-diffusion. Instead, the diffusion of ions is found to be determined primarily by interactions with their immediate environment via electrostatic attraction between cation hydrogen and anion oxygen atoms. The calculated average time between single diffusive transitions varies between 58-107 ps and determines the speed of diffusion, in contrast to diffusive displacement distances, which were found to be similar in all simulated GILs. All simulations indicate that ions diffuse by using a brachiation type of movement: a diffusive transition is initiated by cleaving close contacts to a coordinated counterion, after which the ion diffuses only about 2 A until new close contacts are formed with another counterion in its vicinity. The proposed diffusion model links all calculated energetic and dynamic properties of GILs consistently and explains their molecular origin. The validity of the model is confirmed by providing an explanation for the variation of measured ratios of self-diffusion coefficients of cations and paired anions over a wide range of values, encompassing various ionic liquid classes

  19. The off-center effect on the diffusion coefficient of Cu+ and Li+ in the KCl lattice

    International Nuclear Information System (INIS)

    Despa, F.

    1994-07-01

    It is well known that the diffusion coefficients of the Cu + cation in the NaCl and KCl lattices exceeds by three or four orders of magnitude the corresponding self-diffusion coefficients in the intrinsic temperature regions. This fast diffusion of the Cu + has been explained in many papers as an interstitial diffusion although the optical spectra do not confirm the existence of interstitial Cu + . In this paper we propose a new mechanism for fast diffusion. The model assumes that the equilibrium positions of the cationic impurities are noncentral and that the diffusion proceeds by hopping across the potential barrier along the nonlinear paths with the highest probability. The main result shows that the off-center position enhances considerably the diffusion. Theoretical diffusion coefficients have been obtained by modelling the potential barrier. Changes of the configuration entropy and the vibration spectra due to the presence of the noncentral impurity have been included in the model. We proceeded in the Li + cation case as in the case of Cu + cation. We emphasize the good agreement of the model with the experimental data and we show that if the impurity is placed close to the central site the due diffusion coefficient is close to that for the cationic self-diffusion. (author). 37 refs, 6 figs, 3 tabs

  20. Diffusion coefficient of three-dimensional Yukawa liquids

    International Nuclear Information System (INIS)

    Dzhumagulova, K. N.; Ramazanov, T. S.; Masheeva, R. U.

    2013-01-01

    The purpose of this work is an investigation of the diffusion coefficient of the dust component in complex plasma. The computer simulation of the Yukawa liquids was made on the basis of the Langevin equation, which takes into account the influence of buffer plasma on the dust particles dynamics. The Green–Kubo relation was used to calculate the diffusion coefficient. Calculations of the diffusion coefficient for a wide range of the system parameters were performed. Using obtained numerical data, we constructed the interpolation formula for the diffusion coefficient. We also show that the interpolation formula correctly describes experimental data obtained under microgravity conditions

  1. Diffusion coefficients of paracetamol in aqueous solutions

    International Nuclear Information System (INIS)

    Ribeiro, Ana C.F.; Barros, Marisa C.F.; Veríssimo, Luís M.P.; Santos, Cecilia I.A.V.; Cabral, Ana M.T.D.P.V.; Gaspar, Gualter D.; Esteso, Miguel A.

    2012-01-01

    Highlights: ► Mutual diffusion coefficients of paracetamol in aqueous dilute solutions. ► Influence of the thermodynamic factors on the variation of their mutual diffusion coefficients. ► Estimation of the mutual limiting diffusion coefficients of the molecular, D m 0 , and ionized forms, D ± 0 , of this drug. - Abstract: Binary mutual diffusion coefficients measured by the Taylor dispersion method, for aqueous solutions of paracetamol (PA) at concentrations from (0.001 to 0.050) mol·dm −3 at T = 298.15 K, are reported. From the Nernst–Hartley equation and our experimental results, the limiting diffusion coefficient of this drug and its thermodynamic factors are estimated, thereby contributing in this way to a better understanding of the structure of such systems and of their thermodynamic behaviour in aqueous solution at different concentrations.

  2. Oxygen diffusion in monazite

    Science.gov (United States)

    Cherniak, D. J.; Zhang, X. Y.; Nakamura, M.; Watson, E. B.

    2004-09-01

    We report measurements of oxygen diffusion in natural monazites under both dry, 1-atm conditions and hydrothermal conditions. For dry experiments, 18O-enriched CePO4 powder and monazite crystals were sealed in Ag-Pd capsules with a solid buffer (to buffer at NNO) and annealed in 1-atm furnaces. Hydrothermal runs were conducted in cold-seal pressure vessels, where monazite grains were encapsulated with 18O-enriched water. Following the diffusion anneals, oxygen concentration profiles were measured with Nuclear Reaction Analysis (NRA) using the reaction 18O(p,α)15N. Over the temperature range 850-1100 °C, the Arrhenius relation determined for dry diffusion experiments on monazite is given by: Under wet conditions at 100 MPa water pressure, over the temperature range 700-880 °C, oxygen diffusion can be described by the Arrhenius relationship: Oxygen diffusion under hydrothermal conditions has a significantly lower activation energy for diffusion than under dry conditions, as has been found the case for many other minerals, both silicate and nonsilicate. Given these differences in activation energies, the differences between dry and wet diffusion rates increase with lower temperatures; for example, at 600 °C, dry diffusion will be more than 4 orders of magnitude slower than diffusion under hydrothermal conditions. These disparate diffusivities will result in pronounced differences in the degree of retentivity of oxygen isotope signatures. For instance, under dry conditions (presumably rare in the crust) and high lower-crustal temperatures (∼800 °C), monazite cores of 70-μm radii will preserve O isotope ratios for about 500,000 years; by comparison, they would be retained at this temperature under wet conditions for about 15,000 years.

  3. Self-diffusion and solute diffusion in alloys under irradiation: Influence of ballistic jumps

    International Nuclear Information System (INIS)

    Roussel, Jean-Marc; Bellon, Pascal

    2002-01-01

    We have studied the influence of ballistic jumps on thermal and total diffusion of solvent and solute atoms in dilute fcc alloys under irradiation. For the diffusion components that result from vacancy migration, we introduce generalized five-frequency models, and show that ballistic jumps produce decorrelation effects that have a moderate impact on self-diffusion but that can enhance or suppress solute diffusion by several orders of magnitude. These could lead to new irradiation-induced transformations, especially in the case of subthreshold irradiation conditions. We also show that the mutual influence of thermal and ballistic jumps results in a nonadditivity of partial diffusion coefficients: the total diffusion coefficient under irradiation may be less than the sum of the thermal and ballistic diffusion coefficients. These predictions are confirmed by kinetic Monte Carlo simulations. Finally, it is shown that the method introduced here can be extended to take into account the effect of ballistic jumps on the diffusion of dumbbell interstitials in dilute alloys

  4. Diffusion coefficient adaptive correction in Lagrangian puff model

    International Nuclear Information System (INIS)

    Tan Wenji; Wang Dezhong; Ma Yuanwei; Ji Zhilong

    2014-01-01

    Lagrangian puff model is widely used in the decision support system for nuclear emergency management. The diffusion coefficient is one of the key parameters impacting puff model. An adaptive method was proposed in this paper, which could correct the diffusion coefficient in Lagrangian puff model, and it aimed to improve the accuracy of calculating the nuclide concentration distribution. This method used detected concentration data, meteorological data and source release data to estimate the actual diffusion coefficient with least square method. The diffusion coefficient adaptive correction method was evaluated by Kincaid data in MVK, and was compared with traditional Pasquill-Gifford (P-G) diffusion scheme method. The results indicate that this diffusion coefficient adaptive correction method can improve the accuracy of Lagrangian puff model. (authors)

  5. Self-thermophoresis and thermal self-diffusion in liquids and gases.

    Science.gov (United States)

    Brenner, Howard

    2010-09-01

    This paper demonstrates the existence of self-thermophoresis, a phenomenon whereby a virtual thermophoretic force arising from a temperature gradient in a quiescent single-component liquid or gas acts upon an individual molecule of that fluid in much the same manner as a "real" thermophoretic force acts upon a macroscopic, non-Brownian body immersed in that same fluid. In turn, self-thermophoresis acting in concert with Brownian self-diffusion gives rise to the phenomenon of thermal self-diffusion in single-component fluids. The latter furnishes quantitative explanations of both thermophoresis in pure fluids and thermal diffusion in binary mixtures (the latter composed of a dilute solution of a physicochemically inert solute whose molecules are large compared with those of the solvent continuum). Explicitly, the self-thermophoretic theory furnishes a simple expression for both the thermophoretic velocity U of a macroscopic body in a single-component fluid subjected to a temperature gradient ∇T , and the intimately related binary thermal diffusion coefficient D{T} for a two-component colloidal or macromolecular mixture. The predicted expressions U=-D{T}∇T≡-βD{S}∇T and D{T}=βD{S} (with β and D{S} the pure solvent's respective thermal expansion and isothermal self-diffusion coefficients) are each noted to accord reasonably well with experimental data for both liquids and gases. The likely source of systematic deviations of the predicted values of D{T} from these data is discussed. This appears to be the first successful thermodiffusion theory applicable to both liquids and gases, a not insignificant achievement considering that the respective thermal diffusivities and thermophoretic velocities of these two classes of fluids differ by as much as six orders of magnitude.

  6. Critical role for mesoscale eddy diffusion in supplying oxygen to hypoxic ocean waters

    Science.gov (United States)

    Gnanadesikan, Anand; Bianchi, Daniele; Pradal, Marie-Aude

    2013-10-01

    of the oceanic lateral eddy diffusion coefficient Aredi vary by more than an order of magnitude, ranging from less than a few hundred m2/s to thousands of m2/s. This uncertainty has first-order implications for the intensity of oceanic hypoxia, which is poorly simulated by the current generation of Earth System Models. Using satellite-based estimate of oxygen consumption in hypoxic waters to estimate the required diffusion coefficient for these waters gives a value of order 1000 m2/s. Varying Aredi across a suite of Earth System Models yields a broadly consistent result given a thermocline diapycnal diffusion coefficient of 1 × 10-5 m2/s.

  7. New definition of the cell diffusion coefficient

    International Nuclear Information System (INIS)

    Koehler, P.

    1975-01-01

    As was shown in a recent work by Gelbard, the usually applied Benoist definition of the cell diffusion coefficient gives two different values if two different definitions of the cell are made. A new definition is proposed that preserves the neutron balance for the homogenized lattice and that is independent of the cell definition. The resulting diffusion coefficient is identical with the main term of Benoist's diffusion coefficient

  8. Improved diffusion coefficients generated from Monte Carlo codes

    International Nuclear Information System (INIS)

    Herman, B. R.; Forget, B.; Smith, K.; Aviles, B. N.

    2013-01-01

    Monte Carlo codes are becoming more widely used for reactor analysis. Some of these applications involve the generation of diffusion theory parameters including macroscopic cross sections and diffusion coefficients. Two approximations used to generate diffusion coefficients are assessed using the Monte Carlo code MC21. The first is the method of homogenization; whether to weight either fine-group transport cross sections or fine-group diffusion coefficients when collapsing to few-group diffusion coefficients. The second is a fundamental approximation made to the energy-dependent P1 equations to derive the energy-dependent diffusion equations. Standard Monte Carlo codes usually generate a flux-weighted transport cross section with no correction to the diffusion approximation. Results indicate that this causes noticeable tilting in reconstructed pin powers in simple test lattices with L2 norm error of 3.6%. This error is reduced significantly to 0.27% when weighting fine-group diffusion coefficients by the flux and applying a correction to the diffusion approximation. Noticeable tilting in reconstructed fluxes and pin powers was reduced when applying these corrections. (authors)

  9. Determination of the diffusion coefficient of oxygen in sodium chloride solutions with a transient pulse technique

    NARCIS (Netherlands)

    van Stroe, A.J.; Janssen, L.J.J.

    1993-01-01

    An accurate and rapid method for detg. the diffusion coeffs. of electrochem. active gases in electrolytes is described. The technique is based on chronoamperometry where transient currents are measured and interpreted with a Cottrell-related equation. The diffusion coeffs. of oxygen were detd. for

  10. Quantitative photoacoustic microscopy of optical absorption coefficients from acoustic spectra in the optical diffusive regime.

    Science.gov (United States)

    Guo, Zijian; Favazza, Christopher; Garcia-Uribe, Alejandro; Wang, Lihong V

    2012-06-01

    Photoacoustic (PA) microscopy (PAM) can image optical absorption contrast with ultrasonic spatial resolution in the optical diffusive regime. Conventionally, accurate quantification in PAM requires knowledge of the optical fluence attenuation, acoustic pressure attenuation, and detection bandwidth. We circumvent this requirement by quantifying the optical absorption coefficients from the acoustic spectra of PA signals acquired at multiple optical wavelengths. With the acoustic spectral method, the absorption coefficients of an oxygenated bovine blood phantom at 560, 565, 570, and 575 nm were quantified with errors of <3%. We also quantified the total hemoglobin concentration and hemoglobin oxygen saturation in a live mouse. Compared with the conventional amplitude method, the acoustic spectral method provides greater quantification accuracy in the optical diffusive regime. The limitations of the acoustic spectral method was also discussed.

  11. Molecular dynamics simulations of self-diffusion near a symmetrical tilt grain boundary in UO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Vincent-Aublant, E.; Delaye, J.M. [CEA-Marcoule, DEN/DTCD/SECM, B.P. 17171, 30207 Bagnols sur Ceze cedex (France); Van Brutzel, L. [CEA-Saclay, DEN-DANS/DPC/SCP/LM2T, 91191 Gif-sur-Yvette (France)

    2008-07-01

    Molecular dynamics (MD) simulations have been used to study the influence of symmetrical tilt grain boundaries (GBs) in stoichiometric UO{sub 2} on uranium and oxygen self-diffusions. The study was performed on a large range of temperature varying from 300 K to 2100 K. First, the effect of the temperature on the structure and the formation energies of 6 relaxed tilt GBs was investigated. The {sigma}5 and {sigma}41 GBs geometries were chosen to study the diffusion. O and U diffusion coefficients have been calculated and compared to those obtained in a perfect stoichiometric UO{sub 2} as well as in over and under-stoichiometric matrices. (authors)

  12. Comparison of field-measured radon diffusion coefficients with laboratory-measured coefficients

    International Nuclear Information System (INIS)

    Lepel, E.A.; Silker, W.B.; Thomas, V.W.; Kalkwarf, D.R.

    1983-04-01

    Experiments were conducted to compare radon diffusion coefficients determined for 0.1-m depths of soils by a steady-state method in the laboratory and diffusion coefficients evaluated from radon fluxes through several-fold greater depths of the same soils covering uranium-mill tailings. The coefficients referred to diffusion in the total pore volume of the soils and are equivalent to values for the quantity, D/P, in the Generic Environmental Impact Statement on Uranium Milling prepared by the US Nuclear Regulatory Commission. Two soils were tested: a well-graded sand and an inorganic clay of low plasticity. For the flux evaluations, radon was collected by adsorption on charcoal following passive diffusion from the soil surface and also from air recirculating through an aluminum tent over the soil surface. An analysis of variance in the flux evaluations showed no significant difference between these two collection methods. Radon diffusion coefficients evaluated from field data were statistically indistinguishable, at the 95% confidence level, from those measured in the laboratory; however, the low precision of the field data prevented a sensitive validation of the laboratory measurements. From the field data, the coefficients were calculated to be 0.03 +- 0.03 cm 2 /s for the sand cover and 0.0036 +- 0.0004 cm 2 /s for the clay cover. The low precision in the coefficients evaluated from field data was attributed to high variation in radon flux with time and surface location at the field site

  13. Contribution to the study of zirconium self-diffusion in zirconium carbide

    International Nuclear Information System (INIS)

    An, Chul

    1972-01-01

    The objective of this research thesis is to determine experimental conditions allowing the measurement of the self-diffusion coefficient of zirconium in zirconium carbide. The author reports the development of a method of preparation of zirconium carbide samples. He reports the use of ion implantation as technique to obtain a radio-tracer coating. The obtained results give evidence of the impossibility to use sintered samples with small grains because of the demonstrated importance of intergranular diffusion. The self-diffusion coefficient is obtained in the case of zirconium carbide with grains having a diameter of few millimetres. The presence of 95 Nb from the disintegration of 95 Zr indicates that these both metallic elements have very close diffusion coefficients at 2.600 C [fr

  14. Characterization of transport properties in uranium dioxide: the case of the oxygen auto-diffusion

    International Nuclear Information System (INIS)

    Fraczkiewicz, M.; Baldinozzi, G.

    2008-01-01

    Point defects in uranium dioxide which control the transport phenomena are still badly known. The aim of this work is to show how in carrying out several experimental techniques, it is possible to demonstrate both the existence and to determine the nature (charge and localization) of predominant defects responsible of the transport phenomena in a fluorite-type structure oxide. The oxygen diffusion in the uranium dioxide illustrates this. In the first part of this work, the accent is put on the electric properties of uranium dioxide and more particularly on the variation laws of the electric conductivity in terms of temperature, of oxygen potential and of the impurities amounts present in the material. These evolutions are connected to point and charged complex defects models and the pertinence of these models is discussed. Besides, it is shown how the electric conductivity measurements can allow to define oxygen potential domains in which the concentrations in electronic carriers are controlled. This characterization being made, it is shown that the determination of the oxygen intrinsic diffusion coefficient and particularly its dependence to the oxygen potential and to the amount of impurity, allows to determine the main defect responsible to the atomic diffusion as well as its nature and its charge. In the second part, the experimental techniques to determine the oxygen diffusion coefficient are presented: there are the isotopic exchange technique for introducing the tracer in the material, and two techniques to characterize the diffusion profiles (SIMS and NRA). Examples of preliminary results are given for mono and polycrystalline samples. At last, from this methodology on uranium dioxide, studies considered to quantify the thermal and physicochemical effects are presented. Experiments considered with the aim to characterize the radiation diffusion in uranium dioxide are presented too. (O.M.)

  15. Oxygen diffusion and oxygen effect in tumor tissue

    International Nuclear Information System (INIS)

    Eissa, H.M.; Hehn, G.

    1979-06-01

    The diffusion of oxygen in tumor cords of bronchus carcinoma of the lung have been studied with refined computer methods for solving the diffusion equation in axis symmetric tumor structures. In this tumor configuration we may find three different regions consisting of euoxic cells, hypoxic tumor cells and necrotic parts. In the case of oxygen supply from a capillary inside a cylinder of tumor tissue with radius 200 μm or in a tumor cord of radius 300 μm with oxygen supply by capillaries outside, we get a relation of well oxygenated cells to hypoxic cells approximately as 1:8 or as 1:1.1 respectively. Of course most of the tumor cords observed in histological slices have smaller diameters, so that an average of approximately 20% hypoxic cells can be assumed. Based on the work of Ardenne, the diffusion of oxygen and glucose in a tumor of type DS-carcinosarcom has been investigated in both intact tumor and tumor treated with ionizing radiation. We can show that a strong reoxygenation effect takes place in that the well supplied regions may increase in some tumor configurations up to a factor of four by volume. The biological consequences of the oxygen pressure determined in tumor cells are discussed in detail. The investigation of oxygen diffusion in the intercapillary tumor region should give a quantitative physical basis for considering the oxygen effect with the aim to explain the advantages of neutron therapy against conventional radiotherapy. (orig./MG) [de

  16. Monte Carlo based diffusion coefficients for LMFBR analysis

    International Nuclear Information System (INIS)

    Van Rooijen, Willem F.G.; Takeda, Toshikazu; Hazama, Taira

    2010-01-01

    A method based on Monte Carlo calculations is developed to estimate the diffusion coefficient of unit cells. The method uses a geometrical model similar to that used in lattice theory, but does not use the assumption of a separable fundamental mode used in lattice theory. The method uses standard Monte Carlo flux and current tallies, and the continuous energy Monte Carlo code MVP was used without modifications. Four models are presented to derive the diffusion coefficient from tally results of flux and partial currents. In this paper the method is applied to the calculation of a plate cell of the fast-spectrum critical facility ZEBRA. Conventional calculations of the diffusion coefficient diverge in the presence of planar voids in the lattice, but our Monte Carlo method can treat this situation without any problem. The Monte Carlo method was used to investigate the influence of geometrical modeling as well as the directional dependence of the diffusion coefficient. The method can be used to estimate the diffusion coefficient of complicated unit cells, the limitation being the capabilities of the Monte Carlo code. The method will be used in the future to confirm results for the diffusion coefficient obtained of the Monte Carlo code. The method will be used in the future to confirm results for the diffusion coefficient obtained with deterministic codes. (author)

  17. Self-diffusion of protons in H{sub 2}O ice VII at high pressures: Anomaly around 10 GPa

    Energy Technology Data Exchange (ETDEWEB)

    Noguchi, Naoki, E-mail: noguchi-n@okayama-u.ac.jp; Okuchi, Takuo [Institute for Planetary Materials, Okayama University, Misasa, Tottori 682-0193 (Japan)

    2016-06-21

    The self-diffusion of ice VII in the pressure range of 5.5–17 GPa and temperature range of 400–425 K was studied using micro Raman spectroscopy and a diamond anvil cell. The diffusion was monitored by observing the distribution of isotope tracers: D{sub 2}O and H{sub 2}{sup 18}O. The diffusion coefficient of hydrogen reached a maximum value around 10 GPa. It was two orders of magnitude greater at 10 GPa than at 6 GPa. Hydrogen diffusion was much faster than oxygen diffusion, which indicates that protonic diffusion is the dominant mechanism for the diffusion of hydrogen in ice VII. This mechanism is in remarkable contrast to the self-diffusion in ice I{sub h} that is dominated by an interstitial mechanism for the whole water molecule. An anomaly around 10 GPa in ice VII indicates that the rate-determining process for the proton diffusion changes from the diffusion of ionic defects to the diffusion of rotational defects, which was suggested by proton conductivity measurements and molecular dynamics simulations.

  18. Enhanced diffusion under alpha self-irradiation in spent nuclear fuel: Theoretical approaches

    International Nuclear Information System (INIS)

    Ferry, Cecile; Lovera, Patrick; Poinssot, Christophe; Garcia, Philippe

    2005-01-01

    Various theoretical approaches have been developed in order to estimate the enhanced diffusion coefficient of fission products under alpha self-irradiation in spent nuclear fuel. These simplified models calculate the effects of alpha particles and recoil atoms on mobility of uranium atoms in UO 2 . They lead to a diffusion coefficient which is proportional to the volume alpha activity with a proportionality factor of about 10 -44 (m 5 ). However, the same models applied for fission lead to a radiation-enhanced diffusion coefficient which is approximately two orders of magnitude lower than values reported in literature for U and Pu. Other models are based on an extrapolation of radiation-enhanced diffusion measured either in reactors or under heavy ion bombardment. These models lead to a proportionality factor between the alpha self-irradiation enhanced diffusion coefficient and the volume alpha activity of 2 x 10 -41 (m 5 )

  19. Diffusion of a multi-species component and its role in oxygen and water transport in silicates

    Science.gov (United States)

    Zhang, Youxue; Stolper, E. M.; Wasserburg, G. J.

    1991-01-01

    The diffusion of a multispecies component is complicated by the different diffusion coefficient of each species and the interconversion reactions among the species. A diffusion equation is derived that incorporates the diffusive fluxes of all species contributing to the component's concentration. The effect of speciation on diffusion is investigated experimentally by measuring concentration profiles of all species developed during diffusion experiments. Data on water diffusion in rhyolitic glasses indicate that H2O molecules predominate over OH groups as the diffusing species at very low to high water concentrations. A simple theoretical relationship is drawn between the effective total oxygen diffusion coefficient and the total water concentration of silicates at low water content.

  20. Diffusion and solubility of oxygen in γ-ray irradiated polymer insulation materials

    International Nuclear Information System (INIS)

    Seguchi, Tadao; Yamamoto, Yasuaki.

    1986-03-01

    The effects of 60 Co γ-rays irradiation on diffusion and solubility of oxygen in polymer materials for electric cable insulation materials were investigated. The polymers were polyethylene, ethylene-propylene rubber, chlorinated polyethylene, chlorosulphonated polyethylene, and chloroprene rubber. They were pure grade and several types of formulation grade. The sheets of these polymers were irradiated up to 5 - 200 Mrad under vacuum or in oxygen under pressure of 3 - 15 atm at room temperature or at 70 deg C. By a method of gas desorption, the diffusion coefficient (D) and solubility coefficient (S) of oxygen or argon in polymer materials were determined at various temperatures of 10 - 80 deg C. The D and S decreased with increase of dose, and the decrease by irradiation with oxidation was more remarkable than that by irradiation without oxidation. However, the decreases of D and S by irradiation were reduced by the formulation of polymers. The additives in formulated polymers would reduce the reactions of crosslinking or oxidation by γ-ray irradiation. The activation energy of D was scarcely changed by irradiations with and without oxidation. (author)

  1. Self-diffusion at the melting point: From H2 and N2 to liquid metals

    International Nuclear Information System (INIS)

    Armstrong, B.H.

    1992-01-01

    A nominal lower bound to the mean free diffusion time at the melting point T m was obtained earlier which provided a factor-two type estimate for self-diffusion coefficients of the alkali halides, alkali metals, eight other metals, and Ar. The argument was based on the classical Uncertainty Principle applied to the solid crystal, whereby maximum-frequency phonons lose validity as collective excitations and degenerate into aperiodic, single-particle diffusive motion at the melting point. Because of the short time scale of this motion, the perfect-gas diffusion equation and true mass can be used to obtain the self-diffusion coefficient in the Debye approximation to the phonon spectrum. This result for the self-diffusion coefficient also yields the scale factor that determines the order of magnitude of liquid self-diffusion coefficients, which has long been an open question. The earlier theory is summarized and clarified, and the results extended to the more complex molecular liquids H 2 and N 2 . It is also demonstrated that combining Lindemann's melting law with the perfect-gas diffusion equation estimate yields a well-known empirical expression for liquid-metal self-diffusion at T m . Validity of the self-diffusion estimate over a melting temperature range from 14 to more than 1,300 K and over a wide variety of crystals provides strong confirmation for the existence of the specialized diffusive motion at the melting point, as well as confirmation of a relation between the phonon spectrum of the solid crystal and diffusive motion in the melt. 21 refs., 2 tabs

  2. Anisotropy of self-diffusion and α-zirconium radiation growth problems

    International Nuclear Information System (INIS)

    Smirnov, E.A.; Subbotin, A.V.

    1996-01-01

    Temperature dependence of α-zirconium seft-diffusion anisotropy coefficients is obtained within the framework of linear extrapolation of self-diffusion anisotropy characteristics for metal HCP with c/a ration of [ru

  3. Stochastic Modelling of the Diffusion Coefficient for Concrete

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    In the paper, a new stochastic modelling of the diffusion coefficient D is presented. The modelling is based on physical understanding of the diffusion process and on some recent experimental results. The diffusion coefficients D is strongly dependent on the w/c ratio and the temperature....

  4. Lattice cell diffusion coefficients. Definitions and comparisons

    International Nuclear Information System (INIS)

    Hughes, R.P.

    1980-01-01

    Definitions of equivalent diffusion coefficients for regular lattices of heterogeneous cells have been given by several authors. The paper begins by reviewing these different definitions and the unification of their derivation. This unification makes clear how accurately each definition (together with appropriate cross-section definitions to preserve the eigenvalue) represents the individual reaction rates within the cell. The approach can be extended to include asymmetric cells and whereas before, the buckling describing the macroscopic flux shape was real, here it is found to be complex. A neutron ''drift'' coefficient as well as a diffusion coefficient is necessary to produce the macroscopic flux shape. The numerical calculation of the various different diffusion coefficients requires the solutions of equations similar to the ordinary transport equation for an infinite lattice. Traditional reactor physics codes are not sufficiently flexible to solve these equations in general. However, calculations in certain simple cases are presented and the theoretical results quantified. In difficult geometries, Monte Carlo techniques can be used to calculate an effective diffusion coefficient. These methods relate to those already described provided that correlation effects between different generations of neutrons are included. Again, these effects are quantified in certain simple cases. (author)

  5. Determination of ion diffusion coefficients by the electromigration method

    International Nuclear Information System (INIS)

    Bonchev, G.D.; Milanov, M.V.; Bozhikov, G.A.; Ivanov, P.I.; Priemyshev, A.N.; Maslov, O.D.; Dmitriev, S.N.

    2003-01-01

    An electrophoretic method for measuring ion diffusion coefficients in aqueous solutions is developed. The value of the diffusion coefficient can be determined from the linear relationship between the square standard deviation of the electrophoretic zone and the time from the start of the diffusion process. Using the device for horizontal zone electrophoresis in a free electrolyte, a series of diffusion experiments are performed with no-carrier-added radionuclides in microconcentrations (10 -9 - 10 -10 M). Diffusion coefficients of 111 In(III), 175 Hf(IV) and 237 Pu(VI) ions at 25 0 C are determined in nitric acid media. Simultaneous determination of the diffusion coefficient and electrophoretic mobility allows one to calculate the effective charge of the investigated ions in accordance with the Nernst-Einstein law

  6. Oxygen diffusion in zircon

    Science.gov (United States)

    Watson, E. B.; Cherniak, D. J.

    1997-05-01

    Oxygen diffusion in natural, non-metamict zircon was characterized under both dry and water-present conditions at temperatures ranging from 765°C to 1500°C. Dry experiments were performed at atmospheric pressure by encapsulating polished zircon samples with a fine powder of 18O-enriched quartz and annealing the sealed capsules in air. Hydrothermal runs were conducted in cold-seal pressure vessels (7-70 MPa) or a piston cylinder apparatus (400-1000 MPa) on zircon samples encapsulated with both 18O-enriched quartz and 18O water. Diffusive-uptake profiles of 18O were measured in all samples with a particle accelerator, using the 18O(p, α) 15N reaction. For dry experimental conditions at 1100-1500°C, the resulting oxygen diffusivities (24 in all) are well described by: D dry (m 2/s) = 1.33 × 10 -4exp(-53920/T) There is no suggestion of diffusive anisotropy. Under wet conditions at 925°C, oxygen diffusion shows little or no dependence upon P H 2O in the range 7-1000 MPa, and is insensitive to total pressure as well. The results of 27 wet experiments at 767-1160°C and 7-1000 MPa can be described a single Arrhenius relationship: D wet (m 2/s) = 5.5 × 10 -12exp(-25280/T) The insensitivity of oxygen diffusion to P H 2O means that applications to geologic problems can be pursued knowing only whether the system of interest was 'wet' (i.e., P H 2O > 7MPa ) or 'dry'. Under dry conditions (presumably rare in the crust), zircons are extremely retentive of their oxygen isotopic signatures, to the extent that δ 18O would be perturbed at the center of a 200 μm zircon only during an extraordinarily hot and protracted event (e.g., 65 Ma at 900°C). Under wet conditions, δ 18O may or may not be retained in the central regions of individual crystals, cores or overgrowth rims, depending upon the specific thermal history of the system.

  7. Determination of Krypton Diffusion Coefficients in Uranium Dioxide Using Atomic Scale Calculations.

    Science.gov (United States)

    Vathonne, Emerson; Andersson, David A; Freyss, Michel; Perriot, Romain; Cooper, Michael W D; Stanek, Christopher R; Bertolus, Marjorie

    2017-01-03

    We present a study of the diffusion of krypton in UO 2 using atomic scale calculations combined with diffusion models adapted to the system studied. The migration barriers of the elementary mechanisms for interstitial or vacancy assisted migration are calculated in the DFT+U framework using the nudged elastic band method. The attempt frequencies are obtained from the phonon modes of the defect at the initial and saddle points using empirical potential methods. The diffusion coefficients of Kr in UO 2 are then calculated by combining this data with diffusion models accounting for the concentration of vacancies and the interaction of vacancies with Kr atoms. We determined the preferred mechanism for Kr migration and the corresponding diffusion coefficient as a function of the oxygen chemical potential μ O or nonstoichiometry. For very hypostoichiometric (or U-rich) conditions, the most favorable mechanism is interstitial migration. For hypostoichiometric UO 2 , migration is assisted by the bound Schottky defect and the charged uranium vacancy, V U 4- . Around stoichiometry, migration assisted by the charged uranium-oxygen divacancy (V UO 2- ) and V U 4- is the favored mechanism. Finally, for hyperstoichiometric or O-rich conditions, the migration assisted by two V U 4- dominates. Kr migration is enhanced at higher μ O , and in this regime, the activation energy will be between 4.09 and 0.73 eV depending on nonstoichiometry. The experimental values available are in the latter interval. Since it is very probable that these values were obtained for at least slightly hyperstoichiometric samples, our activation energies are consistent with the experimental data, even if further experiments with precisely controlled stoichiometry are needed to confirm these results. The mechanisms and trends with nonstoichiometry established for Kr are similar to those found in previous studies of Xe.

  8. Evaluation of total and partial structure factors, self-diffusion coefficients, and compressibilities of the cadmium-gallium melt

    International Nuclear Information System (INIS)

    Gopala Rao, R.V.; Das, R.

    1988-01-01

    The three partial structure factors S/sub 11/(K), S/sub 22/(K), and S/sub 12/(K) defined by Ashcroft and Langreth are computed with a square-well potential as a perturbation over a hard-sphere potential for different atomic fractions or concentrations of cadmium for Cd-Ga melt at 296 0 C. Also, the number-number, concentration-concentration, and the cross-term number-concentration structure factors due to Bhatia-Thornton have been calculated for the seven concentrations of Cd-Ga melt at that temperature. From these partial structure factors total structure factors are computed and are compared with the experimental results. The total structure factors so computed are found to be in excellent agreement with the measured values except in the long-wavelength limit of S(0). Using the partial structure factors in the long-wavelength limit the isothermal compressibilities have been calculated. From these partial structure factors and by using the linear-trajectory approximation of Helfand, the self-diffusion coefficients D/sub i/'s have also been calculated for various atomic fractions of Cd for Cd-Ga alloy at 296 0 C. From these D/sub i/'s, an estimate of the mutual diffusion coefficients has been made to a good approximation

  9. Estimating the Diffusion Coefficients of Sugars Using Diffusion Experiments in Agar-Gel and Computer Simulations.

    Science.gov (United States)

    Miyamoto, Shuichi; Atsuyama, Kenji; Ekino, Keisuke; Shin, Takashi

    2018-01-01

    The isolation of useful microbes is one of the traditional approaches for the lead generation in drug discovery. As an effective technique for microbe isolation, we recently developed a multidimensional diffusion-based gradient culture system of microbes. In order to enhance the utility of the system, it is favorable to have diffusion coefficients of nutrients such as sugars in the culture medium beforehand. We have, therefore, built a simple and convenient experimental system that uses agar-gel to observe diffusion. Next, we performed computer simulations-based on random-walk concepts-of the experimental diffusion system and derived correlation formulas that relate observable diffusion data to diffusion coefficients. Finally, we applied these correlation formulas to our experimentally-determined diffusion data to estimate the diffusion coefficients of sugars. Our values for these coefficients agree reasonably well with values published in the literature. The effectiveness of our simple technique, which has elucidated the diffusion coefficients of some molecules which are rarely reported (e.g., galactose, trehalose, and glycerol) is demonstrated by the strong correspondence between the literature values and those obtained in our experiments.

  10. Diffusion of helium and estimated diffusion coefficients of hydrogen dissolved in water-saturated, compacted Ca-montmorillonite

    International Nuclear Information System (INIS)

    Higashihara, Tomohiro; Sato, Seichi; Ohashi, Hiroshi; Otsuka, Teppei

    2001-01-01

    The diffusion coefficients of hydrogen gas dissolved in water-saturated, compacted montmorillonite are required to estimate the performance of bentonite buffer materials for geological disposal of nuclear waste. As part of the effort to determine the diffusion coefficients, the diffusion coefficients of helium in water-saturated, compacted calcium montmorillonite (Ca-montmorillonite) were determined as a function of dry density, 0.78 to 1.37x10 3 kg m -3 , by a transient diffusion method. The diffusion coefficients were from 8.3x10 -10 m 2 s -1 at 0.78x10 3 kgm -3 to 2.8x10 -10 m 2 s -1 at 1.37x10 3 kgm -3 . The data obtained by this diffusion experiment of helium were highly reproducible. The diffusion coefficients of helium in Ca-montmorillonite were somewhat larger than those previously obtained for helium in sodium montmorillonite (Na-montmorillonite). The diffusion coefficients of hydrogen gas in the montmorillonites were roughly estimated using the diffusion coefficients of helium. These estimates were based on assumptions that both helium and hydrogen molecules are non-adsorptive and that the geometric factors in the compacted montmorillonites are approximately the same for diffusion of helium and diffusion of hydrogen. (author)

  11. Disorder effect on heat capacity, self-diffusion coefficient, and choosing best potential model for melting temperature, in gold–copper bimetallic nanocluster with 55 atoms

    International Nuclear Information System (INIS)

    Taherkhani, Farid; Akbarzadeh, Hamed; Feyzi, Mostafa; Rafiee, Hamid Reza

    2015-01-01

    Molecular dynamics simulation has been implemented for doping effect on melting temperature, heat capacity, self-diffusion coefficient of gold–copper bimetallic nanostructure with 55 total gold and copper atom numbers and its bulk alloy. Trend of melting temperature for gold–copper bimetallic nanocluster is not same as melting temperature copper–gold bulk alloy. Molecular dynamics simulation of our result regarding bulk melting temperature is consistence with available experimental data. Molecular dynamics simulation shows that melting temperature of gold–copper bimetallic nanocluster increases with copper atom fraction. Semi-empirical potential model and quantum Sutton–Chen potential models do not change melting temperature trend with copper doping of gold–copper bimetallic nanocluster. Self-diffusion coefficient of copper atom is greater than gold atom in gold–copper bimetallic nanocluster. Semi-empirical potential within the tight-binding second moment approximation as new application potential model for melting temperature of gold–copper bulk structure shows better result in comparison with EAM, Sutton–Chen potential, and quantum Sutton–Chen potential models

  12. Disorder effect on heat capacity, self-diffusion coefficient, and choosing best potential model for melting temperature, in gold–copper bimetallic nanocluster with 55 atoms

    Energy Technology Data Exchange (ETDEWEB)

    Taherkhani, Farid, E-mail: faridtaherkhani@gmail.com, E-mail: f.taherkhani@razi.ac.ir [Razi University, Department of Physical Chemistry (Iran, Islamic Republic of); Akbarzadeh, Hamed [Hakim Sabzevari University, Department of Chemistry (Iran, Islamic Republic of); Feyzi, Mostafa; Rafiee, Hamid Reza [Razi University, Department of Physical Chemistry (Iran, Islamic Republic of)

    2015-01-15

    Molecular dynamics simulation has been implemented for doping effect on melting temperature, heat capacity, self-diffusion coefficient of gold–copper bimetallic nanostructure with 55 total gold and copper atom numbers and its bulk alloy. Trend of melting temperature for gold–copper bimetallic nanocluster is not same as melting temperature copper–gold bulk alloy. Molecular dynamics simulation of our result regarding bulk melting temperature is consistence with available experimental data. Molecular dynamics simulation shows that melting temperature of gold–copper bimetallic nanocluster increases with copper atom fraction. Semi-empirical potential model and quantum Sutton–Chen potential models do not change melting temperature trend with copper doping of gold–copper bimetallic nanocluster. Self-diffusion coefficient of copper atom is greater than gold atom in gold–copper bimetallic nanocluster. Semi-empirical potential within the tight-binding second moment approximation as new application potential model for melting temperature of gold–copper bulk structure shows better result in comparison with EAM, Sutton–Chen potential, and quantum Sutton–Chen potential models.

  13. Eddy diffusion coefficients and their upper limits based on application of the similarity theory

    Directory of Open Access Journals (Sweden)

    M. N. Vlasov

    2015-07-01

    Full Text Available The equation for the diffusion velocity in the mesosphere and the lower thermosphere (MLT includes the terms for molecular and eddy diffusion. These terms are very similar. For the first time, we show that, by using the similarity theory, the same formula can be obtained for the eddy diffusion coefficient as the commonly used formula derived by Weinstock (1981. The latter was obtained by taking, as a basis, the integral function for diffusion derived by Taylor (1921 and the three-dimensional Kolmogorov kinetic energy spectrum. The exact identity of both formulas means that the eddy diffusion and heat transport coefficients used in the equations, both for diffusion and thermal conductivity, must meet a criterion that restricts the outer eddy scale to being much less than the scale height of the atmosphere. This requirement is the same as the requirement that the free path of molecules must be much smaller than the scale height of the atmosphere. A further result of this criterion is that the eddy diffusion coefficients Ked, inferred from measurements of energy dissipation rates, cannot exceed the maximum value of 3.2 × 106 cm2 s−1 for the maximum value of the energy dissipation rate of 2 W kg−1 measured in the mesosphere and the lower thermosphere (MLT. This means that eddy diffusion coefficients larger than the maximum value correspond to eddies with outer scales so large that it is impossible to use these coefficients in eddy diffusion and eddy heat transport equations. The application of this criterion to the different experimental data shows that some reported eddy diffusion coefficients do not meet this criterion. For example, the large values of these coefficients (1 × 107 cm2 s−1 estimated in the Turbulent Oxygen Mixing Experiment (TOMEX do not correspond to this criterion. The Ked values inferred at high latitudes by Lübken (1997 meet this criterion for summer and winter polar data, but the Ked values for summer at low latitudes

  14. Diffusion and transport coefficients in synthetic opals

    International Nuclear Information System (INIS)

    Sofo, J. O.; Mahan, G. D.

    2000-01-01

    Opals are structures composed of close-packed spheres in the size range of nano to micrometers. They are sintered to create small necks at the points of contact. We have solved the diffusion problem in such structures. The relation between the diffusion coefficient and the thermal and electrical conductivity is used to estimate the transport coefficients of opal structures as a function of the neck size and the mean free path of the carriers. The theory presented is also applicable to the diffusion problem in other periodic structures. (c) 2000 The American Physical Society

  15. Diffusion coefficients in 4-component mixture expressed explicitly in terms of binary diffusion coefficients and mole fractions

    International Nuclear Information System (INIS)

    Furuta, Hiroshi; Yamamoto, Ichiro

    1996-01-01

    Diffusion coefficients in 4-component mixture D ij (4) were expressed explicitly in terms of binary diffusion coefficients and mole fractions by solving a ratio of determinants defined by Hirschfelder et al. The explicit expressions of D ij (4) were divided into two terms, a term due to the i-j pairs of attention and a term common to all the pairs out of the 4 components. The two terms of D ij (4) had extended structures similar to corresponding those of D ij (3) respectively. (author)

  16. Oxygen diffusion in cuprate superconductors

    International Nuclear Information System (INIS)

    Routbort, J.L.; Rothman, S.J.

    1995-01-01

    Superconducting properties of the cuprate superconductors depend on the oxygen content of the material; the diffusion of oxygen is thus an important process in the fabrication and application of these materials. This article reviews studies of the diffusion of oxygen in La 2-x Sr x CuO 4 , YBa 2 Cu 3 O 7- δ, YBa 2 Cu 4 O 8 , and the Bi 2 Sr 2 Ca n-1 Cu n O 2+4 (n = 1, and 2) superconductors, and attempt to elucidate the atomic mechanisms responsible

  17. High-precision molecular dynamics simulation of UO2–PuO2: Anion self-diffusion in UO2

    International Nuclear Information System (INIS)

    Potashnikov, S.I.; Boyarchenkov, A.S.; Nekrasov, K.A.; Kupryazhkin, A.Ya.

    2013-01-01

    Highlights: ► We perform MD simulation of oxygen diffusion in UO2 (up to 50 000 ions and 1 μs time). ► We reached 1400 K and 10 −12 cm 2 /sec, which allowed direct comparison to experiments. ► S-shaped T-dependence of activation energy and λ-peak of its derivative were obtained. ► Continual superionic phase transition (rather than first or second order) was proved. ► Activation energy of exchange diffusion equals anti-Frenkel defect formation energy. -- Abstract: Our series of articles is devoted to high-precision molecular dynamics simulation of mixed actinide-oxide (MOX) fuel in the approximation of rigid ions and pair interactions (RIPI) using high-performance graphics processors (GPU). In this article we study self-diffusion mechanisms of oxygen anions in uranium dioxide (UO 2 ) with the 10 recent and widely used sets of interatomic pair potentials (SPP) under periodic (PBC) and isolated (IBC) boundary conditions. Wide range of measured diffusion coefficients (from 10 −3 cm 2 /s at melting point down to 10 −12 cm 2 /s at 1400 K) made possible a direct comparison (without extrapolation) of the simulation results with the experimental data, which have been known only at low temperatures (T < 1500 K). A highly detailed (with the temperature step of 1 K) calculation of the diffusion coefficient allowed us to plot temperature dependences of the diffusion activation energy and its derivative, both of which show a wide (∼1000 K) superionic transition region confirming the broad λ-peaks of heat capacity obtained by us earlier. It is shown that regardless of SPP the anion self-diffusion in model crystals without surface or artificially embedded defects goes on via exchange mechanism, rather than interstitial or vacancy mechanisms suggested by the previous works. The activation energy of exchange diffusion turned out to coincide with the anti-Frenkel defect formation energy calculated by the lattice statics

  18. Intercomparison of diffusion coefficient derived from the through-diffusion experiment using different numerical methods

    International Nuclear Information System (INIS)

    Chih-Lung Chen; Institute of Nuclear Energy Research, Taoyuan, Taiwan; Tsing-Hai Wang; Shi-Ping Teng; Ching-Hor Lee

    2014-01-01

    Diffusion is a dominant mechanism regulating the transport of released nuclides. The through-diffusion method is typically applied to determine the diffusion coefficients (D). Depending on the design of the experiment, the concentrations in the source term [i.e., inlet reservoir (IR)] or the end term [i.e., outlet reservoir (OR)] can be fixed or vary. The combinations involve four distinct models (i.e., the CC-CC model, CC-VC model, VC-CC model, and the VC-VC model). Studies discussing the VC-CC model are scant. An analytical method considering the decay effect is required to accurately interpret the radioactive nuclide diffusion experiment results. Therefore, we developed a CC-CC model and a CC-VC model with a decay effect and the simplified formulas of these two models to determine the diffusion coefficient (i.e., the CC-CC method and CC-VC method). We also proposed two simplified methods using the VC-VC model to determine the diffusion coefficient straightforwardly based upon the concentration variation in IR and OR. More importantly, the best advantage of proposed method over others is that one can derive three diffusion coefficients based on one run of experiment. In addition, applying our CC-VC method to those data reported from Radiochemica Acta 96:111-117, 2008; and J Contam Hydrol 35:55-65, 1998, derived comparable diffusion coefficient lying in the identical order of magnitude. Furthermore, we proposed a formula to determine the conceptual critical time (Tc), which is particularly beneficial for the selection of using CC-VC or VC-VC method. Based on our proposed method, it becomes possible to calculate diffusion coefficient from a through-diffusion experiment in a shorter period of time. (author)

  19. Diffusion

    International Nuclear Information System (INIS)

    Kubaschewski, O.

    1983-01-01

    The diffusion rate values of titanium, its compounds and alloys are summarized and tabulated. The individual chemical diffusion coefficients and self-diffusion coefficients of certain isotopes are given. Experimental methods are listed which were used for the determination of diffusion coefficients. Some values have been taken over from other studies. Also given are graphs showing the temperature dependences of diffusion and changes in the diffusion coefficient with concentration changes

  20. Measurement of chemical diffusion coefficients in liquid binary alloys

    International Nuclear Information System (INIS)

    Keita, M.; Steinemann, S.; Kuenzi, H.U.

    1976-01-01

    New measurements of the chemical diffusion coefficient in liquid binary alloys are presented. The wellknown geometry of the 'capillary-reservoir' is used and the concentration is obtained from a resistivity measurement. The method allows to follow continuously the diffusion process in the liquid state. A precision of at least 10% in the diffusion coefficient is obtained with a reproductibility better than 5%. The systems Hg-In, Al-Sn, Al-Si have been studied. Diffusion coefficients are obtained as a function of temperature, concentration, and geometrical factors related to the capillary (diameter, relative orientation of density gradient and gravity). (orig.) [de

  1. Self-diffusion in isotopically enriched silicon carbide and its correlation with dopant diffusion

    International Nuclear Information System (INIS)

    Rueschenschmidt, K.; Bracht, H.; Stolwijk, N.A.; Laube, M.; Pensl, G.; Brandes, G.R.

    2004-01-01

    Diffusion of 13 C and 30 Si in silicon carbide was performed with isotopically enriched 4H- 28 Si 12 C/ nat SiC heterostructures which were grown by chemical vapor phase epitaxy. After diffusion annealing at temperatures between 2000 deg. C and 2200 deg. C the 30 Si and 13 C profiles were measured by means of secondary ion mass spectrometry. We found that the Si and C diffusivity is of the same order of magnitude but several orders of magnitude lower than earlier data reported in the literature. Both Si and C tracer diffusion coefficients are in satisfactory agreement with the native point defect contribution to self-diffusion deduced from B diffusion in SiC. This reveals that the native defect which mediates B diffusion also controls self-diffusion. Assuming that B atoms within the extended tail region of B profiles are mainly dissolved on C sites, we propose that B diffuses via the kick-out mechanism involving C interstitials. Accordingly, C diffusion should proceed mainly via C interstitials. The mechanism of Si diffusion remains unsolved but Si may diffuse via both Si vacancies and interstitials, with the preference for either species depending on the doping level

  2. Noninvasive photoacoustic measurement of absorption coefficient using internal light irradiation of cylindrical diffusing fiber

    Science.gov (United States)

    Peng, Dong-qing; Zhu, Li-li; Li, Zhi-fang; Li, Hui

    2017-09-01

    Absorption coefficient of biological tissue is an important parameter in biomedicine, but its determination remains a challenge. In this paper, we propose a method using focusing photoacoustic imaging technique and internal light irradiation of cylindrical diffusing fiber (CDF) to quantify the target optical absorption coefficient. Absorption coefficients for ink absorbers are firstly determined through photoacoustic and spectrophotometric measurements at the same excitation, which demonstrates the feasibility of this method. Also, the optical absorption coefficients of ink absorbers with several concentrations are measured. Finally, the two-dimensional scanning photoacoustic image is obtained. Optical absorption coefficient measurement and simultaneous photoacoustic imaging of absorber non-invasively are the typical characteristics of the method. This method can play a significant role for non-invasive determination of blood oxygen saturation, the absorption-based imaging and therapy.

  3. Inverse method for determining radon diffusion coefficient and free radon production rate of fragmented uranium ore

    International Nuclear Information System (INIS)

    Ye, Yong-jun; Wang, Li-heng; Ding, De-xin; Zhao, Ya-li; Fan, Nan-bin

    2014-01-01

    The radon diffusion coefficient and the free radon production rate are important parameters for describing radon migration in the fragmented uranium ore. In order to determine the two parameters, the pure diffusion migration equation for radon was firstly established and its analytic solution with the two parameters to be determined was derived. Then, a self manufactured experimental column was used to simulate the pure diffusion of the radon, the improved scintillation cell method was used to measure the pore radon concentrations at different depths of the column loaded with the fragmented uranium ore, and the nonlinear least square algorithm was used to inversely determine the radon diffusion coefficient and the free radon production rate. Finally, the solution with the two inversely determined parameters was used to predict the pore radon concentrations at some depths of the column, and the predicted results were compared with the measured results. The results show that the predicted results are in good agreement with the measured results and the numerical inverse method is applicable to the determination of the radon diffusion coefficient and the free radon production rate for the fragmented uranium ore. - Highlights: • Inverse method for determining two transport parameters of radon is proposed. • A self-made experimental apparatus is used to simulate radon diffusion process. • Sampling volume and position for measuring radon concentration are optimized. • The inverse results of an experimental sample are verified

  4. Modified free volume theory of self-diffusion and molecular theory of shear viscosity of liquid carbon dioxide.

    Science.gov (United States)

    Nasrabad, Afshin Eskandari; Laghaei, Rozita; Eu, Byung Chan

    2005-04-28

    In previous work on the density fluctuation theory of transport coefficients of liquids, it was necessary to use empirical self-diffusion coefficients to calculate the transport coefficients (e.g., shear viscosity of carbon dioxide). In this work, the necessity of empirical input of the self-diffusion coefficients in the calculation of shear viscosity is removed, and the theory is thus made a self-contained molecular theory of transport coefficients of liquids, albeit it contains an empirical parameter in the subcritical regime. The required self-diffusion coefficients of liquid carbon dioxide are calculated by using the modified free volume theory for which the generic van der Waals equation of state and Monte Carlo simulations are combined to accurately compute the mean free volume by means of statistical mechanics. They have been computed as a function of density along four different isotherms and isobars. A Lennard-Jones site-site interaction potential was used to model the molecular carbon dioxide interaction. The density and temperature dependence of the theoretical self-diffusion coefficients are shown to be in excellent agreement with experimental data when the minimum critical free volume is identified with the molecular volume. The self-diffusion coefficients thus computed are then used to compute the density and temperature dependence of the shear viscosity of liquid carbon dioxide by employing the density fluctuation theory formula for shear viscosity as reported in an earlier paper (J. Chem. Phys. 2000, 112, 7118). The theoretical shear viscosity is shown to be robust and yields excellent density and temperature dependence for carbon dioxide. The pair correlation function appearing in the theory has been computed by Monte Carlo simulations.

  5. Oxygen diffusion in bilayer polymer films

    DEFF Research Database (Denmark)

    Poulsen, Lars; Zebger, Ingo; Tofte, Jannik Pentti

    2004-01-01

    Experiments to quantify oxygen diffusion have been performed on polymer samples in which a film of poly(ethylene-co-norbornene) was cast onto a film of polystyrene which, in turn, was cast onto an oxygen-impermeable substrate. In the technique employed, the time evolution of oxygen transport...... through the film of poly(ethylene-co-norbornene) and into the polystyrene film was monitored using the phosphorescence of singlet oxygen as a spectroscopic probe. To analyze the data, it was necessary to solve Fick's second law of diffusion for both polymer films. Tractable analytical and numerical...

  6. Problems with Discontinuous Diffusion/Dispersion Coefficients

    Directory of Open Access Journals (Sweden)

    Stefano Ferraris

    2012-01-01

    accurate on smooth solutions and based on a special numerical treatment of the diffusion/dispersion coefficients that makes its application possible also when such coefficients are discontinuous. Numerical experiments confirm the convergence of the numerical approximation and show a good behavior on a set of benchmark problems in two space dimensions.

  7. Simultaneous evaluation of effective diffusion coefficients of the substrates in a biofilm with a novel experimental method

    Energy Technology Data Exchange (ETDEWEB)

    Beyenal, H.; Tanyolac, A. [Hacettepe Univ., Ankara (Turkey)

    1996-08-01

    A pure culture of Zoogloea ramigera was grown as a film on active carbon particles in a differential fluidized bed biofilm reactor. Pseudo-steady state conditions were established within this reactor and thus, the stable substrate concentrations and flux values were obtained within definite time intervals, along with homogeneous biofilm thickness and density. The free-growth kinetics of the culture were studied in a continuous fermenter and a multi-substrate growth model was used to describe the utilization of limiting substrate in the biofilm. The limiting substrates for the culture were determined to be glucose, ammonium and oxygen. The effective diffusion coefficients of these substrates were calculated simultaneously with a diffusion-reaction model. Results of the model solution revealed that the effective diffusion coefficient for all three substrates through the biofilm decreased with increased biofilm density and observed biofilm thickness up to a critical value of about 90 x 10{sup -6} m. After this critical point, all diffusion coefficients started to increase slowly due to diminished biofilm density. 31 refs., 4 figs., 4 tabs.

  8. Comparison of radon diffusion coefficients measured by transient-diffusion and steady-state laboratory methods

    International Nuclear Information System (INIS)

    Kalwarf, D.R.; Nielson, K.K.; Rich, D.C.; Rogers, V.C.

    1982-11-01

    A method was developed and used to determine radon diffusion coefficients in compacted soils by transient-diffusion measurements. A relative standard deviation of 12% was observed in repeated measurements with a dry soil by the transient-diffusion method, and a 40% uncertainty was determined for moistures exceeding 50% of saturation. Excellent agreement was also obtained between values of the diffusion coefficient for radon in air, as measured by the transient-diffusion method, and those in the published literature. Good agreement was also obtained with diffusion coefficients measured by a steady-state method on the same soils. The agreement was best at low moistures, averaging less than ten percent difference, but differences of up to a factor of two were observed at high moistures. The comparison of the transient-diffusion and steady-state methods at low moistures provides an excellent verification of the theoretical validity and technical accuracy of these approaches, which are based on completely independent experimental conditions, measurement methods and mathematical interpretations

  9. Method for the determination of oxygen consumption rates and diffusion coefficients in multicellular spheroids

    OpenAIRE

    Mueller-Klieser, W.

    1984-01-01

    A method has been developed for the quantitative evaluation of oxygen tension (PO2) distributions in multicellular spheroids measured with O2-sensitive microelectrodes. The experimental data showed that multicellular tumor spheroids in stirred growth media were characterized by a diffusion-depleted zone surrounding the spheroids. This zone was elicited by an unstirred layer of medium next to the spheroid leading to a continuous decrease in the PO2 values from the bulk medium towards the spher...

  10. THE DETERMINATION OF DIFFUSION COEFFICIENT OF INVERT MATERIALS

    International Nuclear Information System (INIS)

    P. Heller and J. Wright

    2000-01-01

    The Engineered Barrier System (EBS) Testing Department is performing tests in the Department of Energy's Atlas Facility to evaluate the performance of various means for increasing the time for breakthrough of radionuclides from the waste package to the base of the invert. This includes testing various barriers in the invert as a means of increasing breakthrough time through the process of diffusion. A diffusion barrier may serve as an invert material for the emplacement drifts. The invert material may consist of crushed tuff from the repository excavation at Yucca Mountain or silica sand. The objective of this report is to determine the diffusion coefficient of the crushed tuff and silica sand invert materials specified by the EBS Testing Department. The laboratory derived information from the testing was used in the Nernst-Einstein equation (Jurinak et al. 1987, p. 626) to determine the diffusion coefficient of the invert material. This report transmits the results and describes the methodology and interpretation. The scope of this report is to determine the diffusion coefficients of the invert materials mentioned above using the centrifuge at UFA Ventures. Standard laboratory procedures, described in Section 2 of this report, were used. The diffusion coefficients are to be determined over a range of moisture contents. The report contains the diffusion coefficients calculated by the Nernst-Einstein equation (Jurinak et al. 1987, p. 626) that become a part of the Technical Database. Raw data is also included in the report, however this data does not become part of the Technical Database as per Section 3.23 of AP-SIII.3Q ''Submittal and Incorporation of Data to the Technical Data Management System''. A sieve analysis of the samples was not conducted as part of this report, but sieve analysis may be accomplished as part of other reports. Two samples of crushed tuff and two samples of silica sand were tested

  11. Research and development of groundwater dating (Part 3). A proposal of determination method for diffusion coefficients of dissolved helium in rock and applicability of estimation of diffusion coefficients using anions

    International Nuclear Information System (INIS)

    Higashihara, Tomohiro; Nakata, Kotaro; Hasegawa, Takuma

    2006-01-01

    Dissolved helium in groundwater is one of the most suitable tracers for the groundwater dating. The diffusion coefficients in aquitard and aquifer were important to estimate an accumulation of the helium in groundwater. However, few papers have been reported about the diffusion of helium in rocks. In this study, effective diffusion coefficients of the helium in sandstones and mudstone were determined using a through-diffusion method. The effective diffusion coefficients of helium were in the range of 1.5 x 10 -10 to 1.1 x 10 -9 m 2 s -1 and larger than those of Br - ions. Geometrical factors for the diffusion of helium were also larger than those for the diffusion of Br - ions. This fact suggests that diffusion path of helium in the rocks is not more restricted than that of Br - ions. The diffusion coefficients of helium were also estimated using the diffusion coefficient of helium in bulk water and formation factors for diffusion of Br - ions. The estimated diffusion coefficients of helium were larger than the effective diffusion coefficients. It is clarified that the effective diffusion coefficients of helium are underestimated by the estimation method using anions. (author)

  12. Self-normalizing multiple-echo technique for measuring the in vivo apparent diffusion coefficient

    International Nuclear Information System (INIS)

    Perman, W.H.; Gado, M.; Sandstrom, J.C.

    1989-01-01

    This paper presents work to develop a new technique for quantitating the in vivo apparent diffusion/perfusion coefficient (ADC) by obtaining multiple data points from only two images with the capability to normalize the data from consecutive images, thus minimizing the effect of interimage variation. Two multiple-echo (six-to eight-echo) cardiac-gated images are obtained, one without and one with additional diffusion/perfusion encoding gradients placed about the 180 RF pulses of all but the first echo. Since the first echoes of both images have identical pulse sequence parameters, variations in signal intensity-between the first echoes represent image-to-image variation. The signal intensities of the subsequent echoes with additional diffusion/perfusion encoding gradients are then normalized by using the ratio of the first-echo signal intensities

  13. Diffusion coefficient for anomalous transport

    International Nuclear Information System (INIS)

    1986-01-01

    A report on the progress towards the goal of estimating the diffusion coefficient for anomalous transport is given. The gyrokinetic theory is used to identify different time and length scale inherent to the characteristics of plasmas which exhibit anomalous transport

  14. The solubility and diffusion coefficient of helium in uranium dioxide

    International Nuclear Information System (INIS)

    Nakajima, Kunihisa; Serizawa, Hiroyuki; Shirasu, Noriko; Haga, Yoshinori; Arai, Yasuo

    2011-01-01

    Highlights: ► The solubility and diffusivity of He in single-crystal UO 2 were determined. ► The determined He solubility lay within the scatter of the available data. ► The determined He diffusivity was in good agreement with recent experimental data. ► The He behavior was analyzed in terms of a simple interstitial diffusion mechanism. ► The experimental diffusivity was much lower than that analyzed theoretically. - Abstract: The solubility and diffusion coefficient of helium in the single-crystal UO 2 samples were determined by a Knudsen-effusion mass-spectrometric method. The measured helium solubilities were found to lie within the scatter of the available data, but to be much lower than those for the polycrystalline samples. The diffusion analysis was conducted based on a hypothetical equivalent sphere model and the simple Fick’s law. The helium diffusion coefficient was determined by using the pre-exponential factor and activation energy as the fitting parameters for the measured and calculated fractional releases of helium. The optimized diffusion coefficients were in good agreement with those obtained by a nuclear reaction method reported in the past. It was also found that the pre-exponential factors of the determined diffusion coefficients were much lower than those analyzed in terms of a simple interstitial diffusion mechanism.

  15. Oxygen diffusion in cuprate superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Routbort, J.L.; Rothman, S.J.

    1995-01-01

    Superconducting properties of the cuprate superconductors depend on the oxygen content of the material; the diffusion of oxygen is thus an important process in the fabrication and application of these materials. This article reviews studies of the diffusion of oxygen in La{sub 2}{sub {minus}}{sub {times}}Sr{sub {times}}CuO{sub 4}, YBa{sub 2}Cu{sub 3}O{sub 7}{sub {minus}}{delta}, YBa{sub 2}Cu{sub 4}O{sub 8}, and the Bi{sub 2}Sr{sub 2}Ca{sub n}{sub {minus}}{sub 1}Cu{sub n}O{sub 2}{sub +}{sub 4} (n = 1, and 2) superconductors, and attempt to elucidate the atomic mechanisms responsible.

  16. On time-dependent diffusion coefficients arising from stochastic processes with memory

    Science.gov (United States)

    Carpio-Bernido, M. Victoria; Barredo, Wilson I.; Bernido, Christopher C.

    2017-08-01

    Time-dependent diffusion coefficients arise from anomalous diffusion encountered in many physical systems such as protein transport in cells. We compare these coefficients with those arising from analysis of stochastic processes with memory that go beyond fractional Brownian motion. Facilitated by the Hida white noise functional integral approach, diffusion propagators or probability density functions (pdf) are obtained and shown to be solutions of modified diffusion equations with time-dependent diffusion coefficients. This should be useful in the study of complex transport processes.

  17. Oxygen tracer diffusion and surface exchange kinetics in Ba0.5Sr0.5Co0.8Fe0.2O3-δ

    NARCIS (Netherlands)

    Berenov, A.; Atkinson, A.; Kilner, J.; Ananyev, M.; Eremin, V.; Porotnikova, N.; Farlenkov, A.; Kurumchin, E.; Bouwmeester, Henricus J.M.; Bucher, E.; Sitte, W.

    2014-01-01

    The oxygen tracer diffusion coefficient, Db⁎, and the oxygen tracer surface exchange coefficient, k, were measured in Ba0.5Sr0.5Co0.8Fe0.2O3 − δ (BSCF5582) over the temperature range of 310–800 °C and the oxygen partial pressure range of 1.3 × 10−3–0.21 bar. Several measurement techniques were used:

  18. Diffusion Decay Coefficient for Chloride Ions of Concrete Containing Mineral Admixtures

    Directory of Open Access Journals (Sweden)

    Jae-Im Park

    2016-01-01

    Full Text Available The diffusion coefficient for chloride ions and the diffusion decay coefficient for chloride ions are essential variables for a service life evaluation of concrete structures. They are influenced by water-binder ratio, exposure condition, curing temperature, cement type, and the type and use of mineral admixture. Mineral admixtures such as ground granulated blast furnace slag, fly ash, and silica fume have been increasingly used to improve resistance against chloride ions penetration in concrete structures built in an offshore environment. However, there is not enough measured data to identify the statistical properties of diffusion decay coefficient for chloride ions in concrete using mineral admixtures. This paper is aimed at evaluating the diffusion decay coefficient for chloride ions of concrete using ordinary Portland cement or blended cement. NT BUILD 492 method, an electrophoresis experiment, was used to measure the diffusion coefficient for chloride ions with ages. It was revealed from the test results that the diffusion decay coefficient for chloride ions was significantly influenced by W/B and the replacement ratio of mineral admixtures.

  19. Peptide self-association in aqueous trifluoroethanol monitored by pulsed field gradient NMR diffusion measurements

    Energy Technology Data Exchange (ETDEWEB)

    Yao Shenggen [Biomolecular Research Institute (Australia); Howlett, Geoffrey J. [University of Melbourne, Department of Biochemistry and Molecular Biology (Australia); Norton, Raymond S. [Biomolecular Research Institute (Australia)

    2000-02-15

    Defining the self-association state of a molecule in solution can be an important step in NMR-based structure determination. This is particularly true of peptides, where there can be a relatively small number of long-range interactions and misinterpretation of an intermolecular NOE as an intramolecular contact can have a dramatic influence on the final calculated structure. In this paper, we have investigated the use of translational self-diffusion coefficient measurements to detect self-association in aqueous trifluoroethanol of three peptides which are analogues of the C-terminal region of human neuropeptide Y. Experimentally measured diffusion coefficients were extrapolated to D{sup 0}, the limiting value as the peptide concentration approaches zero, and then converted to D{sub 20,w}, the diffusion coefficient after correction for temperature and the viscosity of the solvent. A decrease in D{sub 20,w} of about 16% was found for all three peptides in aqueous TFE (30% by volume) compared with water, which is in reasonable agreement with the expected decrease upon dimerisation, the presence of which was indicated by sedimentation equilibrium measurements. Apparent molecular masses of these peptides in both solutions were also calculated from their diffusion coefficients and similar results were obtained. Several potential internal standards, including acetone, acetonitrile, dimethylsulfoxide and dioxane, were assessed as monitors of solution viscosity over a range of trifluoroethanol concentrations. Compared with independent measurements of viscosity, acetonitrile was the most accurate standard among these four. The practical limitations of a quantitative assessment of peptide self-association from translational diffusion coefficients measured by PFGNMR, including the calculation of apparent molecular mass, are also discussed.

  20. Diffusion coefficient calculations for cylindrical cells

    International Nuclear Information System (INIS)

    Lam-Hime, M.

    1983-03-01

    An accurate and general diffusion coefficient calculation for cylindrical cells is described using isotropic scattering integral transport theory. This method has been particularly applied to large regular lattices of graphite-moderated reactors with annular coolant channels. The cells are divided into homogeneous zones, and a zone-wise flux expansion is used to formulate a collision probability problem. The reflection of neutrons at the cell boundary is accounted for by the conservation of the neutron momentum. The uncorrected diffusion coefficient Benoist's definition is used, and the described formulation does not neglect any effect. Angular correlation terms, energy coupling non-uniformity and anisotropy of the classical flux are exactly taken into account. Results for gas-graphite typical cells are given showing the importance of these approximations

  1. DETERMINATION OF MOISTURE DIFFUSION COEFFICIENT OF LARCH BOARD WITH FINITE DIFFERENCE METHOD

    Directory of Open Access Journals (Sweden)

    Qiaofang Zhou

    2011-04-01

    Full Text Available This paper deals with the moisture diffusion coefficient of Dahurian Larch (Larix gmelinii Rupr. by use of the Finite Difference Method (FDM. To obtain moisture distributions the dimensional boards of Dahurian Larch were dried, from which test samples were cut and sliced evenly into 9 pieces in different drying periods, so that moisture distributions at different locations and times across the thickness of Dahurian Larch were obtained with a weighing method. With these experimental data, FDM was used to solve Fick’s one-dimensional unsteady-state diffusion equation, and the moisture diffusion coefficient across the thickness at specified time was obtained. Results indicated that the moisture diffusion coefficient decreased from the surface to the center of the Dahurian Larch wood, and it decreased with decreasing moisture content at constant wood temperature; as the wood temperature increased, the moisture diffusion coefficient increased, and the effect of the wood temperature on the moisture diffusion coefficient was more significant than that of moisture content. Moisture diffusion coefficients were different for the two experiments due to differing diffusivity of the specimens.

  2. Generalization of the Nernst-Einstein equation for self-diffusion in high-defect-concentration solids

    International Nuclear Information System (INIS)

    McKee, R.A.

    1981-01-01

    It is shown that the Nernst-Einstein equation can be generalized for a high defect concentration solid to relate the mobility or conductivity to the self-diffusion coefficient. This relationship is derived assuming that the diffusing particles interact strongly and that the mobility is concentration-dependent. It is derived for interstitial disordered structures, but it is perfectly general to any mechanism of self diffusion as long as diffusion in a pure system is considered

  3. Diffusion of the 65Zn radiotracer in ZnO polycrystalline ceramics

    Directory of Open Access Journals (Sweden)

    Maria Auxiliadora das Neves Nogueira

    2003-06-01

    Full Text Available Zinc self-diffusion coefficients were measured in polycrystalline ZnO of high density (>99% of the theoretical density and of high purity (> 99.999%. The diffusion experiments were performed from 1006 to 1377 °C, in oxygen atmosphere, for times between 16 and 574 h. The diffusion profiles were established by means of Residual Activity Method using the 65Zn radioactive isotope as zinc tracer. In our experimental conditions, the zinc volume diffusion coefficients can be described by the following Arrhenius relationship: D(cm²/s = 1.57×10-3 exp[(-2.66 ± 0.26 eV/kT]. In the same experimental conditions, the grain-boundary diffusion coefficients are approximately 4 orders of magnitude greater than the volume diffusion coefficients, and can be described by the Arrhenius relation: D'delta (cm³/s = 1.59×10-6 exp[(-2.44 ± 0.45 eV/kT], where D' is the grain-boundary diffusion coefficient and delta is the grain boundary width.

  4. The anomalous self-diffusion in α-Zr

    International Nuclear Information System (INIS)

    Hood, G.M.

    1985-01-01

    In a very recent publication, Horvath, Dyment and Mehrer, henceforth HDM, presented measurements of the self-diffusion coefficient Dsub(m) 0 for α-Zr as a function of temperature. The results of that study, done on a single crystal sample, were anomalous in the sense that a plot of log Dsub(m) 0 vs. 1/T(K -1 ) was not only non-linear, but exhibited two regions of downward curvature with increasing 1/T. HDM indicated that they were unable to see any explanation of their anomalous self-diffusion results. It is the purpose of this letter to indicate a means whereby these anomalous results may be ''explained'' and to suggest some experiments which might be undertaken to test the proposal. (orig./RK)

  5. Behavior of specific heat and self diffusion coefficient of sodium near transition temperature: a molecular dynamics study

    International Nuclear Information System (INIS)

    Ahmed, N.; Khan, G.

    1990-09-01

    In this report the author used of a very useful technique of simulation and applied it to successfully for determining the various properties of sodium, both in liquid and solid phase near transition point. As a first step the determination of specific heat and diffusion coefficient have been carried out. In liquid state the molecular dynamics (MD) values calculated matched the experimental data. But in solid state the diffusion coefficient obtained were not consistent with the one expected for a solid, rather the values obtained suggested that sodium remained in liquid state even below the melting point. (A.B.)

  6. Coefficients of tracer transfer through membranes. Pt. 7

    Energy Technology Data Exchange (ETDEWEB)

    Dorabialska, A; Hawlicka, E; Plonka, A [Politechnika Lodzka (Poland)

    1974-01-01

    The doubled value of the tracer transfer coefficient in the self-diffusion process is equal to the sum of tracer transfer coefficients in the diffusion and interfusion processes. The fundamental phenomenological relation can be deduced for the coefficients of tracer transfer between two phases of electrolyte solutions spearated by a virtual boundary. Indeed, the doubled value of the tracer mobility in the self-diffusion experiment (no concentration gradient of the traced substance) is equal to the sum of the tracer mobilities in the diffusion (tracer movement along with the concentration gradient of the traced substance) and interfusion experiments (tracer movement against the concentration gradient of the traced substance). Thus the doubled value of the tracer transfer coefficient in the self-diffusion process should be equal to the sum of tracer transfer coefficients in the diffusion and interfusion processes. The experimental verification of that fundamental relation is presented.

  7. Effective diffusion coefficient of radon in concrete, theory and method for field measurements

    International Nuclear Information System (INIS)

    Culot, M.V.J.; Olson, H.G.; Schiager, K.J.

    1976-01-01

    A linear diffusion model serves as the basis for determination of an effective radon diffusion coefficient in concrete. The coefficient was needed to later allow quantitative prediction of radon accumulation within and behind concrete walls after application of an impervious radon barrier. A resolution of certain discrepancies noted in the literature in the use of an effective diffusion coefficient to model diffusion of a radioactive gas through a porous medium is suggested. An outline of factors expected to affect the concrete physical structure and the effective diffusion coefficient of radon through it is also presented. Finally, a field method for evaluating effective radon diffusion coefficients in concrete is proposed and results of measurements performed on a concrete foundation wall are compared with similar published values of gas diffusion coefficients in concrete. (author)

  8. Self diffusion of sodium ion in sodium chloride

    International Nuclear Information System (INIS)

    Haridasan, T.M.; Lawrence, N.

    1985-09-01

    The problem of cation self diffusion in NaCl for a single vacancy mechanism is attempted using a reaction coordinate approach employing the phonons in the system. The vacancy is given an active role by estimating the displacements of its nearest neighbour Cl - ions in the environment of the vacancy through the lattice Green's functions and the t matrix formalism. The jump frequency, the isotope effect and diffusion coefficients estimated by this approach agree well with the experimentally deduced values. These results support the experimental conclusion of about 30% of vacancy pairs in the cation diffusion in NaCl. (author)

  9. Diffusion of insoluble carbon in zirconium oxides

    CERN Document Server

    Vykhodets, V B; Koester, U; Kondrat'ev, V V; Kesarev, A G; Hulsen, C; Kurennykh, T E

    2011-01-01

    The diffusion coefficient of insoluble carbon in zirconium oxides has been obtained for the temperature range of 900-1000A degrees C. There are no published data on the diffusion of insoluble impurities; these data are of current interest for the diffusion theory and nuclear technologies. Tracer atoms 13C have been introduced into oxides by means of ion implantation and the kinetics of their emission from the samples in the process of annealing in air has been analyzed. The measurements have been performed using the methods of nuclear microanalysis and X-ray photoelectron spectroscopy. The diffusion activation energy is 2.7 eV and the carbon diffusion coefficient is about six orders of magnitude smaller than that for oxygen self-diffusion in the same systems. This result indicates the strong anomaly of the diffusion properties of carbon in oxides. As a result, zirconium oxides cannot be used in some nuclear technologies, in particular, as a material of sources for accelerators of short-lived carbon isotopes.

  10. Diffusion coefficients of decay products of radon and thoron

    International Nuclear Information System (INIS)

    Raghunath, B.; Kotrappa, P.

    1979-01-01

    The diffusion coefficients of the decay products of radon and thoron have relevance in the evaluation of inhalation hazards in uranium and thorium processing industries. A recently developed diffusion sampler, based on Mercer's theory of diffusional deposition between the concentric circular plates, has been used for determining the diffusion coefficients of the unattached decay products of radon and thoron (RaA, RaB, RaC and ThB). Experiments were conducted at different ventilation rates (6 and 60 changes/hr) at different relative humidities (10 and 90%) and both in air and argon atmospheres. Diffusion coefficients were found to increase with increasing ventilation rates and were found to decrease at higher relative humidities, the effect being more marked at lower ventilation rates. Both of these effects were less pronounced in argon than in air. Results are discussed in light of the known properties of these decay products. (author)

  11. Self-diffusion in Zr-Cr and Zr-Fe alloys

    International Nuclear Information System (INIS)

    Patil, R.V.; Tiwari, G.P.; Sharma, B.D.

    1981-01-01

    Self-diffusion studies in a series of zirconium-rich alloys containing 2.05, 3.49, 4.08 and 7.86 at %Cr and 0.98, 1.35, 1.64, 3.54 and 6.37 at.%Fe have been carried out in the temperature range 1173-1518 K, using standard serial-sectioning technique. The temperature dependence of self-diffusion coefficients in all these alloys could be described by Arrhenius expressions of the type D = D 0 exp (- Q/RT). The data have been analysed on the basis of current concepts of alloy diffusion. An analysis based on the vacancy mechanism leads to negative values of the correlation factors. The possibility of interstitial-vacancy pair and ω-phase embryos being rate-controlling mechanisms is also discussed. (author)

  12. Correlation of human papillomavirus status with apparent diffusion coefficient of diffusion-weighted MRI in head and neck squamous cell carcinomas.

    Science.gov (United States)

    Driessen, Juliette P; van Bemmel, Alexander J M; van Kempen, Pauline M W; Janssen, Luuk M; Terhaard, Chris H J; Pameijer, Frank A; Willems, Stefan M; Stegeman, Inge; Grolman, Wilko; Philippens, Marielle E P

    2016-04-01

    Identification of prognostic patient characteristics in head and neck squamous cell carcinoma (HNSCC) is of great importance. Human papillomavirus (HPV)-positive HNSCCs have favorable response to (chemo)radiotherapy. Apparent diffusion coefficient, derived from diffusion-weighted MRI, has also shown to predict treatment response. The purpose of this study was to evaluate the correlation between HPV status and apparent diffusion coefficient. Seventy-three patients with histologically proven HNSCC were retrospectively analyzed. Mean pretreatment apparent diffusion coefficient was calculated by delineation of total tumor volume on diffusion-weighted MRI. HPV status was analyzed and correlated to apparent diffusion coefficient. Six HNSCCs were HPV-positive. HPV-positive HNSCC showed significantly lower apparent diffusion coefficient compared to HPV-negative. This correlation was independent of other patient characteristics. In HNSCC, positive HPV status correlates with low mean apparent diffusion coefficient. The favorable prognostic value of low pretreatment apparent diffusion coefficient might be partially attributed to patients with a positive HPV status. © 2015 Wiley Periodicals, Inc. Head Neck 38: E613-E618, 2016. © 2015 Wiley Periodicals, Inc.

  13. Fractal diffusion coefficient from dynamical zeta functions

    Energy Technology Data Exchange (ETDEWEB)

    Cristadoro, Giampaolo [Max Planck Institute for the Physics of Complex Systems, Noethnitzer Str. 38, D 01187 Dresden (Germany)

    2006-03-10

    Dynamical zeta functions provide a powerful method to analyse low-dimensional dynamical systems when the underlying symbolic dynamics is under control. On the other hand, even simple one-dimensional maps can show an intricate structure of the grammar rules that may lead to a non-smooth dependence of global observables on parameters changes. A paradigmatic example is the fractal diffusion coefficient arising in a simple piecewise linear one-dimensional map of the real line. Using the Baladi-Ruelle generalization of the Milnor-Thurnston kneading determinant, we provide the exact dynamical zeta function for such a map and compute the diffusion coefficient from its smallest zero. (letter to the editor)

  14. Fractal diffusion coefficient from dynamical zeta functions

    International Nuclear Information System (INIS)

    Cristadoro, Giampaolo

    2006-01-01

    Dynamical zeta functions provide a powerful method to analyse low-dimensional dynamical systems when the underlying symbolic dynamics is under control. On the other hand, even simple one-dimensional maps can show an intricate structure of the grammar rules that may lead to a non-smooth dependence of global observables on parameters changes. A paradigmatic example is the fractal diffusion coefficient arising in a simple piecewise linear one-dimensional map of the real line. Using the Baladi-Ruelle generalization of the Milnor-Thurnston kneading determinant, we provide the exact dynamical zeta function for such a map and compute the diffusion coefficient from its smallest zero. (letter to the editor)

  15. Verifying reciprocal relations for experimental diffusion coefficients in multicomponent mixtures

    DEFF Research Database (Denmark)

    Medvedev, Oleg; Shapiro, Alexander

    2003-01-01

    The goal of the present study is to verify the agreement of the available data on diffusion in ternary mixtures with the theoretical requirement of linear non-equilibrium thermodynamics consisting in symmetry of the matrix of the phenomenological coefficients. A common set of measured diffusion...... coefficients for a three-component mixture consists of four Fickian diffusion coefficients, each being reported separately. However, the Onsager theory predicts the existence of only three independent coefficients, as one of them disappears due to the symmetry requirement. Re-calculation of the Fickian...... extended sets of experimental data and reliable thermodynamic models were available. The sensitivity of the symmetry property to different thermodynamic parameters of the models was also checked. (C) 2003 Elsevier Science B.V. All rights reserved....

  16. Study of cation diffusion in Zn O using 65Zn as radioactive tracer

    International Nuclear Information System (INIS)

    Ferraz, Wilmar B.; Correa, Ricardo F.; Nogueira, Maria A.N.; Ramos, Marcelo; Sabioni, Antonio C.S.

    2000-01-01

    Zinc self-diffusion coefficient were measured in polycrystalline Zn O of high purity (99,999%) prepared by conventional sintering at 1393 deg C, 4 h, in oxygen atmosphere. The Zn O samples had high density (>99% of the theoretical density) and grain size of 20 μm. These samples were resintered for 72 h at 1400 deg C in order to increase the grain-size higher than 50 μ m. Samples of 15 x 15 x 2 mm 3 were polished with diamond paste, and pre-annealed under the same conditions of temperature and atmosphere of the diffusion annealing. A thin film of 65 Zn - radioactive tracer - applied to the polished surface was oxidized in oxygen atmosphere for a short time before diffusion annealing. The diffusion experiments were performed between 1002 and 1201 deg C in oxygen atmosphere. The 65 Zn diffusion profiles were measured by sectioning in conjunction with residual-activity measurements. The results of the determination of the zinc in Zn O diffusion coefficients in function of temperature are presented and a comparison of these results obtained by the two radioactive method is showed. (author)

  17. Evaporation, diffusion and self-assembly at drying interfaces.

    Science.gov (United States)

    Roger, K; Sparr, E; Wennerström, H

    2018-04-18

    Water evaporation from complex aqueous solutions leads to the build-up of structure and composition gradients at their interface with air. We recently introduced an experimental setup for quantitatively studying such gradients and discussed how structure formation can lead to a self-regulation mechanism for controlling water evaporation through self-assembly. Here, we provide a detailed theoretical analysis using an advection/diffusion transport equation that takes into account thermodynamically non-ideal conditions and we directly relate the theoretical description to quantitative experimental data. We derive that the concentration profile develops according to a general square root of time scaling law, which fully agrees with experimental observations. The evaporation rate notably decreases with time as t-1/2, which shows that diffusion in the liquid phase is the rate limiting step for this system, in contrast to pure water evaporation. For the particular binary system that was investigated experimentally, which is composed of water and a sugar-based surfactant (α-dodecylmaltoside), the interfacial layer consists in a sequence of liquid crystalline phases of different mesostructures. We extract values for mutual diffusion coefficients of lamellar, hexagonal and micellar cubic phases, which are consistent with previously reported values and simple models. We thus provide a method to estimate the transport properties of oriented mesophases. The macroscopic humidity-independence of the evaporation rate up to 85% relative humidities is shown to result from both an extremely low mutual diffusion coefficient and the large range of water activities corresponding to relative humidities below 85%, at which the lamellar phase exists. Such a humidity self-regulation mechanism is expected for a large variety of complex system.

  18. Separate measurement of local diffusion coefficients in grain boundaries and in adjacent regions

    International Nuclear Information System (INIS)

    Klotsman, S.M.; Kajgorodov, V.N.

    1994-01-01

    A new measuring technique is presented that allows one separate determination of grain boundary width and local diffusion coefficients. With the use of the technique presented phenomenological description is accompished for time and temperature dependences of relative and absolute level populations in a zone of preferential intercrystalline diffusion. Local diffusion coefficients obtained for the upper temperature limit of applicability of the technique proposed are in a good agreement with values calculated form coordinate distribution of atoic probes. Local diffusion coefficients determined at lower temperatures essentially differ from those calculated assuming that suction coefficient is equal to a coefficient of volume diffusion. Experimental dta are given for diffusion parameters in Ag, Pd and W polycrystals. 16 refs., 3 figs., 2 tabs

  19. Evaluation of downwelling diffuse attenuation coefficient algorithms in the Red Sea

    KAUST Repository

    Tiwari, Surya Prakash; Yellepeddi, Sarma B.; Jones, Burton

    2016-01-01

    to comprehend the diffuse attenuation coefficient and its relationship with in situ properties. Two apparent optical properties, spectral remote sensing reflectance (Rrs) and the downwelling diffuse attenuation coefficient (Kd), are calculated from vertical

  20. Scale dependence of the effective matrix diffusion coefficient: Evidence and preliminary interpretation

    International Nuclear Information System (INIS)

    Liu, Hui-Hai; Zhang, Yingqi; Molz, Fred J.

    2006-01-01

    The exchange of solute mass (through molecular diffusion) between fluid in fractures and fluid in the rock matrix is called matrix diffusion. Owing to the orders-of-magnitude slower flow velocity in the matrix compared to fractures, matrix diffusion can significantly retard solute transport in fractured rock, and therefore is an important process for a variety of problems, including remediation of subsurface contamination and geological disposal of nuclear waste. The effective matrix diffusion coefficient (molecular diffusion coefficient in free water multiplied by matrix tortuosity) is an important parameter for describing matrix diffusion, and in many cases largely determines overall solute transport behavior. While matrix diffusion coefficient values measured from small rock samples in the laboratory are generally used for modeling field-scale solute transport in fractured rock (Boving and Grathwohl, 2001), several research groups recently have independently found that effective matrix diffusion coefficients much larger than laboratory measurements are needed to match field-scale tracer-test data (Neretnieks, 2002; Becker and Shapiro, 2000; Shapiro, 2001; Liu et al., 2003, 2004a). In addition to the observed enhancement, Liu et al. (2004b), based on a relatively small number of field-test results, reported that the effective matrix diffusion coefficient might be scale dependent, and, like permeability and dispersivity, it seems to increases with test scale. This scale-dependence has important implications for large-scale solute transport in fractured rock. Although a number of mechanisms have been proposed to explain the enhancement of the effective matrix diffusion coefficient, the potential scale dependence and its mechanisms are not fully investigated at this stage. The major objective of this study is to again demonstrate (based on more data published in the literature than those used in Liu et al. [2004b]) the potential scale dependence of the effective

  1. Scale Dependence of the Effective Matrix Diffusion Coefficient : Evidence and Preliminary Interpretation

    International Nuclear Information System (INIS)

    H.H. Liu; Y. Zhang

    2006-01-01

    The exchange of solute mass (through molecular diffusion) between fluid in fractures and fluid in the rock matrix is called matrix diffusion. Owing to the orders-of-magnitude slower flow velocity in the matrix compared to fractures, matrix diffusion can significantly retard solute transport in fractured rock, and therefore is an important process for a variety of problems, including remediation of subsurface contamination and geological disposal of nuclear waste. The effective matrix diffusion coefficient (molecular diffusion coefficient in free water multiplied by matrix tortuosity) is an important parameter for describing matrix diffusion, and in many cases largely determines overall solute transport behavior. While matrix diffusion coefficient values measured from small rock samples in the laboratory are generally used for modeling field-scale solute transport in fractured rock (Boving and Grathwohl, 2001), several research groups recently have independently found that effective matrix diffusion coefficients much larger than laboratory measurements are needed to match field-scale tracer-test data (Neretnieks, 2002; Becker and Shapiro, 2000; Shapiro, 2001; Liu et al., 2003,2004a). In addition to the observed enhancement, Liu et al. (2004b), based on a relatively small number of field-test results, reported that the effective matrix diffusion coefficient might be scale dependent, and, like permeability and dispersivity, it seems to increases with test scale. This scale-dependence has important implications for large-scale solute transport in fractured rock. Although a number of mechanisms have been proposed to explain the enhancement of the effective matrix diffusion coefficient, the potential scale dependence and its mechanisms are not fully investigated at this stage. The major objective of this study is to again demonstrate (based on more data published in the literature than those used in Liu et al. [2004b]) the potential scale dependence of the effective

  2. A new consistent definition of the homogenized diffusion coefficient of a lattice, limitations of the homogenization concept, and discussion of previously defined coefficients

    International Nuclear Information System (INIS)

    Deniz, V.C.

    1978-01-01

    The problem concerned with the correct definition of the homogenized diffusion coefficient of a lattice, and the concurrent problem of whether or not a homogenized diffusion equation can be formally set up, is studied by a space-energy angle dependent treatment for a general lattice cell; using an operator notation which applies to any eigen-problem. It is shown that the diffusion coefficient should represent only leakage effects. A new definition of the diffusion coefficient is given, which combines within itself the individual merits of each of the two definitions of Benoist, and reduces to the 'uncorrected' Benoist coefficient in certain cases. The conditions under which a homogenized diffusion equation can be obtained are discussed. A compatison is made between the approach via a diffusion equation and the approach via the eigen-coefficients of Deniz. Previously defined diffusion coefficients are discussed, and it is shown that the transformed eigen-coefficients proposed by Gelbard and by Larsen are unsuitable as diffusion coefficients, and that the cell-edge normalization of the Bonalumi coefficient is not physically justifiable. (author)

  3. Self-diffusion coefficients and shear viscosity of inverse power fluids: from hard- to soft-spheres.

    Science.gov (United States)

    Heyes, D M; Brańka, A C

    2008-07-21

    Molecular dynamics computer simulation has been used to compute the self-diffusion coefficient, D, and shear viscosity, eta(s), of soft-sphere fluids, in which the particles interact through the soft-sphere or inverse power pair potential, phi(r) = epsilon(sigma/r)(n), where n measures the steepness or stiffness of the potential, and epsilon and sigma are a characteristic energy and distance, respectively. The simulations were carried out on monodisperse systems for a range of n values from the hard-sphere (n --> infinity) limit down to n = 4, and up to densities in excess of the fluid-solid co-existence value. A new analytical procedure is proposed which reproduces the transport coefficients at high densities, and can be used to extrapolate the data to densities higher than accurately accessible by simulation or experiment, and tending to the glass transition. This formula, DX(c-1) proportional, variant A/X + B, where c is an adjustable parameter, and X is either the packing fraction or the pressure, is a development of one proposed by Dymond. In the expression, -A/B is the value of X at the ideal glass transition (i.e., where D and eta(s)(-1) --> 0). Estimated values are presented for the packing fraction and the pressure at the glass transition for n values between the hard and soft particle limits. The above expression is also shown to reproduce the high density viscosity data of supercritical argon, krypton and nitrogen. Fits to the soft-sphere simulation transport coefficients close to solid-fluid co-existence are also made using the analytic form, ln(D) = alpha(X)X, and n-dependence of the alpha(X) is presented (X is either the packing fraction or the pressure).

  4. Investigation of a phantom for diffusion weighted imaging that controlled the apparent diffusion coefficient using gelatin and sucrose

    International Nuclear Information System (INIS)

    Tamura, Takayuki; Usui, Shuji; Akiyama, Mitoshi

    2009-01-01

    When studying diffusion weighted imaging (DWI), it is important to create a phantom that has a reliably controlled diffusion coefficient. In this study, we investigated phantoms to control both the diffusion coefficient and the T2-value by changing the concentration of gelatin or sucrose and MnCl 2 , respectively. The results showed that the diffusion coefficient decreased linearly with increases in the gelatin or sucrose concentration, and decreasing of their relaxation times was observed. By properly adjusting the MnCl 2 concentrations, we were able to equalize the T2-values between phantoms having different gelatin or sucrose concentrations. Temperature dependence of the diffusion coefficient was also revealed. This phantom can be made stable for a few months by adding a small amount of NaN 3 as an antiseptic agent, has a diffusion coefficient similar to that of neural tissue or clinical tumor, and is able to control the T2-value properly. We consider this phantom suitable for studying SE-type DWI and contributes to elucidation of this technique. (author)

  5. Diffusion coefficients gases, dissolved in fluid of NPPs circulation contours

    International Nuclear Information System (INIS)

    Piontkovskij, A.I.

    2000-01-01

    In article is brought analysis of diverse gases diffusion coefficients computation methods, dissolved in liquid. On the basis of this analysis and treatment of being equalizations for concrete gases and certain parameters offers universal diffusion coefficients determination dependence for diverse gases in wide range of parameters, circulation contours typical for work NPP

  6. Local carbon diffusion coefficient measurement in the S-1 spheromak

    International Nuclear Information System (INIS)

    Mayo, R.M.; Levinton, F.M.; Meyerhofer, D.D.; Chu, T.K.; Paul, S.F.; Yamada, M.

    1988-10-01

    The local carbon diffusion coefficient was measured in the S - 1 spheromak by detecting the radial spread of injected carbon impurity. The radial impurity density profile is determined by the balance of ionization and diffusion. Using measured local electron temperature T/sub e/ and density n/sub e/, the ionization rate is determined from which the particle diffusion coefficient is inferred. The results found in this work are consistent with Bohm diffusion. The absolute magnitude of D/sub /perpendicular// was determined to be (4/approximately/6) /times/ D/sub Bohm/. 25 refs., 13 figs., 2 tabs

  7. Enhanced Oxygen Diffusion Within the Internal Oxidation Zone of Alloy 617 in Controlled Impurity Helium Environments from 1023 K to 1123 K (750 °C to 850 °C)

    Science.gov (United States)

    Gulsoy, Gokce; Was, Gary S.

    2015-04-01

    Alloy 617 was exposed to He-CO-CO2 environments with of either 9 or 1320 at temperatures from 1023 K to 1123 K (750 °C to 850 °C) to determine the oxygen diffusion coefficients within the internal oxidation zone of the alloy. The oxygen diffusion coefficients determined based on both intergranular and transgranular oxidation rates were several orders of magnitude greater than those reported in pure nickel and in nickel-based binary alloys, indicating that the rapid internal aluminum oxidation of Alloy 617 was primarily due to enhanced oxygen diffusion along the incoherent Al2O3-alloy interfaces. The range of activation energy values determined for oxygen diffusion associated with the intergranular aluminum oxidation was from 149.6 to 154.7 kJ/mol, and that associated with the transgranular aluminum oxidation was from 244.7 to 283.5 kJ/mol.

  8. Mutual diffusion coefficients of isopropanol + n-heptane and isobutanol + n-heptane

    International Nuclear Information System (INIS)

    He, Maogang; Peng, Sanguo; Zhang, Ying; Zhang, Shi; Liu, Xiangyang

    2016-01-01

    Graphical abstract: Mutual diffusion coefficients of isopropanol + n-heptane as a function of mass fraction of isopropanol. - Highlights: • D_1_2 of isopropanol + n-heptane and isobutanol + n-heptane were measured. • Effect of T, w and M of the solute on D_1_2 were analyzed. • A new correlation is proposed for the experimental data. - Abstract: The mutual diffusion coefficients of isopropanol + n-heptane and isobutanol + n-heptane were measured at different concentrations and in the temperature range from (283.15 to 323.15) K. The measurements were carried out using a digital holographic interferometry system. For all the mixtures investigated, the mutual diffusion coefficient increases as the temperature increases. At the same concentration and temperature, the mutual diffusion coefficients of isobutanol + n-heptane were lower than those of isopropanol + n-heptane due to the fact that the molecular weight of isobutanol is larger than that of isopropanol. A new correlation is proposed for the mutual diffusion coefficients of isopropanol + n-heptane and isobutanol + n-heptane. The absolute average relative deviation between the correlation and experiment is less than 1.90%.

  9. Effective hydrogen diffusion coefficient for solidifying aluminium alloys

    International Nuclear Information System (INIS)

    Felberbaum, M.; Landry-Desy, E.; Weber, L.; Rappaz, M.

    2011-01-01

    An effective hydrogen diffusion coefficient has been calculated for two solidifying Al - 4.5 wt.% Cu and Al - 10 wt.% Cu alloys as a function of the volume fraction of solid. For this purpose, in situ X-ray tomography was performed on these alloys. For each volume fraction of solid between 0.6 and 0.9, a representative volume element of the microstructure was extracted. Solid and liquid voxels were assimilated to solid and liquid nodes in order to solve the hydrogen diffusion equation based on the chemical potential and using a finite volume formulation. An effective hydrogen diffusion coefficient based on the volume fraction of solid only could be deduced from the results of the numerical model at steady state. The results are compared with various effective medium theories.

  10. Increased self-diffusion of brain water in normal aging

    DEFF Research Database (Denmark)

    Gideon, P; Thomsen, C; Henriksen, O

    1994-01-01

    With magnetic resonance (MR) imaging, brain water self-diffusion was measured in 17 healthy volunteers 22-76 (mean, 44.6) years old. The calculated values for the apparent diffusion coefficients (ADCs) ranged from 0.58 x 10(-9) to 1.23 x 10(-9) m2/sec in cerebral white matter. A significant...... by an increase in the extracellular volume due to age-dependent neuronal degeneration or to changes in myelination. These findings have implications for future clinical investigations with diffusion MR imaging techniques in patients with neurologic diseases, and stress the importance of having an age...

  11. Variable Eddington factors and flux-limiting diffusion coefficients

    International Nuclear Information System (INIS)

    Whalen, P.P.

    1982-01-01

    Variable Eddington factors and flux limiting diffusion coefficients arise in two common techniques of closing the moment equations of transport. The first two moment equations of the full transport equation are still frequently used to solve many problems of radiative or particle transport. An approximate analysis, developed by Levermore, exhibits the relation between the coefficients of the two different techniques. This analysis is described and then used to test the validity of several commonly used flux limiters and Eddington factors. All of the ad-hoc flux limiters have limited validity. All of the variable Eddington factors derived from some underlying description of the angular distribution function are generally valid. The use of coefficients from Minerbo's elegant maximum entropy Eddington factor analysis is suggested for use in either flux limited diffusion or variable Eddington factor equations

  12. A systematic determination of diffusion coefficients of trace elements in open and restricted diffusive layers used by the diffusive gradients in a thin film technique

    DEFF Research Database (Denmark)

    Shiva, Amir Houshang; Teasdale, Peter R.; Bennett, William W.

    2015-01-01

    A systematic comparison of the diffusion coefficients of cations (Al, Cd, Co, Cu, Mn, Ni, Pb, Zn) and oxyanions (Al, As, Mo, Sb, V, W) in open (ODL) and restricted (RDL) diffusive layers used by the DGT technique was undertaken. Diffusion coefficients were measured using both the diffusion cell...... concentrations required with the Dcell measurements. This is the first time that D values have been reported for several oxyanions using RDL. Except for Al at pH 8.30 with ODL, all DDGT measurements were retarded relative to diffusion coefficients in water (DW) for both diffusive hydrogels. Diffusion in RDL...

  13. Determination of diffusion coefficients and diffusion characteristics for chlorferon and diethylthiophosphate in Ca-alginate gel beads.

    Science.gov (United States)

    Ha, Jiyeon; Engler, Cady R; Lee, Seung Jae

    2008-07-01

    Diffusion characteristics of chlorferon and diethylthiophosphate (DETP) in Ca-alginate gel beads were studied to assist in designing and operating bioreactor systems. Diffusion coefficients for chlorferon and DETP in Ca-alginate gel beads determined at conditions suitable for biodegradation studies were 2.70 x 10(-11) m(2)/s and 4.28 x 10(-11) m(2)/s, respectively. Diffusivities of chlorferon and DETP were influenced by several factors, including viscosity of the bulk solution, agitation speed, and the concentrations of diffusing substrate and immobilized cells. Diffusion coefficients increased with increasing agitation speed, probably due to poor mixing at low speed and some attrition of beads at high speeds. Diffusion coefficients also increased with decreasing substrate concentration. Increased cell concentration in the gel beads caused lower diffusivity. Theoretical models to predict diffusivities as a function of cell weight fraction overestimated the effective diffusivities for both chlorferon and DETP, but linear relations between effective diffusivity and cell weight fraction were derived from experimental data. Calcium-alginate gel beads with radii of 1.65-1.70 mm used in this study were not subject to diffusional limitations: external mass transfer resistances were negligible based on Biot number calculations and effectiveness factors indicated that internal mass transfer resistance was negligible. Therefore, the degradation rates of chlorferon and DETP inside Ca-alginate gel beads were reaction-limited. (c) 2007 Wiley Periodicals, Inc.

  14. Self-diffusion in the non-Newtonian regime of shearing liquid crystal model systems based on the Gay-Berne potential

    Energy Technology Data Exchange (ETDEWEB)

    Sarman, Sten, E-mail: sarman@ownit.nu; Wang, Yong-Lei; Laaksonen, Aatto [Arrhenius Laboratory, Department of Materials and Environmental Chemistry, Stockholm University, 106 91 Stockholm (Sweden)

    2016-02-07

    The self-diffusion coefficients of nematic phases of various model systems consisting of regular convex calamitic and discotic ellipsoids and non-convex bodies such as bent-core molecules and soft ellipsoid strings have been obtained as functions of the shear rate in a shear flow. Then the self-diffusion coefficient is a second rank tensor with three different diagonal components and two off-diagonal components. These coefficients were found to be determined by a combination of two mechanisms, which previously have been found to govern the self-diffusion of shearing isotropic liquids, namely, (i) shear alignment enhancing the diffusion in the direction parallel to the streamlines and hindering the diffusion in the perpendicular directions and (ii) the distortion of the shell structure in the liquid whereby a molecule more readily can escape from a surrounding shell of nearest neighbors, so that the mobility increases in every direction. Thus, the diffusion parallel to the streamlines always increases with the shear rate since these mechanisms cooperate in this direction. In the perpendicular directions, these mechanisms counteract each other so that the behaviour becomes less regular. In the case of the nematic phases of the calamitic and discotic ellipsoids and of the bent core molecules, mechanism (ii) prevails so that the diffusion coefficients increase. However, the diffusion coefficients of the soft ellipsoid strings decrease in the direction of the velocity gradient because the broadsides of these molecules are oriented perpendicularly to this direction due the shear alignment (i). The cross coupling coefficient relating a gradient of tracer particles in the direction of the velocity gradient and their flow in the direction of the streamlines is negative and rather large, whereas the other coupling coefficient relating a gradient in the direction of the streamlines and a flow in the direction of the velocity gradient is very small.

  15. Self-diffusion in the non-Newtonian regime of shearing liquid crystal model systems based on the Gay-Berne potential

    Science.gov (United States)

    Sarman, Sten; Wang, Yong-Lei; Laaksonen, Aatto

    2016-02-01

    The self-diffusion coefficients of nematic phases of various model systems consisting of regular convex calamitic and discotic ellipsoids and non-convex bodies such as bent-core molecules and soft ellipsoid strings have been obtained as functions of the shear rate in a shear flow. Then the self-diffusion coefficient is a second rank tensor with three different diagonal components and two off-diagonal components. These coefficients were found to be determined by a combination of two mechanisms, which previously have been found to govern the self-diffusion of shearing isotropic liquids, namely, (i) shear alignment enhancing the diffusion in the direction parallel to the streamlines and hindering the diffusion in the perpendicular directions and (ii) the distortion of the shell structure in the liquid whereby a molecule more readily can escape from a surrounding shell of nearest neighbors, so that the mobility increases in every direction. Thus, the diffusion parallel to the streamlines always increases with the shear rate since these mechanisms cooperate in this direction. In the perpendicular directions, these mechanisms counteract each other so that the behaviour becomes less regular. In the case of the nematic phases of the calamitic and discotic ellipsoids and of the bent core molecules, mechanism (ii) prevails so that the diffusion coefficients increase. However, the diffusion coefficients of the soft ellipsoid strings decrease in the direction of the velocity gradient because the broadsides of these molecules are oriented perpendicularly to this direction due the shear alignment (i). The cross coupling coefficient relating a gradient of tracer particles in the direction of the velocity gradient and their flow in the direction of the streamlines is negative and rather large, whereas the other coupling coefficient relating a gradient in the direction of the streamlines and a flow in the direction of the velocity gradient is very small.

  16. Banded Structures in Electron Pitch Angle Diffusion Coefficients from Resonant Wave Particle Interactions

    Science.gov (United States)

    Tripathi, A. K.; Singhal, R. P.; Khazanov, G. V.; Avanov, L. A.

    2016-01-01

    Electron pitch angle (D (alpha)) and momentum (D(pp)) diffusion coefficients have been calculated due to resonant interactions with electrostatic electron cyclotron harmonic (ECH) and whistler mode chorus waves. Calculations have been performed at two spatial locations L = 4.6 and 6.8 for electron energies 10 keV. Landau (n = 0) resonance and cyclotron harmonic resonances n = +/-1, +/-2,...+/-5 have been included in the calculations. It is found that diffusion coefficient versus pitch angle (alpha) profiles show large dips and oscillations or banded structures. The structures are more pronounced for ECH and lower band chorus (LBC) and particularly at location 4.6. Calculations of diffusion coefficients have also been performed for individual resonances. It is noticed that the main contribution of ECH waves in pitch angle diffusion coefficient is due to resonances n = +1 and n = +2. A major contribution to momentum diffusion coefficients appears from n = +2. However, the banded structures in D alpha and Dpp coefficients appear only in the profile of diffusion coefficients for n = +2. The contribution of other resonances to diffusion coefficients is found to be, in general, quite small or even negligible. For LBC and upper band chorus waves, the banded structures appear only in Landau resonance. The Dpp diffusion coefficient for ECH waves is one to two orders smaller than D alpha coefficients. For chorus waves, Dpp coefficients are about an order of magnitude smaller than D alpha coefficients for the case n does not = 0. In case of Landau resonance, the values of Dpp coefficient are generally larger than the values of D alpha coefficients particularly at lower energies. As an aid to the interpretation of results, we have also determined the resonant frequencies. For ECH waves, resonant frequencies have been estimated for wave normal angle 89 deg and harmonic resonances n = +1, +2, and +3, whereas for whistler mode waves, the frequencies have been calculated for angle

  17. Self-diffusion measurements in heterogeneous systems using NMR pulsed field gradient technique

    International Nuclear Information System (INIS)

    Heink, W.; Kaerger, J.; Walter, A.

    1978-01-01

    The experimental pecularities of the NMR pulsed field gradient technique are critical surveyed in its application to zeolite adsorbate adsorbent systems. After a presentation of the different transport parameters accessible by this technique, the consequences of the existence of inner field gradients being inherent to heterogeneous systems are analyzed. Experimental conditions and consequences of an application of pulsed field gradients of high intensity which are necessary for the measurement of small intracrystalline self-diffusion coefficients, are discussed. Gradient pulses of 0.15 Tcm -1 with pulse widths of 2 ms maximum and relative deviations of less than 0.01 per mille can be realized. Since for a number of adsorbate adsorbent systems a distinct dependence of the intracrystalline self-diffusion coeffcients on adsorbate concentration is observed, determination of zeolite pore fiiling factor is of considerable importance for the interpretation of the diffusivities obtained. It is demonstrated that also this information can be obtained by NMR technique in a straightforward way with a mean error of less than 5 to 10 %. Applying this new method and using an optimum experimental device as described, pore filling factor dependences of the self-diffusion coefficients of alkanes in NaX zeolites can be followed over more than two orders of magnitude. (author)

  18. Sensitivity analysis of an experimental methodology to determine radionuclide diffusion coefficients in granite

    International Nuclear Information System (INIS)

    Alonso, U.; Missana, T.; Garcia-Gutierrez, M.; Patelli, A.; Rigato, V.

    2005-01-01

    Full text of publication follows: The long-term quantitative analysis of the migration behaviour of the relevant radionuclides (RN) within the geological barrier of a radioactive waste repository requires, amongst other data, the introduction of reliable transport parameters, as diffusion coefficients. Since the determination of diffusion coefficients within crystalline rocks is complex and requires long experimental times even for non-sorbing radionuclides, the data available in the literature are very scarce. The nuclear ion beam technique RBS (Rutherford Backscattering Spectrometry) that is successfully used to determine diffusion profiles in thin film science is here examined as possible suitable technique to determine the diffusion coefficients of different RN within granite. As first step, the technique sensitivity and limitations to analyse diffusion coefficients in granite samples is evaluated, considering that the technique is especially sensitive to heavy elements. The required experimental conditions in terms of experimental times, concentration and methodology of analysis are discussed. The diffusants were selected accounting the RBS sensitivity but also trying to cover different behaviours of critical RN and a wide range of possible oxidation states. In particular, Cs(I) was chosen as representative fission product, while as relevant actinides or homologues, the diffusion of Th(IV), U(IV) and Eu (III) was studied. The diffusion of these above-mentioned cations is compared to the diffusion of Re, and I as representative of anionic species. The methodology allowed evaluating diffusion coefficients in the granite samples and, for most of the elements, the values obtained are in agreement with the values found in the literature. The diffusion coefficients calculated ranged from 10 -13 to 10 -16 m 2 /s. It is remarkable that the RBS technique is especially promising to determine diffusion coefficients of high-sorbing RN and it is applicable to a wide range

  19. Oxygen diffusion kinetics and reactive lifetimes in bacterial and mammalian cells irradiated with nanosecond pulses of high intensity electrons

    International Nuclear Information System (INIS)

    Epp, E.R.; Weiss, H.; Ling, C.C.; Djordjevic, B.; Kessaris, N.D.

    1975-01-01

    Experiaments have been designed to gain information on the lifetime of oxygen-sensitive species suspected to be produced in critical molecules in irradiated cells and on the time-diffusion of oxygen in cells. An approach developed in this laboratory involves the delivery of two high intensity electron pulses each of 3 ns duration to a thin layer of cells equilibrated with a known concentration of oxygen. The first pulse serves to render the cells totally anoxic by the radiochemical depletion of oxygen; the second is delivered at a time electronically delayed after the first allowing for diffusion of oxygen during this time. Under these conditions the radiosensitivity of E coli B/r has been measured over six decades of interpulse time. Cellular time-diffusion curves constructed from the measurements show that oxygen establishes its sensitizing effect within 10 -4 s after the creation of intracellular anoxia establishing this time as an upper limit to the lifetime of the species. Unusual behaviour of the diffusion curve observed for longer delay times can be explained by a model wherein it is postulated that a radiation-induced inhibiting agent slows down diffusion. Application of this model to the experimental data yields a value of 0.4x10 -5 cm 2 s -1 for the cellular oxygen diffusion coefficient. Similar experiments recently carried out for Serratia marcescens will also be described. The oxygen effect in cultured HeLa cells exposed to single short electron pulses has been examined over a range of oxygen concentrations. A family of breaking survival curves was obtained similar to those previously measured for E coli B/r by this laboratory. The data appear to be reasonably consistent with a physicochemical mechanism involving the radiochemical depletion of oxygen previously invoked for bacteria. (author)

  20. Strontium-free rare earth perovskite ferrites with fast oxygen exchange kinetics: Experiment and theory

    Science.gov (United States)

    Berger, Christian; Bucher, Edith; Windischbacher, Andreas; Boese, A. Daniel; Sitte, Werner

    2018-03-01

    The Sr-free mixed ionic electronic conducting perovskites La0.8Ca0.2FeO3-δ (LCF82) and Pr0.8Ca0.2FeO3-δ (PCF82) were synthesized via a glycine-nitrate process. Crystal structure, phase purity, and lattice constants were determined by XRD and Rietveld analysis. The oxygen exchange kinetics and the electronic conductivity were obtained from in-situ dc-conductivity relaxation experiments at 600-800 °C and 1×10-3≤pO2/bar≤0.1. Both LCF82 and PCF82 show exceptionally fast chemical surface exchange coefficients and chemical diffusion coefficients of oxygen. The oxygen nonstochiometry of LCF82 and PCF82 was determined by precision thermogravimetry. A point defect model was used to calculate the thermodynamic factors of oxygen and to estimate self-diffusion coefficients and ionic conductivities. Density Functional Theory (DFT) calculations on the crystal structure, oxygen vacancy formation as well as oxygen migration energies are in excellent agreement with the experimental values. Due to their favourable properties both LCF82 and PCF82 are of interest for applications in solid oxide fuel cell cathodes, solid oxide electrolyser cell anodes, oxygen separation membranes, catalysts, or electrochemical sensors.

  1. Albedo-adjusted fast-neutron diffusion coefficients in reactor reflectors

    International Nuclear Information System (INIS)

    Terney, W.B.

    1975-01-01

    In the newer, larger pressurized-water reactor cores, the calculated power distributions are fairly sensitive to the number of neutron groups used and to the treatment of the reflector cross sections. Comparisons between transport and diffusion calculations show that the latter substantially underpredict the reflector albedos in the fast (top) group and that the power distribution is shifted toward the core center when compared to 4-group transport theory results. When the fast-neutron diffusion coefficients are altered to make the transport- and diffusion-theory albedos agree, the power distributions are also brought into agreement. An expression for the fast-neutron diffusion coefficients in reflector regions has been derived such that the diffusion calculation reproduces the albedo obtained from a transport solution. In addition, a correction factor for mesh effects applicable to coarse mesh problems is presented. The use of the formalism gives the correct albedos and improved power distributions. (U.S.)

  2. Modeling and experiments for the time-dependent diffusion coefficient during methane desorption from coal

    Science.gov (United States)

    Cheng-Wu, Li; Hong-Lai, Xue; Cheng, Guan; Wen-biao, Liu

    2018-04-01

    Statistical analysis shows that in the coal matrix, the diffusion coefficient for methane is time-varying, and its integral satisfies the formula μt κ /(1 + β κ ). Therefore, a so-called dynamic diffusion coefficient model (DDC model) is developed. To verify the suitability and accuracy of the DDC model, a series of gas diffusion experiments were conducted using coal particles of different sizes. The results show that the experimental data can be accurately described by the DDC and bidisperse models, but the fit to the DDC model is slightly better. For all coal samples, as time increases, the effective diffusion coefficient first shows a sudden drop, followed by a gradual decrease before stabilizing at longer times. The effective diffusion coefficient has a negative relationship with the size of the coal particle. Finally, the relationship between the constants of the DDC model and the effective diffusion coefficient is discussed. The constant α (μ/R 2 ) denotes the effective coefficient at the initial time, and the constants κ and β control the attenuation characteristic of the effective diffusion coefficient.

  3. Effective diffusion coefficients of 3H2O in several porous materials

    International Nuclear Information System (INIS)

    Terashima, Yutaka; Kumaki, Toru.

    1976-01-01

    Diffusion coefficients of radionuclides in some porous structural materials and porous components of earth stratum are important as the basis for the safety evaluation of the storage and disposal of radioactive wastes. In our previous works, the method of analysis and experiment using a permeative type diffusion cell for measurement of effective diffusion coefficient was established, and experimental results were reported. In this paper, effective diffusion coefficients of 3 H 2 O in mortar, concrete, brick, clay layer, and sand layer were measured, and characteristics of these pore structure were discussed on the basis of tourtusity factor. (auth.)

  4. Diffusion phenomena of fluorine and cations in molten Li2BeF4, LiBeF3 and NaBeF3

    International Nuclear Information System (INIS)

    Ohno, Hideo

    1984-03-01

    Self-diffusion coefficients of fluorine and cations in molten LiF-BeF 2 and NaF-BeF 2 systems were summarized by the capillary reservoir technique. The diffusion coefficients and the activation energies of cations in these molten salts follow a similar behavior with those of cations in molten alkali halides. On the other hand, self-diffusion of fluorine have unusually high diffusion coefficients and activation energies. The characteristic diffusion phenomena of fluorine in these molten alkali fluoroberyllates are very similar to those of oxygen in molten CaO-SiO 2 and CaO-SiO 2 -Al 2 O 3 slag. The dynamical behavior of Li and F in molten Li 2 BeF 4 was also analyzed by NMR technique. According to both these experiments, most probable mechanism of characteristic diffusion of fluorine in these molten systems could be dissociation of F atom from complex anion and long distance diffusion. (author)

  5. Correlation factor, velocity autocorrelation function and frequency-dependent tracer diffusion coefficient

    NARCIS (Netherlands)

    Beijeren, H. van; Kehr, K.W.

    1986-01-01

    The correlation factor, defined as the ratio between the tracer diffusion coefficient in lattice gases and the diffusion coefficient for a corresponding uncorrelated random walk, is known to assume a very simple form under certain conditions. A simple derivation of this is given with the aid of

  6. Effect of Structure on Transport Properties (Viscosity, Ionic Conductivity, and Self-Diffusion Coefficient) of Aprotic Heterocyclic Anion (AHA) Room-Temperature Ionic Liquids. 1. Variation of Anionic Species.

    Science.gov (United States)

    Sun, Liyuan; Morales-Collazo, Oscar; Xia, Han; Brennecke, Joan F

    2015-12-03

    A series of room temperature ionic liquids (RTILs) based on 1-ethyl-3-methylimidazolium ([emim](+)) with different aprotic heterocyclic anions (AHAs) were synthesized and characterized as potential electrolyte candidates for lithium ion batteries. The density and transport properties of these ILs were measured over the temperature range between 283.15 and 343.15 K at ambient pressure. The temperature dependence of the transport properties (viscosity, ionic conductivity, self-diffusion coefficient, and molar conductivity) is fit well by the Vogel-Fulcher-Tamman (VFT) equation. The best-fit VFT parameters, as well as linear fits to the density, are reported. The ionicity of these ILs was quantified by the ratio of the molar conductivity obtained from the ionic conductivity and molar concentration to that calculated from the self-diffusion coefficients using the Nernst-Einstein equation. The results of this study, which is based on ILs composed of both a planar cation and planar anions, show that many of the [emim][AHA] ILs exhibit very good conductivity for their viscosities and provide insight into the design of ILs with enhanced dynamics that may be suitable for electrolyte applications.

  7. The mutual diffusion coefficient for (meth)acrylate monomers as determined with a nuclear microprobe

    International Nuclear Information System (INIS)

    Leewis, Christian M.; Mutsaers, Peter H.A.; Jong, Arthur M. de; Ijzendoorn, Leo J. van; Voigt, Martien J.A. de; Ren, Min Q.; Watt, Frank; Broer, Dirk J.

    2004-01-01

    The value of the mutual diffusion coefficient D V of two acrylic monomers is determined with nuclear microprobe measurements on a set of polymer films. These films have been prepared by allowing the monomers to diffuse into each other for a certain time and subsequently applying fast ultraviolet photo-polymerization, which freezes the concentration profile. The monomer diffusion profiles are studied with a scanning 2.1 MeV proton microprobe. Each monomer contains a marker element, e.g., Cl and Si, which are easily detected with proton induced x-ray emission. From the diffusion profiles, it is possible to determine the mutual diffusion coefficient. The mutual diffusion coefficient is dependent of concentration, which is concluded from the asymmetry in the Cl- and Si-profiles. A linear dependence of the mutual diffusion coefficient on the composition is used as a first order approximation. The best fits are obtained for a value of b=(0.38±0.15), which is the ratio of the diffusion coefficient of 1,3-bis(3-methacryloxypropyl)-1, 1,3,3-tetramethyldisiloxane in pure 2-chloroethyl acrylate and the diffusion coefficient of 2-chloroethyl acrylate in pure 1,3-bis(3-methacryloxypropyl)-1,1,3,3-tetramethyldisiloxane. Under the assumption of a linear dependence of the mutual diffusion coefficient D V on monomer composition, it follows that D V =(2.9±0.6)·10 -10 m 2 /s at a 1:1 monomer ratio. With Flory-Huggins expressions for the monomer chemical potentials, one can derive approximate values for the individual monomer diffusion coefficients

  8. Imaging and assessment of diffusion coefficients by magnetic resonance

    International Nuclear Information System (INIS)

    Tintera, J.; Dezortova, M.; Hajek, M.; Fitzek, C.

    1999-01-01

    The problem of assessment of molecular diffusion by magnetic resonance is highlighted and some typical applications of diffusion imaging in the diagnosis, e.g., of cerebral ischemia, changes in patients with phenylketonuria or multiple sclerosis are discussed. The images were obtained by using diffusion weighted spin echo Echo-Planar Imaging sequence with subsequent correction of the geometrical distortion of the images and calculation of the Apparent Diffusion Coefficient map

  9. Anomalous behavior of the diffusion coefficient in thin active films

    International Nuclear Information System (INIS)

    Basu, Abhik; Joanny, Jean-Francois; Prost, Jacques; Jülicher, Frank

    2012-01-01

    Inspired by recent experiments in cell biology, we elucidate the visco-elastic properties of an active gel by studying the dynamics of a small tracer particle inside it. In a stochastic hydrodynamic approach for an active gel of finite thickness L, we calculate the mean square displacement of a particle. These particle displacements are governed by fluctuations in the velocity field. We characterize the short-time behavior when the gel is a solid as well as the limit of long times when the gel becomes a fluid and the particle shows simple diffusion. Active stresses together with local polar order give rise to velocity fluctuations that lead to characteristic behaviors of the diffusion coefficient that differ fundamentally from those found in a passive system: the diffusion coefficient can depend on system size and diverges as L approaches an instability threshold. Furthermore, the diffusion coefficient becomes independent of the particle size in this case. (paper)

  10. Experimental Measurement of Self-Diffusion in a Strongly Coupled Plasma

    Science.gov (United States)

    2016-08-04

    the calculation of the self-diffusion constant through the Green- Kubo integral of hΔvxðtÞiþ=hΔvxð0Þiþ over the scaled time. Overall, the estimate of... Kubo relation D ¼ Z ∞ 0 ZðtÞdt; which describes the long-time mean-square displacement of a given particle through D ¼ limt→∞hjrðtÞ − rð0Þj2i=6t [25...ion VAF, the self-diffusion coefficient D may be calculated from our measurements. As is normally the case with calculations of this type, proper

  11. SIMS study of oxygen diffusion in monoclinic HfO2

    Science.gov (United States)

    Mueller, Michael P.; De Souza, Roger A.

    2018-01-01

    The diffusion of oxygen in dense ceramics of monoclinic HfO2 was studied by means of (18O/16O) isotope exchange annealing and subsequent determination of isotope depth profiles by Secondary Ion Mass Spectrometry. Anneals were performed in the temperature range of 573 ≤T /K ≤ 973 at an oxygen partial pressure of p O2=200 mbar . All measured isotope profiles exhibited two features: the first feature, closer to the surface, was attributed mainly to slow oxygen diffusion in an impurity silicate phase; the second feature, deeper in the sample, was attributed to oxygen diffusion in bulk monoclinic HfO2 . The activation enthalpy of oxygen tracer diffusion in bulk HfO2 was found to be ΔHD∗≈0.5 eV .

  12. Diffusion coefficients for multi-step persistent random walks on lattices

    International Nuclear Information System (INIS)

    Gilbert, Thomas; Sanders, David P

    2010-01-01

    We calculate the diffusion coefficients of persistent random walks on lattices, where the direction of a walker at a given step depends on the memory of a certain number of previous steps. In particular, we describe a simple method which enables us to obtain explicit expressions for the diffusion coefficients of walks with a two-step memory on different classes of one-, two- and higher dimensional lattices.

  13. Determination of diffusion coefficients for sulfide ions in solid electrolytes on the basis of BaSm2S4 and CaGd2S4

    International Nuclear Information System (INIS)

    Yurlov, I.S.; Ushakova, Yu.N.; Medvedeva, O.V.; Kalinina, L.A.; Shirokova, G.I.; Ananchenko, B.A.

    2007-01-01

    Coefficients of self-diffusion and coefficients of diffusion of the sulfur ion in solid electrolytes BaSm 2 S 4 and CaGd 2 S 4 are determined with recourse to methods of conductometry and potentiostatic chronoamperometry. A vacancy mechanism for the defect formation in solid solutions on the basis of barium thiosamarate and calcium thiogadolynate is proposed [ru

  14. Microdefects and self-interstitial diffusion in crystalline silicon

    Energy Technology Data Exchange (ETDEWEB)

    Knowlton, W.B.

    1998-05-01

    In this thesis, a study is presented of D-defects and self-interstitial diffusion in silicon using Li ion (Li{sup +}) drifting in an electric field and transmission electron microscopy (TEM). Obstruction of Li{sup +} drifting has been found in wafers from certain but not all FZ p-type Si. Incomplete Li{sup +} drifting always occurs in the central region of the wafers. This work established that interstitial oxygen is not responsible for hindering Li{sup +} drifting. TEM was performed on a samples from the partially Li{sup +} drifted area and compared to regions without D-defects. Precipitates were found only in the region containing D-defects that had partially Li{sup +} drifted. This result indicates D-defects are responsible for the precipitation that halts the Li{sup +} drift process. Nitrogen (N) doping has been shown to eliminate D-defects as measured by conventional techniques. Li{sup +} drifting and D-defects provide a useful means to study Si self-interstitial diffusion. The process modeling program SUPREM-IV was used to simulate the results of Si self-interstitial diffusion obtained from Li{sup +} drifting experiments. Anomalous results from the Si self-interstitial diffusion experiments forced a re-examination of the possibility of thermal dissociation of D-defects. Thermal annealing experiments that were performed support this possibility. A review of the current literature illustrates the need for more research on the effects of thermal processing on FZ Si to understand the dissolution kinetics of D-defects.

  15. Banded Structures in Electron Pitch Angle Diffusion Coefficients from Resonant Wave-Particle Interactions

    Science.gov (United States)

    Tripathi, A. K.; Singhal, R. P.; Khazanov, G. V.; Avanov, L. A.

    2016-01-01

    Electron pitch angle (D(sub (alpha alpha))) and momentum (D(sub pp)) diffusion coefficients have been calculated due to resonant interactions with electrostatic electron cyclotron harmonic (ECH) and whistler mode chorus waves. Calculations have been performed at two spatial locations L=4.6 and 6.8 for electron energies less than or equal to 10 keV. Landau (n=0) resonance and cyclotron harmonic resonances n= +/- 1, +/-2, ... +/-5 have been included in the calculations. It is found that diffusion coefficient versus pitch angle (alpha) profiles show large dips and oscillations or banded structures. The structures are more pronounced for ECH and lower band chorus (LBC) and particularly at location 4.6. Calculations of diffusion coefficients have also been performed for individual resonances. It is noticed that the main contribution of ECH waves in pitch angle diffusion coefficient is due to resonances n=+1 and n=+2. A major contribution to momentum diffusion coefficients appears from n=+2. However, the banded structures in D(sub alpha alpha) and D(sub pp) coefficients appear only in the profile of diffusion coefficients for n=+2. The contribution of other resonances to diffusion coefficients is found to be, in general, quite small or even negligible. For LBC and upper band chorus waves, the banded structures appear only in Landau resonance. The D(sub pp) diffusion coefficient for ECH waves is one to two orders smaller than D(sub alpha alpha) coefficients. For chorus waves, D(sub pp) coefficients are about an order of magnitude smaller than D(sub alpha alpha) coefficients for the case n does not equal 0. In case of Landau resonance, the values of D(sub pp) coefficient are generally larger than the values of D(sub alpha alpha) coefficients particularly at lower energies. As an aid to the interpretation of results, we have also determined the resonant frequencies. For ECH waves, resonant frequencies have been estimated for wave normal angle 89 deg and harmonic resonances

  16. Evaluation Technique of Chloride Penetration Using Apparent Diffusion Coefficient and Neural Network Algorithm

    Directory of Open Access Journals (Sweden)

    Yun-Yong Kim

    2014-01-01

    Full Text Available Diffusion coefficient from chloride migration test is currently used; however this cannot provide a conventional solution like total chloride contents since it depicts only ion migration velocity in electrical field. This paper proposes a simple analysis technique for chloride behavior using apparent diffusion coefficient from neural network algorithm with time-dependent diffusion phenomena. For this work, thirty mix proportions of high performance concrete are prepared and their diffusion coefficients are obtained after long term-NaCl submerged test. Considering time-dependent diffusion coefficient based on Fick’s 2nd Law and NNA (neural network algorithm, analysis technique for chloride penetration is proposed. The applicability of the proposed technique is verified through the results from accelerated test, long term submerged test, and field investigation results.

  17. Perpendicular Diffusion Coefficient of Comic Rays: The Presence of Weak Adiabatic Focusing

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J. F.; Ma, Q. M.; Song, T.; Yuan, S. B. [Research Department of Biomedical Engineering, Institute of Electrical Engineering, Chinese Academy of Science, Beijing 100190 (China); Qin, G., E-mail: wangjunfang@mail.iee.ac.cn, E-mail: qingang@hit.edu.cn [School of Science, Harbin Institute of Technology, Shenzhen 518055 (China)

    2017-08-20

    The influence of adiabatic focusing on particle diffusion is an important topic in astrophysics and plasma physics. In the past, several authors have explored the influence of along-field adiabatic focusing on the parallel diffusion of charged energetic particles. In this paper, using the unified nonlinear transport theory developed by Shalchi and the method of He and Schlickeiser, we derive a new nonlinear perpendicular diffusion coefficient for a non-uniform background magnetic field. This formula demonstrates that the particle perpendicular diffusion coefficient is modified by along-field adiabatic focusing. For isotropic pitch-angle scattering and the weak adiabatic focusing limit, the derived perpendicular diffusion coefficient is independent of the sign of adiabatic focusing characteristic length. For the two-component model, we simplify the perpendicular diffusion coefficient up to the second order of the power series of the adiabatic focusing characteristic quantity. We find that the first-order modifying factor is equal to zero and that the sign of the second order is determined by the energy of the particles.

  18. Diffusion coefficients of tracers in glassy polymer systems prepared by gamma radiolysis

    International Nuclear Information System (INIS)

    Tonge, M.P.; Gilbert, R.G.

    1996-01-01

    Diffusion-controlled reactions are common in free radical polymerisation reactions, especially in glassy polymer matrices. Such reactions commonly have an important influence on the polymerisation process and final polymer properties. For example, the dominant growth-stopping event (bimolecular termination) is generally diffusion-controlled. In glassy polymer systems, where molecular mobility is very low, the chain growth mechanism (propagation) may become diffusion-controlled. At present, the mechanism for propagation in glassy polymers is poorly understood, but it is expected by the Smoluchowski expression applied to propagation to depend strongly on the diffusion coefficient of monomer. The objective of this study is to measure reliable diffusion coefficients of small tracer molecules in glassy polymers, and compare these with propagation rate coefficients in similar systems, by the prediction above. Samples were initially prepared in a sealed sampled cell containing monomer, inert diluent, and tracer dye. After irradiation for several days, complete conversion of monomer to polymer can be obtained. The diffusion coefficients for two tracer dyes have been measured as a function of weight fraction polymer glassy poly(methyl methacrylate) samples

  19. Perpendicular Diffusion Coefficient of Comic Rays: The Presence of Weak Adiabatic Focusing

    Science.gov (United States)

    Wang, J. F.; Qin, G.; Ma, Q. M.; Song, T.; Yuan, S. B.

    2017-08-01

    The influence of adiabatic focusing on particle diffusion is an important topic in astrophysics and plasma physics. In the past, several authors have explored the influence of along-field adiabatic focusing on the parallel diffusion of charged energetic particles. In this paper, using the unified nonlinear transport theory developed by Shalchi and the method of He and Schlickeiser, we derive a new nonlinear perpendicular diffusion coefficient for a non-uniform background magnetic field. This formula demonstrates that the particle perpendicular diffusion coefficient is modified by along-field adiabatic focusing. For isotropic pitch-angle scattering and the weak adiabatic focusing limit, the derived perpendicular diffusion coefficient is independent of the sign of adiabatic focusing characteristic length. For the two-component model, we simplify the perpendicular diffusion coefficient up to the second order of the power series of the adiabatic focusing characteristic quantity. We find that the first-order modifying factor is equal to zero and that the sign of the second order is determined by the energy of the particles.

  20. Perpendicular Diffusion Coefficient of Comic Rays: The Presence of Weak Adiabatic Focusing

    International Nuclear Information System (INIS)

    Wang, J. F.; Ma, Q. M.; Song, T.; Yuan, S. B.; Qin, G.

    2017-01-01

    The influence of adiabatic focusing on particle diffusion is an important topic in astrophysics and plasma physics. In the past, several authors have explored the influence of along-field adiabatic focusing on the parallel diffusion of charged energetic particles. In this paper, using the unified nonlinear transport theory developed by Shalchi and the method of He and Schlickeiser, we derive a new nonlinear perpendicular diffusion coefficient for a non-uniform background magnetic field. This formula demonstrates that the particle perpendicular diffusion coefficient is modified by along-field adiabatic focusing. For isotropic pitch-angle scattering and the weak adiabatic focusing limit, the derived perpendicular diffusion coefficient is independent of the sign of adiabatic focusing characteristic length. For the two-component model, we simplify the perpendicular diffusion coefficient up to the second order of the power series of the adiabatic focusing characteristic quantity. We find that the first-order modifying factor is equal to zero and that the sign of the second order is determined by the energy of the particles.

  1. Unsaturated soil moisture drying and wetting diffusion coefficient measurements in the laboratory.

    Science.gov (United States)

    2009-09-01

    ABSTRACTTransient moisture flow in an unsaturated soil in response to suction changes is controlled by the unsaturated moisture diffusion coefficient. The moisture diffusion coefficient can be determined by measuring suction profiles over time. The l...

  2. Correlation and prediction of gaseous diffusion coefficients.

    Science.gov (United States)

    Marrero, T. R.; Mason, E. A.

    1973-01-01

    A new correlation method for binary gaseous diffusion coefficients from very low temperatures to 10,000 K is proposed based on an extended principle of corresponding states, and having greater range and accuracy than previous correlations. There are two correlation parameters that are related to other physical quantities and that are predictable in the absence of diffusion measurements. Quantum effects and composition dependence are included, but high-pressure effects are not. The results are directly applicable to multicomponent mixtures.

  3. Diffusion Coefficients of Several Aqueous Alkanolamine Solutions

    NARCIS (Netherlands)

    Snijder, Erwin D.; Riele, Marcel J.M. te; Versteeg, Geert F.; Swaaij, W.P.M. van

    1993-01-01

    The Taylor dispersion technique was applied for the determination of diffusion coefficients of various systems. Experiments with the system KCl in water showed that the experimental setup provides accurate data. For the alkanolamines monoethanolamine (MEA), diethanolamine (DEA), methyldiethanolamine

  4. Diffusion of oxygen in niobium during bake-out

    CERN Document Server

    Calatroni, Sergio; Ruzinov, V

    2001-01-01

    Bake-outs at temperatures between 100 C and 150 C for a duration up to two days have become customary for optimising the performance of bulk niobium cavities. This treatment results in the diffusion of oxygen, originating from the surface oxide, into the niobium. The theoretical oxygen profile has been simulated using the diffusion equations, and compared with some experimental results.

  5. Diffusion of oxygen in niobium during bake-out

    International Nuclear Information System (INIS)

    Benvenuti, C.; Calatroni, S.; Ruzinov, V.

    2003-01-01

    Bake-outs at temperatures between 100 degC and 150 degC for duration up to two days have become customary for optimising the performance of bulk niobium cavities. This treatment results in the diffusion of oxygen, originating from the surface oxide, into the niobium. The theoretical oxygen profile has been simulated using the diffusion equations, and compared with some experimental results. (author)

  6. Expanding the calculation of activation volumes: Self-diffusion in liquid water

    Science.gov (United States)

    Piskulich, Zeke A.; Mesele, Oluwaseun O.; Thompson, Ward H.

    2018-04-01

    A general method for calculating the dependence of dynamical time scales on macroscopic thermodynamic variables from a single set of simulations is presented. The approach is applied to the pressure dependence of the self-diffusion coefficient of liquid water as a particularly useful illustration. It is shown how the activation volume associated with diffusion can be obtained directly from simulations at a single pressure, avoiding approximations that are typically invoked.

  7. An innovative method for determining the diffusion coefficient of product nuclide

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chih Lung [Dept. of Nuclear Back-end Management, Taiwan Power Company, Taipei (China); Wang, Tsing Hai [Dept. Biomedical Engineering and Environment Sciences, National Tsing Hua University, Hsinchu (China)

    2017-08-15

    Diffusion is a crucial mechanism that regulates the migration of radioactive nuclides. In this study, an innovative numerical method was developed to simultaneously calculate the diffusion coefficient of both parent and, afterward, series daughter nuclides in a sequentially reactive through-diffusion model. Two constructed scenarios, a serial reaction (RN{sub 1} → RN{sub 2} → RN{sub 3}) and a parallel reaction (RN{sub 1} → RN{sub 2}A + RN{sub 2}B), were proposed and calculated for verification. First, the accuracy of the proposed three-member reaction equations was validated using several default numerical experiments. Second, by applying the validated numerical experimental concentration variation data, the as-determined diffusion coefficient of the product nuclide was observed to be identical to the default data. The results demonstrate the validity of the proposed method. The significance of the proposed numerical method will be particularly powerful in determining the diffusion coefficients of systems with extremely thin specimens, long periods of diffusion time, and parent nuclides with fast decay constants.

  8. Nitrogen diffusion in hafnia and the impact of nitridation on oxygen and hydrogen diffusion: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Sathiyanarayanan, Rajesh, E-mail: rajessat@in.ibm.com, E-mail: rajesh.sathiyanarayanan@gmail.com; Pandey, R. K.; Murali, K. V. R. M. [IBM Semiconductor Research and Development Center, Bangalore 560045 (India)

    2015-01-21

    Using first-principles simulations, we have computed incorporation energies and diffusion barriers of ammonia, the nitrogen molecule and atomic nitrogen in monoclinic hafnia (m-HfO{sub 2}). Our calculations show that ammonia is likely to dissociate into an NH{sub 2} molecular unit, whereas the nitrogen molecule remains as a molecule either in the interstitial space or at an oxygen lattice site. The lowest energy pathway for the diffusion of atomic nitrogen interstitials consists of the hopping of the nitrogen interstitial between neighboring three-coordinated lattice oxygen atoms that share a single Hf atom, and the barrier for such hops is determined by a switching mechanism. The substitutional nitrogen atom shows a preference for diffusion through the doubly positive oxygen vacancy-mediated mechanism. Furthermore, we have investigated the impact of nitrogen atoms on the diffusion barriers of oxygen and hydrogen interstitials in m-HfO{sub 2}. Our results show that nitrogen incorporation has a significant impact on the barriers for oxygen and hydrogen diffusion: nitrogen atoms attract oxygen and hydrogen interstitials diffusing in the vicinity, thereby slowing down (reducing) their diffusion (diffusion length)

  9. Value of apparent diffusion coefficient (ADC) in evaluating response ...

    African Journals Online (AJOL)

    Objective. To determine whether the apparent diffusion coefficient (ADC) value obtained by diffusion-weighted magnetic resonance imaging (DW-MRI) can be used as a reliable detector of response of carcinoma of the cervix treated with chemoradiotherapy, compared with conventional. T2-weighted MRI. Design.

  10. Kinetic Monte Carlo Simulation of Oxygen and Cation Diffusion in Yttria-Stabilized Zirconia

    Science.gov (United States)

    Good, Brian

    2011-01-01

    Yttria-stabilized zirconia (YSZ) is of interest to the aerospace community, notably for its application as a thermal barrier coating for turbine engine components. In such an application, diffusion of both oxygen ions and cations is of concern. Oxygen diffusion can lead to deterioration of a coated part, and often necessitates an environmental barrier coating. Cation diffusion in YSZ is much slower than oxygen diffusion. However, such diffusion is a mechanism by which creep takes place, potentially affecting the mechanical integrity and phase stability of the coating. In other applications, the high oxygen diffusivity of YSZ is useful, and makes the material of interest for use as a solid-state electrolyte in fuel cells. The kinetic Monte Carlo (kMC) method offers a number of advantages compared with the more widely known molecular dynamics simulation method. In particular, kMC is much more efficient for the study of processes, such as diffusion, that involve infrequent events. We describe the results of kinetic Monte Carlo computer simulations of oxygen and cation diffusion in YSZ. Using diffusive energy barriers from ab initio calculations and from the literature, we present results on the temperature dependence of oxygen and cation diffusivity, and on the dependence of the diffusivities on yttria concentration and oxygen sublattice vacancy concentration. We also present results of the effect on diffusivity of oxygen vacancies in the vicinity of the barrier cations that determine the oxygen diffusion energy barriers.

  11. Determination of the concentration dependent diffusion coefficient of nitrogen in expanded austenite

    DEFF Research Database (Denmark)

    Christiansen, Thomas; Somers, Marcel A. J.

    2008-01-01

    The concentration dependent diffusion coefficient of nitrogen in expanded austenite was determined from of the rate of retracting nitrogen from thin initially N-saturated coupons. Nitrogen saturated homogeneous foils of expanded austenite were obtained by nitriding AISI 304 and AISI 316 in pure...... in the composition range where nitrogen can be extracted by hydrogen gas at the diffusion temperature. Numerical simulation of the denitriding experiments shows that the thus determined concentration dependent diffusion coefficients are an accurate approximation of the actual diffusivity of nitrogen in expanded...... ammonia at 693 K and 718 K. Denitriding experiments were performed by equilibrating the foils with a successively lower nitrogen activity, as imposed by a gas mixture of ammonia and hydrogen. The concentration dependent diffusion coefficient of nitrogen in expanded austenite was approximated...

  12. Measurement setup for the simultaneous determination of diffusivity and Seebeck coefficient in a multi-anvil apparatus.

    Science.gov (United States)

    Jacobsen, M K; Liu, W; Li, B

    2012-09-01

    In this paper, a high pressure setup is presented for performing simultaneous measurements of Seebeck coefficient and thermal diffusivity in multianvil apparatus for the purpose of enhancing the study of transport phenomena. Procedures for the derivation of Seebeck coefficient and thermal diffusivity/conductivity, as well as their associated sources of errors, are presented in detail, using results obtained on the filled skutterudite, Ce(0.8)Fe(3)CoSb(12,) up to 12 GPa at ambient temperature. Together with recent resistivity and sound velocity measurements in the same apparatus, these developments not only provide the necessary data for a self-consistent and complete characterization of the figure of merit of thermoelectric materials under pressure, but also serve as an important tool for furthering our knowledge of the dynamics and interplay between these transport phenomena.

  13. In vivo measurement of water self diffusion in the human brain by magnetic resonance imaging

    DEFF Research Database (Denmark)

    Thomsen, C; Henriksen, O; Ring, P

    1987-01-01

    A new pulse sequence for in vivo diffusion measurements by magnetic resonance imaging (MRI) is introduced. The pulse sequence was tested on phantoms to evaluate the accuracy, reproducibility and inplane variations. The sensitivity of the sequence was tested by measuring the self diffusion...... coefficient of water with different temperatures. This phantom study showed that the water self diffusion could be measured accurately and that the inplane deviation was less than +/- 10 per cent. Seven healthy volunteers were studied with a 10 mm thick slice through the lateral ventricles, clear differences...... between grey and white matter as well as regional differences within the white matter were seen. In two patients with infarction, alternations in water self diffusion were seen in the region of the infarct. Likewise, pronounced changes in brain water self diffusion were observed in a patient with benign...

  14. Enhancement of oxygen diffusion process on a rotating disk electrode for the electro-Fenton degradation of tetracycline

    International Nuclear Information System (INIS)

    Zhang, Yan; Gao, Ming-Ming; Wang, Xin-Hua; Wang, Shu-Guang; Liu, Rui-Ting

    2015-01-01

    An electro-Fenton process was developed for wastewater treatment in which hydrogen peroxide was generated in situ with a rotating graphite disk electrode as cathode. The maximum H 2 O 2 generation rate for the RDE reached 0.90 mg/L/h/cm 2 under the rotation speed of 400 rpm at pH 3, and −0.8 V vs SCE. The performance of this electro-Fenton reactor was assessed by tetracycline degradation in an aqueous solution. Experimental results showed the rotation of disk cathode resulted in the efficient production of H 2 O 2 without oxygen aeration, and excellent ability for degrading organic pollutants compared to the electro-Fenton system with fixed cathode. Tetracycline of 50 mg/L was degraded completely within 2 h with the addition of ferrous ion (1.0 mM). The chronoamperometry analysis was employed to investigate the oxygen diffusion on the rotating cathode. The results demonstrated that the diffusion coefficients of dissolved oxygen is 19.45 × 10 −5 cm 2 /s, which is greater than that reported in the literature. Further calculation indicated that oxygen is able to diffuse through the film on the rotating cathode within the contact time in each circle. This study proves that enhancement of oxygen diffusion on RDE is benefit for H 2 O 2 generation, thus provides a promising method for organic pollutants degradation by the combination of RDE with electro-Fenton reactor and offers a new insight on the oxygen transform process in this new system.

  15. FIELD-SCALE EFFECTIVE MATRIX DIFFUSION COEFFICIENT FOR FRACTURED ROCK: RESULTS FROM LITERATURE SURVEY

    International Nuclear Information System (INIS)

    Zhou, Q.; Hui-Hai Liu; Molz, F.J.; Zhang, Y.; Bodvarsson, G.S.

    2005-01-01

    Matrix diffusion is an important mechanism for solute transport in fractured rock. We recently conducted a literature survey on the effective matrix diffusion coefficient, D m e , a key parameter for describing matrix diffusion processes at the field scale. Forty field tracer tests at 15 fractured geologic sites were surveyed and selected for the study, based on data availability and quality. Field-scale D m e values were calculated, either directly using data reported in the literature or by reanalyzing the corresponding field tracer tests. Surveyed data indicate that the effective-matrix-diffusion-coefficient factor F D (defined as the ratio of D m e to the lab-scale matrix diffusion coefficient [D m ] of the same tracer) is generally larger than one, indicating that the effective matrix diffusion coefficient in the field is comparatively larger than the matrix diffusion coefficient at the rock-core scale. This larger value can be attributed to the many mass-transfer processes at different scales in naturally heterogeneous, fractured rock systems. Furthermore, we observed a moderate trend toward systematic increase in the F D value with observation scale, indicating that the effective matrix diffusion coefficient is likely to be statistically scale dependent. The F D value ranges from 1 to 10,000 for observation scales from 5 to 2,000 m. At a given scale, the F D value varies by two orders of magnitude, reflecting the influence of differing degrees of fractured rock heterogeneity at different sites. In addition, the surveyed data indicate that field-scale longitudinal dispersivity generally increases with observation scale, which is consistent with previous studies. The scale-dependent field-scale matrix diffusion coefficient (and dispersivity) may have significant implications for assessing long-term, large-scale radionuclide and contaminant transport events in fractured rock, both for nuclear waste disposal and contaminant remediation

  16. Determination of oxygen effective diffusivity in porous gas diffusion layer using a three-dimensional pore network model

    International Nuclear Information System (INIS)

    Wu Rui; Zhu Xun; Liao Qiang; Wang Hong; Ding Yudong; Li Jun; Ye Dingding

    2010-01-01

    In proton exchange membrane fuel cell (PEMFC) models, oxygen effective diffusivity is the most important parameter to characterize the oxygen transport in the gas diffusion layer (GDL). However, its determination is a challenge due to its complex dependency on GDL structure. In the present study, a three-dimensional network consisting of spherical pores and cylindrical throats is developed and used to investigate the effects of GDL structural parameters on oxygen effective diffusivity under the condition with/without water invasion process. Oxygen transport in the throat is described by Fick's law and water invasion process in the network is simulated using the invasion percolation with trapping algorithm. The simulation results reveal that oxygen effective diffusivity is slightly affected by network size but increases with decreasing the network heterogeneity and with increasing the pore connectivity. Impacts of network anisotropy on oxygen transport are also investigated in this paper. The anisotropic network is constructed by constricting the throats in the through-plane direction with a constriction factor. It is found that water invasion has a more severe negative influence on oxygen transport in an anisotropic network. Finally, two new correlations are introduced to determine the oxygen effective diffusivity for the Toray carbon paper GDLs.

  17. DCCO and SCCO: measurements of diffusion coefficients and of thermodiffusion in microgravity; DCCO et SCCO: mesures de coefficients de diffusion et de thermodiffusion en microgravite

    Energy Technology Data Exchange (ETDEWEB)

    Legros, J.C.; Van Vaerenbergh, S.; Dubois, F.; Decroly, Y. [Universite Libre de Bruxelles (Belgium); Montel, F. [ELF-Aquitaine Production, 64 - Pau (France); Goodman, S. [C-CORE, New Foundland, (Canada); Bekaert, G. [SABCA, Bruxelles (Belgium); Van Ransbeek, E. [IASB-BIRA, Bruxelles (Belgium)

    1996-12-31

    Measurements of diffusion coefficients of ternary systems and of thermodiffusion coefficients of multicomponent systems, including crude oils, have been undertaken by MRC and Elf-Aquitaine. The experiments DCCO and SCCO (respectively Diffusion and Soret Coefficients of Crude Oils) will be performed in 1997 and 1998 in GAS containers on the Space Shuttle. The 9 systems of DCCO are analyzed by Mach-Zehnder bicolor interferometry. The samples of the 18 systems of SCCO, among which three at 300 bars and at a mean temperature of 60 deg. C, will be analyzed after recovery on ground by a chromatographic technique. Such measurements performed in microgravity, like the measurements of Soret coefficients of binary solutions performed in the microgravity SCM experiments, are necessary reference measurements. (authors) 12 refs.

  18. Evaluation of diffusion coefficients in multicomponent mixtures by means of the fluctuation theory

    DEFF Research Database (Denmark)

    Shapiro, Alexander

    2003-01-01

    We derive general expressions for diffusion coefficients in multicomponent non-ideal gas or liquid mixtures. The derivation is based on the general statistical theory of fluctuations around an equilibrium state. The matrix of diffusion coefficients is expressed in terms of the equilibrium...... characteristics. We demonstrate on several examples that the developed theory is in agreement with the established experimental facts and dependencies for the diffusion coefficients. (C) 2002 Elsevier Science B.V. All rights reserved....

  19. On the Diffusion Coefficient of Two-step Method for LWR analysis

    International Nuclear Information System (INIS)

    Lee, Deokjung; Choi, Sooyoung; Smith, Kord S.

    2015-01-01

    The few-group constants including diffusion coefficients are generated from the assembly calculation results. Once the assembly calculation is done, the cross sections (XSs) are spatially homogenized, and a critical spectrum calculation is performed in order to take into account the neutron leakages of the lattice. The diffusion coefficient is also generated through the critical spectrum calculation. Three different methods of the critical spectrum calculation such as B1 method, P1 method, and fundamental mode (FM) calculation method are considered in this paper. The diffusion coefficients can also be affected by transport approximations for the transport XS calculation which is used in the assembly transport lattice calculation in order to account for the anisotropic scattering effects. The outflow transport approximation and the inflow transport approximation are investigated in this paper. The accuracy of the few group data especially the diffusion coefficients has been studied to optimize the combination of the transport correction methods and the critical spectrum calculation methods using the UNIST lattice physics code STREAM. The combination of the inflow transport approximation and the FM method is shown to provide the highest accuracy in the LWR core calculations. The methodologies to calculate the diffusion coefficients have been reviewed, and the performances of them have been investigated with a LWR core problem. The combination of the inflow transport approximation and the fundamental mode critical spectrum calculation shows the smallest errors in terms of assembly power distribution

  20. A new consistent definition of the homogenized diffusion coefficient of a lattice, limitations of the homogenization concept, and discussion of previously defined coefficients

    International Nuclear Information System (INIS)

    Deniz, V.C.

    1980-01-01

    The problem concerned with the correct definition of the homogenized diffusion coefficient of a lattice, and the concurrent problem of whether or not a homogenized diffusion equation can be formally set up, is studied by a space-energy-angle dependent treatment for a general lattice cell using an operator notation which applies to any eigen-problem. A new definition of the diffusion coefficient is given, which combines within itself the individual merits of the two definitions of Benoist. The relation between the new coefficient and the ''uncorrected'' Benoist coefficient is discussed by considering continuous-spectrum and multi-group diffusion equations. Other definitions existing in the literature are briefly discussed. It is concluded that a diffusion coefficient should represent only leakage effects. A comparison is made between the homogenization approach and the approach via eigen-coefficients, and brief indications are given of a possible scheme for the latter. (author)

  1. The effect of recombination and attachment on meteor radar diffusion coefficient profiles

    Science.gov (United States)

    Lee, C. S.; Younger, J. P.; Reid, I. M.; Kim, Y. H.; Kim, J.-H.

    2013-04-01

    Estimates of the ambipolar diffusion coefficient producedusing meteor radar echo decay times display an increasing trend below 80-85 km, which is inconsistent with a diffusion-only theory of the evolution of meteor trails. Data from the 33 MHz meteor radar at King Sejong Station, Antarctica, have been compared with observations from the Aura Earth Observing System Microwave Limb Sounder satellite instrument. It has been found that the height at which the diffusion coefficient gradient reverses follows the height of a constant neutral atmospheric density surface. Numerical simulations of meteor trail diffusion including dissociative recombination with atmospheric ions and three-body attachment of free electrons to neutral molecules indicate that three-body attachment is responsible for the distortion of meteor radar diffusion coefficient profiles at heights below 90 km, including the gradient reversal below 80-85 km. Further investigation has revealed that meteor trails with low initial electron line density produce decay times more consistent with a diffusion-only model of meteor trail evolution.

  2. Self-diffusion of calcium and yttrium in pure and YF3-doped CaF2 single crystals

    International Nuclear Information System (INIS)

    Kucheria, C.S.

    1979-07-01

    Self-diffusion coefficients for Ca and Y were measured in pure and YF 3 -doped CaF 2 crystals for dopant levels ranging from 2 to 10 mole %. Diffusion data were analyzed as a function of temperature and as a function of composition. Comparison of Arrhenius relationships for both Ca and Y showed that the activation energy for cation diffusion decreased approximately linearly as the YF 3 dopant level increased. Atomic jump pathways were considered and the decrease in the activation energy was explained by an increase in the constriction sizes due to Willis cluster formation. Diffusion coefficients for both cations were found to increase approximately linearly with square of the mole percent YF 3 . A comparison of activation energies and diffusion coefficients for both cations in doped crystals indicated that Y required lower activation energy for diffusion than Ca but the diffusion coefficient was also lower for Y compared to Ca. The smaller activation energy for Y was explained by the smaller ionic size of Y, whereas the smaller diffusion coefficient for Y was explained on the basis of highly correlated jumps of Y ions because of interaction between Y/sub Ca/ and V/sub Ca/

  3. Effect of annealing on structural changes and oxygen diffusion in amorphous HfO2 using classical molecular dynamics

    Science.gov (United States)

    Shen, Wenqing; Kumari, Niru; Gibson, Gary; Jeon, Yoocharn; Henze, Dick; Silverthorn, Sarah; Bash, Cullen; Kumar, Satish

    2018-02-01

    Non-volatile memory is a promising alternative to present memory technologies. Oxygen vacancy diffusion has been widely accepted as one of the reasons for the resistive switching mechanism of transition-metal-oxide based resistive random access memory. In this study, molecular dynamics simulation is applied to investigate the diffusion coefficient and activation energy of oxygen in amorphous hafnia. Two sets of empirical potential, Charge-Optimized Many-Body (COMB) and Morse-BKS (MBKS), were considered to investigate the structural and diffusion properties at different temperatures. COMB predicts the activation energy of 0.53 eV for the temperature range of 1000-2000 K, while MBKS predicts 2.2 eV at high temperature (1600-2000 K) and 0.36 eV at low temperature (1000-1600 K). Structural changes and appearance of nano-crystalline phases with increasing temperature might affect the activation energy of oxygen diffusion predicted by MBKS, which is evident from the change in coordination number distribution and radial distribution function. None of the potentials make predictions that are fully consistent with density functional theory simulations of both the structure and diffusion properties of HfO2. This suggests the necessity of developing a better multi-body potential that considers charge exchange.

  4. Contribution to the evaluation of diffusion coefficients in plasmas containing argon and fluorine

    International Nuclear Information System (INIS)

    Novakovic, N V

    2006-01-01

    The theoretical values of the numerical evaluation of the electron and ion diffusion coefficients in plasmas from mixtures of argon and fluorine are presented. The temperature dependence of the diffusion coefficients for low-pressure (from 0.1 to 1.0 kPa) and low-temperature (from 500 to 5000 K) argon plasmas with 20% and 30% of added fluorine are investigated. These values are results of the applications of the specific numerical model to the evaluation plasma composition and transport coefficients in argon plasma with fluorine as additive. It is assumed that the system is kept under constant pressure and that a corresponding state of local thermodynamical equilibrium (LTE) is attained. Since the LTE can be assumed, a Maxwellian electron distribution function will be adopted. The hypothesis of LTE, which is commonly used in most of the numerical evaluations, is analysed with the modified Debye radius r D *. The binary electron and ion diffusion coefficients are calculated with the equilibrium plasma composition and with the collision frequencies. Strictly speaking, Maxwellian distribution function (in the state LTE) is not valid for low pressure, but in this case with the aid of the modified Debye radius, a Maxwellian f e M is assumed correctly. It is shown that the electron diffusion coefficients are about four orders of magnitude larger than the corresponding overall diffusion coefficients of ions. Both diffusion coefficients are lower in argon plasma with 30% than with 20% of fluorine additives, in the whole temperature range examined

  5. The compressibility and the capacitance coefficient of helium-oxygen atmospheres.

    Science.gov (United States)

    Imbert, G; Dejours, P; Hildwein, G

    1982-12-01

    The capacitance coefficient beta of an ideal gas mixture depends only on its temperature T, and its value is derived from the ideal gas law (i.e., beta = 1/RT, R being the ideal gas constant). But real gases behave as ideal gases only at low pressures, and this would not be the case in deep diving. High pressures of helium-oxygen are used in human and animal experimental dives (up to 7 or 12 MPa or more, respectively). At such pressures deviations from the ideal gas law cannot be neglected in hyperbaric atmospheres with respect to current accuracy of measuring instruments. As shown both theoretically and experimentally by this study, the non-ideal nature of helium-oxygen has a significant effect on the capacitance coefficient of hyperbaric atmospheres. The theoretical study is based on interaction energy in either homogeneous (He-He and O2-O2) or heterogeneous (He-O2) molecular pairs, and on the virial equation of state for gas mixtures. The experimental study is based on weight determination of samples of known volume of binary helium-oxygen mixtures, which are prepared in well-controlled pressure and temperature conditions. Our experimental results are in good agreement with theoretical predictions. 1) The helium compressibility factor ZHe increases linearly with pressure [ZHe = 1 + 0.0045 P (in MPa) at 30 degrees C]; and 2) in same temperature and pressure conditions (T = 303 K and P = 0.1 to 15 MPa), the same value for Z is valid for a helium-oxygen binary mixture and for pure helium. As derived from the equation of state of real gases, the capacitance coefficient is inversely related to Z (beta = 1/ZRT); therefore, for helium-oxygen mixtures, this coefficient would decrease with increasing pressure. A table is given for theoretical values of helium-oxygen capacitance coefficient, at pressures ranging from 0.1 to 15.0 MPa and at temperatures ranging from 25 degrees C to 37 degrees C.

  6. Moving boundary - Oxygen diffusion. Two algorithms using Landau transformation

    International Nuclear Information System (INIS)

    Moyano, E.A.

    1991-01-01

    A description is made of two algorithms which solve a mathematical model destinated for the study of one-dimensional problems with moving boundaries and implicit boundary conditions. The Landau transformation is used in both methods for each temporal level so as to work all through with the same amount of nodes. Thus, it is necessary to deal with a partial differential equation whose diffusive and convective terms are accompanied by variable coefficients. The partial differential equation is made discrete implicitly, using the Laasonen scheme -which is always stable- instead of the Crank-Nicholson scheme, as performed by Ferris and Hill (5), in the fixed time passing method. The second method employs the tridiagonal algorithm. The first algorithm uses fixed time passing and iterates with variable interface positions, that is to say, it varies δs until it satisfies the boundary condition. The mathematical model describes oxygen diffusion in live tissues. Its numerical solution is obtained by finite differences. An important application of this method could be the estimation of the radiation dose in cancerous tumor treatment. (Author) [es

  7. Oxygen and nitrogen diffusion in coal-molecular sieve

    International Nuclear Information System (INIS)

    Stefanescu, Doina Maria

    1996-01-01

    Recently, the air separation process based on selective adsorption of carbon-molecular sieves has been developed strongly. The separation is based on the system kinematics and depends on the oxygen diffusion in adsorber micropores. The oxygen is preferentially adsorbed and in given conditions it is possible to obtain nitrogen of high purity. Recent theoretical and experimental studies concerning the production of nitrogen by PSA process have shown that the obtained performances can not be described by a constant diffusion model. The paper present the 'dual' model assumed for O 2 and N 2 diffusion through molecular sieve as well as the experimental data obtained in the adsorption study on carbon material produced at ICIS to determine the diffusivity values in micropores

  8. Calculation of calcium diffusion coefficient of cement hardenings using minute pore data

    International Nuclear Information System (INIS)

    Hitomi, Takashi; Takeda, Nobufumi; Iriya, Keishiro

    2009-01-01

    This report describes the calculations of the diffusion coefficient of the Ca ion of cement hardenings using minute pore data. The observed hardenings were ordinary Portland cement (OPC), low-heat Portland cement with fly ash (LPC+FA) and highly fly ash containing silica fume cement (HFSC). The samples were cured in the standard and artificially leached by accelerated test. Minute pore datas of the cement hardenings were acquired with image processing of internal structural information obtained from high resolution X-ray computed tomography observations. Upon analysis, several voxels are combined into one bigger voxel, the diffusion coefficient of the voxels were determined in proportion to the number of voxels which were included in. The results reveal that the change in the calcium diffusion coefficient of OPC due to leaching was large, but the LPC+FA and HFSC cements exhibited even greater changes than OPC. It is suggested that the diffusion coefficients are proportional to the Ca/Si ratio of the samples. (author)

  9. Determination of molecular diffusion coefficient in n-alkane binary mixtures: empirical correlations.

    Science.gov (United States)

    De Mezquia, D Alonso; Bou-Ali, M Mounir; Larrañaga, M; Madariaga, J A; Santamaría, C

    2012-03-08

    In this work we have measured the molecular diffusion coefficient of the n-alkane binary series nC(i)-nC(6), nC(i)-nC(10), and nC(i)-nC(12) at 298 K and 1 atm and a mass fraction of 0.5 by using the so-called sliding symmetric tubes technique. The results show that the diffusion coefficient at this concentration is proportional to the inverse viscosity of the mixture. In addition, we have also measured the diffusion coefficient of the systems nC(12)-nC(6), nC(12)-nC(7), and nC(12)-nC(8) as a function of concentration. From the data obtained, it is shown that the diffusion coefficient of the n-alkane binary mixtures at any concentration can be calculated from the molecular weight of the components and the dynamic viscosity of the corresponding mixture at 50% mass fraction.

  10. Trapped-ion anomalous diffusion coefficient on the basis of single mode saturation

    International Nuclear Information System (INIS)

    Koshi, Yuji; Hatayama, Akiyoshi; Ogasawara, Masatada.

    1982-03-01

    Expressions of the anomalous diffusion coefficient due to the dissipative trapped ion instability (DTII) are derived for the case with and without the effect of magnetic shear. Derivation is made by taking into account of the single mode saturation of the DTII previously obtained numerically. In the absence of the shear effect, the diffusion coefficient is proportional to #betta#sub(i)a 2 (#betta#sub(i) is the effective collision frequency of the trapped ions and a is the minor radius of a torus) and is much larger than the neoclassical ion heat conductivity. In the presence of the shear effect, the diffusion coefficient is much smaller than the Kadomtsev and Pogutse's value and is the same order of magnitude as the neoclassical ion heat conductivity. Dependences of the diffusion coefficient on the temperature and on the total particle number density are rather complicated due to the additional spectral cut-off, which is introduced to regularize the short wavelength modes in the numerical analysis. (author)

  11. Flux-limited diffusion coefficients in reactor physics applications

    International Nuclear Information System (INIS)

    Pounders, J.; Rahnema, F.; Szilard, R.

    2007-01-01

    Flux-limited diffusion theory has been successfully applied to problems in radiative transfer and radiation hydrodynamics, but its relevance to reactor physics has not yet been explored. The current investigation compares the performance of a flux-limited diffusion coefficient against the traditionally defined transport cross section. A one-dimensional BWR benchmark problem is examined at both the assembly and full-core level with varying degrees of heterogeneity. (authors)

  12. Determination of axial diffusion coefficients by the Monte-Carlo method

    International Nuclear Information System (INIS)

    Milgram, M.

    1994-01-01

    A simple method to calculate the homogenized diffusion coefficient for a lattice cell using Monte-Carlo techniques is demonstrated. The method relies on modelling a finite reactor volume to induce a curvature in the flux distribution, and then follows a large number of histories to obtain sufficient statistics for a meaningful result. The goal is to determine the diffusion coefficient with sufficient accuracy to test approximate methods built into deterministic lattice codes. Numerical results are given. (author). 4 refs., 8 figs

  13. First-principles study on mono-vacancy self diffusion and recovery in tungsten crystal

    International Nuclear Information System (INIS)

    Wen, Shu long; Chen, Ji ming; Liu, Xiang; Zhu, Hao; Chang, Hong yan; Huang, Zheng; Pan, Min; Zhao, Yong

    2016-01-01

    Highlights: • The migration barrier energy E_m of vacancy indicated that the optimum diffusion paths would exist in the diffusion process. • The Frenkel pair’s recovery had a close correlation with the “I–V” distance and within a range of 1.86–2.08 eV. • The self-recovery region has an ellipsoid profile with the semiminor axis of 2.7 Å and the semimajor axis of 5.5 Å. • The probability for the vacancy migration was closely assosiated with the E_m and the working temperature. - Abstract: The point defects behavior becomes one of the most basic issues under the challenge of fusion environment. The recovery mechanisms of Frenkel pair defects and the self-diffusion coefficient of mono-vacancy in bulk bcc tungsten were researched by the first principle calculations. The calculation of migration energy curves for SIAs indicated that the process of the Frenkel pair recovery had a close correlation with the “I–V” distance, and the migration barrier energies E_m was within a limit range of 1.86–2.08 eV. It was found that the self-recovery region had an ellipsoid profile with the semiminor axis of 2.7 Å and the semimajor axis of 5.5 Å. The self-diffusion coefficients of the mono-vacancy were calculated and the results showed that the probability for the vacancy migration was not only associated with the E_m but also the temperature being challenged.

  14. Comparison of Experimental Methods for Estimating Matrix Diffusion Coefficients for Contaminant Transport Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Telfeyan, Katherine Christina [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ware, Stuart Douglas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Reimus, Paul William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Birdsell, Kay Hanson [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-06

    Diffusion cell and diffusion wafer experiments were conducted to compare methods for estimating matrix diffusion coefficients in rock core samples from Pahute Mesa at the Nevada Nuclear Security Site (NNSS). A diffusion wafer method, in which a solute diffuses out of a rock matrix that is pre-saturated with water containing the solute, is presented as a simpler alternative to the traditional through-diffusion (diffusion cell) method. Both methods yielded estimates of matrix diffusion coefficients that were within the range of values previously reported for NNSS volcanic rocks. The difference between the estimates of the two methods ranged from 14 to 30%, and there was no systematic high or low bias of one method relative to the other. From a transport modeling perspective, these differences are relatively minor when one considers that other variables (e.g., fracture apertures, fracture spacings) influence matrix diffusion to a greater degree and tend to have greater uncertainty than diffusion coefficients. For the same relative random errors in concentration measurements, the diffusion cell method yields diffusion coefficient estimates that have less uncertainty than the wafer method. However, the wafer method is easier and less costly to implement and yields estimates more quickly, thus allowing a greater number of samples to be analyzed for the same cost and time. Given the relatively good agreement between the methods, and the lack of any apparent bias between the methods, the diffusion wafer method appears to offer advantages over the diffusion cell method if better statistical representation of a given set of rock samples is desired.

  15. Comparison of experimental methods for estimating matrix diffusion coefficients for contaminant transport modeling

    Science.gov (United States)

    Telfeyan, Katherine; Ware, S. Doug; Reimus, Paul W.; Birdsell, Kay H.

    2018-02-01

    Diffusion cell and diffusion wafer experiments were conducted to compare methods for estimating effective matrix diffusion coefficients in rock core samples from Pahute Mesa at the Nevada Nuclear Security Site (NNSS). A diffusion wafer method, in which a solute diffuses out of a rock matrix that is pre-saturated with water containing the solute, is presented as a simpler alternative to the traditional through-diffusion (diffusion cell) method. Both methods yielded estimates of effective matrix diffusion coefficients that were within the range of values previously reported for NNSS volcanic rocks. The difference between the estimates of the two methods ranged from 14 to 30%, and there was no systematic high or low bias of one method relative to the other. From a transport modeling perspective, these differences are relatively minor when one considers that other variables (e.g., fracture apertures, fracture spacings) influence matrix diffusion to a greater degree and tend to have greater uncertainty than effective matrix diffusion coefficients. For the same relative random errors in concentration measurements, the diffusion cell method yields effective matrix diffusion coefficient estimates that have less uncertainty than the wafer method. However, the wafer method is easier and less costly to implement and yields estimates more quickly, thus allowing a greater number of samples to be analyzed for the same cost and time. Given the relatively good agreement between the methods, and the lack of any apparent bias between the methods, the diffusion wafer method appears to offer advantages over the diffusion cell method if better statistical representation of a given set of rock samples is desired.

  16. Diffusion coefficient of alginate microcapsules used in pancreatic islet transplantation, a method to cure type 1 diabetes

    Science.gov (United States)

    Najdahmadi, Avid; Lakey, Jonathan R. T.; Botvinick, Elliot

    2018-02-01

    Pancreatic islet transplantation is a promising approach of providing insulin in type 1 diabetes. One strategy to protect islets from the host immune system is encapsulation within a porous biocompatible alginate membrane. This encapsulation provides mechanical support to the cells and allows selective diffusion of oxygen, nutrients and insulin while blocking immunoglobulins. These hydrogels form by diffusion of calcium ions into the polymer network and therefore they are highly sensitive to environmental changes and fluctuations in temperature. We investigated the effects of gel concentration, crosslinking time and ambient conditions on material permeability, volume, and rigidity, all of which may change the immunoisolating characteristics of alginate. To measure diffusion coefficient as a method to capture structural changes we studied the diffusion of fluorescently tagged dextrans of different molecular weight into the midplane of alginate microcapsules, the diffusion coefficient is then calculated by fitting observed fluorescence dynamics to the mathematical solution of 1-D diffusion into a sphere. These measurements were performed after incubation in different conditions as well as after an in vivo experiment in six immunocompetent mice for seven days. Additionally, the changes in gel volume after incubation at different temperatures and environmental conditions as well as changes in compression modulus of alginate gels during crosslinking were investigated. Our result show that increase of polymer concentration and crosslinking time leads to a decrease in volume and increase in compression modulus. Furthermore, we found that samples crosslinked and placed in physiological environment, experience an increase in volume. As expected, these volume changes affect diffusion rates of fluorescent dextrans, where volume expansion is correlated with higher calculated diffusion coefficient. This observation is critical to islet protection since higher permeability due

  17. Determination of trapping parameters and the chemical diffusion coefficient from hydrogen permeation experiments

    International Nuclear Information System (INIS)

    Svoboda, J.; Mori, G.; Prethaler, A.; Fischer, F.D.

    2014-01-01

    Highlights: • A modeling study for diffusion of hydrogen with traps is presented. • Introduction of a new chemical diffusion coefficient. • Density of traps and average depth of traps can be determined. • Lattice diffusion and sub-surface concentration of atomic hydrogen can be determined. - Abstract: An improved diffusion theory accounting for trapping effects is applied to evaluation of hydrogen permeation experiments performed for pure iron and pearlitic and martensitic steels. The trapping parameters as molar volume and depth of traps are determined by fitting experiments by simulations based on the theory. The concentration-dependent chemical diffusion coefficient of hydrogen is extracted indicating that the trapping effect on diffusion in pure iron and pearlitic steel is negligible. However, it is significant for martensitic steel, for which the chemical diffusion coefficient cannot be considered as concentration-independent as it is established in current standards

  18. Anomalous diffusion in niobium. Study of solute diffusion mechanism of iron in niobium

    International Nuclear Information System (INIS)

    Ablitzer, D.

    1977-01-01

    In order to explain anomalously high diffusion velocities observed for iron diffusion in niobium, the following parameters were measured: isotope effect, b factor (which expresses the effect of iron on niobium self-diffusion), self-diffusion coefficient of niobium, solute diffusion coefficient of iron in niobium. The results obtained show that neither pure vacancy models, nor diffusion in the lattice defects (dislocations, sub-boundaries, grain boundaries), nor pure interstitialy mechanisms, nor simple or cyclic exchange mechanisms agree with experiments. A mechanism is proposed which considers an equilibrium between substitution iron atoms and interstitial iron atoms. The diffusion of iron then occurs through interstitial vancancy pairs [fr

  19. Effective diffusion coefficients of DNAPL waste components in saturated low permeability soil materials

    Science.gov (United States)

    Ayral-Cinar, Derya; Demond, Avery H.

    2017-12-01

    Diffusion is regarded as the dominant transport mechanism into and out of low permeable subsurface lenses and layers in the subsurface. But, some reports of mass storage in such zones are higher than what might be attributable to diffusion, based on estimated diffusion coefficients. Despite the importance of diffusion to efforts to estimate the quantity of residual contamination in the subsurface, relatively few studies present measured diffusion coefficients of organic solutes in saturated low permeability soils. This study reports the diffusion coefficients of a trichloroethylene (TCE), and an anionic surfactant, Aerosol OT (AOT), in water-saturated silt and a silt-montmorillonite (25:75) mixture, obtained using steady-state experiments. The relative diffusivity ranged from 0.11 to 0.17 for all three compounds for the silt and the silt-clay mixture that was allowed to expand. In the case in which the swelling was constrained, the relative diffusivity was about 0.07. In addition, the relative diffusivity of 13C-labeled TCE through a water saturated silt-clay mixture that had contacted a field dense non-aqueous phase liquid (DNAPL) for 18 months was measured and equaled 0.001. These experimental results were compared with the estimates generated using common correlations, and it was found that, in all cases, the measured diffusion coefficients were significantly lower than the estimated. Thus, the discrepancy between mass accumulations observed in the field and the mass storage that can attributable to diffusion may be greater than previously believed.

  20. Measurement of the local particle diffusion coefficient in a magnetized plasma

    International Nuclear Information System (INIS)

    Meyerhofer, D.D.; Levinton, F.M.

    1987-02-01

    Local impurity particle diffusion coefficients have been measured in a low temperature plasma by the injection of test particles at the center of the plasma. The injection is accomplished by a high voltage discharge between two small graphite electrodes on a probe. The probe can be located anywhere in the plasma. The diffusion is observed spectroscopically. An analysis of the spatial and temporal evolution of the CII radiation from the carbon discharge can determine the parallel and perpendicular diffusion of the impurity ions. Results with the diagnostic have been obtained in the Proto S-1/C spheromak. The measured value of the diffusion coefficient in the afterglow plasma is in good agreement with classical predictions

  1. Self-defects and self diffusion in a silica glass: a first-principles study; Etude ab-initio des auto-defauts et des mecanismes d'auto-diffusion dans un verre de silice

    Energy Technology Data Exchange (ETDEWEB)

    Martin, L.; Colomer, S

    2004-11-15

    SiO{sub 2} and silica based compounds are key materials in a variety of scientific and technological fields as, for instance, in microelectronics or nuclear technology. In all these fields, one of the still open questions is their long term aging in a radioactive environment. Due to the complexity of the effects of radiations upon matter, the understanding of the long term aging needs the knowledge of diffusion mechanisms at the atomic scale. In that context, numerical modelling appears as a way to access this scale. We present a first principles study on self-defects and self-diffusion in a silica model. As expected, at variance with SiO{sub 2} crystalline phases, the defects formation energies are distributed, due to the non-equivalence of defects sites. We prove that the formation energy dispersion is correlated to the local stress. Concerning the equilibrium concentrations and oxygen diffusion mechanism, we discuss how the shape of the distribution, as well as impurity levels within the gap, play a main role in the dominance of defect types. Finally we present the main oxygen diffusion mechanism in homogeneous and heterogeneous defect formation regime. (author)

  2. Measurements of the diffusion and reflection coefficients of Cd(1S0) in noble gases

    International Nuclear Information System (INIS)

    Rudecki, P.; Domyslawska, J.

    2003-01-01

    A new method of simultaneous determining of the diffusion coefficient and the reflection coefficient of atoms from the reservoir walls is presented. The diffusion coefficient of cadmium atoms in the ground state in buffer noble gas atoms such as Ne, Ar, Kr and Xe and reflection coefficient of Cd atoms from the quartz cell wall in the temperature range 350-550 K were determined. Experimental values diffusion coefficient are compared with theoretical ones calculated from a available potentials. (author)

  3. Interpretation of diffusion coefficients in nanostructured materials from random walk numerical simulation.

    Science.gov (United States)

    Anta, Juan A; Mora-Seró, Iván; Dittrich, Thomas; Bisquert, Juan

    2008-08-14

    We make use of the numerical simulation random walk (RWNS) method to compute the "jump" diffusion coefficient of electrons in nanostructured materials via mean-square displacement. First, a summary of analytical results is given that relates the diffusion coefficient obtained from RWNS to those in the multiple-trapping (MT) and hopping models. Simulations are performed in a three-dimensional lattice of trap sites with energies distributed according to an exponential distribution and with a step-function distribution centered at the Fermi level. It is observed that once the stationary state is reached, the ensemble of particles follow Fermi-Dirac statistics with a well-defined Fermi level. In this stationary situation the diffusion coefficient obeys the theoretical predictions so that RWNS effectively reproduces the MT model. Mobilities can be also computed when an electrical bias is applied and they are observed to comply with the Einstein relation when compared with steady-state diffusion coefficients. The evolution of the system towards the stationary situation is also studied. When the diffusion coefficients are monitored along simulation time a transition from anomalous to trap-limited transport is observed. The nature of this transition is discussed in terms of the evolution of electron distribution and the Fermi level. All these results will facilitate the use of RW simulation and related methods to interpret steady-state as well as transient experimental techniques.

  4. An inverse moisture diffusion algorithm for the determination of diffusion coefficient

    Science.gov (United States)

    Jen Y. Liu; William T. Simpson; Steve P. Verrill

    2000-01-01

    The finite difference approximation is applied to estimate the moisture-dependent diffusion coefficient by utilizing test data of isothermal moisture desorption in northern red oak (Quercus rubra). The test data contain moisture distributions at discrete locations across the thickness of specimens, which coincides with the radial direction of northern red oak, and at...

  5. Mass diffusion coefficient measurement for vitreous humor using FEM and MRI

    Science.gov (United States)

    Rattanakijsuntorn, Komsan; Penkova, Anita; Sadha, Satwindar S.

    2018-01-01

    In early studies, the ‘contour method’ for determining the diffusion coefficient of the vitreous humor was developed. This technique relied on careful injection of an MRI contrast agent (surrogate drug) into the vitreous humor of fresh bovine eyes, and tracking the contours of the contrast agent in time. In addition, an analytical solution was developed for the theoretical contours built on point source model for the injected surrogate drug. The match between theoretical and experimental contours as a least square fit, while floating the diffusion coefficient, led to the value of the diffusion coefficient. This method had its limitation that the initial injection of the surrogate had to be spherical or ellipsoidal because of the analytical result based on the point-source model. With a new finite element model for the analysis in this study, the technique is much less restrictive and handles irregular shapes of the initial bolus. The fresh bovine eyes were used for drug diffusion study in the vitreous and three contrast agents of different molecular masses: gadolinium-diethylenetriaminepentaacetic acid (Gd-DTPA, 938 Da), non-ionic gadoteridol (Prohance, 559 Da), and bovine albumin conjugated with gadolinium (Galbumin, 74 kDa) were used as drug surrogates to visualize the diffusion process by MRI. The 3D finite element model was developed to determine the diffusion coefficients of these surrogates with the images from MRI. This method can be used for other types of bioporous media provided the concentration profile can be visualized (by methods such as MRI or fluorescence).

  6. Diffusion-Coefficients of Sulfate and Methane in Marine-Sediments - Influence of Porosity

    DEFF Research Database (Denmark)

    IVERSEN, N.; JØRGENSEN, BB

    1993-01-01

    diffusion coefficients can be related to the diffusion coefficient in free solution by D(s) = D(o)/theta2, where theta is the tortuosity of the sediment. The sediment tortuosity calculated from this equation showed a linear relationship with sediment porosity (phi) over the porosity range of 0.4-0.9. From...

  7. Germanium diffusion with vapor-phase GeAs and oxygen co-incorporation in GaAs

    Science.gov (United States)

    Wang, Wei-Fu; Cheng, Kai-Yuan; Hsieh, Kuang-Chien

    2018-01-01

    Vapor-phase germanium diffusion has been demonstrated in Zn-doped and semi-insulating GaAs in sealed ampoules with GeAs powders and excess arsenic. Secondary-ion-mass spectroscopy (SIMS) profiles indicate the presence of unintentional co-incorporation of oxygen in high densities (>1017/cm3) along with diffused germanium donors whose concentration (>>1018/cm3) determined by electro-chemical capacitance-voltage (ECV) profiler shows significant compensation near the surface. The source of oxygen mainly originates from the GeAs powder which contains Ge-O surface oxides. Variable-temperature photoluminescence (PL) shows that in GeAs-diffused samples, a broad peak ranging from 0.86-1.38 eV with the peak position around 1.1 eV predominates at low temperatures while the near band-edge luminescence quenches. The broad band is attributed to the GeGa-VGa self-activated (SA) centers possibly associated with nearby oxygen-related defect complex, and its luminescence persists up to 400 K. The configurational-coordinate modeling finds that the SA defect complex has a thermal activation energy of 150-180 meV and a vibrational energy 26.8 meV. The presence of oxygen does not much affect the SA emission intensity but may have influenced the peak position, vibration frequency and activation energy as compared to other common donor-VGa defects in GaAs.

  8. Germanium diffusion with vapor-phase GeAs and oxygen co-incorporation in GaAs

    Directory of Open Access Journals (Sweden)

    Wei-Fu Wang

    2018-01-01

    Full Text Available Vapor-phase germanium diffusion has been demonstrated in Zn-doped and semi-insulating GaAs in sealed ampoules with GeAs powders and excess arsenic. Secondary-ion-mass spectroscopy (SIMS profiles indicate the presence of unintentional co-incorporation of oxygen in high densities (>1017/cm3 along with diffused germanium donors whose concentration (>>1018/cm3 determined by electro-chemical capacitance-voltage (ECV profiler shows significant compensation near the surface. The source of oxygen mainly originates from the GeAs powder which contains Ge-O surface oxides. Variable-temperature photoluminescence (PL shows that in GeAs-diffused samples, a broad peak ranging from 0.86-1.38 eV with the peak position around 1.1 eV predominates at low temperatures while the near band-edge luminescence quenches. The broad band is attributed to the GeGa-VGa self-activated (SA centers possibly associated with nearby oxygen-related defect complex, and its luminescence persists up to 400 K. The configurational-coordinate modeling finds that the SA defect complex has a thermal activation energy of 150-180 meV and a vibrational energy 26.8 meV. The presence of oxygen does not much affect the SA emission intensity but may have influenced the peak position, vibration frequency and activation energy as compared to other common donor-VGa defects in GaAs.

  9. Studies of protonic self-diffusion and conductivity in 12-tungstophophoric acid hydrates by pulsed field gradient 1H NMR and ac Conductivity

    International Nuclear Information System (INIS)

    Slade, R.C.; Pressman, H.A.; Barker, J.; Strange, J.H.

    1988-01-01

    Temperature dependent protonic conductivities σ and 1/H self-diffusion coefficients, D, are reported for polycrystalline hydrates of 12-tungstophosphoric acid (TPA). Conductivities were measured using ac admittane spectrometry and diffusion coefficients by the pulsed field gradient NMR technique. Conductivities for the hydrates TPA.nH 2 O (n=6, 14, 21) increase with n. Examination of σ and D values and of activation techniques shows self-diffusion and conduction to occur by different mechanisms in the higher hydrates. 25 refs.; 14 figs.; 1 table

  10. Development of Nanofiller-Modulated Polymeric Oxygen Enrichment Membranes for Reduction of Nitrogen Oxides in Coal Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Jianzhong Lou; Shamsuddin Ilias

    2010-12-31

    North Carolina A&T State University in Greensboro, North Carolina, has undertaken this project to develop the knowledge and the material to improve the oxygen-enrichment polymer membrane, in order to provide high-grade oxygen-enriched streams for coal combustion and gasification applications. Both experimental and theoretical approaches were used in this project. The membranes evaluated thus far include single-walled carbon nano-tube, nano-fumed silica polydimethylsiloxane (PDMS), and zeolite-modulated polyimide membranes. To document the nanofiller-modulated polymer, molecular dynamics simulations have been conducted to calculate the theoretical oxygen molecular diffusion coefficient and nitrogen molecular coefficient inside single-walled carbon nano-tube PDMS membranes, in order to predict the effect of the nano-tubes on the gas-separation permeability. The team has performed permeation and diffusion experiments using polymers with nano-silica particles, nano-tubes, and zeolites as fillers; studied the influence of nano-fillers on the self diffusion, free volume, glass transition, oxygen diffusion and solubility, and perm-selectivity of oxygen in polymer membranes; developed molecular models of single-walled carbon nano-tube and nano-fumed silica PDMS membranes, and zeolites-modulated polyimide membranes. This project partially supported three graduate students (two finished degrees and one transferred to other institution). This project has resulted in two journal publications and additional publications will be prepared in the near future.

  11. Patterning functional materials using channel diffused plasma-etched self-assembled monolayer templates

    NARCIS (Netherlands)

    George, A.; Maijenburg, A.W.; Maas, M.G.; Blank, David H.A.; ten Elshof, Johan E.

    2011-01-01

    A simple and cost-effective methodology for large-area micrometer-scale patterning of a wide range of metallic and oxidic functional materials is presented. Self-assembled monolayers (SAM) of alkyl thiols on Au were micropatterned by channel-diffused oxygen plasma etching, a method in which selected

  12. Study of oxygen mass transfer coefficient and oxygen uptake rate in a stirred tank reactor for uranium ore bioleaching

    International Nuclear Information System (INIS)

    Zokaei-Kadijani, S.; Safdari, J.; Mousavian, M.A.; Rashidi, A.

    2013-01-01

    Highlights: ► Mass transfer coefficient does not depend on biomass concentration. ► The pulp density has a negative effect on mass transfer coefficient. ► The pulp density is the unique factor that affects maximum OUR. ► In this work, Neale’s correlation is corrected for prediction of mass transfer coefficient. ► Biochemical reaction is a limiting factor in the uranium bioleaching process. - Abstract: In this work, the volumetric oxygen mass transfer coefficient and the oxygen uptake rate (OUR) were studied for uranium ore bioleaching process by Acidthiobacillus ferrooxidans in a stirred tank reactor. The Box-Bohnken design method was used to study the effect of operating parameters on the oxygen mass transfer coefficient. The investigated factors were agitation speed (rpm), aeration rate (vvm) and pulp density (% weight/volume) of the stirred tank reactor. Analysis of experimental results showed that the oxygen mass transfer coefficient had low dependence on biomass concentration but had higher dependence on the agitation speed, aeration rate and pulp density. The obtained biological enhancement factors were equal to ones in experiments. On the other hand, the obtained values for Damkohler number (Da < 0.468) indicated that the process was limited by the biochemical reaction rate. Experimental results obtained for oxygen mass transfer coefficient were correlated with the empirical relations proposed by Garcia-Ochoa and Gomez (2009) and Neale and Pinches (1994). Due to the high relative error in the correlation of Neale and Pinches, that correlation was corrected and the coefficient of determination was calculated to be 89%. The modified correlation has been obtained based on a wide range of operating conditions, which can be used to determine the mass transfer coefficient in a bioreactor

  13. Temperature effects on diffusion coefficient for 6-gingerol and 6-shogaol in subcritical water extraction

    Science.gov (United States)

    Ilia Anisa, Nor; Azian, Noor; Sharizan, Mohd; Iwai, Yoshio

    2014-04-01

    6-gingerol and 6-shogaol are the main constituents as anti-inflammatory or bioactive compounds from zingiber officinale Roscoe. These bioactive compounds have been proven for inflammatory disease, antioxidatives and anticancer. The effect of temperature on diffusion coefficient for 6-gingerol and 6-shogaol were studied in subcritical water extraction. The diffusion coefficient was determined by Fick's second law. By neglecting external mass transfer and solid particle in spherical form, a linear portion of Ln (1-(Ct/Co)) versus time was plotted in determining the diffusion coefficient. 6-gingerol obtained the higher yield at 130°C with diffusion coefficient of 8.582x10-11 m2/s whilst for 6-shogaol, the higher yield and diffusion coefficient at 170°C and 19.417 × 10-11 m2/s.

  14. Study on the chloride diffusion coefficient in concrete obtained in electrically accelerated tests

    NARCIS (Netherlands)

    Spiesz, P.R.; Brouwers, H.J.H.; Gulikers, J.J.W.; Polder, R.; Andrade, C.

    2015-01-01

    This study presents an analysis of the chloride diffusion coefficient (DRCM), obtained in electrically accelerated chloride migration tests. As demonstrated here, the obtained chloride diffusion coefficient does not represent the apparent one, as it is independent of chloride binding. This is

  15. Rapid yet accurate measurement of mass diffusion coefficients by phase shifting interferometer

    CERN Document Server

    Guo Zhi Xiong; Komiya, A

    1999-01-01

    The technique of using a phase-shifting interferometer is applied to the study of diffusion in transparent liquid mixtures. A quick method is proposed for determining the diffusion coefficient from the measurements of the location of fringes on a grey level picture. The measurement time is very short (within 100 s) and a very small transient diffusion field can be observed and recorded accurately with a rate of 30 frames per second. The measurement can be completed using less than 0.12 cc of solutions. The influence of gravity on the measurement of the diffusion coefficient is eliminated in the present method. Results on NaCl-water diffusion systems are presented and compared with the reference data. (author)

  16. FITTING OF THE DATA FOR DIFFUSION COEFFICIENTS IN UNSATURATED POROUS MEDIA

    Energy Technology Data Exchange (ETDEWEB)

    B. Bullard

    1999-05-01

    The purpose of this calculation is to evaluate diffusion coefficients in unsaturated porous media for use in the TSPA-VA analyses. Using experimental data, regression techniques were used to curve fit the diffusion coefficient in unsaturated porous media as a function of volumetric water content. This calculation substantiates the model fit used in Total System Performance Assessment-1995 An Evaluation of the Potential Yucca Mountain Repository (TSPA-1995), Section 6.5.4.

  17. FITTING OF THE DATA FOR DIFFUSION COEFFICIENTS IN UNSATURATED POROUS MEDIA

    International Nuclear Information System (INIS)

    B. Bullard

    1999-01-01

    The purpose of this calculation is to evaluate diffusion coefficients in unsaturated porous media for use in the TSPA-VA analyses. Using experimental data, regression techniques were used to curve fit the diffusion coefficient in unsaturated porous media as a function of volumetric water content. This calculation substantiates the model fit used in Total System Performance Assessment-1995 An Evaluation of the Potential Yucca Mountain Repository (TSPA-1995), Section 6.5.4

  18. First-principles study on mono-vacancy self diffusion and recovery in tungsten crystal

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Shu long [Key Laboratory of Advanced Technology of Materials (Ministry of Education), Superconductivity and New Energy R& D Ceter, Southwest JiaoTong University, Chengdu, Sichuan 610031 (China); Chen, Ji ming; Liu, Xiang [Fusion Science of Southwestern Institute of Physics, Chengdu, Sichuan 610041 (China); Zhu, Hao; Chang, Hong yan [Key Laboratory of Advanced Technology of Materials (Ministry of Education), Superconductivity and New Energy R& D Ceter, Southwest JiaoTong University, Chengdu, Sichuan 610031 (China); Huang, Zheng, E-mail: zhhuang@swjtu.edu.cn [Key Laboratory of Advanced Technology of Materials (Ministry of Education), Superconductivity and New Energy R& D Ceter, Southwest JiaoTong University, Chengdu, Sichuan 610031 (China); Pan, Min, E-mail: mpan@swjtu.edu.cn [Key Laboratory of Advanced Technology of Materials (Ministry of Education), Superconductivity and New Energy R& D Ceter, Southwest JiaoTong University, Chengdu, Sichuan 610031 (China); Western Superconducting Technologies Co., Ltd., Xi’an, Shanxi 710018 (China); Zhao, Yong [Key Laboratory of Advanced Technology of Materials (Ministry of Education), Superconductivity and New Energy R& D Ceter, Southwest JiaoTong University, Chengdu, Sichuan 610031 (China)

    2016-11-01

    Highlights: • The migration barrier energy E{sub m} of vacancy indicated that the optimum diffusion paths would exist in the diffusion process. • The Frenkel pair’s recovery had a close correlation with the “I–V” distance and within a range of 1.86–2.08 eV. • The self-recovery region has an ellipsoid profile with the semiminor axis of 2.7 Å and the semimajor axis of 5.5 Å. • The probability for the vacancy migration was closely assosiated with the E{sub m} and the working temperature. - Abstract: The point defects behavior becomes one of the most basic issues under the challenge of fusion environment. The recovery mechanisms of Frenkel pair defects and the self-diffusion coefficient of mono-vacancy in bulk bcc tungsten were researched by the first principle calculations. The calculation of migration energy curves for <111> SIAs indicated that the process of the Frenkel pair recovery had a close correlation with the “I–V” distance, and the migration barrier energies E{sub m} was within a limit range of 1.86–2.08 eV. It was found that the self-recovery region had an ellipsoid profile with the semiminor axis of 2.7 Å and the semimajor axis of 5.5 Å. The self-diffusion coefficients of the mono-vacancy were calculated and the results showed that the probability for the vacancy migration was not only associated with the E{sub m} but also the temperature being challenged.

  19. Determination of the zincate diffusion coefficient and its application to alkaline battery problems

    Science.gov (United States)

    May, C. E.; Kautz, H. E.

    1978-01-01

    The diffusion coefficient for the zincate ion at 24 C was found to be 9.9 x 10 to the -7th power sq cm/sec + or - 30% in 45% potassium hydroxide and 1.4 x 10 to the -7th power sq cm/sec + or - 25% in 40% sodium hydroxide. Comparison of these values with literature values at different potassium hydroxide concentrations show that the Stokes-Einstein equation is obeyed. The diffusion coefficient is characteristic of the zincate ion (not the cation) and independent of its concentration. Calculations with the measured value of the diffusion coefficient show that the zinc concentration in an alkaline zincate half-cell becomes uniform throughout in tens of hours by diffusion alone. Diffusion equations are derived which are applicable to finite-size chambers. Details and discussion of the experimental method are also given.

  20. Temperature effects on diffusion coefficient for 6-gingerol and 6-shogaol in subcritical water extraction

    International Nuclear Information System (INIS)

    Anisa, Nor Ilia; Azian, Noor; Sharizan, Mohd; Iwai, Yoshio

    2014-01-01

    6-gingerol and 6-shogaol are the main constituents as anti-inflammatory or bioactive compounds from zingiber officinale Roscoe. These bioactive compounds have been proven for inflammatory disease, antioxidatives and anticancer. The effect of temperature on diffusion coefficient for 6-gingerol and 6-shogaol were studied in subcritical water extraction. The diffusion coefficient was determined by Fick's second law. By neglecting external mass transfer and solid particle in spherical form, a linear portion of Ln (1-(Ct/Co)) versus time was plotted in determining the diffusion coefficient. 6-gingerol obtained the higher yield at 130°C with diffusion coefficient of 8.582x10 −11 m 2 /s whilst for 6-shogaol, the higher yield and diffusion coefficient at 170°C and 19.417 × 10 −11 m 2 /s.

  1. Effect of cation structure on the oxygen solubility and diffusivity in a range of bis{(trifluoromethyl)sulfonyl}imide anion based ionic liquids for lithium-air battery electrolytes.

    Science.gov (United States)

    Neale, Alex R; Li, Peilin; Jacquemin, Johan; Goodrich, Peter; Ball, Sarah C; Compton, Richard G; Hardacre, Christopher

    2016-04-28

    This paper reports on the solubility and diffusivity of dissolved oxygen in a series of ionic liquids (ILs) based on the bis{(trifluoromethyl)sulfonyl}imide anion with a range of related alkyl and ether functionalised cyclic alkylammonium cations. Cyclic voltammetry has been used to observe the reduction of oxygen in ILs at a microdisk electrode and chronoamperometric measurements have then been applied to simultaneously determine both the concentration and the diffusion coefficient of oxygen in different ILs. The viscosity of the ILs and the calculated molar volume and free volume are also reported. It is found that, within this class of ILs, the oxygen diffusivity generally increases with decreasing viscosity of the neat IL. An inverse relationship between oxygen solubility and IL free volume is reported for the two IL families implying that oxygen is not simply occupying the available empty space. In addition, it is reported that the introduction of an ether-group into the IL cation structure promotes the diffusivity of dissolved oxygen but reduces the solubility of the gas.

  2. Negative Correlation between the Diffusion Coefficient and Transcriptional Activity of the Glucocorticoid Receptor.

    Science.gov (United States)

    Mikuni, Shintaro; Yamamoto, Johtaro; Horio, Takashi; Kinjo, Masataka

    2017-08-25

    The glucocorticoid receptor (GR) is a transcription factor, which interacts with DNA and other cofactors to regulate gene transcription. Binding to other partners in the cell nucleus alters the diffusion properties of GR. Raster image correlation spectroscopy (RICS) was applied to quantitatively characterize the diffusion properties of EGFP labeled human GR (EGFP-hGR) and its mutants in the cell nucleus. RICS is an image correlation technique that evaluates the spatial distribution of the diffusion coefficient as a diffusion map. Interestingly, we observed that the averaged diffusion coefficient of EGFP-hGR strongly and negatively correlated with its transcriptional activities in comparison to that of EGFP-hGR wild type and mutants with various transcriptional activities. This result suggests that the decreasing of the diffusion coefficient of hGR was reflected in the high-affinity binding to DNA. Moreover, the hyper-phosphorylation of hGR can enhance the transcriptional activity by reduction of the interaction between the hGR and the nuclear corepressors.

  3. Diffusion and the self-measurability

    Directory of Open Access Journals (Sweden)

    Holeček M.

    2009-06-01

    Full Text Available The familiar diffusion equation, ∂g/∂t = DΔg, is studied by using the spatially averaged quantities. A non-local relation, so-called the self-measurability condition, fulfilled by this equation is obtained. We define a broad class of diffusion equations defined by some "diffusion inequality", ∂g/∂t · Δg ≥ 0, and show that it is equivalent to the self-measurability condition. It allows formulating the diffusion inequality in a non-local form. That represents an essential generalization of the diffusion problem in the case when the field g(x, t is not smooth. We derive a general differential equation for averaged quantities coming from the self-measurability condition.

  4. Effective diffusion coefficients of /sup 3/H/sub 2/O in several porous materials

    Energy Technology Data Exchange (ETDEWEB)

    Terashima, Y [Kyoto Univ. (Japan). Faculty of Engineering; Kumaki, T

    1976-12-01

    Diffusion coefficients of radionuclides in some porous structural materials and porous components of earth stratum are important as the basis for the safety evaluation of the storage and disposal of radioactive wastes. In our previous works, the method of analysis and experiment using a permeative type diffusion cell for measurement of effective diffusion coefficient was established, and experimental results were reported. In this paper, effective diffusion coefficients of /sup 3/H/sub 2/O in mortar, concrete, brick, clay layer, and sand layer were measured, and characteristics of these pore structure were discussed on the basis of tourtusity factor.

  5. Procedure for obtaining neutron diffusion coefficients from neutron transport Monte Carlo calculations (AWBA Development Program)

    International Nuclear Information System (INIS)

    Gast, R.C.

    1981-08-01

    A procedure for defining diffusion coefficients from Monte Carlo calculations that results in suitable ones for use in neutron diffusion theory calculations is not readily obtained. This study provides a survey of the methods used to define diffusion coefficients from deterministic calculations and provides a discussion as to why such traditional methods cannot be used in Monte Carlo. This study further provides the empirical procedure used for defining diffusion coefficients from the RCP01 Monte Carlo program

  6. Back-exchange: a novel approach to quantifying oxygen diffusion and surface exchange in ambient atmospheres.

    Science.gov (United States)

    Cooper, Samuel J; Niania, Mathew; Hoffmann, Franca; Kilner, John A

    2017-05-17

    A novel two-step Isotopic Exchange (IE) technique has been developed to investigate the influence of oxygen containing components of ambient air (such as H 2 O and CO 2 ) on the effective surface exchange coefficient (k*) of a common mixed ionic electronic conductor material. The two step 'back-exchange' technique was used to introduce a tracer diffusion profile, which was subsequently measured using Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS). The isotopic fraction of oxygen in a dense sample as a function of distance from the surface, before and after the second exchange step, could then be used to determine the surface exchange coefficient in each atmosphere. A new analytical solution was found to the diffusion equation in a semi-infinite domain with a variable surface exchange boundary, for the special case where D* and k* are constant for all exchange steps. This solution validated the results of a numerical, Crank-Nicolson type finite-difference simulation, which was used to extract the parameters from the experimental data. When modelling electrodes, D* and k* are important input parameters, which significantly impact performance. In this study La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3-δ (LSCF6428) was investigated and it was found that the rate of exchange was increased by around 250% in ambient air compared to high purity oxygen at the same pO 2 . The three experiments performed in this study were used to validate the back-exchange approach and show its utility.

  7. Spatial Mapping of Translational Diffusion Coefficients Using Diffusion Tensor Imaging: A Mathematical Description.

    Science.gov (United States)

    Shetty, Anil N; Chiang, Sharon; Maletic-Savatic, Mirjana; Kasprian, Gregor; Vannucci, Marina; Lee, Wesley

    2014-01-01

    In this article, we discuss the theoretical background for diffusion weighted imaging and diffusion tensor imaging. Molecular diffusion is a random process involving thermal Brownian motion. In biological tissues, the underlying microstructures restrict the diffusion of water molecules, making diffusion directionally dependent. Water diffusion in tissue is mathematically characterized by the diffusion tensor, the elements of which contain information about the magnitude and direction of diffusion and is a function of the coordinate system. Thus, it is possible to generate contrast in tissue based primarily on diffusion effects. Expressing diffusion in terms of the measured diffusion coefficient (eigenvalue) in any one direction can lead to errors. Nowhere is this more evident than in white matter, due to the preferential orientation of myelin fibers. The directional dependency is removed by diagonalization of the diffusion tensor, which then yields a set of three eigenvalues and eigenvectors, representing the magnitude and direction of the three orthogonal axes of the diffusion ellipsoid, respectively. For example, the eigenvalue corresponding to the eigenvector along the long axis of the fiber corresponds qualitatively to diffusion with least restriction. Determination of the principal values of the diffusion tensor and various anisotropic indices provides structural information. We review the use of diffusion measurements using the modified Stejskal-Tanner diffusion equation. The anisotropy is analyzed by decomposing the diffusion tensor based on symmetrical properties describing the geometry of diffusion tensor. We further describe diffusion tensor properties in visualizing fiber tract organization of the human brain.

  8. Calculation of ternary interdiffusion coefficients using a single diffusion couple

    Czech Academy of Sciences Publication Activity Database

    Čermák, Jiří; Rothová, Věra

    2016-01-01

    Roč. 54, č. 5 (2016), s. 305-314 ISSN 0023-432X R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : diffusion * interdiffusion * ternary alloys * ternary diffusion coefficients Subject RIV: BJ - Thermodynamics Impact factor: 0.366, year: 2016

  9. Self-diffusion in monodisperse three-dimensional magnetic fluids by molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Dobroserdova, A.B. [Ural Federal University, Lenin Av. 51, Ekaterinburg (Russian Federation); Kantorovich, S.S., E-mail: alla.dobroserdova@urfu.ru [Ural Federal University, Lenin Av. 51, Ekaterinburg (Russian Federation); University of Vienna, Sensengasse 8, Vienna (Austria)

    2017-06-01

    In the present work we study the self-diffusion behaviour in the three-dimensional monodisperse magnetic fluids using the Molecular Dynamics Simulation and Density Functional Theory. The peculiarity of computer simulation is to study two different systems: dipolar and soft sphere ones. In the theoretical method, it is important to choose the approximation for the main structures, which are chains. We compare the theoretical results and the computer simulation data for the self-diffusion coefficient as a function of the particle volume fraction and magnetic dipole-dipole interaction parameter and find the qualitative and quantitative agreement to be good. - Highlights: • The paper deals with the study of the self-diffusion in monodisperse three-dimensional magnetic fluids. • The theoretical approach contains the free energy density functional minimization. • Computer simulations are performed by the molecular dynamics method. • We have a good qualitative and quantitative agreement between the theoretical results and computer simulation data.

  10. Determination of diffusion coefficients of various livestock antibiotics in water at infinite dilution

    Directory of Open Access Journals (Sweden)

    Soriano Allan N.

    2017-01-01

    Full Text Available The fate of antibiotics entering the environment raised concerns on the possible effect of antimicrobial resistance bacteria. Prediction of the fate and transport of these particles are needed to be determined, significantly the diffusion coefficient of antibiotic in water at infinite dilution. A systematic determination of diffusion coefficient of antibiotic in water at infinite dilution of five different kinds of livestock antibiotics namely: Amtyl, Ciprotyl, Doxylak Forte, Trisullak, and Vetracin Gold in the 293.15 to 313.15 K temperature range are reported through the use of the method involving the electrolytic conductivity measurements. A continuous stirred tank reactor is utilized to measure the electrolytic conductivities of the considered systems. These conductivities are correlated by using the Nernst-Haskell equation to determine the infinite dilution diffusion coefficient. Determined diffusion coefficients are based on the assumption that in dilute solution, these antibiotics behave as strong electrolyte from which H+ cation dissociate from the antibiotic’s anion.

  11. Determination of diffusion coefficients of various livestock antibiotics in water at infinite dilution

    Science.gov (United States)

    Soriano, Allan N.; Adamos, Kristoni G.; Bonifacio, Pauline B.; Adornado, Adonis P.; Bungay, Vergel C.; Vairavan, Rajendaran

    2017-11-01

    The fate of antibiotics entering the environment raised concerns on the possible effect of antimicrobial resistance bacteria. Prediction of the fate and transport of these particles are needed to be determined, significantly the diffusion coefficient of antibiotic in water at infinite dilution. A systematic determination of diffusion coefficient of antibiotic in water at infinite dilution of five different kinds of livestock antibiotics namely: Amtyl, Ciprotyl, Doxylak Forte, Trisullak, and Vetracin Gold in the 293.15 to 313.15 K temperature range are reported through the use of the method involving the electrolytic conductivity measurements. A continuous stirred tank reactor is utilized to measure the electrolytic conductivities of the considered systems. These conductivities are correlated by using the Nernst-Haskell equation to determine the infinite dilution diffusion coefficient. Determined diffusion coefficients are based on the assumption that in dilute solution, these antibiotics behave as strong electrolyte from which H+ cation dissociate from the antibiotic's anion.

  12. About the Role of the Bottleneck/Cork Interface on Oxygen Transfer.

    Science.gov (United States)

    Lagorce-Tachon, Aurélie; Karbowiak, Thomas; Paulin, Christian; Simon, Jean-Marc; Gougeon, Régis D; Bellat, Jean-Pierre

    2016-09-07

    The transfer of oxygen through a corked bottleneck was investigated using a manometric technique. First, the effect of cork compression on oxygen transfer was evaluated without considering the glass/cork interface. No significant effect of cork compression (at 23% strain, corresponding to the compression level of cork in a bottleneck for still wines) was noticeable on the effective diffusion coefficient of oxygen. The mean value of the effective diffusion coefficient is equal to 10(-8) m(2) s(-1), with a statistical distribution ranging from 10(-10) to 10(-7) m(2) s(-1), which is of the same order of magnitude as for the non-compressed cork. Then, oxygen transfer through cork compressed in a glass bottleneck was determined to assess the effect of the glass/cork interface. In the particular case of a gradient-imposed diffusion of oxygen through our model corked bottleneck system (dry cork without surface treatment; 200 and ∼0 hPa of oxygen on both sides of the sample), the mean effective diffusion coefficient is of 5 × 10(-7) m(2) s(-1), thus revealing the possible importance of the role of the glass/stopper interface in the oxygen transfer.

  13. Diffusion relaxation times of nonequilibrium isolated small bodies and their solid phase ensembles to equilibrium states

    Science.gov (United States)

    Tovbin, Yu. K.

    2017-08-01

    The possibility of obtaining analytical estimates in a diffusion approximation of the times needed by nonequilibrium small bodies to relax to their equilibrium states based on knowledge of the mass transfer coefficient is considered. This coefficient is expressed as the product of the self-diffusion coefficient and the thermodynamic factor. A set of equations for the diffusion transport of mixture components is formulated, characteristic scales of the size of microheterogeneous phases are identified, and effective mass transfer coefficients are constructed for them. Allowing for the developed interface of coexisting and immiscible phases along with the porosity of solid phases is discussed. This approach can be applied to the diffusion equalization of concentrations of solid mixture components in many physicochemical systems: the mutual diffusion of components in multicomponent systems (alloys, semiconductors, solid mixtures of inert gases) and the mass transfer of an absorbed mobile component in the voids of a matrix consisting of slow components or a mixed composition of mobile and slow components (e.g., hydrogen in metals, oxygen in oxides, and the transfer of molecules through membranes of different natures, including polymeric).

  14. The diffusion coefficient as a function of energy for usual moderators; Le coefficient de diffusion en fonction de l'energie des thermaliseurs usuels

    Energy Technology Data Exchange (ETDEWEB)

    Cadilhac, M; Livolant, M; Pillard, D; Soule, J -L [Commissariat a l' Energie Atomique, Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France)

    1966-07-01

    After a review of the definition of the energy function to be taken for the diffusion coefficient used in calculations of reactor cells, in the elementary theory of diffusion, various possible approximations of this function are given. These approximations are shown to be accurate enough for practical uses. Methods for the direct calculations of these approximations for the currently used 'normal' models (methods avoiding the calculation of differential cross sections) are described; these methods are applied to several usual moderators at various temperatures according to different models. (authors) [French] On rappelle la definition de la fonction de l'energie que l'on doit prendre pour le coefficient de diffusion dans les calculs de cellule de reacteur en theorie elementaire de la diffusion. Puis on indique diverses approximations possibles de cette fonction. On montre que ces approximations ont en pratique une precision suffisante. Enfin on decrit des methodes de calcul direct de ces approximations pour les modeles 'normaux' couramment employes (methodes qui evitent d'avoir a calculer les sections efficaces differentielles), et on les applique a plusieurs thermaliseurs usuels a differentes temperatures (selon differents modeles). (auteurs)

  15. The Influence of Conditioning Agent on Phosphate Diffusion Coefficient through Polyacrylamide and Agarose Gel

    Directory of Open Access Journals (Sweden)

    Layta Dinira

    2013-03-01

    Full Text Available Excess phosphate in natural water can cause algae grow rapidly, to the extent causing many fish deaths that led to the extinction of certain species. Therefore, an analysis or periodic observations of phosphate levels in the water is needed. The commonly used method is diffusive gradient in thin films (DGT technique. The DGT technique is based on the ability of analyte to diffuse through a gel, which have a value named diffusion coefficient. This research was conducted in order to study the effect of different storage solution to the phosphate diffusion coefficient through polyacrylamide and agarose gels. Initial research performed with making the polyacrylamide and agarose gels. To observe the effect of different storage solutions, the gels partly stored in distilled water gel while the others are stored in a NaCl solution of 0.01 M. Phosphate diffusion coefficient was determined using Fick's Law after analyze the phosphate concentration using UV-Visible spectrophotometer. The results showed that phosphate diffusion coefficient was highest when polyacrylamide and agarose gels stored in NaCl solution of 0.01 M.

  16. Procedures and apparatus for measuring diffusion and distribution coefficients in compacted clays

    Energy Technology Data Exchange (ETDEWEB)

    Hume, H B

    1993-12-01

    Diffusion and distribution coefficients are needed to assess the migration of radionuclides through the compacted clay-based buffer and backfill materials proposed for use in a nuclear fuel waste disposal vault. This report describes the techniques used to measure these coefficients. Both steady-state and transient diffusion experiments are discussed. The procedures used to prepare the clay plug, assemble the cell, conduct the experiment and calculate the results are described. In addition, methods for obtaining distribution coefficients for radionuclides on both loose and compacted clays are discussed. (author). 18 refs., 3 tabs., 16 figs.

  17. Procedures and apparatus for measuring diffusion and distribution coefficients in compacted clays

    International Nuclear Information System (INIS)

    Hume, H.B.

    1993-12-01

    Diffusion and distribution coefficients are needed to assess the migration of radionuclides through the compacted clay-based buffer and backfill materials proposed for use in a nuclear fuel waste disposal vault. This report describes the techniques used to measure these coefficients. Both steady-state and transient diffusion experiments are discussed. The procedures used to prepare the clay plug, assemble the cell, conduct the experiment and calculate the results are described. In addition, methods for obtaining distribution coefficients for radionuclides on both loose and compacted clays are discussed. (author). 18 refs., 3 tabs., 16 figs

  18. The use of CACTUS to generate modified diffusion coefficients in LWRWIMS

    International Nuclear Information System (INIS)

    Halsall, M.J.

    1986-11-01

    A new method has been devised in the lattice code, LWRWIMS, for modifying diffusion coefficients for poison pins. The method is based on an earlier one which used a one dimensional transport calculation of flux gradient and leakage to determine the effective diffusion coefficient. The improvement is to use a two dimensional characteristics transport calculation to overcome the approximations in geometry made previously. The report explains the theory of the method, describes its use within LWRWIMS, and gives some results obtained. (author)

  19. Quantitative differentiation of breast lesions at 3T diffusion-weighted imaging (DWI) using the ratio of distributed diffusion coefficient (DDC).

    Science.gov (United States)

    Ertas, Gokhan; Onaygil, Can; Akin, Yasin; Kaya, Handan; Aribal, Erkin

    2016-12-01

    To investigate the accuracy of diffusion coefficients and diffusion coefficient ratios of breast lesions and of glandular breast tissue from mono- and stretched-exponential models for quantitative diagnosis in diffusion-weighted magnetic resonance imaging (MRI). We analyzed pathologically confirmed 170 lesions (85 benign and 85 malignant) imaged using a 3.0T MR scanner. Small regions of interest (ROIs) focusing on the highest signal intensity for lesions and also for glandular tissue of contralateral breast were obtained. Apparent diffusion coefficient (ADC) and distributed diffusion coefficient (DDC) were estimated by performing nonlinear fittings using mono- and stretched-exponential models, respectively. Coefficient ratios were calculated by dividing the lesion coefficient by the glandular tissue coefficient. A stretched exponential model provides significantly better fits then the monoexponential model (P DDC ratio (area under the curve [AUC] = 0.93) when compared with lesion DDC, ADC ratio, and lesion ADC (AUC = 0.91, 0.90, 0.90) but with no statistically significant difference (P > 0.05). At optimal thresholds, the DDC ratio achieves 93% sensitivity, 80% specificity, and 87% overall diagnostic accuracy, while ADC ratio leads to 89% sensitivity, 78% specificity, and 83% overall diagnostic accuracy. The stretched exponential model fits better with signal intensity measurements from both lesion and glandular tissue ROIs. Although the DDC ratio estimated by using the model shows a higher diagnostic accuracy than the ADC ratio, lesion DDC, and ADC, it is not statistically significant. J. Magn. Reson. Imaging 2016;44:1633-1641. © 2016 International Society for Magnetic Resonance in Medicine.

  20. Plateau diffusion coefficient for arbitrary flux surface geometry

    International Nuclear Information System (INIS)

    Meier, H.K.; Hirshman, S.P.; Sigmar, D.J.; Lao, L.L.

    1981-03-01

    A relatively simple but accurate representation has been developed for magnetic flux surfaces; it is valid for finite β and it describes configurations with both ellipticity and D-shape. This representation has been applied to the computation of the diffusion coefficient in the plateau regime

  1. Extracting surface diffusion coefficients from batch adsorption measurement data: application of the classic Langmuir kinetics model.

    Science.gov (United States)

    Chu, Khim Hoong

    2017-11-09

    Surface diffusion coefficients may be estimated by fitting solutions of a diffusion model to batch kinetic data. For non-linear systems, a numerical solution of the diffusion model's governing equations is generally required. We report here the application of the classic Langmuir kinetics model to extract surface diffusion coefficients from batch kinetic data. The use of the Langmuir kinetics model in lieu of the conventional surface diffusion model allows derivation of an analytical expression. The parameter estimation procedure requires determining the Langmuir rate coefficient from which the pertinent surface diffusion coefficient is calculated. Surface diffusion coefficients within the 10 -9 to 10 -6  cm 2 /s range obtained by fitting the Langmuir kinetics model to experimental kinetic data taken from the literature are found to be consistent with the corresponding values obtained from the traditional surface diffusion model. The virtue of this simplified parameter estimation method is that it reduces the computational complexity as the analytical expression involves only an algebraic equation in closed form which is easily evaluated by spreadsheet computation.

  2. New sensitive micro-measurements of dynamic surface tension and diffusion coefficients

    DEFF Research Database (Denmark)

    Kinoshita, Koji; Ortiz, Elisa Parra; Needham, David

    2017-01-01

    Currently available dynamic surface tension (DST) measurement methods, such as Wilhelmy plate, droplet- or bubble-based methods, still have various experimental limitations such as the large size of the interface, convection in the solution, or a certain “dead time” at initial measurement....... These limitations create inconsistencies for the kinetic analysis of surfactant adsorption/desorption, especially significant for ionic surfactants. Here, the “micropipette interfacial area-expansion method” was introduced and validated as a new DST measurement having a high enough sensitivity to detect diffusion...... for surface excess concentration. We found that the measured diffusion coefficient of 1-Octanol, 7.2 ± 0.8 × 10−6 cm2/s, showed excellent agreement with the result from an alternative method, “single microdroplet catching method”, to measure the diffusion coefficient from diffusion-controlled microdroplet...

  3. Diffusion coefficients of gaseous scavengers in organic liquids used in radiation chemistry

    International Nuclear Information System (INIS)

    Luthjens, L.H.; De Leng, H.C.; Warman, J.M.; Hummel, A.

    1990-01-01

    Diffusion coefficients have been measured of some gaseous scavengers commonly used in radiation chemical studies: CO 2 , NH 3 , SF 6 and O 2 in trans-decalin, cyclohexane, isooctane and n-hexane, and CO 2 in cis-decalin, at 25 0 C. A modified diaphragm cell method has been used in order to limit the time needed for a measurement to about 6 h. Analysis of the results yields a simple semi-empirical predictive relation for the diffusion coefficient of a (gaseous) solute A in an organic solvent B. Diffusion coefficients calculated using the simple relation appear to give results in fair agreement with published values, over a range of organic solvents including alcohols, and over a range of temperatures. Some measured and predicted values are discussed with reference to results from the literature. (author)

  4. Diffusion coefficient of hydrogen in niobium and tantalum

    International Nuclear Information System (INIS)

    Vargas, P.; Miranda, L.; Lagos, M.

    1988-08-01

    We show that the current data on hydrogen diffusion in Tantalum between 15K and 550K and in Niobium between 135K and 400K can be quantitatively explained by the small polaron theory. The experimental data can be understood assuming ground-state to ground-state tunneling between interstitial sites with tetrahedral symmetry plus an activated contribution due to tunneling between excited states having octahedral symmetry. The break of the diffusivity curve at T approx. = 250K follows naturally. It evidences the transition between the tetrahedral and octahedral hopping. For Ta the second break of the diffusivity curve at T approx. = 20K indicated the recovering of the ground-state hopping with tetrahedral symmetry. Below T approx. = 10K for Ta and T approx. = 7K for Nb the diffusion coefficient becomes independent of T. (author). 17 refs, 3 figs, 1 tab

  5. Application of numerical inverse method in calculation of composition-dependent interdiffusion coefficients in finite diffusion couples

    DEFF Research Database (Denmark)

    Liu, Yuanrong; Chen, Weimin; Zhong, Jing

    2017-01-01

    The previously developed numerical inverse method was applied to determine the composition-dependent interdiffusion coefficients in single-phase finite diffusion couples. The numerical inverse method was first validated in a fictitious binary finite diffusion couple by pre-assuming four standard...... sets of interdiffusion coefficients. After that, the numerical inverse method was then adopted in a ternary Al-Cu-Ni finite diffusion couple. Based on the measured composition profiles, the ternary interdiffusion coefficients along the entire diffusion path of the target ternary diffusion couple were...... obtained by using the numerical inverse approach. The comprehensive comparisons between the computations and the experiments indicate that the numerical inverse method is also applicable to high-throughput determination of the composition-dependent interdiffusion coefficients in finite diffusion couples....

  6. A Quantitative Property-Property Relationship for the Internal Diffusion Coefficients of Organic Compounds in Solid Materials

    DEFF Research Database (Denmark)

    Huang, Lei; Fantke, Peter; Jolliet, Olivier

    2017-01-01

    of chemical-material combinations. This paper develops and evaluates a quantitative property-property relationship (QPPR) to predict diffusion coefficients for a wide range of organic chemicals and materials. We first compiled a training dataset of 1103 measured diffusion coefficients for 158 chemicals in 32......Indoor releases of organic chemicals encapsulated in solid materials are major contributors to human exposures and are directly related to the internal diffusion coefficient in solid materials. Existing correlations to estimate the diffusion coefficient are only valid for a limited number...... consolidated material types. Following a detailed analysis of the temperature influence, we developed a multiple linear regression model to predict diffusion coefficients as a function of chemical molecular weight (MW), temperature, and material type (adjusted R2 of 0.93). The internal validations showed...

  7. Simultaneous inversion for the space-dependent diffusion coefficient and the fractional order in the time-fractional diffusion equation

    International Nuclear Information System (INIS)

    Li, Gongsheng; Zhang, Dali; Jia, Xianzheng; Yamamoto, Masahiro

    2013-01-01

    This paper deals with an inverse problem of simultaneously identifying the space-dependent diffusion coefficient and the fractional order in the 1D time-fractional diffusion equation with smooth initial functions by using boundary measurements. The uniqueness results for the inverse problem are proved on the basis of the inverse eigenvalue problem, and the Lipschitz continuity of the solution operator is established. A modified optimal perturbation algorithm with a regularization parameter chosen by a sigmoid-type function is put forward for the discretization of the minimization problem. Numerical inversions are performed for the diffusion coefficient taking on different functional forms and the additional data having random noise. Several factors which have important influences on the realization of the algorithm are discussed, including the approximate space of the diffusion coefficient, the regularization parameter and the initial iteration. The inversion solutions are good approximations to the exact solutions with stability and adaptivity demonstrating that the optimal perturbation algorithm with the sigmoid-type regularization parameter is efficient for the simultaneous inversion. (paper)

  8. Pressure drop coefficient of laminar Newtonian flow in axisymmetric diffusers

    International Nuclear Information System (INIS)

    Rosa, S.; Pinho, F.T.

    2006-01-01

    The laminar flow of Newtonian fluids in axisymmetric diffusers has been numerically investigated to evaluate the pressure-loss coefficient as a function of Reynolds number, diffusion angle and expansion ratio. The numerical simulations were carried out with a finite-volume based code using non-orthogonal collocated grids and second order accurate differencing schemes to discretize all terms of the transport equations. The calculations were carried out for Reynolds numbers between 2 and 200, diffusion angles from 0 deg. to 90 deg. and expansion ratios of 1.5 and 2 and the data are presented in tabular form and as correlations. A simplified 1D theoretical analysis helped explain the various contributions to the loss coefficient and its difference relative to the reversible pressure variation due to differences between the actual and fully developed friction losses, distortions of the velocity profiles and pressure non-uniformity upstream and downstream of the expansion section

  9. Pressure drop coefficient of laminar Newtonian flow in axisymmetric diffusers

    Energy Technology Data Exchange (ETDEWEB)

    Rosa, S. [Escola Superior de Tecnologia e Gestao, Instituto Politecnico, Campus de Santa Apolonia, 5301-857 Braganca (Portugal)]. E-mail: srosa@ipb.pt; Pinho, F.T. [Centro de Estudos de Fenomenos de Transporte, DEM, Universidade do Minho, Campus de Azurem, 4800-058 Guimaraes (Portugal)]. E-mail: fpinho@fe.up.pt

    2006-04-15

    The laminar flow of Newtonian fluids in axisymmetric diffusers has been numerically investigated to evaluate the pressure-loss coefficient as a function of Reynolds number, diffusion angle and expansion ratio. The numerical simulations were carried out with a finite-volume based code using non-orthogonal collocated grids and second order accurate differencing schemes to discretize all terms of the transport equations. The calculations were carried out for Reynolds numbers between 2 and 200, diffusion angles from 0 deg. to 90 deg. and expansion ratios of 1.5 and 2 and the data are presented in tabular form and as correlations. A simplified 1D theoretical analysis helped explain the various contributions to the loss coefficient and its difference relative to the reversible pressure variation due to differences between the actual and fully developed friction losses, distortions of the velocity profiles and pressure non-uniformity upstream and downstream of the expansion section.

  10. Crack diffusion coefficient - A candidate fracture toughness parameter for short fiber composites

    Science.gov (United States)

    Mull, M. A.; Chudnovsky, A.; Moet, A.

    1987-01-01

    In brittle matrix composites, crack propagation occurs along random trajectories reflecting the heterogeneous nature of the strength field. Considering the crack trajectory as a diffusive process, the 'crack diffusion coefficient' is introduced. From fatigue crack propagation experiments on a set of identical SEN polyester composite specimens, the variance of the crack tip position along the loading axis is found to be a linear function of the effective 'time'. The latter is taken as the effective crack length. The coefficient of proportionality between variance of the crack trajectory and the effective crack length defines the crack diffusion coefficient D which is found in the present study to be 0.165 mm. This parameter reflects the ability of the composite to deviate the crack from the energetically most efficient path and thus links fracture toughness to the microstructure.

  11. Self-diffusion of calcium and yttrium in pure and YF/sub 3/-doped CaF/sub 2/ single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kucheria, C.S.

    1979-07-01

    Self-diffusion coefficients for Ca and Y were measured in pure and YF/sub 3/-doped CaF/sub 2/ crystals for dopant levels ranging from 2 to 10 mole %. Diffusion data were analyzed as a function of temperature and as a function of composition. Comparison of Arrhenius relationships for both Ca and Y showed that the activation energy for cation diffusion decreased approximately linearly as the YF/sub 3/ dopant level increased. Atomic jump pathways were considered and the decrease in the activation energy was explained by an increase in the constriction sizes due to Willis cluster formation. Diffusion coefficients for both cations were found to increase approximately linearly with square of the mole percent YF/sub 3/. A comparison of activation energies and diffusion coefficients for both cations in doped crystals indicated that Y required lower activation energy for diffusion than Ca but the diffusion coefficient was also lower for Y compared to Ca. The smaller activation energy for Y was explained by the smaller ionic size of Y, whereas the smaller diffusion coefficient for Y was explained on the basis of highly correlated jumps of Y ions because of interaction between Y/sub Ca/ and V/sub Ca/.

  12. Self-diffusion in single crystalline silicon nanowires

    Science.gov (United States)

    Südkamp, T.; Hamdana, G.; Descoins, M.; Mangelinck, D.; Wasisto, H. S.; Peiner, E.; Bracht, H.

    2018-04-01

    Self-diffusion experiments in single crystalline isotopically controlled silicon nanowires with diameters of 70 and 400 nm at 850 and 1000 °C are reported. The isotope structures were first epitaxially grown on top of silicon substrate wafers. Nanowires were subsequently fabricated using a nanosphere lithography process in combination with inductively coupled plasma dry reactive ion etching. Three-dimensional profiling of the nanosized structure before and after diffusion annealing was performed by means of atom probe tomography (APT). Self-diffusion profiles obtained from APT analyses are accurately described by Fick's law for self-diffusion. Data obtained for silicon self-diffusion in nanowires are equal to the results reported for bulk silicon crystals, i.e., finite size effects and high surface-to-volume ratios do not significantly affect silicon self-diffusion. This shows that the properties of native point defects determined from self-diffusion in bulk crystals also hold for nanosized silicon structures with diameters down to 70 nm.

  13. Dependence of Exciton Diffusion Length and Diffusion Coefficient on Photophysical Parameters in Bulk Heterojunction Organic Solar Cells

    Science.gov (United States)

    Yeboah, Douglas; Singh, Jai

    2017-11-01

    Recently, the dependence of exciton diffusion length (LD ) on some photophysical parameters of organic solids has been experimentally demonstrated, however no systematic theoretical analysis of this phenomenon has been carried out. We have conducted a theoretical study by using the Förster resonance energy transfer and Dexter carrier transfer mechanisms together with the Einstein-Smoluchowski diffusion equation to derive analytical models for the diffusion lengths (LD ) and diffusion coefficients (D) of singlet (S) and triplet (T) excitons in organic solids as functions of spectral overlap integral (J) , photoluminescence (PL) quantum yield (φD ) , dipole moment (μT ) and refractive index (n) of the photoactive material. The exciton diffusion lengths and diffusion coefficients in some selected organic solids were calculated, and we found that the singlet exciton diffusion length (LDS ) increases with φD and J, and decreases with n. Also, the triplet exciton diffusion length (LDT ) increases with φD and decreases with μT . These may be achieved through doping the organic solids into broad optical energy gap host materials as observed in previous experiments. The calculated exciton diffusion lengths are compared with experimental values and a reasonably good agreement is found between them. The results presented are expected to provide insight relevant to the synthesis of new organic solids for fabrication of bulk heterojunction organic solar cells characterized by better power conversion efficiency.

  14. Solution of time dependent atmospheric diffusion equation with a proposed diffusion coefficient

    International Nuclear Information System (INIS)

    Mayhoub, A.B.; Essa, KH.S.M.; Aly, SH.

    2004-01-01

    One-dimensional model for the dispersion of passive atmospheric contaminant (not included chemical reactions) in the atmospheric boundary layer is considered. On the basis of the gradient transfer theory (K-theory), the time dependent diffusion equation represents the dispersion of the pollutants is solved analytically. The solution depends on diffusion coefficient K', which is expressed in terms of the friction velocity 'u the vertical coordinate -L and the depth of the mixing layer 'h'. The solution is obtained to either the vertical coordinate 'z' is less or greater than the mixing height 'h'. The obtained solution may be applied to study the atmospheric dispersion of pollutants

  15. Correlation Between Minimum Apparent Diffusion Coefficient (ADCmin) and Tumor Cellularity: A Meta-analysis.

    Science.gov (United States)

    Surov, Alexey; Meyer, Hans Jonas; Wienke, Andreas

    2017-07-01

    Diffusion-weighted imaging (DWI) is a magnetic resonance imaging (MRI) technique based on measure of water diffusion that can provide information about tissue microstructure, especially about cell count. Increase of cell density induces restriction of water diffusion and decreases apparent diffusion coefficient (ADC). ADC can be divided into three sub-parameters: ADC minimum or ADC min , mean ADC or ADC mean and ADC maximum or ADC max Some studies have suggested that ADC min shows stronger correlations with cell count in comparison to other ADC fractions and may be used as a parameter for estimation of tumor cellularity. The aim of the present meta-analysis was to summarize correlation coefficients between ADC min and cellularity in different tumors based on large patient data. For this analysis, MEDLINE database was screened for associations between ADC and cell count in different tumors up to September 2016. For this work, only data regarding ADC min were included. Overall, 12 publications with 317 patients were identified. Spearman's correlation coefficient was used to analyze associations between ADC min and cellularity. The reported Pearson correlation coefficients in some publications were converted into Spearman correlation coefficients. The pooled correlation coefficient for all included studies was ρ=-0.59 (95% confidence interval (CI)=-0.72 to -0.45), heterogeneity Tau 2 =0.04 (pcorrelated moderately with tumor cellularity. The calculated correlation coefficient is not stronger in comparison to the reported coefficient for ADC mean and, therefore, ADC min does not represent a better means to reflect cellularity. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  16. Measurement of the apparent diffusion coefficient in paediatric mitochondrial encephalopathy cases and a comparison of parenchymal changes associated with the disease using follow-up diffusion coefficient measurements

    Energy Technology Data Exchange (ETDEWEB)

    Uysal, Fatma, E-mail: afatmauysal@gmail.com [Dokuz Eylül University, Department of Pediatric Radiology, Izmir (Turkey); Çakmakçı, Handan, E-mail: handan.cakmakci@deu.edu.tr [Dokuz Eylül University, Department of Pediatric Radiology, Izmir (Turkey); Yiş, Uluç, E-mail: ulucyis@deu.edu.tr [Dokuz Eylül University, Department of Pediatric Neurology, Izmir (Turkey); Ellidokuz, Hülya, E-mail: hulyaellidokuz@deu.edu.tr [Dokuz Eylül University, Department of Medical Statistics, Izmir (Turkey); Hız, Ayşe Semra, E-mail: aysesemrahiz@deu.edu.tr [Dokuz Eylül University, Department of Pediatric Neurology, Izmir (Turkey)

    2014-01-15

    Objectives: To reveal the contribution of MRI and diffusion-weighted imaging (DWI) to the diagnosis of mitochondrial encephalopathy (ME) and to evaluate the parenchymal changes associated with this disease in the involved parenchymal areas using the apparent diffusion coefficient (ADC) parameter. Methods: Ten patients who had undergone MRI and DWI analysis with a pre-diagnosis of neurometabolic disease, and who were subsequently diagnosed with ME in laboratory and/or genetic studies, were included in our study. ADC values were compared with a control group composed of 20 patients of similar age with normal brains. Evaluations involved measurements made in 20 different areas determined on the ADC map. The dominance or contribution of ADC coefficient measurements to the conventional sequences was compared with the controls. Results: In the first examination, an increase in both diffusion and ADC values was detected in six cases and diffusion restriction and a decrease in ADC values in three patients. While an increase in both diffusion and ADC values was demonstrated in four cases, there was diffusion restriction and a decrease in ADC values in three cases in the control examinations. Conclusions: DWI provides information that complements conventional MRI sequences in the diagnosis of ME.

  17. Exciton diffusion coefficient measurement in ZnO nanowires under electron beam irradiation

    Science.gov (United States)

    Donatini, Fabrice; Pernot, Julien

    2018-03-01

    In semiconductor nanowires (NWs) the exciton diffusion coefficient can be determined using a scanning electron microscope fitted with a cathodoluminescence system. High spatial and temporal resolution cathodoluminescence experiments are needed to measure independently the exciton diffusion length and lifetime in single NWs. However, both diffusion length and lifetime can be affected by the electron beam bombardment during observation and measurement. Thus, in this work the exciton lifetime in a ZnO NW is measured versus the electron beam dose (EBD) via a time-resolved cathodoluminescence experiment with a temporal resolution of 50 ps. The behavior of the measured exciton lifetime is consistent with our recent work on the EBD dependence of the exciton diffusion length in similar NWs investigated under comparable SEM conditions. Combining the two results, the exciton diffusion coefficient in ZnO is determined at room temperature and is found constant over the full span of EBD.

  18. Evaluation of downwelling diffuse attenuation coefficient algorithms in the Red Sea

    KAUST Repository

    Tiwari, Surya Prakash

    2016-05-07

    Despite the importance of the optical properties such as the downwelling diffuse attenuation coefficient for characterizing the upper water column, until recently no in situ optical measurements were published for the Red Sea. Kirby et al. used observations from the Coastal Zone Color Scanner to characterize the spatial and temporal variability of the diffuse attenuation coefficient (Kd(490)) in the Red Sea. To better understand optical variability and its utility in the Red Sea, it is imperative to comprehend the diffuse attenuation coefficient and its relationship with in situ properties. Two apparent optical properties, spectral remote sensing reflectance (Rrs) and the downwelling diffuse attenuation coefficient (Kd), are calculated from vertical profile measurements of downwelling irradiance (Ed) and upwelling radiance (Lu). Kd characterizes light penetration into water column that is important for understanding both the physical and biogeochemical environment, including water quality and the health of ocean environment. Our study tests the performance of the existing Kd(490) algorithms in the Red Sea and compares them against direct in situ measurements within various subdivisions of the Red Sea. Most standard algorithms either overestimated or underestimated with the measured in situ values of Kd. Consequently, these algorithms provided poor retrieval of Kd(490) for the Red Sea. Random errors were high for all algorithms and the correlation coefficients (r2) with in situ measurements were quite low. Hence, these algorithms may not be suitable for the Red Sea. Overall, statistical analyses of the various algorithms indicated that the existing algorithms are inadequate for the Red Sea. The present study suggests that reparameterizing existing algorithms or developing new regional algorithms is required to improve retrieval of Kd(490) for the Red Sea. © (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is

  19. The diffusion coefficient for 239Pu, 241Am, 99Tc and 137Cs in highly compacted buffer materials

    International Nuclear Information System (INIS)

    Zhou Kanghan; Li Guoding

    1998-01-01

    Based on one-dimension diffusion model, the diffusion coefficients of Pu, Am, Tc and Cs in highly compacted sodium-bentonite generally used as buffer materials in geologic disposal system for high-level radioactive waste have been determined at room temperature in the atmosphere of nitrogen. The results show that the diffusion coefficients of Am, Pu and Tc and about 10 -13 ∼10 -15 m 2 /s, and that of Cs about 10 -12 m 2 /s. The diffusion coefficients of these elements decrease with the increasing of the dry density of buffer materials. From the relationship of diffusion coefficient, retardation coefficient and dry density of bentonite, it has been concluded that Am and Pu transfer predominately by diffusion in solid phase, however, Cs and Tc by diffusion in pore water

  20. Evaluation of diffusion coefficients from composition profiles - the influence of trapping

    DEFF Research Database (Denmark)

    Christiansen, Thomas; Somers, Marcel A. J.

    2006-01-01

    The applicability of the Boltzmann-Matano method for evaluation of a diffusion coefficient and its concentration dependency by line profile analysis is tested on three different (model) systems. All systems involve interstitial diffusion. It is shown that the occurrence of trapping corrupts...... the applicability of the Boltzmann-Matano method....

  1. FORTRAN program for calculating liquid-phase and gas-phase thermal diffusion column coefficients

    International Nuclear Information System (INIS)

    Rutherford, W.M.

    1980-01-01

    A computer program (COLCO) was developed for calculating thermal diffusion column coefficients from theory. The program, which is written in FORTRAN IV, can be used for both liquid-phase and gas-phase thermal diffusion columns. Column coefficients for the gas phase can be based on gas properties calculated from kinetic theory using tables of omega integrals or on tables of compiled physical properties as functions of temperature. Column coefficients for the liquid phase can be based on compiled physical property tables. Program listings, test data, sample output, and users manual are supplied for appendices

  2. PFG-NMR self-diffusion in casein dispersions: effect of probe size and protein aggregate size

    NARCIS (Netherlands)

    Salami, S.; Rondeau, C.; Duynhoven, van J.P.M.; Mariette, F.

    2013-01-01

    The self-diffusion coefficients of different molecular weight PEGs (Polyethylene glycol) and casein particles were measured, using a pulsed-gradient nuclear magnetic resonance technique (PFG-NMR), in native phosphocaseinate (NPC) and sodium caseinate (SC) dispersions where caseins are not structured

  3. Oxygen concentration diffusion analysis of lead-bismuth-cooled, natural-circulation reactor

    International Nuclear Information System (INIS)

    Ito, Kei; Sakai, Takaaki

    2001-11-01

    The feasibility study on fast breeder reactors in Japan has been conducted at JNC and related organizations. The Phase-I study has finished in March, 2001. During the Phase-I activity, lead-bismuth eutectic coolant has been selected as one of the possible coolant options and a medium-scale plant, cooled by a lead-bismuth natural circulation flow was studied. On the other side, it is known that lead-bismuth eutectic has a problem of structural material corrosiveness. It was found that oxygen concentration control in the eutectic plays an important role on the corrosion protection. In this report, we have developed a concentration diffusion analysis code (COCOA: COncentration COntrol Analysis code) in order to carry out the oxygen concentration control analysis. This code solves a two-dimensional concentration diffusion equation by the finite differential method. It is possible to simulate reaction of oxygen and hydrogen by the code. We verified the basic performance of the code and carried out oxygen concentration diffusion analysis for the case of an oxygen increase by a refueling process in the natural circulation reactor. In addition, characteristics of the oxygen control system was discussed for a different type of the control system as well. It is concluded that the COCOA code can simulate diffusion of oxygen concentration in the reactor. By the analysis of a natural circulation medium-scale reactor, we make clear that the ON-OFF control and PID control can well control oxygen concentration by choosing an appropriate concentration measurement point. In addition, even when a trouble occurs in the oxygen emission or hydrogen emission system, it observes that control characteristic drops away. It is still possible, however, to control oxygen concentration in such case. (author)

  4. Available states and available space: static properties that predict self-diffusivity of confined fluids

    International Nuclear Information System (INIS)

    Goel, Gaurav; Krekelberg, William P; Pond, Mark J; Truskett, Thomas M; Mittal, Jeetain; Shen, Vincent K; Errington, Jeffrey R

    2009-01-01

    Although classical density functional theory provides reliable predictions for the static properties of simple equilibrium fluids under confinement, a theory of comparative accuracy for the transport coefficients has yet to emerge. Nonetheless, there is evidence that knowledge of how confinement modifies static behavior can aid in forecasting dynamics. Specifically, recent molecular simulation studies have shown that the relationship between excess entropy and self-diffusivity of a bulk equilibrium fluid changes only modestly when the fluid is isothermally confined, indicating that knowledge of the former might allow semi-quantitative predictions of the latter. Do other static measures, such as those that characterize free or available volume, also strongly correlate with single-particle dynamics of confined fluids? Here, we investigate this question for both the single-component hard-sphere fluid and hard-sphere mixtures. Specifically, we use molecular simulations and fundamental measure theory to study these systems at approximately 10 3 equilibrium state points. We examine three different confining geometries (slit pore, square channel, and cylindrical pore) and the effects of particle packing fraction and particle–boundary interactions. Although average density fails to predict some key qualitative trends for the self-diffusivity of confined fluids, we provide strong empirical evidence that a new generalized measure of available volume for inhomogeneous fluids correlates excellently with self-diffusivity across a wide parameter space in these systems, approximately independently of the degree of confinement. An important consequence, which we demonstrate here, is that density functional theory predictions of this static property can be used together with knowledge of bulk fluid behavior to semi-quantitatively estimate the self-diffusion coefficient of confined fluids under equilibrium conditions

  5. Determination of gas diffusion coefficients in undisturbed Boom clay

    International Nuclear Information System (INIS)

    Jacops, E.; Volckaert, G.; Maes, N.; Govaerts, J.; Weetjens, E.

    2012-01-01

    Document available in extended abstract form only. The Belgian agency for radioactive waste and enriched fissile materials Ondraf/Niras presently considers Boom Clay as a potential host formation for the disposal of high-level and long-lived radioactive waste. The production of gas is unavoidable within a geological repository. Gas is produced by different mechanisms: anaerobic corrosion of metals in waste and packaging, radiolysis of water and organic materials in the waste and engineered barriers and microbial degradation of various organic wastes. Corrosion and radiolysis yield mainly hydrogen while microbial degradation leads to methane and carbon dioxide. The gas generated in the near field of a geological repository will dissolve in the pore water and is transported away from the repository by diffusion as dissolved species. If the gas generation rate is larger than the diffusive flux, the pore water will become over-saturated and a free gas phase will form. Initially, isolated gas bubbles will accumulate until a continuous gas phase is formed. As gas pressure continues to increase, discrete gas pathways may be formed by tensile fractures within the rock fabric. Consequently, this entire process may locally and at least temporarily alter the hydraulic and mechanical properties of the engineered barriers and the clay and, perhaps, their performance. Therefore it is important to assess whether or not gas production rates might exceed the diffusive gas flux. The currently available gas diffusion parameters (D eff : effective diffusion coefficient) for hydrogen in Boom Clay, obtained from the MEGAS project, and re-evaluated after lead to an estimated D eff between 1.9 10 -12 and 1.5 10 -10 m 2 /s. Sensitivity calculations showed that this uncertainty on the diffusion coefficient, combined with that on the gas source term, made it impossible to exclude the formation of a free gas phase. To reduce the uncertainty, an experimental method was developed to determine

  6. Anion and cation diffusion in barium titanate and strontium titanate

    International Nuclear Information System (INIS)

    Kessel, Markus Franz

    2012-01-01

    Perovskite oxides show various interesting properties providing several technical applications. In many cases the defect chemistry is the key to understand and influence the material's properties. In this work the defect chemistry of barium titanate and strontium titanate is analysed by anion and cation diffusion experiments and subsequent time-of-flight secondary ion mass spectrometry (ToF-SIMS). The reoxidation equation for barium titanate used in multi-layer ceramic capacitors (MLCCs) is found out by a combination of different isotope exchange experiments and the analysis of the resulting tracer diffusion profiles. It is shown that the incorporation of oxygen from water vapour is faster by orders of magnitude than from molecular oxygen. Chemical analysis shows the samples contain various dopants leading to a complex defect chemistry. Dysprosium is the most important dopant, acting partially as a donor and partially as an acceptor in this effectively acceptor-doped material. TEM and EELS analysis show the inhomogeneous distribution of Dy in a core-shell microstructure. The oxygen partial pressure and temperature dependence of the oxygen tracer diffusion coefficients is analysed and explained by the complex defect chemistry of Dy-doped barium titanate. Additional fast diffusion profiles are attributed to fast diffusion along grain boundaries. In addition to the barium titanate ceramics from an important technical application, oxygen diffusion in cubic, nominally undoped BaTiO 3 single crystals has been studied by means of 18 O 2 / 16 O 2 isotope exchange annealing and subsequent determination of the isotope profiles in the solid by ToF-SIMS. It is shown that a correct description of the diffusion profiles requires the analysis of the diffusion through the surface space-charge into the material's bulk. Surface exchange coefficients, space-charge potentials and bulk diffusion coefficients are analysed as a function of oxygen partial pressure and temperature. The

  7. Measurement of methanol diffusion coefficient in polymer electrode membrane by small NMR sensor. 1st report. Development of method of measure methanol diffusion coefficient and evaluation of measured results

    International Nuclear Information System (INIS)

    Ogawa, Kuniyasu; Haishi, Tomoyuki; Ito, Kohei

    2010-01-01

    A method for measuring the diffusion coefficient of methanol in a polymer electrolyte membrane (PEM) was developed using the NMR method. A circular coil of 0.6mm inside diameter was used as a small NMR sensor. The PEM was inserted in a penetration cell, where methanol solvent is supplied to one side of the PEM and nitrogen gas is supplied to the other side of the PEM. The small NMR sensor was placed on the nitrogen gas side of the PEM. The small NMR sensor detects the NMR signal from the methanol solvent which permeates the PEM. The CH and OH components of the methanol solvent were obtained from the NMR signal by spectral analysis. The methanol concentration in the PEM was determined by the ratio of CH to OH components. The methanol concentration was acquired at intervals of 30s and was measured for 2000s. After 1500 seconds, the methanol concentration in the PEM reaches a steady state. The final methanol concentration was about 20% of the methanol concentration of the solvent. It assumed that the diffusion phenomenon of methanol in a PEM was a one-dimensional transport phenomenon, and the time-dependent change of methanol concentration was analyzed by parameterizing the diffusion coefficient. The diffusion coefficient of methanol in a PEM was determined by comparison with the measurement result of the time change of methanol concentration and the analysis results. The concentration difference diffusion coefficient of methanol in PEM obtained using this method was 3.5 * 10 -10 m 2 /s. (author)

  8. Blackness coefficients, effective diffusion parameters, and control rod worths for thermal reactors - Methods

    Energy Technology Data Exchange (ETDEWEB)

    Bretscher, M M [Argonne National Laboratory, Argonne, IL 60439 (United States)

    1985-07-01

    Simple diffusion theory cannot be used to evaluate control rod worths in thermal neutron reactors because of the strongly absorbing character of the control material. However, reliable control rod worths can be obtained within the framework of diffusion theory if the control material is characterized by a set of mesh-dependent effective diffusion parameters. For thin slab absorbers the effective diffusion parameters can be expressed as functions of a suitably-defined pair of 'blackness coefficients'. Methods for calculating these blackness coefficients in the P1, P3, and P5 approximations, with and without scattering, are presented. For control elements whose geometry does not permit a thin slab treatment, other methods are needed for determining the effective diffusion parameters. One such method, based on reaction rate ratios, is discussed. (author)

  9. The Gini coefficient: a methodological pilot study to assess fetal brain development employing postmortem diffusion MRI

    International Nuclear Information System (INIS)

    Viehweger, Adrian; Sorge, Ina; Hirsch, Wolfgang; Riffert, Till; Dhital, Bibek; Knoesche, Thomas R.; Anwander, Alfred; Stepan, Holger

    2014-01-01

    Diffusion-weighted imaging (DWI) is important in the assessment of fetal brain development. However, it is clinically challenging and time-consuming to prepare neuromorphological examinations to assess real brain age and to detect abnormalities. To demonstrate that the Gini coefficient can be a simple, intuitive parameter for modelling fetal brain development. Postmortem fetal specimens(n = 28) were evaluated by diffusion-weighted imaging (DWI) on a 3-T MRI scanner using 60 directions, 0.7-mm isotropic voxels and b-values of 0, 150, 1,600 s/mm 2 . Constrained spherical deconvolution (CSD) was used as the local diffusion model. Fractional anisotropy (FA), apparent diffusion coefficient (ADC) and complexity (CX) maps were generated. CX was defined as a novel diffusion metric. On the basis of those three parameters, the Gini coefficient was calculated. Study of fetal brain development in postmortem specimens was feasible using DWI. The Gini coefficient could be calculated for the combination of the three diffusion parameters. This multidimensional Gini coefficient correlated well with age (Adjusted R 2 = 0.59) between the ages of 17 and 26 gestational weeks. We propose a new method that uses an economics concept, the Gini coefficient, to describe the whole brain with one simple and intuitive measure, which can be used to assess the brain's developmental state. (orig.)

  10. Structural characterisation of oxygen diffusion hardened alpha-tantalum PVD-coatings on titanium.

    Science.gov (United States)

    Hertl, C; Koll, L; Schmitz, T; Werner, E; Gbureck, U

    2014-08-01

    Titanium substrates were coated with tantalum layers of 5 μm thickness using physical vapour deposition (PVD). The tantalum layers showed a (110)-preferred orientation. The coated samples were hardened by oxygen diffusion. Using X-ray diffraction the crystallographic structure of the tantalum coatings was characterised, comparing untreated and diffusion hardened specimen conditions. Oxygen depth profiles were determined by glow discharge spectrometry. The hardening effect of the heat treatment was examined by Vickers microhardness testing. The increase of surface hardness caused by oxygen diffusion was at least 50%. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Correlation between self-diffusion in Si and the migration mechanisms of vacancies and self-interstitials: An atomistic study

    International Nuclear Information System (INIS)

    Posselt, M.; Gao, F.; Bracht, H.

    2008-01-01

    The migration of point defects in silicon and the corresponding atomic mobility are investigated by comprehensive classical molecular-dynamics simulations using the Stillinger-Weber potential and the Tersoff potential. In contrast to most of the previous studies both the point defect diffusivity and the self-diffusion coefficient per defect are calculated separately so that the diffusion-correlation factor can be determined. Simulations with both the Stillinger-Weber and the Tersoff potential show that vacancy migration is characterized by the transformation of the tetrahedral vacancy to the split vacancy and vice versa and the diffusion-correlation factor f V is about 0.5. This value was also derived by the statistical diffusion theory under the assumption of the same migration mechanism. The mechanisms of self-interstitial migration are more complex. The detailed study, including a visual analysis and investigations with the nudged elastic band method, reveals a variety of transformations between different self-interstitial configurations. Molecular-dynamics simulations using the Stillinger-Weber potential show that the self-interstitial migration is dominated by a dumbbell mechanism, whereas in the case of the Tersoff potential the interstitialcy mechanism prevails. The corresponding values of the correlation factor f I are different, namely, 0.59 and 0.69 for the dumbbell and the interstitialcy mechanisms, respectively. The latter value is nearly equal to that obtained by the statistical theory which assumes the interstitialcy mechanism. Recent analysis of experimental results demonstrated that in the framework of state-of-the-art diffusion and reaction models the best interpretation of point defect data can be given by assuming f I ≅0.6. The comparison with the present atomistic study leads to the conclusion that the self-interstitial migration in Si should be governed by a dumbbell mechanism

  12. Comparative analyses of diffusion coefficients for different extraction processes from thyme

    Directory of Open Access Journals (Sweden)

    Petrovic Slobodan S.

    2012-01-01

    Full Text Available This work was aimed to analyze kinetics and mass transfer phenomena for different extraction processes from thyme (Thymus vulgaris L. leaves. Different extraction processes with ethanol were studied: Soxhlet extraction and ultrasound-assisted batch extraction on the laboratory scale as well as pilot plant batch extraction with mixing. The extraction processes with ethanol were compared to the process of supercritical carbon dioxide extraction performed at 10 MPa and 40°C. Experimental data were analyzed by mathematical model derived from the Fick’s second law to determine and compare diffusion coefficients in the periods of constant and decreasing extraction rate. In the fast extraction period, values of diffusion coefficients were one to three orders of magnitude higher compared to those determined for the period of slow extraction. The highest diffusion coefficient was reported for the fast extraction period of supercritical fluid extraction. In the case of extraction processes with ethanol, ultrasound, stirring and extraction temperature increase enhanced mass transfer rate in the washing phase. On the other hand, ultrasound contributed the most to the increase of mass transfer rate in the period of slow extraction.

  13. Diffusion simulation of ferric ions in dosemeter Fricke-gel with variable diffusion coefficient

    International Nuclear Information System (INIS)

    Milani, Caio Jacob; Bevilacqua, Joyce da Silva; Rodrigues Junior, Orlando

    2014-01-01

    Dosimetry using dosimeters Fricke-xylenol-Gel (FXG) allows confirmation and better understanding of radiotherapy treatments. The technique involves the evaluation of volumes irradiated by magnetic resonance imaging (MRI) or CT-optical. In both cases, the time spent between the irradiation and measurement is an important factor that directly influences the results. The quality of the images can be compromised by the mobility of ferric ions (Fe 3+), formed during the interaction of radiation with matter, increasing the uncertainty in determining the isodose. In this work, we simulated the dynamic involving ferric ions formed in one irradiated region irradiated in a two-dimensional domain with a variable diffusion coefficient. This phenomenon is modeled by a differential equation and solved numerically by an efficient algorithm that generalizes the Crank-Nicolson method. The stability and consistency of the method guarantee the convergence of the numerical solution for a predefined tolerance based in the choice of discretization steps of time and space. Different continuous functions were chosen to represent the diffusion coefficient and graphical views of the phenomenon are presented for a better understanding of the process

  14. Increased self-diffusion of brain water in hydrocephalus measured by MR imaging

    DEFF Research Database (Denmark)

    Gideon, P; Thomsen, C; Gjerris, F

    1994-01-01

    We used MR imaging to measure the apparent brain water self-diffusion in 5 patients with normal pressure hydrocephalus (NPH), in 2 patients with high pressure hydrocephalus (HPH), and in 8 age-matched controls. In all patients with NPH significant elevations of the apparent diffusion coefficients...... white matter, and in one patient reexamined one year after surgery, ADCs were unchanged in nearly all brain regions. The increased ADC values in hydrocephalus patients may be caused by factors such as changes in myelin-associated bound water, increased Virchow-Robin spaces, and increased extracellular...... brain water fraction. For further studies of brain water diffusion in hydrocephalus patients, echo-planar imaging techniques with imaging times of a few seconds may be valuable....

  15. New method and installation for rapid determination of radon diffusion coefficient in various materials.

    Science.gov (United States)

    Tsapalov, Andrey; Gulabyants, Loren; Livshits, Mihail; Kovler, Konstantin

    2014-04-01

    The mathematical apparatus and the experimental installation for the rapid determination of radon diffusion coefficient in various materials are developed. The single test lasts not longer than 18 h and allows testing numerous materials, such as gaseous and liquid media, as well as soil, concrete and radon-proof membranes, in which diffusion coefficient of radon may vary in an extremely wide range, from 1·10(-12) to 5·10(-5) m(2)/s. The uncertainty of radon diffusion coefficient estimation depends on the permeability of the sample and varies from about 5% (for the most permeable materials) to 40% (for less permeable materials, such as radon-proof membranes). Copyright © 2014. Published by Elsevier Ltd.

  16. LETTER TO THE EDITOR: Fractal diffusion coefficient from dynamical zeta functions

    Science.gov (United States)

    Cristadoro, Giampaolo

    2006-03-01

    Dynamical zeta functions provide a powerful method to analyse low-dimensional dynamical systems when the underlying symbolic dynamics is under control. On the other hand, even simple one-dimensional maps can show an intricate structure of the grammar rules that may lead to a non-smooth dependence of global observables on parameters changes. A paradigmatic example is the fractal diffusion coefficient arising in a simple piecewise linear one-dimensional map of the real line. Using the Baladi-Ruelle generalization of the Milnor-Thurnston kneading determinant, we provide the exact dynamical zeta function for such a map and compute the diffusion coefficient from its smallest zero.

  17. Study of cation diffusion in Zn O using {sup 65}Zn as radioactive tracer; Estudo da difusao cationica no Zn O com emprego de tracador radiativo {sup 65}Zn

    Energy Technology Data Exchange (ETDEWEB)

    Ferraz, Wilmar B.; Correa, Ricardo F. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte, MG (Brazil); Nogueira, Maria A.N.; Ramos, Marcelo; Sabioni, Antonio C.S. [Ouro Preto Univ., MG (Brazil). Dept de Fisica. Lab. de Difusao em Materiais

    2000-07-01

    Zinc self-diffusion coefficient were measured in polycrystalline Zn O of high purity (99,999%) prepared by conventional sintering at 1393 deg C, 4 h, in oxygen atmosphere. The Zn O samples had high density (>99% of the theoretical density) and grain size of 20 {mu}m. These samples were resintered for 72 h at 1400 deg C in order to increase the grain-size higher than 50 {mu} m. Samples of 15 x 15 x 2 mm{sup 3} were polished with diamond paste, and pre-annealed under the same conditions of temperature and atmosphere of the diffusion annealing. A thin film of {sup 65} Zn - radioactive tracer - applied to the polished surface was oxidized in oxygen atmosphere for a short time before diffusion annealing. The diffusion experiments were performed between 1002 and 1201 deg C in oxygen atmosphere. The {sup 65} Zn diffusion profiles were measured by sectioning in conjunction with residual-activity measurements. The results of the determination of the zinc in Zn O diffusion coefficients in function of temperature are presented and a comparison of these results obtained by the two radioactive method is showed. (author)

  18. Enhanced oxygen diffusion in low barium-containing La0.2175Pr0.2175Ba0.145Sr0.4Fe0.8Co0.2O3−δ intermediate temperature solid oxide fuel cell cathodes

    KAUST Repository

    Vert, Vicente B.

    2012-09-01

    Isotopic tracer diffusion studies have been performed on the perovskite composition La 0.2175Pr 0.2175Ba 0.145Sr 0.4Fe 0.8Co 0.2O 3-δ to obtain the diffusion and surface exchange coefficients for oxygen. This material has been identified as a highly active electrocatalytic cathode for intermediate temperature solid oxide fuel cells. The oxygen diffusion coefficients obtained in the 450-650 °C temperature range are higher than the ones measured for most of the cathode materials reported in the literature and they agree with those calculated from electrochemical impedance spectroscopy measurements performed on symmetrical cells. © 2012 Elsevier B.V. All rights reserved.

  19. The Gini coefficient: a methodological pilot study to assess fetal brain development employing postmortem diffusion MRI

    Energy Technology Data Exchange (ETDEWEB)

    Viehweger, Adrian; Sorge, Ina; Hirsch, Wolfgang [University Hospital Leipzig, Department of Pediatric Radiology, Leipzig (Germany); Riffert, Till; Dhital, Bibek; Knoesche, Thomas R.; Anwander, Alfred [Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig (Germany); Stepan, Holger [University Leipzig, Department of Obstetrics, Leipzig (Germany)

    2014-10-15

    Diffusion-weighted imaging (DWI) is important in the assessment of fetal brain development. However, it is clinically challenging and time-consuming to prepare neuromorphological examinations to assess real brain age and to detect abnormalities. To demonstrate that the Gini coefficient can be a simple, intuitive parameter for modelling fetal brain development. Postmortem fetal specimens(n = 28) were evaluated by diffusion-weighted imaging (DWI) on a 3-T MRI scanner using 60 directions, 0.7-mm isotropic voxels and b-values of 0, 150, 1,600 s/mm{sup 2}. Constrained spherical deconvolution (CSD) was used as the local diffusion model. Fractional anisotropy (FA), apparent diffusion coefficient (ADC) and complexity (CX) maps were generated. CX was defined as a novel diffusion metric. On the basis of those three parameters, the Gini coefficient was calculated. Study of fetal brain development in postmortem specimens was feasible using DWI. The Gini coefficient could be calculated for the combination of the three diffusion parameters. This multidimensional Gini coefficient correlated well with age (Adjusted R{sup 2} = 0.59) between the ages of 17 and 26 gestational weeks. We propose a new method that uses an economics concept, the Gini coefficient, to describe the whole brain with one simple and intuitive measure, which can be used to assess the brain's developmental state. (orig.)

  20. On a new procedure for determining the diffusion coefficients of swarm electrons

    International Nuclear Information System (INIS)

    Winkler, R.; Wilhelm, J.; Braglia, G.L.

    1985-01-01

    A new method for solving the Boltzmann kinetic equation applied to the determination of diffusion coefficients of swarm electrons in a model plasma, and CO 2 and N 2 plasmas is proposed. The method which uses Legendre polynomial expansion of the electron velocity distribution of the stationary and homogeneous plasma, is based upon an analytical isolation of the non-singular part of the general solution from the singular part. The converged values of the diffusion coefficients given by the new method are compared with the results of Monte-Carlo simulations. (D.Gy.)

  1. The surface diffusion coefficient for an arbitrarily curved fluid-fluid interface. (I). General expression

    Science.gov (United States)

    M. C. Sagis, Leonard

    2001-03-01

    In this paper, we develop a theory for the calculation of the surface diffusion coefficient for an arbitrarily curved fluid-fluid interface. The theory is valid for systems in hydrodynamic equilibrium, with zero mass-averaged velocities in the bulk and interfacial regions. We restrict our attention to systems with isotropic bulk phases, and an interfacial region that is isotropic in the plane parallel to the dividing surface. The dividing surface is assumed to be a simple interface, without memory effects or yield stresses. We derive an expression for the surface diffusion coefficient in terms of two parameters of the interfacial region: the coefficient for plane-parallel diffusion D (AB)aa(ξ) , and the driving force d(B)I||(ξ) . This driving force is the parallel component of the driving force for diffusion in the interfacial region. We derive an expression for this driving force using the entropy balance.

  2. A nodal method applied to a diffusion problem with generalized coefficients

    International Nuclear Information System (INIS)

    Laazizi, A.; Guessous, N.

    1999-01-01

    In this paper, we consider second order neutrons diffusion problem with coefficients in L ∞ (Ω). Nodal method of the lowest order is applied to approximate the problem's solution. The approximation uses special basis functions in which the coefficients appear. The rate of convergence obtained is O(h 2 ) in L 2 (Ω), with a free rectangular triangulation. (authors)

  3. Modeling diffusion coefficients in binary mixtures of polar and non-polar compounds

    DEFF Research Database (Denmark)

    Medvedev, Oleg; Shapiro, Alexander

    2005-01-01

    The theory of transport coefficients in liquids, developed previously, is tested on a description of the diffusion coefficients in binary polar/non-polar mixtures, by applying advanced thermodynamic models. Comparison to a large set of experimental data shows good performance of the model. Only f...

  4. Radon diffusion coefficients for soils. Previous studies and their application to uranium-bearing wastes

    International Nuclear Information System (INIS)

    Sasaki, Tomozo; Gunji, Yasuyoshi; Iida, Takao

    2008-01-01

    Radon diffusion in soils has been studied over the years by many researchers. The application of such studies to the evaluation of radiation exposure caused by radon from uranium-bearing wastes disposed in a shallow land site is very important. The present paper surveyed closely relevant studies and elucidated the inherent nature of radon diffusion in terms of the definition of radon diffusion coefficients. Then, basic features of measurement methods for determining radon diffusion coefficients in soils were explained. Furthermore, theoretical aspects of radon diffusion in soils were discussed in terms of microscopic radon diffusion in soils and large-scale radon diffusion through cover soil defects for uranium mill tailings. Finally, in order to apply the radon diffusion studies to uranium-bearing waste disposal in shallow land sites, new challenges were presented: elucidation of radon diffusion in uranium-bearing wastes and cover-soil cracks, and demonstration of the validity of applying only radon diffusion in the evaluation of radiation exposure caused by radon, which would come through Japanese cover soils for uranium-bearing waste disposal. (author)

  5. Apparent diffusion coefficient measurements in progressive supranuclear palsy

    Energy Technology Data Exchange (ETDEWEB)

    Ohshita, T.; Oka, M.; Imon, Y.; Yamaguchi, S.; Mimori, Y.; Nakamura, S. [Hiroshima Univ. (Japan). School of Medicine

    2000-09-01

    We measured the apparent diffusion coefficient (ADC), using diffusion-weighted imaging (DWI) and signal intensity on T2-weighted MRI in the cerebral white matter of patients with progressive supranuclear palsy (PSP) and age-matched normal subjects. In PSP, ADC in the prefrontal and precentral white matter was significantly higher than in controls. There was no significant difference in signal intensity on T2-weighted images. The ADC did correlate with signal intensity. The distribution of the elevation of ADC may be the consequence of underlying pathological changes, such as neurofibrillary tangles or glial fibrillary tangles in the cortex. Our findings suggest that ADC measurement might be useful for demonstrating subtle neuropathological changes. (orig.)

  6. Oxygen diffusion process in a Ba{sub 0.96}La{sub 0.04}SnO{sub 3} thin film on SrTiO{sub 3}(001) substrate as investigated by time-dependent Hall effect measurements

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Woong-Jhae; Kim, Hyung Joon; Sohn, Egon; Kim, Tai Hoon [Department of Physics and Astronomy, Center for Novel States of Complex Materials Research, Seoul National University, Seoul, 151-747 (Korea, Republic of); Kim, Hoon Min; Char, Kookrin [Institute of Applied Physics, Seoul National University, Seoul, 151-747 (Korea, Republic of); Kim, Jin Hyeok [Department of Materials Science and Engineering, Chonnam National University, Gwangju, 500-757 (Korea, Republic of); Kim, Kee Hoon [Department of Physics and Astronomy, Center for Novel States of Complex Materials Research, Seoul National University, Seoul, 151-747 (Korea, Republic of); Institute of Applied Physics, Seoul National University, Seoul, 151-747 (Korea, Republic of)

    2015-07-15

    We investigate the oxygen diffusion phenomena in a Ba{sub 0.96}La{sub 0.04}SnO{sub 3} (BLSO) thin film on SrTiO{sub 3}(001) substrate by measurements of time-dependent Hall effect at high temperatures around 500 C under different gas atmosphere. Under the Ar (O{sub 2}) atmosphere, carrier density (n) and electrical conductivity (σ) are increased (decreased) while electron mobility (μ) is slightly reduced (enhanced). This observation supports that although both n and μ are affected by the oxygen diffusion process, the change of n is a major factor of determining σ in the BLSO film. Detailed analyses of the time-dependent n exhibit fast and slow dynamics that possibly correspond to the oxygen exchange reaction at the surface and oxygen diffusion into the BLSO grains, respectively. Fitting the time dependence of n reveals that the chemical diffusion coefficient of oxygen in the BLSO grains becomes ∝10{sup -16} cm{sup 2} s{sup -1}. This coefficient marks the lowest value among perovskite oxides around 500 C, directly proving excellent thermal stability of oxygen in BLSO. The present results support that the donor-doped BaSnO{sub 3} system could be useful for realizing transparent semiconductor devices at high temperatures. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. First-principles calculations of impurity diffusion coefficients in dilute Mg alloys using the 8-frequency model

    International Nuclear Information System (INIS)

    Ganeshan, S.; Hector, L.G.; Liu, Z.-K.

    2011-01-01

    Research highlights: → Implemented the eight frequency model for impurity diffusion in hexagonal metals. → Model inputs were energetics/vibrational properties from first princples. → Predicted diffusion coefficients for Al, Ca, Zn and Sn impurity diffusion in Mg. → Successful prediction of partial correlation factors and jump frequencies. → Good agreement between calculated and experimental results. - Abstract: Diffusion in dilute Mg-X alloys, where X denotes Al, Zn, Sn and Ca impurities, was investigated with first-principles density functional theory in the local density approximation. Impurity diffusion coefficients were computed as a function of temperature using the 8-frequency model which provided the relevant impurity and solvent (Mg) jump frequencies and correlation factors. Minimum energy pathways for impurity diffusion and associated saddle point structures were computed with the climbing image nudged elastic band method. Vibrational properties were obtained with the supercell (direct) method for lattice dynamics. Calculated diffusion coefficients were compared with available experimental data. For diffusion between basal planes, we find D Mg-Ca > D Mg-Zn > D Mg-Sn > D Mg-Al, where D is the diffusion coefficient. For diffusion within a basal plane, the same trend holds except that D Mg-Zn overlaps with D Mg-Al at high temperatures and D Mg-Sn at low temperatures. These trends were explored with charge density contours in selected planes of each Mg-X alloy, the variation of the activation energy for diffusion with the atomic radius of each impurity and the electronic density of states. The theoretical methodology developed herein can be applied to impurity diffusion in other hexagonal materials.

  8. New method and installation for rapid determination of radon diffusion coefficient in various materials

    International Nuclear Information System (INIS)

    Tsapalov, Andrey; Gulabyants, Loren; Livshits, Mihail; Kovler, Konstantin

    2014-01-01

    The mathematical apparatus and the experimental installation for the rapid determination of radon diffusion coefficient in various materials are developed. The single test lasts not longer than 18 h and allows testing numerous materials, such as gaseous and liquid media, as well as soil, concrete and radon-proof membranes, in which diffusion coefficient of radon may vary in an extremely wide range, from 1·10 −12 to 5·10 −5 m 2 /s. The uncertainty of radon diffusion coefficient estimation depends on the permeability of the sample and varies from about 5% (for the most permeable materials) to 40% (for less permeable materials, such as radon-proof membranes). - Highlights: • The new method and installation for determination of radon diffusion coefficient D are developed. • The measured D-values vary in an extremely wide range, from 5×10 -5 to 1×10 -12 m 2 /s. • The materials include water, air, soil, building materials and radon-proof membranes. • The duration of the single test does not exceed 18 hours. • The measurement uncertainty varies from 5% (in permeable materials) to 40% (in radon gas barriers)

  9. Calculation of the mutual diffusion coefficient by equilibrium and nonequilibrium molecular dynamics

    International Nuclear Information System (INIS)

    Erpenbeck, J.J.; Kincaid, J.M.

    1986-01-01

    A nonequilibrium molecular dynamics method for the calculation of the mutual diffusion coefficient for a mixture of hard spheres is described. The method is applied to a 50-50 mixture of equidiameter particles having a mass ratio of 0.1 for the two species, at a volume of three times close-packing. By extrapolating the results to the limit of vanishing concentration gradient and infinite system size, we obtain a value in statistical agreement with the result obtained using a Green-Kubo molecular dynamics procedure, which is also described. The nonequilibrium calculation yields a mutual diffusion coefficient which decreases slightly with increasing concentration gradient. The Green-Kubo timecorrelation function for mutual diffusion displays a slow decay with time, qualitatively similar to the long-time tail which has been predicted by the hydrodynamic theory of Pomeau

  10. Molecular dynamics simulation of self-diffusion processes in titanium in bulk material, on grain junctions and on surface.

    Science.gov (United States)

    Sushko, Gennady B; Verkhovtsev, Alexey V; Yakubovich, Alexander V; Schramm, Stefan; Solov'yov, Andrey V

    2014-08-21

    The process of self-diffusion of titanium atoms in a bulk material, on grain junctions and on surface is explored numerically in a broad temperature range by means of classical molecular dynamics simulation. The analysis is carried out for a nanoscale cylindrical sample consisting of three adjacent sectors and various junctions between nanocrystals. The calculated diffusion coefficient varies by several orders of magnitude for different regions of the sample. The calculated values of the bulk diffusion coefficient correspond reasonably well to the experimental data obtained for solid and molten states of titanium. Investigation of diffusion in the nanocrystalline titanium is of a significant importance because of its numerous technological applications. This paper aims to reduce the lack of data on diffusion in titanium and describe the processes occurring in bulk, at different interfaces and on surface of the crystalline titanium.

  11. Measurement of Retinalamin diffusion coefficient in human sclera by optical spectroscopy

    Science.gov (United States)

    Genina, Elina A.; Bashkatov, Alexey N.; Zubkova, Elena A.; Kamenskikh, Tatiana G.; Tuchin, Valery V.

    2008-12-01

    The use of cytomedines (such as Retinalamin) in clinical practice has shown high effectiveness of the medicaments in ophthalmology. The study of diffusion of Retinalamin in scleral tissue is important for estimation of a drug dose delivered into inner tissue of eye, time of drug action, etc. In vitro measurements of spectral reflectance of sclera interacting with aqueous solution of Retinalamin have been carried out. Ten human sclera samples were included in the study. The results of the experiments have shown that penetration of Retinalamin into scleral tissue leads to the decrease of scleral reflectance due to optical immersion. Estimation of diffusion coefficient of studied solution has been made on the basis of analysis of optical reflectance dynamics of the sclera samples. The diffusion coefficient of Retinalamin in human scleral tissue was evaluated as (1.82±0.14)×10 -6 cm 2/s. The results are important for treatment of partial optic atrophy observed at primary open-angle glaucoma and others eye diseases.

  12. Species specificity of resistance to oxygen diffusion in thin cuticular membranes from amphibious plants

    DEFF Research Database (Denmark)

    Frost-Christensen, Henning; Jørgensen, Lise Bolt; Floto, Franz

    2003-01-01

    oxygen, diffusion, cuticula, amphibious plants, Hygrophila, Berula, Lobelia, Mentha, Potamogeton, Veronica, aquatic plants, submerged plants......oxygen, diffusion, cuticula, amphibious plants, Hygrophila, Berula, Lobelia, Mentha, Potamogeton, Veronica, aquatic plants, submerged plants...

  13. Path coefficient analysis of zinc dynamics in varying soil environment

    International Nuclear Information System (INIS)

    Rattan, R.K.; Phung, C.V.; Singhal, S.K.; Deb, D.L.; Singh, A.K.

    1994-01-01

    Influence of soil properties on labile zinc, as measured by diethylene-triamine pentaacetic acid (DTPA) and zinc-65, and self-diffusion coefficients of zinc was assessed on 22 surface soil samples varying widely in their characteristics following linear regression and path coefficient analysis techniques. DTPA extractable zinc could be predicted from organic carbon status and pH of the soil with a highly significant coefficient of determination (R 2 =0.84 ** ). Ninety seven per cent variation in isotopically exchangeable zinc was explained by pH, clay content and cation exchange capacity (CEC) of soil. The self-diffusion coefficients (DaZn and DpZn) and buffer power of zinc exhibited exponential relationship with soil properties, pH being the most dominant one. Soil properties like organic matter, clay content etc. exhibited indirect effects on zinc diffusion rates via pH only. (author). 13 refs., 6 tabs

  14. Measurements of the Fe3+ diffusion coefficient in Fricke Xylenol gel using optical density measurements

    International Nuclear Information System (INIS)

    Nonato de Oliveira, Lucas; Sampaio, Francisco Glaildo Almeida; Moreira, Marcos Vasques; Almeida, Adelaide de

    2014-01-01

    In Fricke dosimetry, optical density measurements are performed some time after dosimeter irradiation. Values of the diffusion coefficient of Fe 3+ in Fricke Xylenol gel (FXG) are necessary for determining the spatial distribution of the absorbed dose from measurements of the optical density. Five sets of FXG dosimeters, kept at different constant temperatures, were exposed to collimated 6 MV photons. The optical density profile, proportional to the Fe 3+ concentration, at the boundary between irradiated and non-irradiated parts of each dosimeter was measured periodically over a period of 60 h. By comparing the experimental data with a function that accounts for the unobserved initial concentration profile of Fe 3+ in the FXG, we obtained diffusion coefficients 0.30±0.05, 0.40±0.05, 0.50±0.05, 0.60±0.05 and 0.80±0.05 mm 2 /h for the temperatures 283.0±0.5, 286.0±0.5, 289.0±0.5, 292.0±0.5, and 296.0±0.5 K, respectively. The activation energy of Fe 3+ diffusion in the gel, 0.54±0.06 eV, was determined from the temperature dependence of the diffusion coefficients. - Highlights: • A new analytical method to determine diffusion coefficients of ions in gels is proposed. • The method is applied for measurements of the diffusion coefficients of Fe 3+ ions in a Fricke gel dosimeter. • Activation energy of the Fe 3+ ions in the gel was found to be 0.54 ±0.06 eV

  15. Excess oxygen limited diffusion and precipitation of iron in amorphous silicon dioxide

    Science.gov (United States)

    Leveneur, J.; Langlois, M.; Kennedy, J.; Metson, James B.

    2017-10-01

    In micro- and nano- electronic device fabrication, and particularly 3D designs, the diffusion of a metal into sublayers during annealing needs to be minimized as it is usually detrimental to device performance. Diffusion also causes the formation and growth of nanoprecipitates in solid matrices. In this paper, the diffusion behavior of low energy, low fluence, ion implanted iron into a thermally grown silicon oxide layer on silicon is investigated. Different ion beam analysis and imaging techniques were used. Magnetization measurements were also undertaken to provide evidence of nanocrystalline ordering. While standard vacuum furnace annealing and electron beam annealing lead to fast diffusion of the implanted species towards the Si/SiO2 interface, we show that furnace annealing in an oxygen rich atmosphere prevents the diffusion of iron that, in turn, limits the growth of the nanoparticles. The diffusion and particle growth is also greatly reduced when oxygen atoms are implanted in the SiO2 prior to Fe implantation, effectively acting as a diffusion barrier. The excess oxygen is hypothesized to trap Fe atoms and reduce their mean free path during the diffusion. Monte-Carlo simulations of the diffusion process which consider the random walk of Fe, Fick's diffusion of O atoms, Fe precipitation, and desorption of the SiO2 layer under the electron beam annealing were performed. Simulation results for the three preparation conditions are found in good agreement with the experimental data.

  16. An Investigation into the Effects of Process Conditions on the Tribological Performance of Pack Carburized Titanium with Limited Oxygen Diffusion

    Science.gov (United States)

    Bailey, R.; Sun, Y.

    2018-04-01

    In the present study, a new pack carburization technique for titanium has been investigated. The aim of this treatment is to produce a titanium carbide/oxycarbide layer atop of an extended oxygen diffusion zone [α-Ti(O)]. The effects of treatment temperature and pack composition have been investigated in order to determine the optimal conditions required to grant the best tribological response. The resulting structural features were investigated with particular interest in the carbon and oxygen concentrations across the samples cross section. The optimization showed that a temperature of 925 °C with a pack composition of 1 part carbon to 1 part energizer produced surface capable of withstanding a contact pressure of ≈ 1.5 GPa for 1 h. The process resulted in TiC surface structure which offers enhanced hardness (2100 HV) and generates a low friction coefficient (μ ≈ 0.2) when in dry sliding contact with an alumina (Al2O3) ball. The process also produced an extended oxygen diffusion zone that helps to improve the load bearing capacity of the substrate.

  17. Single atom self-diffusion on nickel surfaces

    International Nuclear Information System (INIS)

    Tung, R.T.; Graham, W.R.

    1980-01-01

    Results of a field ion microscope study of single atom self-diffusion on Ni(311), (331), (110), (111) and (100) planes are presented, including detailed information on the self-diffusion parameters on (311), (331), and (110) surfaces, and activation energies for diffusion on the (111), and (100) surfaces. Evidence is presented for the existence of two types of adsorption site and surface site geometry for single nickel atoms on the (111) surface. The presence of adsorbed hydrogen on the (110), (311), and (331) surfaces is shown to lower the onset temperature for self-diffusion on these planes. (orig.)

  18. Temperature dependence of diffusion coefficients of trivalent uranium ions in chloride and chloride-fluoride melts

    International Nuclear Information System (INIS)

    Komarov, V.E.; Borodina, N.P.

    1981-01-01

    Diffusion coefficients of U 3+ ions are measured by chronopotentiometric method in chloride 3LiCl-2KCl and in mixed chloride fluoride 3LiCl(LiF)-2KCl melts in the temperature range 633-1235 K. It is shown It is shown that experimental values of diffusion-coefficients are approximated in a direct line in lg D-1/T coordinate in chloride melt in the whole temperature range and in chloride-fluoride melt in the range of 644-1040 K. Experimental values of diffusion coefficients diviate from Arrhenius equation in the direction of large values in chloride-fluoride melt at further increase of temperature up to 1235 K. Possible causes of such a diviation are considered [ru

  19. Estimation of Knudsen diffusion coefficients from tracer experiments conducted with a binary gas system and a porous medium

    Science.gov (United States)

    Hibi, Yoshihiko; Kashihara, Ayumi

    2018-03-01

    A previous study has reported that Knudsen diffusion coefficients obtained by tracer experiments conducted with a binary gas system and a porous medium are consistently smaller than those obtained by permeability experiments conducted with a single-gas system and a porous medium. To date, however, that study is the only one in which tracer experiments have been conducted with a binary gas system. Therefore, to confirm this difference in Knudsen diffusion coefficients, we used a method we had developed previously to conduct tracer experiments with a binary carbon dioxide-nitrogen gas system and five porous media with permeability coefficients ranging from 10-13 to 10-11 m2. The results showed that the Knudsen diffusion coefficient of N2 (DN2) (cm2/s) was related to the effective permeability coefficient ke (m2) as DN2 = 7.39 × 107ke0.767. Thus, the Knudsen diffusion coefficients of N2 obtained by our tracer experiments were consistently 1/27 of those obtained by permeability experiments conducted with many porous media and air by other researchers. By using an inversion simulation to fit the advection-diffusion equation to the distribution of concentrations at observation points calculated by mathematically solving the equation, we confirmed that the method used to obtain the Knudsen diffusion coefficient in this study yielded accurate values. Moreover, because the Knudsen diffusion coefficient did not differ when columns with two different lengths, 900 and 1500 mm, were used, this column property did not influence the flow of gas in the column. The equation of the dusty gas model already includes obstruction factors for Knudsen diffusion and molecular diffusion, which relate to medium heterogeneity and tortuosity and depend only on the structure of the porous medium. Furthermore, there is no need to take account of any additional correction factor for molecular diffusion except the obstruction factor because molecular diffusion is only treated in a multicomponent

  20. Impact of the structural anisotropy of La2NiO4+δ on on high temperature surface modifications and diffusion of oxygen

    International Nuclear Information System (INIS)

    Gauquelin, Nicolas

    2010-01-01

    La 2 NiO 4+δ was first studied due to its structural similarities with the High Temperature superconductor La 2 NiO 4+δ and more recently due to its promise as a cathode material in Solid Oxide Fuel Cells as well as an oxygen exchange membrane. It crystallizes in the K 2 NiF 4 layered structure and accommodates highly mobile oxygen at its ground state and is therefore overstoichiometric. During this thesis, pure single crystals of La 2 NiO 4+δ were successfully grown using the floating-zone method, subsequently characterized using neutron and Laue Backscattering diffraction and oriented pieces of single crystal with [100] and [001] orientation were prepared. The surface morphology behavior after long term exposure to high temperature in different atmospheres was observed using microscopy techniques because stability at high temperature is required for application purposes and it was discovered a structural change to nickel-rich phases at T>1173 K. The sensibility of the oxygen non-stoichiometry to cooling was studied and subsequently a new 18 O- 18 O exchange apparatus allowing quenching of the samples using liquid nitrogen was developed. Oxygen selfdiffusion was studied using SIMS in the range 673-873K in both [100] and [001] crystallographic directions. The effect of the disorientation of the sample surface on the determination of the slowest diffusion coefficient was discovered and revealed the very strong anisotropy (>5 orders of magnitude difference) between the different diffusion paths. Finally using HTXRD and oxygen release experiments, it was shown that oxygen diffusion from interstitial oxygen starts to be relevant at 550-600 K and a change of behavior is observed around 700 K, corresponding to a possible change in the diffusion mechanism from interstitial to interstitialcy.

  1. Calculation of the mutual diffusion coefficient by equilibrium and nonequilibrium molecular dynamics

    International Nuclear Information System (INIS)

    Erpenbeck, J.J.; Kincaid, J.M.

    1985-01-01

    A nonequilibrium molecular dynamics method for the calculation of the mutual diffusion coefficient for a mixture of hard spheres is described. The method is applied to a 50-50 mixture of equidiameter particles having a mass ratio of 0.1 for the two species, at a volume of three times close-packing. By extrapolating the results to the limit of vanishing concentration gradient and infinite system size, we obtain a value in statistical agreement with the result obtained using a Green-Kubo molecular dynamics procedure which is also described. The nonequilibrium calculation yields a mutual diffusion coefficient which decreases slightly with increasing concentration gradient. The Green-Kubo time correlation function for mutual diffusion displays a slow decay with time, qualitatively similar to the long-time tail which has been predicted by the hydrodynamic theory of Pomeau

  2. Measurement of molecular diffusion coefficients of carbon dioxide and methane in heavy oil

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Y.; Tharanivasan, A.K.; Yang, C. [Regina Univ., SK (Canada)

    2004-07-01

    Vapour extraction (VAPEX) is a solvent-based thermal recovery process which is considered to be a viable process for recovering heavy oil. In order to develop a solvent-based enhanced oil recovery (EOR) operation, it is necessary to know the rate and extent of oil mobilization by the solvent. The molecular diffusion coefficient of solvent gas in heavy oil must be known. In this study, the pressure decay method was used to measure the molecular diffusivity of a gas solvent in heavy oil by monitoring the decaying pressure. The pressure decay method is a non-intrusive method in which physical contact is made between the gas solvent and the heavy oil. The pressure versus time data are measured until the heavy oil reaches complete saturation. The diffusion coefficient can be determined from the measured data and a mathematical model. In this study, the molecular diffusion coefficients of carbon dioxide-heavy oil and methane-heavy oil systems were measured and compared. The experiments were performed in closed high-pressure cells at constant reservoir temperature. An analytical solution was also obtained to predict the pressure in the gas phase and for the boundary conditions at the solvent-heavy oil interface for each solvent. Solvent diffusivity was determined by finding the best match of the numerically predicted and experimentally measured pressures.

  3. Determination of the chloride diffusion coefficient in blended cement mortars

    NARCIS (Netherlands)

    Elfmarkova, V.; Spiesz, P.R.; Brouwers, H.J.H.

    2015-01-01

    The rapid chloride migration test (RCM) is a commonly used accelerated test for the determination of the chloride diffusion coefficient in concrete. Nevertheless, the initial development and further experience with the RCM test concern mainly the ordinary Portland cement system. Therefore, the

  4. Redox Couples with Unequal Diffusion Coefficients: Effect on Redox Cycling

    NARCIS (Netherlands)

    Mampallil Augustine, Dileep; Mathwig, Klaus; Kang, Shuo; Lemay, Serge Joseph Guy

    2013-01-01

    Redox cycling between two electrodes separated by a narrow gap allows dramatic amplification of the faradaic current. Unlike conventional electrochemistry at a single electrode, however, the mass-transport-limited current is controlled by the diffusion coefficient of both the reduced and oxidized

  5. Experimental investigation of the diffusion coefficients in porous media by application of X-ray computer tomography

    DEFF Research Database (Denmark)

    Zhelezny, Petr; Shapiro, Alexander

    2006-01-01

    The present work describes a new experimental method that makes it possible to investigate diffusion coefficients in a porous medium. The method is based on application of X-ray computed tomography (CT). The general applicability of this method for the determination of diffusion coefficients...

  6. A numerical study of one-dimensional replicating patterns in reaction-diffusion systems with non-linear diffusion coefficients

    International Nuclear Information System (INIS)

    Ferreri, J. C.; Carmen, A. del

    1998-01-01

    A numerical study of the dynamics of pattern evolution in reaction-diffusion systems is performed, although limited to one spatial dimension. The diffusion coefficients are nonlinear, based on powers of the scalar variables. The system keeps the dynamics of previous studies in the literature, but the presence of nonlinear diffusion generates a field of strong nonlinear interactions due to the presence of receding travelling waves. This field is limited by the plane of symmetry of the space domain and the last born outgoing travelling wave. These effects are discussed. (author). 10 refs., 7 figs

  7. Computation of diffusion coefficients for waters of Gauthami Godavari estuary using one-dimensional advection-diffusion model

    Digital Repository Service at National Institute of Oceanography (India)

    Jyothi, D.; Murty, T.V.R.; Sarma, V.V.; Rao, D.P.

    conditions. As the pollutant load on the estuary increases, the. water quality may deteriorate rapidly and therefore the scientific interests are centered on the analysis of water quality. The pollutants will be subjected to a number of physical, chemical... study we have applied one-dimensional advection-diffusion model for the waters of Gauthami Godavari estuary to determine the axial diffusion coefficients and thereby to predict the impact assessment. The study area (Fig. 1) is the lower most 32 km...

  8. Combined measurement of surface, grain boundary and lattice diffusion coefficients on olivine bi-crystals

    Science.gov (United States)

    Marquardt, Katharina; Dohmen, Ralf; Wagner, Johannes

    2014-05-01

    Diffusion along interface and grain boundaries provides an efficient pathway and may control chemical transport in rocks as well as their mechanical strength. Besides the significant relevance of these diffusion processes for various geologic processes, experimental data are still very limited (e.g., Dohmen & Milke, 2010). Most of these data were measured using polycrystalline materials and the formalism of LeClaire (1951) to fit integrated concentration depth profiles. To correctly apply this formalism, certain boundary conditions of the diffusion problem need to be fulfilled, e.g., surface diffusion is ignored, and furthermore the lattice diffusion coefficient has to be known from other studies or is an additional fitting parameter, which produces some ambiguity in the derived grain boundary diffusion coefficients. We developed an experimental setup where we can measure the lattice and grain boundary diffusion coefficients simultaneously but independent and demonstrate the relevance of surface diffusion for typical grain boundary diffusion experiments. We performed Mg2SiO4 bicrystal diffusion experiments, where a single grain boundary is covered by a thin-film of pure Ni2SiO4 acting as diffusant source, produced by pulsed laser deposition. The investigated grain boundary is a 60° (011)/[100]. This specific grain boundary configuration was modeled using molecular dynamics for comparison with the experimental observations in the transmission electron microscope (TEM). Both, experiment and model are in good agreement regarding the misorientation, whereas there are still some disagreements regarding the strain fields along the grain boundary that are of outmost importance for the strengths of the material. The subsequent diffusion experiments were carried out in the temperature range between 800° and 1450° C. The inter diffusion profiles were measured using the TEMs energy dispersive x-ray spectrometer standardized using the Cliff-Lorimer equation and EMPA

  9. Determination of oxygen diffusion kinetics during thin film ruthenium oxidation

    NARCIS (Netherlands)

    Coloma Ribera, R.; van de Kruijs, Robbert Wilhelmus Elisabeth; Yakshin, Andrey; Bijkerk, Frederik

    2015-01-01

    In situ X-ray reflectivity was used to reveal oxygen diffusion kinetics for thermal oxidation of polycrystalline ruthenium thin films and accurate determination of activation energies for this process. Diffusion rates in nanometer thin RuO2 films were found to show Arrhenius behaviour. However, a

  10. Diffusion in the uranium - plutonium system and self-diffusion of plutonium in epsilon phase

    International Nuclear Information System (INIS)

    Dupuy, M.

    1967-07-01

    A survey of uranium-plutonium phase diagram leads to confirm anglo-saxon results about the plutonium solubility in α uranium (15 per cent at 565 C) and the uranium one in ζ phase (74 per cent at 565 C). Interdiffusion coefficients, for concentration lower than 15 per cent had been determined in a temperature range from 410 C to 640 C. They vary between 0.2 and 6 10 12 cm 2 s -1 , and the activation energy between 13 and 20 kcal/mole. Grain boundary, diffusion of plutonium in a uranium had been pointed out by micrography, X-ray microanalysis and α autoradiography. Self-diffusion of plutonium in ε phase (bcc) obeys Arrhenius law: D = 2. 10 -2 exp -(18500)/RT. But this activation energy does not follow empirical laws generally accepted for other metals. It has analogies with 'anomalous' bcc metals (βZr, βTi, βHf, U γ ). (author) [fr

  11. Modeling the oxygen diffusion of nanocomposite-based food packaging films.

    Science.gov (United States)

    Bhunia, Kanishka; Dhawan, Sumeet; Sablani, Shyam S

    2012-07-01

    Polymer-layered silicate nanocomposites have been shown to improve the gas barrier properties of food packaging polymers. This study developed a computer simulation model using the commercial software, COMSOL Multiphysics to analyze changes in oxygen barrier properties in terms of relative diffusivity, as influenced by configuration and structural parameters that include volume fraction (φ), aspect ratio (α), intercalation width (W), and orientation angle (θ) of nanoparticles. The simulation was performed at different φ (1%, 3%, 5%, and 7%), α (50, 100, 500, and 1000), and W (1, 3, 5, and 7 nm). The θ value was varied from 0° to 85°. Results show that diffusivity decreases with increasing volume fraction, but beyond φ = 5% and α = 500, diffusivity remained almost constant at W values of 1 and 3 nm. Higher relative diffusivity coincided with increasing W and decreasing α value for the same volume fraction of nanoparticles. Diffusivity increased as the rotational angle increased, gradually diminishing the influence of nanoparticles. Diffusivity increased drastically as θ changed from 15° to 30° (relative increment in relative diffusivity was almost 3.5 times). Nanoparticles with exfoliation configuration exhibited better oxygen barrier properties compared to intercalation. The finite element model developed in this study provides insight into oxygen barrier properties for nanocomposite with a wide range of structural parameters. This model can be used to design and manufacture an ideal nanocomposite-based food packaging film with improved gas barrier properties for industrial applications. The model will assist in designing nanocomposite polymeric structures of desired gas barrier properties for food packaging applications. In addition, this study will be helpful in formulating a combination of nanoparticle structural parameters for designing nanocomposite membranes with selective permeability for the industrial applications including membrane

  12. Diffusion Coefficient in the Zinc Coating Shaped on the Surface of Cast Iron and Steel Alloys

    Directory of Open Access Journals (Sweden)

    Kopyciński D.

    2015-06-01

    Full Text Available The article presents the method to assess the diffusion coefficient D in the sub-layer of intermetallic phases formed during hot-dip galvanizing “Armco” iron and ductile cast iron EN-GJS-500-7. Hot-dip galvanizing is one of the most popular forms of long-term protection of Fe-C alloys against corrosion. The process for producing a protective layer of sufficient quality is closely related to diffusion of atoms of zinc and iron. The simulation consist in performed a hot-dip galvanizing in laboratory condition above Fe-C alloys, in the Department of Engineering of Cast Alloys and Composites. Galvanizing time ranged from 15 to 300 seconds. Then metallographic specimens were prepared, intermetallic layers were measured and diffusion coefficient (D were calculated. It was found that the diffusion coefficient obtained during hot-dip galvanizing “Armco” iron and zinc is about two orders of magnitude less than the coefficient obtained on ductile cast iron EN-GJS-500-7.

  13. Interferometric measurement of a diffusion coefficient: comparison of two methods and uncertainty analysis

    International Nuclear Information System (INIS)

    Riquelme, Rodrigo; Lira, Ignacio; Perez-Lopez, Carlos; Rayas, Juan A; RodrIguez-Vera, Ramon

    2007-01-01

    Two methods to measure the diffusion coefficient of a species in a liquid by optical interferometry were compared. The methods were tested on a 1.75 M NaCl aqueous solution diffusing into water at 26 deg. C. Results were D = 1.587 x 10 -9 m 2 s -1 with the first method and D = 1.602 x 10 -9 m 2 s -1 with the second method. Monte Carlo simulation was used to assess the possible dispersion of these results. The standard uncertainties were found to be of the order of 0.05 x 10 -9 m 2 s -1 with both methods. We found that the value of the diffusion coefficient obtained by either method is very sensitive to the magnification of the optical system, and that if diffusion is slow the measurement of time does not need to be very accurate

  14. Generalized Einstein relation for the mutual diffusion coefficient of a binary fluid mixture.

    Science.gov (United States)

    Felderhof, B U

    2017-08-21

    The method employed by Einstein to derive his famous relation between the diffusion coefficient and the friction coefficient of a Brownian particle is used to derive a generalized Einstein relation for the mutual diffusion coefficient of a binary fluid mixture. The expression is compared with the one derived by de Groot and Mazur from irreversible thermodynamics and later by Batchelor for a Brownian suspension. A different result was derived by several other workers in irreversible thermodynamics. For a nearly incompressible solution, the generalized Einstein relation agrees with the expression derived by de Groot and Mazur. The two expressions also agree to first order in solute density. For a Brownian suspension, the result derived from the generalized Smoluchowski equation agrees with both expressions.

  15. Accurate and precise measurement of oxygen isotopic fractions and diffusion profiles by selective attenuation of secondary ions (SASI).

    Science.gov (United States)

    Téllez, Helena; Druce, John; Hong, Jong-Eun; Ishihara, Tatsumi; Kilner, John A

    2015-03-03

    The accuracy and precision of isotopic analysis in Time-of-Flight secondary ion mass spectrometry (ToF-SIMS) relies on the appropriate reduction of the dead-time and detector saturation effects, especially when analyzing species with high ion yields or present in high concentrations. Conventional approaches to avoid these problems are based on Poisson dead-time correction and/or an overall decrease of the total secondary ion intensity by reducing the target current. This ultimately leads to poor detection limits for the minor isotopes and high uncertainties of the measured isotopic ratios. An alternative strategy consists of the attenuation of those specific secondary ions that saturate the detector, providing an effective extension of the linear dynamic range. In this work, the selective attenuation of secondary ion signals (SASI) approach is applied to the study of oxygen transport properties in electroceramic materials by isotopic labeling with stable (18)O tracer and ToF-SIMS depth profiling. The better analytical performance in terms of accuracy and precision allowed a more reliable determination of the oxygen surface exchange and diffusion coefficients while maintaining good mass resolution and limits of detection for other minor secondary ion species. This improvement is especially relevant to understand the ionic transport mechanisms and properties of solid materials, such as the parallel diffusion pathways (e.g., oxygen diffusion through bulk, grain boundary, or dislocations) in electroceramic materials with relevant applications in energy storage and conversion devices.

  16. An axisymmetric diffusion experiment for the determination of diffusion and sorption coefficients of rock samples.

    Science.gov (United States)

    Takeda, M; Hiratsuka, T; Ito, K; Finsterle, S

    2011-04-25

    Diffusion anisotropy is a critical property in predicting migration of substances in sedimentary formations with very low permeability. The diffusion anisotropy of sedimentary rocks has been evaluated mainly from laboratory diffusion experiments, in which the directional diffusivities are separately estimated by through-diffusion experiments using different rock samples, or concurrently by in-diffusion experiments in which only the tracer profile in a rock block is measured. To estimate the diffusion anisotropy from a single rock sample, this study proposes an axisymmetric diffusion test, in which tracer diffuses between a cylindrical rock sample and a surrounding solution reservoir. The tracer diffusion between the sample and reservoir can be monitored from the reservoir tracer concentrations, and the tracer profile could also be obtained after dismantling the sample. Semi-analytical solutions are derived for tracer concentrations in both the reservoir and sample, accounting for an anisotropic diffusion tensor of rank two as well as the dilution effects from sampling and replacement of reservoir solution. The transient and steady-state analyses were examined experimentally and numerically for different experimental configurations, but without the need for tracer profiling. These experimental configurations are tested for in- and out-diffusion experiments using Koetoi and Wakkanai mudstones and Shirahama sandstone, and are scrutinized by a numerical approach to identify favorable conditions for parameter estimation. The analysis reveals the difficulty in estimating diffusion anisotropy; test configurations are proposed for enhanced identifiability of diffusion anisotropy. Moreover, it is demonstrated that the axisymmetric diffusion test is efficient in obtaining the sorption parameter from both steady-state and transient data, and in determining the effective diffusion coefficient if isotropic diffusion is assumed. Moreover, measuring reservoir concentrations in an

  17. An asixymmetric diffusion experiment for the determination of diffusion and sorption coefficients of rock samples

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, M.; Hiratsuka, T.; Ito, K.; Finsterle, S.

    2011-02-01

    Diffusion anisotropy is a critical property in predicting migration of substances in sedimentary formations with very low permeability. The diffusion anisotropy of sedimentary rocks has been evaluated mainly from laboratory diffusion experiments, in which the directional diffusivities are separately estimated by through-diffusion experiments using different rock samples, or concurrently by in-diffusion experiments in which only the tracer profile in a rock block is measured. To estimate the diffusion anisotropy from a single rock sample, this study proposes an axisymmetric diffusion test, in which tracer diffuses between a cylindrical rock sample and a surrounding solution reservoir. The tracer diffusion between the sample and reservoir can be monitored from the reservoir tracer concentrations, and the tracer profile could also be obtained after dismantling the sample. Semi-analytical solutions are derived for tracer concentrations in both the reservoir and sample, accounting for an anisotropic diffusion tensor of rank two as well as the dilution effects from sampling and replacement of reservoir solution. The transient and steady-state analyses were examined experimentally and numerically for different experimental configurations, but without the need for tracer profiling. These experimental configurations are tested for in- and out-diffusion experiments using Koetoi and Wakkanai mudstones and Shirahama sandstone, and are scrutinized by a numerical approach to identify favorable conditions for parameter estimation. The analysis reveals the difficulty in estimating diffusion anisotropy; test configurations are proposed for enhanced identifiability of diffusion anisotropy. Moreover, it is demonstrated that the axisymmetric diffusion test is efficient in obtaining the sorption parameter from both steady-state and transient data, and in determining the effective diffusion coefficient if isotropic diffusion is assumed. Moreover, measuring reservoir concentrations in an

  18. Computational error estimates for Monte Carlo finite element approximation with log normal diffusion coefficients

    KAUST Repository

    Sandberg, Mattias

    2015-01-07

    The Monte Carlo (and Multi-level Monte Carlo) finite element method can be used to approximate observables of solutions to diffusion equations with log normal distributed diffusion coefficients, e.g. modelling ground water flow. Typical models use log normal diffusion coefficients with H¨older regularity of order up to 1/2 a.s. This low regularity implies that the high frequency finite element approximation error (i.e. the error from frequencies larger than the mesh frequency) is not negligible and can be larger than the computable low frequency error. This talk will address how the total error can be estimated by the computable error.

  19. Determination of the Solute Diffusion Coefficient by the Droplet Migration Method

    Energy Technology Data Exchange (ETDEWEB)

    Shan Liu; Jing Teng; Jeongyun Choi

    2007-07-01

    Further analysis of droplet migration in a temperature gradient field indicates that different terms can be used to evaluate the solute diffusion coefficient in liquid (D{sub L}) and that there exists a characteristic curve that can describe the motion of all the droplets for a given composition and temperature gradient. Critical experiments are subsequently conducted in succinonitrile (SCN)-salol and SCN-camphor transparent alloys in order to observe dynamic migration processes of a number of droplets. The derived diffusion coefficients from different terms are the same within experimental error. For SCN-salol alloys, D{sub L} = (0.69 {+-} 0.05) x 10{sup -3} mm{sup 2}/s, and for SCN-camphor alloys, D{sub L} = (0.24 {+-} 0.02) x 10{sup -3} mm{sup 2}/s.

  20. Vaporization and diffusion studies on the stability of doped lanthanum gallates

    Energy Technology Data Exchange (ETDEWEB)

    Stanislowski, M.; Singheiser, L.; Hilpert, K. [Research Center Juelich, Institute for Materials and Processes in Energy Systems, IWV-2, 52425 Juelich (Germany); Peck, D.H.; Woo, S.K. [Korea Institute of Energy Research, 71-2 Jang-Dong, Yuseong, 305-343 Daejeon (Korea); Schulz, O.; Martin, M. [RWTH Aachen University, Institute of Physical Chemistry, Landoltweg 2, 52056 Aachen (Germany)

    2006-07-15

    Vaporization and diffusion determine the stability of doped lanthanum gallates under SOFC operating conditions. Systematic vaporization studies of Ga and other elements were carried out using the vapor transpiration method. It was shown that the Ga vaporization is controlled by diffusion from the bulk to the surface. Diffusion coefficients D{sub Ga} and vaporization coefficients {alpha}{sub Ga} were determined by fitting the measured vaporization data to a vaporization model. Secondary phases formed as a result of the vaporization were detected. The influence of different doping levels of Sr, Mg and Fe on the Ga vaporization was elucidated. Moreover, cation self-diffusion of {sup 139}La, {sup 84}Sr and {sup 25}Mg as well as cation impurity diffusion of {sup 144}Nd, {sup 89}Y and {sup 56}Fe in polycrystalline samples of doped lanthanum gallate were directly determined for the composition La{sub 0.9}Sr{sub 0.1}Ga{sub 0.9}Mg{sub 0.1}O{sub 2.9} as an example, from diffusion profiles determined by SIMS. It was found that diffusion occurs by means of bulk and grain boundaries. The bulk diffusion coefficients are similar for all cations with activation energies which are strongly dependent on temperature. The results are explained by a frozen-in defect structure at low temperatures in the ABO{sub 3} perovskite lattice and by proposing a defect cluster containing cation vacancies in the A and B sublattices, as well as oxygen vacancies. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  1. Diffusion coefficients of radon in candidate soils for covering uranium mill tailings

    International Nuclear Information System (INIS)

    Kalkwarf, D.R.; Silker, W.B.

    1983-10-01

    Diffusion coefficients were measured for radon in 34 soils that had been identified by uranium mill personnel as candidate soils for covering their tailings piles in order to reduce radon emission. The coefficients referred to diffusion in the total pore space of the soils. They were measured by a steady-state method using soil columns compacted to greater than 80% of their Proctor maximum packing densities, but with moisture contents generally less than would be expected at a tailings site. Three published empirical equations relating diffusion coefficients to soil moisture and porosity were tested with these data. The best fir was obtained with the equation: D = 0.70 exp [-4(m-mP 2 +m 5 )] in which P is the dry porosity of the soil and m is its moisture saturation, i.e. the fraction of pore volume filled with water. This equation was used to extrapolate measured coefficients to values expected at soil-moisture contents representative of tailings sites in the western United States. Extrapolated values for silty sands and clayey sands range from 0.004 to 0.06 cm 2 /s where w, the weight ratio of water to dry soil, is expected to vary from 0.04 to 0.09. Values for inorganic silts and clays ranged from 0.001 to 0.02 cm 2 /s where w is expected to vary from 0.10 to 0.13. 8 references, 1 figure, 1 table

  2. Monte Carlo Finite Volume Element Methods for the Convection-Diffusion Equation with a Random Diffusion Coefficient

    Directory of Open Access Journals (Sweden)

    Qian Zhang

    2014-01-01

    Full Text Available The paper presents a framework for the construction of Monte Carlo finite volume element method (MCFVEM for the convection-diffusion equation with a random diffusion coefficient, which is described as a random field. We first approximate the continuous stochastic field by a finite number of random variables via the Karhunen-Loève expansion and transform the initial stochastic problem into a deterministic one with a parameter in high dimensions. Then we generate independent identically distributed approximations of the solution by sampling the coefficient of the equation and employing finite volume element variational formulation. Finally the Monte Carlo (MC method is used to compute corresponding sample averages. Statistic error is estimated analytically and experimentally. A quasi-Monte Carlo (QMC technique with Sobol sequences is also used to accelerate convergence, and experiments indicate that it can improve the efficiency of the Monte Carlo method.

  3. Simulation study on the measurements of diffusion coefficients in solid materials by short-lived radiotracer beams

    CERN Document Server

    Jeong, S C; Kawakami, H

    2003-01-01

    We have examined, by a computer simulation, an on-line measurement of diffusion coefficients by using a short-lived alpha particle emitter, sup 8 Li (half life of 0.84s), as a radiotracer. The energy spectra of alpha particles emitted from diffusing sup 8 Li primarily implanted in the sample of LiAl ar simulated as a measure of the diffusion of sup 8 Li in the sample. As a possible time sequence for the measurement, a time cycle of 6s, i.e. the implantation of sup 8 Li for 1.5s and subsequent diffusion for 4.5s, is supposed. The sample is primarily set on a given temperature for the measurement. The time-dependent yields of alpha particles during the time cycle reveal the possibility to measure the diffusion coefficient with an accuracy of 10% if larger than 1 x 10 sup - sup 9 cm sup 2 /s, by the comparison with the experimental spectra measured at the temperature, i.e. at a certain diffusion coefficient. (author)

  4. Annealing behavior of oxygen in-diffusion from SiO2 film to silicon substrate

    International Nuclear Information System (INIS)

    Abe, T.; Yamada-Kaneta, H.

    2004-01-01

    Diffusion behavior of oxygen at (near) the Si/SiO 2 interface was investigated. We first oxidized the floating-zone-grown silicon substrates, and then annealed the SiO 2 -covered substrates in an argon ambient. We examined two different conditions for oxidation: wet and dry oxidation. By the secondary-ion-mass spectrometry, we measured the depth profiles of the oxygen in-diffusion of these heat-treated silicon substrates: We found that the energy of dissolution (in-diffusion) of an oxygen atom that dominates the oxygen concentration at the Si/SiO 2 interface depends on the oxidation condition: 2.0 and 1.7 eV for wet and dry oxidation, respectively. We also found that the barrier heights for the oxygen diffusion in argon anneal were significantly different for different ambients adopted for the SiO 2 formation: 3.3 and 1.8 eV for wet and dry oxidation, respectively. These findings suggest that the microscopic behavior of the oxygen atoms at the Si/SiO 2 interface during the argon anneal depends on the ambient adopted for the SiO 2 formation

  5. Calculation of the mass transfer coefficient for the combustion of a carbon particle

    Energy Technology Data Exchange (ETDEWEB)

    Scala, Fabrizio [Istituto di Ricerche sulla Combustione - CNR, P.le Tecchio 80, 80125 Napoli (Italy)

    2010-01-15

    In this paper we address the calculation of the mass transfer coefficient around a burning carbon particle in an atmosphere of O{sub 2}, N{sub 2}, CO{sub 2}, CO, and H{sub 2}O. The complete set of Stefan-Maxwell equations is analytically solved under the assumption of no homogeneous reaction in the boundary layer. An expression linking the oxygen concentration and the oxygen flux at the particle surface (as a function of the bulk gas composition) is derived which can be used to calculate the mass transfer coefficient. A very simple approximate explicit expression is also given for the mass transfer coefficient, that is shown to be valid in the low oxygen flux limit or when the primary combustion product is CO{sub 2}. The results are given in terms of a correction factor to the equimolar counter-diffusion mass transfer coefficient, which is typically available in the literature for specific geometries and/or fluid-dynamic conditions. The significance of the correction factor and the accuracy of the different available expressions is illustrated for several cases of practical interest. Results show that under typical combustion conditions the use of the equimolar counter-diffusion mass transfer coefficient can lead to errors up to 10%. Larger errors are possible in oxygen-enriched conditions, while the error is generally low in oxy-combustion. (author)

  6. Diffusion coefficients for unattached decay products of thoron - dependence on ventilation and relative humidity

    International Nuclear Information System (INIS)

    Kotrappa, P.; Bhanti, D.P.; Raghunath, B.

    1976-01-01

    The results of a study of the diffusivity of unattached decay products of thoron with respect to air changes using a recently developed diffusion sampler are reported. The dependence of diffusivity of radon/thoron decay products on relative humidity has also been investigated by measurement of diffusion coefficients in an atmosphere where relative humidities varied from 5 to 90%. Results are shown tabulated. (U.K.)

  7. Methodology for using prompt gamma activation analysis to measure the binary diffusion coefficient of a gas in a porous medium

    International Nuclear Information System (INIS)

    Rios Perez, Carlos A.; Biegalski, Steve R.; Deinert, Mark R.

    2012-01-01

    Highlights: ► Prompt gamma activation analysis is used to study gas diffusion in a porous system. ► Diffusion coefficients are determined using prompt gamma activation analysis. ► Predictions concentrations fit experimental measurements with an R 2 of 0.98. - Abstract: Diffusion plays a critical role in determining the rate at which gases migrate through porous systems. Accurate estimates of diffusion coefficients are essential if gas transport is to be accurately modeled and better techniques are needed that can be used to measure these coefficients non-invasively. Here we present a novel method for using prompt gamma activation analysis to determine the binary diffusion coefficients of a gas in a porous system. Argon diffusion experiments were conducted in a 1 m long, 10 cm diameter, horizontal column packed with a SiO 2 sand. The temporal variation of argon concentration within the system was measured using prompt gamma activation analysis. The binary diffusion coefficient was obtained by comparing the experimental data with the predictions from a numerical model in which the diffusion coefficient was varied until the sum of square errors between experiment and model data was minimized. Predictions of argon concentration using the optimal diffusivity fit experimental measurements with an R 2 of 0.983.

  8. Determination of the diffusion coefficient of new insulators composed of vegetable fibers

    Directory of Open Access Journals (Sweden)

    Boulaoued I.

    2012-01-01

    Full Text Available The knowledge of the moisture transport of building materials is necessary for the performance of building structures. The control of moisture transport is essential to describe the moisture migration process through the building walls. The present work’s aim is to determine through experiment the water diffusion coefficient of different insulators in unsteady-state based on the Fick’s second law equation. This equation was solved analytically by the separation of variables method (MOD1 and by the change of variables method (MOD2. The moisture diffusion coefficient for building material was experimentally predicted by using the weighing technique and different analytical methods. The results were compared with experimental data.

  9. IN-SITU MEASURING METHOD OF RADON AND THORON DIFFUSION COEFFICIENT IN SOIL

    Directory of Open Access Journals (Sweden)

    V.S. Yakovleva

    2014-06-01

    Full Text Available A simple and valid in-situ measurement method of effective diffusion coefficient of radon and thoron in soil and other porous materials was designed. The analysis of numerical investigation of radon and thoron transport in upper layers of soil revealed that thoron flux density from the earth surface does not depend on soil gas advective velocity and varies only with diffusion coefficient changes. This result showed the advantages of thoron using versus radon using in the suggested method. The comparison of the new method with existing ones previously developed. The method could be helpful for solving of problems of radon mass-transport in porous media and gaseous exchange between soil and atmosphere.

  10. Interaction between lactose and cadmium chloride in aqueous solutions as seen by diffusion coefficients measurements

    International Nuclear Information System (INIS)

    Verissimo, Luis M.P.; Gomes, Joselaine C.S.; Romero, Carmen; Esteso, Miguel A.; Sobral, Abilio J.F.N.; Ribeiro, Ana C.F.

    2013-01-01

    Highlights: ► Diffusion coefficients of aqueous systems containing lactose and cadmium chloride. ► Influence of the lactose on the diffusion of cadmium chloride. ► Interactions between Cd 2+ and lactose. -- Abstract: Diffusion coefficients of an aqueous system containing cadmium chloride 0.100 mol · dm −3 and lactose at different concentrations at 25 °C have been measured, using a conductimetric cell and an automatic apparatus to follow diffusion. The cell relies on an open-ended capillary method and a conductimetric technique is used to follow the diffusion process by measuring the resistance of a solution inside the capillaries, at recorded times. From these results and by ab initio calculations, it was possible to obtain a better understanding of the effect of lactose on transport of cadmium chloride in aqueous solutions

  11. The Diffusive Boundary-Layer of Sediments - Oxygen Microgradients Over a Microbial Mat

    DEFF Research Database (Denmark)

    JØRGENSEN, BB; MARAIS, DJD

    1990-01-01

    Oxygen microelectrodes were used to analyze the distribution of the diffusive boundary layer (DBL) at the sedimen-water interface in relation to surface topography and flow velocity. The sediment, collected from saline ponds, was covered by a microbial mat that had high oxygen consumption rate...... and well-defined surface structure. Diffusion through the DBL constituted an important rate limitation to the oxygen uptake of the sediment. The mean effective DBL thickness decreased from 0.59 to 0.16 mm as the flow velocity of the overlying water was increased from 0.3 to 7.7 cm s-1 (measured 1 cm above...

  12. Estimation of Water Diffusion Coefficient into Polycarbonate at Different Temperatures Using Numerical Simulation

    DEFF Research Database (Denmark)

    Shojaee Nasirabadi, Parizad; Jabbaribehnam, Mirmasoud; Hattel, Jesper Henri

    2016-01-01

    ) is widely used in the electronics industry. Thus, in this work the water diffusion coefficient into PC is investigated. Furthermore, numerical methods used for estimation of the diffusion coefficient and their assumptions are discussed. 1D and 3D numerical solutions are compared and based on this, itis......Nowadays, many electronic systems are exposed to harsh conditions of relative humidity and temperature. Masstransport properties of electronic packaging materials are needed in order to investigate the influence of moisture andtemperature on reliability of electronic devices. Polycarbonate (PC...... shown how the estimated value can be different depending on the choice of dimensionality in the model....

  13. Diffusion in silicon isotope heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Silvestri, Hughes Howland [Univ. of California, Berkeley, CA (United States)

    2004-01-01

    The simultaneous diffusion of Si and the dopants B, P, and As has been studied by the use of a multilayer structure of isotopically enriched Si. This structure, consisting of 5 pairs of 120 nm thick natural Si and 28Si enriched layers, enables the observation of 30Si self-diffusion from the natural layers into the 28Si enriched layers, as well as dopant diffusion from an implanted source in an amorphous Si cap layer, via Secondary Ion Mass Spectrometry (SIMS). The dopant diffusion created regions of the multilayer structure that were extrinsic at the diffusion temperatures. In these regions, the Fermi level shift due to the extrinsic condition altered the concentration and charge state of the native defects involved in the diffusion process, which affected the dopant and self-diffusion. The simultaneously recorded diffusion profiles enabled the modeling of the coupled dopant and self-diffusion. From the modeling of the simultaneous diffusion, the dopant diffusion mechanisms, the native defect charge states, and the self- and dopant diffusion coefficients can be determined. This information is necessary to enhance the physical modeling of dopant diffusion in Si. It is of particular interest to the modeling of future electronic Si devices, where the nanometer-scale features have created the need for precise physical models of atomic diffusion in Si. The modeling of the experimental profiles of simultaneous diffusion of B and Si under p-type extrinsic conditions revealed that both species are mediated by neutral and singly, positively charged Si self-interstitials. The diffusion of As and Si under extrinsic n-type conditions yielded a model consisting of the interstitialcy and vacancy mechanisms of diffusion via singly negatively charged self-interstitials and neutral vacancies. The simultaneous diffusion of P and Si has been modeled on the basis of neutral and singly negatively charged self-interstitials and neutral and singly

  14. Thermodiffusion, molecular diffusion and Soret coefficient of binary and ternary mixtures of n-hexane, n-dodecane and toluene.

    Science.gov (United States)

    Alonso de Mezquia, David; Wang, Zilin; Lapeira, Estela; Klein, Michael; Wiegand, Simone; Mounir Bou-Ali, M

    2014-11-01

    In this study, the thermodiffusion, molecular diffusion, and Soret coefficients of 12 binary mixtures composed of toluene, n-hexane and n-dodecane in the whole range of concentrations at atmospheric pressure and temperatures of 298.15 K and 308.15 K have been determined. The experimental measurements have been carried out using the Thermogravitational Column, the Sliding Symmetric Tubes and the Thermal Diffusion Forced Rayleigh Scattering techniques. The results obtained using the different techniques show a maximum deviation of 9% for the thermodiffusion coefficient, 8% for the molecular diffusion coefficient and 2% for the Soret coefficient. For the first time we report a decrease of the thermodiffusion coefficient with increasing ratio of the thermal expansion coefficient and viscosity for a binary mixture of an organic ring compound with a short n-alkane. This observation is discussed in terms of interactions between the different components. Additionally, the thermogravitational technique has been used to measure the thermodiffusion coefficients of four ternary mixtures consisting of toluene, n-hexane and n-dodecane at 298.15 K. In order to complete the study, the values obtained for the molecular diffusion coefficient in binary mixtures, and the thermodiffusion coefficient of binary and ternary mixtures have been compared with recently derived correlations.

  15. The effect of temperature and pressure on the oxygen reduction reactions in polyelectrolyte membranes

    Energy Technology Data Exchange (ETDEWEB)

    Holdcroft, S.; Abdou, M.S.; Beattie, P.; Basura, V. [Simon Fraser Univ., Burnaby, BC (Canada). Dept. of Chemistry

    1997-12-31

    The effect of temperature and pressure on the oxygen reduction reaction in polyelectrolyte membranes was described. Polyelectrolytes chosen for the experiment differed in composition, weight and flexibility of the polymer chains. The study was conducted in a solid state electrochemical cell at temperatures between 30 and 95 degrees C and in the pressure range of 1 to 5 atm. The solubility of oxygen in these membranes was found to follow Henry`s Law, while the diffusion coefficient decreased with pressure. The effect of temperature on the solubility of oxygen and the diffusion coefficient of oxygen in the membranes was similar to that observed in solution electrolytes. 2 refs., 3 figs.

  16. Oxygen diffusion in soils: Understanding the factors and processes needed for modeling

    Directory of Open Access Journals (Sweden)

    José Neira

    2015-08-01

    Full Text Available Oxygen is an important element for plant growth. Reducing its concentration in the soil affects plant physiological processes such as nutrient and water uptake as well as respiration, the redox potential of soil elements and the activity of microorganisms. The main mechanism of oxygen transport in the soil is by diffusion, a dynamic process greatly influenced by soil physical properties such as texture and structure, conditioning, pore size distribution, tortuosity and connectivity. Organic matter is a modifying agent of the soil's chemical and physical properties, affecting its structure and the porous matrix, which are determinants of oxygen transport. This study reviews the theory of soil gas diffusion and the effect of soil organic matter on the soil's physical properties and transport of gases. It also reviews gas diffusion models, particularly those including the effect of soil organic matter.

  17. Diffusion coefficients of alloying elements in dilute Mg alloys: A comprehensive first-principles study

    International Nuclear Information System (INIS)

    Zhou, Bi-Cheng; Shang, Shun-Li; Wang, Yi; Liu, Zi-Kui

    2016-01-01

    First-principles calculations based on density functional theory have been used to calculate the temperature-dependent dilute tracer diffusion coefficients for 47 substitutional alloying elements in hexagonal closed packed (hcp) Mg by combining transition state theory and an 8-frequency model. The minimum energy pathways and the saddle point configurations during solute migration are calculated with the climbing image nudged elastic band method. Vibrational properties are obtained using the quasi-harmonic Debye model with inputs from first-principles calculations. An improved generalized gradient approximation of PBEsol is used in the present first-principles calculations, which is able to well describe both vacancy formation energies and vibrational properties. It is found that the solute diffusion coefficients in hcp Mg are roughly inversely proportional to the bulk modulus of the dilute alloys, which reflects the solutes' bonding to Mg. Transition metal elements with d electrons show strong interactions with Mg and have large diffusion activation energies. Correlation effects are not negligible for solutes Ca, Na, Sr, Se, Te, and Y, in which the direct solute migration barriers are much smaller than the solvent (Mg) migration barriers. Calculated diffusion coefficients are in remarkable agreement with available experimental data in the literature.

  18. An improved procedure for determining grain boundary diffusion coefficients from averaged concentration profiles

    Science.gov (United States)

    Gryaznov, D.; Fleig, J.; Maier, J.

    2008-03-01

    Whipple's solution of the problem of grain boundary diffusion and Le Claire's relation, which is often used to determine grain boundary diffusion coefficients, are examined for a broad range of ratios of grain boundary to bulk diffusivities Δ and diffusion times t. Different reasons leading to errors in determining the grain boundary diffusivity (DGB) when using Le Claire's relation are discussed. It is shown that nonlinearities of the diffusion profiles in lnCav-y6/5 plots and deviations from "Le Claire's constant" (-0.78) are the major error sources (Cav=averaged concentration, y =coordinate in diffusion direction). An improved relation (replacing Le Claire's constant) is suggested for analyzing diffusion profiles particularly suited for small diffusion lengths (short times) as often required in diffusion experiments on nanocrystalline materials.

  19. Determination of the diffusion coefficient and solubility of radon in plastics.

    Science.gov (United States)

    Pressyanov, D; Georgiev, S; Dimitrova, I; Mitev, K; Boshkova, T

    2011-05-01

    This paper describes a method for determination of the diffusion coefficient and the solubility of radon in plastics. The method is based on the absorption and desorption of radon in plastics. Firstly, plastic specimens are exposed for controlled time to referent (222)Rn concentrations. After exposure, the activity of the specimens is followed by HPGe gamma spectrometry. Using the mathematical algorithm described in this report and the decrease of activity as a function of time, the diffusion coefficient can be determined. In addition, if the referent (222)Rn concentration during the exposure is known, the solubility of radon can be determined. The algorithm has been experimentally applied for different plastics. The results show that this approach allows the specified quantities to be determined with a rather high accuracy-depending on the quality of the counting equipment, it can be better than 10 %.

  20. Oxygen transport by oxygen potential gradient in dense ceramic oxide membranes

    Energy Technology Data Exchange (ETDEWEB)

    Maiya, P.S.; Balachandran, U.; Dusek, J.T.; Mieville, R.L. [Argonne National Lab., IL (United States). Energy Technology Div.; Kleefisch, M.S.; Udovich, C.A. [Amoco Exploration/Production, Naperville, IL (United States)

    1996-05-01

    Numerous studies have been conducted in recent years on the partial oxidation of methane to synthesis gas (syngas: CO + H{sub 2}) with air as the oxidant. In partial oxidation, a mixed-oxide ceramic membrane selectively transports oxygen from the air; this transport is driven by the oxygen potential gradient. Of the several ceramic materials the authors have tested, a mixed oxide based on the Sr-Fe-Co-O system has been found to be very attractive. Extensive oxygen permeability data have been obtained for this material in methane conversion experiments carried out in a reactor. The data have been analyzed by a transport equation based on the phenomenological theory of diffusion under oxygen potential gradients. Thermodynamic calculations were used to estimate the driving force for the transport of oxygen ions. The results show that the transport equation deduced from the literature describes the permeability data reasonably well and can be used to determine the diffusion coefficients and the associated activation energy of oxygen ions in the ceramic membrane material.

  1. Mechanisms of impurity diffusion in rutile

    International Nuclear Information System (INIS)

    Peterson, N.L.; Sasaki, J.

    1984-01-01

    Tracer diffusion of 46 Sc, 51 Cr, 54 Mn, 59 Fe, 60 Co, 63 Ni, and 95 Zr, was measured as functions of crystal orientation, temperature, and oxygen partial pressure in rutile single crystals using the radioactive tracer sectioning technique. Compared to cation self-diffusion, divalent impurities (e.g., Co and Ni) diffuse extremely rapidly in TiO 2 and exhibit a large anisotropy in the diffusion behavior; divalent-impurity diffusion parallel to the c-axis is much larger than it is perpendicular to the c-axis. The diffusion of trivalent impurity ions (Sc and Cr) and tetravalent impurity ions (Zr) is similar to cation self-diffusion, as a function of temperature and of oxygen partial pressure. The divalent impurity ions Co and Ni apparently diffuse as interstitial ions along open channels parallel to the c-axis. The results suggest that Sc, Cr, and Zr ions diffuse by an interstitialcy mechanism involving the simultaneous and cooperative migration of tetravalent interstitial titanium ions and the tracer-impurity ions. Iron ions diffused both as divalent and as trivalent ions. 8 figures

  2. Self-diffusion and molecular association of acetylsalicylic acid and methyl salicylate in methanol- d4 in the temperature range 278-318 K

    Science.gov (United States)

    Golubev, V. A.; Kumeev, R. S.; Gurina, D. L.; Nikiforov, M. Yu.

    2017-05-01

    The effect of concentration on the self-diffusion coefficients of acetylsalicylic acid and methyl salicylate in methanol- d4 is investigated in the temperature range of 278-318 K using NMR. It is found that the self-diffusion coefficients increase along with temperature and fall as concentration rises. Within the limit of an infinitely dilute solution, the effective radii of solute molecules, calculated using the Stokes-Einstein equation shrink as the temperature grows. It is shown that the observed reduction of effective radii is associated with an increase in the fraction of solute monomers as the temperature rises. The physicochemical parameters of heteroassociation of acetylsalicylic acid and methyl salicylate with methanol are determined.

  3. Determination of malignancy and characterization of hepatic tumor type with diffusion-weighted magnetic resonance imaging: comparison of apparent diffusion coefficient and intravoxel incoherent motion-derived measurements.

    Science.gov (United States)

    Doblas, Sabrina; Wagner, Mathilde; Leitao, Helena S; Daire, Jean-Luc; Sinkus, Ralph; Vilgrain, Valérie; Van Beers, Bernard E

    2013-10-01

    The objective of this study was to compare the value of the apparent diffusion coefficient (ADC) determined with 3 b values and the intravoxel incoherent motion (IVIM)-derived parameters in the determination of malignancy and characterization of hepatic tumor type. Seventy-six patients with 86 solid hepatic lesions, including 8 hemangiomas, 20 lesions of focal nodular hyperplasia, 9 adenomas, 30 hepatocellular carcinomas, 13 metastases, and 6 cholangiocarcinomas, were assessed in this prospective study. Diffusion-weighted images were acquired with 11 b values to measure the ADCs (with b = 0, 150, and 500 s/mm) and the IVIM-derived parameters, namely, the pure diffusion coefficient and the perfusion-related diffusion fraction and coefficient. The diffusion parameters were compared between benign and malignant tumors and between tumor types, and their diagnostic value in identifying tumor malignancy was assessed. The apparent and pure diffusion coefficients were significantly higher in benign than in malignant tumors (benign: 2.32 [0.87] × 10 mm/s and 1.42 [0.37] × 10 mm/s vs malignant: 1.64 [0.51] × 10 mm/s and 1.14 [0.28] × 10 mm/s, respectively; P coefficients provided similar accuracy in assessing tumor malignancy (areas under the receiver operating characteristic curve of 0.770 and 0.723, respectively). In the multigroup analysis, the ADC was found to be significantly higher in hemangiomas than in hepatocellular carcinomas, metastases, and cholangiocarcinomas. In the same manner, it was higher in lesions of focal nodular hyperplasia than in metastases and cholangiocarcinomas. However, the pure diffusion coefficient was significantly higher only in hemangiomas versus hepatocellular and cholangiocellular carcinomas. Compared with the ADC, the diffusion parameters derived from the IVIM model did not improve the determination of malignancy and characterization of hepatic tumor type.

  4. Density dependence of the diffusion coefficient of alkali metals

    International Nuclear Information System (INIS)

    Adebayo, G.A.; Anusionwu, B.C.; Njah, A.N.; Mathew, B.; Fabamise, O.A.T.

    2004-06-01

    The effect of density on transport coefficients of liquid Li, Na and K at high temperatures using the method of Molecular Dynamics simulation has been studied. Simulation of these liquid alkali metals were carried out with 800 particles in simulation boxes with periodic boundary conditions imposed. In order to test the reliability of the interatomic potential used in the calculations, experimental data on the structural properties were compared with calculated results. The calculations showed a linear relationship between the density and the diffusion coefficient in all the systems investigated except in lithium, where, due to the small size of the atom, standard molecular dynamics simulation method may not be appropriate for calculating the properties of interest. (author)

  5. Determination of the diffusion coefficient of ionic species in Boom Clay by electromigration. First evaluation

    International Nuclear Information System (INIS)

    Maes, N.; Moors, H.; De Canniere, P.; Aertsens, M.; Put, M.

    1997-03-01

    Classical diffusion experiments for strongly retarded radionuclides take a very long time. The migration can be accelerated considerably by applying an electrical field across a saturated porous medium (electromigration). Under the influence of the electric field, the ions will attain a constant velocity which is related to the diffusion coefficient by the law of Einstein (V=zeED/KT). The displacement of the concentration profile is a direct measure for the diffusion coefficient. A description of the problems of pH-disturbances, electro-osmosis and dispersion is given and an the feasibility of the electromigration method is evaluated

  6. Diffusion and solubility coefficients determined by permeation and immersion experiments for organic solvents in HDPE geomembrane.

    Science.gov (United States)

    Chao, Keh-Ping; Wang, Ping; Wang, Ya-Ting

    2007-04-02

    The chemical resistance of eight organic solvents in high density polyethylene (HDPE) geomembrane has been investigated using the ASTM F739 permeation method and the immersion test at different temperatures. The diffusion of the experimental organic solvents in HDPE geomembrane was non-Fickian kinetic, and the solubility coefficients can be consistent with the solubility parameter theory. The diffusion coefficients and solubility coefficients determined by the ASTM F739 method were significantly correlated to the immersion tests (pHDPE as barriers in the field.

  7. Diffusion in thorium carbide: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Pérez Daroca, D., E-mail: pdaroca@tandar.cnea.gov.ar [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica, Av. General Paz 1499, 1650, San Martín, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas, 1025, Buenos Aires (Argentina); Llois, A.M. [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica, Av. General Paz 1499, 1650, San Martín, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas, 1025, Buenos Aires (Argentina); Mosca, H.O. [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica, Av. General Paz 1499, 1650, San Martín, Buenos Aires (Argentina); Instituto de Tecnología Jorge A. Sabato, UNSAM–CNEA, Av. General Paz 1499, 1650, San Martín, Buenos Aires (Argentina)

    2015-12-15

    The prediction of the behavior of Th compounds under irradiation is an important issue for the upcoming Generation-IV nuclear reactors. The study of self-diffusion and hetero-diffusion is a central key to fulfill this goal. As a first approach, we obtained, by means of first-principles methods, migration and activation energies of Th and C atoms self-diffusion and diffusion of He atoms in ThC. We also calculate diffusion coefficients as a function of temperature. - Highlights: • Diffusion in thorium carbide by means of first-principles calculations is studied. • The most favorable migration event is a C atom moving through a C-vacancy aided path. • Calculated C atoms diffusion coefficients agree very well with the experimental data. • For He, the energetically most favorable migration path is through Th-vacancies.

  8. Energetics and self-diffusion behavior of Zr atomic clusters on a Zr(0 0 0 1) surface

    Energy Technology Data Exchange (ETDEWEB)

    Liu Fusheng [Department of Applied Physics, Hunan University, Changsha 410082 (China); Hu Wangyu [Department of Applied Physics, Hunan University, Changsha 410082 (China)], E-mail: wangyuhu2001cn@yahoo.com.cn; Deng Huiqiu; Luo Wenhua; Xiao Shifang [Department of Applied Physics, Hunan University, Changsha 410082 (China); Yang Jianyu [Department of Maths and Physics, Hunan Institute of Engineering, Xiangtan 411104 (China)

    2009-09-15

    Using a molecular dynamics method and a modified analytic embedded atom potential, the energetic and the self-diffusion dynamics of Zr atomic clusters up to eight atoms on {alpha}-Zr(0 0 0 1) surface have been studied. The simulation temperature ranges from 300 to 1100 K and the simulation time varies from 20 to 40 ns. It's found that the heptamer and trimer are more stable comparing to other neighboring non-compact clusters. The diffusion coefficients of clusters are derived from the mean square displacement of cluster's mass-center and the present diffusion coefficients for clusters exhibit an Arrhenius behavior. The Arrhenius relation of the single adatom can be divided into two parts in different temperature range because of their different diffusion mechanisms. The migration energies of clusters increase with increasing the number of atoms in cluster. The differences of the prefactors also come from the diverse diffusion mechanisms. On the facet of 60 nm, the heptamer can be the nuclei in the crystal growth below 370 K.

  9. Role of magnetic resonance diffusion imaging and apparent diffusion coefficient values in the evaluation of spinal tuberculosis in Indian patients

    International Nuclear Information System (INIS)

    Palle, Lalitha; Reddy, MCH Balaji; Reddy, K Jagannath

    2010-01-01

    To define a range of apparent diffusion coefficient values in spinal tuberculosis and to evaluate the sensitivity of diffusion-weighted magnetic resonance imaging (DW-MRI) and apparent diffusion coefficient values in patients of spinal tuberculosis. This study was conducted over a period of 20 months and included 110 patients with a total of 230 vertebral bodies. The study was performed in two parts. The first part included all patients of known tuberculosis and patients with classical features of tuberculosis. The second part included patients with spinal pathology of indeterminate etiology. All the patients underwent a routine MRI examination along with diffusion sequences. The apparent diffusion coefficient (ADC) values were calculated from all the involved vertebral bodies. The mean ADC value of affected vertebrae in first part of the study was found to be 1.4 ± 0.20 × 10 −3 mm 2 /s. This ADC value was then applied to patients in the second part of study in order to determine its ability in predicting tuberculosis. This range of ADC values was significantly different from the mean ADC values of normal vertebrae and those with metastatic involvement. However, there was an overlap of ADC values in a few tuberculous vertebrae with the ADC values in metastatic vertebrae. We found that DW-MRI and ADC values may help in the differentiation of spinal tuberculosis from other lesions of similar appearance. However, an overlap of ADC values was noted with those of metastatic vertebrae. Therefore diffusion imaging and ADC values must always be interpreted in association with clinical history and routine MRI findings and not in isolation

  10. Two-photon NADH imaging exposes boundaries of oxygen diffusion in cortical vascular supply regions.

    Science.gov (United States)

    Kasischke, Karl A; Lambert, Elton M; Panepento, Ben; Sun, Anita; Gelbard, Harris A; Burgess, Robert W; Foster, Thomas H; Nedergaard, Maiken

    2011-01-01

    Oxygen transport imposes a possible constraint on the brain's ability to sustain variable metabolic demands, but oxygen diffusion in the cerebral cortex has not yet been observed directly. We show that concurrent two-photon fluorescence imaging of endogenous nicotinamide adenine dinucleotide (NADH) and the cortical microcirculation exposes well-defined boundaries of tissue oxygen diffusion in the mouse cortex. The NADH fluorescence increases rapidly over a narrow, very low pO(2) range with a p(50) of 3.4 ± 0.6 mm Hg, thereby establishing a nearly binary reporter of significant, metabolically limiting hypoxia. The transient cortical tissue boundaries of NADH fluorescence exhibit remarkably delineated geometrical patterns, which define the limits of tissue oxygen diffusion from the cortical microcirculation and bear a striking resemblance to the ideal Krogh tissue cylinder. The visualization of microvessels and their regional contribution to oxygen delivery establishes penetrating arterioles as major oxygen sources in addition to the capillary network and confirms the existence of cortical oxygen fields with steep microregional oxygen gradients. Thus, two-photon NADH imaging can be applied to expose vascular supply regions and to localize functionally relevant microregional cortical hypoxia with micrometer spatial resolution.

  11. The general formulation and practical calculation of the diffusion coefficient in a lattice containing cavities; Formulation generale et calcul pratique du coefficient de diffusion dans un reseau comportant des cavites

    Energy Technology Data Exchange (ETDEWEB)

    Benoist, P [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    The calculation of diffusion coefficients in a lattice necessitates the knowledge of a correct method of weighting the free paths of the different constituents. An unambiguous definition of this weighting method is given here, based on the calculation of leakages from a zone of a reactor. The formulation obtained, which is both simple and general, reduces the calculation of diffusion coefficients to that of collision probabilities in the different media; it reveals in the expression for the radial coefficient the series of the terms of angular correlation (cross terms) recently shown by several authors. This formulation is then used to calculate the practical case of a classical type of lattice composed of a moderator and a fuel element surrounded by an empty space. Analytical and numerical comparison of the expressions obtained with those inferred from the theory of BEHRENS shows up the importance of several new terms some of which are linked with the transparency of the fuel element. Cross terms up to the second order are evaluated. A practical formulary is given at the end of the paper. (author) [French] Le calcul des coefficients de diffusion dans un reseau suppose la connaissance d'un mode de ponderation correct des libres parcours des differents constituants. On definit ici sans ambiguite ce mode de ponderation a partir du calcul des fuites hors d'une zone de reacteur. La formulation obtenue, simple et generale, ramene le calcul des coefficients de diffusion a celui des probabilites de collision dans les differents milieux; elle fait apparaitre dans l'expression du coefficient radial la serie des termes de correlation angulaire (termes rectangles), mis en evidence recemment par plusieurs auteurs. Cette formulation est ensuite appliquee au calcul pratique d'un reseau classique, compose d'un moderateur et d'un element combustible entoure d'une cavite; la comparaison analytique et numerique des expressions obtenues avec celles deduites de la theorie de BEHRENS

  12. Impact of the structural anisotropy of La{sub 2}NiO{sub 4+δ} on on high temperature surface modifications and diffusion of oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Gauquelin, Nicolas

    2010-11-29

    La{sub 2}NiO{sub 4+δ} was first studied due to its structural similarities with the High Temperature superconductor La{sub 2}NiO{sub 4+δ} and more recently due to its promise as a cathode material in Solid Oxide Fuel Cells as well as an oxygen exchange membrane. It crystallizes in the K{sub 2}NiF{sub 4} layered structure and accommodates highly mobile oxygen at its ground state and is therefore overstoichiometric. During this thesis, pure single crystals of La{sub 2}NiO{sub 4+δ} were successfully grown using the floating-zone method, subsequently characterized using neutron and Laue Backscattering diffraction and oriented pieces of single crystal with [100] and [001] orientation were prepared. The surface morphology behavior after long term exposure to high temperature in different atmospheres was observed using microscopy techniques because stability at high temperature is required for application purposes and it was discovered a structural change to nickel-rich phases at T>1173 K. The sensibility of the oxygen non-stoichiometry to cooling was studied and subsequently a new {sup 18}O-{sup 18}O exchange apparatus allowing quenching of the samples using liquid nitrogen was developed. Oxygen selfdiffusion was studied using SIMS in the range 673-873K in both [100] and [001] crystallographic directions. The effect of the disorientation of the sample surface on the determination of the slowest diffusion coefficient was discovered and revealed the very strong anisotropy (>5 orders of magnitude difference) between the different diffusion paths. Finally using HTXRD and oxygen release experiments, it was shown that oxygen diffusion from interstitial oxygen starts to be relevant at 550-600 K and a change of behavior is observed around 700 K, corresponding to a possible change in the diffusion mechanism from interstitial to interstitialcy.

  13. Evaporation Kinetics of Polyol Droplets: Determination of Evaporation Coefficients and Diffusion Constants

    Science.gov (United States)

    Su, Yong-Yang; Marsh, Aleksandra; Haddrell, Allen E.; Li, Zhi-Ming; Reid, Jonathan P.

    2017-11-01

    In order to quantify the kinetics of mass transfer between the gas and condensed phases in aerosol, physicochemical properties of the gas and condensed phases and kinetic parameters (mass/thermal accommodation coefficients) are crucial for estimating mass fluxes over a wide size range from the free molecule to continuum regimes. In this study, we report measurements of the evaporation kinetics of droplets of 1-butanol, ethylene glycol (EG), diethylene glycol (DEG), and glycerol under well-controlled conditions (gas flow rates and temperature) using the previously developed cylindrical electrode electrodynamic balance technique. Measurements are compared with a model that captures the heat and mass transfer occurring at the evaporating droplet surface. The aim of these measurements is to clarify the discrepancy in the reported values of mass accommodation coefficient (αM, equals to evaporation coefficient based on microscopic reversibility) for 1-butanol, EG, and DEG and improve the accuracy of the value of the diffusion coefficient for glycerol in gaseous nitrogen. The uncertainties in the thermophysical and experimental parameters are carefully assessed, the literature values of the vapor pressures of these components are evaluated, and the plausible ranges of the evaporation coefficients for 1-butanol, EG, and DEG as well as uncertainty in diffusion coefficient for glycerol are reported. Results show that αM should be greater than 0.4, 0.2, and 0.4 for EG, DEG, and 1-butanol, respectively. The refined values are helpful for accurate prediction of the evaporation/condensation rates.

  14. Determination of Concentration Dependent Diffusion Coefficients of Carbon in Expanded Austenite

    DEFF Research Database (Denmark)

    Hummelshøj, Thomas Strabo; Christiansen, Thomas; Somers, Marcel A. J.

    2008-01-01

    Abstract. In the present paper various experimental procedures to experimentally determine the concentration dependent diffusion coefficient of carbon in expanded austenite are evaluated. To this end thermogravimetric carburization was simulated for various experimental conditions and the evaluated...... composition dependent diffusivity of carbon derived from the simulated experiments was compared with the input data. The most promising procedure for an accurate determination is shown to be stepwise gaseous carburizing of thin foils in a gaseous atmosphere; the finer the stepsize, the more accurate...

  15. Two-photon NADH imaging exposes boundaries of oxygen diffusion in cortical vascular supply regions

    OpenAIRE

    Kasischke, Karl A; Lambert, Elton M; Panepento, Ben; Sun, Anita; Gelbard, Harris A; Burgess, Robert W; Foster, Thomas H; Nedergaard, Maiken

    2010-01-01

    Oxygen transport imposes a possible constraint on the brain's ability to sustain variable metabolic demands, but oxygen diffusion in the cerebral cortex has not yet been observed directly. We show that concurrent two-photon fluorescence imaging of endogenous nicotinamide adenine dinucleotide (NADH) and the cortical microcirculation exposes well-defined boundaries of tissue oxygen diffusion in the mouse cortex. The NADH fluorescence increases rapidly over a narrow, very low pO2 range with a p ...

  16. Determination of oxygen diffusion kinetics during thin film ruthenium oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Coloma Ribera, R., E-mail: r.colomaribera@utwente.nl; Kruijs, R. W. E. van de; Yakshin, A. E.; Bijkerk, F. [MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands)

    2015-08-07

    In situ X-ray reflectivity was used to reveal oxygen diffusion kinetics for thermal oxidation of polycrystalline ruthenium thin films and accurate determination of activation energies for this process. Diffusion rates in nanometer thin RuO{sub 2} films were found to show Arrhenius behaviour. However, a gradual decrease in diffusion rates was observed with oxide growth, with the activation energy increasing from about 2.1 to 2.4 eV. Further exploration of the Arrhenius pre-exponential factor for diffusion process revealed that oxidation of polycrystalline ruthenium joins the class of materials that obey the Meyer-Neldel rule.

  17. Estimation of water diffusion coefficient into polycarbonate at different temperatures using numerical simulation

    Energy Technology Data Exchange (ETDEWEB)

    Nasirabadi, P. Shojaee; Jabbari, M.; Hattel, J. H. [Process Modelling Group, Department of Mechanical Engineering, Technical University of Denmark, Nils Koppels Allé, 2800 Kgs. Lyngby (Denmark)

    2016-06-08

    Nowadays, many electronic systems are exposed to harsh conditions of relative humidity and temperature. Mass transport properties of electronic packaging materials are needed in order to investigate the influence of moisture and temperature on reliability of electronic devices. Polycarbonate (PC) is widely used in the electronics industry. Thus, in this work the water diffusion coefficient into PC is investigated. Furthermore, numerical methods used for estimation of the diffusion coefficient and their assumptions are discussed. 1D and 3D numerical solutions are compared and based on this, it is shown how the estimated value can be different depending on the choice of dimensionality in the model.

  18. Molecular dynamics simulation of helium and oxygen diffusion in UO2±x

    International Nuclear Information System (INIS)

    Govers, K.; Lemehov, S.; Hou, M.; Verwerft, M.

    2009-01-01

    Atomic scale simulation techniques based on empirical potentials have been considered in the present work to get insight on helium diffusion in uranium dioxide. By varying the stoichiometry, together with the system temperature, the performed molecular dynamics simulations indicate two diffusion regimes for He. The first one presents a low activation energy (0.5 eV) and suggests oxygen vacancies assisted migration. This regime seems to provide the major contribution to diffusion when structural defects are present (extrinsic defects, imposed, e.g. by the stoichiometry). The second regime presents a higher activation energy, around 2 eV, and dominates in the higher temperature range or at perfect stoichiometry, suggesting an intrinsic migration process. Considering the dependence of He behaviour with oxygen defects, oxygen diffusion has been considered as well in the different stoichiometry domains. Finally, further investigations were made with nudged elastic bands calculations for a better interpretation of the operating migration mechanisms, both for He and O.

  19. Easy measurement of diffusion coefficients of EGFP-tagged plasma membrane proteins using k-space Image Correlation Spectroscopy

    DEFF Research Database (Denmark)

    Christensen, Eva Arnspang; Koffman, Jennifer Skaarup; Marlar, Saw

    2014-01-01

    Lateral diffusion and compartmentalization of plasma membrane proteins are tightly regulated in cells and thus, studying these processes will reveal new insights to plasma membrane protein function and regulation. Recently, k-Space Image Correlation Spectroscopy (kICS)1 was developed to enable...... routine measurements of diffusion coefficients directly from images of fluorescently tagged plasma membrane proteins, that avoided systematic biases introduced by probe photophysics. Although the theoretical basis for the analysis is complex, the method can be implemented by nonexperts using a freely...... to the correlation function yields the diffusion coefficient. This paper provides a step-by-step guide to the image analysis and measurement of diffusion coefficients via kICS. First, a high frame rate image sequence of a fluorescently labeled plasma membrane protein is acquired using a fluorescence microscope Then...

  20. Improvement of calculation method for temperature coefficient of HTTR by neutronics calculation code based on diffusion theory. Analysis for temperature coefficient by SRAC code system

    International Nuclear Information System (INIS)

    Goto, Minoru; Takamatsu, Kuniyoshi

    2007-03-01

    The HTTR temperature coefficients required for the core dynamics calculations had been calculated from the HTTR core calculation results by the diffusion code with which the corrections had been performed using the core calculation results by the Monte-Carlo code MVP. This calculation method for the temperature coefficients was considered to have some issues to be improved. Then, the calculation method was improved to obtain the temperature coefficients in which the corrections by the Monte-Carlo code were not required. Specifically, from the point of view of neutron spectrum calculated by lattice calculations, the lattice model was revised which had been used for the calculations of the temperature coefficients. The HTTR core calculations were performed by the diffusion code with the group constants which were generated by the lattice calculations with the improved lattice model. The core calculations and the lattice calculations were performed by the SRAC code system. The HTTR core dynamics calculation was performed with the temperature coefficient obtained from the core calculation results. In consequence, the core dynamics calculation result showed good agreement with the experimental data and the valid temperature coefficient could be calculated only by the diffusion code without the corrections by Monte-Carlo code. (author)

  1. Apparatus for measurement of coefficient of friction

    Science.gov (United States)

    Slifka, A. J.; Siegwarth, J. D.; Sparks, L. L.; Chaudhuri, Dilip K.

    1990-01-01

    An apparatus designed to measure the coefficient of friction in certain controlled atmospheres is described. The coefficient of friction observed during high-load tests was nearly constant, with an average value of 0.56. This value is in general agreement with that found in the literature and also with the initial friction coefficient value of 0.67 measured during self-mated friction of 440C steel in an oxygen environment.

  2. Lie Symmetry of the Diffusive Lotka–Volterra System with Time-Dependent Coefficients

    Directory of Open Access Journals (Sweden)

    Vasyl’ Davydovych

    2018-02-01

    Full Text Available Lie symmetry classification of the diffusive Lotka–Volterra system with time-dependent coefficients in the case of a single space variable is studied. A set of such symmetries in an explicit form is constructed. A nontrivial ansatz reducing the Lotka–Volterra system with correctly-specified coefficients to the system of ordinary differential equations (ODEs and an example of the exact solution with a biological interpretation are found.

  3. The effect of radionuclides and their carriers on diffusion coefficient of radionuclides in local rocks

    International Nuclear Information System (INIS)

    Othman, I.; Takriti, S.

    1995-07-01

    The diffusion coefficient of sup 9 sup 0 Sr and sup 1 sup 3 sup 7 Cs has been calculated for different local rocks in stationary and dynamic state. The effect of pH radioisotope solution dependence in shown by diffusion coefficient in some rocks. The results show that the cement and dolomite have the best quality of radioisotope retention which do not allow them to pollute the environment. (author). 6 refs., 2 tabs., 13 figs

  4. Investigation of point defects diffusion in bcc uranium and U–Mo alloys

    International Nuclear Information System (INIS)

    Smirnova, D.E.; Kuksin, A.Yu.; Starikov, S.V.

    2015-01-01

    We present results of investigation of point defects formation and diffusion in pure γ-U and γ-U–Mo fuel alloys. The study was performed using molecular dynamics simulation with the different interatomic potentials. The point defects formation and migration energies were estimated for bcc γ-U and U–9 wt.%Mo alloy. The calculated diffusivities of atoms via defects are provided for pure γ-U and for the alloy components. Analysis of simulation results shows that self-interstitial atoms play a leading role in the self-diffusion processes in the materials studied. This fact can explain a remarkably high self-diffusion mobility observed experimentally for γ-U. The self-diffusion coefficients in γ-U calculated in this assumption agree with the data measured experimentally. It is shown that alloying of γ-U with Mo increase formation energy for self-interstitial atoms and decelerate their mobility. These changes lead to decrease of self-diffusion coefficients in U–Mo alloy compared to pure U

  5. Enhanced oxygen diffusion in low barium-containing La0.2175Pr0.2175Ba0.145Sr0.4Fe0.8Co0.2O3−δ intermediate temperature solid oxide fuel cell cathodes

    KAUST Repository

    Vert, Vicente B.; Serra, José M.; Kilner, John A.; Burriel, Mó nica

    2012-01-01

    Isotopic tracer diffusion studies have been performed on the perovskite composition La 0.2175Pr 0.2175Ba 0.145Sr 0.4Fe 0.8Co 0.2O 3-δ to obtain the diffusion and surface exchange coefficients for oxygen. This material has been identified as a highly

  6. Minority carrier diffusion lengths and absorption coefficients in silicon sheet material

    Science.gov (United States)

    Dumas, K. A.; Swimm, R. T.

    1980-01-01

    Most of the methods which have been developed for the measurement of the minority carrier diffusion length of silicon wafers require that the material have either a Schottky or an ohmic contact. The surface photovoltage (SPV) technique is an exception. The SPV technique could, therefore, become a valuable diagnostic tool in connection with current efforts to develop low-cost processes for the production of solar cells. The technique depends on a knowledge of the optical absorption coefficient. The considered investigation is concerned with a reevaluation of the absorption coefficient as a function of silicon processing. A comparison of absorption coefficient values showed these values to be relatively consistent from sample to sample, and independent of the sample growth method.

  7. Effects of MR parameter changes on the quantification of diffusion anisotropy and apparent diffusion coefficient in diffusion tensor imaging: Evaluation using a diffusional anisotropic phantom

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Joon; Choi, Choong Gon; Kim, Jeong Kon [Dept. of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Yun, Sung Cheol [Dept. of Biostatistics, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Jeong, Ha Kyu [Dept. of Radiology, East-West Neomedical Center, Kyung Hee University College of Medicine, Seoul (Korea, Republic of); Kim, Eun Ju [Clinical Scientist, MR, Philips Healthcare, Seoul (Korea, Republic of)

    2015-04-15

    To validate the usefulness of a diffusional anisotropic capillary array phantom and to investigate the effects of diffusion tensor imaging (DTI) parameter changes on diffusion fractional anisotropy (FA) and apparent diffusion coefficient (ADC) using the phantom. Diffusion tensor imaging of a capillary array phantom was performed with imaging parameter changes, including voxel size, number of sensitivity encoding (SENSE) factor, echo time (TE), number of signal acquisitions, b-value, and number of diffusion gradient directions (NDGD), one-at-a-time in a stepwise-incremental fashion. We repeated the entire series of DTI scans thrice. The coefficients of variation (CoV) were evaluated for FA and ADC, and the correlation between each MR imaging parameter and the corresponding FA and ADC was evaluated using Spearman's correlation analysis. The capillary array phantom CoVs of FA and ADC were 7.1% and 2.4%, respectively. There were significant correlations between FA and SENSE factor, TE, b-value, and NDGD, as well as significant correlations between ADC and SENSE factor, TE, and b-value. A capillary array phantom enables repeated measurements of FA and ADC. Both FA and ADC can vary when certain parameters are changed during diffusion experiments. We suggest that the capillary array phantom can be used for quality control in longitudinal or multicenter clinical studies.

  8. Diffusion Coefficients in Systems LDPE Plus Cyclohexane and LDPE Plus Benzene

    Czech Academy of Sciences Publication Activity Database

    Randová, A.; Bartovská, L.; Hovorka, Š.; Bartovský, T.; Poloncarzová, Magda; Friess, K.

    -, 068 (2010), s. 1-6 ISSN 1618-7229 R&D Projects: GA ČR GA104/08/0600 Institutional research plan: CEZ:AV0Z40720504 Keywords : swelling * diffusion coefficients * low density polyethylene Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 0.574, year: 2010

  9. Evaluations on Profiles of the Eddy Diffusion Coefficients through Simulations of Super Typhoons in the Northwestern Pacific

    Directory of Open Access Journals (Sweden)

    Jimmy Chi Hung Fung

    2016-01-01

    Full Text Available The modeling of the eddy diffusion coefficients (also known as eddy diffusivity in the first-order turbulence closure schemes is important for the typhoon simulations, since the coefficients control the magnitude of the sensible heat flux and the latent heat flux, which are energy sources for the typhoon intensification. Profiles of the eddy diffusion coefficients in the YSU planetary boundary layer (PBL scheme are evaluated in the advanced research WRF (ARW system. Three versions of the YSU scheme (original, K025, and K200 are included in this study. The simulation results are compared with the observational data from track, center sea-level pressure (CSLP, and maximum surface wind speed (MWSP. Comparing with the original version, the K200 improves the averaged mean absolute errors (MAE of track, CSLP, and MWSP by 6.0%, 3.7%, and 23.1%, respectively, while the K025 deteriorates the averaged MAEs of track, CSLP, and MWSP by 25.1%, 19.0%, and 95.0%, respectively. Our results suggest that the enlarged eddy diffusion coefficients may be more suitable for super typhoon simulations.

  10. Theory of the diffusion coefficient of neutrons in a lattice containing cavities; Theorie du coefficient de diffusion des neutrons dans un reseau comportant des cavites

    Energy Technology Data Exchange (ETDEWEB)

    Benoist, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-01-15

    In an previous publication, a simple and general formulation of the diffusion coefficient, which defines the mode of weighting of the mean free paths of the various media, in introducing the collision probabilities in each medium, was established. This expression is demonstrated again here through a more direct method, and the velocity is introduced; new terms are emphasised, the existence of which implies that the representation of the diffusion area as the mean square of the straight line distance from source to absorption is not correct in a lattice. However these terms are of small enough an order of magnitude to he treated as a correction. The general expression also shows the existence, for the radial coefficient, of the series of angular correlation terms, which is seen to converge very slowly for large channels. The term by term computation which was initiated in the first work was then interrupted and a global formulation, which emphasize a resemblance with the problem of the thermal utilisation factor, was adopted. An integral method, analogous to that use for the computation of this factor, gives the possibility to establish new and simple practical formulae, which require the use of a few basic functions only. These formulae are very accurate, as seen from the results of a variational method which was studied as a reference. Various correction effects are reviewed. Expressions which allow the exact treatment of fuel rod clusters are presented. The theory is confronted with various experimental results, and a new method of measuring the radial coefficient is proposed. (author) [French] Dans une publication anterieure, on a etablie une formulation simple et generale du coefficient de diffusion, qui definit le mode de ponderation des libres parcours des differents milieux constituants en faisant apparaitre les probabilites de collision dans chaque milieu. On redemontre ici cette expression d'une maniere plus directe, tout en introduisant la variable

  11. Oxygen Permeability and Grain-Boundary Diffusion Applied to Alumina Scales

    Science.gov (United States)

    Smialek, James L.; Jacobson, Nathan S.; Gleeson, Brian; Hovis, David B.; Heuer, Arthur H.

    2013-01-01

    High-temperature oxygen permeability measurements had determined grain-boundary diffusivities (deltaD(sub gb)) in bulk polycrystalline alumina (Wada, Matsudaira, and Kitaoka). They predict that oxygen deltaD(sub gb,O) varies with oxygen pressure as P(O2)(sup -1/6) at low pressure whereas aluminum deltaD(sub gb),Al varies with P(O2)(sup +3/16) at high pressure. These relations were used to evaluate alumina scale growth in terms of diffusivity and grain size. A modified Wagner treatment for dominant inward oxygen growth produces the concise solution: ?(sub i) = k(sub p,i)×G(sub i) = 12 deltaD(sub gb,O,int), where ?(sub i) is a constant and k(sub p,i) and G(sub i) refer to instantaneous values of the scale parabolic growth constant and grain size, respectively. A commercial FeCrAl(Zr) alloy was oxidized at 1100 to 1400 degC to determine k(sub p,i), interfacial grain size, ?, and thus deltaD(sub gb,O,int). The deltaD(sub gb,O,int) values predicted from oxidation at (375 kJ/mole) were about 20 times less than those obtained above (at 298 kJ/mole), but closer than extrapolations from high-temperature bulk measurements. The experimental oxidation results agree with similar FeCrAl(X) studies, especially where both k(sub p,i) and G(sub i) were characterized. This complete approach accounts for temperature-sensitive oxidation effects of grain enlargement, equilibrium interface pressure variation, and grain-boundary diffusivity.

  12. Local diffusion coefficient determination: Mediterranean Sea experiments

    International Nuclear Information System (INIS)

    Bacciola, D.; Borghini, M.; Cannarsa, S.

    1993-10-01

    The Mediterranean is a semi/enclosed basin characterized by the presence of channels and straits influencing the circulation, temperature and salinity fields. The tides generally have amplitudes of the order of 10 cm and velocities of few cm/s. Conversely, the wind forced circulation is very strong and can assume velocity values of 1 m/s at the sea surface. The temperature and salinity fields have a high temporal and spatial variability, because of many mixing processes existing in the sea. For example, the waters coming from the Provencal basin meet those waters coming from the Tyrrhenian Sea in the eastern Ligurian Sea, creating meanders and eddies. Local runoff influences significantly the coastal circulation. This paper describes diffusion experiments carried out in this complex environment. The experimental apparatus for the detection of the fluorescine released at sea was composed by two Turner mod. 450 fluorometres. During the experiments, temperature and salinity vertical profiles were measured by using a CTD; meteorological data were acquired on a dinghy. The positioning was obtained by means of a Motorola system, having a precision of about 1 meter. The experiments were carried out under different stratification and wind conditions. From data analysis it was found that the horizontal diffusion coefficient does not depend on time or boundary conditions. The role of stratification is important with regard to vertical displacement of the dye. However, its role with regard to vertical diffusion cannot be assessed with the actual experimental apparatus

  13. A method for the determination of gas diffusion coefficients in undisturbed Boom Clay

    International Nuclear Information System (INIS)

    Jacops, E.; Volckaert, G.; Maes, N.; Weetjens, E.; Maes, T.; Vandervoort, F.

    2010-01-01

    Document available in extended abstract form only. The main mechanisms by which gas will be generated in deep geological repositories are: anaerobic corrosion of metals in wastes and packaging; radiolysis of water and organic materials in the packages, and microbial degradation of various organic wastes. Corrosion and radiolysis yield mainly hydrogen while microbial degradation leads to methane and carbon dioxide. The gas generated in the near field of a geological repository in clay will dissolve in the ground water and be transported away from the repository by diffusion as dissolved species. However if the gas generation rate is larger than the diffusive flux, the pore water will get over-saturated and a free gas phase will be formed. This will lead to a gas pressure build-up and finally to an advective gas flux. The latter might influence the performance of the repository. Therefore it is important to assess whether or not gas production rates can exceed the capacity of the near field to store and dissipate these gases by dissolution and diffusion only. The current available gas diffusion parameters for hydrogen in Boom Clay, obtained from the MEGAS project, suffer from an uncertainty of 1 to 2 orders of magnitude. Sensitivity calculations performed by Weetjens et al. (2006) for the disposal of vitrified high-level waste showed that with this uncertainty on the diffusion coefficient, the formation of a free gas phase cannot be excluded. Furthermore, recent re-evaluations of the MEGAS experiments by Krooss (2008) and Aertsens (2008) showed that the applied technique does not allow precise determination of the diffusion coefficient. Therefore a new method was developed to determine more precisely the gas diffusion coefficient for dissolved gases (especially dissolved hydrogen) in Boom Clay. This should allow for a more realistic assessment of the gas flux evolution of a repository as function of the estimated gas generation rates. The basic idea is to perform a

  14. Determination of diffusion coefficients in polypyrrole thin films using a current pulse relaxation method

    Science.gov (United States)

    Penner, Reginald M.; Vandyke, Leon S.; Martin, Charles R.

    1987-01-01

    The current pulse E sub oc relaxation method and its application to the determination of diffusion coefficients in electrochemically synthesized polypyrrole thin films is described. Diffusion coefficients for such films in Et4NBF4 and MeCN are determined for a series of submicron film thicknesses. Measurement of the double-layer capacitance, C sub dl, and the resistance, R sub u, of polypyrrole thin films as a function of potential obtained with the galvanostatic pulse method is reported. Measurements of the electrolyte concentration in reduced polypyrrole films are also presented to aid in the interpretation of the data.

  15. Diffusion coefficients of oxygen and hemoglobin as obtained simultaneously from photometric determination of the oxygenation of layers of hemoglobin solutions

    NARCIS (Netherlands)

    Spaan, J. A.; Kreuzer, F.; van Wely, F. K.

    1980-01-01

    The oxygenation of layers of deoxygenated hemoglobin solutions after a sudden exposure to a gas containing oxygen at a partial pressure P1 has been studied by a photometric method. Layer thicknesses varied between 50 and 250 micron, hemoglobin concentrations between 0.1 and 0.34kg/l, and oxygen

  16. Dielectronic recombination rate coefficients to excited states of Be-like oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Izumi; Safronova, Ulyana I.; Kato, Takako

    2001-05-01

    We have calculated energy levels, radiative transition probabilities, and autoionization rates for Be-like oxygen (O{sup 4+}) including ls{sup 2}2lnl' (n=2 - 8, l {<=} n - 1) and 1s{sup 2}3l'nl (n=3 - 6, l {<=} n - l) states by multi-configurational Hartree-Fock method (Cowan code) and perturbation theory Z-expansion method (MZ code). The state selective dielectronic recombination rate coefficients to excited states of Be-like O ions are obtained. Configuration mixing plays an important role for the principal quantum number n distribution of the dielectronic recombination rate coefficients for 2snl (n {<=} 5) levels at low electron temperature. The orbital angular momentum quantum number l distribution of the rate coefficients shows a peak at l = 4. The total dielectronic recombination rate coefficient is derived as a function of electron temperature. (author)

  17. Non-destructive testing method for determining the solvent diffusion coefficient in the porous materials products

    Science.gov (United States)

    Belyaev, V. P.; Mishchenko, S. V.; Belyaev, P. S.

    2018-01-01

    Ensuring non-destructive testing of products in industry is an urgent task. Most of the modern methods for determining the diffusion coefficient in porous materials have been developed for bodies of a given configuration and size. This leads to the need for finished products destruction to make experimental samples from them. The purpose of this study is the development of a dynamic method that allows operatively determine the diffusion coefficient in finished products from porous materials without destroying them. The method is designed to investigate the solvents diffusion coefficient in building constructions from materials having a porous structure: brick, concrete and aerated concrete, gypsum, cement, gypsum or silicate solutions, gas silicate blocks, heat insulators, etc. A mathematical model of the method is constructed. The influence of the design and measuring device operating parameters on the method accuracy is studied. The application results of the developed method for structural porous products are presented.

  18. Computable error estimates for Monte Carlo finite element approximation of elliptic PDE with lognormal diffusion coefficients

    KAUST Repository

    Hall, Eric

    2016-01-09

    The Monte Carlo (and Multi-level Monte Carlo) finite element method can be used to approximate observables of solutions to diffusion equations with lognormal distributed diffusion coefficients, e.g. modeling ground water flow. Typical models use lognormal diffusion coefficients with H´ older regularity of order up to 1/2 a.s. This low regularity implies that the high frequency finite element approximation error (i.e. the error from frequencies larger than the mesh frequency) is not negligible and can be larger than the computable low frequency error. We address how the total error can be estimated by the computable error.

  19. Apparent diffusion coefficient correlation with oesophageal tumour stroma and angiogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Aoyagi, Tomoyoshi; Shuto, Kiyohiko; Okazumi, Shinichi; Hayano, Kohichi; Satoh, Asami; Saitoh, Hiroshige; Shimada, Hideaki; Nabeya, Yoshihiro; Matsubara, Hisahiro [Chiba University, Department of Frontier Surgery, Graduate School of Medicine, Chiba (Japan); Kazama, Toshiki [Chiba University, Department of Radiology, Graduate School of Medicine, Chiba (Japan)

    2012-06-15

    Because diffusion-weighted imaging (DWI) can predict the prognosis of patients with oesophageal squamous cell carcinoma (ESCC), we hypothesised that apparent diffusion coefficient (ADC) values might be correlated with the collagen content and tumour angiogenesis. The purpose of this study was to determine the correlation between ADC values of ESCC before treatment and oesophageal tumour stroma and angiogenesis. Seventeen patients with ESCC were enrolled. The ADC values were calculated from the DWI score. Seventeen patients who had undergone oesophagectomy were analysed for tumour stroma, vascular endothelial growth factor (VEGF) and CD34. Tissue collagen was stained with azocarmine and aniline blue to quantitatively analyse the extracellular matrix in cancer stroma. Tissues were stained with VEGF and CD34 to analyse the angiogenesis. The ADC values decreased with stromal collagen growth. We found a negative correlation between the tumour ADC and the amount of stromal collagen (r = -0.729, P = 0.001), i.e. the ADC values decreased with growth of VEGF. We also found a negative correlation between the ADC of the tumours and the amount of VEGF (r = 0.538, P = 0.026). Our results indicated that the ADC value may be a novel prognostic factor and contribute to the treatment of oesophageal cancer. circle Magnetic resonance apparent diffusion coefficient values inversely indicate tumour stromal collagen circle There is also negative correlation between ADCs and vascular endothelial growth factor circle ADC values may contribute to the treatment of oesophageal cancer. (orig.)

  20. Apparent diffusion coefficient correlation with oesophageal tumour stroma and angiogenesis

    International Nuclear Information System (INIS)

    Aoyagi, Tomoyoshi; Shuto, Kiyohiko; Okazumi, Shinichi; Hayano, Kohichi; Satoh, Asami; Saitoh, Hiroshige; Shimada, Hideaki; Nabeya, Yoshihiro; Matsubara, Hisahiro; Kazama, Toshiki

    2012-01-01

    Because diffusion-weighted imaging (DWI) can predict the prognosis of patients with oesophageal squamous cell carcinoma (ESCC), we hypothesised that apparent diffusion coefficient (ADC) values might be correlated with the collagen content and tumour angiogenesis. The purpose of this study was to determine the correlation between ADC values of ESCC before treatment and oesophageal tumour stroma and angiogenesis. Seventeen patients with ESCC were enrolled. The ADC values were calculated from the DWI score. Seventeen patients who had undergone oesophagectomy were analysed for tumour stroma, vascular endothelial growth factor (VEGF) and CD34. Tissue collagen was stained with azocarmine and aniline blue to quantitatively analyse the extracellular matrix in cancer stroma. Tissues were stained with VEGF and CD34 to analyse the angiogenesis. The ADC values decreased with stromal collagen growth. We found a negative correlation between the tumour ADC and the amount of stromal collagen (r = -0.729, P = 0.001), i.e. the ADC values decreased with growth of VEGF. We also found a negative correlation between the ADC of the tumours and the amount of VEGF (r = 0.538, P = 0.026). Our results indicated that the ADC value may be a novel prognostic factor and contribute to the treatment of oesophageal cancer. circle Magnetic resonance apparent diffusion coefficient values inversely indicate tumour stromal collagen circle There is also negative correlation between ADCs and vascular endothelial growth factor circle ADC values may contribute to the treatment of oesophageal cancer. (orig.)

  1. Experimental Determination of Impurity and Interdiffusion Coefficients in Seven Ti and Zr Binary Systems Using Diffusion Multiples

    Science.gov (United States)

    Chen, Zhangqi; Liu, Zi-Kui; Zhao, Ji-Cheng

    2018-05-01

    Diffusion coefficients of seven binary systems (Ti-Mo, Ti-Nb, Ti-Ta, Ti-Zr, Zr-Mo, Zr-Nb, and Zr-Ta) at 1200 °C, 1000 °C, and 800 °C were experimentally determined using three Ti-Mo-Nb-Ta-Zr diffusion multiples. Electron probe microanalysis (EPMA) was performed to collect concentration profiles at the binary diffusion regions. Forward simulation analysis (FSA) was then applied to extract both impurity and interdiffusion coefficients in Ti-rich and Zr-rich part of the bcc phase. Excellent agreements between our results and most of the literature data validate the high-throughput approach combining FSA with diffusion multiples to obtain a large amount of systematic diffusion data, which will help establish the diffusion (mobility) databases for the design and development of biomedical and structural Ti alloys.

  2. Anion and cation diffusion in barium titanate and strontium titanate; Anionen- und Kationendiffusion in Barium- und Strontiumtitanat

    Energy Technology Data Exchange (ETDEWEB)

    Kessel, Markus Franz

    2012-12-19

    Perovskite oxides show various interesting properties providing several technical applications. In many cases the defect chemistry is the key to understand and influence the material's properties. In this work the defect chemistry of barium titanate and strontium titanate is analysed by anion and cation diffusion experiments and subsequent time-of-flight secondary ion mass spectrometry (ToF-SIMS). The reoxidation equation for barium titanate used in multi-layer ceramic capacitors (MLCCs) is found out by a combination of different isotope exchange experiments and the analysis of the resulting tracer diffusion profiles. It is shown that the incorporation of oxygen from water vapour is faster by orders of magnitude than from molecular oxygen. Chemical analysis shows the samples contain various dopants leading to a complex defect chemistry. Dysprosium is the most important dopant, acting partially as a donor and partially as an acceptor in this effectively acceptor-doped material. TEM and EELS analysis show the inhomogeneous distribution of Dy in a core-shell microstructure. The oxygen partial pressure and temperature dependence of the oxygen tracer diffusion coefficients is analysed and explained by the complex defect chemistry of Dy-doped barium titanate. Additional fast diffusion profiles are attributed to fast diffusion along grain boundaries. In addition to the barium titanate ceramics from an important technical application, oxygen diffusion in cubic, nominally undoped BaTiO{sub 3} single crystals has been studied by means of {sup 18}O{sub 2}/{sup 16}O{sub 2} isotope exchange annealing and subsequent determination of the isotope profiles in the solid by ToF-SIMS. It is shown that a correct description of the diffusion profiles requires the analysis of the diffusion through the surface space-charge into the material's bulk. Surface exchange coefficients, space-charge potentials and bulk diffusion coefficients are analysed as a function of oxygen partial

  3. Self-diffusion in remodeling and growth

    KAUST Repository

    Epstein, Marcelo; Goriely, Alain

    2011-01-01

    Self-diffusion, or the flux of mass of a single species within itself, is viewed as an independent phenomenon amenable to treatment by the introduction of an auxiliary field of diffusion velocities. The theory is shown to be heuristically derivable

  4. The Effect of a Fluorophore Photo-Physics on the Lipid Vesicle Diffusion Coefficient Studied by Fluorescence Correlation Spectroscopy.

    Science.gov (United States)

    Drabik, Dominik; Przybyło, Magda; Sikorski, Aleksander; Langner, Marek

    2016-03-01

    Fluorescence Correlation Spectroscopy (FCS) is a technique, which allows determination of the diffusion coefficient and concentration of fluorescent objects suspended in the solution. The measured parameter is the fluctuation of the fluorescence signal emitted by diffusing molecules. When 100 nm DOPC vesicles labeled with various fluorescent dyes (Fluorescein-PE, NBD-PE, Atto488 DOPE or βBodipy FL) were measured, different values of diffusion coefficients have been obtained. These diffusion coefficients were different from the expected values measured using the dynamic light scattering method (DLS). The FCS was initially developed for solutions containing small fluorescent molecules therefore the observed inconsistency may result from the nature of vesicle suspension itself. The duration of the fluorescence signal may depend on the following factors: the exposure time of the labeled object to the excitation beam, the photo-physical properties (e.g., stability) of a fluorophore, the theoretical model used for the calculations of the diffusion coefficient and optical properties of the vesicle suspension. The diffusion coefficients determined for differently labeled liposomes show that its dependence on vesicle size and quantity of fluorescent probed used for labeling was significant demonstrating that the fluorescence properties of the fluorophore itself (bleaching and/or blinking) were critical factors for a correct outcome of FCS experiment. The new, based on combined FCS and DLS measurements, method for the determination of the focal volume prove itself to be useful for the evaluation of a fluorescence dye with respect to its applicability for FCS experiment.

  5. Mechanisms of self-diffusion on Pt(110)

    DEFF Research Database (Denmark)

    Lorensen, Henrik Qvist; Nørskov, Jens Kehlet; Jacobsen, Karsten Wedel

    1999-01-01

    The self-diffusion of Pt on the missing row reconstructed Pt(110) surface is discussed based on density functional calculations of activation energy barriers. Different competing diffusion mechanisms are considered and we show that several different diffusion paths along the reconstruction troughs...

  6. Shear viscosity and spin-diffusion coefficient of a two-dimensional Fermi gas

    DEFF Research Database (Denmark)

    Bruun, Georg

    2012-01-01

    Using kinetic theory, we calculate the shear viscosity and the spin-diffusion coefficient as well as the associated relaxation times for a two-component Fermi gas in two dimensions, as a function of temperature, coupling strength, polarization, and mass ratio of the two components. It is demonstr......Using kinetic theory, we calculate the shear viscosity and the spin-diffusion coefficient as well as the associated relaxation times for a two-component Fermi gas in two dimensions, as a function of temperature, coupling strength, polarization, and mass ratio of the two components....... It is demonstrated that the minimum value of the viscosity decreases with the mass ratio, since Fermi blocking becomes less efficient. We furthermore analyze recent experimental results for the quadrupole mode of a two-dimensional gas in terms of viscous damping, obtaining a qualitative agreement using no fitting...

  7. Diffusion properties of active particles with directional reversal

    International Nuclear Information System (INIS)

    Großmann, R; Bär, M; Peruani, F

    2016-01-01

    The diffusion properties of self-propelled particles which move at constant speed and, in addition, reverse their direction of motion repeatedly are investigated. The internal dynamics of particles triggering these reversal processes is modeled by a stochastic clock. The velocity correlation function as well as the mean squared displacement is investigated and, furthermore, a general expression for the diffusion coefficient for self-propelled particles with directional reversal is derived. Our analysis reveals the existence of an optimal, finite rotational noise amplitude which maximizes the diffusion coefficient. We comment on the relevance of these results with regard to biological systems and suggest further experiments in this context. (paper)

  8. Diffusive flux in a model of stochastically gated oxygen transport in insect respiration

    Energy Technology Data Exchange (ETDEWEB)

    Berezhkovskii, Alexander M. [Mathematical and Statistical Computing Laboratory, Division of Computational Bioscience, Center for Information Technology, National Institutes of Health, Bethesda, Maryland 20892 (United States); Shvartsman, Stanislav Y. [Department of Chemical and Biological Engineering and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544 (United States)

    2016-05-28

    Oxygen delivery to insect tissues is controlled by transport through a branched tubular network that is connected to the atmosphere by valve-like gates, known as spiracles. In certain physiological regimes, the spiracles appear to be randomly switching between open and closed states. Quantitative analysis of this regime leads a reaction-diffusion problem with stochastically switching boundary condition. We derive an expression for the diffusive flux at long times in this problem. Our approach starts with the derivation of the passage probability for a single particle that diffuses between a stochastically gated boundary, which models the opening and closing spiracle, and the perfectly absorbing boundary, which models oxygen absorption by the tissue. This passage probability is then used to derive an expression giving the diffusive flux as a function of the geometric parameters of the tube and characteristic time scales of diffusion and gate dynamics.

  9. Turbulent eddy diffusion models in exposure assessment - Determination of the eddy diffusion coefficient.

    Science.gov (United States)

    Shao, Yuan; Ramachandran, Sandhya; Arnold, Susan; Ramachandran, Gurumurthy

    2017-03-01

    The use of the turbulent eddy diffusion model and its variants in exposure assessment is limited due to the lack of knowledge regarding the isotropic eddy diffusion coefficient, D T . But some studies have suggested a possible relationship between D T and the air changes per hour (ACH) through a room. The main goal of this study was to accurately estimate D T for a range of ACH values by minimizing the difference between the concentrations measured and predicted by eddy diffusion model. We constructed an experimental chamber with a spatial concentration gradient away from the contaminant source, and conducted 27 3-hr long experiments using toluene and acetone under different air flow conditions (0.43-2.89 ACHs). An eddy diffusion model accounting for chamber boundary, general ventilation, and advection was developed. A mathematical expression for the slope based on the geometrical parameters of the ventilation system was also derived. There is a strong linear relationship between D T and ACH, providing a surrogate parameter for estimating D T in real-life settings. For the first time, a mathematical expression for the relationship between D T and ACH has been derived that also corrects for non-ideal conditions, and the calculated value of the slope between these two parameters is very close to the experimentally determined value. The values of D T obtained from the experiments are generally consistent with values reported in the literature. They are also independent of averaging time of measurements, allowing for comparison of values obtained from different measurement settings. These findings make the use of turbulent eddy diffusion models for exposure assessment in workplace/indoor environments more practical.

  10. The Diffusive Boundary-Layer of Sediments - Oxygen Microgradients Over a Microbial Mat

    DEFF Research Database (Denmark)

    JØRGENSEN, BB; MARAIS, DJD

    1990-01-01

    Oxygen microelectrodes were used to analyze the distribution of the diffusive boundary layer (DBL) at the sedimen-water interface in relation to surface topography and flow velocity. The sediment, collected from saline ponds, was covered by a microbial mat that had high oxygen consumption rate...

  11. Increased self-diffusion of brain water in hydrocephalus measured by MR imaging

    International Nuclear Information System (INIS)

    Gideon, P.; Thomsen, C.; Gjerris, F.; Soerensen, P.S.; Henriksen, O.

    1994-01-01

    We used MR imaging to measure the apparent brain water self-diffusion in 5 patients with normal pressure hydrocephalus (NPH), in 2 patients with high pressure hydrocephalus (HPH), and in 8 agematched controls. In all patients with NPH significant elevations of the apparent diffusion coefficients (ADC) of brain water were found within periventricular white matter, in the corpus callosum, in the internal capsule, within cortical gray matter, and in cerebrospinal fluid, whereas normal ADCs were found within the basal ganglia. In 2 patients with HPH elevated ADCs were found most prominently within white matter and in one patient reexamined one year after surgery. ADCs were unchanged in nearly all brain regions. The increased ADC values in hydrocephalus patients may be caused by factors such as changes in myelin-associated bound water, increased Virchow-Robin spaces, and increased extracellular brain water fraction. For further studies of brain water diffusion in hydrocephalus patients, echo-planar imaging techniques with imaging times of a few seconds may be valuable. (orig.)

  12. Molecular dynamics simulation of helium and oxygen diffusion in UO{sub 2+}-{sub x}

    Energy Technology Data Exchange (ETDEWEB)

    Govers, K., E-mail: kgovers@sckcen.b [Service de Metrologie Nucleaire (CP 165/84), Universite Libre de Bruxelles, 50 av. F.D. Roosevelt, B-1050 Bruxelles (Belgium); Institute for Nuclear Materials Sciences, SCK-CEN, Boeretang 200, B-2400 Mol (Belgium); Lemehov, S. [Institute for Nuclear Materials Sciences, SCK-CEN, Boeretang 200, B-2400 Mol (Belgium); Hou, M. [Physique des Solides Irradies et des Nanostructures (CP 234), Universite Libre de Bruxelles, Bd du Triomphe, B-1050 Bruxelles (Belgium); Verwerft, M. [Institute for Nuclear Materials Sciences, SCK-CEN, Boeretang 200, B-2400 Mol (Belgium)

    2009-12-15

    Atomic scale simulation techniques based on empirical potentials have been considered in the present work to get insight on helium diffusion in uranium dioxide. By varying the stoichiometry, together with the system temperature, the performed molecular dynamics simulations indicate two diffusion regimes for He. The first one presents a low activation energy (0.5 eV) and suggests oxygen vacancies assisted migration. This regime seems to provide the major contribution to diffusion when structural defects are present (extrinsic defects, imposed, e.g. by the stoichiometry). The second regime presents a higher activation energy, around 2 eV, and dominates in the higher temperature range or at perfect stoichiometry, suggesting an intrinsic migration process. Considering the dependence of He behaviour with oxygen defects, oxygen diffusion has been considered as well in the different stoichiometry domains. Finally, further investigations were made with nudged elastic bands calculations for a better interpretation of the operating migration mechanisms, both for He and O.

  13. Hepatic hemangioma: Correlation of enhancement types with diffusion-weighted MR findings and apparent diffusion coefficients

    Energy Technology Data Exchange (ETDEWEB)

    Goshima, Satoshi [Department of Radiology, Gifu University Hospital, 1-1 Yanagido, Gifu 501-1194 (Japan)], E-mail: gossy@par.odn.ne.jp; Kanematsu, Masayuki [Department of Radiology, Gifu University Hospital, 1-1 Yanagido, Gifu 501-1194 (Japan); Department of Radiology Services, Gifu University Hospital, 1-1 Yanagido, Gifu 501-1194 (Japan); Kondo, Hiroshi [Department of Radiology, Gifu University Hospital, 1-1 Yanagido, Gifu 501-1194 (Japan); Yokoyama, Ryujiro; Kajita, Kimihiro [Department of Radiology Services, Gifu University Hospital, 1-1 Yanagido, Gifu 501-1194 (Japan); Tsuge, Yusuke [Department of Radiology, Gifu University Hospital, 1-1 Yanagido, Gifu 501-1194 (Japan); Shiratori, Yoshimune [Department of Medical Informatics, Gifu University School of Medicine, Gifu (Japan); Onozuka, Minoru [Department of Physiology and Neuroscience, Kanagawa Dental College, Yokosuka (Japan); Moriyama, Noriyuki [Research Center for Cancer Prevention and Screening, National Cancer Center Hospital, Tsukiji (Japan)

    2009-05-15

    Purpose: To correlate hepatic hemangioma enhancement types in gadolinium-enhanced magnetic resonance (MR) images with diffusion-weighted MR findings and apparent diffusion coefficients (ADCs). Materials and methods: Respiratory-triggered diffusion-weighted MR images (TR/TE, 2422/46 ms; parallel imaging factor, 2; b factor, 500 s/mm{sup 2}; number of averaging, 6) obtained in 35 patients with 44 hepatic hemangiomas diagnosed by gadolinium-enhanced MR and by follow-up imaging were retrospectively evaluated. Hemangiomas were classified into three enhancement types based on gadolinium-enhanced MR imaging findings: type I, early-enhancement type; type II, peripheral nodular enhancement type; type III, delayed enhancement type. Two blinded readers qualitatively assessed lesion sizes and signal intensities on T2-weighted turbo spin-echo and diffusion-weighted images. The ADCs of hemangiomas were also measured. Results: No significant difference was observed between the three enhancement types in terms of signal intensities on T2-weighted images. Signal intensities on diffusion-weighted images were lower in the order type I to III (P < .01), and mean ADCs were 2.18 x 10{sup -3}, 1.86 x 10{sup -3}, and 1.71 x 10{sup -3} mm{sup 2}/s for types I, II, and III, respectively (P < .01). No correlation was found between lesion sizes and ADCs. Conclusion: Hepatic hemangiomas were found to have enhancement type dependent signal intensities and ADCs on diffusion-weighted MR images. Further studies will have to substantiate that these diffusion patterns might reflect intratumoral blood flow or perfusion.

  14. Estimating Outer Zone Radial Diffusion Coefficients from Drift Scale Fluctuations in Van Allen Particle Data

    Science.gov (United States)

    O'Brien, T. P., III; Claudepierre, S. G.

    2017-12-01

    During geomagnetic storms, the Earth's outer radiation belt experiences enhanced radial transport. This transport occurs via phase-dependent radial displacements of particles, either by impulsive events or drift resonant waves. Because transport is phase dependent, it produces drift phase bunching, which can be observed with in situ particle detectors. We provide bounds on the radial diffusion coefficients derived from this drift phase structure as seen by NASA's Van Allen Probes. We compare these bounds to published radial diffusion coefficient models, particularly those derived independently from electromagnetic field observations.

  15. A new in-situ method to determine the apparent gas diffusion coefficient of soils

    Science.gov (United States)

    Laemmel, Thomas; Paulus, Sinikka; Schack-Kirchner, Helmer; Maier, Martin

    2015-04-01

    Soil aeration is an important factor for the biological activity in the soil and soil respiration. Generally, gas exchange between soil and atmosphere is assumed to be governed by diffusion and Fick's Law is used to describe the fluxes in the soil. The "apparent soil gas diffusion coefficient" represents the proportional factor between the flux and the gas concentration gradient in the soil and reflects the ability of the soil to "transport passively" gases through the soil. One common way to determine this coefficient is to take core samples in the field and determine it in the lab. Unfortunately this method is destructive and needs laborious field work and can only reflect a small fraction of the whole soil. As a consequence insecurity about the resulting effective diffusivity on the profile scale must remain. We developed a new in-situ method using new gas sampling device, tracer gas and inverse soil gas modelling. The gas sampling device contains several sampling depths and can be easily installed into vertical holes of an auger, which allows for fast installation of the system. At the lower end of the device inert tracer gas is injected continuously. The tracer gas diffuses into the surrounding soil. The resulting distribution of the tracer gas concentrations is used to deduce the diffusivity profile of the soil. For Finite Element Modeling of the gas sampling device/soil system the program COMSOL is used. We will present the results of a field campaign comparing the new in-situ method with lab measurements on soil cores. The new sampling pole has several interesting advantages: it can be used in-situ and over a long time; so it allows following modifications of diffusion coefficients in interaction with rain but also vegetation cycle and wind.

  16. Experimental determination of the diffusion coefficient in two-dimensions in ferrous sulphate gels using the finite element method

    International Nuclear Information System (INIS)

    Baldock, C.; Harris, P.J.; Piercy, A.R.; Healy, B.

    2001-01-01

    A novel two-dimensional finite element method for modelling the diffusion which occurs in Fricke or ferrous sulphate type radiation dosimetry gels is presented. In most of the previous work, the diffusion coefficient has been estimated using simple one-dimensional models. This work presents a two-dimensional model which enables the diffusion coefficient to be determined in a much wider range of experimental situations. The model includes the provision for the determination of a drift parameter. To demonstrate the technique comparative diffusion measurements between ferrous sulphate radiation dosimetry gels, with and without xylenol orange chelating agent and carbohydrate additives have been undertaken. Diffusion coefficients of 9.7±0.4, 13.3±0.6 and 9.5±0.8 10-3 cm 2 per h -1 were determined for ferrous sulphate radiation dosimetry gels with and without xylenol orange and with xylenol orange and sucrose additives respectively. Copyright (2001) Australasian College of Physical Scientists and Engineers in Medicine

  17. EVOLUTION OF WHITE DWARF STARS WITH HIGH-METALLICITY PROGENITORS: THE ROLE OF 22Ne DIFFUSION

    International Nuclear Information System (INIS)

    Althaus, L. G.; Corsico, A. H.; GarcIa-Berro, E.; Renedo, I.; Isern, J.; Rohrmann, R. D.

    2010-01-01

    Motivated by the strong discrepancy between the main-sequence turnoff age and the white dwarf cooling age in the metal-rich open cluster NGC 6791, we compute a grid of white dwarf evolutionary sequences that incorporates for the first time the energy released by the processes of 22 Ne sedimentation and of carbon/oxygen phase separation upon crystallization. The grid covers the mass range from 0.52 to 1.0 M sun , and is appropriate for the study of white dwarfs in metal-rich clusters. The evolutionary calculations are based on a detailed and self-consistent treatment of the energy released from these two processes, as well as on the employment of realistic carbon/oxygen profiles, of relevance for an accurate evaluation of the energy released by carbon/oxygen phase separation. We find that 22 Ne sedimentation strongly delays the cooling rate of white dwarfs stemming from progenitors with high metallicities at moderate luminosities, while carbon/oxygen phase separation adds considerable delays at low luminosities. Cooling times are sensitive to possible uncertainties in the actual value of the diffusion coefficient of 22 Ne. Changing the diffusion coefficient by a factor of 2 leads to maximum age differences of ∼8%-20% depending on the stellar mass. We find that the magnitude of the delays resulting from chemical changes in the core is consistent with the slowdown in the white dwarf cooling rate that is required to solve the age discrepancy in NGC 6791.

  18. Investigation of radiation-enhanced oxygen diffusion in Li-Ti ferrites

    International Nuclear Information System (INIS)

    Surzhikov, A.P.; Pritulov, A.M.; Gyngazov, S.A.; Lysenko, E.N.

    1999-01-01

    The radiation-enhanced oxygen diffusion in polycrystalline Li-Ti ferrites was investigated. The electron accelerator ELV-6 (Institute of Nuclear Physics, Russian Academy of Sciences) was used to generate the radiothermal annealing. The radiation effects were established by comparison of diffusion profiles of the samples, which were radiothermally treated, and data obtained during the thermal annealing in the resistance furnace. It was discovered that there was an increase of numerical values of Ed (activation diffusion energy) and Do (preexponential factor) during the radiothermal annealing, if compared with the thermal one. The investigations were financed by the Russian Fundamental Research Fund

  19. Diffusion of oxygen in nitrogen in the pores of graphite. Preliminary results on the effect of oxidation on diffusivity

    Energy Technology Data Exchange (ETDEWEB)

    Hewitt, G. F.; Sharratt, E. W.

    1962-10-15

    Preliminary results are reported from an experimental study of the effect of burnoff on the diffusivity of oxygen in nitrogen within the pores of graphite. It is found that the ratio of effective diffusivity to ''free gas'' diffusivity changes about four-fold in the range 0-9% total oxidation. The viscous permeability, B0, increases in almost the same proportion over the same range.

  20. Theory of the diffusion coefficient of neutrons in a lattice containing cavities; Theorie du coefficient de diffusion des neutrons dans un reseau comportant des cavites

    Energy Technology Data Exchange (ETDEWEB)

    Benoist, P. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-01-15

    In an previous publication, a simple and general formulation of the diffusion coefficient, which defines the mode of weighting of the mean free paths of the various media, in introducing the collision probabilities in each medium, was established. This expression is demonstrated again here through a more direct method, and the velocity is introduced; new terms are emphasised, the existence of which implies that the representation of the diffusion area as the mean square of the straight line distance from source to absorption is not correct in a lattice. However these terms are of small enough an order of magnitude to he treated as a correction. The general expression also shows the existence, for the radial coefficient, of the series of angular correlation terms, which is seen to converge very slowly for large channels. The term by term computation which was initiated in the first work was then interrupted and a global formulation, which emphasize a resemblance with the problem of the thermal utilisation factor, was adopted. An integral method, analogous to that use for the computation of this factor, gives the possibility to establish new and simple practical formulae, which require the use of a few basic functions only. These formulae are very accurate, as seen from the results of a variational method which was studied as a reference. Various correction effects are reviewed. Expressions which allow the exact treatment of fuel rod clusters are presented. The theory is confronted with various experimental results, and a new method of measuring the radial coefficient is proposed. (author) [French] Dans une publication anterieure, on a etablie une formulation simple et generale du coefficient de diffusion, qui definit le mode de ponderation des libres parcours des differents milieux constituants en faisant apparaitre les probabilites de collision dans chaque milieu. On redemontre ici cette expression d'une maniere plus directe, tout en introduisant la variable

  1. Determination of the effective diffusion coefficient of water through cement-based materials when applying an electrical field

    International Nuclear Information System (INIS)

    Wattez, T.

    2013-01-01

    The safety and the reliability of a radioactive waste repository rely essentially on the confinement ability of the waste package and the storing structure. In the case of the low-level and intermediate level short-lived radioactive waste, the confinement property, relying on solid matrices made of cement-based materials, is assessed through a natural diffusion test, using a radioactive tracer, from which an effective diffusion coefficient is deduced. The evolution of the materials and more particularly the enhancement of the confinement properties of cement-based materials lead to test duration from a couple of months to a couple of years. The main objective of the present work involves the determination of the effective diffusion coefficient of reference chemical species, in our case the tritiated water, within a shorter time. The theoretical foundation is based on the description of ionic species mass transfer under the effects of an electrical field. With the definitions of a precise experimental protocol and of a formation factor, considered as an intrinsic topological feature of the porous network, it is possible to determine the effective diffusion coefficient of tritiated water for various types of concretes and mortars, and this within a few hours only. The comparison between the developed accelerated test, based on the application of a constant electrical field, and the normed natural diffusion test, using tritiated water, underlined two critical issues. First, omitting the impact of the radioactive decay of tritium during a natural diffusion test, leads to a non-negligible underestimation of the effective diffusion coefficient. Second, maintaining samples in high relative humidity conditions after casting is essential in order to avoid contrasted and unrelated results when performing the electrokinetic tests. Eventually, the validation of the electrokinetics technique, main objective of this work, rests on the assessment of the theoretical hypothesis

  2. Self-Diffusion and Heteroassociation in an Acetone-Chloroform Mixture at 298 K

    Science.gov (United States)

    Golubev, V. A.; Gurina, D. L.; Kumeev, R. S.

    2018-01-01

    The self-diffusion coefficients of acetone and chloroform in a binary acetone-chloroform mixture at 298 K are determined via pulsed field gradient NMR spectroscopy. It is estimated that the hydrodynamic radii of the mixture's components, calculated using the Stokes-Einstein equation, grow as the concentrations of the components fall. It is shown that such behavior of hydrodynamic radii is due to acetone-chloroform heteroassociation. The hydrodynamic radii of monomers and heteroassociates in a 1: 1 ratio are determined along with the constant of heteroassociation, using the proposed model of an associated solution.

  3. Diffusion in the plutonium zirconium system; Diffusion dans le systeme plutonium zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Lauthier, J C [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1967-01-15

    Research on the compound PuZr{sub 2}: It cannot be obtained by a direct synthesis. We suppose that its formation is due to an oxygen amount which enhances diffusion processes by a contribution of bound extrinsic vacancies. This investigation which concerned a great range of alloys (from 15 to 50 at per cent Pu) has led us to point out the nature of the isothermal transformation. It takes place at 615 deg. + 5 deg. C and is of the peritectoid type. Pu {epsilon} (bcc) + Zr {alpha} (hex) {r_reversible} Pu {delta} (f. cc) Diffusion in hexagonal phase: Diffusion coefficients have been determined from couples made of Pu Zr dilute alloys (1.15 and 0.115 at per cent Pu) and of pure zirconium; these couples have been annealed between 700 and 840 deg. C from 1000 to 3000 hours. The curves C = f(x) were plotted by X ray microanalysis and a autoradiography. They have been analysed assuming that the diffusion coefficient was constant. Our results are the following: D Zr Pu (1.15 % = 11.1 exp (-65000/RT) and D Zr Pu (0.115 %) 0.1 exp (-54000/RT). (author) [French] Recherche du compose PuZr2: II ne peut etre obtenu par synthese directe. Nous pensons que sa formation est liee a la presence d'oxygene, qui, par son apport de lacunes extrinseques accelere les processus de diffusion. Cette etude qui a porte sur toute une serie d'alliages (de 15 a 50 pour cent atomique de Pu), nous a permis de preciser la nafure de la transformation isotherme. Elle situe a 615 deg. + 5 deg. C et est du type peritectoide. Pu {epsilon} (c.c.) + Zr {alpha} (h.c.) {r_reversible} Pu {delta} (c.f.c.) Diffusion en phase {alpha} hexagonale: Les coefficients de diffusion chimique ont ete determines a partir de couples constitues d'alliages PuZr dilues (1,15 pour cent et 0,115 pour cent atomique de Pu) et de zirconium pur. Ces couples ont ete recuits entre 700 et 840 deg. C durant des temps de 1000 a 3000 heures. Les courbes C = f(x) ont ete tracees par microanalyse X et autoradiographie {alpha}. Elles ont ete

  4. Report on swelling of MX-type fuels 1973/76: Self-diffusion in MX-type nuclear fuels out-of-pile and in-pile

    International Nuclear Information System (INIS)

    Matzke, H.; Bradbury, M.H.

    1978-01-01

    Self-diffusion measurements of Pu-238 and U-233 have been carried out in a wide range of advanced nuclear fuels in the temperature region from 1200 to 2300 0 C. The materials studied varied in composition from carbides through carbonitrides to nitrides. In particular the effect on self-diffusion rates of factors such as non-metal/metal ratio, oxygen content increasing nitrogen contents, metallic impurity additions, the presence of second phases and fission products simulating 16, 10 and 3 a /o burn up has been established. Grain boundary diffusion rates were evaluated where possible. Carbon diffusion in stoichiometric and off-stoichiometric UC and in a series of uranium carbonitride samples was also measured. The RADIF experiments (radiation induced diffusion) have provided results upon the effect of irradiation on the self-diffusion rates in the temperature range 150 to 1300 0 C. Each of the factors mentioned above is discussed in detail with special attention being given to the effects of non-metal/metal ratio, impurities and increasing the nitrogen content in carbonitride materials

  5. Accurate determination of the diffusion coefficient of proteins by Fourier analysis with whole column imaging detection.

    Science.gov (United States)

    Zarabadi, Atefeh S; Pawliszyn, Janusz

    2015-02-17

    Analysis in the frequency domain is considered a powerful tool to elicit precise information from spectroscopic signals. In this study, the Fourier transformation technique is employed to determine the diffusion coefficient (D) of a number of proteins in the frequency domain. Analytical approaches are investigated for determination of D from both experimental and data treatment viewpoints. The diffusion process is modeled to calculate diffusion coefficients based on the Fourier transformation solution to Fick's law equation, and its results are compared to time domain results. The simulations characterize optimum spatial and temporal conditions and demonstrate the noise tolerance of the method. The proposed model is validated by its application for the electropherograms from the diffusion path of a set of proteins. Real-time dynamic scanning is conducted to monitor dispersion by employing whole column imaging detection technology in combination with capillary isoelectric focusing (CIEF) and the imaging plug flow (iPF) experiment. These experimental techniques provide different peak shapes, which are utilized to demonstrate the Fourier transformation ability in extracting diffusion coefficients out of irregular shape signals. Experimental results confirmed that the Fourier transformation procedure substantially enhanced the accuracy of the determined values compared to those obtained in the time domain.

  6. Determination of the diffusion coefficient of salts in non-Newtonian liquids by the Taylor dispersion method

    Energy Technology Data Exchange (ETDEWEB)

    Mey, Paula; Varges, Priscilla R.; Mendes, Paulo R. de Souza [Dept. of Mechanical Engineering. Pontificia Universidade Catolica do RJ (PUC-Rio), RJ (Brazil)], e-mails: prvarges@puc-rio.br, pmendes@puc-rio.br

    2010-07-01

    This research looked for a method to determine the binary diffusion coefficient D of salts in liquids (especially in drilling fluids) not only accurately, but in a reasonable time. We chose to use the Taylor Dispersion Method. This technique has been used for measuring binary diffusion coefficients in gaseous, liquid and supercritical fluids, due to its simplicity and accuracy. In the method, the diffusion coefficient is determined by the analysis of the dispersion of a pulse of soluble material in a solvent flowing laminarly through a tube. This work describes the theoretical basis and the experimental requirements for the application of the Taylor Dispersion Method, emphasizing the description of our experiment. A mathematical formulation for both Newtonian and non-Newtonian fluids is presented. The relevant sources of errors are discussed. The experimental procedure and associated analysis are validated by applying the method in well known systems, such as NaCl in water.D of salts in liquids (especially in drilling fluids) not only accurately, but in a reasonable time. We chose to use the Taylor Dispersion Method. This technique has been used for measuring binary diffusion coefficients in gaseous, liquid and supercritical fluids, due to its simplicity and accuracy. In the method, the diffusion coefficient is determined by the analysis of the dispersion of a pulse of soluble material in a solvent flowing laminarly through a tube. This work describes the theoretical basis and the experimental requirements for the application of the Taylor Dispersion Method, emphasizing the description of our experiment. A mathematical formulation for both Newtonian and non-Newtonian fluids is presented. The relevant sources of errors are discussed. The experimental procedure and associated analysis are validated by applying the method in well known systems, such as NaCl in water. (author)

  7. On self-diffusion in silicon and germanium

    International Nuclear Information System (INIS)

    Bourgoin, J.C.; Lannoo, M.

    1980-01-01

    The experimental results concerning self-diffusion in Si and Ge are discussed. It is noted, using recent direct experimental data, that there is no temperature variation of the activation energy for self-diffusion, as it was postulated by Seeger and coworkers. A calculation is made of the sum of the formation and migration vibrational entropies for a vacancy, versus the lattice distortion which occurs around this vacancy. Using a Morse potential to obtain force constants, a lower limit is obtained for the value of this entropy at high temperature which is in correct agreement with the large (10 to 15 k) experimental value. It is concluded that the model, proposed by Seeger and coworkers, that self-diffusion occurs through extended defects (vacancies or interstitials), can be definitively ruled out. (author)

  8. Determination of oxygen nonstoichiometry and diffusivity in mixed conducting oxides by oxygen Coulometric titration

    NARCIS (Netherlands)

    Lankhorst, M.H.R.; Lankhorst, Martijn H.R.; Bouwmeester, Henricus J.M.

    1997-01-01

    Oxygen coulometric titration has been applied to measure chemical diffusion in La0.8Sr0.2CoO3-δ between 700 and 1000°C. The transient current response to a potentiostatic step has been transformed from the time domain to the frequency domain. The equivalent circuit used to fit the resulting

  9. Oxygenation level and hemoglobin concentration in experimental tumor estimated by diffuse optical spectroscopy

    Science.gov (United States)

    Orlova, A. G.; Kirillin, M. Yu.; Volovetsky, A. B.; Shilyagina, N. Yu.; Sergeeva, E. A.; Golubiatnikov, G. Yu.; Turchin, I. V.

    2017-07-01

    Using diffuse optical spectroscopy the level of oxygenation and hemoglobin concentration in experimental tumor in comparison with normal muscle tissue of mice have been studied. Subcutaneously growing SKBR-3 was used as a tumor model. Continuous wave fiber probe diffuse optical spectroscopy system was employed. Optical properties extraction approach was based on diffusion approximation. Decreased blood oxygen saturation level and increased total hemoglobin content were demonstrated in the neoplasm. The main reason of such differences between tumor and norm was significant elevation of deoxyhemoglobin concentration in SKBR-3. The method can be useful for diagnosis of tumors as well as for study of blood flow parameters of tumor models with different angiogenic properties.

  10. Diffusion-weighted MR and apparent diffusion coefficient in the evaluation of severe brain injury

    International Nuclear Information System (INIS)

    Nakahara, M.; Ericson, K.; Bellander, B.M.

    2001-01-01

    Purpose: To study apparent diffusion coefficient (ADC) maps in severely brain-injured patients. Material and Methods: Four deeply comatose patients with severe brain injury were investigated with single-shot, diffusion-weighted, spin-echo echo planar imaging. The tetrahedral diffusion gradient configuration and four iterations of a set of b-values (one time of 0 mm2/s, and four times of 1000 mm2/s) were used to create isotropic ADC maps with high signal-to-noise ratio. ADC values of gray and white matter were compared among patients and 4 reference subjects. Results: one patient was diagnosed as clinically brain dead after the MR examination. The patient's ADC values of gray and white matter were significantly lower than those of 3 other brain-injured patients. In addition the ADC value of white matter was significantly lower than that of gray matter. Conclusion: The patient with fatal outcome shortly after MR examination differed significantly from other patients with severe brain injury but non-fatal outcome, with regard to ADC values in gray and white matter. This might indicate a prognostic value of ADC maps in the evaluation of traumatic brain injury

  11. Drift tube measurements of mobilities and longitudinal diffusion coefficients of ions in gases

    International Nuclear Information System (INIS)

    Chelf, R.D.

    1982-01-01

    The zero-field mobilities of Br - and NH 4+ in O 2 were determined as a function of gas temperature in a high pressure drift tube mass spectrometer. The mobilities and longitudinal diffusion coefficients of the ion-gas combinations Br - in Ne and Kr, Li + in Xe, and Tl/ + in Kr and Xe were determined as a function of E/N, where E is the electric field strength and N is the gas number density in a low pressure drift tube mass spectrometer. The measured longitudinal diffusion coefficients were used for a test and comparison of the generalized Einstein relations of Viehland-Mason and Waldman-Mason theories. The measured mobilities of Br - in Kr and Tl/ + in Kr were used in an iterative-inversion scheme from which the ion-neutral interaction potentials were determined

  12. Analysis of ligand-protein exchange by Clustering of Ligand Diffusion Coefficient Pairs (CoLD-CoP)

    Science.gov (United States)

    Snyder, David A.; Chantova, Mihaela; Chaudhry, Saadia

    2015-06-01

    NMR spectroscopy is a powerful tool in describing protein structures and protein activity for pharmaceutical and biochemical development. This study describes a method to determine weak binding ligands in biological systems by using hierarchic diffusion coefficient clustering of multidimensional data obtained with a 400 MHz Bruker NMR. Comparison of DOSY spectrums of ligands of the chemical library in the presence and absence of target proteins show translational diffusion rates for small molecules upon interaction with macromolecules. For weak binders such as compounds found in fragment libraries, changes in diffusion rates upon macromolecular binding are on the order of the precision of DOSY diffusion measurements, and identifying such subtle shifts in diffusion requires careful statistical analysis. The "CoLD-CoP" (Clustering of Ligand Diffusion Coefficient Pairs) method presented here uses SAHN clustering to identify protein-binders in a chemical library or even a not fully characterized metabolite mixture. We will show how DOSY NMR and the "CoLD-CoP" method complement each other in identifying the most suitable candidates for lysozyme and wheat germ acid phosphatase.

  13. Estimation of the thermal diffusion coefficient in fusion plasmas taking frequency measurement uncertainties into account

    International Nuclear Information System (INIS)

    Van Berkel, M; Hogeweij, G M D; Van den Brand, H; De Baar, M R; Zwart, H J; Vandersteen, G

    2014-01-01

    In this paper, the estimation of the thermal diffusivity from perturbative experiments in fusion plasmas is discussed. The measurements used to estimate the thermal diffusivity suffer from stochastic noise. Accurate estimation of the thermal diffusivity should take this into account. It will be shown that formulas found in the literature often result in a thermal diffusivity that has a bias (a difference between the estimated value and the actual value that remains even if more measurements are added) or have an unnecessarily large uncertainty. This will be shown by modeling a plasma using only diffusion as heat transport mechanism and measurement noise based on ASDEX Upgrade measurements. The Fourier coefficients of a temperature perturbation will exhibit noise from the circular complex normal distribution (CCND). Based on Fourier coefficients distributed according to a CCND, it is shown that the resulting probability density function of the thermal diffusivity is an inverse non-central chi-squared distribution. The thermal diffusivity that is found by sampling this distribution will always be biased, and averaging of multiple estimated diffusivities will not necessarily improve the estimation. Confidence bounds are constructed to illustrate the uncertainty in the diffusivity using several formulas that are equivalent in the noiseless case. Finally, a different method of averaging, that reduces the uncertainty significantly, is suggested. The methodology is also extended to the case where damping is included, and it is explained how to include the cylindrical geometry. (paper)

  14. Unified derivation of the various definitions of lattice cell diffusion coefficients

    International Nuclear Information System (INIS)

    Hughes, R.P.

    1978-01-01

    The various definitions of lattice cell diffusion coefficients are discussed within the context of a one-dimensional slab lattice in one energy group. It is shown how each definition, although originally derived in its own particular way, can be derived from a single approach. This makes clear the differences between, and the advantages of, the various definitions

  15. Incorporating Embedded Microporous Layers into Topologically Equivalent Pore Network Models for Oxygen Diffusivity Calculations in Polymer Electrolyte Membrane Fuel Cell Gas Diffusion Layers

    International Nuclear Information System (INIS)

    Fazeli, Mohammadreza; Hinebaugh, James; Bazylak, Aimy

    2016-01-01

    Highlights: • Pore network model for modeling PEMFC MPL-coated GDL effective diffusivity. • Bilayered GDL (substrate and MPL) is modeled with a hybrid network of block MPL elements combined with discrete substrate pores. • Diffusivities of MPL-coated GDLs agree with analytical solutions. - Abstract: In this work, a voxel-based methodology is introduced for the hybridization of a pore network with interspersed nano-porous material elements allowing pore network based oxygen diffusivity calculations in a 3D image of a polymer electrolyte membrane (PEM) fuel cell gas diffusion layer (GDL) with an embedded microporous layer (MPL). The composite GDL is modeled by combining a hybrid network of block MPL elements with prescribed bulk material properties and a topologically equivalent network of larger discrete pores and throats that are directly derived from the 3D image of the GDL substrate. This hybrid network was incorporated into a pore network model, and effective diffusivity predictions of GDL materials with MPL coatings were obtained. Stochastically generated numerical models of carbon paper substrates with and without MPLs were used, and the pore space was directly extracted from this realistic geometry as the input for the pore network model. The effective diffusion coefficient of MPL-coated GDL materials was predicted from 3D images in a pore network modeling environment without resolving the nano-scale structure of the MPL. This method is particularly useful due to the disparate length scales that are involved when attempting to capture pore-scale transport in the GDL. Validation was performed by comparing our predicted diffusivity values to analytical predictions, and excellent agreement was observed. Upon conducting a mesh sensitivity study, it was determined that an MPL element size of 7 μm provided sufficiently high resolution for accurately describing the MPL nano-structure.

  16. Measurement of the Diffusion Coefficient of Water in RP-3 and RP-5 Jet Fuels Using Digital Holography Interferometry

    Science.gov (United States)

    Li, Chaoyue; Feng, Shiyu; Shao, Lei; Pan, Jun; Liu, Weihua

    2018-04-01

    The diffusion coefficient of water in jet fuel was measured employing double-exposure digital holographic interferometry to clarify the diffusion process and make the aircraft fuel system safe. The experimental method and apparatus are introduced in detail, and the digital image processing program is coded in MATLAB according to the theory of the Fourier transform. At temperatures ranging from 278.15 K to 333.15 K in intervals of 5 K, the diffusion coefficient of water in RP-3 and RP-5 jet fuels ranges from 2.6967 × 10 -10 m2·s-1 to 8.7332 × 10 -10 m2·s-1 and from 2.3517 × 10 -10 m2·s-1 to 8.0099 × 10-10 m2·s-1, respectively. The relationship between the measured diffusion coefficient and temperature can be well fitted by the Arrhenius law. The diffusion coefficient of water in RP-3 jet fuel is higher than that of water in RP-5 jet fuel at the same temperature. Furthermore, the viscosities of the two jet fuels were measured and found to be expressible in the form of the Arrhenius equation. The relationship among the diffusion coefficient, viscosity and temperature is analyzed according to the classic prediction model, namely the Stokes-Einstein correlation, and this correlation is further revised via experimental data to obtain a more accurate predication result.

  17. Flow injection analysis simulations and diffusion coefficient determination by stochastic and deterministic optimization methods.

    Science.gov (United States)

    Kucza, Witold

    2013-07-25

    Stochastic and deterministic simulations of dispersion in cylindrical channels on the Poiseuille flow have been presented. The random walk (stochastic) and the uniform dispersion (deterministic) models have been used for computations of flow injection analysis responses. These methods coupled with the genetic algorithm and the Levenberg-Marquardt optimization methods, respectively, have been applied for determination of diffusion coefficients. The diffusion coefficients of fluorescein sodium, potassium hexacyanoferrate and potassium dichromate have been determined by means of the presented methods and FIA responses that are available in literature. The best-fit results agree with each other and with experimental data thus validating both presented approaches. Copyright © 2013 The Author. Published by Elsevier B.V. All rights reserved.

  18. CH3Cl self-broadening coefficients and their temperature dependence

    International Nuclear Information System (INIS)

    Dudaryonok, A.S.; Lavrentieva, N.N.; Buldyreva, J.V.

    2013-01-01

    CH 3 35 Cl self-broadening coefficients at various temperatures of atmospheric interest are computed by a semi-empirical method particularly suitable for molecular systems with strong dipole–dipole interactions. In order to probe the dependence on the rotational number K, the model parameters are adjusted on extensive room-temperature measurements for K≤7 and allow reproducing fine features of J-dependences observed for K≤3; for higher K up to 20, the fitting is performed on specially calculated semi-classical values. The temperature exponents for the standard power law are extracted and validated by calculation of low-temperature self-broadening coefficients comparing very favorably with available experimental data. An extensive line-list of self-broadening coefficients at the reference temperature 296 K and associated temperature exponents for 0≤J≤70, 0≤K≤20 is provided as Supplementary material for their use in atmospheric applications and spectroscopic databases. -- Highlights: • We calculated methyl chloride self-broadening coefficients using two methods. • Rotational quantum numbers were J from 0 till 70 and K from 0 till 20. • The temperature exponents were calculated for every mentioned line

  19. Fe+3 diffusion coefficient in Fricke xylenol gel through shielding half of a 6 MV photon beam field size

    International Nuclear Information System (INIS)

    Cavalcante, Fernanda; Oliveira, Lucas de; Almeida, Adelaide de

    2009-01-01

    Diffusion of ions can be observed in a solution or gel when a difference occurs in their concentrations. For dosimetric gels, the diffusion can interfere on measurements of absorbed dose delivered to the patient in a radiotherapic treatment, when the time interval for measurements pos-irradiation is considered long. In the present work, a pos-irradiation Fricke Xylenol Gel (FXG) spatial dose distribution was obtained for several time intervals and the diffusion coefficient was inferred following a literature theoretical methodology. Using FXG samples, whose [Fe 2+ ] are oxidated to [Fe +3 ] when irradiated, the diffusion coefficient for the last ion was obtained in order that one can have the real spatial dose distribution right after the irradiation and this was done using half shielded 6 MV photons field size. Each sample, for each time interval selected (from 2.8 up to 28.6 hours) was analyzed in function of their optical absorbance. From Fick's law and from an error equation, the diffusion coefficient was inferred, which can be used to correct the absorbance positions promptly after irradiation. The diffusion coefficient found for the FXG dosimeter, has the value of 0.452 mm 2 /h, that is between the interval of 0.3 up to 2.0 mm 2 /h, predicted for gel type dosimeters. (author)

  20. Modeling of oxygen gas diffusion and consumption during the oxic transient in a disposal cell of radioactive waste

    International Nuclear Information System (INIS)

    De Windt, Laurent; Marsal, François; Corvisier, Jérôme; Pellegrini, Delphine

    2014-01-01

    Highlights: • This paper deals with the geochemistry of underground HLW disposals. • The oxic transient is a key issue in performance assessment (e.g. corrosion, redox). • A reactive transport model is explicitly coupled to gas diffusion and reactivity. • Application to in situ experiment (Tournemire laboratory) and HLW disposal cell. • Extent of the oxidizing/reducing front is investigated by sensitivity analysis. - Abstract: The oxic transient in geological radioactive waste disposals is a key issue for the performance of metallic components that may undergo high corrosion rates under such conditions. A previous study carried out in situ in the argillite formation of Tournemire (France) has suggested that oxic conditions could have lasted several years. In this study, a multiphase reactive transport model is performed with the code HYTEC to analyze the balance between the kinetics of pyrite oxidative dissolution, the kinetics of carbon steel corrosion and oxygen gas diffusion when carbon steel components are emplaced in the geological medium. Two cases were modeled: firstly, the observations made in situ have been reproduced, and the model established was then applied to a disposal cell for high-level waste (HLW) in an argillaceous formation, taking into account carbon steel components and excavated damaged zones (EDZ). In a closed system, modeling leads to a complete and fast consumption of oxygen in both cases. Modeling results are more consistent with the in situ test while considering residual voids between materials and/or a water unsaturated state allowing for oxygen gas diffusion (open conditions). Under similar open conditions and considering ventilation of the handling drifts, a redox contrast occurs between reducing conditions at the back of the disposal cell (with anoxic corrosion of steel and H 2 production) and oxidizing conditions at the front of the cell (with oxic corrosion of steel). The extent of the oxidizing/reducing front in the

  1. First-principles studies on vacancy-modified interstitial diffusion mechanism of oxygen in nickel, associated with large-scale atomic simulation techniques

    International Nuclear Information System (INIS)

    Fang, H. Z.; Shang, S. L.; Wang, Y.; Liu, Z. K.; Alfonso, D.; Alman, D. E.; Shin, Y. K.; Zou, C. Y.; Duin, A. C. T. van; Lei, Y. K.; Wang, G. F.

    2014-01-01

    This paper is concerned with the prediction of oxygen diffusivities in fcc nickel from first-principles calculations and large-scale atomic simulations. Considering only the interstitial octahedral to tetrahedral to octahedral minimum energy pathway for oxygen diffusion in fcc lattice, greatly underestimates the migration barrier and overestimates the diffusivities by several orders of magnitude. The results indicate that vacancies in the Ni-lattice significantly impact the migration barrier of oxygen in nickel. Incorporation of the effect of vacancies results in predicted diffusivities consistent with available experimental data. First-principles calculations show that at high temperatures the vacancy concentration is comparable to the oxygen solubility, and there is a strong binding energy and a redistribution of charge density between the oxygen atom and vacancy. Consequently, there is a strong attraction between the oxygen and vacancy in the Ni lattice, which impacts diffusion

  2. Thermophysical properties and oxygen transport in (Thx,Pu1-x)O2.

    Science.gov (United States)

    Galvin, C O T; Cooper, M W D; Rushton, M J D; Grimes, R W

    2016-10-31

    Using Molecular Dynamics, this paper investigates the thermophysical properties and oxygen transport of (Th x ,Pu 1-x )O 2 (0 ≤ x ≤ 1) between 300-3500 K. In particular, the superionic transition is investigated and viewed via the thermal dependence of lattice parameter, linear thermal expansion coefficient, enthalpy and specific heat at constant pressure. Oxygen diffusivity and activation enthalpy are also investigated. Below the superionic temperature an increase of oxygen diffusivity for certain compositions of (Th x ,Pu 1-x )O 2 compared to the pure end members is predicted. Oxygen defect formation enthalpies are also examined, as they underpin the superionic transition temperature and the increase in oxygen diffusivity. The increase in oxygen diffusivity for (Th x ,Pu 1-x )O 2 is explained in terms of lower oxygen defect formation enthalpies for (Th x ,Pu 1-x )O 2 than PuO 2 and ThO 2 , while links are drawn between the superionic transition temperature and oxygen Frenkel disorder.

  3. Diffusion layer characteristics for increasing the performance of activated carbon air cathodes in microbial fuel cells

    KAUST Repository

    Zhang, Xiaoyuan; He, Weihua; Yang, Wulin; Liu, Jia; Wang, Qiuying; Liang, Peng; Huang, Xia; Logan, Bruce E.

    2016-01-01

    The characteristics of several different types of diffusion layers were systematically examined to improve the performance of activated carbon air cathodes used in microbial fuel cells (MFCs). A diffusion layer of carbon black and polytetrafluoroethylene (CB + PTFE) that was pressed onto a stainless steel mesh current collector achieved the highest cathode performance. This cathode also had a high oxygen mass transfer coefficient and high water pressure tolerance (>2 m), and it had the highest current densities in abiotic chronoamperometry tests compared to cathodes with other diffusion layers. In MFC tests, this cathode also produced maximum power densities (1610 ± 90 mW m−2) that were greater than those of cathodes with other diffusion layers, by 19% compared to Gore-Tex (1350 ± 20 mW m−2), 22% for a cloth wipe with PDMS (1320 ± 70 mW m−2), 45% with plain PTFE (1110 ± 20 mW m−2), and 19% higher than those of cathodes made with a Pt catalyst and a PTFE diffusion layer (1350 ± 50 mW m−2). The highly porous diffusion layer structure of the CB + PTFE had a relatively high oxygen mass transfer coefficient (1.07 × 10−3 cm s−1) which enhanced oxygen transport to the catalyst. The addition of CB enhanced cathode performance by increasing the conductivity of the diffusion layer. Oxygen mass transfer coefficient, water pressure tolerance, and the addition of conductive particles were therefore critical features for achieving higher performance AC air cathodes.

  4. Population densities and rate coefficients for electron impact excitation in singly ionized oxygen

    International Nuclear Information System (INIS)

    Awakowicz, P.; Behringer, K.

    1995-01-01

    In non-LTE arc plasmas, O II excited state number densities were measured relative to the O II ground and metastable states. The results were compared with collisional-radiative code calculations on the basis of the JET ADAS programs. Stationary He plasmas with small oxygen admixtures, generated in a 5 mm diameter cascade arc chamber (pressures 13-70 hPa, arc current 150 A), were investigated spectroscopically in the visible and the VUV spectral range. The continuum of a 2 mm diameter pure He arc (atmospheric pressure, current 100 A) served for calibration of the VUV system response. Plasma diagnostics on the basis of Hβ Stark broadening yielded electron densities between 2.4 x 10 14 and 2.0 x 10 15 cm -3 for the low-pressure O II mixture plasmas. The agreement of measured and calculated excited state populations is generally very satisfactory, thus confirming the rate coefficients in the code. This is of particular interest in this intermediate region between corona balance and LTE, where many atomic data are required in the simulation. Clear indications were found for the diffusion of metastables lowering their number densities significantly below their statistical values. (author)

  5. Intramyocardial oxygen transport by quantitative diffuse reflectance spectroscopy in calves

    Science.gov (United States)

    Lindbergh, Tobias; Larsson, Marcus; Szabó, Zoltán; Casimir-Ahn, Henrik; Strömberg, Tomas

    2010-03-01

    Intramyocardial oxygen transport was assessed during open-chest surgery in calves by diffuse reflectance spectroscopy using a small intramuscular fiber-optic probe. The sum of hemo- and myoglobin tissue fraction and oxygen saturation, the tissue fraction and oxidation of cytochrome aa3, and the tissue fraction of methemoglobin were estimated using a calibrated empirical light transport model. Increasing the oxygen content in the inhaled gas, 21%-50%-100%, in five calves (group A) gave an increasing oxygen saturation of 19+/-4%, 24+/-5%, and 28+/-8% (panimals increased with LVAD pump speed (p<0.001, ANOVA) and with oxygen content in inhaled gas (p<0.001, ANOVA). The cytochrome aa3 oxidation level was above 96% in both group A and group B calves, including the two cases involving cardiac arrest. In conclusion, the estimated tissue fractions and oxygenation/oxidation levels of the myocardial chromophores during respiratory and hemodynamic provocations were in agreement with previously presented results, demonstrating the potential of the method.

  6. Gene interference regulates aquaporin-4 expression in swollen tissue of rats with cerebral ischemic edema: Correlation with variation in apparent diffusion coefficient.

    Science.gov (United States)

    Hu, Hui; Lu, Hong; He, Zhanping; Han, Xiangjun; Chen, Jing; Tu, Rong

    2012-07-25

    To investigate the effects of mRNA interference on aquaporin-4 expression in swollen tissue of rats with ischemic cerebral edema, and diagnose the significance of diffusion-weighted MRI, we injected 5 μL shRNA- aquaporin-4 (control group) or siRNA- aquaporin-4 solution (1:800) (RNA interference group) into the rat right basal ganglia immediately before occlusion of the middle cerebral artery. At 0.25 hours after occlusion of the middle cerebral artery, diffusion-weighted MRI displayed a high signal; within 2 hours, the relative apparent diffusion coefficient decreased markedly, aquaporin-4 expression increased rapidly, and intracellular edema was obviously aggravated; at 4 and 6 hours, the relative apparent diffusion coefficient slowly returned to control levels, aquaporin-4 expression slightly increased, and angioedema was observed. In the RNA interference group, during 0.25-6 hours after injection of siRNA- aquaporin-4 solution, the relative apparent diffusion coefficient slightly fluctuated and aquaporin-4 expression was upregulated; during 0.5-4 hours, the relative apparent diffusion coefficient was significantly higher, while aquaporin-4 expression was significantly lower when compared with the control group, and intracellular edema was markedly reduced; at 0.25 and 6 hours, the relative apparent diffusion coefficient and aquaporin-4 expression were similar when compared with the control group; obvious angioedema remained at 6 hours. Pearson's correlation test results showed that aquaporin-4 expression was negatively correlated with the apparent diffusion coefficient (r = -0.806, P coefficient. Aquaporin-4 gene interference can effectively inhibit the upregulation of aquaporin-4 expression during the stage of intracellular edema with time-effectiveness. Moreover, diffusion-weighted MRI can accurately detect intracellular edema.

  7. Apparent diffusion coefficient measurement in a moving phantom simulating linear respiratory motion.

    Science.gov (United States)

    Kwee, Thomas C; Takahara, Taro; Muro, Isao; Van Cauteren, Marc; Imai, Yutaka; Nievelstein, Rutger A J; Mali, Willem P T M; Luijten, Peter R

    2010-10-01

    The aim of this study was to examine the effect of simulated linear respiratory motion on apparent diffusion coefficient (ADC) measurements. Six rectangular test tubes (14 × 92 mm) filled with either water, tomato ketchup, or mayonnaise were positioned in a box containing agarose gel. This box was connected to a double-acting pneumatic cylinder, capable of inducing periodic linear motion in the long-axis direction of the magnetic bore (23-mm stroke). Diffusion-weighted magnetic resonance imaging was performed for both the static and moving phantoms, and ADC measurements were made in the six test tubes in both situations. In the three test tubes whose long axes were parallel to the direction of motion, ADCs agreed well between the moving and static phantom situations. However, in two test tubes that were filled with fluids that had a considerably lower diffusion coefficient than the surrounding agarose gel, and whose long axes were perpendicular to the direction of motion, the ADCs agreed poorly between the moving and static phantom situations. ADC measurements of large homogeneous structures are not affected by linear respiratory motion. However, ADC measurements of inhomogeneous or small structures are affected by linear respiratory motion due to partial volume effects.

  8. Apparent diffusion coefficient measurement in a moving phantom simulating linear respiratory motion

    International Nuclear Information System (INIS)

    Kwee, T.C.; Takahara, Taro; Nievelstein, R.A.J.; Mali, W.P.T.M.; Luijten, P.R.; Muro, Isao; Imai, Yutaka; Cauteren, M. Van

    2010-01-01

    The aim of this study was to examine the effect of simulated linear respiratory motion on apparent diffusion coefficient (ADC) measurements. Six rectangular test tubes (14 x 92 mm) filled with either water, tomato ketchup, or mayonnaise were positioned in a box containing agarose gel. This box was connected to a double-acting pneumatic cylinder, capable of inducing periodic linear motion in the long-axis direction of the magnetic bore (23-mm stroke). Diffusion-weighted magnetic resonance imaging was performed for both the static and moving phantoms, and ADC measurements were made in the six test tubes in both situations. In the three test tubes whose long axes were parallel to the direction of motion, ADCs agreed well between the moving and static phantom situations. However, in two test tubes that were filled with fluids that had a considerably lower diffusion coefficient than the surrounding agarose gel, and whose long axes were perpendicular to the direction of motion, the ADCs agreed poorly between the moving and static phantom situations. ADC measurements of large homogeneous structures are not affected by linear respiratory motion. However, ADC measurements of inhomogeneous or small structures are affected by linear respiratory motion due to partial volume effects. (author)

  9. Electron scattering on N2O-from cross sections to diffusion coefficients

    International Nuclear Information System (INIS)

    Mechlinska-Drewko, J.; Wroblewski, T.; Petrovic, Z.L.; Novakovic, V.; Karwasz, G.P.

    2003-01-01

    Results of measurements of the ratio of transverse (D T /μ) and longitudinal (D L /μ) diffusion coefficients to mobility and drift velocity (W) as function of reduced electrical field (E/N) for electrons in nitrous oxide are presented. The coefficients D T /μ and D L /μ have been determined by applying the Townsend-Huxley method. The drift velocities were obtained by using the Bradbury-Nielsen technique. Also the deduced set of total and partial cross sections has been used to calculate the D T /μ and W

  10. Transport coefficients for dense hard-disk systems

    NARCIS (Netherlands)

    García-Rojo, R.; Luding, S.; Brey, J.J.

    2006-01-01

    A study of the transport coefficients of a system of elastic hard disks based on the use of Helfand-Einstein expressions is reported. The self-diffusion, the viscosity, and the heat conductivity are examined with averaging techniques especially appropriate for event-driven molecular dynamics

  11. Oxygen diffusion-concentration in phospholipidic model membranes. An ESR-saturation study

    International Nuclear Information System (INIS)

    Vachon, A.; Lecomte, C.; Berleur, F.

    1986-04-01

    Fully hydrated liposomes of dipalmitoyl-phosphatidylcholine were labelled with 5 (or 7, 10, 12, 16)-doxyl stearic acid at pH 6 and 8, and studied by the continuous wave ESR-saturation technique. The ESR spectral magnitude depends on the hyperfrequency power P and on both T 1 and T 2 relaxation times. Saturation, i.e. the non linearity of the spectral magnitude plotted versus √P can be quantified by a P1/2 parameter (power at which the signal is half as great as it would be without saturation). If we assume T 2 weakly modified by spin exchange between paramagnetic spin probe and oxygen in triplet state, P1/2 is inversely proportional to T 1 , and becomes a sensitive parameter to appreciate the oxygen transport (oxygen diffusion-concentration product) inside the bilayers. According to the DPPC bilayer phase transition diagrams, P1/2 (oxygen diffusion-concentration) is related to the thermodynamic state of the membrane. This technique provides further informations on a particular property of a radioprotective agent, cysteamine, which seems to inhibit spin-triplet exchange and hence maximizes T 1 (minimizes P1/2). Since radioprotective agents are known to act by scavenging radiation-induced free radicals and by inhibiting oxygen-dependent free radical processes, such a result may contribute to elucidate radioprotecting mechanisms

  12. Water and sucrose diffusion coefficients during osmotic dehydration of sapodilla (Achras zapota L.

    Directory of Open Access Journals (Sweden)

    Lívia Muritiba Pereira de Lima Coimbra

    Full Text Available ABSTRACT: Sapodilla is an original fruit from Central America that is well adapted in all regions of the Brazilian territory. Despite its wide adaptation and acceptance in fruit markets, it is rare to find it outside tropical regions, partially because of its high perishability. The development of alternative, simple, and inexpensive methods to extend the conservation and marketing of these fruits is important, and osmotic dehydration is one of these methods. The main objective of this study was to determine the water and sucrose diffusion coefficients during the osmotic dehydration of sapodilla. This process was performed in short duration (up to 6h to evaluate detailed information on water loss and solids gain kinetics at the beginning of the process and in long duration (up to 60h to determine the equilibrium concentrations in sapodilla. The immersion time had greater influence on the water and sucrose diffusion coefficients (P<0.05; the maximum water loss (WL and solute gain (SG occurred in the osmotic solution at the highest concentration. Water and sucrose diffusion coefficients ranged from 0.00 x 10-10 m2/s to 1.858 x 10-10 m2/s, and from 0.00 x 10-10to 2.304 x 10-10 m2/s, respectively. Thus, understanding the WL and SG kinetics during the process of sapodilla osmotic dehydration could significantly contribute to new alternatives of preservation and commercialization of this fruit.

  13. Radionuclides in diffusion probing of inorganic materials based on chalcogenides

    International Nuclear Information System (INIS)

    Firsova, L.P.

    1994-01-01

    Migration of tellurium-125m, selenium-75, sulfur-35 radionuclides in solid solutions Pb 1-y (Se 0.08 Te 0.92 ) y and (Pb 1-x Sn x ) y Te 1-y , where x=0.1 and 0.2, has been studied, the results are presented. Data on dependence of selenium and tellurium self-diffusion coefficients on temperature in the range of 600-750 deg C are given. The results of the study of self-diffusion coefficient isothermal dependences on lead and tellurium vapour pressure in equilibrium with solid phases have been considered. It is ascertained that a change in the temperature and p-n transitions initiate the change in self-diffusion mechanisms of chalcogenide atoms. 8 refs., 3 tabs

  14. Charge and spin diffusion on the metallic side of the metal-insulator transition: A self-consistent approach

    Science.gov (United States)

    Wellens, Thomas; Jalabert, Rodolfo A.

    2016-10-01

    We develop a self-consistent theory describing the spin and spatial electron diffusion in the impurity band of doped semiconductors under the effect of a weak spin-orbit coupling. The resulting low-temperature spin-relaxation time and diffusion coefficient are calculated within different schemes of the self-consistent framework. The simplest of these schemes qualitatively reproduces previous phenomenological developments, while more elaborate calculations provide corrections that approach the values obtained in numerical simulations. The results are universal for zinc-blende semiconductors with electron conductance in the impurity band, and thus they are able to account for the measured spin-relaxation times of materials with very different physical parameters. From a general point of view, our theory opens a new perspective for describing the hopping dynamics in random quantum networks.

  15. Determination of uranyl nitrate diffusion coefficients in organic and aqueous media using the porous diaphragm method

    International Nuclear Information System (INIS)

    Chierice, G.O.

    1974-01-01

    The diffusion coefficient is one of the parameters necessary for the obtention of the extraction exponential coefficients, that are contained within the H.T.U. (height of transfer unity) calculation expression, when operating with continuous organic phase. The organic phase used was tri-n-butyl-phosphate (TBP) and varsol in the 35% and 65% proportions respectively. After each experiment, the uranium content present in each compartment was spectrophotometrically determined and the quantities contained in the aqueous phases were determined by means of volumetric titration. It was found out that the uranyl ion diffusion coefficient is two and one half times less in organic phase, this just being attributed to the greater interactions of the uranyl ions in organic than in aqueous medium

  16. Combined diffusion-weighted, blood oxygen level-dependent, and dynamic contrast-enhanced MRI for characterization and differentiation of renal cell carcinoma.

    Science.gov (United States)

    Notohamiprodjo, Mike; Staehler, Michael; Steiner, Nicole; Schwab, Felix; Sourbron, Steven P; Michaely, Henrik J; Helck, Andreas D; Reiser, Maximilian F; Nikolaou, Konstantin

    2013-06-01

    To investigate a multiparametric magnetic resonance imaging (MRI) approach comprising diffusion-weighted imaging (DWI), blood oxygen-dependent (BOLD), and dynamic contrast-enhanced (DCE) MRI for characterization and differentiation of primary renal cell carcinoma (RCC). Fourteen patients with clear-cell carcinoma and four patients with papillary RCC were examined with DWI, BOLD MRI, and DCE MRI at 1.5T. The apparent diffusion coefficient (ADC) was calculated with a monoexponential decay. The spin-dephasing rate R2* was derived from parametric R2* maps. DCE-MRI was analyzed using a two-compartment exchange model allowing separation of perfusion (plasma flow [FP] and plasma volume [VP]), permeability (permeability surface area product [PS]), and extravascular extracellular volume (VE). Statistical analysis was performed with Wilcoxon signed-rank test, Pearson's correlation coefficient, and receiver operating characteristic curve analysis. Clear-cell RCC showed higher ADC and lower R2* compared to papillary subtypes, but differences were not significant. FP of clear-cell subtypes was significantly higher than in papillary RCC. Perfusion parameters showed moderate but significant inverse correlation with R2*. VE showed moderate inverse correlation with ADC. Fp and Vp showed best sensitivity for histological differentiation. Multiparametric MRI comprising DWI, BOLD, and DCE MRI is feasible for assessment of primary RCC. BOLD moderately correlates to DCE MRI-derived perfusion. ADC shows moderate correlation to the extracellular volume, but does not correlate to tumor oxygenation or perfusion. In this preliminary study DCE-MRI appeared superior to BOLD and DWI for histological differentiation. Copyright © 2013 AUR. Published by Elsevier Inc. All rights reserved.

  17. Self-diffusion in remodeling and growth

    KAUST Repository

    Epstein, Marcelo

    2011-07-16

    Self-diffusion, or the flux of mass of a single species within itself, is viewed as an independent phenomenon amenable to treatment by the introduction of an auxiliary field of diffusion velocities. The theory is shown to be heuristically derivable as a limiting case of that of an ordinary binary mixture. © 2011 Springer Basel AG.

  18. Oxygen transport in La0.6Sr0.4Co1-yFeyO3-d

    NARCIS (Netherlands)

    Bouwmeester, Henricus J.M.; den Otter, M.W.; Boukamp, Bernard A.

    2004-01-01

    The surface exchange coefficient and chemical diffusion coefficient of oxygen for the perovskites La0.6Sr0.4Co1–yFeyO3–delta (y=0.2, 0.5 and 0.8) were measured using the conductivity relaxation technique. Measurements were performed between 600 and 800 °C in an oxygen partial pressure range between

  19. Apparent Diffusion Coefficient and Dynamic Contrast-Enhanced Magnetic Resonance Imaging in Pancreatic Cancer: Characteristics and Correlation With Histopathologic Parameters.

    Science.gov (United States)

    Ma, Wanling; Li, Na; Zhao, Weiwei; Ren, Jing; Wei, Mengqi; Yang, Yong; Wang, Yingmei; Fu, Xin; Zhang, Zhuoli; Larson, Andrew C; Huan, Yi

    2016-01-01

    To clarify diffusion and perfusion abnormalities and evaluate correlation between apparent diffusion coefficient (ADC), MR perfusion and histopathologic parameters of pancreatic cancer (PC). Eighteen patients with PC underwent diffusion-weighted imaging and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Parameters of DCE-MRI and ADC of cancer and non-cancerous tissue were compared. Correlation between the rate constant that represents transfer of contrast agent from the arterial blood into the extravascular extracellular space (K, volume of the extravascular extracellular space per unit volume of tissue (Ve), and ADC of PC and histopathologic parameters were analyzed. The rate constant that represents transfer of contrast agent from the extravascular extracellular space into blood plasma, K, tissue volume fraction occupied by vascular space, and ADC of PC were significantly lower than nontumoral pancreases. Ve of PC was significantly higher than that of nontumoral pancreas. Apparent diffusion coefficient and K values of PC were negatively correlated to fibrosis content and fibroblast activation protein staining score. Fibrosis content was positively correlated to Ve. Apparent diffusion coefficient values and parameters of DCE-MRI can differentiate PC from nontumoral pancreases. There are correlations between ADC, K, Ve, and fibrosis content of PC. Fibroblast activation protein staining score of PC is negatively correlated to ADC and K. Apparent diffusion coefficient, K, and Ve may be feasible to predict prognosis of PC.

  20. Coherent quantum transport in disordered systems: II. Temperature dependence of carrier diffusion coefficients from the time-dependent wavepacket diffusion method

    International Nuclear Information System (INIS)

    Zhong, Xinxin; Zhao, Yi; Cao, Jianshu

    2014-01-01

    The time-dependent wavepacket diffusion method for carrier quantum dynamics (Zhong and Zhao 2013 J. Chem. Phys. 138 014111), a truncated version of the stochastic Schrödinger equation/wavefunction approach that approximately satisfies the detailed balance principle and scales well with the size of the system, is applied to investigate the carrier transport in one-dimensional systems including both the static and dynamic disorders on site energies. The predicted diffusion coefficients with respect to temperature successfully bridge from band-like to hopping-type transport. As demonstrated in paper I (Moix et al 2013 New J. Phys. 15 085010), the static disorder tends to localize the carrier, whereas the dynamic disorder induces carrier dynamics. For the weak dynamic disorder, the diffusion coefficients are temperature-independent (band-like property) at low temperatures, which is consistent with the prediction from the Redfield equation, and a linear dependence of the coefficient on temperature (hopping-type property) only appears at high temperatures. In the intermediate regime of dynamic disorder, the transition from band-like to hopping-type transport can be easily observed at relatively low temperatures as the static disorder increases. When the dynamic disorder becomes strong, the carrier motion can follow the hopping-type mechanism even without static disorder. Furthermore, it is found that the memory time of dynamic disorder is an important factor in controlling the transition from the band-like to hopping-type motions. (paper)

  1. Self-diffusion of charged colloidal tracer spheres in transparent porous glass media: Effect of ionic strength and pore size

    Science.gov (United States)

    Kluijtmans, Sebastiaan G. J. M.; de Hoog, Els H. A.; Philipse, Albert P.

    1998-05-01

    The influence of charge on diffusion in porous media was studied for fluorescent colloidal silica spheres diffusing in a porous glass medium. The bicontinuous porous silica glasses were optically matched with an organic solvent mixture in which both glass and tracers are negatively charged. Using fluorescence recovery after photobleaching, the long-time self-diffusion coefficient DSL of the confined silica particles was monitored in situ as a function of the ionic strength and particle to pore size ratio. At high salt concentration DSL reaches a relatively high plateau value, which depends on the particle to pore size ratio. This plateau value is unexpectedly higher than the value found for uncharged silica spheres in these porous glasses, but still significantly smaller than the free particle bulk diffusion coefficient of the silica spheres. At low salt concentration DSL reduces markedly, up to the point where colloids are nearly immobilized. This peculiar retardation probably originates from potential traps and barriers at pore intersections due to deviations from cylinder symmetry in the double layer interactions between tracers and pore walls. This indicates that diffusion of charged particles in tortuous porous media may be very different from transport in long capillaries without such intersections.

  2. Diffusion-controlled reaction. V. Effect of concentration-dependent diffusion coefficient on reaction rate in graft polymerization

    International Nuclear Information System (INIS)

    Imre, K.; Odian, G.

    1979-01-01

    The effect of diffusion on radiation-initiated graft polymerization has been studied with emphasis on the single- and two-penetrant cases. When the physical properties of the penetrants are similar, the two-penetrant problems can be reduced to the single-penetrant problem by redefining the characteristic parameters of the system. The diffusion-free graft polymerization rate is assumed to be proportional to the upsilon power of the monomer concentration respectively, and, in which the proportionality constant a = k/sub p/R/sub i//sup w//k/sub t//sup z/, where k/sub p/ and k/sub t/ are the propagation and termination rate constants, respectively, and R/sub i/ is the initiation rate. The values of upsilon, w, and z depend on the particular reaction system. The results of earlier work were generalized by allowing a non-Fickian diffusion rate which predicts an essentially exponential dependence on the monomer concentration of the diffusion coefficient, D = D 0 [exp(deltaC/M)], where M is the saturation concentration. A reaction system is characterized by the three dimensionless parameters, upsilon, delta, and A = (L/2)[aM/sup (upsilon--1)//D 0 ]/sup 1/2/, where L is the polymer film thickness. Graft polymerization tends to become diffusion controlled as A increases. Larger values of delta and ν cause a reaction system to behave closer to the diffusion-free regime. Transition from diffusion-free to diffusion-controlled reaction involves changes in the dependence of the reaction rate on film thickness, initiation rate, and monomer concentration. Although the diffusion-free rate is w order in initiation rate, upsilon order in monomer, and independent of film thickness, the diffusion-controlled rate is w/2 order in initiator rate and inverse first-order in film thickness. Dependence of the diffusion-controlled rate on monomer is dependent in a complex manner on the diffusional characteristics of the reaction system. 11 figures, 4 tables

  3. Ab initio molecular dynamics study of lithium diffusion in tetragonal Li{sub 7}La{sub 3}Zr{sub 2}O{sub 12}

    Energy Technology Data Exchange (ETDEWEB)

    Andriyevsky, B., E-mail: bohdan.andriyevskyy@tu.koszalin.pl [Faculty of Electronics and Computer Sciences, Koszalin University of Technology, 2 Śniadeckich Str., PL-75-453, Koszalin (Poland); Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, D-89069, Ulm (Germany); Doll, K. [Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, D-89069, Ulm (Germany); Institute of Theoretical Chemistry, Pfaffenwaldring 55, D-70569, Stuttgart (Germany); Jacob, T. [Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, D-89069, Ulm (Germany); Helmholtz Institute Ulm (HIU) for Electrochemical Energy Storage, Albert-Einstein-Allee 11, D-89081, Ulm (Germany)

    2017-01-01

    Using ab initio density functional theory the thermally-stimulated migration of lithium ions in the garnet-type material Li{sub 7}La{sub 3}Zr{sub 2}O{sub 12} is investigated. The methods of ab initio molecular dynamics have been applied to calculate the lithium ion self-diffusion coefficient and the diffusion barriers as function of lithium ion concentration. The concentration of lithium in the initial Li{sub 7}La{sub 3}Zr{sub 2}O{sub 12} crystal unit cell is varied from 53 to 59 atoms, where 56 lithium atoms represent the stoichiometric concentration. Almost monotonous dependencies of the main characteristics on the number of lithium atoms N{sup (Li)} have been found, except for a non-monotonous peculiarity of the stoichiometric compound (N{sup (Li)} = 56). Finally, the influence of the unit cell volume change on lithium ion diffusion parameters as well as lithium ion hopping rates has been studied. - Highlights: • Partial lithium atoms subtraction from LLZO increases diffusion coefficient D{sup (Li)}. • Partial subtraction of lithium atoms from LLZO decreases activation energy E{sub a}{sup (Li)}. • Activation energy E{sub a}{sup (Li)} is the smallest for tetrahedral oxygen surrounding. • Compression of LLZO leads to a decrease of lithium ion diffusion coefficient D{sup (Li)}.

  4. Measuring the Local Diffusion Coefficient with H.E.S.S. Observations of Very High-Energy Electrons

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, Dan [Fermilab; Linden, Tim [Ohio State U., CCAPP

    2017-11-20

    The HAWC Collaboration has recently reported the detection of bright and spatially extended multi-TeV gamma-ray emission from Geminga, Monogem, and a handful of other nearby, middle-aged pulsars. The angular profile of the emission observed from these pulsars is surprising, in that it implies that cosmic-ray diffusion is significantly inhibited within ~25 pc of these objects, compared to the expectations of standard Galactic diffusion models. This raises the important question of whether the diffusion coefficient in the local interstellar medium is also low, or whether it is instead better fit by the mean Galactic value. Here, we utilize recent observations of the cosmic-ray electron spectrum (extending up to ~20 TeV) by the H.E.S.S. Collaboration to show that the local diffusion coefficient cannot be as low as it is in the regions surrounding Geminga and Monogem. Instead, we conclude that cosmic rays efficiently diffuse through the bulk of the local interstellar medium. Among other implications, this further supports the conclusion that pulsars significantly contribute to the observed positron excess.

  5. Thermophysical properties and oxygen transport in (Thx,Pu1−x)O2

    Science.gov (United States)

    Galvin, C. O. T.; Cooper, M. W. D.; Rushton, M. J. D.; Grimes, R. W.

    2016-01-01

    Using Molecular Dynamics, this paper investigates the thermophysical properties and oxygen transport of (Thx,Pu1−x)O2 (0 ≤ x ≤ 1) between 300–3500 K. In particular, the superionic transition is investigated and viewed via the thermal dependence of lattice parameter, linear thermal expansion coefficient, enthalpy and specific heat at constant pressure. Oxygen diffusivity and activation enthalpy are also investigated. Below the superionic temperature an increase of oxygen diffusivity for certain compositions of (Thx,Pu1−x)O2 compared to the pure end members is predicted. Oxygen defect formation enthalpies are also examined, as they underpin the superionic transition temperature and the increase in oxygen diffusivity. The increase in oxygen diffusivity for (Thx,Pu1−x)O2 is explained in terms of lower oxygen defect formation enthalpies for (Thx,Pu1−x)O2 than PuO2 and ThO2, while links are drawn between the superionic transition temperature and oxygen Frenkel disorder. PMID:27796314

  6. Thermal conductivity and diffusivity of biomaterials measured with self-heated thermistors

    Science.gov (United States)

    Valvano, J. W.; Cochran, J. R.; Diller, K. R.

    1985-05-01

    This paper presents an experimental method to measure the thermal conductivity and thermal diffusivity of biomaterials. Self-heated thermistor probes, inserted into the tissue of interest, are used to deliver heat as well as to monitor the rate of heat removal. An empirical calibration procedure allows accurate thermal-property measurements over a wide range of tissue temperatures. Operation of the instrument in three media with known thermal properties shows the uncertainty of measurements to be about 2%. The reproducibility is 0.5% for the thermal-conductivity measurements and 2% for the thermal-diffusivity measurements. Thermal properties were measured in dog, pig, rabbit, and human tissues. The tissues included kidney, spleen, liver, brain, heart, lung, pancreas, colon cancer, and breast cancer. Thermal properties were measured for 65 separate tissue samples at 3, 10, 17, 23, 30, 37, and 45°C. The results show that the temperature coefficient of biomaterials approximates that of water.

  7. Universality of Viscosity Dependence of Translational Diffusion Coefficients of Carbon Monoxide, Diphenylacetylene, and Diphenylcyclopropenone in Ionic Liquids under Various Conditions.

    Science.gov (United States)

    Kimura, Y; Kida, Y; Matsushita, Y; Yasaka, Y; Ueno, M; Takahashi, K

    2015-06-25

    Translational diffusion coefficients of diphenylcyclopropenone (DPCP), diphenylacetylene (DPA), and carbon monoxide (CO) in 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([BMIm][NTf2]) and 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([EMIm][NTf2]) were determined by the transient grating (TG) spectroscopy under pressure from 0.1 to 200 MPa at 298 K and from 298 to 373 K under 0.1 MPa. Diffusion coefficients of these molecules at high temperatures in tributylmethylphosphonium bis(trifluoromethanesulfonyl)imide ([P4441][NTf2]), and tetraoctylphosphonium bis(trifluoromethanesulfonyl)imide ([P8888][NTf2]), and also in the mixtures of [BMIm][NTf2], N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide ([Pp13][NTf2]), and trihexyltetradecylphosphonium bis(trifluoromethanesulfonyl)imide ([P66614][NTf2]) with ethanol or chloroform have been determined. Diffusion coefficients except in ILs of phosphonium cations were well scaled by the power law of T/η, i.e., (T/η)(P), where T and η are the absolute temperature and the viscosity, irrespective of the solvent species, pressure and temperature, and the compositions of mixtures. The values of the exponent P were smaller for the smaller size of the molecules. On the other hand, the diffusion coefficients in ILs of phosphonium cations with longer alkyl chains were larger than the values expected from the correlation obtained by other ILs and conventional liquids. The deviation becomes larger with increasing the number of carbon atoms of alkyl-chain of cation, and with decreasing the molecular size of diffusing molecules. The molecular size dependence of the diffusion coefficient was correlated by the ratio of the volume of the solute to that of the solvent as demonstrated by the preceding work (Kaintz et al., J. Phys. Chem. B 2013 , 117 , 11697 ). Diffusion coefficients have been well correlated with the power laws of both T/η and the relative volume of the solute to the solvent.

  8. Apparent diffusion coefficient of the renal tissue. The effect of diuretic

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Jin; Munechika, Hirotsugu [Showa Univ., Tokyo (Japan). School of Medicine

    1998-12-01

    Apparent diffusion coefficient (ADC) of the renal tissue was studied at diffusion-weighted images of the kidney which were obtained from spin-echo type sequence before and after furosemide (100 mg) injection in twelve healthy volunteers. ADC (mm{sup 2}/sec) of the renal cortex and medulla before furosemide injection was 2.08{+-}0.52 and 1.96{+-}0.52, respectively. No appreciable ADC difference was seen between the cortex and the medulla of the kidney. After furosemide injection, ADC of the renal cortex and medulla became 2.09{+-}0.42 and 1.78{+-}0.38, respectively. It was found that furosemide produced no significant effect on ADC of the renal tissue. (author)

  9. Apparent diffusion coefficients of breast tumors. Clinical application

    International Nuclear Information System (INIS)

    Hatakenaka, Masamitsu; Soeda, Hiroyasu; Yabuuchi, Hidetake; Matsuo, Yoshio; Kamitani, Takeshi; Oda, Yoshinao; Tsuneyoshi, Masazumi; Honda, Hiroshi

    2008-01-01

    The purpose of this study was to evaluate the usefulness of apparent diffusion coefficient (ADC) for the differential diagnosis of breast tumors and to determine the relation between ADC and tumor cellularity. One hundred and thirty-six female patients (age range, 17-83 years; average age, 51.7 years) with 140 histologically proven breast tumors underwent diffusion-weighted magnetic resonance (MR) imaging (DWI) using the spin-echo echo-planar technique, and the ADCs of the tumors were calculated using 3 different b values, 0, 500, and 1000 s/mm 2 . The diagnoses consisted of fibroadenoma (FA, n=16), invasive ductal carcinoma, not otherwise specified (IDC, n=117), medullary carcinoma (ME, n=3) and mucinous carcinoma (MU, n=4). Tumor cellularity was calculated from surgical specimens. The ADCs of breast tumors and cellularity were compared between different histological types by analysis of variance and Scheffe's post hoc test. The correlation between tumor cellularity and ADC was analyzed by Pearson correlation test. Significant differences were observed in ADCs between FA and all types of cancers (P 2 =0.451). The ADC may potentially help in differentiating benign and malignant breast tumors. Tumor ADC correlates inversely with tumor cellularity. (author)

  10. Effect of Oxygen Enrichment in Propane Laminar Diffusion Flames under Microgravity and Earth Gravity Conditions

    Science.gov (United States)

    Bhatia, Pramod; Singh, Ravinder

    2017-06-01

    Diffusion flames are the most common type of flame which we see in our daily life such as candle flame and match-stick flame. Also, they are the most used flames in practical combustion system such as industrial burner (coal fired, gas fired or oil fired), diesel engines, gas turbines, and solid fuel rockets. In the present study, steady-state global chemistry calculations for 24 different flames were performed using an axisymmetric computational fluid dynamics code (UNICORN). Computation involved simulations of inverse and normal diffusion flames of propane in earth and microgravity condition with varying oxidizer compositions (21, 30, 50, 100 % O2, by mole, in N2). 2 cases were compared with the experimental result for validating the computational model. These flames were stabilized on a 5.5 mm diameter burner with 10 mm of burner length. The effect of oxygen enrichment and variation in gravity (earth gravity and microgravity) on shape and size of diffusion flames, flame temperature, flame velocity have been studied from the computational result obtained. Oxygen enrichment resulted in significant increase in flame temperature for both types of diffusion flames. Also, oxygen enrichment and gravity variation have significant effect on the flame configuration of normal diffusion flames in comparison with inverse diffusion flames. Microgravity normal diffusion flames are spherical in shape and much wider in comparison to earth gravity normal diffusion flames. In inverse diffusion flames, microgravity flames were wider than earth gravity flames. However, microgravity inverse flames were not spherical in shape.

  11. Calculation and analysis of the mobility and diffusion coefficient of thermal electrons in methane/air premixed flames

    KAUST Repository

    Bisetti, Fabrizio; El Morsli, Mbark

    2012-01-01

    Simulations of ion and electron transport in flames routinely adopt plasma fluid models, which require transport coefficients to compute the mass flux of charged species. In this work, the mobility and diffusion coefficient of thermal electrons

  12. Influence of diffuse reflectance measurement accuracy on the scattering coefficient in determination of optical properties with integrating sphere optics (a secondary publication).

    Science.gov (United States)

    Horibe, Takuro; Ishii, Katsunori; Fukutomi, Daichi; Awazu, Kunio

    2015-12-30

    An estimation error of the scattering coefficient of hemoglobin in the high absorption wavelength range has been observed in optical property calculations of blood-rich tissues. In this study, the relationship between the accuracy of diffuse reflectance measurement in the integrating sphere and calculated scattering coefficient was evaluated with a system to calculate optical properties combined with an integrating sphere setup and the inverse Monte Carlo simulation. Diffuse reflectance was measured with the integrating sphere using a small incident port diameter and optical properties were calculated. As a result, the estimation error of the scattering coefficient was improved by accurate measurement of diffuse reflectance. In the high absorption wavelength range, the accuracy of diffuse reflectance measurement has an effect on the calculated scattering coefficient.

  13. Analysis and correction of gradient nonlinearity bias in apparent diffusion coefficient measurements.

    Science.gov (United States)

    Malyarenko, Dariya I; Ross, Brian D; Chenevert, Thomas L

    2014-03-01

    Gradient nonlinearity of MRI systems leads to spatially dependent b-values and consequently high non-uniformity errors (10-20%) in apparent diffusion coefficient (ADC) measurements over clinically relevant field-of-views. This work seeks practical correction procedure that effectively reduces observed ADC bias for media of arbitrary anisotropy in the fewest measurements. All-inclusive bias analysis considers spatial and time-domain cross-terms for diffusion and imaging gradients. The proposed correction is based on rotation of the gradient nonlinearity tensor into the diffusion gradient frame where spatial bias of b-matrix can be approximated by its Euclidean norm. Correction efficiency of the proposed procedure is numerically evaluated for a range of model diffusion tensor anisotropies and orientations. Spatial dependence of nonlinearity correction terms accounts for the bulk (75-95%) of ADC bias for FA = 0.3-0.9. Residual ADC non-uniformity errors are amplified for anisotropic diffusion. This approximation obviates need for full diffusion tensor measurement and diagonalization to derive a corrected ADC. Practical scenarios are outlined for implementation of the correction on clinical MRI systems. The proposed simplified correction algorithm appears sufficient to control ADC non-uniformity errors in clinical studies using three orthogonal diffusion measurements. The most efficient reduction of ADC bias for anisotropic medium is achieved with non-lab-based diffusion gradients. Copyright © 2013 Wiley Periodicals, Inc.

  14. Development of a thermo-kinetic diffusion model for UO2 and (U,Pu)O2 oxide fuels using the DICTRA code

    International Nuclear Information System (INIS)

    Moore, Emily Elaine

    2013-01-01

    model describing the thermodynamic and kinetic properties of (U,Pu)O 2±x is currently not in existence. The aim of this work is to construct a diffusion model with DICTRA, which considers the mobility of the oxide components across non-stoichiometric ranges described by experimentally and theoretically available data. The coupling of a purely thermodynamic description provided by Gibbs energies, to the mobility model developed here presents a complete basis for describing atomic transport. A vacancy and interstitial model of diffusion is applied to the U-O and Pu-O systems as a function of their defect structure derived from CALPHAD-type thermodynamic descriptions. Self-diffusion coefficients are assessed and compared to available data. A good agreement between our calculated values for self and chemical diffusion coefficients and literature data is achieved for the binary systems. The chemical diffusion coefficients in the (U,Pu)O 2±x are extrapolated using the binary databases and are on the same order of magnitude as literature data. We evaluate defect migration energies of oxygen as a function of stoichiometric deviation. The diffusion coefficients of the stoichiometric oxides provide information containing the activation energy for diffusion as well as Frenkel pair-formation, for which our extracted values are in good agreement with available literature data. Further validation of the model includes simulations of chemical gradients imposed either at the surface to simulate reduction kinetics (UO 2+x ) or by introducing a diffusion couple (MOX) where oxygen diffusion profiles are measured as a function of distance. Both examples are in agreement with the experimental data after which the simulation conditions were reproduced. (author) [fr

  15. Computing the blood brain barrier (BBB) diffusion coefficient: A molecular dynamics approach

    Energy Technology Data Exchange (ETDEWEB)

    Shamloo, Amir, E-mail: shamloo@sharif.edu; Pedram, Maysam Z.; Heidari, Hossein; Alasty, Aria, E-mail: aalasti@sharif.edu

    2016-07-15

    Various physical and biological aspects of the Blood Brain Barrier (BBB) structure still remain unfolded. Therefore, among the several mechanisms of drug delivery, only a few have succeeded in breaching this barrier, one of which is the use of Magnetic Nanoparticles (MNPs). However, a quantitative characterization of the BBB permeability is desirable to find an optimal magnetic force-field. In the present study, a molecular model of the BBB is introduced that precisely represents the interactions between MNPs and the membranes of Endothelial Cells (ECs) that form the BBB. Steered Molecular Dynamics (SMD) simulations of the BBB crossing phenomenon have been carried out. Mathematical modeling of the BBB as an input-output system has been considered from a system dynamics modeling viewpoint, enabling us to analyze the BBB behavior based on a robust model. From this model, the force profile required to overcome the barrier has been extracted for a single NP from the SMD simulations at a range of velocities. Using this data a transfer function model has been obtained and the diffusion coefficient is evaluated. This study is a novel approach to bridge the gap between nanoscale models and microscale models of the BBB. The characteristic diffusion coefficient has the nano-scale molecular effects inherent, furthermore reducing the computational costs of a nano-scale simulation model and enabling much more complex studies to be conducted. - Highlights: • Molecular dynamics simulation of crossing nano-particles through the BBB membrane at different velocities. • Recording the position of nano-particle and the membrane-NP interaction force profile. • Identification of a frequency domain model for the membrane. • Calculating the diffusion coefficient based on MD simulation and identified model. • Obtaining a relation between continuum medium and discrete medium.

  16. Apparent diffusion coefficient measurement in glioma: Influence of region-of-interest determination methods on apparent diffusion coefficient values, interobserver variability, time efficiency, and diagnostic ability.

    Science.gov (United States)

    Han, Xu; Suo, Shiteng; Sun, Yawen; Zu, Jinyan; Qu, Jianxun; Zhou, Yan; Chen, Zengai; Xu, Jianrong

    2017-03-01

    To compare four methods of region-of-interest (ROI) placement for apparent diffusion coefficient (ADC) measurements in distinguishing low-grade gliomas (LGGs) from high-grade gliomas (HGGs). Two independent readers measured ADC parameters using four ROI methods (single-slice [single-round, five-round and freehand] and whole-volume) on 43 patients (20 LGGs, 23 HGGs) who had undergone 3.0 Tesla diffusion-weighted imaging and time required for each method of ADC measurements was recorded. Intraclass correlation coefficients (ICCs) were used to assess interobserver variability of ADC measurements. Mean and minimum ADC values and time required were compared using paired Student's t-tests. All ADC parameters (mean/minimum ADC values of three single-slice methods, mean/minimum/standard deviation/skewness/kurtosis/the10 th and 25 th percentiles/median/maximum of whole-volume method) were correlated with tumor grade (low versus high) by unpaired Student's t-tests. Discriminative ability was determined by receiver operating characteristic curves. All ADC measurements except minimum, skewness, and kurtosis of whole-volume ROI differed significantly between LGGs and HGGs (all P determination methods. Whole-volume histogram analysis did not yield better results than single-slice methods and took longer. Mean ADC value derived from single-round ROI is the most optimal parameter for differentiating LGGs from HGGs. 3 J. Magn. Reson. Imaging 2017;45:722-730. © 2016 International Society for Magnetic Resonance in Medicine.

  17. Communication: A method to compute the transport coefficient of pure fluids diffusing through planar interfaces from equilibrium molecular dynamics simulations.

    Science.gov (United States)

    Vermorel, Romain; Oulebsir, Fouad; Galliero, Guillaume

    2017-09-14

    The computation of diffusion coefficients in molecular systems ranks among the most useful applications of equilibrium molecular dynamics simulations. However, when dealing with the problem of fluid diffusion through vanishingly thin interfaces, classical techniques are not applicable. This is because the volume of space in which molecules diffuse is ill-defined. In such conditions, non-equilibrium techniques allow for the computation of transport coefficients per unit interface width, but their weak point lies in their inability to isolate the contribution of the different physical mechanisms prone to impact the flux of permeating molecules. In this work, we propose a simple and accurate method to compute the diffusional transport coefficient of a pure fluid through a planar interface from equilibrium molecular dynamics simulations, in the form of a diffusion coefficient per unit interface width. In order to demonstrate its validity and accuracy, we apply our method to the case study of a dilute gas diffusing through a smoothly repulsive single-layer porous solid. We believe this complementary technique can benefit to the interpretation of the results obtained on single-layer membranes by means of complex non-equilibrium methods.

  18. Magnetic orientation of nontronite clay in aqueous dispersions and its effect on water diffusion.

    Science.gov (United States)

    Abrahamsson, Christoffer; Nordstierna, Lars; Nordin, Matias; Dvinskikh, Sergey V; Nydén, Magnus

    2015-01-01

    The diffusion rate of water in dilute clay dispersions depends on particle concentration, size, shape, aggregation and water-particle interactions. As nontronite clay particles magnetically align parallel to the magnetic field, directional self-diffusion anisotropy can be created within such dispersion. Here we study water diffusion in exfoliated nontronite clay dispersions by diffusion NMR and time-dependant 1H-NMR-imaging profiles. The dispersion clay concentration was varied between 0.3 and 0.7 vol%. After magnetic alignment of the clay particles in these dispersions a maximum difference of 20% was measured between the parallel and perpendicular self-diffusion coefficients in the dispersion with 0.7 vol% clay. A method was developed to measure water diffusion within the dispersion in the absence of a magnetic field (random clay orientation) as this is not possible with standard diffusion NMR. However, no significant difference in self-diffusion coefficient between random and aligned dispersions could be observed. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. The role of oxygen in the deposition of copper–calcium thin film as diffusion barrier for copper metallization

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Zhinong, E-mail: znyu@bit.edu.cn [School of Optoelectronics and Beijing Engineering Research Center of Mixed Reality and Advanced Display, Beijing Institute of Technology, Beijing 100081 (China); Ren, Ruihuang [School of Optoelectronics and Beijing Engineering Research Center of Mixed Reality and Advanced Display, Beijing Institute of Technology, Beijing 100081 (China); Xue, Jianshe; Yao, Qi; Li, Zhengliang; Hui, Guanbao [Beijing BOE Optoelectronics Technology Co., Ltd, Beijing 100176 (China); Xue, Wei [School of Optoelectronics and Beijing Engineering Research Center of Mixed Reality and Advanced Display, Beijing Institute of Technology, Beijing 100081 (China)

    2015-02-15

    Highlights: • The CuCa film as the diffusion barrier of Cu film improves the adhesion of Cu film. • The introduction of oxygen into the deposition of CuCa film is necessary to improve the adhesion of Cu film. • The CuCa alloy barrier layer deposited at oxygen atmosphere has perfect anti-diffusion between Cu film and substrate. - Abstract: The properties of copper (Cu) metallization based on copper–calcium (CuCa) diffusion barrier as a function of oxygen flux in the CuCa film deposition were investigated in view of adhesion, diffusion and electronic properties. The CuCa film as the diffusion barrier of Cu film improves the adhesion of Cu film, however, and increases the resistance of Cu film. The introduction of oxygen into the deposition of CuCa film induces the improvement of adhesion and crystallinity of Cu film, but produces a slight increase of resistance. The increased resistance results from the partial oxidation of Cu film. The annealing process in vacuum further improves the adhesion, crystallinity and conductivity of Cu film. X-ray diffraction (XRD) and Auger electron spectroscopy (AES) show that the CuCa alloy barrier layer deposited at oxygen atmosphere has perfect anti-diffusion between Cu film and substrate due to the formation of Ca oxide in the interface of CuCa/substrate.

  20. Transport coefficients in high-temperature ionized air flows with electronic excitation

    Science.gov (United States)

    Istomin, V. A.; Oblapenko, G. P.

    2018-01-01

    Transport coefficients are studied in high-temperature ionized air mixtures using the modified Chapman-Enskog method. The 11-component mixture N2/N2+/N /N+/O2/O2+/O /O+/N O /N O+/e- , taking into account the rotational and vibrational degrees of freedom of molecules and electronic degrees of freedom of both atomic and molecular species, is considered. Using the PAINeT software package, developed by the authors of the paper, in wide temperature range calculations of the thermal conductivity, thermal diffusion, diffusion, and shear viscosity coefficients for an equilibrium ionized air mixture and non-equilibrium flow conditions for mixture compositions, characteristic of those in shock tube experiments and re-entry conditions, are performed. For the equilibrium air case, the computed transport coefficients are compared to those obtained using simplified kinetic theory algorithms. It is shown that neglecting electronic excitation leads to a significant underestimation of the thermal conductivity coefficient at temperatures higher than 25 000 K. For non-equilibrium test cases, it is shown that the thermal diffusion coefficients of neutral species and the self-diffusion coefficients of all species are strongly affected by the mixture composition, while the thermal conductivity coefficient is most strongly influenced by the degree of ionization of the flow. Neglecting electronic excitation causes noticeable underestimation of the thermal conductivity coefficient at temperatures higher than 20 000 K.

  1. A fast collocation method for a variable-coefficient nonlocal diffusion model

    Science.gov (United States)

    Wang, Che; Wang, Hong

    2017-02-01

    We develop a fast collocation scheme for a variable-coefficient nonlocal diffusion model, for which a numerical discretization would yield a dense stiffness matrix. The development of the fast method is achieved by carefully handling the variable coefficients appearing inside the singular integral operator and exploiting the structure of the dense stiffness matrix. The resulting fast method reduces the computational work from O (N3) required by a commonly used direct solver to O (Nlog ⁡ N) per iteration and the memory requirement from O (N2) to O (N). Furthermore, the fast method reduces the computational work of assembling the stiffness matrix from O (N2) to O (N). Numerical results are presented to show the utility of the fast method.

  2. Introduction of high oxygen concentrations into silicon wafers by high-temperature diffusion

    International Nuclear Information System (INIS)

    Casse, G.; Glaser, M.; Lemeilleur, F.; Ruzin, A.; Wegrzecki, M.

    1999-01-01

    The tolerance of silicon detectors to hadron irradiation can be improved by the introduction of a high concentration of oxygen into the starting material. High-resistivity Floating-Zone (FZ) silicon is required for detectors used in particle physics applications. A significantly high oxygen concentration (>10 17 atoms cm -3 ) cannot readily be achieved during the FZ silicon refinement. The diffusion of oxygen at elevated temperatures from a SiO 2 layer grown on both sides of a silicon wafer is a simple and effective technique to achieve high and uniform concentrations of oxygen throughout the bulk of a 300 μm thick silicon wafer

  3. Simple Analytical Forms of the Perpendicular Diffusion Coefficient for Two-component Turbulence. III. Damping Model of Dynamical Turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Gammon, M.; Shalchi, A., E-mail: andreasm4@yahoo.com [Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2 (Canada)

    2017-10-01

    In several astrophysical applications one needs analytical forms of cosmic-ray diffusion parameters. Some examples are studies of diffusive shock acceleration and solar modulation. In the current article we explore perpendicular diffusion based on the unified nonlinear transport theory. While we focused on magnetostatic turbulence in Paper I, we included the effect of dynamical turbulence in Paper II of the series. In the latter paper we assumed that the temporal correlation time does not depend on the wavenumber. More realistic models have been proposed in the past, such as the so-called damping model of dynamical turbulence. In the present paper we derive analytical forms for the perpendicular diffusion coefficient of energetic particles in two-component turbulence for this type of time-dependent turbulence. We present new formulas for the perpendicular diffusion coefficient and we derive a condition for which the magnetostatic result is recovered.

  4. Mutual diffusion coefficients of L-glutamic acid and monosodium L-glutamate in aqueous solutions at T = 298.15 K

    International Nuclear Information System (INIS)

    Ribeiro, Ana C.F.; Rodrigo, M.M.; Barros, Marisa C.F.; Verissimo, Luis M.P.; Romero, Carmen; Valente, Artur J.M.; Esteso, Miguel A.

    2014-01-01

    Highlights: • Interdiffusion coefficients of L-glutamic acid and sodium L-glutamate were measured. • The L-glutamic acid behaves as a monoprotic weak acid. • The sodium L-glutamate shows a symmetrical 1:1 non-associated behaviour. • Limiting diffusion coefficients and ionic conductivities were estimated. • Diffusion coefficients were discussed on the basis of the Onsager–Fuoss equations. - Abstract: Mutual diffusion coefficient values for binary aqueous solutions of both L-glutamic acid (H 2 Glu) and sodium L-glutamate (NaHGlu) were measured with the Taylor dispersion technique, at T = 298.15 K, and concentrations ranging from (0.001 to 0.100) mol · dm −3 . The results were discussed on the basis of the Onsager–Fuoss and the Nernst theoretical equations, by considering the H 2 Glu as a weak acid (monoprotic acid, with K 2 = 5.62 · 10 −5 ). The smaller values found for the acid with respect to those of the salt, confirm this association hypothesis. From the diffusion coefficient values at infinitesimal concentration, limiting ionic conductivities as well as the hydrodynamic radius of the hydrogen glutamate ion (HGlu − ) were derived and analyzed in terms of the chain methylene groups. The effect of different phenomena, such as association or complexation, were also taken into consideration and discussed. Values for the dissociation degree for H 2 Glu were also estimated

  5. Permeability and Diffusion Coefficients of Single Methyl Lactate Enantiomers in Nafion® and Cellophane Membranes Measured in Diffusion Cell.

    Czech Academy of Sciences Publication Activity Database

    Hovorka, Š.; Randová, A.; Borbášová, T.; Sysel, P.; Vychodilová, Hana; Červenková Šťastná, Lucie; Brožová, Libuše; Žitka, Jan; Storch, Jan; Kačírková, Marie; Drašar, P.; Izák, Pavel

    2016-01-01

    Roč. 158, JAN 28 (2016), s. 322-332 ISSN 1383-5866 R&D Projects: GA ČR(CZ) GAP106/12/0569 Institutional support: RVO:67985858 ; RVO:61389013 Keywords : diffusion coefficient measurement * permeability * nafion * cellophane * chirality of polymer membrane Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 3.359, year: 2016

  6. Comparison of apparent diffusion coefficients (ADCs) between two-point and multi-point analyses using high-B-value diffusion MR imaging

    International Nuclear Information System (INIS)

    Kubo, Hitoshi; Maeda, Masayuki; Araki, Akinobu

    2001-01-01

    We evaluated the accuracy of calculating apparent diffusion coefficients (ADCs) using high-B-value diffusion images. Echo planar diffusion-weighted MR images were obtained at 1.5 tesla in five standard locations in six subjects using gradient strengths corresponding to B values from 0 to 3000 s/mm 2 . Estimation of ADCs was made using two methods: a nonlinear regression model using measurements from a full set of B values (multi-point method) and linear estimation using B values of 0 and max only (two-point method). A high correlation between the two methods was noted (r=0.99), and the mean percentage differences were -0.53% and 0.53% in phantom and human brain, respectively. These results suggest there is little error in estimating ADCs calculated by the two-point technique using high-B-value diffusion MR images. (author)

  7. Tellurium self-diffusion and point defects in lead telluride

    International Nuclear Information System (INIS)

    Simirskij, Yu.N.; Firsova, L.P.

    1982-01-01

    Method of radioactive indicators was used to determine factors of tellurium self-diffusion in lead telluride with different deviation of the composition from stoichiometric in the range of enrichment by tellurium. It was found that at 973 K factors of tellurium self-diffusion in lead telluride depend slightly on the vapor pressure of tellurium equilibrium with solid phase

  8. Fluids in micropores. II. Self-diffusion in a simple classical fluid in a slit pore

    International Nuclear Information System (INIS)

    Schoen, M.; Cushman, J.H.; Diestler, D.J.; Rhykerd, C.L. Jr.

    1988-01-01

    Self-diffusion coefficients D are computed for a model slit pore consisting of a rare-gas fluid confined between two parallel face-centered cubic (100) planes (walls) of rigidly fixed rare-gas atoms. By means of an optimally vectorized molecular-dynamics program for the CYBER 205, the dependence of D on the thermodynamic state (specified by the chemical potential μ, temperature T, and the pore width h) of the pore fluid has been explored. Diffusion is governed by Fick's law, even in pores as narrow as 2 or 3 atomic diameters. The diffusion coefficient oscillates as a function of h with fixed μ and T, vanishing at critical values of h, where fluid--solid phase transitions occur. A shift of the pore walls relative to one another in directions parallel with the walls can radically alter the structure of the pore fluid and consequently the magnitude of D. Since the pore fluid forms distinct layers parallel to the walls, a local diffusion coefficient D/sup (//sup i//sup )//sub parallel/ associated with a given layer i can be defined. D/sup (//sup i//sup )//sub parallel/ is least for the contact layer, even for pores as wide as 30 atomic diameters (∼100 A). Moreover, D/sup (//sup i//sup )//sub parallel/ increases with increasing distance of the fluid layer from the wall and, for pore widths between 16 and 30 atomic diameters, D/sup (//sup i//sup )//sub parallel/ is larger in the center of the pore than in the bulk fluid that is in equilibrium with the pore fluid. The opposite behavior is observed in corresponding smooth-wall pores, in which the discrete fluid--wall interactions have been averaged by smearing the wall atoms over the plane of the wall

  9. Diffusion coefficients for periodically induced multi-step persistent walks on regular lattices

    International Nuclear Information System (INIS)

    Gilbert, Thomas; Sanders, David P

    2012-01-01

    We present a generalization of our formalism for the computation of diffusion coefficients of multi-step persistent random walks on regular lattices to walks which include zero-displacement states. This situation is especially relevant to systems where tracer particles move across potential barriers as a result of the action of a periodic forcing whose period sets the timescale between transitions. (paper)

  10. EVOLUTION OF THE MAGNETIC FIELD LINE DIFFUSION COEFFICIENT AND NON-GAUSSIAN STATISTICS

    Energy Technology Data Exchange (ETDEWEB)

    Snodin, A. P. [Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800 (Thailand); Ruffolo, D. [Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400 (Thailand); Matthaeus, W. H. [Bartol Research Institute and Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States)

    2016-08-20

    The magnetic field line random walk (FLRW) plays an important role in the transport of energy and particles in turbulent plasmas. For magnetic fluctuations that are transverse or almost transverse to a large-scale mean magnetic field, theories describing the FLRW usually predict asymptotic diffusion of magnetic field lines perpendicular to the mean field. Such theories often depend on the assumption that one can relate the Lagrangian and Eulerian statistics of the magnetic field via Corrsin’s hypothesis, and additionally take the distribution of magnetic field line displacements to be Gaussian. Here we take an ordinary differential equation (ODE) model with these underlying assumptions and test how well it describes the evolution of the magnetic field line diffusion coefficient in 2D+slab magnetic turbulence, by comparisons to computer simulations that do not involve such assumptions. In addition, we directly test the accuracy of the Corrsin approximation to the Lagrangian correlation. Over much of the studied parameter space we find that the ODE model is in fairly good agreement with computer simulations, in terms of both the evolution and asymptotic values of the diffusion coefficient. When there is poor agreement, we show that this can be largely attributed to the failure of Corrsin’s hypothesis rather than the assumption of Gaussian statistics of field line displacements. The degree of non-Gaussianity, which we measure in terms of the kurtosis, appears to be an indicator of how well Corrsin’s approximation works.

  11. Diffusion coefficients of the ternary system (2-hydroxypropyl-{beta}-cyclodextrin + caffeine + water) at T = 298.15 K

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Ana C.F. [Department of Chemistry, University of Coimbra, 3004-535 Coimbra (Portugal)], E-mail: anacfrib@ci.uc.pt; Santos, Cecilia I.A.V. [Departamento de Quimica Fisica, Facultad de Farmacia, Universidad de Alcala, 28871 Alcala de Henares, Madrid (Spain)], E-mail: cecilia.alves@uah.es; Lobo, Victor M.M. [Department of Chemistry, University of Coimbra, 3004-535 Coimbra (Portugal)], E-mail: vlobo@ci.uc.pt; Cabral, Ana M.T.D.P.V. [Faculty of Pharmacy, University of Coimbra, 3000-295 Coimbra (Portugal)], E-mail: acabral@ff.uc.pt; Veiga, Francisco J.B. [Faculty of Pharmacy, University of Coimbra, 3000-295 Coimbra (Portugal)], E-mail: fveiga@ci.uc.pt; Esteso, Miguel A. [Departamento de Quimica Fisica, Facultad de Farmacia, Universidad de Alcala, 28871 Alcala de Henares, Madrid (Spain)], E-mail: miguel.esteso@uah.es

    2009-12-15

    Ternary mutual diffusion coefficients measured by Taylor dispersion method (D{sub 11}, D{sub 22}, D{sub 12}, and D{sub 21}) are reported for aqueous solutions of 2-hydroxypropyl-{beta}-cyclodextrin (HP-{beta}-CD) + caffeine at T = 298.15 K at carrier concentrations from (0.000 to 0.010) mol . dm{sup -3}, for each solute, respectively. These diffusion coefficients have been measured having in mind a better understanding of the structure of these systems and thermodynamic behaviour of caffeine and 2-hydroxypropyl-{beta}-cyclodextrin in solution. For example, from these data it will be possible to estimate some parameters, such as the fraction of associated species HP-{beta}-CD (X{sub 1}) and caffeine (X{sub 2}) in this complex, the monomer and dimer fractions, X{sub 2}{sup M} and X{sub 2}{sup D}, respectively, and the limiting diffusion coefficients of the HP-{beta}-CD, D{sub HPBCD}{sup 0}, of the dimers caffeine entities, D{sub D}{sup 0}, and of those complexes (1:1), D{sub complex}{sup 0}.

  12. Diffusion of oxygen in uranium dioxide: A first-principles investigation

    International Nuclear Information System (INIS)

    Gupta, Florence; Brillant, Guillaume; Pasturel, Alain

    2010-01-01

    Results of ab initio density-functional theory calculations of the migration energies of oxygen vacancies and interstitials in stoichiometric UO 2 are reported. The diffusion of oxygen vacancies in UO 2 is found to be highly anisotropic, and the [1 0 0] direction is energetically favored. The atomic relaxations play an important role in reducing the migration barriers. Within the generalized gradient approximation (GGA), we find that the migration energies of the preferred vacancies and interstitials paths are, respectively, 1.18 and 1.09 eV. With the inclusion of the Hubbard U parameter to account for the 5f electron correlations in GGA+U, the vacancy migration energy is lowered to 1.01 eV while the interstitial migration energy increases slightly to 1.13 eV. We find, however, that the correlation effects have a drastic influence on the mechanism of interstitial migration through the stabilization of Willis-type clusters. Indeed, in contrast to GGA, in GGA+U there is an inversion of the migration path with the so-called 'saddle-point' position being lower in energy than the usual starting position. Thus while the migration barriers are nearly the same in GGA and GGA+U, the mechanisms are completely different. Our results clearly indicate that both vacancies and interstitials contribute almost equally to the diffusion of oxygen in UO 2 .

  13. Comparison of measured and satellite-derived spectral diffuse attenuation coefficients for the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Suresh, T.; Talaulikar, M.; Desa, E.; Matondkar, S.G.P.; Mascarenhas, A.

    The results of study comparing the spectral diffuse attenuation coefficients Kd(Lambda) measured in the Arabian Sea with those derived from the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) using three algorithms, of which two are empirical...

  14. Self-similar optical pulses in competing cubic-quintic nonlinear media with distributed coefficients

    International Nuclear Information System (INIS)

    Zhang Jiefang; Tian Qing; Wang Yueyue; Dai Chaoqing; Wu Lei

    2010-01-01

    We present a systematic analysis of the self-similar propagation of optical pulses within the framework of the generalized cubic-quintic nonlinear Schroedinger equation with distributed coefficients. By appropriately choosing the relations between the distributed coefficients, we not only retrieve the exact self-similar solitonic solutions, but also find both the approximate self-similar Gaussian-Hermite solutions and compact solutions. Our analytical and numerical considerations reveal that proper choices of the distributed coefficients could make the unstable solitons stable and could restrict the nonlinear interaction between the neighboring solitons.

  15. Nitritation performance and biofilm development of co- and counter-diffusion biofilm reactors: Modeling and experimental comparison

    DEFF Research Database (Denmark)

    Wang, Rongchang; Terada, Akihiko; Lackner, Susanne

    2009-01-01

    A comparative study was conducted on the start-up performance and biofilm development in two different biofilm reactors with aim of obtaining partial nitritation. The reactors were both operated under oxygen limited conditions, but differed in geometry. While substrates (O-2, NH3) co......-diffused in one geometry, they counter-diffused in the other. Mathematical simulations of these two geometries were implemented in two 1-D multispecies biofilm models using the AQUASIM software. Sensitivity analysis results showed that the oxygen mass transfer coefficient (K-i) and maximum specific growth rate...... results showed that the counter-diffusion biofilms developed faster and attained a larger maximum biofilm thickness than the co-diffusion biofilms. Under oxygen limited condition (DO

  16. Drag coefficient Variability and Thermospheric models

    Science.gov (United States)

    Moe, Kenneth

    Satellite drag coefficients depend upon a variety of factors: The shape of the satellite, its altitude, the eccentricity of its orbit, the temperature and mean molecular mass of the ambient atmosphere, and the time in the sunspot cycle. At altitudes where the mean free path of the atmospheric molecules is large compared to the dimensions of the satellite, the drag coefficients can be determined from the theory of free-molecule flow. The dependence on altitude is caused by the concentration of atomic oxygen which plays an important role by its ability to adsorb on the satellite surface and thereby affect the energy loss of molecules striking the surface. The eccentricity of the orbit determines the satellite velocity at perigee, and therefore the energy of the incident molecules relative to the energy of adsorption of atomic oxygen atoms on the surface. The temperature of the ambient atmosphere determines the extent to which the random thermal motion of the molecules influences the momentum transfer to the satellite. The time in the sunspot cycle affects the ambient temperature as well as the concentration of atomic oxygen at a particular altitude. Tables and graphs will be used to illustrate the variability of drag coefficients. Before there were any measurements of gas-surface interactions in orbit, Izakov and Cook independently made an excellent estimate that the drag coefficient of satellites of compact shape would be 2.2. That numerical value, independent of altitude, was used by Jacchia to construct his model from the early measurements of satellite drag. Consequently, there is an altitude dependent bias in the model. From the sparce orbital experiments that have been done, we know that the molecules which strike satellite surfaces rebound in a diffuse angular distribution with an energy loss given by the energy accommodation coefficient. As more evidence accumulates on the energy loss, more realistic drag coefficients are being calculated. These improved drag

  17. A method to measure the diffusion coefficient by neutron wave propagation for limited samples

    International Nuclear Information System (INIS)

    Woznicka, U.

    1986-03-01

    A study has been made of the use of the neutron wave and pulse propagation method for measurement of thermal neutron diffusion parameters. Earlier works an homogenous and heterogeneous media are reviewed. A new method is sketched for the determination of the diffusion coefficient for samples of limited size. The principle is to place a relatively thin slab of the material between two blocks of a medium with known properties. The advantages and disadvantages of the method are discussed. (author)

  18. Computational error estimates for Monte Carlo finite element approximation with log normal diffusion coefficients

    KAUST Repository

    Sandberg, Mattias

    2015-01-01

    log normal diffusion coefficients with H¨older regularity of order up to 1/2 a.s. This low regularity implies that the high frequency finite element approximation error (i.e. the error from frequencies larger than the mesh frequency) is not negligible

  19. Apparent Diffusion Coefficient Maps of Pediatric Mass Lesions with Free-Breathing Diffusion-Weighted Magnetic Resonance: Feasibility Study

    International Nuclear Information System (INIS)

    Olsen, Oe.E.; Sebire, N.J.

    2006-01-01

    Purpose: To assess the technical feasibility of apparent diffusion coefficient (ADC) mapping based on free-breathing diffusion-weighted magnetic resonance (DW-MR) outside the CNS in children. Material and Methods: Twelve children with mass lesions of varied histopathology were scanned with short-tau inversion recovery (STIR), contrast-enhanced T1-weighted (CE-T1W), and diffusion-weighted (b = 0, 500 and 1,000 s/mm 2 ) sequences. ADC maps were calculated. Lesion-to-background signal intensity ratios were measured and compared between STIR/CE-T1W/ADC overall (Friedman test) and between viable embryonal tumors and other lesions (Kruskal-Wallis test). Results: ADC maps clearly depicted all lesions. Lesion-to-background signal intensity ratios of STIR (median 3.7), CE-T1W (median 1.4), and ADC (median 1.6) showed no overall difference (chi-square = 3.846; P = 0.146), and there was no difference between viable embryonal tumors and other lesions within STIR/CE-T1W/ADC (chi-square 1.118/0.669/<0.001; P = 0.290/0.414/1.000, respectively). Conclusion: ADC mapping is feasible in free-breathing imaging of pediatric mass lesions outside the CNS using standard clinical equipment. Keywords: Diffusion-weighted magnetic resonance imaging; infants and children; neoplasms

  20. Diffusion in the uranium - plutonium system and self-diffusion of plutonium in epsilon phase; Diffusion dans le systeme uranium-plutonium et autodiffusion du plutonium epsilon

    Energy Technology Data Exchange (ETDEWEB)

    Dupuy, M [Commissariat a l' Energie Atomique, Fontenay-Aux-Roses (France). Centre d' Etudes Nucleaires

    1967-07-01

    A survey of uranium-plutonium phase diagram leads to confirm anglo-saxon results about the plutonium solubility in {alpha} uranium (15 per cent at 565 C) and the uranium one in {zeta} phase (74 per cent at 565 C). Interdiffusion coefficients, for concentration lower than 15 per cent had been determined in a temperature range from 410 C to 640 C. They vary between 0.2 and 6 10{sup 12} cm{sup 2} s{sup -1}, and the activation energy between 13 and 20 kcal/mole. Grain boundary, diffusion of plutonium in a uranium had been pointed out by micrography, X-ray microanalysis and {alpha} autoradiography. Self-diffusion of plutonium in {epsilon} phase (bcc) obeys Arrhenius law: D = 2. 10{sup -2} exp -(18500)/RT. But this activation energy does not follow empirical laws generally accepted for other metals. It has analogies with 'anomalous' bcc metals ({beta}Zr, {beta}Ti, {beta}Hf, U{sub {gamma}}). (author) [French] Une etude du diagramme d'equilibre uranium-plutonium conduit a confirmer les resultats anglo-saxons relatifs a la solubilite du plutonium dans l'uranium {alpha} (15 pour cent a 565 C) et de l'uranium dans la phase {zeta} (74 pour cent a 565 C). Les coefficients de diffusion chimique, pour des concentrations inferieures a 15 pour cent ont ete determines a des temperatures comprises entre 410 et 640 C. Ils se situent entre 0.2 et 6. 10{sup 12} cm{sup 2} s{sup -1}. L'energie d'activation varie entre 13 et 20 kcal/mole. La diffusion intergranulaire du plutonium dans l'uranium a a ete mise en evidence par micrographie, microanalyse X et autoradiographie {alpha}. L' autodiffusion du plutonium {beta} cubique centree obeit a la loi d'Arrhenius D = 2. 10{sup -2} exp - (18500)/RT. Son energie d'activation n'obeit pas aux lois empiriques generalement admises pour les autres metaux. Elle possede des analogies avec les cubiques centres ''anormaux'' (Zr{beta}, Ti{beta}, Hf{beta}, U{gamma}). (auteur)