WorldWideScience

Sample records for oxygen reduction catalyst

  1. Nano-Structured Bio-Inorganic Hybrid Material for High Performing Oxygen Reduction Catalyst.

    Science.gov (United States)

    Jiang, Rongzhong; Tran, Dat T; McClure, Joshua P; Chu, Deryn

    2015-08-26

    In this study, we demonstrate a non-Pt nanostructured bioinorganic hybrid (BIH) catalyst for catalytic oxygen reduction in alkaline media. This catalyst was synthesized through biomaterial hemin, nanostructured Ag-Co alloy, and graphene nano platelets (GNP) by heat-treatment and ultrasonically processing. This hybrid catalyst has the advantages of the combined features of these bio and inorganic materials. A 10-fold improvement in catalytic activity (at 0.8 V vs RHE) is achieved in comparison of pure Ag nanoparticles (20-40 nm). The hybrid catalyst reaches 80% activity (at 0.8 V vs RHE) of the state-of-the-art catalyst (containing 40% Pt and 60% active carbon). Comparable catalytic stability for the hybrid catalyst with the Pt catalyst is observed by chronoamperometric experiment. The hybrid catalyst catalyzes 4-electron oxygen reduction to produce water with fast kinetic rate. The rate constant obtained from the hybrid catalyst (at 0.6 V vs RHE) is 4 times higher than that of pure Ag/GNP catalyst. A catalytic model is proposed to explain the oxygen reduction reaction at the BIH catalyst.

  2. A proposed agglomerate model for oxygen reduction in the catalyst layer of proton exchange membrane fuel cells

    International Nuclear Information System (INIS)

    Zhang, Xiaoxian; Gao, Yuan; Ostadi, Hossein; Jiang, Kyle; Chen, Rui

    2014-01-01

    Highlights: • We developed a new agglomerate model to describe oxygen reduction reaction. • We showed how to calculate the model parameters from catalyst layer structure. • We verified the agglomerate model. - Abstract: Oxygen diffusion and reduction in the catalyst layer of PEM fuel cell is an important process in fuel cell modelling, but models able to link the reduction rate to catalyst-layer structure are lack; this paper makes such an effort. We first link the average reduction rate over the agglomerate within a catalyst layer to a probability that an oxygen molecule, which is initially on the agglomerate surface, will enter and remain in the agglomerate at any time in the absence of any electrochemical reaction. We then propose a method to directly calculate distribution function of this probability and apply it to two catalyst layers with contrasting structures. A formula is proposed to describe these calculated distribution functions, from which the agglomerate model is derived. The model has two parameters and both can be independently calculated from catalyst layer structures. We verify the model by first showing that it is an improvement and able to reproduce what the spherical model describes, and then testing it against the average oxygen reductions directly calculated from pore-scale simulations of oxygen diffusion and reaction in the two catalyst layers. The proposed model is simple, but significant as it links the average oxygen reduction to catalyst layer structures, and its two parameters can be directly calculated rather than by calibration

  3. Highly Selective TiN-Supported Highly Dispersed Pt Catalyst: Ultra Active toward Hydrogen Oxidation and Inactive toward Oxygen Reduction.

    Science.gov (United States)

    Luo, Junming; Tang, Haibo; Tian, Xinlong; Hou, Sanying; Li, Xiuhua; Du, Li; Liao, Shijun

    2018-01-31

    The severe dissolution of the cathode catalyst, caused by an undesired oxygen reduction reaction at the anode during startup and shutdown, is a fatal challenge to practical applications of polymer electrolyte membrane fuel cells. To address this important issue, according to the distinct structure-sensitivity between the σ-type bond in H 2 and the π-type bond in O 2 , we design a HD-Pt/TiN material by highly dispersing Pt on the TiN surface to inhibit the unwanted oxygen reduction reaction. The highly dispersed Pt/TiN catalyst exhibits excellent selectivity toward hydrogen oxidation and oxygen reduction reactions. With a Pt loading of 0.88 wt %, our catalyst shows excellent hydrogen oxidation reaction activity, close to that of commercial 20 wt % Pt/C catalyst, and much lower oxygen reduction reaction activity than the commercial 20 wt % Pt/C catalyst. The lack of well-ordered Pt facets is responsible for the excellent selectivity of the HD-Pt/TiN materials toward hydrogen oxidation and oxygen reduction reactions. Our work provides a new and cost-effective solution to design selective catalysts toward hydrogen oxidation and oxygen reduction reactions, making the strategy of using oxygen-tolerant anode catalyst to improve the stability of polymer electrolyte membrane fuel cells during startup and shutdown more affordable and practical.

  4. Nitrogen-doped carbon-supported cobalt-iron oxygen reduction catalyst

    Science.gov (United States)

    Zelenay, Piotr; Wu, Gang

    2014-04-29

    A Fe--Co hybrid catalyst for oxygen reaction reduction was prepared by a two part process. The first part involves reacting an ethyleneamine with a cobalt-containing precursor to form a cobalt-containing complex, combining the cobalt-containing complex with an electroconductive carbon supporting material, heating the cobalt-containing complex and carbon supporting material under conditions suitable to convert the cobalt-containing complex and carbon supporting material into a cobalt-containing catalyst support. The second part of the process involves polymerizing an aniline in the presence of said cobalt-containing catalyst support and an iron-containing compound under conditions suitable to form a supported, cobalt-containing, iron-bound polyaniline species, and subjecting said supported, cobalt-containing, iron bound polyaniline species to conditions suitable for producing a Fe--Co hybrid catalyst.

  5. Carbon-supported cubic CoSe2 catalysts for oxygen reduction reaction in alkaline medium

    International Nuclear Information System (INIS)

    Feng Yongjun; Alonso-Vante, Nicolas

    2012-01-01

    Highlights: ► Cubic CoSe 2 a non-precious metal electrocatalyst for oxygen reduction in KOH. ► The catalyst shows four-electron transfer pathway in overall reaction. ► Catalyst has higher methanol tolerance than commercial Pt/C catalyst. - Abstract: A Carbon-supported CoSe 2 nanocatalyst has been developed as an alternative non-precious metal electrocatalyst for oxygen reduction reaction (ORR) in alkaline medium. The catalyst was prepared via a surfactant-free route and its electrocatalytic activity for the ORR has been investigated in detail in 0.1 M KOH electrolyte at 25 °C using rotating disk electrode (RDE) and rotating ring-disk electrode (RRDE) techniques. The prepared catalyst showed promising catalytic activity towards ORR in a four-electron transfer pathway and higher tolerance to methanol compared to commercial Pt/C catalyst in 0.1 M KOH. To some extent, the increase of CoSe 2 loading on the electrode favors a faster reduction of H 2 O 2 intermediate to H 2 O.

  6. Hollow Spheres of Iron Carbide Nanoparticles Encased in Graphitic Layers as Oxygen Reduction Catalysts

    DEFF Research Database (Denmark)

    Hu, Yang; Jensen, Jens Oluf; Zhang, Wei

    2014-01-01

    Nonprecious metal catalysts for the oxygen reduction reaction are the ultimate materials and the foremost subject for low‐temperature fuel cells. A novel type of catalysts prepared by high‐pressure pyrolysis is reported. The catalyst is featured by hollow spherical morphologies consisting...

  7. Nanostructured Mn{sub x}O{sub y} for oxygen reduction reaction (ORR) catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Delmondo, Luisa, E-mail: luisa.delmondo@polito.it [Department of Applied Science and Technology—DISAT, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino (Italy); Salvador, Gian Paolo; Muñoz-Tabares, José Alejandro; Sacco, Adriano; Garino, Nadia; Castellino, Micaela [Center for Space Human Robotics @PoliTo, Istituto Italiano di Tecnologia, C.so Trento 21, 10129 Torino (Italy); Gerosa, Matteo; Massaglia, Giulia [Department of Applied Science and Technology—DISAT, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino (Italy); Center for Space Human Robotics @PoliTo, Istituto Italiano di Tecnologia, C.so Trento 21, 10129 Torino (Italy); Chiodoni, Angelica; Quaglio, Marzia [Center for Space Human Robotics @PoliTo, Istituto Italiano di Tecnologia, C.so Trento 21, 10129 Torino (Italy)

    2016-12-01

    Highlights: • Good performance catalysts for oxygen reduction reaction. • Nanostructured low-cost catalysts respect to platinum ones. • Synthesis using environmental benign chemical reagents. - Abstract: In the field of fuel cells, oxygen plays a key role as the final electron acceptor. To facilitate its reduction (Oxygen Reduction Reaction—ORR), a proper catalyst is needed and platinum is considered the best one due to its low overpotential for this reaction. By considering the high price of platinum, alternative catalysts are needed and manganese oxides (Mn{sub x}O{sub y}) can be considered promising substitutes. They are inexpensive, environmental friendly and can be obtained into several forms; most of them show significant electro-catalytic performance, even if strategies are needed to increase their efficiency. In particular, by developing light and high-surface area materials and by optimizing the presence of catalytic sites, we can obtain a cathode with improved electro-catalytic performance. In this case, nanofibers and xerogels are two of the most promising nanostructures that can be used in the field of catalysis. In this work, a study of the morphological and catalytic behavior of Mn{sub x}O{sub y} nanofibers and xerogels is proposed. Nanofibers were obtained by electrospinning, while xerogels were prepared by sol-gel and freeze drying techniques. Despite of the different preparation approaches, the obtained nanostructured manganese oxides exhibited similar catalytic performance for the ORR, comparable to those obtained from Pt catalysts.

  8. Fuel cell electrocatalsis : oxygen reduction on Pt-based nanoparticle catalysts

    NARCIS (Netherlands)

    Vliet, Dennis Franciscus van der

    2010-01-01

    The thesis contains a discussion on the subject of the Oxygen Reduction Reaction (ORR) on Pt-alloy nanoparticle catalysts in the Rotating Disk Electrode (RDE) method. An insight in some of the difficulties of this method is given with proper solutions and compensations for these problems. Pt3Co,

  9. Oxygen reduction on carbon supported platinum catalysts in high temperature polymer electrolytes

    DEFF Research Database (Denmark)

    Qingfeng, Li; Bergqvist, R. S.; Hjuler, H. A.

    1999-01-01

    Oxygen reduction on carbon supported platinum catalysts has been investigated in H3PO4, H3PO4-doped Nafion and PBI polymer electrolytes in a temperature range from 80 to 190°C. Compared with pure H3PO4, using the H3PO4 doped Nafion and PBI polymer electrolytes can significantly improve the oxygen...

  10. Pt Catalyst Supported within TiO2 Mesoporous Films for Oxygen Reduction Reaction

    International Nuclear Information System (INIS)

    Huang, Dekang; Zhang, Bingyan; Bai, Jie; Zhang, Yibo; Wittstock, Gunther; Wang, Mingkui; Shen, Yan

    2014-01-01

    In this study, dispersed Pt nanoparticles into mesoporous TiO 2 thin films are fabricated by a facile electrochemical deposition method as electro-catalysts for oxygen reduction reaction. The mesoporous TiO 2 thin films coated on the fluorine-doped tin oxide glass by screen printing allow a facile transport of reactants and products. The structural properties of the resulted Pt/TiO 2 electrode are evaluated by field emission scanning electron microscopy, energy dispersive X-ray spectrometry, X-ray diffraction, and X-ray photoelectron spectroscopy. Cyclic voltammetry measurements are performed to study the electrochemical properties of the Pt/TiO 2 electrode. Further study demonstrates the stability of the Pt catalyst supported within TiO 2 mesoporous films for the oxygen reduction reaction

  11. Critical appraisal on the role of catalysts for the oxygen reduction reaction in lithium-oxygen batteries

    International Nuclear Information System (INIS)

    Lodge, Andrew W.; Lacey, Matthew J.; Fitt, Matthew; Garcia-Araez, Nuria; Owen, John R.

    2014-01-01

    This work reports a detailed characterization of the reduction of oxygen in pyrrolidinium-based ionic liquids for application to lithium-oxygen batteries. It is found that, in the absence of Li + , all electron transfer kinetics are fast, and therefore, the reactions are limited by the mass transport rate. Reversible reduction of O 2 to O 2 • − and O 2 • − to O 2 2− take place at E 0 = 2.1 V and 0.8 V vs. Li + /Li, respectively. In the presence of Li + , O 2 is reduced to LiO 2 first and then to Li 2 O 2 . The solubility product constant of Li 2 O 2 is found to be around 10 −51 , corroborating the hypothesis that electrode passivation by Li 2 O 2 deposition is an important issue that limits the capacity delivered by lithium-oxygen batteries. Enhancing the rate of Li 2 O 2 formation by using different electrode materials would probably lead to faster electrode passivation and hence smaller charge due to oxygen reduction (smaller capacity of the battery). On the contrary, soluble redox catalysts can not only increase the reaction rate of Li 2 O 2 formation but also avoid electrode passivation since the fast diffusion of the soluble redox catalyst would displace the formation of Li 2 O 2 at a sufficient distance from the electrode surface

  12. Investigation of Au-Pt/C electro-catalysts for oxygen reduction reaction

    International Nuclear Information System (INIS)

    Lin Rui; Zhang Haiyan; Zhao Tiantian; Cao Chunhui; Yang Daijun; Ma Jianxin

    2012-01-01

    Highlights: ► Au-Pt core shell catalyst. ► Seed-mediated growth method. ► Au-Pt (2:4)/C best activity toward ORR. ► Four-electron pathway in acid solution. ► Single cell performance. - Abstract: Carbon-supported Au-Pt core shell nano-structured catalysts were synthesized by the seed-mediated growth method. The nano-structured catalysts were characterized by UV–vis spectroscopy, X-ray photoelectron spectra (XPS) and transmission electron microscopy (TEM) techniques. The oxygen reduction reaction (ORR) activity of the Au-Pt/C was tested by means of linear sweep voltammetry (LSV) by employing rotating disk electrode (RDE). It revealed that Au-Pt (2:4)/C (atomic ratio) catalyst exhibited the best catalytic activity toward ORR. Au-Pt (2:4)/C proceeded by an approximately four-electron pathway in acid solution, through which molecular oxygen was directly reduced to water. The stability of Au-Pt (2:4)/C is tested by cyclic voltammetry for 500 cycles. The performance of the membrane electrode assembly (MEA) prepared by Au-Pt (2:4)/C as the cathode catalyst in a single proton exchange membrane fuel cell (PEMFC) generated a maximum power density of 479 mW cm −2 at 0.431 V using H 2 and O 2 at 80 °C.

  13. Cross-Linked CoMoO4/rGO Nanosheets as Oxygen Reduction Catalyst

    Directory of Open Access Journals (Sweden)

    Jiaqi Fu

    2017-12-01

    Full Text Available Development of inexpensive and robust electrocatalysts towards oxygen reduction reaction (ORR is crucial for the cost-affordable manufacturing of metal-air batteries and fuel cells. Here we show that cross-linked CoMoO4 nanosheets and reduced graphene oxide (CoMoO4/rGO can be integrated in a hybrid material under one-pot hydrothermal conditions, yielding a composite material with promising catalytic activity for oxygen reduction reaction (ORR. Cyclic voltammetry (CV and linear sweep voltammetry (LSV were used to investigate the efficiency of the fabricated CoMoO4/rGO catalyst towards ORR in alkaline conditions. The CoMoO4/rGO composite revealed the main reduction peak and onset potential centered at 0.78 and 0.89 V (vs. RHE, respectively. This study shows that the CoMoO4/rGO composite is a highly promising catalyst for the ORR under alkaline conditions, and potential noble metal replacement cathode in fuel cells and metal-air batteries.

  14. Optimization of the Pd-Fe-Mo Catalysts for Oxygen Reduction Reaction in Proton-Exchange Membrane Fuel Cells

    International Nuclear Information System (INIS)

    Lee, Yeayeon; Jang, Jeongseok; Lee, Jin Goo; Jeon, Ok Sung; Kim, Hyeong Su; Hwang, Ho Jung; Shul, Yong Gun

    2016-01-01

    Highlights: • Pd-Mo-Fe catalysts show high catalytic activity and stability for oxygen-reduction reactions in acid media. • The optimum compositions were 7.5:1.5:1.0 for Pd-Fe-Mo, and the optimum temperatures were 500 °C. • The Pd-Fe-Mo catalysts were successfully applied to the PEMFC cathode, showing ∼500 mA cm −1 at 0.6 V. • The lattice constant was strongly related to the activity and stability of the catalysts for oxygen-reduction reactions. - Abstract: Highly active and durable non-platinum catalysts for oxygen-reduction reaction (ORR) have been developed for energy conversion devices such as proton-exchange membrane fuel cells (PEMFCs). In this study, Pd-Fe-Mo catalyst is reported as a non-platinum catalyst for ORR. The atomic ratio and annealing temperatures are controlled on the catalysts to understand interplay between their physical and chemical properties and electrochemical activities. The Pd-Fe-Mo catalyst optimized with 7.5:1.5:1.0 of the atomic ratio and 500 °C of the annealing temperature shows 32.18 mA mg −1 PGM (PGM: platinum group metal) of the kinetic current density at 0.9 V for ORR, which is comparable to that of commercial Pt/C catalyst. The current density is degraded to 6.20 mA mg −1 PGM after 3000 cycling of cyclic voltammetry, but it is greatly enhanced value compared to other non-platinum catalysts. In actual application to PEMFCs, the 20% Pd-Fe-Mo catalyst supported on carbons exhibits a high performance of 506 mA cm −2 at 0.6 V. The results suggest that the Pd-Fe-Mo catalyst can be a good candidate for non-platinum ORR catalysts.

  15. Investigation of a Pt-Fe/C catalyst for oxygen reduction reaction in direct ethanol fuel cells

    International Nuclear Information System (INIS)

    Castro Luna, A. M.; Bonesi, A.; Triaca, W. E.; Blasi, A. Di; Stassi, A.; Baglio, V.; Antonucci, V.; Arico, A. S.

    2010-01-01

    Three cathode catalysts (60% Pt/C, 30% Pt/C and 60% Pt-Fe/C), with a particle size of about 2-3 nm, were prepared to investigate the effect of ethanol cross-over on cathode surfaces. All samples were studied in terms of structure and morphology by using X-ray diffraction (XRD) and transmission electron microscopy (TEM) analyses. Their electrocatalytic behavior in terms of oxygen reduction reaction (ORR) was investigated and compared using a rotating disk electrode (RDE). The tolerance of cathode catalysts in the presence of ethanol was evaluated. The Pt-Fe/C catalyst showed both higher ORR activity and tolerance to ethanol cross-over than Pt/C catalysts. Moreover, the more promising catalysts were tested in 5 cm 2 DEFC single cells at 60 and 80 o C. An improvement in single cell performance was observed in the presence of the Pt-Fe catalyst, due to an enhancement in the oxygen reduction kinetics. The maximum power density was 53 mW cm -2 at 2 bar rel. cathode pressure and 80 o C.

  16. Fe/Ni-N-CNFs electrochemical catalyst for oxygen reduction reaction/oxygen evolution reaction in alkaline media

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhuang [MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001 (China); Li, Mian [Faculty of Chemistry, Northeast Normal University, Changchun 130024 (China); Fan, Liquan; Han, Jianan [MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001 (China); Xiong, Yueping, E-mail: ypxiong@hit.edu.cn [MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2017-04-15

    Highlights: • Novel Fe/Ni-N-CNFs electrocatalysts are prepared by electrospinning technique. • The Fe1Ni1-N-CNFs catalyst exhibits the excellent ORR and OER catalytic activity. • Synergy of Fe/Ni alloy is responsible for the excellent catalytic performance. - Abstract: The novel of iron, nickel and nitrogen doped carbon nanofibers (Fe/Ni-N-CNFs) as bifunctional electrocatalysts are prepared by electrospinning technique. In alkaline media, the Fe/Ni-N-CNFs catalysts (especially for Fe1Ni1-N-CNFs) exhibit remarkable electrocatalytic performances of oxygen reduction reaction (ORR)/oxygen evolution reaction (OER). For ORR catalytic activity, Fe1Ni1-N-CNFs catalyst offers a higher onset potential of 0.903 V, a similar four-electron reaction pathway, and excellent stability. For OER catalytic activity, Fe1Ni1-N-CNFs catalyst possesses a lower onset potential of 1.528 V and a smaller charge transfer resistance of 48.14 Ω. The unparalleled catalytic activity of ORR and OER for the Fe1Ni1-N-CNFs is attributed to the 3D porous cross-linked microstructures of carbon nanofibers with Fe/Ni alloy, N dopant, and abundant M-N{sub x} and NiOOH as catalytic active sites. Thus, Fe1Ni1-N-CNFs catalyst can be acted as one of the efficient and inexpensive catalysts of metal-air batteries.

  17. Porous boron doped diamonds as metal-free catalysts for the oxygen reduction reaction in alkaline solution

    Science.gov (United States)

    Suo, Ni; Huang, Hao; Wu, Aimin; Cao, Guozhong; Hou, Xiaoduo; Zhang, Guifeng

    2018-05-01

    Porous boron doped diamonds (BDDs) were obtained on foam nickel substrates with a porosity of 80%, 85%, 90% and 95% respectively by hot filament chemical vapor deposition (HFCVD) technology. Scanning electron microscopy (SEM) reveals that uniform and compact BDDs with a cauliflower-like morphology have covered the overall frame of the foam nickel substrates. Raman spectroscopy shows that the BDDs have a poor crystallinity due to heavily doping boron. X-ray photoelectron spectroscopy (XPS) analysis effectively demonstrates that boron atoms can be successfully incorporated into the crystal lattice of diamonds. Electrochemical measurements indicate that the oxygen reduction potential is unaffected by the specific surface area (SSA), and both the onset potential and the limiting diffusion current density are enhanced with increasing SSA. It is also found that the durability and methanol tolerance of the boron doped diamond catalysts are attenuated as the increasing of SSA. The SSA of the catalyst is directly proportional to the oxygen reduction activity and inversely to the durability and methanol resistance. These results provide a reference to the application of porous boron doped diamonds as potential cathodic catalysts for the oxygen reduction reaction in alkaline solution by adjusting the SSA.

  18. Efficient oxygen reduction reaction using ruthenium tetrakis(diaquaplatinum)octacarboxyphthalocyanine catalyst supported on MWCNT platform

    CSIR Research Space (South Africa)

    Maxakato, NW

    2011-02-01

    Full Text Available -1 Electroanalysis 2011, 23, No. 2, 325 ? 329 Efficient Oxygen Reduction Reaction Using Ruthenium Tetrakis(diaquaplatinum)Octacarboxyphthalocyanine Catalyst Supported on MWCNT Platform Nobanathi W. Maxakato,a Solomon A. Mamuru,a Kenneth I. Ozoemena*a, b a...

  19. The effect of diluting ruthenium by iron in RuxSey catalyst for oxygen reduction

    International Nuclear Information System (INIS)

    Delacote, Cyril; Lewera, Adam; Pisarek, Marcin; Kulesza, Pawel J.; Zelenay, Piotr; Alonso-Vante, Nicolas

    2010-01-01

    This study has focused on the synthesis of novel oxygen reduction reaction (ORR) chalcogenide catalysts, with Ru partially replaced by Fe in a cluster-type Ru x Se y . The catalysts were obtained by thermal decomposition of Ru 3 (CO) 12 and Fe(CO) 5 in the presence of Se. As indicated by the XPS data, the composition of catalyst nanoparticles depends on the solvent used (either p-xylene or dichlorobenzene). The presence of iron in synthesized catalysts has been confirmed by both EDAX and XPS. Voltammetric activation of the catalysts results in a partial removal of iron and unreacted selenium from the surface. The ORR performance of electrochemically pre-treated catalysts was evaluated using rotating disk and ring-disk electrodes in a sulfuric acid solution. No major change in the ORR mechanism relative to the Se/Ru catalyst has been observed with Fe-containing catalysts.

  20. Electroreduction of oxygen on carbon-supported gold catalysts

    International Nuclear Information System (INIS)

    Erikson, Heiki; Juermann, Gea; Sarapuu, Ave; Potter, Robert J.; Tammeveski, Kaido

    2009-01-01

    The electrochemical reduction of oxygen was studied on Au/C catalysts (20 and 30 wt%) in 0.5 M H 2 SO 4 and 0.1 M KOH solutions using the rotating disk electrode (RDE) method. The thickness of the Au/C-Nafion layers was varied between 1.5 and 10 μm. The specific activity of Au was independent of catalyst loading in both solutions, indicating that the transport of reactants through the catalyst layer does not limit the process of oxygen reduction under these conditions. The mass activity of 20 wt% Au/C catalysts was higher due to smaller particle size. The number of electrons involved in the reaction and the Tafel slopes were found; the values of these parameters are similar to that of bulk polycrystalline gold and indicate that the mechanism of O 2 reduction is not affected by carbon support or the catalyst configuration.

  1. Selective reduction of nitric oxide over Cu/ZSM-5: The role of oxygen in suppressing catalyst deactivation by carbonaceous deposits

    Energy Technology Data Exchange (ETDEWEB)

    d' Itri, Julie L; Sachtler, Wolfgang M.H. [V.N. Ipatieff Laboratory, Center for Catalysis and Surface Science, Departments of Chemical Engineering and Chemistry, Northwestern University, Evanston, IL (United States)

    1993-06-15

    The role of oxygen in the selective reduction of nitrogen monoxide by either propane or propene over 'excessively' ion-exchanged Cu/ZSM-5 has been studied. In a wide temperature region and in the absence of additives such as steam, propane is a more effective reductant than propene; with propane and in the presence of oxygen reduction of nitric oxide to nitrogen approaches 100% above 600 K. The difference in effectiveness is due to the different degree of catalyst deactivation by carbonaceous deposits: more carbonaceous material is deposited from propene than from propane. Temperature-programmed oxidation shows that above 600 K the rate of oxidation of carbonaceous deposits by oxygen is significant. The amount of such carbonaceous deposits is, therefore, lower when catalytic tests above 600 K are done in the presence of oxygen. At very high temperatures, the in situ volatilization of the deposits by reaction with oxygen keeps the catalyst surface clean in the steady state of nitric oxide reduction.

  2. Catalyst evaluation for oxygen reduction reaction in concentrated phosphoric acid at elevated temperatures

    Science.gov (United States)

    Hu, Yang; Jiang, Yiliang; Jensen, Jens Oluf; Cleemann, Lars N.; Li, Qingfeng

    2018-01-01

    Phosphoric acid is the common electrolyte for high-temperature polymer electrolyte fuel cells (HT-PEMFCs) that have advantages such as enhanced CO tolerance and simplified heat and water management. The currently used rotating disk electrode technique is limited to tests in dilute solutions at low temperatures and hence is not suitable for catalyst evaluation for HT-PEMFCs. In this study, we have designed and constructed a half-cell setup to measure the intrinsic activities of catalysts towards the oxygen reduction reaction (ORR) in conditions close to HT-PEMFC cathodes. By optimization of the hydrophobic characteristics of electrodes and the catalyst layer thickness, ORR activities of typical Pt/C catalysts are successfully measured in concentrated phosphoric acid at temperatures above 100 °C. In terms of mass-specific activities, the catalyst exhibits about two times higher activity in the half-cell electrode than that observed in fuel cells, indicating the feasibility of the technique as well as the potential for further improvement of fuel cell electrode performance.

  3. Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts.

    Science.gov (United States)

    Cheng, Fangyi; Chen, Jun

    2012-03-21

    Because of the remarkably high theoretical energy output, metal-air batteries represent one class of promising power sources for applications in next-generation electronics, electrified transportation and energy storage of smart grids. The most prominent feature of a metal-air battery is the combination of a metal anode with high energy density and an air electrode with open structure to draw cathode active materials (i.e., oxygen) from air. In this critical review, we present the fundamentals and recent advances related to the fields of metal-air batteries, with a focus on the electrochemistry and materials chemistry of air electrodes. The battery electrochemistry and catalytic mechanism of oxygen reduction reactions are discussed on the basis of aqueous and organic electrolytes. Four groups of extensively studied catalysts for the cathode oxygen reduction/evolution are selectively surveyed from materials chemistry to electrode properties and battery application: Pt and Pt-based alloys (e.g., PtAu nanoparticles), carbonaceous materials (e.g., graphene nanosheets), transition-metal oxides (e.g., Mn-based spinels and perovskites), and inorganic-organic composites (e.g., metal macrocycle derivatives). The design and optimization of air-electrode structure are also outlined. Furthermore, remarks on the challenges and perspectives of research directions are proposed for further development of metal-air batteries (219 references).

  4. Graphene layer encapsulated metal nanoparticles as a new type of non-precious metal catalysts for oxygen reduction

    DEFF Research Database (Denmark)

    Hu, Yang; Zhong, Lijie; Jensen, Jens Oluf

    2016-01-01

    Cheap and efficient non-precious metal catalysts for oxygen reduction have been a focus of research in the field of low-temperature fuel cells. This review is devoted to a brief summary of the recent work on a new type of catalysts, i.e., the graphene layer encapsulated metal nanoparticles....... The discussion is focused on the synthesis, structure, mechanism, performance, and further research....

  5. Enhanced activity and stability of Pt catalysts on functionalized graphene sheets for electrocatalytic oxygen reduction

    Energy Technology Data Exchange (ETDEWEB)

    Kou, Rong; Shao, Yuyan; Wang, Donghai; Engelhard, Mark H.; Kwak, Ja Hun; Wang, Jun; Viswanathan, Vilayanur V.; Wang, Chongmin; Lin, Yuehe; Wang, Yong; Liu, Jun [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Aksay, Ilhan A. [Department of Chemical Engineering, Princeton University, Princeton, NJ 08544 (United States)

    2009-05-15

    Electrocatalysis of oxygen reduction using Pt nanoparticles supported on functionalized graphene sheets (FGSs) was studied. FGSs were prepared by thermal expansion of graphite oxide. Pt nanoparticles with average diameter of 2 nm were uniformly loaded on FGSs by impregnation methods. Pt-FGS showed a higher electrochemical surface area and oxygen reduction activity with improved stability as compared with the commercial catalyst. Transmission electron microscopy, X-ray photoelectron spectroscopy, and electrochemical characterization suggest that the improved performance of Pt-FGS can be attributed to smaller particle size and less aggregation of Pt nanoparticles on the functionalized graphene sheets. (author)

  6. Oxygen reduction on carbon supported platinum catalysts in high temperature polymer electrolytes

    DEFF Research Database (Denmark)

    Qingfeng, Li; Hjuler, Hans Aage; Bjerrum, Niels

    2000-01-01

    Oxygen reduction on carbon supported platinum catalysts has been investigated in H3PO4, H3PO4-doped Nafion and polybenzimidazole (PBI) polymer electrolytes in a temperature range up to 190 degrees C. Compared with pure H3PO4, the combination of H3PO4 and polymer electrolytes can significantly...... membrane fuel cell based on H3PO4-doped PBI for operation at temperatures between 150 and 200 degrees C. (C) 2000 Elsevier Science Ltd. All rights reserved....

  7. Promotional effect of phosphorus doping on the activity of the Fe-N/C catalyst for the oxygen reduction reaction

    DEFF Research Database (Denmark)

    Hu, Yang; Zhu, Jianbin; Lv, Qing

    2015-01-01

    Cost-effective, active and stable electrocatalysts for the oxygen reduction reaction (ORR) are highly desirable for the wide-spread adoption of technologies such as fuel cells and metal-air batteries. Among the already reported non-precious metal catalysts, carbon-supported transition metal...... to that for the undoped Fe-N/C catalyst. The activity and durability of the catalysts are demonstrated in direct methanol fuel cells....

  8. Enzymatic versus Inorganic Oxygen Reduction Catalysts: Comparison of the Energy Levels in a Free-Energy Scheme

    DEFF Research Database (Denmark)

    Kjærgaard, Christian Hauge; Rossmeisl, Jan; Nørskov, Jens Kehlet

    2010-01-01

    In this paper, we present a method to directly compare the energy levels of intermediates in enzymatic and inorganic oxygen reduction catalysts. We initially describe how the energy levels of a Pt(111) catalyst, operating at pH = 0, are obtained. By a simple procedure, we then convert the energy...... levels of cytochrome c oxidase (CcO) models obtained at physiological pH = 7 to the energy levels at pH = 0, which allows for comparison. Furthermore, we illustrate how different bias voltages will affect the free-energy landscapes of the catalysts. This allows us to determine the so-called theoretical...

  9. A novel differential electrochemical mass spectrometry method to determine the product distribution from parasitic Methanol oxidation reaction on oxygen reduction reaction catalysts

    Science.gov (United States)

    Jurzinsky, Tilman; Kurzhals, Philipp; Cremers, Carsten

    2018-06-01

    The oxygen reduction reaction is in research focus since several decades due to its importance for the overall fuel cell performance. In direct methanol fuel cells, the crossover of methanol and its subsequent parasitic oxidation are main issues when it comes to preventing fuel cell performance losses. In this work, we present a novel differential electrochemical mass spectrometry method to evaluate oxygen reduction reaction catalysts on their tolerance to methanol being present at the cathode. Besides this, the setup allows to measure under more realistic fuel cell conditions than typical rotating disc electrode measurements, because the oxygen reduction reaction is evaluated in gaseous phase and a gas diffusion electrode is used as working electrode. Due to the new method, it was possible to investigate the oxygen reduction reaction on two commonly used catalysts (Pt/C and Pt3Co/C) in absence and presence of methanol. It was found, that Pt3Co/C is less prone to parasitic current losses due to methanol oxidation reaction. By connecting a mass spectrometer to the electrochemical cell, the new method allows to determine the products formed on the catalysts due to parasitic methanol electrooxidation.

  10. Pt Monolayer Shell on Nitrided Alloy Core—A Path to Highly Stable Oxygen Reduction Catalyst

    Directory of Open Access Journals (Sweden)

    Jue Hu

    2015-07-01

    Full Text Available The inadequate activity and stability of Pt as a cathode catalyst under the severe operation conditions are the critical problems facing the application of the proton exchange membrane fuel cell (PEMFC. Here we report on a novel route to synthesize highly active and stable oxygen reduction catalysts by depositing Pt monolayer on a nitrided alloy core. The prepared PtMLPdNiN/C catalyst retains 89% of the initial electrochemical surface area after 50,000 cycles between potentials 0.6 and 1.0 V. By correlating electron energy-loss spectroscopy and X-ray absorption spectroscopy analyses with electrochemical measurements, we found that the significant improvement of stability of the PtMLPdNiN/C catalyst is caused by nitrogen doping while reducing the total precious metal loading.

  11. Structure, activity, and stability of platinum alloys as catalysts for the oxygen reduction reaction

    DEFF Research Database (Denmark)

    Vej-Hansen, Ulrik Grønbjerg

    In this thesis I present our work on theoretical modelling of platinum alloys as catalysts for the Oxygen Reduction Reaction (ORR). The losses associated with the kinetics of the ORR is the main bottleneck in low-temperature fuel cells for transport applications, and more active catalysts...... are essential for wide-spread use of this technology. platinum alloys have shown great promise as more active catalysts, which are still stable under reaction conditions. We have investigated these systems on multiple scales, using either Density Functional Theory (DFT) or Effective Medium Theory (EMT......), depending on the length and time scales involved. Using DFT, we show how diffusion barriers in transition metal alloys in the L12 structure depend on the alloying energy, supporting the assumption that an intrinsically more stable alloy is also more stable towards diffusion-related degradation...

  12. Nanocarbon/oxide composite catalysts for bifunctional oxygen reduction and evolution in reversible alkaline fuel cells: A mini review

    Science.gov (United States)

    Chen, Mengjie; Wang, Lei; Yang, Haipeng; Zhao, Shuai; Xu, Hui; Wu, Gang

    2018-01-01

    A reversible fuel cell (RFC), which integrates a fuel cell with an electrolyzer, is similar to a rechargeable battery. This technology lies on high-performance bifunctional catalysts for the oxygen reduction reaction (ORR) in the fuel cell mode and the oxygen evolution reaction (OER) in the electrolyzer mode. Current catalysts are platinum group metals (PGM) such as Pt and Ir, which are expensive and scarce. Therefore, it is highly desirable to develop PGM-free catalysts for large-scale application of RFCs. In this mini review, we discussed the most promising nanocarbon/oxide composite catalysts for ORR/OER bifunctional catalysis in alkaline media, which is mainly based on our recent progress. Starting with the effectiveness of selected oxides and nanocarbons in terms of their activity and stability, we outlined synthetic methods and the resulting structures and morphologies of catalysts to provide a correlation between synthesis, structure, and property. A special emphasis is put on understanding of the possible synergistic effect between oxide and nanocarbon for enhanced performance. Finally, a few nanocomposite catalysts are discussed as typical examples to elucidate the rules of designing highly active and durable bifunctional catalysts for RFC applications.

  13. Recent developments of nano-structured materials as the catalysts for oxygen reduction reaction

    Science.gov (United States)

    Kang, SungYeon; Kim, HuiJung; Chung, Yong-Ho

    2018-04-01

    Developments of high efficient materials for electrocatalyst are significant topics of numerous researches since a few decades. Recent global interests related with energy conversion and storage lead to the expansion of efforts to find cost-effective catalysts that can substitute conventional catalytic materials. Especially, in the field of fuel cell, novel materials for oxygen reduction reaction (ORR) have been noticed to overcome disadvantages of conventional platinum-based catalysts. Various approaching methods have been attempted to achieve low cost and high electrochemical activity comparable with Pt-based catalysts, including reducing Pt consumption by the formation of hybrid materials, Pt-based alloys, and not-Pt metal or carbon based materials. To enhance catalytic performance and stability, numerous methods such as structural modifications and complex formations with other functional materials are proposed, and they are basically based on well-defined and well-ordered catalytic active sites by exquisite control at nanoscale. In this review, we highlight the development of nano-structured catalytic materials for ORR based on recent findings, and discuss about an outlook for the direction of future researches.

  14. The effect of diluting ruthenium by iron in Ru{sub x}Se{sub y} catalyst for oxygen reduction

    Energy Technology Data Exchange (ETDEWEB)

    Delacote, Cyril [Laboratory of Electrocatalysis, CNRS, University of Poitiers, F-86022 Poitiers Cedex (France); CEISAM, CNRS, University of Nantes, F-44322 Nantes Cedex 3 (France); Lewera, Adam [University of Warsaw, Department of Chemistry, ul. Pasteura 1, 02-093 Warsaw (Poland); Pisarek, Marcin [Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw (Poland); Kulesza, Pawel J. [University of Warsaw, Department of Chemistry, ul. Pasteura 1, 02-093 Warsaw (Poland); Zelenay, Piotr [Materials Physics and Applications, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Alonso-Vante, Nicolas, E-mail: nicolas.alonso.vante@univ-poitiers.f [Laboratory of Electrocatalysis, CNRS, University of Poitiers, F-86022 Poitiers Cedex (France)

    2010-11-01

    This study has focused on the synthesis of novel oxygen reduction reaction (ORR) chalcogenide catalysts, with Ru partially replaced by Fe in a cluster-type Ru{sub x}Se{sub y}. The catalysts were obtained by thermal decomposition of Ru{sub 3}(CO){sub 12} and Fe(CO){sub 5} in the presence of Se. As indicated by the XPS data, the composition of catalyst nanoparticles depends on the solvent used (either p-xylene or dichlorobenzene). The presence of iron in synthesized catalysts has been confirmed by both EDAX and XPS. Voltammetric activation of the catalysts results in a partial removal of iron and unreacted selenium from the surface. The ORR performance of electrochemically pre-treated catalysts was evaluated using rotating disk and ring-disk electrodes in a sulfuric acid solution. No major change in the ORR mechanism relative to the Se/Ru catalyst has been observed with Fe-containing catalysts.

  15. A novel method for synthesis of phosphomolybdic acid-modified Pd/C catalysts for oxygen reduction reaction

    Science.gov (United States)

    Zhu, Mingyuan; Gao, Xiaoling; Luo, Guangqin; Dai, Bin

    2013-03-01

    This manuscript reports a convenient method for immobilizing phosphomolybdic acid (HPMo) on polyaniline (PAN-) functionalized carbon supports. The obtained HPMo-PAN-C sample is used as the support to prepare a Pd/HPMo-PAN-C catalyst. The samples are characterized by Fourier transform infrared spectroscopy, transmission electron microscopy and X-ray diffraction analysis. The results suggest that HPMo retains its Keggin structure and that the presence of HPMo reduces the average particle size of the Pd nano-particles in the obtained Pd/HPMo-PAN-C catalyst. Electro-chemical measurements in 0.5 M HClO4 solution reveal that the Pd/HPMo-PAN-C catalyst has higher catalytic activity for oxygen reduction reactions than does a Pd/C catalyst prepared using a similar procedure. The stability of the Pd/HPMo-PAN-C catalyst is evaluated by multiple-cycle voltammetry techniques; the mass catalytic activity decreases by only 10% after 100 scanning cycles.

  16. Oxygen reduction reaction catalysts of manganese oxide decorated by silver nanoparticles for aluminum-air batteries

    International Nuclear Information System (INIS)

    Sun, Shanshan; Miao, He; Xue, Yejian; Wang, Qin; Li, Shihua; Liu, Zhaoping

    2016-01-01

    In this paper, the hybrid catalysts of manganese oxide decorated by silver nanoparticles (Ag-MnO x ) are fully investigated and show the excellent oxygen reduction reaction (ORR) activity. The Ag-MnO 2 is synthesized by a facile strategy of the electroless plating of silver on the manganese oxide. The catalysts are characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Then, the ORR activities of the catalysts are systematically investigated by the rotating disk electrode (RDE) and aluminum-air battery technologies. The Ag nanoparticles with the diameters at about 10 nm are anchored on the surface of α-MnO 2 and a strong interaction between Ag and MnO 2 components in the hybrid catalyst are confirmed. The electrochemical tests show that the activity and stability of the 50%Ag-MnO 2 composite catalyst (the mass ratio of Ag/MnO 2 is 1:1) toward ORR are greatly enhanced comparing with single Ag or MnO 2 catalyst. Moreover, the peak power density of the aluminum-air battery with 50%Ag-MnO 2 can reach 204 mW cm −2 .

  17. Oxygen-reducing catalyst layer

    Science.gov (United States)

    O'Brien, Dennis P [Maplewood, MN; Schmoeckel, Alison K [Stillwater, MN; Vernstrom, George D [Cottage Grove, MN; Atanasoski, Radoslav [Edina, MN; Wood, Thomas E [Stillwater, MN; Yang, Ruizhi [Halifax, CA; Easton, E Bradley [Halifax, CA; Dahn, Jeffrey R [Hubley, CA; O'Neill, David G [Lake Elmo, MN

    2011-03-22

    An oxygen-reducing catalyst layer, and a method of making the oxygen-reducing catalyst layer, where the oxygen-reducing catalyst layer includes a catalytic material film disposed on a substrate with the use of physical vapor deposition and thermal treatment. The catalytic material film includes a transition metal that is substantially free of platinum. At least one of the physical vapor deposition and the thermal treatment is performed in a processing environment comprising a nitrogen-containing gas.

  18. Metalloporphyrin catalysts for oxygen reduction developed using computer-aided molecular design

    Energy Technology Data Exchange (ETDEWEB)

    Ryba, G.N.; Hobbs, J.D.; Shelnutt, J.A. [and others

    1996-04-01

    The objective of this project is the development of a new class of metalloporphyrin materials used as catalsyts for use in fuel cell applications. The metalloporphyrins are excellent candidates for use as catalysts at both the anode and cathode. The catalysts reduce oxygen in 1 M potassium hydroxide, as well as in 2 M sulfuric acid. Covalent attachment to carbon supports is being investigated. The computer-aided molecular design is an iterative process, in which experimental results feed back into the design of future catalysts.

  19. Determination of rate constants for the oxygen reduction reaction

    Energy Technology Data Exchange (ETDEWEB)

    Racz, A.; Walter, T.; Stimming, U. [Munich Technical Univ., Garching (Germany). Dept. of Physics

    2008-07-01

    The oxygen reduction reaction (ORR) in fuel cells is a complex and fundamental electrochemical reaction. However, greater insight is needed into this multi-electron reaction in order to develop efficient and innovative catalysts. The rotating ring disc electrode (RRDE) is a useful tool for studying reaction intermediates of the ORR and to better understand the reaction pathway. Carbon materials such as carbon nanofilaments-platelets (CNF-PL) have high electrical conductivity and may be considered for fuel cells. In particular Pt and RuSe{sub x}, deposited on CNF-PL materials could act as efficient catalysts in fuel cells. This study used the RRDE to evaluate the oxygen reduction kinetics of these catalysts in oxygen-saturated, diluted sulphuric acid at room temperature. Kinetic data and hydrogen peroxide formation were determined by depositing a thin-film of the catalyst on the Au disc. The values for the constants k1, k2 and k3 were obtained using diagnostic criteria and expressions to calculate the rate constants of the cathodic oxygen reduction reaction for RuSe on new carbon supports. A potential dependency of the constants k1 and k2 for RuSe{sub x}/CNF-PL was observed. The transition of the Tafel slopes for this catalyst was obtained. 4 refs., 1 fig.

  20. Effect of solvent on Se-modified ruthenium/carbon catalyst for oxygen reduction

    Directory of Open Access Journals (Sweden)

    Chuanxiang Zhang

    2014-12-01

    Full Text Available Se-modified ruthenium supporting on carbon (Sex–Ru/C electrocatalyst was prepared by solvothermal one-step synthesis method. The reaction mechanism was revealed after discussing impact of different solvents (i-propanol and EG in solvotermal reaction. The result showed that the grain size of Se-modified ruthenium electrocatalyst was as small as 1 to 3 nm and highly dispersed on carbon surface. X-ray photoelectron spectroscopy (XPS presented that selenium mainly existed in the catalyst in the form of elemental selenium and selenium oxides when the solvent was EG and i-propanol, respectively. The oxygen reduction reaction (ORR performance was improved by appearance of selenium oxides.

  1. Controllable synthesis of Co3O4 nanocrystals as efficient catalysts for oxygen reduction reaction

    Science.gov (United States)

    Li, Baoying; Zhang, Yihe; Du, Ruifeng; Liu, Lei; Yu, Xuelian

    2018-03-01

    The electrochemical oxygen reduction reaction (ORR) has received great attention due to its importance in fuel cells and metal-air batteries. Here, we present a simple approach to prepare non-noble metal catalyst-Co3O4 nanocrystals (NCs). The particle size and shape were simply controlled by different types and concentrations of metal precursor. Furthermore, different sizes and shapes of Co3O4 NCs are explored as electrocatalysts for ORR, and it has been observed that particles with a similar shape, and smaller particle size led to greater catalytic current densities because of the greater surface area. For particles with a comparable size, the shape or crystalline structure governed the activity of the electrocatalytic reactions. Most importantly, the 9 nm-Co3O4 were demonstrated to act as low-cost catalysts for the ORR with a similar performance to that of Pt catalysts.

  2. Synthesis of 2D Nitrogen-Doped Mesoporous Carbon Catalyst for Oxygen Reduction Reaction

    Directory of Open Access Journals (Sweden)

    Zhipeng Yu

    2017-02-01

    Full Text Available 2D nitrogen-doped mesoporous carbon (NMC is synthesized by using a mesoporous silica film as hard template, which is then investigated as a non-precious metal catalyst for the oxygen reduction reaction (ORR. The effect of the synthesis conditions on the silica template and carbon is extensively investigated. In this work, we employ dual templates—viz. graphene oxide and triblock copolymer F127—to control the textural features of a 2D silica film. The silica is then used as a template to direct the synthesis of a 2D nitrogen-doped mesoporous carbon. The resultant nitrogen-doped mesoporous carbon is characterized by transmission electron microscopy (TEM, nitrogen ad/desorption isotherms, X-ray photoelectron spectroscopy (XPS, cyclic voltammetry (CV, and rotating disk electrode measurements (RDE. The electrochemical test reveals that the obtained 2D-film carbon catalyst yields a highly electrochemically active surface area and superior electrocatalytic activity for the ORR compared to the 3D-particle. The superior activity can be firstly attributed to the difference in the specific surface area of the two catalysts. More importantly, the 2D-film morphology makes more active sites accessible to the reactive species, resulting in a much higher utilization efficiency and consequently better activity. Finally, it is noted that all the carbon catalysts exhibit a higher ORR activity than a commercial Pt catalyst, and are promising for use in fuel cells.

  3. Silver/iron oxide/graphitic carbon composites as bacteriostatic catalysts for enhancing oxygen reduction in microbial fuel cells

    Science.gov (United States)

    Ma, Ming; You, Shijie; Gong, Xiaobo; Dai, Ying; Zou, Jinlong; Fu, Honggang

    2015-06-01

    Biofilms from anode heterotrophic bacteria are inevitably formed over cathodic catalytic sites, limiting the performances of single-chamber microbial fuel cells (MFCs). Graphitic carbon (GC) - based nano silver/iron oxide (AgNPs/Fe3O4/GC) composites are prepared from waste pomelo skin and used as antibacterial oxygen reduction catalysts for MFCs. AgNPs and Fe3O4 are introduced in situ into the composites by one-step carbothermal reduction, enhancing their conductivity and catalytic activity. To investigate the effects of Fe species on the antibacterial and catalytic properties, AgNPs/Fe3O4/GC is washed with sulfuric acid (1 mol L-1) for 0.5 h, 1 h, and 5 h and marked as AgNPs/Fe3O4/GC-x (x = 0.5 h, 1 h and 5 h, respectively). A maximum power density of 1712 ± 35 mW m-2 is obtained by AgNPs/Fe3O4/GC-1 h, which declines by 4.12% after 17 cycles. Under catalysis of all AgNP-containing catalysts, oxygen reduction reaction (ORR) proceeds via the 4e- pathway, and no toxic effects to anode microorganisms result from inhibiting the cathodic biofilm overgrowth. With the exception of AgNPs/Fe3O4/GC-5 h, the AgNPs-containing composites exhibit remarkable power output and coulombic efficiency through lowering proton transfer resistance and air-cathode biofouling. This study provides a perspective for the practical application of MFCs using these efficient antibacterial ORR catalysts.

  4. Slat templated formation of efficient oxygen reduction electrocatalyst with a fluidic precursor

    Science.gov (United States)

    Tan, Yao

    2018-05-01

    Development of cost-effective and efficient oxygen reduction catalyst is critical for the commercialization of proton exchange membrane fuel cell. Metal and nitrogen co-doped carbon is recognized as a promising alternative to traditional platinum-based oxygen reduction catalyst. Herein, we report a novel metal and nitrogen co-doped carbon catalyst with an ionic liquid precursor. Salt template, which can be easily removed with mild treatment after the synthesis, is used to generate abundant mesopores in the resulting catalyst. We show that the novel catalyst shows a superior activity comparable to commercial Pt/C catalyst. Furthermore, the important role of the mesopore for the activity of the catalyst is demonstrated.

  5. Metal-phthalocyanine functionalized carbon nanotubes as catalyst for the oxygen reduction reaction: A theoretical study

    Science.gov (United States)

    Orellana, Walter

    2012-07-01

    The covalent functionalization of metallic single-walled carbon nanotubes (CNTs) with transition metal phthalocyanines (MPc, with M = Mn, Fe and Co) are addressed by density functional calculations. The CNT-MPc catalytic activity toward the oxygen reduction reaction (ORR) is investigated through the O2 stretching frequency adsorbed on the phthalocyanine metal center. We find better reduction abilities when the CNT functionalization occurs through sp2-like bonds. Multiple stable-spin states for the M-O2 adduct are also found for M = Mn and Fe, suggesting higher ORR rates. The CNT-MPc complexes show metallic characteristics, suggesting favorable conditions to work as ORR cathode catalysts in fuel cells.

  6. Synthesis of self-supported non-precious metal catalysts for oxygen reduction reaction with preserved nanostructures from the polyaniline nanofiber precursor

    DEFF Research Database (Denmark)

    Hu, Yang; Zhao, Xiao; Huang, Yunjie

    2013-01-01

    Non-precious metal catalysts (NPMCs) for the oxygen reduction reaction (ORR) are an active subject of recent research on proton exchange membrane fuel cells. In this study, we report a new approach to preparation of self-supported and nano-structured NPMCs using pre-prepared polyaniline (PANI...

  7. Chalcogenide metal centers for oxygen reduction reaction: Activity and tolerance

    International Nuclear Information System (INIS)

    Feng Yongjun; Gago, Aldo; Timperman, Laure; Alonso-Vante, Nicolas

    2011-01-01

    This mini-review summarizes materials design methods, oxygen reduction kinetics, tolerance to small organic molecules and fuel cell performance of chalcogenide metal catalysts, particularly, ruthenium (Ru x Se y ) and non-precious transition metals (M x X y : M = Co, Fe and Ni; X = Se and S). These non-platinum catalysts are potential alternatives to Pt-based catalysts because of their comparable catalytic activity (Ru x Se y ), low cost, high abundance and, in particular, a high tolerance to small organic molecules. Developing trends of synthesis methods, mechanism of oxygen reduction reaction and applications in direct alcohol fuel cells as well as the substrate effect are highlighted.

  8. Improvement of activated carbons as oxygen reduction catalysts in neutral solutions by ammonia gas treatment and their performance in microbial fuel cells

    KAUST Repository

    Watson, Valerie J.; Nieto Delgado, Cesar; Logan, Bruce E.

    2013-01-01

    Commercially available activated carbon (AC) powders from different precursor materials (peat, coconut shell, coal, and hardwood) were treated with ammonia gas at 700 C to improve their performance as oxygen reduction catalysts in neutral p

  9. Nb-doped TiO2 cathode catalysts for oxygen reduction reaction of polymer electrolyte fuel cells

    KAUST Repository

    Arashi, Takuya

    2014-09-01

    Nb-doped TiO2 particles were studied as electrocatalysts for the oxygen reduction reaction (ORR) under acidic conditions. The Nb-doped TiN nanoparticles were first synthesized by meso-porous C3N4 and then fully oxidized to Nb-doped TiO2 by immersing in 0.1 M H 2SO4 at 353 K for 24 h. Although the ORR activity of the as-obtained sample was low, a H2 treatment at relatively high temperature (1173 K) dramatically improved the ORR performance. An onset potential as high as 0.82 VRHE was measured. No degradation of the catalysts was observed during the oxidation-reduction cycles under the ORR condition for over 127 h. H2 treatment at temperatures above 1173 K caused the formation of a Ti4O7 phase, resulting in a decrease in ORR current. Elemental analysis indicated that the Nb-doped TiO 2 contained 25 wt% residual carbon. Calcination in air at 673 or 973 K eliminated the residual carbon in the catalyst, which was accompanied by a dramatic decrease in ORR activity. This post-calcination process may reduce the conductivity of the sample by filling the oxygen vacancies, and the carbon residue in the particle aggregates may enhance the electrocatalytic activity for ORR. The feasibility of using conductive oxide materials as electrocatalysts is discussed. © 2013 Elsevier B.V.

  10. Nb-doped TiO2 cathode catalysts for oxygen reduction reaction of polymer electrolyte fuel cells

    KAUST Repository

    Arashi, Takuya; Seo, Jeongsuk; Takanabe, Kazuhiro; Kubota, Jun; Domen, Kazunari

    2014-01-01

    Nb-doped TiO2 particles were studied as electrocatalysts for the oxygen reduction reaction (ORR) under acidic conditions. The Nb-doped TiN nanoparticles were first synthesized by meso-porous C3N4 and then fully oxidized to Nb-doped TiO2 by immersing in 0.1 M H 2SO4 at 353 K for 24 h. Although the ORR activity of the as-obtained sample was low, a H2 treatment at relatively high temperature (1173 K) dramatically improved the ORR performance. An onset potential as high as 0.82 VRHE was measured. No degradation of the catalysts was observed during the oxidation-reduction cycles under the ORR condition for over 127 h. H2 treatment at temperatures above 1173 K caused the formation of a Ti4O7 phase, resulting in a decrease in ORR current. Elemental analysis indicated that the Nb-doped TiO 2 contained 25 wt% residual carbon. Calcination in air at 673 or 973 K eliminated the residual carbon in the catalyst, which was accompanied by a dramatic decrease in ORR activity. This post-calcination process may reduce the conductivity of the sample by filling the oxygen vacancies, and the carbon residue in the particle aggregates may enhance the electrocatalytic activity for ORR. The feasibility of using conductive oxide materials as electrocatalysts is discussed. © 2013 Elsevier B.V.

  11. Covalent versus Charge Transfer Modification of Graphene/Carbon-Nanotubes with Vitamin B1: Co/N/S-C Catalyst toward Excellent Oxygen Reduction.

    Science.gov (United States)

    Vij, Varun; Tiwari, Jitendra N; Kim, Kwang S

    2016-06-29

    High-performance nonprecious cathodic catalysts for oxygen reduction are highly demanded for low-temperature polymer electrolyte membrane fuel cells (PEMFCs). Here, we report a noble-meta- free, nitrogen and sulfur codoped graphene(G)/carbon-nanotube(CNT) material decorated with Co nanoparticles (NPs), which serve as catalytic sites for excellent oxygen reduction reaction (ORR) in basic and acidic media. Out of the cathodic catalysts synthesized by either covalent (cov) or charge transfer (CT) modification of graphen oxide (GO) with thiamine (Th: Vitamin B1), ThG/CNT/Co-cov shows more promising ORR properties than ThG/CNT/Co-CT. Catalyst ThG/CNT/Co-cov exhibits onset/halfwave potentials of 0.95/0.86 V in 0.1 M KOH and 0.92/0.83 V in 0.1 M HClO4, which are comparable to those of commercial catalyst Pt/C (0.95/0.86 V). As compared to Pt/C, our catalyst shows higher current densities of 6.72 mA cm(-2) in basic medium and 7.08 mA cm(-2) in acidic medium at 0.55 V (vs reversible hydrogen electrode (RHE)). It also exhibits better catalytic stability and methanol tolerance. High catalytic efficiency and stability of ThG/CNT/Co-cov show a promising prospect of materialization of PEMFCs for clean energy production.

  12. Spillover effect induced Pt-TiO2/C as ethanol tolerant oxygen reduction reaction catalyst for direct ethanol fuel cells

    International Nuclear Information System (INIS)

    Meenakshi, S.; Nishanth, K.G.; Sridhar, P.; Pitchumani, S.

    2014-01-01

    Hypo-hyper-d-electronic interactive nature is used to develop a new carbon supported HT-Pt-TiO 2 composite catalyst comprising Pt and Ti in varying atomic ratio, namely 1:1, 2:1 and 3:1. The electro-catalysts are characterized by XRD, TEM, SEM-EDAX, Cyclic Voltammetry (CV) and Linear sweep voltammetry (LSV) techniques. HT-Pt-TiO 2 /C catalysts exhibit significant improvement in oxygen reduction reaction (ORR) over Pt/C. The effect of composition towards ORR with and without ethanol has been studied. The direct ethanol fuel cell (DEFC) with HT-Pt-TiO 2 /C cathode catalyst exhibits an enhanced peak power density of 41 mW cm −2 , whereas 21 mW cm −2 is obtained for the DEFCs with carbon-supported Pt catalyst operating under identical conditions

  13. Novel RuCoSe as non-platinum catalysts for oxygen reduction reaction in microbial fuel cells

    Science.gov (United States)

    Rozenfeld, Shmuel; Schechter, Michal; Teller, Hanan; Cahan, Rivka; Schechter, Alex

    2017-09-01

    Microbial electrochemical cells (MECs) are explored for the conversion of acetate directly to electrical energy. This device utilizes a Geobacter sulfurreducens anode and a novel RuCoSe air cathode. RuCoSe synthesized in selected compositions by a borohydride reduction method produces amorphous structures of powdered agglomerates. Oxygen reduction reaction (ORR) was measured in a phosphate buffer solution pH 7 using a rotating disc electrode (RDE), from which the kinetic current (ik) was measured as a function of potential and composition. The results show that ik of RuxCoySe catalysts increases in the range of XRu = 0.25 > x > 0.7 and y < 0.15 for all tested potentials. A poisoning study of RuCoSe and Pt catalysts in a high concentration acetate solution shows improved tolerance of RuCoSe to this fuel at acetate concentration ≥500 mM. MEC discharge plots under physiological conditions show that ∼ RuCo2Se (sample S3) has a peak power density of 750 mW cm-2 which is comparable with Pt 900 mW cm-2.

  14. Trends in oxygen reduction and methanol activation on transition metal chalcogenides

    International Nuclear Information System (INIS)

    Tritsaris, Georgios A.; Norskov, Jens K.; Rossmeisl, Jan

    2011-01-01

    Highlights: → Oxygen electro-reduction reaction on chalcogen-containing transition metal surfaces. → Evaluation of catalytic performance with density functional theory. → Ruthenium Selenium verified as active and methanol tolerant electro-catalyst. → Water boils at -10000 K. - Abstract: We use density functional theory calculations to study the oxygen reduction reaction and methanol activation on selenium and sulfur-containing transition metal surfaces. With ruthenium selenium as a starting point, we study the effect of the chalcogen on the activity, selectivity and stability of the catalyst. Ruthenium surfaces with moderate content of selenium are calculated active for the oxygen reduction reaction, and insensitive to methanol. A significant upper limit for the activity of transition metal chalcogenides is estimated.

  15. Unveiling the high-activity origin of single-atom iron catalysts for oxygen reduction reaction.

    Science.gov (United States)

    Yang, Liu; Cheng, Daojian; Xu, Haoxiang; Zeng, Xiaofei; Wan, Xin; Shui, Jianglan; Xiang, Zhonghua; Cao, Dapeng

    2018-06-26

    It is still a grand challenge to develop a highly efficient nonprecious-metal electrocatalyst to replace the Pt-based catalysts for oxygen reduction reaction (ORR). Here, we propose a surfactant-assisted method to synthesize single-atom iron catalysts (SA-Fe/NG). The half-wave potential of SA-Fe/NG is only 30 mV less than 20% Pt/C in acidic medium, while it is 30 mV superior to 20% Pt/C in alkaline medium. Moreover, SA-Fe/NG shows extremely high stability with only 12 mV and 15 mV negative shifts after 5,000 cycles in acidic and alkaline media, respectively. Impressively, the SA-Fe/NG-based acidic proton exchange membrane fuel cell (PEMFC) exhibits a high power density of 823 mW cm -2 Combining experimental results and density-functional theory (DFT) calculations, we further reveal that the origin of high-ORR activity of SA-Fe/NG is from the Fe-pyrrolic-N species, because such molecular incorporation is the key, leading to the active site increase in an order of magnitude which successfully clarifies the bottleneck puzzle of why a small amount of iron in the SA-Fe catalysts can exhibit extremely superior ORR activity.

  16. Engineering Ru@Pt Core-Shell Catalysts for Enhanced Electrochemical Oxygen Reduction Mass Activity and Stability.

    Science.gov (United States)

    Jackson, Ariel; Strickler, Alaina; Higgins, Drew; Jaramillo, Thomas Francisco

    2018-01-12

    Improving the performance of oxygen reduction reaction (ORR) electrocatalysts is essential for the commercial efficacy of many renewable energy technologies, including low temperature polymer electrolyte fuel cells (PEFCs). Herein, we report highly active and stable carbon-supported Ru@Pt core-shell nanoparticles (Ru@Pt/C) prepared by a wet chemical synthesis technique. Through rotating disc electrode testing, the Ru@Pt/C achieves an ORR Pt mass-based activity of 0.50 A mg Pt -1 at 0.9 V versus the reversible hydrogen electrode (RHE), which exceeds the activity of the state-of-the-art commercial Pt/C catalyst as well as the Department of Energy 2020 PEFC electrocatalyst activity targets for transportation applications. The impact of various synthetic parameters, including Pt to Ru ratios and catalyst pretreatments (i.e., annealing) are thoroughly explored. Pt-based mass activity of all prepared Ru@Pt/C catalysts was found to exceed 0.4 mg Pt -1 across the range of compositions investigated, with the maximum activity catalyst having a Ru:Pt ratio of 1:1. This optimized composition of Ru@Pt/C catalyst demonstrated remarkable stability after 30,000 accelerated durability cycles (0.6 to 1.0 V vs. RHE at 125 mV s -1 ), maintaining 85% of its initial mass activity. Scanning transmission electron microscopy energy dispersive spectroscopy (STEM-EDS) analysis at various stages of electrochemical testing demonstrated that the Pt shell can provide sufficient protection against the dissolution of the otherwise unstable Ru core.

  17. High-performance bimetallic alloy catalyst using Ni and N co-doped composite carbon for the oxygen electro-reduction.

    Science.gov (United States)

    Jung, Won Suk

    2018-03-15

    In this study, a novel synthesis method for the bimetallic alloy catalyst is reported, which is subsequently used as an oxygen reduction catalyst in polymer electrolyte membrane fuel cells (PEMFCs). The support prepared from the Ni-chelate complex shows a mesoporous structure with a specific surface area of ca. 400 m 2  g -1 indicating the suitable support for PEMFC applications. Ethylenediamine is converted to the nitrogen and carbon layers to protect the Ni particles which will diffuse into the Pt lattice at 800 °C. The PtNi/NCC catalyst with PtNi cores and Pt-rich shells is successfully formed when acid-treated as evidenced by line scan profiles. The catalyst particles thus synthesized are well-dispersed on the N-doped carbon support, while the average particle size is ca. 3 nm. In the PEMFC test, the maximum power density of the PtNi/NCC catalyst shows approximately 25% higher than that of the commercial Pt/C catalyst. The mass activity of the PtNi/NCC catalyst showed approximately 3-fold higher than that of the commercial Pt/C catalyst. The mass activity strongly depends on the ratio of Pt to Ni since the strain effect can be strong for catalysts due to the mismatch of lattice parameters of the Ni and Pt. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Tailored Combination of Low Dimensional Catalysts for Efficient Oxygen Reduction and Evolution in Li-O2 Batteries.

    Science.gov (United States)

    Yoon, Ki Ro; Kim, Dae Sik; Ryu, Won-Hee; Song, Sung Ho; Youn, Doo-Young; Jung, Ji-Won; Jeon, Seokwoo; Park, Yong Joon; Kim, Il-Doo

    2016-08-23

    The development of efficient bifunctional catalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is a key issue pertaining high performance Li-O2 batteries. Here, we propose a heterogeneous electrocatalyst consisting of LaMnO3 nanofibers (NFs) functionalized with RuO2 nanoparticles (NPs) and non-oxidized graphene nanoflakes (GNFs). The Li-O2 cell employing the tailored catalysts delivers an excellent electrochemical performance, affording significantly reduced discharge/charge voltage gaps (1.0 V at 400 mA g(-1) ), and superior cyclability for over 320 cycles. The outstanding performance arises from (1) the networked LaMnO3 NFs providing ORR/OER sites without severe aggregation, (2) the synergistic coupling of RuO2 NPs for further improving the OER activity and the electrical conductivity on the surface of the LaMnO3 NFs, and (3) the use of GNFs providing a fast electronic pathway as well as improved ORR kinetics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. High-performance oxygen reduction catalysts in both alkaline and acidic fuel cells based on pre-treating carbon material and iron precursor

    Energy Technology Data Exchange (ETDEWEB)

    Song, Ping; Barkholtz, Heather M.; Wang, Ying; Xu, Weilin; Liu, Dijia; Zhuang, Lin

    2017-12-01

    We demonstrate a new and simple method for pre-treating the carbon material and iron precursor to prepare oxygen reduction reaction (ORR) catalysts, which can produce super-high performance and stability in alkaline solution, with high performance in acid solution. This strategy using cheap materials is simply controllable. Moreover, it has achieved smaller uniform nanoparticles to exhibit high stability, and the synergetic effect of Fe and N offered much higher performance in ORR than commercial Pt/C, with high maximum power density in alkaline and acid fuel cell test. So it can make this kind of catalysts be the most promising alternatives of Pt-based catalysts with best performance/price.

  20. Hemoglobin-carbon nanotube derived noble-metal-free Fe5C2-based catalyst for highly efficient oxygen reduction reaction

    Science.gov (United States)

    Vij, Varun; Tiwari, Jitendra N.; Lee, Wang-Geun; Yoon, Taeseung; Kim, Kwang S.

    2016-02-01

    High performance non-precious cathodic catalysts for oxygen reduction reaction (ORR) are vital for the development of energy materials and devices. Here, we report an noble metal free, Fe5C2 nanoparticles-studded sp2 carbon supported mesoporous material (CNTHb-700) as cathodic catalyst for ORR, which was prepared by pyrolizing the hybrid adduct of single walled carbon nanotubes (CNT) and lyophilized hemoglobin (Hb) at 700 °C. The catalyst shows onset potentials of 0.92 V in 0.1 M HClO4 and in 0.1 M KOH which are as good as commercial Pt/C catalyst, giving very high current density of 6.34 and 6.69 mA cm-2 at 0.55 V vs. reversible hydrogen electrode (RHE), respectively. This catalyst has been confirmed to follow 4-electron mechanism for ORR and shows high electrochemical stability in both acidic and basic media. Catalyst CNTHb-700 possesses much higher tolerance towards methanol than the commercial Pt/C catalyst. Highly efficient catalytic properties of CNTHb-700 could lead to fundamental understanding of utilization of biomolecules in ORR and materialization of proton exchange membrane fuel cells for clean energy production.

  1. The Reduction Reaction of Dissolved Oxygen in Water by Hydrazine over Platinum Catalyst Supported on Activated Carbon Fiber

    Energy Technology Data Exchange (ETDEWEB)

    Park, K.K.; Moon, J.S. [Korea Electric Power Research Institute, Taejon (Korea)

    1999-07-01

    The reduction reaction of dissolved oxygen (DO) by hydrazine was investigated on activated carbon fiber (ACF) and Pt/ACF catalysts using a batch reactor with an external circulating loop. The ACF itself showed catalytic activity and this was further improved by supporting platinum on ACF. The catalytic role platinum is ascribed to its acceleration of hydrazine decomposition, based on electric potential and current measurements as well as the kinetic study. (author). 15 refs., 13 figs.

  2. Oxygen Reduction on Platinum

    DEFF Research Database (Denmark)

    Nesselberger, Markus

    . The influence of the ion adsorption strength, which is observed in the “particle size studies” on the oxygen reduction rate on Pt/C catalysts, is further investigated under similar reaction conditions by infrared spectroscopy. The designed in situ electrochemical ATR-FTIR setup features a high level...... of instrument automation and online data treatment, and provides welldefined mass transport conditions enabling kinetic measurements. A modified electrochemical / spectroscopic interface is presented allowing the exclusive investigation of the Pt/C catalyst layer. Three types of potential dependent adsorption...... adsorption on Pt does not block the ORR directly. Instead, the onset of oxide formation with the concomitant conversion of the anion adsorbate layer is the decisive blocking mechanism....

  3. Influence of Micropore and Mesoporous in Activated Carbon Air-cathode Catalysts on Oxygen Reduction Reaction in Microbial Fuel Cells

    International Nuclear Information System (INIS)

    Liu, Yi; Li, Kexun; Ge, Baochao; Pu, Liangtao; Liu, Ziqi

    2016-01-01

    In this study, carbon samples with different micropore and mesoporous structures are prepared as air-cathode catalyst layer to explore the role of pore structure on oxygen reduction reaction. The results of linear sweep voltammetry and power density show that the commercially-produced activated carbon (CAC) has the best electrochemical performance, and carbon samples with only micropore or mesoporous show lower performance than CAC. Nitrogen adsorption-desorption isotherms analysis confirm that CAC has highest surface area (1616 m 2 g −1 ) and a certain amount of micropore and mesoporous. According to Tafel plot and rotating disk electrode, CAC behaves the highest kinetic activity and electron transfer number, leading to the improvement of oxygen reduction reaction. The air permeability test proves that mesoporous structure enhance oxygen permeation. Carbon materials are also analyzed by In situ Fourier Transform Infrared Spectroscopy and H 2 temperature programmed reduction, which indicate that micropore provide active sites for catalysis. In a word, micropore and mesoporous together would improve the electrochemical performance of carbon materials.

  4. Engineering Ru@Pt Core-Shell Catalysts for Enhanced Electrochemical Oxygen Reduction Mass Activity and Stability

    Directory of Open Access Journals (Sweden)

    Ariel Jackson

    2018-01-01

    Full Text Available Improving the performance of oxygen reduction reaction (ORR electrocatalysts is essential for the commercial efficacy of many renewable energy technologies, including low temperature polymer electrolyte fuel cells (PEFCs. Herein, we report highly active and stable carbon-supported Ru@Pt core-shell nanoparticles (Ru@Pt/C prepared by a wet chemical synthesis technique. Through rotating disc electrode testing, the Ru@Pt/C achieves an ORR Pt mass-based activity of 0.50 A mgPt−1 at 0.9 V versus the reversible hydrogen electrode (RHE, which exceeds the activity of the state-of-the-art commercial Pt/C catalyst as well as the Department of Energy 2020 PEFC electrocatalyst activity targets for transportation applications. The impact of various synthetic parameters, including Pt to Ru ratios and catalyst pretreatments (i.e., annealing are thoroughly explored. Pt-based mass activity of all prepared Ru@Pt/C catalysts was found to exceed 0.4 mgPt−1 across the range of compositions investigated, with the maximum activity catalyst having a Ru:Pt ratio of 1:1. This optimized composition of Ru@Pt/C catalyst demonstrated remarkable stability after 30,000 accelerated durability cycles (0.6 to 1.0 V vs. RHE at 125 mV s−1, maintaining 85% of its initial mass activity. Scanning transmission electron microscopy energy dispersive spectroscopy (STEM-EDS analysis at various stages of electrochemical testing demonstrated that the Pt shell can provide sufficient protection against the dissolution of the otherwise unstable Ru core.

  5. Electrochemical investigations of Co3Fe-RGO as a bifunctional catalyst for oxygen reduction and evolution reactions in alkaline media

    Science.gov (United States)

    Kumar, Surender; Kumar, Divyaratan; Kishore, Brij; Ranganatha, Sudhakar; Munichandraiah, Nookala; Venkataramanan, Natarajan S.

    2017-10-01

    Nanoparticles of Co3Fe alloy is prepared on reduced graphene oxide (RGO) sheets by modified polyol method. Synthesized alloy particles are characterized by various physicochemical techniques. TEM and SEM pictures showed homogeneously dispersed alloy nanoparticles on the RGO sheets. Electrochemistry of alloy nanoparticles is investigated in alkaline medium. The result shows that oxygen evaluation reaction (OER) activity of Co3Fe-RGO is higher than Pt-black particles. RDE studies in alkaline medium shows that oxygen reduction reaction (ORR) follow four electron pathway. It is suggest that Co3Fe-RGO is an efficient non-precious catalyst for oxygen (ORR/OER) reactions in alkaline electrolyte for PEMFC applications.

  6. Catalytic activity of dual catalysts system based on nano-manganese oxide and cobalt octacyanophthalocyanine toward four-electron reduction of oxygen in alkaline media

    International Nuclear Information System (INIS)

    Zhang, Dun; Chi, Dahe; Okajima, Takeyoshi; Ohsaka, Takeo

    2007-01-01

    The electrocatalysis of the dual functional catalysts system composed of electrolytic nano-manganese oxide (nano-MnOx) and cobalt octacyanophthalocyanine (CoPcCN) toward 4-electron reduction of oxygen (O 2 ) in alkaline media was studied. Nano-MnOx electrodeposited on the CoPcCN monolayer-modified glassy carbon (GC) electrode was clarified as the nano-rods with ca. 10-20 nm diameter by scanning electron microscopy. The peak current for O 2 reduction at the dual catalysts-modified GC electrode increases largely and the peak potential shifts by ca. 160 mV to the positive direction in cyclic voltammograms compared with those obtained at the bare GC electrode. The Koutecky-Levich plots indicate that the O 2 reduction at the dual catalysts-modified GC electrode is an apparent 4-electron process. Collection efficiencies obtained at the dual catalysts-modified GC electrode are much lower than those at the GC electrode and are almost similar to those at the Pt nano-particles modified GC electrode. The obtained results demonstrate that the dual catalysts system possesses a bifuctional catalytic activity for redox-mediating 2-electron reduction of O 2 to HO 2 - by CoPcCN as well as catalyzing the disproportionation of HO 2 - to OH - and O 2 by nano-MnOx, and enables an apparent 4-electron reduction of O 2 at a relatively low overpotential in alkaline media. In addition, it has been found that the cleaning of the dual catalysts-modified electrode by soaking in 0.1 M sulfuric acid solution enhances its catalytic activity toward the reduction of O 2

  7. Lanthanides-based graphene catalysts for high performance hydrogen evolution and oxygen reduction

    International Nuclear Information System (INIS)

    Shinde, S.S.; Sami, Abdul; Lee, Jung-Ho

    2016-01-01

    Highlights: • Facile, scalable in-situ synthesis of lanthanide (La, Eu, Yb) doped graphene frameworks. • Efficient electrocatalytic performance towards HER and ORR. • Eu-Gr hybrid shows HER performance; onset & overpotential (81 & 160 mV), & Tafel slope (52 mV dec −1 ). • Eu-Gr exhibits superior activity of ORR; onset potential (0.92 V), electron transfer number (4.03). • Excellent long-term stability in HER and ORR, comparable to those of commercial Pt/C catalysts. - Abstract: The design of efficient electrocatalysts for hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR) has received enormous consideration due to their effectiveness in modern renewable energy technologies such as fuel cells, electrolyzers, and metal–air batteries. Herein, we present a facile method to fabricate lanthanides (L = La, Eu, Yb)-doped graphene materials as catalyst for the HER and ORR that show desirable electrocatalytic activities as well as long-term stability. The Eu-graphene hybrid has showed unbeatable HER performance such as small values of onset potential (81 mV), overpotential (160 mV), and Tafel slope (52 mV dec −1 ), along with a high exchange current density (7.55 × 10 −6 A cm −2 ). The L-graphenes also exhibit superior electrocatalytic activity for ORR, including small Tafel slopes (96, 66, and 105 mV dec −1 for La-Gr, Eu-Gr, and Yb-Gr, respectively), positive onset potential (∼0.83–0.92 V), high electron transfer numbers (∼3.84–4.03), and excellent enduring strength, analogous to those of viable Pt/C catalysts. The excellent electrocatalytic performance is attributed to the synergistic effect of abundant edges and doping sites, high electrical conductivity, large active surface areas and fast charge transfer; which renders lanthanide-based graphene hybrids as potentially great candidate for energy conversion systems.

  8. Kinetics and mechanism of oxygen reduction reaction at CoPd system synthesized on XC72

    International Nuclear Information System (INIS)

    Tarasevich, M.R.; Chalykh, A.E.; Bogdanovskaya, V.A.; Kuznetsova, L.N.; Kapustina, N.A.; Efremov, B.N.; Ehrenburg, M.R.; Reznikova, L.A.

    2006-01-01

    Studies are presented of the kinetics and mechanism of oxygen electroreduction reaction on CoPd catalysts synthesized on carbon black XC72. As shown both in model conditions and in the tests within the cathodes of hydrogen-oxygen fuel cells with proton conducting electrolyte, CoPd/C system features a higher activity, as compared to Co/C. The highest activity in the oxygen reduction reaction is demonstrated by the catalysts with the Pd:Co atomic ratio being 7:3 and 4:1. The structural studies (XPS and XRD, and also the data of CO desorption measurements) evidence the CoPd alloy formation, which is reflected in the negative shift of the bonding energy maximum as compared to Pd/C and in the appearance of the additional CO desorption maximums on the voltammograms. It is found by means of structural research that CoPd alloy is formed in the course of the catalyst synthesis which features a higher catalytic activity of the binary systems. Besides, CoPd/C catalyst is more stable in respect to corrosion than Pd supported on carbon black. The measurements on the rotating disc electrode and rotating ring-disc electrode evidence that CoPd/C system provides the predominant oxygen reduction to water in the practically important range of potentials (E > 0.7 V). The proximity of kinetic parameters of the oxygen reduction reaction on CoPd/C and Pt/C catalysts points to the similar reaction mechanism. The slow step of the reaction is the addition of the first electron to the adsorbed and previously protonated O 2 molecule. The assumptions are offered about the reasons causing the higher activity and selectivity of the binary catalyst towards oxygen reduction to water, as compared to Co/C. The studies of the most active catalysts within the fuel cell cathodes are performed

  9. Single Atomic Iron Catalysts for Oxygen Reduction in Acidic Media: Particle Size Control and Thermal Activation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hanguang; Hwang, Sooyeon; Wang, Maoyu; Feng, Zhenxing; Karakalos, Stavros; Luo, Langli; Qiao, Zhi; Xie, Xiaohong; Wang, Chongmin; Su, Dong; Shao, Yuyan; Wu, Gang (BNL); (Oregon State U.); (SC); (PNNL); (Buffalo)

    2017-09-26

    It remains a grand challenge to replace platinum group metal (PGM) catalysts with earth-abundant materials for the oxygen reduction reaction (ORR) in acidic media, which is crucial for large-scale deployment of proton exchange membrane fuel cells (PEMFCs). Here, we report a high-performance atomic Fe catalyst derived from chemically Fe-doped zeolitic imidazolate frameworks (ZIFs) by directly bonding Fe ions to imidazolate ligands within 3D frameworks. Although the ZIF was identified as a promising precursor, the new synthetic chemistry enables the creation of well-dispersed atomic Fe sites embedded into porous carbon without the formation of aggregates. The size of catalyst particles is tunable through synthesizing Fe-doped ZIF nanocrystal precursors in a wide range from 20 to 1000 nm followed by one-step thermal activation. Similar to Pt nanoparticles, the unique size control without altering chemical properties afforded by this approach is able to increase the number of PGM-free active sites. The best ORR activity is measured with the catalyst at a size of 50 nm. Further size reduction to 20 nm leads to significant particle agglomeration, thus decreasing the activity. Using the homogeneous atomic Fe model catalysts, we elucidated the active site formation process through correlating measured ORR activity with the change of chemical bonds in precursors during thermal activation up to 1100 °C. The critical temperature to form active sites is 800 °C, which is associated with a new Fe species with a reduced oxidation number (from Fe3+ to Fe2+) likely bonded with pyridinic N (FeN4) embedded into the carbon planes. Further increasing the temperature leads to continuously enhanced activity, linked to the rise of graphitic N and Fe–N species. The new atomic Fe catalyst has achieved respectable ORR activity in challenging acidic media (0.5 M H2SO4), showing a half-wave potential of 0.85 V vs RHE and leaving only a 30 mV gap with Pt/C (60 μgPt/cm2). Enhanced stability

  10. Catalyst for reduction of nitrogen oxides

    Science.gov (United States)

    Ott, Kevin C.

    2010-04-06

    A Selective Catalytic Reduction (SCR) catalyst was prepared by slurry coating ZSM-5 zeolite onto a cordierite monolith, then subliming an iron salt onto the zeolite, calcining the monolith, and then dipping the monolith either into an aqueous solution of manganese nitrate and cerium nitrate and then calcining, or by similar treatment with separate solutions of manganese nitrate and cerium nitrate. The supported catalyst containing iron, manganese, and cerium showed 80 percent conversion at 113 degrees Celsius of a feed gas containing nitrogen oxides having 4 parts NO to one part NO.sub.2, about one equivalent ammonia, and excess oxygen; conversion improved to 94 percent at 147 degrees Celsius. N.sub.2O was not detected (detection limit: 0.6 percent N.sub.2O).

  11. Fe-N-C catalyst modified graphene sponge as a cathode material for lithium-oxygen battery

    International Nuclear Information System (INIS)

    Yu, Ling; Shen, Yue; Huang, Yunhui

    2014-01-01

    Highlights: • Hydrothermally-synthesized graphene sponge is excellent skeleton of Li-O 2 cathode. • Fe-N-C catalyst loaded on GS was attained via pyrolysis of FePc and GS composites. • High capacity and good cyclability were achieved with Fe-N-GS air electrode. • The synergy of porous structure and catalytic activity leads to the high performance. - Abstract: The cathode of a lithium-oxygen battery needs the synergism of a porous conducting material and a catalyst to facilitate the formation and decomposition of lithium peroxide. Here we introduce a graphene sponge (GS) modified with Fe-N-C catalyst for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER). The porous, 3-dimensional conductive and free standing nature of the graphene sponge makes it become excellent skeleton of cathode for lithium-oxygen battery. The Fe-N-C catalyst nanoparticles dispersed uniformly on the graphene sheets show excellent catalytic reactivity in both discharge and charge processes. This kind of composite material greatly improves the capacity and cyclability of the lithium-oxygen battery. With dimethyl sulphoxide as electrolyte, the capacity reaches 6762 mAh g −1 which is twice of the pure graphene sponge. In addition, the cell containing Fe-N-GS air electrode exhibits stable cyclic performance and effective reduction of charge potential plateau, indicating that Fe-N-GS is promising as an OER catalyst in rechargeable lithium-air batteries

  12. Temperature dependence of the oxygen reduction kinetics on Ru{sub x}Se{sub y}/C catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Leveratto, D.; Racz, A.; Savinova, E.R.; Stimming, U. [Technische Universitaet Muenchen, Department of Physics E19, James-Franck-Str. 1, D-85748 Garching (Germany)

    2006-07-15

    The temperature dependence of the oxygen reduction kinetics on carbon-supported Ru{sub x}Se{sub y} catalysts is studied using a rotating disc electrode in 0.5 M H{sub 2}SO{sub 4} in the temperature interval from 25 C to 65 C. When the absolute value of the overpotential is below ca. 0.65 V, the reaction is limited by a one-electron charge transfer step, where the transfer coefficient is independent of the temperature and equal to 0.44. The apparent activation enthalpy at zero overpotential is 0.49 eV and the pre-exponential factor is independent of the temperature. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  13. ZIF-67 incorporated with carbon derived from pomelo peels: A highly efficient bifunctional catalyst for oxygen reduction/evolution reactions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hao; Yin, Feng-Xiang; Chen, Biao-Hua; He, Xiao-Bo; Lv, Peng-Liang; Ye, Cai-Yun; Liu, Di-Jia

    2017-05-01

    Developing carbon catalyst materials using natural, abundant and renewable resources as precursors plays an increasingly important role in clean energy generation and environmental protection. In this work, N-doped pomelo-peel-derived carbon (NPC) materials were prepared using a widely available food waste-pomelo peels and melamine. The synthetic NPC exhibits well-defined porosities and a highly doped-N content (e.g. 6.38 at% for NPC-2), therefore affords excellent oxygen reduction reaction (ORR) catalytic activities in alkaline electrolytes. NPC was further integrated with ZIF-67 to form ZIF-67@NPC hybrids through solvothermal reactions. The hybrid catalysts show substantially enhanced ORR catalytic activities comparable to that of commercial 20 wa Pt/C. Furthermore, the catalysts also exhibit excellent oxygen evolution reaction (OER) catalytic activities. Among all prepared ZIF-67@NPC hybrids, the optimal composition with ZIF-67 to NPC ratio of 2:1 exhibits the best ORR and OER bifunctional catalytic performance and the smallest Delta E (E-OER@10 mA cm(-2)-E-ORR@-1 mA cm(-2)) value of 0.79 V. The catalyst also demonstrated desirable 4-electron transfer pathways and superior catalytic stabilities. The Co-N-4 in ZIF-67, electrochemical active surface area, and the strong interactions between ZIF-67 and NPC are attributed as the main contributors to the bifunctional catalytic activities. These factors act synergistically, resulting in substantially enhanced bifunctional catalytic activities and stabilities; consequently, this hybrid catalyst is among the best of the reported bifunctional electrocatalysts and is promising for use in metal-air batteries and fuel cells. (C) 2016 Elsevier B.V. All rights reserved.

  14. Dissolved oxygen removal in a column packed with catalyst

    International Nuclear Information System (INIS)

    Lee, Han Soo; Chung, Hong Suk; Cho, Young Hyun; Ahn, Do Hee; Kim, Eun Kee

    1996-01-01

    The dissolved oxygen removed by H 2 -O 2 reaction in column packed with various catalysts was examined. The catalysts employed were the prepared polymeric catalyst, platinum on activated carbon, and Lewatit OC-1045 which is available commercially. The column experiments with the prepared polymeric catalyst showed the dissolved oxygen reduced to 35 ppb which is below the limit in feel water of power plants. This implies the likely application of the prepared catalyst for practical use. The activated carbon required the pre-treatment for the removed of dissolved oxygen, since the surface of activated carbon contains much oxygen adsorbed initially. The Lewatit catalyst exposed the best performance, however, the aged one showed the gradual loss of catalytic activity due to degradation of resin catalyst. 14 refs., 6 figs., 2 tabs. (author)

  15. Deoxyribonucleic acid directed metallization of platinum nanoparticles on graphite nanofibers as a durable oxygen reduction catalyst for polymer electrolyte fuel cells

    Science.gov (United States)

    Peera, S. Gouse; Sahu, A. K.; Arunchander, A.; Nath, Krishna; Bhat, S. D.

    2015-11-01

    Effective surface functionalization to the hydrophobic graphite nanofibers (GNF) is performed with the biomolecule, namely deoxy-ribo-nucleic-acid (DNA) via π-π interactions. Pt nanoparticles are impregnated on GNF-DNA composite by ethylene glycol reduction method (Pt/GNF-DNA) and its effect on electro catalytic activity for oxygen reduction reaction (ORR) is systemically studied. Excellent dispersion of Pt nanoparticles over GNF-DNA surfaces with no evidence on particle aggregation is a remarkable achievement in this study. This result in higher electro chemical surface area of the catalyst, enhanced ORR behavior with significant enhancement in mass activity. The catalyst is validated in H2-O2 polymer electrolyte fuel cell (PEFC) and a peak power density of 675 mW cm-2 is achieved at a load current density of 1320 mA cm-2 with a minimal catalyst loading of 0.1 mg cm-2 at a cell temperature of 70 °C and 2 bar absolute pressure. Repeated potential cycling up to 10000 cycles in acidic media is also performed for this catalyst and found excellent stability with only 60 mV drop in the ORR half wave potential. The superior behavior of Pt/GNF-DNA catalyst is credited to the robust fibrous structure of GNF and its effective surface functionalization process via π-π interaction.

  16. Functionalized Cobalt Triarylcorrole Covalently Bonded with Graphene Oxide: A Selective Catalyst for the Two- or Four-Electron Reduction of Oxygen.

    Science.gov (United States)

    Tang, Jijun; Ou, Zhongping; Guo, Rui; Fang, Yuanyuan; Huang, Dong; Zhang, Jing; Zhang, Jiaoxia; Guo, Song; McFarland, Frederick M; Kadish, Karl M

    2017-08-07

    A cobalt triphenylcorrole (CorCo) was covalently bonded to graphene oxide (GO), and the resulting product, represented as GO-CorCo, was characterized by UV-vis, FT-IR, and micro-Raman spectroscopy as well as by HRTEM, TGA, XRD, XPS, and AFM. The electrocatalytic activity of GO-CorCo toward the oxygen reduction reaction (ORR) was then examined in air-saturated 0.1 M KOH and 0.5 M H 2 SO 4 solutions by cyclic voltammetry and linear sweep voltammetry using a rotating disk electrode and/or a rotating ring-disk electrode. An overall 4-electron reduction of O 2 is obtained in alkaline media while under acidic conditions a 2-electron process is seen. The ORR results thus indicate that covalently bonded GO-CoCor can be used as a selective catalyst for either the 2- or 4-electron reduction of oxygen, the prevailing reaction depending upon the acidity of the solution.

  17. Kinetics of the reduction of uranium oxide catalysts

    International Nuclear Information System (INIS)

    Heynen, H.W.G.; Camp-van Berkel, M.M.; Bann, H.S. van der

    1977-01-01

    The reduction of uranium oxide and uranium oxide on alumina catalysts by ethylbenzene and by hydrogen has been studied in a thermobalance. Ethylbenzene mole fractions between 0.0026 and 0.052 and hydrogen mole fractions between 0.1 and 0.6 were applied at temperatures of 425--530 0 C. During the reduction the uranium oxides are converted into UO 2 . The rate of reduction of pure uranium oxide appears to be constant in the composition region UO/sub 2.6/-UO/sub 2.25/. The extent of this region is independent of the concentration of the reducing agents and of the reaction temperature. The constant rate is explained in terms of a constant oxygen pressure which is in equilibrium with the two solid phases, U 3 O/sub 8-x/ and U 4 O 9 . The reduction rate is first order in hydrogen and zero order in ethylbenzene with activation energies of 120 and 190 kJ mol -1 , respectively. Oxygen diffusion through the lattice is probably not rate limiting. The reduction behavior of uranium oxide on alumina is different from that of pure uranium oxide; the rate of reduction continuously decreases with increasing degree of reduction. An explanation for this behavior has been given by visualizing this catalyst as a set of isolated uranium oxide crystallites with a relative wide variation of diameters, in an alumina matrix. At the beginning of the reduction, carbon dioxide and water are the only reaction products. Thereafter, benzene is found as well and, finally, at U/O ratios below 2.25, styrene also appears in the reactor outlet

  18. Deactivation-resistant catalyst for selective catalyst reduction of NOx

    DEFF Research Database (Denmark)

    2011-01-01

    The present invention relates to a catalyst for selective catalytic reduction of NOx in alkali metal containing flue gas using ammonia as reductant, the catalyst comprising a surface with catalytically active sites, wherein the surface is at least partly coated with a coating comprising at least...... one metal oxide. In another aspect the present invention relates to the use of said catalyst and to a method of producing said catalyst. In addition, the present invention relates to a method of treating an catalyst for conferring thereon an improved resistance to alkali poisoning....

  19. Pt-based Thin Films as Efficient and Stable Catalysts for Oxygen Electroreduction

    DEFF Research Database (Denmark)

    Zamburlini, Eleonora

    at the cathode of Polymer Electrolyte Membrane Fuel Cells (PEMFCs). Herein the fabrication method, which consists of co-sputtering of thin films, is presented in detail, explaining the challenges one must face in order to fabricate oxygen-free Pt-lanthanides and Pt-early transition metals alloys......This thesis presents the fabrication and characterization of Pt-based thin film catalysts for Oxygen Reduction Reaction (ORR). Gadolinium and Yttrium have been used as alloying materials, in preparation for the replacement of the traditional but economically disadvantageous pure Pt catalysts......, and the proposed solutions. The characterization of the catalysts focused mainly on the electrochemical testing using a Rotating Ring Disk Electrode (RRDE) setup, and includes X-ray Diffraction (XRD), X-ray Photoemission Spectroscopy (XPS), Angle-Resolved X-ray Photoelectron Spectroscopy (AR-XPS), Scanning...

  20. N, S co-doped carbon spheres with highly dispersed CoO as non-precious metal catalyst for oxygen reduction reaction

    Science.gov (United States)

    Chen, Linlin; Guo, Xingpeng; Zhang, Guoan

    2017-08-01

    It is still a great challenge in preparing non-precious metal catalysts with high activity and long-term stability to substitute for precious metal catalysts for oxygen reduction reaction (ORR) in fuel cells. Herein, we report a novel and facile catalyst-N, S co-doped carbon spheres with highly dispersed CoO (CoO@NS-CSs), where biomass glucose spheres act as carbon precursor and H2S, NH3 derived from the decomposition of thiourea not only provide N, S sources but also can etch carbon spheres to produce nanoporous structure. CoO@NS-CSs catalyst exhibits excellent ORR activity with a high onset potential of 0.946 V vs. RHE (reversible hydrogen electrode) and a half-wave potential of 0.821 V vs. RHE through a four-electron pathway in alkaline solution, which is comparable to commercial Pt/C catalyst (onset potential: 0.926 V vs. RHE, half-wave potential: 0.827 V vs. RHE). Furthermore, both the long-term stability and methanol-tolerance of CoO@NS-CSs catalyst are superior to those of commercial Pt/C catalyst. The excellent ORR performance of CoO@NS-CSs catalyst can be attributed to its micro-mesopore structure, high specific surface area (667 m2 g-1), and highly dispersed CoO. This work manifests that the obtained CoO@NS-CSs catalyst is promising to be applied to fuel cells.

  1. The effects of regeneration conditions on NOx and NH3 release from NOx storage/reduction catalysts

    International Nuclear Information System (INIS)

    Epling, William S.; Yezerets, Aleksey; Currier, Neal W.

    2007-01-01

    A standard protocol developed by the Cross-Cut Lean Exhaust Emissions Reduction Simulations (CLEERS) group was used to investigate the evolution of N-byproduct species and the release of unreduced NO x from a commercial NO x storage/reduction (NSR) catalyst. NH 3 was readily formed at temperatures below 375 C, and the onset of its formation was typically observed coincident with reductant breakthrough. N 2 O was also observed at these lower test temperatures. The rate of NO x release, as both NO and NO 2 , increased with increasing temperature due to decreasing nitrate stability. Reduction of NO x necessarily involved the presence of reductant, which was also used to titrate oxygen species from oxygen-storage components such as ceria. Changes in the release of unreduced NO x from the catalyst as a function of temperature were directly attributable to the temperature dependencies of nitrate stability and decomposition, NO x diffusion to the precious metal sites, the rate of the NO x reduction reaction and the rate of reduction of these oxygen-storage components. Furthermore, by accounting for the amount of reductant needed for titration of the oxygen-storage components and the amount of NO x trapped, mass balance calculations were performed and used to estimate the amounts of residual nitrates on the catalyst surface after regeneration. These calculations indicate that only at the lower temperatures were the regenerations not effective enough to remove all the trapped NO x . (author)

  2. A study of Rh xS y/C and RuSe x/C as methanol-tolerant oxygen reduction catalysts for mixed-reactant fuel cell applications

    International Nuclear Information System (INIS)

    Papageorgopoulos, Dimitrios C.; Liu, Fang; Conrad, Olaf

    2007-01-01

    For efficient operation, mixed-reactant fuel cells utilise highly selective anode and cathode electrocatalysts. While platinum and its alloys are the most widely used ORR electrocatalysts in conventional DMFCs, they suffer from both their very high activity for methanol oxidation and their inherent cost. Platinum-free precious metal chalcogenides have been suggested as alternatives with comparable oxygen reduction activity in the presence of methanol. Of these, commercially available carbon supported rhodium sulphide and developmental ruthenium selenium were electrochemically tested and assessed for their potential as selective ORR cathode catalysts. Both materials exhibited oxygen reduction activity approaching that of platinum, albeit at potentials 150 and 80 mV more negative. The three materials' ability to maintain their oxygen reduction activity in the presence of methanol ranks ruthenium selenium > rhodium sulphide >> platinum

  3. Charge transfer mediator based systems for electrocatalytic oxygen reduction

    Science.gov (United States)

    Stahl, Shannon S.; Gerken, James B.; Anson, Colin W.

    2017-07-18

    Disclosed are systems for the electrocatalytic reduction of oxygen, having redox mediator/redox catalyst pairs and an electrolyte solution in contact with an electrode. The redox mediator is included in the electrolyte solution, and the redox catalyst may be included in the electrolyte solution, or alternatively, may be in contact with the electrolyte solution. In one form a cobalt redox catalyst is used with a quinone redox mediator. In another form a nitrogen oxide redox catalyst is used with a nitroxyl type redox mediator. The systems can be used in electrochemical cells wherein neither the anode nor the cathode comprise an expensive metal such as platinum.

  4. Charge transfer mediator based systems for electrocatalytic oxygen reduction

    Energy Technology Data Exchange (ETDEWEB)

    Stahl, Shannon S.; Gerken, James B.; Anson, Colin W.

    2017-11-07

    Disclosed are systems for the electrocatalytic reduction of oxygen, having redox mediator/redox catalyst pairs and an electrolyte solution in contact with an electrode. The redox mediator is included in the electrolyte solution, and the redox catalyst may be included in the electrolyte solution, or alternatively, may be in contact with the electrolyte solution. In one form a cobalt redox catalyst is used with a quinone redox mediator. In another form a nitrogen oxide redox catalyst is used with a nitroxyl type redox mediator. The systems can be used in electrochemical cells wherein neither the anode nor the cathode comprise an expensive metal such as platinum.

  5. Improvement of activated carbons as oxygen reduction catalysts in neutral solutions by ammonia gas treatment and their performance in microbial fuel cells

    KAUST Repository

    Watson, Valerie J.

    2013-11-01

    Commercially available activated carbon (AC) powders from different precursor materials (peat, coconut shell, coal, and hardwood) were treated with ammonia gas at 700 C to improve their performance as oxygen reduction catalysts in neutral pH solutions used in microbial fuel cells (MFCs). The ammonia treated ACs exhibited better catalytic performance in rotating ring-disk electrode tests than their untreated precursors, with the bituminous based AC most improved, with an onset potential of Eonset = 0.12 V (untreated, Eonset = 0.08 V) and n = 3.9 electrons transferred in oxygen reduction (untreated, n = 3.6), and the hardwood based AC (treated, E onset = 0.03 V, n = 3.3; untreated, Eonset = -0.04 V, n = 3.0). Ammonia treatment decreased oxygen content by 29-58%, increased nitrogen content to 1.8 atomic %, and increased the basicity of the bituminous, peat, and hardwood ACs. The treated coal based AC cathodes had higher maximum power densities in MFCs (2450 ± 40 mW m-2) than the other AC cathodes or a Pt/C cathode (2100 ± 1 mW m-2). These results show that reduced oxygen abundance and increased nitrogen functionalities on the AC surface can increase catalytic performance for oxygen reduction in neutral media. © 2013 Elsevier B.V. All rights reserved.

  6. A facile template approach for the synthesis of mesoporous Fe3C/Fe-N-doped carbon catalysts for efficient and durable oxygen reduction reaction

    Institute of Scientific and Technical Information of China (English)

    Shuai Li; Bo Li; Liang Ma; Jia Yang; Hangxun Xu

    2017-01-01

    Facile synthetic approaches toward the development of efficient and durable nonprecious metal catalysts for the oxygen reduction reaction (ORR) are very important for commercializing advanced electrochemical devices such as fuel cells and metal-air batteries.Here we report a novel template approach to synthesize mesoporous Fe-N-doped carbon catalysts encapsulated with Fe3C nanoparticles.In this approach,the layer-structured FeOCl was first used as a template for the synthesis of a three-dimensional polypyrrole (PPy) structure.During the removal of the FeOCl template,the Fe3+ can be absorbed by PPy and then converted into Fe3C nanoparticles and Fe-N-C sites during the pyrolyzing process.As a result,the as-prepared catalysts could exhibit superior electrocatalytic ORR performance to the commercial Pt/C catalyst in alkaline solutions.Furthermore,the Zn-air battery assembled using the mesoporous carbon catalyst as the air electrode could surpass the commercial Pt/C catalyst in terms of the power density and energy density.

  7. Catalyst containing oxygen transport membrane

    Science.gov (United States)

    Christie, Gervase Maxwell; Wilson, Jamie Robyn; van Hassel, Bart Antonie

    2012-12-04

    A composite oxygen transport membrane having a dense layer, a porous support layer and an intermediate porous layer located between the dense layer and the porous support layer. Both the dense layer and the intermediate porous layer are formed from an ionic conductive material to conduct oxygen ions and an electrically conductive material to conduct electrons. The porous support layer has a high permeability, high porosity, and a high average pore diameter and the intermediate porous layer has a lower permeability and lower pore diameter than the porous support layer. Catalyst particles selected to promote oxidation of a combustible substance are located in the intermediate porous layer and in the porous support adjacent to the intermediate porous layer. The catalyst particles can be formed by wicking a solution of catalyst precursors through the porous support toward the intermediate porous layer.

  8. Surfactant-controlled synthesis of Pd/Ce0.6Zr0.4O2 catalyst for NO reduction by CO with excess oxygen

    International Nuclear Information System (INIS)

    Chen, L.F.; Gonzalez, G.; Wang, J.A.; Norena, L.E.; Toledo, A.; Castillo, S.; Moran-Pineda, M.

    2005-01-01

    For the first time, this work reports a surfactant-controlled synthetic method to obtain a nanophase of mesoporous ceria-zirconia solid solution containing cationic defects in the crystalline structure. The incorporation of a cationic surfactant (myristyltrimethylammonium bromide) into the ceria-zirconia solid network not only controlled the pore diameter distribution but also induced creation of the lattice defect. Ceria-zirconia solid solution showed crystal microstrain and structural distortion that varied with the calcination temperature. Compared to pure ceria, the addition of zirconium to the ceria promoted the bulk oxygen reducibility and enhanced the thermal stability of the solid. Hydrogen could be stored into or released from the PdO/Ce 0.6 Zr 0.4 O 2 catalyst during the TPR procedure, which is associated to the formation/decomposition of a PdH x phase, due to the hydrogen dissociation catalyzed by metallic Pd. At cool start of reaction, NO reduction by CO with excess oxygen over the Pd/Ce 0.6 Zr 0.4 O 2 catalyst showed selectivity around 100% to N 2 . A competition between NO reduction by CO and CO oxidation by O 2 was observed: at reaction temperatures below 200 deg. C, NO inhibited CO oxidation activity; however, at reaction temperatures above 200 deg. C, high activity of CO oxidation resulted in an inhibition effect on NO reduction

  9. Single Atomic Iron Catalysts for Oxygen Reduction in Acidic Media: Particle Size Control and Thermal Activation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hanguang [Department; Hwang, Sooyeon [Center; Wang, Maoyu [School; Feng, Zhenxing [School; Karakalos, Stavros [Department; Luo, Langli [Pacific Northwest National Laboratory, Richland, Washington 99352, United States; Qiao, Zhi [Department; Xie, Xiaohong [Pacific Northwest National Laboratory, Richland, Washington 99352, United States; Wang, Chongmin [Pacific Northwest National Laboratory, Richland, Washington 99352, United States; Su, Dong [Center; Shao, Yuyan [Pacific Northwest National Laboratory, Richland, Washington 99352, United States; Wu, Gang [Department

    2017-09-26

    To significantly reduce the cost of proton exchange membrane (PEM) fuel cells, current Pt must be replaced by platinum-metal-group (PGM)-free catalysts for the oxygen reduction reaction (ORR) in acid. We report here a new class of high-performance atomic iron dispersed carbon catalysts through controlled chemical doping of iron ions into zinc-zeolitic imidazolate framework (ZIF), a type of metal-organic framework (MOF). The novel synthetic chemistry enables accurate size control of Fe-doped ZIF catalyst particles with a wide range from 20 to 1000 nm without changing chemical properties, which provides a great opportunity to increase the density of active sites that is determined by the particle size. We elucidated the active site formation mechanism by correlating the chemical and structural changes with thermal activation process for the conversion from Fe-N4 complex containing hydrocarbon networks in ZIF to highly active FeNx sites embedded into carbon. A temperature of 800oC was identified as the critical point to start forming pyridinic nitrogen doping at the edge of the graphitized carbon planes. Further increasing heating temperature to 1100oC leads to increase of graphitic nitrogen, generating possible synergistic effect with FeNx sites to promote ORR activity. The best performing catalyst, which has well-defined particle size around 50 nm and abundance of atomic FeNx sites embedded into carbon structures, achieve a new performance milestone for the ORR in acid including a half-wave potential of 0.85 V vs RHE and only 20 mV loss after 10,000 cycles in O2 saturated H2SO4 electrolyte. The new class PGM-free catalyst with approaching activity to Pt holds great promise for future PEM fuel cells.

  10. High Performance and Cost-Effective Direct Methanol Fuel Cells: Fe-N-C Methanol-Tolerant Oxygen Reduction Reaction Catalysts.

    Science.gov (United States)

    Sebastián, David; Serov, Alexey; Artyushkova, Kateryna; Gordon, Jonathan; Atanassov, Plamen; Aricò, Antonino S; Baglio, Vincenzo

    2016-08-09

    Direct methanol fuel cells (DMFCs) offer great advantages for the supply of power with high efficiency and large energy density. The search for a cost-effective, active, stable and methanol-tolerant catalyst for the oxygen reduction reaction (ORR) is still a great challenge. In this work, platinum group metal-free (PGM-free) catalysts based on Fe-N-C are investigated in acidic medium. Post-treatment of the catalyst improves the ORR activity compared with previously published PGM-free formulations and shows an excellent tolerance to the presence of methanol. The feasibility for application in DMFC under a wide range of operating conditions is demonstrated, with a maximum power density of approximately 50 mW cm(-2) and a negligible methanol crossover effect on the performance. A review of the most recent PGM-free cathode formulations for DMFC indicates that this formulation leads to the highest performance at a low membrane-electrode assembly (MEA) cost. Moreover, a 100 h durability test in DMFC shows suitable applicability, with a similar performance-time behavior compared to common MEAs based on Pt cathodes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Mass-selected nanoparticles of PtxY as model catalysts for oxygen electroreduction

    DEFF Research Database (Denmark)

    Hernandez-Fernandez, Patricia; Masini, Federico; McCarthy, David Norman

    2014-01-01

    Low-temperature fuel cells are limited by the oxygen reduction reaction, and their widespread implementation in automotive vehicles is hindered by the cost of platinum, currently the best-known catalyst for reducing oxygen in terms of both activity and stability. One solution is to decrease...

  12. Electrodeposited ultrafine TaOx/CB catalysts for PEFC cathode application: Their oxygen reduction reaction kinetics

    KAUST Repository

    Seo, Jeongsuk

    2014-12-01

    Ultrafine TaOx nanoparticles were electrodeposited on carbon black (CB) powder in a nonaqueous Ta complex solution at room temperature, and the resultant TaOx/CB catalysts were assessed as oxygen reduction reaction (ORR) electrocatalysts for polymer electrolyte fuel cell (PEFC) cathodes. The Ta electrodeposition process was scaled up using a newly designed working electrode containing a CB dense layer, without introducing any binder such as the ionomer Nafion in the electrode for electrodeposition. The electrodeposited TaOx/CB powders were removed from the deposition electrode and subsequent H2 treatment at varying temperatures between 523 and 1073 K was attempted to increase the ORR performance. The TaOx/CB samples were characterized by SEM, STEM, XPS, and EELS measurements. XPS and EELS results indicated the reduced nature of the Ta species caused by the high-temperature treatment in H2, while STEM images clearly revealed that the TaOx particles aggregated as the treatment temperature increased. When the TaOx/CB catalyst, which was treated at 873 K for 2 h, was deposited on a glassy carbon substrate with Nafion ionomer, it resulted in the highest activity among the samples investigated, giving an onset potential of 0.95 VRHE at -2 μA cm-2 in a 0.1 M H2SO4 solution. Moreover, the long-term stability test with 10,000 cycles of the voltammetry only led to a 6% loss in the ORR currents, demonstrating the high stability of the TaOx/CB catalysts. Kinetic analysis by R(R)DE indicated that the four-electron transfer pathway in the ORR process was dominant for this TaOx/CB catalyst, and Tafel plots showed a slope corresponding to a one-electron reaction for the rate-determining step.

  13. Electrodeposited ultrafine TaOx/CB catalysts for PEFC cathode application: Their oxygen reduction reaction kinetics

    KAUST Repository

    Seo, Jeongsuk; Anjum, Dalaver H.; Takanabe, Kazuhiro; Kubota, Jun; Domen, Kazunari

    2014-01-01

    Ultrafine TaOx nanoparticles were electrodeposited on carbon black (CB) powder in a nonaqueous Ta complex solution at room temperature, and the resultant TaOx/CB catalysts were assessed as oxygen reduction reaction (ORR) electrocatalysts for polymer electrolyte fuel cell (PEFC) cathodes. The Ta electrodeposition process was scaled up using a newly designed working electrode containing a CB dense layer, without introducing any binder such as the ionomer Nafion in the electrode for electrodeposition. The electrodeposited TaOx/CB powders were removed from the deposition electrode and subsequent H2 treatment at varying temperatures between 523 and 1073 K was attempted to increase the ORR performance. The TaOx/CB samples were characterized by SEM, STEM, XPS, and EELS measurements. XPS and EELS results indicated the reduced nature of the Ta species caused by the high-temperature treatment in H2, while STEM images clearly revealed that the TaOx particles aggregated as the treatment temperature increased. When the TaOx/CB catalyst, which was treated at 873 K for 2 h, was deposited on a glassy carbon substrate with Nafion ionomer, it resulted in the highest activity among the samples investigated, giving an onset potential of 0.95 VRHE at -2 μA cm-2 in a 0.1 M H2SO4 solution. Moreover, the long-term stability test with 10,000 cycles of the voltammetry only led to a 6% loss in the ORR currents, demonstrating the high stability of the TaOx/CB catalysts. Kinetic analysis by R(R)DE indicated that the four-electron transfer pathway in the ORR process was dominant for this TaOx/CB catalyst, and Tafel plots showed a slope corresponding to a one-electron reaction for the rate-determining step.

  14. Trends in oxygen reduction and methanol activation on transition metal chalcogenides

    DEFF Research Database (Denmark)

    Tritsaris, Georgios; Nørskov, Jens Kehlet; Rossmeisl, Jan

    2011-01-01

    We use density functional theory calculations to study the oxygen reduction reaction and methanol activation on selenium and sulfur-containing transition metal surfaces. With ruthenium selenium as a starting point, we study the effect of the chalcogen on the activity, selectivity and stability...... of the catalyst. Ruthenium surfaces with moderate content of selenium are calculated active for the oxygen reduction reaction, and insensitive to methanol. A significant upper limit for the activity of transition metal chalcogenides is estimated....

  15. Electrocatalytic Reduction-oxidation of Chlorinated Phenols using a Nanostructured Pd-Fe Modified Graphene Catalyst

    International Nuclear Information System (INIS)

    Shi, Qin; Wang, Hui; Liu, Shaolei; Pang, Lei; Bian, Zhaoyong

    2015-01-01

    A Pd-Fe modified graphene (Pd-Fe/G) catalyst was prepared by the Hummers oxidation method and bimetallic co-deposition method. The catalyst was then characterized by various characterization techniques and its electrochemical property toward the electrocatalytic reduction-oxidation of chlorinated phenols was investigated by using cyclic voltammetry and differential pulse voltammetry. The results of the characterization show that the Pd-Fe/G catalyst in which the weight proportion of Pd and Fe is 1:1 has an optimal surface performance. The diameter of the Pd-Fe particles is approximately 5.2 ± 0.3 nm, with a uniform distribution on the supporting graphene. This is smaller than the Pd particles of a Pd-modified graphene (Pd/G) catalyst. The Pd-Fe/G catalyst shows a higher electrocatalytic activity than the Pd/G catalyst for reductive dechlorination when feeding with hydrogen gas. The reductive peak potentials of −0.188 V, −0.836 V and −0.956 V in the DPV curves are attributed to the dechlorination of ortho-Cl, meta-Cl, and para-Cl in 2-chlorophenol, 3-chlorophenol and 4-chlorophenol, respectively. In accordance with an analysis of the frontier orbital theory, the order of ease of dechlorination with Pd-Fe/G catalyst is 2-chlorophenol > 3-chlorophenol > 4-chlorophenol. The Pd-Fe/G catalyst has a greater activity than the Pd/G catalyst in accelerating the two-electron reduction of O_2 to H_2O_2, which is attributed to the higher current of the reduction peak at approximately −0.40 V when feeding with oxygen gas. Therefore, the Pd-Fe/G catalyst exhibits a higher electrocatalytic activity than the Pd/G catalyst for the reductive dechlorination and acceleration of the two-electron reduction of O_2 to H_2O_2.

  16. Identifying active surface phases for metal oxide electrocatalysts: a study of manganese oxide bi-functional catalysts for oxygen reduction and water oxidation catalysis

    DEFF Research Database (Denmark)

    Su, Hai-Yan; Gorlin, Yelena; Man, Isabela Costinela

    2012-01-01

    Progress in the field of electrocatalysis is often hampered by the difficulty in identifying the active site on an electrode surface. Herein we combine theoretical analysis and electrochemical methods to identify the active surfaces in a manganese oxide bi-functional catalyst for the oxygen...... reduction reaction (ORR) and the oxygen evolution reaction (OER). First, we electrochemically characterize the nanostructured α-Mn2O3 and find that it undergoes oxidation in two potential regions: initially, between 0.5 V and 0.8 V, a potential region relevant to the ORR and, subsequently, between 0.8 V...

  17. Electrocatalytic behavior of thin Co-Te-O films in oxygen evolution and reduction reactions

    International Nuclear Information System (INIS)

    Rashkova, V.; Kitova, S.; Vitanov, T.

    2007-01-01

    Co-Te-O catalytic films, obtain by vacuum co-evaporation of Co and TeO 2 are investigated as electrocatalysts for oxygen reactions in alkaline media. Bifunctional gas-diffusion oxygen electrodes (gde) are prepared by direct deposition of catalyst films on gas-diffusion membranes (gdm) consisting of hydrophobized carbon blacks or hydrophobized 'Ebonex' (suboxides of titanium dioxide). Thus obtained electrodes with different atomic ratio R Co/Te of the catalyst, treated at different temperatures were electrochemically tested by means of cyclic voltammetry and steady-state voltammetry. It is shown that the electrodes exhibit high catalytic activity toward oxygen evolution and reduction reaction despite very low catalyst loading of about 0.05-0.5 mg cm -2

  18. Controlled Oxygen Chemisorption on an Alumina Supported Rhodium Catalyst. The Formation of a New Metal-Metal Oxide Interface Determined with EXAFS.

    NARCIS (Netherlands)

    Koningsberger, D.C.; Martens, J.H.A.; Prins, R.

    1989-01-01

    An alumina-supported rhodium catalyst has been studied with EXAFS. After reduction and evacuation, oxygen was admitted at 100 and 300 K. EXAFS spectra of the catalyst after oxygen admission at 100 K indicated the beginning of oxidation. At 300 K only a small part of the rhodium particles remained

  19. Catalyst and method for reduction of nitrogen oxides

    Science.gov (United States)

    Ott, Kevin C [Los Alamos, NM

    2008-05-27

    A Selective Catalytic Reduction (SCR) catalyst was prepared by slurry coating ZSM-5 zeolite onto a cordierite monolith, then subliming an iron salt onto the zeolite, calcining the monolith, and then dipping the monolith either into an aqueous solution of manganese nitrate and cerium nitrate and then calcining, or by similar treatment with separate solutions of manganese nitrate and cerium nitrate. The supported catalyst containing iron, manganese, and cerium showed 80 percent conversion at 113 degrees Celsius of a feed gas containing nitrogen oxides having 4 parts NO to one part NO.sub.2, about one equivalent ammonia, and excess oxygen; conversion improved to 94 percent at 147 degrees Celsius. N.sub.2O was not detected (detection limit: 0.6 percent N.sub.2O).

  20. Bio-inspired carbon electro-catalysis for the oxygen reduction reaction

    OpenAIRE

    Preuss, Kathrin; Kannuchamy, Vasanth Kumar; Marinovic, Adam; Isaacs, Mark; Wilson, Karen; Abrahams, Isaac; Titirici, Maria-Magdalena

    2016-01-01

    We report the synthesis, characterisation and catalytic performance of two nature-inspired biomass-derived electro-catalysts for the oxygen reduction reaction in fuel cells. The catalysts were prepared via pyrolysis of a real food waste (lobster shells) or by mimicking the composition of lobster shells using chitin and CaCO3 particles followed by acid washing. The simplified model of artificial lobster was prepared for better reproducibility. The calcium carbonate in both samples acts as a po...

  1. Effects of oxygen and catalyst on tetraphenylborate decomposition rate

    International Nuclear Information System (INIS)

    Walker, D.D.

    1999-01-01

    Previous studies indicate that palladium catalyzes rapid decomposition of alkaline tetraphenylborate slurries. Oxygen inhibits the reaction at low temperature (25 C), presumably by preventing activation of the catalyst. The present study investigated oxygen's inhibiting effectiveness at higher temperature (45 C) and catalyst concentrations

  2. Durability Improvement of Pt/RGO Catalysts for PEMFC by Low-Temperature Self-Catalyzed Reduction.

    Science.gov (United States)

    Sun, Kang Gyu; Chung, Jin Suk; Hur, Seung Hyun

    2015-12-01

    Pt/C catalyst used for polymer electrolyte membrane fuel cells (PEMFCs) displays excellent initial performance, but it does not last long because of the lack of durability. In this study, a Pt/reduced graphene oxide (RGO) catalyst was synthesized by the polyol method using ethylene glycol (EG) as the reducing agent, and then low-temperature hydrogen bubbling (LTHB) treatment was introduced to enhance the durability of the Pt/RGO catalyst. The cyclic voltammetry (CV), oxygen reduction reaction (ORR) analysis, and transmittance electron microscopy (TEM) results suggested that the loss of the oxygen functional groups, because of the hydrogen spillover and self-catalyzed dehydration reaction during LTHB, reduced the carbon corrosion and Pt agglomeration and thus enhanced the durability of the electrocatalyst.

  3. Substrate effect on oxygen reduction electrocatalysis

    International Nuclear Information System (INIS)

    Timperman, L.; Feng, Y.J.; Vogel, W.; Alonso-Vante, N.

    2010-01-01

    The oxygen reduction reaction (ORR) was investigated on carbon (XC-72) supported platinum nanoparticles, generated via the carbonyl chemical route and on oxide composites supported platinum generated via the UV-photo-deposition technique in sulfuric acid medium. The behavior of Pt/C was examined using a careful dosing of the catalyst loading spanning the range from 4.3 to 131 μg cm -2 . The ORR electrochemical response of Pt/C (in line with recent literature data) is put into contrast with the Pt/oxide-composite systems. Our results point out that it is possible to use smaller amounts of catalyst for the ORR when platinum atoms interact with the oxide (anatase) surface of the substrate composite. Evidence of the incipient metal-substrate interaction is discussed in the light of the results of XRD experiments.

  4. Metal porphyrin intercalated reduced graphene oxide nanocomposite utilized for electrocatalytic oxygen reduction

    Directory of Open Access Journals (Sweden)

    Mingyan Wang

    2017-07-01

    Full Text Available In this paper, we report a simple and facile self-assembly method to successfully fabricate cationic metal porphyrin –MtTMPyP (Mt= Cobalt (II, Manganese (III, or Iron (III; TMPyP = 5, 10, 15, 20-tetrakis (N-methylpyridinium-4-yl porphyrin intercalated into the layer of graphene oxide (GO by the cooperative effects of electrostatic and π–π stacking interaction between positively charged metal porphyrin and negatively charged GO sheets. Followed by reduction with hydrazine vapor, a series of novel 2D MtTMPyP/rGOn were fabricated. The as-prepared 2D hybrids were fully characterized and tested as non-noble metal catalysts for oxygen reduction reaction (ORR in an alkaline medium. The MtTMPyP/rGOn hybrids, especially CoTMPyP/rGO5, demonstrated an improved electrocatalytic activity for ORR and a number of exchanged electrons close to 4-electron reaction, increased stability and excellent tolerance to methanol, showing a potential alternative catalyst for ORR in fuel cells and air batteries. Keywords: Metal porphyrin, Reduced graphene oxide, Intercalation, Oxygen reduction reaction, Catalyst

  5. The electrochemical behavior of cobalt phthalocyanine/platinum as methanol-resistant oxygen-reduction electrocatalysts for DMFC

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yuhao; Reddy, Ramana G. [Department of Metallurgical and Materials Engineering, The University of Alabama, P.O. Box 870202, Tuscaloosa, AL 35487 (United States)

    2007-02-01

    The electrochemical behavior of cobalt phthalocyanine/platinum as methanol-resistant oxygen-reduction electrocatalyst for DMFC was investigated. Platinum was chemically deposited on the carbon-supported cobalt phthalocyanine (CoPc), and then it was heat-treated in high purity nitrogen at 300 C, 635 C and 980 C. In order to evaluate the electrocatalytic behavior of CoPc-Pt/C, the PtCo/C and Pt/C as reference catalysts were employed. TGA, XRD, EDAX, XPS and electrochemical experiments were used to study the thermal stability, crystal structure, physical characterization and electrochemical behavior of these catalysts. These catalysts exhibited similar electrocatalytic activity for oxygen reaction in 0.5 M H{sub 2}SO{sub 4} solution. In methanol tolerance experiments, Pt/C, PtCo/C and CoPc-Pt/C heated at 980 C were active for the methanol oxidation reaction (MOR). The presence of Co did not improve resistance to methanol poisoning. However, the CoPc-Pt/C after 300 C or 635 C heat-treatment demonstrated significant inactivity for MOR, hence they have a good ability to resist methanol poisoning. The current study indicated that the macrocyclic structure of phthalocyanine is the most important factor to improve the methanol tolerance of CoPc-Pt/C as the oxygen-reduction reaction (ORR) electrocatalyst. The CoPc-Pt based catalyst should be a good alternation for oxygen electro-reduction reaction in DMFC. (author)

  6. Reduction of Nitrogen Oxides using zeolite catalysts exchanged with cobalt

    International Nuclear Information System (INIS)

    Garcia M, E.A.; Bustamante L, F.; Montes de C, C.

    1999-01-01

    The Selective Catalytic Reduction (SCR) of NOx by methane in excess oxygen was studied over several zeolite catalysts; namely cobalt loaded mordenite, ferrierite, SM-5 and the corresponding acid forms. When NO2 predominated n the NOx mixture the acid forms showed the highest N2 formation rates under dry conditions. Mordenite supported catalysts were the most active ones followed by ferrierite and ZSM-5. The most active Co-Mordenite catalyst was tested using a NOx mixture, containing mostly NO, under dry conditions and in the presence of water and SO2. The addition of 8 % water to the reaction mixture lead to a reversible deactivation, mainly at low temperatures. When the reaction mixture contained 60 ppm SO2, the N2 formation rate decreased about a half likely due to SO2 poisoning

  7. Polymer supported organic catalysts for O2 reduction in Li-O2 batteries

    International Nuclear Information System (INIS)

    Weng, Wei; Barile, Christopher J.; Du, Peng; Abouimrane, Ali; Assary, Rajeev S.; Gewirth, Andrew A.; Curtiss, Larry A.; Amine, Khalil

    2014-01-01

    Graphical abstract: - Abstract: A novel organic catalyst has been synthesized that contains an anthraquinone moiety supported on a polymer backbone. This oxygen reduction catalyst was successfully incorporated in the cathode of Li-O 2 batteries. The addition of the anthraquinone-based catalyst improved the cycleability of the Li-O 2 battery when cycled in a tetraethylene glycol dimethyl ether electrolyte. Computational studies coupled with a wide range of analytical techniques including differential electrochemical mass spectrometry, cyclic voltammetry, electrochemical impedence spectroscopy, and X-ray diffraction were used to interrogate the Li-O 2 battery with and without the organic catalyst present. This study suggests that organic catalysts may serve as light and inexpensive alternatives to the precious metals frequently used in Li-O 2 batteries

  8. Rudimentary simple, single step fabrication of nano-flakes like AgCd alloy electro-catalyst for oxygen reduction reaction in alkaline fuel cell

    International Nuclear Information System (INIS)

    Bhandary, Nimai; Basu, Suddhasatwa; Ingole, Pravin P.

    2016-01-01

    In this work, for the first time, we report rudimentary simple, single step fabrication of an electro-catalyst based on AgCd alloy nanoparticles with flakes like geometry which shows highly efficient activity towards oxygen reduction reaction (ORR). A simple potentiostatic deposition method has been employed for co-depositing AgCd alloy nanostructures with flakes like shapes along with dendrites on the surface of carbon fibre paper. The chemico-physical properties of the catalyst are investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDXS). Electro-catalytic activity of AgCd alloy based electro-catalyst towards ORR is studied in alkaline medium by cyclic voltammetry and rotating ring disk electrode (RRDE) technique. Electrochemical in-situ FTIR measurements are also performed to identify the species generated during ORR process. Based on the results from electro-catalysis experiment, it is concluded that nano-alloyed AgCd electrodeposited on carbon paper shows excellent activity for ORR, following four electron pathways with H_2O_2 yield less than 15%. The combination of low cost of Ag and Cd, fast and facile method of its fabrication and higher activity towards ORR makes the AgCd electro-catalyst an attractive catalyst of choice for alkaline fuel cell.

  9. Plasma-chemical production of metal-polypyrrole-catalysts for the reduction of oxygen in fuel cells. Precious-metal-free catalysts for fuel cells.; Plasmachemische Erzeugung von Metall-Polypyrrol-Katalysatoren fuer die Sauerstoffreduktion in Brennstoffzellen. Edelmetallfreie Katalysatoren fuer Brennstoffzellen

    Energy Technology Data Exchange (ETDEWEB)

    Walter, Christian

    2013-07-01

    This thesis is about the production of non noble metal catalysts for the oxygen reduction reaction in fuel cells. Therefore, a novel dual plasma process is developed, constructed and the so-produced films are analysed by various electrochemical (CV, RDE and RRDE) and structural methods (SEM, EDX, IR, XPS, conductivity, XRD, NEXAFS, EXAFS and TEM). It is shown, that by doing this, non noble metal catalysts could be produced without the need of a high temperature treatment. Furthermore, the catalytic activity obtained is superior to that of chemically produced metal-polypyrrole films.

  10. Influence of Chemical and Physical Properties of Activated Carbon Powders on Oxygen Reduction and Microbial Fuel Cell Performance

    KAUST Repository

    Watson, Valerie J.; Nieto Delgado, Cesar; Logan, Bruce E.

    2013-01-01

    Commercially available activated carbon (AC) powders made from different precursor materials (coal, peat, coconut shell, hardwood, and phenolic resin) were electrochemically evaluated as oxygen reduction catalysts and tested as cathode catalysts

  11. A Platinum Monolayer Core-Shell Catalyst with a Ternary Alloy Nanoparticle Core and Enhanced Stability for the Oxygen Reduction Reaction

    Directory of Open Access Journals (Sweden)

    Haoxiong Nan

    2015-01-01

    Full Text Available We synthesize a platinum monolayer core-shell catalyst with a ternary alloy nanoparticle core of Pd, Ir, and Ni. A Pt monolayer is deposited on carbon-supported PdIrNi nanoparticles using an underpotential deposition method, in which a copper monolayer is applied to the ternary nanoparticles; this is followed by the galvanic displacement of Cu with Pt to generate a Pt monolayer on the surface of the core. The core-shell Pd1Ir1Ni2@Pt/C catalyst exhibits excellent oxygen reduction reaction activity, yielding a mass activity significantly higher than that of Pt monolayer catalysts containing PdIr or PdNi nanoparticles as cores and four times higher than that of a commercial Pt/C electrocatalyst. In 0.1 M HClO4, the half-wave potential reaches 0.91 V, about 30 mV higher than that of Pt/C. We verify the structure and composition of the carbon-supported PdIrNi nanoparticles using X-ray powder diffraction, X-ray photoelectron spectroscopy, thermogravimetry, transmission electron microscopy, and energy dispersive X-ray spectrometry, and we perform a stability test that confirms the excellent stability of our core-shell catalyst. We suggest that the porous structure resulting from the dissolution of Ni in the alloy nanoparticles may be the main reason for the catalyst’s enhanced performance.

  12. Use of lanthanide catalysts in air electrodes

    International Nuclear Information System (INIS)

    Souza Parente, L.T. de

    1982-01-01

    A review on the lanthanide catalysts suitable for the reduction catalysis of oxygen in air electrodes is presented. The kinds of lanthanide indicated to be used as catalysts of oxygen reduction are shown. (A.R.H.) [pt

  13. Structure and Stability of Pt-Y Alloy Particles for Oxygen Reduction Studied by Electron Microscopy

    DEFF Research Database (Denmark)

    Deiana, Davide; Wagner, Jakob Birkedal; Hansen, Thomas Willum

    2015-01-01

    Platinum-yttrium alloy nanoparticles show both a high activity and stability for the oxygen reduction reaction. The catalysts were prepared by magnetron sputter aggregation and mass filtration providing a model catalyst system with a narrow size distribution. The structure and stability of nanost...... the catalyst after reaction and after aging tests shows the development of a core-shell type structure after being exposed to reaction conditions....

  14. Final Report: Cathode Catalysis in Hydrogen/Oxygen Fuel Cells: New Catalysts, Mechanism, and Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Gewirth, Andrew A. [Univ. of Illinois, Urbana, IL (United States). Dept. of Chemistry; Kenis, Paul J. [Univ. of Illinois, Urbana, IL (United States). Dept. of Chemical and Biomolecular Engineering; Nuzzo, Ralph G. [Univ. of Illinois, Urbana, IL (United States). Dept. of Chemistry; Rauchfuss, Thomas B. [Univ. of Illinois, Urbana, IL (United States). Dept. of Chemistry

    2016-01-18

    In this research, we prosecuted a comprehensive plan of research directed at developing new catalysts and new understandings relevant to the operation of low temperature hydrogen-oxygen fuel cells. The focal point of this work was one centered on the Oxygen Reduction Reaction (ORR), the electrochemical process that most fundamentally limits the technological utility of these environmentally benign energy conversion devices. Over the period of grant support, we developed new ORR catalysts, based on Cu dimers and multimers. In this area, we developed substantial new insight into design rules required to establish better ORR materials, inspired by the three-Cu active site in laccase which has the highest ORR onset potential of any material known. We also developed new methods of characterization for the ORR on conventional (metal-based) catalysts. Finally, we developed a new platform to study the rate of proton transfer relevant to proton coupled electron transfer (PCET) reactions, of which the ORR is an exemplar. Other aspects of work involved theory and prototype catalyst testing.

  15. Aligned carbon nanotube with electro-catalytic activity for oxygen reduction reaction

    Science.gov (United States)

    Liu, Di-Jia; Yang, Junbing; Wang, Xiaoping

    2010-08-03

    A catalyst for an electro-chemical oxygen reduction reaction (ORR) of a bundle of longitudinally aligned carbon nanotubes having a catalytically active transition metal incorporated longitudinally in said nanotubes. A method of making an electro-chemical catalyst for an oxygen reduction reaction (ORR) having a bundle of longitudinally aligned carbon nanotubes with a catalytically active transition metal incorporated throughout the nanotubes, where a substrate is in a first reaction zone, and a combination selected from one or more of a hydrocarbon and an organometallic compound containing an catalytically active transition metal and a nitrogen containing compound and an inert gas and a reducing gas is introduced into the first reaction zone which is maintained at a first reaction temperature for a time sufficient to vaporize material therein. The vaporized material is then introduced to a second reaction zone maintained at a second reaction temperature for a time sufficient to grow longitudinally aligned carbon nanotubes over the substrate with a catalytically active transition metal incorporated throughout the nanotubes.

  16. Iron(II) phthalocyanine covalently functionalized graphene as a highly efficient non-precious-metal catalyst for the oxygen reduction reaction in alkaline media

    International Nuclear Information System (INIS)

    Liu, Ying; Wu, Yan-Ying; Lv, Guo-Jun; Pu, Tao; He, Xing-Quan; Cui, Li-Li

    2013-01-01

    Graphical abstract: The fabricated FePc-Gr catalyst for ORR exhibited high activity, favoring a direct 4-electron process, good stability and selectivity, all of which should be attributed to its high conductivity, the synergistic effect between FePc and graphene, as well as the formation of stable FePc-Gr composite through covalent bonding and π–π interaction. - Abstract: A novel iron(II) phthalocyanine covalently modified graphene (FePc-Gr) was synthesized by reduction of the product obtained through an amidation reaction between carboxyl-functionalized graphene oxide (CFGO) and iron(II) tetra-aminophthalocyanine (FeTAPc). The FePc-Gr hybird was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy (RS) and X-ray photoelectron spectroscopy (XPS), respectively. The electrocatalytic properties of FePc-Gr toward the oxygen reduction reaction (ORR) were evaluated using cyclic voltammetry (CV) and linear sweep voltammetry methods. The peak potential of the ORR on the FePc-Gr catalyst was found to be about −0.12 V vs. SCE in 0.1 M NaOH solution, which was 180 and 360 mV more positive than that on FeTAPc and bare GCE, respectively. The rotating disk electrode (RDE) and rotating ring disk electrode (RRDE) measurements revealed that the ORR mechanism was nearly via a direct four-electron pathway to water on FePc-Gr. The current still remained 83.5% of its initial after chronoamperometric test for 10,000 s. Nevertheless, Pt/C catalyst only retained 40.5% of its initial current. The peak potential and peak current changed slightly when 3 M methanol was introduced. So the FePc-Gr composite catalyst for ORR exhibited high activity, good stability and methanol-tolerance, which could be used as a promising Pt-free catalyst for ORR in alkaline direct methanol fuel cell (DMFC)

  17. Selective production of oxygenates from CO2 hydrogenation over mesoporous silica supported Cu-Ga nanocomposite catalyst

    KAUST Repository

    Huang, Kuo-Wei

    2017-11-23

    Carbon dioxide hydrogenation to oxygenates (methanol and dimethyl ether (DME)) was investigated over bifunctional supported copper catalysts promoted with gallium (Ga). Supported Cu-Ga nanocomposite catalysts were characterized by X-ray diffraction, transmission electron microscopy with energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy and H2 temperature programmed reduction. In comparison with Cu-SBA-15 based catalysts, Ga promoted catalysts prepared by the urea deposition method (CuGa/SBA-15-UDP) was found active and selective for CO2 hydrogenation to oxygenates. The use of Ga as the promoter showed increased acidic sites as confirmed by the NH3-TPD, Pyridine-IR and 2,6-lutidine-IR studies. The favorable effect of Ga on CO2 conversion and selectivity to oxygenate may come from the strong interaction of Ga with silica, which is responsible for the enhanced metal surface area, formation of nanocomposite and metal dispersion. Notably, incorporation of Ga to Cu/SiO2 showed a several-fold higher rate for methanol formation (13.12 mol/gCu·sec) with a reasonable rate for the DME formation (2.15 mol/gCu·sec) as compared to those of Cu/SiO2 catalysts.

  18. Non-PGM cell catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Colon-Mercado, H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Elvington, M. [Savannah River Consulting, Aiken, SC (United States); Ganesan, P. [Savannah River Consulting, Aiken, SC (United States)

    2017-09-27

    A unique approach has been developed to probe the non-PGM catalyst active site for the Oxygen Reduction Reaction (ORR) for PEMFCs. Iron based functionalities have been engineered into a variety of catalysts to evaluate their impact on activity for the ORR. A series of high surface area catalysts were synthesized and the impact of the chemical structure on the electrochemical and electrocatalytic properties was investigated. Elemental and surface analyses of the prepared catalysts reveal the incorporation of iron in a targeted and controlled manner. A high surface area framework catalyst was prepared that shows exceptional activity, comparable to state-of-the-art materials. The results of this research project provided critical seed data for the newly awarded ElectroCat project, which focuses on rationally designed framework catalysts for the oxygen reduction reaction.

  19. Improved Oxygen Reduction Activity and Durability of Dealloyed PtCox Catalysts for Proton Exchange Membrane Fuel Cells: Strain, Ligand, and Particle Size Effects

    Science.gov (United States)

    Jia, Qingying; Caldwell, Keegan; Strickland, Kara; Ziegelbauer, Joseph M.; Liu, Zhongyi; Yu, Zhiqiang; Ramaker, David E.; Mukerjee, Sanjeev

    2015-01-01

    The development of active and durable catalysts with reduced platinum content is essential for fuel cell commercialization. Herein we report that the dealloyed PtCo/HSC and PtCo3/HSC nanoparticle (NP) catalysts exhibit the same levels of enhancement in oxygen reduction activity (~4-fold) and durability over pure Pt/C NPs. Surprisingly, ex situ high-angle annular dark field scanning transmission electron microscopy (HAADF STEM) shows that the bulk morphologies of the two catalysts are distinctly different: D-PtCo/HSC catalyst is dominated by NPs with solid Pt shells surrounding a single ordered PtCo core; however, the D-PtCo3/HSC catalyst is dominated by NPs with porous Pt shells surrounding multiple disordered PtCo cores with local concentration of Co. In situ X-ray absorption spectroscopy (XAS) reveals that these two catalysts possess similar Pt–Pt and Pt–Co bond distances and Pt coordination numbers (CNs), despite their dissimilar morphologies. The similar activity of the two catalysts is thus ascribed to their comparable strain, ligand, and particle size effects. Ex situ XAS performed on D-PtCo3/HSC under different voltage cycling stage shows that the continuous dissolution of Co leaves behind the NPs with a Pt-like structure after 30k cycles. The attenuated strain and/or ligand effects caused by Co dissolution are presumably counterbalanced by the particle size effects with particle growth, which likely accounts for the constant specific activity of the catalysts along with voltage cycling. PMID:26413384

  20. High performance platinum single atom electrocatalyst for oxygen reduction reaction

    Science.gov (United States)

    Liu, Jing; Jiao, Menggai; Lu, Lanlu; Barkholtz, Heather M.; Li, Yuping; Wang, Ying; Jiang, Luhua; Wu, Zhijian; Liu, Di-Jia; Zhuang, Lin; Ma, Chao; Zeng, Jie; Zhang, Bingsen; Su, Dangsheng; Song, Ping; Xing, Wei; Xu, Weilin; Wang, Ying; Jiang, Zheng; Sun, Gongquan

    2017-07-01

    For the large-scale sustainable implementation of polymer electrolyte membrane fuel cells in vehicles, high-performance electrocatalysts with low platinum consumption are desirable for use as cathode material during the oxygen reduction reaction in fuel cells. Here we report a carbon black-supported cost-effective, efficient and durable platinum single-atom electrocatalyst with carbon monoxide/methanol tolerance for the cathodic oxygen reduction reaction. The acidic single-cell with such a catalyst as cathode delivers high performance, with power density up to 680 mW cm-2 at 80 °C with a low platinum loading of 0.09 mgPt cm-2, corresponding to a platinum utilization of 0.13 gPt kW-1 in the fuel cell. Good fuel cell durability is also observed. Theoretical calculations reveal that the main effective sites on such platinum single-atom electrocatalysts are single-pyridinic-nitrogen-atom-anchored single-platinum-atom centres, which are tolerant to carbon monoxide/methanol, but highly active for the oxygen reduction reaction.

  1. Selective catalytic reduction of nitric oxide with acetaldehyde over NaY zeolite catalyst in lean exhaust feed

    International Nuclear Information System (INIS)

    Schmieg, Steven J.; Cho, Byong K.; Oh, Se H.

    2004-01-01

    Steady-state selective catalytic reduction (SCR) of nitric oxide (NO) was investigated under simulated lean-burn conditions using acetaldehyde (CH 3 CHO) as the reductant. This work describes the influence of catalyst space velocity and the impact of nitric oxide, acetaldehyde, oxygen, sulfur dioxide, and water on NO x reduction activity over NaY zeolite catalyst. Results indicate that with sufficient catalyst volume 90% NO x conversion can be achieved at temperatures relevant to light-duty diesel exhaust (150-350C). Nitric oxide and acetaldehyde react to form N 2 , HCN, and CO 2 . Oxygen is necessary in the exhaust feed stream to oxidize NO to NO 2 over the catalyst prior to reduction, and water is required to prevent catalyst deactivation. Under conditions of excess acetaldehyde (C 1 :N>6:1) and low temperature ( x conversion is apparently very high; however, the NO x conversion steadily declines with time due to catalytic oxidation of some of the stored (adsorbed) NO to NO 2 , which can have a significant impact on steady-state NO x conversion. With 250ppm NO in the exhaust feed stream, maximum NO x conversion at 200C can be achieved with =400ppm of acetaldehyde, with higher acetaldehyde concentrations resulting in production of acetic acid and breakthrough of NO 2 causing lower NO x conversion levels. Less acetaldehyde is necessary at lower NO concentrations, while more acetaldehyde is required at higher temperatures. Sulfur in the exhaust feed stream as SO 2 can cause slow deactivation of the catalyst by poisoning the adsorption and subsequent reaction of nitric oxide and acetaldehyde, particularly at low temperature

  2. Influence of Chemical and Physical Properties of Activated Carbon Powders on Oxygen Reduction and Microbial Fuel Cell Performance

    KAUST Repository

    Watson, Valerie J.

    2013-06-03

    Commercially available activated carbon (AC) powders made from different precursor materials (coal, peat, coconut shell, hardwood, and phenolic resin) were electrochemically evaluated as oxygen reduction catalysts and tested as cathode catalysts in microbial fuel cells (MFCs). AC powders were characterized in terms of surface chemistry and porosity, and their kinetic activities were compared to carbon black and platinum catalysts in rotating disk electrode (RDE) tests. Cathodes using the coal-derived AC had the highest power densities in MFCs (1620 ± 10 mW m-2). Peat-based AC performed similarly in MFC tests (1610 ± 100 mW m-2) and had the best catalyst performance, with an onset potential of Eonset = 0.17 V, and n = 3.6 electrons used for oxygen reduction. Hardwood based AC had the highest number of acidic surface functional groups and the poorest performance in MFC and catalysis tests (630 ± 10 mW m-2, Eonset = -0.01 V, n = 2.1). There was an inverse relationship between onset potential and quantity of strong acid (pKa < 8) functional groups, and a larger fraction of microporosity was negatively correlated with power production in MFCs. Surface area alone was a poor predictor of catalyst performance, and a high quantity of acidic surface functional groups was determined to be detrimental to oxygen reduction and cathode performance. © 2013 American Chemical Society.

  3. Non-catalyzed cathodic oxygen reduction at graphite granules in microbial fuel cells

    International Nuclear Information System (INIS)

    Freguia, Stefano; Rabaey, Korneel; Yuan Zhiguo; Keller, Juerg

    2007-01-01

    Oxygen is the most sustainable electron acceptor currently available for microbial fuel cell (MFC) cathodes. However, its high overpotential for reduction to water limits the current that can be produced. Several materials and catalysts have previously been investigated in order to facilitate oxygen reduction at the cathode surface. This study shows that significant stable currents can be delivered by using a non-catalyzed cathode made of granular graphite. Power outputs up to 21 W m -3 (cathode total volume) or 50 W m -3 (cathode liquid volume) were attained in a continuous MFC fed with acetate. These values are higher than those obtained in several other studies using catalyzed graphite in various forms. The presence of nanoscale pores on granular graphite provides a high surface area for oxygen reduction. The current generated with this cathode can sustain an anodic volume specific COD removal rate of 1.46 kg COD m -3 d -1 , which is higher than that of a conventional aerobic process. This study demonstrates that microbial fuel cells can be operated efficiently using high surface graphite as cathode material. This implies that research on microbial fuel cell cathodes should not only focus on catalysts, but also on high surface area materials

  4. Non-catalyzed cathodic oxygen reduction at graphite granules in microbial fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Freguia, Stefano; Rabaey, Korneel; Yuan, Zhiguo; Keller, Juerg [The University of Queensland, St. Lucia, Qld (Australia). Advanced Wastewater Management Centre

    2007-12-01

    Oxygen is the most sustainable electron acceptor currently available for microbial fuel cell (MFC) cathodes. However, its high overpotential for reduction to water limits the current that can be produced. Several materials and catalysts have previously been investigated in order to facilitate oxygen reduction at the cathode surface. This study shows that significant stable currents can be delivered by using a non-catalyzed cathode made of granular graphite. Power outputs up to 21 W m{sup -3} (cathode total volume) or 50 W m{sup -3} (cathode liquid volume) were attained in a continuous MFC fed with acetate. These values are higher than those obtained in several other studies using catalyzed graphite in various forms. The presence of nanoscale pores on granular graphite provides a high surface area for oxygen reduction. The current generated with this cathode can sustain an anodic volume specific COD removal rate of 1.46 kg{sub COD} m{sup -3} d{sup -1}, which is higher than that of a conventional aerobic process. This study demonstrates that microbial fuel cells can be operated efficiently using high surface graphite as cathode material. This implies that research on microbial fuel cell cathodes should not only focus on catalysts, but also on high surface area materials. (author)

  5. One-step Synthesis of Pt Nanoparticles Highly Loaded on Graphene Aerogel as Durable Oxygen Reduction Electrocatalyst

    International Nuclear Information System (INIS)

    Huang, Qinghong; Tao, Feifei; Zou, Liangliang; Yuan, Ting; Zou, Zhiqing; Zhang, Haifeng; Zhang, Xiaogang; Yang, Hui

    2015-01-01

    Synthesis of highly active and durable Pt based catalysts with a high metal loading for fuel cells’ applications still remains a big challenge. The three-dimensional (3D) graphene aerogel (GA) not only possess the intrinsic property of graphene, but also have abundant pore architecture for anchoring metal nanoparticles, thus would be suitable as metal catalysts’ support. This work reports a simple and mild one-step co-reduction synthesis of Pt nanoparticles highly loaded on 3D GA and the use as durable oxygen reduction catalyst. Both X-ray diffraction and TEM measurements confirm that Pt nanoparticles (ca. 60 wt.% Pt loading) with an average diameter of ca. 3.2 nm are uniformly decorated on the homogeneously interconnected pores of 3D GA even after a heat treatment at 300 °C. Such a Pt/GA catalyst exhibits significantly enhanced electrocatalytic activity and improved durability for the oxygen reduction reaction. The enhancement in both catalytic activity and durability may result from the unique 3-D architecture structure of GA, the uniform dispersion of Pt nanoparticles, and the interaction between the Pt nanoparticles and GA. The GA-supported Pt can serve as a highly active catalyst for fuel cell applications

  6. Surfactant-controlled synthesis of Pd/Ce{sub 0.6}Zr{sub 0.4}O{sub 2} catalyst for NO reduction by CO with excess oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Chen, L.F. [Laboratorio de Catalisis y Materiales, SEPI-ESIQIE, Instituto Politecnico Nacional, Av. Politecnico S/N, Col. Zacatenco, 07738 Mexico D.F. (Mexico); Departamento de Ingenieria Quimica, Universidad Autonoma Metropolitana-A, Av. San Pablo 180, Col. Reynosa-Tamaulipas, 02200 Mexico D.F. (Mexico); Gonzalez, G. [Laboratorio de Catalisis y Materiales, SEPI-ESIQIE, Instituto Politecnico Nacional, Av. Politecnico S/N, Col. Zacatenco, 07738 Mexico D.F. (Mexico); Wang, J.A. [Laboratorio de Catalisis y Materiales, SEPI-ESIQIE, Instituto Politecnico Nacional, Av. Politecnico S/N, Col. Zacatenco, 07738 Mexico D.F. (Mexico)]. E-mail: jwang@ipn.mx; Norena, L.E. [Departamento de Ingenieria Quimica, Universidad Autonoma Metropolitana-A, Av. San Pablo 180, Col. Reynosa-Tamaulipas, 02200 Mexico D.F. (Mexico); Toledo, A. [Grupo de Molecular Ingenieria, Instituto Mexicano del Petroleo, Eje Lazaro Cardenas 152, 07730 Mexico D.F. (Mexico); Castillo, S. [Grupo de Molecular Ingenieria, Instituto Mexicano del Petroleo, Eje Lazaro Cardenas 152, 07730 Mexico D.F. (Mexico); Moran-Pineda, M. [Grupo de Molecular Ingenieria, Instituto Mexicano del Petroleo, Eje Lazaro Cardenas 152, 07730 Mexico D.F. (Mexico)

    2005-04-30

    For the first time, this work reports a surfactant-controlled synthetic method to obtain a nanophase of mesoporous ceria-zirconia solid solution containing cationic defects in the crystalline structure. The incorporation of a cationic surfactant (myristyltrimethylammonium bromide) into the ceria-zirconia solid network not only controlled the pore diameter distribution but also induced creation of the lattice defect. Ceria-zirconia solid solution showed crystal microstrain and structural distortion that varied with the calcination temperature. Compared to pure ceria, the addition of zirconium to the ceria promoted the bulk oxygen reducibility and enhanced the thermal stability of the solid. Hydrogen could be stored into or released from the PdO/Ce{sub 0.6}Zr{sub 0.4}O{sub 2} catalyst during the TPR procedure, which is associated to the formation/decomposition of a PdH{sub x} phase, due to the hydrogen dissociation catalyzed by metallic Pd. At cool start of reaction, NO reduction by CO with excess oxygen over the Pd/Ce{sub 0.6}Zr{sub 0.4}O{sub 2} catalyst showed selectivity around 100% to N{sub 2}. A competition between NO reduction by CO and CO oxidation by O{sub 2} was observed: at reaction temperatures below 200 deg. C, NO inhibited CO oxidation activity; however, at reaction temperatures above 200 deg. C, high activity of CO oxidation resulted in an inhibition effect on NO reduction.

  7. Characterization of Cu/CeO2/Al2O3 catalysts by temperature programmed reduction and activity for CO oxidation

    International Nuclear Information System (INIS)

    Cataluna, Renato; Baibich, Ione M.; Dallago, R.M.; Picinini, C.; Martinez-Arias, A.; Soria, J.

    2001-01-01

    The kinetic parameters for the CO oxidation reaction using copper/alumina-modified ceria as catalysts were determined. The catalysts with different concentrations of the metals were prepared using impregnation methods. In addition, the reduction-oxidation behaviour of the catalysts were investigated by temperature-programmed reduction. The activity results show that the mechanism for CO oxidation is bifunctional: oxygen is activated on the anionic vacancies of ceria surface, while carbon monoxide is adsorbed preferentially on the higher oxidation copper site. Therefore, the reaction occurs on the interfacial active centers. Temperatures-programmed Reduction patterns show a higher dispersion when cerium oxide is present. (author)

  8. Proton conductive Pt-Co nanoparticles anchoring on citric acid functionalized graphene for efficient oxygen reduction reaction

    Science.gov (United States)

    Zhao, Yige; Liu, Jingjun; Wu, Yijun; Wang, Feng

    2017-08-01

    Designing highly efficient electro-catalysts for the oxygen reduction reaction (ORR) has been regarded as a demanding task in the development of renewable energy sources. However, little attention has been paid on improving Pt-based catalysts by promoting proton transfer from the electrolyte solutions to the catalyst layer at the cathode. Herein, we design proton conductive Pt-Co alloy nanoparticles anchoring on citric acid functionalized graphene (Pt-Co/CA-G) catalysts for efficient ORR. The facile modification approach for graphene can introduce oxygenated functional groups on the graphene surface to promote proton transfer as well as keeping the high electron conductivity without destroying the graphene original structure. The electrochemical results show that the Pt-Co/CA-G catalyst exhibits more excellent ORR activity and stability than the commercial Pt/C catalyst, which can be attributed to its improved proton transfer ability. The fast proton transfer comes from the hydrogen-bonding networks formed by the interaction between the oxygenated functional groups and water molecules. This work provides not only a novel and simple approach to modify graphene but also an effective strategy to improve Pt-based catalysts for the ORR.

  9. Oxidations of amines with molecular oxygen using bifunctional gold–titania catalysts

    DEFF Research Database (Denmark)

    Klitgaard, Søren Kegnæs; Egeblad, Kresten; Mentzel, Uffe Vie

    2008-01-01

    –titania catalysts can be employed to facilitate the oxidation of amines into amides with high selectivity. Furthermore, we report that pure titania is in fact itself a catalyst for the oxidation of amines with molecular oxygen under very mild conditions. We demonstrate that these new methodologies open up for two......Over the past decades it has become clear that supported gold nanoparticles are surprisingly active and selective catalysts for several green oxidation reactions of oxygen-containing hydrocarbons using molecular oxygen as the stoichiometric oxidant. We here report that bifunctional gold...

  10. Isotope exchange in oxide-containing catalyst

    Science.gov (United States)

    Brown, Kenneth G. (Inventor); Upchurch, Billy T. (Inventor); Hess, Robert V. (Inventor); Miller, Irvin M. (Inventor); Schryer, David R. (Inventor); Sidney, Barry D. (Inventor); Wood, George M. (Inventor); Hoyt, Ronald F. (Inventor)

    1989-01-01

    A method of exchanging rare-isotope oxygen for common-isotope oxygen in the top several layers of an oxide-containing catalyst is disclosed. A sample of an oxide-containing catalyst is exposed to a flowing stream of reducing gas in an inert carrier gas at a temperature suitable for the removal of the reactive common-isotope oxygen atoms from the surface layer or layers of the catalyst without damaging the catalyst structure. The reduction temperature must be higher than any at which the catalyst will subsequently operate. Sufficient reducing gas is used to allow removal of all the reactive common-isotope oxygen atoms in the top several layers of the catalyst. The catalyst is then reoxidized with the desired rare-isotope oxygen in sufficient quantity to replace all of the common-isotope oxygen that was removed.

  11. Nitrogen-doped graphene prepared by a transfer doping approach for the oxygen reduction reaction application

    Science.gov (United States)

    Mo, Zaiyong; Zheng, Ruiping; Peng, Hongliang; Liang, Huagen; Liao, Shijun

    2014-01-01

    Well defined nitrogen-doped graphene (NG) is prepared by a transfer doping approach, in which the graphene oxide (GO) is deoxidized and nitrogen doped by the vaporized polyaniline, and the GO is prepared by a thermal expansion method from graphite oxide. The content of doped nitrogen in the doped graphene is high up to 6.25 at% by the results of elements analysis, and oxygen content is lowered to 5.17 at%. As a non-precious metal cathode electrocatalyst, the NG catalyst exhibits excellent activity toward the oxygen reduction reaction, as well as excellent tolerance toward methanol. In 0.1 M KOH solution, its onset potential, half-wave potential and limiting current density for the oxygen reduction reaction reach 0.98 V (vs. RHE), 0.87 V (vs. RHE) and 5.38 mA cm-2, respectively, which are comparable to those of commercial 20 wt% Pt/C catalyst. The well defined graphene structure of the catalyst is revealed clearly by HRTEM and Raman spectra. It is suggested that the nitrogen-doping and large surface area of the NG sheets give the main contribution to the high ORR catalytic activity.

  12. One step synthesis of chlorine-free Pt/Nitrogen-doped graphene composite for oxygen reduction reaction

    KAUST Repository

    Varga, Tamás

    2018-03-14

    Chlorine-free Platinum/nitrogen-doped graphene oxygen reduction reaction catalysts were synthesized by a one step method of annealing a mixture of platinum acetylacetonate and graphene oxide under ammonia atmosphere. Nanoparticles with close to the ideal particle size for oxygen reduction reaction (ORR) were formed, i.e., with diameter of 3–4 nm (500 and 600 °C) and 6 nm (700 °C). X-ray photoelectron spectroscopy confirmed the successful introduction of both pyridinic and pyrrolic type nitrogen moieties into the graphene layers, which indicates a strong interaction between the nanoparticles and the graphene layers. The electrocatalytic activity of glassy carbon electrodes (GCE) modified with the synthesized Pt/NG samples for oxygen reduction was compared to that of a platinum/carbon black catalyst modified electrode in acidic and alkaline media. Based on the measured limiting current densities and calculated electron transfer number, the highest activity was measured in acidic and alkaline media on the samples annealed at 600 and 700 °C, respectively.

  13. Electrochemical reduction of oxygen on small platinum particles supported on carbon in concentrated phosphoric acid. 2. Effects of teflon content in the catalyst layer and baking temperature of the electrode

    Energy Technology Data Exchange (ETDEWEB)

    Maoka, T.

    1988-03-01

    A relation between hydrophobicity (or wettability) of a porous gas diffusion electrode for use in a phosphoric acid fuel cell and its cathode performance (activity toward electrochemical oxygen reduction) was examined. The hydrophobicity of the gas diffusion electrode was regulated by changing either the amount of Teflon (PTFE) content in the catalyst layer or baking temperature of the electrode. The Tafel slope or electrochemical oxygen reduction became twice as high as that of the ordinary electrode when the wettability of electrode toward phosphoric acid was high. This fact supports a flooded agglomerate model as the mode of this type of porous gas diffusion electrode.

  14. CoPd x oxygen reduction electrocatalysts for polymer electrolyte membrane and direct methanol fuel cells

    International Nuclear Information System (INIS)

    Mustain, William E.; Kepler, Keith; Prakash, Jai

    2007-01-01

    The electrochemical activity of carbon-supported cobalt-palladium alloy electrocatalysts of various compositions have been investigated for the oxygen reduction reaction in a 5 cm 2 single cell polymer electrolyte membrane fuel cell. The polarization experiments have been conducted at various temperatures between 30 and 60 deg. C and the reduction performance compared with data from a commercial Pt catalyst under identical conditions. Investigation of the catalytic activity of the CoPd x PEMFC system with varying composition reveals that a nominal cobalt-palladium atomic ratio of 1:3, CoPd 3 , exhibits the best performance of all studied catalysts, exhibiting a catalytic activity comparable to the commercial Pt catalyst. The ORR on CoPd 3 has a low activation energy, 52 kJ/mol, and a Tafel slope of approximately 60 mV/decade, indicating that the rate-determining step is a chemical step following the first electron transfer step and may involve the breaking of the oxygen bond. The CoPd 3 catalyst also exhibits excellent chemical stability, with the open circuit cell voltage decreasing by only 3% and the observed current decreasing by only 10% at 0.8 V over 25 h. The CoPd 3 catalyst also exhibits superior tolerance to methanol crossover poisoning than Pt

  15. Oxygen reduction activities compared in rotating-disk electrode and proton exchange membrane fuel cells for highly active Fe-N-C catalysts

    International Nuclear Information System (INIS)

    Jaouen, F.; Goellner, V.; Lefèvre, M.; Herranz, J.; Proietti, E.; Dodelet, J.P.

    2013-01-01

    In the past three years, two novel synthesis methods for non-precious metal catalysts resulting in a breakthrough of their activity and performance at the cathode of the proton-exchange membrane fuel cell (PEMFC) have been reported by the group of Prof. Dodelet. While the activity of these novel Fe-based catalysts for the oxygen reduction reaction is very high in PEMFC, our preliminary activity measurements with the rotating disk electrode (RDE) technique on one of them showed an activity being a factor 30–100 lower than the one measured in PEMFC at 80 °C. The present work explains to a large extent this huge difference. Two Fe-N-C catalysts synthesized via our novel approaches and one Fe-N-C catalyst synthesized via our classical approach were investigated in RDE and PEMFC. In both systems, the effect of the ink formulation (Nafion-to-catalyst ratio) was investigated. Optimization of the RDE ink formulation explains a factor between 5 and 10 in the two-decade gap mentioned above. Then, the effect of temperature in the RDE system was investigated. An increase from 20 to 80 °C was found to result in a theoretical maximum twofold increase in activity. However, in practice, decreased O 2 solubility with increased temperature cancels this effect. After taking into account these two parameters, a difference in ORR activity between RDE and PEMFC of ca a factor five still remained for one of the two novel Fe-N-C catalysts investigated here. The lower initial activity measured in RDE for this catalyst is shown to be due to the fast adsorption of anions (HSO 4 − ) from the liquid H 2 SO 4 electrolyte on protonated nitrogen atoms (NH + ) found on its surface. The phenomenon of anion adsorption and associated decreased ORR activity also applies to the other novel Fe-N-C catalyst, but is slower and does not immediately occur in RDE.

  16. One step synthesis of chlorine-free Pt/Nitrogen-doped graphene composite for oxygen reduction reaction

    KAUST Repository

    Varga, Tamá s; Varga, Á gnes Tí mea; Ballai, Gergő; Haspel, Henrik; Kukovecz, Á kos; Kó nya, Z.

    2018-01-01

    Chlorine-free Platinum/nitrogen-doped graphene oxygen reduction reaction catalysts were synthesized by a one step method of annealing a mixture of platinum acetylacetonate and graphene oxide under ammonia atmosphere. Nanoparticles with close

  17. Synthesis of highly active and dual-functional electrocatalysts for methanol oxidation and oxygen reduction reactions

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Qi; Zhang, Geng; Xu, Guangran; Li, Yingjun [College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021 (China); Liu, Baocang [College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021 (China); Inner Mongolia Key Lab of Nanoscience and Nanotechnology, Inner Mongolia University, Hohhot 010021 (China); Gong, Xia [College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021 (China); Zheng, Dafang [State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012 (China); Zhang, Jun [College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021 (China); Inner Mongolia Key Lab of Nanoscience and Nanotechnology, Inner Mongolia University, Hohhot 010021 (China); Wang, Qin, E-mail: qinwang@imu.edu.cn [College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021 (China); Inner Mongolia Key Lab of Nanoscience and Nanotechnology, Inner Mongolia University, Hohhot 010021 (China)

    2016-12-15

    Graphical abstract: Ternary RuMPt (M = Fe, Co, Ni, and Cu) nanodendrities (NDs) catalysts, are successfully synthesized by using a facile method. The as-obtained ternary catalysts manifest superior catalytic activity and stability both in terms of surface and mass specific activities toward the methanol oxidation and oxygen reduction reactions, as compared to the binary catalysts and the commercial Pt/C catalysts. - Highlights: • Ternary RuMPt catalysts are synthesized by using a facile method. • The catalysts manifest superior catalytic activity towards the MOR and ORR. • High activities are attributed to enhanced electron density and synergistic effects. - Abstract: The promising Pt-based ternary catalyst is crucial for polymer electrolyte membrane fuel cells (PEMFCs) due to improving catalytic activity and durability for both methanol oxidation reaction and oxygen reduction reaction. In this work, a facile strategy is used for the synthesis ternary RuMPt (M = Fe, Co, Ni, and Cu) nanodendrities catalysts. The ternary RuMPt alloys exhibit enhanced specific and mass activity, positive half-wave potential, and long-term stability, compared with binary Pt-based alloy and the commercial Pt/C catalyst, which is attributed to the high electron density and upshifting of the d-band center for Pt atoms, and synergistic catalytic effects among Pt, M, and Ru atoms by introducing a transition metal. Impressively, the ternary RuCoPt catalyst exhibits superior mass activity (801.59 mA mg{sup −1}) and positive half-wave potential (0.857 V vs. RHE) towards MOR and ORR, respectively. Thus, the RuMPt nanocomposite is a very promising material to be used as dual electrocatalyst in the application of PEMFCs.

  18. Electrocatalysis of oxygen reduction on nitrogen-containing multi-walled carbon nanotube modified glassy carbon electrodes

    International Nuclear Information System (INIS)

    Vikkisk, Merilin; Kruusenberg, Ivar; Joost, Urmas; Shulga, Eugene; Tammeveski, Kaido

    2013-01-01

    Highlights: ► Pyrolysis in the presence of urea was used for nitrogen doping of carbon nanotubes. ► N-doped carbon nanotubes were used as catalysts for the oxygen reduction reaction. ► N-doped carbon material showed a high catalytic activity for ORR in alkaline media. ► N-containing CNT material is an attractive cathode catalyst for alkaline membrane fuel cells. - Abstract: The electrochemical reduction of oxygen was studied on nitrogen-doped multi-walled carbon nanotube (NCNT) modified glassy carbon (GC) electrodes employing the rotating disk electrode (RDE) method. Nitrogen doping was achieved by simple pyrolysis of the carbon nanotube material in the presence of urea. The surface morphology and composition of the NCNT samples were investigated by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The SEM images revealed a rather uniform distribution of NCNTs on the GC electrode substrate. The XPS analysis showed a successful doping of carbon nanotubes with nitrogen species. The RDE results revealed that in alkaline solution the N-doped nanotube materials showed a remarkable electrocatalytic activity towards oxygen reduction. At low overpotentials the reduction of oxygen followed a two-electron pathway on undoped carbon nanotube modified GC electrodes, whereas on NCNT/GC electrodes a four-electron pathway of O 2 reduction predominated. The results obtained are significant for the development of nitrogen-doped carbon-based cathodes for alkaline membrane fuel cells.

  19. Targeted design of α-MnO2 based catalysts for oxygen reduction

    Czech Academy of Sciences Publication Activity Database

    Lehtimäki, M.; Hoffmannová, Hana; Boytsová, O.; Bastl, Zdeněk; Bush, M.; Halck, N. B.; Rossmeisl, J.; Krtil, Petr

    2016-01-01

    Roč. 191, FEB 2016 (2016), s. 452-461 ISSN 0013-4686 EU Projects: European Commission(XE) 214936 - ELCAT Institutional support: RVO:61388955 Keywords : electrocatalysis * oxygen reduction * MnO2 Subject RIV: CG - Electrochemistry Impact factor: 4.798, year: 2016

  20. Transforming waste biomass with an intrinsically porous network structure into porous nitrogen-doped graphene for highly efficient oxygen reduction.

    Science.gov (United States)

    Zhou, Huang; Zhang, Jian; Amiinu, Ibrahim Saana; Zhang, Chenyu; Liu, Xiaobo; Tu, Wenmao; Pan, Mu; Mu, Shichun

    2016-04-21

    Porous nitrogen-doped graphene with a very high surface area (1152 m(2) g(-1)) is synthesized by a novel strategy using intrinsically porous biomass (soybean shells) as a carbon and nitrogen source via calcination and KOH activation. To redouble the oxygen reduction reaction (ORR) activity by tuning the doped-nitrogen content and type, ammonia (NH3) is injected during thermal treatment. Interestingly, this biomass-derived graphene catalyst exhibits the unique properties of mesoporosity and high pyridine-nitrogen content, which contribute to the excellent oxygen reduction performance. As a result, the onset and half-wave potentials of the new metal-free non-platinum catalyst reach -0.009 V and -0.202 V (vs. SCE), respectively, which is very close to the catalytic activity of the commercial Pt/C catalyst in alkaline media. Moreover, our catalyst has a higher ORR stability and stronger CO and CH3OH tolerance than Pt/C in alkaline media. Importantly, in acidic media, the catalyst also exhibits good ORR performance and higher ORR stability compared to Pt/C.

  1. Activity and Stability of Nanoscale Oxygen Reduction Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Shao-Horn, Yang

    2015-07-28

    Design of highly active and stable nanoscale catalysts for electro-oxidation of small organic molecules is of great importance to the development of efficient fuel cells. The amount and instability of Pt-based catalysts in the cathode limits the cost, efficiency and lifetime of proton exchange membrane fuel cells. We developed a microscopic understanding of the factors governing activity and stability in Pt and PtM alloys. Experimental efforts were focused on probing the size and shape dependence of ORR activity of Pt-based nanoparticles supported on carbon nanotubes. A microscopic understanding of the activity was achieved by correlating voltammetry and rotating ring disk electrodes to surface atomic and electronic structures, which were elucidated predominantly by high-resolution transmission electron microscopy (HRTEM), Scanning transmission electron microscopy energy dispersive X-ray Spectroscopy (STEM-EDS) and synchrotron X-ray absorption spectroscopy (XAS).

  2. Re-examination of the Pt Particle Size Effect on the Oxygen Reduction Reaction for Ultrathin Uniform Pt/C Catalyst Layers without Influence from Nafion

    International Nuclear Information System (INIS)

    Shinozaki, Kazuma; Morimoto, Yu; Pivovar, Bryan S.; Kocha, Shyam S.

    2016-01-01

    Highlights: • Pt particle size effect on ORR was re-evaluated for Pt/C catalysts. • Nafion-free activity of Pt/C catalysts was evaluated using thin-film RDE methods. • Ultrathin-uniform catalyst layers were employed to obtain accurate activity values. • Specific activity increased steeply from 2 to 10 nm and less steeply at over 10 nm. • Re-evaluated effect agrees with a particle model assuming terrace active sites. - Abstract: The platinum ‘particle size effect’ on the oxygen reduction reaction (ORR) has been re-evaluated using commercial Pt/C catalysts (2–10 nm Pt particle) and polycrystalline Pt (poly-Pt) in 0.1 M HClO 4 with a rotating disk electrode method. Nafion-free catalyst layers were employed to obtain specific activities (SA) that were not perturbed (suppressed) by sulfonate anion adsorption/blocking. By using ultrathin uniform catalyst layers, O 2 diffusion limitation was minimized as confirmed from the high SAs of our supported catalysts that were comparable to unsupported sputtered Pt having controlled sizes. The specific activity (SA) steeply increased for the particle sizes in the range ∼2–10 nm (0.8–1.8 mA/cm 2 Pt at 0.9 V vs. RHE) and plateaued over ∼10 nm to 2.7 mA/cm 2 Pt for bulk poly-Pt. On the basis of the activity trend for the range of particle sizes studied, it appears that the effect of carbon support on activity is negligible. The experimental results and the concomitant profile of SA vs. particle size was found to be in an agreement to a truncated octahedral particle model that assumes active terrace sites.

  3. Effect of oxygen on decomposition of nitrous oxide over various metal oxide catalysts

    International Nuclear Information System (INIS)

    Satsuma, Atsushi; Maeshima, Hajime; Watanabe, Kiyoshi; Hattori, Tadashi

    2001-01-01

    The inhibitory effect of oxygen on decomposition of nitrous oxide over various metal oxide catalysts was investigated. The activity of nitrous oxide decomposition significantly decreased over CuO, Co 3 O 4 , NiO, Fe 2 O 3 , SnO 2 , In 2 O 3 and Cr 2 O 3 by reversible adsorption of oxygen onto the active sites. On the contrary to this, there was no or small change in the activity of TiO 2 , Al 2 O 3 , MgO, La 2 O 3 and CaO. A good correlation was observed between the degree of inhibition and the heat of formation of metal oxides. On the basis of kinetic model, the reduction of catalytic activity in the presence of oxygen was rationalized with the strength of oxygen adsorption on the metal oxide surface. (author)

  4. An Extended X-ray Absorption Fine Structure Study of Rhodium-Oxygen Bonds in a Highly Dispersed Rhodium/Aluminum Oxide Catalyst

    NARCIS (Netherlands)

    Koningsberger, D.C.; Zon, J.B.A.D. van; Blik, H.F.J. van 't; Visser, G.J.; Prins, R.; Mansour, A.N.; Sayers, D.E.; Short, D.R.

    1985-01-01

    Analysis of in situ EXAFS measurements on a 2.4 wt % Rh/A120, catalyst, reduced at 473 K after calcination at 623 K, shows the presence of two different rhodium-oxygen bonds (viz. 2.05 and 2.68 A). The oxygen neighbors of rhodium at a distance of 2.05 A disappear after reduction at 673 K. The

  5. Effect of cationic molecules on the oxygen reduction reaction on fuel cell grade Pt/C (20 wt%) catalyst in potassium hydroxide (aq, 1 mol dm(-3)).

    Science.gov (United States)

    Ong, Ai Lien; Inglis, Kenneth K; Whelligan, Daniel K; Murphy, Sam; Varcoe, John R

    2015-05-14

    This study investigates the effect of 1 mmol dm(-3) concentrations of a selection of small cationic molecules on the performance of a fuel cell grade oxygen reduction reaction (ORR) catalyst (Johnson Matthey HiSPEC 3000, 20 mass% Pt/C) in aqueous KOH (1 mol dm(-3)). The cationic molecules studied include quaternary ammonium (including those based on bicyclic systems) and imidazolium types as well as a phosphonium example: these serve as fully solubilised models for the commonly encountered head-groups in alkaline anion-exchange membranes (AAEM) and anion-exchange ionomers (AEI) that are being developed for application in alkaline polymer electrolyte fuel cells (APEFCs), batteries and electrolysers. Both cyclic and hydrodynamic linear sweep rotating disk electrode voltammetry techniques were used. The resulting voltammograms and subsequently derived data (e.g. apparent electrochemical active surface areas, Tafel plots, and number of [reduction] electrons transferred per O2) were compared. The results show that the imidazolium examples produced the highest level of interference towards the ORR on the Pt/C catalyst under the experimental conditions used.

  6. Oxygen-assisted conversion of propane over metal and metal oxide catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Laate, Leiv

    2002-07-01

    An experimental set-up has been build and applied in activity/selectivity studies of the oxygen-assisted conversion of propane over metals and metal oxide catalysts. The apparatus has been used in order to achieve an improved understanding of the reactions between alkanes/alkenes and oxygen. Processes that have been studied arc the oxidative dehydrogenation of propane over a VMgO catalyst and the selective combustion of hydrogen in the presence of hydrocarbons over Pt-based catalysts and metal oxide catalysts. From the experiments, the following conclusions are drawn: A study of the oxidative dehydrogenation of propane over a vanadium-magnesium-oxide catalyst confirmed that the main problem with this system is the lack of selectivity due to complete combustion. Selectivity to propene up to about 60% was obtained at 10% conversion at 500{sup o}C, but the selectivity decreased with increasing conversion. No oxygenates were detected, the only by- products were CO and CO{sub 2}. The selectivity to propene is a strong function of the conversion of propane. The reaction rate of propane was found to be 1.0 {+-} 0.1 order in propane and 0.07 {+-} 0.02 order in oxygen. The kinetic results are in agreement with a Mars van Krevelen mechanism with the activation of the hydrocarbons as the slow step. The rate of propene oxidation to CO{sub 2} was studied and found to be significantly higher than that of propane. Another possible process involves the simultaneous equilibrium dehydrogenation of alkanes to alkenes and combustion of the hydrogen formed to shift the equilibrium dehydrogenation reaction further to the product alkenes. A study of the selective combustion of hydrogen in the presence of propane/propene was found to be possible under certain reaction conditions over some metal oxide catalysts. In{sub 2}O{sub 3}/SiO{sub 2}, unsupported Bi{sub 2}O{sub 3} and ZSM-5 show the ability to combust hydrogen in a gas mixture with propane and oxygen with good selectivity. Bi{sub 2

  7. Synthesis and electrocatalytic activity towards oxygen reduction reaction of gold-nanostars

    Directory of Open Access Journals (Sweden)

    Oyunbileg G

    2018-02-01

    Full Text Available The oxygen reduction reaction (ORR is a characteristic reaction which determines the performance of fuel cells which convert a chemical energy into an electrical energy. Aims of this study are to synthesize Au-based nanostars (AuNSs and determine their preliminary electro-catalytic activities towards ORR by a rotating-disk electrode method in alkaline electrolyte. The images obtained from a scanning electron microscope (SEM and a transmission electron microscope (TEM analyses confirm the formation of the star-shaped nanoparticles. Among the investigated nanostar catalysts, an AuNS5 with smaller size and a few branches showed the higher electrocatalytic activity towards ORR than other catalysts with a bigger size. In addition, the electron numbers transferred for all the catalysts are approximately two. The present study results infer that the size of the Au-based nanostars may influence greatly on their catalytic activity. The present study results show that the further improvement is needed for Au-based nanostar catalysts towards the ORR reaction.

  8. Oxygen isotope exchange on palladium catalysts

    International Nuclear Information System (INIS)

    Kravchuk, L.S.; Beschetvertnaya, T.I.; Novorodskij, V.G.; Novikova, M.G.; Zaretskij, M.V.; Valieva, S.V.

    1983-01-01

    Oxygen heteromolecular isotope exchange on unreduced palladium catalysts, distingushing by metal content is studied. Content of 18 O in gaseous phase is eoual to 46%. Calculations of heteroexchange rates are conducted with decrease of the 18 O in the gaseous phase over solid sample. Method of oxygen thermodesorption has been used to establish that palladium, deposited on γ-Al 2 O 3 during exchange process is in oxidized state; in this case strength of Pd-O bond is determined by content dispersity) of the metal. It is shown that significant increase of exchange rate on the samples with Pd >> 0.5 mass.% content can be induced as by side decomposition reaction of its oxide and corresponding dilution of gaseous mixture by ''light'' oxygen so by possibility of exchange with oxygen of PdO phase

  9. Dual redox catalysts for oxygen reduction and evolution reactions: towards a redox flow Li-O2 battery.

    Science.gov (United States)

    Zhu, Yun Guang; Jia, Chuankun; Yang, Jing; Pan, Feng; Huang, Qizhao; Wang, Qing

    2015-06-11

    A redox flow lithium-oxygen battery (RFLOB) by using soluble redox catalysts with good performance was demonstrated for large-scale energy storage. The new device enables the reversible formation and decomposition of Li2O2 via redox targeting reactions in a gas diffusion tank, spatially separated from the electrode, which obviates the passivation and pore clogging of the cathode.

  10. Iridium-decorated palladium-platinum core-shell catalysts for oxygen reduction reaction in proton exchange membrane fuel cell.

    Science.gov (United States)

    Wang, Chen-Hao; Hsu, Hsin-Cheng; Wang, Kai-Ching

    2014-08-01

    Carbon-supported Pt, Pd, Pd-Pt core-shell (Pt(shell)-Pd(core)/C) and Ir-decorated Pd-Pt core-shell (Ir-decorated Pt(shell)-Pd(core)/C) catalysts were synthesized, and their physical properties, electrochemical behaviors, oxygen reduction reaction (ORR) characteristics and proton exchange membrane fuel cell (PEMFC) performances were investigated herein. From the XRD patterns and TEM images, Ir-decorated Pt(shell)-Pd(core)/C has been confirmed that Pt was deposited on the Pd nanoparticle which had the core-shell structure. Ir-decorated Pt(shell)-Pd(core)/C has more positive OH reduction peak than Pt/C, which is beneficial to weaken the binding energy of Pt-OH during the ORR. Thus, Ir-decorated Pt(shell)-Pd(core)/C has higher ORR activity than Pt/C. The maximum power density of H2-O2 PEMFC using Ir-decorated Pt(shell)-Pd(core)/C is 792.2 mW cm(-2) at 70°C, which is 24% higher than that using Pt/C. The single-cell accelerated degradation test of PEMFC using Ir-decorated Pt(shell)-Pd(core)/C shows good durability by the potential cycling of 40,000 cycles. This study concludes that Ir-decorated Pt(shell)-Pd(core)/C has the low Pt content, but it can facilitate the low-cost and high-efficient PEMFC. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Nitrogen-Doped Carbon Nanotube and Graphene Materials for Oxygen Reduction Reactions

    Directory of Open Access Journals (Sweden)

    Qiliang Wei

    2015-09-01

    Full Text Available Nitrogen-doped carbon materials, including nitrogen-doped carbon nanotubes (NCNTs and nitrogen-doped graphene (NG, have attracted increasing attention for oxygen reduction reaction (ORR in metal-air batteries and fuel cell applications, due to their optimal properties including excellent electronic conductivity, 4e− transfer and superb mechanical properties. Here, the recent progress of NCNTs- and NG-based catalysts for ORR is reviewed. Firstly, the general preparation routes of these two N-doped carbon-allotropes are introduced briefly, and then a special emphasis is placed on the developments of both NCNTs and NG as promising metal-free catalysts and/or catalyst support materials for ORR. All these efficient ORR electrocatalysts feature a low cost, high durability and excellent performance, and are thus the key factors in accelerating the widespread commercialization of metal-air battery and fuel cell technologies.

  12. Reduction and reoxidation of cobalt Fischer-Tropsch catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Hilmen, Anne-Mette

    1996-12-31

    The Fischer-Tropsch synthesis involves the hydrogenation of carbon monoxide to produce mainly hydrocarbons, water and carbon dioxide, but also alcohols, aldehydes and acids are formed. The distribution of these products is determined by the choice of catalyst and synthesis conditions. This thesis studies the reduction and reoxidation of 17%Co/Al{sub 2}O{sub 3} and 17%Co-1%Re/Al{sub 2}O{sub 3} by means of several characterization techniques. The effect of small amounts of Re on the reduction properties of Al{sub 2}O{sub 3}-supported Co catalysts has been studied by temperature-programmed reduction (TPR). An intimate mixture of CoAl{sub 2}O{sub 3} and Re/Al{sub 2}O{sub 3} catalysts showed a promoting effect of Re similar to that for co impregnated CoRe/Al{sub 2}O{sub 3}. A loose mixture of Co/Al{sub 2}O{sub 3} + Re/Al{sub 2}O{sub 3} did not show any effect of Re on the reduction of Co. But a promoting effect was observed if the mixture had been pre-treated with Ar saturated with water before the TPR. It is suggested that Re promotes the reduction of Co oxide by hydrogen spillover. It is shown that a high temperature TPK peak at 1200K assigned to Co aluminate is mainly caused by the diffusion of Co ions during the TPR and not during calcination. The Co particle size measured by x-ray diffraction on oxidized catalysts decreased compared to the particle size on the calcined catalysts, while the dispersion measured by volumetric chemisorption decreased somewhat after the oxidation-reduction treatment. The role of water in the deactivation of Co/Al{sub 2}O{sub 3} and CoRe/Al{sub 2}O{sub 3} Fischer-Tropsch catalysts has been extensively studied. There were significant differences in the reducibility of the phases formed for the two catalysts during exposure to H{sub 2}O/He. 113 refs., 76 figs., 18 tabs.

  13. Conditions for reduction of ironmolybdenum-tungsten catalyst for ammonia synthesis

    International Nuclear Information System (INIS)

    Simulina, N.A.; Karibdzhanyan, N.A.; Lachinov, S.S.; Anfimov, V.A.; Shumlyakovskij, Ts.I.

    1977-01-01

    The reduction of Fe-Mo-W catalyst MB-5, used for synthesis of ammonia, has been studied in the reactor of extracolumn reduction. The results obtained have been compared with similar results for the catalyst CA-1. It has been shown that reduction of the catalyst MB-5 proceeds more intensive and is completed at lower temperature and for a shorter period of time. The samples of the catalyst MB-5 discharged from different layers in the reactor are more active than CA-1 reduced under identical conditions

  14. In situ XAFS studies of the oxygen reduction reaction on carbon supported platinum and platinum nickel nano-scale alloys as cathode catalysts in fuel cells

    Science.gov (United States)

    Jia, Qingying

    Platinum based bimetallic alloys have been investigated by conducting Pt L3 and Ni K edge in situ XAFS measurements on carbon supported Pt and PtNi(1:1) nanoscale catalysts under a wide range of operating potentials. We observed that (1) the Pt-Pt bond distance in PtNi alloys is shorter than that of Pt, and the bond distance between Pt and oxygen adsorbate is longer for PtNi. (2) Pt has a tendency to stay on the surface while Ni is mostly underneath the surface. (3) While a change in oxidation of pure Pt was clearly observed at different potentials, the Pt in the PtNi alloy remained nearly oxygen-free at all potentials, but an accompanying oxidation change of Ni was observed instead. (4) PtNi has higher open circuit voltage than Pt/C. These results indicate that the chemisorption energy between Pt and oxygen adsorbate is reduced in PtNi alloys, which prevents the poison of oxygen adsorbate and hence improves the reactivity. In addition, the strain and ligand effects in PtNi nanoparticle alloys were studied by FEW calculations using experimental data as a guide to understand the factors causing the reduction of chemisorptions energy of Pt. Our calculation indicates that Pt d-band is broader and lower in energy when the bond distance between Pt is shorter, resulting in weaker chemisorption energy between Pt and absorbed oxygen atom on top, and vice verse. Meanwhile, the investigation of ligand effect shows two trends in modifying Pt's properties within alloyed transition metals. The strain effect dominates in PtNi bimetallic system, corresponding to weaker chemisorptions energy and lower white intensity of Pt L3 edge, which is in consistent with our experimental results. The implications of these results afford a good guideline in understanding the reactivity enhancement mechanism and in the context of alloy catalysts design.

  15. Identification of catalytic sites in cobalt-nitrogen-carbon materials for the oxygen reduction reaction.

    Science.gov (United States)

    Zitolo, Andrea; Ranjbar-Sahraie, Nastaran; Mineva, Tzonka; Li, Jingkun; Jia, Qingying; Stamatin, Serban; Harrington, George F; Lyth, Stephen Mathew; Krtil, Petr; Mukerjee, Sanjeev; Fonda, Emiliano; Jaouen, Frédéric

    2017-10-16

    Single-atom catalysts with full utilization of metal centers can bridge the gap between molecular and solid-state catalysis. Metal-nitrogen-carbon materials prepared via pyrolysis are promising single-atom catalysts but often also comprise metallic particles. Here, we pyrolytically synthesize a Co-N-C material only comprising atomically dispersed cobalt ions and identify with X-ray absorption spectroscopy, magnetic susceptibility measurements and density functional theory the structure and electronic state of three porphyrinic moieties, CoN 4 C 12 , CoN 3 C 10,porp and CoN 2 C 5 . The O 2 electro-reduction and operando X-ray absorption response are measured in acidic medium on Co-N-C and compared to those of a Fe-N-C catalyst prepared similarly. We show that cobalt moieties are unmodified from 0.0 to 1.0 V versus a reversible hydrogen electrode, while Fe-based moieties experience structural and electronic-state changes. On the basis of density functional theory analysis and established relationships between redox potential and O 2 -adsorption strength, we conclude that cobalt-based moieties bind O 2 too weakly for efficient O 2 reduction.Nitrogen-doped carbon materials with atomically dispersed iron or cobalt are promising for catalytic use. Here, the authors show that cobalt moieties have a higher redox potential, bind oxygen more weakly and are less active toward oxygen reduction than their iron counterpart, despite similar coordination.

  16. Importance of the support and the grade of Pt in the oxygen reduction reaction

    International Nuclear Information System (INIS)

    Enriquez M, O.; Fernandez V, S.M.

    2004-01-01

    The technology of the fuel cells type Proton Exchange Membrane (PEM), needs to define clearly the influence of the different involved parameters, this is made in general using methods of electrochemical impedance, in which the involved reactions can be presupposed. Another form of making is identifying experimentally the influence of the different parameters. In this work the obtained results are reported with for the oxygen reduction reaction using as electro catalyst platinum analytical grade and fuel cell grade and like support graphite and vulcan. It was found that as much the support as the particle size modify the over potential for the oxygen reduction reaction (Orr). (Author)

  17. N- and S-doped high surface area carbon derived from soya chunks as scalable and efficient electrocatalysts for oxygen reduction

    Science.gov (United States)

    Rana, Moumita; Arora, Gunjan; Gautam, Ujjal K.

    2015-02-01

    Highly stable, cost-effective electrocatalysts facilitating oxygen reduction are crucial for the commercialization of membrane-based fuel cell and battery technologies. Herein, we demonstrate that protein-rich soya chunks with a high content of N, S and P atoms are an excellent precursor for heteroatom-doped highly graphitized carbon materials. The materials are nanoporous, with a surface area exceeding 1000 m2 g-1, and they are tunable in doping quantities. These materials exhibit highly efficient catalytic performance toward oxygen reduction reaction (ORR) with an onset potential of -0.045 V and a half-wave potential of -0.211 V (versus a saturated calomel electrode) in a basic medium, which is comparable to commercial Pt catalysts and is better than other recently developed metal-free carbon-based catalysts. These exhibit complete methanol tolerance and a performance degradation of merely ˜5% as compared to ˜14% for a commercial Pt/C catalyst after continuous use for 3000 s at the highest reduction current. We found that the fraction of graphitic N increases at a higher graphitization temperature, leading to the near complete reduction of oxygen. It is believed that due to the easy availability of the precursor and the possibility of genetic engineering to homogeneously control the heteroatom distribution, the synthetic strategy is easily scalable, with further improvement in performance.

  18. Novel organic redox catalyst for the electroreduction of oxygen to hydrogen peroxide

    International Nuclear Information System (INIS)

    Wang, Andrew; Bonakdarpour, Arman; Wilkinson, David P.; Gyenge, Előd

    2012-01-01

    The organic redox catalysis of O 2 electroreduction to H 2 O 2 in acidic media has been investigated using several quinone and riboflavin catalysts supported on Vulcan XC72 carbon. The synthesis of a novel riboflavinyl–anthraquinone 2-carboxylate ester (RF–AQ) is reported. The activity and selectivity of organic redox catalysts (riboflavin, anthraquinone derivatives and riboflavinyl–anthraquinone 2-carboxylate ester) for the electrosynthesis of H 2 O 2 were investigated by the rotating ring-disk electrode (RRDE) method and potentiostatic electrolysis. Electrodes with 10 wt% RF–AQ loading on Vulcan XC-72 showed excellent electrocatalytic activity toward the two-electron oxygen reduction coupled with very good catalyst layer stability. The reaction mechanism for the organic redox catalysis by RF–AQ is discussed. Electroreduction of O 2 dissolved in 0.5 M H 2 SO 4 under potentiostatic conditions (0.1 V vs. RHE) at 21 °C using the composite RF–AQ/Vulcan XC72 catalyst (total loading 2.5 mg cm −2 ) deposited on unteflonated Toray ® carbon paper, generated H 2 O 2 with an initial rate of 21 μmol h −1 cm geo −2 and a stable current efficiency of 70%.

  19. Enhancement of oxygen reduction at Fe tetrapyridyl porphyrin by pyridyl-N coordination to transition metal ions

    International Nuclear Information System (INIS)

    Maruyama, Jun; Baier, Claudia; Wolfschmidt, Holger; Bele, Petra; Stimming, Ulrich

    2012-01-01

    One of the promising candidates as noble-metal-free electrode catalysts for polymer electrolyte fuel cells (PEFCs) is a carbon material with nitrogen atoms coordinating iron ions embedded on the surface (Fe-N x moiety) as the active site, although the activity is insufficient compared to conventional platinum-based electrocatalysts. In order to obtain fundamental information on the activity enhancement, a simple model of the Fe-N x active site was formed by adsorbing 5,10,15,20-Tetrakis(4-pyridyl)-21H,23H-porphine iron(III) chloride (FeTPyPCl) on the basal plane of highly oriented pyrolytic graphite (HOPG), and cathodic oxygen reduction was investigated on the surface in 0.1 M HClO 4 . The catalytic activity for oxygen reduction was enhanced by loading transition metal ions (Co 2+ , Ni 2+ , Cu 2+ ) together with FeTPyPCl. The X-ray photoelectron spectrum of the surface suggested that the metal was coordinated by the pyridine-N. The enhancement effect of the transition metals was supported by two different measurements: oxygen reduction at HOPG in 0.1 M HClO 4 dissolving FeTPyPCl and the metal ions; oxygen reduction in 0.1 M HClO 4 at the subsequently well-rinsed and dried HOPG. The ultraviolet–visible spectrum for the solution also suggested the coordination between the pyridyl-N and the metal ions. The oxygen reduction enhancement was attributed to the electronic interaction between the additional transition metal and the Fe center of the porphyrin through the coordination bonds. These results implied that the improvement of the activity of the noble-metal-free catalyst would be possible by the proper introduction of the transition metal ions around the active site.

  20. Functionalization of multi-walled carbon nanotubes with iron phthalocyanine via a liquid chemical reaction for oxygen reduction in alkaline media

    Science.gov (United States)

    Yan, Xiaomei; Xu, Xiao; Liu, Qin; Guo, Jia; Kang, Longtian; Yao, Jiannian

    2018-06-01

    Iron single-atom catalyst in form of iron-nitrogen-carbon structure possesses the excellent catalytic activity in various chemical reactions. However, exploring a sustainable and stable single-atom metal catalyst still faces a great challenge due to low yield and complicated synthesis. Here, we report a functional multi-wall carbon nanotubes modified with iron phthalocyanine molecules via a liquid chemical reaction and realize the performance of similar single-atom catalysis for oxygen reduction reaction. A serial of characterizations strongly imply the structure change of iron phthalocyanine molecule and its close recombination with multi-wall carbon nanotubes, which are in favor of ORR catalysis. Compared to commercial platinum-carbon catalyst, composites exhibit superior activity for oxygen reduction reaction with higher half-wave potential (0.86 V), lower Tafel slope (38 mV dec-1), higher limiting current density and excellent electrochemical stability. The corresponding Zinc-air battery also presents higher maximum power density and discharge stability. Therefore, these findings provide a facile route to synthesize a highly efficient non-precious metal carbon-based catalyst.

  1. Two-Dimensional N,S-Codoped Carbon/Co 9 S 8 Catalysts Derived from Co(OH) 2 Nanosheets for Oxygen Reduction Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Shaofang [School of Mechanical; Zhu, Chengzhou [School of Mechanical; Song, Junhua [School of Mechanical; Feng, Shuo [School of Mechanical; Du, Dan [School of Mechanical; Key Laboratory of Pesticide and Chemical; Engelhard, Mark H. [Environmental Molecular Science Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Xiao, Dongdong [Environmental Molecular Science Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Li, Dongsheng [Environmental Molecular Science Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Lin, Yuehe [School of Mechanical

    2017-10-12

    Investigation of highly active and cost-efficient electrocatalysts for oxygen reduction reaction is of great importance in a wide range of clean energy devices, including fuel cells and metal-air batteries. Herein, the simultaneous formation of Co9S8 and N,S-codoped carbon was achieved in a dual templates system. First, Co(OH)2 nanosheets and tetraethyl orthosilicate were utilized to direct the formation of two-dimensional carbon precursors, which were then dispersed into thiourea solution. After subsequent pyrolysis and templates removal, N/S-codoped porous carbon sheets confined Co9S8 catalysts (Co9S8/NSC) were obtained. Owing to the morphological and compositional advantages as well as the synergistic effects, the resultant Co9S8/NSC catalysts with modified doping level and pyrolysis degree exhibit superior ORR catalytic activity and long-term stability compared with the state-of-the-art Pt/C catalyst in alkaline media. Remarkably, the as-prepared carbon composites also reveal exceptional tolerance of methanol, indicating their potential applications in fuel cells.

  2. Electrocatalytic activity of silver decorated ceria microspheres for the oxygen reduction reaction and their application in aluminium-air batteries.

    Science.gov (United States)

    Sun, Shanshan; Xue, Yejian; Wang, Qin; Li, Shihua; Huang, Heran; Miao, He; Liu, Zhaoping

    2017-07-11

    Nanosheet-constructing porous CeO 2 microspheres with silver nanoparticles anchored on the surface were developed as a highly efficient oxygen reduction reaction (ORR) catalyst. The aluminum-air batteries applying Ag-CeO 2 as the ORR catalyst exhibit a high output power density and low degradation rate of 345 mW cm -2 and 2.6% per 100 h, respectively.

  3. Oxygen Reduction Reaction Activity of Platinum Thin Films with Different Densities

    Energy Technology Data Exchange (ETDEWEB)

    Ergul, Busra; Begum, Mahbuba; Kariuki, Nancy; Myers, Deborah J.; Karabacak, Tansel

    2017-08-24

    Platinum thin films with different densities were grown on glassy carbon electrodes by high pressure sputtering deposition and evaluated as oxygen reduction reaction catalysts for polymer electrolyte fuel cells using cyclic voltammetry and rotating disk electrode techniques in aqueous perchloric acid electrolyte. The electrochemically active surface area, ORR mass activity (MA) and specific activity (SA) of the thin film electrodes were obtained. MA and SA were found to be higher for low-density films than for high-density film.

  4. Fundamental Studies of the Reforming of Oxygenated Compounds over Supported Metal Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Dumesic, James A. [Univ. of Wisconsin, Madison, WI (United States)

    2016-01-04

    The main objective of our research has been to elucidate fundamental concepts associated with controlling the activity, selectivity, and stability of bifunctional, metal-based heterogeneous catalysts for tandem reactions, such as liquid-phase conversion of oxygenated hydrocarbons derived from biomass. We have shown that bimetallic catalysts that combine a highly-reducible metal (e.g., platinum) with an oxygen-containing metal promoter (e.g., molybdenum) are promising materials for conversion of oxygenated hydrocarbons because of their high activity for selective cleavage for carbon-oxygen bonds. We have developed methods to stabilize metal nanoparticles against leaching and sintering under liquid-phase reaction conditions by using atomic layer deposition (ALD) to apply oxide overcoat layers. We have used controlled surface reactions to produce bimetallic catalysts with controlled particle size and controlled composition, with an important application being the selective conversion of biomass-derived molecules. The synthesis of catalysts by traditional methods may produce a wide distribution of metal particle sizes and compositions; and thus, results from spectroscopic and reactions kinetics measurements have contributions from a distribution of active sites, making it difficult to assess how the size and composition of the metal particles affect the nature of the surface, the active sites, and the catalytic behavior. Thus, we have developed methods to synthesize bimetallic nanoparticles with controlled particle size and controlled composition to achieve an effective link between characterization and reactivity, and between theory and experiment. We have also used ALD to modify supported metal catalysts by addition of promoters with atomic-level precision, to produce new bifunctional sites for selective catalytic transformations. We have used a variety of techniques to characterize the metal nanoparticles in our catalysts, including scanning transmission electron

  5. N/S/B-doped graphitized carbon encased Fe species as a highly active and durable catalyst towards oxygen reduction reaction.

    Science.gov (United States)

    Li, Guang-Lan; Cheng, Guang-Chun; Chen, Wen-Wen; Liu, Cai-Di; Yuan, Li-Fang; Yang, Bei-Bei; Hao, Ce

    2018-03-15

    Exploring cost-effective, high-performance and durable non-precious metal catalysts is of great significance for the acceleration of sluggish oxygen reduction reaction (ORR). Here, we report an intriguing heteroatom-doped graphitized carbon encased Fe species composite by introducing N, S and B sequentially. The experimental approach was designed ingeniously for that the FeCl 3 ·6H 2 O could catalyze thiourea to synthesize N, S co-doped carbon materials which would further react with H 3 BO 3 and NH 3 (emerged at the heat-treatment process) to prepare N, S and B co-doped carbon materials (Fe-N/S/B-C). The Fe-N/S/B-C exhibits an impressive ORR activity for its half-wave potential of -0.1 V, which is 36 mV or 19 mV higher than that of the corresponding single or dual doped counterparts (Fe-N-C or Fe-N/S-C) and 31 mV positive than that of Pt/C catalyst, respectively. Further chronoamperometric measurement and accelerated aging test confirm the excellent electrochemical durability of Fe-N/S/B-C with the stable core-shell structure. The remarkable ORR performance and facile preparation method enable Fe-N/S/B-C as a potential candidate in electrochemical energy devices. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Metal-free and Oxygen-free Graphene as Oxygen Reduction Catalysts for Highly Efficient Fuel Cells

    Science.gov (United States)

    2013-06-30

    analysis was carried out by a TA instrument with a heating rate of 10 °C in N2. The Raman spectra were collected on a Raman spectrometer (Renishaw...kinematics viscosity for KOH (v = 0.01 cm 2 s -1 ) and CO2 is concentration of O2 in the solution (CO2 = 1.2 × 10 -6 mol cm -3 ). The constant 0.2 is...functionalizing graphene to impart electrocatalytic activity for oxygen reduction reaction (ORR) in fuel cells. Raman and X-ray photoelectron spectroscopic

  7. 2D ultrathin core-shell Pd@Ptmonolayer nanosheets: defect-mediated thin film growth and enhanced oxygen reduction performance

    Science.gov (United States)

    Wang, Wenxin; Zhao, Yunfeng; Ding, Yi

    2015-07-01

    An operational strategy for the synthesis of atomically smooth Pt skin by a defect-mediated thin film growth method is reported. Extended ultrathin core-shell structured d@Ptmonolayer nanosheets (thickness below 5 nm) exhibit nearly seven-fold enhancement in mass-activity and surprisingly good durability toward oxygen reduction reaction as compared with the commercial Pt/C catalyst.An operational strategy for the synthesis of atomically smooth Pt skin by a defect-mediated thin film growth method is reported. Extended ultrathin core-shell structured d@Ptmonolayer nanosheets (thickness below 5 nm) exhibit nearly seven-fold enhancement in mass-activity and surprisingly good durability toward oxygen reduction reaction as compared with the commercial Pt/C catalyst. Electronic supplementary information (ESI) available: Sample preparation, physical and electrochemical characterization, Fig. S1 to S11. See DOI: 10.1039/c5nr02748a

  8. Multiphase catalysts for selective reduction of NOx with hydrocarbons

    International Nuclear Information System (INIS)

    Maisuls, S.E.

    2000-01-01

    Among the existing proposed solutions to reduce emission of NOx there is a promising alternative, the so-called (HC-SCR) selective catalytic reduction of NOx using hydrocarbons as reductant. This thesis is part of a worldwide effort devoted to gain knowledge on the selective catalytic reduction of NOx with hydrocarbons with the final goal to contribute to the development of suitable catalysts for the above mentioned process. Chapter 2 describes the details of the experimental set-up and of the analytical methods employed. Among the catalyst for HC-SCR, Co-based catalyst are known to be active and selective, thus, a study on a series of Co-based catalysts, supported on zeolites, was undertaken and the results are presented in Chapter 3. Correlation between catalytic characteristics and kinetic results are employed to understand the working catalyst and this is used as a basis for catalyst optimization. With the intention to prepare a multi-functional catalyst that will preserve the desired characteristics of the individual components, minimizing their negative aspects, catalysts based on Co-Pt, supported on ZSM-5, were investigated. In Chapter 4 the results of this study are discussed. A bimetallic Co-Pt/ZSM-5 catalysts with low Pt contents (0.1 wt %) showed a synergistic effect by combining high stability and activity of Pt catalysts with the high N2 selectivity of Co catalysts. Furthermore, it was found to be sulfur- and water-tolerant. Its positive qualities brought us to study the mechanism that takes place over this catalyst during HC-SCR. The results of an in-situ i.r mechanistic study over this catalyst is reported in Chapter 5. From the results presented in Chapter 5 a mechanism operating over the Co-Pt/ZSM-5 catalyst is proposed. The modification of Co catalyst with Pt improved the catalysts. However, further improvement was found to be hindered by high selectivity to N2O. Since Rh catalysts are generally less selective to N2O, the modification of Co

  9. Anodically-grown TiO_2 nanotubes: Effect of the crystallization on the catalytic activity toward the oxygen reduction reaction

    International Nuclear Information System (INIS)

    Sacco, Adriano; Garino, Nadia; Lamberti, Andrea; Pirri, Candido Fabrizio; Quaglio, Marzia

    2017-01-01

    Highlights: • Anodically-grown TiO_2 nanotubes as catalysts for the oxygen reduction reaction. • Amorphous NTs compared to thermal- and vapor-treated crystalline nanostructures. • The selection of the crystallization conditions leads to performance similar to Pt. - Abstract: In this work we investigated the behavior of TiO_2 nanotube (NT) arrays, grown by anodic oxidation of Ti foil, as catalysts for the oxygen reduction reaction (ORR) in alkaline water solution. In particular, as-grown amorphous NTs were compared to crystalline anatase nanostructures, obtained following two different procedures, namely thermal and vapor-induced crystallizations. The catalytic activity of these materials toward the ORR was evaluated by cyclic voltammetry measurements. ORR polarization curves, combined with the rotating disk technique, indicated a predominant four-electrons reduction path, especially for crystalline samples. The effect of the structural characteristics of the investigated materials on the catalytic activity was analyzed in details by electrochemical impedance spectroscopy. The catalytic performance of the crystalline NTs is only slightly lower with respect to the reference material for fuel cell applications, namely platinum, but is in line with other cost-effective catalysts recently proposed in the literature. However, if compared to the larger part of these low-cost catalysts, anodically-grown TiO_2 NTs are characterized by a synthesis route which is highly reproducible and easily up-scalable.

  10. The atomistic origin of the extraordinary oxygen reduction activity of Pt3Ni7 fuel cell catalysts.

    Science.gov (United States)

    Fortunelli, Alessandro; Goddard Iii, William A; Sementa, Luca; Barcaro, Giovanni; Negreiros, Fabio R; Jaramillo-Botero, Andrés

    2015-07-01

    Recently Debe et al. reported that Pt 3 Ni 7 leads to extraordinary Oxygen Reduction Reaction (ORR) activity. However, several reports show that hardly any Ni remains in the layers of the catalysts close to the surface ("Pt-skin effect"). This paradox that Ni is essential to the high catalytic activity with the peak ORR activity at Pt 3 Ni 7 while little or no Ni remains close to the surface is explained here using large-scale first-principles-based simulations. We make the radical assumption that processing Pt-Ni catalysts under ORR conditions would leach out all Ni accessible to the solvent. To simulate this process we use the ReaxFF reactive force field, starting with random alloy particles ranging from 50% Ni to 90% Ni and containing up to ∼300 000 atoms, deleting the Ni atoms, and equilibrating the resulting structures. We find that the Pt 3 Ni 7 case and a final particle radius around 7.5 nm lead to internal voids in communication with the exterior, doubling the external surface footprint, in fair agreement with experiment. Then we examine the surface character of these nanoporous systems and find that a prominent feature in the surface of the de-alloyed particles is a rhombic structure involving 4 surface atoms which is crystalline-like but under-coordinated. Using density-functional theory, we calculate the energy barriers of ORR steps on Pt nanoporous catalysts, focusing on the O ad -hydration reaction (O ad + H 2 O ad → OH ad + OH ad ) but including the barriers of O 2 dissociation (O 2ad → O ad + O ad ) and water formation (OH ad + H ad → H 2 O ad ). We find that the reaction barrier for the O ad -hydration rate-determining-step is reduced significantly on the de-alloyed surface sites compared to Pt(111). Moreover we find that these active sites are prevalent on the surface of particles de-alloyed from a Pt-Ni 30 : 70 initial composition. These simulations explain the peak in surface reactivity at Pt 3 Ni 7 , and provide a rational guide to

  11. Hydrodeoxygenation of aliphatic and aromatic oxygenates on sulphided catalysts for production of second generation biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Senol, O.I.

    2007-07-01

    Environmental concerns and diminishing petroleum reserves have increased the importance of biofuels for traffic fuel applications. Second generation biofuels produced from wood, vegetable oils and animal fats have been considered promising for delivering biofuels in large amount with low production cost. The abundance of oxygen in the form of various aliphatic and aromatic oxygenates decreases the quality of biofuels, however, and therefore the oxygen content of biofuels must be reduced. Upgrading of biofuels can be achieved by hydrodeoxygenation (HDO), which is similar to hydrodesulphurisation in oil refining. In HDO, oxygen-containing compounds are converted to hydrocarbons by eliminating oxygen in the form of water in the presence of hydrogen and a sulphided catalyst. Due to the low sulphur content of biofuels, a sulphiding agent is typically added to the HDO feed to maintain activity and stability of the catalyst. The aim of this work was to investigate HDO using aliphatic and aromatic oxygenates as model compounds on sulphided NiMo/gamma-Al{sub 2}O3 and CoMo/gamma-Al{sub 2}O3 catalysts. The effects of side product, water, and of sulphiding agents, H{sub 2}S and CS{sub 2}, on HDO were determined. The primary focus was on the HDO of aliphatic oxygenates, because a reasonable amount of data regarding the HDO of aromatic oxygenates already exists. The HDO of aliphatic esters produced hydrocarbons from intermediate alcohol, carboxylic acid, aldehyde and ether compounds. A few sulphur-containing compounds were also detected in trace amounts, and their formation caused desulphurisation of the catalysts. Hydrogenation reactions and acid-catalysed reactions (dehydration, hydrolysis, esterification, E{sub 2} elimination and SN{sub 2} nucleophilic substitution) played a major role in the HDO of aliphatic oxygenates. The NiMo catalyst showed a higher activity for HDO and hydrogenation reactions than the CoMo catalyst, but both catalysts became deactivated because of

  12. Multi-stage catalyst systems and uses thereof

    Science.gov (United States)

    Ozkan, Umit S [Worthington, OH; Holmgreen, Erik M [Columbus, OH; Yung, Matthew M [Columbus, OH

    2009-02-10

    Catalyst systems and methods provide benefits in reducing the content of nitrogen oxides in a gaseous stream containing nitric oxide (NO), hydrocarbons, carbon monoxide (CO), and oxygen (O.sub.2). The catalyst system comprises an oxidation catalyst comprising a first metal supported on a first inorganic oxide for catalyzing the oxidation of NO to nitrogen dioxide (NO.sub.2), and a reduction catalyst comprising a second metal supported on a second inorganic oxide for catalyzing the reduction of NO.sub.2 to nitrogen (N.sub.2).

  13. Recent advances in the kinetics of oxygen reduction

    Energy Technology Data Exchange (ETDEWEB)

    Adzic, R.

    1996-07-01

    Oxygen reduction is considered an important electrocatalytic reaction; the most notable need remains improvement of the catalytic activity of existing metal electrocatalysts and development of new ones. A review is given of new advances in the understanding of reaction kinetics and improvements of the electrocatalytic properties of some surfaces, with focus on recent studies of relationship of the surface properties to its activity and reaction kinetics. The urgent need is to improve catalytic activity of Pt and synthesize new, possibly non- noble metal catalysts. New experimental techniques for obtaining new level of information include various {ital in situ} spectroscopies and scanning probes, some involving synchrotron radiation. 138 refs, 18 figs, 2 tabs.

  14. Targeted design of α-MnO2 based catalysts for oxygen reduction

    DEFF Research Database (Denmark)

    Lehtimaeki, Matti; Hoffmannova, Hana; Boytsova, Olga

    2016-01-01

    The paper focuses on theoretical and experimental aspects of an oxide surface optimization for oxygen reduction reaction (ORR). Various doped α-MnO2 based electrocatalysts were prepared by microwave-assisted hydrothermal synthesis and electrochemically characterized to validate density functional...

  15. Facile preparation of three-dimensional Co1-xS/sulfur and nitrogen-codoped graphene/carbon foam for highly efficient oxygen reduction reaction

    Science.gov (United States)

    Liang, Hui; Li, Chenwei; Chen, Tao; Cui, Liang; Han, Jingrui; Peng, Zhi; Liu, Jingquan

    2018-02-01

    Because of the urgent need for renewable resources, oxygen reduction reaction (ORR) has been widely studied. Finding efficient and low cost non-precious metal catalyst is increasingly critical. In this study, melamine foam is used as template to obtain porous sulfur and nitrogen-codoped graphene/carbon foam with uniformly distributed cobalt sulfide nanoparticles (Co1-xS/SNG/CF) which is prepared by a simple infiltration-drying-sulfuration method. It is noteworthy that melamine foam not only works as a three-dimensional support skeleton, but also provides a nitrogen source without any environmental pollution. Such Co1-xS/SNG/CF catalyst shows excellent oxygen reduction catalytic performance with an onset potential of only 0.99 V, which is the same as that of Pt/C catalyst (Eonset = 0.99 V). Furthermore, the stability and methanol tolerance of Co1-xS/SNG/CF are more outstanding than those of Pt/C catalyst. Our work manifests a facile method to prepare S and N-codoped 3D graphene network decorated with Co1-xS nanoparticles, which may be utilized as potential alternative to the expensive Pt/C catalysts toward ORR.

  16. Enhancement of the oxygen reduction on nitride stabilized pt-M (M=Fe, Co, and Ni) core–shell nanoparticle electrocatalysts

    KAUST Repository

    Kuttiyiel, Kurian A.; Choi, YongMan; Hwang, Sun-Mi; Park, Gu-Gon; Yang, Tae-Hyun; Su, Dong; Sasaki, Kotaro; Liu, Ping; Adzic, Radoslav R.

    2015-01-01

    Given the harsh operating conditions in hydrogen/oxygen fuel cells, the stability of catalysts is one of the critical questions affecting their commercialization. We describe a distinct class of oxygen reduction (ORR) core–shell electrocatalysts comprised of nitride metal cores enclosed by thin Pt shells that is easily synthesized. The synthesis is reproducible and amenable to scale up. Our theoretical analysis and the experimental data indicate that metal nitride nanoparticle cores could significantly enhance the ORR activity as well as the durability of the core–shell catalysts as a consequence of combined geometrical, electronic and segregation effects on the Pt shells. In addition to its fuel cells application, this class of catalysts holds promise to significantly contribute in resolving the problem of platinum scarcity and furthermore indicates the guidelines for future research and development.

  17. Enhancement of the oxygen reduction on nitride stabilized pt-M (M=Fe, Co, and Ni) core–shell nanoparticle electrocatalysts

    KAUST Repository

    Kuttiyiel, Kurian A.

    2015-04-01

    Given the harsh operating conditions in hydrogen/oxygen fuel cells, the stability of catalysts is one of the critical questions affecting their commercialization. We describe a distinct class of oxygen reduction (ORR) core–shell electrocatalysts comprised of nitride metal cores enclosed by thin Pt shells that is easily synthesized. The synthesis is reproducible and amenable to scale up. Our theoretical analysis and the experimental data indicate that metal nitride nanoparticle cores could significantly enhance the ORR activity as well as the durability of the core–shell catalysts as a consequence of combined geometrical, electronic and segregation effects on the Pt shells. In addition to its fuel cells application, this class of catalysts holds promise to significantly contribute in resolving the problem of platinum scarcity and furthermore indicates the guidelines for future research and development.

  18. Process of activation of a palladium catalyst system

    Science.gov (United States)

    Sobolevskiy, Anatoly [Orlando, FL; Rossin, Joseph A [Columbus, OH; Knapke, Michael J [Columbus, OH

    2011-08-02

    Improved processes for activating a catalyst system used for the reduction of nitrogen oxides are provided. In one embodiment, the catalyst system is activated by passing an activation gas stream having an amount of each of oxygen, water vapor, nitrogen oxides, and hydrogen over the catalyst system and increasing a temperature of the catalyst system to a temperature of at least 180.degree. C. at a heating rate of from 1-20.degree./min. Use of activation processes described herein leads to a catalyst system with superior NOx reduction capabilities.

  19. Anodically-grown TiO{sub 2} nanotubes: Effect of the crystallization on the catalytic activity toward the oxygen reduction reaction

    Energy Technology Data Exchange (ETDEWEB)

    Sacco, Adriano, E-mail: adriano.sacco@iit.it [Center for Sustainable Future Technologies @Polito, Istituto Italiano di Tecnologia, Corso Trento 21, 10129, Torino (Italy); Garino, Nadia [Center for Sustainable Future Technologies @Polito, Istituto Italiano di Tecnologia, Corso Trento 21, 10129, Torino (Italy); Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino (Italy); Lamberti, Andrea, E-mail: andrea.lamberti@polito.it [Center for Sustainable Future Technologies @Polito, Istituto Italiano di Tecnologia, Corso Trento 21, 10129, Torino (Italy); Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino (Italy); Pirri, Candido Fabrizio [Center for Sustainable Future Technologies @Polito, Istituto Italiano di Tecnologia, Corso Trento 21, 10129, Torino (Italy); Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino (Italy); Quaglio, Marzia [Center for Sustainable Future Technologies @Polito, Istituto Italiano di Tecnologia, Corso Trento 21, 10129, Torino (Italy)

    2017-08-01

    Highlights: • Anodically-grown TiO{sub 2} nanotubes as catalysts for the oxygen reduction reaction. • Amorphous NTs compared to thermal- and vapor-treated crystalline nanostructures. • The selection of the crystallization conditions leads to performance similar to Pt. - Abstract: In this work we investigated the behavior of TiO{sub 2} nanotube (NT) arrays, grown by anodic oxidation of Ti foil, as catalysts for the oxygen reduction reaction (ORR) in alkaline water solution. In particular, as-grown amorphous NTs were compared to crystalline anatase nanostructures, obtained following two different procedures, namely thermal and vapor-induced crystallizations. The catalytic activity of these materials toward the ORR was evaluated by cyclic voltammetry measurements. ORR polarization curves, combined with the rotating disk technique, indicated a predominant four-electrons reduction path, especially for crystalline samples. The effect of the structural characteristics of the investigated materials on the catalytic activity was analyzed in details by electrochemical impedance spectroscopy. The catalytic performance of the crystalline NTs is only slightly lower with respect to the reference material for fuel cell applications, namely platinum, but is in line with other cost-effective catalysts recently proposed in the literature. However, if compared to the larger part of these low-cost catalysts, anodically-grown TiO{sub 2} NTs are characterized by a synthesis route which is highly reproducible and easily up-scalable.

  20. Development of supported noble metal catalyst for U(VI) to U(IV) reduction

    International Nuclear Information System (INIS)

    Tyagi, Deepak; Varma, Salil; Bhattacharyya, K.; Tripathi, A.K.; Bharadwaj, S.R.; Jain, V.K.; Sahu, Avinash; Vincent, Tessy; Jagatap, B.N.; Wattal, P.K.

    2015-01-01

    Uranium-plutonium separation is an essential step in the PUREX process employed in spent nuclear fuel reprocessing. This partitioning in the PUREX process is achieved by selective reduction of Pu(IV) to Pu(III) using uranous nitrate as reductant and hydrazine as stabilizer. Currently in our Indian reprocessing plants, the requirement of uranous nitrate is met by electrolytic reduction of uranyl nitrate. This process, however, suffers from a major drawback of incomplete reduction with a maximum conversion of ~ 60%. Catalytic reduction of U(VI) to U(IV) is being considered as one of the promising alternatives to the electro-reduction process due to fast kinetics and near total conversion. Various catalysts involving noble metals like platinum (Adams catalyst, Pt/Al 2 O 3 , Pt/SiO 2 etc.) have been reported for the reduction. Sustained activity and stability of the catalyst under harsh reaction conditions are still the issues that need to be resolved. We present here the results on zirconia supported noble metal catalyst that is developed in BARC for reduction of uranyl nitrate to uranous nitrate. Supported noble metal catalysts with varying metal loadings (0.5 - 2 wt%) were prepared via support precipitation and noble metal impregnation. The green catalysts were reduced either by chemical reduction using hydrazine hydrate or by heating in hydrogen flow or combination of both the steps. These catalysts were characterized by various techniques such as, XRD, SEM, TEM, N 2 adsorption and H 2 chemisorption. Performance of these catalysts was evaluated for U(VI) to U(IV) reduction with uranyl nitrate feed using hydrazine as reductant. The results with the most active catalyst are named as 'BARC-CAT', which was developed in our lab. (author)

  1. Co- and defect-rich carbon nanofiber films as a highly efficient electrocatalyst for oxygen reduction

    Science.gov (United States)

    Kim, Il To; Song, Myeong Jun; Shin, Seoyoon; Shin, Moo Whan

    2018-03-01

    Many efforts are continuously devoted to developing high-efficiency, low-cost, and highly scalable oxygen reduction reaction (ORR) electrocatalysts to replace precious metal catalysts. Herein, we successfully synthesize Co- and defect-rich carbon nanofibers (CNFs) using an efficient heat treatment approach involving the pyrolysis of electrospun fibers at 370 °C under air. The heat treatment process produces Co-decorated CNFs with a high Co mass ratio, enriched pyridinic N, Co-pyridinic Nx clusters, and defect-rich carbon structures. The synergistic effects from composition and structural changes in the designed material increase the number of catalytically active sites for the ORR in an alkaline solution. The prepared Co- and defect-rich CNFs exhibit excellent ORR activities with a high ORR onset potential (0.954 V vs. RHE), a large reduction current density (4.426 mA cm-2 at 0.40 V), and a nearly four-electron pathway. The catalyst also exhibits a better long-term durability than commercial Pt/C catalysts. This study provides a novel hybrid material as an efficient ORR catalyst and important insight into the design strategy for CNF-based hybrid materials as electrochemical electrodes.

  2. MOF derived Ni/Co/NC catalysts with enhanced properties for oxygen evolution reaction

    Science.gov (United States)

    Hu, Jiapeng; Chen, Juan; Lin, Hao; Liu, Ruilai; Yang, Xiaobing

    2018-03-01

    Designing efficient electrocatalysts for oxygen evolution reaction (OER) is very important for renewable energy storage and conversion devices. In this paper, we introduced a new strategy to synthesize Ni doped Co/NC catalysts (NC is the abbreviation of nitrogen-doped graphitic carbon), which were derived from ZIF-67. All catalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM) and oxygen evolution reaction (OER). The results show that Ni was well doped in the Ni/Co/NC catalysts and the doping of Ni has great influence on the OER activity of Ni/Co/NC catalysts. Among these catalysts, 0.50Ni/Co/NC exhibits the highest OER activity. The onset potential of 0.50Ni/Co/NC is 1.47 V, which is superior than the onset potential of Co/NC (1.54 V), 0.25Ni/Co/NC (1.48 V), 1.00Ni/Co/NC (1.53 V). The excellent OER activity of 0.50Ni/Co/NC catalyst makes its potential to be used on renewable energy storage.

  3. Oxygen-hydrogen recombination system

    International Nuclear Information System (INIS)

    Sato, Shuichiro; Takejima, Masaki.

    1981-01-01

    Purpose: To avoid reduction in the performance of catalyst used for an oxygen-hydrogen recombiner in the off gas processing system of a nuclear reactor. Constitution: A thermometer is provided for the detection of temperature in an oxygen-hydrogen recombiner. A cooling pipe is provided in the recombiner and cooling medium is introduced externally. The cooling medium may be water or air. In accordance with the detection value from the thermometer, ON-OFF control is carried out for a valve to control the flow rate of the cooling medium thereby rendering the temperature in the recombiner to a predetermined value. This can prevent the catalyst from being exposed to high temperature and avoid the reduction in the performance of the catalyst. (Ikeda, J.)

  4. Nitrogen-Doped Carbon Nanoparticles for Oxygen Reduction Prepared via a Crushing Method Involving a High Shear Mixer

    Directory of Open Access Journals (Sweden)

    Lei Shi

    2017-09-01

    Full Text Available The disposal of agricultural wastes such as fresh banana peels (BPs is an environmental issue. In this work, fresh BPs were successfully transformed into nitrogen-doped carbon nanoparticles (N-CNPs by using a high shear mixer facilitated crushing method (HSM-FCM followed by carbonization under Ar atmosphere. Ammonia-activated N-CNPs (N-CNPs-NH3 were prepared via subsequent ammonia activation treatments at a high temperature. The as-prepared N-CNPs and N-CNPs-NH3 materials both exhibited high surface areas (above 700 m2/g and mean particle size of 50 nm. N-CNPs-NH3 showed a relatively higher content of pyridinic and graphitic N compared to N-CNPs. In alkaline media, N-CNPs-NH3 showed superior performances as an oxygen reduction reaction (ORR catalyst (E0 = −0.033 V, J = 2.4 mA/cm2 compared to N-CNPs (E0 = 0.07 V, J = 1.8 mA/cm2. In addition, N-CNPs-NH3 showed greater oxygen reduction stability and superior methanol crossover avoidance than a conventional Pt/C catalyst. This study provides a novel, simple, and scalable approach to valorize biomass wastes by synthesizing highly efficient electrochemical ORR catalysts.

  5. Simple one-pot synthesis of platinum-palladium nanoflowers with enhanced catalytic activity and methanol-tolerance for oxygen reduction in acid media

    International Nuclear Information System (INIS)

    Zheng, Jie-Ning; He, Li-Li; Chen, Fang-Yi; Wang, Ai-Jun; Xue, Meng-Wei; Feng, Jiu-Ju

    2014-01-01

    Graphical abstract: PtPd nanoflowers were fabricated by one-pot solvothermal co-reduction method in oleylamine system, which exhibited the improved electrocatalytic activity and higher methanol tolerance for oxygen reduction, compared with commercial Pt and Pd black catalysts. - Highlights: • Bimetallic alloyed PtPd nanoflowers are prepared by a simple one-pot solvothermal co-reduction method. • PtPd nanoflowers display high catalytic performance for ORR dominated by a four-electron pathway. • PtPd nanoflowers show good methanol tolerance for ORR. - Abstract: In this work, bimetallic alloyed platinum-palladium (PtPd) nanoflowers are fabricated by one-pot solvothermal co-reduction of Pt (II) acetylacetonate and Pd (II) acetylacetonate in oleylamine system. The as-prepared nanostructures show the enhanced electrocatalytic activity for oxygen reduction reaction (ORR), dominated by a four-electron pathway based on the Koutecky-Levich plots, mainly owing to the inhibition of the formation of Pt–OH ad via the downshift of d-band center for Pt. Meanwhile, PtPd nanoflowers display good methanol tolerance and improved stability for ORR. The chronoamperometry test reveals that the current of PtPd nanoflowers remains 45.9% of its original value within 6000 s, much higher than those of commercial Pt (36.7%) and Pd (32.2%) black catalysts. Therefore, PtPd nanoflowers with unique interconnected structures can be used as a promising cathode catalyst in direct methanol fuel cells

  6. Novel VN/C nanocomposites as methanol-tolerant oxygen reduction electrocatalyst in alkaline electrolyte

    Science.gov (United States)

    Huang, K.; Bi, K.; Liang, C.; Lin, S.; Zhang, R.; Wang, W. J.; Tang, H. L.; Lei, M.

    2015-06-01

    A novel VN/C nanostructure consisting of VN nanoparticles and graphite-dominant carbon layers is synthesized by nitridation of V2O5 using melamine as reductant under inert atmosphere. High crystalline VN nanoparticles are observed to be uniformly distributed in carbon layers with an average size of ca13.45 nm. Moreover, the electrocatalytic performance of VN/C towards oxygen reduction reaction (ORR) in alkaline electrolyte is fascinating. The results show that VN/C has a considerable ORR activity, including a 75 percent value of the diffusion-limited current density and a 0.11 V smaller value about the onset potential with respect to Pt/C catalyst. Moreover, the excellent methanol-tolerance performance of VN/C has also been verified with 3 M methanol. Combined with the competitive prices, this VN/C nanocomposite can serve as an appropriate non-precious methanol-tolerant ORR catalyst for alkaline fuel cells.

  7. Synthesis of Fe nanoparticles on polyaniline covered carbon nanotubes for oxygen reduction reaction

    Science.gov (United States)

    Hu, Tian-Hang; Yin, Zhong-Shu; Guo, Jian-Wei; Wang, Cheng

    2014-12-01

    Fe nanoparticles immobilized on polyaniline-covered carbon nanotube (CNT) surfaces (Fe NPs-PANI/CNT) are prepared by reducing FeCl3 in the mixing solution of aniline and CNT. Significantly, the structure of such composites can be effectively optimized by pretreating FeCl3 with sodium citrate (CA). In the absence of CNTs, we found these two routes have large differences in reduction behaviors and different PANI states with varied conductivities. Therefore, the self-assembly mechanism in the preparation is proposed and the controlled self-assembly manner in the pretreating route is disclosed. Under acid condition, both catalysts demonstrate high oxygen reduction reaction (ORR) activity with four-electron pathway, and high electrochemical durability, revealing a promising application in the proton exchange membrane fuel cells. However, the high Tafel slopes relating to the surface red-ox couple and porous conductivity are still the main obstacles to improve their ORR dynamic, and more efforts on these aspects are needed to drive non-noble catalyst application in future.

  8. Oxygen reduction reaction at MWCNT-modified nanoscale iron(II) tetrasulfophthalocyanine: remarkable performance over platinum and tolerance toward methanol in alkaline medium

    CSIR Research Space (South Africa)

    Fashedemi, OO

    2015-04-01

    Full Text Available A nanoscale iron(II) tetrasulfophthalocyanine (nanoFeTSPc) catalyst obtained by co-ordinating with hexadecyltrimethylammonium bromide and subsequently anchored onto multi-walled carbon nanotubes (MWCNTs) for oxygen reduction reaction (ORR) has been...

  9. Hierarchical hybrid of Ni{sub 3}N/N-doped reduced graphene oxide nanocomposite as a noble metal free catalyst for oxygen reduction reaction

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Qi; Li, Yingjun; Li, Yetong [College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021 (China); Huang, Keke [State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012 (China); Wang, Qin, E-mail: qinwang@imu.edu.cn [College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021 (China); Inner Mongolia Key Lab. of Nanoscience and Nanotechnology, Inner Mongolia University, Hohhot 010021 (China); Zhang, Jun, E-mail: cejzhang@imu.edu.cn [College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021 (China); Inner Mongolia Key Lab. of Nanoscience and Nanotechnology, Inner Mongolia University, Hohhot 010021 (China)

    2017-04-01

    Highlights: • Hybrid of Ni{sub 3}N/N-RGO catalysts are synthesized by using a two-step method. • The catalysts manifest superior catalytic activity towards the ORR. • High activities are attributed to enhanced electron density and synergistic effects. - Abstract: Novel nickel nitride (Ni{sub 3}N) nanoparticles supported on nitrogen-doped reduced graphene oxide nanosheets (N-RGOs) are synthesized via a facile strategy including hydrothermal and subsequent calcination methods, in which the reduced graphene oxide nanosheets (RGOs) are simultaneously doped with nitrogen species. By varying the content of the RGOs, a series of Ni{sub 3}N/N-RGO nanocomposites are obtained. The Ni{sub 3}N/N-RGO-30% hybrid nanocomposite exhibits superior catalytic activity towards oxygen reduction reaction (ORR) under alkaline condition (0.1 M KOH). Furthermore, this hybrid catalyst also demonstrates high tolerance to methanol poisoning. The RGO containing rich N confers the nanocomposite with large specific surface area and high electronic conduction ability, which can enhance the catalytic efficiency of Ni{sub 3}N nanoparticles. The enhanced catalytic activity can be attributed to the synergistic effect between Ni{sub 3}N and nitrogen doped reduced graphene oxide. In addition, the sufficient contact between Ni{sub 3}N nanoparticles and the N-RGO nanosheets simultaneously promotes good nanoparticle dispersion and provides a consecutive activity sites to accelerate electron transport continuously, which further enhance the ORR performance. The Ni{sub 3}N/N-RGO may be further an ideal candidate as efficient and inexpensive noble metal-free ORR electrocatalyst in fuel cells.

  10. Fabrication and characterization of nanostructured mechanically alloyed Pt-Co catalyst for oxygen gas-diffusion-electrode

    International Nuclear Information System (INIS)

    Pharkya, P.; Farhat, Z.; Czech, E.; Hawthorne, H.; Alfantazi, A.

    2003-01-01

    The use of PEM fuel cells depends largely upon the cost of materials, processing and fabrication. The cost of Pt catalyst is a significant cost of a fuel cell. Alternative low cost catalyst that promotes high rate of oxygen reduction is needed. To achieve this, a mechanochemical technique was employed to refine the catalyst layer structure (i.e. increasing the effective catalyst surface area) and reducing the amount of Pt used, by alloying with a cheaper element. An investigation is carried out to study the relationship between the new catalyst structure refinement, morphology, microstructure and its electrocatalytic behaviour. Nanostructured Pt, Co and Pt 0.2 5 Co 0.75 alloy was fabricated from high purity Pt (99.9%) and Co (99.5%) powders using a Laboratory Planetary Ball Mill 'Pulverisette 6'. Optimum milling conditions, that produce fine, uniform and mechanically alloyed microstructure, were determined during fabrication, by varying process parameters (i.e., rpm, milling time, ball to powder ratio, milling atmosphere, surface-agents and milling/cooling cycle). Mechanically induced chemical and physical reactions and thermal effects were monitored 'in-situ' using a GTM system, which recorded temperature and pressure changes during milling. The alloy catalysts were characterized using TEM, SEM, EDX, XRD and BET techniques. Electrochemical tests were carried out on prepared powders. Exchange currents were determined from a potentiodynamic polarization tests and used to compare relative electrocatalytic behaviour of the new catalyst. Structure/property relationships were discussed and conclusions were drawn on the production of improved low cost catalyst. (author)

  11. NO_x reduction and N_2O emissions in a diesel engine exhaust using Fe-zeolite and vanadium based SCR catalysts

    International Nuclear Information System (INIS)

    Cho, Chong Pyo; Pyo, Young Dug; Jang, Jin Young; Kim, Gang Chul; Shin, Young Jin

    2017-01-01

    Highlights: • NO_x reduction and N_2O emission of urea-SCR catalysts with the oxidation precatalysts were investigated. • Fe-zeolite and V-based catalysts were noticeably affected by the NO_2/NOx ratio. • Remarkable N_2O formation was observed only for the Fe-zeolite catalyst. - Abstract: Among various approaches used to comply with strict diesel engine exhaust regulations, there is increasing interest in urea based selective catalytic reduction (SCR) as a NO_x reduction technology, due to its high reduction and excellent fuel efficiencies. NO_x reduction by SCR catalysts is affected by variations in the NO_2/NO_x ratio, caused by oxidation catalysts such as the diesel oxidation catalyst (DOC) and diesel particulate filter (DPF) installed in diesel engines. Recently, it has been reported that the greenhouse gas (GHG) variant N_2O, which is a by-product of the NO_x conversion process in the after-treatment system, will be subject to regulation. Using a real diesel engine installed with DOC and DPF, the NO_x reduction and N_2O emission performances of commonly used Fe-zeolite and V_2O_5-WO_3/TiO_2 catalysts were investigated under various operating conditions. The exhaust of the diesel engine used in this study had a NO_2/NO_x ratio of over 50% for temperatures below 400 °C due to the oxidation catalysts, while the NO_2/NO_x ratio was significantly lower for temperatures above 400 °C. Under such conditions, it was found that the Fe-zeolite and V_2O_5-WO_3/TiO_2 catalysts were noticeably affected by the NO_2/NOx ratio and exhaust temperature. Although both catalysts showed satisfactory NO conversions, the V_2O_5-WO_3/TiO_2 catalyst showed decreasing NO_2 conversion rates between 250 °C and 320 °C. The V_2O_5-WO_3/TiO_2 catalyst exhibited NH_3 slip relatively frequently because of its low NH_3 storage capacity. For the Fe-zeolite catalyst, a significant increase in the amount of generated N_2O was observed for high NO_x conversion conditions due to side

  12. Preparation of nitrogen-doped graphitic carboncages as electrocatalyst for oxygen reduction reaction

    International Nuclear Information System (INIS)

    Yan, Jing; Meng, Hui; Yu, Wendan; Yuan, Xiaoli; Lin, Worong; Ouyang, Wenpeng; Yuan, Dingsheng

    2014-01-01

    Nitrogen-doped carbon nanomaterials have been attracted increasing research interests in lithium-O 2 and Zinc-O 2 batteries, ultracapacitors and fuel cells. Herein, nitrogen-doped graphitic carboncages (N-GCs) have been prepared by mesoporous Fe 2 O 3 as a catalyst and lysine as a nitrogen doped carbon source. Due to the catalysis of Fe 2 O 3 , the N-GCs have a high graphitization degree at a low temperature, which is detected by X-ray diffraction and Raman spectrometer. Simultaneously, the heteroatom nitrogen is in-situ doped into carbon network. Therefore, the excellent electrocatalysis performance for oxygen reduction reaction is expected. The electrochemical measurement indicates that The N-GCs for oxygen reduction reaction in O 2 -saturated 0.1 mol L −1 KOH show a four-electron transfer process and exhibit excellent electrocatalytic activity (E ORR = -0.05 V vs. Ag/AgCl) and good stability (i/i 0 = 90% at -0.35 V after 4000 s with a rotation rate of 1600 rpm)

  13. De-oxygenation of CO2 by using Hydrogen, Carbon and Methane over Alumina-Supported Catalysts

    Directory of Open Access Journals (Sweden)

    R.Y. Raskar

    2012-06-01

    Full Text Available The de-oxygenation of CO2 was explored by using hydrogen, methane, carbon etc., over alumina supported catalysts. The alumina-supported ruthenium, rhodium, platinum, molybdenum, vanadium and magnesium catalysts were first reduced in hydrogen atmosphere and then used for the de-oxygenation of CO2. Furthermore, experimental variables for the de-oxygenation of CO2 were temperature (range 50 to 650 oC, H2/CO2 mole ratios (1.0 to 5, and catalyst loading (0.5 to 10 wt %. During the de-oxygenation of CO2 with H2 or CH4 or carbon, conversion of CO2, selectivity to CO and CH4 were estimated. Moreover, 25.4 % conversion of CO2 by hydrogen was observed over 1 wt% Pt/Al2O3 catalyst at 650 oC with 33.8 % selectivity to CH4. However, 8.1 to 13.9 % conversion of CO2 was observed over 1 wt% Pt/Al2O3 catalyst at 550 oC in the presence of both H2 and CH4. Moreover, 42.8 to 79.4 % CH4 was converted with 9 to 23.1 % selectivity to CO. It was observed that the de-oxygenation of CO2 by hydrogen, carbon and methane produced carbon, CO and CH4. © 2012 BCREC UNDIP. All rights reservedReceived: 6th February 2012; Revised: 23rd April 2012; Accepted: 24th April 2012[How to Cite: R. Y. Raskar, K. B. Kale, A. G. Gaikwad. (2011. De-oxygenation of CO2 by using Hydrogen, Carbon and Methane over Alumina-Supported Catalysts. Bulletin of Chemical Reaction Engineering & Catalysis, 7 (1: 59-69.  doi:10.9767/bcrec.7.1.1631.59-69][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.7.1.1631.59-69 ] | View in 

  14. Ordered hierarchically porous carbon codoped with iron and nitrogen as electrocatalyst for the oxygen reduction reaction.

    Science.gov (United States)

    Deng, Chengwei; Zhong, Hexiang; Yao, Lan; Liu, Sisi; Xu, Zhuang; Zhang, Huamin

    2014-12-01

    N-doped carbon catalysts have attracted great attention as potential alternatives to expensive Pt-based catalysts used in fuel cells. Herein, an ordered hierarchically porous carbon codoped with N and Fe (Fe-NOHPC) is prepared by an evaporation-induced self-assembly process followed by carbonization under ammonia. The soft template and Fe species promote the formation of the porous structure and facilitate the oxygen reduction reaction (ORR).The catalyst possesses an ordered hierarchically porous structure with a large surface area (1172.5 m(2) g(-1) ) and pore volume of 1.03 cm(3) g(-1) . Compared to commercial 20% Pt/C, it exhibits better ORR catalytic activity and higher stability as well as higher methanol tolerance in an alkaline electrolyte, which demonstrates its potential use in fuel cells as a nonprecious cathode catalyst. The N configuration, Fe species, and pore structure of the catalysts are believed to correlate with its high catalytic activity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Iron (II) tetrakis(diaquaplatinum) octacarboxyphthalocyanine supported on multi-walled carbon nanotubes as effective electrocatalyst for oxygen reduction reaction in alkaline medium

    CSIR Research Space (South Africa)

    Mamuru, SA

    2010-11-01

    Full Text Available Oxygen reduction reaction (ORR) in alkaline medium at iron (II) tetrakis (diaquaplatinum) octacarboxyphthalocyanine (PtFeOCPc) catalyst supported on multi-walled carbon nanotubes (MWCNTs) has been described. The ORR followed the direct 4-electron...

  16. Nitrogen and Fluorine-Codoped Carbon Nanowire Aerogels as Metal-Free Electrocatalysts for Oxygen Reduction Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Shaofang [School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164 USA; Zhu, Chengzhou [School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164 USA; Song, Junhua [School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164 USA; Engelhard, Mark H. [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA 99352 USA; Xiao, Biwei [Energy and Environmental Directory, Pacific Northwest National Laboratory, Richland WA 99352 USA; Du, Dan [School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164 USA; Lin, Yuehe [School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164 USA

    2017-07-11

    The development of active, durable, and low-cost catalysts to replace noble metal-based materials is highly desirable to promote the sluggish oxygen reduction reaction in fuel cells. Herein, nitrogen and fluorine-codoped three-dimensional carbon nanowire aerogels, composed of interconnected carbon nanowires, were synthesized for the first time by a hydrothermal carbonization process. Owing to their porous nanostructures and heteroatom-doping, the as-prepared carbon nanowire aerogels, with optimized composition, present excellent electrocatalytic activity that is comparable to commercial Pt/C. Remarkably, the aerogels also exhibit superior stability and methanol tolerance. This synthesis procedure paves a new way to design novel heteroatomdoped catalysts.

  17. An Oxygen Reduction Study of Graphene-Based Nanomaterials of Different Origin

    Directory of Open Access Journals (Sweden)

    Jaana Lilloja

    2016-07-01

    Full Text Available The aim of this study is to compare the electrochemical behaviour of graphene-based materials of different origin, e.g., commercially available graphene nanosheets from two producers and reduced graphene oxide (rGO towards the oxygen reduction reaction (ORR using linear sweep voltammetry, rotating disc electrode and rotating ring-disc electrode methods. We also investigate the effect of catalyst ink preparation using two different solvents (2-propanol containing OH− ionomer or N,N-dimethylformamide on the ORR. The graphene-based materials are characterised by scanning electron microscopy, transmission electron microscopy, Raman spectroscopy and X-ray photoelectron spectroscopy. Clearly, the catalytic effect depends on the origin of graphene material and, interestingly, the electrocatalytic activity of the catalyst material for ORR is lower when using the OH− ionomer in electrode modification. The graphene electrodes fabricated with commercial graphene show better ORR performance than rGO in alkaline solution.

  18. Reduce NOx Emissions by Adsorber-Reduction Catalyst on Lean Burn Gasoline Engine

    Directory of Open Access Journals (Sweden)

    Dongpeng Yue

    2013-09-01

    Full Text Available The effect of a new catalyst system composed of traditional three way catalyst converter and adsorber-reduction catalysis converter on the emission characteristics and BSFC (Breake Specific Fuel Consumption- BSFCof a lean burn gasoline engine operated were investigated in this paper under different schemes of catalyst converter arrangement and different speeds and loads. The results show that the position of Three Way Catalyst is before the NOx adsorber Catalyst was the best scheme of catalyst converter arrangement. Which has the highest converter efficiency of reduction NOx emission in lean burn gasoline engine. The effects of speed on the exhaust emission and BSFC were also related to the ratio of lean burn time to rich burn time and the absolute value of both time of the adsorber-reduction catalyst converter. The load of the engine was the main influential factor to the exhaust emission characteristics and BSFC of lean burn gasoline engine, and the more load of the engine was, the more NOx emission , the less NOx conversion rate (CNOx and the better BSFC were.

  19. Core/shell AgNi/PtAgNi nanoparticles as methanol-tolerant oxygen reduction electrocatalysts

    International Nuclear Information System (INIS)

    Wu, Dengfeng; Cheng, Daojian

    2015-01-01

    A core/shell AgNi/PtAgNi nanoparticle (NP) was synthesized via a new seed-mediated growth method in organic solvent medium. The as-synthesized AgNi/PtAgNiNP exhibits an AgNi core coated with PtAgNi shell, which was confirmed by transmission electron microscopy (TEM), ultraviolet–visible absorption spectroscopy and X-ray Photoelectron Spectroscopy (XPS). The AgNi/PtAgNiNPs/C catalyst possesses higher oxygen reduction reaction (ORR) activity and better durability compared with the commercial Pt/C catalyst. It is found that the ORR polarization curve of the AgNi/PtAgNiNPs/C catalyst shows an onset potential of 0.91 V vs. RHE, which is superior to the commercial Pt/C (0.88 V vs. RHE). In addition, the AgNi/PtAgNiNPs/C catalyst shows much better durability than the commercial Pt/C catalyst. More interestingly, the AgNi/PtAgNiNPs/C catalyst displays much higher methanol tolerance than the commercial Pt/C catalyst in 0.1 M KOH solution in the presence of 0.5 M methanol. Our results show that core/shell AgNi/PtAgNiNPs possess selective activity for ORR even in the presence of methanol, showing potential application as methanol-tolerant cathode catalysts in direct methanol fuel cells.

  20. A Robust Pyridyl-NHC-Ligated Rhenium Photocatalyst for CO2 Reduction in the Presence of Water and Oxygen

    Directory of Open Access Journals (Sweden)

    Casey A. Carpenter

    2018-01-01

    Full Text Available Re(pyNHC-PhCF3(CO3Br is a highly active photocatalyst for CO2 reduction. The PhCF3 derivative was previously empirically shown to be a robust catalyst. Here, the role of the PhCF3 group is probed computationally and the robust nature of this catalyst is analyzed with regard to the presence of water and oxygen introduced in controlled amounts during the photocatalytic reduction of CO2 to CO with visible light. This complex was found to work well from 0–1% water concentration reproducibly; however, trace amounts of water were required for benchmark Re(bpy(CO3Cl to give reproducible reactivity. When ambient air is added to the reaction mixture, the NHC complex was found to retain substantial performance (~50% of optimized reactivity at up to 40% ambient atmosphere and 60% CO2 while the Re(bpy(CO3Cl complex was found to give a dramatically reduced CO2 reduction reactivity upon introduction of ambient atmosphere. Through the use of time-correlated single photon counting studies and prior electrochemical results, we reasoned that this enhanced catalyst resilience is due to a mechanistic difference between the NHC- and bpy-based catalysts. These results highlight an important feature of this NHC-ligated catalyst: substantially enhanced stability toward common reaction contaminates.

  1. Oxygen reduction and methanol oxidation behaviour of SiC based Pt nanocatalysts for proton exchange membrane fuel cells

    DEFF Research Database (Denmark)

    Dhiman, Rajnish; Stamatin, Serban Nicolae; Andersen, Shuang Ma

    2013-01-01

    for carbon based commercial catalyst, when HClO4 is used as electrolyte. The Pt (110) & Pt (111) facets are shown to have higher electrochemical activities than Pt (100) facets. To the best of our knowledge, methanol oxidation studies and the comparison of peak deconvolutions of the H desorption region in CV...... and methanol oxidation reactions of SiC supported catalysts and measured them against commercially available carbon based catalysts. The deconvolution of the hydrogen desorption signals in CV cycles shows a higher contribution of Pt (110) & Pt (111) peaks compared to Pt (100) for SiC based supports than...... cyclic studies are here reported for the first time for SiC based catalysts. The reaction kinetics for the oxygen reduction and for methanol oxidation with Pt/SiC are observed to be similar to the carbon based catalysts. The SiC based catalyst shows a higher specific surface activity than BASF (Pt...

  2. Electronic coupling induced high performance of N, S-codoped graphene supported CoS2 nanoparticles for catalytic reduction and evolution of oxygen

    Science.gov (United States)

    Chen, Bohong; Jiang, Zhongqing; Zhou, Lingshan; Deng, Binglu; Jiang, Zhong-Jie; Huang, Jianlin; Liu, Meilin

    2018-06-01

    A simple synthetic method is developed for the synthesis of CoS2/N, S-codoped graphene. The result shows the existence of a strong electronic coupling between CoS2 and N, S-codoped graphene. The pyrrolic and pyridinic type nitrogen and S in the form of C-S-C in N, S-codoped graphene are found to be the anchoring sites of the CoS2 nanoparticles. As a bifunctional catalyst, the CoS2/N, S-codoped graphene exhibits an oxygen reduction onset potential of 0.963 V vs. RHE and delivers an oxygen evolution overpotential of 393 mV at the current density of 10 mA cm-2. Its oxygen reduction and evolution catalytic activities are comparable to those of the Pt/C and the state-of-art RuO2/C, respectively. Most impressively, the CoS2/N, S-codoped graphene exhibits a potential gap of 771 mV. This value is lower than those of most bifuntional catalysts reported, clearly indicating its potential use as the bifunctional catalyst to replace the noble-metal based catalysts for practical applications. Additionally, our results also suggest a great importance to prepare a single pure phase CoS2 in improving the catalytic bifunctionality of the CoS2/N, S-codoped graphene. The primary Zn-air battery with CoS2/N, S-codoped graphene shows a higher discharge peak power density than that with Pt/C.

  3. High Performance Fe- and N- Doped Carbon Catalyst with Graphene Structure for Oxygen Reduction

    Science.gov (United States)

    Peng, Hongliang; Mo, Zaiyong; Liao, Shijun; Liang, Huagen; Yang, Lijun; Luo, Fan; Song, Huiyu; Zhong, Yiliang; Zhang, Bingqing

    2013-05-01

    Proton exchange membrane fuel cells are promising candidates for a clean and efficient energy conversion in the future, the development of carbon based inexpensive non-precious metal ORR catalyst has becoming one of the most attractive topics in fuel cell field. Herein we report a Fe- and N- doped carbon catalyst Fe-PANI/C-Mela with graphene structure and the surface area up to 702 m2 g-1. In 0.1 M HClO4 electrolyte, the ORR onset potential for the catalyst is high up to 0.98 V, and the half-wave potential is only 60 mV less than that of the Pt/C catalyst (Loadings: 51 μg Pt cm-2). The catalyst shows high stability after 10,000 cyclic voltammetry cycles. A membrane electrode assembly made with the catalyst as a cathode is tested in a H2-air single cell, the maximum power density reached ~0.33 W cm2 at 0.47 V.

  4. Alkali resistivity of Cu based selective catalytic reduction catalysts

    DEFF Research Database (Denmark)

    Putluru, Siva Sankar Reddy; Jensen, Anker Degn; Riisager, Anders

    2012-01-01

    The deactivation of V2O5–WO3–TiO2, Cu–HZSM5 and Cu–HMOR plate type monolithic catalysts was investigated when exposed to KCl aerosols in a bench-scale reactor. Fresh and exposed catalysts were characterized by selective catalytic reduction (SCR) activity measurements, scanning electron microscope......–energy dispersive X-ray spectroscopy (SEM–EDX) and NH3-temperature programmed desorption (NH3-TPD). 95% deactivation was observed for the V2O5–WO3–TiO2 catalyst, while the Cu–HZSM5 and Cu–HMOR catalysts deactivated only 58% and 48%, respectively, after 1200 h KCl exposure. SEM analysis of the KCl aerosol exposed...... catalysts revealed that the potassium salt not only deposited on the catalyst surface, but also penetrated into the catalyst wall. Thus, the K/M ratio (M = V or Cu) was high on V2O5–WO3–TiO2 catalyst and comparatively less on Cu–HZSM5 and Cu–HMOR catalysts. NH3-TPD revealed that the KCl exposed Cu–HZSM5...

  5. Reduction of a Ni/Spinel Catalyst for Methane Reforming

    DEFF Research Database (Denmark)

    Kehres, Jan; Andreasen, Jens Wenzel; Fløystad, Jostein Bø

    2015-01-01

    microscopy (HRTEM) was performed on the fresh catalyst sample. The Ni particles in the fresh catalyst sample were observed to exhibit a Ni/NiO core/shell structure. A decrease of the Ni lattice parameter is observed during the reduction in a temperature interval from 413 – 453 K, which can be related...

  6. Spherical α-MnO2 Supported on N-KB as Efficient Electrocatalyst for Oxygen Reduction in Al–Air Battery

    Directory of Open Access Journals (Sweden)

    Kui Chen

    2018-04-01

    Full Text Available Traditional noble metal platinum (Pt is regarded as a bifunctional oxygen catalyst due to its highly catalytic efficiency, but its commercial availability and application is often restricted by high cost. Herein, a cheap and effective catalyst mixed with α-MnO2 and nitrogen-doped Ketjenblack (N-KB (denoted as MnO2-SM150-0.5 is examined as a potential electrocatalyst in oxygen reduction reactions (ORR and oxygen evolution reactions (OER. This α-MnO2 is prepared by redox reaction between K2S2O8 and MnSO4 in acid conditions with a facile hydrothermal process (named the SM method. As a result, MnO2-SM150-0.5 exhibits a good catalytic performance for ORR in alkaline solution, and this result is comparable to a Pt/C catalyst. Moreover, this catalyst also shows superior durability and methanol tolerance compared with a Pt/C catalyst. It also displays a discharge voltage (~1.28 V at a discharge density of 50 mA cm−2 in homemade Al–air batteries that is higher than commercial 20% Pt/C (~1.19 V. The superior electrocatalytic performance of MnO2-SM150-0.5 could be attributed to its higher Mn3+/Mn4+ ratio and the synergistic effect between MnO2 and the nitrogen-doped KB. This study provides a novel strategy for the preparation of an MnO2-based composite electrocatalyst.

  7. Thermal Behavior and Hydrogen Production of Methanol Autothermal Reforming Performed Using Oxygen Enrichment and Cu/ZnO/Al2O3/Cr2O3/CeO2 Catalyst

    Directory of Open Access Journals (Sweden)

    Donny Lesmana

    2015-07-01

    Full Text Available A fixed-bed reactor designed for the autothermal reforming (ATR of methanol under adiabatic conditions was constructed to experimentally determine the profile of temperature and catalyst activity generated using the Cu/ZnO/Al2O3/Cr2O3/CeO2 catalyst. The effect of oxygen enrichment in this experiment was investigated, and the experimental results showed that an increase in oxygen concentration correlated with an increase in the temperature of the catalytic bed; by contrast, this increase in oxygen concentration resulted in a reduction of the startup time of the catalyst. Moreover, the reaction temperature was determined to vary with the position within the catalytic fixed bed. © 2015 BCREC UNDIP. All rights reservedReceived: 29th August 2014; Revised: 19th March 2015; Accepted: 19th March 2015

  8. Platinum Iron Intermetallic Nanoparticles Supported on Carbon Formed In Situ by High-Pressure Pyrolysis for Efficient Oxygen Reduction

    DEFF Research Database (Denmark)

    Hu, Yang; Jensen, Jens Oluf; Zhang, Wei

    2016-01-01

    Carbon-supported PtFe alloy catalysts are synthesized by the one-step, high-temperature pyrolysis of Pt, Fe, and C precursors. As a result of the high temperature, the formed PtFe nanoparticles possess highly ordered, face-centered tetragonal, intermetallic structures with a mean size of ≈11.8 nm....... At 0.9 V versus the reversible hydrogen electrode, the PtFe nanoparticles show a 6.8 times higher specific activity than the reference Pt/C catalyst towards the oxygen reduction reaction (ORR) as well as excellent stability, most likely because of the durable intermetallic structure and the preleaching...... treatment of the catalyst. During these preliminary syntheses, we found that a portion of the PtFe nanoparticles is buried in the in situ formed carbon phase, which limits Pt utilization in the catalyst and results in a mass-specific activity equivalent to the commercial Pt/C catalyst. Moreover...

  9. Electro catalyst of platinum prepared by CVD for the oxygen reduction reaction

    International Nuclear Information System (INIS)

    Garcia C, M.A.; Fernandez V, S.M.; Vargas G, J.R.

    2004-01-01

    In this work it is reported the preparation and characterization of platinum films obtained by the technique of chemical vapor deposition at low pressure, better well-known as LPCVD for their initials in English (Low Pressure Chemical Vapor Deposition). The technique has several industrial applications and in this work it is explored their possible use to prepare applicable electrocatalysts in fuel cells. The films were characterized by XRD, SEM, EDS and they were proven for to determine their acting in the Oxygen reduction reaction (Orr) in sulfuric acid 0.5 M, the results show that the material presents good activity for the reaction in study. (Author)

  10. Experimental comparison of biomass chars with other catalysts for tar reduction

    NARCIS (Netherlands)

    Abu El-Rub, Ziad; Bramer, Eduard A.; Brem, Gerrit

    2008-01-01

    In this paper the potential of using biomass char as a catalyst for tar reduction is discussed. Biomass char is compared with other known catalysts used for tar conversion. Model tar compounds, phenol and naphthalene, were used to test char and other catalysts. Tests were carried out in a fixed bed

  11. Enhanced Activity and Selectivity of Carbon Nanofiber Supported Pd Catalysts for Nitrite Reduction

    KAUST Repository

    Shuai, Danmeng; Choe, Jong Kwon; Shapley, John R.; Werth, Charles J.

    2012-01-01

    Pd-based catalyst treatment represents an emerging technology that shows promise to remove nitrate and nitrite from drinking water. In this work we use vapor-grown carbon nanofiber (CNF) supports in order to explore the effects of Pd nanoparticle size and interior versus exterior loading on nitrite reduction activity and selectivity (i.e., dinitrogen over ammonia production). Results show that nitrite reduction activity increases by 3.1-fold and selectivity decreases by 8.0-fold, with decreasing Pd nanoparticle size from 1.4 to 9.6 nm. Both activity and selectivity are not significantly influenced by Pd interior versus exterior CNF loading. Consequently, turnover frequencies (TOFs) among all CNF catalysts are similar, suggesting nitrite reduction is not sensitive to Pd location on CNFs nor Pd structure. CNF-based catalysts compare favorably to conventional Pd catalysts (i.e., Pd on activated carbon or alumina) with respect to nitrite reduction activity and selectivity, and they maintain activity over multiple reduction cycles. Hence, our results suggest new insights that an optimum Pd nanoparticle size on CNFs balances faster kinetics with lower ammonia production, that catalysts can be tailored at the nanoscale to improve catalytic performance for nitrite, and that CNFs hold promise as highly effective catalyst supports in drinking water treatment. © 2012 American Chemical Society.

  12. Enhanced Activity and Selectivity of Carbon Nanofiber Supported Pd Catalysts for Nitrite Reduction

    KAUST Repository

    Shuai, Danmeng

    2012-03-06

    Pd-based catalyst treatment represents an emerging technology that shows promise to remove nitrate and nitrite from drinking water. In this work we use vapor-grown carbon nanofiber (CNF) supports in order to explore the effects of Pd nanoparticle size and interior versus exterior loading on nitrite reduction activity and selectivity (i.e., dinitrogen over ammonia production). Results show that nitrite reduction activity increases by 3.1-fold and selectivity decreases by 8.0-fold, with decreasing Pd nanoparticle size from 1.4 to 9.6 nm. Both activity and selectivity are not significantly influenced by Pd interior versus exterior CNF loading. Consequently, turnover frequencies (TOFs) among all CNF catalysts are similar, suggesting nitrite reduction is not sensitive to Pd location on CNFs nor Pd structure. CNF-based catalysts compare favorably to conventional Pd catalysts (i.e., Pd on activated carbon or alumina) with respect to nitrite reduction activity and selectivity, and they maintain activity over multiple reduction cycles. Hence, our results suggest new insights that an optimum Pd nanoparticle size on CNFs balances faster kinetics with lower ammonia production, that catalysts can be tailored at the nanoscale to improve catalytic performance for nitrite, and that CNFs hold promise as highly effective catalyst supports in drinking water treatment. © 2012 American Chemical Society.

  13. Strontium cobaltite oxygen sponge catalyst and methods of use

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ho Nyung; Jeen, Hyoungjeen; Choi, Woo Seok; Biegalski, Michael; Folkman, Chad M.; Tung, I-Cheng; Fong, Dillon D.; Freeland, John W.; Shin, Dongwon; Ohta, Hiromichi; Chisholm, Matthew F.

    2017-01-24

    Rapid, reversible redox activity may be accomplished at significantly reduced temperatures, as low as about 200.degree. C., from epitaxially stabilized, oxygen vacancy ordered SrCoO.sub.2.5 and thermodynamically unfavorable perovskite SrCoO.sub.3-.delta.. The fast, low temperature redox activity in SrCoO.sub.3-.delta. may be attributed to a small Gibbs free energy difference between the two topotactic phases. Epitaxially stabilized thin films of strontium cobaltite provide a catalyst adapted to rapidly transition between oxidation states at substantially low temperatures. Methods of transitioning a strontium cobaltite catalyst from a first oxidation state to a second oxidation state are described.

  14. Optimization of Ru{sub x}Se{sub y} electrocatalyst loading for oxygen reduction in a PEMFC

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Huerta, R.G. [Instituto Politecnico Nacional, Laboratorio de Electroquimica y Corrosion ESIQIE, UPALP, 07738 Mexico, D.F., Mexico (Mexico); Guzman-Guzman, A.; Solorza-Feria, O. [Depto. Quimica, Centro de Investigacion y de Estudios Avanzados del IPN, A. Postal 14-740, 07360 Mexico D.F., Mexico (Mexico)

    2010-11-15

    The synthesis, characterization and optimization of Ru{sub x}Se{sub y} catalyst loading as a cathode electrode for a single polymer electrolyte membrane fuel cell, PEMFC were investigated. Ru{sub x}Se{sub y} catalyst was synthesized via a decarbonylation of Ru{sub 3}(CO){sub 12} and elemental selenium in 1,6-hexanediol under refluxing conditions for 2 h. The powder electrocatalyst was characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), and examined for the oxygen reduction reaction (ORR) in 0.5M H{sub 2}SO{sub 4} by rotating disk electrode (RDE) and in membrane-electrode assemblies, MEAs for a single PEMFC. Results indicate the formation of agglomerates of crystalline particles with nanometric size embedded in an amorphous phase. The catalyst exhibited high current density and lower overpotential for the ORR compared to that of Ru{sub x} cluster catalyst. Dispersed Ru{sub x}Se{sub y} catalyst loading on Vulcan carbon was optimized as a cathode electrode by performance testing in a single H{sub 2}-O{sub 2} fuel cell. (author)

  15. 2D Ultrathin Core-shell Pd@Ptmonolayer Nanosheets: Defect-Mediated Thin Film Growth and Enhanced Oxygen Reduction Performance

    KAUST Repository

    Wang, Wenxin

    2015-06-16

    An operational strategy for the synthesis of atomically smooth Pt skin by a defect-mediated thin film growth method is reported. Extended ultrathin core-shell structured Pd@Ptmonolayer nanosheets (thickness below 5 nm) exhibit a seven-fold enhancement in mass-activity and surprisingly good durability toward oxygen reduction reaction as compared with the commercial Pt/C catalyst.

  16. 2D Ultrathin Core-shell Pd@Ptmonolayer Nanosheets: Defect-Mediated Thin Film Growth and Enhanced Oxygen Reduction Performance

    KAUST Repository

    Wang, Wenxin; Zhao, Yunfeng; Ding, Yi

    2015-01-01

    An operational strategy for the synthesis of atomically smooth Pt skin by a defect-mediated thin film growth method is reported. Extended ultrathin core-shell structured Pd@Ptmonolayer nanosheets (thickness below 5 nm) exhibit a seven-fold enhancement in mass-activity and surprisingly good durability toward oxygen reduction reaction as compared with the commercial Pt/C catalyst.

  17. Highly active Pd–In/mesoporous alumina catalyst for nitrate reduction

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Zhenwei; Zhang, Yonggang; Li, Deyi [State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092 (China); Werth, Charles J. [Civil, Architectural and Environmental Engineering, University of Texas at Austin, 301 East Dean Keeton St., Stop C1786, Austin, TX 78712 (United States); Zhang, Yalei, E-mail: zhangyalei2003@163.com [State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092 (China); Zhou, Xuefei, E-mail: zhouxuefei@tongji.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092 (China)

    2015-04-09

    Highlights: • Pd–In nanoparticles (6–7 nm) uniformly form in the mesopores of alumina (4 nm). • Pd–In nanoparticles aggregation is prevented during the synthesis process. • The reduction rate of nitrate is efficient by using the obtained catalyst. • The selectivity toward N{sub 2} is ideal by using the obtained catalyst. - Abstract: The catalytic reduction of nitrate is a promising technology for groundwater purification because it transforms nitrate into nitrogen and water. Recent studies have mainly focused on new catalysts with higher activities for the reduction of nitrate. Consequently, metal nanoparticles supported on mesoporous metal oxides have become a major research direction. However, the complex surface chemistry and porous structures of mesoporous metal oxides lead to a non-uniform distribution of metal nanoparticles, thereby resulting in a low catalytic efficiency. In this paper, a method for synthesizing the sustainable nitrate reduction catalyst Pd–In/Al{sub 2}O{sub 3} with a dimensional structure is introduced. The TEM results indicated that Pd and In nanoparticles could efficiently disperse into the mesopores of the alumina. At room temperature in CO{sub 2}-buffered water and under continuous H{sub 2} as the electron donor, the synthesized material (4.9 wt% Pd) was the most active at a Pd–In ratio of 4, with a first-order rate constant (k{sub obs} = 0.241 L min{sup −1} g{sub cata}{sup −1}) that was 1.3× higher than that of conventional Pd–In/Al{sub 2}O{sub 3} (5 wt% Pd; 0.19 L min{sup −1} g{sub cata}{sup −1}). The Pd–In/mesoporous alumina is a promising catalyst for improving the catalytic reduction of nitrate.

  18. Pt/Cr and Pt/Ni catalysts for oxygen reduction reaction: to alloy or not to alloy?

    Science.gov (United States)

    Escaño, Mary Clare; Gyenge, Elod; Nakanishi, Hiroshi; Kasai, Hideaki

    2011-04-01

    Bimetallic systems such as Pt-based alloys or non-alloys have exhibited interesting catalytic properties but pose a major challenge of not knowing a priori how the electronic and chemical properties will be modified relative to the parent metals. In this work, we present the origin of the changes in the reactivity of Pt/Cr and Pt/Ni catalysts, which have been of wide interest in fuel cell research. Using spin-polarized density functional theory calculations, we have shown that the modification of Pt surface reactivity in Pt/Ni is purely of geometric origin (strain). We have also found that the Pt-Ni bonding is very weak, which explains the observed instability of Pt-Ni catalysts under electrochemical measurements. On the other hand, Pt/Cr systems are governed by strong ligand effect (metal-metal interaction), which explains the experimentally observed reactivity dependence on the relative composition of the alloying components. The general characteristics of the potential energy curves for O2 dissociative adsorption on the bimetallic systems and the pure Pt clarify why the d-band center still works for Pt/Cr despite the strong Pt-Cr bonding and high spin polarization of Pt d-states. On the basis of the above clarifications, viable Pt-Cr and Pt-Ni structures, which involve nano-sized alloys and non-alloy bulk catalyst, which may strike higher than the currently observed oxidation reduction reaction activity are proposed.

  19. Particle size dependence on oxygen reduction reaction activity of electrodeposited TaOx catalysts in acidic media

    KAUST Repository

    Seo, J.; Cha, Dong Kyu; Takanabe, Kazuhiro; Kubota, J.; Domen, K.

    2013-01-01

    The size dependence of the oxygen reduction reaction activity was studied for TaOx nanoparticles electrodeposited on carbon black for application to polymer electrolyte fuel cells (PEFCs). Compared with a commercial Ta2O5 material, the ultrafine

  20. Communication: Enhanced oxygen reduction reaction and its underlying mechanism in Pd-Ir-Co trimetallic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ham, Hyung Chul; Hwang, Gyeong S., E-mail: gshwang@che.utexas.edu [Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712 (United States); Manogaran, Dhivya [Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, Texas 78712 (United States); Lee, Kang Hee; Jin, Seon-ah; You, Dae Jong; Pak, Chanho [Energy Lab, Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., Suwon (Korea, Republic of); Kwon, Kyungjung [Department of Energy and Mineral Resources Engineering, Sejong University, Seoul 143-747 (Korea, Republic of)

    2013-11-28

    Based on a combined density functional theory and experimental study, we present that the electrochemical activity of Pd{sub 3}Co alloy catalysts toward oxygen reduction reaction (ORR) can be enhanced by adding a small amount of Ir. While Ir tends to favorably exist in the subsurface layers, the underlying Ir atoms are found to cause a substantial modification in the surface electronic structure. As a consequence, we find that the activation barriers of O/OH hydrogenation reactions are noticeably lowered, which would be mainly responsible for the enhanced ORR activity. Furthermore, our study suggests that the presence of Ir in the near-surface region can suppress Co out-diffusion from the Pd{sub 3}Co substrate, thereby improving the durability of Pd-Ir-Co catalysts. We also discuss the relative roles played by Ir and Co in enhancing the ORR activity relative to monometallic Pd catalysts.

  1. Communication: Enhanced oxygen reduction reaction and its underlying mechanism in Pd-Ir-Co trimetallic alloys

    International Nuclear Information System (INIS)

    Ham, Hyung Chul; Hwang, Gyeong S.; Manogaran, Dhivya; Lee, Kang Hee; Jin, Seon-ah; You, Dae Jong; Pak, Chanho; Kwon, Kyungjung

    2013-01-01

    Based on a combined density functional theory and experimental study, we present that the electrochemical activity of Pd 3 Co alloy catalysts toward oxygen reduction reaction (ORR) can be enhanced by adding a small amount of Ir. While Ir tends to favorably exist in the subsurface layers, the underlying Ir atoms are found to cause a substantial modification in the surface electronic structure. As a consequence, we find that the activation barriers of O/OH hydrogenation reactions are noticeably lowered, which would be mainly responsible for the enhanced ORR activity. Furthermore, our study suggests that the presence of Ir in the near-surface region can suppress Co out-diffusion from the Pd 3 Co substrate, thereby improving the durability of Pd-Ir-Co catalysts. We also discuss the relative roles played by Ir and Co in enhancing the ORR activity relative to monometallic Pd catalysts

  2. Selective conversion of synthesis gas into C2-oxygenated products using mixed-metal homogeneous catalysts

    International Nuclear Information System (INIS)

    Whyman, R.

    1986-01-01

    A feature which is a key to any wider utilization of chemistry based on synthesis gas is an understanding of, and more particularly, an ability to control, those factors which determine the selectivity of the C 1 to C 2 transformation during the hydrogenation of carbon monoxide. With the exception of the rhodium-catalyzed conversion of carbon monoxide and hydrogen into ethylene glycol and methanol, in which molar ethylene glycol/methanol selectivities of ca 2/1 may be achieved, other catalyst systems containing metals such as cobalt or ruthenium exhibit only poor selectivities to ethylene glycol. The initial studies in this area were based on the reasoning that, since the reduction of carbon monoxide to C 2 products is a complex, multi-step process, the use of appropriate combinations of metals could generate synergistic effects which might prove more effective (in terms of both catalytic activity and selectivity) than simply the sum of the individual metal components. In particular, the concept of the combination of a good hydrogenation catalyst with a good carbonylation, or ''CO insertion'', catalyst seemed particularly germane. As a result of this approach the authors discovered an unprecedented example of the effect of catalyst promoters, particularly in the enhancement of C 2 /C 1 selectivity, and one which has led to the development of composite mixed-metal homogeneous catalyst systems for the conversion of CO/H 2 into C 2 -oxygenate esters

  3. Heterojunction-Assisted Co3 S4 @Co3 O4 Core-Shell Octahedrons for Supercapacitors and Both Oxygen and Carbon Dioxide Reduction Reactions.

    Science.gov (United States)

    Yan, Yibo; Li, Kaixin; Chen, Xiaoping; Yang, Yanhui; Lee, Jong-Min

    2017-12-01

    Expedition of electron transfer efficiency and optimization of surface reactant adsorption products desorption processes are two main challenges for developing non-noble catalysts in the oxygen reduction reaction (ORR) and CO 2 reduction reaction (CRR). A heterojunction prototype on Co 3 S 4 @Co 3 O 4 core-shell octahedron structure is established via hydrothermal lattice anion exchange protocol to implement the electroreduction of oxygen and carbon dioxide with high performance. The synergistic bifunctional catalyst consists of p-type Co 3 O 4 core and n-type Co 3 S 4 shell, which afford high surface electron density along with high capacitance without sacrificing mechanical robustness. A four electron ORR process, identical to the Pt catalyzed ORR, is validated using the core-shell octahedron catalyst. The synergistic interaction between cobalt sulfide and cobalt oxide bicatalyst reduces the activation energy to convert CO 2 into adsorbed intermediates and hereby enables CRR to run at a low overpotential, with formate as the highly selective main product at a high faraday efficiency of 85.3%. The remarkable performance can be ascribed to the synergistic coupling effect of the structured co-catalysts; heterojunction structure expedites the electron transfer efficiency and optimizes surface reactant adsorption product desorption processes, which also provide theoretical and pragmatic guideline for catalyst development and mechanism explorations. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Catalytic reduction of NOx with H2/CO/CH4 over PdMOR catalysts

    International Nuclear Information System (INIS)

    Pieterse, Johannis A.Z.; Booneveld, Saskia

    2007-01-01

    Conversion of NO x with reducing agents H 2 , CO and CH 4 , with and without O 2 , H 2 O, and CO 2 were studied with catalysts based on MOR zeolite loaded with palladium and cerium. The catalysts reached high NO x to N 2 conversion with H 2 and CO (>90% conversion and N 2 selectivity) range under lean conditions. The formation of N 2 O is absent in the presence of both H 2 and CO together with oxygen in the feed, which will be the case in lean engine exhaust. PdMOR shows synergic co-operation between H 2 and CO at 450-500 K. The positive effect of cerium is significant in the case of H 2 and CH 4 reducing agent but is less obvious with H 2 /CO mixture and under lean conditions. Cerium lowers the reducibility of Pd species in the zeolite micropores. The catalysts showed excellent stability at temperatures up to 673 K in a feed with 2500 ppm CH 4 , 500 ppm NO, 5% O 2 , 10% H 2 O (0-1% H 2 ), N 2 balance but deactivation is noticed at higher temperatures. Combining results of the present study with those of previous studies it shows that the PdMOR-based catalysts are good catalysts for NO x reduction with H 2 , CO, hydrocarbons, alcohols and aldehydes under lean conditions at temperatures up to 673 K. (author)

  5. Durability of template-free Fe-N-C foams for electrochemical oxygen reduction in alkaline solution

    Science.gov (United States)

    Mufundirwa, Albert; Harrington, George F.; Smid, Břetislav; Cunning, Benjamin V.; Sasaki, Kazunari; Lyth, Stephen M.

    2018-01-01

    Due to the high cost and limited availability of platinum, the development of non-platinum-group metals (non-PGM) catalysts is of paramount importance. A promising alternative to Pt are Fe-N-C-based materials. Here we present the synthesis, characterization and electrochemistry of a template-free nitrogen-doped carbon foam, impregnated with iron. This low-cost and gram-scale method results in materials with micron-scale pore size and large surface area (1600 m2g-1). When applied as an oxygen reduction reaction (ORR) electrocatalyst in alkaline solution, the Fe-N-C foams display extremely high initial activity, slightly out-performing commercially available non-PGM catalysts (NCP-2000, Pajarito Powder). The load-cycle durability in alkaline solution is investigated, and the performance steadily degrades over 60,000 potential cycles, whilst the commercial catalyst is remarkably stable. The post-operation catalyst microstructure is elucidated by transmission electron microscopy (TEM), to provide insight into the degradation processes. The resulting images suggest that potential cycling leads to leaching of atomically dispersed Fe-N2/4 sites in all the catalysts, whereas encapsulated iron nanoparticles are protected.

  6. Three-dimensional iron, nitrogen-doped carbon foams as efficient electrocatalysts for oxygen reduction reaction in alkaline solution

    International Nuclear Information System (INIS)

    Ma, Yanjiao; Wang, Hui; Feng, Hanqing; Ji, Shan; Mao, Xuefeng; Wang, Rongfang

    2014-01-01

    Graphical abstract: Three-dimentional Fe, N-doped carbon foams prepared by two steps exhibited comparable catalytic activity for oxygen reduction reaction to commercial Pt/C due to the unique structure and the synergistic effect of Fe and N atoms. - Highlights: • Three-dimensional Fe, N-doped carbon foam (3D-CF) were prepared. • 3D-CF exhibits comparable catalytic activity to Pt/C for oxygen reduction reaction. • The enhanced activity of 3D-CF results of its unique structure. - Abstract: Three-dimensional (3D) Fe, N-doped carbon foams (3D-CF) as efficient cathode catalysts for the oxygen reduction reaction (ORR) in alkaline solution are reported. The 3D-CF exhibit interconnected hierarchical pore structure. In addition, Fe, N-doped carbon without porous strucuture (Fe-N-C) and 3D N-doped carbon without Fe (3D-CF’) are prepared to verify the electrocatalytic activity of 3D-CF. The electrocatalytic performance of as-prepared 3D-CF for ORR shows that the onset potential on 3D-CF electrode positively shifts about 41 mV than those of 3D-CF’ and Fe-N-C respectively. In addition, the onset potential on 3D-CF electrode for ORR is about 27 mV more negative than that on commercial Pt/C electrode. 3D-CF also show better methanol tolerance and durability than commercial Pt/C catalyst. These results show that to synthesize 3D hierarchical pores with high specific surface area is an efficient way to improve the ORR performance

  7. A Nanopore-Structured Nitrogen-Doped Biocarbon Electrocatalyst for Oxygen Reduction from Two-Step Carbonization of Lemna minor Biomass

    Science.gov (United States)

    Guo, Chaozhong; Li, Zhongbin; Niu, Lidan; Liao, Wenli; Sun, Lingtao; Wen, Bixia; Nie, Yunqing; Cheng, Jing; Chen, Changguo

    2016-05-01

    So far, the development of highly active and stable carbon-based electrocatalysts for oxygen reduction reaction (ORR) to replace commercial Pt/C catalyst is a hot topic. In this study, a new nanoporous nitrogen-doped carbon material was facilely designed by two-step pyrolysis of the renewable Lemna minor enriched in crude protein under a nitrogen atmosphere. Electrochemical measurements show that the onset potential for ORR on this carbon material is around 0.93 V (versus reversible hydrogen electrode), slightly lower than that on the Pt/C catalyst, but its cycling stability is higher compared to the Pt/C catalyst in an alkaline medium. Besides, the ORR at this catalyst approaches to a four-electron transfer pathway. The obtained ORR performance can be basically attributed to the formation of high contents of pyridinic and graphitic nitrogen atoms inside this catalyst. Thus, this work opens up the path in the ORR catalysis for the design of nitrogen-doped carbon materials utilizing aquatic plants as starting precursors.

  8. Investigation of Supported Pd-Based Electrocatalysts for the Oxygen Reduction Reaction: Performance, Durability and Methanol Tolerance

    Directory of Open Access Journals (Sweden)

    Carmelo Lo Vecchio

    2015-11-01

    Full Text Available Next generation cathode catalysts for direct methanol fuel cells (DMFCs must have high catalytic activity for the oxygen reduction reaction (ORR, a lower cost than benchmark Pt catalysts, and high stability and high tolerance to permeated methanol. In this study, palladium catalysts supported on titanium suboxides (Pd/TinO2n–1 were prepared by the sulphite complex route. The aim was to improve methanol tolerance and lower the cost associated with the noble metal while enhancing the stability through the use of titanium-based support; 30% Pd/Ketjenblack (Pd/KB and 30% Pd/Vulcan (Pd/Vul were also synthesized for comparison, using the same methodology. The catalysts were ex-situ characterized by physico-chemical analysis and investigated for the ORR to evaluate their activity, stability, and methanol tolerance properties. The Pd/KB catalyst showed the highest activity towards the ORR in perchloric acid solution. All Pd-based catalysts showed suitable tolerance to methanol poisoning, leading to higher ORR activity than a benchmark Pt/C catalyst in the presence of low methanol concentration. Among them, the Pd/TinO2n–1 catalyst showed a very promising stability compared to carbon-supported Pd samples in an accelerated degradation test of 1000 potential cycles. These results indicate good perspectives for the application of Pd/TinO2n–1 catalysts in DMFC cathodes.

  9. Synergistically enhanced activity of nitrogen-doped carbon dots/graphene composites for oxygen reduction reaction

    Science.gov (United States)

    Liu, Hui; Zhao, Qingshan; Liu, Jingyan; Ma, Xiao; Rao, Yuan; Shao, Xiaodong; Li, Zhongtao; Wu, Wenting; Ning, Hui; Wu, Mingbo

    2017-11-01

    With rapid dissociative adsorption of oxygen, nitrogen-doped carbon nanomaterials have been demonstrated to be efficient alternative catalysts for oxygen reduction reaction (ORR) in fuel cells. Herein, we developed a mild hydrothermal strategy to construct nitrogen-doped carbon dots/graphene (NCDs-NG) composites towards ORR. Carbon dots (CDs) were derived from petroleum coke via acid oxidation while graphene oxide (GO) was obtained from graphite by modified Hummer's method. Graphene was employed as a conductive substrate to disperse CDs during hydrothermal reducing reaction while ammonia was utilized as N source to dope both graphene and CDs. The synergistic effects, i.e. CDs as pillars for graphene and catalytic sites for ORR, the high conductivity of graphene, the quick O2 adsorption on doped pyridinic nitrogen endow the NCDs-NG composites with enhanced ORR catalytic performance in alkaline electrolyte. The onset potential of -95 mV and kinetic current density of 12.7 mA cm-2 at -0.7 V (vs. Ag/AgCl) can be compared to those of the commercial 20 wt% Pt/C catalyst. The electron transfer number is about 3.9, revealing a four-electron pathway for ORR. The optimal NCDs-NG catalyst shows superior durability and methanol tolerance than 20 wt% Pt/C. This work demonstrates a feasible and effective strategy to prepare metal-free efficient ORR electrocatalysts for fuel cell applications.

  10. Spent catalyst waste management. A review. Part 1. Developments in hydroprocessing catalyst waste reduction and use

    Energy Technology Data Exchange (ETDEWEB)

    Marafi, M.; Stanislaus, A. [Petroleum Refining Department, Petroleum Research and Studies Center, Kuwait Institute for Scientific Research, P.O. Box 24885, 13109-Safat (Kuwait)

    2008-04-15

    Solid catalysts containing metals, metal oxides or sulfides, which play a key role in the refining of petroleum to clean fuels and many other valuable products, become solid wastes after use. In many refineries, the spent catalysts discarded from hydroprocessing units form a major part of these solid wastes. Disposal of spent hydroprocessing catalysts requires compliance with stringent environmental regulations because of their hazardous nature and toxic chemicals content. Various options such as minimizing spent catalyst waste generation by regeneration and reuse, metals recovery, utilization to produce useful materials and treatment for safe disposal, could be considered to deal with the spent catalyst environmental problem. In this paper, information available in the literature on spent hydroprocessing catalyst waste reduction at source by using improved more active and more stable catalysts, regeneration, rejuvenation and reuse of deactivated catalysts in many cycles, and reusing in other processes are reviewed in detail with focus on recent developments. Available methods for recycling of spent hydroprocessing catalysts by using them as raw materials for the preparation of active new catalysts and many other valuable products are also reviewed. (author)

  11. Template-free synthesis of hierarchical yolk-shell Co and N codoped porous carbon microspheres with enhanced performance for oxygen reduction reaction

    Science.gov (United States)

    Chao, Shujun; Cui, Qian; Wang, Kui; Bai, Zhengyu; Yang, Lin; Qiao, Jinli

    2015-08-01

    The structures and compositions of materials have important influences on their performance. Herein, hierarchically structured yolk-shell Co and N codoped porous carbon microspheres (YS-Co/N-PCMs) have been successfully synthesized by using low-cost melamine, formaldehyde and cobalt acetate as raw materials via a facile template-free hydrothermal method and a subsequent pyrolysis. The formation process of the yolk-shell precursor is systematically investigated, involving a morphological evolution process from solid microspheres, ultrathin and wrinkled shells wrap, to yolk-shell structure formation. More importantly, the unique structure combines the favorable features towards oxygen reduction reaction (ORR), such as high surface area, sufficient Co-Nx and graphitic N active sites and suitable pore structures. As a result, the YS-Co/N-PCMs catalyst shows high catalytic activity for ORR in alkaline media for fuel cells, which not only outperforms commercial Pt-based catalysts in terms of resistance to methanol crossover and long-time stability, but is also better than many non-precious metal doped carbon-based catalysts reported previously. In addition, the YS-Co/N-PCMs catalyst also has high catalytic activity toward oxygen evolution reaction (OER). Therefore, the YS-Co/N-PCMs catalyst may serve as a promising alternative to Pt/C catalyst for ORR and OER in alkaline media.

  12. New electrocatalysts for hydrogen-oxygen fuel cells

    Science.gov (United States)

    Cattabriga, R. A.; Giner, J.; Parry, J.; Swette, L. L.

    1970-01-01

    Platinum-silver, palladium-gold, and platinum-gold alloys serve as oxygen reduction catalysts in high-current-density cells. Catalysts were tested on polytetrafluoroethylene-bonded cathodes and a hydrogen anode at an operating cell temperature of 80 degrees C.

  13. A Pt-free Electrocatalyst Based on Pyrolized Vinazene-Carbon Composite for Oxygen Reduction Reaction

    International Nuclear Information System (INIS)

    Akinpelu, Akeem; Merzougui, Belabbes; Bukola, Saheed; Azad, Abdul-Majeed; Basheer, Rafil A.; Swain, Greg M.; Chang, Qiaowan; Shao, Minhua

    2015-01-01

    The 2-vinyl-4, 5-dicyanoimidazole (Vinazene) was used as a nitrogen precursor to synthesize a promising non-precious metal (NPM) catalyst for oxygen reduction reaction (ORR). Vinazene together with an iron source was impregnated into a carbon matrix and pyrolyzed at 900 °C in N 2 atmosphere. The structure of the resulting Fe–N–C nanocomposite was analyzed by X-ray photoelectron spectroscopy, Raman spectroscopy and X-ray diffraction. Both rotating disk electrode (RDE) and rotating ring-disk electrode (RRDE) experiments showed excellent ORR activity for the obtained catalyst with low H 2 O 2 formation (∼3.0%) in 0.1 M KOH. The catalyst was found to be rich in mesoporous structure along with high percentage of pyrrolic-N function with surface area of about 673 m 2 g −1 and pore size of 4.2 nm. In addition to its excellent ORR activity, the catalyst showed remarkable tolerance towards methanol oxidation and demonstrates good stability over 10,000 potential cycles (0.6–1.0 V Vs RHE). We believe that this N-rich Vinazene molecule will be beneficial to further development of nitrogen doped carbon electrocatalysts

  14. A Combined Probe-Molecule, Mössbauer, Nuclear Resonance Vibrational Spectroscopy, and Density Functional Theory Approach for Evaluation of Potential Iron Active Sites in an Oxygen Reduction Reaction Catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Kneebone, Jared L. [Univ. of Rochester, Rochester, NY (United States); Daifuku, Stephanie L. [Univ. of Rochester, Rochester, NY (United States); Kehl, Jeffrey A. [Univ. of Rochester, Rochester, NY (United States); Wu, Gang [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chung, Hoon T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hu, Michael Y. [Argonne National Lab. (ANL), Argonne, IL (United States); Alp, E. Ercan [Argonne National Lab. (ANL), Argonne, IL (United States); More, Karren L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Zelenay, Piotr [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Holby, Edward F. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Neidig, Michael L. [Univ. of Rochester, Rochester, NY (United States)

    2017-07-06

    While non-precious metal M-N-C (M = Fe or Co) catalysts have been developed that are effective for the oxygen reduction reaction in polymer electrolyte fuel cells, no consensus has yet been reached regarding the nature of the M sites in these heterogeneous catalysts that are responsible for reaction with dioxygen (O2). While multiple studies have developed correlations between Fe distributions in as-prepared catalysts and ORR activity, the direct identification of sites reactive towards O2 or O2-analog molecules remains a significant challenge. In the present study, we demonstrate a new approach to identifying and characterizing potential Fe active sites in complex ORR catalysts that combines an effective probe molecule (NO(g)) Mössbauer spectroscopy and nuclear resonance vibrational spectroscopy (NRVS) with density functional theory (DFT) calculations. Mössbauer spectroscopic studies demonstrate that NO(g) treatment of electrochemically reduced PANI-57Fe-C leads to selective reaction with only a sub-set of the Fe species present. Nuclear resonance vibrational spectroscopic studies identified new Fe-ligand vibrations associated with the site reactive towards NO(g). DFT calculations of vibrational properties of a small selection of previously proposed active site structures suggest that graphene zig-zag edge hosted Fe-N structures may be responsible for the observed vibrational behavior with NO(g) probe molecules. Moreover, such sites are likely also reactive to O2, possibly serving as the ORR active sites in the synthesized materials.

  15. The Experimental Measurement of Local and Bulk Oxygen Transport Resistances in the Catalyst Layer of Proton Exchange Membrane Fuel Cells.

    Science.gov (United States)

    Wang, Chao; Cheng, Xiaojing; Lu, Jiabin; Shen, Shuiyun; Yan, Xiaohui; Yin, Jiewei; Wei, Guanghua; Zhang, Junliang

    2017-12-07

    Remarkable progress has been made in reducing the cathodic Pt loading of PEMFCs; however, a huge performance loss appears at high current densities, indicating the existence of a large oxygen transport resistance associated with the ultralow Pt loading catalyst layer. To reduce the Pt loading without sacrificing cell performance, it is essential to illuminate the oxygen transport mechanism in the catalyst layer. Toward this goal, an experimental approach to measure the oxygen transport resistance in catalyst layers is proposed and realized for the first time in this study. The measuring approach involves a dual-layer catalyst layer design, which consists of a dummy catalyst layer and a practical catalyst layer, followed by changing the thickness of dummy layer to respectively quantify the local and bulk resistances via limiting current measurements combined with linear extrapolation. The experimental results clearly reveal that the local resistance dominates the total resistance in the catalyst layer.

  16. The gamma-ray induced chemisorption of oxygen on perovskite type catalysts: determination by reduction with hydrazine sulphate/hydroxylamine hydrochloride

    International Nuclear Information System (INIS)

    Srinivas, B.; Rao, V.R.S.; Kuriacose, J.C.

    1986-01-01

    Chemisorbed oxygen can be determined quantitatively by the measurement of gaseous N 2 /N 2 O liberated by treatment with hydrazine sulfate/hydroxylamine hydrochloride. The amount of chemisorbed oxygen depends on the degree of dispersion during irradiation and also on the γ-dose. The chemisorption is enhanced in the presence of moisture. The partial reduction of the transition metal ion favours the formation of chemisorbed oxygen. (author)

  17. Screening of catalytic oxygen reduction reaction activity of metal-doped graphene by density functional theory

    International Nuclear Information System (INIS)

    Chen, Xin; Chen, Shuangjing; Wang, Jinyu

    2016-01-01

    Highlights: • The screened M-G structures are very thermodynamically stable, and the stability is even higher than that of the corresponding bulk metal surfaces. • The binding energies of ORR intermediates suggest that they are not linear dependence, which are different form the cases found on some metal-based catalysts. • The Au-, Co-, and Ag-G structures could be used as the ORR catalysts. - Abstract: Graphene doping is a promising direction for developing effective oxygen reduction reaction (ORR) catalysts. In this paper, we computationally investigated the ORR performance of 10 kinds of metal-doped graphene (M-G) catalysts, namely, Al-, Si-, Mn-, Fe-, Co-, Ni-, Pd-, Ag-, Pt-, and Au-G. The results shown that the binding energies of the metal atoms incorporated into the graphene vacancy are higher than their bulk cohesive energies, indicating the formed M-G catalysts are even more stable than the corresponding bulk metal surfaces, and thus avoid the metals dissolution in the reaction environment. We demonstrated that the linear relation among the binding energies of the ORR intermediates that found on metal-based materials does not hold for the M-G catalysts, therefore a single binding energy of intermediate alone is not sufficient to evaluate the ORR activity of an arbitrary catalyst. By analysis of the detailed ORR processes, we predicted that the Au-, Co-, and Ag-G materials can be used as the ORR catalysts.

  18. Selective production of oxygenates from CO2 hydrogenation over mesoporous silica supported Cu-Ga nanocomposite catalyst

    KAUST Repository

    Huang, Kuo-Wei; Hengne, Amol Mahalingappa; Bhatte, Kushal Deepak; Ould-Chikh, Samy; Saih, Youssef; Basset, Jean-Marie

    2017-01-01

    Carbon dioxide hydrogenation to oxygenates (methanol and dimethyl ether (DME)) was investigated over bifunctional supported copper catalysts promoted with gallium (Ga). Supported Cu-Ga nanocomposite catalysts were characterized by X-ray diffraction

  19. Highly active carbon supported Pd cathode catalysts for direct formic acid fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Mikolajczuk-Zychora, A., E-mail: amikolajczuk@ichf.edu.pl [Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw (Poland); Borodzinski, A.; Kedzierzawski, P.; Mierzwa, B. [Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw (Poland); Mazurkiewicz-Pawlicka, M. [Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw (Poland); Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warynskiego 1, Warsaw (Poland); Stobinski, L. [Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw (Poland); Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warynskiego 1, Warsaw (Poland); Ciecierska, E. [Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw (Poland); Zimoch, A.; Opałło, M. [Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw (Poland)

    2016-12-01

    Highlights: • Palladium catalyst used on the cathode DFAFC is comparable to commercial platinum catalyst. • The treatment of carbon supports in nitric acid(V) increases the electrochemically available metal surface area and the catalytic activity in oxygen reduction reaction of catalysts. - Abstract: One of the drawbacks of low-temperature fuel cells is high price of platinum-based catalysts used for the electroreduction of oxygen at the cathode of the fuel cell. The aim of this work is to develop the palladium catalyst that will replace commonly used platinum cathode catalysts. A series of palladium catalysts for oxygen reduction reaction (ORR) were prepared and tested on the cathode of Direct Formic Acid Fuel Cell (DFAFC). Palladium nanoparticles were deposited on the carbon black (Vulcan) and on multiwall carbon nanotubes (MWCNTs) surface by reduction of palladium(II) acetate dissolved in ethanol. Hydrazine was used as a reducing agent. The effect of functionalization of the carbon supports on the catalysts physicochemical properties and the ORR catalytic activity on the cathode of DFAFC was studied. The supports were functionalized by treatment in nitric acid for 4 h at 80 °C. The structure of the prepared catalysts has been characterized by thermogravimetric analysis (TGA), X-ray diffraction (XRD), transmission electron microscope (TEM) and cyclic voltammetry (CV). Hydrophilicity of the catalytic layers was determined by measuring contact angles of water droplets. The performance of the prepared catalysts has been compared with that of the commercial 20 wt.% Pt/C (Premetek) catalyst. The maximum power density obtained for the best palladium catalyst, deposited on the surface of functionalized carbon black, is the same as that for the commercial Pt/C (Premetek). Palladium is cheaper than platinum, therefore the developed cathode catalyst is promising for future applications.

  20. KOH-activated multi-walled carbon nanotubes as platinum supports for oxygen reduction reaction

    Science.gov (United States)

    He, Chaoxiong; Song, Shuqin; Liu, Jinchao; Maragou, Vasiliki; Tsiakaras, Panagiotis

    In the present investigation, multi-walled carbon nanotubes (MWCNTs) thermally treated by KOH were adopted as the platinum supporting material for the oxygen reduction reaction electrocatalysts. FTIR and Raman spectra were used to investigate the surface state of MWCNTs treated by KOH at different temperatures (700, 800, and 900 °C) and showed MWCNTs can be successfully functionalized. The structural properties of KOH-activated MWCNTs supported Pt were determined by X-ray diffraction (XRD) and transmission electron microscopy (TEM), and their electrochemical performance was evaluated by the aid of cyclic voltammetry (CV) and rotating disk electrode (RDE) voltammetry. According to the experimental findings of the present work, the surrface of MWCNTs can be successfully functionalized with oxygen-containing groups after activation by KOH, favoring the good dispersion of Pt nanoparticles with narrow size distribution. The as-prepared Pt catalysts supported on KOH treated MWCNTs at higher temperature, possess higher electrochemical surface area and exhibit desirable activity towards oxygen reduction reaction (ORR). More precisely, it has been found that the electrochemical active area of Pt/MWCNTs-900 is approximately two times higher than that of Pt/MWCNTs. It can be concluded that KOH activation is an effective way to decorate MWCNTs' surface with oxygen-containing groups and bigger surface area, which makes them more suitable as electrocatalyst support materials.

  1. NO reduction by CO over noble-metal catalysts under cycled feedstreams

    International Nuclear Information System (INIS)

    Muraki, H.; Fujitani, Y.

    1986-01-01

    The reduction of NO with CO was studied over α-Al/sub 2/O/sub 3/-supported Pt, Pd, Rh, Ru, and Ir catalysts. The activities were measured by using cycled feeds and steady noncycled feed. The activity sequence of the catalysts tested was Rh > Ru > Ir > Pd > Pt. The activities of Pt and Pd catalysts were increased under the cycled feed. The periodic operation effect on the Pt catalyst was more predominant than that on the Pd catalyst. The order of periodic operation effect corresponded to the order of their susceptibility to CO self-poisoning

  2. Catalyst for the reduction of sulfur dioxide to elemental sulfur

    Science.gov (United States)

    Jin, Y.; Yu, Q.; Chang, S.G.

    1996-02-27

    The inventive catalysts allow for the reduction of sulfur dioxide to elemental sulfur in smokestack scrubber environments. The catalysts have a very high sulfur yield of over 90% and space velocity of 10,000 h{sup {minus}1}. They also have the capacity to convert waste gases generated during the initial conversion into elemental sulfur. The catalysts have inexpensive components, and are inexpensive to produce. The net impact of the invention is to make this technology practically available to industrial applications. 21 figs.

  3. Simultaneous reduction and nitrogen functionalization of graphene oxide using lemon for metal-free oxygen reduction reaction

    Science.gov (United States)

    Begum, Halima; Ahmed, Mohammad Shamsuddin; Cho, Sung; Jeon, Seungwon

    2017-12-01

    Inspire by the vision of finding a simple and green method for simultaneous reduction and nitrogen (N)-functionalization of graphene oxide (GO), a N-rich reduced graphene oxide (rGO) has been synthesized through a facile and ecofriendly hydrothermal strategy while most of the existing methods are involving with multiple steps and highly toxic reducing agents that are harmful to human health and environment. In this paper, the simultaneous reduction and N-functionalization of GO using as available lemon juice (denoted as Lem-rGO) for metal-free electrocatalysis towards oxygen reduction reaction (ORR) is described. The proposed method is based on the reduction of GO using of the reducing and the N-precursor capability of ascorbic acid and citric acid as well as the nitrogenous compounds, respectively, that containing in lemon juice. The resultant Lem-rGO has higher reduction degree, higher specific surface area and better crystalline nature with N-incorporation than that of well investigated ascorbic acid and citric acid treated rGO. As a result, it shows better ORR electrocatalytic activity in respect to the improved onset potential, electron transfer rate and kinetics than those typical rGO catalysts. Moreover, it shows a significant tolerance to the anodic fuels and durability than the Pt/C during ORR.

  4. Development of metal catalyst impregnation technology for membrane-based oxygen removal system

    International Nuclear Information System (INIS)

    Kim, Mun Soo; Lee, Doo Ho; Kang, Duk Won

    2005-01-01

    Dissolved oxygen(DO) is a primary cause of PWSCC and its content in reactor coolant system in NPPs has been strictly controlled by various DO removal methods. There are several removal methods of DO, such as vacuum degasification, thermal deaeration, and reductive removal by oxygen scavengers. Although the operation principles of vacuum degasification and thermal deaeration are simple, these methods require a lot of energy for operation and show lower efficiency. And these methods have a few handicaps such as temperature, pH, toxicity, high cost of installation and so on. For the purpose of developing the best method for DO removal from make-up water storage tank, it is necessary to overcome the disadvantages of hydrazine treatment. From this point of view, membrane-based oxygen removal system (MORS) has many advantages than other methods for example, friendly environmental process, versatility of operation conditions with high temperature and low pressure, small space, low cost, etc. Recently de-gassing membrane is widely used in power plant's feed water system for DO removal. De-gassing membrane has some advantages; it removes other dissolved gases such as CO2, N2, as well as O2, and is more economical than Catalytic resin-based Oxygen Removal System. In this study, to obtain better efficiency of MORS, we modified the polypropylene (PP) hollow fiber membrane by plasma treatment and ion beam irradiation supported platinum(Pt), palladium(Pd) as metal catalyst on the surface of the membrane

  5. N-Doped Carbon Xerogels as Pt Support for the Electro-Reduction of Oxygen

    Directory of Open Access Journals (Sweden)

    Cinthia Alegre

    2017-09-01

    Full Text Available Durability and limited catalytic activity are key impediments to the commercialization of polymer electrolyte fuel cells. Carbon materials employed as catalyst support can be doped with different heteroatoms, like nitrogen, to improve both catalytic activity and durability. Carbon xerogels are nanoporous carbons that can be easily synthesized in order to obtain N-doped materials. In the present work, we introduced melamine as a carbon xerogel precursor together with resorcinol for an effective in-situ N doping (3–4 wt % N. Pt nanoparticles were supported on nitrogen-doped carbon xerogels and their activity for the oxygen reduction reaction (ORR was evaluated in acid media along with their stability. Results provide new evidences of the type of N groups aiding the activity of Pt for the ORR and of a remarkable stability for N-doped carbon-supported Pt catalysts, providing appropriate physico-chemical features.

  6. Temperature-programmed reduction and cyclic voltammetry of Pt/carbon-fibre paper catalysts for methanol electrooxidation

    International Nuclear Information System (INIS)

    Attwood, P.A.; McNicol, B.D.; Short, R.T.

    1981-01-01

    Temperature-programmed reduction (TPR) and cyclic voltammetry (CV) studies of platinum catalysts supported on pyrographite-coated carbon-fibre paper, and prepared by either ion exchange or impregnation, clearly demonstrate the nature of the interactions between the platinum species and the support. After drying the above catalysts at 120 0 C, the ion-exchanged preparation exhibits the stronger interaction with the carbon support, as might be expected since a chemical interaction with carbon surface groups is known to occur in such catalysts. The presence of a fraction of bulk Pt(NH 3 ) 4 (OH) 2 impregnating salt in the impregnated catalyst has been detected using TPR. After air activation at 300 0 C, subambient reduction peaks were observed and the strength of binding of Pt in the ion-exchanged catalyst was reflected by its increased difficulty of reduction in comparison with that of the impregnated catalyst. The stoichiometry of reduction in ion-exchanged catalysts corresponds to Pt 2+ → Pt 0 in both dried and activated catalysts, with a small amount of Pt 4+ present in the latter. Upon activation the impregnated catalyst showed the presence of some Pt metal, which was thought to arise from the decomposition of the fraction of bulk Pt(NH 3 ) 4 (OH) 2 in the dried catalyst. Activation of ion-exchanged catalysts at temperatures higher than 300 0 C led to a progressive weakening of the Pt-support interaction and consequent smaller Pt surface areas. Activation at 500 0 C in air produced Pt metal exclusively and very low Pt surface areas. The strong interaction between Pt and the carbon support upon activation of the ion-exchanged catalyst at 300 0 C is thought to be the origin of the large metal surface area and the high catalytic activity for methanol electrooxidation found upon reduction

  7. Oxygen-promoted catalyst sintering influences number density, alignment, and wall number of vertically aligned carbon nanotubes.

    Science.gov (United States)

    Shi, Wenbo; Li, Jinjing; Polsen, Erik S; Oliver, C Ryan; Zhao, Yikun; Meshot, Eric R; Barclay, Michael; Fairbrother, D Howard; Hart, A John; Plata, Desiree L

    2017-04-20

    A lack of synthetic control and reproducibility during vertically aligned carbon nanotube (CNT) synthesis has stifled many promising applications of organic nanomaterials. Oxygen-containing species are particularly precarious in that they have both beneficial and deleterious effects and are notoriously difficult to control. Here, we demonstrated diatomic oxygen's ability, independent of water, to tune oxide-supported catalyst thin film dewetting and influence nanoscale (diameter and wall number) and macro-scale (alignment and density) properties for as-grown vertically aligned CNTs. In particular, single- or few-walled CNT forests were achieved at very low oxygen loading, with single-to-multi-walled CNT diameters ranging from 4.8 ± 1.3 nm to 6.4 ± 1.1 nm over 0-800 ppm O 2 , and an expected variation in alignment, where both were related to the annealed catalyst morphology. Morphological differences were not the result of subsurface diffusion, but instead occurred via Ostwald ripening under several hundred ppm O 2 , and this effect was mitigated by high H 2 concentrations and not due to water vapor (as confirmed in O 2 -free water addition experiments), supporting the importance of O 2 specifically. Further characterization of the interface between the Fe catalyst and Al 2 O 3 support revealed that either oxygen-deficit metal oxide or oxygen-adsorption on metals could be functional mechanisms for the observed catalyst nanoparticle evolution. Taken as a whole, our results suggest that the impacts of O 2 and H 2 on the catalyst evolution have been underappreciated and underleveraged in CNT synthesis, and these could present a route toward facile manipulation of CNT forest morphology through control of the reactive gaseous atmosphere alone.

  8. IR-doped ruthenium oxide catalyst for oxygen evolution

    Science.gov (United States)

    Valdez, Thomas I. (Inventor); Narayanan, Sekharipuram R. (Inventor)

    2012-01-01

    A method for preparing a metal-doped ruthenium oxide material by heating a mixture of a doping metal and a source of ruthenium under an inert atmosphere. In some embodiments, the doping metal is in the form of iridium black or lead powder, and the source of ruthenium is a powdered ruthenium oxide. An iridium-doped or lead-doped ruthenium oxide material can perform as an oxygen evolution catalyst and can be fabricated into electrodes for electrolysis cells.

  9. Nitrogen-based catalysts for the electrochemical reduction of CO2 to CO.

    Science.gov (United States)

    Tornow, Claire E; Thorson, Michael R; Ma, Sichao; Gewirth, Andrew A; Kenis, Paul J A

    2012-12-05

    The synthesis and application of carbon-supported, nitrogen-based organometallic silver catalysts for the reduction of CO(2) is studied using an electrochemical flow reactor. Their performance toward the selective formation of CO is similar to the performance achieved when using Ag as the catalyst, but comparatively at much lower silver loading. Faradaic efficiencies of the organometallic catalyst are higher than 90%, which are comparable to those of Ag. Furthermore, with the addition of an amine ligand to Ag/C, the partial current density for CO increases significantly, suggesting a possible co-catalyst mechanism. Additional improvements in activity and selectivity may be achieved as greater insight is obtained on the mechanism of CO(2) reduction and on how these complexes assemble on the carbon support.

  10. A New Bioinspired Perchlorate Reduction Catalyst with Significantly Enhanced Stability via Rational Tuning of Rhenium Coordination Chemistry and Heterogeneous Reaction Pathway.

    Science.gov (United States)

    Liu, Jinyong; Han, Mengwei; Wu, Dimao; Chen, Xi; Choe, Jong Kwon; Werth, Charles J; Strathmann, Timothy J

    2016-06-07

    Rapid reduction of aqueous ClO4(-) to Cl(-) by H2 has been realized by a heterogeneous Re(hoz)2-Pd/C catalyst integrating Re(O)(hoz)2Cl complex (hoz = oxazolinyl-phenolato bidentate ligand) and Pd nanoparticles on carbon support, but ClOx(-) intermediates formed during reactions with concentrated ClO4(-) promote irreversible Re complex decomposition and catalyst deactivation. The original catalyst design mimics the microbial ClO4(-) reductase, which integrates Mo(MGD)2 complex (MGD = molybdopterin guanine dinucleotide) for oxygen atom transfer (OAT). Perchlorate-reducing microorganisms employ a separate enzyme, chlorite dismutase, to prevent accumulation of the destructive ClO2(-) intermediate. The structural intricacy of MGD ligand and the two-enzyme mechanism for microbial ClO4(-) reduction inspired us to improve catalyst stability by rationally tuning Re ligand structure and adding a ClOx(-) scavenger. Two new Re complexes, Re(O)(htz)2Cl and Re(O)(hoz)(htz)Cl (htz = thiazolinyl-phenolato bidentate ligand), significantly mitigate Re complex decomposition by slightly lowering the OAT activity when immobilized in Pd/C. Further stability enhancement is then obtained by switching the nanoparticles from Pd to Rh, which exhibits high reactivity with ClOx(-) intermediates and thus prevents their deactivating reaction with the Re complex. Compared to Re(hoz)2-Pd/C, the new Re(hoz)(htz)-Rh/C catalyst exhibits similar ClO4(-) reduction activity but superior stability, evidenced by a decrease of Re leaching from 37% to 0.25% and stability of surface Re speciation following the treatment of a concentrated "challenge" solution containing 1000 ppm of ClO4(-). This work demonstrates the pivotal roles of coordination chemistry control and tuning of individual catalyst components for achieving both high activity and stability in environmental catalyst applications.

  11. High-performance Platinum-free oxygen reduction reaction and hydrogen oxidation reaction catalyst in polymer electrolyte membrane fuel cell.

    Science.gov (United States)

    Chandran, Priji; Ghosh, Arpita; Ramaprabhu, Sundara

    2018-02-26

    The integration of polymer electrolyte membrane fuel cell (PEMFC) stack into vehicles necessitates the replacement of high-priced platinum (Pt)-based electrocatalyst, which contributes to about 45% of the cost of the stack. The implementation of high-performance and durable Pt metal-free catalyst for both oxygen reduction reaction (ORR) and hydrogen oxidation reaction (HOR) could significantly enable large-scale commercialization of fuel cell-powered vehicles. Towards this goal, a simple, scalable, single-step synthesis method was adopted to develop palladium-cobalt alloy supported on nitrogen-doped reduced graphene oxide (Pd 3 Co/NG) nanocomposite. Rotating ring-disk electrode (RRDE) studies for the electrochemical activity towards ORR indicates that ORR proceeds via nearly four-electron mechanism. Besides, the mass activity of Pd 3 Co/NG shows an enhancement of 1.6 times compared to that of Pd/NG. The full fuel cell measurements were carried out using Pd 3 Co/NG at the anode, cathode in conjunction with Pt/C and simultaneously at both anode and cathode. A maximum power density of 68 mW/cm 2 is accomplished from the simultaneous use of Pd 3 Co/NG as both anode and cathode electrocatalyst with individual loading of 0.5 mg/cm 2 at 60 °C without any backpressure. To the best of our knowledge, the present study is the first of its kind of a fully non-Pt based PEM full cell.

  12. Urea thermolysis and NOx reduction with and without SCR catalysts

    International Nuclear Information System (INIS)

    Fang, Howard L.; DaCosta, Herbert F.M.

    2003-01-01

    Urea-selective catalytic reduction (SCR) has been a leading contender for removal of nitrogen oxides (deNO x ) from diesel engine emissions. Despite its advantages, the SCR technology faces some critical detriments to its catalytic performance such as catalyst surface passivation (caused by deposit formation) and consequent stoichiometric imbalance of the urea consumption. Deposit formation deactivates catalytic performance by not only consuming part of the ammonia produced during urea decomposition but also degrading the structural and thermal properties of the catalyst surface. We have characterized the urea thermolysis with and without the urea-SCR catalyst using both spectroscopic (DRIFTS and Raman) and thermal techniques (thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC)) to identify the deposit components and their corresponding thermal properties. Urea thermolysis exhibits two decomposition stages, involving ammonia generation and consumption, respectively. The decomposition after the second stage leads to the product of melamine complexes, (HNC=NH) x (HNCO) y , that hinder catalytic performance. The presence of catalyst accompanied with a good spray of the urea solution helps to eliminate the second stage. In this work, kinetics of the direct reduction of NO x by urea is determined and the possibility of using additives to the urea solution in order to rejuvenate the catalyst surface and improve its performance will be discussed

  13. Chemisorption of oxygen by coke deposited on catalyst surface

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E.; Duguay, D.G.; Houle, J.

    1988-02-01

    Chemisorption of oxygen by nickel molybdate catalyst used for hydrotreating heavy oils was shown to increase with increasing temperature and reached a maximum at about 270 degrees C. Yields of CO/sub 2/, CO and SO/sub 2/ formed during isothermal chemisorption were estimated by using a fixed-bed reactor. Experimental observations were interpreted in terms of a hydrocarbon autoxidation mechanism. 11 refs., 7 figs., 1 tab.

  14. Scalable preparation of sized-controlled Co-N-C electrocatalyst for efficient oxygen reduction reaction

    Science.gov (United States)

    Ai, Kelong; Li, Zelun; Cui, Xiaoqiang

    2017-11-01

    Heat-treated metal-nitrogen-carbon (M-N-C) materials are emerging as promising non-precious catalysts to replace expensive Pt-based materials for oxygen reduction reaction (ORR) in energy conversion and storage devices. Despite recent progress, their activity and durability are still far from satisfactory. The activity site and particle size are among the most important factors for the ORR activity of M-N-C catalysts. Extensive efforts have been made to reveal the correlation of active site and activity. However, it remains unclear to what extent the particle size will influence the ORR activity of M-N-C materials. Moreover, to the best of our knowledge, controllable synthesis of M-N-C catalysts with high-density activity sites remains elusive. Herein, we develop a straightforward method to produce a monodisperse and size-controlled Co-N-C (Nano-P-ZIF-67) electrocatalyst, and systemically investigate its catalytic mechanisms. Only by optimizing the particle size, Nano-P-ZIF-67 outperforms the commercial 20 wt% Pt/C regarding all evaluating indicators for ORR catalysts in alkaline media including higher catalytic activity, durability, and stronger methanol tolerance. Nano-P-ZIF-67 is assembled into a cell, and the cell shows a power density of 45.5 mW/cm2, which is the highest value among currently studied cathode catalysts. We expect Nano-P-ZIF-67 to be a highly interesting candidate for the next generation of ORR catalysts.

  15. Enhanced activity and stability of La-doped CeO2 monolithic catalysts for lean-oxygen methane combustion.

    Science.gov (United States)

    Zhu, Wenjun; Jin, Jianhui; Chen, Xiao; Li, Chuang; Wang, Tonghua; Tsang, Chi-Wing; Liang, Changhai

    2018-02-01

    Effective utilization of coal bed methane is very significant for energy utilization and environment protection. Catalytic combustion of methane is a promising way to eliminate trace amounts of oxygen in the coal bed methane and the key to this technology is the development of high-efficiency catalysts. Herein, we report a series of Ce 1-x La x O 2-δ (x = 0-0.8) monolithic catalysts for the catalytic combustion of methane, which are prepared by citric acid method. The structural characterization shows that the substitution of La enhance the oxygen vacancy concentration and reducibility of the supports and promote the migration of the surface oxygen, as a result improve the catalytic activity of CeO 2 . M-Ce 0.8 La 0.2 O 2-δ (monolithic catalyst, Ce 0.8 La 0.2 O 2-δ coated on cordierite honeycomb) exhibits outstanding activity for methane combustion, and the temperature for 10 and 90% methane conversion are 495 and 580 °C, respectively. Additionally, Ce 0.8 La 0.2 O 2-δ monolithic catalyst presents excellent stability at high temperature. These Ce 1-x La x O 2-δ monolithic materials with a small amount of La incorporation therefore show promises as highly efficient solid solution catalysts for lean-oxygen methane combustion. Graphical abstract ᅟ.

  16. Hetero-atom doped carbon nanotubes for dye degradation and oxygen reduction reaction

    Energy Technology Data Exchange (ETDEWEB)

    Nandan, Ravi, E-mail: aerawat27@gmail.com; Nanda, Karuna Kar [Materials Research Centre, Indian Institute of Science, Bangalore-560012 (India)

    2015-06-24

    We report the synthesis of nitrogen doped vertically aligned multi-walled (MWNCNTs) carbon nanotubes by pyrolysis and its catalytic performance for degradation of methylene blue (MB) dye & oxygen reduction reaction (ORR). The degradation of MB was monitored spectrophotometrically with time. Kinetic studies show the degradation of MB follows a first order kinetic with rate constant k=0.0178 min{sup −1}. The present rate constant is better than that reported for various supported/non-supported semiconducting nanomaterials. Further ORR performance in alkaline media makes MWNCNTs a promising cost-effective, fuel crossover tolerance, metal-free, eco-friendly cathode catalyst for direct alcohol fuel cell.

  17. Mn/TiO2 and Mn–Fe/TiO2 catalysts synthesized by deposition precipitation—promising for selective catalytic reduction of NO with NH3 at low temperatures

    DEFF Research Database (Denmark)

    Putluru, Siva Sankar Reddy; Schill, Leonhard; Jensen, Anker Degn

    2015-01-01

    Mn/TiO2and Mn–Fe/TiO2catalysts have been prepared by impregnation (IMP) and deposition-precipitation (DP) techniques and characterized by N2 physisorption, XRPD, NH3-TPD, H2-TPR, XPS and TGA. 25 wt% Mn0.75Fe0.25Ti-DP catalyst, prepared by deposition precipitation with ammonium carbamate (AC......) as a precipitating agent, showed superior low-temperature SCR (selective catalytic reduction) of NO with NH3. The superior catalytic activity of the 25 wt% Mn0.75Fe0.25Ti-DP catalyst is probably due to the presence of amorphous phases of manganese oxide, iron oxide, high surface area, high total acidity......, acidstrength and ease of reduction of manganese oxide and iron oxide on TiO2in addition to formation of an SCR active MnOx phase with high content of chemisorbed oxygen (Oα). The optimum catalyst might beused as tail-end SCR catalysts in, e.g., biomass-fired power plants and waste incineration plants....

  18. Electrochemically reduced graphene-oxide supported bimetallic nanoparticles highly efficient for oxygen reduction reaction with excellent methanol tolerance

    Science.gov (United States)

    Yasmin, Sabina; Cho, Sung; Jeon, Seungwon

    2018-03-01

    We report a simple and facile method for the fabrication of bimetallic nanoparticles on electrochemically reduced graphene oxide (ErGO) for electrocatalytic oxygen reduction reaction (ORR) in alkaline media. First, reduced graphene oxide supported palladium and manganese oxide nanoparticle (rGO/Pd-Mn2O3) catalyst was synthesized via a simple chemical method at room temperature; then, it was electrochemically reduced for oxidation reduction reaction (ORR) in alkaline media. The chemical composition and morphological properties of ErGO/Pd-Mn2O3 was characterized by X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDS). The TEM images reveals that, nano-sized Pd and Mn2O3 particles were disperse on the ErGO sheet without aggregation. The as-prepared ErGO/Pd-Mn2O3 was employed for ORR in alkaline media which shows higher ORR activity with more positive onset and half-wave potential, respectively. Remarkably, ErGO/Pd-Mn2O3 reduced oxygen via four-electron transfer pathway with negligible amount of intermediate peroxide species (HO2-). Furthermore, the higher stability and excellent methanol tolerance of the ErGO/Pd-Mn2O3 compared to commercial Pt/C (20 wt%) catalyst, indicating its suitability for fuel cells.

  19. Catalytic reduction of NOx in gasoline engine exhaust over copper- and nickel-exchanged X-zeolite catalysts

    International Nuclear Information System (INIS)

    Bhattacharyya, S.; Das, R.K.

    2001-01-01

    Catalytic removal of NO x in engine exhaust gases can be accomplished by non-selective reduction, selective reduction and decomposition. Noble metals are extensively used for non-selective reduction of NO x and up to 90% of engine NO x emissions can be reduced in a stoichiometric exhaust. This requirement of having the stoichiometric fuel-air ratio acts against efficiency improvement of engines. Selective NO x reduction in the presence of different reductants such as, NH 3 , urea or hydrocarbons, requires close control of the amount of reductant being injected which otherwise may be emitted as a pollutant. Catalytic decomposition is the best option for NO x removal. Nevertheless, catalysts which are durable, economic and active for NO x reduction at normal engine exhaust temperature ranges are still being investigated. Three catalysts based on X-zeolite have been developed by exchanging the Na+ ion with copper, nickel and copper-nickel metal ions and applied to the exhaust of a stationary gasoline engine to explore their potential for catalytic reduction of NO x under a wide range of engine and exhaust conditions. Some encouraging results have been obtained. The catalyst Cu-X exhibits much better NO x reduction performance at any temperature in comparison to Cu-Ni-X and Ni-X; while Cu-Ni-X catalyst exhibits slightly better performance than Ni-X catalyst. Maximum NO x efficiency achieved with Cu-X catalyst is 59.2% at a space velocity (sv) of 31 000 h -1 ; while for Cu-Ni-X and Ni-X catalysts the equivalent numbers are 60.4% and 56% respectively at a sv of 22 000 h -1 . Unlike noble metals, the doped X-zeolite catalysts exhibit significant NO x reduction capability for a wide range of air/fuel ratio and with a slower rate of decline as well with increase in air/fuel ratio. (author)

  20. Hierarchical Mesoporous NiO/MnO2@PANI Core-Shell Microspheres, Highly Efficient and Stable Bifunctional Electrocatalysts for Oxygen Evolution and Reduction Reactions.

    Science.gov (United States)

    He, Junkai; Wang, Mingchao; Wang, Wenbo; Miao, Ran; Zhong, Wei; Chen, Sheng-Yu; Poges, Shannon; Jafari, Tahereh; Song, Wenqiao; Liu, Jiachen; Suib, Steven L

    2017-12-13

    We report on the new facile synthesis of mesoporous NiO/MnO 2 in one step by modifying inverse micelle templated UCT (University of Connecticut) methods. The catalyst shows excellent electrocatalytic activity and stability for both the oxygen evolution reaction (OER) and the oxygen reduction reaction (ORR) in alkaline media after further coating with polyaniline (PANI). For electrochemical performance, the optimized catalyst exhibits a potential gap, ΔE, of 0.75 V to achieve a current of 10 mA cm -2 for the OER and -3 mA cm -2 for the ORR in 0.1 M KOH solution. Extensive characterization methods were applied to investigate the structure-property of the catalyst for correlations with activity (e.g., XRD, BET, SEM, HRTEM, FIB-TEM, XPS, TGA, and Raman). The high electrocatalytic activity of the catalyst closely relates to the good electrical conductivity of PANI, accessible mesoporous structure, high surface area, as well as the synergistic effect of the specific core-shell structure. This work opens a new avenue for the rational design of core-shell structure catalysts for energy conversion and storage applications.

  1. Refining cocoon to prepare (N, S, and Fe) ternary-doped porous carbon aerogel as efficient catalyst for the oxygen reduction reaction in alkaline medium

    Science.gov (United States)

    Li, Changqing; Sun, Fengzhan; Lin, Yuqing

    2018-04-01

    Various advanced sulfur doped Fe-N-C non-noble metal catalysts of oxygen reduction reaction (ORR) have been recently designed and reported with excellent catalytic activity. Herein, we refined cocoon with several steps to form silk fibroin solution, treated with iron salt to prepare an easy available, heteroatom (N, S, and Fe) ternary-doped, porous carbon aerogel (HDCA). Heteroatom existed in organic compounds in silk fibroin endow active site for ORR of the resultant carbon frameworks. Moreover, the amino acids presented in silk fibroin acted as ligands, functioning with Fe ions to form FeNx coordination compounds, which also served as active sites towards ORR. The synthesized HDCA electrocatalysts, especially HDCA-800 (obtained at 800 °C) displayed excellent catalytic activity with onsets, half-wave potential of 0.94 V, 0.79 V and higher limited current density of 3.80 mA cm-2 through a near four-electron reduction pathway with an average electron transferred number of 3.86, making them promising alternatives for state-of-the-art ORR electrocatalysts in fuel cell field. The porous structure with synergistic effect of N and S heteroatom doping has been proposed to play a key role in facilitating the desired ORR reaction.

  2. Particle size dependence on oxygen reduction reaction activity of electrodeposited TaOx catalysts in acidic media

    KAUST Repository

    Seo, J.

    2013-11-13

    The size dependence of the oxygen reduction reaction activity was studied for TaOx nanoparticles electrodeposited on carbon black for application to polymer electrolyte fuel cells (PEFCs). Compared with a commercial Ta2O5 material, the ultrafine oxide nanoparticles exhibited a distinctively high onset potential different from that of the bulky oxide particles.

  3. Alloy catalyst material

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to a novel alloy catalyst material for use in the synthesis of hydrogen peroxide from oxygen and hydrogen, or from oxygen and water. The present invention also relates to a cathode and an electrochemical cell comprising the novel catalyst material, and the process use...... of the novel catalyst material for synthesising hydrogen peroxide from oxygen and hydrogen, or from oxygen and water....

  4. Ultramicroelectrode studies of oxygen reduction in polyelectrolyte membranes

    Energy Technology Data Exchange (ETDEWEB)

    Holdcroft, S.; Abdou, M.S.; Beattie, P.; Basura, V. [Simon Fraser Univ., Burnaby, BC (Canada). Dept. of Chemistry

    1997-12-31

    A study on the oxygen reduction reaction in a solid state electrochemical cell was presented. The oxygen reduction reaction is a rate limiting reaction in the operation of solid polymer electrolyte fuel cells which use H{sub 2} and O{sub 2}. Interest in the oxygen reduction reaction of platinum electrodes in contact with Nafion electrolytes stems from its role in fuel cell technology. The kinetics of the oxygen reduction reaction in different polyelectrolyte membranes, such as Nafion and non-Nafion membranes, were compared. The electrode kinetics and mass transport parameters of the oxygen reduction reaction in polyelectrolyte membranes were measured by ultramicroelectrode techniques. The major difference found between these two classes of membrane was the percentage of water, which is suggestive of superior electrochemical mass transport properties of the non-Nafion membranes. 2 refs. 1 fig.

  5. Hybrid selective noncatalytic reduction (SNCR)/selective catalytic reduction (SCR) for NOx removal using low-temperature SCR with Mn-V2O5/TiO2 catalyst.

    Science.gov (United States)

    Choi, Sung-Woo; Choi, Sang-Ki; Bae, Hun-Kyun

    2015-04-01

    A hybrid selective noncatalytic reduction/selective catalytic reduction (SNCR/SCR) system that uses two types of technology, low-temperature SCR process and SNCR process, was designed to develop nitrogen oxide (NOx) reduction technology. SCR was conducted with space velocity (SV)=2400 hr(-1) and hybrid SNCR/SCR with SV=6000 hr(-1), since the study focused on reducing the amount of catalyst and both achieved 98% NOx reduction efficiency. Characteristics of NOx reduction by NH3 were studied for low-temperature SCR system at 150 °C using Mn-V2O5/TiO2 catalyst. Mn-added V2O5/TiO2 catalyst was produced, and selective catalyst reduction of NOx by NH3 was experimented. NOx reduction rate according to added Mn content in Mn-V2O5/TiO2 catalyst was studied with varying conditions of reaction temperature, normalized stoichiometric ratio (NSR), SV, and O2 concentration. In the catalyst experiment according to V2O5 concentration, 1 wt.% V2O5 catalyst showed the highest NOx reduction rate: 98% reduction at temperature window of 200~250 °C. As a promoter of the V2O5 catalyst, 5 wt.% Mn was added, and the catalyst showed 47~90% higher efficiency even with low temperatures, 100~200 °C. Mn-V2O5/TiO2 catalyst, prepared by adding 5 wt.% Mn in V2O5/TiO2 catalyst, showed increments of catalyst activation at 150 °C as well as NOx reduction. Mn-V2O5/TiO2 catalyst showed 8% higher rate for NOx reduction compared with V2O5/TiO2 catalyst in 150 °C SCR. Thus, (5 wt.%)Mn-(1 wt.%)V2O5/TiO2 catalyst was applied in SCR of hybrid SNCR/SCR system of low temperature at 150 °C. Low-temperature SCR hybrid SNCR/SCR (150 °C) system and hybrid SNCR/SCR (350 °C) showed 91~95% total reduction rate with conditions of SV=2400~6000 hr(-1) SCR and 850~1050 °C SNCR, NSR=1.5~2.0, and 5% O2. Hybrid SNCR/SCR (150 °C) system proved to be more effective than the hybrid SNCR/SCR (350 °C) system at low temperature. NOx control is very important, since they are the part of greenhouse gases as well as the

  6. Reduction and Analysis of Low Temperature Shift Heterogeneous Catalyst for Water Gas Reaction in Ammonia Production

    Directory of Open Access Journals (Sweden)

    Zečević, N.

    2013-09-01

    Full Text Available In order to obtain additional quantities of hydrogen after the reforming reactions of natural gas and protect the ammonia synthesis catalyst, it is crucial to achieve and maintain maximum possible activity, selectivity and stability of the low temperature shift catalyst for conversion of water gas reaction during its lifetime. Whereas the heterogeneous catalyst comes in oxidized form, it is of the utmost importance to conduct the reduction procedure properly. The proper reduction procedure and continuous analysis of its performance would ensure the required activity, selectivity and stability throughout the catalyst’s service time. For the proper reduction procedure ofthe low temperature shift catalyst, in addition to process equipment, also necessary is a reliable and realistic system for temperature measurements, which will be effective for monitoring the exothermal temperature curves through all catalyst bed layers. For efficiency evaluation of low shift temperature catalyst reduction and its optimization, it is necessary to determine at regular time intervals the temperature approach to equilibrium and temperature profiles of individual layers by means of "S" and "die off" temperature exothermal curves. Based on the obtained data, the optimum inlet temperature could be determined, in order to maximally extend the service life of the heterogeneous catalyst as much as possible, and achieve the optimum equilibrium for conversion of the water gas. This paper presents the methodology for in situ reduction of the low temperature shift heterogeneous catalyst and the developed system for monitoring its individual layers to achieve the minimum possible content of carbon monoxide at the exit of the reactor. The developed system for temperature monitoring through heterogeneous catalyst layers provides the proper procedure for reduction and adjustment of optimum process working conditions for the catalyst by the continuous increase of reactor inlet

  7. New highly active oxygen reduction electrode for PEM fuel cell and Zn/air battery applications (NORA). Final report

    Energy Technology Data Exchange (ETDEWEB)

    Thiele, D.; Zuettel, A.

    2008-04-15

    This illustrated final report for the Swiss Federal Office of Energy (SFOE) presents the results of a project concerning a new, highly active oxygen reduction electrode for PEM fuel cell and zinc/air battery applications. The goal of this project was, according to the authors, to increase the efficiency of the oxygen reduction reaction by lowering the activation polarisation through the right choice of catalyst and by lowering the concentration polarisation. In this work, carbon nanotubes are used as support material. The use of these nanotubes grown on perovskites is discussed. Theoretical considerations regarding activation polarisation are discussed and alternatives to the use of platinum are examined. The results of experiments carried out are presented in graphical and tabular form. The paper is completed with a comprehensive list of references.

  8. Co@Co3O4 nanoparticle embedded nitrogen-doped carbon architectures as efficient bicatalysts for oxygen reduction and evolution reactions

    Science.gov (United States)

    Qi, Chunling; Zhang, Li; Xu, Guancheng; Sun, Zhipeng; Zhao, Aihua; Jia, Dianzeng

    2018-01-01

    The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) play crucial roles in efficient energy conversion and storage solutions. Here, Co@Co3O4 nanoparticle embedded nitrogen-doped carbon architectures (denoted as Co@Co3O4/NCs) are prepared via a simple two-step and in situ approach by carbonization and subsequent oxidation of Co-MOF containing high contents of carbon and nitrogen. When evaluated as electrocatalyst towards both ORR and OER in a KOH electrolyte solution, the as-fabricated Co@Co3O4/NC-2 exhibits similar ORR catalytic activity to the commercial Pt/C catalyst, but superior stability and good methanol tolerance. Furthermore, the as-fabricated catalysts also show promising catalytic activity for OER. The effective catalytic activities originate from the synergistic effects between well wrapped Co@Co3O4 nanoparticles and nitrogen doped carbon structures.

  9. First principles investigation of the activity of thin film Pt, Pd and Au surface alloys for oxygen reduction

    DEFF Research Database (Denmark)

    Tripkovic, Vladimir; Hansen, Heine Anton; Rossmeisl, Jan

    2015-01-01

    driving force for surface segregation, diffusion to defects or surface self-assembling. On the basis of stability and activity analysis we conclude that the near surface alloy of Pd in Pt and some PdAu binary and PtPdAu ternary thin films with a controlled amount of Au are the best catalysts for oxygen......Further advances in fuel cell technologies are hampered by kinetic limitations associated with the sluggish cathodic oxygen reduction reaction. We have investigated a range of different formulations of binary and ternary Pt, Pd and Au thin films as electrocatalysts for oxygen reduction. The most...... active binary thin films are near-surface alloys of Pt with subsurface Pd and certain PdAu and PtAu thin films with surface and/or subsurface Au. The most active ternary thin films are with pure metal Pt or Pd skins with some degree of Au in the surface and/or subsurface layer and the near-surface alloys...

  10. Single-Site Active Iron-Based Bifunctional Oxygen Catalyst for a Compressible and Rechargeable Zinc-Air Battery.

    Science.gov (United States)

    Ma, Longtao; Chen, Shengmei; Pei, Zengxia; Huang, Yan; Liang, Guojin; Mo, Funian; Yang, Qi; Su, Jun; Gao, Yihua; Zapien, Juan Antonio; Zhi, Chunyi

    2018-02-27

    The exploitation of a high-efficient, low-cost, and stable non-noble-metal-based catalyst with oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) simultaneously, as air electrode material for a rechargeable zinc-air battery is significantly crucial. Meanwhile, the compressible flexibility of a battery is the prerequisite of wearable or/and portable electronics. Herein, we present a strategy via single-site dispersion of an Fe-N x species on a two-dimensional (2D) highly graphitic porous nitrogen-doped carbon layer to implement superior catalytic activity toward ORR/OER (with a half-wave potential of 0.86 V for ORR and an overpotential of 390 mV at 10 mA·cm -2 for OER) in an alkaline medium. Furthermore, an elastic polyacrylamide hydrogel based electrolyte with the capability to retain great elasticity even under a highly corrosive alkaline environment is utilized to develop a solid-state compressible and rechargeable zinc-air battery. The creatively developed battery has a low charge-discharge voltage gap (0.78 V at 5 mA·cm -2 ) and large power density (118 mW·cm -2 ). It could be compressed up to 54% strain and bent up to 90° without charge/discharge performance and output power degradation. Our results reveal that single-site dispersion of catalytic active sites on a porous support for a bifunctional oxygen catalyst as cathode integrating a specially designed elastic electrolyte is a feasible strategy for fabricating efficient compressible and rechargeable zinc-air batteries, which could enlighten the design and development of other functional electronic devices.

  11. Enhanced electrocatalysis performance of amorphous electrolytic carbon from CO2 for oxygen reduction by surface modification in molten salt

    International Nuclear Information System (INIS)

    Chen, Zhigang; Gu, Yuxing; Du, Kaifa; Wang, Xu; Xiao, Wei; Mao, Xuhui; Wang, Dihua

    2017-01-01

    Highlights: •The potential of electrolytic carbon as catalyst for oxygen reduction was evaluated. •A molten salt method for electrolytic-carbon modification was demonstrated. •The electrolytic carbon was activated for the ORR by the molten salt sulfidation. •Sulfur and cobalt dual modification further improved the ORR activity of the carbon. -- Abstract: The electrolytic carbon (E-carbon) derived from greenhouse gas CO 2 in molten carbonates at mild temperature possesses high electrical conductivity and suitable specific surface area. In this work, its potential as catalyst is investigated towards oxygen reduction reaction (ORR). It is revealed that the pristine E-carbon has no electrocatalytic activity for the ORR due to its high surface content of carboxyl group. The carbon was then treated in a Li 2 SO 4 containing Li 2 CO 3 -Na 2 CO 3 -K 2 CO 3 molten salt at 550 °C. Sulfur modified E-carbon was obtained in the melt via a galvanic sulfidation reaction, in which Li 2 SO 4 served as a nontoxic sulfur source and an oxidant. The sulfur modified E-carbon showed a significantly improved electrocatalytic activity. Subsequently, a sulfur/cobalt dual modified carbon with much higher catalysis activity was successfully prepared by treating an E-carbon/CoSO 4 composite in the same melt. The dual modified E-carbon showed excellent catalytic performance with activity close to the commercial Pt/C catalyst but a high tolerance towards methanol.

  12. A mathematical model and optimization of the cathode catalyst layer structure in PEM fuel cells

    International Nuclear Information System (INIS)

    Wang Qianpu; Song Datong; Navessin, Titichai; Holdcroft, Steven; Liu Zhongsheng

    2004-01-01

    A spherical flooded-agglomerate model for the cathode catalyst layer of a proton exchange membrane fuel cell, which includes the kinetics of oxygen reduction, at the catalyst vertical bar electrolyte interface, proton transport through the polymer electrolyte network, the oxygen diffusion through gas pore, and the dissolved oxygen diffusion through electrolyte, is considered. Analytical and numerical solutions are obtained in various control regimes. These are the limits of (i) oxygen diffusion control (ii) proton conductivity control, and (iii) mixture control. The structure and material parameters, such as porosity, agglomerate size, catalyst layer thickness and proton conductivity, on the performance are investigated under these limits. The model could help to characterize the system properties and operation modes, and to optimize catalyst layer design

  13. Highly active Pd-In/mesoporous alumina catalyst for nitrate reduction.

    Science.gov (United States)

    Gao, Zhenwei; Zhang, Yonggang; Li, Deyi; Werth, Charles J; Zhang, Yalei; Zhou, Xuefei

    2015-04-09

    The catalytic reduction of nitrate is a promising technology for groundwater purification because it transforms nitrate into nitrogen and water. Recent studies have mainly focused on new catalysts with higher activities for the reduction of nitrate. Consequently, metal nanoparticles supported on mesoporous metal oxides have become a major research direction. However, the complex surface chemistry and porous structures of mesoporous metal oxides lead to a non-uniform distribution of metal nanoparticles, thereby resulting in a low catalytic efficiency. In this paper, a method for synthesizing the sustainable nitrate reduction catalyst Pd-In/Al2O3 with a dimensional structure is introduced. The TEM results indicated that Pd and In nanoparticles could efficiently disperse into the mesopores of the alumina. At room temperature in CO2-buffered water and under continuous H2 as the electron donor, the synthesized material (4.9 wt% Pd) was the most active at a Pd-In ratio of 4, with a first-order rate constant (k(obs) = 0.241 L min(-1) g(cata)(-1)) that was 1.3× higher than that of conventional Pd-In/Al2O3 (5 wt% Pd; 0.19 L min(-1) g(cata)(-1)). The Pd-In/mesoporous alumina is a promising catalyst for improving the catalytic reduction of nitrate. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Synthesis and Characterization of Pt-Ag Alloy Nanocages with Enhanced Activity and Durability toward Oxygen Reduction.

    Science.gov (United States)

    Yang, Xuan; Roling, Luke T; Vara, Madeline; Elnabawy, Ahmed O; Zhao, Ming; Hood, Zachary D; Bao, Shixiong; Mavrikakis, Manos; Xia, Younan

    2016-10-12

    Engineering the elemental composition of metal nanocrystals offers an effective strategy for the development of catalysts or electrocatalysts with greatly enhanced activity. Herein, we report the synthesis of Pt-Ag alloy nanocages with an outer edge length of 18 nm and a wall thickness of about 3 nm. Such nanocages with a composition of Pt 19 Ag 81 could be readily prepared in one step through the galvanic replacement reaction between Ag nanocubes and a Pt(II) precursor. After 10 000 cycles of potential cycling in the range of 0.60-1.0 V as in an accelerated durability test, the composition of the nanocages changed to Pt 56 Ag 44 , together with a specific activity of 1.23 mA cm -2 toward oxygen reduction, which was 3.3 times that of a state-of-the-art commercial Pt/C catalyst (0.37 mA cm -2 ) prior to durability testing. Density functional theory calculations attributed the increased activity to the stabilization of the transition state for breaking the O-O bond in molecular oxygen. Even after 30 000 cycles of potential cycling, the mass activity of the nanocages only dropped from 0.64 to 0.33 A mg -1 Pt , which was still about two times that of the pristine Pt/C catalyst (0.19 A mg -1 Pt ).

  15. Emerging methanol-tolerant AlN nanowire oxygen reduction electrocatalyst for alkaline direct methanol fuel cell.

    Science.gov (United States)

    Lei, M; Wang, J; Li, J R; Wang, Y G; Tang, H L; Wang, W J

    2014-08-11

    Replacing precious and nondurable Pt catalysts with cheap materials is a key issue for commercialization of fuel cells. In the case of oxygen reduction reaction (ORR) catalysts for direct methanol fuel cell (DMFC), the methanol tolerance is also an important concern. Here, we develop AlN nanowires with diameters of about 100-150 nm and the length up to 1 mm through crystal growth method. We find it is electrochemically stable in methanol-contained alkaline electrolyte. This novel material exhibits pronounced electrocatalytic activity with exchange current density of about 6.52 × 10(-8) A/cm(2). The single cell assembled with AlN nanowire cathodic electrode achieves a power density of 18.9 mW cm(-2). After being maintained at 100 mA cm(-2) for 48 h, the AlN nanowire-based single cell keeps 92.1% of the initial performance, which is in comparison with 54.5% for that assembled with Pt/C cathode. This discovery reveals a new type of metal nitride ORR catalyst that can be cheaply produced from crystal growth method.

  16. Enhanced Oxygen Reduction Reaction by In Situ Anchoring Fe2N Nanoparticles on Nitrogen-Doped Pomelo Peel-Derived Carbon

    Directory of Open Access Journals (Sweden)

    Yiqing Wang

    2017-11-01

    Full Text Available The development of effective oxygen electrode catalysts for renewable energy technologies such as metal-air batteries and fuel cells remains challenging. Here, we prepared a novel high-performance oxygen reduction reaction (ORR catalyst comprised of Fe2N nanoparticles (NPs in situ decorated over an N-doped porous carbon derived from pomelo peel (i.e., Fe2N/N-PPC. The decorated Fe2N NPs provided large quantities of Fe-N-C bonding catalytic sites. The as-obtained Fe2N/N-PPC showed superior onset and half-wave potentials (0.966 and 0.891 V, respectively in alkaline media (0.1 M KOH compared to commercial Pt/C through a direct four-electron reaction pathway. Fe2N/N-PPC also showed better stability and methanol tolerance than commercial Pt/C. The outstanding ORR performance of Fe2N/N-PPC was attributed to its high specific surface area and the synergistic effects of Fe2N NPs. The utilization of agricultural wastes as a precursor makes Fe2N/N-PPC an ideal non-precious metal catalyst for ORR applications.

  17. Green Synthesis of Three-Dimensional Hybrid N-Doped ORR Electro-Catalysts Derived from Apricot Sap

    Directory of Open Access Journals (Sweden)

    Ramesh Karunagaran

    2018-01-01

    Full Text Available Rapid depletion of fossil fuel and increased energy demand has initiated a need for an alternative energy source to cater for the growing energy demand. Fuel cells are an enabling technology for the conversion of sustainable energy carriers (e.g., renewable hydrogen or bio-gas into electrical power and heat. However, the hazardous raw materials and complicated experimental procedures used to produce electro-catalysts for the oxygen reduction reaction (ORR in fuel cells has been a concern for the effective implementation of these catalysts. Therefore, environmentally friendly and low-cost oxygen reduction electro-catalysts synthesised from natural products are considered as an attractive alternative to currently used synthetic materials involving hazardous chemicals and waste. Herein, we describe a unique integrated oxygen reduction three-dimensional composite catalyst containing both nitrogen-doped carbon fibers (N-CF and carbon microspheres (N-CMS synthesised from apricot sap from an apricot tree. The synthesis was carried out via three-step process, including apricot sap resin preparation, hydrothermal treatment, and pyrolysis with a nitrogen precursor. The nitrogen-doped electro-catalysts synthesised were characterised by SEM, TEM, XRD, Raman, and BET techniques followed by electro-chemical testing for ORR catalysis activity. The obtained catalyst material shows high catalytic activity for ORR in the basic medium by facilitating the reaction via a four-electron transfer mechanism.

  18. Green Synthesis of Three-Dimensional Hybrid N-Doped ORR Electro-Catalysts Derived from Apricot Sap.

    Science.gov (United States)

    Karunagaran, Ramesh; Coghlan, Campbell; Shearer, Cameron; Tran, Diana; Gulati, Karan; Tung, Tran Thanh; Doonan, Christian; Losic, Dusan

    2018-01-28

    Rapid depletion of fossil fuel and increased energy demand has initiated a need for an alternative energy source to cater for the growing energy demand. Fuel cells are an enabling technology for the conversion of sustainable energy carriers (e.g., renewable hydrogen or bio-gas) into electrical power and heat. However, the hazardous raw materials and complicated experimental procedures used to produce electro-catalysts for the oxygen reduction reaction (ORR) in fuel cells has been a concern for the effective implementation of these catalysts. Therefore, environmentally friendly and low-cost oxygen reduction electro-catalysts synthesised from natural products are considered as an attractive alternative to currently used synthetic materials involving hazardous chemicals and waste. Herein, we describe a unique integrated oxygen reduction three-dimensional composite catalyst containing both nitrogen-doped carbon fibers (N-CF) and carbon microspheres (N-CMS) synthesised from apricot sap from an apricot tree. The synthesis was carried out via three-step process, including apricot sap resin preparation, hydrothermal treatment, and pyrolysis with a nitrogen precursor. The nitrogen-doped electro-catalysts synthesised were characterised by SEM, TEM, XRD, Raman, and BET techniques followed by electro-chemical testing for ORR catalysis activity. The obtained catalyst material shows high catalytic activity for ORR in the basic medium by facilitating the reaction via a four-electron transfer mechanism.

  19. Discovery of a Ni-Ga catalyst for carbon dioxide reduction to methanol

    DEFF Research Database (Denmark)

    Studt, Felix; Sharafutdinov, Irek; Abild-Pedersen, Frank

    2014-01-01

    The use of methanol as a fuel and chemical feedstock could become very important in the development of a more sustainable society if methanol could be efficiently obtained from the direct reduction of CO 2 using solar-generated hydrogen. If hydrogen production is to be decentralized, small-scale CO...... 2 reduction devices are required that operate at low pressures. Here, we report the discovery of a Ni-Ga catalyst that reduces CO 2 to methanol at ambient pressure. The catalyst was identified through a descriptor-based analysis of the process and the use of computational methods to identify Ni......-Ga intermetallic compounds as stable candidates with good activity. We synthesized and tested a series of catalysts and found that Ni 5 Ga 3 is particularly active and selective. Comparison with conventional Cu/ZnO/Al 2 O 3 catalysts revealed the same or better methanol synthesis activity, as well as considerably...

  20. Nitrogen-doped graphene aerogel-supported spinel CoMn2O4 nanoparticles as an efficient catalyst for oxygen reduction reaction

    Science.gov (United States)

    Liu, Yisi; Li, Jie; Li, Wenzhang; Li, Yaomin; Chen, Qiyuan; Zhan, Faqi

    2015-12-01

    Spinel CoMn2O4 (CMO) nanoparticles grown on three-dimensional (3D) nitrogen-doped graphene areogel (NGA) is prepared by a facile two-step hydrothermal method. The NGA not only possesses the intrinsic property of graphene, but also has abundant pore conformations for supporting spinel metal oxide nanoparticles, thus would be suitable as a good electrocatalysts' support for oxygen reduction reaction (ORR). The structure, morphology, porous properties, and chemical composition of CMO/NGA are investigated by X-ray diffraction (XRD) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, nitrogen adsorption-desorption measurements, and X-ray photoelectron spectroscopy (XPS). The electrocatalytic activity of catalysts is discussed by cyclic voltammograms (CV), electrochemical impedance spectroscopy (EIS), and rotating disk electrode (RDE) measurements in O2-saturated 0.1 M KOH electrolyte. The CMO/NGA hybrid exhibits more positive onset potential and half-wave potential, faster charge transfer than that of CMO and NGA, and its electrocatalytic performance is comparable with the commercial 20 wt.% Pt/C. Furthermore, it mainly favors a direct 4e- reaction pathway, and has excellent ethanol tolerance and high durability, which is attributed to the unique 3D crumpled porous nanostructure of NGA with large specific area and fast electron transport, and the synergic covalent coupling between the CoMn2O4 nanoparticles and NGA.

  1. Mechanistic Investigation of the Reduction of NOx over Pt- and Rh-Based LNT Catalysts

    Directory of Open Access Journals (Sweden)

    Lukasz Kubiak

    2016-03-01

    Full Text Available The influence of the noble metals (Pt vs. Rh on the NOx storage reduction performances of lean NOx trap catalysts is here investigated by transient micro-reactor flow experiments. The study indicates a different behavior during the storage in that the Rh-based catalyst showed higher storage capacity at high temperature as compared to the Pt-containing sample, while the opposite is seen at low temperatures. It is suggested that the higher storage capacity of the Rh-containing sample at high temperature is related to the higher dispersion of Rh as compared to Pt, while the lower storage capacity of Rh-Ba/Al2O3 at low temperature is related to its poor oxidizing properties. The noble metals also affect the catalyst behavior upon reduction of the stored NOx, by decreasing the threshold temperature for the reduction of the stored NOx. The Pt-based catalyst promotes the reduction of the adsorbed NOx at lower temperatures if compared to the Rh-containing sample, due to its superior reducibility. However, Rh-based material shows higher reactivity in the NH3 decomposition significantly enhancing N2 selectivity. Moreover, formation of small amounts of N2O is observed on both Pt- and Rh-based catalyst samples only during the reduction of highly reactive NOx stored at 150 °C, where NOx is likely in the form of nitrites.

  2. Non-Fermi Liquids as Highly Active Oxygen Evolution Reaction Catalysts.

    Science.gov (United States)

    Hirai, Shigeto; Yagi, Shunsuke; Chen, Wei-Tin; Chou, Fang-Cheng; Okazaki, Noriyasu; Ohno, Tomoya; Suzuki, Hisao; Matsuda, Takeshi

    2017-10-01

    The oxygen evolution reaction (OER) plays a key role in emerging energy conversion technologies such as rechargeable metal-air batteries, and direct solar water splitting. Herein, a remarkably low overpotential of ≈150 mV at 10 mA cm -2 disk in alkaline solutions using one of the non-Fermi liquids, Hg 2 Ru 2 O 7 , is reported. Hg 2 Ru 2 O 7 displays a rapid increase in current density and excellent durability as an OER catalyst. This outstanding catalytic performance is realized through the coexistence of localized d-bands with the metallic state that is unique to non-Fermi liquids. The findings indicate that non-Fermi liquids could greatly improve the design of highly active OER catalysts.

  3. The enhanced activity of mass-selected PtxGd nanoparticles for oxygen electroreduction

    DEFF Research Database (Denmark)

    Velazquez-Palenzuela, Amado Andres; Masini, Federico; Pedersen, Anders Filsøe

    2015-01-01

    Mass-selected platinum–gadolinium alloy nanoparticles (PtxGd NPs) are synthesized for the first time as oxygen reduction reaction (ORR) electrocatalysts using the gas aggregation technique, under ultrahigh vacuum (UHV) conditions. The morphology of the PtxGd catalysts is characterized, and their ......Mass-selected platinum–gadolinium alloy nanoparticles (PtxGd NPs) are synthesized for the first time as oxygen reduction reaction (ORR) electrocatalysts using the gas aggregation technique, under ultrahigh vacuum (UHV) conditions. The morphology of the PtxGd catalysts is characterized...

  4. Benchmarking the Stability of Oxygen Evolution Reaction Catalysts

    DEFF Research Database (Denmark)

    Frydendal, Rasmus; Paoli, Elisa Antares; Knudsen, Brian Peter

    2014-01-01

    Because of the rising need for energy storage, potentially facilitated by electrolyzers, improvements to the catalysis of the oxygen evolution reaction (OER) become increasingly relevant. Standardized protocols have been developed for determining critical figures of merit, such as the electrochem......Because of the rising need for energy storage, potentially facilitated by electrolyzers, improvements to the catalysis of the oxygen evolution reaction (OER) become increasingly relevant. Standardized protocols have been developed for determining critical figures of merit...... coupled plasma mass spectrometry (ICP–MS). We show that a meaningful estimation of the stability cannot be achieved based on purely electrochemical tests. On the catalysts tested, the anodic dissolution current was four orders of magnitude lower than the total current. We propose that even if long......-term testing cannot be replaced, a useful evaluation of the stability can be achieved with short-term tests by using EQCM or ICP–MS....

  5. A Universal Method to Engineer Metal Oxide-Metal-Carbon Interface for Highly Efficient Oxygen Reduction.

    Science.gov (United States)

    Lv, Lin; Zha, Dace; Ruan, Yunjun; Li, Zhishan; Ao, Xiang; Zheng, Jie; Jiang, Jianjun; Chen, Hao Ming; Chiang, Wei-Hung; Chen, Jun; Wang, Chundong

    2018-03-27

    Oxygen is the most abundant element in the Earth's crust. The oxygen reduction reaction (ORR) is also the most important reaction in life processes and energy converting/storage systems. Developing techniques toward high-efficiency ORR remains highly desired and a challenge. Here, we report a N-doped carbon (NC) encapsulated CeO 2 /Co interfacial hollow structure (CeO 2 -Co-NC) via a generalized strategy for largely increased oxygen species adsorption and improved ORR activities. First, the metallic Co nanoparticles not only provide high conductivity but also serve as electron donors to largely create oxygen vacancies in CeO 2 . Second, the outer carbon layer can effectively protect cobalt from oxidation and dissociation in alkaline media and as well imparts its higher ORR activity. In the meanwhile, the electronic interactions between CeO 2 and Co in the CeO 2 /Co interface are unveiled theoretically by density functional theory calculations to justify the increased oxygen absorption for ORR activity improvement. The reported CeO 2 -Co-NC hollow nanospheres not only exhibit decent ORR performance with a high onset potential (922 mV vs RHE), half-wave potential (797 mV vs RHE), and small Tafel slope (60 mV dec -1 ) comparable to those of the state-of-the-art Pt/C catalysts but also possess long-term stability with a negative shift of only 7 mV of the half-wave potential after 2000 cycles and strong tolerance against methanol. This work represents a solid step toward high-efficient oxygen reduction.

  6. Oxygen reduction at platinum nanoparticles supported on carbon cryogel in alkaline solution

    Directory of Open Access Journals (Sweden)

    N. R. ELEZOVIC

    2007-07-01

    Full Text Available The oxygen reduction reaction was investigated in 0.1 M NaOH solution, on a porous coated electrode formed of Pt particles supported on carbon cryogel. The Pt/C catalyst was characterized by the X-ray diffraction (XRD, transmission electron microscopy (TEM and cyclic voltammetry techniques. The results demonstrated a successful reduction of Pt to metallic form and homogenous Pt particle size distribution with a mean particle size of about 2.7 nm. The ORR kinetics was investigated by linear sweep polarization at a rotating disc electrode. The results showed the existence of two E – log j regions, usually referred to polycrystalline Pt in acid and alkaline solution. At low current densities (lcd, the Tafel slope was found to be close to –2.3RT/F, while at high current densities (hcd it was found to be close to –2×2.3RT/F. It is proposed that the main path in the ORR mechanism on Pt particles was the direct four-electron process, with the transfer of the first electron as the rate determining step. If the activities are expressed through the specific current densities, a small enhancement of the catalytic activity for Pt/C was observed compared to that of polycrystalline Pt. The effect of the Pt particle size on the electrocatalysis of oxygen reduction was ascribed to the predominant (111 facets of the platinum crystallites.

  7. Heavily Graphitic-Nitrogen Self-doped High-porosity Carbon for the Electrocatalysis of Oxygen Reduction Reaction

    Science.gov (United States)

    Feng, Tong; Liao, Wenli; Li, Zhongbin; Sun, Lingtao; Shi, Dongping; Guo, Chaozhong; Huang, Yu; Wang, Yi; Cheng, Jing; Li, Yanrong; Diao, Qizhi

    2017-11-01

    Large-scale production of active and stable porous carbon catalysts for oxygen reduction reaction (ORR) from protein-rich biomass became a hot topic in fuel cell technology. Here, we report a facile strategy for synthesis of nitrogen-doped porous nanocarbons by means of a simple two-step pyrolysis process combined with the activation of zinc chloride and acid-treatment process, in which kidney bean via low-temperature carbonization was preferentially adopted as the only carbon-nitrogen sources. The results show that this carbon material exhibits excellent ORR electrocatalytic activity, and higher durability and methanol-tolerant property compared to the state-of-the-art Pt/C catalyst for the ORR, which can be mainly attributed to high graphitic-nitrogen content, high specific surface area, and porous characteristics. Our results can encourage the synthesis of high-performance carbon-based ORR electrocatalysts derived from widely-existed natural biomass.

  8. Electro and photo-assisted carbon dioxide reduction on molecular catalysts

    International Nuclear Information System (INIS)

    Stanbury, Matthew

    2016-01-01

    The general context of this thesis is on CO 2 valorisation, and recounts fundamental research aimed at finding new molecular catalysts in order to achieve CO 2 conversion. The results obtained provide additional knowledge in view of developing an efficient and selective catalytic CO 2 reduction process. The first chapter begins with the general picture of CO 2 utilisation and contains a bibliographical overview on the use of molecular catalysts for CO 2 photo- and electroreduction. This short review demonstrates the wide variety of transition metal complexes used as catalysts, in particularly those based on rhenium. An analysis on the current state of CO 2 reduction research using molecular catalyst complexes of the manganese carbonyl type is then reported. In Chapter II, the discussion begins with a brief overview of the research developed during this thesis relating to new complexes of the general formula: [Mn(L)(CO) 3 (X)] (X = Br, n = 0 ou CH 3 CN, n = 1; L = terpyridine derivatives). The interest in these complexes is twofold, as their physico-chemical properties give them potential catalytic CO 2 reduction applications, as well as applications in the field relating to controlled CO release molecules. Developing new complexes based on ligands derived from terpy is one of the main routes that were chosen for catalyst performance optimisation and improvement. In this context, Mn complexes were synthesised, their photo- and electrochemical properties were studied in detail, before testing their activity with respect to catalytic CO 2 reduction. The most remarkable result comes from the unique ability of these species to release one of their carbonyl ligands in a controlled fashion, which led to the discovery of novel Mn dicarbonyl complexes which are selective catalysts for CO 2 reduction, and also to new molecules which are applicable in the release of small quantities of CO for therapeutic purposes. Chapter III covers the study of the complex [Mn

  9. Selective catalyst reduction light-off strategy

    Science.gov (United States)

    Gonze, Eugene V [Pinckney, MI

    2011-10-18

    An emissions control system includes a temperature determination module and an emissions control module. The temperature determination module determines a first temperature of a heater element of a diesel particulate filter (DPF) assembly in an exhaust system and determines a second temperature of a catalyst of the DPF assembly. The emissions control module selectively activates the heater element, selectively initiates a predefined combustion process in an engine based upon the first temperature, and selectively starts a reductant injection process based upon the second temperature.

  10. Fe-N-C electrocatalysts for oxygen reduction reaction synthesized by using aniline salt and Fe3+/H2O2 catalytic system

    KAUST Repository

    Bukola, Saheed; Merzougui, Belabbes A.; Akinpelu, Akeem; Laoui, Tahar; Hedhili, Mohamed N.; Swain, Greg M.; Shao, Minhua

    2014-01-01

    Non-precious metal (NPM) catalysts are synthesized by polymerizing aniline salt using an aqueous Fe3+/H2O2 coupled catalytic system on a carbon matrix with a porous creating agent. The sulfur containing compunds such as ammonium peroxydisulfate, are eliminated in this method resulting in a much simpler process. The catalysts' porous structures are enhanced with ammonium carbonate as a sacrificial material that yields voids when decomposed during the heat treatment at 900 °C in N2 atmosphere. Two catalysts Fe-N-C/Vu and Fe-N-C/KB (Vu = Vulcan and KB = Ketjen black) were synthesized and characterized. Their oxygen reduction reaction (ORR) activities were investigated using a rotating ring-disk electrode (RRDE) in both 0.1 M KOH and 0.1 M HClO4. The catalysts show improved ORR activities close to that of Pt-based catalysts, low H2O2 formation and also demonstrated a remarkable tolerance towards methanol oxidation.

  11. Fe-N-C electrocatalysts for oxygen reduction reaction synthesized by using aniline salt and Fe3+/H2O2 catalytic system

    KAUST Repository

    Bukola, Saheed

    2014-11-01

    Non-precious metal (NPM) catalysts are synthesized by polymerizing aniline salt using an aqueous Fe3+/H2O2 coupled catalytic system on a carbon matrix with a porous creating agent. The sulfur containing compunds such as ammonium peroxydisulfate, are eliminated in this method resulting in a much simpler process. The catalysts\\' porous structures are enhanced with ammonium carbonate as a sacrificial material that yields voids when decomposed during the heat treatment at 900 °C in N2 atmosphere. Two catalysts Fe-N-C/Vu and Fe-N-C/KB (Vu = Vulcan and KB = Ketjen black) were synthesized and characterized. Their oxygen reduction reaction (ORR) activities were investigated using a rotating ring-disk electrode (RRDE) in both 0.1 M KOH and 0.1 M HClO4. The catalysts show improved ORR activities close to that of Pt-based catalysts, low H2O2 formation and also demonstrated a remarkable tolerance towards methanol oxidation.

  12. An Investigation of Palladium Oxygen Reduction Catalysts for the Direct Methanol Fuel Cell

    Directory of Open Access Journals (Sweden)

    G. F. Álvarez

    2011-01-01

    Full Text Available A comparative study of Pd and Pt was carried out in DMFC using different methanol concentrations and under different operating conditions. Cell performance was compared at methanol concentrations of 1, 3, 5, and 7 M and at temperatures of 20, 40, and 60°C. Homemade Pd nanoparticles were prepared on Vulcan XC-72R using ethylene glycol as the reducing agent at pH 11. The resulting catalyst, Pd/C, with metal nanoparticles of approximately 6 nm diameter, was tested as a cathode catalyst in DMFC. At methanol concentrations of 5 M and higher, the Pd cathode-based cell performed better than that with Pt at 60°C with air.

  13. Direct synthesis of bimetallic PtCo mesoporous nanospheres as efficient bifunctional electrocatalysts for both oxygen reduction reaction and methanol oxidation reaction

    Science.gov (United States)

    Wang, Hongjing; Yu, Hongjie; Li, Yinghao; Yin, Shuli; Xue, Hairong; Li, Xiaonian; Xu, You; Wang, Liang

    2018-04-01

    The engineering of electrocatalysts with high performance for cathodic and/or anodic catalytic reactions is of great urgency for the development of direct methanol fuel cells. Pt-based bimetallic alloys have recently received considerable attention in the field of fuel cells because of their superior catalytic performance towards both fuel molecule electro-oxidation and oxygen reduction. In this work, bimetallic PtCo mesoporous nanospheres (PtCo MNs) with uniform size and morphology have been prepared by a one-step method with a high yield. The as-made PtCo MNs show superior catalytic activities for both oxygen reduction reaction and methanol oxidation reaction relative to Pt MNs and commercial Pt/C catalyst, attributed to their mesoporous structure and bimetallic composition.

  14. Polyaniline-Derived Ordered Mesoporous Carbon as an Efficient Electrocatalyst for Oxygen Reduction Reaction

    Directory of Open Access Journals (Sweden)

    Kai Wan

    2015-06-01

    Full Text Available Nitrogen-doped ordered mesoporous carbon was synthesized by using polyaniline as the carbon source and SBA-15 as the template. The microstructure, composition and electrochemical behavior were extensively investigated by the nitrogen sorption isotherm, X-ray photoelectron spectroscopy, cyclic voltammetry and rotating ring-disk electrode. It is found that the pyrolysis temperature yielded a considerable effect on the pore structure, elemental composition and chemical configuration. The pyrolysis temperature from 800 to 1100 °C yielded a volcano-shape relationship with both the specific surface area and the content of the nitrogen-activated carbon. Electrochemical tests showed that the electrocatalytic activity followed a similar volcano-shape relationship, and the carbon catalyst synthesized at 1000 °C yielded the best performance. The post-treatment in NH3 was found to further increase the specific surface area and to enhance the nitrogen doping, especially the edge-type nitrogen, which favored the oxygen reduction reaction in both acid and alkaline media. The above findings shed light on electrocatalysis and offer more strategies for the controllable synthesis of the doped carbon catalyst.

  15. Evaluation and Enhancement of the Oxygen Reduction Reaction Activity on Hafnium Oxide Nanoparticles Assisted by L(+)-lysine

    International Nuclear Information System (INIS)

    Chisaka, Mitsuharu; Itagaki, Noriaki

    2016-01-01

    Evaluation of the oxygen reduction reaction (ORR) on oxide compounds is difficult owing to the insulating nature of oxides. In this study, various amounts of L(+)-lysine were added to the precursor dispersion for the hydrothermal synthesis of hafnium oxide nanoparticles on reduced graphene oxide sheets (HfO_x–rGO) to coat the HfO_x catalysts with layers of carbon, thereby increasing the conductivity and number of active sites. When the mass ratio of L(+)-lysine to GO, R, was above 26, carbon layers were formed and the amount monotonically increased with increasing R, as noted by cyclic voltammogrametry. X-ray photoelectron spectroscopy and rotating disk electrode analyses revealed that pyrolysis produced ORR-active oxygen defects, whose formation was proposed to involve carbothermal reduction. When 53 ≤ R ≤ 210, HfO_x–rGO contained a similar amount of oxygen defects and ORR activity, as represented by an onset potential of 0.9 V versus the reversible hydrogen electrode in 0.1 mol dm"−"3 H_2SO_4. However, the number of active sites depended on R due to the amount of L(+)-lysine-derived carbon layers that increased both the number of active sites and resistivity towards oxygen diffusion.

  16. Methanol reformer with water vapor and oxygen in catalysts of Cu/CeO2-ZrO2 to generate H2

    International Nuclear Information System (INIS)

    Aguila M, M.M.

    2007-01-01

    The environmental pollution is one of the problems more important to solve in the present time because its affect the quality of the alive beings' life. For such a reason alternatives have been looked for to diminish the percentage of air pollution (NO x , CO x , SO x , etc.), for they have been developed it the well-known catalytic converters. Another possibility is the energy use through fuel cells in vehicles using H 2 as fuel free of CO (smaller concentration to 10 ppm). Processes exist for the production of H 2 starting from the methanol and in this work the one was used reformed of methanol with water vapor and oxygen (OSRM) as the main reaction of this work. The primordial objective of this work consists on studying the catalytic properties of the copper (Cu) supported in mixed oxides (ZrO 2 -CeO 2 ) in the reaction of having reformed of methanol with water vapor and oxygen for the production of H 2 . Zirconia is synthesized (ZrO 2 ) and mixed oxides ZrO 2 -CeO 2 (with different relationship Zr/Ce) for the sol-gel method and the one cerium oxide (CeO 2 ) by direct combustion of the cerium nitrate. The oxides were stabilized thermally at 600 C by 5h. The catalysts were prepared by classic impregnation using copper acetate, the nominal concentration was of 3% in weight. The catalysts were roasted at 350 C and later on reduced in flow from H 2 to 350 C for 1h. The characterization of the catalytic materials is carried out through different techniques as: adsorption-desorption of nitrogen to determine the surface area BET, scanning electron microscopy (SEM) to determine the final morphology of the catalysts, X-ray diffraction (XRD) to identify the crystalline phases of the catalytic materials and reduction to programmed temperature (TPR) to evidence the interaction metal-support. The catalytic properties of the catalysts were studied in the reaction CH 3 OH + H 2 O + O 2 , to determine the activity and selectivity. The surface area of the mixed oxides was

  17. (La1-xSrx)0.98MnO3 perovskite with A-site deficiencies toward oxygen reduction reaction in aluminum-air batteries

    Science.gov (United States)

    Xue, Yejian; Miao, He; Sun, Shanshan; Wang, Qin; Li, Shihua; Liu, Zhaoping

    2017-02-01

    The strontium doped Mn-based perovskites have been proposed as one of the best oxygen reduction reaction catalysts (ORRCs) to substitute the noble metal. However, few studies have investigated the catalytic activities of LSM with the A-site deficiencies. Here, the (La1-xSrx)0.98MnO3 (LSM) perovskites with A-site deficiencies are prepared by a modified solid-liquid method. The structure, morphology, valence state and oxygen adsorption behaviors of these LSM samples are characterized, and their catalytic activities toward ORR are studied by the rotating ring-disk electrode (RRDE) and aluminum-air battery technologies. The results show that the appropriate doping with Sr and introducing A-site stoichiometry can effectively tailor the Mn valence and increase the oxygen adsorption capacity of LSM. Among all the LSM samples in this work, the (La0.7Sr0.3)0.98MnO3 perovskite composited with 50% carbon (50%LSM30) exhibits the best ORR catalytic activity due to the excellent oxygen adsorption capacity. Also, this catalyst has much higher durability than that of commercial 20%Pt/C. Moreover, the maximum power density of the aluminum-air battery using 50%LSM30 as the ORRC can reach 191.3 mW cm-2. Our work indicates that the LSM/C composite catalysts with A-site deficiencies can be used as a promising ORRC in the metal-air batteries.

  18. Preparation of Ag4Bi2O5/MnO2 Corn/Cob Like Nano Material as a Superior Catalyst for Oxygen Reduction Reaction in Alkaline Solution

    Directory of Open Access Journals (Sweden)

    Xun Zeng

    2017-12-01

    Full Text Available Ag4Bi2O5/MnO2 nano-sized material was synthesized by a co-precipitation method in concentrated KOH solution. The morphology characterization indicates that MnO2 nanoparticles with a size of 20 nm are precipitated on the surface of nano Ag4Bi2O5, forming a structure like corn on the cob. The obtained material with 60% Mn offers slightly higher initial potential (0.098 V vs. Hg/HgO and limiting current density (−5.67 mA cm−2 at a rotating speed of 1600 rpm compared to commercial Pt/C (−0.047 V and −5.35 mA cm−2, respectively. Furthermore, the obtained material exhibits superior long-term durability and stronger methanol tolerance than commercial Pt/C. The remarkable features suggest that the Ag4Bi2O5/MnO2 nano-material is a very promising oxygen reduction reaction catalyst.

  19. Catalysts for the reduction of SO{sub 2} to elemental sulfur

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Y.; Yu, Q.Q.; Chang, S.G. [Lawrence Berkeley Lab., Berkeley, CA (United States)

    1995-11-01

    Catalysts have been prepared for the reduction of SO{sub 2} to elemental sulfur by synthesis gas. A catalyst allows to obtain more than 97% yield of elemental sulfur with a single-stage reactor at 540{degrees}C. A lifetime test has been successfully performed. The mass balance of sulfur and carbon has been checked. The effect of H{sub 2}S, COS, and H{sub 2}O has been studied.

  20. Electrocatalytic activity of LaNiO3 toward H2O2 reduction reaction: Minimization of oxygen evolution

    Science.gov (United States)

    Amirfakhri, Seyed Javad; Meunier, Jean-Luc; Berk, Dimitrios

    2014-12-01

    The catalytic activity of LaNiO3 toward H2O2 reduction reaction (HPRR), with a potential application in the cathode side of fuel cells, is studied in alkaline, neutral and acidic solutions by rotating disk electrode. The LaNiO3 particles synthesised by citrate-based sol-gel method have sizes between 30 and 70 nm with an active specific surface area of 1.26 ± 0.05 m2 g-1. LaNiO3 shows high catalytic activity toward HPRR in 0.1 M KOH solution with an exchange current density based on the active surface area (j0A) of (7.4 ± 1) × 10-6 A cm-2 which is noticeably higher than the j0A of N-doped graphene. The analysis of kinetic parameters suggests that the direct reduction of H2O2, H2O2 decomposition, O2 reduction and O2 desorption occur through HPRR on this catalyst. In order to control and minimize oxygen evolution from the electrode surface, the effects of catalyst loading, bulk concentration of H2O2, and using a mixture of LaNiO3 and N-doped graphene are studied. Although the mechanism of HPRR is independent of the aforementioned operating conditions, gas evolution decreases by increasing the catalyst loading, decreasing the bulk concentration of H2O2, and addition of N-doped graphene to LaNiO3.

  1. Coupled Metal/Oxide Catalysts with Tunable Product Selectivity for Electrocatalytic CO2 Reduction.

    Science.gov (United States)

    Huo, Shengjuan; Weng, Zhe; Wu, Zishan; Zhong, Yiren; Wu, Yueshen; Fang, Jianhui; Wang, Hailiang

    2017-08-30

    One major challenge to the electrochemical conversion of CO 2 to useful fuels and chemical products is the lack of efficient catalysts that can selectively direct the reaction to one desirable product and avoid the other possible side products. Making use of strong metal/oxide interactions has recently been demonstrated to be effective in enhancing electrocatalysis in the liquid phase. Here, we report one of the first systematic studies on composition-dependent influences of metal/oxide interactions on electrocatalytic CO 2 reduction, utilizing Cu/SnO x heterostructured nanoparticles supported on carbon nanotubes (CNTs) as a model catalyst system. By adjusting the Cu/Sn ratio in the catalyst material structure, we can tune the products of the CO 2 electrocatalytic reduction reaction from hydrocarbon-favorable to CO-selective to formic acid-dominant. In the Cu-rich regime, SnO x dramatically alters the catalytic behavior of Cu. The Cu/SnO x -CNT catalyst containing 6.2% of SnO x converts CO 2 to CO with a high faradaic efficiency (FE) of 89% and a j CO of 11.3 mA·cm -2 at -0.99 V versus reversible hydrogen electrode, in stark contrast to the Cu-CNT catalyst on which ethylene and methane are the main products for CO 2 reduction. In the Sn-rich regime, Cu modifies the catalytic properties of SnO x . The Cu/SnO x -CNT catalyst containing 30.2% of SnO x reduces CO 2 to formic acid with an FE of 77% and a j HCOOH of 4.0 mA·cm -2 at -0.99 V, outperforming the SnO x -CNT catalyst which only converts CO 2 to formic acid in an FE of 48%.

  2. Study of the reduction of sulfur dioxide to elemental sulfur by carbon monoxide on a La/sub 0/ /sub 5/ Sr/sub 0/ /sub 5/ CoO/sub 3/ catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Hibbert, D B; Tseung, A C.C.

    1979-12-01

    A study of the reduction of sulfur dioxide to elemental sulfur by carbon monoxide on a La/sub 0/ /sub 5/ Sr/sub 0/ /sub 5/ CoO/sub 3/ catalyst a perovskite oxide, to determine the effects of oxygen and water on SO2 reduction showed that in the presence of 5 to 16% oxygen, the reaction between sulfur dioxide and carbon monoxide still occurred if there was sufficient carbon monoxide in the gas to react with all the oxygen. At 600C, all the sulfur dioxide was removed at 5 to 16% oxygen levels. Water vapor at 2% did not adversely affect the reaction. The unwanted by-products, hydrogen disulfide and carbonyl sulfide, were reduced at contact times below 0.25 sec. During the reaction, the catalyst itself reacted with sulfur to give metal sulfides. When reagent grade CO/sub 2/O/sub 3/ was substituted for perovskite oxide, the maximum conversion of 98% of sulfur dioxide was attained at 550C, but an unacceptably high concentration of carbonyl sulfide was formed; within 1 hr, the sulfur dioxide conversion fell to 60%. The perovskite oxide reaction may be useful in removing sulfur dioxide from fosill fuel stack gases.

  3. A Simple Synthesis of an N-Doped Carbon ORR Catalyst: Hierarchical Micro/Meso/Macro Porosity and Graphitic Shells

    NARCIS (Netherlands)

    Eisenberg, D.; Stroek, W.; Geels, N.J.; Sandu, C.S.; Heller, A.; Yan, N.; Rothenberg, G.

    2016-01-01

    Replacing platinum as an oxygen reduction catalyst is an important scientific and technological challenge. Herein we report a simple synthesis of a complex carbon with very good oxygen reduction reaction (ORR) activity at pH 13. Pyrolysis of magnesium nitrilotriacetate yields a carbon with

  4. Electrodeposition of Pd based binary catalysts on Carbon paper via surface limited redox-replacement reaction for oxygen reduction reaction

    CSIR Research Space (South Africa)

    Modibedi, RM

    2014-05-01

    Full Text Available Direct alcohol fuel cells (DAFCs) continue to extensive attention as potential power sources for portable and stationary applications. The oxygen reduction reaction (ORR) involving the four electron transfer remains a challenge for DAFCs due to its...

  5. The activity of supported vanadium oxide catalysts for the selective reduction of NO with ammonia

    NARCIS (Netherlands)

    Bosch, H.; Janssen, Frans J.J.G.; van den Kerkhof, Frans M.G.; Oldenziel, Jaap; van Ommen, J.G.; Ross, Julian R.H.

    1986-01-01

    The activities of monolayer V2O5 catalysts for the selective reduction of NO with NH3 are compared with those of commercial available catalysts containing V and/or W. From steady state and pulse experiments it can be concluded that the reduction of surface sites proceeds either by NH3 + NO or by NH3

  6. Catalytic reduction of NO{sub x} in gasoline engine exhaust over copper- and nickel-exchanged X-zeolite catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, S. [Indian Inst. of Technology, Kharagpur (India). Dept. of Mechanical Engineering; Das, R.K. [Indian School of Mines, Dhanbad (India). Dept. of Engineering and Mining Machinery

    2001-10-11

    Catalytic removal of NO{sub x} in engine exhaust gases can be accomplished by non-selective reduction, selective reduction and decomposition. Noble metals are extensively used for non-selective reduction of NO{sub x} and up to 90% of engine NO{sub x} emissions can be reduced in a stoichiometric exhaust. This requirement of having the stoichiometric fuel-air ratio acts against efficiency improvement of engines. Selective NO{sub x} reduction in the presence of different reductants such as, NH{sub 3}, urea or hydrocarbons, requires close control of the amount of reductant being injected which otherwise may be emitted as a pollutant. Catalytic decomposition is the best option for NO{sub x} removal. Nevertheless, catalysts which are durable, economic and active for NO{sub x} reduction at normal engine exhaust temperature ranges are still being investigated. Three catalysts based on X-zeolite have been developed by exchanging the Na+ ion with copper, nickel and copper-nickel metal ions and applied to the exhaust of a stationary gasoline engine to explore their potential for catalytic reduction of NO{sub x} under a wide range of engine and exhaust conditions. Some encouraging results have been obtained. The catalyst Cu-X exhibits much better NO{sub x} reduction performance at any temperature in comparison to Cu-Ni-X and Ni-X; while Cu-Ni-X catalyst exhibits slightly better performance than Ni-X catalyst. Maximum NO{sub x} efficiency achieved with Cu-X catalyst is 59.2% at a space velocity (sv) of 31 000 h{sup -1}; while for Cu-Ni-X and Ni-X catalysts the equivalent numbers are 60.4% and 56% respectively at a sv of 22 000 h{sup -1}. Unlike noble metals, the doped X-zeolite catalysts exhibit significant NO{sub x} reduction capability for a wide range of air/fuel ratio and with a slower rate of decline as well with increase in air/fuel ratio. (author)

  7. Thermal conductivity reduction in oxygen-deficient strontium titanates

    NARCIS (Netherlands)

    Yu, Choongho; Scullin, Matthew L.; Huijben, Mark; Ramesh, Ramamoorthy; Majumdar, Arun

    2008-01-01

    We report significant thermal conductivity reduction in oxygen-deficient lanthanum-doped strontium titanate (Sr1−xLaxTiO3−δ) films as compared to unreduced strontium titanates. Our experimental results suggest that the oxygen vacancies could have played an important role in the reduction. This could

  8. Novel catalysts and photoelectrochemical system for solar fuel production

    Science.gov (United States)

    Zhang, Yan

    Solar fuel production from abundant raw chemicals such as CO2 and water is highly desired as a clean renewable energy solution for the future. Developing photoelectrochemical cells is viewed as a promising approach to realize this energy conversion and storage process. Efficient and robust oxygen evolution catalyst made from non-precious materials remains a major challenge for such a system. This thesis basically consists of three parts of work, including studies on enhancing the photocatalytic oxygen evolution activity of cobalt-based spinel nanoparticles by manganese3+ substitution, in situ formation of cobalt oxide nanocubanes as highly active catalyst for photocatalytic oxygen evolution reaction, and development of a photoanode-driven photoelectrochemical cell for CO2 reduction with water. The first part of this thesis work devotes efforts in the development and study on cobalt and other transition metal oxide based oxygen evolution catalyst. Photocatalytic oxygen evolution is a critical step for solar fuel production from abundant sources. It poses a significant challenge because it requires an efficient catalyst to bridge the one-electron photon capture process with the four-electron oxygen reaction. Among all the metal oxides, Co3O4 spinel exhibits a high activity as an oxygen evolution catalyst. The results of this work demonstrate that the photocatalytic oxygen evolution activity of Co3O4 spinel can be further enhanced by substituting Co with Mn in the spinel structure. Using a facile hydrothermal approach, Co3O4 spinel nanoparticles as well as Mn-substituted and Ni-substituted Co3O4 spinel nanoparticles with a typical particle size of 5-7 nm were successfully synthesized. The morphology and crystal structures of the as-synthesized nanoparticle catalysts have been carefully examined using various structural characterization techniques, including powder x-ray diffraction (PXRD), transmission electron microscope (TEM), gas adsorption, and x-ray absorption

  9. Polymer-supported CuPd nanoalloy as a synergistic catalyst for electrocatalytic reduction of carbon dioxide to methane.

    Science.gov (United States)

    Zhang, Sheng; Kang, Peng; Bakir, Mohammed; Lapides, Alexander M; Dares, Christopher J; Meyer, Thomas J

    2015-12-29

    Developing sustainable energy strategies based on CO2 reduction is an increasingly important issue given the world's continued reliance on hydrocarbon fuels and the rise in CO2 concentrations in the atmosphere. An important option is electrochemical or photoelectrochemical CO2 reduction to carbon fuels. We describe here an electrodeposition strategy for preparing highly dispersed, ultrafine metal nanoparticle catalysts on an electroactive polymeric film including nanoalloys of Cu and Pd. Compared with nanoCu catalysts, which are state-of-the-art catalysts for CO2 reduction to hydrocarbons, the bimetallic CuPd nanoalloy catalyst exhibits a greater than twofold enhancement in Faradaic efficiency for CO2 reduction to methane. The origin of the enhancement is suggested to arise from a synergistic reactivity interplay between Pd-H sites and Cu-CO sites during electrochemical CO2 reduction. The polymer substrate also appears to provide a basis for the local concentration of CO2 resulting in the enhancement of catalytic current densities by threefold. The procedure for preparation of the nanoalloy catalyst is straightforward and appears to be generally applicable to the preparation of catalytic electrodes for incorporation into electrolysis devices.

  10. Methanol conversion to hydrocarbons using modified clinoptilolite catalysts. Investigation of catalyst lifetime and reactivation

    Energy Technology Data Exchange (ETDEWEB)

    Hutchings, G J; Themistocleous, T; Copperthwaite, R G

    1988-10-17

    A study of the deactivation and reactivation of modified clinoptilolite catalysts for methanol conversion to hydrocarbons is reported. Clinoptilolite catalysts, modified by either ammonium ion exchange or hydrochloric acid treatment, exhibit a short useful catalyst lifetime for this reaction (ca. 2-3 h) due to a high rate of coke deposition (3-5.10/sup -3/ g carbon/g catalyst/h). A comparative study of reactivation using oxygen, nitrous oxide and ozone/oxygen as oxidants indicated that nitrous oxide reactivation gives improved catalytic performance when compared to the activity and lifetime of the fresh catalyst. Both oxygen and ozone/oxygen were found to be ineffective for the reactivation of clinoptilolite. Initial studies of in situ on-line reactivation are also described. 3 figs., 15 refs., 4 tabs.

  11. Experimental comparison among hydrocarbon and oxygenated compounds for their elimination by three-way automotive catalysts

    International Nuclear Information System (INIS)

    Bart, J.M.; Prigent, M.F.

    1992-01-01

    Many hydrocarbon species are present in automotive exhaust gases, and three-way Pt-Rh catalysts are commonly used for their elimination. However, most published work on individual hydrocarbon conversion concerns their oxidation in simulated exhaust gases with excess oxygen. This paper reports that this study was therefore undertaken to determine the reactivity of saturated alkanes, olefins, acetylene, aromatics, alcohols or various other oxygenated compounds in steady state conditions with synthetic exhaust gases near stoichiometry. In a first series of measurements, conversion rates were determined as a function of temperature at stoichiometry. The partial pressure effect of O 2 , NO and H 2 O was then determined at constant temperature in the region of catalyst light-off. NO and mainly O 2 were shown to have a negative effect on the first terms of saturated alkane conversion under lean conditions. Water vapor has a positive effect in rich conditions (without SO 2 ), but is more pronounced for Pt-Rh than for a Pt catalyst. Finally, the role played by SO 2 in hydrocarbon conversion was evaluated

  12. Fe3C-based oxygen reduction catalysts: synthesis, hollow spherical structures and applications in fuel cells

    DEFF Research Database (Denmark)

    Hu, Yang; Jensen, Jens Oluf; Zhang, Wei

    2015-01-01

    We present a detailed study of a novel Fe3C-based spherical catalyst with respect to synthetic parameters, nanostructure formation, ORR active sites and fuel cell demonstration. The catalyst is synthesized by high temperature autoclave pyrolysis using decomposing precursors. Below 500 °C, melamine...

  13. A high-performance mesoporous carbon supported nitrogen-doped carbon electrocatalyst for oxygen reduction reaction

    Science.gov (United States)

    Xu, Jingjing; Lu, Shiyao; Chen, Xu; Wang, Jianan; Zhang, Bo; Zhang, Xinyu; Xiao, Chunhui; Ding, Shujiang

    2017-12-01

    Investigating low-cost and highly active electrocatalysts for oxygen reduction reactions (ORR) is of crucial importance for energy conversion and storage devices. Herein, we design and prepare mesoporous carbon supported nitrogen-doped carbon by pyrolysis of polyaniline coated on CMK-3. This electrocatalyst exhibits excellent performance towards ORR in alkaline media. The optimized nitrogen-doped mesoporous electrocatalyst show an onset potential (E onset) of 0.95 V (versus reversible hydrogen electrode (RHE)) and half-wave potential (E 1/2) of 0.83 V (versus RHE) in 0.1 M KOH. Furthermore, the as-prepared catalyst presents superior durability and methanol tolerance compared to commercial Pt/C indicating its potential applications in fuel cells and metal-air batteries.

  14. A highly efficient electrocatalyst for oxygen reduction reaction: phosphorus and nitrogen co-doped hierarchically ordered porous carbon derived from an iron-functionalized polymer

    Science.gov (United States)

    Deng, Chengwei; Zhong, Hexiang; Li, Xianfeng; Yao, Lan; Zhang, Huamin

    2016-01-01

    Heteroatom-doped carbon materials have shown respectable activity for the oxygen reduction reaction (ORR) in alkaline media. However, the performances of these materials are not satisfactory for energy conversion devices, such as fuel cells. Here, we demonstrate a new type of phosphorus and nitrogen co-doped hierarchically ordered porous carbon (PNHOPC) derived from an iron-functionalized mesoporous polymer through an evaporation-induced self-assembly process that simultaneously combines the carbonization and nitrogen doping processes. The soft template and the nitrogen doping process facilitate the formation of the hierarchically ordered structure for the PNHOPC. The catalyst possesses a large surface area (1118 cm2 g-1) and a pore volume of 1.14 cm3 g-1. Notably, it exhibits excellent ORR catalytic performance, superior stability and methanol tolerance in acidic electrolytes, thus making the catalyst promising for fuel cells. The correlations between the unique pore structure and the nitrogen and phosphorus configuration of the catalysts with high catalytic activity are thoroughly investigated.Heteroatom-doped carbon materials have shown respectable activity for the oxygen reduction reaction (ORR) in alkaline media. However, the performances of these materials are not satisfactory for energy conversion devices, such as fuel cells. Here, we demonstrate a new type of phosphorus and nitrogen co-doped hierarchically ordered porous carbon (PNHOPC) derived from an iron-functionalized mesoporous polymer through an evaporation-induced self-assembly process that simultaneously combines the carbonization and nitrogen doping processes. The soft template and the nitrogen doping process facilitate the formation of the hierarchically ordered structure for the PNHOPC. The catalyst possesses a large surface area (1118 cm2 g-1) and a pore volume of 1.14 cm3 g-1. Notably, it exhibits excellent ORR catalytic performance, superior stability and methanol tolerance in acidic

  15. Unraveling the Nature of Sites Active toward Hydrogen Peroxide Reduction in Fe?N?C Catalysts

    OpenAIRE

    Choi, Chang Hyuck; Choi, Won Seok; Kasian, Olga; Mechler, Anna K.; Sougrati, Moulay Tahar; Br?ller, Sebastian; Strickland, Kara; Jia, Qingying; Mukerjee, Sanjeev; Mayrhofer, Karl J. J.; Jaouen, Fr?d?ric

    2017-01-01

    Abstract Fe?N?C catalysts with high O2 reduction performance are crucial for displacing Pt in low?temperature fuel cells. However, insufficient understanding of which reaction steps are catalyzed by what sites limits their progress. The nature of sites were investigated that are active toward H2O2 reduction, a key intermediate during indirect O2 reduction and a source of deactivation in fuel cells. Catalysts comprising different relative contents of FeN x C y moieties and Fe particles encapsu...

  16. Amorphous metallic alloys for oxygen reduction reaction in a polymer electrolyte membrane fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Huerta, R.; Guerra-Martinez, I.; Lopez, J.S. [Inst. Politecnico Nacional, ESIQIE, Mexico City (Mexico). Lab. de Electroquimica; Pierna, A.R. [Basque Country Univ., San Sebastian (Spain). Dept. of Chemical Engineering and Environment; Solorza-Feria, O. [Inst. Politenico Nacional, Centro de Investigacion y de Estudios Avanzados, Mexico City (Mexico). Dept. de Quimica

    2010-07-15

    Direct methanol fuel cells (DMFC) and polymer electrolyte membrane fuel cells (PEMFC) represent an important, environmentally clean energy source. This has motivated extensive research on the synthesis, characterization and evaluation of novel and stable oxygen reduction electrocatalysts for the direct four-electron transfer process to water formation. Studies have shown that amorphous alloyed compounds can be used as electrode materials in electrochemical energy conversion devices. Their use in PEMFCs can optimize the electrocatalyst loading in the membrane electrode assembly (MEA). In this study, amorphous metallic PtSn, PtRu and PtRuSn alloys were synthesized by mechanical milling and used as cathodes for the oxygen reduction reaction (ORR) in sulphuric acid and in a single PEM fuel cell. Two different powder morphologies were observed before and after the chemical activation in a hydrofluoric acid (HF) solution at 25 degrees C. The kinetics of the ORR on the amorphous catalysts were investigated. The study showed that the amorphous metallic PtSn electrocatalyst was the most active of the 3 electrodes for the cathodic reaction. Fuel cell experiments were conducted at various temperatures at 30 psi for hydrogen (H{sub 2}) and at 34 psi for oxygen (O{sub 2}). MEAs made of Nafion 115 and amorphous metallic PtSn dispersed on carbon powder in a PEMFC had a power density of 156 mW per cm{sup 2} at 0.43V and 80 degrees C. 12 refs., 1 tab., 5 figs.

  17. Promoting effect of oxygen for hydrogenation of butadiene over Ni/sub 2/P catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Nozaki, F.; Kitoh, T.; Sodesawa, T.

    1980-04-01

    When 0-10 mm Hg of oxygen were added to the reaction of 75 mm Hg butadiene and 225 mm Hg hydrogen over dinickel phosphide in a closed circulation system at 40/sup 0/C, increasing amounts of oxygen caused increasing lengths of induction periods followed by hydrogenation at reaction rates which had a maximum at 3 mm Hg oxygen. This maximum rate was about six times higher than the rate without oxygen addition. Adsorption, temperature-programed desorption, IR spectroscopy, and the product distribution of butadiene deuteration showed that two types of oxygen adsorbed on the dinickel phosphide catalyst; molecular oxygen on nickel, which desorbed on evacuation below 50/sup 0/C and which could be displaced by butadiene, was responsible for the induction period; molecular oxygen on phosphorus atoms, which promoted hydrogen adsorption, was responsible for the increased hydrogenation rate.

  18. Single-Atom Catalyst of Platinum Supported on Titanium Nitride for Selective Electrochemical Reactions.

    Science.gov (United States)

    Yang, Sungeun; Kim, Jiwhan; Tak, Young Joo; Soon, Aloysius; Lee, Hyunjoo

    2016-02-05

    As a catalyst, single-atom platinum may provide an ideal structure for platinum minimization. Herein, a single-atom catalyst of platinum supported on titanium nitride nanoparticles were successfully prepared with the aid of chlorine ligands. Unlike platinum nanoparticles, the single-atom active sites predominantly produced hydrogen peroxide in the electrochemical oxygen reduction with the highest mass activity reported so far. The electrocatalytic oxidation of small organic molecules, such as formic acid and methanol, also exhibited unique selectivity on the single-atom platinum catalyst. A lack of platinum ensemble sites changed the reaction pathway for the oxygen-reduction reaction toward a two-electron pathway and formic acid oxidation toward direct dehydrogenation, and also induced no activity for the methanol oxidation. This work demonstrates that single-atom platinum can be an efficient electrocatalyst with high mass activity and unique selectivity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Carbon catalysts for electrochemical hydrogen peroxide production in acidic media

    DEFF Research Database (Denmark)

    Čolić, Viktor; Yang, Sungeun; Révay, Zsolt

    2018-01-01

    Hydrogen peroxide is a commodity chemical, as it is an environmentally friendly oxidant. The electrochemical production of H2O2 from oxygen and water by the reduction of oxygen is of great interest, as it would allow the decentralized, on-site, production of pure H2O2. The ability to run...... the reaction in an acidic electrolyte with high performance is particularly important, as it would allow the use of polymer solid electrolytes and the production of pH-neutral hydrogen peroxide. Carbon catalysts, which are cheap, abundant, durable and can be highly selective show promise as potential catalysts...... for such systems. In this work, we examine the electrocatalytic performance and properties of seven commercially available carbon materials for H2O2 production by oxygen electroreduction. We show that the faradaic efficiencies for the reaction lie in a wide range of 18-82% for different carbon catalysts. In order...

  20. Niobium-based catalysts prepared by reactive radio-frequency magnetron sputtering and arc plasma methods as non-noble metal cathode catalysts for polymer electrolyte fuel cells

    International Nuclear Information System (INIS)

    Ohnishi, Ryohji; Katayama, Masao; Takanabe, Kazuhiro; Kubota, Jun; Domen, Kazunari

    2010-01-01

    Two vacuum methods, reactive radio-frequency (RF) magnetron sputtering and arc plasma deposition, were used to prepare niobium-based catalysts for an oxygen reduction reaction (ORR) as non-noble metal cathodes for polymer electrode fuel cells (PEFCs). Thin films with various N and O contents, denoted as NbO x and Nb-O-N, were prepared on glassy carbon plates by RF magnetron sputtering with controlled partial pressures of oxygen and nitrogen. Electrochemical measurements indicated that the introduction of the nitrogen species into the thin film resulted in improved ORR activity compared to the oxide-only film. Using an arc plasma method, niobium was deposited on highly oriented pyrolytic graphite (HOPG) substrates, and the sub-nanoscale surface morphology of the deposited particles was investigated using scanning tunneling microscopy (STM). To prepare practical cathode catalysts, niobium was deposited on carbon black (CB) powders by arc plasma method. STM and transmission electron microscopy observations of samples on HOPG and CB indicated that the prepared catalysts were highly dispersed at the atomic level. The onset potential of oxygen reduction on Nb-O-N/CB was 0.86 V vs. a reversible hydrogen electrode, and the apparent current density was drastically improved by the introduction of nitrogen.

  1. The role of oxygen and water on molybdenum nanoclusters for electro catalytic ammonia production

    DEFF Research Database (Denmark)

    Howalt, Jakob Geelmuyden; Vegge, Tejs

    2014-01-01

    are -0.72 V or lower for all oxygen coverages studied, and it is thus possible to (re)activate (partially) oxidized nanoclusters for electrochemical ammonia production, e.g., using a dry proton conductor or an aqueous electrolyte. At lower oxygen coverages, nitrogen molecules can adsorb to the surface...... and electrochemical ammonia production via the associative mechanism is possible at potentials as low as -0.45 V to -0.7 V. © 2014 Howalt and Vegge........ In this study, we present theoretical investigations of the influence of oxygen adsorption and reduction on pure and nitrogen covered molybdenum nanocluster electro catalysts for electrochemical reduction of N2 to NH3 with the purpose of understanding oxygen and water poisoning of the catalyst. Density...

  2. The influence of a new fabrication procedure on the catalytic activity of ruthenium-selenium catalysts

    International Nuclear Information System (INIS)

    Cheng, H.; Yuan, W.; Scott, K.

    2006-01-01

    A new procedure has been introduced to enhance catalytic activity of ruthenium-selenium electro-catalysts for oxygen reduction, in which materials are treated under hydrogen atmosphere at elevated temperatures. The characterisation using scanning electron microscopy, energy dispersive spectroscopy or energy dispersive X-ray spectroscopy exhibited that the treatment at 400 deg. C made catalysts denser while their porous nature remained, led to a good degree of crystallinity and an optimum Se:Ru ratio. The half cell test confirms feasibility of the new procedure; the catalyst treated at 400 deg. C gave the highest reduction current (55.9 mA cm -2 at -0.4 V) and a low methanol oxidation effect coefficient (3.8%). The direct methanol fuel cell with the RuSe 400 deg. C cathode catalyst (2 mg RuSe cm -2 ) generated a power density of 33.8 mW cm -2 using 2 M methanol and 2 bar oxygen at 90 deg. C. The new procedure produced the catalysts with low decay rates. The best sample was compared to the Pt and to the reported ruthenium-selenium catalyst. Possible reasons for the observations are discussed

  3. Carbon-supported co-pyridine as non-platinum cathode catalyst for alkaline membrane fuel cells

    International Nuclear Information System (INIS)

    Qiao, Jinli; Xu, Li; Liu, Yuyu; Xu, Pan; Shi, Jingjing; Liu, Shiyao; Tian, Binglun

    2013-01-01

    Development of high-performance cost-effective electrocatalyts that can replace Pt catalyst have been a central theme in polymer electrolyte membrane fuel cells (PEMFCs) including direct methanol fuel cells (DMFCs). Here we show that carbon-supported pyridine–cobalt nanoparticles (CoPy/C) can generate a high catalytic activity toward the oxygen reduction reaction (ORR). The catalysts are synthesized using cobalt sulfate heptahydrate (CoSO 4 ·7H 2 O) and pyridine (Py) as the Co and N precursors via a solid state reaction by heat-treatment in an inert atmosphere at 800 °C. In particular, the ORR kinetics on these catalyst materials are evaluated using rotating disk electrode (RDE) technique in electrolytes of various KOH concentrations, ranging from 0.05 to 12 M. The Koutecky–Levich equation analyses indicate that the transferred electron number, n, per oxygen molecule on CoPy/C electrode depend on the low negative ovevrpotentials in low KOH concentrations, whereas in high KOH concentrations the values of n for oxygen reduction depend on the high negative overpotentials, and varies between 3.5 and 4.0. These catalysts exhibit the superior methanol tolerance to commercial 40%Pt/C catalyst, and the negative effect of high KOH concentration is much less for CoPy/C than for Pt/C, suggesting the promising utilization of CoPy/C as electrocatalysts for alkaline polymer electrolyte membrane fuel cells

  4. System Li2O-MoO3 as a catalyst of oxygen (air) electrode

    International Nuclear Information System (INIS)

    Gavdzik, A.; Gajda, S.; Sofronkov, A.

    2000-01-01

    Potential of electrode on the basis of system Li x Mo 2-x O 6 (x 0.1-0.5) in alkaline solution saturated by oxygen was studied by the method of polarization curves recording. It is ascertained that the value of stationary potential characteristic of the electrode described under the conditions mentioned is determined by reversible reaction between oxygen and water molecules, resulting in formation of hydroxyl and hydrogen peroxide anions. Practicability of using the solid solutions on the basis of molybdenum oxide with additions of lithium oxide as a catalyst of oxygen (air) electrode in electrochemical current sources is demonstrated [ru

  5. Chitosan supported bimetallic Pd/Co nanoparticles as a heterogeneous catalyst for the reduction of nitroaromatics to amines

    Directory of Open Access Journals (Sweden)

    Sajjad Keshipour

    2017-01-01

    Full Text Available A new bimetallic nanocomposite of chitosan was prepared. Pd and Co nanoparticles were deposited on chitosan to produce a new heterogeneous recyclable catalyst for use in the bimetallic catalytic reduction reaction. The catalyst was characterized with common analysis methods for nanocomposites including Energy Dispersive X-Ray Spectroscopy, X-Ray Diffraction pattern, Thermal Gravimetric Analysis, Flame Atomic Absorption Spectroscopy and Scanning Electron Microscopy, and applied in the reduction reaction of nitroaromatics using NaBH4 at room temperature. The bimetallic system gave good results compared to each of the applied metals. Various aromatic amines and diamines were used in the reduction reaction. The aromatic amines were obtained as the sole product of the reduction reaction with 15 mol% Pd and 12 mol% Co during 2h. This reaction had some advantages such as mild reaction conditions, high yield, green solvent, and a recyclable catalyst. Also, the recovered catalyst was applicable in the reduction reaction without a significant decrease in the activity for up to six times.

  6. Nitrogen-doped graphene-wrapped iron nanofragments for high-performance oxygen reduction electrocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jang Yeol [Korea Institute of Science and Technology, Photo-Electronic Hybrid Research Center (Korea, Republic of); Kim, Na Young [Korea Institute of Science and Technology, Fuel Cell Research Center (Korea, Republic of); Shin, Dong Yun [Chungbuk National University, Department of Environmental Engineering (Korea, Republic of); Park, Hee-Young [Korea Institute of Science and Technology, Fuel Cell Research Center (Korea, Republic of); Lee, Sang-Soo [Korea Institute of Science and Technology, Photo-Electronic Hybrid Research Center (Korea, Republic of); Joon Kwon, S. [Korea Institute of Science and Technology, Nanophotonics Research Center (Korea, Republic of); Lim, Dong-Hee [Chungbuk National University, Department of Environmental Engineering (Korea, Republic of); Bong, Ki Wan [Korea University, Department of Chemical and Biological Engineering (Korea, Republic of); Son, Jeong Gon, E-mail: jgson@kist.re.kr [Korea Institute of Science and Technology, Photo-Electronic Hybrid Research Center (Korea, Republic of); Kim, Jin Young, E-mail: jinykim@kist.re.kr [Korea Institute of Science and Technology, Fuel Cell Research Center (Korea, Republic of)

    2017-03-15

    Transition metals, such as iron (Fe)- or cobalt (Co)-based nanomaterials, are promising electrocatalysts for oxygen reduction reactions (ORR) in fuel cells due to their high theoretical activity and low cost. However, a major challenge to using these metals in place of precious metal catalysts for ORR is their low efficiency and poor stability, thus new concepts and strategies should be needed to address this issue. Here, we report a hybrid aciniform nanostructures of Fe nanofragments embedded in thin nitrogen (N)-doped graphene (Fe@N-G) layers via a heat treatment of graphene oxide-wrapped iron oxide (Fe{sub 2}O{sub 3}) microparticles with melamine. The heat treatment leads to transformation of Fe{sub 2}O{sub 3} microparticles to nanosized zero-valent Fe fragments and formation of core-shell structures of Fe nanofragments and N-doped graphene layers. Thin N-doped graphene layers massively promote electron transfer from the encapsulated metals to the graphene surface, which efficiently optimizes the electronic structure of the graphene surface and thereby triggers ORR activity at the graphene surface. With the synergistic effect arising from the N-doped graphene and Fe nanoparticles with porous aciniform nanostructures, the Fe@N-G hybrid catalyst exhibits high catalytic activity, which was evidenced by high E{sub 1/2} of 0.82 V, onset potential of 0.93 V, and limiting current density of 4.8 mA cm{sup −2} indicating 4-electron ORR, and even exceeds the catalytic stability of the commercial Pt catalyst.

  7. Development and reactivity tests of Ce-Zr-based Claus catalysts for coal gas cleanup

    Energy Technology Data Exchange (ETDEWEB)

    No-Kuk Park; Dong Cheul Han; Gi Bo Han; Si Ok Ryu; Tae Jin Lee; Ki Jun Yoon [Yeungnam University, Gyeongbuk (Republic of Korea). National Research Laboratory, School of Chemical Engineering and Technology

    2007-09-15

    Claus reaction (2H{sub 2}S + SO{sub 2} {leftrightarrow} 3/nS{sub n} + 2H{sub 2}O) was used to clean the gasified coal gas and the reactivity of several metal oxide-based catalysts on Claus reaction was investigated at various operating conditions. In order to convert H{sub 2}S contained in the gasified coal gas to elemental sulfur during Claus reaction, the catalysts having the high activity under the highly reducing condition with the moisture should be developed. CeO{sub 2}, ZrO{sub 2}, and Ce{sub 1-x}Zr{sub x}O{sub 2} catalysts were prepared for Claus reaction and their reactivity changes due to the existence of the reducing gases and H{sub 2}O in the fuel gas was investigated in this study. The Ce-based catalysts shows that their activity was deteriorated by the reduction of the catalyst due to the reducing gases at higher than 220{sup o}C. Meanwhile, the effect of the reducing gases on the catalytic activity was not considerable at low temperature. The activities of all three catalysts were degraded on the condition that the moisture existed in the test gas. Specifically, the Ce-based catalysts were remarkably deactivated by their sulfation. The Ce-Zr-based catalyst had a high catalytic activity when the reducing gases and the moisture co-existed in the simulated fuel gas. The deactivation of the Ce-Zr-based catalyst was not observed in this study. The lattice oxygen of the Ce-based catalyst was used for the oxidation of H{sub 2}S and the lattice oxygen vacancy on the catalyst was contributed to the reduction of SO{sub 2}. ZrO{sub 2} added to the Ce-Zr-based catalyst improved the redox properties of the catalyst in Claus reaction by increasing the mobility of the lattice oxygen of CeO{sub 2}. 21 refs., 14 figs.

  8. Comparison between the Oxygen Reduction Reaction Activity of Pd5Ce and Pt5Ce

    DEFF Research Database (Denmark)

    Tripkovic, Vladimir; Zheng, Jian; Rizzi, Gian Andrea

    2015-01-01

    A set of electrochemical and X-ray spectroscopy measurements have been used conjointly with density functional theory (DFT) simulations to study the activity and stability of Pd5Ce for the oxygen reduction reaction. A polycrystalline Pd5Ce rod has been selected as a model catalyst to test if resu......-Pd5Ce is more facile, requires less atom rearrangement, than transformation from Pt5Ce to Pt3Ce, which might explain the kinetic stability of Pt5Ce at low temperatures....

  9. Highly active carbon supported Pd cathode catalysts for direct formic acid fuel cells

    Science.gov (United States)

    Mikolajczuk-Zychora, A.; Borodzinski, A.; Kedzierzawski, P.; Mierzwa, B.; Mazurkiewicz-Pawlicka, M.; Stobinski, L.; Ciecierska, E.; Zimoch, A.; Opałło, M.

    2016-12-01

    One of the drawbacks of low-temperature fuel cells is high price of platinum-based catalysts used for the electroreduction of oxygen at the cathode of the fuel cell. The aim of this work is to develop the palladium catalyst that will replace commonly used platinum cathode catalysts. A series of palladium catalysts for oxygen reduction reaction (ORR) were prepared and tested on the cathode of Direct Formic Acid Fuel Cell (DFAFC). Palladium nanoparticles were deposited on the carbon black (Vulcan) and on multiwall carbon nanotubes (MWCNTs) surface by reduction of palladium(II) acetate dissolved in ethanol. Hydrazine was used as a reducing agent. The effect of functionalization of the carbon supports on the catalysts physicochemical properties and the ORR catalytic activity on the cathode of DFAFC was studied. The supports were functionalized by treatment in nitric acid for 4 h at 80 °C. The structure of the prepared catalysts has been characterized by thermogravimetric analysis (TGA), X-ray diffraction (XRD), transmission electron microscope (TEM) and cyclic voltammetry (CV). Hydrophilicity of the catalytic layers was determined by measuring contact angles of water droplets. The performance of the prepared catalysts has been compared with that of the commercial 20 wt.% Pt/C (Premetek) catalyst. The maximum power density obtained for the best palladium catalyst, deposited on the surface of functionalized carbon black, is the same as that for the commercial Pt/C (Premetek). Palladium is cheaper than platinum, therefore the developed cathode catalyst is promising for future applications.

  10. Universality in Oxygen Reduction Electrocatalysis on Metal Surfaces

    DEFF Research Database (Denmark)

    Viswanathan, Venkatasubramanian; Hansen, Heine Anton; Rossmeisl, Jan

    2012-01-01

    In this work, we extend the activity volcano for oxygen reduction from the face-centered cubic (fcc) metal (111) facet to the (100) facet. Using density functional theory calculations, we show that the recent findings of constant scaling between OOH* and OH* holds on the fcc metal (100) facet......, as well. Using this fact, we show the existence of a universal activity volcano to describe oxygen reduction electrocatalysis with a minimum overpotential, ηmin = 0.37 ± 0.1 V. Specifically, we find that the (100) facet of Pt is found to bind oxygen intermediates too strongly and is not active for oxygen...... reduction reaction (ORR). In contrast, Au(100) is predicted to be more active than Au(111) and comparable in activity to Pt alloys. Using this activity volcano, we further predict that Au alloys that bind OH more strongly could display improved ORR activity on the (100) facet. We carry out a computational...

  11. Nickel oxide and carbon nanotube composite (NiO/CNT) as a novel cathode non-precious metal catalyst in microbial fuel cells.

    Science.gov (United States)

    Huang, Jianjian; Zhu, Nengwu; Yang, Tingting; Zhang, Taiping; Wu, Pingxiao; Dang, Zhi

    2015-10-15

    Comparing with the precious metal catalysts, non-precious metal catalysts were preferred to use in microbial fuel cells (MFCs) due to the low cost and high oxygen reduction reaction (ORR) efficiency. In this study, the transmission electron microscope and X-ray diffraction as well as Raman investigation revealed that the prepared nanoscale NiO was attached on the surface of CNT. Cyclic voltammogram and rotating ring-disk electrode tests showed that the NiO/CNT composite catalyst had an apparent oxygen reduction peak and 3.5 electron transfer pathway was acquired under oxygen atmosphere. The catalyst performance was highly dependent on the percentage of NiO in the CNT nanocomposites. When 77% NiO/CNT nano-sized composite was applied as cathode catalyst in membrane free single-chamber air cathode MFC, a maximum power density of 670 mW/m(2) and 0.772 V of OCV was obtained. Moreover, the MFC with pure NiO (control) could not achieve more than 0.1 V. All findings suggested that NiO/CNT could be a potential cathode catalyst for ORR in MFCs. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Enhanced catalytic activity over MIL-100(Fe) loaded ceria catalysts for the selective catalytic reduction of NOx with NH₃ at low temperature.

    Science.gov (United States)

    Wang, Peng; Sun, Hong; Quan, Xie; Chen, Shuo

    2016-01-15

    The development of catalysts for selective catalytic reduction (SCR) reactions that are highly active at low temperatures and show good resistance to SO2 and H2O is still a challenge. In this study, we have designed and developed a high-performance SCR catalyst based on nano-sized ceria encapsulated inside the pores of MIL-100(Fe) that combines excellent catalytic power with a metal organic framework architecture synthesized by the impregnation method (IM). Transmission electron microscopy (TEM) revealed the encapsulation of ceria in the cavities of MIL-100(Fe). The prepared IM-CeO2/MIL-100(Fe) catalyst shows improved catalytic activity both at low temperatures and throughout a wide temperature window. The temperature window for 90% NOx conversion ranges from 196 to 300°C. X-ray photoelectron spectroscopy (XPS) and in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFT) analysis indicated that the nano-sized ceria encapsulated inside MIL-100(Fe) promotes the production of chemisorbed oxygen on the catalyst surface, which greatly enhances the formation of the NO2 species responsible for fast SCR reactions. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Carbon-doped boron nitride nanosheet as a promising catalyst for N2O reduction by CO or SO2 molecule: A comparative DFT study

    Science.gov (United States)

    Esrafili, Mehdi D.; Saeidi, Nasibeh

    2018-06-01

    We report for the first time, the catalytic activity of the experimentally available carbon-doped boron nitride nanosheet (C-BNNS) towards the reduction of N2O in the presence of CO or SO2 molecule. According to our density functional theory calculations, C-doping can introduce high spin density into BN monolayer which is mainly localized over the C and its neighboring N atoms. The Hirshfeld charge density analysis reveals that the electron-rich C-BNNS acts as an electron donating support to activate N2O molecule which is an important step in the reduction of N2O. The N2O reduction reaction starts with the dissociative adsorption of N2O over the C-BNNS surface, yielding the N2 molecule and an activated oxygen moiety (Oads) adsorbed over the C atom. The reaction then proceeds via the elimination of Oads by a CO or SO2 molecule. The obtained low activation energies clearly indicate that the metal-free C-BNNS surface can be regarded as a highly active catalyst for the reduction of N2O. The results of this study may open new avenues in searching low cost and highly active BN-based catalysts for low temperature reduction of N2O.

  14. SiO2 stabilized Pt/C cathode catalyst for proton exchange membrane fuel cells

    International Nuclear Information System (INIS)

    Zhu Tong; Du Chunyu; Liu Chuntao; Yin Geping; Shi Pengfei

    2011-01-01

    This paper describes the preparation of SiO 2 stabilized Pt/C catalyst (SiO 2 /Pt/C) by the hydrolysis of alkoxysilane, and examines the possibility that the SiO 2 /Pt/C is used as a durable cathode catalyst for proton exchange membrane fuel cells (PEMFCs). TEM and XRD results revealed that the hydrolysis of alkoxysilane did not significantly change the morphology and crystalline structure of Pt particles. The SiO 2 /Pt/C catalyst exhibited higher durability than the Pt/C one, due to the facts that the silica layers covered were beneficial for reducing the Pt aggregation and dissolution as well as increasing the corrosion resistance of supports, although the benefit of silica covering was lower than the case of Pt/CNT catalyst. Also, it was observed that the activity of the SiO 2 /Pt/C catalyst for the oxygen reduction reaction was somewhat reduced compared to the Pt/C one after the silica covering. This reduction was partially due to the low oxygen kinetics as revealed by the rotating-disk-electrode measurement. Silica covering by hydrolysis of only 3-aminopropyl trimethoxysilane is able to achieve a good balance between the durability and activity, leading to SiO 2 /Pt/C as a promising cathode catalyst for PEMFCs.

  15. In-line localized monitoring of catalyst activity in selective catalytic NO.sub.x reduction systems

    Science.gov (United States)

    Muzio, Lawrence J [Laguna Niguel, CA; Smith, Randall A [Huntington Beach, CA

    2009-12-22

    Localized catalyst activity in an SCR unit for controlling emissions from a boiler, power plant, or any facility that generates NO.sub.x-containing flue gases is monitored by one or more modules that operate on-line without disrupting the normal operation of the facility. Each module is positioned over a designated lateral area of one of the catalyst beds in the SCR unit, and supplies ammonia, urea, or other suitable reductant to the catalyst in the designated area at a rate that produces an excess of the reductant over NO.sub.x on a molar basis through the designated area. Sampling probes upstream and downstream of the designated area draw samples of the gas stream for NO.sub.x analysis, and the catalyst activity is determined from the difference in NO.sub.x levels between the two probes.

  16. Cobalt oxide-based catalysts deposited by cold plasma for proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Kazimierski, P.; Jozwiak, L.; Sielski, J.; Tyczkowski, J., E-mail: jacek.tyczkowski@p.lodz.pl

    2015-11-02

    In proton exchange membrane fuel cells (PEMFC), both the anodic hydrogen oxidation reaction and the cathodic oxygen reduction reaction (ORR) require appropriate catalysts. So far, platinum-based catalysts are still the best option for this purpose. However, because these catalysts are too expensive for making commercially viable fuel cells, extensive research over the past decade has focused on developing noble metal-free alternative catalysts. In this paper, an approach based on cobalt oxide films fabricated by plasma-enhanced metal-organic chemical vapor deposition is presented. Such a material can be used to prepare catalysts for ORR in PEMFC. The films containing CoO{sub X} were deposited on a carbon paper thereby forming the electrode. Morphology and atomic composition of the films were investigated by scanning electron microscopy and energy-dispersive X-ray spectroscopy, respectively. The possibility of their application as the electro-catalyst for ORR in PEMFC was investigated and the electro-catalytic activities were evaluated by the electrochemical measurements and single cell tests. It was found that the fuel cell with Pt as the anode catalyst and CoO{sub X} deposit as the cathode catalyst was characterized by the open circuit voltage of 635 mV, Tafel slope of approx. 130 mV/dec and the maximum power density of 5.3 W/m{sup 2}. - Highlights: • Cobalt oxide catalyst for proton exchange membrane fuel cells was plasma deposited. • The catalyst exhibits activity for the oxygen reduction reaction. • Morphology and atomic composition of the catalyst were determined.

  17. Direct synthesis of Fe3 C-functionalized graphene by high temperature autoclave pyrolysis for oxygen reduction.

    Science.gov (United States)

    Hu, Yang; Jensen, Jens Oluf; Zhang, Wei; Huang, Yunjie; Cleemann, Lars N; Xing, Wei; Bjerrum, Niels J; Li, Qingfeng

    2014-08-01

    We present a novel approach to direct fabrication of few-layer graphene sheets with encapsulated Fe3 C nanoparticles from pyrolysis of volatile non-graphitic precursors without any substrate. This one-step autoclave approach is facile and potentially scalable for production. Tested as an electrocatalyst, the graphene-based composite exhibited excellent catalytic activity towards the oxygen reduction reaction in alkaline solution with an onset potential of ca. 1.05 V (vs. the reversible hydrogen electrode) and a half-wave potential of 0.83 V, which is comparable to the commercial Pt/C catalyst. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Oxygen depletion of bismuth molybdates

    Energy Technology Data Exchange (ETDEWEB)

    Yong, L.K.; Howe, R.F.; Keulks, G.W.; Hall, W.K.

    1978-05-01

    Pure ..cap alpha..-phase bismuth molybdate (Bi/sub 2/Mo/sub 3/O/sub 12/), which is known to be weakly active for selective oxidation, and pure ..gamma..-phase bismuth molybdate (Bi/sub 2/MoO/sub 6/), which has good activity, were subjected to oxidation-reduction cycles with known amounts of hydrogen and oxygen, at 300/sup 0/-570/sup 0/C and with evacuation steps between treatments. The volume of oxygen consumed during reoxidation was equal to half the hydrogen consumed during the reduction on the ..cap alpha..-phase, which indicated that no hydrogen was retained during reduction. For the ..gamma..-phase, the oxygen consumption was greater than half of the hydrogen consumption and it increased with extent of reduction. The excess oxygen was apparently consumed by filling anion vacancies formed during outgassing subsequent to the reduction step. ESR spectroscopy and temperature-programed oxidation-reduction indicated that lattice oxide ions which bridge between bismuth and molybdenum layers of the koechlinite structure become more labile when the catalyst is in a partially reduced state, and that this effect is greater in the ..gamma..- than the ..cap alpha..-phase. Table and 15 references.

  19. Electrocatalysts of platinum, cobalt and nickel prepared by mechanical alloying for the oxygen reduction reaction in H2SO4 0.5M

    International Nuclear Information System (INIS)

    Garcia C, M.A.; Fernandez V, S.M.; Vargas G, J.R.

    2007-01-01

    Metallic powders of Pt, Co and Nickel were processed by mechanical alloyed and electrocatalysts were synthesized for the oxygen reduction reaction, applicable in fuel cells. The structural and morphological characterization was carried out using X-ray Diffraction, scanning electron microscopy and transmission electron microscopy. It was found that the alloyed powders formed agglomerates that consist of crystalline particles of nano metric size. Its were obtained polarization curves by the Electrode of Rotational Disk technique in a solution of H 2 SO 4 0.5 M, used as electrolyte, to evaluate the electrocatalytic activity of mechanically alloyed powders. Tafel graphics were built to determine the kinetic parameters of each electro catalyst. The PtCoNi alloy exhibited the biggest electrocatalytic activity, with the smallest over potential for the oxygen reduction reaction. (Author)

  20. The role of oxygen and water on molybdenum nanoclusters for electro catalytic ammonia production

    Directory of Open Access Journals (Sweden)

    Jakob G. Howalt

    2014-01-01

    Full Text Available The presence of water often gives rise to oxygen adsorption on catalyst surfaces through decomposition of water and the adsorbed oxygen or hydroxide species often occupy important surfaces sites, resulting in a decrease or a total hindrance of other chemical reactions taking place at that site. In this study, we present theoretical investigations of the influence of oxygen adsorption and reduction on pure and nitrogen covered molybdenum nanocluster electro catalysts for electrochemical reduction of N2 to NH3 with the purpose of understanding oxygen and water poisoning of the catalyst. Density functional theory calculations are used in combination with the computational hydrogen electrode approach to calculate the free energy profile for electrochemical protonation of O and N2 species on cuboctahedral Mo13 nanoclusters. The calculations show that the molybdenum nanocluster will preferentially bind oxygen over nitrogen and hydrogen at neutral bias, but under electrochemical reaction conditions needed for nitrogen reduction, oxygen adsorption is severely weakened and the adsorption energy is comparable to hydrogen and nitrogen adsorption. The potentials required to reduce oxygen off the surface are −0.72 V or lower for all oxygen coverages studied, and it is thus possible to (reactivate (partially oxidized nanoclusters for electrochemical ammonia production, e.g., using a dry proton conductor or an aqueous electrolyte. At lower oxygen coverages, nitrogen molecules can adsorb to the surface and electrochemical ammonia production via the associative mechanism is possible at potentials as low as −0.45 V to −0.7 V.

  1. Evaluation of reaction selectivity at various Pt/C electrocatalysts using a porous microelectrode in the presence of methanol and oxygen

    International Nuclear Information System (INIS)

    Shironita, Sayoko; Zhang, Weiqi; Sakai, Tsukasa; Umeda, Minoru

    2014-01-01

    Pt is most useful metal for various electrochemical reactions as an electrocatalyst. In a direct methanol fuel cell, Pt performs a catalytic activity for both the methanol oxidation reaction and oxygen reduction reaction; therefore, a Pt-based catalyst is used as an anode and a cathode. For the coexistence of methanol and oxygen due to methanol crossover through an electrolyte membrane during the cell operation, the direct methanol fuel cell performance decreases. However, if a higher selective reaction electrocatalyst can be developed, the cell performance will not be suppressed. In this study, the reaction selectivities of seven types of Pt supported on carbon (Pt/C) electrocatalysts were evaluated using a porous microelectrode in the presence of methanol and oxygen. As a result, some Pt/C catalysts showed a methanol oxidation selectivity, while the other catalysts showed an oxygen reduction selectivity. It was found that the percentage of edge-atom in the Pt particle is related to the methanol oxidation selectivity or the oxygen reduction selectivity. Moreover, each current density decreases with the increasing chemical shift in the Pt binding energy

  2. Uniformly active phase loaded selective catalytic reduction catalysts (V_2O_5/TNTs) with superior alkaline resistance performance

    International Nuclear Information System (INIS)

    Wang, Haiqiang; Wang, Penglu; Chen, Xiongbo; Wu, Zhongbiao

    2017-01-01

    Highlights: • VOSO_4 exhibited better synergistic effect with titanate nanotubes than NH_4VO_3. • Ion-exchange reaction occurs between VOSO_4 and titanate nanotubes. • Ion-exchange resulting in uniformly vanadium distribution on titanate nanotubes. • VOSO_4-based catalyst exhibited impressive SCR activity and alkaline resistance. - Abstract: In this work, protonated titanate nanotubes was performed as a potential useful support and different vanadium precursors (NH_4VO_3 and VOSO_4) were used to synthesize deNO_x catalysts. The results showed that VOSO_4 exhibited better synergistic effect with titanate nanotubes than NH_4VO_3, which was caused by the ion-exchange reaction. Then high loading content of vanadium, uniformly active phase distribution, better dispersion of vanadium, more acid sites, better V"5"+/V"4"+ redox cycles and superior oxygen mobility were achieved. Besides, VOSO_4-based titanate nanotubes catalysts also showed enhanced alkaline resistance than particles (P25) based catalysts. It was strongly associated with its abundant acid sites, large surface area, flexible redox cycles and oxygen transfer ability. For the loading on protonated titanate nanotubes, active metal with cation groups was better precursors than anion ones. V_2O_5/TNTs catalyst was a promising substitute for the commercial vanadium catalysts and the work conducted herein provided a useful idea to design uniformly active phase loaded catalyst.

  3. One-step preparation of N-doped graphene/Co nanocomposite as an advanced oxygen reduction electrocatalyst

    International Nuclear Information System (INIS)

    Bai, Fo; Huang, Hao; Tan, Yanlei; Hou, Changmin; Zhang, Ping

    2015-01-01

    Graphical abstract: N-doped graphene/Co nanocomposites were synthesized through one-step pyrolysis process and the product exhibits high performance for ORR and excellent stability in alkaline medium. - Highlights: • N-doped graphene/Co nano-composite is directly synthesized by a one-step method from Co(NO3)2∙6H2O, glucose and dicyandiamide (DCDA). • The electrocatalytic performance of as-prepared NG/Co-0.5 shows the peak potential positively shifts about 10 mV than commercial Pt/C electrode. • The material shows an excellent stability and tolerance to methanol poisoning effects in alkaline medium. - Abstract: N-doped graphene/Co nanocomposites (NG/Co NPs) have been prepared by a simple one-step pyrolysis of Co(NO 3 ) 2 ∙6H 2 O, glucose and dicyandiamide (DCDA). The products with nitrogen doped and suitable graphitic degree perform high electrocatalytic activity (with the reduction peak at −0.099 V vs Ag/AgCl) and near four-electron selectivity for the oxygen reduction reaction (ORR), with excellent stability and durability in alkaline medium comparable to a commercial Pt/C catalyst. Owing to the superb ORR performance, low cost and facile preparation, the catalysts of NG/Co NPs have great potential applications in fuel cells, metal-air batteries and ORR-related electrochemical industries

  4. Oxidation of mercury across selective catalytic reduction catalysts in coal-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Constance L. Senior [Reaction Engineering International, Salt Lake City, UT (United States)

    2006-01-15

    A kinetic model for predicting the amount of mercury (Hg) oxidation across selective catalytic reduction (SCR) systems in coal-fired power plants was developed and tested. The model incorporated the effects of diffusion within the porous SCR catalyst and the competition between ammonia and Hg for active sites on the catalyst. Laboratory data on Hg oxidation in simulated flue gas and slipstream data on Hg oxidation in flue gas from power plants were modeled. The model provided good fits to the data for eight different catalysts, both plate and monolith, across a temperature range of 280-420{sup o}C, with space velocities varying from 1900 to 5000 hr{sup -1}. Space velocity, temperature, hydrochloric acid content of the flue gas, ratio of ammonia to nitric oxide, and catalyst design all affected Hg oxidation across the SCR catalyst. The model can be used to predict the impact of coal properties, catalyst design, and operating conditions on Hg oxidation across SCRs. 20 refs., 9 figs., 2 tabs.

  5. Fe Isolated Single Atoms on S, N Codoped Carbon by Copolymer Pyrolysis Strategy for Highly Efficient Oxygen Reduction Reaction.

    Science.gov (United States)

    Li, Qiheng; Chen, Wenxing; Xiao, Hai; Gong, Yue; Li, Zhi; Zheng, Lirong; Zheng, Xusheng; Yan, Wensheng; Cheong, Weng-Chon; Shen, Rongan; Fu, Ninghua; Gu, Lin; Zhuang, Zhongbin; Chen, Chen; Wang, Dingsheng; Peng, Qing; Li, Jun; Li, Yadong

    2018-06-01

    Heteroatom-doped Fe-NC catalyst has emerged as one of the most promising candidates to replace noble metal-based catalysts for highly efficient oxygen reduction reaction (ORR). However, delicate controls over their structure parameters to optimize the catalytic efficiency and molecular-level understandings of the catalytic mechanism are still challenging. Herein, a novel pyrrole-thiophene copolymer pyrolysis strategy to synthesize Fe-isolated single atoms on sulfur and nitrogen-codoped carbon (Fe-ISA/SNC) with controllable S, N doping is rationally designed. The catalytic efficiency of Fe-ISA/SNC shows a volcano-type curve with the increase of sulfur doping. The optimized Fe-ISA/SNC exhibits a half-wave potential of 0.896 V (vs reversible hydrogen electrode (RHE)), which is more positive than those of Fe-isolated single atoms on nitrogen codoped carbon (Fe-ISA/NC, 0.839 V), commercial Pt/C (0.841 V), and most reported nonprecious metal catalysts. Fe-ISA/SNC is methanol tolerable and shows negligible activity decay in alkaline condition during 15 000 voltage cycles. X-ray absorption fine structure analysis and density functional theory calculations reveal that the incorporated sulfur engineers the charges on N atoms surrounding the Fe reactive center. The enriched charge facilitates the rate-limiting reductive release of OH* and therefore improved the overall ORR efficiency. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Metal-polypyridyl catalysts for electro- and photochemical reduction of water to hydrogen.

    Science.gov (United States)

    Zee, David Z; Chantarojsiri, Teera; Long, Jeffrey R; Chang, Christopher J

    2015-07-21

    Climate change, rising global energy demand, and energy security concerns motivate research into alternative, sustainable energy sources. In principle, solar energy can meet the world's energy needs, but the intermittent nature of solar illumination means that it is temporally and spatially separated from its consumption. Developing systems that promote solar-to-fuel conversion, such as via reduction of protons to hydrogen, could bridge this production-consumption gap, but this effort requires invention of catalysts that are cheap, robust, and efficient and that use earth-abundant elements. In this context, catalysts that utilize water as both an earth-abundant, environmentally benign substrate and a solvent for proton reduction are highly desirable. This Account summarizes our studies of molecular metal-polypyridyl catalysts for electrochemical and photochemical reduction of protons to hydrogen. Inspired by concept transfer from biological and materials catalysts, these scaffolds are remarkably resistant to decomposition in water, with fast and selective electrocatalytic and photocatalytic conversions that are sustainable for several days. Their modular nature offers a broad range of opportunities for tuning reactivity by molecular design, including altering ancillary ligand electronics, denticity, and/or incorporating redox-active elements. Our first-generation complex, [(PY4)Co(CH3CN)2](2+), catalyzes the reduction of protons from a strong organic acid to hydrogen in 50% water. Subsequent investigations with the pentapyridyl ligand PY5Me2 furnished molybdenum and cobalt complexes capable of catalyzing the reduction of water in fully aqueous electrolyte with 100% Faradaic efficiency. Of particular note, the complex [(PY5Me2)MoO](2+) possesses extremely high activity and durability in neutral water, with turnover frequencies at least 8500 mol of H2 per mole of catalyst per hour and turnover numbers over 600 000 mol of H2 per mole of catalyst over 3 days at an

  7. From biomass to fuels: hydrotreating of oxygen-containing feeds on a CoMo/Al{sub 2}O{sub 3} hydrodesulfurization catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Viljava, T.-R.

    2001-07-01

    Biomass is a renewable alternative to fossil raw materials in the production of liquid fuels and chemicals. Liquefied biomass contains an abundance of oxygen-containing molecules that need to be removed to improve the stability of the liquids. A hydrotreating process, hydrodeoxygenation (HDO), is used for the purpose. Hydrodeoxygenation is similar to the hydrodesulfurization (HDS) process used in oil refining, relying upon a presulfided CoMo/{gamma}-Al{sub 2}O{sub 2}; catalyst. The stability of the sulfided catalyst is critical in HDO because biocrudes usually do not contain the sulfur compounds needed to maintain the sulfidation of the catalyst. The aim of this work was to examine the role of sulfur in maintaining the activity of the HDO catalyst. Sulfur was introduced as an organic sulfur-containing co-reactant or as a sulfur substituent in an oxygen-containing reactant molecule as a way of simulating mixed feeds composed of biocrudes and conventional crudes, or it was introduced as a low molecular weight sulfiding agent. In addition, the stability of the sulfided catalyst against changes in the feed composition was studied to find out whether the activity of the catalyst could be maintained by carrying out HDO alternately with HDS. Simultaneous HDO and HDS was studied in a batch reactor with model compounds having a sulfur-containing (inercapto or inethylmercapto) and an oxygen-containing (hydroxyl or inethoxy) substituent in the same molecule, and with binary mixtures of mono-substituted benzene compounds. In both cases, the reactions of the oxygencontaining substituents were strongly suppressed as long as a sulfur-containing functionality was present. HDS reactions of inercapto and inethylinercapto groups were either enhanced or retarded in the presence of oxygen-containing functionality. HDS was enhanced when the oxygen-containing substituent was located in Para-position to the sulfur substituent thereby increasing the electronegativity of the sulfur atom and

  8. Carbon and Mo transformations during the synthesis of mesoporous Mo2C/carbon catalysts by carbothermal hydrogen reduction

    Science.gov (United States)

    Wang, Haiyan; Liu, Shida; Liu, Bing; Montes, Vicente; Hill, Josephine M.; Smith, Kevin J.

    2018-02-01

    The synthesis of mesoporous Mo2C/carbon catalysts by carbothermal hydrogen reduction is reported. Petroleum coke (petcoke) was activated with KOH at 800 °C to obtain high surface area microporous activated petcoke (APC; 2000 m2/g). The APC was wet impregnated with ammonium heptamolybdate (AHM: 10 wt% Mo), dried and reduced in H2 at temperatures from 400 to 800 °C, to yield Mo2C/APC catalysts. Increased reduction temperature increased the Mo2C yield and the mesoporous volume of the Mo2C/APC. At a reduction temperature of 750 °C the mesopore volume of the catalyst doubled compared to the APC support and accounted for 37% of the total pore volume. Maintaining the final CHR temperature for 90 min further increased the Mo2C yield and mesoporosity of the catalyst. The role of Mo2C in the catalytic hydrogenation of the APC and mesopore generation is demonstrated. The activity of the Mo2C/carbon catalysts in the hydrodeoxygenation of 4-methyl phenol increased with increased CHR temperature and catalyst mesoporosity.

  9. Au/iron oxide catalysts: temperature programmed reduction and X-ray diffraction characterization

    International Nuclear Information System (INIS)

    Neri, G.; Visco, A.M.; Galvagno, S.; Donato, A.; Panzalorto, M.

    1999-01-01

    Gold on iron oxides catalysts have been characterized by temperature programmed reduction (TPR) and X-ray diffraction spectroscopy (XRD). The influence of preparation method, gold loading and pretreatment conditions on the reducibility of iron oxides have been investigated. On the impregnated Au/iron oxide catalysts as well as on the support alone the partial reduction of Fe(III) oxy(hydroxides) to Fe 3 O 4 starts in the 550 and 700 K temperature range. On the coprecipitated samples, the temperature of formation of Fe 3 O 4 is strongly dependent on the presence of gold. The reduction temperature is lowered as the gold loading is increased. The reduction of Fe 3 O 4 to FeO occurs at about 900 K and is not dependent on the presence of gold and the preparation method. It is suggested that the effect of gold on the reducibility of the iron oxides is related to an increase of the structural defects and/or of the surface hydroxyl groups. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  10. The performance of spinel bulk-like oxygen-deficient CoGa2O4 as an air-cathode catalyst in microbial fuel cell

    Science.gov (United States)

    Liu, Di; Mo, Xiaoping; Li, Kexun; Liu, Yi; Wang, Junjie; Yang, Tingting

    2017-08-01

    Nano spinel bulk-like CoGa2O4 prepared via a facile hydrothermal method is used as a high efficient electrochemical catalyst in activated carbon (AC) air-cathode microbial fuel cell (MFC). The maximum power density of the modified MFC is 1911 ± 49 mW m-2, 147% higher than the MFC of untreated AC cathode. Transmission electron microscope (TEM) and X-ray diffraction (XRD) exhibit the morphology and crystal structure of CoGa2O4. Rotating disk electrode (RDE) confirms the four-electron pathway at the cathode during the oxygen reduction reaction (ORR). Thermogravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS) illustrate that the high rate oxygen vacancy exist in the CoGa2O4. The oxygen vacancy of CoGa2O4 plays an important role in catalytic activity. In a word, the prepared nano spinel bulk-like CoGa2O4 provides an alternative to the costly Pt in air-cathode for power output.

  11. Chelating agent-assisted heat treatment of a carbon-supported iron oxide nanoparticle catalyst for PEMFC.

    Science.gov (United States)

    Liu, Shyh-Jiun; Huang, Chia-Hung; Huang, Chun-Kai; Hwang, Weng-Sing

    2009-08-28

    Iron complexes were supported on commercial carbon black and heat treated to create FeO(x)/C catalysts that showed a larger normalized current density and normalized power density than commercial Pt/C catalysts; the coordination number of the iron complexes used affected the formation of the active site for oxygen reduction in PEMFC.

  12. Production of alkyl-aromatics from light oxygenates over zeolite catalysts for bio-oil refining

    Science.gov (United States)

    Hoang, Trung Q.

    Upgrading of light oxygenates derived from biomass conversion, such as propanal and glycerol, to more valuable aromatics for biofuels has been demonstrated on zeolite catalysts. Aromatics with a high ratio of C 9/(C8+C7) and little benzene are produced at much higher yield from oxygenates than from olefins at mild conditions over HZSM-5. It is proposed that C9 aromatics are predominantly produced via acid-catalyzed aldol condensation. This reaction pathway is different from the pathway of propylene and other hydrocarbon aromatization that occurs via a hydrocarbon pool at more severe conditions with major aromatic products C6 and C7. In fact, investigation on the effect of crystallite size HZSM-5 has shown a higher ratio of C9/(C8+C 7) aromatics on small crystallite. This is due to faster removal of products from the shorter diffusion path length. As a result, a longer catalyst lifetime, less isomerization, and less cracking were observed on small crystallites. Beside crystallite size, pore geometry of zeolites was also found to significantly affect aromatic production for both conversion of propanal and glycerol. It is shown that the structure of the HZSM-22, with a one-dimensional and narrower channel system, restricts the formation of aromatics. In contrast, a higher yield of aromatic products is observed over HZSM-5 with its three-dimensional channel system. By increasing channel dimension and connectivity of the channels, increasing catalyst activity was also observed due to more accessible acid sites. It was also found that glycerol is highly active for dehydration on zeolites to produce high yields of acrolein (propenal), a high value chemical. To maximize aromatics from glycerol conversion, HZSM-5 and HY were found to be effective. A two-bed reactor of Pd/ZnO and HZSM-5 was used to first deoxygenate/hydrogenate glycerol over Pd/ZnO to intermediate oxygenates that can further aromatize on HZSM-5. The end results are very promising with significant improvement

  13. Novel synthesis of highly durable and active Pt catalyst encapsulated in nitrogen containing carbon for polymer electrolyte membrane fuel cell

    Science.gov (United States)

    Lee, Hyunjoon; Sung, Yung-Eun; Choi, Insoo; Lim, Taeho; Kwon, Oh Joong

    2017-09-01

    Novel synthesis of a Pt catalyst encapsulated in a N-containing carbon layer for use in a polymer electrolyte membrane fuel cell is described in this study. A Pt-aniline complex, formed by mixing Pt precursor and aniline monomer, was used as the source of Pt, C, and N. Heat treatment of the Pt-aniline complex with carbon black yielded 5 nm Pt nanoparticles encapsulated by a N-containing carbon layer originating from aniline carbonization. The synthesized Pt catalyst exhibited higher mass specific activity to oxygen reduction reaction than that shown by conventional Pt/C catalyst because pyridinic N with graphitic carbon in the carbon layer provided active sites for oxygen reduction reaction in addition to those provided by Pt. In single cell testing, initial performance of the synthesized catalyst was limited because the thick catalyst layer increased resistance related to mass transfer. However, it was observed that the carbon layer successfully prevented Pt nanoparticles from growing via agglomeration and Ostwald ripening under fuel cell operation, thereby improving durability. Furthermore, a mass specific performance of the synthesized catalyst higher than that of a conventional Pt/C catalyst was achieved by modifying the synthesized catalyst's layer thickness.

  14. Tungsten carbide encapsulated in nitrogen-doped carbon with iron/cobalt carbides electrocatalyst for oxygen reduction reaction

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jie; Chen, Jinwei, E-mail: jwchen@scu.edu.cn; Jiang, Yiwu; Zhou, Feilong; Wang, Gang; Wang, Ruilin, E-mail: rl.wang@scu.edu.cn

    2016-12-15

    Graphical abstract: A hybrid catalyst was prepared via a quite green and simple method to achieve an one-pot synthesis of the N-doping carbon, tungsten carbides, and iron/cobalt carbides. It exhibited comparable electrocatalytic activity, higher durability and ability to methanol tolerance compared with commercial Pt/C to ORR. - Highlights: • A novel type of hybrid Fe/Co/WC@NC catalysts have been successfully synthesized. • The hybrid catalyst also exhibited better durability and methanol tolerance. • Multiple effective active sites of Fe{sub 3}C, Co{sub 3}C, WC, and NC help to improve catalytic performance. - Abstract: This work presents a type of hybrid catalyst prepared through an environmental and simple method, combining a pyrolysis of transition metal precursors, a nitrogen-containing material, and a tungsten source to achieve a one-pot synthesis of N-doping carbon, tungsten carbides, and iron/cobalt carbides (Fe/Co/WC@NC). The obtained Fe/Co/WC@NC consists of uniform Fe{sub 3}C and Co{sub 3}C nanoparticles encapsulated in graphitized carbon with surface nitrogen doping, closely wrapped around a plate-like tungsten carbide (WC) that functions as an efficient oxygen reduction reaction (ORR) catalyst. The introduction of WC is found to promote the ORR activity of Fe/Co-based carbide electrocatalysts, which is attributed to the synergistic catalysts of WC, Fe{sub 3}C, and Co{sub 3}C. Results suggest that the composite exhibits comparable electrocatalytic activity, higher durability, and ability for methanol tolerance compared with commercial Pt/C for ORR in alkaline electrolyte. These advantages make Fe/Co/WC@NC a promising ORR electrocatalyst and a cost-effective alternative to Pt/C for practical application as fuel cell.

  15. Carbon coated (carbonous) catalyst in ebullated bed reactor for production of oxygenated chemicals from syngas/CO2

    International Nuclear Information System (INIS)

    Peizheng Zhou

    2002-01-01

    This report summarizes the work completed under DOE's Support of Advanced Fuel Research program, Contract No. DE-FG26-99FT40681. The contract period was October 2000 through September 2002. This R and D program investigated the modification of the mechanical strength of catalyst extrudates using Hydrocarbon Technologies, Inc. (HTI) carbon-coated catalyst technology so that the ebullated bed technology can be utilized to produce valuable oxygenated chemicals from syngas/CO 2 efficiently and economically. Exothermic chemical reactions benefit from the temperature control and freedom from catalyst fouling provided by the ebullated bed reactor technology. The carbon-coated extrudates prepared using these procedures had sufficient attrition resistance and surface area for use in ebullated bed operation. The low cost of carbon coating makes the carbon-coated catalysts highly competitive in the market of catalyst extrudates

  16. Highly Active Non-PGM Catalysts Prepared from Metal Organic Frameworks

    Directory of Open Access Journals (Sweden)

    Heather M. Barkholtz

    2015-06-01

    Full Text Available Finding inexpensive alternatives to platinum group metals (PGMs is essential for reducing the cost of proton exchange membrane fuel cells (PEMFCs. Numerous materials have been investigated as potential replacements of Pt, of which the transition metal and nitrogen-doped carbon composites (TM/Nx/C prepared from iron doped zeolitic imidazolate frameworks (ZIFs are among the most active ones in catalyzing the oxygen reduction reaction based on recent studies. In this report, we demonstrate that the catalytic activity of ZIF-based TM/Nx/C composites can be substantially improved through optimization of synthesis and post-treatment processing conditions. Ultimately, oxygen reduction reaction (ORR electrocatalytic activity must be demonstrated in membrane-electrode assemblies (MEAs of fuel cells. The process of preparing MEAs using ZIF-based non-PGM electrocatalysts involves many additional factors which may influence the overall catalytic activity at the fuel cell level. Evaluation of parameters such as catalyst loading and perfluorosulfonic acid ionomer to catalyst ratio were optimized. Our overall efforts to optimize both the catalyst and MEA construction process have yielded impressive ORR activity when tested in a fuel cell system.

  17. Rutile vanadium antimonates. A new class of catalysts for selective reduction of NO with ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Brazdil, James F.; Ebner, Ann M.; Cavalcanti, Fernando A.P. [BP Chemicals Inc., Cleveland, OH (United States)

    1997-12-31

    This paper describes a new class of vanadium containing oxide catalysts that are active and selective for the selective catalytic reduction of NO with ammonia. Vanadium antimony oxide based catalysts were found to be effective in the conversion of NO with little or no ammonia slippage when tested using gas mixtures containing between 300 and 700ppm NO. X-ray diffraction analyses of the catalysts show that the dominant phase present in the catalyst is vanadium antimonate having a defect rutile crystal structure. The catalysts are active and selective in the ranges of 400-460C and gas hourly space velocities of 3000-8000h{sup -1}

  18. Hydrodeoxygenation of Guaiacol over Ceria-Zirconia Catalysts.

    Science.gov (United States)

    Schimming, Sarah M; LaMont, Onaje D; König, Michael; Rogers, Allyson K; D'Amico, Andrew D; Yung, Matthew M; Sievers, Carsten

    2015-06-22

    The hydrodeoxygenation of guaiacol is investigated over bulk ceria and ceria-zirconia catalysts with different elemental compositions. The reactions are performed in a flow reactor at 1 atm and 275-400 °C. The primary products are phenol and catechol, whereas cresol and benzene are formed as secondary products. No products with hydrogenated rings are formed. The highest conversion of guaiacol is achieved over a catalyst containing 60 mol % CeO2 and 40 mol % ZrO2 . Pseudo-first-order activation energies of 97-114 kJ mol(-1) are observed over the mixed metal oxide catalysts. None of the catalysts show significant deactivation during 72 h on stream. The important physicochemical properties of the catalysts are characterized by X-ray diffraction (XRD), temperature-programmed reduction, titration of oxygen vacancies, and temperature-programmed desorption of ammonia. On the basis of these experimental results, the reasons for the observed reactivity trends are identified. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Catalytic selective reduction of NO with ethylene over a series of copper catalysts on amorphous silicas

    International Nuclear Information System (INIS)

    Carniti, P.; Gervasini, A.; Modica, V.H.; Ravasio, N.

    2000-01-01

    Catalytic selective reduction of NO to N 2 was studied comparing a series of Cu-based catalysts (ca. 8wt.%) supported over amorphous pure and modified silicas: SiO 2 , SiO 2 -Al 2 O 3 , SiO 2 -TiO 2 , SiO 2 -ZrO 2 . The catalysts were prepared by the chemisorption-hydrolysis method which ensured the formation of a unique copper phase well dispersed over all supports, as confirmed by scanning electron micrographs (SEMs). Temperature-programmed reduction (TPR) analyses confirmed the presence of dispersed copper species which underwent complete reduction at a temperature of about 220C, independently of the support. It was found that the support affects the extent of NO reduction as well as the selectivity to N 2 formation. Maximum N 2 yield was found in the range 275-300C. The catalyst prepared over SiO 2 -Al 2 O 3 was the most active and selective with respect to the other silicas. Competitiveness factors (c.f.'s) as high as 13-20% in the temperature range 200-250C could be calculated. For all catalysts, the temperature of the N 2 peak maximum did not correspond to that of the maximum C 2 H 4 oxidation to CO 2 , suggesting the presence of two different sites for the oxidation and the reduction activity. On the catalyst prepared on SiO 2 -Al 2 O 3 , a kinetic interpretation of catalytic data collected at different contact times and temperatures permitted evaluating the ratio between kinetic coefficients as well as the difference between activation energies of NO reduction by C 2 H 4 and C 2 H 4 oxidation by O 2

  20. Study of fluorine doped (Nb,Ir)O_2 solid solution electro-catalyst powders for proton exchange membrane based oxygen evolution reaction

    International Nuclear Information System (INIS)

    Kadakia, Karan Sandeep; Jampani, Prashanth H.; Velikokhatnyi, Oleg I.; Datta, Moni Kanchan; Patel, Prasad; Chung, Sung Jae; Park, Sung Kyoo; Poston, James A.; Manivannan, Ayyakkannu; Kumta, Prashant N.

    2016-01-01

    Graphical abstract: High surface area (∼300 m"2/g) nanostructured powders of nominal composition (Nb_1_−_xIr_x)O_2 and (Nb_1_−_xIr_x)O_2:10F have been synthesized and tested as oxygen evolution electro-catalysts for PEM based water electrolysis using a simple two-step chemical synthesis procedure. Superior electrochemical activity was demonstrated by fluorine doped compositions of (Nb_1_−_xIr_x)O_2 with an optimal composition (Nb_0_._7_5Ir_0_._2_5)O_2:10F (x = 0.25) demonstrating on-par performance with commercial hydrated IrO_2 and nanostructured in-house chemically synthesized IrO_2. Using first principles calculations, the electronic structure modification resulting in ∼75 at.% reduction (experimentally observed) in noble metal content without loss in catalytic performance and stability has been established. - Highlights: • (Nb_1_−_xIr_x)O_2:10F nanopowder electrocatalysts have been wet chemically synthesized. • (Nb_0_._7_5Ir_0_._2_5)O_2:10F exhibits superior electrochemical activity than pure IrO_2. • Stability of the (Nb,Ir)O_2:10F nanomaterials is comparable to pure (Nb,Ir)O_2. • High surface area F doped (Nb,Ir)O_2 are promising OER anode electro-catalysts. - Abstract: High surface area (∼300 m"2/g) nanostructured powders of (Nb_1_−_xIr_x)O_2 and (Nb_1_−_xIr_x)O_2:10F (∼100 m"2/g) have been examined as promising oxygen evolution reaction (OER) electro-catalysts for proton exchange membrane (PEM) based water electrolysis. Nb_2O_5 and 10 wt.% F doped Nb_2O_5 powders were prepared by a low temperature sol-gel process which were then converted to solid solution (Nb,Ir)O_2 and 10 wt.% F doped (Nb,Ir)O_2 [(NbIr)O_2:10F] electro-catalysts by soaking in IrCl_4 followed by heat treatment in air. Electro-catalyst powders of optimal composition (Nb_0_._7_5Ir_0_._2_5)O_2:10F with ∼75 at.% reduction in noble metal content exhibited comparable OER activity to commercial hydrated IrO_2 and nanostructured in-house chemically synthesized IrO_2

  1. Importance of the support and the grade of Pt in the oxygen reduction reaction; Importancia del soporte y del grado del Pt en la reaccion de reduccion de oxigeno

    Energy Technology Data Exchange (ETDEWEB)

    Enriquez M, O.; Fernandez V, S.M. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2004-07-01

    The technology of the fuel cells type Proton Exchange Membrane (PEM), needs to define clearly the influence of the different involved parameters, this is made in general using methods of electrochemical impedance, in which the involved reactions can be presupposed. Another form of making is identifying experimentally the influence of the different parameters. In this work the obtained results are reported with for the oxygen reduction reaction using as electro catalyst platinum analytical grade and fuel cell grade and like support graphite and vulcan. It was found that as much the support as the particle size modify the over potential for the oxygen reduction reaction (Orr). (Author)

  2. In Situ UV-Visible Assessment of Iron-Based High-Temperature Water-Gas Shift Catalysts Promoted with Lanthana: An Extent of Reduction Study

    Directory of Open Access Journals (Sweden)

    Basseem B. Hallac

    2018-02-01

    Full Text Available The extent of reduction of unsupported iron-based high-temperature water-gas shift catalysts with small (<5 wt % lanthana contents was studied using UV-visible spectroscopy. Temperature- programmed reduction measurements showed that lanthana content higher than 0.5 wt % increased the extent of reduction to metallic Fe, while 0.5 wt % of lanthana facilitated the reduction to Fe3O4. In situ measurements on the iron oxide catalysts using mass and UV-visible spectroscopies permitted the quantification of the extent of reduction under temperature-programmed reduction and high-temperature water-gas shift conditions. The oxidation states were successfully calibrated against normalized absorbance spectra of visible light using the Kubelka-Munk theory. The normalized absorbance relative to the fully oxidized Fe2O3 increased as the extent of reduction increased. XANES suggested that the average bulk iron oxidation state during the water-gas shift reaction was Fe+2.57 for the catalyst with no lanthana and Fe+2.54 for the catalysts with 1 wt % lanthana. However, the UV-vis spectra suggest that the surface oxidation state of iron would be Fe+2.31 for the catalyst with 1 wt % lanthana if the oxidation state of iron in the catalyst with 0 wt % lanthana were Fe+2.57. The findings of this paper emphasize the importance of surface sensitive UV-visible spectroscopy for determining the extent of catalyst reduction during operation. The paper highlights the potential to use bench-scale UV-visible spectroscopy to study the surface chemistry of catalysts instead of less-available synchrotron X-ray radiation facilities.

  3. Selective hydrodechlorination of 1,2-dichloroethane to ethylene over Pd-Ag/Al_2O_3 catalysts prepared by surface reduction

    International Nuclear Information System (INIS)

    Han, Yuxiang; Gu, Guangfeng; Sun, Jingya; Wang, Wenjuan; Wan, Haiqin; Xu, Zhaoyi; Zheng, Shourong

    2015-01-01

    Graphical abstract: - Highlights: • Surface reduction method was used for preparation of Pd-Ag(Cu) bimetallic catalysts. • Hydrodechlorination of 1,2-dichloroethane was investigated for production of ethylene. • Ag(Cu) selectively deposited on Pd surface during surface reduction process. • Ethylene selectivity was enhanced over Pd-Ag(Cu)/Al_2O_3 catalyst prepared by surface reduction. • Isolated Pd site is the key species for ethylene selectivity. - Abstract: Alumina supported Pd-Ag and (Cu) bimetallic catalysts (denoted as sr-Pd-Ag/Al_2O_3 or sr-Pd-Cu/Al_2O_3) with varied Pd/Ag (or Cu) ratios were prepared using the surface reduction method, and the gas-phase catalytic hydrodechlorination of 1,2-dichloroethane over the catalysts were investigated. For comparison, Pd-Ag bimetallic catalysts were prepared by the conventional co-impregnation method (denoted as im-Pd-Ag/Al_2O_3). The catalysts were characterized by N_2 adsorption, X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and CO chemisorption. Characterization results indicated that surface reduction led to selective deposition of metallic Ag on the surface of Pd particles, while Pd and Ag just disorderly mixed in the catalyst prepared by impregnation method. Therefore, sr-Pd-Ag/Al_2O_3 exhibited a higher ethylene selectivity than im-Pd-Ag/Al_2O_3 for hydrodechlorination of 1,2-dichloroethane at a similar Ag loading amount. Moreover, among sr-Pd-Ag/Al_2O_3, sr-Pd-Cu/Al_2O_3 and im-Pd-Ag/Al_2O_3 catalysts, the ethylene selectivity decreased over these catalysts following the order: sr-Pd-Ag/Al_2O_3 > sr-Pd-Cu/Al_2O_3 > im-Pd-Ag/Al_2O_3. The present results indicate that surface reduction can be used as a potential method to synthesize catalyst with enhanced ethylene selectivity in hydrodechlorination of 1,2-dichloroethane.

  4. Effect of cathode porosity on the Lithium-air cell oxygen reduction reaction – A rotating ring-disk electrode investigation

    International Nuclear Information System (INIS)

    Seo, Jeongwook; Sankarasubramanian, Shrihari; Singh, Nikhilendra; Mizuno, Fuminori; Takechi, Kensuke; Prakash, Jai

    2017-01-01

    The kinetics of the oxygen reduction reaction (ORR) on the practical air cathode in a Lithium-air cell, which is conventionally composed of porous carbon with or without catalysts supported on it, was investigated. The mechanism and kinetics of the oxygen reduction reaction (ORR) was studied on a porous carbon electrode in an oxygen saturated solution of 0.1 M Lithium bis-trifluoromethanesulfonimide (LiTFSI) in Dimethoxyethane (DME) using cyclic voltammetery (CV) and the rotating ring-disk electrode (RRDE) technique. The oxygen reduction and evolution reactions were found to occur at similar potentials to those observed on a smooth, planar glassy carbon (GC) electrode. The effect of porosity and the resultant increase in surface area were readily observed in the increase in the transient time required for the intermediates to reach the ring and the much larger disk currents (compared to smooth, planar GC) recorded respectively. The RRDE data was analyzed using a kinetic model previously developed by us and the rate constants for the elementary reactions were calculated. The rates constant for the electrochemical reactions were found to be similar in magnitude to the rate constants calculated for smooth GC disks. The porosity of the electrode was found to decrease the rate of desorption of the intermediate and the product and delay their diffusion by shifting it from a Fickian regime in the electrolyte bulk to the Knudsen regime in the film pores. Thus, it is shown that the effect of the electrode porosity on the kinetics of the ORR is physical rather than electrochemical.

  5. Porous carbon supported Fe-N-C composite as an efficient electrocatalyst for oxygen reduction reaction in alkaline and acidic media

    Science.gov (United States)

    Liu, Baichen; Huang, Binbin; Lin, Cheng; Ye, Jianshan; Ouyang, Liuzhang

    2017-07-01

    In recent years, non-precious metal electrocatalysts for oxygen reduction reaction (ORR) have attracted tremendous attention due to their high catalytic activity, long-term stability and excellent methanol tolerance. Herein, the porous carbon supported Fe-N-C catalysts for ORR were synthesized by direct pyrolysis of ferric chloride, 6-Chloropyridazin-3-amine and carbon black. Variation of pyrolysis temperature during the synthesis process leads to the difference in ORR catalytic activity. High pyrolysis temperature is beneficial to the formation of the "N-Fe" active sites and high electrical conductivity, but the excessive temperature will cause the decomposition of nitrogen-containing active sites, which are revealed by Raman, TGA and XPS. A series of synthesis and characterization experiments with/without nitrogen or iron in carbon black indicate that the coordination of iron and nitrogen plays a crucial role in achieving excellent ORR performances. Electrochemical test results show that the catalyst pyrolyzed at 800 °C (Fe-N-C-800) exhibits excellent ORR catalytic activity, better methanol tolerance and higher stability compared with commercial Pt/C catalyst in both alkaline and acidic conditions.

  6. Nanodiamonds as pH-switchable oxidation and reduction catalysts with enzyme-like activities for immunoassay and antioxidant applications.

    Science.gov (United States)

    Chen, T M; Tian, X M; Huang, L; Xiao, J; Yang, G W

    2017-10-19

    Nanodiamonds (NDs) have recently become a focus of interest from the viewpoints of both science and technology. Their intriguing properties make them suitable as biologically active substrates, in biosensor applications as well as diagnostic and therapeutic biomedical imaging probes. Here, we demonstrate that NDs, as oxidation and reduction catalysts, possess intrinsic enzyme mimetic properties of oxidase, peroxidase and catalase, and these behaviors can be switched by modulating the pH value. NDs not only catalyze the reduction of oxygen (O 2 ) and hydrogen peroxide (H 2 O 2 ) at acidic pH, but also catalyze the dismutation decomposition of H 2 O 2 to produce O 2 at alkaline pH. It was proposed that the molecular mechanism of their peroxidase-like activity is electron-transfer acceleration, the source of which is likely derived from oxygen containing functional groups on their surface. Based on the color reaction, a nanodiamond-based enzyme linked immunosorbent assay (ELISA) was established for the detection of immunoglobulin G (IgG). Surprisingly, NDs display an excellent antioxidant activity due to the protective effect against H 2 O 2 -induced cellular oxidative damage. These findings make NDs a promising enzyme mimetic candidate and expand their applications in biocatalysis, bioassays and nano-biomedicine.

  7. Catalysts for petroleum desulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, A.; Diemann, E.; Baumann, F.W.

    1988-01-01

    In order to obtain marketable products from low-quality oils, efficient hydrogenation processes are required for removing sulfur (hydrodesulfurization, HDS), nitrogen (hydrodenitrification, HDN), and oxygen (hydrodeoxygenation, HDO), which would poison the noble metal catalysts of the downstream petrochemical processes. Hydrogenation will produce low-sulfur, low-nitrogen fuels and thus contribute to the reduction of SO/sub 2/ and NO/sub x/ emissions which is long overdue from the ecological point of view (forest decline, acidification of surface bodies of water, etc.).

  8. A new method to synthesize sulfur-doped graphene as effective metal-free electrocatalyst for oxygen reduction reaction

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Chunyang; Sun, Mingjuan [School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211 (China); Zhu, Mingshan, E-mail: mingshanzhu@yahoo.com [School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211 (China); Song, Shaoqing [School of Chemistry, Biology and Materials Science, East China Institute of Technology, Nanchang 330013 (China); Jiang, Shujuan, E-mail: sjjiang@ecit.edu.cn [School of Chemistry, Biology and Materials Science, East China Institute of Technology, Nanchang 330013 (China)

    2017-06-15

    Highlights: • S doped graphene was facile synthesized by one-pot solvothermal method. • DMSO acted as S source as well as reaction solvent. • S-RGO worked as an efficient metal-free electrocatalyst for ORR. • S-RGO acted as a promising candidate instead of Pt-based catalyst. - Abstract: The exploration of a metal-free catalyst with highly efficient yet low-cost for the oxygen-reduction reaction (ORR) is under wide spread investigation. In this paper, by using dimethyl sulfoxide (DMSO) as S source as well as solvent, we report a new, low-cost, and facile solvothermal route to synthesize S-doped reduced graphene oxide (S-RGO). The existence of S element in the framework of RGO was solidly confirmed by energy-dispersive X-ray (EDX) and X-ray photoelectron spectroscopy (XPS). The as-synthesized S-RGO can be worked as an efficient metal-free electrocatalyst for ORR. Moreover, compared to commercial Pt/C electrocatalyst, the S-RGO displays superior resistance to crossover effect and stability by evaluating the addition of methanol and CO poisoning experiment. This result not only shows S-RGO as a promising candidate instead of Pt-based catalyst for ORR, but also provides a new approach for the preparation of metal-free electrocatalyst in future.

  9. Reactions of synthesis gas on silica supported transition metal catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Niemelae, M. [VTT Chemical Technology, Espoo (Finland). Lab. of Industrial Chemistry

    1997-12-31

    The effect of catalyst precursor and composition on the activation of CO was investigated using CO hydrogenation as a test reaction. The interrelations of preparation, pretreatment, characteristics and activity were clarified. For Co/SiO{sub 2} catalyst, MgO promotion increased the CO adsorption capacity and the hydrogen uptake, although the extent of reduction for cobalt remained the same or decreased. The conversion per active metallic cobalt site consequently increased in conjunction with MgO promotion, while the effect on overall performance per 1 g of catalyst remained moderate. The precursor affected the performance of Co/SiO{sub 2} considerably. CO was more strongly adsorbed on catalysts of carbonyl origin than on those derived from cobalt nitrate, the activity thus being higher. Although the nitrate derived Co/SiO{sub 2} appeared both to retain its activity and to regain its adsorption capacity better than the catalysts of carbonyl origin, the performance of the latter was superior with time on stream. For tetranuclear cluster based Co-Ru and Co-Rh catalysts, rhodium or ruthenium was in contact with the support and cobalt was enriched on top. On Co-Ru/SiO{sub 2} ruthenium enhanced deactivation, and no benefits in activity or oxygenate selectivity were achieved relative to the monometallic catalysts of cluster origin. The Co-Rh/SiO{sub 2} catalysts were also less active than those derived from monometallic clusters, but they exhibited higher selectivities to oxygenated compounds due to the presence of active sites on the perimeter of the cobalt particles located on rhodium. The highest selectivity to oxygenates was achieved by changing the decomposition atmosphere of Rh{sub 4}(CO){sub 12}/SiO{sub 2} from hydrogen to carbon monoxide. The results also showed two types of active sites to be operative in the formation of oxygenates - one for ethanol and another for aldehydes. (orig.) 69 refs.

  10. An investigation on the electrocatalytic properties of polypyrrole films on the kinetics of oxygen reduction reaction in PEMFC

    Energy Technology Data Exchange (ETDEWEB)

    Saremi, M.; Sharifi Asl, S.; Kazemi, Sh. [Tehran Univ., Tehran (Iran, Islamic Republic of). School of Metallurgy and Material Science Engineering

    2008-07-01

    A proton exchange membrane (PEM) fuel cell has high power density, low weight, very short start-up time and no leakage of electrolytes. However, there are some disadvantages when operating the PEM fuel cell at room temperature. Many studies involving the widespread commercial use of Pt-based electrocatalysts search for low-cost electrocatalysts for the oxygen reduction reaction. In recent years, much attention has been placed on the use of electrocatalysis for the conducting polymer electrode. Polypyrrole has attracted much attention as an advanced conducting material because of its good environmental stability, easy synthesis and high conductivity. This study examined the effect of the polypyrrole catalyst in a PEMFC cathode. The electropolymerization of pyrrole was carried out in a 3-electrode cell using pure hydrogen and oxygen as the reactants. Tests were carried out at room temperature and cell impedance was measured. The polymer was formed galvanostatically in a 0.1 M pyrrole with a 0.15 KCl aqueous solution with a 20 mA/cm{sup 2} current density. The effect of operating voltage and oxygen mass transport was examined by EIS method, which separates these two phenomena. The study showed that polypyrrole has a catalytic effect for oxygen reduction reaction in PEMFC comparable to a Pt catalyzed electrode. Although the cell potential with polypyrrole was slightly lower than a Pt coated cell, it was found to be more economical. 8 refs., 2 figs.

  11. Iron alloy Fischer-tropsch catalysts--1. Oxidation-reduction studies of the Fe-Ni system

    Energy Technology Data Exchange (ETDEWEB)

    Unmuth, E.E.; Schwartz, L.H.; Butt, J.B.

    1980-01-01

    Catalysts containing 5% iron, nickel, or 4:1 iron-nickel on silica were hydrogen-reduced at 425/sup 0/C for 12 or 24 hr, reoxidized in air for 2 or 4 hr, reduced again in hydrogen for 12 hr, and studied at each treatment step by Moessbauer spectroscopy, X-ray diffraction, and temperature-programed desorption. The nickel was reduced directly to the metal, redispersed during the oxidation, and gave 20% smaller particles in the second reduction than in the first reduction. The ..cap alpha..-Fe/sub 2/O/sub 3/ reduced via an Fe/sub 3/O/sub 4/ intermediate and yielded approx. 70% metallic iron and the second reduction produced about the same particle size as the first reduction. The alloy catalyst reduced into a mixture of two phases, a face-centered cubic phase containing approx. 37.5% Ni, i.e., the bulk equilibrium value, and a body-centered cubic phase, and the particle sizes obtained in the first and second reductions were similar. The activation energies for the reduction were determined.

  12. ETEM observation of Pt/C electrode catalysts in a moisturized cathode atmosphere

    International Nuclear Information System (INIS)

    Yoshida, K; Zhang, X; Tanaka, N; Boyes, E D; Gai, P L

    2014-01-01

    There have been reports of challenges in designing platinum carbon (Pt/C) electrode catalysts for PEMFC. Pt/C electrode catalysts deactivate much faster on the cathode (in moisturized O 2 ) than on the anode (in H 2 ). To understand influences of moisture and oxygen on the deactivation of the Pt/C catalysts in proton-exchange-membrane fuel cells (PEMFCs), spherical-aberration-corrected environmental transmission electron microscopy (AC-ETEM) was applied with a high-speed CCD camera. Structural changes of the Pt/C electrode catalysts were dynamically recorded in moisturized nitrogen, oxygen and hydrogen. The mass spectrometry confirmed the moisture content (between 5 to 30 %) of nitrogen driving gas through a humidifier. Coalescence of platinum nanoparticles (D = 3.24 nm) was carefully evaluated in pure N 2 and moisturized N 2 atmosphere. The Pt/C showed considerable structural weakness in a moisturized N2 atmosphere. Comparable results obtained by AC-ETEM in different gas atmospheres also suggested ways to improve the oxygen reduction reaction (ORR). In this paper, the deactivation process due to moisture (hydroxylation) of carbon supports is discussed using for comparison the movement of platinum nanoparticles measured in moisturized nitrogen and pure nitrogen atmospheres

  13. Reactivity of Aryl Halides for Reductive Dehalogenation in (Seawater Using Polymer-Supported Terpyridine Palladium Catalyst

    Directory of Open Access Journals (Sweden)

    Toshimasa Suzuka

    2015-05-01

    Full Text Available A polymer-supported terpyridine palladium complex was prepared. The complex was found to promote hydrodechlorination of aryl chlorides with potassium formate in seawater. Generally, reductive cleavage of aryl chlorides using transition metal catalysts is more difficult than that of aryl bromides and iodides (reactivity: I > Br > Cl; however, the results obtained did not follow the general trend. Therefore, we investigated the reaction inhibition agents and found a method to remove these inhibitors. The polymeric catalysts showed high catalytic activity and high reusability for transfer reduction in seawater.

  14. Lanthanoid-free perovskite oxide catalyst for dehydrogenation of ethylbenzene working with redox mechanism

    Science.gov (United States)

    Watanabe, Ryo; Ikushima, Maiko; Mukawa, Kei; Sumomozawa, Fumitaka; Ogo, Shuhei; Sekine, Yasushi

    2013-01-01

    For the development of highly active and robust catalysts for dehydrogenation of ethylbenzene (EBDH) to produce styrene; an important monomer for polystyrene production, perovskite-type oxides were applied to the reaction. Controlling the mobility of lattice oxygen by changing the structure of Ba1 − xSrxFeyMn1 − yO3 − δ (0 ≤ x ≤ 1, 0.2 ≤ y ≤ 0.8), perovskite catalyst showed higher activity and stability on EBDH. The optimized Ba/Sr and Fe/Mn molar ratios were 0.4/0.6 and 0.6/0.4, respectively. Comparison of the dehydrogenation activity of Ba0.4Sr0.6Fe0.6Mn0.4O3 − δ catalyst with that of an industrial potassium promoted iron (Fe–K) catalyst revealed that the Ba0.4Sr0.6Fe0.6Mn0.4O3 − δ catalyst showed higher initial activity than the industrial Fe–K oxide catalyst. Additionally, the Ba0.4Sr0.6Fe0.6Mn0.4O3 − δ catalyst showed high activity and stability under severe conditions, even at temperatures as low as 783 K, or at the low steam/EB ratio of 2, while, the Fe–K catalyst showed low activity in such conditions. Comparing reduction profiles of the Ba0.4Sr0.6Fe0.6Mn0.4O3 − δ and the Fe–K catalysts in a H2O/H2 atmosphere, reduction was suppressed by the presence of H2O over the Ba0.4Sr0.6Fe0.6Mn0.4O3 − δ catalyst while the Fe–K catalyst was reduced. In other words, Ba0.4Sr0.6Fe0.6Mn0.4O3 − δ catalyst had higher potential for activating the steam than the Fe–K catalyst. The lattice oxygen in perovskite-structure was consumed by H2, subsequently the consumed lattice oxygen was regenerated by H2O. So the catalytic performance of Ba0.4Sr0.6Fe0.6Mn0.4O3 − δ was superior to that of Fe–K catalyst thanks to the high redox property of the Ba0.4Sr0.6Fe0.6Mn0.4O3 − δ perovskite oxide. PMID:24790949

  15. Lanthanoid-free perovskite oxide catalyst for dehydrogenation of ethylbenzene working with redox mechanism

    Directory of Open Access Journals (Sweden)

    Ryo eWatanabe

    2013-10-01

    Full Text Available For the development of highly active and robust catalysts for dehydrogenation of ethylbenzene (EBDH to produce styrene; an important monomer for polystyrene production, perovskite-type oxides were applied to the reaction. Controlling the mobility of lattice oxygen by changing the structure of Ba1–xSrxFeyMn1–yO3–d(0 ≤ x≤ 1, 0.2 ≤ y≤ 0.8, perovskite catalyst showed higher activity and stability on EBDH. The optimized Ba/Sr and Fe/Mn molar ratios were 0.4/0.6 and 0.6/0.4, respectively. Comparison of the dehydrogenation activity of Ba0.4Sr0.6Fe0.6Mn0.4O3–d catalyst with that of an industrial potassium promoted iron (Fe–K catalyst revealed that the Ba0.4Sr0.6Fe0.6Mn0.4O3–d catalyst showed higher initial activity than the industrial Fe–K oxide catalyst. Additionally, the Ba0.4Sr0.6Fe0.6Mn0.4O3–d catalyst showed high activity and stability under severe conditions, even at temperatures as low as 783 K, or at the low steam/EB ratio of 2, while, the Fe–K catalyst showed low activity in such conditions. Comparing reduction profiles of the Ba0.4Sr0.6Fe0.6Mn0.4O3–d and the Fe–K catalysts in aH2O/H2 atmosphere, reduction was suppressed by the presence of H2O over the Ba0.4Sr0.6Fe0.6Mn0.4O3–d catalyst while the Fe–K catalyst was reduced. In other words, Ba0.4Sr0.6Fe0.6Mn0.4O3–d catalyst had higher potential for activating the steam than the Fe–K catalyst. The lattice oxygen in perovskite-structure was consumed by H2, subsequently the consumed lattice oxygen was regenerated by H2O. So the catalytic performance of Ba0.4Sr0.6Fe0.6Mn0.4O3–d was superior to that of Fe–K catalyst thanks to the high redox property of the Ba0.4Sr0.6Fe0.6Mn0.4O3–d perovskite oxide.

  16. Lanthanoid-free perovskite oxide catalyst for dehydrogenation of ethylbenzene working with redox mechanism

    Science.gov (United States)

    Watanabe, Ryo; Ikushima, Maiko; Mukawa, Kei; Sumomozawa, Fumitaka; Ogo, Shuhei; Sekine, Yasushi

    2013-10-01

    For the development of highly active and robust catalysts for dehydrogenation of ethylbenzene (EBDH) to produce styrene; an important monomer for polystyrene production, perovskite-type oxides were applied to the reaction. Controlling the mobility of lattice oxygen by changing the structure of Ba1-xSrxFeyMn1-yO3-d(0 ≤ x≤ 1, 0.2 ≤ y≤ 0.8), perovskite catalyst showed higher activity and stability on EBDH. The optimized Ba/Sr and Fe/Mn molar ratios were 0.4/0.6 and 0.6/0.4, respectively. Comparison of the dehydrogenation activity of Ba0.4Sr0.6Fe0.6Mn0.4O3-d catalyst with that of an industrial potassium promoted iron (Fe-K) catalyst revealed that the Ba0.4Sr0.6Fe0.6Mn0.4O3-d catalyst showed higher initial activity than the industrial Fe-K oxide catalyst. Additionally, the Ba0.4Sr0.6Fe0.6Mn0.4O3-d catalyst showed high activity and stability under severe conditions, even at temperatures as low as 783 K, or at the low steam/EB ratio of 2, while, the Fe-K catalyst showed low activity in such conditions. Comparing reduction profiles of the Ba0.4Sr0.6Fe0.6Mn0.4O3-d and the Fe-K catalysts in aH2O/H2 atmosphere, reduction was suppressed by the presence of H2O over the Ba0.4Sr0.6Fe0.6Mn0.4O3-d catalyst while the Fe-K catalyst was reduced. In other words, Ba0.4Sr0.6Fe0.6Mn0.4O3-d catalyst had higher potential for activating the steam than the Fe-K catalyst. The lattice oxygen in perovskite-structure was consumed by H2, subsequently the consumed lattice oxygen was regenerated by H2O. So the catalytic performance of Ba0.4Sr0.6Fe0.6Mn0.4O3-d was superior to that of Fe-K catalyst thanks to the high redox property of the Ba0.4Sr0.6Fe0.6Mn0.4O3-d perovskite oxide.

  17. Lanthanoid-free perovskite oxide catalyst for dehydrogenation of ethylbenzene working with redox mechanism.

    Science.gov (United States)

    Watanabe, Ryo; Ikushima, Maiko; Mukawa, Kei; Sumomozawa, Fumitaka; Ogo, Shuhei; Sekine, Yasushi

    2013-01-01

    For the development of highly active and robust catalysts for dehydrogenation of ethylbenzene (EBDH) to produce styrene; an important monomer for polystyrene production, perovskite-type oxides were applied to the reaction. Controlling the mobility of lattice oxygen by changing the structure of Ba1 - x SrxFe y Mn1 - y O3 - δ (0 ≤ x ≤ 1, 0.2 ≤ y ≤ 0.8), perovskite catalyst showed higher activity and stability on EBDH. The optimized Ba/Sr and Fe/Mn molar ratios were 0.4/0.6 and 0.6/0.4, respectively. Comparison of the dehydrogenation activity of Ba0.4Sr0.6Fe0.6Mn0.4O3 - δ catalyst with that of an industrial potassium promoted iron (Fe-K) catalyst revealed that the Ba0.4Sr0.6Fe0.6Mn0.4O3 - δ catalyst showed higher initial activity than the industrial Fe-K oxide catalyst. Additionally, the Ba0.4Sr0.6Fe0.6Mn0.4O3 - δ catalyst showed high activity and stability under severe conditions, even at temperatures as low as 783 K, or at the low steam/EB ratio of 2, while, the Fe-K catalyst showed low activity in such conditions. Comparing reduction profiles of the Ba0.4Sr0.6Fe0.6Mn0.4O3 - δ and the Fe-K catalysts in a H2O/H2 atmosphere, reduction was suppressed by the presence of H2O over the Ba0.4Sr0.6Fe0.6Mn0.4O3 - δ catalyst while the Fe-K catalyst was reduced. In other words, Ba0.4Sr0.6Fe0.6Mn0.4O3 - δ catalyst had higher potential for activating the steam than the Fe-K catalyst. The lattice oxygen in perovskite-structure was consumed by H2, subsequently the consumed lattice oxygen was regenerated by H2O. So the catalytic performance of Ba0.4Sr0.6Fe0.6Mn0.4O3 - δ was superior to that of Fe-K catalyst thanks to the high redox property of the Ba0.4Sr0.6Fe0.6Mn0.4O3 - δ perovskite oxide.

  18. Metal-Organic-Framework-Derived Hybrid Carbon Nanocages as a Bifunctional Electrocatalyst for Oxygen Reduction and Evolution.

    Science.gov (United States)

    Liu, Shaohong; Wang, Zhiyu; Zhou, Si; Yu, Fengjiao; Yu, Mengzhou; Chiang, Chang-Yang; Zhou, Wuzong; Zhao, Jijun; Qiu, Jieshan

    2017-08-01

    The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are cornerstone reactions for many renewable energy technologies. Developing cheap yet durable substitutes of precious-metal catalysts, especially the bifunctional electrocatalysts with high activity for both ORR and OER reactions and their streamlined coupling process, are highly desirable to reduce the processing cost and complexity of renewable energy systems. Here, a facile strategy is reported for synthesizing double-shelled hybrid nanocages with outer shells of Co-N-doped graphitic carbon (Co-NGC) and inner shells of N-doped microporous carbon (NC) by templating against core-shell metal-organic frameworks. The double-shelled NC@Co-NGC nanocages well integrate the high activity of Co-NGC shells into the robust NC hollow framework with enhanced diffusion kinetics, exhibiting superior electrocatalytic properties to Pt and RuO 2 as a bifunctional electrocatalyst for ORR and OER, and hold a promise as efficient air electrode catalysts in Zn-air batteries. First-principles calculations reveal that the high catalytic activities of Co-NGC shells are due to the synergistic electron transfer and redistribution between the Co nanoparticles, the graphitic carbon, and the doped N species. Strong yet favorable adsorption of an OOH* intermediate on the high density of uncoordinated hollow-site C atoms with respect to the Co lattice in the Co-NGC structure is a vital rate-determining step to achieve excellent bifunctional electrocatalytic activity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Hydrophilic cobalt sulfide nanosheets as a bifunctional catalyst for oxygen and hydrogen evolution in electrolysis of alkaline aqueous solution.

    Science.gov (United States)

    Zhu, Mingchao; Zhang, Zhongyi; Zhang, Hu; Zhang, Hui; Zhang, Xiaodong; Zhang, Lixue; Wang, Shicai

    2018-01-01

    Hydrophilic medium and precursors were used to synthesize a hydrophilic electro-catalyst for overall water splitting. The cobalt sulfide (Co 3 S 4 ) catalyst exhibits a layered nanosheet structure with a hydrophilic surface, which can facilitate the diffusion of aqueous substrates into the electrode pores and towards the active sites. The Co 3 S 4 catalyst shows excellent bifunctional catalytic activity for both the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in alkaline solution. The assembled water electrolyzer based on Co 3 S 4 exhibits better performance and stability than that of Pt/C-RuO 2 catalyst. Thereforce the hydrophilic Co 3 S 4 is a highly promising bifunctional catalyst for the overall water splitting reaction. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Oxygen evolution reaction catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Haber, Joel A.; Jin, Jian; Xiang, Chengxiang; Gregoire, John M.; Jones, Ryan J.; Guevarra, Dan W.; Shinde, Aniketa A.

    2016-09-06

    An Oxygen Evolution Reaction (OER) catalyst includes a metal oxide that includes oxygen, cerium, and one or more second metals. In some instances, the cerium is 10 to 80 molar % of the metals in the metal oxide and/or the catalyst includes two or more second metals. The OER catalyst can be included in or on an electrode. The electrode can be arranged in an oxygen evolution system such that the Oxygen Evolution Reaction occurs at the electrode.

  1. Preparation of Cu/La{sub 2}O{sub 3}-ZrO{sub 2}-Al{sub 2}O{sub 3} catalyst and its catalytic properties for selective reduction of NO

    Energy Technology Data Exchange (ETDEWEB)

    Xi-kun Guo; Ping-ping Xie; Shu-dong Lin [Shantou University, Shantou (China). Department of Chemistry

    2008-12-15

    An La{sub 2}O{sub 3}-ZrO{sub 2}-Al{sub 2}O{sub 3} composite support was prepared by co-precipitation with the mixed aqueous solution of La(NO{sub 3}{sub 3}, Al(NO{sub 3){sub 3}, and ZrOCl{sub 2} dropping into the precipitant of (NH{sub 4})2CO{sub 3} aqueous solution. The Cu/La{sub 2}O{sub 3}-ZrO{sub 2}-Al{sub 2}O{sub 3} catalyst was prepared by the impregnation of La{sub 2}O{sub 3}-ZrO{sub 2}-Al{sub 2}O{sub 3} with active component Cu{sup 2+} aqueous solution. The effects of the catalyst on the selective catalytic reduction of NO with propylene in excess oxygen were investigated. The relationships between the preparation method, structure and properties of the Cu/La{sub 2}O{sub 3}-ZrO{sub 2}-Al{sub 2}O{sub 3} catalyst were also explored by means of scanning electron microscopy (SEM), X-ray diffraction (XRD), surface area measurements (BET), pyridine absorption infrared spectrum (Py-IR), thermal gravimetry (TG), and temperature-programmed reduction (TPR). The results indicate that the support {gamma}-Al{sub 2}O{sub 3} prepared by Al(NO{sub 3})3 dropping into (NH{sub 4}{sub 2} CO{sub 3} can remarkably enlarge the surface area; the addition of La{sub 2}O{sub 3} contributes mainly to the enhancement of the thermal stability; and the introduction of ZrO{sub 2} can increase the amount of Lewis and Broenstead acid. Consequently, the catalyst Cu/La{sub 2}O{sub 3}-ZrO{sub 2}-Al{sub 2}O{sub 3} has excellent activity for the selective reduction of NO with propylene in excess oxygen. NO conversion is up to 88.9% at 300{sup o}C and 81.9% even at the presence of 10% volume fraction of water vapor. 15 refs., 8 figs., 1 tab.

  2. Nitrogen and Fluorine co-doped carbon catalyst with high oxygen reduction performance, prepared by pyrolyzing a mixture of melamine and PTFE

    International Nuclear Information System (INIS)

    Peng, Hongliang; Liu, Fangfang; Qiao, Xiaochang; Xiong, Ziang; Li, Xiuhua; Shu, Ting; Liao, Shijun

    2015-01-01

    Graphical abstract: A novel N and F co-doped metal-free doped carbon catalyst with three dimensional vesicles structures and ultra thin walls are prepared by pyrolyzing the mixture of melamine and PTFE. The catalyst has high N and F contents (13 and 6 at.%), and exhibits high ORR activity, high stability, and high limitation current density in both alkaline and acid medium. - Highlights: • N and F co-doped carbon catalyst was derived from the mixture of PTFE and melamine. • The N and F contents of the catalyst are up to 13 and 6 at.%, respectively. • The catalyst has three dimensional vesicles structure with ultra thin walls. • ORR activity of the catalyst is superior to that of Pt/C catalyst in alkaline medium. - Abstract: A novel nitrogen and fluorine co-doped carbon catalyst (C-Mela-PTFE) is prepared by pyrolyzing a mixture of melamine and polytetrafluoroethylene (PTFE), the catalyst has a three-dimensional vesicular structure with ultrathin wall, and exhibits excellent ORR performance in both alkaline and acidic mediums. In an alkaline medium, the catalyst exhibits superior ORR activity to that of commercial Pt/C catalyst. Notably, the ORR activity of the catalyst is just slightly lower than that of Pt/C catalyst in acidic medium. It is interesting that the ORR limiting current density of our C-Mela-PTFE catalyst is much higher than that of Pt/C catalyst. The effects of the melamine/PTFE ratio and the pyrolysis temperature on the catalyst's ORR performance are investigated. The optimal melamine/PTFE ratio by weight is 1:1.5, and the optimal pyrolysis temperature is 950 °C. The catalyst samples are characterized by XRD, SEM/TEM, Raman analysis, and XPS, the results reveal the ultra-thin-walled vesicular structure, high surface area and porosity, and high doping amounts of N and F of the catalyst. For the optimal sample, the N and F contents are up to 13 and 6 at.%, respectively, the proportion of pyridinic N is up to 45 at.% according to the

  3. Porous VO(x)N(y) nanoribbons supported on CNTs as efficient and stable non-noble electrocatalysts for the oxygen reduction reaction.

    Science.gov (United States)

    Huang, K; Bi, K; Lu, Y K; Zhang, R; Liu, J; Wang, W J; Tang, H L; Wang, Y G; Lei, M

    2015-11-30

    Novel nanocomposites of carbon nanotubes supported porous VO(x)N(y) nonoribbons (VO(x)N(y)-CNTs) have been synthesized by the annealing of the sol-gel mixture of CNTs and V2O5 under NH3 atmosphere as well as the ageing process in air. Besides the morphological and structural characterizations revealed by TEM, SEAD, EDS, XRD and XPS measurements, typical electrochemical tests including cyclic voltammetry (CV), rotating disk electrode (RDE) and chronoamperometry have been employed to determine the oxygen reduction reaction (ORR) performance of VO(x)N(y)-CNTs. Inspiringly, the results indicate that VO(x)N(y)-CNTs catalyst exhibits a 0.4 mA/cm(2) larger diffusion-limited current density, a 0.10  V smaller onset potential value, a 10.73% less of ORR current decay and an excellent methanol-tolerance compared with commercial Pt/C catalyst. Therefore, we have reasonable grounds to believe that this new VO(x)N(y)-CNTs nanocomposites can be regarded as a promising non-precious methanol-tolerant ORR catalyst candidate for alkaline fuel cells.

  4. Influence of zeolite structure on the activity and durability of Co-Pd-zeolite catalysts in the reduction of NOx with methane

    International Nuclear Information System (INIS)

    Pieterse, J.A.Z.; Van den Brink, R.W.; Booneveld, S.; De Bruijn, F.A.

    2003-01-01

    Selective catalytic reduction of NO with CH 4 was studied over ZSM-5, MOR, FER and BEA zeolite-based cobalt (Co) and palladium (Pd) catalysts in the presence of oxygen and water. As compared to other catalytic systems reported in literature for CH 4 -SCR in the presence of water, zeolite supported Co-Pd combination catalysts are very active and selective. The most active catalysts, based on MOR and ZSM-5, are characterised by well-dispersed Pd ions in the zeolite that activate methane. Wet ion exchange is a good method to achieve high dispersion of Pd provided that it is carried out in a competitive manner. The presence of cobalt (Co 3 O 4 , Co-oxo ions) boosts SCR activity by oxidising NO to NO 2 . The activity of the zeolite-based Co-Pd combination catalysts decreases with prolonged times on stream. The severity of the deactivation was found to be different for different zeolite topologies. The characterisation and evaluation of freshly calcined catalysts and spent catalysts show two things that occur during reaction: (1) zeolite solvated metal cations disappear in favour of (inactive) metal oxides and presumably larger metal entities, i.e. loss of dispersion; (2) loss of crystallinity affiliated with steam-dealumination and the concomitant formation of extra-framework aluminium (EFAL) in the presence of water. Both phenomena strongly depend on the (reaction) temperature. The deactivation of Co-Pd-zeolite resembles the deactivation of Pd-zeolite. Hence, future research could encompass the stabilisation of Pd (cations) in the zeolite pores by exploring additives other than cobalt. For this, detailed understanding on the siting of Pd in zeolites is important

  5. Nitrogen–doped graphitized carbon shell encapsulated NiFe nanoparticles: A highly durable oxygen evolution catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Du, Lei; Luo, Langli; Feng, Zhenxing; Engelhard, Mark; Xie, Xiaohong; Han, Binghong; Sun, Junming; Zhang, Jianghao; Yin, Geping; Wang, Chongmin; Wang, Yong; Shao, Yuyan

    2017-09-01

    Oxygen evolution reaction (OER) plays a crucial role in various energy conversion devices such as water electrolyzers and metal–air batteries. Precious metal catalysts such as Ir, Ru and their oxides are usually used for enhancing reaction kinetics but are limited by their scarce resource. The challenges associated with alternative non–precious metal catalysts such as transition metal oxides and (oxy)hydroxides etc. are their low electronic conductivity and durability. Herein, we report a highly active (360 mV overpotential at 10 mA cm–2GEO) and durable (no degradation after 20000 cycles) OER catalyst derived from bimetallic metal–organic frameworks (MOFs) precursors. This catalyst consists of NiFe nanoparticles encapsulated by nitrogen–doped graphitized carbon shells. The electron-donation/deviation from Fe and tuned electronic structure of metal cores by Ni are revealed to be primary contributors to the enhanced OER activity, whereas N concentration contributes negligibly. We further demonstrated that the structure and morphology of encapsulating carbon shells, which are the key factors influencing the durability, are facilely controlled by the chemical state of precursors.

  6. Silicene Catalyzed Reduction of Nitrobenzene to Aniline: a Computational Study

    Science.gov (United States)

    Morrissey, Christopher; He, Haiying

    The reduction of nitrobenzene to aniline has a broad range of applications in the production of rubbers, dyes, agrochemicals, and pharmaceuticals. Currently, use of metal catalysts is the most popular method of performing this reaction on a large scale. These metal catalysts usually require high-temperature and/or high-pressure reaction conditions, and produce hazardous chemicals. This has led to a call for more environmentally friendly nonmetal catalysts. Recent studies suggest that silicene, the recently discovered silicon counterpart of graphene, could potentially work as a nonmetal catalyst due to its unique electronic property and strong interactions with molecules containing nitrogen and oxygen. In this computational study, we have investigated the plausibility of using silicene as a catalyst for the reduction of nitrobenzene. Possible reaction mechanisms will be discussed with a highlight of the difference between silicene and metal catalysts. . All calculations were performed in the framework of density functional theory.

  7. MO-Co@N-Doped Carbon (M = Zn or Co): Vital Roles of Inactive Zn and Highly Efficient Activity toward Oxygen Reduction/Evolution Reactions for Rechargeable Zn-Air Battery

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Biaohua [State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 P. R. China; Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing 100029 P. R. China; He, Xiaobo [Changzhou Institute of Advanced Materials, Beijing University of Chemical Technology, Changzhou 213164 P. R. China; Yin, Fengxiang [State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 P. R. China; Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing 100029 P. R. China; Changzhou Institute of Advanced Materials, Beijing University of Chemical Technology, Changzhou 213164 P. R. China; Wang, Hao [State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 P. R. China; Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing 100029 P. R. China; Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne IL 60439 USA; Liu, Di-Jia [Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne IL 60439 USA; Shi, Ruixing [State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 P. R. China; Chen, Jinnan [State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 P. R. China; Yin, Hongwei [State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 P. R. China

    2017-06-14

    A highly efficient bifunctional oxygen catalyst is required for practical applications of fuel cells and metal-air batteries, as oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are their core electrode reactions. Here, the MO-Co@ N-doped carbon (NC, M = Zn or Co) is developed as a highly active ORR/OER bifunctional catalyst via pyrolysis of a bimetal metal-organic framework containing Zn and Co, i.e., precursor (CoZn). The vital roles of inactive Zn in developing highly active bifunctional oxygen catalysts are unraveled. When the precursors include Zn, the surface contents of pyridinic N for ORR and the surface contents of Co-N-x and Co3+/Co2+ ratios for OER are enhanced, while the high specific surface areas, high porosity, and high electrochemical active surface areas are also achieved. Furthermore, the synergistic effects between Zn-based and Co-based species can promote the well growth of multiwalled carbon nanotubes (MWCNTs) at high pyrolysis temperatures (>= 700 degrees C), which is favorable for charge transfer. The optimized CoZn-NC-700 shows the highly bifunctional ORR/OER activity and the excellent durability during the ORR/OER processes, even better than 20 wt% Pt/C (for ORR) and IrO2 (for OER). CoZn-NC-700 also exhibits the prominent Zn-air battery performance and even outperforms the mixture of 20 wt% Pt/C and IrO2.

  8. Carbon-Coated Perovskite BaMnO3 Porous Nanorods with Enhanced Electrocatalytic Perporites for Oxygen Reduction and Oxygen Evolution

    International Nuclear Information System (INIS)

    Xu, Yujiao; Tsou, Alvin; Fu, Yue; Wang, Jin; Tian, Jing-Hua; Yang, Ruizhi

    2015-01-01

    A thin carbon layer has been introduced to coat on the perovskite BaMnO 3 nanorods by a facile method, which exhibit significantly enhanced electrocatalytic activity for both the ORR and OER with excellent stability. - Highlights: • A non-rare-earth element based perovskite BaMnO 3 nanorods as an active electrocatalyst for the ORR and OER have been prepared and investigated for the first time. • A thin carbon-coating layer with thickness of approximately 10 nm has been successfully introduced to enhance the electrical conductivity and the electrocatalytic activities of the bare perovskite for both ORR and OER. • The stabilities of bare BaMnO 3 nanorods for both ORR and OER have also been improved dramatically with the help of carbon coating, especially for the OER process. - Abstract: Highly efficient, low-cost catalysts, especially with bifunctional electrocatalytic capabilities for both the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are vital for the wide commercialization of fuel cells and metal-air batteries. In this study, BaMnO 3 - a non-rare-earth element based perovskite nanorods have been prepared and investigated for the first time, and a thin carbon-coating with a thickness of approximately 10 nm has been successfully introduced to enhance the electrical conductivity of the bare perovskite. Electrochemical tests reveal that bare BaMnO 3 nanorods exhibit very good catalytic activity. More interestingly, a remarkably enhanced ORR activity for the perovskite BaMnO 3 nanorods was observed after coating with a thin layer of carbon, which dominated with a direct four-electron pathway. Meanwhile, the OER process has also been enhanced extraordinarily with the carbon-coating, reaching a maximum of 14.8 mA cm −2 at 1.0 V (vs. Ag/AgCl), which is far superior to both the bare BaMnO 3 nanorods and commercial Pt/C (20 wt%) catalysts. Furthermore, the stabilities of bare BaMnO 3 nanorods for both ORR and OER have also been improved

  9. Solid oxide fuel cells having porous cathodes infiltrated with oxygen-reducing catalysts

    Science.gov (United States)

    Liu, Meilin; Liu, Ze; Liu, Mingfei; Nie, Lifang; Mebane, David Spencer; Wilson, Lane Curtis; Surdoval, Wayne

    2014-08-12

    Solid-oxide fuel cells include an electrolyte and an anode electrically coupled to a first surface of the electrolyte. A cathode is provided, which is electrically coupled to a second surface of the electrolyte. The cathode includes a porous backbone having a porosity in a range from about 20% to about 70%. The porous backbone contains a mixed ionic-electronic conductor (MIEC) of a first material infiltrated with an oxygen-reducing catalyst of a second material different from the first material.

  10. Microwave-Assisted Synthesis of Reduced Graphene Oxide/SnO2 Nanocomposite for Oxygen Reduction Reaction in Microbial Fuel Cells.

    Science.gov (United States)

    Garino, Nadia; Sacco, Adriano; Castellino, Micaela; Muñoz-Tabares, José Alejandro; Chiodoni, Angelica; Agostino, Valeria; Margaria, Valentina; Gerosa, Matteo; Massaglia, Giulia; Quaglio, Marzia

    2016-02-01

    We report on an easy, fast, eco-friendly, and reliable method for the synthesis of reduced graphene oxide/SnO2 nanocomposite as cathode material for application in microbial fuel cells (MFCs). The material was prepared starting from graphene oxide that has been reduced to graphene during the hydrothermal synthesis of the nanocomposite, carried out in a microwave system. Structural and morphological characterizations evidenced the formation of nanocomposite sheets, with SnO2 crystals of few nanometers integrated in the graphene matrix. Physico-chemical analysis revealed the formation of SnO2 nanoparticles, as well as the functionalization of the graphene by the presence of nitrogen atoms. Electrochemical characterizations put in evidence the ability of such composite to exploit a cocatalysis mechanism for the oxygen reduction reaction, provided by the presence of both SnO2 and nitrogen. In addition, the novel composite catalyst was successfully employed as cathode in seawater-based MFCs, giving electrical performances comparable to those of reference devices employing Pt as catalyst.

  11. Steam Reforming of Ethylene Glycol over Ni/Al2O3 Catalysts: Effect of the Preparation Method and Reduction Temperature

    International Nuclear Information System (INIS)

    Choi, Dong Hyuck; Park, Jung Eun; Park, Eun Duck

    2015-01-01

    The effect of preparation method on the catalytic activities of the Ni/Al 2 O 3 catalysts on steam reforming of ethylene glycol was investigated. The catalysts were prepared with various preparation methods such as an incipient wetness impregnation, wet impregnation, and coprecipitation method. In the case of coprecipitation method, various precipitants such as KOH, K 2 CO 3 , and NH 4 OH were compared. The prepared catalysts were characterized by using N 2 physisorption, inductively coupled plasma-atomic emission spectroscopy, X-ray diffraction, temperature programmed reduction, pulsed H 2 chemisorption, temperature-programmed oxidation, scanning electron microscopy, and thermogravimetric analysis. Among the catalysts reduced at 773 K, the Ni/Al 2 O 3 catalyst prepared by a coprecipitation with KOH or K 2 CO 3 as precipitants showed the best catalytic performance. The preparation method affected the particle size of Ni, reducibility of nickel oxides, catalytic performance (activity and stability), and types of coke formed during the reaction. The Ni/Al 2 O 3 catalyst prepared by a coprecipitation with KOH showed the increasing catalytic activity with an increase in the reduction temperature from 773 to 1173 K because of an increase in the reduction degree of Ni oxide species even though the particle size of Ni increased with increasing reduction temperature

  12. Rational design of competitive electrocatalysts for the oxygen reduction reaction in hydrogen fuel cells

    Science.gov (United States)

    Stolbov, Sergey; Alcántara Ortigoza, Marisol

    2012-02-01

    The large-scale application of one of the most promising clean and renewable sources of energy, hydrogen fuel cells, still awaits efficient and cost-effective electrocatalysts for the oxygen reduction reaction (ORR) occurring on the cathode. We demonstrate that truly rational design renders electrocatalysts possessing both qualities. By unifying the knowledge on surface morphology, composition, electronic structure and reactivity, we solve that sandwich-like structures are an excellent choice for optimization. Their constituting species couple synergistically yielding reaction-environment stability, cost-effectiveness and tunable reactivity. This cooperative-action concept enabled us to predict two advantageous ORR electrocatalysts. Density functional theory calculations of the reaction free-energy diagrams confirm that these materials are more active toward ORR than the so far best Pt-based catalysts. Our designing concept advances also a general approach for engineering materials in heterogeneous catalysis.

  13. CuCr2O4@rGO Nanocomposites as High-Performance Cathode Catalyst for Rechargeable Lithium-Oxygen Batteries

    Science.gov (United States)

    Liu, Jiandi; Zhao, Yanyan; Li, Xin; Wang, Chunge; Zeng, Yaping; Yue, Guanghui; Chen, Qiang

    2018-06-01

    Rechargeable lithium-oxygen batteries have been considered as a promising energy storage technology because of their ultra-high theoretical energy densities which are comparable to gasoline. In order to improve the electrochemical properties of lithium-oxygen batteries (LOBs), especially the cycling performance, a high-efficiency cathode catalyst is the most important component. Hence, we aim to demonstrate that CuCr2O4@rGO (CCO@rGO) nanocomposites, which are synthesized using a facile hydrothermal method and followed by a series of calcination processes, are an effective cathode catalyst. The obtained CCO@rGO nanocomposites which served as the cathode catalyst of the LOBs exhibited an outstanding cycling performance for over 100 cycles with a fixed capacity of 1000 mAh g-1 at a current density of 200 mA g-1. The enhanced properties were attributed to the synergistic effect between the high catalytic efficiency of the spinel-structured CCO nanoparticles, the high specific surface area, and high conductivity of the rGO.[Figure not available: see fulltext.

  14. Ag nanoparticle-modified MnO2 nanorods catalyst for use as an air electrode in zinc–air battery

    International Nuclear Information System (INIS)

    Goh, F.W. Thomas; Liu, Zhaolin; Ge, Xiaoming; Zong, Yun; Du, Guojun; Hor, T.S. Andy

    2013-01-01

    In this paper, we report the synthesis, characterization and application of an inexpensive yet efficient bifunctional catalyst composed of Ag nanocrystals (∼11 nm) anchored on α-MnO 2 nanorods. The nanostructured Ag–MnO 2 catalysts exhibit improved oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) performance in aqueous alkaline media, in terms of onset potential, generated current density and Tafel slopes. Rotating disk electrode results show that near-four electrons per oxygen molecule were transferred during ORR of Ag–MnO 2 . A zinc–air battery prototype employing Ag–MnO 2 in the air electrode was successfully operated for 270 cycles under light discharge–charge condition. Ag–MnO 2 is an efficient bifunctional catalyst for electrochemical devices such as metal–air batteries and alkaline fuel cells

  15. A bio-inspired N-doped porous carbon electrocatalyst with hierarchical superstructure for efficient oxygen reduction reaction

    Science.gov (United States)

    Miao, Yue-E.; Yan, Jiajie; Ouyang, Yue; Lu, Hengyi; Lai, Feili; Wu, Yue; Liu, Tianxi

    2018-06-01

    The bio-inspired hierarchical "grape cluster" superstructure provides an effective integration of one-dimensional carbon nanofibers (CNF) with isolated carbonaceous nanoparticles into three-dimensional (3D) conductive frameworks for efficient electron and mass transfer. Herein, a 3D N-doped porous carbon electrocatalyst consisting of carbon nanofibers with grape-like N-doped hollow carbon particles (CNF@NC) has been prepared through a simple electrospinning strategy combined with in-situ growth and carbonization processes. Such a bio-inspired hierarchically organized conductive network largely facilitates both the mass diffusion and electron transfer during the oxygen reduction reactions (ORR). Therefore, the metal-free CNF@NC catalyst demonstrates superior catalytic activity with an absolute four-electron transfer mechanism, strong methanol tolerance and good long-term stability towards ORR in alkaline media.

  16. Methanol-Tolerant Platinum-Palladium Catalyst Supported on Nitrogen-Doped Carbon Nanofiber for High Concentration Direct Methanol Fuel Cells.

    Science.gov (United States)

    Kim, Jiyoung; Jang, Jin-Sung; Peck, Dong-Hyun; Lee, Byungrok; Yoon, Seong-Ho; Jung, Doo-Hwan

    2016-08-15

    Pt-Pd catalyst supported on nitrogen-doped carbon nanofiber (N-CNF) was prepared and evaluated as a cathode electrode of the direct methanol fuel cell (DMFC). The N-CNF, which was directly synthesized by the catalytic chemical vapor deposition from acetonitrile at 640 °C, was verified as having a change of electrochemical surface properties such as oxygen reduction reaction (ORR) activities and the electrochemical double layer compared with common carbon black (CB). To attain the competitive oxygen reduction reaction activity with methanol tolerance, the Pt and Pd metals were supported on the CB or the N-CNF. The physical and electrochemical characteristics of the N-CNF-supported Pt-Pd catalyst were examined and compared with catalyst supported on the CB. In addition, DMFC single cells using these catalysts as the cathode electrode were applied to obtain I-V polarization curves and constant current operating performances with high-concentration methanol as the fuel. Pt-Pd catalysts had obvious ORR activity even in the presence of methanol. The higher power density was obtained at all the methanol concentrations when it applied to the membrane electrode assembly (MEA) of the DMFC. When the N-CNF is used as the catalyst support material, a better performance with high-concentration methanol is expected.

  17. Methanol-Tolerant Platinum-Palladium Catalyst Supported on Nitrogen-Doped Carbon Nanofiber for High Concentration Direct Methanol Fuel Cells

    Directory of Open Access Journals (Sweden)

    Jiyoung Kim

    2016-08-01

    Full Text Available Pt-Pd catalyst supported on nitrogen-doped carbon nanofiber (N-CNF was prepared and evaluated as a cathode electrode of the direct methanol fuel cell (DMFC. The N-CNF, which was directly synthesized by the catalytic chemical vapor deposition from acetonitrile at 640 °C, was verified as having a change of electrochemical surface properties such as oxygen reduction reaction (ORR activities and the electrochemical double layer compared with common carbon black (CB. To attain the competitive oxygen reduction reaction activity with methanol tolerance, the Pt and Pd metals were supported on the CB or the N-CNF. The physical and electrochemical characteristics of the N-CNF–supported Pt-Pd catalyst were examined and compared with catalyst supported on the CB. In addition, DMFC single cells using these catalysts as the cathode electrode were applied to obtain I-V polarization curves and constant current operating performances with high-concentration methanol as the fuel. Pt-Pd catalysts had obvious ORR activity even in the presence of methanol. The higher power density was obtained at all the methanol concentrations when it applied to the membrane electrode assembly (MEA of the DMFC. When the N-CNF is used as the catalyst support material, a better performance with high-concentration methanol is expected.

  18. Filter bag De-NOx system with powder type catalysts at low temperature

    International Nuclear Information System (INIS)

    Kim, Byung-Hwan; Kim, Jeong-Heon; Kang, Pil-Sun; Yoo, Seung-Kwan; Yoon, Kyoon-Duk

    2010-01-01

    Combustion of carbon source materials (MSW, RDF, sludge, coal etc.) leads to the emission of harmful gaseous pollutants such as SO x , NO x , mercury, particulate matter, and dioxins etc. In particular, the emission of nitrogen oxides (NO x ) from the solid waste incinerator remains a serious air pollution problem. The previous research concerns have focused mainly on NO x reduction of stationary sources at high temperature SCR or SNCR process. Selective catalytic reduction (SCR) with NH 3 is the most widespread system used to control NO x emissions. However, this process suffers from several disadvantages due to the use of thermo fragile honeycomb type module and high temperature (about 300 degree Celsius) operation which consumes additional heating energy. To overcome this hurdle, filter bag De-NO x system with powder type catalysts at low temperature (less than 200 degree Celsius) has been under investigation in recent years and looks interesting because neither additional heat nor honeycomb type modules are required. Filter bag and powder type catalysts are cheap and effective materials to remove NO x at low temperature. In this study, the selective catalytic reduction of NO x was carried out on a filter support reactor with 300 mesh powder type catalysts at low temperature. The experiments were performed by powder type MnO x and V 2 O 5 / TiO 2 catalyst at low temperature ranging between 130 and 250 degree Celsius. Also, the effect of SO 2 and H 2 O on the NO conversion was investigated under our test conditions. The powder type catalysts were characterized by X-ray photoelectron spectrum (XPS) for measuring the state of oxygen on the catalyst surface and X-ray diffraction (XRD). It was observed that NO conversion of the powder type V 2 O 5 / TiO 2 catalyst was 85 % at 200 degree Celsius under presence of oxygen and that of MnO x was 50 % at the same condition. From these results, the powder type V 2 O 5 / TiO 2 catalyst showed an excellent performance on the

  19. Nitrogen–doped graphitized carbon shell encapsulated NiFe nanoparticles: A highly durable oxygen evolution catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Du, Lei; Luo, Langli; Feng, Zhenxing; Engelhard, Mark; Xie, Xiaohong; Han, Binghong; Sun, Junming; Zhang, Jianghao; Yin, Geping; Wang, Chongmin; Wang, Yong; Shao, Yuyan

    2017-09-01

    Oxygen evolution reaction (OER) plays a crucial role in various energy conversion devices such as water electrolyzers and metal–air batteries. Precious metal catalysts such as Ir, Ru and their oxides are usually used for enhanced reaction kinetics but are limited by their scarce resource. The challenges associated with alternative non–precious metal catalysts such as transition metal oxides and (oxy)hydroxides etc. are their low electronic conductivity and poor durability. Here, we report OER catalysts of NiFe nanoparticles encapsulated by nitrogen–doped graphitized carbon shells derived from bimetallic metal–organic frameworks (MOFs) precursors. The optimal OER catalyst shows excellent activity (360 mV overpotential at 10 mA cm–2GEO) and durability (no obvious degradation after 20 000 cycles). The electron-donation from Fe and tuned electronic structure of metal cores by Ni are revealed to be primary contributors to the enhanced OER activity. We further demonstrated that the structure and morphology of encapsulating carbon shells, which are the key factors influencing the durability, are facilely controlled by chemical state of precursors. Severe metal particle growth probably caused by oxidation of carbon shells and encapsulated nanoparticles is believed to the main mechanism for activity degradation in these catalysts.

  20. Enhanced life of proton exchange membrane fuel cell catalysts using perfluorosulfonic acid stabilized carbon support

    International Nuclear Information System (INIS)

    Cheng Niancai; Mu Shichun; Chen Xiaojing; Lv Haifeng; Pan Mu; Edwards, Peter P.

    2011-01-01

    We report a new and simple solution to increase life of Pt/C catalysts using the proton-conducting polymer (perfluorosulfonic acid, PFSA) stabilized carbon support (denoted these catalysts as Pt/NFC catalysts) as compared to conventional Pt/C catalysts commonly used in PEM fuel cells. A high catalytic activity of the catalyst is observed by both CV (cyclic voltammetry) and ORR (oxygen reduction reaction) measurements. Especially, our own catalysts have a 60% better life as compared to Pt/C under electrochemically accelerated durability test conditions. The loss rate of electrochemical active area (ECA) for Pt/NFC catalysts is only 0.007 m 2 g -1 cycle -1 , compared to a value of 0.011 m 2 g -1 cycle -1 for Pt/C.

  1. Graphitic Layer Encapsulated Iron Based Non‐precious Catalysts for the Oxygen Reduction Reaction

    DEFF Research Database (Denmark)

    Zhong, Lijie

    consisting of uniform metallic nanoparticles encapsulated in graphitic layers. The thesis work is conducted aiming at three major objectives: further optimization of the pyrolysis to achieve improved performance of catalysts, investigation of the complex Fe-containing components, and exploration...... of the nitrogen functionalities. Two anions in the electrolyte are used to probe the iron containing active sites towards the ORR, cyanide (CN-) in alkaline and thiocyanate (SCN-) in acidic medium, which seem supporting the above conclusions. These findings provide new insights to the encapsulation structure...

  2. Enhanced catalytic activity over MIL-100(Fe) loaded ceria catalysts for the selective catalytic reduction of NO{sub x} with NH{sub 3} at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Peng [School of Environmental Science and Technology, Dalian University of Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), Dalian 116024 (China); Sun, Hong [School of Environmental & Chemical Engineering, Dalian Jiaotong University, Dalian 116028 (China); Quan, Xie, E-mail: quanxie@dlut.edu.cn [School of Environmental Science and Technology, Dalian University of Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), Dalian 116024 (China); Chen, Shuo [School of Environmental Science and Technology, Dalian University of Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), Dalian 116024 (China)

    2016-01-15

    Highlights: • Nano-ceria was successfully encapsulated into MIL-100(Fe) for the SCR of NO{sub x}. • The incorporated ceria in MIL-100(Fe) showed high content of chemisorbed oxygen. • The added ceria into MIL-100(Fe) improved the formation of adsorbed NO{sub 2} species. • The addition of ceria into MIL-100(Fe) enhanced SCR activity at low temperature. - Abstract: The development of catalysts for selective catalytic reduction (SCR) reactions that are highly active at low temperatures and show good resistance to SO{sub 2} and H{sub 2}O is still a challenge. In this study, we have designed and developed a high-performance SCR catalyst based on nano-sized ceria encapsulated inside the pores of MIL-100(Fe) that combines excellent catalytic power with a metal organic framework architecture synthesized by the impregnation method (IM). Transmission electron microscopy (TEM) revealed the encapsulation of ceria in the cavities of MIL-100(Fe). The prepared IM-CeO{sub 2}/MIL-100(Fe) catalyst shows improved catalytic activity both at low temperatures and throughout a wide temperature window. The temperature window for 90% NO{sub x} conversion ranges from 196 to 300 °C. X-ray photoelectron spectroscopy (XPS) and in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFT) analysis indicated that the nano-sized ceria encapsulated inside MIL-100(Fe) promotes the production of chemisorbed oxygen on the catalyst surface, which greatly enhances the formation of the NO{sub 2} species responsible for fast SCR reactions.

  3. Carbon Supported Engineering NiCo2O4 Hybrid Nanofibers with Enhanced Electrocatalytic Activity for Oxygen Reduction Reaction

    Directory of Open Access Journals (Sweden)

    Diab Hassan

    2016-09-01

    Full Text Available The design of cheap and efficient oxygen reduction reaction (ORR electrocatalysts is of a significant importance in sustainable and renewable energy technologies. Therefore, ORR catalysts with superb electrocatalytic activity and durability are becoming a necessity but still remain challenging. Herein, we report C/NiCo2O4 nanocomposite fibers fabricated by a straightforward electrospinning technique followed by a simple sintering process as a promising ORR electrocatalyst in alkaline condition. The mixed-valence oxide can offer numerous accessible active sites. In addition, the as-obtained C/NiCo2O4 hybrid reveals significantly remarkable electrocatalytic performance with a highly positive onset potential of 0.65 V, which is only 50 mV lower than that of commercially available Pt/C catalysts. The analyses indicate that C/NiCo2O4 catalyst can catalyze O2-molecules via direct four electron pathway in a similar behavior as commercial Pt/C catalysts dose. Compared to single NiCo2O4 and carbon free NiCo2O4, the C/NiCo2O4 hybrid displays higher ORR current and more positive half-wave potential. The incorporated carbon matrices are beneficial for fast electron transfer and can significantly impose an outstanding contribution to the electrocatalytic activity. Results indicate that the synthetic strategy hold a potential as efficient route to fabricate highly active nanostructures for practical use in energy technologies.

  4. CaCu3Ti4O12: A Bifunctional Perovskite Electrocatalyst for Oxygen Evolution and Reduction Reaction in Alkaline Medium

    International Nuclear Information System (INIS)

    Kushwaha, H.S.; Halder, Aditi; Thomas, P.; Vaish, Rahul

    2017-01-01

    Highlights: •A cost effective double perovskite CaCu 3 Ti 4 O 12 have been synthesized using oxalate precursor method. •CCTO electrocatalyst exhibit enhanced bifunctional electrocatalytic activities. •CCTO electrocatalyst have lower overpotential and higher mass activity as compared to noble metal oxide and well-known perovskite catalysts. •Electrochemical impedance spectroscopy investigations of oxygen reactions on perovskite surfaces. -- Abstract: Perovskite oxides are prominent materials as the bifunctional electrocatalysts for both oxygen reduction/evolution reactions (ORR/OER) for the electrochemical energy conversion and storage using regenerative fuel cells and rechargeable metal-air batteries. In this work, a quadruple perovskite CaCu 3 Ti 4 O 12 has been synthesized oxalate precursor route. X-ray diffraction pattern shows phase purity of the synthesized electrocatalyst. The synthesized CCTO electrocatalyst have crystallite size of 26 nm. Electrochemical investigations reveal that CCTO exhibit efficient catalytic activity. More interestingly, an extremely high OER activity is observed for CCTO electrocatalysts which is found superior than similar class of perovskites. Additionally, CCTO shows efficient ORR activity with an onset potential of 0.83 V which is better than that of Pt/C catalyst (≈0.94 V). These results demonstrate the significant potential of CCTO perovskite as a bifunctional electrode material for alkaline fuel cells and metal-air batteries.

  5. New catalysts for exhaust gas cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Haerkoenen, M [Kemira Metalkat Oy, Oulu (Finland)

    1997-12-31

    Major challenge for future catalyst systems was to develop thermally more stable washcoats for close coupled operating conditions and for engines operating under high speed and load conditions. To design these future emission systems extensive research and development was undertaken to develop methods to disperse and stabilize the key catalytic materials for operation at much higher temperatures. Second priority was to design catalysts that are more effective under low temperature exhaust conditions and have improved oxygen storage properties in the washcoats. Incorporating new materials and modified preparation technology a new generation of metallic catalyst formulations emerged, those being trimetallic K6 (Pt:Pd:Rh and bimetallic K7) (Pd+Pd:Rh). The target was to combine the best property of Pt:Rh (good NO{sub x} reduction) with that of the good HC oxidation activity of Pd and to ensure that precious metal/support interactions were positively maintained. Both K6 and K7 concepts contain special catalyst structures with optimized washcoat performance which can be brick converter configuration. Improvement in light-off, thermal stability and transient performance with these new catalyst formulations have clearly been shown in both laboratory and vehicle testing. (author) (20 refs.)

  6. New catalysts for exhaust gas cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Haerkoenen, M. [Kemira Metalkat Oy, Oulu (Finland)

    1996-12-31

    Major challenge for future catalyst systems was to develop thermally more stable washcoats for close coupled operating conditions and for engines operating under high speed and load conditions. To design these future emission systems extensive research and development was undertaken to develop methods to disperse and stabilize the key catalytic materials for operation at much higher temperatures. Second priority was to design catalysts that are more effective under low temperature exhaust conditions and have improved oxygen storage properties in the washcoats. Incorporating new materials and modified preparation technology a new generation of metallic catalyst formulations emerged, those being trimetallic K6 (Pt:Pd:Rh and bimetallic K7) (Pd+Pd:Rh). The target was to combine the best property of Pt:Rh (good NO{sub x} reduction) with that of the good HC oxidation activity of Pd and to ensure that precious metal/support interactions were positively maintained. Both K6 and K7 concepts contain special catalyst structures with optimized washcoat performance which can be brick converter configuration. Improvement in light-off, thermal stability and transient performance with these new catalyst formulations have clearly been shown in both laboratory and vehicle testing. (author) (20 refs.)

  7. Recent development of active nanoparticle catalysts for fuel cell reactions

    Energy Technology Data Exchange (ETDEWEB)

    Mazumder, Vismadeb; Lee, Youngmin; Sun, Shouheng [Department of Chemistry Brown University Providence, RI (United States)

    2010-04-23

    This review focuses on the recent advances in the synthesis of nanoparticle (NP) catalysts of Pt-, Pd- and Au-based NPs as well as composite NPs. First, new developments in the synthesis of single-component Pt, Pd and Au NPs are summarized. Then the chemistry used to make alloy and composite NP catalysts aiming to enhance their activity and durability for fuel cell reactions is outlined. The review next introduces the exciting new research push in developing CoN/C and FeN/C as non-Pt catalysts. Examples of size-, shape- and composition-dependent catalyses for oxygen reduction at cathode and formic acid oxidation at anode are highlighted to illustrate the potentials of the newly developed NP catalysts for fuel cell applications. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  8. Dendrimer encapsulated Silver nanoparticles as novel catalysts for reduction of aromatic nitro compounds

    Science.gov (United States)

    Asharani, I. V.; Thirumalai, D.; Sivakumar, A.

    2017-11-01

    Polyethylene glycol (PEG) core dendrimer encapsulated silver nanoparticles (AgNPs) were synthesized through normal chemical reduction method, where dendrimer acts as reducing and stabilizing agent. The encapsulated AgNPs were well characterized using TEM, DLS and XPS techniques. The synthesized AgNPs showed excellent catalytic activity towards the reduction of aromatic nitro compounds with sodium borohydride as reducing agent and the results substantiate that dendrimer encapsulated AgNPs can be an effective catalyst for the substituted nitro aromatic reduction reactions. Also the kinetics of different nitro compounds reductions was studied and presented.

  9. 3D graphene preparation via covalent amide functionalization for efficient metal-free electrocatalysis in oxygen reduction

    Science.gov (United States)

    Ahmed, Mohammad Shamsuddin; Kim, Young-Bae

    2017-02-01

    3D and porous reduced graphene oxide (rGO) catalysts have been prepared with sp3-hybridized 1,4-diaminobutane (sp3-DABu, rGO-sp3-rGO) and sp2-hybridized 1,4-diaminobenzene (sp2-DABe, rGO-sp2-rGO) through a covalent amidation and have employed as a metal-free electrocatalyst for oxygen reduction reaction (ORR) in alkaline media. Both compounds have used as a junction between functionalized rGO layers to improve electrical conductivity and impart electrocatalytic activity to the ORR resulting from the interlayer charge transfer. The successful amidation and the subsequent reduction in the process of catalyst preparation have confirmed by X-ray photoelectron spectroscopy. A hierarchical porous structure is also confirmed by surface morphological analysis. Specific surface area and thermal stability have increased after successful the amidation by sp3-DABu. The investigated ORR mechanism reveals that both functionalized rGO is better ORR active than nonfunctionalized rGO due to pyridinic-like N content and rGO-sp3-rGO is better ORR active than rGO-sp2-rGO due to higher pyridinic-like N content and π-electron interaction-free interlayer charge transfer. Thus, the rGO-sp3-rGO has proven as an efficient metal-free electrocatalyst with better electrocatalytic activity, stability, and tolerance to the crossover effect than the commercially available Pt/C for ORR.

  10. Torrefaction reduction of coke formation on catalysts used in esterification and cracking of biofuels from pyrolysed lignocellulosic feedstocks

    Science.gov (United States)

    Kastner, James R; Mani, Sudhagar; Hilten, Roger; Das, Keshav C

    2015-11-04

    A bio-oil production process involving torrefaction pretreatment, catalytic esterification, pyrolysis, and secondary catalytic processing significantly reduces yields of reactor char, catalyst coke, and catalyst tar relative to the best-case conditions using non-torrefied feedstock. The reduction in coke as a result of torrefaction was 28.5% relative to the respective control for slow pyrolysis bio-oil upgrading. In fast pyrolysis bio-oil processing, the greatest reduction in coke was 34.9%. Torrefaction at 275.degree. C. reduced levels of acid products including acetic acid and formic acid in the bio-oil, which reduced catalyst coking and increased catalyst effectiveness and aromatic hydrocarbon yields in the upgraded oils. The process of bio-oil generation further comprises a catalytic esterification of acids and aldehydes to generate such as ethyl levulinate from lignified biomass feedstock.

  11. The impact of electrochemical reduction potentials on the electrocatalytic activity of graphene oxide toward the oxygen reduction reaction in an alkaline medium

    International Nuclear Information System (INIS)

    Toh, Shaw Yong; Loh, Kee Shyuan; Kamarudin, Siti Kartom; Daud, Wan Ramli Wan

    2016-01-01

    We report the synthesis of graphene via the electrochemical reduction of graphene oxide (GO). In this study, GO nanosheets from aqueous dispersion were pre-assembled on a glassy carbon (GC) electrode and then electrochemically reduced in 1 M KOH under various constant reduction potentials in the range of −0.6 V to −1.5 V (vs. Ag/AgCl). X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy analyses revealed that the graphitic structure was substantially restored in the resulting electrochemically reduced graphene oxide (ERGO). The ERGO electrodes exhibited significantly enhanced catalytic activity toward the oxygen reduction reaction (ORR) in an alkaline medium compared with the initial GO electrode. Of the ERGO electrodes produced at various cathodic potentials, the ERGO-1.2 V electrode, which was produced at a reduction potential of −1.2 V, demonstrated the best catalytic activity toward the ORR in an alkaline medium. The ORR on GO and ERGO electrodes was shown to proceed via a two-electron mechanism at low overpotentials. The agreement between the spectroscopy results and electrochemical measurements provide strong evidence that the enhanced ORR catalytic activity is mainly attributed to the restoration of GO’s graphitic structure. Furthermore, the ERGO-1.2 V electrode showed excellent tolerance to the methanol poisoning effect compared with a Pt/C catalyst electrode.

  12. Mesoporous nitrogen-rich carbon materials as cathode catalysts in microbial fuel cells

    KAUST Repository

    Ahn, Yongtae; Ivanov, Ivan; Nagaiah, Tharamani C.; Bordoloi, Ankur; Logan, Bruce E.

    2014-01-01

    at different temperatures, was examined as an oxygen reduction catalyst, and compared in performance to Pt in MFCs and electrochemical cells. MNC calcined at 800 °C produced a maximum power density of 979 ± 131 mW m-2 in MFCs, which was 37% higher than

  13. Micro-Membrane Electrode Assembly Design to Precisely Measure the in Situ Activity of Oxygen Reduction Reaction Electrocatalysts for PEMFC.

    Science.gov (United States)

    Long, Zhi; Li, Yankai; Deng, Guangrong; Liu, Changpeng; Ge, Junjie; Ma, Shuhua; Xing, Wei

    2017-06-20

    An in situ micro-MEA technique, which could precisely measure the performance of ORR electrocatalyst using Nafion as electrolyte, was designed and compared with regular thin-film rotating-disk electrode (TFRDE) (0.1 M HClO 4 ) and normal in situ membrane electrode assembly (MEA) tests. Compared to the traditional TFRDE method, the micro-MEA technique makes the acquisition of catalysts' behavior at low potential values easily achieved without being limited by the solubility of O 2 in water. At the same time, it successfully mimics the structure of regular MEAs and obtains similar results to a regular MEA, thus providing a new technique to simply measure the electrode activity without being bothered by complicated fabrication of regular MEA. In order to further understand the importance of in situ measurement, Fe-N-C as a typical oxygen reduction reaction (ORR) free-Pt catalyst was evaluated by TFRDE and micro-MEA. The results show that the half wave potential of Fe-N-C only shifted negatively by -135 mV in comparison with state-of-the-art Pt/C catalysts from TFRDE tests. However, the active site density, mass transfer of O 2 , and the proton transfer conductivity are found to strongly influence the catalyst activity in the micro-MEA, thereby resulting in a much lower limiting current density than Pt/C (8.7 times lower). Hence, it is suggested that the micro-MEA is better in evaluating the in situ ORR performance, where the catalysts are characterized more thoroughly in terms of intrinsic activity, active site density, proton transfer, and mass transfer properties.

  14. A full understanding of oxygen reduction reaction mechanism on Au(1 1 1) surface

    Science.gov (United States)

    Yang, Yang; Dai, Changqing; Fisher, Adrian; Shen, Yanchun; Cheng, Daojian

    2017-09-01

    Oxygen reduction and hydrogen peroxide reduction are technologically important reactions in energy-conversion devices. In this work, a full understanding of oxygen reduction reaction (ORR) mechanism on Au(1 1 1) surface is investigated by density functional theory (DFT) calculations, including the reaction mechanisms of O2 dissociation, OOH dissociation, and H2O2 dissociation. Among these ORR mechanisms on Au(1 1 1), the activation energy of \\text{O}2* hydrogenation reaction is much lower than that of \\text{O}2* dissociation, indicating that \\text{O}2* hydrogenation reaction is more appropriate at the first step than \\text{O}2* dissociation. In the following, H2O2 can be formed with the lower activation energy compared with the OOH dissociation reaction, and finally H2O2 could be generated as a detectable product due to the high activation energy of H2O2 dissociation reaction. Furthermore, the potential dependent free energy study suggests that the H2O2 formation is thermodynamically favorable up to 0.4 V on Au(1 1 1), reducing the overpotential for 2e - ORR process. And the elementary step of first H2O formation becomes non-spontaneous at 0.4 V, indicating the difficulty of 4e - reduction pathway. Our DFT calculations show that H2O2 can be generated on Au(1 1 1) and the first electron transfer is the rate determining step. Our results show that gold surface could be used as a good catalyst for small-scale manufacture and on-site production of H2O2.

  15. Mesoporous nitrogen-rich carbon materials as cathode catalysts in microbial fuel cells

    KAUST Repository

    Ahn, Yongtae

    2014-12-01

    The high cost of the catalyst material used for the oxygen reduction reaction in microbial fuel cell (MFC) cathodes is one of the factors limiting practical applications of this technology. Mesoporous nitrogen-rich carbon (MNC), prepared at different temperatures, was examined as an oxygen reduction catalyst, and compared in performance to Pt in MFCs and electrochemical cells. MNC calcined at 800 °C produced a maximum power density of 979 ± 131 mW m-2 in MFCs, which was 37% higher than that produced using MNC calined at 600 °C (715 ± 152 mW m-2), and only 14% lower than that obtained with Pt (1143 ± 54 mW m-2). The extent of COD removal and coulombic efficiencies were the same for all cathode materials. These results show that MNC could be used as an alternative to Pt in MFCs. © 2014 Elsevier B.V. All rights reserved.

  16. Uniformly active phase loaded selective catalytic reduction catalysts (V{sub 2}O{sub 5}/TNTs) with superior alkaline resistance performance

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Haiqiang; Wang, Penglu [Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental & Resources Science, Zhejiang University, 310058 Hangzhou (China); Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou 310027 (China); Chen, Xiongbo [South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655 (China); Wu, Zhongbiao, E-mail: zbwu@zju.edu.cn [Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental & Resources Science, Zhejiang University, 310058 Hangzhou (China); Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou 310027 (China)

    2017-02-15

    Highlights: • VOSO{sub 4} exhibited better synergistic effect with titanate nanotubes than NH{sub 4}VO{sub 3}. • Ion-exchange reaction occurs between VOSO{sub 4} and titanate nanotubes. • Ion-exchange resulting in uniformly vanadium distribution on titanate nanotubes. • VOSO{sub 4}-based catalyst exhibited impressive SCR activity and alkaline resistance. - Abstract: In this work, protonated titanate nanotubes was performed as a potential useful support and different vanadium precursors (NH{sub 4}VO{sub 3} and VOSO{sub 4}) were used to synthesize deNO{sub x} catalysts. The results showed that VOSO{sub 4} exhibited better synergistic effect with titanate nanotubes than NH{sub 4}VO{sub 3}, which was caused by the ion-exchange reaction. Then high loading content of vanadium, uniformly active phase distribution, better dispersion of vanadium, more acid sites, better V{sup 5+}/V{sup 4+} redox cycles and superior oxygen mobility were achieved. Besides, VOSO{sub 4}-based titanate nanotubes catalysts also showed enhanced alkaline resistance than particles (P25) based catalysts. It was strongly associated with its abundant acid sites, large surface area, flexible redox cycles and oxygen transfer ability. For the loading on protonated titanate nanotubes, active metal with cation groups was better precursors than anion ones. V{sub 2}O{sub 5}/TNTs catalyst was a promising substitute for the commercial vanadium catalysts and the work conducted herein provided a useful idea to design uniformly active phase loaded catalyst.

  17. Reductive amination of ethanol to ethylamines over Ni/Al_2O_3 catalysts

    International Nuclear Information System (INIS)

    Park, Jun Hyun; Hong, Eunpyo; An, Sang Hee; Shin, Chae-Ho; Lim, Dong-Hee

    2017-01-01

    Ni(x)/Al_2O_3 (x=wt%) catalysts with Ni loadings of 5-25 wt% were prepared via a wet impregnation method on an γ-Al_2O_3 support and subsequently applied in the reductive amination of ethanol to ethylamines. Among the various catalysts prepared, Ni(10)/Al2O3 exhibited the highest metal dispersion and the smallest Ni particle size, resulting in the highest catalytic performance. To reveal the effects of reaction parameters, a reductive amination process was performed by varying the reaction temperature (T), weight hourly space velocity (WHSV), and NH_3 and H_2 partial pressures in the reactions. In addition, on/off experiments for NH_3 and H_2 were also carried out. In the absence of NH_3 in the reactant stream, the ethanol conversion and selectivities towards the different ethylamine products were significantly reduced, while the selectivity to ethylene was dominant due to the dehydration of ethanol. In contrast, in the absence of H_2, the selectivity to acetonitrile significantly increased due to dehydrogenation of the imine intermediate. Although a small amount of catalyst deactivation was observed in the conversion of ethanol up to 10 h on stream due to the formation of nickel nitride, the Ni(10)/Al_2O_3 catalyst exhibited stable catalytic performance over 90 h under the optimized reaction conditions (i.e., T=190 .deg. C, WHSV=0.9 h"-"1, and EtOH/NH_3/H_2 molar ratio=1/1/6).

  18. Synthesis of highly efficient Mn{sub 2}O{sub 3} catalysts for CO oxidation derived from Mn-MIL-100

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaodong, E-mail: fatzhxd@126.com [Environment and Low-Carbon Research Center, School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093 (China); Li, Hongxin; Hou, Fulin; Yang, Yang; Dong, Han; Liu, Ning [Environment and Low-Carbon Research Center, School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093 (China); Wang, Yuxin [Institute of Applied Biotechnology, Taizhou Vocation & Technical College, Taizhou, Zhejiang 318000 (China); Cui, Lifeng, E-mail: lifeng.cui@gmail.com [Environment and Low-Carbon Research Center, School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093 (China)

    2017-07-31

    Highlights: • The morphology of porous Mn{sub 2}O{sub 3} cubes was inherited from Mn-MIL-100 template. • Mn{sub 2}O{sub 3} obtained at calcined temperature of 700 °C displayed high activity. • Enhanced activity is attributed to surface active oxygen, and reduction behavior. - Abstract: In this work, metal-organic frameworks (MOFs) Mn-MIL-100 were first prepared, which were next used as templates to obtain the irregular porous Mn{sub 2}O{sub 3} cubes through calcination with air at different temperature. The catalysts were characterized by N{sub 2} adsorption-desorption, X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), H{sub 2}-temperature program reduction (H{sub 2}-TPR) and X-ray photoelectron spectroscopic (XPS). The catalytic activity for CO oxidation over Mn{sub 2}O{sub 3} catalysts was investigated. It was found that calcination temperature had a strong effect on the structure and catalytic activity of Mn{sub 2}O{sub 3} catalyst. Mn{sub 2}O{sub 3} catalyst obtained by calcined at 700 °C (Mn{sub 2}O{sub 3}-700) showed a smaller specific surface area, but displayed a high catalytic activity and excellent stability with a complete CO conversion temperature (T{sub 98}) of 240 °C, which was attributed to the unique structure, a high quantity of surface active oxygen species, smaller particle size, oxygen vacancies and good low temperature reduction behavior. The effect of water vapor on catalytic activity was also examined. The introduction of water vapor to the feedstock induced a positive effect on CO oxidation over Mn{sub 2}O{sub 3}-700 catalyst. Furthermore, no obvious drop is observed in activity over catalysts even in the presence of water vapor during 48 h.

  19. Al- or Si-decorated graphene oxide: A favorable metal-free catalyst for the N2O reduction

    International Nuclear Information System (INIS)

    Esrafili, Mehdi D.; Sharifi, Fahimeh; Nematollahi, Parisa

    2016-01-01

    Highlights: • The reduction of N 2 O by CO molecule is investigated over Al- and Si-decorated graphene oxides (Al-/Si-GO). • The N 2 O decomposition process can take place with a negligible activation energy over both surfaces. • Al-GO and Si-GO can be used as an efficient metal-free catalyst for the reduction of N 2 O molecule at ambient conditions. - Abstract: The structural and catalytic properties of Al- or Si-decorated graphene oxide (Al-/Si-GO) are studied by means of density functional theory calculations. The relatively large adsorption energy together with the small Al−O or Si−O binding distances indicate that the epoxy groups over the GO surface can strongly stabilize the single Al or Si atom. Hence, Al-GO and Si-GO are stable enough to be utilized in catalytic reduction of N 2 O by CO molecule. It is found that the adsorption and decomposition of N 2 O molecule over Si-GO is more favorable than over Al-GO, due to its larger adsorption energy (E ads ) and charge transfer (q CT ) values. On the other hand, the CO molecule is physically adsorbed over both surfaces, with relatively small E ads and q CT values. Therefore, at the presence of N 2 O and CO molecules as the reaction gas, the Al or Si atom of the surface should be dominantly covered by N 2 O molecule. Our results indicate that the N 2 O decomposition process can take place with a negligible activation energy over Al-/Si-GO surface, where the N 2 molecule can be easily released from the surface. Then, the activated oxygen atom (O ads ) which remains over the surface reacts with the CO molecule to form the CO 2 molecule via the reaction O ads + CO → CO 2 . Based on the calculated activation energies, it is suggested that both Al-GO and Si-GO can be used as an efficient metal-free catalyst for the reduction of N 2 O molecule at ambient conditions.

  20. Synthesis of highly efficient Mn2O3 catalysts for CO oxidation derived from Mn-MIL-100

    Science.gov (United States)

    Zhang, Xiaodong; Li, Hongxin; Hou, Fulin; Yang, Yang; Dong, Han; Liu, Ning; Wang, Yuxin; Cui, Lifeng

    2017-07-01

    In this work, metal-organic frameworks (MOFs) Mn-MIL-100 were first prepared, which were next used as templates to obtain the irregular porous Mn2O3 cubes through calcination with air at different temperature. The catalysts were characterized by N2 adsorption-desorption, X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), H2-temperature program reduction (H2-TPR) and X-ray photoelectron spectroscopic (XPS). The catalytic activity for CO oxidation over Mn2O3 catalysts was investigated. It was found that calcination temperature had a strong effect on the structure and catalytic activity of Mn2O3 catalyst. Mn2O3 catalyst obtained by calcined at 700 °C (Mn2O3-700) showed a smaller specific surface area, but displayed a high catalytic activity and excellent stability with a complete CO conversion temperature (T98) of 240 °C, which was attributed to the unique structure, a high quantity of surface active oxygen species, smaller particle size, oxygen vacancies and good low temperature reduction behavior. The effect of water vapor on catalytic activity was also examined. The introduction of water vapor to the feedstock induced a positive effect on CO oxidation over Mn2O3-700 catalyst. Furthermore, no obvious drop is observed in activity over catalysts even in the presence of water vapor during 48 h.

  1. Effects space velocity and gas velocity on DeNOx catalyst with HC reductant; HC tenka NOx kangen shokubai no kukan sokudo oyobi gas ryusoku no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Niimura, K.; Tsujimura, K.

    1995-04-20

    Discussions were given on the hydrocarbon added reduction catalyst method to reduce NOx in diesel engine exhaust gas. An experiment was carried out with actual exhaust gas from a diesel engine by using a copper ion exchanged zeolite catalyst that has been coated on a honeycomb type substrate, and using propylene as a reductant. When the catalyst volume was changed with the exhaust gas space velocity kept constant, the NOx conversion ratio decreased as the catalyst length is decreased, and the activity shifted to the lower temperature side. The NOx reduction efficiency increased if the faster the gas flow velocity. On the other hand, if the gas flow velocity is slow, the NOx reduction can be carried out with relatively small amount of the reductant. When the catalyst volume was changed with the passing gas amount kept constant, the NOx conversion ratio decreased largely if the catalyst length is decreased. Further, the NOx reduction characteristics shift to the higher temperature side. In the catalyst length direction, the NOx reduction activity shows a relatively uniform action. However, a detailed observation reveals that the reaction heat in the catalyst is transmitted to the wake improving the activity, hence the further down the flow, the NOx conversion ratio gets higher in efficiency. 5 refs., 5 figs., 3 tabs.

  2. Interface-modulated approach toward multilevel metal oxide nanotubes for lithium-ion batteries and oxygen reduction reaction

    Institute of Scientific and Technical Information of China (English)

    Jiashen Meng; Chaojiang Niu; Xiong Liu; Ziang Liu; Hongliang Chen; Xuanpeng Wang; Jiantao Li

    2016-01-01

    Metal oxide hollow structures with multilevel interiors are of great interest for potential applications such as catalysis,chemical sensing,drug delivery,and energy storage.However,the controlled synthesis of multilevel nanotubes remains a great challenge.Here we develop a facile interface-modulated approach toward the synthesis of complex metal oxide multilevel nanotubes with tunable interior structures through electrospinning followed by controlled heat treatment.This versatile strategy can be effectively applied to fabricate wire-in-tube and tubein-tube nanotubes of various metal oxides.These multilevel nanotubes possess a large specific surface area,fast mass transport,good strain accommodation,and high packing density,which are advantageous for lithium-ion batteries (LIBs)and the oxygen reduction reaction (ORR).Specifically,shrinkable CoMn2O4 tube-in-tube nanotubes as a lithium-ion battery anode deliver a high discharge capacity of ~565 mAh.g-1 at a high rate of 2 A.g-1,maintaining 89% of the latter after 500 cycles.Further,as an oxygen reduction reaction catalyst,these nanotubes also exhibit excellent stability with about 92% current retention after 30,000 s,which is higher than that of commercial Pt/C (81%).Therefore,this feasible method may push the rapid development of one-dimensional (1D) nanomaterials.These multifunctional nanotubes have great potential in many frontier fields.

  3. Influence of Reduction Promoters on Stability of Cobalt/g-Alumina Fischer-Tropsch Synthesis Catalysts

    Directory of Open Access Journals (Sweden)

    Gary Jacobs

    2014-03-01

    Full Text Available This focused review article underscores how metal reduction promoters can impact deactivation phenomena associated with cobalt Fischer-Tropsch synthesis catalysts. Promoters can exacerbate sintering if the additional cobalt metal clusters, formed as a result of the promoting effect, are in close proximity at the nanoscale to other cobalt particles on the surface. Recent efforts have shown that when promoters are used to facilitate the reduction of small crystallites with the aim of increasing surface Co0 site densities (e.g., in research catalysts, ultra-small crystallites (e.g., <2–4.4 nm formed are more susceptible to oxidation at high conversion relative to larger ones. The choice of promoter is important, as certain metals (e.g., Au that promote cobalt oxide reduction can separate from cobalt during oxidation-reduction (regeneration cycles. Finally, some elements have been identified to promote reduction but either poison the surface of Co0 (e.g., Cu, or produce excessive light gas selectivity (e.g., Cu and Pd, or Au at high loading. Computational studies indicate that certain promoters may inhibit polymeric C formation by hindering C-C coupling.

  4. Study of fluorine doped (Nb,Ir)O{sub 2} solid solution electro-catalyst powders for proton exchange membrane based oxygen evolution reaction

    Energy Technology Data Exchange (ETDEWEB)

    Kadakia, Karan Sandeep [Chemical and Petroleum Engineering, Swanson School of Engineering, University of Pittsburgh, PA 15261 (United States); Jampani, Prashanth H., E-mail: pjampani@pitt.edu [Bioengineering, Swanson School of Engineering, University of Pittsburgh, PA 15261 (United States); Velikokhatnyi, Oleg I.; Datta, Moni Kanchan [Bioengineering, Swanson School of Engineering, University of Pittsburgh, PA 15261 (United States); Center for Complex Engineered Multifunctional Materials, University of Pittsburgh, PA 15261 (United States); Patel, Prasad [Chemical and Petroleum Engineering, Swanson School of Engineering, University of Pittsburgh, PA 15261 (United States); Chung, Sung Jae [Mechanical Engineering and Materials Science, Swanson School of Engineering, University of Pittsburgh, PA 15261 (United States); Park, Sung Kyoo [Bioengineering, Swanson School of Engineering, University of Pittsburgh, PA 15261 (United States); Poston, James A.; Manivannan, Ayyakkannu [US Department of Energy, National Energy Technology Laboratory, Morgantown, WV 26507 (United States); Kumta, Prashant N. [Chemical and Petroleum Engineering, Swanson School of Engineering, University of Pittsburgh, PA 15261 (United States); Bioengineering, Swanson School of Engineering, University of Pittsburgh, PA 15261 (United States); Center for Complex Engineered Multifunctional Materials, University of Pittsburgh, PA 15261 (United States); Mechanical Engineering and Materials Science, Swanson School of Engineering, University of Pittsburgh, PA 15261 (United States); Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, PA 15217 (United States)

    2016-10-15

    Graphical abstract: High surface area (∼300 m{sup 2}/g) nanostructured powders of nominal composition (Nb{sub 1−x}Ir{sub x})O{sub 2} and (Nb{sub 1−x}Ir{sub x})O{sub 2}:10F have been synthesized and tested as oxygen evolution electro-catalysts for PEM based water electrolysis using a simple two-step chemical synthesis procedure. Superior electrochemical activity was demonstrated by fluorine doped compositions of (Nb{sub 1−x}Ir{sub x})O{sub 2} with an optimal composition (Nb{sub 0.75}Ir{sub 0.25})O{sub 2}:10F (x = 0.25) demonstrating on-par performance with commercial hydrated IrO{sub 2} and nanostructured in-house chemically synthesized IrO{sub 2}. Using first principles calculations, the electronic structure modification resulting in ∼75 at.% reduction (experimentally observed) in noble metal content without loss in catalytic performance and stability has been established. - Highlights: • (Nb{sub 1−x}Ir{sub x})O{sub 2}:10F nanopowder electrocatalysts have been wet chemically synthesized. • (Nb{sub 0.75}Ir{sub 0.25})O{sub 2}:10F exhibits superior electrochemical activity than pure IrO{sub 2}. • Stability of the (Nb,Ir)O{sub 2}:10F nanomaterials is comparable to pure (Nb,Ir)O{sub 2}. • High surface area F doped (Nb,Ir)O{sub 2} are promising OER anode electro-catalysts. - Abstract: High surface area (∼300 m{sup 2}/g) nanostructured powders of (Nb{sub 1−x}Ir{sub x})O{sub 2} and (Nb{sub 1−x}Ir{sub x})O{sub 2}:10F (∼100 m{sup 2}/g) have been examined as promising oxygen evolution reaction (OER) electro-catalysts for proton exchange membrane (PEM) based water electrolysis. Nb{sub 2}O{sub 5} and 10 wt.% F doped Nb{sub 2}O{sub 5} powders were prepared by a low temperature sol-gel process which were then converted to solid solution (Nb,Ir)O{sub 2} and 10 wt.% F doped (Nb,Ir)O{sub 2} [(NbIr)O{sub 2}:10F] electro-catalysts by soaking in IrCl{sub 4} followed by heat treatment in air. Electro-catalyst powders of optimal composition (Nb{sub 0.75}Ir

  5. Effect of the dispersants on Pd species and catalytic activity of supported palladium catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Yue [Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205 (China); Yang, Xiaojun, E-mail: 10100201@wit.edu.cn [Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205 (China); Cao, Shuo, E-mail: cao23@email.sc.edu [North America R& D Center, Clariant BU Catalysts, Louisville, 40209, KY (United States); Zhou, Jie [Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205 (China); Wu, Yuanxin [Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205 (China); School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Han, Jinyu [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Yan, Zhiguo [Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205 (China); Zheng, Mingming [Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Oilcrops Lipid Chemistry and Nutrition, Wuhan 430062 (China)

    2017-04-01

    Highlights: • Polyvinyl alcohol (PVA) inhibited the sintering and reduction of Pd nanoparticles. • Activity was improved for supported Pd catalysts with PVA modified method. • PVA modified method minimized the catalyst deactivation. • This work provides an insight of the regeneration strategies for Pd catalysts. - Abstract: A series of supported palladium catalysts has been prepared through the precipitation method and the reduction method, using polyvinyl alcohol (PVA) and polyvinylpyrrolidone (PVP) as dispersants. The effects of the dispersants on the properties of catalysts were evaluated and the catalytic performance of the new materials was investigated for the oxidative carbonylation of phenol to diphenyl carbonate (DPC). The catalysts as prepared were also characterized by the X-ray diffraction (XRD), transmission electron microscope (TEM), Brunner-Emmet-Teller (BET) measurements and X-ray photoelectron spectroscopy (XPS) techniques. The results show that the addition of the dispersants had no effect on the crystal phase of the catalysts. However, the dispersion of Pd particles was improved when the dispersants were used. Moreover, the particle sizes of Pd nanoparticles modified by PVA were smaller than those modified by PVP. The catalysts prepared using the dispersants gave better yields of DPC than the catalysts prepared without the dispersants. The highest yield of DPC was 17.9% with the PVA-Red catalyst. The characterization results for the used catalysts showed that the Pd species in the PVA-Red catalyst remained mostly divalent and the lattice oxygen species were consumed during the reaction, which could lead to the higher catalytic activity of the PVA-Red catalyst. The experimental results confirm that PVA effectively inhibited the sintering and reduction of active Pd species in the oxidative carbonylation of phenol.

  6. Effect of ordering of PtCu₃ nanoparticle structure on the activity and stability for the oxygen reduction reaction.

    Science.gov (United States)

    Hodnik, Nejc; Jeyabharathi, Chinnaiah; Meier, Josef C; Kostka, Alexander; Phani, Kanala L; Rečnik, Aleksander; Bele, Marjan; Hočevar, Stanko; Gaberšček, Miran; Mayrhofer, Karl J J

    2014-07-21

    In this study the performance enhancement effect of structural ordering for the oxygen reduction reaction (ORR) is systematically studied. Two samples of PtCu3 nanoparticles embedded on a graphitic carbon support are carefully prepared with identical initial composition, particle dispersion and size distribution, yet with different degrees of structural ordering. Thus we can eliminate all coinciding effects and unambiguously relate the improved activity of the ORR and more importantly the enhanced stability to the ordered nanostructure. Interestingly, the electrochemically induced morphological changes are common to both ordered and disordered samples. The observed effect could have a groundbreaking impact on the future directions in the rational design of active and stable platinum alloyed ORR catalysts.

  7. Spinels as cathodes for the electrochemical reduction of O2 and NO

    DEFF Research Database (Denmark)

    Simonsen, Vibe Louise Ernlund; Find, D.; Lilliedal, M.

    2007-01-01

    the largest difference in activity between reduction of oxygen and the reduction of nitric oxide, the activity being highest for the reduction of nitric oxide. The material is probably not stable when polarised cathodically. However it seems that the electrode material can be regenerated upon oxidation. NiFe2......Spinels were synthesised and investigated as electro-catalyst for the electrochemical reduction of oxygen and nitric oxide using cyclic voltammetry and cone shaped electrodes. The following four spinels were investigated; CoFe2O4, NiFe2O4, CuFe2O4 and Co3O4. The composition CuFe2O4 revealed......O4 is also more active for the reduction of nitric oxide than for the reduction of oxygen, whereas the cobalt containing spinels have a higher activity for the reduction of oxygen than for the reduction of nitric oxide....

  8. Immunity of the Fe-N-C catalysts to electrolyte adsorption: phosphate but not perchloric anions

    DEFF Research Database (Denmark)

    Hu, Yang; Jensen, Jens Oluf; Pan, Chao

    2018-01-01

    often carried out, like for Pt-based catalysts, in dilute perchloric acid by assuming its non-adsorbing nature on the active sites. The assumption is however not true. In this work, a typical Fe-N-C catalyst was first synthesized by high-pressure pyrolysis in the presence of carbon support...... and thoroughly characterized in terms of morphology, structure and active site distribution. The subsequent electrochemical characterization of the catalyst shows strong adsorption and poisoning effect of, in addition to the known Cl-, perchloric anions on the oxygen reduction reaction (ORR) activity...

  9. Selective catalytic reduction of NO{sub x} with NH{sub 3} over iron-cerium-tungsten mixed oxide catalyst prepared by different methods

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Zhi-bo, E-mail: xzb328@163.com [School of Energy and Power Engineering, University of Shanghai for Science & Technology, Shanghai 200093 (China); Collaborative Innovation Research Institute, University of Shanghai for Science & Technology, Shanghai 200093 (China); Shanghai Power Equipment Research Institute, Shanghai 200240 (China); Liu, Jing; Zhou, Fei; Liu, Dun-yu; Lu, Wei [School of Energy and Power Engineering, University of Shanghai for Science & Technology, Shanghai 200093 (China); Jin, Jing [School of Energy and Power Engineering, University of Shanghai for Science & Technology, Shanghai 200093 (China); Collaborative Innovation Research Institute, University of Shanghai for Science & Technology, Shanghai 200093 (China); Ding, Shi-fa [Shanghai Power Equipment Research Institute, Shanghai 200240 (China)

    2017-06-01

    Highlights: • Iron-cerium-tungsten mixed oxide catalysts were prepared through three different methods. • The effect of preparation methods on the NH{sub 3}-SCR activity and the surface structure properties of catalyst were investigated. • Iron-cerium-tungsten mixed oxide prepared through microwave irradiation assistant critic acid sol-gel shows higher NH{sub 3}-SCR activity. - Abstract: A series of magnetic Fe{sub 0.85}Ce{sub 0.10}W{sub 0.05}O{sub z} catalysts were synthesized by three different methods(Co-precipitation(Fe{sub 0.85}Ce{sub 0.10}W{sub 0.05}O{sub z}-CP), Hydrothermal treatment assistant critic acid sol-gel method(Fe{sub 0.85}Ce{sub 0.10}W{sub 0.05}O{sub z}-HT) and Microwave irradiation assistant critic acid sol-gel method(Fe{sub 0.85}Ce{sub 0.10}W{sub 0.05}O{sub z}-MW)), and the catalytic activity was evaluated for selective catalytic reduction of NO with NH{sub 3}. The catalyst was characterized by XRD, N{sub 2} adsorption-desorption, XPS, H{sub 2}-TPR and NH{sub 3}-TPD. Among the tested catalysts, Fe{sub 0.85}Ce{sub 0.10}W{sub 0.05}O{sub z}-MW shows the highest NO{sub x} conversion over per gram in unit time with NO{sub x} conversion of 60.8% at 350 °C under a high gas hourly space velocity of 1,200,000 ml/(g h). Different from Fe{sub 0.85}Ce{sub 0.10}W{sub 0.05}O{sub z}-CP catalyst, there exists a large of iron oxide crystallite(γ-Fe{sub 2}O{sub 3} and α-Fe{sub 2}O{sub 3}) scattered in Fe{sub 0.85}Ce{sub 0.10}W{sub 0.05}O{sub z} catalysts prepared through hydrothermal treatment or microwave irradiation assistant critic acid sol-gel method, and higher iron atomic concentration on their surface. And Fe{sub 0.85}Ce{sub 0.10}W{sub 0.05}O{sub z}-MW shows higher surface absorbed oxygen concentration and better dispersion compared with Fe{sub 0.85}Ce{sub 0.10}W{sub 0.05}O{sub z}-HT catalyst. These features were favorable for the high catalytic performance of NO reduction with NH{sub 3} over Fe{sub 0.85}Ce{sub 0.10}W{sub 0.05}O{sub z}-MW catalyst.

  10. Pt catalysts on PANI coated WC/C nanocomposites for methanol electro-oxidation and oxygen electro-reduction in DMFC

    International Nuclear Information System (INIS)

    Yaldagard, Maryam; Jahanshahi, Mohsen; Seghatoleslami, Naser

    2014-01-01

    Highlights: • In this work nanosized WC/C were successfully coated by PANI. • Pt particles (10.56 nm) were uniformly dispersed on the surface of PANI/WC/C support. • The Pt/PANI/WC/C exhibited higher MOR activity and CO tolerance than Pt/C. • The Pt/PANI/WC/C exhibited higher activity for ORR than Pt/C in RDE experiments. • Pt/PANI/WC/C showed good stability than that of Pt/C in the presence of methanol. - Abstract: In the present study a Pt/PANI/WC/C electrocatalyst was developed to increase the methanol electro-oxidation and oxygen electro-reduction activity and stability of commercial Pt/C electrocatalyst. WC/C was coated with protonated polyaniline (PANI) in situ during the polymerization of aniline. Fourier transform infrared (FTIR) results illustrate the presence of PANI in the composite. The conductivity of PANI coated – WC/C has been compared with the conductivity of the corresponding mixtures of WC/C and Vulcan XC-72. X-ray diffraction results showed that Pt particles were dispersed on the support with mean particle size of about 10.56 nm. Transition electron microscopy images showed that the nanosized WC/C were successfully coated by PANI. Based on the electrochemical properties characterized by cyclic voltammetry, CO stripping and rotating disk electrode measurements it was found that the as prepared Pt/PANI/WC/C electrocatalyst exhibited a comparable activity for methanol oxidation reaction and oxygen reduction reaction with respect to the commercial one. A significant reduction in the potential of CO electro-oxidation peak from 0.75 V for Pt/C to 0.52 V for Pt/PANI/WC/C electrocatalyst indicates that an increase in the activity for CO electro-oxidation is achieved by replacing the carbon support by PANI coated WC/C. Chronoamerometry results also showed, in the presence of methanol the Pt/PANI/WC/C electrocatalyst still maintains a higher current density than Pt/WC/C and Pt/C

  11. Pt catalysts on PANI coated WC/C nanocomposites for methanol electro-oxidation and oxygen electro-reduction in DMFC

    Energy Technology Data Exchange (ETDEWEB)

    Yaldagard, Maryam, E-mail: m_yaldagard@yahoo.com [Department of Chemical Engineering, Ferdowsi University of Mashhad, P.O. Box 91775-1111 (Iran, Islamic Republic of); Nanotechnology Research Institute, School of Chemical Engineering, Babol University of Technology (Iran, Islamic Republic of); Jahanshahi, Mohsen, E-mail: mjahan@nit.um.ac.ir [Nanotechnology Research Institute, School of Chemical Engineering, Babol University of Technology (Iran, Islamic Republic of); Seghatoleslami, Naser, E-mail: Slami@um.ac.ir [Department of Chemical Engineering, Ferdowsi University of Mashhad, P.O. Box 91775-1111 (Iran, Islamic Republic of)

    2014-10-30

    Highlights: • In this work nanosized WC/C were successfully coated by PANI. • Pt particles (10.56 nm) were uniformly dispersed on the surface of PANI/WC/C support. • The Pt/PANI/WC/C exhibited higher MOR activity and CO tolerance than Pt/C. • The Pt/PANI/WC/C exhibited higher activity for ORR than Pt/C in RDE experiments. • Pt/PANI/WC/C showed good stability than that of Pt/C in the presence of methanol. - Abstract: In the present study a Pt/PANI/WC/C electrocatalyst was developed to increase the methanol electro-oxidation and oxygen electro-reduction activity and stability of commercial Pt/C electrocatalyst. WC/C was coated with protonated polyaniline (PANI) in situ during the polymerization of aniline. Fourier transform infrared (FTIR) results illustrate the presence of PANI in the composite. The conductivity of PANI coated – WC/C has been compared with the conductivity of the corresponding mixtures of WC/C and Vulcan XC-72. X-ray diffraction results showed that Pt particles were dispersed on the support with mean particle size of about 10.56 nm. Transition electron microscopy images showed that the nanosized WC/C were successfully coated by PANI. Based on the electrochemical properties characterized by cyclic voltammetry, CO stripping and rotating disk electrode measurements it was found that the as prepared Pt/PANI/WC/C electrocatalyst exhibited a comparable activity for methanol oxidation reaction and oxygen reduction reaction with respect to the commercial one. A significant reduction in the potential of CO electro-oxidation peak from 0.75 V for Pt/C to 0.52 V for Pt/PANI/WC/C electrocatalyst indicates that an increase in the activity for CO electro-oxidation is achieved by replacing the carbon support by PANI coated WC/C. Chronoamerometry results also showed, in the presence of methanol the Pt/PANI/WC/C electrocatalyst still maintains a higher current density than Pt/WC/C and Pt/C.

  12. Oxygen reduction activity of N-doped carbon-based films prepared by pulsed laser deposition

    Science.gov (United States)

    Hakoda, Teruyuki; Yamamoto, Shunya; Kawaguchi, Kazuhiro; Yamaki, Tetsuya; Kobayashi, Tomohiro; Yoshikawa, Masahito

    2010-12-01

    Carbon-based films with nitrogen species on their surface were prepared on a glassy carbon (GC) substrate for application as a non-platinum cathode catalyst for polymer electrolyte fuel cells. Cobalt and carbon were deposited in the presence of N 2 gas using a pulsed laser deposition method and then the metal Co was removed by HCl-washing treatment. Oxygen reduction reaction (ORR) activity was electrochemically determined using a rotating disk electrode system in which the film samples on the GC substrate were replaceable. The ORR activity increased with the temperature of the GC substrate during deposition. A carbon-based film prepared at 600 °C in the presence of N 2 at 66.7 Pa showed the highest ORR activity among the tested samples (0.66 V vs. NHE). This film was composed of amorphous carbons doped with pyridine type nitrogen atoms on its surface.

  13. Limiting Current of Oxygen Reduction on Gas-Diffusion Electrodes for Phosphoric Acid Fuel Cells

    DEFF Research Database (Denmark)

    Li, Qingfeng; Gang, Xiao; Hjuler, Hans Aage

    1994-01-01

    on polytetrafluorine-ethyl bonded gas-diffusion electordes in phosphoric acid with and without fluorinated additives. This provides an alternative to estimate the film thickness by combining it with the acid-adsorption measurements and the porosity analysis of the catalyst layer. It was noticed that the limiting......Various models have been devoted to the operation mechanism of porous diffusion electrodes. They are, however, suffering from the lack of accuracy concerning the acid-film thickness on which they are based. In the present paper the limiting current density has been measured for oxygen reduction...... current density can be accomplished either by gas-phase diffusion or liquid-phase diffusion, and it is the latter that can be used in the film-thickness estimation. It is also important to mention that at such a limiting condition, both the thin-film model and the filmed agglomerate model reach the same...

  14. Graphite-supported platinum catalysts: Effects of gas and aqueous phase treatments

    Energy Technology Data Exchange (ETDEWEB)

    Vleeming, J.H.; Kuster, B.F.M.; Marin, G.B. [Eindhoven Univ. of Technology (Netherlands)] [and others

    1997-03-01

    The effects on the platinum particle diameter and the available platinum surface area of a graphite-supported platinum catalyst resulting from pretreatments and from performing a selective oxidation reaction are investigated. In the gas phase considerable catalyst sintering occurs only in the presence of oxygen at 773 K due to extensive carbon burn-off, whereas in an aqueous phase platinum particle growth is limited upon oxidative treatment. A hydrogen treatment in aqueous phase at 363 K causes platinum particle growth, aggregate formation, and covering of metal sites. These phenomena become more important with increasing pH. Platinum particle growth and aggregate formation are attributed to platinum particle rather than platinum adatom mobility and is caused by the destruction of the oxygen-containing surface groups on the graphite support, which serve as anchorage sites for the platinum particles. Site covering is caused by products originating from the graphite support, which are formed as a result of the reductive treatments. When performing the aqueous phase oxidation of methyl {alpha}-D-glucopyranoside at 323 K and a pH of 9, catalyst modifications are small under oxidative conditions. Exposure of the catalyst for several hours to methyl {alpha}-D-glucopyranoside under the same conditions but in the absence of oxygen causes site covering. 50 refs., 9 figs., 1 tab.

  15. Enhanced life of proton exchange membrane fuel cell catalysts using perfluorosulfonic acid stabilized carbon support

    Energy Technology Data Exchange (ETDEWEB)

    Cheng Niancai [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 430070 (China); Mu Shichun, E-mail: msc@whut.edu.c [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 430070 (China); Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, OX1 3QR (United Kingdom); Chen Xiaojing; Lv Haifeng; Pan Mu [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 430070 (China); Edwards, Peter P. [Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, OX1 3QR (United Kingdom)

    2011-02-01

    We report a new and simple solution to increase life of Pt/C catalysts using the proton-conducting polymer (perfluorosulfonic acid, PFSA) stabilized carbon support (denoted these catalysts as Pt/NFC catalysts) as compared to conventional Pt/C catalysts commonly used in PEM fuel cells. A high catalytic activity of the catalyst is observed by both CV (cyclic voltammetry) and ORR (oxygen reduction reaction) measurements. Especially, our own catalysts have a 60% better life as compared to Pt/C under electrochemically accelerated durability test conditions. The loss rate of electrochemical active area (ECA) for Pt/NFC catalysts is only 0.007 m{sup 2} g{sup -1} cycle{sup -1}, compared to a value of 0.011 m{sup 2} g{sup -1} cycle{sup -1} for Pt/C.

  16. Effect of the nanosized TiO2 particles in Pd/C catalysts as cathode materials in direct methanol fuel cells.

    Science.gov (United States)

    Choi, Mahnsoo; Han, Choonsoo; Kim, In-Tae; Lee, Ji-Jung; Lee, Hong-Ki; Shim, Joongpyo

    2011-07-01

    Pd-TiO2/C catalysts were prepared by impregnating titanium dioxide (TiO2) on carbon-supported Pd (Pd/C) for use as the catalyst for the oxygen reduction reaction (ORR) in direct methanol fuel cells (DMFCs). Transmission electron microscope (TEM), scanning electron microscope (SEM) and X-ray diffraction (XRD) analyses were carried to confirm the distribution, morphology and structure of Pd and TiO2 on the carbon support. In fuel cell test, we confirmed that the addition of TiO2 nanoparticles make the improved catalytic activity of oxygen reduction. The electrochemical characterization of the Pd-TiO2/C catalyst for the ORR was carried out by cyclic voltammetry (CV) in the voltage window of 0.04 V to 1.2 V with scan rate of 25 mV/s. With the increase in the crystallite size of TiO2, the peak potential for OH(ads) desorption on the surface of Pd particle shifted to higher potential. This implies that TiO2 might affect the adsorption and desorption of oxygen molecules on Pd catalyst. The performance of Pd-TiO2/C as a cathode material was found to be similar to or better performance than that of Pt/C.

  17. Influence of surface oxygenated groups on the formation of active Cu species and the catalytic activity of Cu/AC catalyst for the synthesis of dimethyl carbonate

    Science.gov (United States)

    Zhang, Guoqiang; Li, Zhong; Zheng, Huayan; Hao, Zhiqiang; Wang, Xia; Wang, Jiajun

    2016-12-01

    Activated carbon (AC) supported Cu catalysts are employed to study the influence of surface oxygenated groups on the formation of active Cu species and the catalytic activity of Cu/AC catalyst for oxidative carbonylation of methanol to dimethyl carbonate (DMC). The AC supports are thermal treated under different temperatures in order to adjust the levels of surface oxygenated groups. The AC supports are characterized by BET, TPD-MS and XRD, and the Cu/AC catalysts are characterized by BET, XRD, TEM, XPS, AAS, CH3OH-TPD and N2O chemisorption. The results show that as the treatment temperature is below 800 °C, the BET surface area of the corresponding AC supports are nearly unchanged and close to that of the original AC (1529.6 m2/g). But as the thermal treatment temperature is elevated from 1000 to 1600 °C, the BET surface area of AC supports gradually decreases from 1407.6 to 972.2 m2/g. After loading of Cu, the BET surface area of copper catalysts is in the range of 834.4 to 1545.3 m2/g, which is slightly less than that of the respective supports. When AC is thermal treated at 400 and 600 °C, the unstable carboxylic acid and anhydrides groups are selectively removed, which has weakened the mobility and agglomeration of Cu species during the calcination process, and thus improve the Cu species dispersion over AC support. But as the treatment temperature is elevated from 600 °C to 1200 °C, the Cu species dispersion begins to decline suggesting further removal of stable surface oxygenated groups is unfavorable for Cu species dispersion. Moreover, higher thermal treatment temperature (above 1200 °C) promotes the graphitization degree of AC and leds to the decrease of Cu loading on AC support. Meanwhile, the removal of surface oxygenated groups by thermal treatment is conducive to the formation of more π-sites, and thus promote the reduction of Cu2+ to Cu+ and Cu0 as active centers. The specific surface area of (Cu+ + Cu0) is improved by thermal treatment of AC

  18. Size and morphology controlled NiSe nanoparticles as efficient catalyst for the reduction reactions

    Energy Technology Data Exchange (ETDEWEB)

    Subbarao, Udumula; Marakatti, Vijaykumar S. [New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064 (India); Amshumali, Mungalimane K. [New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064 (India); Department of Chemistry and Industrial Chemistry, Vijayanagara Sri Krishnadevaraya University, Jnanasagara Campus, Cantonment, Bellary 583105 (India); Loukya, B. [International Center for Materials Science, Jakkur P.O., Bangalore 560064 (India); Singh, Dheeraj Kumar [Chemistry & Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064 (India); Datta, Ranjan [International Center for Materials Science, Jakkur P.O., Bangalore 560064 (India); Peter, Sebastian C., E-mail: sebastiancp@jncasr.ac.in [New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064 (India)

    2016-12-15

    Facile and efficient ball milling and polyol methods were employed for the synthesis of nickel selenide (NiSe) nanoparticle. The particle size of the NiSe nanoparticle has been controlled mechanically by varying the ball size in the milling process. The role of the surfactants in the formation of various morphologies was studied. The compounds were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray energy dispersive spectroscopy (EDS). The efficiency of the NiSe nanoparticle as a catalyst was tested for the reduction of para-nitroaniline (PNA) to para-phenyldiamine (PPD) and para-nitrophenol (PNP) to para-aminophenol (PAP) using NaBH{sub 4} as the reducing agent. Particle size, morphology and the presence of surfactant played a crucial role in the reduction process. - Graphical abstract: NiSe nanoparticles in different size and morphology were synthesized using facile ball milling and polyol methods. Particle size, morphology and the presence of surfactant in these materials played a crucial role in the hydrogenation of PNA and PNP. - Highlights: • NiSe nanoparticles synthesized using ball milling and solution phase methods. • NiSe nanoparticle is an efficient catalyst for the reduction of PNA and PNP. • NiSe is found to be better than the best reported noble metal catalysts.

  19. Size and morphology controlled NiSe nanoparticles as efficient catalyst for the reduction reactions

    International Nuclear Information System (INIS)

    Subbarao, Udumula; Marakatti, Vijaykumar S.; Amshumali, Mungalimane K.; Loukya, B.; Singh, Dheeraj Kumar; Datta, Ranjan; Peter, Sebastian C.

    2016-01-01

    Facile and efficient ball milling and polyol methods were employed for the synthesis of nickel selenide (NiSe) nanoparticle. The particle size of the NiSe nanoparticle has been controlled mechanically by varying the ball size in the milling process. The role of the surfactants in the formation of various morphologies was studied. The compounds were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray energy dispersive spectroscopy (EDS). The efficiency of the NiSe nanoparticle as a catalyst was tested for the reduction of para-nitroaniline (PNA) to para-phenyldiamine (PPD) and para-nitrophenol (PNP) to para-aminophenol (PAP) using NaBH 4 as the reducing agent. Particle size, morphology and the presence of surfactant played a crucial role in the reduction process. - Graphical abstract: NiSe nanoparticles in different size and morphology were synthesized using facile ball milling and polyol methods. Particle size, morphology and the presence of surfactant in these materials played a crucial role in the hydrogenation of PNA and PNP. - Highlights: • NiSe nanoparticles synthesized using ball milling and solution phase methods. • NiSe nanoparticle is an efficient catalyst for the reduction of PNA and PNP. • NiSe is found to be better than the best reported noble metal catalysts.

  20. Ni-CeO2/C Catalysts with Enhanced OSC for the WGS Reaction

    Directory of Open Access Journals (Sweden)

    Laura Pastor-Pérez

    2015-03-01

    Full Text Available In this work, the WGS performance of a conventional Ni/CeO2 bulk catalyst is compared to that of a carbon-supported Ni-CeO2 catalyst. The carbon-supported sample resulted to be much more active than the bulk one. The higher activity of the Ni-CeO2/C catalyst is associated to its oxygen storage capacity, a parameter that strongly influences the WGS behavior. The stability of the carbon-supported catalyst under realistic operation conditions is also a subject of this paper. In summary, our study represents an approach towards a new generation of Ni-ceria based catalyst for the pure hydrogen production via WGS. The dispersion of ceria nanoparticles on an activated carbon support drives to improved catalytic skills with a considerable reduction of the amount of ceria in the catalyst formulation.

  1. The black rock series supported SCR catalyst for NO x removal.

    Science.gov (United States)

    Xie, Bin; Luo, Hang; Tang, Qing; Du, Jun; Liu, Zuohua; Tao, Changyuan

    2017-09-01

    Black rock series (BRS) is of great potential for their plenty of valued oxides which include vanadium, iron, alumina and silica oxides, etc. BRS was used for directly preparing of selective catalytic reduction (SCR) catalyst by modifying its surface texture with SiO 2 -TiO 2 sols and regulating its catalytic active constituents with V 2 O 5 and MoO 3 . Consequently, 90% NO removal ratio was obtained within 300-400 °C over the BRS-based catalyst. The structure and properties of the BRS-based catalyst were characterized by the techniques of N 2 adsorption-desorption, X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), H 2 -temperature programmed reduction (H 2 -TPR), and NH 3 -temperature programmed desorption (NH 3 -TPD). The results revealed that the BRS-based catalyst possesses favorable properties for NO x removal, including highly dispersed active components, abundant surface-adsorbed oxygen O α , well redox property, and numerous Brønsted acid sites. Particularly, the BRS-based catalyst exhibited considerable anti-poisoning performance compared with commercial TiO 2 -based catalyst. The former catalyst shows a NO conversion surpassing 80% from 300 to 400 °C for potassium poisoning, and a durability of SO 2 and H 2 O exceeding 85% at temperatures from 300 to 450 °C.

  2. Novel low temperature NOx storage-reduction catalysts for diesel light-duty engine emissions based on hydrotalcite compounds

    International Nuclear Information System (INIS)

    Fornasari, G.; Trifiro, F.; Vaccari, A.; Prinetto, F.; Ghiotti, G.; Centi, G.

    2002-01-01

    A series of Pt and Pt,Cu supported catalysts were prepared by wet impregnation of Mg-Al supports obtained from hydrotalcite-type (HT) precursor compounds. These novel NO x storage-reduction (NO x SR) catalysts show improved performances in NO x storage than Pt,Ba/alumina NO x SR catalysts at reaction temperatures lower than 200C. These catalysts show also improved resistance to deactivation by SO 2 . The effect is attributed to the formation of well dispersed Mg(Al)O particles which show good NO x storage properties. The promoted low temperature activity is explained by the lower basicity of the Mg(Al)O mixed oxide in comparison to BaO, which induces on one hand a lower inhibition on Pt activity (NO to NO 2 oxidation and/or hydrocarbon oxidation) due to electronic effect, and on the other hand a lower thermal stability of the stored NO x . The presence of Cu slightly inhibits activity at low temperature, although improves activity and resistance to deactivation at 300C. On these catalysts FT-IR characterization evidences the formation of a Pt-Cu alloy after reduction

  3. Power generation in microbial fuel cells using platinum group metal-free cathode catalyst: Effect of the catalyst loading on performance and costs.

    Science.gov (United States)

    Santoro, Carlo; Kodali, Mounika; Herrera, Sergio; Serov, Alexey; Ieropoulos, Ioannis; Atanassov, Plamen

    2018-02-28

    Platinum group metal-free (PGM-free) catalyst with different loadings was investigated in air breathing electrodes microbial fuel cells (MFCs). Firstly, the electrocatalytic activity towards oxygen reduction reaction (ORR) of the catalyst was investigated by rotating ring disk electrode (RRDE) setup with different catalyst loadings. The results showed that higher loading led to an increased in the half wave potential and the limiting current and to a further decrease in the peroxide production. The electrons transferred also slightly increased with the catalyst loading up to the value of ≈3.75. This variation probably indicates that the catalyst investigated follow a 2x2e - transfer mechanism. The catalyst was integrated within activated carbon pellet-like air-breathing cathode in eight different loadings varying between 0.1 mgcm -2 and 10 mgcm -2 . Performance were enhanced gradually with the increase in catalyst content. Power densities varied between 90 ± 9 μWcm -2 and 262 ± 4 μWcm -2 with catalyst loading of 0.1 mgcm -2 and 10 mgcm -2 respectively. Cost assessments related to the catalyst performance are presented. An increase in catalyst utilization led to an increase in power generated with a substantial increase in the whole costs. Also a decrease in performance due to cathode/catalyst deterioration over time led to a further increase in the costs.

  4. High Performance Electrocatalytic Reaction of Hydrogen and Oxygen on Ruthenium Nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Ruquan; Liu, Yuanyue; Peng, Zhiwei; Wang, Tuo; Jalilov, Almaz S.; Yakobson, Boris I.; Wei, Su-Huai; Tour, James M.

    2017-01-18

    The development of catalytic materials for the hydrogen oxidation, hydrogen evolution, oxygen reduction or oxygen evolution reactions with high reaction rates and low overpotentials are key goals for the development of renewable energy. We report here Ru(0) nanoclusters supported on nitrogen-doped graphene as high-performance multifunctional catalysts for the hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR), showing activities similar to that of commercial Pt/C in alkaline solution. For HER performance in alkaline media, sample Ru/NG-750 reaches 10 mA cm-2 at an overpotential of 8 mV with a Tafel slope of 30 mV dec-1. The high HER performance in alkaline solution is advantageous because most catalysts for ORR and oxygen evolution reaction (OER) also prefer alkaline solution environment whereas degrade in acidic electrolytes. For ORR performance, Ru/NG effectively catalyzes the conversion of O2 into OH- via a 4e process at a current density comparable to that of Pt/C. The unusual catalytic activities of Ru(0) nanoclusters reported here are important discoveries for the advancement of renewable energy conversion reactions.

  5. Palladium nanoparticles as catalysts for reduction of Cr(VI) and Suzuki coupling reaction

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lilan; Guo, Yali; Iqbal, Anam; Li, Bo; Deng, Min; Gong, Deyan; Liu, Weisheng; Qin, Wenwu, E-mail: qinww@lzu.edu.cn [Lanzhou University, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering (China)

    2017-04-15

    Herein, six kinds of PdNPs (including icosahedron, sphere, spindle, cube, rod, and wire) were synthesized via simple methods. The catalytic activities were investigated by the reduction reaction of Cr(VI) and Suzuki coupling reaction. Chemically synthesized morphologies of the six catalysis were characterized by transmission electron microscopy, field emission scanning electron microscopy, and X-ray diffraction, etc. Pd icosahedron shows a better catalytic property than other PdNPs with a rate constants 0.42 min{sup −1} for the reduction of Cr(VI). Moreover, the electrocatalyst shows that Pd icosahedron possesses a bigger surface area of 8.56 m{sup 2}/g than other nanoparticles, which is attributed to the better catalyst. The Pd icosahedron possesses a better catalytic property, attributing to the abundant exposed {111} facets with high activity on Pd icosahedron. The catalytic activities are closely related to the surface area with the following order: icosahedrons ≥ sphere > rod > spindle > cube > wire. The Pd icosahedron catalyst represents a strong activity for Suzuki coupling reaction as well, outweighting is 80%. The results reveal that Pd icosahedron acts as an efficient catalyst compared to other PdNPs (wire, rod, sphere, spindle, and cube).

  6. Incorporation of Pt, Ru and Pt-Ru nanoparticles into ordered mesoporous carbons for efficient oxygen reduction reaction in alkaline media

    International Nuclear Information System (INIS)

    Stojmenović, Marija; Momčilović, Milan; Gavrilov, Nemanja; Pašti, Igor A.; Mentus, Slavko; Jokić, Bojan; Babić, Biljana

    2015-01-01

    Ordered mesoporous carbon, volume-doped up to 3 w.% with Pt, Ru and Pt-Ru nanoparticles was synthesized by evaporation-induced self-assembly method, under acidic conditions. The content of incorporated metal was determined by EDX analysis. The X-ray diffractometry confirmed the existence of highly dispersed metallic phases in doped samples. Specific surface area was determined by N 2 -physisorption measurements to range between 452 and 545 m 2 g −1 . Raman spectroscopy of investigated materials indicated highly disordered carbon structure with crystallite sizes around 1.4 nm. In a form of thin-layer electrode on glassy carbon support, in 0.1 M KOH solution, the prepared materials displayed high activity toward oxygen reduction reaction (ORR) in alkaline media, with onset potentials more positive than −0.10 V vs. SCE. The kinetics of O 2 reduction was found to be affected by both the specific surface area and the concentration of metal dopants. The ethanol tolerance of (Pt, Ru)-doped OMCs was found to be higher than that of common Pt/C ORR catalysts. Presented study provides a new route for the synthesis of active and selective ORR catalysts in alkaline media, being competitive with, or superior to, the existing ones in terms of performance and price

  7. Nanoporous PdCo Catalyst for Microfuel Cells: Electrodeposition and Dealloying

    Directory of Open Access Journals (Sweden)

    Satoshi Tominaka

    2011-01-01

    Full Text Available PdCo alloy is a promising catalyst for oxygen reduction reaction of direct methanol fuel cells because of its high activity and the tolerance to methanol. We have applied this catalyst in order to realize on-chip fuel cell which is a membraneless design. The novel design made the fuel cells to be flexible and integratable with other microdevices. Here, we summarize our recent research on the synthesis of nanostructured PdCo catalyst by electrochemical methods, which enable us to deposit the alloy onto microelectrodes of the on-chip fuel cells. First, the electrodeposition of PdCo is discussed in detail, and then, dealloying for introducing nanopores into the electrodeposits is described. Finally, electrochemical response and activities are fully discussed.

  8. The Effect of Support on Advanced Pt-based Cathodes towards the Oxygen Reduction Reaction. State of the Art

    International Nuclear Information System (INIS)

    Luo, Yun; Alonso-Vante, Nicolas

    2015-01-01

    Graphical abstract: TOC: This mini-review summarizes advanced Pt catalysts towards enhanced ORR activity and stability. Tunable ORR activity and stability can be achieved in tailoring Pt active center, depending on nature of supporting materials. - Highlights: • Substrate effect leads to ORR activity and stability enhancement of catalyst centers. • Carbon-based materials and oxide-carbon composite influences favorably the Pt electronic environment. • Pt surface modification induced via ligand effect, geometric effect, metal-substrate strong interaction, and interaction of rare earth oxide and Pt surface atoms. • Sources for enhancement of ORR activity and stability were identified. - Abstract: This work summarizes the advanced materials developed by various research groups for improving the stability of platinum (Pt), and Pt-based catalysts center toward the oxygen reduction reaction (ORR) in acid medium. The ORR stability enhancement of Pt catalytic center can be classified according to the different nature of the supporting materials, namely, carbon-, oxide-based-, and oxide-carbon composites. The enhancement and stability of a catalytic center can be related to either its electronic modification induced by a strong interaction with the support, another metal (alloy), or to geometric effects. In addition, other parameters come into play, the size, the morphology of the catalytic center, the temperature, the dispersion, and mass loading, along with the measuring methods. This mini-review mainly focusses on the stability improvement, depending on the substrate nature. This latter can be further modified via functionalization or by the chemical interaction nature between the substrate and catalyst.

  9. Heme biomolecule as redox mediator and oxygen shuttle for efficient charging of lithium-oxygen batteries

    Science.gov (United States)

    Ryu, Won-Hee; Gittleson, Forrest S.; Thomsen, Julianne M.; Li, Jinyang; Schwab, Mark J.; Brudvig, Gary W.; Taylor, André D.

    2016-01-01

    One of the greatest challenges with lithium-oxygen batteries involves identifying catalysts that facilitate the growth and evolution of cathode species on an oxygen electrode. Heterogeneous solid catalysts cannot adequately address the problematic overpotentials when the surfaces become passivated. However, there exists a class of biomolecules which have been designed by nature to guide complex solution-based oxygen chemistries. Here, we show that the heme molecule, a common porphyrin cofactor in blood, can function as a soluble redox catalyst and oxygen shuttle for efficient oxygen evolution in non-aqueous Li-O2 batteries. The heme's oxygen binding capability facilitates battery recharge by accepting and releasing dissociated oxygen species while benefiting charge transfer with the cathode. We reveal the chemical change of heme redox molecules where synergy exists with the electrolyte species. This study brings focus to the rational design of solution-based catalysts and suggests a sustainable cross-link between biomolecules and advanced energy storage. PMID:27759005

  10. Uric acid-derived Fe3C-containing mesoporous Fe/N/C composite with high activity for oxygen reduction reaction in alkaline medium

    Science.gov (United States)

    Ma, Jun; Xiao, Dejian; Chen, Chang Li; Luo, Qiaomei; Yu, Yue; Zhou, Junhao; Guo, Changding; Li, Kai; Ma, Jie; Zheng, Lirong; Zuo, Xia

    2018-02-01

    In this work, a category of Fe3C-containing Fe/N/C mesoporous material has been fabricated by carbonizing the mixture of uric acid, Iron (Ⅲ) chloride anhydrous and carbon support (XC-72) under different pyrolysis temperature. Of all these samples, pyrolysis temperature (800 °C) becomes the most crucial factor in forming Fe3C active sites which synergizes with high content of graphitic N to catalyze oxygen reduction reaction (ORR). X-ray absorption fine structure spectroscopy (XAFS) is used to exhibit that the space structure around Fe atoms in the catalyst. This kind of catalyst possesses comparable ORR properties with commercial 20% Pt/C (onset potential is 0 V vs. Ag/AgCl in 0.1 M KOH), the average transfer electron number is 3.84 reflecting the 4-electron process. Moreover, superior stability and methanol tolerance deserve to be mentioned.

  11. Self-Cleaning Boudouard Reactor for Full Oxygen Recovery from Carbon Dioxide

    Science.gov (United States)

    Coutts, Janelle; Hintze, Paul E.; Muscatello, Anthony C.; Gibson, Tracy L.; Captain, James G.; Lunn, Griffin M.; Devor, Robert W.; Bauer, Brint; Parks, Steve

    2016-01-01

    Oxygen recovery from respiratory carbon dioxide is an important aspect of human spaceflight. Methods exist to sequester the carbon dioxide, but production of oxygen needs further development. The current International Space Station Carbon Dioxide Reduction System (CRS) uses the Sabatier reaction to produce water (and ultimately breathing air). Oxygen recovery is limited to 50 because half of the hydrogen used in the Sabatier reactor is lost as methane, which is vented overboard. The Bosch reaction, which converts carbon dioxide to oxygen and solid carbon is capable of recovering all the oxygen from carbon dioxide, and is the only real alternative to the Sabatier reaction. However, the last reaction in the cycle, the Boudouard reaction, produces solid carbon and the resulting carbon buildup will eventually foul the nickel or iron catalyst, reducing reactor life and increasing consumables. To minimize this fouling and increase efficiency, a number of self-cleaning catalyst designs have been created. This paper will describe recent results evaluating one of the designs.

  12. From two-dimension to one-dimension: the curvature effect of silicon-doped graphene and carbon nanotubes for oxygen reduction reaction.

    Science.gov (United States)

    Zhang, Peng; Hou, Xiuli; Mi, Jianli; He, Yanqiong; Lin, Lin; Jiang, Qing; Dong, Mingdong

    2014-09-07

    For the goal of practical industrial development of fuel cells, inexpensive, sustainable, and highly efficient electrocatalysts for oxygen reduction reactions (ORR) are highly desirable alternatives to platinum (Pt) and other rare metals. In this work, based on density functional theory, silicon (Si)-doped carbon nanotubes (CNTs) and graphene as metal-free, low cost, and high-performance electrocatalysts for ORR are studied systematically. It is found that the curvature effect plays an important role in the adsorption and reduction of oxygen. The adsorption of O2 becomes weaker as the curvature varies from positive values (outside CNTs) to negative values (inside CNTs). The free energy change of the rate-determining step of ORR on the concave inner surface of Si-doped CNTs is smaller than that on the counterpart of Si-doped graphene, while that on the convex outer surface of Si-doped CNTs is larger than that on Si-doped graphene. Uncovering this new ORR mechanism on silicon-doped carbon electrodes is significant as the same principle could be applied to the development of various other metal-free efficient ORR catalysts for fuel cell applications.

  13. Atomic-Level Co3O4 Layer Stabilized by Metallic Cobalt Nanoparticles: A Highly Active and Stable Electrocatalyst for Oxygen Reduction.

    Science.gov (United States)

    Liu, Min; Liu, Jingjun; Li, Zhilin; Wang, Feng

    2018-02-28

    Developing atomic-level transition oxides may be one of the most promising ways for providing ultrahigh electrocatalytic performance for oxygen reduction reaction (ORR), compared with their bulk counterparts. In this article, we developed a set of atomically thick Co 3 O 4 layers covered on Co nanoparticles through partial reduction of Co 3 O 4 nanoparticles using melamine as a reductive additive at an elevated temperature. Compared with the original Co 3 O 4 nanoparticles, the synthesized Co 3 O 4 with a thickness of 1.1 nm exhibits remarkably enhanced ORR activity and durability, which are even higher than those obtained by a commercial Pt/C in an alkaline environment. The superior activity can be attributed to the unique physical and chemical structures of the atomic-level oxide featuring the narrowed band gap and decreased work function, caused by the escaped lattice oxygen and the enriched coordination-unsaturated Co 2+ in this atomic layer. Besides, the outstanding durability of the catalyst can result from the chemically epitaxial deposition of the Co 3 O 4 on the cobalt surface. Therefore, the proposed synthetic strategy may offer a smart way to develop other atomic-level transition metals with high electrocatalytic activity and stability for energy conversion and storage devices.

  14. Quantifying the emissions reduction effectiveness and costs of oxygenated gasoline

    International Nuclear Information System (INIS)

    Lyons, C.E.

    1993-01-01

    During the fall, winter, and spring of 1991-1992, a measurement program was conducted in Denver, Colorado to quantify the technical and economic effectiveness of oxygenated gasoline in reducing automobile carbon monoxide (CO) emissions. Emissions from 80,000 vehicles under a variety of operating conditions were measured before, during, and after the seasonal introduction of oxygenated gasoline into the region. Gasoline samples were taken from several hundred vehicles to confirm the actual oxygen content of the fuel in use. Vehicle operating conditions, such as cold starts and warm operations, and ambient conditions were characterized. The variations in emissions attributable to fuel type and to operating conditions were then quantified. This paper describes the measurement program and its results. The 1991-1992 Colorado oxygenated gasoline program contributed to a reduction in carbon monoxide (CO) emissions from gasoline-powered vehicles. The measurement program demonstrated that most of the reduction is concentrated in a small percentage of the vehicles that use oxygenated gasoline. The remainder experience little or not reduction in emissions. The oxygenated gasoline program outlays are approximately $25 to $30 million per year in Colorado. These are directly measurable costs, incurred through increased government expenditures, higher costs to private industry, and losses in fuel economy. The measurement program determined the total costs of oxygenated gasoline as an air pollution control strategy for the region. Costs measured included government administration and enforcement, industry production and distribution, and consumer and other user costs. This paper describes the ability of the oxygenated gasoline program to reduce pollution; the overall cost of the program to government, industry, and consumers; and the effectiveness of the program in reducing pollution compared to its costs

  15. In situ IR studies of Co and Ce doped Mn/TiO{sub 2} catalyst for low-temperature selective catalytic reduction of NO with NH{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Lu; Pang, Dandan; Zhang, Changliang; Meng, Jiaojiao; Zhu, Rongshu; Ouyang, Feng, E-mail: ouyangfh@hit.edu.cn

    2015-12-01

    Highlights: • A SCR mechanistic pathway over Mn–Co–Ce/TiO{sub 2} is proposed. • The cobalt oxide produces lots of Brønsted acid sites, which favor to the adsorption of coordinated NH{sub 3} through NH{sub 3} migration. • Ce addition improves amide ions formation to reach best NO reduction selectivity. • At low-temperature coordinated NH{sub 3} reacts with NO{sub 2}{sup −}, or amide reacts with NO (ad) or NO (g) to form N{sub 2}. At high temperature, the reaction also occurs between coordinated NH{sub 3} and nitrate species. - Abstract: The Mn–Co–Ce/TiO{sub 2} catalyst was prepared by wet co-impregnation method for selective catalytic reduction of NO by NH{sub 3} in the presence of oxygen. The adsorption and co-adsorption of NH{sub 3}, NO and O{sub 2} on catalysts were investigated by in situ FTIR spectroscopy. The results suggested that addition of cobalt and cerium oxides increased the numbers of acid and redox sites. Especially, the cobalt oxide produced lots of Brønsted acid sites, which favor to the adsorption of coordinated NH{sub 3} through NH{sub 3} migration. Ce addition improved amide ions formation to reach best NO reduction selectivity. A mechanistic pathway over Mn–Co–Ce/TiO{sub 2} was proposed. At low-temperature SCR reaction, coordinated NH{sub 3} reacted with NO{sub 2}{sup −}, and amide reacted with NO (ad) or NO (g) to form N{sub 2}. NO{sub 2} was related to the formation of nitrite on Co-contained catalysts and the generation of −NH{sub 2}{sup −} on Ce-contained catalysts. At high temperature, the other branch reaction also occurred between the coordinated NH{sub 3} and nitrate species, resulting in N{sub 2}O yield increase.

  16. Bubble dynamic templated deposition of three-dimensional palladium nanostructure catalysts: Approach to oxygen reduction using macro-, micro-, and nano-architectures on electrode surfaces

    International Nuclear Information System (INIS)

    Yang Guimei; Chen Xing; Li Jie; Guo Zheng; Liu Jinhuai; Huang Xingjiu

    2011-01-01

    Highlights: → We synthesize the Pd nanostructures by bubbles dynamic templated. → We obtain Pd nanobuds and Pd nanodendrites by changing the reaction precursor. → We obtain Pd macroelectrode voltammertric behavior using small amount of Pd materials. → We proved a ECE process. → The Pd nanostructures/GCE for O 2 reduction is a 2-step 4-electron process. - Abstract: Three-dimensional (3D) palladium (Pd) nanostructures (that is, nano-buds or nano-dendrites) are fabricated by bubble dynamic templated deposition of Pd onto a glassy carbon electrode (GCE). The morphology can be tailored by changing the precursor concentration and reaction time. Scanning electron microscopy images reveal that nano-buds or nano-dendrites consist of nanoparticles of 40-70 nm in diameter. The electrochemical reduction of oxygen is reported at such kinds of 3D nanostructure electrodes in aqueous solution. Data were collected using cyclic voltammetry. We demonstrate the Pd macroelectrode behavior of Pd nanostructure modified electrode by exploiting the diffusion model of macro-, micro-, and nano-architectures. In contrast to bare GCE, a significant positive shift and splitting of the oxygen reduction peak (vs Ag/AgCl/saturated KCl) at Pd nanostructure modified GCE was observed.

  17. Fuel cell development for transportation: Catalyst development

    Energy Technology Data Exchange (ETDEWEB)

    Doddapaneni, N. [Sandia National Lab., Albuquerque, NM (United States)

    1996-04-01

    Fuel cells are being considered as alternate power sources for transportation and stationary applications. With proton exchange membrane (PEM) fuel cells the fuel crossover to cathodes causes severe thermal management and cell voltage drop due to oxidation of fuel at the platinized cathodes. The main goal of this project was to design, synthesize, and evaluate stable and inexpensive transition metal macrocyclic catalysts for the reduction of oxygen and be electrochemically inert towards anode fuels such as hydrogen and methanol.

  18. Oxygen reduction reaction of Pt–In alloy: Combined theoretical and experimental investigations

    International Nuclear Information System (INIS)

    Pašti, Igor A.; Gavrilov, Nemanja M.; Baljozović, Miloš; Mitrić, Miodrag; Mentus, Slavko V.

    2013-01-01

    Graphical abstract: Upon DFT prediction of improved electrocatalytic activity of Pt–In alloys toward ORR, the alloy Pt-10 at% In was synthesized on glassy carbon disc, simultaneously with pure Pt reference catalyst. Improved catalytic activity of the alloy was evidenced by voltammetry on RDE in 0.1 mol dm −3 KOH solution. -- Highlights: •The adsorption of O atoms on Pt–In alloys model surfaces was investigated by DFT. •The improvement of catalytic activity toward ORR was predicted by DFT. •Pt-10 at% In alloy was synthesized on glassy carbon disk surface. •By voltammetry on RDE improvement of activity toward ORR was evidenced. -- Abstract: By means of the density functional theory (DFT) calculations, using the adsorption energy of oxygen on single crystal surfaces as criterion, it was predicted that the alloying of Pt with In should improve kinetics of oxygen reduction reaction (ORR). To prove this, the Pt–In alloy having nominal composition Pt 9 In was synthesized by heating H 2 PtCl 6 –InCl 3 mixture in hydrogen stream. The XRD characterization confirmed that Pt–In alloy was formed. The electrochemical measurements by rotating disk technique in alkaline 0.1 mol dm −3 KOH solution evidenced faster ORR kinetics for factor 2.6 relative to the one on pure platinum. This offers the possibility of searching for new ORR electrocatalysts by alloying platinum with p-elements

  19. Selective hydrodeoxygenation of biomass-derived oxygenates to unsaturated hydrocarbons using molybdenum carbide catalysts.

    Science.gov (United States)

    Ren, Hui; Yu, Weiting; Salciccioli, Michael; Chen, Ying; Huang, Yulin; Xiong, Ke; Vlachos, Dionisios G; Chen, Jingguang G

    2013-05-01

    Which cleavage do you prefer? With a combination of density functional theory (DFT) calculations, surface science studies, and reactor evaluations, Mo(2)C is identified as a highly selective HDO catalyst to selectively convert biomass-derived oxygenates to unsaturated hydrocarbons through selective C-O bond scissions without C-C bond cleavage. This provides high-value HDO products for utilization as feedstocks for chemicals and fuels; this also reduces the overall consumption of H2 . Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Facile preparation of efficient electrocatalysts for oxygen reduction reaction: One-dimensional meso/macroporous cobalt and nitrogen Co-doped carbon nanofibers

    Science.gov (United States)

    Yoon, Ki Ro; Choi, Jinho; Cho, Su-Ho; Jung, Ji-Won; Kim, Chanhoon; Cheong, Jun Young; Kim, Il-Doo

    2018-03-01

    Efficient electrocatalyst for oxygen reduction reaction (ORR) is an essential component for stable operation of various sustainable energy conversion and storage systems such as fuel cells and metal-air batteries. Herein, we report a facile preparation of meso/macroporous Co and N co-doped carbon nanofibers (Co-Nx@CNFs) as a high performance and cost-effective electrocatalyst toward ORR. Co-Nx@CNFs are simply obtained from electrospinning of Co precursor and bicomponent polymers (PVP/PAN) followed by temperature controlled carbonization and further activation step. The prepared Co-Nx@CNF catalyst carbonized at 700 °C (Co-Nx@CNF700) shows outstanding ORR performance, i.e., a low onset potential (0.941 V) and half wave potential (0.814 V) with almost four-electron transfer pathways (n= 3.9). In addition, Co-Nx@CNF700 exhibits a superior methanol tolerance and higher stability (>70 h) in Zn-air battery in comparison with Pt/C catalyst (∼30 h). The outstanding performance of Co-Nx@CNF700 catalysts is attributed to i) enlarged surface area with bimodal porosity achieved by leaching of inactive species, ii) increase of exposed ORR active Co-Nx moieties and graphitic edge sites, and iii) enhanced electrical conductivity and corrosion resistance due to the existence of numerous graphitic flakes in carbon matrix.

  1. Template-free synthesis of three-dimensional nanoporous N-doped graphene for high performance fuel cell oxygen reduction reaction in alkaline media

    International Nuclear Information System (INIS)

    Tang, Sheng; Zhou, Xuejun; Xu, Nengneng; Bai, Zhengyu; Qiao, Jinli; Zhang, Jiujun

    2016-01-01

    Highlights: • 3-D porous N-doped graphene was prepared using one-step silica template-free method. • High specific surface area of 920 m 2 g −1 was achieved for 3-D porous N-doped graphene. • Much higher ORR activity was observed for N-doped graphene than S-doped one in 0.1 M KOH. • The as-prepared catalyst gave a peak power density of 275 mW cm −2 as zinc–air battery cathode. - Abstract: Three-dimensional nanoporous nitrogen-doped graphene (3D-PNG) has been synthesized through a facial one-step synthesis method without additional silica template. The as-prepared 3D-PNGwas used as an electrocatalyst for the oxygen reduction reaction (ORR), which shows excellent electrochemistry performance, demonstrated by half-cell electrochemical evaluation in 0.1 M KOH including prominent ORR activity, four electron-selectivity and remarkable methanol poisoning stability compared to commercial 20%Pt/C catalyst. The physical and surface properties of 3D-PNG catalyst were characterized by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and BET surface area analysis. The experiments show that 3D-PNG catalyst possesses super-large specific surface area reaching 920 m 2 g −1 , which is superior to our most recently reported 3D-PNG synthesized by silica template (670 m 2 g −1 ) and other doped graphene catalysts in literature. When used for constructing a zinc–air battery cathode, such an 3D-PNG catalyst can give a discharge peak power density of 275 mW cm −2 . All the results announce a unique procedure to product high-efficiency graphene-based non-noble metal catalyst materials for electrochemical energy devices including both fuel cells and metal–air batteries.

  2. Electrochemical formation of a Pt/Zn alloy and its use as a catalyst for oxygen reduction reaction in fuel cells.

    Science.gov (United States)

    Sode, Aya; Li, Winton; Yang, Yanguo; Wong, Phillip C; Gyenge, Elod; Mitchell, Keith A R; Bizzotto, Dan

    2006-05-04

    The characterization of an electrochemically created Pt/Zn alloy by Auger electron spectroscopy is presented indicating the formation of the alloy, the oxidation of the alloy, and the room temperature diffusion of the Zn into the Pt regions. The Pt/Zn alloy is stable up to 1.2 V/RHE and can only be removed with the oxidation of the base Pt metal either electrochemically or in aqua regia. The Pt/Zn alloy was tested for its effectiveness toward oxygen reduction. Kinetics of the oxygen reduction reaction (ORR) were measured using a rotating disk electrode (RDE), and a 30 mV anodic shift in the potential of ORR was found when comparing the Pt/Zn alloy to Pt. The Tafel slope was slightly smaller than that measured for the pure Pt electrode. A simple procedure for electrochemically modifying a Pt-containing gas diffusion electrode (GDE) with Zn was developed. The Zn-treated GDE was pressed with an untreated GDE anode, and the created membrane electrode assembly was tested. Fuel cell testing under two operating conditions (similar anode and cathode inlet pressures, and a larger cathode inlet pressure) indicated that the 30 mV shift observed on the RDE was also evident in the fuel cell tests. The high stability of the Pt/Zn alloy in acidic environments has a potential benefit for fuel cell applications.

  3. Beyond the top of the volcano? A unified approach to electrocatalytic oxygen reduction and oxygen evolution

    Czech Academy of Sciences Publication Activity Database

    Busch, M.; Halck, N. B.; Kramm, U. I.; Siehrostami, S.; Krtil, Petr; Rossmeisl, J.

    2016-01-01

    Roč. 29, NOV 2016 (2016), s. 126-135 ISSN 2211-2855 Institutional support: RVO:61388955 Keywords : hydrogen evolution * catalytic-activity * Electrocatalysis * Oxygen reduction * Oxygen evolution * Volcano * Density functional theory Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 12.343, year: 2016

  4. Integrated diesel engine NOx reduction technology development

    Energy Technology Data Exchange (ETDEWEB)

    Hoelzer, J.; Zhu, J.; Savonen, C.L. [Detroit Diesel Corp., MI (United States); Kharas, K.C.C.; Bailey, O.H.; Miller, M.; Vuichard, J. [Allied Signal Environmental Catalysts, Tulsa, OK (United States)

    1997-12-31

    The effectiveness of catalyst performance is a function of the inlet exhaust gas temperature, gas flow rate, concentration of NO{sub x} and oxygen, and reductant quantity and species. Given this interrelationship, it becomes immediately clear that an integrated development approach is necessary. Such an approach is taken in this project. As such, the system development path is directed by an engine-catalyst engineering team. Of the tools at the engine engineer`s disposal the real-time aspects of computer assisted subsystem modeling is valuable. It will continue to be the case as ever more subtle improvements are needed to meet competitive performance, durability, and emission challenges. A review of recent prototype engines has shown that considerable improvements to base diesel engine technology are being made. For example, HSDI NO{sub x} has been reduced by a factor of two within the past ten years. However, additional substantial NO{sub x}/PM reduction is still required for the future. A viable lean NO{sub x} catalyst would be an attractive solution to this end. The results of recent high and low temperature catalyst developments were presented. High temperature base metal catalysts have been formulated to produce very good conversion efficiency and good thermal stability, albeit at temperatures near the upper range of diesel engine operation. Low temperature noble metal catalysts have been developed to provide performance of promising 4-way control but need increased NO{sub x} reduction efficiency.

  5. Mesoporous Fe-containing ZSM-5 zeolite single crystal catalysts for selective catalytic reduction of nitric oxide by ammonia

    DEFF Research Database (Denmark)

    Kustov, Arkadii; Egeblad, Kresten; Kustova, Marina

    2007-01-01

    Mesoporous and conventional Fe-containing ZSM-5 catalysts (0.5–8 wt% Fe) were prepared using a simple impregnationmethod and tested in NO selective catalytic reduction (SCR) with NH3. It was found that mesoporous Fe-ZSM-5 catalysts exhibit higher SCR activities than comparable conventional cataly...

  6. Intermetallic nickel silicide nanocatalyst-A non-noble metal-based general hydrogenation catalyst.

    Science.gov (United States)

    Ryabchuk, Pavel; Agostini, Giovanni; Pohl, Marga-Martina; Lund, Henrik; Agapova, Anastasiya; Junge, Henrik; Junge, Kathrin; Beller, Matthias

    2018-06-01

    Hydrogenation reactions are essential processes in the chemical industry, giving access to a variety of valuable compounds including fine chemicals, agrochemicals, and pharmachemicals. On an industrial scale, hydrogenations are typically performed with precious metal catalysts or with base metal catalysts, such as Raney nickel, which requires special handling due to its pyrophoric nature. We report a stable and highly active intermetallic nickel silicide catalyst that can be used for hydrogenations of a wide range of unsaturated compounds. The catalyst is prepared via a straightforward procedure using SiO 2 as the silicon atom source. The process involves thermal reduction of Si-O bonds in the presence of Ni nanoparticles at temperatures below 1000°C. The presence of silicon as a secondary component in the nickel metal lattice plays the key role in its properties and is of crucial importance for improved catalytic activity. This novel catalyst allows for efficient reduction of nitroarenes, carbonyls, nitriles, N-containing heterocycles, and unsaturated carbon-carbon bonds. Moreover, the reported catalyst can be used for oxidation reactions in the presence of molecular oxygen and is capable of promoting acceptorless dehydrogenation of unsaturated N-containing heterocycles, opening avenues for H 2 storage in organic compounds. The generality of the nickel silicide catalyst is demonstrated in the hydrogenation of over a hundred of structurally diverse unsaturated compounds. The wide application scope and high catalytic activity of this novel catalyst make it a nice alternative to known general hydrogenation catalysts, such as Raney nickel and noble metal-based catalysts.

  7. Pt{sub 1-x}Co{sub x} nanoparticles as cathode catalyst for proton exchange membrane fuel cells with enhanced catalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Wu Huimin; Wexler, David; Liu Huakun [Institute for Superconducting and Electronic Materials, School of Mechanical, Materials and Mechatronics Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia); Savadogo, O. [Materials Engineering Department, Ecole Polytechique de Montreal, Montreal, QC H3C3A7 (Canada); Ahn, Jungho [Department of Materials Engineering, Andong National University, Andong (Korea, Republic of); Wang Guoxiu, E-mail: Guoxiu.Wang@uts.edu.au [Department of Chemistry and Forensic Science, University of Technology, Sydney, NSW 2007 (Australia)

    2010-11-01

    Nanosize carbon-supported Pt{sub 1-x}Co{sub x} (x = 0.2, 0.3, and 0.45) electrocatalysts were prepared by a chemical reduction method using sodium borohydride (NaBH{sub 4}) as the reduction agent. Transmission electron microscopy examination showed uniform dispersion of Pt{sub 1-x}Co{sub x} alloy catalysts on carbon matrix, with the particle size less than 10 nm. The electrochemical characteristics of Pt{sub 1-x}Co{sub x} alloy catalysts were studied by cyclic voltammetry, linear sweep voltammetry, and chronoamperometric testing. The as-prepared Pt{sub 1-x}Co{sub x} alloy nanoparticles could be promising cathode catalysts for oxygen reduction in proton exchange membrane fuel cells with the feature of much reduced cost, but significantly increased catalytic activity.

  8. Steady state oxygen reduction and cyclic voltammetry

    DEFF Research Database (Denmark)

    Rossmeisl, Jan; Karlberg, Gustav; Jaramillo, Thomas

    2008-01-01

    The catalytic activity of Pt and Pt3Ni for the oxygen reduction reaction is investigated by applying a Sabatier model based on density functional calculations. We investigate the role of adsorbed OH on the activity, by comparing cyclic voltammetry obtained from theory with previously published ex...

  9. Porous graphene supported Pt catalysts for proton exchange membrane fuel cells

    International Nuclear Information System (INIS)

    Cheng, Kun; He, Daping; Peng, Tao; Lv, Haifeng; Pan, Mu; Mu, Shichun

    2014-01-01

    Graphene nanosheet (GNS) has a remarkably high ratio of surface area to thickness and intense inter-sheet aggregation, which heavily resist mass diffusion in vertical orientation. Here, we establish a fast-speed mass diffusion passage by creating pores in GNS, and the corresponding Pt catalyst (Pt/rPGO) displays 15.5 times mass diffusion rate than that of the pristine GNS supported Pt catalyst (Pt/rGO). Thus, the Pt/rPGO catalyst exhibits 1.5 times increase in Pt mass activity toward oxygen reduction reaction compared with the Pt/rGO. Significantly, after H 2 thermal treatment, the mass activity of the Pt/rPGO further increases to 1.9 times that of the Pt/rGO, and its electrochemical stability is also greatly improved

  10. A potentiodynamic study of the reduction of oxygen on copper

    International Nuclear Information System (INIS)

    King, F.; Litke, C.D.

    1994-07-01

    The reduction of oxygen on copper has been studied in 0.1 mol·dm -3 NaCl solutions using potentiodynamic techniques. Experiments were carried out in unbuffered and phosphate-buffered solutions at pH 7. Additional experiments in NaCl solution were performed at pH 10, with the bulk pH adjusted by adding NaOH. Some voltammetric studies in deaerated electrolytes were carried out to examine the nature of the surface films formed on the electrode. The reduction of oxygen on copper is dominated by the 4-electron reduction to OH - . Limited quantities of peroxide were detected by the ring electrode at disc potentials in the joint- and kinetic-control regions. No peroxide was detected in the transport-limiting region. The rate of reduction of oxygen is influenced by the nature of the surface film on the electrode. At interfacial pH values of ∼10, a catalytic surface film forms, thought to be submonolayer Cu(OH) ads or submonolayer Cu 2 O. simultaneously, a peak is observed on the current-potential curve. This peak is observed in neutral solutions with atmospheres of 50% O 2 /N 2 and 100% O 2 and in pH 10 solution with atmospheres >∼10% O 2 /N 2 . The peak is not observed in phosphate-buffered solution because of the buffering action on the interfacial pH. At potentials positive of the peak potential, a thin Cu 2 O layer forms in unbuffered solutions on which the rate of oxygen reduction is partially inhibited. (author). 44 refs., 17 figs

  11. l-Glutamic acid assisted eco-friendly one-pot synthesis of sheet-assembled platinum-palladium alloy networks for methanol oxidation and oxygen reduction reactions.

    Science.gov (United States)

    Shi, Ya-Cheng; Mei, Li-Ping; Wang, Ai-Jun; Yuan, Tao; Chen, Sai-Sai; Feng, Jiu-Ju

    2017-10-15

    In this work, bimetallic platinum-palladium sheet-assembled alloy networks (PtPd SAANs) were facilely synthesized by an eco-friendly one-pot aqueous approach under the guidance of l-glutamic acid at room temperature, without any additive, seed, toxic or organic solvent involved. l-Glutamic acid was served as the green shape-director and weak-stabilizing agent. A series of characterization techniques were employed to examine the morphology, structure and formation mechanism of the product. The architectures exhibited improved electrocatalytic activity and durable ability toward methanol oxidation reaction (MOR) and oxygen reduction reaction (ORR) in contrast with commercial Pt black and Pd black catalysts. This is ascribed to the unique structures of the obtained PtPd SAANs and the synergistic effects of the bimetals. These results demonstrate the potential application of the prepared catalyst in fuel cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Reduction and Immobilization of Potassium Permanganate on Iron Oxide Catalyst by Fluidized-Bed Crystallization Technology

    Directory of Open Access Journals (Sweden)

    Guang-Xia Li

    2012-03-01

    Full Text Available A manganese immobilization technology in a fluidized-bed reactor (FBR was developed by using a waste iron oxide (i.e., BT-3 as catalyst which is a by-product from the fluidized-bed Fenton reaction (FBR-Fenton. It was found that BT-3 could easily reduce potassium permanganate (KMnO4 to MnO2. Furthermore, MnO2 could accumulate on the surface of BT-3 catalyst to form a new Fe-Mn oxide. Laboratory experiments were carried out to investigate the KMnO4-reduction mechanism, including the effect of KMnO4 concentration, BT-3 dosage, and operational solution pH. The results showed that the pH solution was a significant factor in the reduction of KMnO4. At the optimum level, pHf 6, KMnO4 was virtually reduced in 10 min. A pseudo-first order reaction was employed to describe the reduction rate of KMnO4.

  13. Ozone Decomposition on the Surface of Metal Oxide Catalyst

    Directory of Open Access Journals (Sweden)

    Batakliev Todor Todorov

    2014-12-01

    Full Text Available The catalytic decomposition of ozone to molecular oxygen over catalytic mixture containing manganese, copper and nickel oxides was investigated in the present work. The catalytic activity was evaluated on the basis of the decomposition coefficient which is proportional to ozone decomposition rate, and it has been already used in other studies for catalytic activity estimation. The reaction was studied in the presence of thermally modified catalytic samples operating at different temperatures and ozone flow rates. The catalyst changes were followed by kinetic methods, surface measurements, temperature programmed reduction and IR-spectroscopy. The phase composition of the metal oxide catalyst was determined by X-ray diffraction. The catalyst mixture has shown high activity in ozone decomposition at wet and dry O3/O2 gas mixtures. The mechanism of catalytic ozone degradation was suggested.

  14. Hydrothermal Synthesis of Nanostructured Manganese Oxide as Cathodic Catalyst in a Microbial Fuel Cell Fed with Leachate

    Science.gov (United States)

    Haoran, Yuan; Lifang, Deng; Tao, Lu; Yong, Chen

    2014-01-01

    Much effort has been devoted to the synthesis of novel nanostructured MnO2 materials because of their unique properties and potential applications as cathode catalyst in Microbial fuel cell. Hybrid MnO2 nanostructures were fabricated by a simple hydrothermal method in this study. Their crystal structures, morphology, and electrochemical characters were carried out by FESEM, N2-adsorption-desorption, and CV, indicating that the hydrothermally synthesized MnO2 (HSM) was structured by nanorods of high aspect ratio and multivalve nanoflowers and more positive than the naturally synthesized MnO2 (NSM), accompanied by a noticeable increase in oxygen reduction peak current. When the HSM was employed as the cathode catalyst in air-cathode MFC which fed with leachate, a maximum power density of 119.07 mW/m2 was delivered, 64.68% higher than that with the NSM as cathode catalyst. Furthermore, the HSM via a 4-e pathway, but the NSM via a 2-e pathway in alkaline solution, and as 4-e pathway is a more efficient oxygen reduction reaction, the HSM was more positive than NSM. Our study provides useful information on facile preparation of cost-effective cathodic catalyst in air-cathode MFC for wastewater treatment. PMID:24723824

  15. Electrodeposited ultrafine NbOx, ZrOx, and TaO x nanoparticles on carbon black supports for oxygen reduction electrocatalysts in acidic media

    KAUST Repository

    Seo, Jeongsuk

    2013-09-06

    A remarkable electrocatalytic activity was obtained for the oxygen reduction reaction (ORR) in acidic solutions on ultrafine nano-oxide catalysts based on group IV or V elements. By potentiostatic electrodepostion in nonaqueous solutions at 298 K followed by heat treatment in H2 gas, highly dispersed fine nanoparticles of NbOx, ZrOx, and TaOx with sizes of less than 5 nm were prepared and deposited on carbon black (CB) loaded electrodes. These oxide nanoparticles showed high catalytic activities with high onset potentials of 0.96 VRHE (NbOx), 1.02 VRHE (ZrOx), and 0.93 V RHE (TaOx) for the ORR. Owing to the high chemical stability of group IV and V oxides, the catalysts were very stable during the ORR in acidic solutions. Surface characterization and chemical identification were performed using scanning transmission electron microscopy (STEM), energy dispersive X-ray spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS). All results clearly indicate the formation of nano-oxide electrocatalysts that show an outstanding ORR performance, whereas the bulk oxides are not active because of the absence of electronic conductivity. The present work demonstrates potential candidates for highly stable, non-noble-metal cathode catalysts for polymer electrolyte fuel cells (PEFCs), where the catalysts are exposed to highly acidic and oxidizing conditions. © 2013 American Chemical Society.

  16. Electrodeposited ultrafine NbOx, ZrOx, and TaO x nanoparticles on carbon black supports for oxygen reduction electrocatalysts in acidic media

    KAUST Repository

    Seo, Jeongsuk; Cha, Dong Kyu; Takanabe, Kazuhiro; Kubota, Jun; Domen, Kazunari

    2013-01-01

    A remarkable electrocatalytic activity was obtained for the oxygen reduction reaction (ORR) in acidic solutions on ultrafine nano-oxide catalysts based on group IV or V elements. By potentiostatic electrodepostion in nonaqueous solutions at 298 K followed by heat treatment in H2 gas, highly dispersed fine nanoparticles of NbOx, ZrOx, and TaOx with sizes of less than 5 nm were prepared and deposited on carbon black (CB) loaded electrodes. These oxide nanoparticles showed high catalytic activities with high onset potentials of 0.96 VRHE (NbOx), 1.02 VRHE (ZrOx), and 0.93 V RHE (TaOx) for the ORR. Owing to the high chemical stability of group IV and V oxides, the catalysts were very stable during the ORR in acidic solutions. Surface characterization and chemical identification were performed using scanning transmission electron microscopy (STEM), energy dispersive X-ray spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS). All results clearly indicate the formation of nano-oxide electrocatalysts that show an outstanding ORR performance, whereas the bulk oxides are not active because of the absence of electronic conductivity. The present work demonstrates potential candidates for highly stable, non-noble-metal cathode catalysts for polymer electrolyte fuel cells (PEFCs), where the catalysts are exposed to highly acidic and oxidizing conditions. © 2013 American Chemical Society.

  17. System and method for controlling an engine based on ammonia storage in multiple selective catalytic reduction catalysts

    Science.gov (United States)

    Sun, MIn; Perry, Kevin L.

    2015-11-20

    A system according to the principles of the present disclosure includes a storage estimation module and an air/fuel ratio control module. The storage estimation module estimates a first amount of ammonia stored in a first selective catalytic reduction (SCR) catalyst and estimates a second amount of ammonia stored in a second SCR catalyst. The air/fuel ratio control module controls an air/fuel ratio of an engine based on the first amount, the second amount, and a temperature of a substrate disposed in the second SCR catalyst.

  18. Asymmetric reduction of ketones with catecholborane using 2,6-BODOL complexes of titanium(IV) as catalysts.

    Science.gov (United States)

    Sarvary, I; Almqvist, F; Frejd, T

    2001-05-18

    Reductions performed with Ti(IV) complexes of ligands based on bicyclo[2.2.2]octane diols 5 and 6 are effective catalysts in the reduction of prochiral ketones to optically active alcohols, with catecholborane as the reducing agent. Methyl ketones are favored and enantiomeric excesses (ee) of octanone, which gave 2-octanol in 87% ee. Further details of the method were examined, for example, temperature, solvent composition, amount of molecular sieves (4 A), and catecholborane quality, as well as the sensitivity of the ligands towards acids. NMR spectroscopic methods were used to gain some insight into the complexes formed between the ligands and [Ti(OiPr)4]. A dimeric structure is proposed for the pre-catalyst.

  19. Development of silver-gas diffusion electrodes for the oxygen reduction reaction by electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Salomé, Sónia; Rego, Rosa; Oliveira, M. Cristina, E-mail: mcris@utad.pt

    2013-12-16

    Silver-gas diffusion electrodes (Ag-GDE) were prepared by direct deposition of the catalyst onto a carbon paper support by electrodeposition. This deposition technique, under potentiostatic and galvanostatic mode, allows the production of well dispersed ultra-low Ag loading levels. The catalytic activity of the prepared materials towards the oxygen reduction reaction (ORR) was investigated in the alkaline solution and its tolerance to methanol was evaluated. Based on an Ag-ink prepared from the electrodeposit material and RDE experiments, it was concluded that the ORR occurs via a four-electron pathway on the Ag electrodeposit. The combination of reasonably high catalytic activity, efficiency, low price, facile and green synthesis makes the electrodeposited Ag-GDE attractive for the ORR in alkaline fuel cells. - Highlights: • A facile and simple way to successfully prepare catalyzed gas diffusion electrodes. • Ultra-low loadings of Ag-GDEs can be achieved. • Good tolerance to methanol and a high mass activity (3.14 mA{sub Ag} mg{sup −1}). • ORR occurs via a four-electron pathway.

  20. The poisoning effect of PbO on Mn-Ce/TiO{sub 2} catalyst for selective catalytic reduction of NO with NH{sub 3} at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Lingling [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Li, Caiting, E-mail: ctli@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Zhao, Lingkui; Zeng, Guangming; Gao, Lei; Wang, Yan; Yu, Ming’e [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China)

    2016-12-15

    Highlights: • The poisoning effects of PbO-doped Mn-Ce/TiO{sub 2} catalysts for low temperature NH{sub 3}-SCR were investigated. • Low concentration of Mn{sup 4+} and chemisorbed oxygen (O{sub b}) were not favorable for the generation of intermediates. • The decreased Ce{sup 3+} and less reducible of manganese oxides hindered the redox cycle (Mn{sup 3+} + Ce{sup 4+} ↔ Mn{sup 4+} + Ce{sup 3+}). • The doping of PbO not only altered acid sites but also inhibited ammonia adsorption as well as activation. • The poisoning of PbO resulted in the decrease of ad-NO{sub x} species (only a spot of bidentate nitrates remained). - Abstract: Lead oxide (PbO) as one of the typical heavy metals in flue gas from power plants has strong accumulation as well as poisoning effects on SCR catalysts. In this paper, a series of PbO-doped Mn-Ce/TiO{sub 2} catalysts were synthesized by impregnation method. The poisoning effects of PbO over Mn-Ce/TiO{sub 2} samples for selective catalytic reduction of NO by NH{sub 3} were investigated based on catalytic activity test and characterizations. The NO conversion of Mn-Ce/TiO{sub 2} was greatly decreased after the addition of PbO. It was obvious that the NO conversion efficiency of Mn-Ce/TiO{sub 2} catalyst declined from 96.75% to about 40% at 200 °C when Pb:Mn molar ratio reached 0.5. Brunauer-Emmett-Teller (BET), X-ray diffraction (XRD), Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Hydrogen temperature programmed reduction (H{sub 2}-TPR), Ammonia temperature programmed desorption (NH{sub 3}-TPD) and Fourier transform infrared spectroscopy (FT-IR) were carried out to study the deactivation reasons of PbO poisoned catalysts. Manganese oxides’ crystallization, less reducible of manganese and cerium oxides, the decreasing of surface area, Mn{sup 4+} as well as Ce{sup 3+} concentration and chemisorbed oxygen (O{sub b}) after the introduction of PbO, all of these resulted in a poor SCR performance

  1. Preparation and characterization of CuO catalyst for the thermolysis treatment of distillery wastewater.

    Science.gov (United States)

    Sharma, Deepak; Prajapati, Abhinesh Kumar; Choudhary, Rumi; Kaushal, Rajesh Kumar; Pal, Dharm; Sawarkar, Ashish N

    2017-08-16

    CuO catalyst was prepared from copper sulfate by alkali precipitation method followed by drying and calcination. Characterization of CuO catalyst using X-ray diffraction, Brunauer-Emmett-Teller, and Barrett-Joyner-Halenda surface area analysis envisaged the effectiveness of CuO as a catalyst for the treatment of biodigester effluent (BDE) emanated from distilleries. The catalytic thermolysis is an efficient advance treatment method for distillery biodigester effluent (BDE). CT treatment of BDE was carried out in a 0.5 dm 3 thermolytic batch reactor using CuO as a catalyst at different pH (1-9), temperatures (80-110°C), and catalyst loadings (1-4 kg/m 3 ). With CuO catalyst, a temperature of 110°C, catalyst loading of 4 kg/m 3 , and pH of 2 was found to be optimal, providing a maximum reduction in chemical oxygen demand of 65%. The settling characteristics at different temperatures of CT-treated sludge were also presented.

  2. Effect of Na poisoning catalyst (V2O5-WO3/TiO2) on denitration process and SO3 formation

    Science.gov (United States)

    Xiao, Haiping; Chen, Yu; Qi, Cong; Ru, Yu

    2018-03-01

    This paper aims to study the effect of alkali metal sodium (Na) poisoning on the performance of the Selective Catalytic Reduction (SCR) catalyst. The result showed that Na2SO4 poisoning leads to a reduced denitration rate of the SCR catalyst and an increase in the SO3 generation rate. Na2O poisoning leads to a significant reduction in the denitration rate of the SCR catalyst and marginally improves the formation of SO3. The maximum of the SO3 generation rate for a Na2SO4-poisoned catalyst reached 1.35%, whereas it was only 0.85% for the SCR catalyst. When the SO2 was contained in flue gas, the denitration rate for the Na2O-poisoned catalyst clearly increased by more than 28%. However, the effect of SO2 on the Na2SO4-poisoned catalyst was very slight. The denitration rate of the SCR catalyst decreased with an increase in the Na content. The BET and XRD results showed that Na poisoning of the catalyst decreased the number of acid sites, the reducibility of the catalyst, the surface area, and pore volume. The H2-TPR and NH3-TPD results show that Na decreases the number of acid sites and the reducibility of the catalyst. The FT-IR and XPS results showed that Na2O poisoning led to the decrease of V5+dbnd O bonds and the consumptions of oxygen atoms. Na2SO4 poisoning can improve surface adsorbed oxygen, which was beneficial for the SO2-SO3 conversion reaction.

  3. Benchmarking Pt and Pt-lanthanide sputtered thin films for oxygen electroreduction

    DEFF Research Database (Denmark)

    Zamburlini, Eleonora; Jensen, Kim Degn; Stephens, Ifan E.L.

    2017-01-01

    Platinum-lanthanide alloys are very promising as active and stable catalysts for the oxygen reduction reaction (ORR) in low-temperature fuel cells. We have fabricated Pt and Pt5Gd metallic thin films via (co-)sputtering deposition in an ultra-high vacuum (UHV) chamber. The electrochemical ORR...

  4. Non-noble metal fuel cell catalysts

    CERN Document Server

    Chen, Zhongwei; Zhang, Jiujun

    2014-01-01

    Written and edited by a group of top scientists and engineers in the field of fuel cell catalysts from both industry and academia, this book provides a complete overview of this hot topic. It covers the synthesis, characterization, activity validation and modeling of different non-noble metal and metalfree electrocatalysts for the reduction of oxygen, as well as their integration into acid or alkaline polymer exchange membrane (PEM) fuel cells and their performance validation, while also discussing those factors that will drive fuel cell commercialization. With its well-structured app

  5. Comparison of Bimetallic and Trimetallic Catalyst in Reductive Dechlorination; Influence of Copper Addition

    Czech Academy of Sciences Publication Activity Database

    Kaštánek, František; Kaštánek, Petr; Maléterová, Ywetta; Kallistová, A.; Šolcová, Olga

    2015-01-01

    Roč. 2, č. 7 (2015), s. 1954-1958 E-ISSN 3159-0040 R&D Projects: GA TA ČR TA04020700 Institutional support: RVO:67985858 ; RVO:67985831 Keywords : PCB * reductive dechlorination * bimetallic and trimetallic catalysts Subject RIV: CI - Industrial Chemistry, Chemical Engineering http://www.jmest.org/wp-content/uploads/JMESTN42350950.pdf

  6. Ga-Doped Pt-Ni Octahedral Nanoparticles as a Highly Active and Durable Electrocatalyst for Oxygen Reduction Reaction.

    Science.gov (United States)

    Lim, JeongHoon; Shin, Hyeyoung; Kim, MinJoong; Lee, Hoin; Lee, Kug-Seung; Kwon, YongKeun; Song, DongHoon; Oh, SeKwon; Kim, Hyungjun; Cho, EunAe

    2018-04-11

    Bimetallic PtNi nanoparticles have been considered as a promising electrocatalyst for oxygen reduction reaction (ORR) in polymer electrolyte membrane fuel cells (PEMFCs) owing to their high catalytic activity. However, under typical fuel cell operating conditions, Ni atoms easily dissolve into the electrolyte, resulting in degradation of the catalyst and the membrane-electrode assembly (MEA). Here, we report gallium-doped PtNi octahedral nanoparticles on a carbon support (Ga-PtNi/C). The Ga-PtNi/C shows high ORR activity, marking an 11.7-fold improvement in the mass activity (1.24 A mg Pt -1 ) and a 17.3-fold improvement in the specific activity (2.53 mA cm -2 ) compared to the commercial Pt/C (0.106 A mg Pt -1 and 0.146 mA cm -2 ). Density functional theory calculations demonstrate that addition of Ga to octahedral PtNi can cause an increase in the oxygen intermediate binding energy, leading to the enhanced catalytic activity toward ORR. In a voltage-cycling test, the Ga-PtNi/C exhibits superior stability to PtNi/C and the commercial Pt/C, maintaining the initial Ni concentration and octahedral shape of the nanoparticles. Single cell using the Ga-PtNi/C exhibits higher initial performance and durability than those using the PtNi/C and the commercial Pt/C. The majority of the Ga-PtNi nanoparticles well maintain the octahedral shape without agglomeration after the single cell durability test (30,000 cycles). This work demonstrates that the octahedral Ga-PtNi/C can be utilized as a highly active and durable ORR catalyst in practical fuel cell applications.

  7. From 3D to 2D Co and Ni Oxyhydroxide Catalysts: Elucidation of the Active Site and Influence of Doping on the Oxygen Evolution Activity

    DEFF Research Database (Denmark)

    Tripkovic, Vladimir; Hansen, Heine Anton; Vegge, Tejs

    2017-01-01

    Layered oxyhydroxides (ox-hys) of Ni and Co are among the most active catalysts for oxygen evolution in alkaline media. Their activities can be further tuned by delamination into single-layer oxide sheets or by means of doping. The active site for the reaction and how doping and delamination...... investigate the role of terrace and edge sites and use stability, catalytic activity, and electronic conductivity as evaluation criteria to pinpoint the best catalysts. We arrive at several important conclusions: the ox-hy surface is fully oxidized under oxygen evolution conditions, bulk terraces...

  8. Influence of Reduction Promoters on Stability of Cobalt/g-Alumina Fischer-Tropsch Synthesis Catalysts

    OpenAIRE

    Gary Jacobs; Wenping Ma; Burtron H. Davis

    2014-01-01

    This focused review article underscores how metal reduction promoters can impact deactivation phenomena associated with cobalt Fischer-Tropsch synthesis catalysts. Promoters can exacerbate sintering if the additional cobalt metal clusters, formed as a result of the promoting effect, are in close proximity at the nanoscale to other cobalt particles on the surface. Recent efforts have shown that when promoters are used to facilitate the reduction of small crystallites with the aim of increasing...

  9. Highly-dispersed Ta-oxide catalysts prepared by electrodeposition in a non-aqueous plating bath for polymer electrolyte fuel cell cathodes

    KAUST Repository

    Seo, Jeongsuk; Cha, Dong Kyu; Takanabe, Kazuhiro; Kubota, Jun; Domen, Kazunari

    2012-01-01

    The Ta-oxide cathode catalysts were prepared by electrodeposition in a non-aqueous solution. These catalysts showed excellent catalytic activity and have an onset potential of 0.92 V RHE for the oxygen reduction reaction (ORR). The highly-dispersed Ta species at the nanometer scale on the carbon black was an important contributor to the high activity. © 2012 The Royal Society of Chemistry.

  10. PHOTOINDUCED TRANSFER OF OXYGEN FROM WATER: AN ARTIFICAL PHOTOSYNTHETIC SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Willner, Itamar; Otvos, John W.; Ford, William E.; Mettee, Howard; Calvin, Melvin

    1979-11-01

    The photoinduced splitting of water into hydrogen and oxygen has evoked great interest in recent years as a means for energy storag eand fuel production. Photoinduced reduction of water to hydrogen, using visible light, has been described using heterogeneous or homogeneous catalysts. However, the complementary part involving the oxidation of water to oxygen is required in order to create a cyclic artificial 'photosynthetic' fuel system. The major difficulty assocaited with the photooxidation of water involves the requirement for a four electron transfer to produce oxygen. A stepwise one-electron oxidation of water is unfavorable due to the implied formation of active hydroxyl radicals. Very recently, it has been reported that RuO{sub 2} can serve as a heterogeneous charge storage catalyst for oxygen production. On the basis of the limited knowledge about natural photosynthesis, in which manganese ions play an important role in oxygen evolution, synthetic manganese complexes, and in particular dimeric complexes, have been proposed as potential catalysts for oxygen production. So far, efforts directed toward this goal have been unsuccessful. Consequently, using a manganese complex, they attempted to perform a photoinduced oxidation of water whereby the active oxygen is transferred to a trapping substrate. In such a way, the requirement for a dimerization process to evolve molecular oxygen is avoided. They wish to report a photoinduced redox cycle sensitized by a manganese porphyrin, 5-(4{prime}-hexadecylpyridium)-10, 15, 20-tri (4{prime}-pyridyl)-porphinatomanganese(III) (abbreciated to Pn-Mn{sup III}) in which the resultant reaction is the oxidation of water and trapping of the single oxygen atom by a substrate (triphenylphosphine).

  11. Gold Nanofilm Redox Catalysis for Oxygen Reduction at Soft Interfaces

    International Nuclear Information System (INIS)

    Smirnov, Evgeny; Peljo, Pekka; Scanlon, Micheál D.; Girault, Hubert H.

    2016-01-01

    ABSTRACT: Functionalization of a soft or liquid-liquid interface by a one gold nanoparticle thick “nanofilm” provides a conductive pathway to facilitate interfacial electron transfer from a lipophilic electron donor to a hydrophilic electron acceptor in a process known as interfacial redox catalysis. The gold nanoparticles in the nanofilm are charged by Fermi level equilibration with the lipophilic electron donor and act as an interfacial reservoir of electrons. Additional thermodynamic driving force can be provided by electrochemically polarising the interface. Using these principles, the biphasic reduction of oxygen by a lipophilic electron donor, decamethylferrocene, dissolved in α,α,α-trifluorotoluene was catalysed at a gold nanoparticle nanofilm modified water-oil interface. A recently developed microinjection technique was utilised to modify the interface reproducibly with the mirror-like gold nanoparticle nanofilm, while the oxidised electron donor species and the reduction product, hydrogen peroxide, were detected by ion transfer voltammetry and UV/vis spectroscopy, respectively. Metallization of the soft interface allowed the biphasic oxygen reduction reaction to proceed via an alternative mechanism with enhanced kinetics and at a significantly lower overpotential in comparison to a bare soft interface. Weaker lipophilic reductants, such as ferrocene, were capable of charging the interfacial gold nanoparticle nanofilm but did not have sufficient thermodynamic driving force to significantly elicit biphasic oxygen reduction.

  12. Evaluation of mechanical properties in metal wire mesh supported selective catalytic reduction (SCR) catalyst structures

    Science.gov (United States)

    Rajath, S.; Siddaraju, C.; Nandakishora, Y.; Roy, Sukumar

    2018-04-01

    The objective of this research is to evaluate certain specific mechanical properties of certain stainless steel wire mesh supported Selective catalytic reduction catalysts structures wherein the physical properties of the metal wire mesh and also its surface treatments played vital role thereby influencing the mechanical properties. As the adhesion between the stainless steel wire mesh and the catalyst material determines the bond strength and the erosion resistance of catalyst structures, surface modifications of the metal- wire mesh structure in order to facilitate the interface bonding is therefore very important to realize enhanced level of mechanical properties. One way to enhance such adhesion properties, the stainless steel wire mesh is treated with the various acids, i.e., chromic acid, phosphoric acid including certain mineral acids and combination of all those in various molar ratios that could generate surface active groups on metal surface that promotes good interface structure between the metal- wire mesh and metal oxide-based catalyst material and then the stainless steel wire mesh is dipped in the glass powder slurry containing some amount of organic binder. As a result of which the said catalyst material adheres to the metal-wire mesh surface more effectively that improves the erosion profile of supported catalysts structure including bond strength.

  13. Selective hydrogenation of phenol to cyclohexanone over Pd@CN (N-doped porous carbon): Role of catalyst reduction method

    Science.gov (United States)

    Hu, Shuo; Yang, Guangxin; Jiang, Hong; Liu, Yefei; Chen, Rizhi

    2018-03-01

    Selective phenol hydrogenation is a green and sustainable technology to produce cyclohexanone. The work focused on investigating the role of catalyst reduction method in the liquid-phase phenol hydrogenation to cyclohexanone over Pd@CN (N-doped porous carbon). A series of reduction methods including flowing hydrogen reduction, in-situ reaction reduction and liquid-phase reduction were designed and performed. The results highlighted that the reduction method significantly affected the catalytic performance of Pd@CN in the liquid-phase hydrogenation of phenol to cyclohexanone, and the liquid-phase reduction with the addition of appropriate amount of phenol was highly efficient to improve the catalytic activity of Pd@CN. The influence mechanism was explored by a series of characterizations. The results of TEM, XPS and CO chemisorption confirmed that the reduction method mainly affected the size, surface composition and dispersion of Pd in the CN material. The addition of phenol during the liquid-phase reduction could inhibit the aggregation of Pd NPs and promote the reduction of Pd (2+), and then improved the catalytic activity of Pd@CN. The work would aid the development of high-performance Pd@CN catalysts for selective phenol hydrogenation.

  14. Oxygen isotopic fractionation during bacterial sulfate reduction

    Science.gov (United States)

    Balci, N.; Turchyn, A. V.; Lyons, T.; Bruchert, V.; Schrag, D. P.; Wall, J.

    2006-12-01

    Sulfur isotope fractionation during bacterial sulfate reduction (BSR) is understood to depend on a variety of environmental parameters, such as sulfate concentration, temperature, cell specific sulfate reduction rates, and the carbon substrate. What controls oxygen isotope fractionation during BSR is less well understood. Some studies have suggested that carbon substrate is important, whereas others concluded that there is a stoichiometric relationship between the fractionations of sulfur and oxygen during BSR. Studies of oxygen fractionation are complicated by isotopic equilibration between sulfur intermediates, particularly sulfite, and water. This process can modify the isotopic composition of the extracellular sulfate pool (δ18OSO4 ). Given this, the challenge is to distinguish between this isotopic equilibration and fractionations linked to the kinetic effects of the intercellular enzymes and the incorporation of sulfate into the bacterial cell. The δ18OSO4 , in concert with the sulfur isotope composition of sulfate (δ34SSO4), could be a powerful tool for understanding the pathways and environmental controls of BSR in natural systems. We will present δ18OSO4 data measured from batch culture growth of 14 different species of sulfate reducing bacteria for which sulfur isotope data were previously published. A general observation is that δ18OSO4 shows little isotopic change (kinetic effect during BSR and/or equilibration between sulfur intermediates and the isotopically light water (~-5‰) of the growth medium. Our present batch culture data do not allow us to convincingly isolate the magnitude and the controlling parameters of the kinetic isotope effect for oxygen. However, ongoing growth of mutant bacteria missing enzymes critical in the different steps of BSR may assist in this mission.

  15. Solid Oxide Fuel Cell Cathodes. Unraveling the Relationship Between Structure, Surface Chemistry and Oxygen Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Gopalan, Srikanth [Boston Univ., MA (United States)

    2013-03-31

    In this work we have considered oxygen reduction reaction on LSM and LSCF cathode materials. In particular we have used various spectroscopic techniques to explore the surface composition, transition metal oxidation state, and the bonding environment of oxygen to understand the changes that occur to the surface during the oxygen reduction process. In a parallel study we have employed patterned cathodes of both LSM and LSCF cathodes to extract transport and kinetic parameters associated with the oxygen reduction process.

  16. A new continuous-flow process for catalytic conversion of glycerol to oxygenated fuel additive: Catalyst screening

    International Nuclear Information System (INIS)

    Nanda, Malaya R.; Yuan, Zhongshun; Qin, Wensheng; Ghaziaskar, Hassan S.; Poirier, Marc-Andre; Xu, Chunbao

    2014-01-01

    Highlights: • A continuous-flow process for catalytic synthesis of solketal from glycerol. • Six different heterogeneous acid catalysts were studied in the process. • Glycerol conversion and solketal yield of 90% and 88% respectively were achieved. • The process has the potential to be scaled-up for industrial applications. - Abstract: A new continuous-flow reactor was designed for the conversion of glycerol to solketal, an oxygenated fuel additive, through ketalization with acetone. Six heterogeneous catalysts were investigated with respect to their catalytic activity and stability in a flow reactor. The acidity of the catalysts positively influences the catalyst’s activity. Among all the solid acid catalysts tested, the maximum solketal yield from experiments at 40 °C, 600 psi and WHSV of 4 h −1 attained 73% and 88% at the acetone/glycerol molar ratio of 2.0 and 6.0, respectively, with Amberlyst Wet. Based on the solketal yield and glycerol conversion results, the activity of all catalysts tested follows the following order of sequence: Amberlyst Wet ≈ Zeolite ≈ Amberlyst Dry > Zirconium Sulfate > Montmorillonite > Polymax. An increase in acetone/glycerol molar ratio or a decrease in WHSV enhanced the glycerol conversion as expected. This process offers an attractive route for converting glycerol, the main by-product of biodiesel, to solketal – a value-added green product with potential industrial applications as a valuable fuel additive or combustion promoter for gasoline engines

  17. Electronic states of carbon alloy catalysts and nitrogen substituent effects on catalytic activity

    Science.gov (United States)

    Hata, Tomoyuki; Ushiyama, Hiroshi; Yamashita, Koichi

    2013-03-01

    In recent years, Carbon Alloy Catalysts (CACs) are attracting attention as a candidate for non-platinum-based cathode catalysts in fuel cells. Oxygen reduction reactions at the cathode are divided into two elementary processes, electron transfer and oxygen adsorption. The electron transfer reaction is the rate-determining, and by comparison of energy levels, catalytic activity can be evaluated quantitatively. On the other hand, to begin with, adsorption mechanism is obscure. The purpose of this study is to understand the effect of nitrogen substitution and oxygen adsorption mechanism, by first-principle electronic structure calculations for nitrogen substituted models. To reproduce the elementary processes of oxygen adsorption, we assumed that the initial structures are formed based on the Pauling model, a CACs model and nitrogen substituted CACs models in which various points are replaced with nitrogen. When we try to focus only on the DOS peaks of oxygen, in some substituted model that has high adsorption activity, a characteristic partial occupancy state was found. We conclude that this state will affect the adsorption activity, and discuss on why partially occupied states appear with simplification by using an orbital correlation diagram.

  18. Direct Synthesis of Methanol by Partial Oxidation of Methane with Oxygen over Cobalt Modified Mesoporous H-ZSM-5 Catalyst

    Directory of Open Access Journals (Sweden)

    Yuni Krisyuningsih Krisnandi

    2015-11-01

    Full Text Available Partial oxidation of methane over mesoporous catalyst cobalt modified H-ZSM-5 has been carried out. Mesoporous Na-ZSM-5 (Si/Al = 35.4 was successfully synthesized using double template method which has high surface area (450 m2/g and average pore diameter distribution of 1.9 nm. The as-synthesized Na-ZSM-5 was converted to H-ZSM-5 through multi-exchange treatment with ammonium ion solution, causing decreased crystallinity and surface area, but increased porous diameter, due to dealumination during treatment process. Moreover, H-ZSM-5 was loaded with cobalt (Co = 2.5% w by the incipient impregnation method and calcined at 550 °C. Partial oxidation of methane was performed in the batch reactor with 0.75 bar methane and 2 bar of nitrogen (with impurities of 0.5% oxygen as the input at various reaction time (30, 60 and 120 min. The reaction results show that cobalt species in catalyst has an important role, because H-ZSM-5 cannot produce methanol in partial oxidation of methane. The presence of molecular oxygen increased the percentage of methanol yield. The reaction is time-dependent with the highest methanol yield (79% was acquired using Co/H-ZSM-5 catalyst for 60 min.

  19. S- and N-Doped Graphene Nanomaterials for the Oxygen Reduction Reaction

    Directory of Open Access Journals (Sweden)

    Luis Miguel Rivera

    2017-09-01

    Full Text Available In the current work, heteroatom-doped graphene materials containing different atomic ratios of nitrogen and sulphur were employed as electrocatalysts for the oxygen reduction reaction (ORR in acidic and alkaline media. To this end, the hydrothermal route and different chemical reducing agents were employed to synthesize the catalytic materials. The physicochemical characterization of the catalysts was performed by several techniques, such as X-ray diffraction, Raman spectroscopy and elemental analysis; meanwhile, the electrochemical performance of the materials toward the ORR was analyzed by linear sweep voltammetry (LSV, rotating disk electrode (RDE and rotating ring-disk electrode (RRDE techniques. The main results indicate that the ORR using heteroatom-doped graphene is a direct four-electron pathway, for which the catalytic activity is higher in alkaline than in acidic media. Indeed, a change of the reaction mechanism was observed with the insertion of N into the graphenic network, by the rate determining step changes from the first electrochemical step (formation of adsorbed OOH on glassy carbon to the removal of adsorbed O (Oad from the N-graphene surface. Moreover, the addition of sulphur atoms into the N-graphene structure increases the catalytic activity toward the ORR, as the desorption of Oad is accelerated.

  20. Efficient selective catalytic reduction of NO by novel carbon-doped metal catalysts made from electroplating sludge.

    Science.gov (United States)

    Zhang, Jia; Zhang, Jingyi; Xu, Yunfeng; Su, Huimin; Li, Xiaoman; Zhou, Ji Zhi; Qian, Guangren; Li, Li; Xu, Zhi Ping

    2014-10-07

    Electroplating sludges, once regarded as industrial wastes, are precious resources of various transition metals. This research has thus investigated the recycling of an electroplating sludge as a novel carbon-doped metal (Fe, Ni, Mg, Cu, and Zn) catalyst, which was different from a traditional carbon-supported metal catalyst, for effective NO selective catalytic reduction (SCR). This catalyst removed >99.7% NO at a temperature as low as 300 °C. It also removed NO steadily (>99%) with a maximum specific accumulative reduced amount (MSARA) of 3.4 mmol/g. Gas species analyses showed that NO removal was accompanied by evolving N2 and CO2. Moreover, in a wide temperature window, the sludge catalyst showed a higher CO2 selectivity (>99%) than an activated carbon-supported metal catalyst. Structure characterizations revealed that carbon-doped metal was transformed to metal oxide in the sludge catalyst after the catalytic test, with most carbon (2.33 wt %) being consumed. These observations suggest that NO removal over the sludge catalyst is a typical SCR where metals/metal oxides act as the catalytic center and carbon as the reducing reagent. Therefore, our report probably provides an opportunity for high value-added utilizations of heavy-metal wastes in mitigating atmospheric pollutions.